Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 *  linux/arch/parisc/mm/init.c
  3 *
  4 *  Copyright (C) 1995	Linus Torvalds
  5 *  Copyright 1999 SuSE GmbH
  6 *    changed by Philipp Rumpf
  7 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  8 *  Copyright 2004 Randolph Chung (tausq@debian.org)
  9 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 10 *
 11 */
 12
 13
 14#include <linux/module.h>
 15#include <linux/mm.h>
 16#include <linux/bootmem.h>
 17#include <linux/gfp.h>
 18#include <linux/delay.h>
 19#include <linux/init.h>
 20#include <linux/pci.h>		/* for hppa_dma_ops and pcxl_dma_ops */
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 29#include <asm/pgtable.h>
 30#include <asm/tlb.h>
 31#include <asm/pdc_chassis.h>
 32#include <asm/mmzone.h>
 33#include <asm/sections.h>
 34#include <asm/msgbuf.h>
 
 35
 36extern int  data_start;
 37extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 38
 39#if CONFIG_PGTABLE_LEVELS == 3
 40/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 41 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 42 * guarantee that global objects will be laid out in memory in the same order
 43 * as the order of declaration, so put these in different sections and use
 44 * the linker script to order them. */
 45pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 46#endif
 47
 48pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 49pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 50
 51#ifdef CONFIG_DISCONTIGMEM
 52struct node_map_data node_data[MAX_NUMNODES] __read_mostly;
 53signed char pfnnid_map[PFNNID_MAP_MAX] __read_mostly;
 54#endif
 55
 56static struct resource data_resource = {
 57	.name	= "Kernel data",
 58	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 59};
 60
 61static struct resource code_resource = {
 62	.name	= "Kernel code",
 63	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 64};
 65
 66static struct resource pdcdata_resource = {
 67	.name	= "PDC data (Page Zero)",
 68	.start	= 0,
 69	.end	= 0x9ff,
 70	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 71};
 72
 73static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __read_mostly;
 74
 75/* The following array is initialized from the firmware specific
 76 * information retrieved in kernel/inventory.c.
 77 */
 78
 79physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __read_mostly;
 80int npmem_ranges __read_mostly;
 81
 82#ifdef CONFIG_64BIT
 83#define MAX_MEM         (~0UL)
 84#else /* !CONFIG_64BIT */
 85#define MAX_MEM         (3584U*1024U*1024U)
 86#endif /* !CONFIG_64BIT */
 87
 88static unsigned long mem_limit __read_mostly = MAX_MEM;
 89
 90static void __init mem_limit_func(void)
 91{
 92	char *cp, *end;
 93	unsigned long limit;
 94
 95	/* We need this before __setup() functions are called */
 96
 97	limit = MAX_MEM;
 98	for (cp = boot_command_line; *cp; ) {
 99		if (memcmp(cp, "mem=", 4) == 0) {
100			cp += 4;
101			limit = memparse(cp, &end);
102			if (end != cp)
103				break;
104			cp = end;
105		} else {
106			while (*cp != ' ' && *cp)
107				++cp;
108			while (*cp == ' ')
109				++cp;
110		}
111	}
112
113	if (limit < mem_limit)
114		mem_limit = limit;
115}
116
117#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
118
119static void __init setup_bootmem(void)
120{
121	unsigned long bootmap_size;
122	unsigned long mem_max;
123	unsigned long bootmap_pages;
124	unsigned long bootmap_start_pfn;
125	unsigned long bootmap_pfn;
126#ifndef CONFIG_DISCONTIGMEM
127	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
128	int npmem_holes;
129#endif
130	int i, sysram_resource_count;
131
132	disable_sr_hashing(); /* Turn off space register hashing */
133
134	/*
135	 * Sort the ranges. Since the number of ranges is typically
136	 * small, and performance is not an issue here, just do
137	 * a simple insertion sort.
138	 */
139
140	for (i = 1; i < npmem_ranges; i++) {
141		int j;
142
143		for (j = i; j > 0; j--) {
144			unsigned long tmp;
145
146			if (pmem_ranges[j-1].start_pfn <
147			    pmem_ranges[j].start_pfn) {
148
149				break;
150			}
151			tmp = pmem_ranges[j-1].start_pfn;
152			pmem_ranges[j-1].start_pfn = pmem_ranges[j].start_pfn;
153			pmem_ranges[j].start_pfn = tmp;
154			tmp = pmem_ranges[j-1].pages;
155			pmem_ranges[j-1].pages = pmem_ranges[j].pages;
156			pmem_ranges[j].pages = tmp;
157		}
158	}
159
160#ifndef CONFIG_DISCONTIGMEM
161	/*
162	 * Throw out ranges that are too far apart (controlled by
163	 * MAX_GAP).
164	 */
165
166	for (i = 1; i < npmem_ranges; i++) {
167		if (pmem_ranges[i].start_pfn -
168			(pmem_ranges[i-1].start_pfn +
169			 pmem_ranges[i-1].pages) > MAX_GAP) {
170			npmem_ranges = i;
171			printk("Large gap in memory detected (%ld pages). "
172			       "Consider turning on CONFIG_DISCONTIGMEM\n",
173			       pmem_ranges[i].start_pfn -
174			       (pmem_ranges[i-1].start_pfn +
175			        pmem_ranges[i-1].pages));
176			break;
177		}
178	}
179#endif
180
181	if (npmem_ranges > 1) {
182
183		/* Print the memory ranges */
184
185		printk(KERN_INFO "Memory Ranges:\n");
186
187		for (i = 0; i < npmem_ranges; i++) {
188			unsigned long start;
189			unsigned long size;
190
191			size = (pmem_ranges[i].pages << PAGE_SHIFT);
192			start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
193			printk(KERN_INFO "%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
194				i,start, start + (size - 1), size >> 20);
195		}
196	}
197
198	sysram_resource_count = npmem_ranges;
199	for (i = 0; i < sysram_resource_count; i++) {
200		struct resource *res = &sysram_resources[i];
201		res->name = "System RAM";
202		res->start = pmem_ranges[i].start_pfn << PAGE_SHIFT;
203		res->end = res->start + (pmem_ranges[i].pages << PAGE_SHIFT)-1;
204		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
205		request_resource(&iomem_resource, res);
206	}
207
 
 
208	/*
209	 * For 32 bit kernels we limit the amount of memory we can
210	 * support, in order to preserve enough kernel address space
211	 * for other purposes. For 64 bit kernels we don't normally
212	 * limit the memory, but this mechanism can be used to
213	 * artificially limit the amount of memory (and it is written
214	 * to work with multiple memory ranges).
215	 */
216
217	mem_limit_func();       /* check for "mem=" argument */
218
219	mem_max = 0;
220	for (i = 0; i < npmem_ranges; i++) {
221		unsigned long rsize;
222
223		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
224		if ((mem_max + rsize) > mem_limit) {
225			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
226			if (mem_max == mem_limit)
227				npmem_ranges = i;
228			else {
229				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
230						       - (mem_max >> PAGE_SHIFT);
231				npmem_ranges = i + 1;
232				mem_max = mem_limit;
233			}
234			break;
235		}
236		mem_max += rsize;
237	}
238
239	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
240
241#ifndef CONFIG_DISCONTIGMEM
242	/* Merge the ranges, keeping track of the holes */
243
244	{
245		unsigned long end_pfn;
246		unsigned long hole_pages;
247
248		npmem_holes = 0;
249		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
250		for (i = 1; i < npmem_ranges; i++) {
251
252			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
253			if (hole_pages) {
254				pmem_holes[npmem_holes].start_pfn = end_pfn;
255				pmem_holes[npmem_holes++].pages = hole_pages;
256				end_pfn += hole_pages;
257			}
258			end_pfn += pmem_ranges[i].pages;
259		}
260
261		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
262		npmem_ranges = 1;
263	}
264#endif
265
266	bootmap_pages = 0;
267	for (i = 0; i < npmem_ranges; i++)
268		bootmap_pages += bootmem_bootmap_pages(pmem_ranges[i].pages);
269
270	bootmap_start_pfn = PAGE_ALIGN(__pa((unsigned long) &_end)) >> PAGE_SHIFT;
271
272#ifdef CONFIG_DISCONTIGMEM
273	for (i = 0; i < MAX_PHYSMEM_RANGES; i++) {
274		memset(NODE_DATA(i), 0, sizeof(pg_data_t));
275		NODE_DATA(i)->bdata = &bootmem_node_data[i];
276	}
277	memset(pfnnid_map, 0xff, sizeof(pfnnid_map));
278
279	for (i = 0; i < npmem_ranges; i++) {
280		node_set_state(i, N_NORMAL_MEMORY);
281		node_set_online(i);
282	}
283#endif
284
285	/*
286	 * Initialize and free the full range of memory in each range.
287	 * Note that the only writing these routines do are to the bootmap,
288	 * and we've made sure to locate the bootmap properly so that they
289	 * won't be writing over anything important.
290	 */
291
292	bootmap_pfn = bootmap_start_pfn;
293	max_pfn = 0;
294	for (i = 0; i < npmem_ranges; i++) {
295		unsigned long start_pfn;
296		unsigned long npages;
 
 
297
298		start_pfn = pmem_ranges[i].start_pfn;
299		npages = pmem_ranges[i].pages;
300
301		bootmap_size = init_bootmem_node(NODE_DATA(i),
302						bootmap_pfn,
303						start_pfn,
304						(start_pfn + npages) );
305		free_bootmem_node(NODE_DATA(i),
306				  (start_pfn << PAGE_SHIFT),
307				  (npages << PAGE_SHIFT) );
308		bootmap_pfn += (bootmap_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
309		if ((start_pfn + npages) > max_pfn)
310			max_pfn = start_pfn + npages;
311	}
312
 
 
 
 
 
 
 
313	/* IOMMU is always used to access "high mem" on those boxes
314	 * that can support enough mem that a PCI device couldn't
315	 * directly DMA to any physical addresses.
316	 * ISA DMA support will need to revisit this.
317	 */
318	max_low_pfn = max_pfn;
319
320	/* bootmap sizing messed up? */
321	BUG_ON((bootmap_pfn - bootmap_start_pfn) != bootmap_pages);
322
323	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
324
325#define PDC_CONSOLE_IO_IODC_SIZE 32768
326
327	reserve_bootmem_node(NODE_DATA(0), 0UL,
328			(unsigned long)(PAGE0->mem_free +
329				PDC_CONSOLE_IO_IODC_SIZE), BOOTMEM_DEFAULT);
330	reserve_bootmem_node(NODE_DATA(0), __pa(KERNEL_BINARY_TEXT_START),
331			(unsigned long)(_end - KERNEL_BINARY_TEXT_START),
332			BOOTMEM_DEFAULT);
333	reserve_bootmem_node(NODE_DATA(0), (bootmap_start_pfn << PAGE_SHIFT),
334			((bootmap_pfn - bootmap_start_pfn) << PAGE_SHIFT),
335			BOOTMEM_DEFAULT);
336
337#ifndef CONFIG_DISCONTIGMEM
338
339	/* reserve the holes */
340
341	for (i = 0; i < npmem_holes; i++) {
342		reserve_bootmem_node(NODE_DATA(0),
343				(pmem_holes[i].start_pfn << PAGE_SHIFT),
344				(pmem_holes[i].pages << PAGE_SHIFT),
345				BOOTMEM_DEFAULT);
346	}
347#endif
348
349#ifdef CONFIG_BLK_DEV_INITRD
350	if (initrd_start) {
351		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
352		if (__pa(initrd_start) < mem_max) {
353			unsigned long initrd_reserve;
354
355			if (__pa(initrd_end) > mem_max) {
356				initrd_reserve = mem_max - __pa(initrd_start);
357			} else {
358				initrd_reserve = initrd_end - initrd_start;
359			}
360			initrd_below_start_ok = 1;
361			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
362
363			reserve_bootmem_node(NODE_DATA(0), __pa(initrd_start),
364					initrd_reserve, BOOTMEM_DEFAULT);
365		}
366	}
367#endif
368
369	data_resource.start =  virt_to_phys(&data_start);
370	data_resource.end = virt_to_phys(_end) - 1;
371	code_resource.start = virt_to_phys(_text);
372	code_resource.end = virt_to_phys(&data_start)-1;
373
374	/* We don't know which region the kernel will be in, so try
375	 * all of them.
376	 */
377	for (i = 0; i < sysram_resource_count; i++) {
378		struct resource *res = &sysram_resources[i];
379		request_resource(res, &code_resource);
380		request_resource(res, &data_resource);
381	}
382	request_resource(&sysram_resources[0], &pdcdata_resource);
383}
384
385static int __init parisc_text_address(unsigned long vaddr)
386{
387	static unsigned long head_ptr __initdata;
388
389	if (!head_ptr)
390		head_ptr = PAGE_MASK & (unsigned long)
391			dereference_function_descriptor(&parisc_kernel_start);
392
393	return core_kernel_text(vaddr) || vaddr == head_ptr;
 
394}
395
 
 
396static void __init map_pages(unsigned long start_vaddr,
397			     unsigned long start_paddr, unsigned long size,
398			     pgprot_t pgprot, int force)
399{
400	pgd_t *pg_dir;
401	pmd_t *pmd;
402	pte_t *pg_table;
403	unsigned long end_paddr;
404	unsigned long start_pmd;
405	unsigned long start_pte;
406	unsigned long tmp1;
407	unsigned long tmp2;
408	unsigned long address;
409	unsigned long vaddr;
410	unsigned long ro_start;
411	unsigned long ro_end;
412	unsigned long kernel_end;
413
414	ro_start = __pa((unsigned long)_text);
415	ro_end   = __pa((unsigned long)&data_start);
 
416	kernel_end  = __pa((unsigned long)&_end);
417
418	end_paddr = start_paddr + size;
419
420	pg_dir = pgd_offset_k(start_vaddr);
421
422#if PTRS_PER_PMD == 1
423	start_pmd = 0;
424#else
425	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
426#endif
427	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
428
429	address = start_paddr;
430	vaddr = start_vaddr;
431	while (address < end_paddr) {
432#if PTRS_PER_PMD == 1
433		pmd = (pmd_t *)__pa(pg_dir);
434#else
435		pmd = (pmd_t *)pgd_address(*pg_dir);
436
437		/*
438		 * pmd is physical at this point
439		 */
440
441		if (!pmd) {
442			pmd = (pmd_t *) alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE << PMD_ORDER);
 
 
 
443			pmd = (pmd_t *) __pa(pmd);
444		}
445
446		pgd_populate(NULL, pg_dir, __va(pmd));
447#endif
448		pg_dir++;
449
450		/* now change pmd to kernel virtual addresses */
451
452		pmd = (pmd_t *)__va(pmd) + start_pmd;
453		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
454
455			/*
456			 * pg_table is physical at this point
457			 */
458
459			pg_table = (pte_t *)pmd_address(*pmd);
460			if (!pg_table) {
461				pg_table = (pte_t *)
462					alloc_bootmem_low_pages_node(NODE_DATA(0), PAGE_SIZE);
 
 
463				pg_table = (pte_t *) __pa(pg_table);
464			}
465
466			pmd_populate_kernel(NULL, pmd, __va(pg_table));
467
468			/* now change pg_table to kernel virtual addresses */
469
470			pg_table = (pte_t *) __va(pg_table) + start_pte;
471			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
472				pte_t pte;
 
 
473
474				if (force)
475					pte =  __mk_pte(address, pgprot);
476				else if (parisc_text_address(vaddr)) {
477					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
478					if (address >= ro_start && address < kernel_end)
479						pte = pte_mkhuge(pte);
 
 
 
 
 
 
 
 
 
 
480				}
481				else
482#if defined(CONFIG_PARISC_PAGE_SIZE_4KB)
483				if (address >= ro_start && address < ro_end) {
484					pte = __mk_pte(address, PAGE_KERNEL_EXEC);
485					pte = pte_mkhuge(pte);
486				} else
487#endif
488				{
489					pte = __mk_pte(address, pgprot);
490					if (address >= ro_start && address < kernel_end)
491						pte = pte_mkhuge(pte);
492				}
493
494				if (address >= end_paddr) {
495					if (force)
496						break;
497					else
498						pte_val(pte) = 0;
499				}
500
501				set_pte(pg_table, pte);
502
503				address += PAGE_SIZE;
504				vaddr += PAGE_SIZE;
505			}
506			start_pte = 0;
507
508			if (address >= end_paddr)
509			    break;
510		}
511		start_pmd = 0;
512	}
513}
514
515void free_initmem(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
516{
517	unsigned long init_begin = (unsigned long)__init_begin;
518	unsigned long init_end = (unsigned long)__init_end;
 
 
 
 
 
 
519
520	/* The init text pages are marked R-X.  We have to
521	 * flush the icache and mark them RW-
522	 *
523	 * This is tricky, because map_pages is in the init section.
524	 * Do a dummy remap of the data section first (the data
525	 * section is already PAGE_KERNEL) to pull in the TLB entries
526	 * for map_kernel */
527	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
528		  PAGE_KERNEL_RWX, 1);
529	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
530	 * map_pages */
531	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
532		  PAGE_KERNEL, 1);
533
534	/* force the kernel to see the new TLB entries */
535	__flush_tlb_range(0, init_begin, init_end);
536
537	/* finally dump all the instructions which were cached, since the
538	 * pages are no-longer executable */
539	flush_icache_range(init_begin, init_end);
540	
541	free_initmem_default(POISON_FREE_INITMEM);
542
543	/* set up a new led state on systems shipped LED State panel */
544	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
545}
546
547
548#ifdef CONFIG_DEBUG_RODATA
549void mark_rodata_ro(void)
550{
551	/* rodata memory was already mapped with KERNEL_RO access rights by
552           pagetable_init() and map_pages(). No need to do additional stuff here */
553	printk (KERN_INFO "Write protecting the kernel read-only data: %luk\n",
554		(unsigned long)(__end_rodata - __start_rodata) >> 10);
 
555}
556#endif
557
558
559/*
560 * Just an arbitrary offset to serve as a "hole" between mapping areas
561 * (between top of physical memory and a potential pcxl dma mapping
562 * area, and below the vmalloc mapping area).
563 *
564 * The current 32K value just means that there will be a 32K "hole"
565 * between mapping areas. That means that  any out-of-bounds memory
566 * accesses will hopefully be caught. The vmalloc() routines leaves
567 * a hole of 4kB between each vmalloced area for the same reason.
568 */
569
570 /* Leave room for gateway page expansion */
571#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
572#error KERNEL_MAP_START is in gateway reserved region
573#endif
574#define MAP_START (KERNEL_MAP_START)
575
576#define VM_MAP_OFFSET  (32*1024)
577#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
578				     & ~(VM_MAP_OFFSET-1)))
579
580void *parisc_vmalloc_start __read_mostly;
581EXPORT_SYMBOL(parisc_vmalloc_start);
582
583#ifdef CONFIG_PA11
584unsigned long pcxl_dma_start __read_mostly;
585#endif
586
587void __init mem_init(void)
588{
589	/* Do sanity checks on IPC (compat) structures */
590	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
591#ifndef CONFIG_64BIT
592	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
593	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
594	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
595#endif
596#ifdef CONFIG_COMPAT
597	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
598	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
599	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
600	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
601#endif
602
603	/* Do sanity checks on page table constants */
604	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
605	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
606	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
607	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
608			> BITS_PER_LONG);
609
610	high_memory = __va((max_pfn << PAGE_SHIFT));
611	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
612	free_all_bootmem();
613
614#ifdef CONFIG_PA11
615	if (hppa_dma_ops == &pcxl_dma_ops) {
616		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
617		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
618						+ PCXL_DMA_MAP_SIZE);
619	} else {
620		pcxl_dma_start = 0;
621		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
622	}
623#else
624	parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
625#endif
 
626
627	mem_init_print_info(NULL);
628#ifdef CONFIG_DEBUG_KERNEL /* double-sanity-check paranoia */
 
 
 
 
 
629	printk("virtual kernel memory layout:\n"
630	       "    vmalloc : 0x%p - 0x%p   (%4ld MB)\n"
631	       "    memory  : 0x%p - 0x%p   (%4ld MB)\n"
632	       "      .init : 0x%p - 0x%p   (%4ld kB)\n"
633	       "      .data : 0x%p - 0x%p   (%4ld kB)\n"
634	       "      .text : 0x%p - 0x%p   (%4ld kB)\n",
 
635
636	       (void*)VMALLOC_START, (void*)VMALLOC_END,
637	       (VMALLOC_END - VMALLOC_START) >> 20,
638
 
 
 
639	       __va(0), high_memory,
640	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
641
642	       __init_begin, __init_end,
643	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
644
645	       _etext, _edata,
646	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
647
648	       _text, _etext,
649	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
650#endif
651}
652
653unsigned long *empty_zero_page __read_mostly;
654EXPORT_SYMBOL(empty_zero_page);
655
656void show_mem(unsigned int filter)
657{
658	int total = 0,reserved = 0;
659	pg_data_t *pgdat;
660
661	printk(KERN_INFO "Mem-info:\n");
662	show_free_areas(filter);
663
664	for_each_online_pgdat(pgdat) {
665		unsigned long flags;
666		int zoneid;
667
668		pgdat_resize_lock(pgdat, &flags);
669		for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
670			struct zone *zone = &pgdat->node_zones[zoneid];
671			if (!populated_zone(zone))
672				continue;
673
674			total += zone->present_pages;
675			reserved = zone->present_pages - zone->managed_pages;
676		}
677		pgdat_resize_unlock(pgdat, &flags);
678	}
679
680	printk(KERN_INFO "%d pages of RAM\n", total);
681	printk(KERN_INFO "%d reserved pages\n", reserved);
682
683#ifdef CONFIG_DISCONTIGMEM
684	{
685		struct zonelist *zl;
686		int i, j;
687
688		for (i = 0; i < npmem_ranges; i++) {
689			zl = node_zonelist(i, 0);
690			for (j = 0; j < MAX_NR_ZONES; j++) {
691				struct zoneref *z;
692				struct zone *zone;
693
694				printk("Zone list for zone %d on node %d: ", j, i);
695				for_each_zone_zonelist(zone, z, zl, j)
696					printk("[%d/%s] ", zone_to_nid(zone),
697								zone->name);
698				printk("\n");
699			}
700		}
701	}
702#endif
703}
704
705/*
706 * pagetable_init() sets up the page tables
707 *
708 * Note that gateway_init() places the Linux gateway page at page 0.
709 * Since gateway pages cannot be dereferenced this has the desirable
710 * side effect of trapping those pesky NULL-reference errors in the
711 * kernel.
712 */
713static void __init pagetable_init(void)
714{
715	int range;
716
717	/* Map each physical memory range to its kernel vaddr */
718
719	for (range = 0; range < npmem_ranges; range++) {
720		unsigned long start_paddr;
721		unsigned long end_paddr;
722		unsigned long size;
723
724		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
725		size = pmem_ranges[range].pages << PAGE_SHIFT;
726		end_paddr = start_paddr + size;
727
728		map_pages((unsigned long)__va(start_paddr), start_paddr,
729			  size, PAGE_KERNEL, 0);
730	}
731
732#ifdef CONFIG_BLK_DEV_INITRD
733	if (initrd_end && initrd_end > mem_limit) {
734		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
735		map_pages(initrd_start, __pa(initrd_start),
736			  initrd_end - initrd_start, PAGE_KERNEL, 0);
737	}
738#endif
739
740	empty_zero_page = alloc_bootmem_pages(PAGE_SIZE);
 
 
 
741}
742
743static void __init gateway_init(void)
744{
745	unsigned long linux_gateway_page_addr;
746	/* FIXME: This is 'const' in order to trick the compiler
747	   into not treating it as DP-relative data. */
748	extern void * const linux_gateway_page;
749
750	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
751
752	/*
753	 * Setup Linux Gateway page.
754	 *
755	 * The Linux gateway page will reside in kernel space (on virtual
756	 * page 0), so it doesn't need to be aliased into user space.
757	 */
758
759	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
760		  PAGE_SIZE, PAGE_GATEWAY, 1);
761}
762
763void __init paging_init(void)
764{
 
 
 
765	int i;
766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
767	setup_bootmem();
768	pagetable_init();
769	gateway_init();
770	flush_cache_all_local(); /* start with known state */
771	flush_tlb_all_local(NULL);
772
773	for (i = 0; i < npmem_ranges; i++) {
774		unsigned long zones_size[MAX_NR_ZONES] = { 0, };
775
776		zones_size[ZONE_NORMAL] = pmem_ranges[i].pages;
777
778#ifdef CONFIG_DISCONTIGMEM
779		/* Need to initialize the pfnnid_map before we can initialize
780		   the zone */
781		{
782		    int j;
783		    for (j = (pmem_ranges[i].start_pfn >> PFNNID_SHIFT);
784			 j <= ((pmem_ranges[i].start_pfn + pmem_ranges[i].pages) >> PFNNID_SHIFT);
785			 j++) {
786			pfnnid_map[j] = i;
787		    }
788		}
789#endif
790
791		free_area_init_node(i, zones_size,
792				pmem_ranges[i].start_pfn, NULL);
793	}
794}
795
796#ifdef CONFIG_PA20
797
798/*
799 * Currently, all PA20 chips have 18 bit protection IDs, which is the
800 * limiting factor (space ids are 32 bits).
801 */
802
803#define NR_SPACE_IDS 262144
804
805#else
806
807/*
808 * Currently we have a one-to-one relationship between space IDs and
809 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
810 * support 15 bit protection IDs, so that is the limiting factor.
811 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
812 * probably not worth the effort for a special case here.
813 */
814
815#define NR_SPACE_IDS 32768
816
817#endif  /* !CONFIG_PA20 */
818
819#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
820#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
821
822static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
823static unsigned long dirty_space_id[SID_ARRAY_SIZE];
824static unsigned long space_id_index;
825static unsigned long free_space_ids = NR_SPACE_IDS - 1;
826static unsigned long dirty_space_ids = 0;
827
828static DEFINE_SPINLOCK(sid_lock);
829
830unsigned long alloc_sid(void)
831{
832	unsigned long index;
833
834	spin_lock(&sid_lock);
835
836	if (free_space_ids == 0) {
837		if (dirty_space_ids != 0) {
838			spin_unlock(&sid_lock);
839			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
840			spin_lock(&sid_lock);
841		}
842		BUG_ON(free_space_ids == 0);
843	}
844
845	free_space_ids--;
846
847	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
848	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
849	space_id_index = index;
850
851	spin_unlock(&sid_lock);
852
853	return index << SPACEID_SHIFT;
854}
855
856void free_sid(unsigned long spaceid)
857{
858	unsigned long index = spaceid >> SPACEID_SHIFT;
859	unsigned long *dirty_space_offset;
860
861	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
862	index &= (BITS_PER_LONG - 1);
863
864	spin_lock(&sid_lock);
865
866	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
867
868	*dirty_space_offset |= (1L << index);
869	dirty_space_ids++;
870
871	spin_unlock(&sid_lock);
872}
873
874
875#ifdef CONFIG_SMP
876static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
877{
878	int i;
879
880	/* NOTE: sid_lock must be held upon entry */
881
882	*ndirtyptr = dirty_space_ids;
883	if (dirty_space_ids != 0) {
884	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
885		dirty_array[i] = dirty_space_id[i];
886		dirty_space_id[i] = 0;
887	    }
888	    dirty_space_ids = 0;
889	}
890
891	return;
892}
893
894static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
895{
896	int i;
897
898	/* NOTE: sid_lock must be held upon entry */
899
900	if (ndirty != 0) {
901		for (i = 0; i < SID_ARRAY_SIZE; i++) {
902			space_id[i] ^= dirty_array[i];
903		}
904
905		free_space_ids += ndirty;
906		space_id_index = 0;
907	}
908}
909
910#else /* CONFIG_SMP */
911
912static void recycle_sids(void)
913{
914	int i;
915
916	/* NOTE: sid_lock must be held upon entry */
917
918	if (dirty_space_ids != 0) {
919		for (i = 0; i < SID_ARRAY_SIZE; i++) {
920			space_id[i] ^= dirty_space_id[i];
921			dirty_space_id[i] = 0;
922		}
923
924		free_space_ids += dirty_space_ids;
925		dirty_space_ids = 0;
926		space_id_index = 0;
927	}
928}
929#endif
930
931/*
932 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
933 * purged, we can safely reuse the space ids that were released but
934 * not flushed from the tlb.
935 */
936
937#ifdef CONFIG_SMP
938
939static unsigned long recycle_ndirty;
940static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
941static unsigned int recycle_inuse;
942
943void flush_tlb_all(void)
944{
945	int do_recycle;
946
947	__inc_irq_stat(irq_tlb_count);
948	do_recycle = 0;
949	spin_lock(&sid_lock);
950	if (dirty_space_ids > RECYCLE_THRESHOLD) {
951	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
952	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
953	    recycle_inuse++;
954	    do_recycle++;
955	}
956	spin_unlock(&sid_lock);
957	on_each_cpu(flush_tlb_all_local, NULL, 1);
958	if (do_recycle) {
959	    spin_lock(&sid_lock);
960	    recycle_sids(recycle_ndirty,recycle_dirty_array);
961	    recycle_inuse = 0;
962	    spin_unlock(&sid_lock);
963	}
964}
965#else
966void flush_tlb_all(void)
967{
968	__inc_irq_stat(irq_tlb_count);
969	spin_lock(&sid_lock);
970	flush_tlb_all_local(NULL);
971	recycle_sids();
972	spin_unlock(&sid_lock);
973}
974#endif
975
976#ifdef CONFIG_BLK_DEV_INITRD
977void free_initrd_mem(unsigned long start, unsigned long end)
978{
979	free_reserved_area((void *)start, (void *)end, -1, "initrd");
980}
981#endif
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *  linux/arch/parisc/mm/init.c
  4 *
  5 *  Copyright (C) 1995	Linus Torvalds
  6 *  Copyright 1999 SuSE GmbH
  7 *    changed by Philipp Rumpf
  8 *  Copyright 1999 Philipp Rumpf (prumpf@tux.org)
  9 *  Copyright 2004 Randolph Chung (tausq@debian.org)
 10 *  Copyright 2006-2007 Helge Deller (deller@gmx.de)
 11 *
 12 */
 13
 14
 15#include <linux/module.h>
 16#include <linux/mm.h>
 17#include <linux/memblock.h>
 18#include <linux/gfp.h>
 19#include <linux/delay.h>
 20#include <linux/init.h>
 
 21#include <linux/initrd.h>
 22#include <linux/swap.h>
 23#include <linux/unistd.h>
 24#include <linux/nodemask.h>	/* for node_online_map */
 25#include <linux/pagemap.h>	/* for release_pages */
 26#include <linux/compat.h>
 27
 28#include <asm/pgalloc.h>
 29#include <asm/pgtable.h>
 30#include <asm/tlb.h>
 31#include <asm/pdc_chassis.h>
 32#include <asm/mmzone.h>
 33#include <asm/sections.h>
 34#include <asm/msgbuf.h>
 35#include <asm/sparsemem.h>
 36
 37extern int  data_start;
 38extern void parisc_kernel_start(void);	/* Kernel entry point in head.S */
 39
 40#if CONFIG_PGTABLE_LEVELS == 3
 41/* NOTE: This layout exactly conforms to the hybrid L2/L3 page table layout
 42 * with the first pmd adjacent to the pgd and below it. gcc doesn't actually
 43 * guarantee that global objects will be laid out in memory in the same order
 44 * as the order of declaration, so put these in different sections and use
 45 * the linker script to order them. */
 46pmd_t pmd0[PTRS_PER_PMD] __attribute__ ((__section__ (".data..vm0.pmd"), aligned(PAGE_SIZE)));
 47#endif
 48
 49pgd_t swapper_pg_dir[PTRS_PER_PGD] __attribute__ ((__section__ (".data..vm0.pgd"), aligned(PAGE_SIZE)));
 50pte_t pg0[PT_INITIAL * PTRS_PER_PTE] __attribute__ ((__section__ (".data..vm0.pte"), aligned(PAGE_SIZE)));
 51
 
 
 
 
 
 52static struct resource data_resource = {
 53	.name	= "Kernel data",
 54	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 55};
 56
 57static struct resource code_resource = {
 58	.name	= "Kernel code",
 59	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
 60};
 61
 62static struct resource pdcdata_resource = {
 63	.name	= "PDC data (Page Zero)",
 64	.start	= 0,
 65	.end	= 0x9ff,
 66	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM,
 67};
 68
 69static struct resource sysram_resources[MAX_PHYSMEM_RANGES] __ro_after_init;
 70
 71/* The following array is initialized from the firmware specific
 72 * information retrieved in kernel/inventory.c.
 73 */
 74
 75physmem_range_t pmem_ranges[MAX_PHYSMEM_RANGES] __initdata;
 76int npmem_ranges __initdata;
 77
 78#ifdef CONFIG_64BIT
 79#define MAX_MEM         (1UL << MAX_PHYSMEM_BITS)
 80#else /* !CONFIG_64BIT */
 81#define MAX_MEM         (3584U*1024U*1024U)
 82#endif /* !CONFIG_64BIT */
 83
 84static unsigned long mem_limit __read_mostly = MAX_MEM;
 85
 86static void __init mem_limit_func(void)
 87{
 88	char *cp, *end;
 89	unsigned long limit;
 90
 91	/* We need this before __setup() functions are called */
 92
 93	limit = MAX_MEM;
 94	for (cp = boot_command_line; *cp; ) {
 95		if (memcmp(cp, "mem=", 4) == 0) {
 96			cp += 4;
 97			limit = memparse(cp, &end);
 98			if (end != cp)
 99				break;
100			cp = end;
101		} else {
102			while (*cp != ' ' && *cp)
103				++cp;
104			while (*cp == ' ')
105				++cp;
106		}
107	}
108
109	if (limit < mem_limit)
110		mem_limit = limit;
111}
112
113#define MAX_GAP (0x40000000UL >> PAGE_SHIFT)
114
115static void __init setup_bootmem(void)
116{
 
117	unsigned long mem_max;
118#ifndef CONFIG_SPARSEMEM
 
 
 
119	physmem_range_t pmem_holes[MAX_PHYSMEM_RANGES - 1];
120	int npmem_holes;
121#endif
122	int i, sysram_resource_count;
123
124	disable_sr_hashing(); /* Turn off space register hashing */
125
126	/*
127	 * Sort the ranges. Since the number of ranges is typically
128	 * small, and performance is not an issue here, just do
129	 * a simple insertion sort.
130	 */
131
132	for (i = 1; i < npmem_ranges; i++) {
133		int j;
134
135		for (j = i; j > 0; j--) {
136			physmem_range_t tmp;
137
138			if (pmem_ranges[j-1].start_pfn <
139			    pmem_ranges[j].start_pfn) {
140
141				break;
142			}
143			tmp = pmem_ranges[j-1];
144			pmem_ranges[j-1] = pmem_ranges[j];
145			pmem_ranges[j] = tmp;
 
 
 
146		}
147	}
148
149#ifndef CONFIG_SPARSEMEM
150	/*
151	 * Throw out ranges that are too far apart (controlled by
152	 * MAX_GAP).
153	 */
154
155	for (i = 1; i < npmem_ranges; i++) {
156		if (pmem_ranges[i].start_pfn -
157			(pmem_ranges[i-1].start_pfn +
158			 pmem_ranges[i-1].pages) > MAX_GAP) {
159			npmem_ranges = i;
160			printk("Large gap in memory detected (%ld pages). "
161			       "Consider turning on CONFIG_SPARSEMEM\n",
162			       pmem_ranges[i].start_pfn -
163			       (pmem_ranges[i-1].start_pfn +
164			        pmem_ranges[i-1].pages));
165			break;
166		}
167	}
168#endif
169
170	/* Print the memory ranges */
171	pr_info("Memory Ranges:\n");
 
172
173	for (i = 0; i < npmem_ranges; i++) {
174		struct resource *res = &sysram_resources[i];
175		unsigned long start;
176		unsigned long size;
 
177
178		size = (pmem_ranges[i].pages << PAGE_SHIFT);
179		start = (pmem_ranges[i].start_pfn << PAGE_SHIFT);
180		pr_info("%2d) Start 0x%016lx End 0x%016lx Size %6ld MB\n",
181			i, start, start + (size - 1), size >> 20);
 
 
182
183		/* request memory resource */
 
 
184		res->name = "System RAM";
185		res->start = start;
186		res->end = start + size - 1;
187		res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
188		request_resource(&iomem_resource, res);
189	}
190
191	sysram_resource_count = npmem_ranges;
192
193	/*
194	 * For 32 bit kernels we limit the amount of memory we can
195	 * support, in order to preserve enough kernel address space
196	 * for other purposes. For 64 bit kernels we don't normally
197	 * limit the memory, but this mechanism can be used to
198	 * artificially limit the amount of memory (and it is written
199	 * to work with multiple memory ranges).
200	 */
201
202	mem_limit_func();       /* check for "mem=" argument */
203
204	mem_max = 0;
205	for (i = 0; i < npmem_ranges; i++) {
206		unsigned long rsize;
207
208		rsize = pmem_ranges[i].pages << PAGE_SHIFT;
209		if ((mem_max + rsize) > mem_limit) {
210			printk(KERN_WARNING "Memory truncated to %ld MB\n", mem_limit >> 20);
211			if (mem_max == mem_limit)
212				npmem_ranges = i;
213			else {
214				pmem_ranges[i].pages =   (mem_limit >> PAGE_SHIFT)
215						       - (mem_max >> PAGE_SHIFT);
216				npmem_ranges = i + 1;
217				mem_max = mem_limit;
218			}
219			break;
220		}
221		mem_max += rsize;
222	}
223
224	printk(KERN_INFO "Total Memory: %ld MB\n",mem_max >> 20);
225
226#ifndef CONFIG_SPARSEMEM
227	/* Merge the ranges, keeping track of the holes */
 
228	{
229		unsigned long end_pfn;
230		unsigned long hole_pages;
231
232		npmem_holes = 0;
233		end_pfn = pmem_ranges[0].start_pfn + pmem_ranges[0].pages;
234		for (i = 1; i < npmem_ranges; i++) {
235
236			hole_pages = pmem_ranges[i].start_pfn - end_pfn;
237			if (hole_pages) {
238				pmem_holes[npmem_holes].start_pfn = end_pfn;
239				pmem_holes[npmem_holes++].pages = hole_pages;
240				end_pfn += hole_pages;
241			}
242			end_pfn += pmem_ranges[i].pages;
243		}
244
245		pmem_ranges[0].pages = end_pfn - pmem_ranges[0].start_pfn;
246		npmem_ranges = 1;
247	}
248#endif
249
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250	/*
251	 * Initialize and free the full range of memory in each range.
 
 
 
252	 */
253
 
254	max_pfn = 0;
255	for (i = 0; i < npmem_ranges; i++) {
256		unsigned long start_pfn;
257		unsigned long npages;
258		unsigned long start;
259		unsigned long size;
260
261		start_pfn = pmem_ranges[i].start_pfn;
262		npages = pmem_ranges[i].pages;
263
264		start = start_pfn << PAGE_SHIFT;
265		size = npages << PAGE_SHIFT;
266
267		/* add system RAM memblock */
268		memblock_add(start, size);
269
 
 
270		if ((start_pfn + npages) > max_pfn)
271			max_pfn = start_pfn + npages;
272	}
273
274	/*
275	 * We can't use memblock top-down allocations because we only
276	 * created the initial mapping up to KERNEL_INITIAL_SIZE in
277	 * the assembly bootup code.
278	 */
279	memblock_set_bottom_up(true);
280
281	/* IOMMU is always used to access "high mem" on those boxes
282	 * that can support enough mem that a PCI device couldn't
283	 * directly DMA to any physical addresses.
284	 * ISA DMA support will need to revisit this.
285	 */
286	max_low_pfn = max_pfn;
287
 
 
 
288	/* reserve PAGE0 pdc memory, kernel text/data/bss & bootmap */
289
290#define PDC_CONSOLE_IO_IODC_SIZE 32768
291
292	memblock_reserve(0UL, (unsigned long)(PAGE0->mem_free +
293				PDC_CONSOLE_IO_IODC_SIZE));
294	memblock_reserve(__pa(KERNEL_BINARY_TEXT_START),
295			(unsigned long)(_end - KERNEL_BINARY_TEXT_START));
 
 
 
 
 
296
297#ifndef CONFIG_SPARSEMEM
298
299	/* reserve the holes */
300
301	for (i = 0; i < npmem_holes; i++) {
302		memblock_reserve((pmem_holes[i].start_pfn << PAGE_SHIFT),
303				(pmem_holes[i].pages << PAGE_SHIFT));
 
 
304	}
305#endif
306
307#ifdef CONFIG_BLK_DEV_INITRD
308	if (initrd_start) {
309		printk(KERN_INFO "initrd: %08lx-%08lx\n", initrd_start, initrd_end);
310		if (__pa(initrd_start) < mem_max) {
311			unsigned long initrd_reserve;
312
313			if (__pa(initrd_end) > mem_max) {
314				initrd_reserve = mem_max - __pa(initrd_start);
315			} else {
316				initrd_reserve = initrd_end - initrd_start;
317			}
318			initrd_below_start_ok = 1;
319			printk(KERN_INFO "initrd: reserving %08lx-%08lx (mem_max %08lx)\n", __pa(initrd_start), __pa(initrd_start) + initrd_reserve, mem_max);
320
321			memblock_reserve(__pa(initrd_start), initrd_reserve);
 
322		}
323	}
324#endif
325
326	data_resource.start =  virt_to_phys(&data_start);
327	data_resource.end = virt_to_phys(_end) - 1;
328	code_resource.start = virt_to_phys(_text);
329	code_resource.end = virt_to_phys(&data_start)-1;
330
331	/* We don't know which region the kernel will be in, so try
332	 * all of them.
333	 */
334	for (i = 0; i < sysram_resource_count; i++) {
335		struct resource *res = &sysram_resources[i];
336		request_resource(res, &code_resource);
337		request_resource(res, &data_resource);
338	}
339	request_resource(&sysram_resources[0], &pdcdata_resource);
 
 
 
 
 
340
341	/* Initialize Page Deallocation Table (PDT) and check for bad memory. */
342	pdc_pdt_init();
 
343
344	memblock_allow_resize();
345	memblock_dump_all();
346}
347
348static bool kernel_set_to_readonly;
349
350static void __init map_pages(unsigned long start_vaddr,
351			     unsigned long start_paddr, unsigned long size,
352			     pgprot_t pgprot, int force)
353{
354	pgd_t *pg_dir;
355	pmd_t *pmd;
356	pte_t *pg_table;
357	unsigned long end_paddr;
358	unsigned long start_pmd;
359	unsigned long start_pte;
360	unsigned long tmp1;
361	unsigned long tmp2;
362	unsigned long address;
363	unsigned long vaddr;
364	unsigned long ro_start;
365	unsigned long ro_end;
366	unsigned long kernel_start, kernel_end;
367
368	ro_start = __pa((unsigned long)_text);
369	ro_end   = __pa((unsigned long)&data_start);
370	kernel_start = __pa((unsigned long)&__init_begin);
371	kernel_end  = __pa((unsigned long)&_end);
372
373	end_paddr = start_paddr + size;
374
375	pg_dir = pgd_offset_k(start_vaddr);
376
377#if PTRS_PER_PMD == 1
378	start_pmd = 0;
379#else
380	start_pmd = ((start_vaddr >> PMD_SHIFT) & (PTRS_PER_PMD - 1));
381#endif
382	start_pte = ((start_vaddr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
383
384	address = start_paddr;
385	vaddr = start_vaddr;
386	while (address < end_paddr) {
387#if PTRS_PER_PMD == 1
388		pmd = (pmd_t *)__pa(pg_dir);
389#else
390		pmd = (pmd_t *)pgd_address(*pg_dir);
391
392		/*
393		 * pmd is physical at this point
394		 */
395
396		if (!pmd) {
397			pmd = memblock_alloc(PAGE_SIZE << PMD_ORDER,
398					     PAGE_SIZE << PMD_ORDER);
399			if (!pmd)
400				panic("pmd allocation failed.\n");
401			pmd = (pmd_t *) __pa(pmd);
402		}
403
404		pgd_populate(NULL, pg_dir, __va(pmd));
405#endif
406		pg_dir++;
407
408		/* now change pmd to kernel virtual addresses */
409
410		pmd = (pmd_t *)__va(pmd) + start_pmd;
411		for (tmp1 = start_pmd; tmp1 < PTRS_PER_PMD; tmp1++, pmd++) {
412
413			/*
414			 * pg_table is physical at this point
415			 */
416
417			pg_table = (pte_t *)pmd_address(*pmd);
418			if (!pg_table) {
419				pg_table = memblock_alloc(PAGE_SIZE,
420							  PAGE_SIZE);
421				if (!pg_table)
422					panic("page table allocation failed\n");
423				pg_table = (pte_t *) __pa(pg_table);
424			}
425
426			pmd_populate_kernel(NULL, pmd, __va(pg_table));
427
428			/* now change pg_table to kernel virtual addresses */
429
430			pg_table = (pte_t *) __va(pg_table) + start_pte;
431			for (tmp2 = start_pte; tmp2 < PTRS_PER_PTE; tmp2++, pg_table++) {
432				pte_t pte;
433				pgprot_t prot;
434				bool huge = false;
435
436				if (force) {
437					prot = pgprot;
438				} else if (address < kernel_start || address >= kernel_end) {
439					/* outside kernel memory */
440					prot = PAGE_KERNEL;
441				} else if (!kernel_set_to_readonly) {
442					/* still initializing, allow writing to RO memory */
443					prot = PAGE_KERNEL_RWX;
444					huge = true;
445				} else if (address >= ro_start) {
446					/* Code (ro) and Data areas */
447					prot = (address < ro_end) ?
448						PAGE_KERNEL_EXEC : PAGE_KERNEL;
449					huge = true;
450				} else {
451					prot = PAGE_KERNEL;
452				}
453
454				pte = __mk_pte(address, prot);
455				if (huge)
 
456					pte = pte_mkhuge(pte);
 
 
 
 
 
 
 
457
458				if (address >= end_paddr)
459					break;
 
 
 
 
460
461				set_pte(pg_table, pte);
462
463				address += PAGE_SIZE;
464				vaddr += PAGE_SIZE;
465			}
466			start_pte = 0;
467
468			if (address >= end_paddr)
469			    break;
470		}
471		start_pmd = 0;
472	}
473}
474
475void __init set_kernel_text_rw(int enable_read_write)
476{
477	unsigned long start = (unsigned long) __init_begin;
478	unsigned long end   = (unsigned long) &data_start;
479
480	map_pages(start, __pa(start), end-start,
481		PAGE_KERNEL_RWX, enable_read_write ? 1:0);
482
483	/* force the kernel to see the new page table entries */
484	flush_cache_all();
485	flush_tlb_all();
486}
487
488void __ref free_initmem(void)
489{
490	unsigned long init_begin = (unsigned long)__init_begin;
491	unsigned long init_end = (unsigned long)__init_end;
492	unsigned long kernel_end  = (unsigned long)&_end;
493
494	/* Remap kernel text and data, but do not touch init section yet. */
495	kernel_set_to_readonly = true;
496	map_pages(init_end, __pa(init_end), kernel_end - init_end,
497		  PAGE_KERNEL, 0);
498
499	/* The init text pages are marked R-X.  We have to
500	 * flush the icache and mark them RW-
501	 *
502	 * This is tricky, because map_pages is in the init section.
503	 * Do a dummy remap of the data section first (the data
504	 * section is already PAGE_KERNEL) to pull in the TLB entries
505	 * for map_kernel */
506	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
507		  PAGE_KERNEL_RWX, 1);
508	/* now remap at PAGE_KERNEL since the TLB is pre-primed to execute
509	 * map_pages */
510	map_pages(init_begin, __pa(init_begin), init_end - init_begin,
511		  PAGE_KERNEL, 1);
512
513	/* force the kernel to see the new TLB entries */
514	__flush_tlb_range(0, init_begin, kernel_end);
515
516	/* finally dump all the instructions which were cached, since the
517	 * pages are no-longer executable */
518	flush_icache_range(init_begin, init_end);
519	
520	free_initmem_default(POISON_FREE_INITMEM);
521
522	/* set up a new led state on systems shipped LED State panel */
523	pdc_chassis_send_status(PDC_CHASSIS_DIRECT_BCOMPLETE);
524}
525
526
527#ifdef CONFIG_STRICT_KERNEL_RWX
528void mark_rodata_ro(void)
529{
530	/* rodata memory was already mapped with KERNEL_RO access rights by
531           pagetable_init() and map_pages(). No need to do additional stuff here */
532	unsigned long roai_size = __end_ro_after_init - __start_ro_after_init;
533
534	pr_info("Write protected read-only-after-init data: %luk\n", roai_size >> 10);
535}
536#endif
537
538
539/*
540 * Just an arbitrary offset to serve as a "hole" between mapping areas
541 * (between top of physical memory and a potential pcxl dma mapping
542 * area, and below the vmalloc mapping area).
543 *
544 * The current 32K value just means that there will be a 32K "hole"
545 * between mapping areas. That means that  any out-of-bounds memory
546 * accesses will hopefully be caught. The vmalloc() routines leaves
547 * a hole of 4kB between each vmalloced area for the same reason.
548 */
549
550 /* Leave room for gateway page expansion */
551#if KERNEL_MAP_START < GATEWAY_PAGE_SIZE
552#error KERNEL_MAP_START is in gateway reserved region
553#endif
554#define MAP_START (KERNEL_MAP_START)
555
556#define VM_MAP_OFFSET  (32*1024)
557#define SET_MAP_OFFSET(x) ((void *)(((unsigned long)(x) + VM_MAP_OFFSET) \
558				     & ~(VM_MAP_OFFSET-1)))
559
560void *parisc_vmalloc_start __ro_after_init;
561EXPORT_SYMBOL(parisc_vmalloc_start);
562
563#ifdef CONFIG_PA11
564unsigned long pcxl_dma_start __ro_after_init;
565#endif
566
567void __init mem_init(void)
568{
569	/* Do sanity checks on IPC (compat) structures */
570	BUILD_BUG_ON(sizeof(struct ipc64_perm) != 48);
571#ifndef CONFIG_64BIT
572	BUILD_BUG_ON(sizeof(struct semid64_ds) != 80);
573	BUILD_BUG_ON(sizeof(struct msqid64_ds) != 104);
574	BUILD_BUG_ON(sizeof(struct shmid64_ds) != 104);
575#endif
576#ifdef CONFIG_COMPAT
577	BUILD_BUG_ON(sizeof(struct compat_ipc64_perm) != sizeof(struct ipc64_perm));
578	BUILD_BUG_ON(sizeof(struct compat_semid64_ds) != 80);
579	BUILD_BUG_ON(sizeof(struct compat_msqid64_ds) != 104);
580	BUILD_BUG_ON(sizeof(struct compat_shmid64_ds) != 104);
581#endif
582
583	/* Do sanity checks on page table constants */
584	BUILD_BUG_ON(PTE_ENTRY_SIZE != sizeof(pte_t));
585	BUILD_BUG_ON(PMD_ENTRY_SIZE != sizeof(pmd_t));
586	BUILD_BUG_ON(PGD_ENTRY_SIZE != sizeof(pgd_t));
587	BUILD_BUG_ON(PAGE_SHIFT + BITS_PER_PTE + BITS_PER_PMD + BITS_PER_PGD
588			> BITS_PER_LONG);
589
590	high_memory = __va((max_pfn << PAGE_SHIFT));
591	set_max_mapnr(page_to_pfn(virt_to_page(high_memory - 1)) + 1);
592	memblock_free_all();
593
594#ifdef CONFIG_PA11
595	if (boot_cpu_data.cpu_type == pcxl2 || boot_cpu_data.cpu_type == pcxl) {
596		pcxl_dma_start = (unsigned long)SET_MAP_OFFSET(MAP_START);
597		parisc_vmalloc_start = SET_MAP_OFFSET(pcxl_dma_start
598						+ PCXL_DMA_MAP_SIZE);
599	} else
 
 
 
 
 
600#endif
601		parisc_vmalloc_start = SET_MAP_OFFSET(MAP_START);
602
603	mem_init_print_info(NULL);
604
605#if 0
606	/*
607	 * Do not expose the virtual kernel memory layout to userspace.
608	 * But keep code for debugging purposes.
609	 */
610	printk("virtual kernel memory layout:\n"
611	       "     vmalloc : 0x%px - 0x%px   (%4ld MB)\n"
612	       "     fixmap  : 0x%px - 0x%px   (%4ld kB)\n"
613	       "     memory  : 0x%px - 0x%px   (%4ld MB)\n"
614	       "       .init : 0x%px - 0x%px   (%4ld kB)\n"
615	       "       .data : 0x%px - 0x%px   (%4ld kB)\n"
616	       "       .text : 0x%px - 0x%px   (%4ld kB)\n",
617
618	       (void*)VMALLOC_START, (void*)VMALLOC_END,
619	       (VMALLOC_END - VMALLOC_START) >> 20,
620
621	       (void *)FIXMAP_START, (void *)(FIXMAP_START + FIXMAP_SIZE),
622	       (unsigned long)(FIXMAP_SIZE / 1024),
623
624	       __va(0), high_memory,
625	       ((unsigned long)high_memory - (unsigned long)__va(0)) >> 20,
626
627	       __init_begin, __init_end,
628	       ((unsigned long)__init_end - (unsigned long)__init_begin) >> 10,
629
630	       _etext, _edata,
631	       ((unsigned long)_edata - (unsigned long)_etext) >> 10,
632
633	       _text, _etext,
634	       ((unsigned long)_etext - (unsigned long)_text) >> 10);
635#endif
636}
637
638unsigned long *empty_zero_page __ro_after_init;
639EXPORT_SYMBOL(empty_zero_page);
640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
641/*
642 * pagetable_init() sets up the page tables
643 *
644 * Note that gateway_init() places the Linux gateway page at page 0.
645 * Since gateway pages cannot be dereferenced this has the desirable
646 * side effect of trapping those pesky NULL-reference errors in the
647 * kernel.
648 */
649static void __init pagetable_init(void)
650{
651	int range;
652
653	/* Map each physical memory range to its kernel vaddr */
654
655	for (range = 0; range < npmem_ranges; range++) {
656		unsigned long start_paddr;
657		unsigned long end_paddr;
658		unsigned long size;
659
660		start_paddr = pmem_ranges[range].start_pfn << PAGE_SHIFT;
661		size = pmem_ranges[range].pages << PAGE_SHIFT;
662		end_paddr = start_paddr + size;
663
664		map_pages((unsigned long)__va(start_paddr), start_paddr,
665			  size, PAGE_KERNEL, 0);
666	}
667
668#ifdef CONFIG_BLK_DEV_INITRD
669	if (initrd_end && initrd_end > mem_limit) {
670		printk(KERN_INFO "initrd: mapping %08lx-%08lx\n", initrd_start, initrd_end);
671		map_pages(initrd_start, __pa(initrd_start),
672			  initrd_end - initrd_start, PAGE_KERNEL, 0);
673	}
674#endif
675
676	empty_zero_page = memblock_alloc(PAGE_SIZE, PAGE_SIZE);
677	if (!empty_zero_page)
678		panic("zero page allocation failed.\n");
679
680}
681
682static void __init gateway_init(void)
683{
684	unsigned long linux_gateway_page_addr;
685	/* FIXME: This is 'const' in order to trick the compiler
686	   into not treating it as DP-relative data. */
687	extern void * const linux_gateway_page;
688
689	linux_gateway_page_addr = LINUX_GATEWAY_ADDR & PAGE_MASK;
690
691	/*
692	 * Setup Linux Gateway page.
693	 *
694	 * The Linux gateway page will reside in kernel space (on virtual
695	 * page 0), so it doesn't need to be aliased into user space.
696	 */
697
698	map_pages(linux_gateway_page_addr, __pa(&linux_gateway_page),
699		  PAGE_SIZE, PAGE_GATEWAY, 1);
700}
701
702static void __init parisc_bootmem_free(void)
703{
704	unsigned long zones_size[MAX_NR_ZONES] = { 0, };
705	unsigned long holes_size[MAX_NR_ZONES] = { 0, };
706	unsigned long mem_start_pfn = ~0UL, mem_end_pfn = 0, mem_size_pfn = 0;
707	int i;
708
709	for (i = 0; i < npmem_ranges; i++) {
710		unsigned long start = pmem_ranges[i].start_pfn;
711		unsigned long size = pmem_ranges[i].pages;
712		unsigned long end = start + size;
713
714		if (mem_start_pfn > start)
715			mem_start_pfn = start;
716		if (mem_end_pfn < end)
717			mem_end_pfn = end;
718		mem_size_pfn += size;
719	}
720
721	zones_size[0] = mem_end_pfn - mem_start_pfn;
722	holes_size[0] = zones_size[0] - mem_size_pfn;
723
724	free_area_init_node(0, zones_size, mem_start_pfn, holes_size);
725}
726
727void __init paging_init(void)
728{
729	setup_bootmem();
730	pagetable_init();
731	gateway_init();
732	flush_cache_all_local(); /* start with known state */
733	flush_tlb_all_local(NULL);
734
735	/*
736	 * Mark all memblocks as present for sparsemem using
737	 * memory_present() and then initialize sparsemem.
738	 */
739	memblocks_present();
740	sparse_init();
741	parisc_bootmem_free();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
742}
743
744#ifdef CONFIG_PA20
745
746/*
747 * Currently, all PA20 chips have 18 bit protection IDs, which is the
748 * limiting factor (space ids are 32 bits).
749 */
750
751#define NR_SPACE_IDS 262144
752
753#else
754
755/*
756 * Currently we have a one-to-one relationship between space IDs and
757 * protection IDs. Older parisc chips (PCXS, PCXT, PCXL, PCXL2) only
758 * support 15 bit protection IDs, so that is the limiting factor.
759 * PCXT' has 18 bit protection IDs, but only 16 bit spaceids, so it's
760 * probably not worth the effort for a special case here.
761 */
762
763#define NR_SPACE_IDS 32768
764
765#endif  /* !CONFIG_PA20 */
766
767#define RECYCLE_THRESHOLD (NR_SPACE_IDS / 2)
768#define SID_ARRAY_SIZE  (NR_SPACE_IDS / (8 * sizeof(long)))
769
770static unsigned long space_id[SID_ARRAY_SIZE] = { 1 }; /* disallow space 0 */
771static unsigned long dirty_space_id[SID_ARRAY_SIZE];
772static unsigned long space_id_index;
773static unsigned long free_space_ids = NR_SPACE_IDS - 1;
774static unsigned long dirty_space_ids = 0;
775
776static DEFINE_SPINLOCK(sid_lock);
777
778unsigned long alloc_sid(void)
779{
780	unsigned long index;
781
782	spin_lock(&sid_lock);
783
784	if (free_space_ids == 0) {
785		if (dirty_space_ids != 0) {
786			spin_unlock(&sid_lock);
787			flush_tlb_all(); /* flush_tlb_all() calls recycle_sids() */
788			spin_lock(&sid_lock);
789		}
790		BUG_ON(free_space_ids == 0);
791	}
792
793	free_space_ids--;
794
795	index = find_next_zero_bit(space_id, NR_SPACE_IDS, space_id_index);
796	space_id[index >> SHIFT_PER_LONG] |= (1L << (index & (BITS_PER_LONG - 1)));
797	space_id_index = index;
798
799	spin_unlock(&sid_lock);
800
801	return index << SPACEID_SHIFT;
802}
803
804void free_sid(unsigned long spaceid)
805{
806	unsigned long index = spaceid >> SPACEID_SHIFT;
807	unsigned long *dirty_space_offset;
808
809	dirty_space_offset = dirty_space_id + (index >> SHIFT_PER_LONG);
810	index &= (BITS_PER_LONG - 1);
811
812	spin_lock(&sid_lock);
813
814	BUG_ON(*dirty_space_offset & (1L << index)); /* attempt to free space id twice */
815
816	*dirty_space_offset |= (1L << index);
817	dirty_space_ids++;
818
819	spin_unlock(&sid_lock);
820}
821
822
823#ifdef CONFIG_SMP
824static void get_dirty_sids(unsigned long *ndirtyptr,unsigned long *dirty_array)
825{
826	int i;
827
828	/* NOTE: sid_lock must be held upon entry */
829
830	*ndirtyptr = dirty_space_ids;
831	if (dirty_space_ids != 0) {
832	    for (i = 0; i < SID_ARRAY_SIZE; i++) {
833		dirty_array[i] = dirty_space_id[i];
834		dirty_space_id[i] = 0;
835	    }
836	    dirty_space_ids = 0;
837	}
838
839	return;
840}
841
842static void recycle_sids(unsigned long ndirty,unsigned long *dirty_array)
843{
844	int i;
845
846	/* NOTE: sid_lock must be held upon entry */
847
848	if (ndirty != 0) {
849		for (i = 0; i < SID_ARRAY_SIZE; i++) {
850			space_id[i] ^= dirty_array[i];
851		}
852
853		free_space_ids += ndirty;
854		space_id_index = 0;
855	}
856}
857
858#else /* CONFIG_SMP */
859
860static void recycle_sids(void)
861{
862	int i;
863
864	/* NOTE: sid_lock must be held upon entry */
865
866	if (dirty_space_ids != 0) {
867		for (i = 0; i < SID_ARRAY_SIZE; i++) {
868			space_id[i] ^= dirty_space_id[i];
869			dirty_space_id[i] = 0;
870		}
871
872		free_space_ids += dirty_space_ids;
873		dirty_space_ids = 0;
874		space_id_index = 0;
875	}
876}
877#endif
878
879/*
880 * flush_tlb_all() calls recycle_sids(), since whenever the entire tlb is
881 * purged, we can safely reuse the space ids that were released but
882 * not flushed from the tlb.
883 */
884
885#ifdef CONFIG_SMP
886
887static unsigned long recycle_ndirty;
888static unsigned long recycle_dirty_array[SID_ARRAY_SIZE];
889static unsigned int recycle_inuse;
890
891void flush_tlb_all(void)
892{
893	int do_recycle;
894
895	__inc_irq_stat(irq_tlb_count);
896	do_recycle = 0;
897	spin_lock(&sid_lock);
898	if (dirty_space_ids > RECYCLE_THRESHOLD) {
899	    BUG_ON(recycle_inuse);  /* FIXME: Use a semaphore/wait queue here */
900	    get_dirty_sids(&recycle_ndirty,recycle_dirty_array);
901	    recycle_inuse++;
902	    do_recycle++;
903	}
904	spin_unlock(&sid_lock);
905	on_each_cpu(flush_tlb_all_local, NULL, 1);
906	if (do_recycle) {
907	    spin_lock(&sid_lock);
908	    recycle_sids(recycle_ndirty,recycle_dirty_array);
909	    recycle_inuse = 0;
910	    spin_unlock(&sid_lock);
911	}
912}
913#else
914void flush_tlb_all(void)
915{
916	__inc_irq_stat(irq_tlb_count);
917	spin_lock(&sid_lock);
918	flush_tlb_all_local(NULL);
919	recycle_sids();
920	spin_unlock(&sid_lock);
 
 
 
 
 
 
 
921}
922#endif