Linux Audio

Check our new training course

Loading...
v4.6
  1/*
  2 *  linux/arch/parisc/mm/init.c
  3 *
  4 *  Copyright (C) 1995	Linus Torvalds
  5 *  Copyright 1999 SuSE GmbH
  6 *    changed by Philipp Rumpf
  7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
  9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 10 *
 11 */
 12
 13
 14#include <linux/module.h>
 15#include <linux/mm.h>
 16#include <linux/bootmem.h>
 17#include <linux/gfp.h>
 18#include <linux/delay.h>
 19#include <linux/init.h>
 20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 29#include <asm/pgtable.h>
 30#include <asm/tlb.h>
 31#include <asm/pdc_chassis.h>
 32#include <asm/mmzone.h>
 33#include <asm/sections.h>
 34#include <asm/msgbuf.h>
 35
 36extern int  data_start;
 37extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 38
 39#if CONFIG_PGTABLE_LEVELS == 3
 40/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 42 * guarantee that global objects will be laid out in memory in the same order
 43 * as the order of declaration, so put these in different sections and use
 44 * the linker script to order them. */
 45pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 46#endif
 47
 48pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 49pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 50
 51#ifdef CONFIG_DISCONTIGMEM
 52struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
 53signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
 54#endif
 55
 56static struct resource data_resource = {
 57	.name	= "Kernel data",
 58	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 59};
 60
 61static struct resource code_resource = {
 62	.name	= "Kernel code",
 63	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 64};
 65
 66static struct resource pdcdata_resource = {
 67	.name	= "PDC data (Page Zero)",
 68	.start	= 0,
 69	.end	= 0x9ff,
 70	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 71};
 72
 73static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
 74
 75/* The following array is initialized from the firmware specific
 76 * information retrieved in kernel/inventory.c.
 77 */
 78
 79physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
 80int npmem_ranges __read_mostly;
 81
 82#ifdef CONFIG_64BIT
 83#define MAX_MEM         (~0UL)
 84#else /* !CONFIG_64BIT */
 85#define MAX_MEM         (3584U*1024U*1024U)
 86#endif /* !CONFIG_64BIT */
 87
 88static unsigned long mem_limit __read_mostly = MAX_MEM;
 89
 90static void __init mem_limit_func(void)
 91{
 92	char *cp, *end;
 93	unsigned long limit;
 94
 95	/* We need this before __setup() functions are called */
 96
 97	limit = MAX_MEM;
 98	for (cp = boot_command_line; *cp; ) {
 99		if (memcmp(cp, "mem=", 4) == 0) {
100			cp += 4;
101			limit = memparse(cp, &end);
102			if (end != cp)
103				break;
104			cp = end;
105		} else {
106			while (*cp != ' ' && *cp)
107				++cp;
108			while (*cp == ' ')
109				++cp;
110		}
111	}
112
113	if (limit < mem_limit)
114		mem_limit = limit;
115}
116
117#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
118
119static void __init setup_bootmem(void)
120{
121	unsigned long bootmap_size;
122	unsigned long mem_max;
123	unsigned long bootmap_pages;
124	unsigned long bootmap_start_pfn;
125	unsigned long bootmap_pfn;
126#ifndef CONFIG_DISCONTIGMEM
127	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
128	int npmem_holes;
129#endif
130	int i, sysram_resource_count;
131
132	disable_sr_hashing(); /* Turn off space register hashing */
133
134	/*
135	 * Sort the ranges. Since the number of ranges is typically
136	 * small, and performance is not an issue here, just do
137	 * a simple insertion sort.
138	 */
139
140	for (i = 1; i < npmem_ranges; i++) {
141		int j;
142
143		for (j = i; j > 0; j--) {
144			unsigned long tmp;
145
146			if (pmem_ranges[j-1].start_pfn <
147			    pmem_ranges[j].start_pfn) {
148
149				break;
150			}
151			tmp = pmem_ranges[j-1].start_pfn;
152			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
153			pmem_ranges[j].start_pfn = tmp;
154			tmp = pmem_ranges[j-1].pages;
155			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
156			pmem_ranges[j].pages = tmp;
157		}
158	}
159
160#ifndef CONFIG_DISCONTIGMEM
161	/*
162	 * Throw out ranges that are too far apart (controlled by
163	 * MAX_GAP).
164	 */
165
166	for (i = 1; i < npmem_ranges; i++) {
167		if (pmem_ranges[i].start_pfn -
168			(pmem_ranges[i-1].start_pfn +
169			 pmem_ranges[i-1].pages) > MAX_GAP) {
170			npmem_ranges = i;
171			printk("Large gap in memory detected (%ld pages). "
172			       "Consider turning on CONFIG_DISCONTIGMEM\n",
173			       pmem_ranges[i].start_pfn -
174			       (pmem_ranges[i-1].start_pfn +
175			        pmem_ranges[i-1].pages));
176			break;
177		}
178	}
179#endif
180
181	if (npmem_ranges > 1) {
182
183		/* Print the memory ranges */
184
185		printk(KERN_INFO "Memory Ranges:\n");
186
187		for (i = 0; i < npmem_ranges; i++) {
188			unsigned long start;
189			unsigned long size;
190
191			size = (pmem_ranges[i].pages << PAGE_SHIFT);
192			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
193			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
194				i,start, start + (size - 1), size >> 20);
195		}
196	}
197
198	sysram_resource_count = npmem_ranges;
199	for (i = 0; i < sysram_resource_count; i++) {
200		struct resource *res = &sysram_resources[i];
201		res->name = "System RAM";
202		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
203		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
204		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
205		request_resource(&iomem_resource, res);
206	}
207
208	/*
209	 * For 32 bit kernels we limit the amount of memory we can
210	 * support, in order to preserve enough kernel address space
211	 * for other purposes. For 64 bit kernels we don't normally
212	 * limit the memory, but this mechanism can be used to
213	 * artificially limit the amount of memory (and it is written
214	 * to work with multiple memory ranges).
215	 */
216
217	mem_limit_func();       /* check for "mem=" argument */
218
219	mem_max = 0;
220	for (i = 0; i < npmem_ranges; i++) {
221		unsigned long rsize;
222
223		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
224		if ((mem_max + rsize) > mem_limit) {
225			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
226			if (mem_max == mem_limit)
227				npmem_ranges = i;
228			else {
229				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
230						       - (mem_max >> PAGE_SHIFT);
231				npmem_ranges = i + 1;
232				mem_max = mem_limit;
233			}
234			break;
235		}
236		mem_max += rsize;
237	}
238
239	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240
241#ifndef CONFIG_DISCONTIGMEM
242	/* Merge the ranges, keeping track of the holes */
243
244	{
245		unsigned long end_pfn;
246		unsigned long hole_pages;
247
248		npmem_holes = 0;
249		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250		for (i = 1; i < npmem_ranges; i++) {
251
252			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253			if (hole_pages) {
254				pmem_holes[npmem_holes].start_pfn = end_pfn;
255				pmem_holes[npmem_holes++].pages = hole_pages;
256				end_pfn += hole_pages;
257			}
258			end_pfn += pmem_ranges[i].pages;
259		}
260
261		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262		npmem_ranges = 1;
263	}
264#endif
265
266	bootmap_pages = 0;
267	for (i = 0; i < npmem_ranges; i++)
268		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269
270	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271
272#ifdef CONFIG_DISCONTIGMEM
273	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275		NODE_DATA(i)->bdata = &bootmem_node_data[i];
276	}
277	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278
279	for (i = 0; i < npmem_ranges; i++) {
280		node_set_state(i, N_NORMAL_MEMORY);
281		node_set_online(i);
282	}
283#endif
284
285	/*
286	 * Initialize and free the full range of memory in each range.
287	 * Note that the only writing these routines do are to the bootmap,
288	 * and we've made sure to locate the bootmap properly so that they
289	 * won't be writing over anything important.
290	 */
291
292	bootmap_pfn = bootmap_start_pfn;
293	max_pfn = 0;
294	for (i = 0; i < npmem_ranges; i++) {
295		unsigned long start_pfn;
296		unsigned long npages;
297
298		start_pfn = pmem_ranges[i].start_pfn;
299		npages = pmem_ranges[i].pages;
300
301		bootmap_size = init_bootmem_node(NODE_DATA(i),
302						bootmap_pfn,
303						start_pfn,
304						(start_pfn + npages) );
305		free_bootmem_node(NODE_DATA(i),
306				  (start_pfn << PAGE_SHIFT),
307				  (npages << PAGE_SHIFT) );
308		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309		if ((start_pfn + npages) > max_pfn)
310			max_pfn = start_pfn + npages;
311	}
312
313	/* IOMMU is always used to access "high mem" on those boxes
314	 * that can support enough mem that a PCI device couldn't
315	 * directly DMA to any physical addresses.
316	 * ISA DMA support will need to revisit this.
317	 */
318	max_low_pfn = max_pfn;
319
320	/* bootmap sizing messed up? */
321	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322
323	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324
325#define PDC_CONSOLE_IO_IODC_SIZE 32768
326
327	reserve_bootmem_node(NODE_DATA(0), 0UL,
328			(unsigned long)(PAGE0->mem_free +
329				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330	reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
331			(unsigned long)(_end - KERNEL_BINARY_TEXT_START),
332			BOOTMEM_DEFAULT);
333	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
334			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
335			BOOTMEM_DEFAULT);
336
337#ifndef CONFIG_DISCONTIGMEM
338
339	/* reserve the holes */
340
341	for (i = 0; i < npmem_holes; i++) {
342		reserve_bootmem_node(NODE_DATA(0),
343				(pmem_holes[i].start_pfn << PAGE_SHIFT),
344				(pmem_holes[i].pages << PAGE_SHIFT),
345				BOOTMEM_DEFAULT);
346	}
347#endif
348
349#ifdef CONFIG_BLK_DEV_INITRD
350	if (initrd_start) {
351		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
352		if (__pa(initrd_start) < mem_max) {
353			unsigned long initrd_reserve;
354
355			if (__pa(initrd_end) > mem_max) {
356				initrd_reserve = mem_max - __pa(initrd_start);
357			} else {
358				initrd_reserve = initrd_end - initrd_start;
359			}
360			initrd_below_start_ok = 1;
361			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362
363			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
364					initrd_reserve, BOOTMEM_DEFAULT);
365		}
366	}
367#endif
368
369	data_resource.start =  virt_to_phys(&data_start);
370	data_resource.end = virt_to_phys(_end) - 1;
371	code_resource.start = virt_to_phys(_text);
372	code_resource.end = virt_to_phys(&data_start)-1;
373
374	/* We don't know which region the kernel will be in, so try
375	 * all of them.
376	 */
377	for (i = 0; i < sysram_resource_count; i++) {
378		struct resource *res = &sysram_resources[i];
379		request_resource(res, &code_resource);
380		request_resource(res, &data_resource);
381	}
382	request_resource(&sysram_resources[0], &pdcdata_resource);
383}
384
385static int __init parisc_text_address(unsigned long vaddr)
386{
387	static unsigned long head_ptr __initdata;
388
389	if (!head_ptr)
390		head_ptr = PAGE_MASK & (unsigned long)
391			dereference_function_descriptor(&parisc_kernel_start);
392
393	return core_kernel_text(vaddr) || vaddr == head_ptr;
394}
395
396static void __init map_pages(unsigned long start_vaddr,
397			     unsigned long start_paddr, unsigned long size,
398			     pgprot_t pgprot, int force)
399{
400	pgd_t *pg_dir;
401	pmd_t *pmd;
402	pte_t *pg_table;
403	unsigned long end_paddr;
404	unsigned long start_pmd;
405	unsigned long start_pte;
406	unsigned long tmp1;
407	unsigned long tmp2;
408	unsigned long address;
409	unsigned long vaddr;
410	unsigned long ro_start;
411	unsigned long ro_end;
412	unsigned long kernel_end;
 
 
 
413
414	ro_start = __pa((unsigned long)_text);
415	ro_end   = __pa((unsigned long)&data_start);
416	kernel_end  = __pa((unsigned long)&_end);
 
417
418	end_paddr = start_paddr + size;
419
420	pg_dir = pgd_offset_k(start_vaddr);
421
422#if PTRS_PER_PMD == 1
423	start_pmd = 0;
424#else
425	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
426#endif
427	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
428
429	address = start_paddr;
430	vaddr = start_vaddr;
431	while (address < end_paddr) {
432#if PTRS_PER_PMD == 1
433		pmd = (pmd_t *)__pa(pg_dir);
434#else
435		pmd = (pmd_t *)pgd_address(*pg_dir);
436
437		/*
438		 * pmd is physical at this point
439		 */
440
441		if (!pmd) {
442			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
443			pmd = (pmd_t *) __pa(pmd);
444		}
445
446		pgd_populate(NULL, pg_dir, __va(pmd));
447#endif
448		pg_dir++;
449
450		/* now change pmd to kernel virtual addresses */
451
452		pmd = (pmd_t *)__va(pmd) + start_pmd;
453		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
454
455			/*
456			 * pg_table is physical at this point
457			 */
458
459			pg_table = (pte_t *)pmd_address(*pmd);
460			if (!pg_table) {
461				pg_table = (pte_t *)
462					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
463				pg_table = (pte_t *) __pa(pg_table);
464			}
465
466			pmd_populate_kernel(NULL, pmd, __va(pg_table));
467
468			/* now change pg_table to kernel virtual addresses */
469
470			pg_table = (pte_t *) __va(pg_table) + start_pte;
471			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
472				pte_t pte;
473
 
 
 
 
474				if (force)
475					pte =  __mk_pte(address, pgprot);
476				else if (parisc_text_address(vaddr)) {
 
477					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
478					if (address >= ro_start && address < kernel_end)
479						pte = pte_mkhuge(pte);
480				}
481				else
482#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
483				if (address >= ro_start && address < ro_end) {
484					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485					pte = pte_mkhuge(pte);
486				} else
 
487#endif
488				{
489					pte = __mk_pte(address, pgprot);
490					if (address >= ro_start && address < kernel_end)
491						pte = pte_mkhuge(pte);
492				}
493
494				if (address >= end_paddr) {
495					if (force)
496						break;
497					else
498						pte_val(pte) = 0;
499				}
500
501				set_pte(pg_table, pte);
502
503				address += PAGE_SIZE;
504				vaddr += PAGE_SIZE;
505			}
506			start_pte = 0;
507
508			if (address >= end_paddr)
509			    break;
510		}
511		start_pmd = 0;
512	}
513}
514
515void free_initmem(void)
516{
517	unsigned long init_begin = (unsigned long)__init_begin;
518	unsigned long init_end = (unsigned long)__init_end;
519
520	/* The init text pages are marked R-X.  We have to
521	 * flush the icache and mark them RW-
522	 *
523	 * This is tricky, because map_pages is in the init section.
524	 * Do a dummy remap of the data section first (the data
525	 * section is already PAGE_KERNEL) to pull in the TLB entries
526	 * for map_kernel */
527	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
528		  PAGE_KERNEL_RWX, 1);
529	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
530	 * map_pages */
531	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
532		  PAGE_KERNEL, 1);
533
534	/* force the kernel to see the new TLB entries */
535	__flush_tlb_range(0, init_begin, init_end);
536
 
 
 
537	/* finally dump all the instructions which were cached, since the
538	 * pages are no-longer executable */
539	flush_icache_range(init_begin, init_end);
540	
541	free_initmem_default(POISON_FREE_INITMEM);
542
543	/* set up a new led state on systems shipped LED State panel */
544	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
545}
546
547
548#ifdef CONFIG_DEBUG_RODATA
549void mark_rodata_ro(void)
550{
551	/* rodata memory was already mapped with KERNEL_RO access rights by
552           pagetable_init() and map_pages(). No need to do additional stuff here */
553	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
554		(unsigned long)(__end_rodata - __start_rodata) >> 10);
555}
556#endif
557
558
559/*
560 * Just an arbitrary offset to serve as a "hole" between mapping areas
561 * (between top of physical memory and a potential pcxl dma mapping
562 * area, and below the vmalloc mapping area).
563 *
564 * The current 32K value just means that there will be a 32K "hole"
565 * between mapping areas. That means that  any out-of-bounds memory
566 * accesses will hopefully be caught. The vmalloc() routines leaves
567 * a hole of 4kB between each vmalloced area for the same reason.
568 */
569
570 /* Leave room for gateway page expansion */
571#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
572#error KERNEL_MAP_START is in gateway reserved region
573#endif
574#define MAP_START (KERNEL_MAP_START)
575
576#define VM_MAP_OFFSET  (32*1024)
577#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
578				     & ~(VM_MAP_OFFSET-1)))
579
580void *parisc_vmalloc_start __read_mostly;
581EXPORT_SYMBOL(parisc_vmalloc_start);
582
583#ifdef CONFIG_PA11
584unsigned long pcxl_dma_start __read_mostly;
585#endif
586
587void __init mem_init(void)
588{
589	/* Do sanity checks on IPC (compat) structures */
590	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
591#ifndef CONFIG_64BIT
592	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
593	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
594	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
595#endif
596#ifdef CONFIG_COMPAT
597	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
598	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
599	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
600	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
601#endif
602
603	/* Do sanity checks on page table constants */
604	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
605	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
606	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
607	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
608			> BITS_PER_LONG);
609
610	high_memory = __va((max_pfn << PAGE_SHIFT));
611	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
612	free_all_bootmem();
613
614#ifdef CONFIG_PA11
615	if (hppa_dma_ops == &pcxl_dma_ops) {
616		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
617		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
618						+ PCXL_DMA_MAP_SIZE);
619	} else {
620		pcxl_dma_start = 0;
621		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
622	}
623#else
624	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
625#endif
626
627	mem_init_print_info(NULL);
628#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
629	printk("virtual kernel memory layout:\n"
630	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
631	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
632	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
633	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
634	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
635
636	       (void*)VMALLOC_START, (void*)VMALLOC_END,
637	       (VMALLOC_END - VMALLOC_START) >> 20,
638
639	       __va(0), high_memory,
640	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
641
642	       __init_begin, __init_end,
643	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
644
645	       _etext, _edata,
646	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
647
648	       _text, _etext,
649	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
650#endif
651}
652
653unsigned long *empty_zero_page __read_mostly;
654EXPORT_SYMBOL(empty_zero_page);
655
656void show_mem(unsigned int filter)
657{
658	int total = 0,reserved = 0;
659	pg_data_t *pgdat;
660
661	printk(KERN_INFO "Mem-info:\n");
662	show_free_areas(filter);
663
664	for_each_online_pgdat(pgdat) {
665		unsigned long flags;
666		int zoneid;
667
668		pgdat_resize_lock(pgdat, &flags);
669		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
670			struct zone *zone = &pgdat->node_zones[zoneid];
671			if (!populated_zone(zone))
672				continue;
673
674			total += zone->present_pages;
675			reserved = zone->present_pages - zone->managed_pages;
676		}
677		pgdat_resize_unlock(pgdat, &flags);
678	}
679
680	printk(KERN_INFO "%d pages of RAM\n", total);
681	printk(KERN_INFO "%d reserved pages\n", reserved);
682
683#ifdef CONFIG_DISCONTIGMEM
684	{
685		struct zonelist *zl;
686		int i, j;
687
688		for (i = 0; i < npmem_ranges; i++) {
689			zl = node_zonelist(i, 0);
690			for (j = 0; j < MAX_NR_ZONES; j++) {
691				struct zoneref *z;
692				struct zone *zone;
693
694				printk("Zone list for zone %d on node %d: ", j, i);
695				for_each_zone_zonelist(zone, z, zl, j)
696					printk("[%d/%s] ", zone_to_nid(zone),
697								zone->name);
698				printk("\n");
699			}
700		}
701	}
702#endif
703}
704
705/*
706 * pagetable_init() sets up the page tables
707 *
708 * Note that gateway_init() places the Linux gateway page at page 0.
709 * Since gateway pages cannot be dereferenced this has the desirable
710 * side effect of trapping those pesky NULL-reference errors in the
711 * kernel.
712 */
713static void __init pagetable_init(void)
714{
715	int range;
716
717	/* Map each physical memory range to its kernel vaddr */
718
719	for (range = 0; range < npmem_ranges; range++) {
720		unsigned long start_paddr;
721		unsigned long end_paddr;
722		unsigned long size;
723
724		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 
725		size = pmem_ranges[range].pages << PAGE_SHIFT;
726		end_paddr = start_paddr + size;
727
728		map_pages((unsigned long)__va(start_paddr), start_paddr,
729			  size, PAGE_KERNEL, 0);
730	}
731
732#ifdef CONFIG_BLK_DEV_INITRD
733	if (initrd_end && initrd_end > mem_limit) {
734		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
735		map_pages(initrd_start, __pa(initrd_start),
736			  initrd_end - initrd_start, PAGE_KERNEL, 0);
737	}
738#endif
739
740	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 
741}
742
743static void __init gateway_init(void)
744{
745	unsigned long linux_gateway_page_addr;
746	/* FIXME: This is 'const' in order to trick the compiler
747	   into not treating it as DP-relative data. */
748	extern void * const linux_gateway_page;
749
750	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
751
752	/*
753	 * Setup Linux Gateway page.
754	 *
755	 * The Linux gateway page will reside in kernel space (on virtual
756	 * page 0), so it doesn't need to be aliased into user space.
757	 */
758
759	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
760		  PAGE_SIZE, PAGE_GATEWAY, 1);
761}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
762
763void __init paging_init(void)
764{
765	int i;
766
767	setup_bootmem();
768	pagetable_init();
769	gateway_init();
770	flush_cache_all_local(); /* start with known state */
771	flush_tlb_all_local(NULL);
772
773	for (i = 0; i < npmem_ranges; i++) {
774		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
775
776		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
777
778#ifdef CONFIG_DISCONTIGMEM
779		/* Need to initialize the pfnnid_map before we can initialize
780		   the zone */
781		{
782		    int j;
783		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
784			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
785			 j++) {
786			pfnnid_map[j] = i;
787		    }
788		}
789#endif
790
791		free_area_init_node(i, zones_size,
792				pmem_ranges[i].start_pfn, NULL);
793	}
794}
795
796#ifdef CONFIG_PA20
797
798/*
799 * Currently, all PA20 chips have 18 bit protection IDs, which is the
800 * limiting factor (space ids are 32 bits).
801 */
802
803#define NR_SPACE_IDS 262144
804
805#else
806
807/*
808 * Currently we have a one-to-one relationship between space IDs and
809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
810 * support 15 bit protection IDs, so that is the limiting factor.
811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
812 * probably not worth the effort for a special case here.
813 */
814
815#define NR_SPACE_IDS 32768
816
817#endif  /* !CONFIG_PA20 */
818
819#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
820#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
821
822static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
823static unsigned long dirty_space_id[SID_ARRAY_SIZE];
824static unsigned long space_id_index;
825static unsigned long free_space_ids = NR_SPACE_IDS - 1;
826static unsigned long dirty_space_ids = 0;
827
828static DEFINE_SPINLOCK(sid_lock);
829
830unsigned long alloc_sid(void)
831{
832	unsigned long index;
833
834	spin_lock(&sid_lock);
835
836	if (free_space_ids == 0) {
837		if (dirty_space_ids != 0) {
838			spin_unlock(&sid_lock);
839			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
840			spin_lock(&sid_lock);
841		}
842		BUG_ON(free_space_ids == 0);
843	}
844
845	free_space_ids--;
846
847	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
848	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
849	space_id_index = index;
850
851	spin_unlock(&sid_lock);
852
853	return index << SPACEID_SHIFT;
854}
855
856void free_sid(unsigned long spaceid)
857{
858	unsigned long index = spaceid >> SPACEID_SHIFT;
859	unsigned long *dirty_space_offset;
860
861	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
862	index &= (BITS_PER_LONG - 1);
863
864	spin_lock(&sid_lock);
865
866	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
867
868	*dirty_space_offset |= (1L << index);
869	dirty_space_ids++;
870
871	spin_unlock(&sid_lock);
872}
873
874
875#ifdef CONFIG_SMP
876static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
877{
878	int i;
879
880	/* NOTE: sid_lock must be held upon entry */
881
882	*ndirtyptr = dirty_space_ids;
883	if (dirty_space_ids != 0) {
884	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
885		dirty_array[i] = dirty_space_id[i];
886		dirty_space_id[i] = 0;
887	    }
888	    dirty_space_ids = 0;
889	}
890
891	return;
892}
893
894static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
895{
896	int i;
897
898	/* NOTE: sid_lock must be held upon entry */
899
900	if (ndirty != 0) {
901		for (i = 0; i < SID_ARRAY_SIZE; i++) {
902			space_id[i] ^= dirty_array[i];
903		}
904
905		free_space_ids += ndirty;
906		space_id_index = 0;
907	}
908}
909
910#else /* CONFIG_SMP */
911
912static void recycle_sids(void)
913{
914	int i;
915
916	/* NOTE: sid_lock must be held upon entry */
917
918	if (dirty_space_ids != 0) {
919		for (i = 0; i < SID_ARRAY_SIZE; i++) {
920			space_id[i] ^= dirty_space_id[i];
921			dirty_space_id[i] = 0;
922		}
923
924		free_space_ids += dirty_space_ids;
925		dirty_space_ids = 0;
926		space_id_index = 0;
927	}
928}
929#endif
930
931/*
932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
933 * purged, we can safely reuse the space ids that were released but
934 * not flushed from the tlb.
935 */
936
937#ifdef CONFIG_SMP
938
939static unsigned long recycle_ndirty;
940static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
941static unsigned int recycle_inuse;
942
943void flush_tlb_all(void)
944{
945	int do_recycle;
946
947	__inc_irq_stat(irq_tlb_count);
948	do_recycle = 0;
949	spin_lock(&sid_lock);
950	if (dirty_space_ids > RECYCLE_THRESHOLD) {
951	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
952	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
953	    recycle_inuse++;
954	    do_recycle++;
955	}
956	spin_unlock(&sid_lock);
957	on_each_cpu(flush_tlb_all_local, NULL, 1);
958	if (do_recycle) {
959	    spin_lock(&sid_lock);
960	    recycle_sids(recycle_ndirty,recycle_dirty_array);
961	    recycle_inuse = 0;
962	    spin_unlock(&sid_lock);
963	}
964}
965#else
966void flush_tlb_all(void)
967{
968	__inc_irq_stat(irq_tlb_count);
969	spin_lock(&sid_lock);
970	flush_tlb_all_local(NULL);
971	recycle_sids();
972	spin_unlock(&sid_lock);
973}
974#endif
975
976#ifdef CONFIG_BLK_DEV_INITRD
977void free_initrd_mem(unsigned long start, unsigned long end)
978{
979	free_reserved_area((void *)start, (void *)end, -1, "initrd");
980}
981#endif
v3.15
   1/*
   2 *  linux/arch/parisc/mm/init.c
   3 *
   4 *  Copyright (C) 1995	Linus Torvalds
   5 *  Copyright 1999 SuSE GmbH
   6 *    changed by Philipp Rumpf
   7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
   8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
   9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
  10 *
  11 */
  12
  13
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/bootmem.h>
  17#include <linux/gfp.h>
  18#include <linux/delay.h>
  19#include <linux/init.h>
  20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
  21#include <linux/initrd.h>
  22#include <linux/swap.h>
  23#include <linux/unistd.h>
  24#include <linux/nodemask.h>	/* for node_online_map */
  25#include <linux/pagemap.h>	/* for release_pages and page_cache_release */
 
  26
  27#include <asm/pgalloc.h>
  28#include <asm/pgtable.h>
  29#include <asm/tlb.h>
  30#include <asm/pdc_chassis.h>
  31#include <asm/mmzone.h>
  32#include <asm/sections.h>
 
  33
  34extern int  data_start;
  35extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
  36
  37#if PT_NLEVELS == 3
  38/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
  39 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
  40 * guarantee that global objects will be laid out in memory in the same order
  41 * as the order of declaration, so put these in different sections and use
  42 * the linker script to order them. */
  43pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
  44#endif
  45
  46pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
  47pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
  48
  49#ifdef CONFIG_DISCONTIGMEM
  50struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
  51signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
  52#endif
  53
  54static struct resource data_resource = {
  55	.name	= "Kernel data",
  56	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  57};
  58
  59static struct resource code_resource = {
  60	.name	= "Kernel code",
  61	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  62};
  63
  64static struct resource pdcdata_resource = {
  65	.name	= "PDC data (Page Zero)",
  66	.start	= 0,
  67	.end	= 0x9ff,
  68	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
  69};
  70
  71static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
  72
  73/* The following array is initialized from the firmware specific
  74 * information retrieved in kernel/inventory.c.
  75 */
  76
  77physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
  78int npmem_ranges __read_mostly;
  79
  80#ifdef CONFIG_64BIT
  81#define MAX_MEM         (~0UL)
  82#else /* !CONFIG_64BIT */
  83#define MAX_MEM         (3584U*1024U*1024U)
  84#endif /* !CONFIG_64BIT */
  85
  86static unsigned long mem_limit __read_mostly = MAX_MEM;
  87
  88static void __init mem_limit_func(void)
  89{
  90	char *cp, *end;
  91	unsigned long limit;
  92
  93	/* We need this before __setup() functions are called */
  94
  95	limit = MAX_MEM;
  96	for (cp = boot_command_line; *cp; ) {
  97		if (memcmp(cp, "mem=", 4) == 0) {
  98			cp += 4;
  99			limit = memparse(cp, &end);
 100			if (end != cp)
 101				break;
 102			cp = end;
 103		} else {
 104			while (*cp != ' ' && *cp)
 105				++cp;
 106			while (*cp == ' ')
 107				++cp;
 108		}
 109	}
 110
 111	if (limit < mem_limit)
 112		mem_limit = limit;
 113}
 114
 115#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
 116
 117static void __init setup_bootmem(void)
 118{
 119	unsigned long bootmap_size;
 120	unsigned long mem_max;
 121	unsigned long bootmap_pages;
 122	unsigned long bootmap_start_pfn;
 123	unsigned long bootmap_pfn;
 124#ifndef CONFIG_DISCONTIGMEM
 125	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
 126	int npmem_holes;
 127#endif
 128	int i, sysram_resource_count;
 129
 130	disable_sr_hashing(); /* Turn off space register hashing */
 131
 132	/*
 133	 * Sort the ranges. Since the number of ranges is typically
 134	 * small, and performance is not an issue here, just do
 135	 * a simple insertion sort.
 136	 */
 137
 138	for (i = 1; i < npmem_ranges; i++) {
 139		int j;
 140
 141		for (j = i; j > 0; j--) {
 142			unsigned long tmp;
 143
 144			if (pmem_ranges[j-1].start_pfn <
 145			    pmem_ranges[j].start_pfn) {
 146
 147				break;
 148			}
 149			tmp = pmem_ranges[j-1].start_pfn;
 150			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
 151			pmem_ranges[j].start_pfn = tmp;
 152			tmp = pmem_ranges[j-1].pages;
 153			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
 154			pmem_ranges[j].pages = tmp;
 155		}
 156	}
 157
 158#ifndef CONFIG_DISCONTIGMEM
 159	/*
 160	 * Throw out ranges that are too far apart (controlled by
 161	 * MAX_GAP).
 162	 */
 163
 164	for (i = 1; i < npmem_ranges; i++) {
 165		if (pmem_ranges[i].start_pfn -
 166			(pmem_ranges[i-1].start_pfn +
 167			 pmem_ranges[i-1].pages) > MAX_GAP) {
 168			npmem_ranges = i;
 169			printk("Large gap in memory detected (%ld pages). "
 170			       "Consider turning on CONFIG_DISCONTIGMEM\n",
 171			       pmem_ranges[i].start_pfn -
 172			       (pmem_ranges[i-1].start_pfn +
 173			        pmem_ranges[i-1].pages));
 174			break;
 175		}
 176	}
 177#endif
 178
 179	if (npmem_ranges > 1) {
 180
 181		/* Print the memory ranges */
 182
 183		printk(KERN_INFO "Memory Ranges:\n");
 184
 185		for (i = 0; i < npmem_ranges; i++) {
 186			unsigned long start;
 187			unsigned long size;
 188
 189			size = (pmem_ranges[i].pages << PAGE_SHIFT);
 190			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
 191			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
 192				i,start, start + (size - 1), size >> 20);
 193		}
 194	}
 195
 196	sysram_resource_count = npmem_ranges;
 197	for (i = 0; i < sysram_resource_count; i++) {
 198		struct resource *res = &sysram_resources[i];
 199		res->name = "System RAM";
 200		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
 201		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
 202		res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 203		request_resource(&iomem_resource, res);
 204	}
 205
 206	/*
 207	 * For 32 bit kernels we limit the amount of memory we can
 208	 * support, in order to preserve enough kernel address space
 209	 * for other purposes. For 64 bit kernels we don't normally
 210	 * limit the memory, but this mechanism can be used to
 211	 * artificially limit the amount of memory (and it is written
 212	 * to work with multiple memory ranges).
 213	 */
 214
 215	mem_limit_func();       /* check for "mem=" argument */
 216
 217	mem_max = 0;
 218	for (i = 0; i < npmem_ranges; i++) {
 219		unsigned long rsize;
 220
 221		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
 222		if ((mem_max + rsize) > mem_limit) {
 223			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
 224			if (mem_max == mem_limit)
 225				npmem_ranges = i;
 226			else {
 227				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
 228						       - (mem_max >> PAGE_SHIFT);
 229				npmem_ranges = i + 1;
 230				mem_max = mem_limit;
 231			}
 232			break;
 233		}
 234		mem_max += rsize;
 235	}
 236
 237	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
 238
 239#ifndef CONFIG_DISCONTIGMEM
 240	/* Merge the ranges, keeping track of the holes */
 241
 242	{
 243		unsigned long end_pfn;
 244		unsigned long hole_pages;
 245
 246		npmem_holes = 0;
 247		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
 248		for (i = 1; i < npmem_ranges; i++) {
 249
 250			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
 251			if (hole_pages) {
 252				pmem_holes[npmem_holes].start_pfn = end_pfn;
 253				pmem_holes[npmem_holes++].pages = hole_pages;
 254				end_pfn += hole_pages;
 255			}
 256			end_pfn += pmem_ranges[i].pages;
 257		}
 258
 259		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
 260		npmem_ranges = 1;
 261	}
 262#endif
 263
 264	bootmap_pages = 0;
 265	for (i = 0; i < npmem_ranges; i++)
 266		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
 267
 268	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
 269
 270#ifdef CONFIG_DISCONTIGMEM
 271	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
 272		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
 273		NODE_DATA(i)->bdata = &bootmem_node_data[i];
 274	}
 275	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
 276
 277	for (i = 0; i < npmem_ranges; i++) {
 278		node_set_state(i, N_NORMAL_MEMORY);
 279		node_set_online(i);
 280	}
 281#endif
 282
 283	/*
 284	 * Initialize and free the full range of memory in each range.
 285	 * Note that the only writing these routines do are to the bootmap,
 286	 * and we've made sure to locate the bootmap properly so that they
 287	 * won't be writing over anything important.
 288	 */
 289
 290	bootmap_pfn = bootmap_start_pfn;
 291	max_pfn = 0;
 292	for (i = 0; i < npmem_ranges; i++) {
 293		unsigned long start_pfn;
 294		unsigned long npages;
 295
 296		start_pfn = pmem_ranges[i].start_pfn;
 297		npages = pmem_ranges[i].pages;
 298
 299		bootmap_size = init_bootmem_node(NODE_DATA(i),
 300						bootmap_pfn,
 301						start_pfn,
 302						(start_pfn + npages) );
 303		free_bootmem_node(NODE_DATA(i),
 304				  (start_pfn << PAGE_SHIFT),
 305				  (npages << PAGE_SHIFT) );
 306		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 307		if ((start_pfn + npages) > max_pfn)
 308			max_pfn = start_pfn + npages;
 309	}
 310
 311	/* IOMMU is always used to access "high mem" on those boxes
 312	 * that can support enough mem that a PCI device couldn't
 313	 * directly DMA to any physical addresses.
 314	 * ISA DMA support will need to revisit this.
 315	 */
 316	max_low_pfn = max_pfn;
 317
 318	/* bootmap sizing messed up? */
 319	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
 320
 321	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
 322
 323#define PDC_CONSOLE_IO_IODC_SIZE 32768
 324
 325	reserve_bootmem_node(NODE_DATA(0), 0UL,
 326			(unsigned long)(PAGE0->mem_free +
 327				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
 328	reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
 329			(unsigned long)(_end - KERNEL_BINARY_TEXT_START),
 330			BOOTMEM_DEFAULT);
 331	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
 332			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
 333			BOOTMEM_DEFAULT);
 334
 335#ifndef CONFIG_DISCONTIGMEM
 336
 337	/* reserve the holes */
 338
 339	for (i = 0; i < npmem_holes; i++) {
 340		reserve_bootmem_node(NODE_DATA(0),
 341				(pmem_holes[i].start_pfn << PAGE_SHIFT),
 342				(pmem_holes[i].pages << PAGE_SHIFT),
 343				BOOTMEM_DEFAULT);
 344	}
 345#endif
 346
 347#ifdef CONFIG_BLK_DEV_INITRD
 348	if (initrd_start) {
 349		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
 350		if (__pa(initrd_start) < mem_max) {
 351			unsigned long initrd_reserve;
 352
 353			if (__pa(initrd_end) > mem_max) {
 354				initrd_reserve = mem_max - __pa(initrd_start);
 355			} else {
 356				initrd_reserve = initrd_end - initrd_start;
 357			}
 358			initrd_below_start_ok = 1;
 359			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
 360
 361			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
 362					initrd_reserve, BOOTMEM_DEFAULT);
 363		}
 364	}
 365#endif
 366
 367	data_resource.start =  virt_to_phys(&data_start);
 368	data_resource.end = virt_to_phys(_end) - 1;
 369	code_resource.start = virt_to_phys(_text);
 370	code_resource.end = virt_to_phys(&data_start)-1;
 371
 372	/* We don't know which region the kernel will be in, so try
 373	 * all of them.
 374	 */
 375	for (i = 0; i < sysram_resource_count; i++) {
 376		struct resource *res = &sysram_resources[i];
 377		request_resource(res, &code_resource);
 378		request_resource(res, &data_resource);
 379	}
 380	request_resource(&sysram_resources[0], &pdcdata_resource);
 381}
 382
 383static int __init parisc_text_address(unsigned long vaddr)
 384{
 385	static unsigned long head_ptr __initdata;
 386
 387	if (!head_ptr)
 388		head_ptr = PAGE_MASK & (unsigned long)
 389			dereference_function_descriptor(&parisc_kernel_start);
 390
 391	return core_kernel_text(vaddr) || vaddr == head_ptr;
 392}
 393
 394static void __init map_pages(unsigned long start_vaddr,
 395			     unsigned long start_paddr, unsigned long size,
 396			     pgprot_t pgprot, int force)
 397{
 398	pgd_t *pg_dir;
 399	pmd_t *pmd;
 400	pte_t *pg_table;
 401	unsigned long end_paddr;
 402	unsigned long start_pmd;
 403	unsigned long start_pte;
 404	unsigned long tmp1;
 405	unsigned long tmp2;
 406	unsigned long address;
 407	unsigned long vaddr;
 408	unsigned long ro_start;
 409	unsigned long ro_end;
 410	unsigned long fv_addr;
 411	unsigned long gw_addr;
 412	extern const unsigned long fault_vector_20;
 413	extern void * const linux_gateway_page;
 414
 415	ro_start = __pa((unsigned long)_text);
 416	ro_end   = __pa((unsigned long)&data_start);
 417	fv_addr  = __pa((unsigned long)&fault_vector_20) & PAGE_MASK;
 418	gw_addr  = __pa((unsigned long)&linux_gateway_page) & PAGE_MASK;
 419
 420	end_paddr = start_paddr + size;
 421
 422	pg_dir = pgd_offset_k(start_vaddr);
 423
 424#if PTRS_PER_PMD == 1
 425	start_pmd = 0;
 426#else
 427	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 428#endif
 429	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 430
 431	address = start_paddr;
 432	vaddr = start_vaddr;
 433	while (address < end_paddr) {
 434#if PTRS_PER_PMD == 1
 435		pmd = (pmd_t *)__pa(pg_dir);
 436#else
 437		pmd = (pmd_t *)pgd_address(*pg_dir);
 438
 439		/*
 440		 * pmd is physical at this point
 441		 */
 442
 443		if (!pmd) {
 444			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 445			pmd = (pmd_t *) __pa(pmd);
 446		}
 447
 448		pgd_populate(NULL, pg_dir, __va(pmd));
 449#endif
 450		pg_dir++;
 451
 452		/* now change pmd to kernel virtual addresses */
 453
 454		pmd = (pmd_t *)__va(pmd) + start_pmd;
 455		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
 456
 457			/*
 458			 * pg_table is physical at this point
 459			 */
 460
 461			pg_table = (pte_t *)pmd_address(*pmd);
 462			if (!pg_table) {
 463				pg_table = (pte_t *)
 464					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 465				pg_table = (pte_t *) __pa(pg_table);
 466			}
 467
 468			pmd_populate_kernel(NULL, pmd, __va(pg_table));
 469
 470			/* now change pg_table to kernel virtual addresses */
 471
 472			pg_table = (pte_t *) __va(pg_table) + start_pte;
 473			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
 474				pte_t pte;
 475
 476				/*
 477				 * Map the fault vector writable so we can
 478				 * write the HPMC checksum.
 479				 */
 480				if (force)
 481					pte =  __mk_pte(address, pgprot);
 482				else if (parisc_text_address(vaddr) &&
 483					 address != fv_addr)
 484					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
 
 
 
 485				else
 486#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
 487				if (address >= ro_start && address < ro_end
 488							&& address != fv_addr
 489							&& address != gw_addr)
 490					pte = __mk_pte(address, PAGE_KERNEL_RO);
 491				else
 492#endif
 
 493					pte = __mk_pte(address, pgprot);
 
 
 
 494
 495				if (address >= end_paddr) {
 496					if (force)
 497						break;
 498					else
 499						pte_val(pte) = 0;
 500				}
 501
 502				set_pte(pg_table, pte);
 503
 504				address += PAGE_SIZE;
 505				vaddr += PAGE_SIZE;
 506			}
 507			start_pte = 0;
 508
 509			if (address >= end_paddr)
 510			    break;
 511		}
 512		start_pmd = 0;
 513	}
 514}
 515
 516void free_initmem(void)
 517{
 518	unsigned long init_begin = (unsigned long)__init_begin;
 519	unsigned long init_end = (unsigned long)__init_end;
 520
 521	/* The init text pages are marked R-X.  We have to
 522	 * flush the icache and mark them RW-
 523	 *
 524	 * This is tricky, because map_pages is in the init section.
 525	 * Do a dummy remap of the data section first (the data
 526	 * section is already PAGE_KERNEL) to pull in the TLB entries
 527	 * for map_kernel */
 528	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 529		  PAGE_KERNEL_RWX, 1);
 530	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
 531	 * map_pages */
 532	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
 533		  PAGE_KERNEL, 1);
 534
 535	/* force the kernel to see the new TLB entries */
 536	__flush_tlb_range(0, init_begin, init_end);
 537	/* Attempt to catch anyone trying to execute code here
 538	 * by filling the page with BRK insns.
 539	 */
 540	memset((void *)init_begin, 0x00, init_end - init_begin);
 541	/* finally dump all the instructions which were cached, since the
 542	 * pages are no-longer executable */
 543	flush_icache_range(init_begin, init_end);
 544	
 545	free_initmem_default(-1);
 546
 547	/* set up a new led state on systems shipped LED State panel */
 548	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
 549}
 550
 551
 552#ifdef CONFIG_DEBUG_RODATA
 553void mark_rodata_ro(void)
 554{
 555	/* rodata memory was already mapped with KERNEL_RO access rights by
 556           pagetable_init() and map_pages(). No need to do additional stuff here */
 557	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 558		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 559}
 560#endif
 561
 562
 563/*
 564 * Just an arbitrary offset to serve as a "hole" between mapping areas
 565 * (between top of physical memory and a potential pcxl dma mapping
 566 * area, and below the vmalloc mapping area).
 567 *
 568 * The current 32K value just means that there will be a 32K "hole"
 569 * between mapping areas. That means that  any out-of-bounds memory
 570 * accesses will hopefully be caught. The vmalloc() routines leaves
 571 * a hole of 4kB between each vmalloced area for the same reason.
 572 */
 573
 574 /* Leave room for gateway page expansion */
 575#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
 576#error KERNEL_MAP_START is in gateway reserved region
 577#endif
 578#define MAP_START (KERNEL_MAP_START)
 579
 580#define VM_MAP_OFFSET  (32*1024)
 581#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
 582				     & ~(VM_MAP_OFFSET-1)))
 583
 584void *parisc_vmalloc_start __read_mostly;
 585EXPORT_SYMBOL(parisc_vmalloc_start);
 586
 587#ifdef CONFIG_PA11
 588unsigned long pcxl_dma_start __read_mostly;
 589#endif
 590
 591void __init mem_init(void)
 592{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 593	/* Do sanity checks on page table constants */
 594	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
 595	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
 596	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
 597	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
 598			> BITS_PER_LONG);
 599
 600	high_memory = __va((max_pfn << PAGE_SHIFT));
 601	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
 602	free_all_bootmem();
 603
 604#ifdef CONFIG_PA11
 605	if (hppa_dma_ops == &pcxl_dma_ops) {
 606		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
 607		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
 608						+ PCXL_DMA_MAP_SIZE);
 609	} else {
 610		pcxl_dma_start = 0;
 611		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 612	}
 613#else
 614	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
 615#endif
 616
 617	mem_init_print_info(NULL);
 618#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 619	printk("virtual kernel memory layout:\n"
 620	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
 621	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
 622	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
 623	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
 624	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 625
 626	       (void*)VMALLOC_START, (void*)VMALLOC_END,
 627	       (VMALLOC_END - VMALLOC_START) >> 20,
 628
 629	       __va(0), high_memory,
 630	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
 631
 632	       __init_begin, __init_end,
 633	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
 634
 635	       _etext, _edata,
 636	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
 637
 638	       _text, _etext,
 639	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
 640#endif
 641}
 642
 643unsigned long *empty_zero_page __read_mostly;
 644EXPORT_SYMBOL(empty_zero_page);
 645
 646void show_mem(unsigned int filter)
 647{
 648	int total = 0,reserved = 0;
 649	pg_data_t *pgdat;
 650
 651	printk(KERN_INFO "Mem-info:\n");
 652	show_free_areas(filter);
 653
 654	for_each_online_pgdat(pgdat) {
 655		unsigned long flags;
 656		int zoneid;
 657
 658		pgdat_resize_lock(pgdat, &flags);
 659		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 660			struct zone *zone = &pgdat->node_zones[zoneid];
 661			if (!populated_zone(zone))
 662				continue;
 663
 664			total += zone->present_pages;
 665			reserved = zone->present_pages - zone->managed_pages;
 666		}
 667		pgdat_resize_unlock(pgdat, &flags);
 668	}
 669
 670	printk(KERN_INFO "%d pages of RAM\n", total);
 671	printk(KERN_INFO "%d reserved pages\n", reserved);
 672
 673#ifdef CONFIG_DISCONTIGMEM
 674	{
 675		struct zonelist *zl;
 676		int i, j;
 677
 678		for (i = 0; i < npmem_ranges; i++) {
 679			zl = node_zonelist(i, 0);
 680			for (j = 0; j < MAX_NR_ZONES; j++) {
 681				struct zoneref *z;
 682				struct zone *zone;
 683
 684				printk("Zone list for zone %d on node %d: ", j, i);
 685				for_each_zone_zonelist(zone, z, zl, j)
 686					printk("[%d/%s] ", zone_to_nid(zone),
 687								zone->name);
 688				printk("\n");
 689			}
 690		}
 691	}
 692#endif
 693}
 694
 695/*
 696 * pagetable_init() sets up the page tables
 697 *
 698 * Note that gateway_init() places the Linux gateway page at page 0.
 699 * Since gateway pages cannot be dereferenced this has the desirable
 700 * side effect of trapping those pesky NULL-reference errors in the
 701 * kernel.
 702 */
 703static void __init pagetable_init(void)
 704{
 705	int range;
 706
 707	/* Map each physical memory range to its kernel vaddr */
 708
 709	for (range = 0; range < npmem_ranges; range++) {
 710		unsigned long start_paddr;
 711		unsigned long end_paddr;
 712		unsigned long size;
 713
 714		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
 715		end_paddr = start_paddr + (pmem_ranges[range].pages << PAGE_SHIFT);
 716		size = pmem_ranges[range].pages << PAGE_SHIFT;
 
 717
 718		map_pages((unsigned long)__va(start_paddr), start_paddr,
 719			  size, PAGE_KERNEL, 0);
 720	}
 721
 722#ifdef CONFIG_BLK_DEV_INITRD
 723	if (initrd_end && initrd_end > mem_limit) {
 724		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
 725		map_pages(initrd_start, __pa(initrd_start),
 726			  initrd_end - initrd_start, PAGE_KERNEL, 0);
 727	}
 728#endif
 729
 730	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 731	memset(empty_zero_page, 0, PAGE_SIZE);
 732}
 733
 734static void __init gateway_init(void)
 735{
 736	unsigned long linux_gateway_page_addr;
 737	/* FIXME: This is 'const' in order to trick the compiler
 738	   into not treating it as DP-relative data. */
 739	extern void * const linux_gateway_page;
 740
 741	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
 742
 743	/*
 744	 * Setup Linux Gateway page.
 745	 *
 746	 * The Linux gateway page will reside in kernel space (on virtual
 747	 * page 0), so it doesn't need to be aliased into user space.
 748	 */
 749
 750	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
 751		  PAGE_SIZE, PAGE_GATEWAY, 1);
 752}
 753
 754#ifdef CONFIG_HPUX
 755void
 756map_hpux_gateway_page(struct task_struct *tsk, struct mm_struct *mm)
 757{
 758	pgd_t *pg_dir;
 759	pmd_t *pmd;
 760	pte_t *pg_table;
 761	unsigned long start_pmd;
 762	unsigned long start_pte;
 763	unsigned long address;
 764	unsigned long hpux_gw_page_addr;
 765	/* FIXME: This is 'const' in order to trick the compiler
 766	   into not treating it as DP-relative data. */
 767	extern void * const hpux_gateway_page;
 768
 769	hpux_gw_page_addr = HPUX_GATEWAY_ADDR & PAGE_MASK;
 770
 771	/*
 772	 * Setup HP-UX Gateway page.
 773	 *
 774	 * The HP-UX gateway page resides in the user address space,
 775	 * so it needs to be aliased into each process.
 776	 */
 777
 778	pg_dir = pgd_offset(mm,hpux_gw_page_addr);
 779
 780#if PTRS_PER_PMD == 1
 781	start_pmd = 0;
 782#else
 783	start_pmd = ((hpux_gw_page_addr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
 784#endif
 785	start_pte = ((hpux_gw_page_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 786
 787	address = __pa(&hpux_gateway_page);
 788#if PTRS_PER_PMD == 1
 789	pmd = (pmd_t *)__pa(pg_dir);
 790#else
 791	pmd = (pmd_t *) pgd_address(*pg_dir);
 792
 793	/*
 794	 * pmd is physical at this point
 795	 */
 796
 797	if (!pmd) {
 798		pmd = (pmd_t *) get_zeroed_page(GFP_KERNEL);
 799		pmd = (pmd_t *) __pa(pmd);
 800	}
 801
 802	__pgd_val_set(*pg_dir, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pmd);
 803#endif
 804	/* now change pmd to kernel virtual addresses */
 805
 806	pmd = (pmd_t *)__va(pmd) + start_pmd;
 807
 808	/*
 809	 * pg_table is physical at this point
 810	 */
 811
 812	pg_table = (pte_t *) pmd_address(*pmd);
 813	if (!pg_table)
 814		pg_table = (pte_t *) __pa(get_zeroed_page(GFP_KERNEL));
 815
 816	__pmd_val_set(*pmd, PxD_FLAG_PRESENT | PxD_FLAG_VALID | (unsigned long) pg_table);
 817
 818	/* now change pg_table to kernel virtual addresses */
 819
 820	pg_table = (pte_t *) __va(pg_table) + start_pte;
 821	set_pte(pg_table, __mk_pte(address, PAGE_GATEWAY));
 822}
 823EXPORT_SYMBOL(map_hpux_gateway_page);
 824#endif
 825
 826void __init paging_init(void)
 827{
 828	int i;
 829
 830	setup_bootmem();
 831	pagetable_init();
 832	gateway_init();
 833	flush_cache_all_local(); /* start with known state */
 834	flush_tlb_all_local(NULL);
 835
 836	for (i = 0; i < npmem_ranges; i++) {
 837		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
 838
 839		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
 840
 841#ifdef CONFIG_DISCONTIGMEM
 842		/* Need to initialize the pfnnid_map before we can initialize
 843		   the zone */
 844		{
 845		    int j;
 846		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
 847			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
 848			 j++) {
 849			pfnnid_map[j] = i;
 850		    }
 851		}
 852#endif
 853
 854		free_area_init_node(i, zones_size,
 855				pmem_ranges[i].start_pfn, NULL);
 856	}
 857}
 858
 859#ifdef CONFIG_PA20
 860
 861/*
 862 * Currently, all PA20 chips have 18 bit protection IDs, which is the
 863 * limiting factor (space ids are 32 bits).
 864 */
 865
 866#define NR_SPACE_IDS 262144
 867
 868#else
 869
 870/*
 871 * Currently we have a one-to-one relationship between space IDs and
 872 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
 873 * support 15 bit protection IDs, so that is the limiting factor.
 874 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
 875 * probably not worth the effort for a special case here.
 876 */
 877
 878#define NR_SPACE_IDS 32768
 879
 880#endif  /* !CONFIG_PA20 */
 881
 882#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
 883#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
 884
 885static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
 886static unsigned long dirty_space_id[SID_ARRAY_SIZE];
 887static unsigned long space_id_index;
 888static unsigned long free_space_ids = NR_SPACE_IDS - 1;
 889static unsigned long dirty_space_ids = 0;
 890
 891static DEFINE_SPINLOCK(sid_lock);
 892
 893unsigned long alloc_sid(void)
 894{
 895	unsigned long index;
 896
 897	spin_lock(&sid_lock);
 898
 899	if (free_space_ids == 0) {
 900		if (dirty_space_ids != 0) {
 901			spin_unlock(&sid_lock);
 902			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
 903			spin_lock(&sid_lock);
 904		}
 905		BUG_ON(free_space_ids == 0);
 906	}
 907
 908	free_space_ids--;
 909
 910	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
 911	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
 912	space_id_index = index;
 913
 914	spin_unlock(&sid_lock);
 915
 916	return index << SPACEID_SHIFT;
 917}
 918
 919void free_sid(unsigned long spaceid)
 920{
 921	unsigned long index = spaceid >> SPACEID_SHIFT;
 922	unsigned long *dirty_space_offset;
 923
 924	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
 925	index &= (BITS_PER_LONG - 1);
 926
 927	spin_lock(&sid_lock);
 928
 929	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
 930
 931	*dirty_space_offset |= (1L << index);
 932	dirty_space_ids++;
 933
 934	spin_unlock(&sid_lock);
 935}
 936
 937
 938#ifdef CONFIG_SMP
 939static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
 940{
 941	int i;
 942
 943	/* NOTE: sid_lock must be held upon entry */
 944
 945	*ndirtyptr = dirty_space_ids;
 946	if (dirty_space_ids != 0) {
 947	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
 948		dirty_array[i] = dirty_space_id[i];
 949		dirty_space_id[i] = 0;
 950	    }
 951	    dirty_space_ids = 0;
 952	}
 953
 954	return;
 955}
 956
 957static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
 958{
 959	int i;
 960
 961	/* NOTE: sid_lock must be held upon entry */
 962
 963	if (ndirty != 0) {
 964		for (i = 0; i < SID_ARRAY_SIZE; i++) {
 965			space_id[i] ^= dirty_array[i];
 966		}
 967
 968		free_space_ids += ndirty;
 969		space_id_index = 0;
 970	}
 971}
 972
 973#else /* CONFIG_SMP */
 974
 975static void recycle_sids(void)
 976{
 977	int i;
 978
 979	/* NOTE: sid_lock must be held upon entry */
 980
 981	if (dirty_space_ids != 0) {
 982		for (i = 0; i < SID_ARRAY_SIZE; i++) {
 983			space_id[i] ^= dirty_space_id[i];
 984			dirty_space_id[i] = 0;
 985		}
 986
 987		free_space_ids += dirty_space_ids;
 988		dirty_space_ids = 0;
 989		space_id_index = 0;
 990	}
 991}
 992#endif
 993
 994/*
 995 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
 996 * purged, we can safely reuse the space ids that were released but
 997 * not flushed from the tlb.
 998 */
 999
1000#ifdef CONFIG_SMP
1001
1002static unsigned long recycle_ndirty;
1003static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
1004static unsigned int recycle_inuse;
1005
1006void flush_tlb_all(void)
1007{
1008	int do_recycle;
1009
1010	__inc_irq_stat(irq_tlb_count);
1011	do_recycle = 0;
1012	spin_lock(&sid_lock);
1013	if (dirty_space_ids > RECYCLE_THRESHOLD) {
1014	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
1015	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
1016	    recycle_inuse++;
1017	    do_recycle++;
1018	}
1019	spin_unlock(&sid_lock);
1020	on_each_cpu(flush_tlb_all_local, NULL, 1);
1021	if (do_recycle) {
1022	    spin_lock(&sid_lock);
1023	    recycle_sids(recycle_ndirty,recycle_dirty_array);
1024	    recycle_inuse = 0;
1025	    spin_unlock(&sid_lock);
1026	}
1027}
1028#else
1029void flush_tlb_all(void)
1030{
1031	__inc_irq_stat(irq_tlb_count);
1032	spin_lock(&sid_lock);
1033	flush_tlb_all_local(NULL);
1034	recycle_sids();
1035	spin_unlock(&sid_lock);
1036}
1037#endif
1038
1039#ifdef CONFIG_BLK_DEV_INITRD
1040void free_initrd_mem(unsigned long start, unsigned long end)
1041{
1042	free_reserved_area((void *)start, (void *)end, -1, "initrd");
1043}
1044#endif