Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/pm_wakeup.h>
  27#include <linux/suspend.h>
  28#include <linux/fault-inject.h>
  29#include <linux/random.h>
  30#include <linux/slab.h>
  31#include <linux/of.h>
  32
  33#include <linux/mmc/card.h>
  34#include <linux/mmc/host.h>
  35#include <linux/mmc/mmc.h>
  36#include <linux/mmc/sd.h>
  37#include <linux/mmc/slot-gpio.h>
  38
  39#include "core.h"
  40#include "bus.h"
  41#include "host.h"
  42#include "sdio_bus.h"
  43#include "pwrseq.h"
  44
  45#include "mmc_ops.h"
  46#include "sd_ops.h"
  47#include "sdio_ops.h"
  48
  49/* If the device is not responding */
  50#define MMC_CORE_TIMEOUT_MS	(10 * 60 * 1000) /* 10 minute timeout */
  51
  52/*
  53 * Background operations can take a long time, depending on the housekeeping
  54 * operations the card has to perform.
  55 */
  56#define MMC_BKOPS_MAX_TIMEOUT	(4 * 60 * 1000) /* max time to wait in ms */
  57
  58static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  59
  60/*
  61 * Enabling software CRCs on the data blocks can be a significant (30%)
  62 * performance cost, and for other reasons may not always be desired.
  63 * So we allow it it to be disabled.
  64 */
  65bool use_spi_crc = 1;
  66module_param(use_spi_crc, bool, 0);
  67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  68static int mmc_schedule_delayed_work(struct delayed_work *work,
  69				     unsigned long delay)
  70{
  71	/*
  72	 * We use the system_freezable_wq, because of two reasons.
  73	 * First, it allows several works (not the same work item) to be
  74	 * executed simultaneously. Second, the queue becomes frozen when
  75	 * userspace becomes frozen during system PM.
  76	 */
  77	return queue_delayed_work(system_freezable_wq, work, delay);
 
 
  78}
  79
  80#ifdef CONFIG_FAIL_MMC_REQUEST
  81
  82/*
  83 * Internal function. Inject random data errors.
  84 * If mmc_data is NULL no errors are injected.
  85 */
  86static void mmc_should_fail_request(struct mmc_host *host,
  87				    struct mmc_request *mrq)
  88{
  89	struct mmc_command *cmd = mrq->cmd;
  90	struct mmc_data *data = mrq->data;
  91	static const int data_errors[] = {
  92		-ETIMEDOUT,
  93		-EILSEQ,
  94		-EIO,
  95	};
  96
  97	if (!data)
  98		return;
  99
 100	if (cmd->error || data->error ||
 101	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 102		return;
 103
 104	data->error = data_errors[prandom_u32() % ARRAY_SIZE(data_errors)];
 105	data->bytes_xfered = (prandom_u32() % (data->bytes_xfered >> 9)) << 9;
 106}
 107
 108#else /* CONFIG_FAIL_MMC_REQUEST */
 109
 110static inline void mmc_should_fail_request(struct mmc_host *host,
 111					   struct mmc_request *mrq)
 112{
 113}
 114
 115#endif /* CONFIG_FAIL_MMC_REQUEST */
 116
 117/**
 118 *	mmc_request_done - finish processing an MMC request
 119 *	@host: MMC host which completed request
 120 *	@mrq: MMC request which request
 121 *
 122 *	MMC drivers should call this function when they have completed
 123 *	their processing of a request.
 124 */
 125void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 126{
 127	struct mmc_command *cmd = mrq->cmd;
 128	int err = cmd->error;
 129
 130	/* Flag re-tuning needed on CRC errors */
 131	if ((cmd->opcode != MMC_SEND_TUNING_BLOCK &&
 132	    cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200) &&
 133	    (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
 134	    (mrq->data && mrq->data->error == -EILSEQ) ||
 135	    (mrq->stop && mrq->stop->error == -EILSEQ)))
 136		mmc_retune_needed(host);
 137
 138	if (err && cmd->retries && mmc_host_is_spi(host)) {
 139		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 140			cmd->retries = 0;
 141	}
 142
 143	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 144		/*
 145		 * Request starter must handle retries - see
 146		 * mmc_wait_for_req_done().
 147		 */
 148		if (mrq->done)
 149			mrq->done(mrq);
 150	} else {
 151		mmc_should_fail_request(host, mrq);
 152
 153		led_trigger_event(host->led, LED_OFF);
 154
 155		if (mrq->sbc) {
 156			pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
 157				mmc_hostname(host), mrq->sbc->opcode,
 158				mrq->sbc->error,
 159				mrq->sbc->resp[0], mrq->sbc->resp[1],
 160				mrq->sbc->resp[2], mrq->sbc->resp[3]);
 161		}
 162
 163		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 164			mmc_hostname(host), cmd->opcode, err,
 165			cmd->resp[0], cmd->resp[1],
 166			cmd->resp[2], cmd->resp[3]);
 167
 168		if (mrq->data) {
 169			pr_debug("%s:     %d bytes transferred: %d\n",
 170				mmc_hostname(host),
 171				mrq->data->bytes_xfered, mrq->data->error);
 172		}
 173
 174		if (mrq->stop) {
 175			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 176				mmc_hostname(host), mrq->stop->opcode,
 177				mrq->stop->error,
 178				mrq->stop->resp[0], mrq->stop->resp[1],
 179				mrq->stop->resp[2], mrq->stop->resp[3]);
 180		}
 181
 182		if (mrq->done)
 183			mrq->done(mrq);
 
 
 184	}
 185}
 186
 187EXPORT_SYMBOL(mmc_request_done);
 188
 189static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 190{
 191	int err;
 192
 193	/* Assumes host controller has been runtime resumed by mmc_claim_host */
 194	err = mmc_retune(host);
 195	if (err) {
 196		mrq->cmd->error = err;
 197		mmc_request_done(host, mrq);
 198		return;
 199	}
 200
 201	/*
 202	 * For sdio rw commands we must wait for card busy otherwise some
 203	 * sdio devices won't work properly.
 204	 */
 205	if (mmc_is_io_op(mrq->cmd->opcode) && host->ops->card_busy) {
 206		int tries = 500; /* Wait aprox 500ms at maximum */
 207
 208		while (host->ops->card_busy(host) && --tries)
 209			mmc_delay(1);
 210
 211		if (tries == 0) {
 212			mrq->cmd->error = -EBUSY;
 213			mmc_request_done(host, mrq);
 214			return;
 215		}
 216	}
 217
 218	host->ops->request(host, mrq);
 219}
 220
 221static int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 222{
 223#ifdef CONFIG_MMC_DEBUG
 224	unsigned int i, sz;
 225	struct scatterlist *sg;
 226#endif
 227	mmc_retune_hold(host);
 228
 229	if (mmc_card_removed(host->card))
 230		return -ENOMEDIUM;
 231
 232	if (mrq->sbc) {
 233		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 234			 mmc_hostname(host), mrq->sbc->opcode,
 235			 mrq->sbc->arg, mrq->sbc->flags);
 236	}
 237
 238	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 239		 mmc_hostname(host), mrq->cmd->opcode,
 240		 mrq->cmd->arg, mrq->cmd->flags);
 241
 242	if (mrq->data) {
 243		pr_debug("%s:     blksz %d blocks %d flags %08x "
 244			"tsac %d ms nsac %d\n",
 245			mmc_hostname(host), mrq->data->blksz,
 246			mrq->data->blocks, mrq->data->flags,
 247			mrq->data->timeout_ns / 1000000,
 248			mrq->data->timeout_clks);
 249	}
 250
 251	if (mrq->stop) {
 252		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 253			 mmc_hostname(host), mrq->stop->opcode,
 254			 mrq->stop->arg, mrq->stop->flags);
 255	}
 256
 257	WARN_ON(!host->claimed);
 258
 259	mrq->cmd->error = 0;
 260	mrq->cmd->mrq = mrq;
 261	if (mrq->sbc) {
 262		mrq->sbc->error = 0;
 263		mrq->sbc->mrq = mrq;
 264	}
 265	if (mrq->data) {
 266		BUG_ON(mrq->data->blksz > host->max_blk_size);
 267		BUG_ON(mrq->data->blocks > host->max_blk_count);
 268		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 269			host->max_req_size);
 270
 271#ifdef CONFIG_MMC_DEBUG
 272		sz = 0;
 273		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 274			sz += sg->length;
 275		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 276#endif
 277
 278		mrq->cmd->data = mrq->data;
 279		mrq->data->error = 0;
 280		mrq->data->mrq = mrq;
 281		if (mrq->stop) {
 282			mrq->data->stop = mrq->stop;
 283			mrq->stop->error = 0;
 284			mrq->stop->mrq = mrq;
 285		}
 286	}
 
 287	led_trigger_event(host->led, LED_FULL);
 288	__mmc_start_request(host, mrq);
 289
 290	return 0;
 291}
 292
 293/**
 294 *	mmc_start_bkops - start BKOPS for supported cards
 295 *	@card: MMC card to start BKOPS
 296 *	@form_exception: A flag to indicate if this function was
 297 *			 called due to an exception raised by the card
 298 *
 299 *	Start background operations whenever requested.
 300 *	When the urgent BKOPS bit is set in a R1 command response
 301 *	then background operations should be started immediately.
 302*/
 303void mmc_start_bkops(struct mmc_card *card, bool from_exception)
 304{
 305	int err;
 306	int timeout;
 307	bool use_busy_signal;
 308
 309	BUG_ON(!card);
 310
 311	if (!card->ext_csd.man_bkops_en || mmc_card_doing_bkops(card))
 312		return;
 313
 314	err = mmc_read_bkops_status(card);
 315	if (err) {
 316		pr_err("%s: Failed to read bkops status: %d\n",
 317		       mmc_hostname(card->host), err);
 318		return;
 319	}
 320
 321	if (!card->ext_csd.raw_bkops_status)
 322		return;
 323
 324	if (card->ext_csd.raw_bkops_status < EXT_CSD_BKOPS_LEVEL_2 &&
 325	    from_exception)
 326		return;
 327
 328	mmc_claim_host(card->host);
 329	if (card->ext_csd.raw_bkops_status >= EXT_CSD_BKOPS_LEVEL_2) {
 330		timeout = MMC_BKOPS_MAX_TIMEOUT;
 331		use_busy_signal = true;
 332	} else {
 333		timeout = 0;
 334		use_busy_signal = false;
 335	}
 336
 337	mmc_retune_hold(card->host);
 338
 339	err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
 340			EXT_CSD_BKOPS_START, 1, timeout,
 341			use_busy_signal, true, false);
 342	if (err) {
 343		pr_warn("%s: Error %d starting bkops\n",
 344			mmc_hostname(card->host), err);
 345		mmc_retune_release(card->host);
 346		goto out;
 347	}
 348
 349	/*
 350	 * For urgent bkops status (LEVEL_2 and more)
 351	 * bkops executed synchronously, otherwise
 352	 * the operation is in progress
 353	 */
 354	if (!use_busy_signal)
 355		mmc_card_set_doing_bkops(card);
 356	else
 357		mmc_retune_release(card->host);
 358out:
 359	mmc_release_host(card->host);
 360}
 361EXPORT_SYMBOL(mmc_start_bkops);
 362
 363/*
 364 * mmc_wait_data_done() - done callback for data request
 365 * @mrq: done data request
 366 *
 367 * Wakes up mmc context, passed as a callback to host controller driver
 368 */
 369static void mmc_wait_data_done(struct mmc_request *mrq)
 370{
 371	struct mmc_context_info *context_info = &mrq->host->context_info;
 372
 373	context_info->is_done_rcv = true;
 374	wake_up_interruptible(&context_info->wait);
 375}
 376
 377static void mmc_wait_done(struct mmc_request *mrq)
 378{
 379	complete(&mrq->completion);
 380}
 381
 382/*
 383 *__mmc_start_data_req() - starts data request
 384 * @host: MMC host to start the request
 385 * @mrq: data request to start
 386 *
 387 * Sets the done callback to be called when request is completed by the card.
 388 * Starts data mmc request execution
 389 */
 390static int __mmc_start_data_req(struct mmc_host *host, struct mmc_request *mrq)
 391{
 392	int err;
 393
 394	mrq->done = mmc_wait_data_done;
 395	mrq->host = host;
 396
 397	err = mmc_start_request(host, mrq);
 398	if (err) {
 399		mrq->cmd->error = err;
 400		mmc_wait_data_done(mrq);
 401	}
 402
 403	return err;
 404}
 405
 406static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 407{
 408	int err;
 409
 410	init_completion(&mrq->completion);
 411	mrq->done = mmc_wait_done;
 412
 413	err = mmc_start_request(host, mrq);
 414	if (err) {
 415		mrq->cmd->error = err;
 416		complete(&mrq->completion);
 
 417	}
 418
 419	return err;
 420}
 421
 422/*
 423 * mmc_wait_for_data_req_done() - wait for request completed
 424 * @host: MMC host to prepare the command.
 425 * @mrq: MMC request to wait for
 426 *
 427 * Blocks MMC context till host controller will ack end of data request
 428 * execution or new request notification arrives from the block layer.
 429 * Handles command retries.
 430 *
 431 * Returns enum mmc_blk_status after checking errors.
 432 */
 433static int mmc_wait_for_data_req_done(struct mmc_host *host,
 434				      struct mmc_request *mrq,
 435				      struct mmc_async_req *next_req)
 436{
 437	struct mmc_command *cmd;
 438	struct mmc_context_info *context_info = &host->context_info;
 439	int err;
 440	unsigned long flags;
 441
 442	while (1) {
 443		wait_event_interruptible(context_info->wait,
 444				(context_info->is_done_rcv ||
 445				 context_info->is_new_req));
 446		spin_lock_irqsave(&context_info->lock, flags);
 447		context_info->is_waiting_last_req = false;
 448		spin_unlock_irqrestore(&context_info->lock, flags);
 449		if (context_info->is_done_rcv) {
 450			context_info->is_done_rcv = false;
 451			context_info->is_new_req = false;
 452			cmd = mrq->cmd;
 453
 454			if (!cmd->error || !cmd->retries ||
 455			    mmc_card_removed(host->card)) {
 456				err = host->areq->err_check(host->card,
 457							    host->areq);
 458				break; /* return err */
 459			} else {
 460				mmc_retune_recheck(host);
 461				pr_info("%s: req failed (CMD%u): %d, retrying...\n",
 462					mmc_hostname(host),
 463					cmd->opcode, cmd->error);
 464				cmd->retries--;
 465				cmd->error = 0;
 466				__mmc_start_request(host, mrq);
 467				continue; /* wait for done/new event again */
 468			}
 469		} else if (context_info->is_new_req) {
 470			context_info->is_new_req = false;
 471			if (!next_req)
 472				return MMC_BLK_NEW_REQUEST;
 473		}
 474	}
 475	mmc_retune_release(host);
 476	return err;
 477}
 478
 479static void mmc_wait_for_req_done(struct mmc_host *host,
 480				  struct mmc_request *mrq)
 481{
 482	struct mmc_command *cmd;
 483
 484	while (1) {
 485		wait_for_completion(&mrq->completion);
 486
 487		cmd = mrq->cmd;
 488
 489		/*
 490		 * If host has timed out waiting for the sanitize
 491		 * to complete, card might be still in programming state
 492		 * so let's try to bring the card out of programming
 493		 * state.
 494		 */
 495		if (cmd->sanitize_busy && cmd->error == -ETIMEDOUT) {
 496			if (!mmc_interrupt_hpi(host->card)) {
 497				pr_warn("%s: %s: Interrupted sanitize\n",
 498					mmc_hostname(host), __func__);
 499				cmd->error = 0;
 500				break;
 501			} else {
 502				pr_err("%s: %s: Failed to interrupt sanitize\n",
 503				       mmc_hostname(host), __func__);
 504			}
 505		}
 506		if (!cmd->error || !cmd->retries ||
 507		    mmc_card_removed(host->card))
 508			break;
 509
 510		mmc_retune_recheck(host);
 511
 512		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 513			 mmc_hostname(host), cmd->opcode, cmd->error);
 514		cmd->retries--;
 515		cmd->error = 0;
 516		__mmc_start_request(host, mrq);
 517	}
 518
 519	mmc_retune_release(host);
 520}
 521
 522/**
 523 *	mmc_pre_req - Prepare for a new request
 524 *	@host: MMC host to prepare command
 525 *	@mrq: MMC request to prepare for
 526 *	@is_first_req: true if there is no previous started request
 527 *                     that may run in parellel to this call, otherwise false
 528 *
 529 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 530 *	host prepare for the new request. Preparation of a request may be
 531 *	performed while another request is running on the host.
 532 */
 533static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 534		 bool is_first_req)
 535{
 536	if (host->ops->pre_req)
 
 537		host->ops->pre_req(host, mrq, is_first_req);
 
 
 538}
 539
 540/**
 541 *	mmc_post_req - Post process a completed request
 542 *	@host: MMC host to post process command
 543 *	@mrq: MMC request to post process for
 544 *	@err: Error, if non zero, clean up any resources made in pre_req
 545 *
 546 *	Let the host post process a completed request. Post processing of
 547 *	a request may be performed while another reuqest is running.
 548 */
 549static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 550			 int err)
 551{
 552	if (host->ops->post_req)
 
 553		host->ops->post_req(host, mrq, err);
 
 
 554}
 555
 556/**
 557 *	mmc_start_req - start a non-blocking request
 558 *	@host: MMC host to start command
 559 *	@areq: async request to start
 560 *	@error: out parameter returns 0 for success, otherwise non zero
 561 *
 562 *	Start a new MMC custom command request for a host.
 563 *	If there is on ongoing async request wait for completion
 564 *	of that request and start the new one and return.
 565 *	Does not wait for the new request to complete.
 566 *
 567 *      Returns the completed request, NULL in case of none completed.
 568 *	Wait for the an ongoing request (previoulsy started) to complete and
 569 *	return the completed request. If there is no ongoing request, NULL
 570 *	is returned without waiting. NULL is not an error condition.
 571 */
 572struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 573				    struct mmc_async_req *areq, int *error)
 574{
 575	int err = 0;
 576	int start_err = 0;
 577	struct mmc_async_req *data = host->areq;
 578
 579	/* Prepare a new request */
 580	if (areq)
 581		mmc_pre_req(host, areq->mrq, !host->areq);
 582
 583	if (host->areq) {
 584		err = mmc_wait_for_data_req_done(host, host->areq->mrq,	areq);
 585		if (err == MMC_BLK_NEW_REQUEST) {
 586			if (error)
 587				*error = err;
 588			/*
 589			 * The previous request was not completed,
 590			 * nothing to return
 591			 */
 592			return NULL;
 593		}
 594		/*
 595		 * Check BKOPS urgency for each R1 response
 596		 */
 597		if (host->card && mmc_card_mmc(host->card) &&
 598		    ((mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1) ||
 599		     (mmc_resp_type(host->areq->mrq->cmd) == MMC_RSP_R1B)) &&
 600		    (host->areq->mrq->cmd->resp[0] & R1_EXCEPTION_EVENT)) {
 601
 602			/* Cancel the prepared request */
 603			if (areq)
 604				mmc_post_req(host, areq->mrq, -EINVAL);
 605
 606			mmc_start_bkops(host->card, true);
 607
 608			/* prepare the request again */
 609			if (areq)
 610				mmc_pre_req(host, areq->mrq, !host->areq);
 611		}
 612	}
 613
 614	if (!err && areq)
 615		start_err = __mmc_start_data_req(host, areq->mrq);
 616
 617	if (host->areq)
 618		mmc_post_req(host, host->areq->mrq, 0);
 619
 620	 /* Cancel a prepared request if it was not started. */
 621	if ((err || start_err) && areq)
 622		mmc_post_req(host, areq->mrq, -EINVAL);
 623
 624	if (err)
 625		host->areq = NULL;
 626	else
 627		host->areq = areq;
 628
 629	if (error)
 630		*error = err;
 631	return data;
 632}
 633EXPORT_SYMBOL(mmc_start_req);
 634
 635/**
 636 *	mmc_wait_for_req - start a request and wait for completion
 637 *	@host: MMC host to start command
 638 *	@mrq: MMC request to start
 639 *
 640 *	Start a new MMC custom command request for a host, and wait
 641 *	for the command to complete. Does not attempt to parse the
 642 *	response.
 643 */
 644void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 645{
 646	__mmc_start_req(host, mrq);
 647	mmc_wait_for_req_done(host, mrq);
 648}
 649EXPORT_SYMBOL(mmc_wait_for_req);
 650
 651/**
 652 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 653 *	@card: the MMC card associated with the HPI transfer
 654 *
 655 *	Issued High Priority Interrupt, and check for card status
 656 *	until out-of prg-state.
 657 */
 658int mmc_interrupt_hpi(struct mmc_card *card)
 659{
 660	int err;
 661	u32 status;
 662	unsigned long prg_wait;
 663
 664	BUG_ON(!card);
 665
 666	if (!card->ext_csd.hpi_en) {
 667		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 668		return 1;
 669	}
 670
 671	mmc_claim_host(card->host);
 672	err = mmc_send_status(card, &status);
 673	if (err) {
 674		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 675		goto out;
 676	}
 677
 678	switch (R1_CURRENT_STATE(status)) {
 679	case R1_STATE_IDLE:
 680	case R1_STATE_READY:
 681	case R1_STATE_STBY:
 682	case R1_STATE_TRAN:
 683		/*
 684		 * In idle and transfer states, HPI is not needed and the caller
 685		 * can issue the next intended command immediately
 686		 */
 687		goto out;
 688	case R1_STATE_PRG:
 689		break;
 690	default:
 691		/* In all other states, it's illegal to issue HPI */
 692		pr_debug("%s: HPI cannot be sent. Card state=%d\n",
 693			mmc_hostname(card->host), R1_CURRENT_STATE(status));
 694		err = -EINVAL;
 695		goto out;
 696	}
 697
 698	err = mmc_send_hpi_cmd(card, &status);
 699	if (err)
 700		goto out;
 701
 702	prg_wait = jiffies + msecs_to_jiffies(card->ext_csd.out_of_int_time);
 703	do {
 704		err = mmc_send_status(card, &status);
 705
 706		if (!err && R1_CURRENT_STATE(status) == R1_STATE_TRAN)
 707			break;
 708		if (time_after(jiffies, prg_wait))
 709			err = -ETIMEDOUT;
 710	} while (!err);
 
 711
 712out:
 713	mmc_release_host(card->host);
 714	return err;
 715}
 716EXPORT_SYMBOL(mmc_interrupt_hpi);
 717
 718/**
 719 *	mmc_wait_for_cmd - start a command and wait for completion
 720 *	@host: MMC host to start command
 721 *	@cmd: MMC command to start
 722 *	@retries: maximum number of retries
 723 *
 724 *	Start a new MMC command for a host, and wait for the command
 725 *	to complete.  Return any error that occurred while the command
 726 *	was executing.  Do not attempt to parse the response.
 727 */
 728int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 729{
 730	struct mmc_request mrq = {NULL};
 731
 732	WARN_ON(!host->claimed);
 733
 734	memset(cmd->resp, 0, sizeof(cmd->resp));
 735	cmd->retries = retries;
 736
 737	mrq.cmd = cmd;
 738	cmd->data = NULL;
 739
 740	mmc_wait_for_req(host, &mrq);
 741
 742	return cmd->error;
 743}
 744
 745EXPORT_SYMBOL(mmc_wait_for_cmd);
 746
 747/**
 748 *	mmc_stop_bkops - stop ongoing BKOPS
 749 *	@card: MMC card to check BKOPS
 750 *
 751 *	Send HPI command to stop ongoing background operations to
 752 *	allow rapid servicing of foreground operations, e.g. read/
 753 *	writes. Wait until the card comes out of the programming state
 754 *	to avoid errors in servicing read/write requests.
 755 */
 756int mmc_stop_bkops(struct mmc_card *card)
 757{
 758	int err = 0;
 759
 760	BUG_ON(!card);
 761	err = mmc_interrupt_hpi(card);
 762
 763	/*
 764	 * If err is EINVAL, we can't issue an HPI.
 765	 * It should complete the BKOPS.
 766	 */
 767	if (!err || (err == -EINVAL)) {
 768		mmc_card_clr_doing_bkops(card);
 769		mmc_retune_release(card->host);
 770		err = 0;
 771	}
 772
 773	return err;
 774}
 775EXPORT_SYMBOL(mmc_stop_bkops);
 776
 777int mmc_read_bkops_status(struct mmc_card *card)
 778{
 779	int err;
 780	u8 *ext_csd;
 781
 782	mmc_claim_host(card->host);
 783	err = mmc_get_ext_csd(card, &ext_csd);
 784	mmc_release_host(card->host);
 785	if (err)
 786		return err;
 787
 788	card->ext_csd.raw_bkops_status = ext_csd[EXT_CSD_BKOPS_STATUS];
 789	card->ext_csd.raw_exception_status = ext_csd[EXT_CSD_EXP_EVENTS_STATUS];
 790	kfree(ext_csd);
 791	return 0;
 792}
 793EXPORT_SYMBOL(mmc_read_bkops_status);
 794
 795/**
 796 *	mmc_set_data_timeout - set the timeout for a data command
 797 *	@data: data phase for command
 798 *	@card: the MMC card associated with the data transfer
 799 *
 800 *	Computes the data timeout parameters according to the
 801 *	correct algorithm given the card type.
 802 */
 803void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 804{
 805	unsigned int mult;
 806
 807	/*
 808	 * SDIO cards only define an upper 1 s limit on access.
 809	 */
 810	if (mmc_card_sdio(card)) {
 811		data->timeout_ns = 1000000000;
 812		data->timeout_clks = 0;
 813		return;
 814	}
 815
 816	/*
 817	 * SD cards use a 100 multiplier rather than 10
 818	 */
 819	mult = mmc_card_sd(card) ? 100 : 10;
 820
 821	/*
 822	 * Scale up the multiplier (and therefore the timeout) by
 823	 * the r2w factor for writes.
 824	 */
 825	if (data->flags & MMC_DATA_WRITE)
 826		mult <<= card->csd.r2w_factor;
 827
 828	data->timeout_ns = card->csd.tacc_ns * mult;
 829	data->timeout_clks = card->csd.tacc_clks * mult;
 830
 831	/*
 832	 * SD cards also have an upper limit on the timeout.
 833	 */
 834	if (mmc_card_sd(card)) {
 835		unsigned int timeout_us, limit_us;
 836
 837		timeout_us = data->timeout_ns / 1000;
 838		if (card->host->ios.clock)
 839			timeout_us += data->timeout_clks * 1000 /
 840				(card->host->ios.clock / 1000);
 841
 842		if (data->flags & MMC_DATA_WRITE)
 843			/*
 844			 * The MMC spec "It is strongly recommended
 845			 * for hosts to implement more than 500ms
 846			 * timeout value even if the card indicates
 847			 * the 250ms maximum busy length."  Even the
 848			 * previous value of 300ms is known to be
 849			 * insufficient for some cards.
 850			 */
 851			limit_us = 3000000;
 852		else
 853			limit_us = 100000;
 854
 855		/*
 856		 * SDHC cards always use these fixed values.
 857		 */
 858		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 859			data->timeout_ns = limit_us * 1000;
 860			data->timeout_clks = 0;
 861		}
 862
 863		/* assign limit value if invalid */
 864		if (timeout_us == 0)
 865			data->timeout_ns = limit_us * 1000;
 866	}
 867
 868	/*
 869	 * Some cards require longer data read timeout than indicated in CSD.
 870	 * Address this by setting the read timeout to a "reasonably high"
 871	 * value. For the cards tested, 300ms has proven enough. If necessary,
 872	 * this value can be increased if other problematic cards require this.
 873	 */
 874	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 875		data->timeout_ns = 300000000;
 876		data->timeout_clks = 0;
 877	}
 878
 879	/*
 880	 * Some cards need very high timeouts if driven in SPI mode.
 881	 * The worst observed timeout was 900ms after writing a
 882	 * continuous stream of data until the internal logic
 883	 * overflowed.
 884	 */
 885	if (mmc_host_is_spi(card->host)) {
 886		if (data->flags & MMC_DATA_WRITE) {
 887			if (data->timeout_ns < 1000000000)
 888				data->timeout_ns = 1000000000;	/* 1s */
 889		} else {
 890			if (data->timeout_ns < 100000000)
 891				data->timeout_ns =  100000000;	/* 100ms */
 892		}
 893	}
 894}
 895EXPORT_SYMBOL(mmc_set_data_timeout);
 896
 897/**
 898 *	mmc_align_data_size - pads a transfer size to a more optimal value
 899 *	@card: the MMC card associated with the data transfer
 900 *	@sz: original transfer size
 901 *
 902 *	Pads the original data size with a number of extra bytes in
 903 *	order to avoid controller bugs and/or performance hits
 904 *	(e.g. some controllers revert to PIO for certain sizes).
 905 *
 906 *	Returns the improved size, which might be unmodified.
 907 *
 908 *	Note that this function is only relevant when issuing a
 909 *	single scatter gather entry.
 910 */
 911unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 912{
 913	/*
 914	 * FIXME: We don't have a system for the controller to tell
 915	 * the core about its problems yet, so for now we just 32-bit
 916	 * align the size.
 917	 */
 918	sz = ((sz + 3) / 4) * 4;
 919
 920	return sz;
 921}
 922EXPORT_SYMBOL(mmc_align_data_size);
 923
 924/**
 925 *	__mmc_claim_host - exclusively claim a host
 926 *	@host: mmc host to claim
 927 *	@abort: whether or not the operation should be aborted
 928 *
 929 *	Claim a host for a set of operations.  If @abort is non null and
 930 *	dereference a non-zero value then this will return prematurely with
 931 *	that non-zero value without acquiring the lock.  Returns zero
 932 *	with the lock held otherwise.
 933 */
 934int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 935{
 936	DECLARE_WAITQUEUE(wait, current);
 937	unsigned long flags;
 938	int stop;
 939	bool pm = false;
 940
 941	might_sleep();
 942
 943	add_wait_queue(&host->wq, &wait);
 944	spin_lock_irqsave(&host->lock, flags);
 945	while (1) {
 946		set_current_state(TASK_UNINTERRUPTIBLE);
 947		stop = abort ? atomic_read(abort) : 0;
 948		if (stop || !host->claimed || host->claimer == current)
 949			break;
 950		spin_unlock_irqrestore(&host->lock, flags);
 951		schedule();
 952		spin_lock_irqsave(&host->lock, flags);
 953	}
 954	set_current_state(TASK_RUNNING);
 955	if (!stop) {
 956		host->claimed = 1;
 957		host->claimer = current;
 958		host->claim_cnt += 1;
 959		if (host->claim_cnt == 1)
 960			pm = true;
 961	} else
 962		wake_up(&host->wq);
 963	spin_unlock_irqrestore(&host->lock, flags);
 964	remove_wait_queue(&host->wq, &wait);
 965
 966	if (pm)
 967		pm_runtime_get_sync(mmc_dev(host));
 968
 969	return stop;
 970}
 
 971EXPORT_SYMBOL(__mmc_claim_host);
 972
 973/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 974 *	mmc_release_host - release a host
 975 *	@host: mmc host to release
 976 *
 977 *	Release a MMC host, allowing others to claim the host
 978 *	for their operations.
 979 */
 980void mmc_release_host(struct mmc_host *host)
 981{
 982	unsigned long flags;
 983
 984	WARN_ON(!host->claimed);
 985
 
 
 
 986	spin_lock_irqsave(&host->lock, flags);
 987	if (--host->claim_cnt) {
 988		/* Release for nested claim */
 989		spin_unlock_irqrestore(&host->lock, flags);
 990	} else {
 991		host->claimed = 0;
 992		host->claimer = NULL;
 993		spin_unlock_irqrestore(&host->lock, flags);
 994		wake_up(&host->wq);
 995		pm_runtime_mark_last_busy(mmc_dev(host));
 996		pm_runtime_put_autosuspend(mmc_dev(host));
 997	}
 998}
 999EXPORT_SYMBOL(mmc_release_host);
1000
1001/*
1002 * This is a helper function, which fetches a runtime pm reference for the
1003 * card device and also claims the host.
1004 */
1005void mmc_get_card(struct mmc_card *card)
1006{
1007	pm_runtime_get_sync(&card->dev);
1008	mmc_claim_host(card->host);
1009}
1010EXPORT_SYMBOL(mmc_get_card);
1011
1012/*
1013 * This is a helper function, which releases the host and drops the runtime
1014 * pm reference for the card device.
1015 */
1016void mmc_put_card(struct mmc_card *card)
1017{
1018	mmc_release_host(card->host);
1019	pm_runtime_mark_last_busy(&card->dev);
1020	pm_runtime_put_autosuspend(&card->dev);
1021}
1022EXPORT_SYMBOL(mmc_put_card);
1023
1024/*
1025 * Internal function that does the actual ios call to the host driver,
1026 * optionally printing some debug output.
1027 */
1028static inline void mmc_set_ios(struct mmc_host *host)
1029{
1030	struct mmc_ios *ios = &host->ios;
1031
1032	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
1033		"width %u timing %u\n",
1034		 mmc_hostname(host), ios->clock, ios->bus_mode,
1035		 ios->power_mode, ios->chip_select, ios->vdd,
1036		 1 << ios->bus_width, ios->timing);
1037
 
 
1038	host->ops->set_ios(host, ios);
1039}
1040
1041/*
1042 * Control chip select pin on a host.
1043 */
1044void mmc_set_chip_select(struct mmc_host *host, int mode)
1045{
 
1046	host->ios.chip_select = mode;
1047	mmc_set_ios(host);
 
1048}
1049
1050/*
1051 * Sets the host clock to the highest possible frequency that
1052 * is below "hz".
1053 */
1054void mmc_set_clock(struct mmc_host *host, unsigned int hz)
1055{
1056	WARN_ON(hz && hz < host->f_min);
1057
1058	if (hz > host->f_max)
1059		hz = host->f_max;
1060
1061	host->ios.clock = hz;
1062	mmc_set_ios(host);
1063}
1064
1065int mmc_execute_tuning(struct mmc_card *card)
1066{
1067	struct mmc_host *host = card->host;
1068	u32 opcode;
1069	int err;
 
1070
1071	if (!host->ops->execute_tuning)
1072		return 0;
 
 
 
 
 
1073
1074	if (mmc_card_mmc(card))
1075		opcode = MMC_SEND_TUNING_BLOCK_HS200;
1076	else
1077		opcode = MMC_SEND_TUNING_BLOCK;
 
 
 
1078
1079	err = host->ops->execute_tuning(host, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1080
1081	if (err)
1082		pr_err("%s: tuning execution failed: %d\n",
1083			mmc_hostname(host), err);
1084	else
1085		mmc_retune_enable(host);
1086
1087	return err;
 
 
 
 
 
 
1088}
1089
 
 
 
 
 
 
1090/*
1091 * Change the bus mode (open drain/push-pull) of a host.
1092 */
1093void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
1094{
 
1095	host->ios.bus_mode = mode;
1096	mmc_set_ios(host);
 
1097}
1098
1099/*
1100 * Change data bus width of a host.
1101 */
1102void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
1103{
 
1104	host->ios.bus_width = width;
1105	mmc_set_ios(host);
1106}
1107
1108/*
1109 * Set initial state after a power cycle or a hw_reset.
1110 */
1111void mmc_set_initial_state(struct mmc_host *host)
1112{
1113	mmc_retune_disable(host);
1114
1115	if (mmc_host_is_spi(host))
1116		host->ios.chip_select = MMC_CS_HIGH;
1117	else
1118		host->ios.chip_select = MMC_CS_DONTCARE;
1119	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1120	host->ios.bus_width = MMC_BUS_WIDTH_1;
1121	host->ios.timing = MMC_TIMING_LEGACY;
1122	host->ios.drv_type = 0;
1123
1124	mmc_set_ios(host);
1125}
1126
1127/**
1128 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1129 * @vdd:	voltage (mV)
1130 * @low_bits:	prefer low bits in boundary cases
1131 *
1132 * This function returns the OCR bit number according to the provided @vdd
1133 * value. If conversion is not possible a negative errno value returned.
1134 *
1135 * Depending on the @low_bits flag the function prefers low or high OCR bits
1136 * on boundary voltages. For example,
1137 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1138 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1139 *
1140 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1141 */
1142static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1143{
1144	const int max_bit = ilog2(MMC_VDD_35_36);
1145	int bit;
1146
1147	if (vdd < 1650 || vdd > 3600)
1148		return -EINVAL;
1149
1150	if (vdd >= 1650 && vdd <= 1950)
1151		return ilog2(MMC_VDD_165_195);
1152
1153	if (low_bits)
1154		vdd -= 1;
1155
1156	/* Base 2000 mV, step 100 mV, bit's base 8. */
1157	bit = (vdd - 2000) / 100 + 8;
1158	if (bit > max_bit)
1159		return max_bit;
1160	return bit;
1161}
1162
1163/**
1164 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1165 * @vdd_min:	minimum voltage value (mV)
1166 * @vdd_max:	maximum voltage value (mV)
1167 *
1168 * This function returns the OCR mask bits according to the provided @vdd_min
1169 * and @vdd_max values. If conversion is not possible the function returns 0.
1170 *
1171 * Notes wrt boundary cases:
1172 * This function sets the OCR bits for all boundary voltages, for example
1173 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1174 * MMC_VDD_34_35 mask.
1175 */
1176u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1177{
1178	u32 mask = 0;
1179
1180	if (vdd_max < vdd_min)
1181		return 0;
1182
1183	/* Prefer high bits for the boundary vdd_max values. */
1184	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1185	if (vdd_max < 0)
1186		return 0;
1187
1188	/* Prefer low bits for the boundary vdd_min values. */
1189	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1190	if (vdd_min < 0)
1191		return 0;
1192
1193	/* Fill the mask, from max bit to min bit. */
1194	while (vdd_max >= vdd_min)
1195		mask |= 1 << vdd_max--;
1196
1197	return mask;
1198}
1199EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
1200
1201#ifdef CONFIG_OF
1202
1203/**
1204 * mmc_of_parse_voltage - return mask of supported voltages
1205 * @np: The device node need to be parsed.
1206 * @mask: mask of voltages available for MMC/SD/SDIO
1207 *
1208 * Parse the "voltage-ranges" DT property, returning zero if it is not
1209 * found, negative errno if the voltage-range specification is invalid,
1210 * or one if the voltage-range is specified and successfully parsed.
1211 */
1212int mmc_of_parse_voltage(struct device_node *np, u32 *mask)
1213{
1214	const u32 *voltage_ranges;
1215	int num_ranges, i;
1216
1217	voltage_ranges = of_get_property(np, "voltage-ranges", &num_ranges);
1218	num_ranges = num_ranges / sizeof(*voltage_ranges) / 2;
1219	if (!voltage_ranges) {
1220		pr_debug("%s: voltage-ranges unspecified\n", np->full_name);
1221		return 0;
1222	}
1223	if (!num_ranges) {
1224		pr_err("%s: voltage-ranges empty\n", np->full_name);
1225		return -EINVAL;
1226	}
1227
1228	for (i = 0; i < num_ranges; i++) {
1229		const int j = i * 2;
1230		u32 ocr_mask;
1231
1232		ocr_mask = mmc_vddrange_to_ocrmask(
1233				be32_to_cpu(voltage_ranges[j]),
1234				be32_to_cpu(voltage_ranges[j + 1]));
1235		if (!ocr_mask) {
1236			pr_err("%s: voltage-range #%d is invalid\n",
1237				np->full_name, i);
1238			return -EINVAL;
1239		}
1240		*mask |= ocr_mask;
1241	}
1242
1243	return 1;
1244}
1245EXPORT_SYMBOL(mmc_of_parse_voltage);
1246
1247#endif /* CONFIG_OF */
1248
1249static int mmc_of_get_func_num(struct device_node *node)
1250{
1251	u32 reg;
1252	int ret;
1253
1254	ret = of_property_read_u32(node, "reg", &reg);
1255	if (ret < 0)
1256		return ret;
1257
1258	return reg;
1259}
1260
1261struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1262		unsigned func_num)
1263{
1264	struct device_node *node;
1265
1266	if (!host->parent || !host->parent->of_node)
1267		return NULL;
1268
1269	for_each_child_of_node(host->parent->of_node, node) {
1270		if (mmc_of_get_func_num(node) == func_num)
1271			return node;
1272	}
1273
1274	return NULL;
1275}
1276
1277#ifdef CONFIG_REGULATOR
1278
1279/**
1280 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1281 * @vdd_bit:	OCR bit number
1282 * @min_uV:	minimum voltage value (mV)
1283 * @max_uV:	maximum voltage value (mV)
1284 *
1285 * This function returns the voltage range according to the provided OCR
1286 * bit number. If conversion is not possible a negative errno value returned.
1287 */
1288static int mmc_ocrbitnum_to_vdd(int vdd_bit, int *min_uV, int *max_uV)
1289{
1290	int		tmp;
1291
1292	if (!vdd_bit)
1293		return -EINVAL;
1294
1295	/*
1296	 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1297	 * bits this regulator doesn't quite support ... don't
1298	 * be too picky, most cards and regulators are OK with
1299	 * a 0.1V range goof (it's a small error percentage).
1300	 */
1301	tmp = vdd_bit - ilog2(MMC_VDD_165_195);
1302	if (tmp == 0) {
1303		*min_uV = 1650 * 1000;
1304		*max_uV = 1950 * 1000;
1305	} else {
1306		*min_uV = 1900 * 1000 + tmp * 100 * 1000;
1307		*max_uV = *min_uV + 100 * 1000;
1308	}
1309
1310	return 0;
1311}
1312
1313/**
1314 * mmc_regulator_get_ocrmask - return mask of supported voltages
1315 * @supply: regulator to use
1316 *
1317 * This returns either a negative errno, or a mask of voltages that
1318 * can be provided to MMC/SD/SDIO devices using the specified voltage
1319 * regulator.  This would normally be called before registering the
1320 * MMC host adapter.
1321 */
1322int mmc_regulator_get_ocrmask(struct regulator *supply)
1323{
1324	int			result = 0;
1325	int			count;
1326	int			i;
1327	int			vdd_uV;
1328	int			vdd_mV;
1329
1330	count = regulator_count_voltages(supply);
1331	if (count < 0)
1332		return count;
1333
1334	for (i = 0; i < count; i++) {
 
 
 
1335		vdd_uV = regulator_list_voltage(supply, i);
1336		if (vdd_uV <= 0)
1337			continue;
1338
1339		vdd_mV = vdd_uV / 1000;
1340		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1341	}
1342
1343	if (!result) {
1344		vdd_uV = regulator_get_voltage(supply);
1345		if (vdd_uV <= 0)
1346			return vdd_uV;
1347
1348		vdd_mV = vdd_uV / 1000;
1349		result = mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
1350	}
1351
1352	return result;
1353}
1354EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask);
1355
1356/**
1357 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1358 * @mmc: the host to regulate
1359 * @supply: regulator to use
1360 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1361 *
1362 * Returns zero on success, else negative errno.
1363 *
1364 * MMC host drivers may use this to enable or disable a regulator using
1365 * a particular supply voltage.  This would normally be called from the
1366 * set_ios() method.
1367 */
1368int mmc_regulator_set_ocr(struct mmc_host *mmc,
1369			struct regulator *supply,
1370			unsigned short vdd_bit)
1371{
1372	int			result = 0;
1373	int			min_uV, max_uV;
1374
1375	if (vdd_bit) {
1376		mmc_ocrbitnum_to_vdd(vdd_bit, &min_uV, &max_uV);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378		result = regulator_set_voltage(supply, min_uV, max_uV);
1379		if (result == 0 && !mmc->regulator_enabled) {
1380			result = regulator_enable(supply);
1381			if (!result)
1382				mmc->regulator_enabled = true;
1383		}
1384	} else if (mmc->regulator_enabled) {
1385		result = regulator_disable(supply);
1386		if (result == 0)
1387			mmc->regulator_enabled = false;
1388	}
1389
1390	if (result)
1391		dev_err(mmc_dev(mmc),
1392			"could not set regulator OCR (%d)\n", result);
1393	return result;
1394}
1395EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr);
1396
1397static int mmc_regulator_set_voltage_if_supported(struct regulator *regulator,
1398						  int min_uV, int target_uV,
1399						  int max_uV)
1400{
1401	/*
1402	 * Check if supported first to avoid errors since we may try several
1403	 * signal levels during power up and don't want to show errors.
1404	 */
1405	if (!regulator_is_supported_voltage(regulator, min_uV, max_uV))
1406		return -EINVAL;
1407
1408	return regulator_set_voltage_triplet(regulator, min_uV, target_uV,
1409					     max_uV);
1410}
1411
1412/**
1413 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1414 *
1415 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1416 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1417 * by the same supply.  The Bus Operating conditions for 3.3V signaling in the
1418 * SD card spec also define VQMMC in terms of VMMC.
1419 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1420 *
1421 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1422 * requested voltage.  This is definitely a good idea for UHS where there's a
1423 * separate regulator on the card that's trying to make 1.8V and it's best if
1424 * we match.
1425 *
1426 * This function is expected to be used by a controller's
1427 * start_signal_voltage_switch() function.
1428 */
1429int mmc_regulator_set_vqmmc(struct mmc_host *mmc, struct mmc_ios *ios)
1430{
1431	struct device *dev = mmc_dev(mmc);
1432	int ret, volt, min_uV, max_uV;
1433
1434	/* If no vqmmc supply then we can't change the voltage */
1435	if (IS_ERR(mmc->supply.vqmmc))
1436		return -EINVAL;
1437
1438	switch (ios->signal_voltage) {
1439	case MMC_SIGNAL_VOLTAGE_120:
1440		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1441						1100000, 1200000, 1300000);
1442	case MMC_SIGNAL_VOLTAGE_180:
1443		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1444						1700000, 1800000, 1950000);
1445	case MMC_SIGNAL_VOLTAGE_330:
1446		ret = mmc_ocrbitnum_to_vdd(mmc->ios.vdd, &volt, &max_uV);
1447		if (ret < 0)
1448			return ret;
1449
1450		dev_dbg(dev, "%s: found vmmc voltage range of %d-%duV\n",
1451			__func__, volt, max_uV);
1452
1453		min_uV = max(volt - 300000, 2700000);
1454		max_uV = min(max_uV + 200000, 3600000);
1455
1456		/*
1457		 * Due to a limitation in the current implementation of
1458		 * regulator_set_voltage_triplet() which is taking the lowest
1459		 * voltage possible if below the target, search for a suitable
1460		 * voltage in two steps and try to stay close to vmmc
1461		 * with a 0.3V tolerance at first.
1462		 */
1463		if (!mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1464						min_uV, volt, max_uV))
1465			return 0;
1466
1467		return mmc_regulator_set_voltage_if_supported(mmc->supply.vqmmc,
1468						2700000, volt, 3600000);
1469	default:
1470		return -EINVAL;
1471	}
1472}
1473EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc);
1474
1475#endif /* CONFIG_REGULATOR */
1476
1477int mmc_regulator_get_supply(struct mmc_host *mmc)
1478{
1479	struct device *dev = mmc_dev(mmc);
1480	int ret;
1481
1482	mmc->supply.vmmc = devm_regulator_get_optional(dev, "vmmc");
1483	mmc->supply.vqmmc = devm_regulator_get_optional(dev, "vqmmc");
1484
1485	if (IS_ERR(mmc->supply.vmmc)) {
1486		if (PTR_ERR(mmc->supply.vmmc) == -EPROBE_DEFER)
1487			return -EPROBE_DEFER;
1488		dev_dbg(dev, "No vmmc regulator found\n");
1489	} else {
1490		ret = mmc_regulator_get_ocrmask(mmc->supply.vmmc);
1491		if (ret > 0)
1492			mmc->ocr_avail = ret;
1493		else
1494			dev_warn(dev, "Failed getting OCR mask: %d\n", ret);
1495	}
1496
1497	if (IS_ERR(mmc->supply.vqmmc)) {
1498		if (PTR_ERR(mmc->supply.vqmmc) == -EPROBE_DEFER)
1499			return -EPROBE_DEFER;
1500		dev_dbg(dev, "No vqmmc regulator found\n");
1501	}
1502
1503	return 0;
1504}
1505EXPORT_SYMBOL_GPL(mmc_regulator_get_supply);
1506
1507/*
1508 * Mask off any voltages we don't support and select
1509 * the lowest voltage
1510 */
1511u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1512{
1513	int bit;
1514
1515	/*
1516	 * Sanity check the voltages that the card claims to
1517	 * support.
1518	 */
1519	if (ocr & 0x7F) {
1520		dev_warn(mmc_dev(host),
1521		"card claims to support voltages below defined range\n");
1522		ocr &= ~0x7F;
1523	}
1524
1525	ocr &= host->ocr_avail;
1526	if (!ocr) {
1527		dev_warn(mmc_dev(host), "no support for card's volts\n");
1528		return 0;
1529	}
1530
1531	if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1532		bit = ffs(ocr) - 1;
 
 
1533		ocr &= 3 << bit;
1534		mmc_power_cycle(host, ocr);
 
 
 
 
1535	} else {
1536		bit = fls(ocr) - 1;
1537		ocr &= 3 << bit;
1538		if (bit != host->ios.vdd)
1539			dev_warn(mmc_dev(host), "exceeding card's volts\n");
1540	}
1541
1542	return ocr;
1543}
1544
1545int __mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1546{
1547	int err = 0;
1548	int old_signal_voltage = host->ios.signal_voltage;
1549
1550	host->ios.signal_voltage = signal_voltage;
1551	if (host->ops->start_signal_voltage_switch)
1552		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1553
1554	if (err)
1555		host->ios.signal_voltage = old_signal_voltage;
1556
1557	return err;
1558
1559}
1560
1561int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, u32 ocr)
1562{
1563	struct mmc_command cmd = {0};
1564	int err = 0;
1565	u32 clock;
1566
1567	BUG_ON(!host);
1568
1569	/*
1570	 * Send CMD11 only if the request is to switch the card to
1571	 * 1.8V signalling.
1572	 */
1573	if (signal_voltage == MMC_SIGNAL_VOLTAGE_330)
1574		return __mmc_set_signal_voltage(host, signal_voltage);
1575
1576	/*
1577	 * If we cannot switch voltages, return failure so the caller
1578	 * can continue without UHS mode
1579	 */
1580	if (!host->ops->start_signal_voltage_switch)
1581		return -EPERM;
1582	if (!host->ops->card_busy)
1583		pr_warn("%s: cannot verify signal voltage switch\n",
1584			mmc_hostname(host));
1585
1586	cmd.opcode = SD_SWITCH_VOLTAGE;
1587	cmd.arg = 0;
1588	cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1589
1590	err = mmc_wait_for_cmd(host, &cmd, 0);
1591	if (err)
1592		return err;
1593
1594	if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1595		return -EIO;
1596
1597	/*
1598	 * The card should drive cmd and dat[0:3] low immediately
1599	 * after the response of cmd11, but wait 1 ms to be sure
1600	 */
1601	mmc_delay(1);
1602	if (host->ops->card_busy && !host->ops->card_busy(host)) {
1603		err = -EAGAIN;
1604		goto power_cycle;
1605	}
1606	/*
1607	 * During a signal voltage level switch, the clock must be gated
1608	 * for 5 ms according to the SD spec
1609	 */
1610	clock = host->ios.clock;
1611	host->ios.clock = 0;
1612	mmc_set_ios(host);
1613
1614	if (__mmc_set_signal_voltage(host, signal_voltage)) {
1615		/*
1616		 * Voltages may not have been switched, but we've already
1617		 * sent CMD11, so a power cycle is required anyway
1618		 */
1619		err = -EAGAIN;
1620		goto power_cycle;
1621	}
1622
1623	/* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1624	mmc_delay(10);
1625	host->ios.clock = clock;
1626	mmc_set_ios(host);
1627
1628	/* Wait for at least 1 ms according to spec */
1629	mmc_delay(1);
1630
1631	/*
1632	 * Failure to switch is indicated by the card holding
1633	 * dat[0:3] low
1634	 */
1635	if (host->ops->card_busy && host->ops->card_busy(host))
1636		err = -EAGAIN;
1637
1638power_cycle:
1639	if (err) {
1640		pr_debug("%s: Signal voltage switch failed, "
1641			"power cycling card\n", mmc_hostname(host));
1642		mmc_power_cycle(host, ocr);
1643	}
1644
1645	return err;
1646}
1647
1648/*
1649 * Select timing parameters for host.
1650 */
1651void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1652{
 
1653	host->ios.timing = timing;
1654	mmc_set_ios(host);
 
1655}
1656
1657/*
1658 * Select appropriate driver type for host.
1659 */
1660void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1661{
 
1662	host->ios.drv_type = drv_type;
1663	mmc_set_ios(host);
 
1664}
1665
1666int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1667			      int card_drv_type, int *drv_type)
1668{
1669	struct mmc_host *host = card->host;
1670	int host_drv_type = SD_DRIVER_TYPE_B;
 
 
1671
1672	*drv_type = 0;
 
1673
1674	if (!host->ops->select_drive_strength)
1675		return 0;
 
 
 
 
1676
1677	/* Use SD definition of driver strength for hosts */
1678	if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1679		host_drv_type |= SD_DRIVER_TYPE_A;
1680
1681	if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1682		host_drv_type |= SD_DRIVER_TYPE_C;
1683
1684	if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1685		host_drv_type |= SD_DRIVER_TYPE_D;
1686
1687	/*
1688	 * The drive strength that the hardware can support
1689	 * depends on the board design.  Pass the appropriate
1690	 * information and let the hardware specific code
1691	 * return what is possible given the options
1692	 */
1693	return host->ops->select_drive_strength(card, max_dtr,
1694						host_drv_type,
1695						card_drv_type,
1696						drv_type);
 
 
 
1697}
1698
1699/*
1700 * Apply power to the MMC stack.  This is a two-stage process.
1701 * First, we enable power to the card without the clock running.
1702 * We then wait a bit for the power to stabilise.  Finally,
1703 * enable the bus drivers and clock to the card.
1704 *
1705 * We must _NOT_ enable the clock prior to power stablising.
1706 *
1707 * If a host does all the power sequencing itself, ignore the
1708 * initial MMC_POWER_UP stage.
1709 */
1710void mmc_power_up(struct mmc_host *host, u32 ocr)
1711{
 
 
1712	if (host->ios.power_mode == MMC_POWER_ON)
1713		return;
1714
1715	mmc_pwrseq_pre_power_on(host);
1716
1717	host->ios.vdd = fls(ocr) - 1;
1718	host->ios.power_mode = MMC_POWER_UP;
1719	/* Set initial state and call mmc_set_ios */
1720	mmc_set_initial_state(host);
 
1721
1722	/* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1723	if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330) == 0)
1724		dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1725	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180) == 0)
1726		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1727	else if (__mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120) == 0)
1728		dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
 
 
 
1729
1730	/*
1731	 * This delay should be sufficient to allow the power supply
1732	 * to reach the minimum voltage.
1733	 */
1734	mmc_delay(10);
1735
1736	mmc_pwrseq_post_power_on(host);
1737
1738	host->ios.clock = host->f_init;
1739
1740	host->ios.power_mode = MMC_POWER_ON;
1741	mmc_set_ios(host);
1742
1743	/*
1744	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1745	 * time required to reach a stable voltage.
1746	 */
1747	mmc_delay(10);
 
 
1748}
1749
1750void mmc_power_off(struct mmc_host *host)
1751{
 
 
1752	if (host->ios.power_mode == MMC_POWER_OFF)
1753		return;
1754
1755	mmc_pwrseq_power_off(host);
1756
1757	host->ios.clock = 0;
1758	host->ios.vdd = 0;
1759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1760	host->ios.power_mode = MMC_POWER_OFF;
1761	/* Set initial state and call mmc_set_ios */
1762	mmc_set_initial_state(host);
 
1763
1764	/*
1765	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1766	 * XO-1.5, require a short delay after poweroff before the card
1767	 * can be successfully turned on again.
1768	 */
1769	mmc_delay(1);
1770}
1771
1772void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1773{
1774	mmc_power_off(host);
1775	/* Wait at least 1 ms according to SD spec */
1776	mmc_delay(1);
1777	mmc_power_up(host, ocr);
1778}
1779
1780/*
1781 * Cleanup when the last reference to the bus operator is dropped.
1782 */
1783static void __mmc_release_bus(struct mmc_host *host)
1784{
1785	BUG_ON(!host);
1786	BUG_ON(host->bus_refs);
1787	BUG_ON(!host->bus_dead);
1788
1789	host->bus_ops = NULL;
1790}
1791
1792/*
1793 * Increase reference count of bus operator
1794 */
1795static inline void mmc_bus_get(struct mmc_host *host)
1796{
1797	unsigned long flags;
1798
1799	spin_lock_irqsave(&host->lock, flags);
1800	host->bus_refs++;
1801	spin_unlock_irqrestore(&host->lock, flags);
1802}
1803
1804/*
1805 * Decrease reference count of bus operator and free it if
1806 * it is the last reference.
1807 */
1808static inline void mmc_bus_put(struct mmc_host *host)
1809{
1810	unsigned long flags;
1811
1812	spin_lock_irqsave(&host->lock, flags);
1813	host->bus_refs--;
1814	if ((host->bus_refs == 0) && host->bus_ops)
1815		__mmc_release_bus(host);
1816	spin_unlock_irqrestore(&host->lock, flags);
1817}
1818
1819/*
1820 * Assign a mmc bus handler to a host. Only one bus handler may control a
1821 * host at any given time.
1822 */
1823void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1824{
1825	unsigned long flags;
1826
1827	BUG_ON(!host);
1828	BUG_ON(!ops);
1829
1830	WARN_ON(!host->claimed);
1831
1832	spin_lock_irqsave(&host->lock, flags);
1833
1834	BUG_ON(host->bus_ops);
1835	BUG_ON(host->bus_refs);
1836
1837	host->bus_ops = ops;
1838	host->bus_refs = 1;
1839	host->bus_dead = 0;
1840
1841	spin_unlock_irqrestore(&host->lock, flags);
1842}
1843
1844/*
1845 * Remove the current bus handler from a host.
1846 */
1847void mmc_detach_bus(struct mmc_host *host)
1848{
1849	unsigned long flags;
1850
1851	BUG_ON(!host);
1852
1853	WARN_ON(!host->claimed);
1854	WARN_ON(!host->bus_ops);
1855
1856	spin_lock_irqsave(&host->lock, flags);
1857
1858	host->bus_dead = 1;
1859
1860	spin_unlock_irqrestore(&host->lock, flags);
1861
1862	mmc_bus_put(host);
1863}
1864
1865static void _mmc_detect_change(struct mmc_host *host, unsigned long delay,
1866				bool cd_irq)
1867{
1868#ifdef CONFIG_MMC_DEBUG
1869	unsigned long flags;
1870	spin_lock_irqsave(&host->lock, flags);
1871	WARN_ON(host->removed);
1872	spin_unlock_irqrestore(&host->lock, flags);
1873#endif
1874
1875	/*
1876	 * If the device is configured as wakeup, we prevent a new sleep for
1877	 * 5 s to give provision for user space to consume the event.
1878	 */
1879	if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1880		device_can_wakeup(mmc_dev(host)))
1881		pm_wakeup_event(mmc_dev(host), 5000);
1882
1883	host->detect_change = 1;
1884	mmc_schedule_delayed_work(&host->detect, delay);
1885}
1886
1887/**
1888 *	mmc_detect_change - process change of state on a MMC socket
1889 *	@host: host which changed state.
1890 *	@delay: optional delay to wait before detection (jiffies)
1891 *
1892 *	MMC drivers should call this when they detect a card has been
1893 *	inserted or removed. The MMC layer will confirm that any
1894 *	present card is still functional, and initialize any newly
1895 *	inserted.
1896 */
1897void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1898{
1899	_mmc_detect_change(host, delay, true);
 
 
 
 
 
 
 
1900}
 
1901EXPORT_SYMBOL(mmc_detect_change);
1902
1903void mmc_init_erase(struct mmc_card *card)
1904{
1905	unsigned int sz;
1906
1907	if (is_power_of_2(card->erase_size))
1908		card->erase_shift = ffs(card->erase_size) - 1;
1909	else
1910		card->erase_shift = 0;
1911
1912	/*
1913	 * It is possible to erase an arbitrarily large area of an SD or MMC
1914	 * card.  That is not desirable because it can take a long time
1915	 * (minutes) potentially delaying more important I/O, and also the
1916	 * timeout calculations become increasingly hugely over-estimated.
1917	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1918	 * to that size and alignment.
1919	 *
1920	 * For SD cards that define Allocation Unit size, limit erases to one
1921	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1922	 * Erase Size, whether it is switched on or not, limit to that size.
1923	 * Otherwise just have a stab at a good value.  For modern cards it
1924	 * will end up being 4MiB.  Note that if the value is too small, it
1925	 * can end up taking longer to erase.
1926	 */
1927	if (mmc_card_sd(card) && card->ssr.au) {
1928		card->pref_erase = card->ssr.au;
1929		card->erase_shift = ffs(card->ssr.au) - 1;
1930	} else if (card->ext_csd.hc_erase_size) {
1931		card->pref_erase = card->ext_csd.hc_erase_size;
1932	} else if (card->erase_size) {
1933		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1934		if (sz < 128)
1935			card->pref_erase = 512 * 1024 / 512;
1936		else if (sz < 512)
1937			card->pref_erase = 1024 * 1024 / 512;
1938		else if (sz < 1024)
1939			card->pref_erase = 2 * 1024 * 1024 / 512;
1940		else
1941			card->pref_erase = 4 * 1024 * 1024 / 512;
1942		if (card->pref_erase < card->erase_size)
1943			card->pref_erase = card->erase_size;
1944		else {
1945			sz = card->pref_erase % card->erase_size;
1946			if (sz)
1947				card->pref_erase += card->erase_size - sz;
1948		}
1949	} else
1950		card->pref_erase = 0;
1951}
1952
1953static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1954				          unsigned int arg, unsigned int qty)
1955{
1956	unsigned int erase_timeout;
1957
1958	if (arg == MMC_DISCARD_ARG ||
1959	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1960		erase_timeout = card->ext_csd.trim_timeout;
1961	} else if (card->ext_csd.erase_group_def & 1) {
1962		/* High Capacity Erase Group Size uses HC timeouts */
1963		if (arg == MMC_TRIM_ARG)
1964			erase_timeout = card->ext_csd.trim_timeout;
1965		else
1966			erase_timeout = card->ext_csd.hc_erase_timeout;
1967	} else {
1968		/* CSD Erase Group Size uses write timeout */
1969		unsigned int mult = (10 << card->csd.r2w_factor);
1970		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1971		unsigned int timeout_us;
1972
1973		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1974		if (card->csd.tacc_ns < 1000000)
1975			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1976		else
1977			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1978
1979		/*
1980		 * ios.clock is only a target.  The real clock rate might be
1981		 * less but not that much less, so fudge it by multiplying by 2.
1982		 */
1983		timeout_clks <<= 1;
1984		timeout_us += (timeout_clks * 1000) /
1985			      (card->host->ios.clock / 1000);
1986
1987		erase_timeout = timeout_us / 1000;
1988
1989		/*
1990		 * Theoretically, the calculation could underflow so round up
1991		 * to 1ms in that case.
1992		 */
1993		if (!erase_timeout)
1994			erase_timeout = 1;
1995	}
1996
1997	/* Multiplier for secure operations */
1998	if (arg & MMC_SECURE_ARGS) {
1999		if (arg == MMC_SECURE_ERASE_ARG)
2000			erase_timeout *= card->ext_csd.sec_erase_mult;
2001		else
2002			erase_timeout *= card->ext_csd.sec_trim_mult;
2003	}
2004
2005	erase_timeout *= qty;
2006
2007	/*
2008	 * Ensure at least a 1 second timeout for SPI as per
2009	 * 'mmc_set_data_timeout()'
2010	 */
2011	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
2012		erase_timeout = 1000;
2013
2014	return erase_timeout;
2015}
2016
2017static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
2018					 unsigned int arg,
2019					 unsigned int qty)
2020{
2021	unsigned int erase_timeout;
2022
2023	if (card->ssr.erase_timeout) {
2024		/* Erase timeout specified in SD Status Register (SSR) */
2025		erase_timeout = card->ssr.erase_timeout * qty +
2026				card->ssr.erase_offset;
2027	} else {
2028		/*
2029		 * Erase timeout not specified in SD Status Register (SSR) so
2030		 * use 250ms per write block.
2031		 */
2032		erase_timeout = 250 * qty;
2033	}
2034
2035	/* Must not be less than 1 second */
2036	if (erase_timeout < 1000)
2037		erase_timeout = 1000;
2038
2039	return erase_timeout;
2040}
2041
2042static unsigned int mmc_erase_timeout(struct mmc_card *card,
2043				      unsigned int arg,
2044				      unsigned int qty)
2045{
2046	if (mmc_card_sd(card))
2047		return mmc_sd_erase_timeout(card, arg, qty);
2048	else
2049		return mmc_mmc_erase_timeout(card, arg, qty);
2050}
2051
2052static int mmc_do_erase(struct mmc_card *card, unsigned int from,
2053			unsigned int to, unsigned int arg)
2054{
2055	struct mmc_command cmd = {0};
2056	unsigned int qty = 0;
2057	unsigned long timeout;
2058	int err;
2059
2060	mmc_retune_hold(card->host);
2061
2062	/*
2063	 * qty is used to calculate the erase timeout which depends on how many
2064	 * erase groups (or allocation units in SD terminology) are affected.
2065	 * We count erasing part of an erase group as one erase group.
2066	 * For SD, the allocation units are always a power of 2.  For MMC, the
2067	 * erase group size is almost certainly also power of 2, but it does not
2068	 * seem to insist on that in the JEDEC standard, so we fall back to
2069	 * division in that case.  SD may not specify an allocation unit size,
2070	 * in which case the timeout is based on the number of write blocks.
2071	 *
2072	 * Note that the timeout for secure trim 2 will only be correct if the
2073	 * number of erase groups specified is the same as the total of all
2074	 * preceding secure trim 1 commands.  Since the power may have been
2075	 * lost since the secure trim 1 commands occurred, it is generally
2076	 * impossible to calculate the secure trim 2 timeout correctly.
2077	 */
2078	if (card->erase_shift)
2079		qty += ((to >> card->erase_shift) -
2080			(from >> card->erase_shift)) + 1;
2081	else if (mmc_card_sd(card))
2082		qty += to - from + 1;
2083	else
2084		qty += ((to / card->erase_size) -
2085			(from / card->erase_size)) + 1;
2086
2087	if (!mmc_card_blockaddr(card)) {
2088		from <<= 9;
2089		to <<= 9;
2090	}
2091
2092	if (mmc_card_sd(card))
2093		cmd.opcode = SD_ERASE_WR_BLK_START;
2094	else
2095		cmd.opcode = MMC_ERASE_GROUP_START;
2096	cmd.arg = from;
2097	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2098	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2099	if (err) {
2100		pr_err("mmc_erase: group start error %d, "
2101		       "status %#x\n", err, cmd.resp[0]);
2102		err = -EIO;
2103		goto out;
2104	}
2105
2106	memset(&cmd, 0, sizeof(struct mmc_command));
2107	if (mmc_card_sd(card))
2108		cmd.opcode = SD_ERASE_WR_BLK_END;
2109	else
2110		cmd.opcode = MMC_ERASE_GROUP_END;
2111	cmd.arg = to;
2112	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2113	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2114	if (err) {
2115		pr_err("mmc_erase: group end error %d, status %#x\n",
2116		       err, cmd.resp[0]);
2117		err = -EIO;
2118		goto out;
2119	}
2120
2121	memset(&cmd, 0, sizeof(struct mmc_command));
2122	cmd.opcode = MMC_ERASE;
2123	cmd.arg = arg;
2124	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
2125	cmd.busy_timeout = mmc_erase_timeout(card, arg, qty);
2126	err = mmc_wait_for_cmd(card->host, &cmd, 0);
2127	if (err) {
2128		pr_err("mmc_erase: erase error %d, status %#x\n",
2129		       err, cmd.resp[0]);
2130		err = -EIO;
2131		goto out;
2132	}
2133
2134	if (mmc_host_is_spi(card->host))
2135		goto out;
2136
2137	timeout = jiffies + msecs_to_jiffies(MMC_CORE_TIMEOUT_MS);
2138	do {
2139		memset(&cmd, 0, sizeof(struct mmc_command));
2140		cmd.opcode = MMC_SEND_STATUS;
2141		cmd.arg = card->rca << 16;
2142		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
2143		/* Do not retry else we can't see errors */
2144		err = mmc_wait_for_cmd(card->host, &cmd, 0);
2145		if (err || (cmd.resp[0] & 0xFDF92000)) {
2146			pr_err("error %d requesting status %#x\n",
2147				err, cmd.resp[0]);
2148			err = -EIO;
2149			goto out;
2150		}
2151
2152		/* Timeout if the device never becomes ready for data and
2153		 * never leaves the program state.
2154		 */
2155		if (time_after(jiffies, timeout)) {
2156			pr_err("%s: Card stuck in programming state! %s\n",
2157				mmc_hostname(card->host), __func__);
2158			err =  -EIO;
2159			goto out;
2160		}
2161
2162	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
2163		 (R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG));
2164out:
2165	mmc_retune_release(card->host);
2166	return err;
2167}
2168
2169/**
2170 * mmc_erase - erase sectors.
2171 * @card: card to erase
2172 * @from: first sector to erase
2173 * @nr: number of sectors to erase
2174 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2175 *
2176 * Caller must claim host before calling this function.
2177 */
2178int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
2179	      unsigned int arg)
2180{
2181	unsigned int rem, to = from + nr;
2182	int err;
2183
2184	if (!(card->host->caps & MMC_CAP_ERASE) ||
2185	    !(card->csd.cmdclass & CCC_ERASE))
2186		return -EOPNOTSUPP;
2187
2188	if (!card->erase_size)
2189		return -EOPNOTSUPP;
2190
2191	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
2192		return -EOPNOTSUPP;
2193
2194	if ((arg & MMC_SECURE_ARGS) &&
2195	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
2196		return -EOPNOTSUPP;
2197
2198	if ((arg & MMC_TRIM_ARGS) &&
2199	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
2200		return -EOPNOTSUPP;
2201
2202	if (arg == MMC_SECURE_ERASE_ARG) {
2203		if (from % card->erase_size || nr % card->erase_size)
2204			return -EINVAL;
2205	}
2206
2207	if (arg == MMC_ERASE_ARG) {
2208		rem = from % card->erase_size;
2209		if (rem) {
2210			rem = card->erase_size - rem;
2211			from += rem;
2212			if (nr > rem)
2213				nr -= rem;
2214			else
2215				return 0;
2216		}
2217		rem = nr % card->erase_size;
2218		if (rem)
2219			nr -= rem;
2220	}
2221
2222	if (nr == 0)
2223		return 0;
2224
2225	to = from + nr;
2226
2227	if (to <= from)
2228		return -EINVAL;
2229
2230	/* 'from' and 'to' are inclusive */
2231	to -= 1;
2232
2233	/*
2234	 * Special case where only one erase-group fits in the timeout budget:
2235	 * If the region crosses an erase-group boundary on this particular
2236	 * case, we will be trimming more than one erase-group which, does not
2237	 * fit in the timeout budget of the controller, so we need to split it
2238	 * and call mmc_do_erase() twice if necessary. This special case is
2239	 * identified by the card->eg_boundary flag.
2240	 */
2241	rem = card->erase_size - (from % card->erase_size);
2242	if ((arg & MMC_TRIM_ARGS) && (card->eg_boundary) && (nr > rem)) {
2243		err = mmc_do_erase(card, from, from + rem - 1, arg);
2244		from += rem;
2245		if ((err) || (to <= from))
2246			return err;
2247	}
2248
2249	return mmc_do_erase(card, from, to, arg);
2250}
2251EXPORT_SYMBOL(mmc_erase);
2252
2253int mmc_can_erase(struct mmc_card *card)
2254{
2255	if ((card->host->caps & MMC_CAP_ERASE) &&
2256	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
2257		return 1;
2258	return 0;
2259}
2260EXPORT_SYMBOL(mmc_can_erase);
2261
2262int mmc_can_trim(struct mmc_card *card)
2263{
2264	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
2265	    (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
2266		return 1;
2267	return 0;
2268}
2269EXPORT_SYMBOL(mmc_can_trim);
2270
2271int mmc_can_discard(struct mmc_card *card)
2272{
2273	/*
2274	 * As there's no way to detect the discard support bit at v4.5
2275	 * use the s/w feature support filed.
2276	 */
2277	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
2278		return 1;
2279	return 0;
2280}
2281EXPORT_SYMBOL(mmc_can_discard);
2282
2283int mmc_can_sanitize(struct mmc_card *card)
2284{
2285	if (!mmc_can_trim(card) && !mmc_can_erase(card))
2286		return 0;
2287	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
2288		return 1;
2289	return 0;
2290}
2291EXPORT_SYMBOL(mmc_can_sanitize);
2292
2293int mmc_can_secure_erase_trim(struct mmc_card *card)
2294{
2295	if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
2296	    !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
2297		return 1;
2298	return 0;
2299}
2300EXPORT_SYMBOL(mmc_can_secure_erase_trim);
2301
2302int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
2303			    unsigned int nr)
2304{
2305	if (!card->erase_size)
2306		return 0;
2307	if (from % card->erase_size || nr % card->erase_size)
2308		return 0;
2309	return 1;
2310}
2311EXPORT_SYMBOL(mmc_erase_group_aligned);
2312
2313static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
2314					    unsigned int arg)
2315{
2316	struct mmc_host *host = card->host;
2317	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
2318	unsigned int last_timeout = 0;
2319
2320	if (card->erase_shift)
2321		max_qty = UINT_MAX >> card->erase_shift;
2322	else if (mmc_card_sd(card))
2323		max_qty = UINT_MAX;
2324	else
2325		max_qty = UINT_MAX / card->erase_size;
2326
2327	/* Find the largest qty with an OK timeout */
2328	do {
2329		y = 0;
2330		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
2331			timeout = mmc_erase_timeout(card, arg, qty + x);
2332			if (timeout > host->max_busy_timeout)
2333				break;
2334			if (timeout < last_timeout)
2335				break;
2336			last_timeout = timeout;
2337			y = x;
2338		}
2339		qty += y;
2340	} while (y);
2341
2342	if (!qty)
2343		return 0;
2344
2345	/*
2346	 * When specifying a sector range to trim, chances are we might cross
2347	 * an erase-group boundary even if the amount of sectors is less than
2348	 * one erase-group.
2349	 * If we can only fit one erase-group in the controller timeout budget,
2350	 * we have to care that erase-group boundaries are not crossed by a
2351	 * single trim operation. We flag that special case with "eg_boundary".
2352	 * In all other cases we can just decrement qty and pretend that we
2353	 * always touch (qty + 1) erase-groups as a simple optimization.
2354	 */
2355	if (qty == 1)
2356		card->eg_boundary = 1;
2357	else
2358		qty--;
2359
2360	/* Convert qty to sectors */
2361	if (card->erase_shift)
2362		max_discard = qty << card->erase_shift;
2363	else if (mmc_card_sd(card))
2364		max_discard = qty + 1;
2365	else
2366		max_discard = qty * card->erase_size;
2367
2368	return max_discard;
2369}
2370
2371unsigned int mmc_calc_max_discard(struct mmc_card *card)
2372{
2373	struct mmc_host *host = card->host;
2374	unsigned int max_discard, max_trim;
2375
2376	if (!host->max_busy_timeout)
2377		return UINT_MAX;
2378
2379	/*
2380	 * Without erase_group_def set, MMC erase timeout depends on clock
2381	 * frequence which can change.  In that case, the best choice is
2382	 * just the preferred erase size.
2383	 */
2384	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
2385		return card->pref_erase;
2386
2387	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
2388	if (mmc_can_trim(card)) {
2389		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
2390		if (max_trim < max_discard)
2391			max_discard = max_trim;
2392	} else if (max_discard < card->erase_size) {
2393		max_discard = 0;
2394	}
2395	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2396		 mmc_hostname(host), max_discard, host->max_busy_timeout);
2397	return max_discard;
2398}
2399EXPORT_SYMBOL(mmc_calc_max_discard);
2400
2401int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
2402{
2403	struct mmc_command cmd = {0};
2404
2405	if (mmc_card_blockaddr(card) || mmc_card_ddr52(card))
2406		return 0;
2407
2408	cmd.opcode = MMC_SET_BLOCKLEN;
2409	cmd.arg = blocklen;
2410	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2411	return mmc_wait_for_cmd(card->host, &cmd, 5);
2412}
2413EXPORT_SYMBOL(mmc_set_blocklen);
2414
2415int mmc_set_blockcount(struct mmc_card *card, unsigned int blockcount,
2416			bool is_rel_write)
2417{
2418	struct mmc_command cmd = {0};
2419
2420	cmd.opcode = MMC_SET_BLOCK_COUNT;
2421	cmd.arg = blockcount & 0x0000FFFF;
2422	if (is_rel_write)
2423		cmd.arg |= 1 << 31;
2424	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
2425	return mmc_wait_for_cmd(card->host, &cmd, 5);
2426}
2427EXPORT_SYMBOL(mmc_set_blockcount);
2428
2429static void mmc_hw_reset_for_init(struct mmc_host *host)
2430{
2431	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
2432		return;
 
2433	host->ops->hw_reset(host);
 
2434}
2435
2436int mmc_hw_reset(struct mmc_host *host)
2437{
2438	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439
2440	if (!host->card)
2441		return -EINVAL;
2442
2443	mmc_bus_get(host);
2444	if (!host->bus_ops || host->bus_dead || !host->bus_ops->reset) {
2445		mmc_bus_put(host);
2446		return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447	}
2448
2449	ret = host->bus_ops->reset(host);
2450	mmc_bus_put(host);
 
 
 
 
 
 
 
 
 
2451
2452	if (ret != -EOPNOTSUPP)
2453		pr_warn("%s: tried to reset card\n", mmc_hostname(host));
2454
2455	return ret;
 
 
 
 
 
2456}
2457EXPORT_SYMBOL(mmc_hw_reset);
2458
 
 
 
 
 
 
2459static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2460{
2461	host->f_init = freq;
2462
2463#ifdef CONFIG_MMC_DEBUG
2464	pr_info("%s: %s: trying to init card at %u Hz\n",
2465		mmc_hostname(host), __func__, host->f_init);
2466#endif
2467	mmc_power_up(host, host->ocr_avail);
2468
2469	/*
2470	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2471	 * do a hardware reset if possible.
2472	 */
2473	mmc_hw_reset_for_init(host);
2474
 
 
 
2475	/*
2476	 * sdio_reset sends CMD52 to reset card.  Since we do not know
2477	 * if the card is being re-initialized, just send it.  CMD52
2478	 * should be ignored by SD/eMMC cards.
2479	 * Skip it if we already know that we do not support SDIO commands
2480	 */
2481	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2482		sdio_reset(host);
2483
2484	mmc_go_idle(host);
2485
2486	mmc_send_if_cond(host, host->ocr_avail);
2487
2488	/* Order's important: probe SDIO, then SD, then MMC */
2489	if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2490		if (!mmc_attach_sdio(host))
2491			return 0;
2492
2493	if (!mmc_attach_sd(host))
2494		return 0;
2495	if (!mmc_attach_mmc(host))
2496		return 0;
2497
2498	mmc_power_off(host);
2499	return -EIO;
2500}
2501
2502int _mmc_detect_card_removed(struct mmc_host *host)
2503{
2504	int ret;
2505
 
 
 
2506	if (!host->card || mmc_card_removed(host->card))
2507		return 1;
2508
2509	ret = host->bus_ops->alive(host);
2510
2511	/*
2512	 * Card detect status and alive check may be out of sync if card is
2513	 * removed slowly, when card detect switch changes while card/slot
2514	 * pads are still contacted in hardware (refer to "SD Card Mechanical
2515	 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2516	 * detect work 200ms later for this case.
2517	 */
2518	if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2519		mmc_detect_change(host, msecs_to_jiffies(200));
2520		pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2521	}
2522
2523	if (ret) {
2524		mmc_card_set_removed(host->card);
2525		pr_debug("%s: card remove detected\n", mmc_hostname(host));
2526	}
2527
2528	return ret;
2529}
2530
2531int mmc_detect_card_removed(struct mmc_host *host)
2532{
2533	struct mmc_card *card = host->card;
2534	int ret;
2535
2536	WARN_ON(!host->claimed);
2537
2538	if (!card)
2539		return 1;
2540
2541	if (!mmc_card_is_removable(host))
2542		return 0;
2543
2544	ret = mmc_card_removed(card);
2545	/*
2546	 * The card will be considered unchanged unless we have been asked to
2547	 * detect a change or host requires polling to provide card detection.
2548	 */
2549	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
 
2550		return ret;
2551
2552	host->detect_change = 0;
2553	if (!ret) {
2554		ret = _mmc_detect_card_removed(host);
2555		if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2556			/*
2557			 * Schedule a detect work as soon as possible to let a
2558			 * rescan handle the card removal.
2559			 */
2560			cancel_delayed_work(&host->detect);
2561			_mmc_detect_change(host, 0, false);
2562		}
2563	}
2564
2565	return ret;
2566}
2567EXPORT_SYMBOL(mmc_detect_card_removed);
2568
2569void mmc_rescan(struct work_struct *work)
2570{
2571	struct mmc_host *host =
2572		container_of(work, struct mmc_host, detect.work);
2573	int i;
2574
2575	if (host->rescan_disable)
2576		return;
2577
2578	/* If there is a non-removable card registered, only scan once */
2579	if (!mmc_card_is_removable(host) && host->rescan_entered)
2580		return;
2581	host->rescan_entered = 1;
2582
2583	if (host->trigger_card_event && host->ops->card_event) {
2584		mmc_claim_host(host);
2585		host->ops->card_event(host);
2586		mmc_release_host(host);
2587		host->trigger_card_event = false;
2588	}
2589
2590	mmc_bus_get(host);
2591
2592	/*
2593	 * if there is a _removable_ card registered, check whether it is
2594	 * still present
2595	 */
2596	if (host->bus_ops && !host->bus_dead && mmc_card_is_removable(host))
 
2597		host->bus_ops->detect(host);
2598
2599	host->detect_change = 0;
2600
2601	/*
2602	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2603	 * the card is no longer present.
2604	 */
2605	mmc_bus_put(host);
2606	mmc_bus_get(host);
2607
2608	/* if there still is a card present, stop here */
2609	if (host->bus_ops != NULL) {
2610		mmc_bus_put(host);
2611		goto out;
2612	}
2613
2614	/*
2615	 * Only we can add a new handler, so it's safe to
2616	 * release the lock here.
2617	 */
2618	mmc_bus_put(host);
2619
2620	mmc_claim_host(host);
2621	if (mmc_card_is_removable(host) && host->ops->get_cd &&
2622			host->ops->get_cd(host) == 0) {
2623		mmc_power_off(host);
2624		mmc_release_host(host);
2625		goto out;
2626	}
2627
 
2628	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2629		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2630			break;
2631		if (freqs[i] <= host->f_min)
2632			break;
2633	}
2634	mmc_release_host(host);
2635
2636 out:
2637	if (host->caps & MMC_CAP_NEEDS_POLL)
2638		mmc_schedule_delayed_work(&host->detect, HZ);
2639}
2640
2641void mmc_start_host(struct mmc_host *host)
2642{
2643	host->f_init = max(freqs[0], host->f_min);
2644	host->rescan_disable = 0;
2645	host->ios.power_mode = MMC_POWER_UNDEFINED;
2646
2647	mmc_claim_host(host);
2648	if (host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)
2649		mmc_power_off(host);
2650	else
2651		mmc_power_up(host, host->ocr_avail);
2652	mmc_release_host(host);
2653
2654	mmc_gpiod_request_cd_irq(host);
2655	_mmc_detect_change(host, 0, false);
2656}
2657
2658void mmc_stop_host(struct mmc_host *host)
2659{
2660#ifdef CONFIG_MMC_DEBUG
2661	unsigned long flags;
2662	spin_lock_irqsave(&host->lock, flags);
2663	host->removed = 1;
2664	spin_unlock_irqrestore(&host->lock, flags);
2665#endif
2666	if (host->slot.cd_irq >= 0)
2667		disable_irq(host->slot.cd_irq);
2668
2669	host->rescan_disable = 1;
2670	cancel_delayed_work_sync(&host->detect);
 
2671
2672	/* clear pm flags now and let card drivers set them as needed */
2673	host->pm_flags = 0;
2674
2675	mmc_bus_get(host);
2676	if (host->bus_ops && !host->bus_dead) {
2677		/* Calling bus_ops->remove() with a claimed host can deadlock */
2678		host->bus_ops->remove(host);
 
 
2679		mmc_claim_host(host);
2680		mmc_detach_bus(host);
2681		mmc_power_off(host);
2682		mmc_release_host(host);
2683		mmc_bus_put(host);
2684		return;
2685	}
2686	mmc_bus_put(host);
2687
2688	BUG_ON(host->card);
2689
2690	mmc_claim_host(host);
2691	mmc_power_off(host);
2692	mmc_release_host(host);
2693}
2694
2695int mmc_power_save_host(struct mmc_host *host)
2696{
2697	int ret = 0;
2698
2699#ifdef CONFIG_MMC_DEBUG
2700	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2701#endif
2702
2703	mmc_bus_get(host);
2704
2705	if (!host->bus_ops || host->bus_dead) {
2706		mmc_bus_put(host);
2707		return -EINVAL;
2708	}
2709
2710	if (host->bus_ops->power_save)
2711		ret = host->bus_ops->power_save(host);
2712
2713	mmc_bus_put(host);
2714
2715	mmc_power_off(host);
2716
2717	return ret;
2718}
2719EXPORT_SYMBOL(mmc_power_save_host);
2720
2721int mmc_power_restore_host(struct mmc_host *host)
2722{
2723	int ret;
2724
2725#ifdef CONFIG_MMC_DEBUG
2726	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2727#endif
2728
2729	mmc_bus_get(host);
2730
2731	if (!host->bus_ops || host->bus_dead) {
2732		mmc_bus_put(host);
2733		return -EINVAL;
2734	}
2735
2736	mmc_power_up(host, host->card->ocr);
2737	ret = host->bus_ops->power_restore(host);
2738
2739	mmc_bus_put(host);
2740
2741	return ret;
2742}
2743EXPORT_SYMBOL(mmc_power_restore_host);
2744
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2745/*
2746 * Flush the cache to the non-volatile storage.
2747 */
2748int mmc_flush_cache(struct mmc_card *card)
2749{
 
2750	int err = 0;
2751
 
 
 
2752	if (mmc_card_mmc(card) &&
2753			(card->ext_csd.cache_size > 0) &&
2754			(card->ext_csd.cache_ctrl & 1)) {
2755		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2756				EXT_CSD_FLUSH_CACHE, 1, 0);
2757		if (err)
2758			pr_err("%s: cache flush error %d\n",
2759					mmc_hostname(card->host), err);
2760	}
2761
2762	return err;
2763}
2764EXPORT_SYMBOL(mmc_flush_cache);
2765
2766#ifdef CONFIG_PM_SLEEP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2767/* Do the card removal on suspend if card is assumed removeable
2768 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2769   to sync the card.
2770*/
2771static int mmc_pm_notify(struct notifier_block *notify_block,
2772			unsigned long mode, void *unused)
2773{
2774	struct mmc_host *host = container_of(
2775		notify_block, struct mmc_host, pm_notify);
2776	unsigned long flags;
2777	int err = 0;
2778
2779	switch (mode) {
2780	case PM_HIBERNATION_PREPARE:
2781	case PM_SUSPEND_PREPARE:
2782	case PM_RESTORE_PREPARE:
2783		spin_lock_irqsave(&host->lock, flags);
2784		host->rescan_disable = 1;
 
2785		spin_unlock_irqrestore(&host->lock, flags);
2786		cancel_delayed_work_sync(&host->detect);
2787
2788		if (!host->bus_ops)
2789			break;
2790
2791		/* Validate prerequisites for suspend */
2792		if (host->bus_ops->pre_suspend)
2793			err = host->bus_ops->pre_suspend(host);
2794		if (!err)
2795			break;
2796
2797		/* Calling bus_ops->remove() with a claimed host can deadlock */
2798		host->bus_ops->remove(host);
 
 
2799		mmc_claim_host(host);
2800		mmc_detach_bus(host);
2801		mmc_power_off(host);
2802		mmc_release_host(host);
2803		host->pm_flags = 0;
2804		break;
2805
2806	case PM_POST_SUSPEND:
2807	case PM_POST_HIBERNATION:
2808	case PM_POST_RESTORE:
2809
2810		spin_lock_irqsave(&host->lock, flags);
2811		host->rescan_disable = 0;
 
2812		spin_unlock_irqrestore(&host->lock, flags);
2813		_mmc_detect_change(host, 0, false);
2814
2815	}
2816
2817	return 0;
2818}
2819
2820void mmc_register_pm_notifier(struct mmc_host *host)
2821{
2822	host->pm_notify.notifier_call = mmc_pm_notify;
2823	register_pm_notifier(&host->pm_notify);
2824}
2825
2826void mmc_unregister_pm_notifier(struct mmc_host *host)
2827{
2828	unregister_pm_notifier(&host->pm_notify);
2829}
2830#endif
2831
2832/**
2833 * mmc_init_context_info() - init synchronization context
2834 * @host: mmc host
2835 *
2836 * Init struct context_info needed to implement asynchronous
2837 * request mechanism, used by mmc core, host driver and mmc requests
2838 * supplier.
2839 */
2840void mmc_init_context_info(struct mmc_host *host)
2841{
2842	spin_lock_init(&host->context_info.lock);
2843	host->context_info.is_new_req = false;
2844	host->context_info.is_done_rcv = false;
2845	host->context_info.is_waiting_last_req = false;
2846	init_waitqueue_head(&host->context_info.wait);
2847}
2848
2849static int __init mmc_init(void)
2850{
2851	int ret;
2852
 
 
 
 
2853	ret = mmc_register_bus();
2854	if (ret)
2855		return ret;
2856
2857	ret = mmc_register_host_class();
2858	if (ret)
2859		goto unregister_bus;
2860
2861	ret = sdio_register_bus();
2862	if (ret)
2863		goto unregister_host_class;
2864
2865	return 0;
2866
2867unregister_host_class:
2868	mmc_unregister_host_class();
2869unregister_bus:
2870	mmc_unregister_bus();
 
 
 
2871	return ret;
2872}
2873
2874static void __exit mmc_exit(void)
2875{
2876	sdio_unregister_bus();
2877	mmc_unregister_host_class();
2878	mmc_unregister_bus();
 
2879}
2880
2881subsys_initcall(mmc_init);
2882module_exit(mmc_exit);
2883
2884MODULE_LICENSE("GPL");
v3.5.6
   1/*
   2 *  linux/drivers/mmc/core/core.c
   3 *
   4 *  Copyright (C) 2003-2004 Russell King, All Rights Reserved.
   5 *  SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
   6 *  Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
   7 *  MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 */
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/interrupt.h>
  16#include <linux/completion.h>
  17#include <linux/device.h>
  18#include <linux/delay.h>
  19#include <linux/pagemap.h>
  20#include <linux/err.h>
  21#include <linux/leds.h>
  22#include <linux/scatterlist.h>
  23#include <linux/log2.h>
  24#include <linux/regulator/consumer.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/suspend.h>
  27#include <linux/fault-inject.h>
  28#include <linux/random.h>
 
 
  29
  30#include <linux/mmc/card.h>
  31#include <linux/mmc/host.h>
  32#include <linux/mmc/mmc.h>
  33#include <linux/mmc/sd.h>
 
  34
  35#include "core.h"
  36#include "bus.h"
  37#include "host.h"
  38#include "sdio_bus.h"
 
  39
  40#include "mmc_ops.h"
  41#include "sd_ops.h"
  42#include "sdio_ops.h"
  43
  44static struct workqueue_struct *workqueue;
 
 
 
 
 
 
 
 
  45static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
  46
  47/*
  48 * Enabling software CRCs on the data blocks can be a significant (30%)
  49 * performance cost, and for other reasons may not always be desired.
  50 * So we allow it it to be disabled.
  51 */
  52bool use_spi_crc = 1;
  53module_param(use_spi_crc, bool, 0);
  54
  55/*
  56 * We normally treat cards as removed during suspend if they are not
  57 * known to be on a non-removable bus, to avoid the risk of writing
  58 * back data to a different card after resume.  Allow this to be
  59 * overridden if necessary.
  60 */
  61#ifdef CONFIG_MMC_UNSAFE_RESUME
  62bool mmc_assume_removable;
  63#else
  64bool mmc_assume_removable = 1;
  65#endif
  66EXPORT_SYMBOL(mmc_assume_removable);
  67module_param_named(removable, mmc_assume_removable, bool, 0644);
  68MODULE_PARM_DESC(
  69	removable,
  70	"MMC/SD cards are removable and may be removed during suspend");
  71
  72/*
  73 * Internal function. Schedule delayed work in the MMC work queue.
  74 */
  75static int mmc_schedule_delayed_work(struct delayed_work *work,
  76				     unsigned long delay)
  77{
  78	return queue_delayed_work(workqueue, work, delay);
  79}
  80
  81/*
  82 * Internal function. Flush all scheduled work from the MMC work queue.
  83 */
  84static void mmc_flush_scheduled_work(void)
  85{
  86	flush_workqueue(workqueue);
  87}
  88
  89#ifdef CONFIG_FAIL_MMC_REQUEST
  90
  91/*
  92 * Internal function. Inject random data errors.
  93 * If mmc_data is NULL no errors are injected.
  94 */
  95static void mmc_should_fail_request(struct mmc_host *host,
  96				    struct mmc_request *mrq)
  97{
  98	struct mmc_command *cmd = mrq->cmd;
  99	struct mmc_data *data = mrq->data;
 100	static const int data_errors[] = {
 101		-ETIMEDOUT,
 102		-EILSEQ,
 103		-EIO,
 104	};
 105
 106	if (!data)
 107		return;
 108
 109	if (cmd->error || data->error ||
 110	    !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
 111		return;
 112
 113	data->error = data_errors[random32() % ARRAY_SIZE(data_errors)];
 114	data->bytes_xfered = (random32() % (data->bytes_xfered >> 9)) << 9;
 115}
 116
 117#else /* CONFIG_FAIL_MMC_REQUEST */
 118
 119static inline void mmc_should_fail_request(struct mmc_host *host,
 120					   struct mmc_request *mrq)
 121{
 122}
 123
 124#endif /* CONFIG_FAIL_MMC_REQUEST */
 125
 126/**
 127 *	mmc_request_done - finish processing an MMC request
 128 *	@host: MMC host which completed request
 129 *	@mrq: MMC request which request
 130 *
 131 *	MMC drivers should call this function when they have completed
 132 *	their processing of a request.
 133 */
 134void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
 135{
 136	struct mmc_command *cmd = mrq->cmd;
 137	int err = cmd->error;
 138
 
 
 
 
 
 
 
 
 139	if (err && cmd->retries && mmc_host_is_spi(host)) {
 140		if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
 141			cmd->retries = 0;
 142	}
 143
 144	if (err && cmd->retries && !mmc_card_removed(host->card)) {
 145		/*
 146		 * Request starter must handle retries - see
 147		 * mmc_wait_for_req_done().
 148		 */
 149		if (mrq->done)
 150			mrq->done(mrq);
 151	} else {
 152		mmc_should_fail_request(host, mrq);
 153
 154		led_trigger_event(host->led, LED_OFF);
 155
 
 
 
 
 
 
 
 
 156		pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
 157			mmc_hostname(host), cmd->opcode, err,
 158			cmd->resp[0], cmd->resp[1],
 159			cmd->resp[2], cmd->resp[3]);
 160
 161		if (mrq->data) {
 162			pr_debug("%s:     %d bytes transferred: %d\n",
 163				mmc_hostname(host),
 164				mrq->data->bytes_xfered, mrq->data->error);
 165		}
 166
 167		if (mrq->stop) {
 168			pr_debug("%s:     (CMD%u): %d: %08x %08x %08x %08x\n",
 169				mmc_hostname(host), mrq->stop->opcode,
 170				mrq->stop->error,
 171				mrq->stop->resp[0], mrq->stop->resp[1],
 172				mrq->stop->resp[2], mrq->stop->resp[3]);
 173		}
 174
 175		if (mrq->done)
 176			mrq->done(mrq);
 177
 178		mmc_host_clk_release(host);
 179	}
 180}
 181
 182EXPORT_SYMBOL(mmc_request_done);
 183
 184static void
 185mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 186{
 187#ifdef CONFIG_MMC_DEBUG
 188	unsigned int i, sz;
 189	struct scatterlist *sg;
 190#endif
 
 
 
 
 191
 192	if (mrq->sbc) {
 193		pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
 194			 mmc_hostname(host), mrq->sbc->opcode,
 195			 mrq->sbc->arg, mrq->sbc->flags);
 196	}
 197
 198	pr_debug("%s: starting CMD%u arg %08x flags %08x\n",
 199		 mmc_hostname(host), mrq->cmd->opcode,
 200		 mrq->cmd->arg, mrq->cmd->flags);
 201
 202	if (mrq->data) {
 203		pr_debug("%s:     blksz %d blocks %d flags %08x "
 204			"tsac %d ms nsac %d\n",
 205			mmc_hostname(host), mrq->data->blksz,
 206			mrq->data->blocks, mrq->data->flags,
 207			mrq->data->timeout_ns / 1000000,
 208			mrq->data->timeout_clks);
 209	}
 210
 211	if (mrq->stop) {
 212		pr_debug("%s:     CMD%u arg %08x flags %08x\n",
 213			 mmc_hostname(host), mrq->stop->opcode,
 214			 mrq->stop->arg, mrq->stop->flags);
 215	}
 216
 217	WARN_ON(!host->claimed);
 218
 219	mrq->cmd->error = 0;
 220	mrq->cmd->mrq = mrq;
 
 
 
 
 221	if (mrq->data) {
 222		BUG_ON(mrq->data->blksz > host->max_blk_size);
 223		BUG_ON(mrq->data->blocks > host->max_blk_count);
 224		BUG_ON(mrq->data->blocks * mrq->data->blksz >
 225			host->max_req_size);
 226
 227#ifdef CONFIG_MMC_DEBUG
 228		sz = 0;
 229		for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
 230			sz += sg->length;
 231		BUG_ON(sz != mrq->data->blocks * mrq->data->blksz);
 232#endif
 233
 234		mrq->cmd->data = mrq->data;
 235		mrq->data->error = 0;
 236		mrq->data->mrq = mrq;
 237		if (mrq->stop) {
 238			mrq->data->stop = mrq->stop;
 239			mrq->stop->error = 0;
 240			mrq->stop->mrq = mrq;
 241		}
 242	}
 243	mmc_host_clk_hold(host);
 244	led_trigger_event(host->led, LED_FULL);
 245	host->ops->request(host, mrq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246}
 247
 248static void mmc_wait_done(struct mmc_request *mrq)
 249{
 250	complete(&mrq->completion);
 251}
 252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
 254{
 
 
 255	init_completion(&mrq->completion);
 256	mrq->done = mmc_wait_done;
 257	if (mmc_card_removed(host->card)) {
 258		mrq->cmd->error = -ENOMEDIUM;
 
 
 259		complete(&mrq->completion);
 260		return -ENOMEDIUM;
 261	}
 262	mmc_start_request(host, mrq);
 263	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 264}
 265
 266static void mmc_wait_for_req_done(struct mmc_host *host,
 267				  struct mmc_request *mrq)
 268{
 269	struct mmc_command *cmd;
 270
 271	while (1) {
 272		wait_for_completion(&mrq->completion);
 273
 274		cmd = mrq->cmd;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 275		if (!cmd->error || !cmd->retries ||
 276		    mmc_card_removed(host->card))
 277			break;
 278
 
 
 279		pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
 280			 mmc_hostname(host), cmd->opcode, cmd->error);
 281		cmd->retries--;
 282		cmd->error = 0;
 283		host->ops->request(host, mrq);
 284	}
 
 
 285}
 286
 287/**
 288 *	mmc_pre_req - Prepare for a new request
 289 *	@host: MMC host to prepare command
 290 *	@mrq: MMC request to prepare for
 291 *	@is_first_req: true if there is no previous started request
 292 *                     that may run in parellel to this call, otherwise false
 293 *
 294 *	mmc_pre_req() is called in prior to mmc_start_req() to let
 295 *	host prepare for the new request. Preparation of a request may be
 296 *	performed while another request is running on the host.
 297 */
 298static void mmc_pre_req(struct mmc_host *host, struct mmc_request *mrq,
 299		 bool is_first_req)
 300{
 301	if (host->ops->pre_req) {
 302		mmc_host_clk_hold(host);
 303		host->ops->pre_req(host, mrq, is_first_req);
 304		mmc_host_clk_release(host);
 305	}
 306}
 307
 308/**
 309 *	mmc_post_req - Post process a completed request
 310 *	@host: MMC host to post process command
 311 *	@mrq: MMC request to post process for
 312 *	@err: Error, if non zero, clean up any resources made in pre_req
 313 *
 314 *	Let the host post process a completed request. Post processing of
 315 *	a request may be performed while another reuqest is running.
 316 */
 317static void mmc_post_req(struct mmc_host *host, struct mmc_request *mrq,
 318			 int err)
 319{
 320	if (host->ops->post_req) {
 321		mmc_host_clk_hold(host);
 322		host->ops->post_req(host, mrq, err);
 323		mmc_host_clk_release(host);
 324	}
 325}
 326
 327/**
 328 *	mmc_start_req - start a non-blocking request
 329 *	@host: MMC host to start command
 330 *	@areq: async request to start
 331 *	@error: out parameter returns 0 for success, otherwise non zero
 332 *
 333 *	Start a new MMC custom command request for a host.
 334 *	If there is on ongoing async request wait for completion
 335 *	of that request and start the new one and return.
 336 *	Does not wait for the new request to complete.
 337 *
 338 *      Returns the completed request, NULL in case of none completed.
 339 *	Wait for the an ongoing request (previoulsy started) to complete and
 340 *	return the completed request. If there is no ongoing request, NULL
 341 *	is returned without waiting. NULL is not an error condition.
 342 */
 343struct mmc_async_req *mmc_start_req(struct mmc_host *host,
 344				    struct mmc_async_req *areq, int *error)
 345{
 346	int err = 0;
 347	int start_err = 0;
 348	struct mmc_async_req *data = host->areq;
 349
 350	/* Prepare a new request */
 351	if (areq)
 352		mmc_pre_req(host, areq->mrq, !host->areq);
 353
 354	if (host->areq) {
 355		mmc_wait_for_req_done(host, host->areq->mrq);
 356		err = host->areq->err_check(host->card, host->areq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 357	}
 358
 359	if (!err && areq)
 360		start_err = __mmc_start_req(host, areq->mrq);
 361
 362	if (host->areq)
 363		mmc_post_req(host, host->areq->mrq, 0);
 364
 365	 /* Cancel a prepared request if it was not started. */
 366	if ((err || start_err) && areq)
 367			mmc_post_req(host, areq->mrq, -EINVAL);
 368
 369	if (err)
 370		host->areq = NULL;
 371	else
 372		host->areq = areq;
 373
 374	if (error)
 375		*error = err;
 376	return data;
 377}
 378EXPORT_SYMBOL(mmc_start_req);
 379
 380/**
 381 *	mmc_wait_for_req - start a request and wait for completion
 382 *	@host: MMC host to start command
 383 *	@mrq: MMC request to start
 384 *
 385 *	Start a new MMC custom command request for a host, and wait
 386 *	for the command to complete. Does not attempt to parse the
 387 *	response.
 388 */
 389void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
 390{
 391	__mmc_start_req(host, mrq);
 392	mmc_wait_for_req_done(host, mrq);
 393}
 394EXPORT_SYMBOL(mmc_wait_for_req);
 395
 396/**
 397 *	mmc_interrupt_hpi - Issue for High priority Interrupt
 398 *	@card: the MMC card associated with the HPI transfer
 399 *
 400 *	Issued High Priority Interrupt, and check for card status
 401 *	util out-of prg-state.
 402 */
 403int mmc_interrupt_hpi(struct mmc_card *card)
 404{
 405	int err;
 406	u32 status;
 
 407
 408	BUG_ON(!card);
 409
 410	if (!card->ext_csd.hpi_en) {
 411		pr_info("%s: HPI enable bit unset\n", mmc_hostname(card->host));
 412		return 1;
 413	}
 414
 415	mmc_claim_host(card->host);
 416	err = mmc_send_status(card, &status);
 417	if (err) {
 418		pr_err("%s: Get card status fail\n", mmc_hostname(card->host));
 419		goto out;
 420	}
 421
 422	/*
 423	 * If the card status is in PRG-state, we can send the HPI command.
 424	 */
 425	if (R1_CURRENT_STATE(status) == R1_STATE_PRG) {
 426		do {
 427			/*
 428			 * We don't know when the HPI command will finish
 429			 * processing, so we need to resend HPI until out
 430			 * of prg-state, and keep checking the card status
 431			 * with SEND_STATUS.  If a timeout error occurs when
 432			 * sending the HPI command, we are already out of
 433			 * prg-state.
 434			 */
 435			err = mmc_send_hpi_cmd(card, &status);
 436			if (err)
 437				pr_debug("%s: abort HPI (%d error)\n",
 438					 mmc_hostname(card->host), err);
 
 
 
 
 
 
 
 
 
 
 439
 440			err = mmc_send_status(card, &status);
 441			if (err)
 442				break;
 443		} while (R1_CURRENT_STATE(status) == R1_STATE_PRG);
 444	} else
 445		pr_debug("%s: Left prg-state\n", mmc_hostname(card->host));
 446
 447out:
 448	mmc_release_host(card->host);
 449	return err;
 450}
 451EXPORT_SYMBOL(mmc_interrupt_hpi);
 452
 453/**
 454 *	mmc_wait_for_cmd - start a command and wait for completion
 455 *	@host: MMC host to start command
 456 *	@cmd: MMC command to start
 457 *	@retries: maximum number of retries
 458 *
 459 *	Start a new MMC command for a host, and wait for the command
 460 *	to complete.  Return any error that occurred while the command
 461 *	was executing.  Do not attempt to parse the response.
 462 */
 463int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
 464{
 465	struct mmc_request mrq = {NULL};
 466
 467	WARN_ON(!host->claimed);
 468
 469	memset(cmd->resp, 0, sizeof(cmd->resp));
 470	cmd->retries = retries;
 471
 472	mrq.cmd = cmd;
 473	cmd->data = NULL;
 474
 475	mmc_wait_for_req(host, &mrq);
 476
 477	return cmd->error;
 478}
 479
 480EXPORT_SYMBOL(mmc_wait_for_cmd);
 481
 482/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 483 *	mmc_set_data_timeout - set the timeout for a data command
 484 *	@data: data phase for command
 485 *	@card: the MMC card associated with the data transfer
 486 *
 487 *	Computes the data timeout parameters according to the
 488 *	correct algorithm given the card type.
 489 */
 490void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
 491{
 492	unsigned int mult;
 493
 494	/*
 495	 * SDIO cards only define an upper 1 s limit on access.
 496	 */
 497	if (mmc_card_sdio(card)) {
 498		data->timeout_ns = 1000000000;
 499		data->timeout_clks = 0;
 500		return;
 501	}
 502
 503	/*
 504	 * SD cards use a 100 multiplier rather than 10
 505	 */
 506	mult = mmc_card_sd(card) ? 100 : 10;
 507
 508	/*
 509	 * Scale up the multiplier (and therefore the timeout) by
 510	 * the r2w factor for writes.
 511	 */
 512	if (data->flags & MMC_DATA_WRITE)
 513		mult <<= card->csd.r2w_factor;
 514
 515	data->timeout_ns = card->csd.tacc_ns * mult;
 516	data->timeout_clks = card->csd.tacc_clks * mult;
 517
 518	/*
 519	 * SD cards also have an upper limit on the timeout.
 520	 */
 521	if (mmc_card_sd(card)) {
 522		unsigned int timeout_us, limit_us;
 523
 524		timeout_us = data->timeout_ns / 1000;
 525		if (mmc_host_clk_rate(card->host))
 526			timeout_us += data->timeout_clks * 1000 /
 527				(mmc_host_clk_rate(card->host) / 1000);
 528
 529		if (data->flags & MMC_DATA_WRITE)
 530			/*
 531			 * The MMC spec "It is strongly recommended
 532			 * for hosts to implement more than 500ms
 533			 * timeout value even if the card indicates
 534			 * the 250ms maximum busy length."  Even the
 535			 * previous value of 300ms is known to be
 536			 * insufficient for some cards.
 537			 */
 538			limit_us = 3000000;
 539		else
 540			limit_us = 100000;
 541
 542		/*
 543		 * SDHC cards always use these fixed values.
 544		 */
 545		if (timeout_us > limit_us || mmc_card_blockaddr(card)) {
 546			data->timeout_ns = limit_us * 1000;
 547			data->timeout_clks = 0;
 548		}
 
 
 
 
 549	}
 550
 551	/*
 552	 * Some cards require longer data read timeout than indicated in CSD.
 553	 * Address this by setting the read timeout to a "reasonably high"
 554	 * value. For the cards tested, 300ms has proven enough. If necessary,
 555	 * this value can be increased if other problematic cards require this.
 556	 */
 557	if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
 558		data->timeout_ns = 300000000;
 559		data->timeout_clks = 0;
 560	}
 561
 562	/*
 563	 * Some cards need very high timeouts if driven in SPI mode.
 564	 * The worst observed timeout was 900ms after writing a
 565	 * continuous stream of data until the internal logic
 566	 * overflowed.
 567	 */
 568	if (mmc_host_is_spi(card->host)) {
 569		if (data->flags & MMC_DATA_WRITE) {
 570			if (data->timeout_ns < 1000000000)
 571				data->timeout_ns = 1000000000;	/* 1s */
 572		} else {
 573			if (data->timeout_ns < 100000000)
 574				data->timeout_ns =  100000000;	/* 100ms */
 575		}
 576	}
 577}
 578EXPORT_SYMBOL(mmc_set_data_timeout);
 579
 580/**
 581 *	mmc_align_data_size - pads a transfer size to a more optimal value
 582 *	@card: the MMC card associated with the data transfer
 583 *	@sz: original transfer size
 584 *
 585 *	Pads the original data size with a number of extra bytes in
 586 *	order to avoid controller bugs and/or performance hits
 587 *	(e.g. some controllers revert to PIO for certain sizes).
 588 *
 589 *	Returns the improved size, which might be unmodified.
 590 *
 591 *	Note that this function is only relevant when issuing a
 592 *	single scatter gather entry.
 593 */
 594unsigned int mmc_align_data_size(struct mmc_card *card, unsigned int sz)
 595{
 596	/*
 597	 * FIXME: We don't have a system for the controller to tell
 598	 * the core about its problems yet, so for now we just 32-bit
 599	 * align the size.
 600	 */
 601	sz = ((sz + 3) / 4) * 4;
 602
 603	return sz;
 604}
 605EXPORT_SYMBOL(mmc_align_data_size);
 606
 607/**
 608 *	__mmc_claim_host - exclusively claim a host
 609 *	@host: mmc host to claim
 610 *	@abort: whether or not the operation should be aborted
 611 *
 612 *	Claim a host for a set of operations.  If @abort is non null and
 613 *	dereference a non-zero value then this will return prematurely with
 614 *	that non-zero value without acquiring the lock.  Returns zero
 615 *	with the lock held otherwise.
 616 */
 617int __mmc_claim_host(struct mmc_host *host, atomic_t *abort)
 618{
 619	DECLARE_WAITQUEUE(wait, current);
 620	unsigned long flags;
 621	int stop;
 
 622
 623	might_sleep();
 624
 625	add_wait_queue(&host->wq, &wait);
 626	spin_lock_irqsave(&host->lock, flags);
 627	while (1) {
 628		set_current_state(TASK_UNINTERRUPTIBLE);
 629		stop = abort ? atomic_read(abort) : 0;
 630		if (stop || !host->claimed || host->claimer == current)
 631			break;
 632		spin_unlock_irqrestore(&host->lock, flags);
 633		schedule();
 634		spin_lock_irqsave(&host->lock, flags);
 635	}
 636	set_current_state(TASK_RUNNING);
 637	if (!stop) {
 638		host->claimed = 1;
 639		host->claimer = current;
 640		host->claim_cnt += 1;
 
 
 641	} else
 642		wake_up(&host->wq);
 643	spin_unlock_irqrestore(&host->lock, flags);
 644	remove_wait_queue(&host->wq, &wait);
 645	if (host->ops->enable && !stop && host->claim_cnt == 1)
 646		host->ops->enable(host);
 
 
 647	return stop;
 648}
 649
 650EXPORT_SYMBOL(__mmc_claim_host);
 651
 652/**
 653 *	mmc_try_claim_host - try exclusively to claim a host
 654 *	@host: mmc host to claim
 655 *
 656 *	Returns %1 if the host is claimed, %0 otherwise.
 657 */
 658int mmc_try_claim_host(struct mmc_host *host)
 659{
 660	int claimed_host = 0;
 661	unsigned long flags;
 662
 663	spin_lock_irqsave(&host->lock, flags);
 664	if (!host->claimed || host->claimer == current) {
 665		host->claimed = 1;
 666		host->claimer = current;
 667		host->claim_cnt += 1;
 668		claimed_host = 1;
 669	}
 670	spin_unlock_irqrestore(&host->lock, flags);
 671	if (host->ops->enable && claimed_host && host->claim_cnt == 1)
 672		host->ops->enable(host);
 673	return claimed_host;
 674}
 675EXPORT_SYMBOL(mmc_try_claim_host);
 676
 677/**
 678 *	mmc_release_host - release a host
 679 *	@host: mmc host to release
 680 *
 681 *	Release a MMC host, allowing others to claim the host
 682 *	for their operations.
 683 */
 684void mmc_release_host(struct mmc_host *host)
 685{
 686	unsigned long flags;
 687
 688	WARN_ON(!host->claimed);
 689
 690	if (host->ops->disable && host->claim_cnt == 1)
 691		host->ops->disable(host);
 692
 693	spin_lock_irqsave(&host->lock, flags);
 694	if (--host->claim_cnt) {
 695		/* Release for nested claim */
 696		spin_unlock_irqrestore(&host->lock, flags);
 697	} else {
 698		host->claimed = 0;
 699		host->claimer = NULL;
 700		spin_unlock_irqrestore(&host->lock, flags);
 701		wake_up(&host->wq);
 
 
 702	}
 703}
 704EXPORT_SYMBOL(mmc_release_host);
 705
 706/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707 * Internal function that does the actual ios call to the host driver,
 708 * optionally printing some debug output.
 709 */
 710static inline void mmc_set_ios(struct mmc_host *host)
 711{
 712	struct mmc_ios *ios = &host->ios;
 713
 714	pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
 715		"width %u timing %u\n",
 716		 mmc_hostname(host), ios->clock, ios->bus_mode,
 717		 ios->power_mode, ios->chip_select, ios->vdd,
 718		 ios->bus_width, ios->timing);
 719
 720	if (ios->clock > 0)
 721		mmc_set_ungated(host);
 722	host->ops->set_ios(host, ios);
 723}
 724
 725/*
 726 * Control chip select pin on a host.
 727 */
 728void mmc_set_chip_select(struct mmc_host *host, int mode)
 729{
 730	mmc_host_clk_hold(host);
 731	host->ios.chip_select = mode;
 732	mmc_set_ios(host);
 733	mmc_host_clk_release(host);
 734}
 735
 736/*
 737 * Sets the host clock to the highest possible frequency that
 738 * is below "hz".
 739 */
 740static void __mmc_set_clock(struct mmc_host *host, unsigned int hz)
 741{
 742	WARN_ON(hz < host->f_min);
 743
 744	if (hz > host->f_max)
 745		hz = host->f_max;
 746
 747	host->ios.clock = hz;
 748	mmc_set_ios(host);
 749}
 750
 751void mmc_set_clock(struct mmc_host *host, unsigned int hz)
 752{
 753	mmc_host_clk_hold(host);
 754	__mmc_set_clock(host, hz);
 755	mmc_host_clk_release(host);
 756}
 757
 758#ifdef CONFIG_MMC_CLKGATE
 759/*
 760 * This gates the clock by setting it to 0 Hz.
 761 */
 762void mmc_gate_clock(struct mmc_host *host)
 763{
 764	unsigned long flags;
 765
 766	spin_lock_irqsave(&host->clk_lock, flags);
 767	host->clk_old = host->ios.clock;
 768	host->ios.clock = 0;
 769	host->clk_gated = true;
 770	spin_unlock_irqrestore(&host->clk_lock, flags);
 771	mmc_set_ios(host);
 772}
 773
 774/*
 775 * This restores the clock from gating by using the cached
 776 * clock value.
 777 */
 778void mmc_ungate_clock(struct mmc_host *host)
 779{
 780	/*
 781	 * We should previously have gated the clock, so the clock shall
 782	 * be 0 here! The clock may however be 0 during initialization,
 783	 * when some request operations are performed before setting
 784	 * the frequency. When ungate is requested in that situation
 785	 * we just ignore the call.
 786	 */
 787	if (host->clk_old) {
 788		BUG_ON(host->ios.clock);
 789		/* This call will also set host->clk_gated to false */
 790		__mmc_set_clock(host, host->clk_old);
 791	}
 792}
 793
 794void mmc_set_ungated(struct mmc_host *host)
 795{
 796	unsigned long flags;
 
 
 797
 798	/*
 799	 * We've been given a new frequency while the clock is gated,
 800	 * so make sure we regard this as ungating it.
 801	 */
 802	spin_lock_irqsave(&host->clk_lock, flags);
 803	host->clk_gated = false;
 804	spin_unlock_irqrestore(&host->clk_lock, flags);
 805}
 806
 807#else
 808void mmc_set_ungated(struct mmc_host *host)
 809{
 810}
 811#endif
 812
 813/*
 814 * Change the bus mode (open drain/push-pull) of a host.
 815 */
 816void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
 817{
 818	mmc_host_clk_hold(host);
 819	host->ios.bus_mode = mode;
 820	mmc_set_ios(host);
 821	mmc_host_clk_release(host);
 822}
 823
 824/*
 825 * Change data bus width of a host.
 826 */
 827void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
 828{
 829	mmc_host_clk_hold(host);
 830	host->ios.bus_width = width;
 831	mmc_set_ios(host);
 832	mmc_host_clk_release(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833}
 834
 835/**
 836 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
 837 * @vdd:	voltage (mV)
 838 * @low_bits:	prefer low bits in boundary cases
 839 *
 840 * This function returns the OCR bit number according to the provided @vdd
 841 * value. If conversion is not possible a negative errno value returned.
 842 *
 843 * Depending on the @low_bits flag the function prefers low or high OCR bits
 844 * on boundary voltages. For example,
 845 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
 846 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
 847 *
 848 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
 849 */
 850static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
 851{
 852	const int max_bit = ilog2(MMC_VDD_35_36);
 853	int bit;
 854
 855	if (vdd < 1650 || vdd > 3600)
 856		return -EINVAL;
 857
 858	if (vdd >= 1650 && vdd <= 1950)
 859		return ilog2(MMC_VDD_165_195);
 860
 861	if (low_bits)
 862		vdd -= 1;
 863
 864	/* Base 2000 mV, step 100 mV, bit's base 8. */
 865	bit = (vdd - 2000) / 100 + 8;
 866	if (bit > max_bit)
 867		return max_bit;
 868	return bit;
 869}
 870
 871/**
 872 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
 873 * @vdd_min:	minimum voltage value (mV)
 874 * @vdd_max:	maximum voltage value (mV)
 875 *
 876 * This function returns the OCR mask bits according to the provided @vdd_min
 877 * and @vdd_max values. If conversion is not possible the function returns 0.
 878 *
 879 * Notes wrt boundary cases:
 880 * This function sets the OCR bits for all boundary voltages, for example
 881 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
 882 * MMC_VDD_34_35 mask.
 883 */
 884u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
 885{
 886	u32 mask = 0;
 887
 888	if (vdd_max < vdd_min)
 889		return 0;
 890
 891	/* Prefer high bits for the boundary vdd_max values. */
 892	vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
 893	if (vdd_max < 0)
 894		return 0;
 895
 896	/* Prefer low bits for the boundary vdd_min values. */
 897	vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
 898	if (vdd_min < 0)
 899		return 0;
 900
 901	/* Fill the mask, from max bit to min bit. */
 902	while (vdd_max >= vdd_min)
 903		mask |= 1 << vdd_max--;
 904
 905	return mask;
 906}
 907EXPORT_SYMBOL(mmc_vddrange_to_ocrmask);
 908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 909#ifdef CONFIG_REGULATOR
 910
 911/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912 * mmc_regulator_get_ocrmask - return mask of supported voltages
 913 * @supply: regulator to use
 914 *
 915 * This returns either a negative errno, or a mask of voltages that
 916 * can be provided to MMC/SD/SDIO devices using the specified voltage
 917 * regulator.  This would normally be called before registering the
 918 * MMC host adapter.
 919 */
 920int mmc_regulator_get_ocrmask(struct regulator *supply)
 921{
 922	int			result = 0;
 923	int			count;
 924	int			i;
 
 
 925
 926	count = regulator_count_voltages(supply);
 927	if (count < 0)
 928		return count;
 929
 930	for (i = 0; i < count; i++) {
 931		int		vdd_uV;
 932		int		vdd_mV;
 933
 934		vdd_uV = regulator_list_voltage(supply, i);
 935		if (vdd_uV <= 0)
 936			continue;
 937
 938		vdd_mV = vdd_uV / 1000;
 939		result |= mmc_vddrange_to_ocrmask(vdd_mV, vdd_mV);
 940	}
 941
 
 
 
 
 
 
 
 
 
 942	return result;
 943}
 944EXPORT_SYMBOL(mmc_regulator_get_ocrmask);
 945
 946/**
 947 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
 948 * @mmc: the host to regulate
 949 * @supply: regulator to use
 950 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
 951 *
 952 * Returns zero on success, else negative errno.
 953 *
 954 * MMC host drivers may use this to enable or disable a regulator using
 955 * a particular supply voltage.  This would normally be called from the
 956 * set_ios() method.
 957 */
 958int mmc_regulator_set_ocr(struct mmc_host *mmc,
 959			struct regulator *supply,
 960			unsigned short vdd_bit)
 961{
 962	int			result = 0;
 963	int			min_uV, max_uV;
 964
 965	if (vdd_bit) {
 966		int		tmp;
 967		int		voltage;
 968
 969		/* REVISIT mmc_vddrange_to_ocrmask() may have set some
 970		 * bits this regulator doesn't quite support ... don't
 971		 * be too picky, most cards and regulators are OK with
 972		 * a 0.1V range goof (it's a small error percentage).
 973		 */
 974		tmp = vdd_bit - ilog2(MMC_VDD_165_195);
 975		if (tmp == 0) {
 976			min_uV = 1650 * 1000;
 977			max_uV = 1950 * 1000;
 978		} else {
 979			min_uV = 1900 * 1000 + tmp * 100 * 1000;
 980			max_uV = min_uV + 100 * 1000;
 981		}
 982
 983		/* avoid needless changes to this voltage; the regulator
 984		 * might not allow this operation
 985		 */
 986		voltage = regulator_get_voltage(supply);
 987
 988		if (mmc->caps2 & MMC_CAP2_BROKEN_VOLTAGE)
 989			min_uV = max_uV = voltage;
 990
 991		if (voltage < 0)
 992			result = voltage;
 993		else if (voltage < min_uV || voltage > max_uV)
 994			result = regulator_set_voltage(supply, min_uV, max_uV);
 995		else
 996			result = 0;
 997
 
 998		if (result == 0 && !mmc->regulator_enabled) {
 999			result = regulator_enable(supply);
1000			if (!result)
1001				mmc->regulator_enabled = true;
1002		}
1003	} else if (mmc->regulator_enabled) {
1004		result = regulator_disable(supply);
1005		if (result == 0)
1006			mmc->regulator_enabled = false;
1007	}
1008
1009	if (result)
1010		dev_err(mmc_dev(mmc),
1011			"could not set regulator OCR (%d)\n", result);
1012	return result;
1013}
1014EXPORT_SYMBOL(mmc_regulator_set_ocr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1015
1016#endif /* CONFIG_REGULATOR */
1017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1018/*
1019 * Mask off any voltages we don't support and select
1020 * the lowest voltage
1021 */
1022u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1023{
1024	int bit;
1025
 
 
 
 
 
 
 
 
 
 
1026	ocr &= host->ocr_avail;
 
 
 
 
1027
1028	bit = ffs(ocr);
1029	if (bit) {
1030		bit -= 1;
1031
1032		ocr &= 3 << bit;
1033
1034		mmc_host_clk_hold(host);
1035		host->ios.vdd = bit;
1036		mmc_set_ios(host);
1037		mmc_host_clk_release(host);
1038	} else {
1039		pr_warning("%s: host doesn't support card's voltages\n",
1040				mmc_hostname(host));
1041		ocr = 0;
 
1042	}
1043
1044	return ocr;
1045}
1046
1047int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage, bool cmd11)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048{
1049	struct mmc_command cmd = {0};
1050	int err = 0;
 
1051
1052	BUG_ON(!host);
1053
1054	/*
1055	 * Send CMD11 only if the request is to switch the card to
1056	 * 1.8V signalling.
1057	 */
1058	if ((signal_voltage != MMC_SIGNAL_VOLTAGE_330) && cmd11) {
1059		cmd.opcode = SD_SWITCH_VOLTAGE;
1060		cmd.arg = 0;
1061		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062
1063		err = mmc_wait_for_cmd(host, &cmd, 0);
1064		if (err)
1065			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
1066
1067		if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1068			return -EIO;
 
 
 
 
 
1069	}
1070
1071	host->ios.signal_voltage = signal_voltage;
 
 
 
 
 
 
 
 
 
 
 
 
 
1072
1073	if (host->ops->start_signal_voltage_switch) {
1074		mmc_host_clk_hold(host);
1075		err = host->ops->start_signal_voltage_switch(host, &host->ios);
1076		mmc_host_clk_release(host);
 
1077	}
1078
1079	return err;
1080}
1081
1082/*
1083 * Select timing parameters for host.
1084 */
1085void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1086{
1087	mmc_host_clk_hold(host);
1088	host->ios.timing = timing;
1089	mmc_set_ios(host);
1090	mmc_host_clk_release(host);
1091}
1092
1093/*
1094 * Select appropriate driver type for host.
1095 */
1096void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1097{
1098	mmc_host_clk_hold(host);
1099	host->ios.drv_type = drv_type;
1100	mmc_set_ios(host);
1101	mmc_host_clk_release(host);
1102}
1103
1104static void mmc_poweroff_notify(struct mmc_host *host)
 
1105{
1106	struct mmc_card *card;
1107	unsigned int timeout;
1108	unsigned int notify_type = EXT_CSD_NO_POWER_NOTIFICATION;
1109	int err = 0;
1110
1111	card = host->card;
1112	mmc_claim_host(host);
1113
1114	/*
1115	 * Send power notify command only if card
1116	 * is mmc and notify state is powered ON
1117	 */
1118	if (card && mmc_card_mmc(card) &&
1119	    (card->poweroff_notify_state == MMC_POWERED_ON)) {
1120
1121		if (host->power_notify_type == MMC_HOST_PW_NOTIFY_SHORT) {
1122			notify_type = EXT_CSD_POWER_OFF_SHORT;
1123			timeout = card->ext_csd.generic_cmd6_time;
1124			card->poweroff_notify_state = MMC_POWEROFF_SHORT;
1125		} else {
1126			notify_type = EXT_CSD_POWER_OFF_LONG;
1127			timeout = card->ext_csd.power_off_longtime;
1128			card->poweroff_notify_state = MMC_POWEROFF_LONG;
1129		}
1130
1131		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1132				 EXT_CSD_POWER_OFF_NOTIFICATION,
1133				 notify_type, timeout);
1134
1135		if (err && err != -EBADMSG)
1136			pr_err("Device failed to respond within %d poweroff "
1137			       "time. Forcefully powering down the device\n",
1138			       timeout);
1139
1140		/* Set the card state to no notification after the poweroff */
1141		card->poweroff_notify_state = MMC_NO_POWER_NOTIFICATION;
1142	}
1143	mmc_release_host(host);
1144}
1145
1146/*
1147 * Apply power to the MMC stack.  This is a two-stage process.
1148 * First, we enable power to the card without the clock running.
1149 * We then wait a bit for the power to stabilise.  Finally,
1150 * enable the bus drivers and clock to the card.
1151 *
1152 * We must _NOT_ enable the clock prior to power stablising.
1153 *
1154 * If a host does all the power sequencing itself, ignore the
1155 * initial MMC_POWER_UP stage.
1156 */
1157static void mmc_power_up(struct mmc_host *host)
1158{
1159	int bit;
1160
1161	if (host->ios.power_mode == MMC_POWER_ON)
1162		return;
1163
1164	mmc_host_clk_hold(host);
1165
1166	/* If ocr is set, we use it */
1167	if (host->ocr)
1168		bit = ffs(host->ocr) - 1;
1169	else
1170		bit = fls(host->ocr_avail) - 1;
1171
1172	host->ios.vdd = bit;
1173	if (mmc_host_is_spi(host))
1174		host->ios.chip_select = MMC_CS_HIGH;
1175	else
1176		host->ios.chip_select = MMC_CS_DONTCARE;
1177	host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1178	host->ios.power_mode = MMC_POWER_UP;
1179	host->ios.bus_width = MMC_BUS_WIDTH_1;
1180	host->ios.timing = MMC_TIMING_LEGACY;
1181	mmc_set_ios(host);
1182
1183	/*
1184	 * This delay should be sufficient to allow the power supply
1185	 * to reach the minimum voltage.
1186	 */
1187	mmc_delay(10);
1188
 
 
1189	host->ios.clock = host->f_init;
1190
1191	host->ios.power_mode = MMC_POWER_ON;
1192	mmc_set_ios(host);
1193
1194	/*
1195	 * This delay must be at least 74 clock sizes, or 1 ms, or the
1196	 * time required to reach a stable voltage.
1197	 */
1198	mmc_delay(10);
1199
1200	mmc_host_clk_release(host);
1201}
1202
1203void mmc_power_off(struct mmc_host *host)
1204{
1205	int err = 0;
1206
1207	if (host->ios.power_mode == MMC_POWER_OFF)
1208		return;
1209
1210	mmc_host_clk_hold(host);
1211
1212	host->ios.clock = 0;
1213	host->ios.vdd = 0;
1214
1215	/*
1216	 * For eMMC 4.5 device send AWAKE command before
1217	 * POWER_OFF_NOTIFY command, because in sleep state
1218	 * eMMC 4.5 devices respond to only RESET and AWAKE cmd
1219	 */
1220	if (host->card && mmc_card_is_sleep(host->card) &&
1221	    host->bus_ops->resume) {
1222		err = host->bus_ops->resume(host);
1223
1224		if (!err)
1225			mmc_poweroff_notify(host);
1226		else
1227			pr_warning("%s: error %d during resume "
1228				   "(continue with poweroff sequence)\n",
1229				   mmc_hostname(host), err);
1230	}
1231
1232	/*
1233	 * Reset ocr mask to be the highest possible voltage supported for
1234	 * this mmc host. This value will be used at next power up.
1235	 */
1236	host->ocr = 1 << (fls(host->ocr_avail) - 1);
1237
1238	if (!mmc_host_is_spi(host)) {
1239		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1240		host->ios.chip_select = MMC_CS_DONTCARE;
1241	}
1242	host->ios.power_mode = MMC_POWER_OFF;
1243	host->ios.bus_width = MMC_BUS_WIDTH_1;
1244	host->ios.timing = MMC_TIMING_LEGACY;
1245	mmc_set_ios(host);
1246
1247	/*
1248	 * Some configurations, such as the 802.11 SDIO card in the OLPC
1249	 * XO-1.5, require a short delay after poweroff before the card
1250	 * can be successfully turned on again.
1251	 */
1252	mmc_delay(1);
 
1253
1254	mmc_host_clk_release(host);
 
 
 
 
 
1255}
1256
1257/*
1258 * Cleanup when the last reference to the bus operator is dropped.
1259 */
1260static void __mmc_release_bus(struct mmc_host *host)
1261{
1262	BUG_ON(!host);
1263	BUG_ON(host->bus_refs);
1264	BUG_ON(!host->bus_dead);
1265
1266	host->bus_ops = NULL;
1267}
1268
1269/*
1270 * Increase reference count of bus operator
1271 */
1272static inline void mmc_bus_get(struct mmc_host *host)
1273{
1274	unsigned long flags;
1275
1276	spin_lock_irqsave(&host->lock, flags);
1277	host->bus_refs++;
1278	spin_unlock_irqrestore(&host->lock, flags);
1279}
1280
1281/*
1282 * Decrease reference count of bus operator and free it if
1283 * it is the last reference.
1284 */
1285static inline void mmc_bus_put(struct mmc_host *host)
1286{
1287	unsigned long flags;
1288
1289	spin_lock_irqsave(&host->lock, flags);
1290	host->bus_refs--;
1291	if ((host->bus_refs == 0) && host->bus_ops)
1292		__mmc_release_bus(host);
1293	spin_unlock_irqrestore(&host->lock, flags);
1294}
1295
1296/*
1297 * Assign a mmc bus handler to a host. Only one bus handler may control a
1298 * host at any given time.
1299 */
1300void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1301{
1302	unsigned long flags;
1303
1304	BUG_ON(!host);
1305	BUG_ON(!ops);
1306
1307	WARN_ON(!host->claimed);
1308
1309	spin_lock_irqsave(&host->lock, flags);
1310
1311	BUG_ON(host->bus_ops);
1312	BUG_ON(host->bus_refs);
1313
1314	host->bus_ops = ops;
1315	host->bus_refs = 1;
1316	host->bus_dead = 0;
1317
1318	spin_unlock_irqrestore(&host->lock, flags);
1319}
1320
1321/*
1322 * Remove the current bus handler from a host.
1323 */
1324void mmc_detach_bus(struct mmc_host *host)
1325{
1326	unsigned long flags;
1327
1328	BUG_ON(!host);
1329
1330	WARN_ON(!host->claimed);
1331	WARN_ON(!host->bus_ops);
1332
1333	spin_lock_irqsave(&host->lock, flags);
1334
1335	host->bus_dead = 1;
1336
1337	spin_unlock_irqrestore(&host->lock, flags);
1338
1339	mmc_bus_put(host);
1340}
1341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342/**
1343 *	mmc_detect_change - process change of state on a MMC socket
1344 *	@host: host which changed state.
1345 *	@delay: optional delay to wait before detection (jiffies)
1346 *
1347 *	MMC drivers should call this when they detect a card has been
1348 *	inserted or removed. The MMC layer will confirm that any
1349 *	present card is still functional, and initialize any newly
1350 *	inserted.
1351 */
1352void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1353{
1354#ifdef CONFIG_MMC_DEBUG
1355	unsigned long flags;
1356	spin_lock_irqsave(&host->lock, flags);
1357	WARN_ON(host->removed);
1358	spin_unlock_irqrestore(&host->lock, flags);
1359#endif
1360	host->detect_change = 1;
1361	mmc_schedule_delayed_work(&host->detect, delay);
1362}
1363
1364EXPORT_SYMBOL(mmc_detect_change);
1365
1366void mmc_init_erase(struct mmc_card *card)
1367{
1368	unsigned int sz;
1369
1370	if (is_power_of_2(card->erase_size))
1371		card->erase_shift = ffs(card->erase_size) - 1;
1372	else
1373		card->erase_shift = 0;
1374
1375	/*
1376	 * It is possible to erase an arbitrarily large area of an SD or MMC
1377	 * card.  That is not desirable because it can take a long time
1378	 * (minutes) potentially delaying more important I/O, and also the
1379	 * timeout calculations become increasingly hugely over-estimated.
1380	 * Consequently, 'pref_erase' is defined as a guide to limit erases
1381	 * to that size and alignment.
1382	 *
1383	 * For SD cards that define Allocation Unit size, limit erases to one
1384	 * Allocation Unit at a time.  For MMC cards that define High Capacity
1385	 * Erase Size, whether it is switched on or not, limit to that size.
1386	 * Otherwise just have a stab at a good value.  For modern cards it
1387	 * will end up being 4MiB.  Note that if the value is too small, it
1388	 * can end up taking longer to erase.
1389	 */
1390	if (mmc_card_sd(card) && card->ssr.au) {
1391		card->pref_erase = card->ssr.au;
1392		card->erase_shift = ffs(card->ssr.au) - 1;
1393	} else if (card->ext_csd.hc_erase_size) {
1394		card->pref_erase = card->ext_csd.hc_erase_size;
1395	} else {
1396		sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1397		if (sz < 128)
1398			card->pref_erase = 512 * 1024 / 512;
1399		else if (sz < 512)
1400			card->pref_erase = 1024 * 1024 / 512;
1401		else if (sz < 1024)
1402			card->pref_erase = 2 * 1024 * 1024 / 512;
1403		else
1404			card->pref_erase = 4 * 1024 * 1024 / 512;
1405		if (card->pref_erase < card->erase_size)
1406			card->pref_erase = card->erase_size;
1407		else {
1408			sz = card->pref_erase % card->erase_size;
1409			if (sz)
1410				card->pref_erase += card->erase_size - sz;
1411		}
1412	}
 
1413}
1414
1415static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1416				          unsigned int arg, unsigned int qty)
1417{
1418	unsigned int erase_timeout;
1419
1420	if (arg == MMC_DISCARD_ARG ||
1421	    (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1422		erase_timeout = card->ext_csd.trim_timeout;
1423	} else if (card->ext_csd.erase_group_def & 1) {
1424		/* High Capacity Erase Group Size uses HC timeouts */
1425		if (arg == MMC_TRIM_ARG)
1426			erase_timeout = card->ext_csd.trim_timeout;
1427		else
1428			erase_timeout = card->ext_csd.hc_erase_timeout;
1429	} else {
1430		/* CSD Erase Group Size uses write timeout */
1431		unsigned int mult = (10 << card->csd.r2w_factor);
1432		unsigned int timeout_clks = card->csd.tacc_clks * mult;
1433		unsigned int timeout_us;
1434
1435		/* Avoid overflow: e.g. tacc_ns=80000000 mult=1280 */
1436		if (card->csd.tacc_ns < 1000000)
1437			timeout_us = (card->csd.tacc_ns * mult) / 1000;
1438		else
1439			timeout_us = (card->csd.tacc_ns / 1000) * mult;
1440
1441		/*
1442		 * ios.clock is only a target.  The real clock rate might be
1443		 * less but not that much less, so fudge it by multiplying by 2.
1444		 */
1445		timeout_clks <<= 1;
1446		timeout_us += (timeout_clks * 1000) /
1447			      (mmc_host_clk_rate(card->host) / 1000);
1448
1449		erase_timeout = timeout_us / 1000;
1450
1451		/*
1452		 * Theoretically, the calculation could underflow so round up
1453		 * to 1ms in that case.
1454		 */
1455		if (!erase_timeout)
1456			erase_timeout = 1;
1457	}
1458
1459	/* Multiplier for secure operations */
1460	if (arg & MMC_SECURE_ARGS) {
1461		if (arg == MMC_SECURE_ERASE_ARG)
1462			erase_timeout *= card->ext_csd.sec_erase_mult;
1463		else
1464			erase_timeout *= card->ext_csd.sec_trim_mult;
1465	}
1466
1467	erase_timeout *= qty;
1468
1469	/*
1470	 * Ensure at least a 1 second timeout for SPI as per
1471	 * 'mmc_set_data_timeout()'
1472	 */
1473	if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1474		erase_timeout = 1000;
1475
1476	return erase_timeout;
1477}
1478
1479static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1480					 unsigned int arg,
1481					 unsigned int qty)
1482{
1483	unsigned int erase_timeout;
1484
1485	if (card->ssr.erase_timeout) {
1486		/* Erase timeout specified in SD Status Register (SSR) */
1487		erase_timeout = card->ssr.erase_timeout * qty +
1488				card->ssr.erase_offset;
1489	} else {
1490		/*
1491		 * Erase timeout not specified in SD Status Register (SSR) so
1492		 * use 250ms per write block.
1493		 */
1494		erase_timeout = 250 * qty;
1495	}
1496
1497	/* Must not be less than 1 second */
1498	if (erase_timeout < 1000)
1499		erase_timeout = 1000;
1500
1501	return erase_timeout;
1502}
1503
1504static unsigned int mmc_erase_timeout(struct mmc_card *card,
1505				      unsigned int arg,
1506				      unsigned int qty)
1507{
1508	if (mmc_card_sd(card))
1509		return mmc_sd_erase_timeout(card, arg, qty);
1510	else
1511		return mmc_mmc_erase_timeout(card, arg, qty);
1512}
1513
1514static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1515			unsigned int to, unsigned int arg)
1516{
1517	struct mmc_command cmd = {0};
1518	unsigned int qty = 0;
 
1519	int err;
1520
 
 
1521	/*
1522	 * qty is used to calculate the erase timeout which depends on how many
1523	 * erase groups (or allocation units in SD terminology) are affected.
1524	 * We count erasing part of an erase group as one erase group.
1525	 * For SD, the allocation units are always a power of 2.  For MMC, the
1526	 * erase group size is almost certainly also power of 2, but it does not
1527	 * seem to insist on that in the JEDEC standard, so we fall back to
1528	 * division in that case.  SD may not specify an allocation unit size,
1529	 * in which case the timeout is based on the number of write blocks.
1530	 *
1531	 * Note that the timeout for secure trim 2 will only be correct if the
1532	 * number of erase groups specified is the same as the total of all
1533	 * preceding secure trim 1 commands.  Since the power may have been
1534	 * lost since the secure trim 1 commands occurred, it is generally
1535	 * impossible to calculate the secure trim 2 timeout correctly.
1536	 */
1537	if (card->erase_shift)
1538		qty += ((to >> card->erase_shift) -
1539			(from >> card->erase_shift)) + 1;
1540	else if (mmc_card_sd(card))
1541		qty += to - from + 1;
1542	else
1543		qty += ((to / card->erase_size) -
1544			(from / card->erase_size)) + 1;
1545
1546	if (!mmc_card_blockaddr(card)) {
1547		from <<= 9;
1548		to <<= 9;
1549	}
1550
1551	if (mmc_card_sd(card))
1552		cmd.opcode = SD_ERASE_WR_BLK_START;
1553	else
1554		cmd.opcode = MMC_ERASE_GROUP_START;
1555	cmd.arg = from;
1556	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1557	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1558	if (err) {
1559		pr_err("mmc_erase: group start error %d, "
1560		       "status %#x\n", err, cmd.resp[0]);
1561		err = -EIO;
1562		goto out;
1563	}
1564
1565	memset(&cmd, 0, sizeof(struct mmc_command));
1566	if (mmc_card_sd(card))
1567		cmd.opcode = SD_ERASE_WR_BLK_END;
1568	else
1569		cmd.opcode = MMC_ERASE_GROUP_END;
1570	cmd.arg = to;
1571	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1572	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1573	if (err) {
1574		pr_err("mmc_erase: group end error %d, status %#x\n",
1575		       err, cmd.resp[0]);
1576		err = -EIO;
1577		goto out;
1578	}
1579
1580	memset(&cmd, 0, sizeof(struct mmc_command));
1581	cmd.opcode = MMC_ERASE;
1582	cmd.arg = arg;
1583	cmd.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1584	cmd.cmd_timeout_ms = mmc_erase_timeout(card, arg, qty);
1585	err = mmc_wait_for_cmd(card->host, &cmd, 0);
1586	if (err) {
1587		pr_err("mmc_erase: erase error %d, status %#x\n",
1588		       err, cmd.resp[0]);
1589		err = -EIO;
1590		goto out;
1591	}
1592
1593	if (mmc_host_is_spi(card->host))
1594		goto out;
1595
 
1596	do {
1597		memset(&cmd, 0, sizeof(struct mmc_command));
1598		cmd.opcode = MMC_SEND_STATUS;
1599		cmd.arg = card->rca << 16;
1600		cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1601		/* Do not retry else we can't see errors */
1602		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1603		if (err || (cmd.resp[0] & 0xFDF92000)) {
1604			pr_err("error %d requesting status %#x\n",
1605				err, cmd.resp[0]);
1606			err = -EIO;
1607			goto out;
1608		}
 
 
 
 
 
 
 
 
 
 
 
1609	} while (!(cmd.resp[0] & R1_READY_FOR_DATA) ||
1610		 R1_CURRENT_STATE(cmd.resp[0]) == R1_STATE_PRG);
1611out:
 
1612	return err;
1613}
1614
1615/**
1616 * mmc_erase - erase sectors.
1617 * @card: card to erase
1618 * @from: first sector to erase
1619 * @nr: number of sectors to erase
1620 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
1621 *
1622 * Caller must claim host before calling this function.
1623 */
1624int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1625	      unsigned int arg)
1626{
1627	unsigned int rem, to = from + nr;
 
1628
1629	if (!(card->host->caps & MMC_CAP_ERASE) ||
1630	    !(card->csd.cmdclass & CCC_ERASE))
1631		return -EOPNOTSUPP;
1632
1633	if (!card->erase_size)
1634		return -EOPNOTSUPP;
1635
1636	if (mmc_card_sd(card) && arg != MMC_ERASE_ARG)
1637		return -EOPNOTSUPP;
1638
1639	if ((arg & MMC_SECURE_ARGS) &&
1640	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1641		return -EOPNOTSUPP;
1642
1643	if ((arg & MMC_TRIM_ARGS) &&
1644	    !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1645		return -EOPNOTSUPP;
1646
1647	if (arg == MMC_SECURE_ERASE_ARG) {
1648		if (from % card->erase_size || nr % card->erase_size)
1649			return -EINVAL;
1650	}
1651
1652	if (arg == MMC_ERASE_ARG) {
1653		rem = from % card->erase_size;
1654		if (rem) {
1655			rem = card->erase_size - rem;
1656			from += rem;
1657			if (nr > rem)
1658				nr -= rem;
1659			else
1660				return 0;
1661		}
1662		rem = nr % card->erase_size;
1663		if (rem)
1664			nr -= rem;
1665	}
1666
1667	if (nr == 0)
1668		return 0;
1669
1670	to = from + nr;
1671
1672	if (to <= from)
1673		return -EINVAL;
1674
1675	/* 'from' and 'to' are inclusive */
1676	to -= 1;
1677
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1678	return mmc_do_erase(card, from, to, arg);
1679}
1680EXPORT_SYMBOL(mmc_erase);
1681
1682int mmc_can_erase(struct mmc_card *card)
1683{
1684	if ((card->host->caps & MMC_CAP_ERASE) &&
1685	    (card->csd.cmdclass & CCC_ERASE) && card->erase_size)
1686		return 1;
1687	return 0;
1688}
1689EXPORT_SYMBOL(mmc_can_erase);
1690
1691int mmc_can_trim(struct mmc_card *card)
1692{
1693	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN)
 
1694		return 1;
1695	return 0;
1696}
1697EXPORT_SYMBOL(mmc_can_trim);
1698
1699int mmc_can_discard(struct mmc_card *card)
1700{
1701	/*
1702	 * As there's no way to detect the discard support bit at v4.5
1703	 * use the s/w feature support filed.
1704	 */
1705	if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1706		return 1;
1707	return 0;
1708}
1709EXPORT_SYMBOL(mmc_can_discard);
1710
1711int mmc_can_sanitize(struct mmc_card *card)
1712{
1713	if (!mmc_can_trim(card) && !mmc_can_erase(card))
1714		return 0;
1715	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1716		return 1;
1717	return 0;
1718}
1719EXPORT_SYMBOL(mmc_can_sanitize);
1720
1721int mmc_can_secure_erase_trim(struct mmc_card *card)
1722{
1723	if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN)
 
1724		return 1;
1725	return 0;
1726}
1727EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1728
1729int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1730			    unsigned int nr)
1731{
1732	if (!card->erase_size)
1733		return 0;
1734	if (from % card->erase_size || nr % card->erase_size)
1735		return 0;
1736	return 1;
1737}
1738EXPORT_SYMBOL(mmc_erase_group_aligned);
1739
1740static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1741					    unsigned int arg)
1742{
1743	struct mmc_host *host = card->host;
1744	unsigned int max_discard, x, y, qty = 0, max_qty, timeout;
1745	unsigned int last_timeout = 0;
1746
1747	if (card->erase_shift)
1748		max_qty = UINT_MAX >> card->erase_shift;
1749	else if (mmc_card_sd(card))
1750		max_qty = UINT_MAX;
1751	else
1752		max_qty = UINT_MAX / card->erase_size;
1753
1754	/* Find the largest qty with an OK timeout */
1755	do {
1756		y = 0;
1757		for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1758			timeout = mmc_erase_timeout(card, arg, qty + x);
1759			if (timeout > host->max_discard_to)
1760				break;
1761			if (timeout < last_timeout)
1762				break;
1763			last_timeout = timeout;
1764			y = x;
1765		}
1766		qty += y;
1767	} while (y);
1768
1769	if (!qty)
1770		return 0;
1771
 
 
 
 
 
 
 
 
 
 
1772	if (qty == 1)
1773		return 1;
 
 
1774
1775	/* Convert qty to sectors */
1776	if (card->erase_shift)
1777		max_discard = --qty << card->erase_shift;
1778	else if (mmc_card_sd(card))
1779		max_discard = qty;
1780	else
1781		max_discard = --qty * card->erase_size;
1782
1783	return max_discard;
1784}
1785
1786unsigned int mmc_calc_max_discard(struct mmc_card *card)
1787{
1788	struct mmc_host *host = card->host;
1789	unsigned int max_discard, max_trim;
1790
1791	if (!host->max_discard_to)
1792		return UINT_MAX;
1793
1794	/*
1795	 * Without erase_group_def set, MMC erase timeout depends on clock
1796	 * frequence which can change.  In that case, the best choice is
1797	 * just the preferred erase size.
1798	 */
1799	if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1800		return card->pref_erase;
1801
1802	max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1803	if (mmc_can_trim(card)) {
1804		max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1805		if (max_trim < max_discard)
1806			max_discard = max_trim;
1807	} else if (max_discard < card->erase_size) {
1808		max_discard = 0;
1809	}
1810	pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1811		 mmc_hostname(host), max_discard, host->max_discard_to);
1812	return max_discard;
1813}
1814EXPORT_SYMBOL(mmc_calc_max_discard);
1815
1816int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1817{
1818	struct mmc_command cmd = {0};
1819
1820	if (mmc_card_blockaddr(card) || mmc_card_ddr_mode(card))
1821		return 0;
1822
1823	cmd.opcode = MMC_SET_BLOCKLEN;
1824	cmd.arg = blocklen;
1825	cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1826	return mmc_wait_for_cmd(card->host, &cmd, 5);
1827}
1828EXPORT_SYMBOL(mmc_set_blocklen);
1829
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830static void mmc_hw_reset_for_init(struct mmc_host *host)
1831{
1832	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1833		return;
1834	mmc_host_clk_hold(host);
1835	host->ops->hw_reset(host);
1836	mmc_host_clk_release(host);
1837}
1838
1839int mmc_can_reset(struct mmc_card *card)
1840{
1841	u8 rst_n_function;
1842
1843	if (!mmc_card_mmc(card))
1844		return 0;
1845	rst_n_function = card->ext_csd.rst_n_function;
1846	if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
1847		return 0;
1848	return 1;
1849}
1850EXPORT_SYMBOL(mmc_can_reset);
1851
1852static int mmc_do_hw_reset(struct mmc_host *host, int check)
1853{
1854	struct mmc_card *card = host->card;
1855
1856	if (!host->bus_ops->power_restore)
1857		return -EOPNOTSUPP;
1858
1859	if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->hw_reset)
1860		return -EOPNOTSUPP;
1861
1862	if (!card)
1863		return -EINVAL;
1864
1865	if (!mmc_can_reset(card))
 
 
1866		return -EOPNOTSUPP;
1867
1868	mmc_host_clk_hold(host);
1869	mmc_set_clock(host, host->f_init);
1870
1871	host->ops->hw_reset(host);
1872
1873	/* If the reset has happened, then a status command will fail */
1874	if (check) {
1875		struct mmc_command cmd = {0};
1876		int err;
1877
1878		cmd.opcode = MMC_SEND_STATUS;
1879		if (!mmc_host_is_spi(card->host))
1880			cmd.arg = card->rca << 16;
1881		cmd.flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
1882		err = mmc_wait_for_cmd(card->host, &cmd, 0);
1883		if (!err) {
1884			mmc_host_clk_release(host);
1885			return -ENOSYS;
1886		}
1887	}
1888
1889	host->card->state &= ~(MMC_STATE_HIGHSPEED | MMC_STATE_HIGHSPEED_DDR);
1890	if (mmc_host_is_spi(host)) {
1891		host->ios.chip_select = MMC_CS_HIGH;
1892		host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
1893	} else {
1894		host->ios.chip_select = MMC_CS_DONTCARE;
1895		host->ios.bus_mode = MMC_BUSMODE_OPENDRAIN;
1896	}
1897	host->ios.bus_width = MMC_BUS_WIDTH_1;
1898	host->ios.timing = MMC_TIMING_LEGACY;
1899	mmc_set_ios(host);
1900
1901	mmc_host_clk_release(host);
 
1902
1903	return host->bus_ops->power_restore(host);
1904}
1905
1906int mmc_hw_reset(struct mmc_host *host)
1907{
1908	return mmc_do_hw_reset(host, 0);
1909}
1910EXPORT_SYMBOL(mmc_hw_reset);
1911
1912int mmc_hw_reset_check(struct mmc_host *host)
1913{
1914	return mmc_do_hw_reset(host, 1);
1915}
1916EXPORT_SYMBOL(mmc_hw_reset_check);
1917
1918static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
1919{
1920	host->f_init = freq;
1921
1922#ifdef CONFIG_MMC_DEBUG
1923	pr_info("%s: %s: trying to init card at %u Hz\n",
1924		mmc_hostname(host), __func__, host->f_init);
1925#endif
1926	mmc_power_up(host);
1927
1928	/*
1929	 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
1930	 * do a hardware reset if possible.
1931	 */
1932	mmc_hw_reset_for_init(host);
1933
1934	/* Initialization should be done at 3.3 V I/O voltage. */
1935	mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, 0);
1936
1937	/*
1938	 * sdio_reset sends CMD52 to reset card.  Since we do not know
1939	 * if the card is being re-initialized, just send it.  CMD52
1940	 * should be ignored by SD/eMMC cards.
 
1941	 */
1942	sdio_reset(host);
 
 
1943	mmc_go_idle(host);
1944
1945	mmc_send_if_cond(host, host->ocr_avail);
1946
1947	/* Order's important: probe SDIO, then SD, then MMC */
1948	if (!mmc_attach_sdio(host))
1949		return 0;
 
 
1950	if (!mmc_attach_sd(host))
1951		return 0;
1952	if (!mmc_attach_mmc(host))
1953		return 0;
1954
1955	mmc_power_off(host);
1956	return -EIO;
1957}
1958
1959int _mmc_detect_card_removed(struct mmc_host *host)
1960{
1961	int ret;
1962
1963	if ((host->caps & MMC_CAP_NONREMOVABLE) || !host->bus_ops->alive)
1964		return 0;
1965
1966	if (!host->card || mmc_card_removed(host->card))
1967		return 1;
1968
1969	ret = host->bus_ops->alive(host);
 
 
 
 
 
 
 
 
 
 
 
 
 
1970	if (ret) {
1971		mmc_card_set_removed(host->card);
1972		pr_debug("%s: card remove detected\n", mmc_hostname(host));
1973	}
1974
1975	return ret;
1976}
1977
1978int mmc_detect_card_removed(struct mmc_host *host)
1979{
1980	struct mmc_card *card = host->card;
1981	int ret;
1982
1983	WARN_ON(!host->claimed);
1984
1985	if (!card)
1986		return 1;
1987
 
 
 
1988	ret = mmc_card_removed(card);
1989	/*
1990	 * The card will be considered unchanged unless we have been asked to
1991	 * detect a change or host requires polling to provide card detection.
1992	 */
1993	if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL) &&
1994	    !(host->caps2 & MMC_CAP2_DETECT_ON_ERR))
1995		return ret;
1996
1997	host->detect_change = 0;
1998	if (!ret) {
1999		ret = _mmc_detect_card_removed(host);
2000		if (ret && (host->caps2 & MMC_CAP2_DETECT_ON_ERR)) {
2001			/*
2002			 * Schedule a detect work as soon as possible to let a
2003			 * rescan handle the card removal.
2004			 */
2005			cancel_delayed_work(&host->detect);
2006			mmc_detect_change(host, 0);
2007		}
2008	}
2009
2010	return ret;
2011}
2012EXPORT_SYMBOL(mmc_detect_card_removed);
2013
2014void mmc_rescan(struct work_struct *work)
2015{
2016	struct mmc_host *host =
2017		container_of(work, struct mmc_host, detect.work);
2018	int i;
2019
2020	if (host->rescan_disable)
2021		return;
2022
 
 
 
 
 
 
 
 
 
 
 
 
2023	mmc_bus_get(host);
2024
2025	/*
2026	 * if there is a _removable_ card registered, check whether it is
2027	 * still present
2028	 */
2029	if (host->bus_ops && host->bus_ops->detect && !host->bus_dead
2030	    && !(host->caps & MMC_CAP_NONREMOVABLE))
2031		host->bus_ops->detect(host);
2032
2033	host->detect_change = 0;
2034
2035	/*
2036	 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2037	 * the card is no longer present.
2038	 */
2039	mmc_bus_put(host);
2040	mmc_bus_get(host);
2041
2042	/* if there still is a card present, stop here */
2043	if (host->bus_ops != NULL) {
2044		mmc_bus_put(host);
2045		goto out;
2046	}
2047
2048	/*
2049	 * Only we can add a new handler, so it's safe to
2050	 * release the lock here.
2051	 */
2052	mmc_bus_put(host);
2053
2054	if (host->ops->get_cd && host->ops->get_cd(host) == 0) {
2055		mmc_claim_host(host);
 
2056		mmc_power_off(host);
2057		mmc_release_host(host);
2058		goto out;
2059	}
2060
2061	mmc_claim_host(host);
2062	for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2063		if (!mmc_rescan_try_freq(host, max(freqs[i], host->f_min)))
2064			break;
2065		if (freqs[i] <= host->f_min)
2066			break;
2067	}
2068	mmc_release_host(host);
2069
2070 out:
2071	if (host->caps & MMC_CAP_NEEDS_POLL)
2072		mmc_schedule_delayed_work(&host->detect, HZ);
2073}
2074
2075void mmc_start_host(struct mmc_host *host)
2076{
2077	host->f_init = max(freqs[0], host->f_min);
2078	mmc_power_up(host);
2079	mmc_detect_change(host, 0);
 
 
 
 
 
 
 
 
 
 
2080}
2081
2082void mmc_stop_host(struct mmc_host *host)
2083{
2084#ifdef CONFIG_MMC_DEBUG
2085	unsigned long flags;
2086	spin_lock_irqsave(&host->lock, flags);
2087	host->removed = 1;
2088	spin_unlock_irqrestore(&host->lock, flags);
2089#endif
 
 
2090
 
2091	cancel_delayed_work_sync(&host->detect);
2092	mmc_flush_scheduled_work();
2093
2094	/* clear pm flags now and let card drivers set them as needed */
2095	host->pm_flags = 0;
2096
2097	mmc_bus_get(host);
2098	if (host->bus_ops && !host->bus_dead) {
2099		/* Calling bus_ops->remove() with a claimed host can deadlock */
2100		if (host->bus_ops->remove)
2101			host->bus_ops->remove(host);
2102
2103		mmc_claim_host(host);
2104		mmc_detach_bus(host);
2105		mmc_power_off(host);
2106		mmc_release_host(host);
2107		mmc_bus_put(host);
2108		return;
2109	}
2110	mmc_bus_put(host);
2111
2112	BUG_ON(host->card);
2113
 
2114	mmc_power_off(host);
 
2115}
2116
2117int mmc_power_save_host(struct mmc_host *host)
2118{
2119	int ret = 0;
2120
2121#ifdef CONFIG_MMC_DEBUG
2122	pr_info("%s: %s: powering down\n", mmc_hostname(host), __func__);
2123#endif
2124
2125	mmc_bus_get(host);
2126
2127	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2128		mmc_bus_put(host);
2129		return -EINVAL;
2130	}
2131
2132	if (host->bus_ops->power_save)
2133		ret = host->bus_ops->power_save(host);
2134
2135	mmc_bus_put(host);
2136
2137	mmc_power_off(host);
2138
2139	return ret;
2140}
2141EXPORT_SYMBOL(mmc_power_save_host);
2142
2143int mmc_power_restore_host(struct mmc_host *host)
2144{
2145	int ret;
2146
2147#ifdef CONFIG_MMC_DEBUG
2148	pr_info("%s: %s: powering up\n", mmc_hostname(host), __func__);
2149#endif
2150
2151	mmc_bus_get(host);
2152
2153	if (!host->bus_ops || host->bus_dead || !host->bus_ops->power_restore) {
2154		mmc_bus_put(host);
2155		return -EINVAL;
2156	}
2157
2158	mmc_power_up(host);
2159	ret = host->bus_ops->power_restore(host);
2160
2161	mmc_bus_put(host);
2162
2163	return ret;
2164}
2165EXPORT_SYMBOL(mmc_power_restore_host);
2166
2167int mmc_card_awake(struct mmc_host *host)
2168{
2169	int err = -ENOSYS;
2170
2171	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2172		return 0;
2173
2174	mmc_bus_get(host);
2175
2176	if (host->bus_ops && !host->bus_dead && host->bus_ops->awake)
2177		err = host->bus_ops->awake(host);
2178
2179	mmc_bus_put(host);
2180
2181	return err;
2182}
2183EXPORT_SYMBOL(mmc_card_awake);
2184
2185int mmc_card_sleep(struct mmc_host *host)
2186{
2187	int err = -ENOSYS;
2188
2189	if (host->caps2 & MMC_CAP2_NO_SLEEP_CMD)
2190		return 0;
2191
2192	mmc_bus_get(host);
2193
2194	if (host->bus_ops && !host->bus_dead && host->bus_ops->sleep)
2195		err = host->bus_ops->sleep(host);
2196
2197	mmc_bus_put(host);
2198
2199	return err;
2200}
2201EXPORT_SYMBOL(mmc_card_sleep);
2202
2203int mmc_card_can_sleep(struct mmc_host *host)
2204{
2205	struct mmc_card *card = host->card;
2206
2207	if (card && mmc_card_mmc(card) && card->ext_csd.rev >= 3)
2208		return 1;
2209	return 0;
2210}
2211EXPORT_SYMBOL(mmc_card_can_sleep);
2212
2213/*
2214 * Flush the cache to the non-volatile storage.
2215 */
2216int mmc_flush_cache(struct mmc_card *card)
2217{
2218	struct mmc_host *host = card->host;
2219	int err = 0;
2220
2221	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL))
2222		return err;
2223
2224	if (mmc_card_mmc(card) &&
2225			(card->ext_csd.cache_size > 0) &&
2226			(card->ext_csd.cache_ctrl & 1)) {
2227		err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2228				EXT_CSD_FLUSH_CACHE, 1, 0);
2229		if (err)
2230			pr_err("%s: cache flush error %d\n",
2231					mmc_hostname(card->host), err);
2232	}
2233
2234	return err;
2235}
2236EXPORT_SYMBOL(mmc_flush_cache);
2237
2238/*
2239 * Turn the cache ON/OFF.
2240 * Turning the cache OFF shall trigger flushing of the data
2241 * to the non-volatile storage.
2242 */
2243int mmc_cache_ctrl(struct mmc_host *host, u8 enable)
2244{
2245	struct mmc_card *card = host->card;
2246	unsigned int timeout;
2247	int err = 0;
2248
2249	if (!(host->caps2 & MMC_CAP2_CACHE_CTRL) ||
2250			mmc_card_is_removable(host))
2251		return err;
2252
2253	mmc_claim_host(host);
2254	if (card && mmc_card_mmc(card) &&
2255			(card->ext_csd.cache_size > 0)) {
2256		enable = !!enable;
2257
2258		if (card->ext_csd.cache_ctrl ^ enable) {
2259			timeout = enable ? card->ext_csd.generic_cmd6_time : 0;
2260			err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2261					EXT_CSD_CACHE_CTRL, enable, timeout);
2262			if (err)
2263				pr_err("%s: cache %s error %d\n",
2264						mmc_hostname(card->host),
2265						enable ? "on" : "off",
2266						err);
2267			else
2268				card->ext_csd.cache_ctrl = enable;
2269		}
2270	}
2271	mmc_release_host(host);
2272
2273	return err;
2274}
2275EXPORT_SYMBOL(mmc_cache_ctrl);
2276
2277#ifdef CONFIG_PM
2278
2279/**
2280 *	mmc_suspend_host - suspend a host
2281 *	@host: mmc host
2282 */
2283int mmc_suspend_host(struct mmc_host *host)
2284{
2285	int err = 0;
2286
2287	cancel_delayed_work(&host->detect);
2288	mmc_flush_scheduled_work();
2289
2290	err = mmc_cache_ctrl(host, 0);
2291	if (err)
2292		goto out;
2293
2294	mmc_bus_get(host);
2295	if (host->bus_ops && !host->bus_dead) {
2296
2297		if (host->bus_ops->suspend)
2298			err = host->bus_ops->suspend(host);
2299
2300		if (err == -ENOSYS || !host->bus_ops->resume) {
2301			/*
2302			 * We simply "remove" the card in this case.
2303			 * It will be redetected on resume.  (Calling
2304			 * bus_ops->remove() with a claimed host can
2305			 * deadlock.)
2306			 */
2307			if (host->bus_ops->remove)
2308				host->bus_ops->remove(host);
2309			mmc_claim_host(host);
2310			mmc_detach_bus(host);
2311			mmc_power_off(host);
2312			mmc_release_host(host);
2313			host->pm_flags = 0;
2314			err = 0;
2315		}
2316	}
2317	mmc_bus_put(host);
2318
2319	if (!err && !mmc_card_keep_power(host))
2320		mmc_power_off(host);
2321
2322out:
2323	return err;
2324}
2325
2326EXPORT_SYMBOL(mmc_suspend_host);
2327
2328/**
2329 *	mmc_resume_host - resume a previously suspended host
2330 *	@host: mmc host
2331 */
2332int mmc_resume_host(struct mmc_host *host)
2333{
2334	int err = 0;
2335
2336	mmc_bus_get(host);
2337	if (host->bus_ops && !host->bus_dead) {
2338		if (!mmc_card_keep_power(host)) {
2339			mmc_power_up(host);
2340			mmc_select_voltage(host, host->ocr);
2341			/*
2342			 * Tell runtime PM core we just powered up the card,
2343			 * since it still believes the card is powered off.
2344			 * Note that currently runtime PM is only enabled
2345			 * for SDIO cards that are MMC_CAP_POWER_OFF_CARD
2346			 */
2347			if (mmc_card_sdio(host->card) &&
2348			    (host->caps & MMC_CAP_POWER_OFF_CARD)) {
2349				pm_runtime_disable(&host->card->dev);
2350				pm_runtime_set_active(&host->card->dev);
2351				pm_runtime_enable(&host->card->dev);
2352			}
2353		}
2354		BUG_ON(!host->bus_ops->resume);
2355		err = host->bus_ops->resume(host);
2356		if (err) {
2357			pr_warning("%s: error %d during resume "
2358					    "(card was removed?)\n",
2359					    mmc_hostname(host), err);
2360			err = 0;
2361		}
2362	}
2363	host->pm_flags &= ~MMC_PM_KEEP_POWER;
2364	mmc_bus_put(host);
2365
2366	return err;
2367}
2368EXPORT_SYMBOL(mmc_resume_host);
2369
2370/* Do the card removal on suspend if card is assumed removeable
2371 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2372   to sync the card.
2373*/
2374int mmc_pm_notify(struct notifier_block *notify_block,
2375					unsigned long mode, void *unused)
2376{
2377	struct mmc_host *host = container_of(
2378		notify_block, struct mmc_host, pm_notify);
2379	unsigned long flags;
2380
2381
2382	switch (mode) {
2383	case PM_HIBERNATION_PREPARE:
2384	case PM_SUSPEND_PREPARE:
2385
2386		spin_lock_irqsave(&host->lock, flags);
2387		host->rescan_disable = 1;
2388		host->power_notify_type = MMC_HOST_PW_NOTIFY_SHORT;
2389		spin_unlock_irqrestore(&host->lock, flags);
2390		cancel_delayed_work_sync(&host->detect);
2391
2392		if (!host->bus_ops || host->bus_ops->suspend)
 
 
 
 
 
 
2393			break;
2394
2395		/* Calling bus_ops->remove() with a claimed host can deadlock */
2396		if (host->bus_ops->remove)
2397			host->bus_ops->remove(host);
2398
2399		mmc_claim_host(host);
2400		mmc_detach_bus(host);
2401		mmc_power_off(host);
2402		mmc_release_host(host);
2403		host->pm_flags = 0;
2404		break;
2405
2406	case PM_POST_SUSPEND:
2407	case PM_POST_HIBERNATION:
2408	case PM_POST_RESTORE:
2409
2410		spin_lock_irqsave(&host->lock, flags);
2411		host->rescan_disable = 0;
2412		host->power_notify_type = MMC_HOST_PW_NOTIFY_LONG;
2413		spin_unlock_irqrestore(&host->lock, flags);
2414		mmc_detect_change(host, 0);
2415
2416	}
2417
2418	return 0;
2419}
 
 
 
 
 
 
 
 
 
 
 
2420#endif
2421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422static int __init mmc_init(void)
2423{
2424	int ret;
2425
2426	workqueue = alloc_ordered_workqueue("kmmcd", 0);
2427	if (!workqueue)
2428		return -ENOMEM;
2429
2430	ret = mmc_register_bus();
2431	if (ret)
2432		goto destroy_workqueue;
2433
2434	ret = mmc_register_host_class();
2435	if (ret)
2436		goto unregister_bus;
2437
2438	ret = sdio_register_bus();
2439	if (ret)
2440		goto unregister_host_class;
2441
2442	return 0;
2443
2444unregister_host_class:
2445	mmc_unregister_host_class();
2446unregister_bus:
2447	mmc_unregister_bus();
2448destroy_workqueue:
2449	destroy_workqueue(workqueue);
2450
2451	return ret;
2452}
2453
2454static void __exit mmc_exit(void)
2455{
2456	sdio_unregister_bus();
2457	mmc_unregister_host_class();
2458	mmc_unregister_bus();
2459	destroy_workqueue(workqueue);
2460}
2461
2462subsys_initcall(mmc_init);
2463module_exit(mmc_exit);
2464
2465MODULE_LICENSE("GPL");