Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/arch/parisc/mm/init.c
  3 *
  4 *  Copyright (C) 1995	Linus Torvalds
  5 *  Copyright 1999 SuSE GmbH
  6 *    changed by Philipp Rumpf
  7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
  9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 10 *
 11 */
 12
 13
 14#include <linux/module.h>
 15#include <linux/mm.h>
 16#include <linux/bootmem.h>
 17#include <linux/gfp.h>
 18#include <linux/delay.h>
 19#include <linux/init.h>
 20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 29#include <asm/pgtable.h>
 30#include <asm/tlb.h>
 31#include <asm/pdc_chassis.h>
 32#include <asm/mmzone.h>
 33#include <asm/sections.h>
 34#include <asm/msgbuf.h>
 
 35
 36extern int  data_start;
 37extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 38
 39#if CONFIG_PGTABLE_LEVELS == 3
 40/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 42 * guarantee that global objects will be laid out in memory in the same order
 43 * as the order of declaration, so put these in different sections and use
 44 * the linker script to order them. */
 45pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 46#endif
 47
 48pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 49pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 50
 51#ifdef CONFIG_DISCONTIGMEM
 52struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
 53signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
 54#endif
 55
 56static struct resource data_resource = {
 57	.name	= "Kernel data",
 58	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 59};
 60
 61static struct resource code_resource = {
 62	.name	= "Kernel code",
 63	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 64};
 65
 66static struct resource pdcdata_resource = {
 67	.name	= "PDC data (Page Zero)",
 68	.start	= 0,
 69	.end	= 0x9ff,
 70	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 71};
 72
 73static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
 74
 75/* The following array is initialized from the firmware specific
 76 * information retrieved in kernel/inventory.c.
 77 */
 78
 79physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
 80int npmem_ranges __read_mostly;
 81
 82#ifdef CONFIG_64BIT
 83#define MAX_MEM         (~0UL)
 84#else /* !CONFIG_64BIT */
 85#define MAX_MEM         (3584U*1024U*1024U)
 86#endif /* !CONFIG_64BIT */
 87
 88static unsigned long mem_limit __read_mostly = MAX_MEM;
 89
 90static void __init mem_limit_func(void)
 91{
 92	char *cp, *end;
 93	unsigned long limit;
 94
 95	/* We need this before __setup() functions are called */
 96
 97	limit = MAX_MEM;
 98	for (cp = boot_command_line; *cp; ) {
 99		if (memcmp(cp, "mem=", 4) == 0) {
100			cp += 4;
101			limit = memparse(cp, &end);
102			if (end != cp)
103				break;
104			cp = end;
105		} else {
106			while (*cp != ' ' && *cp)
107				++cp;
108			while (*cp == ' ')
109				++cp;
110		}
111	}
112
113	if (limit < mem_limit)
114		mem_limit = limit;
115}
116
117#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
118
119static void __init setup_bootmem(void)
120{
121	unsigned long bootmap_size;
122	unsigned long mem_max;
123	unsigned long bootmap_pages;
124	unsigned long bootmap_start_pfn;
125	unsigned long bootmap_pfn;
126#ifndef CONFIG_DISCONTIGMEM
127	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
128	int npmem_holes;
129#endif
130	int i, sysram_resource_count;
131
132	disable_sr_hashing(); /* Turn off space register hashing */
133
134	/*
135	 * Sort the ranges. Since the number of ranges is typically
136	 * small, and performance is not an issue here, just do
137	 * a simple insertion sort.
138	 */
139
140	for (i = 1; i < npmem_ranges; i++) {
141		int j;
142
143		for (j = i; j > 0; j--) {
144			unsigned long tmp;
145
146			if (pmem_ranges[j-1].start_pfn <
147			    pmem_ranges[j].start_pfn) {
148
149				break;
150			}
151			tmp = pmem_ranges[j-1].start_pfn;
152			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
153			pmem_ranges[j].start_pfn = tmp;
154			tmp = pmem_ranges[j-1].pages;
155			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
156			pmem_ranges[j].pages = tmp;
157		}
158	}
159
160#ifndef CONFIG_DISCONTIGMEM
161	/*
162	 * Throw out ranges that are too far apart (controlled by
163	 * MAX_GAP).
164	 */
165
166	for (i = 1; i < npmem_ranges; i++) {
167		if (pmem_ranges[i].start_pfn -
168			(pmem_ranges[i-1].start_pfn +
169			 pmem_ranges[i-1].pages) > MAX_GAP) {
170			npmem_ranges = i;
171			printk("Large gap in memory detected (%ld pages). "
172			       "Consider turning on CONFIG_DISCONTIGMEM\n",
173			       pmem_ranges[i].start_pfn -
174			       (pmem_ranges[i-1].start_pfn +
175			        pmem_ranges[i-1].pages));
176			break;
177		}
178	}
179#endif
180
181	if (npmem_ranges > 1) {
182
183		/* Print the memory ranges */
184
185		printk(KERN_INFO "Memory Ranges:\n");
186
187		for (i = 0; i < npmem_ranges; i++) {
188			unsigned long start;
189			unsigned long size;
 
190
191			size = (pmem_ranges[i].pages << PAGE_SHIFT);
192			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
193			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
194				i,start, start + (size - 1), size >> 20);
195		}
196	}
197
198	sysram_resource_count = npmem_ranges;
199	for (i = 0; i < sysram_resource_count; i++) {
200		struct resource *res = &sysram_resources[i];
201		res->name = "System RAM";
202		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
203		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
204		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
205		request_resource(&iomem_resource, res);
206	}
207
 
 
208	/*
209	 * For 32 bit kernels we limit the amount of memory we can
210	 * support, in order to preserve enough kernel address space
211	 * for other purposes. For 64 bit kernels we don't normally
212	 * limit the memory, but this mechanism can be used to
213	 * artificially limit the amount of memory (and it is written
214	 * to work with multiple memory ranges).
215	 */
216
217	mem_limit_func();       /* check for "mem=" argument */
218
219	mem_max = 0;
220	for (i = 0; i < npmem_ranges; i++) {
221		unsigned long rsize;
222
223		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
224		if ((mem_max + rsize) > mem_limit) {
225			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
226			if (mem_max == mem_limit)
227				npmem_ranges = i;
228			else {
229				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
230						       - (mem_max >> PAGE_SHIFT);
231				npmem_ranges = i + 1;
232				mem_max = mem_limit;
233			}
234			break;
235		}
236		mem_max += rsize;
237	}
238
239	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240
241#ifndef CONFIG_DISCONTIGMEM
242	/* Merge the ranges, keeping track of the holes */
243
244	{
245		unsigned long end_pfn;
246		unsigned long hole_pages;
247
248		npmem_holes = 0;
249		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250		for (i = 1; i < npmem_ranges; i++) {
251
252			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253			if (hole_pages) {
254				pmem_holes[npmem_holes].start_pfn = end_pfn;
255				pmem_holes[npmem_holes++].pages = hole_pages;
256				end_pfn += hole_pages;
257			}
258			end_pfn += pmem_ranges[i].pages;
259		}
260
261		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262		npmem_ranges = 1;
263	}
264#endif
265
266	bootmap_pages = 0;
267	for (i = 0; i < npmem_ranges; i++)
268		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269
270	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271
272#ifdef CONFIG_DISCONTIGMEM
273	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275		NODE_DATA(i)->bdata = &bootmem_node_data[i];
276	}
277	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278
279	for (i = 0; i < npmem_ranges; i++) {
280		node_set_state(i, N_NORMAL_MEMORY);
281		node_set_online(i);
282	}
283#endif
284
285	/*
286	 * Initialize and free the full range of memory in each range.
287	 * Note that the only writing these routines do are to the bootmap,
288	 * and we've made sure to locate the bootmap properly so that they
289	 * won't be writing over anything important.
290	 */
291
292	bootmap_pfn = bootmap_start_pfn;
293	max_pfn = 0;
294	for (i = 0; i < npmem_ranges; i++) {
295		unsigned long start_pfn;
296		unsigned long npages;
 
 
297
298		start_pfn = pmem_ranges[i].start_pfn;
299		npages = pmem_ranges[i].pages;
300
301		bootmap_size = init_bootmem_node(NODE_DATA(i),
302						bootmap_pfn,
303						start_pfn,
304						(start_pfn + npages) );
305		free_bootmem_node(NODE_DATA(i),
306				  (start_pfn << PAGE_SHIFT),
307				  (npages << PAGE_SHIFT) );
308		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309		if ((start_pfn + npages) > max_pfn)
310			max_pfn = start_pfn + npages;
311	}
312
 
 
 
 
 
 
 
313	/* IOMMU is always used to access "high mem" on those boxes
314	 * that can support enough mem that a PCI device couldn't
315	 * directly DMA to any physical addresses.
316	 * ISA DMA support will need to revisit this.
317	 */
318	max_low_pfn = max_pfn;
319
320	/* bootmap sizing messed up? */
321	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322
323	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324
325#define PDC_CONSOLE_IO_IODC_SIZE 32768
326
327	reserve_bootmem_node(NODE_DATA(0), 0UL,
328			(unsigned long)(PAGE0->mem_free +
329				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330	reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
331			(unsigned long)(_end - KERNEL_BINARY_TEXT_START),
332			BOOTMEM_DEFAULT);
333	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
334			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
335			BOOTMEM_DEFAULT);
336
337#ifndef CONFIG_DISCONTIGMEM
338
339	/* reserve the holes */
340
341	for (i = 0; i < npmem_holes; i++) {
342		reserve_bootmem_node(NODE_DATA(0),
343				(pmem_holes[i].start_pfn << PAGE_SHIFT),
344				(pmem_holes[i].pages << PAGE_SHIFT),
345				BOOTMEM_DEFAULT);
346	}
347#endif
348
349#ifdef CONFIG_BLK_DEV_INITRD
350	if (initrd_start) {
351		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
352		if (__pa(initrd_start) < mem_max) {
353			unsigned long initrd_reserve;
354
355			if (__pa(initrd_end) > mem_max) {
356				initrd_reserve = mem_max - __pa(initrd_start);
357			} else {
358				initrd_reserve = initrd_end - initrd_start;
359			}
360			initrd_below_start_ok = 1;
361			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362
363			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
364					initrd_reserve, BOOTMEM_DEFAULT);
365		}
366	}
367#endif
368
369	data_resource.start =  virt_to_phys(&data_start);
370	data_resource.end = virt_to_phys(_end) - 1;
371	code_resource.start = virt_to_phys(_text);
372	code_resource.end = virt_to_phys(&data_start)-1;
373
374	/* We don't know which region the kernel will be in, so try
375	 * all of them.
376	 */
377	for (i = 0; i < sysram_resource_count; i++) {
378		struct resource *res = &sysram_resources[i];
379		request_resource(res, &code_resource);
380		request_resource(res, &data_resource);
381	}
382	request_resource(&sysram_resources[0], &pdcdata_resource);
383}
384
385static int __init parisc_text_address(unsigned long vaddr)
386{
387	static unsigned long head_ptr __initdata;
388
389	if (!head_ptr)
390		head_ptr = PAGE_MASK & (unsigned long)
391			dereference_function_descriptor(&parisc_kernel_start);
392
393	return core_kernel_text(vaddr) || vaddr == head_ptr;
 
394}
395
396static void __init map_pages(unsigned long start_vaddr,
397			     unsigned long start_paddr, unsigned long size,
398			     pgprot_t pgprot, int force)
 
 
399{
400	pgd_t *pg_dir;
401	pmd_t *pmd;
402	pte_t *pg_table;
403	unsigned long end_paddr;
404	unsigned long start_pmd;
405	unsigned long start_pte;
406	unsigned long tmp1;
407	unsigned long tmp2;
408	unsigned long address;
409	unsigned long vaddr;
410	unsigned long ro_start;
411	unsigned long ro_end;
412	unsigned long kernel_end;
413
414	ro_start = __pa((unsigned long)_text);
415	ro_end   = __pa((unsigned long)&data_start);
 
416	kernel_end  = __pa((unsigned long)&_end);
417
418	end_paddr = start_paddr + size;
419
420	pg_dir = pgd_offset_k(start_vaddr);
421
422#if PTRS_PER_PMD == 1
423	start_pmd = 0;
424#else
425	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
426#endif
427	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
428
429	address = start_paddr;
430	vaddr = start_vaddr;
431	while (address < end_paddr) {
432#if PTRS_PER_PMD == 1
433		pmd = (pmd_t *)__pa(pg_dir);
434#else
435		pmd = (pmd_t *)pgd_address(*pg_dir);
436
437		/*
438		 * pmd is physical at this point
439		 */
440
441		if (!pmd) {
442			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
443			pmd = (pmd_t *) __pa(pmd);
444		}
445
446		pgd_populate(NULL, pg_dir, __va(pmd));
447#endif
448		pg_dir++;
449
450		/* now change pmd to kernel virtual addresses */
451
452		pmd = (pmd_t *)__va(pmd) + start_pmd;
453		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
454
455			/*
456			 * pg_table is physical at this point
457			 */
458
459			pg_table = (pte_t *)pmd_address(*pmd);
460			if (!pg_table) {
461				pg_table = (pte_t *)
462					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
463				pg_table = (pte_t *) __pa(pg_table);
464			}
465
466			pmd_populate_kernel(NULL, pmd, __va(pg_table));
467
468			/* now change pg_table to kernel virtual addresses */
469
470			pg_table = (pte_t *) __va(pg_table) + start_pte;
471			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
472				pte_t pte;
 
 
473
474				if (force)
475					pte =  __mk_pte(address, pgprot);
476				else if (parisc_text_address(vaddr)) {
477					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
478					if (address >= ro_start && address < kernel_end)
479						pte = pte_mkhuge(pte);
 
 
 
 
 
 
 
 
 
 
480				}
481				else
482#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
483				if (address >= ro_start && address < ro_end) {
484					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485					pte = pte_mkhuge(pte);
486				} else
487#endif
488				{
489					pte = __mk_pte(address, pgprot);
490					if (address >= ro_start && address < kernel_end)
491						pte = pte_mkhuge(pte);
492				}
493
494				if (address >= end_paddr) {
495					if (force)
496						break;
497					else
498						pte_val(pte) = 0;
499				}
500
501				set_pte(pg_table, pte);
502
503				address += PAGE_SIZE;
504				vaddr += PAGE_SIZE;
505			}
506			start_pte = 0;
507
508			if (address >= end_paddr)
509			    break;
510		}
511		start_pmd = 0;
512	}
513}
514
 
 
 
 
 
 
 
 
 
 
 
 
 
515void free_initmem(void)
516{
517	unsigned long init_begin = (unsigned long)__init_begin;
518	unsigned long init_end = (unsigned long)__init_end;
 
 
 
 
 
 
519
520	/* The init text pages are marked R-X.  We have to
521	 * flush the icache and mark them RW-
522	 *
523	 * This is tricky, because map_pages is in the init section.
524	 * Do a dummy remap of the data section first (the data
525	 * section is already PAGE_KERNEL) to pull in the TLB entries
526	 * for map_kernel */
527	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
528		  PAGE_KERNEL_RWX, 1);
529	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
530	 * map_pages */
531	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
532		  PAGE_KERNEL, 1);
533
534	/* force the kernel to see the new TLB entries */
535	__flush_tlb_range(0, init_begin, init_end);
536
537	/* finally dump all the instructions which were cached, since the
538	 * pages are no-longer executable */
539	flush_icache_range(init_begin, init_end);
540	
541	free_initmem_default(POISON_FREE_INITMEM);
542
543	/* set up a new led state on systems shipped LED State panel */
544	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
545}
546
547
548#ifdef CONFIG_DEBUG_RODATA
549void mark_rodata_ro(void)
550{
551	/* rodata memory was already mapped with KERNEL_RO access rights by
552           pagetable_init() and map_pages(). No need to do additional stuff here */
553	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
554		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 
555}
556#endif
557
558
559/*
560 * Just an arbitrary offset to serve as a "hole" between mapping areas
561 * (between top of physical memory and a potential pcxl dma mapping
562 * area, and below the vmalloc mapping area).
563 *
564 * The current 32K value just means that there will be a 32K "hole"
565 * between mapping areas. That means that  any out-of-bounds memory
566 * accesses will hopefully be caught. The vmalloc() routines leaves
567 * a hole of 4kB between each vmalloced area for the same reason.
568 */
569
570 /* Leave room for gateway page expansion */
571#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
572#error KERNEL_MAP_START is in gateway reserved region
573#endif
574#define MAP_START (KERNEL_MAP_START)
575
576#define VM_MAP_OFFSET  (32*1024)
577#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
578				     & ~(VM_MAP_OFFSET-1)))
579
580void *parisc_vmalloc_start __read_mostly;
581EXPORT_SYMBOL(parisc_vmalloc_start);
582
583#ifdef CONFIG_PA11
584unsigned long pcxl_dma_start __read_mostly;
585#endif
586
587void __init mem_init(void)
588{
589	/* Do sanity checks on IPC (compat) structures */
590	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
591#ifndef CONFIG_64BIT
592	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
593	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
594	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
595#endif
596#ifdef CONFIG_COMPAT
597	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
598	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
599	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
600	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
601#endif
602
603	/* Do sanity checks on page table constants */
604	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
605	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
606	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
607	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
608			> BITS_PER_LONG);
 
 
 
 
 
 
 
 
 
 
 
609
610	high_memory = __va((max_pfn << PAGE_SHIFT));
611	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
612	free_all_bootmem();
613
614#ifdef CONFIG_PA11
615	if (hppa_dma_ops == &pcxl_dma_ops) {
616		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
617		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
618						+ PCXL_DMA_MAP_SIZE);
619	} else {
620		pcxl_dma_start = 0;
621		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
622	}
623#else
624	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
625#endif
 
626
627	mem_init_print_info(NULL);
628#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 
 
 
629	printk("virtual kernel memory layout:\n"
630	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
631	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
632	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
633	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
634	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 
635
636	       (void*)VMALLOC_START, (void*)VMALLOC_END,
637	       (VMALLOC_END - VMALLOC_START) >> 20,
638
 
 
 
639	       __va(0), high_memory,
640	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
641
642	       __init_begin, __init_end,
643	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
644
645	       _etext, _edata,
646	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
647
648	       _text, _etext,
649	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
650#endif
651}
652
653unsigned long *empty_zero_page __read_mostly;
654EXPORT_SYMBOL(empty_zero_page);
655
656void show_mem(unsigned int filter)
657{
658	int total = 0,reserved = 0;
659	pg_data_t *pgdat;
660
661	printk(KERN_INFO "Mem-info:\n");
662	show_free_areas(filter);
663
664	for_each_online_pgdat(pgdat) {
665		unsigned long flags;
666		int zoneid;
667
668		pgdat_resize_lock(pgdat, &flags);
669		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
670			struct zone *zone = &pgdat->node_zones[zoneid];
671			if (!populated_zone(zone))
672				continue;
673
674			total += zone->present_pages;
675			reserved = zone->present_pages - zone->managed_pages;
676		}
677		pgdat_resize_unlock(pgdat, &flags);
678	}
679
680	printk(KERN_INFO "%d pages of RAM\n", total);
681	printk(KERN_INFO "%d reserved pages\n", reserved);
682
683#ifdef CONFIG_DISCONTIGMEM
684	{
685		struct zonelist *zl;
686		int i, j;
687
688		for (i = 0; i < npmem_ranges; i++) {
689			zl = node_zonelist(i, 0);
690			for (j = 0; j < MAX_NR_ZONES; j++) {
691				struct zoneref *z;
692				struct zone *zone;
693
694				printk("Zone list for zone %d on node %d: ", j, i);
695				for_each_zone_zonelist(zone, z, zl, j)
696					printk("[%d/%s] ", zone_to_nid(zone),
697								zone->name);
698				printk("\n");
699			}
700		}
701	}
702#endif
703}
704
705/*
706 * pagetable_init() sets up the page tables
707 *
708 * Note that gateway_init() places the Linux gateway page at page 0.
709 * Since gateway pages cannot be dereferenced this has the desirable
710 * side effect of trapping those pesky NULL-reference errors in the
711 * kernel.
712 */
713static void __init pagetable_init(void)
714{
715	int range;
716
717	/* Map each physical memory range to its kernel vaddr */
718
719	for (range = 0; range < npmem_ranges; range++) {
720		unsigned long start_paddr;
721		unsigned long end_paddr;
722		unsigned long size;
723
724		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
725		size = pmem_ranges[range].pages << PAGE_SHIFT;
726		end_paddr = start_paddr + size;
727
728		map_pages((unsigned long)__va(start_paddr), start_paddr,
729			  size, PAGE_KERNEL, 0);
730	}
731
732#ifdef CONFIG_BLK_DEV_INITRD
733	if (initrd_end && initrd_end > mem_limit) {
734		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
735		map_pages(initrd_start, __pa(initrd_start),
736			  initrd_end - initrd_start, PAGE_KERNEL, 0);
737	}
738#endif
739
740	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 
 
 
741}
742
743static void __init gateway_init(void)
744{
745	unsigned long linux_gateway_page_addr;
746	/* FIXME: This is 'const' in order to trick the compiler
747	   into not treating it as DP-relative data. */
748	extern void * const linux_gateway_page;
749
750	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
751
752	/*
753	 * Setup Linux Gateway page.
754	 *
755	 * The Linux gateway page will reside in kernel space (on virtual
756	 * page 0), so it doesn't need to be aliased into user space.
757	 */
758
759	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
760		  PAGE_SIZE, PAGE_GATEWAY, 1);
761}
762
763void __init paging_init(void)
764{
765	int i;
 
 
766
 
 
 
 
 
767	setup_bootmem();
768	pagetable_init();
769	gateway_init();
770	flush_cache_all_local(); /* start with known state */
771	flush_tlb_all_local(NULL);
772
773	for (i = 0; i < npmem_ranges; i++) {
774		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
775
776		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
777
778#ifdef CONFIG_DISCONTIGMEM
779		/* Need to initialize the pfnnid_map before we can initialize
780		   the zone */
781		{
782		    int j;
783		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
784			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
785			 j++) {
786			pfnnid_map[j] = i;
787		    }
788		}
789#endif
790
791		free_area_init_node(i, zones_size,
792				pmem_ranges[i].start_pfn, NULL);
793	}
794}
795
796#ifdef CONFIG_PA20
797
798/*
799 * Currently, all PA20 chips have 18 bit protection IDs, which is the
800 * limiting factor (space ids are 32 bits).
801 */
802
803#define NR_SPACE_IDS 262144
804
805#else
806
807/*
808 * Currently we have a one-to-one relationship between space IDs and
809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
810 * support 15 bit protection IDs, so that is the limiting factor.
811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
812 * probably not worth the effort for a special case here.
813 */
814
815#define NR_SPACE_IDS 32768
816
817#endif  /* !CONFIG_PA20 */
818
819#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
820#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
821
822static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
823static unsigned long dirty_space_id[SID_ARRAY_SIZE];
824static unsigned long space_id_index;
825static unsigned long free_space_ids = NR_SPACE_IDS - 1;
826static unsigned long dirty_space_ids = 0;
827
828static DEFINE_SPINLOCK(sid_lock);
829
830unsigned long alloc_sid(void)
831{
832	unsigned long index;
833
834	spin_lock(&sid_lock);
835
836	if (free_space_ids == 0) {
837		if (dirty_space_ids != 0) {
838			spin_unlock(&sid_lock);
839			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
840			spin_lock(&sid_lock);
841		}
842		BUG_ON(free_space_ids == 0);
843	}
844
845	free_space_ids--;
846
847	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
848	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
849	space_id_index = index;
850
851	spin_unlock(&sid_lock);
852
853	return index << SPACEID_SHIFT;
854}
855
856void free_sid(unsigned long spaceid)
857{
858	unsigned long index = spaceid >> SPACEID_SHIFT;
859	unsigned long *dirty_space_offset;
860
861	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
862	index &= (BITS_PER_LONG - 1);
863
864	spin_lock(&sid_lock);
865
866	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
867
868	*dirty_space_offset |= (1L << index);
869	dirty_space_ids++;
870
871	spin_unlock(&sid_lock);
872}
873
874
875#ifdef CONFIG_SMP
876static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
877{
878	int i;
879
880	/* NOTE: sid_lock must be held upon entry */
881
882	*ndirtyptr = dirty_space_ids;
883	if (dirty_space_ids != 0) {
884	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
885		dirty_array[i] = dirty_space_id[i];
886		dirty_space_id[i] = 0;
887	    }
888	    dirty_space_ids = 0;
889	}
890
891	return;
892}
893
894static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
895{
896	int i;
897
898	/* NOTE: sid_lock must be held upon entry */
899
900	if (ndirty != 0) {
901		for (i = 0; i < SID_ARRAY_SIZE; i++) {
902			space_id[i] ^= dirty_array[i];
903		}
904
905		free_space_ids += ndirty;
906		space_id_index = 0;
907	}
908}
909
910#else /* CONFIG_SMP */
911
912static void recycle_sids(void)
913{
914	int i;
915
916	/* NOTE: sid_lock must be held upon entry */
917
918	if (dirty_space_ids != 0) {
919		for (i = 0; i < SID_ARRAY_SIZE; i++) {
920			space_id[i] ^= dirty_space_id[i];
921			dirty_space_id[i] = 0;
922		}
923
924		free_space_ids += dirty_space_ids;
925		dirty_space_ids = 0;
926		space_id_index = 0;
927	}
928}
929#endif
930
931/*
932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
933 * purged, we can safely reuse the space ids that were released but
934 * not flushed from the tlb.
935 */
936
937#ifdef CONFIG_SMP
938
939static unsigned long recycle_ndirty;
940static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
941static unsigned int recycle_inuse;
942
943void flush_tlb_all(void)
944{
945	int do_recycle;
946
947	__inc_irq_stat(irq_tlb_count);
948	do_recycle = 0;
949	spin_lock(&sid_lock);
 
950	if (dirty_space_ids > RECYCLE_THRESHOLD) {
951	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
952	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
953	    recycle_inuse++;
954	    do_recycle++;
955	}
956	spin_unlock(&sid_lock);
957	on_each_cpu(flush_tlb_all_local, NULL, 1);
958	if (do_recycle) {
959	    spin_lock(&sid_lock);
960	    recycle_sids(recycle_ndirty,recycle_dirty_array);
961	    recycle_inuse = 0;
962	    spin_unlock(&sid_lock);
963	}
964}
965#else
966void flush_tlb_all(void)
967{
968	__inc_irq_stat(irq_tlb_count);
969	spin_lock(&sid_lock);
 
970	flush_tlb_all_local(NULL);
971	recycle_sids();
972	spin_unlock(&sid_lock);
973}
974#endif
975
976#ifdef CONFIG_BLK_DEV_INITRD
977void free_initrd_mem(unsigned long start, unsigned long end)
978{
979	free_reserved_area((void *)start, (void *)end, -1, "initrd");
980}
981#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/mm/init.c
  4 *
  5 *  Copyright (C) 1995	Linus Torvalds
  6 *  Copyright 1999 SuSE GmbH
  7 *    changed by Philipp Rumpf
  8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
 10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 11 *
 12 */
 13
 14
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/memblock.h>
 18#include <linux/gfp.h>
 19#include <linux/delay.h>
 20#include <linux/init.h>
 
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 
 29#include <asm/tlb.h>
 30#include <asm/pdc_chassis.h>
 31#include <asm/mmzone.h>
 32#include <asm/sections.h>
 33#include <asm/msgbuf.h>
 34#include <asm/sparsemem.h>
 35
 36extern int  data_start;
 37extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 38
 39#if CONFIG_PGTABLE_LEVELS == 3
 40pmd_t pmd0[PTRS_PER_PMD] __section(".data..vm0.pmd") __attribute__ ((aligned(PAGE_SIZE)));
 
 
 
 
 
 41#endif
 42
 43pgd_t swapper_pg_dir[PTRS_PER_PGD] __section(".data..vm0.pgd") __attribute__ ((aligned(PAGE_SIZE)));
 44pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __section(".data..vm0.pte") __attribute__ ((aligned(PAGE_SIZE)));
 
 
 
 
 
 45
 46static struct resource data_resource = {
 47	.name	= "Kernel data",
 48	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 49};
 50
 51static struct resource code_resource = {
 52	.name	= "Kernel code",
 53	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 54};
 55
 56static struct resource pdcdata_resource = {
 57	.name	= "PDC data (Page Zero)",
 58	.start	= 0,
 59	.end	= 0x9ff,
 60	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 61};
 62
 63static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
 64
 65/* The following array is initialized from the firmware specific
 66 * information retrieved in kernel/inventory.c.
 67 */
 68
 69physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
 70int npmem_ranges __initdata;
 71
 72#ifdef CONFIG_64BIT
 73#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
 74#else /* !CONFIG_64BIT */
 75#define MAX_MEM         (3584U*1024U*1024U)
 76#endif /* !CONFIG_64BIT */
 77
 78static unsigned long mem_limit __read_mostly = MAX_MEM;
 79
 80static void __init mem_limit_func(void)
 81{
 82	char *cp, *end;
 83	unsigned long limit;
 84
 85	/* We need this before __setup() functions are called */
 86
 87	limit = MAX_MEM;
 88	for (cp = boot_command_line; *cp; ) {
 89		if (memcmp(cp, "mem=", 4) == 0) {
 90			cp += 4;
 91			limit = memparse(cp, &end);
 92			if (end != cp)
 93				break;
 94			cp = end;
 95		} else {
 96			while (*cp != ' ' && *cp)
 97				++cp;
 98			while (*cp == ' ')
 99				++cp;
100		}
101	}
102
103	if (limit < mem_limit)
104		mem_limit = limit;
105}
106
107#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
108
109static void __init setup_bootmem(void)
110{
 
111	unsigned long mem_max;
112#ifndef CONFIG_SPARSEMEM
 
 
 
113	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
114	int npmem_holes;
115#endif
116	int i, sysram_resource_count;
117
118	disable_sr_hashing(); /* Turn off space register hashing */
119
120	/*
121	 * Sort the ranges. Since the number of ranges is typically
122	 * small, and performance is not an issue here, just do
123	 * a simple insertion sort.
124	 */
125
126	for (i = 1; i < npmem_ranges; i++) {
127		int j;
128
129		for (j = i; j > 0; j--) {
 
 
130			if (pmem_ranges[j-1].start_pfn <
131			    pmem_ranges[j].start_pfn) {
132
133				break;
134			}
135			swap(pmem_ranges[j-1], pmem_ranges[j]);
 
 
 
 
 
136		}
137	}
138
139#ifndef CONFIG_SPARSEMEM
140	/*
141	 * Throw out ranges that are too far apart (controlled by
142	 * MAX_GAP).
143	 */
144
145	for (i = 1; i < npmem_ranges; i++) {
146		if (pmem_ranges[i].start_pfn -
147			(pmem_ranges[i-1].start_pfn +
148			 pmem_ranges[i-1].pages) > MAX_GAP) {
149			npmem_ranges = i;
150			printk("Large gap in memory detected (%ld pages). "
151			       "Consider turning on CONFIG_SPARSEMEM\n",
152			       pmem_ranges[i].start_pfn -
153			       (pmem_ranges[i-1].start_pfn +
154			        pmem_ranges[i-1].pages));
155			break;
156		}
157	}
158#endif
159
160	/* Print the memory ranges */
161	pr_info("Memory Ranges:\n");
 
 
 
162
163	for (i = 0; i < npmem_ranges; i++) {
164		struct resource *res = &sysram_resources[i];
165		unsigned long start;
166		unsigned long size;
167
168		size = (pmem_ranges[i].pages << PAGE_SHIFT);
169		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
170		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
171			i, start, start + (size - 1), size >> 20);
 
 
172
173		/* request memory resource */
 
 
174		res->name = "System RAM";
175		res->start = start;
176		res->end = start + size - 1;
177		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
178		request_resource(&iomem_resource, res);
179	}
180
181	sysram_resource_count = npmem_ranges;
182
183	/*
184	 * For 32 bit kernels we limit the amount of memory we can
185	 * support, in order to preserve enough kernel address space
186	 * for other purposes. For 64 bit kernels we don't normally
187	 * limit the memory, but this mechanism can be used to
188	 * artificially limit the amount of memory (and it is written
189	 * to work with multiple memory ranges).
190	 */
191
192	mem_limit_func();       /* check for "mem=" argument */
193
194	mem_max = 0;
195	for (i = 0; i < npmem_ranges; i++) {
196		unsigned long rsize;
197
198		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
199		if ((mem_max + rsize) > mem_limit) {
200			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
201			if (mem_max == mem_limit)
202				npmem_ranges = i;
203			else {
204				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
205						       - (mem_max >> PAGE_SHIFT);
206				npmem_ranges = i + 1;
207				mem_max = mem_limit;
208			}
209			break;
210		}
211		mem_max += rsize;
212	}
213
214	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
215
216#ifndef CONFIG_SPARSEMEM
217	/* Merge the ranges, keeping track of the holes */
 
218	{
219		unsigned long end_pfn;
220		unsigned long hole_pages;
221
222		npmem_holes = 0;
223		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
224		for (i = 1; i < npmem_ranges; i++) {
225
226			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
227			if (hole_pages) {
228				pmem_holes[npmem_holes].start_pfn = end_pfn;
229				pmem_holes[npmem_holes++].pages = hole_pages;
230				end_pfn += hole_pages;
231			}
232			end_pfn += pmem_ranges[i].pages;
233		}
234
235		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
236		npmem_ranges = 1;
237	}
238#endif
239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
240	/*
241	 * Initialize and free the full range of memory in each range.
 
 
 
242	 */
243
 
244	max_pfn = 0;
245	for (i = 0; i < npmem_ranges; i++) {
246		unsigned long start_pfn;
247		unsigned long npages;
248		unsigned long start;
249		unsigned long size;
250
251		start_pfn = pmem_ranges[i].start_pfn;
252		npages = pmem_ranges[i].pages;
253
254		start = start_pfn << PAGE_SHIFT;
255		size = npages << PAGE_SHIFT;
256
257		/* add system RAM memblock */
258		memblock_add(start, size);
259
 
 
260		if ((start_pfn + npages) > max_pfn)
261			max_pfn = start_pfn + npages;
262	}
263
264	/*
265	 * We can't use memblock top-down allocations because we only
266	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
267	 * the assembly bootup code.
268	 */
269	memblock_set_bottom_up(true);
270
271	/* IOMMU is always used to access "high mem" on those boxes
272	 * that can support enough mem that a PCI device couldn't
273	 * directly DMA to any physical addresses.
274	 * ISA DMA support will need to revisit this.
275	 */
276	max_low_pfn = max_pfn;
277
 
 
 
278	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
279
280#define PDC_CONSOLE_IO_IODC_SIZE 32768
281
282	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
283				PDC_CONSOLE_IO_IODC_SIZE));
284	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
285			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 
 
 
 
 
286
287#ifndef CONFIG_SPARSEMEM
288
289	/* reserve the holes */
290
291	for (i = 0; i < npmem_holes; i++) {
292		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
293				(pmem_holes[i].pages << PAGE_SHIFT));
 
 
294	}
295#endif
296
297#ifdef CONFIG_BLK_DEV_INITRD
298	if (initrd_start) {
299		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
300		if (__pa(initrd_start) < mem_max) {
301			unsigned long initrd_reserve;
302
303			if (__pa(initrd_end) > mem_max) {
304				initrd_reserve = mem_max - __pa(initrd_start);
305			} else {
306				initrd_reserve = initrd_end - initrd_start;
307			}
308			initrd_below_start_ok = 1;
309			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
310
311			memblock_reserve(__pa(initrd_start), initrd_reserve);
 
312		}
313	}
314#endif
315
316	data_resource.start =  virt_to_phys(&data_start);
317	data_resource.end = virt_to_phys(_end) - 1;
318	code_resource.start = virt_to_phys(_text);
319	code_resource.end = virt_to_phys(&data_start)-1;
320
321	/* We don't know which region the kernel will be in, so try
322	 * all of them.
323	 */
324	for (i = 0; i < sysram_resource_count; i++) {
325		struct resource *res = &sysram_resources[i];
326		request_resource(res, &code_resource);
327		request_resource(res, &data_resource);
328	}
329	request_resource(&sysram_resources[0], &pdcdata_resource);
 
 
 
 
 
330
331	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
332	pdc_pdt_init();
 
333
334	memblock_allow_resize();
335	memblock_dump_all();
336}
337
338static bool kernel_set_to_readonly;
339
340static void __ref map_pages(unsigned long start_vaddr,
341			    unsigned long start_paddr, unsigned long size,
342			    pgprot_t pgprot, int force)
343{
 
344	pmd_t *pmd;
345	pte_t *pg_table;
346	unsigned long end_paddr;
347	unsigned long start_pmd;
348	unsigned long start_pte;
349	unsigned long tmp1;
350	unsigned long tmp2;
351	unsigned long address;
352	unsigned long vaddr;
353	unsigned long ro_start;
354	unsigned long ro_end;
355	unsigned long kernel_start, kernel_end;
356
357	ro_start = __pa((unsigned long)_text);
358	ro_end   = __pa((unsigned long)&data_start);
359	kernel_start = __pa((unsigned long)&__init_begin);
360	kernel_end  = __pa((unsigned long)&_end);
361
362	end_paddr = start_paddr + size;
363
364	/* for 2-level configuration PTRS_PER_PMD is 0 so start_pmd will be 0 */
 
 
 
 
365	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 
366	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
367
368	address = start_paddr;
369	vaddr = start_vaddr;
370	while (address < end_paddr) {
371		pgd_t *pgd = pgd_offset_k(vaddr);
372		p4d_t *p4d = p4d_offset(pgd, vaddr);
373		pud_t *pud = pud_offset(p4d, vaddr);
 
374
375#if CONFIG_PGTABLE_LEVELS == 3
376		if (pud_none(*pud)) {
377			pmd = memblock_alloc(PAGE_SIZE << PMD_TABLE_ORDER,
378					     PAGE_SIZE << PMD_TABLE_ORDER);
379			if (!pmd)
380				panic("pmd allocation failed.\n");
381			pud_populate(NULL, pud, pmd);
382		}
 
 
383#endif
 
 
 
384
385		pmd = pmd_offset(pud, vaddr);
386		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
387			if (pmd_none(*pmd)) {
388				pg_table = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
389				if (!pg_table)
390					panic("page table allocation failed\n");
391				pmd_populate_kernel(NULL, pmd, pg_table);
 
 
 
 
 
392			}
393
394			pg_table = pte_offset_kernel(pmd, vaddr);
 
 
 
 
395			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
396				pte_t pte;
397				pgprot_t prot;
398				bool huge = false;
399
400				if (force) {
401					prot = pgprot;
402				} else if (address < kernel_start || address >= kernel_end) {
403					/* outside kernel memory */
404					prot = PAGE_KERNEL;
405				} else if (!kernel_set_to_readonly) {
406					/* still initializing, allow writing to RO memory */
407					prot = PAGE_KERNEL_RWX;
408					huge = true;
409				} else if (address >= ro_start) {
410					/* Code (ro) and Data areas */
411					prot = (address < ro_end) ?
412						PAGE_KERNEL_EXEC : PAGE_KERNEL;
413					huge = true;
414				} else {
415					prot = PAGE_KERNEL;
416				}
417
418				pte = __mk_pte(address, prot);
419				if (huge)
 
420					pte = pte_mkhuge(pte);
 
 
 
 
 
 
 
421
422				if (address >= end_paddr)
423					break;
 
 
 
 
424
425				set_pte(pg_table, pte);
426
427				address += PAGE_SIZE;
428				vaddr += PAGE_SIZE;
429			}
430			start_pte = 0;
431
432			if (address >= end_paddr)
433			    break;
434		}
435		start_pmd = 0;
436	}
437}
438
439void __init set_kernel_text_rw(int enable_read_write)
440{
441	unsigned long start = (unsigned long) __init_begin;
442	unsigned long end   = (unsigned long) &data_start;
443
444	map_pages(start, __pa(start), end-start,
445		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
446
447	/* force the kernel to see the new page table entries */
448	flush_cache_all();
449	flush_tlb_all();
450}
451
452void free_initmem(void)
453{
454	unsigned long init_begin = (unsigned long)__init_begin;
455	unsigned long init_end = (unsigned long)__init_end;
456	unsigned long kernel_end  = (unsigned long)&_end;
457
458	/* Remap kernel text and data, but do not touch init section yet. */
459	kernel_set_to_readonly = true;
460	map_pages(init_end, __pa(init_end), kernel_end - init_end,
461		  PAGE_KERNEL, 0);
462
463	/* The init text pages are marked R-X.  We have to
464	 * flush the icache and mark them RW-
465	 *
 
466	 * Do a dummy remap of the data section first (the data
467	 * section is already PAGE_KERNEL) to pull in the TLB entries
468	 * for map_kernel */
469	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
470		  PAGE_KERNEL_RWX, 1);
471	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
472	 * map_pages */
473	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
474		  PAGE_KERNEL, 1);
475
476	/* force the kernel to see the new TLB entries */
477	__flush_tlb_range(0, init_begin, kernel_end);
478
479	/* finally dump all the instructions which were cached, since the
480	 * pages are no-longer executable */
481	flush_icache_range(init_begin, init_end);
482	
483	free_initmem_default(POISON_FREE_INITMEM);
484
485	/* set up a new led state on systems shipped LED State panel */
486	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
487}
488
489
490#ifdef CONFIG_STRICT_KERNEL_RWX
491void mark_rodata_ro(void)
492{
493	/* rodata memory was already mapped with KERNEL_RO access rights by
494           pagetable_init() and map_pages(). No need to do additional stuff here */
495	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
496
497	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
498}
499#endif
500
501
502/*
503 * Just an arbitrary offset to serve as a "hole" between mapping areas
504 * (between top of physical memory and a potential pcxl dma mapping
505 * area, and below the vmalloc mapping area).
506 *
507 * The current 32K value just means that there will be a 32K "hole"
508 * between mapping areas. That means that  any out-of-bounds memory
509 * accesses will hopefully be caught. The vmalloc() routines leaves
510 * a hole of 4kB between each vmalloced area for the same reason.
511 */
512
513 /* Leave room for gateway page expansion */
514#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
515#error KERNEL_MAP_START is in gateway reserved region
516#endif
517#define MAP_START (KERNEL_MAP_START)
518
519#define VM_MAP_OFFSET  (32*1024)
520#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
521				     & ~(VM_MAP_OFFSET-1)))
522
523void *parisc_vmalloc_start __ro_after_init;
524EXPORT_SYMBOL(parisc_vmalloc_start);
525
526#ifdef CONFIG_PA11
527unsigned long pcxl_dma_start __ro_after_init;
528#endif
529
530void __init mem_init(void)
531{
532	/* Do sanity checks on IPC (compat) structures */
533	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
534#ifndef CONFIG_64BIT
535	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
536	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
537	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
538#endif
539#ifdef CONFIG_COMPAT
540	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
541	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
542	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
543	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
544#endif
545
546	/* Do sanity checks on page table constants */
547	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
548	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
549	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
550	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
551			> BITS_PER_LONG);
552#if CONFIG_PGTABLE_LEVELS == 3
553	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PMD);
554#else
555	BUILD_BUG_ON(PT_INITIAL > PTRS_PER_PGD);
556#endif
557
558#ifdef CONFIG_64BIT
559	/* avoid ldil_%L() asm statements to sign-extend into upper 32-bits */
560	BUILD_BUG_ON(__PAGE_OFFSET >= 0x80000000);
561	BUILD_BUG_ON(TMPALIAS_MAP_START >= 0x80000000);
562#endif
563
564	high_memory = __va((max_pfn << PAGE_SHIFT));
565	set_max_mapnr(max_low_pfn);
566	memblock_free_all();
567
568#ifdef CONFIG_PA11
569	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
570		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
571		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
572						+ PCXL_DMA_MAP_SIZE);
573	} else
 
 
 
 
 
574#endif
575		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
576
577#if 0
578	/*
579	 * Do not expose the virtual kernel memory layout to userspace.
580	 * But keep code for debugging purposes.
581	 */
582	printk("virtual kernel memory layout:\n"
583	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
584	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
585	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
586	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
587	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
588	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
589
590	       (void*)VMALLOC_START, (void*)VMALLOC_END,
591	       (VMALLOC_END - VMALLOC_START) >> 20,
592
593	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
594	       (unsigned long)(FIXMAP_SIZE / 1024),
595
596	       __va(0), high_memory,
597	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
598
599	       __init_begin, __init_end,
600	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
601
602	       _etext, _edata,
603	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
604
605	       _text, _etext,
606	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
607#endif
608}
609
610unsigned long *empty_zero_page __ro_after_init;
611EXPORT_SYMBOL(empty_zero_page);
612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613/*
614 * pagetable_init() sets up the page tables
615 *
616 * Note that gateway_init() places the Linux gateway page at page 0.
617 * Since gateway pages cannot be dereferenced this has the desirable
618 * side effect of trapping those pesky NULL-reference errors in the
619 * kernel.
620 */
621static void __init pagetable_init(void)
622{
623	int range;
624
625	/* Map each physical memory range to its kernel vaddr */
626
627	for (range = 0; range < npmem_ranges; range++) {
628		unsigned long start_paddr;
629		unsigned long end_paddr;
630		unsigned long size;
631
632		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
633		size = pmem_ranges[range].pages << PAGE_SHIFT;
634		end_paddr = start_paddr + size;
635
636		map_pages((unsigned long)__va(start_paddr), start_paddr,
637			  size, PAGE_KERNEL, 0);
638	}
639
640#ifdef CONFIG_BLK_DEV_INITRD
641	if (initrd_end && initrd_end > mem_limit) {
642		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
643		map_pages(initrd_start, __pa(initrd_start),
644			  initrd_end - initrd_start, PAGE_KERNEL, 0);
645	}
646#endif
647
648	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
649	if (!empty_zero_page)
650		panic("zero page allocation failed.\n");
651
652}
653
654static void __init gateway_init(void)
655{
656	unsigned long linux_gateway_page_addr;
657	/* FIXME: This is 'const' in order to trick the compiler
658	   into not treating it as DP-relative data. */
659	extern void * const linux_gateway_page;
660
661	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
662
663	/*
664	 * Setup Linux Gateway page.
665	 *
666	 * The Linux gateway page will reside in kernel space (on virtual
667	 * page 0), so it doesn't need to be aliased into user space.
668	 */
669
670	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
671		  PAGE_SIZE, PAGE_GATEWAY, 1);
672}
673
674static void __init parisc_bootmem_free(void)
675{
676	unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0, };
677
678	max_zone_pfn[0] = memblock_end_of_DRAM();
679
680	free_area_init(max_zone_pfn);
681}
682
683void __init paging_init(void)
684{
685	setup_bootmem();
686	pagetable_init();
687	gateway_init();
688	flush_cache_all_local(); /* start with known state */
689	flush_tlb_all_local(NULL);
690
691	sparse_init();
692	parisc_bootmem_free();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
693}
694
695#ifdef CONFIG_PA20
696
697/*
698 * Currently, all PA20 chips have 18 bit protection IDs, which is the
699 * limiting factor (space ids are 32 bits).
700 */
701
702#define NR_SPACE_IDS 262144
703
704#else
705
706/*
707 * Currently we have a one-to-one relationship between space IDs and
708 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
709 * support 15 bit protection IDs, so that is the limiting factor.
710 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
711 * probably not worth the effort for a special case here.
712 */
713
714#define NR_SPACE_IDS 32768
715
716#endif  /* !CONFIG_PA20 */
717
718#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
719#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
720
721static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
722static unsigned long dirty_space_id[SID_ARRAY_SIZE];
723static unsigned long space_id_index;
724static unsigned long free_space_ids = NR_SPACE_IDS - 1;
725static unsigned long dirty_space_ids;
726
727static DEFINE_SPINLOCK(sid_lock);
728
729unsigned long alloc_sid(void)
730{
731	unsigned long index;
732
733	spin_lock(&sid_lock);
734
735	if (free_space_ids == 0) {
736		if (dirty_space_ids != 0) {
737			spin_unlock(&sid_lock);
738			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
739			spin_lock(&sid_lock);
740		}
741		BUG_ON(free_space_ids == 0);
742	}
743
744	free_space_ids--;
745
746	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
747	space_id[BIT_WORD(index)] |= BIT_MASK(index);
748	space_id_index = index;
749
750	spin_unlock(&sid_lock);
751
752	return index << SPACEID_SHIFT;
753}
754
755void free_sid(unsigned long spaceid)
756{
757	unsigned long index = spaceid >> SPACEID_SHIFT;
758	unsigned long *dirty_space_offset, mask;
759
760	dirty_space_offset = &dirty_space_id[BIT_WORD(index)];
761	mask = BIT_MASK(index);
762
763	spin_lock(&sid_lock);
764
765	BUG_ON(*dirty_space_offset & mask); /* attempt to free space id twice */
766
767	*dirty_space_offset |= mask;
768	dirty_space_ids++;
769
770	spin_unlock(&sid_lock);
771}
772
773
774#ifdef CONFIG_SMP
775static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
776{
777	int i;
778
779	/* NOTE: sid_lock must be held upon entry */
780
781	*ndirtyptr = dirty_space_ids;
782	if (dirty_space_ids != 0) {
783	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
784		dirty_array[i] = dirty_space_id[i];
785		dirty_space_id[i] = 0;
786	    }
787	    dirty_space_ids = 0;
788	}
789
790	return;
791}
792
793static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
794{
795	int i;
796
797	/* NOTE: sid_lock must be held upon entry */
798
799	if (ndirty != 0) {
800		for (i = 0; i < SID_ARRAY_SIZE; i++) {
801			space_id[i] ^= dirty_array[i];
802		}
803
804		free_space_ids += ndirty;
805		space_id_index = 0;
806	}
807}
808
809#else /* CONFIG_SMP */
810
811static void recycle_sids(void)
812{
813	int i;
814
815	/* NOTE: sid_lock must be held upon entry */
816
817	if (dirty_space_ids != 0) {
818		for (i = 0; i < SID_ARRAY_SIZE; i++) {
819			space_id[i] ^= dirty_space_id[i];
820			dirty_space_id[i] = 0;
821		}
822
823		free_space_ids += dirty_space_ids;
824		dirty_space_ids = 0;
825		space_id_index = 0;
826	}
827}
828#endif
829
830/*
831 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
832 * purged, we can safely reuse the space ids that were released but
833 * not flushed from the tlb.
834 */
835
836#ifdef CONFIG_SMP
837
838static unsigned long recycle_ndirty;
839static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
840static unsigned int recycle_inuse;
841
842void flush_tlb_all(void)
843{
844	int do_recycle;
845
 
846	do_recycle = 0;
847	spin_lock(&sid_lock);
848	__inc_irq_stat(irq_tlb_count);
849	if (dirty_space_ids > RECYCLE_THRESHOLD) {
850	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
851	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
852	    recycle_inuse++;
853	    do_recycle++;
854	}
855	spin_unlock(&sid_lock);
856	on_each_cpu(flush_tlb_all_local, NULL, 1);
857	if (do_recycle) {
858	    spin_lock(&sid_lock);
859	    recycle_sids(recycle_ndirty,recycle_dirty_array);
860	    recycle_inuse = 0;
861	    spin_unlock(&sid_lock);
862	}
863}
864#else
865void flush_tlb_all(void)
866{
 
867	spin_lock(&sid_lock);
868	__inc_irq_stat(irq_tlb_count);
869	flush_tlb_all_local(NULL);
870	recycle_sids();
871	spin_unlock(&sid_lock);
872}
873#endif
874
875static const pgprot_t protection_map[16] = {
876	[VM_NONE]					= PAGE_NONE,
877	[VM_READ]					= PAGE_READONLY,
878	[VM_WRITE]					= PAGE_NONE,
879	[VM_WRITE | VM_READ]				= PAGE_READONLY,
880	[VM_EXEC]					= PAGE_EXECREAD,
881	[VM_EXEC | VM_READ]				= PAGE_EXECREAD,
882	[VM_EXEC | VM_WRITE]				= PAGE_EXECREAD,
883	[VM_EXEC | VM_WRITE | VM_READ]			= PAGE_EXECREAD,
884	[VM_SHARED]					= PAGE_NONE,
885	[VM_SHARED | VM_READ]				= PAGE_READONLY,
886	[VM_SHARED | VM_WRITE]				= PAGE_WRITEONLY,
887	[VM_SHARED | VM_WRITE | VM_READ]		= PAGE_SHARED,
888	[VM_SHARED | VM_EXEC]				= PAGE_EXECREAD,
889	[VM_SHARED | VM_EXEC | VM_READ]			= PAGE_EXECREAD,
890	[VM_SHARED | VM_EXEC | VM_WRITE]		= PAGE_RWX,
891	[VM_SHARED | VM_EXEC | VM_WRITE | VM_READ]	= PAGE_RWX
892};
893DECLARE_VM_GET_PAGE_PROT