Linux Audio

Check our new training course

Loading...
v4.6
 
 
 
 
 
 
   1
 
 
 
 
   2#include <linux/sched.h>
 
 
 
 
 
 
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/sched/deadline.h>
   6#include <linux/binfmts.h>
   7#include <linux/mutex.h>
   8#include <linux/spinlock.h>
   9#include <linux/stop_machine.h>
 
 
 
 
 
 
 
 
 
 
 
 
  10#include <linux/irq_work.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11#include <linux/tick.h>
  12#include <linux/slab.h>
 
 
 
 
 
 
 
  13
  14#include "cpupri.h"
  15#include "cpudeadline.h"
  16#include "cpuacct.h"
 
  17
  18struct rq;
 
 
 
  19struct cpuidle_state;
  20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  21/* task_struct::on_rq states: */
  22#define TASK_ON_RQ_QUEUED	1
  23#define TASK_ON_RQ_MIGRATING	2
  24
  25extern __read_mostly int scheduler_running;
  26
  27extern unsigned long calc_load_update;
  28extern atomic_long_t calc_load_tasks;
  29
  30extern void calc_global_load_tick(struct rq *this_rq);
  31extern long calc_load_fold_active(struct rq *this_rq);
  32
  33#ifdef CONFIG_SMP
  34extern void update_cpu_load_active(struct rq *this_rq);
  35#else
  36static inline void update_cpu_load_active(struct rq *this_rq) { }
  37#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  38
  39/*
  40 * Helpers for converting nanosecond timing to jiffy resolution
  41 */
  42#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  43
  44/*
  45 * Increase resolution of nice-level calculations for 64-bit architectures.
  46 * The extra resolution improves shares distribution and load balancing of
  47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  48 * hierarchies, especially on larger systems. This is not a user-visible change
  49 * and does not change the user-interface for setting shares/weights.
  50 *
  51 * We increase resolution only if we have enough bits to allow this increased
  52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  54 * increased costs.
  55 */
  56#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  57# define SCHED_LOAD_RESOLUTION	10
  58# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
  59# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
 
 
 
 
 
 
 
 
 
  60#else
  61# define SCHED_LOAD_RESOLUTION	0
  62# define scale_load(w)		(w)
  63# define scale_load_down(w)	(w)
  64#endif
  65
  66#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
  67#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
  68
  69#define NICE_0_LOAD		SCHED_LOAD_SCALE
  70#define NICE_0_SHIFT		SCHED_LOAD_SHIFT
 
 
 
 
 
  71
  72/*
  73 * Single value that decides SCHED_DEADLINE internal math precision.
  74 * 10 -> just above 1us
  75 * 9  -> just above 0.5us
  76 */
  77#define DL_SCALE (10)
  78
  79/*
  80 * These are the 'tuning knobs' of the scheduler:
  81 */
  82
  83/*
  84 * single value that denotes runtime == period, ie unlimited time.
  85 */
  86#define RUNTIME_INF	((u64)~0ULL)
  87
  88static inline int idle_policy(int policy)
  89{
  90	return policy == SCHED_IDLE;
  91}
 
 
 
 
 
 
 
 
 
 
  92static inline int fair_policy(int policy)
  93{
  94	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  95}
  96
  97static inline int rt_policy(int policy)
  98{
  99	return policy == SCHED_FIFO || policy == SCHED_RR;
 100}
 101
 102static inline int dl_policy(int policy)
 103{
 104	return policy == SCHED_DEADLINE;
 105}
 
 106static inline bool valid_policy(int policy)
 107{
 108	return idle_policy(policy) || fair_policy(policy) ||
 109		rt_policy(policy) || dl_policy(policy);
 110}
 111
 
 
 
 
 
 112static inline int task_has_rt_policy(struct task_struct *p)
 113{
 114	return rt_policy(p->policy);
 115}
 116
 117static inline int task_has_dl_policy(struct task_struct *p)
 118{
 119	return dl_policy(p->policy);
 120}
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/*
 123 * Tells if entity @a should preempt entity @b.
 124 */
 125static inline bool
 126dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 127{
 128	return dl_time_before(a->deadline, b->deadline);
 
 129}
 130
 131/*
 132 * This is the priority-queue data structure of the RT scheduling class:
 133 */
 134struct rt_prio_array {
 135	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 136	struct list_head queue[MAX_RT_PRIO];
 137};
 138
 139struct rt_bandwidth {
 140	/* nests inside the rq lock: */
 141	raw_spinlock_t		rt_runtime_lock;
 142	ktime_t			rt_period;
 143	u64			rt_runtime;
 144	struct hrtimer		rt_period_timer;
 145	unsigned int		rt_period_active;
 146};
 147
 148void __dl_clear_params(struct task_struct *p);
 
 
 
 149
 150/*
 151 * To keep the bandwidth of -deadline tasks and groups under control
 152 * we need some place where:
 153 *  - store the maximum -deadline bandwidth of the system (the group);
 154 *  - cache the fraction of that bandwidth that is currently allocated.
 
 155 *
 156 * This is all done in the data structure below. It is similar to the
 157 * one used for RT-throttling (rt_bandwidth), with the main difference
 158 * that, since here we are only interested in admission control, we
 159 * do not decrease any runtime while the group "executes", neither we
 160 * need a timer to replenish it.
 161 *
 162 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 163 * meaning that:
 164 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 165 *  - dl_total_bw array contains, in the i-eth element, the currently
 166 *    allocated bandwidth on the i-eth CPU.
 167 * Moreover, groups consume bandwidth on each CPU, while tasks only
 168 * consume bandwidth on the CPU they're running on.
 169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 170 * that will be shown the next time the proc or cgroup controls will
 171 * be red. It on its turn can be changed by writing on its own
 172 * control.
 173 */
 174struct dl_bandwidth {
 175	raw_spinlock_t dl_runtime_lock;
 176	u64 dl_runtime;
 177	u64 dl_period;
 178};
 179
 180static inline int dl_bandwidth_enabled(void)
 181{
 182	return sysctl_sched_rt_runtime >= 0;
 183}
 184
 185extern struct dl_bw *dl_bw_of(int i);
 186
 187struct dl_bw {
 188	raw_spinlock_t lock;
 189	u64 bw, total_bw;
 
 190};
 191
 192static inline
 193void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 194{
 195	dl_b->total_bw -= tsk_bw;
 196}
 197
 198static inline
 199void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 200{
 201	dl_b->total_bw += tsk_bw;
 202}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204static inline
 205bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 206{
 207	return dl_b->bw != -1 &&
 208	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 209}
 210
 211extern struct mutex sched_domains_mutex;
 212
 213#ifdef CONFIG_CGROUP_SCHED
 214
 215#include <linux/cgroup.h>
 216
 217struct cfs_rq;
 218struct rt_rq;
 219
 220extern struct list_head task_groups;
 221
 222struct cfs_bandwidth {
 223#ifdef CONFIG_CFS_BANDWIDTH
 224	raw_spinlock_t lock;
 225	ktime_t period;
 226	u64 quota, runtime;
 227	s64 hierarchical_quota;
 228	u64 runtime_expires;
 229
 230	int idle, period_active;
 231	struct hrtimer period_timer, slack_timer;
 232	struct list_head throttled_cfs_rq;
 233
 234	/* statistics */
 235	int nr_periods, nr_throttled;
 236	u64 throttled_time;
 
 
 
 
 
 
 
 
 237#endif
 238};
 239
 240/* task group related information */
 241struct task_group {
 242	struct cgroup_subsys_state css;
 243
 244#ifdef CONFIG_FAIR_GROUP_SCHED
 245	/* schedulable entities of this group on each cpu */
 246	struct sched_entity **se;
 247	/* runqueue "owned" by this group on each cpu */
 248	struct cfs_rq **cfs_rq;
 249	unsigned long shares;
 250
 
 
 
 
 
 
 251#ifdef	CONFIG_SMP
 252	/*
 253	 * load_avg can be heavily contended at clock tick time, so put
 254	 * it in its own cacheline separated from the fields above which
 255	 * will also be accessed at each tick.
 256	 */
 257	atomic_long_t load_avg ____cacheline_aligned;
 258#endif
 259#endif
 260
 261#ifdef CONFIG_RT_GROUP_SCHED
 262	struct sched_rt_entity **rt_se;
 263	struct rt_rq **rt_rq;
 264
 265	struct rt_bandwidth rt_bandwidth;
 266#endif
 267
 268	struct rcu_head rcu;
 269	struct list_head list;
 
 
 
 
 
 270
 271	struct task_group *parent;
 272	struct list_head siblings;
 273	struct list_head children;
 274
 275#ifdef CONFIG_SCHED_AUTOGROUP
 276	struct autogroup *autogroup;
 
 
 
 
 
 
 
 
 
 
 
 277#endif
 278
 279	struct cfs_bandwidth cfs_bandwidth;
 280};
 281
 282#ifdef CONFIG_FAIR_GROUP_SCHED
 283#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 284
 285/*
 286 * A weight of 0 or 1 can cause arithmetics problems.
 287 * A weight of a cfs_rq is the sum of weights of which entities
 288 * are queued on this cfs_rq, so a weight of a entity should not be
 289 * too large, so as the shares value of a task group.
 290 * (The default weight is 1024 - so there's no practical
 291 *  limitation from this.)
 292 */
 293#define MIN_SHARES	(1UL <<  1)
 294#define MAX_SHARES	(1UL << 18)
 295#endif
 296
 297typedef int (*tg_visitor)(struct task_group *, void *);
 298
 299extern int walk_tg_tree_from(struct task_group *from,
 300			     tg_visitor down, tg_visitor up, void *data);
 301
 302/*
 303 * Iterate the full tree, calling @down when first entering a node and @up when
 304 * leaving it for the final time.
 305 *
 306 * Caller must hold rcu_lock or sufficient equivalent.
 307 */
 308static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 309{
 310	return walk_tg_tree_from(&root_task_group, down, up, data);
 311}
 312
 
 
 
 
 
 313extern int tg_nop(struct task_group *tg, void *data);
 314
 
 315extern void free_fair_sched_group(struct task_group *tg);
 316extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 
 317extern void unregister_fair_sched_group(struct task_group *tg);
 
 
 
 
 
 
 
 
 
 
 318extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 319			struct sched_entity *se, int cpu,
 320			struct sched_entity *parent);
 321extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 322
 323extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 324extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 325extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 
 326
 327extern void free_rt_sched_group(struct task_group *tg);
 328extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 329extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 330		struct sched_rt_entity *rt_se, int cpu,
 331		struct sched_rt_entity *parent);
 
 
 
 
 
 332
 333extern struct task_group *sched_create_group(struct task_group *parent);
 334extern void sched_online_group(struct task_group *tg,
 335			       struct task_group *parent);
 336extern void sched_destroy_group(struct task_group *tg);
 337extern void sched_offline_group(struct task_group *tg);
 338
 339extern void sched_move_task(struct task_struct *tsk);
 340
 341#ifdef CONFIG_FAIR_GROUP_SCHED
 342extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 343
 
 
 344#ifdef CONFIG_SMP
 345extern void set_task_rq_fair(struct sched_entity *se,
 346			     struct cfs_rq *prev, struct cfs_rq *next);
 347#else /* !CONFIG_SMP */
 348static inline void set_task_rq_fair(struct sched_entity *se,
 349			     struct cfs_rq *prev, struct cfs_rq *next) { }
 350#endif /* CONFIG_SMP */
 
 
 
 351#endif /* CONFIG_FAIR_GROUP_SCHED */
 352
 353#else /* CONFIG_CGROUP_SCHED */
 354
 355struct cfs_bandwidth { };
 356
 
 
 357#endif	/* CONFIG_CGROUP_SCHED */
 358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359/* CFS-related fields in a runqueue */
 360struct cfs_rq {
 361	struct load_weight load;
 362	unsigned int nr_running, h_nr_running;
 363
 364	u64 exec_clock;
 365	u64 min_vruntime;
 366#ifndef CONFIG_64BIT
 367	u64 min_vruntime_copy;
 
 
 
 
 
 
 
 368#endif
 369
 370	struct rb_root tasks_timeline;
 371	struct rb_node *rb_leftmost;
 372
 373	/*
 374	 * 'curr' points to currently running entity on this cfs_rq.
 375	 * It is set to NULL otherwise (i.e when none are currently running).
 376	 */
 377	struct sched_entity *curr, *next, *last, *skip;
 378
 379#ifdef	CONFIG_SCHED_DEBUG
 380	unsigned int nr_spread_over;
 381#endif
 382
 383#ifdef CONFIG_SMP
 384	/*
 385	 * CFS load tracking
 386	 */
 387	struct sched_avg avg;
 388	u64 runnable_load_sum;
 389	unsigned long runnable_load_avg;
 390#ifdef CONFIG_FAIR_GROUP_SCHED
 391	unsigned long tg_load_avg_contrib;
 392#endif
 393	atomic_long_t removed_load_avg, removed_util_avg;
 394#ifndef CONFIG_64BIT
 395	u64 load_last_update_time_copy;
 396#endif
 
 
 
 
 
 
 
 397
 398#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 
 399	/*
 400	 *   h_load = weight * f(tg)
 401	 *
 402	 * Where f(tg) is the recursive weight fraction assigned to
 403	 * this group.
 404	 */
 405	unsigned long h_load;
 406	u64 last_h_load_update;
 407	struct sched_entity *h_load_next;
 408#endif /* CONFIG_FAIR_GROUP_SCHED */
 409#endif /* CONFIG_SMP */
 410
 411#ifdef CONFIG_FAIR_GROUP_SCHED
 412	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 413
 414	/*
 415	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 416	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 417	 * (like users, containers etc.)
 418	 *
 419	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 420	 * list is used during load balance.
 421	 */
 422	int on_list;
 423	struct list_head leaf_cfs_rq_list;
 424	struct task_group *tg;	/* group that "owns" this runqueue */
 
 
 
 425
 426#ifdef CONFIG_CFS_BANDWIDTH
 427	int runtime_enabled;
 428	u64 runtime_expires;
 429	s64 runtime_remaining;
 430
 431	u64 throttled_clock, throttled_clock_task;
 432	u64 throttled_clock_task_time;
 433	int throttled, throttle_count;
 434	struct list_head throttled_list;
 
 
 
 
 
 
 
 
 435#endif /* CONFIG_CFS_BANDWIDTH */
 436#endif /* CONFIG_FAIR_GROUP_SCHED */
 437};
 438
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439static inline int rt_bandwidth_enabled(void)
 440{
 441	return sysctl_sched_rt_runtime >= 0;
 442}
 443
 444/* RT IPI pull logic requires IRQ_WORK */
 445#ifdef CONFIG_IRQ_WORK
 446# define HAVE_RT_PUSH_IPI
 447#endif
 448
 449/* Real-Time classes' related field in a runqueue: */
 450struct rt_rq {
 451	struct rt_prio_array active;
 452	unsigned int rt_nr_running;
 453	unsigned int rr_nr_running;
 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 455	struct {
 456		int curr; /* highest queued rt task prio */
 457#ifdef CONFIG_SMP
 458		int next; /* next highest */
 459#endif
 460	} highest_prio;
 461#endif
 462#ifdef CONFIG_SMP
 463	unsigned long rt_nr_migratory;
 464	unsigned long rt_nr_total;
 465	int overloaded;
 466	struct plist_head pushable_tasks;
 467#ifdef HAVE_RT_PUSH_IPI
 468	int push_flags;
 469	int push_cpu;
 470	struct irq_work push_work;
 471	raw_spinlock_t push_lock;
 472#endif
 473#endif /* CONFIG_SMP */
 474	int rt_queued;
 475
 476	int rt_throttled;
 477	u64 rt_time;
 478	u64 rt_runtime;
 
 479	/* Nests inside the rq lock: */
 480	raw_spinlock_t rt_runtime_lock;
 481
 482#ifdef CONFIG_RT_GROUP_SCHED
 483	unsigned long rt_nr_boosted;
 484
 485	struct rq *rq;
 486	struct task_group *tg;
 487#endif
 488};
 489
 
 
 
 
 
 490/* Deadline class' related fields in a runqueue */
 491struct dl_rq {
 492	/* runqueue is an rbtree, ordered by deadline */
 493	struct rb_root rb_root;
 494	struct rb_node *rb_leftmost;
 495
 496	unsigned long dl_nr_running;
 497
 498#ifdef CONFIG_SMP
 499	/*
 500	 * Deadline values of the currently executing and the
 501	 * earliest ready task on this rq. Caching these facilitates
 502	 * the decision wether or not a ready but not running task
 503	 * should migrate somewhere else.
 504	 */
 505	struct {
 506		u64 curr;
 507		u64 next;
 508	} earliest_dl;
 509
 510	unsigned long dl_nr_migratory;
 511	int overloaded;
 512
 513	/*
 514	 * Tasks on this rq that can be pushed away. They are kept in
 515	 * an rb-tree, ordered by tasks' deadlines, with caching
 516	 * of the leftmost (earliest deadline) element.
 517	 */
 518	struct rb_root pushable_dl_tasks_root;
 519	struct rb_node *pushable_dl_tasks_leftmost;
 520#else
 521	struct dl_bw dl_bw;
 522#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527/*
 528 * We add the notion of a root-domain which will be used to define per-domain
 529 * variables. Each exclusive cpuset essentially defines an island domain by
 530 * fully partitioning the member cpus from any other cpuset. Whenever a new
 531 * exclusive cpuset is created, we also create and attach a new root-domain
 532 * object.
 533 *
 534 */
 535struct root_domain {
 536	atomic_t refcount;
 537	atomic_t rto_count;
 538	struct rcu_head rcu;
 539	cpumask_var_t span;
 540	cpumask_var_t online;
 541
 542	/* Indicate more than one runnable task for any CPU */
 543	bool overload;
 
 
 
 
 
 
 
 544
 545	/*
 546	 * The bit corresponding to a CPU gets set here if such CPU has more
 547	 * than one runnable -deadline task (as it is below for RT tasks).
 548	 */
 549	cpumask_var_t dlo_mask;
 550	atomic_t dlo_count;
 551	struct dl_bw dl_bw;
 552	struct cpudl cpudl;
 553
 554	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555	 * The "RT overload" flag: it gets set if a CPU has more than
 556	 * one runnable RT task.
 557	 */
 558	cpumask_var_t rto_mask;
 559	struct cpupri cpupri;
 
 
 
 
 
 
 560};
 561
 562extern struct root_domain def_root_domain;
 
 
 
 
 563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564#endif /* CONFIG_SMP */
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566/*
 567 * This is the main, per-CPU runqueue data structure.
 568 *
 569 * Locking rule: those places that want to lock multiple runqueues
 570 * (such as the load balancing or the thread migration code), lock
 571 * acquire operations must be ordered by ascending &runqueue.
 572 */
 573struct rq {
 574	/* runqueue lock: */
 575	raw_spinlock_t lock;
 576
 577	/*
 578	 * nr_running and cpu_load should be in the same cacheline because
 579	 * remote CPUs use both these fields when doing load calculation.
 580	 */
 581	unsigned int nr_running;
 582#ifdef CONFIG_NUMA_BALANCING
 583	unsigned int nr_numa_running;
 584	unsigned int nr_preferred_running;
 
 585#endif
 586	#define CPU_LOAD_IDX_MAX 5
 587	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 588	unsigned long last_load_update_tick;
 589#ifdef CONFIG_NO_HZ_COMMON
 590	u64 nohz_stamp;
 591	unsigned long nohz_flags;
 
 
 
 
 
 
 
 
 
 592#endif
 593#ifdef CONFIG_NO_HZ_FULL
 594	unsigned long last_sched_tick;
 
 
 
 
 
 595#endif
 596	/* capture load from *all* tasks on this cpu: */
 597	struct load_weight load;
 598	unsigned long nr_load_updates;
 599	u64 nr_switches;
 600
 601	struct cfs_rq cfs;
 602	struct rt_rq rt;
 603	struct dl_rq dl;
 
 604
 605#ifdef CONFIG_FAIR_GROUP_SCHED
 606	/* list of leaf cfs_rq on this cpu: */
 607	struct list_head leaf_cfs_rq_list;
 
 608#endif /* CONFIG_FAIR_GROUP_SCHED */
 609
 610	/*
 611	 * This is part of a global counter where only the total sum
 612	 * over all CPUs matters. A task can increase this counter on
 613	 * one CPU and if it got migrated afterwards it may decrease
 614	 * it on another CPU. Always updated under the runqueue lock:
 615	 */
 616	unsigned long nr_uninterruptible;
 617
 618	struct task_struct *curr, *idle, *stop;
 619	unsigned long next_balance;
 620	struct mm_struct *prev_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	unsigned int clock_skip_update;
 623	u64 clock;
 624	u64 clock_task;
 625
 626	atomic_t nr_iowait;
 
 
 
 
 
 
 
 627
 628#ifdef CONFIG_SMP
 629	struct root_domain *rd;
 630	struct sched_domain *sd;
 
 
 
 
 631
 632	unsigned long cpu_capacity;
 633	unsigned long cpu_capacity_orig;
 634
 635	struct callback_head *balance_callback;
 636
 637	unsigned char idle_balance;
 638	/* For active balancing */
 639	int active_balance;
 640	int push_cpu;
 641	struct cpu_stop_work active_balance_work;
 642	/* cpu of this runqueue: */
 643	int cpu;
 644	int online;
 
 645
 646	struct list_head cfs_tasks;
 647
 648	u64 rt_avg;
 649	u64 age_stamp;
 650	u64 idle_stamp;
 651	u64 avg_idle;
 
 
 
 
 
 
 652
 653	/* This is used to determine avg_idle's max value */
 654	u64 max_idle_balance_cost;
 
 
 
 655#endif
 
 656
 657#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 658	u64 prev_irq_time;
 
 659#endif
 660#ifdef CONFIG_PARAVIRT
 661	u64 prev_steal_time;
 662#endif
 663#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 664	u64 prev_steal_time_rq;
 665#endif
 666
 667	/* calc_load related fields */
 668	unsigned long calc_load_update;
 669	long calc_load_active;
 670
 671#ifdef CONFIG_SCHED_HRTICK
 672#ifdef CONFIG_SMP
 673	int hrtick_csd_pending;
 674	struct call_single_data hrtick_csd;
 675#endif
 676	struct hrtimer hrtick_timer;
 
 677#endif
 678
 679#ifdef CONFIG_SCHEDSTATS
 680	/* latency stats */
 681	struct sched_info rq_sched_info;
 682	unsigned long long rq_cpu_time;
 683	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 684
 685	/* sys_sched_yield() stats */
 686	unsigned int yld_count;
 687
 688	/* schedule() stats */
 689	unsigned int sched_count;
 690	unsigned int sched_goidle;
 691
 692	/* try_to_wake_up() stats */
 693	unsigned int ttwu_count;
 694	unsigned int ttwu_local;
 
 
 
 
 
 695#endif
 696
 697#ifdef CONFIG_SMP
 698	struct llist_head wake_list;
 699#endif
 
 
 700
 701#ifdef CONFIG_CPU_IDLE
 702	/* Must be inspected within a rcu lock section */
 703	struct cpuidle_state *idle_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704#endif
 705};
 706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707static inline int cpu_of(struct rq *rq)
 708{
 709#ifdef CONFIG_SMP
 710	return rq->cpu;
 711#else
 712	return 0;
 713#endif
 714}
 715
 
 
 
 
 
 
 
 
 
 
 
 716DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 717
 718#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 719#define this_rq()		this_cpu_ptr(&runqueues)
 720#define task_rq(p)		cpu_rq(task_cpu(p))
 721#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 722#define raw_rq()		raw_cpu_ptr(&runqueues)
 723
 724static inline u64 __rq_clock_broken(struct rq *rq)
 725{
 726	return READ_ONCE(rq->clock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727}
 728
 729static inline u64 rq_clock(struct rq *rq)
 730{
 731	lockdep_assert_held(&rq->lock);
 
 
 732	return rq->clock;
 733}
 734
 735static inline u64 rq_clock_task(struct rq *rq)
 736{
 737	lockdep_assert_held(&rq->lock);
 
 
 738	return rq->clock_task;
 739}
 740
 741#define RQCF_REQ_SKIP	0x01
 742#define RQCF_ACT_SKIP	0x02
 
 
 
 743
 744static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 
 
 
 
 745{
 746	lockdep_assert_held(&rq->lock);
 747	if (skip)
 748		rq->clock_skip_update |= RQCF_REQ_SKIP;
 749	else
 750		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753#ifdef CONFIG_NUMA
 
 754enum numa_topology_type {
 755	NUMA_DIRECT,
 756	NUMA_GLUELESS_MESH,
 757	NUMA_BACKPLANE,
 758};
 
 759extern enum numa_topology_type sched_numa_topology_type;
 760extern int sched_max_numa_distance;
 761extern bool find_numa_distance(int distance);
 762#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763
 764#ifdef CONFIG_NUMA_BALANCING
 
 765/* The regions in numa_faults array from task_struct */
 766enum numa_faults_stats {
 767	NUMA_MEM = 0,
 768	NUMA_CPU,
 769	NUMA_MEMBUF,
 770	NUMA_CPUBUF
 771};
 
 772extern void sched_setnuma(struct task_struct *p, int node);
 773extern int migrate_task_to(struct task_struct *p, int cpu);
 774extern int migrate_swap(struct task_struct *, struct task_struct *);
 775#endif /* CONFIG_NUMA_BALANCING */
 
 
 
 
 
 
 
 
 
 
 776
 777#ifdef CONFIG_SMP
 778
 779static inline void
 780queue_balance_callback(struct rq *rq,
 781		       struct callback_head *head,
 782		       void (*func)(struct rq *rq))
 783{
 784	lockdep_assert_held(&rq->lock);
 785
 786	if (unlikely(head->next))
 
 
 
 
 
 787		return;
 788
 789	head->func = (void (*)(struct callback_head *))func;
 790	head->next = rq->balance_callback;
 791	rq->balance_callback = head;
 792}
 793
 794extern void sched_ttwu_pending(void);
 795
 796#define rcu_dereference_check_sched_domain(p) \
 797	rcu_dereference_check((p), \
 798			      lockdep_is_held(&sched_domains_mutex))
 799
 800/*
 801 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 802 * See detach_destroy_domains: synchronize_sched for details.
 803 *
 804 * The domain tree of any CPU may only be accessed from within
 805 * preempt-disabled sections.
 806 */
 807#define for_each_domain(cpu, __sd) \
 808	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 809			__sd; __sd = __sd->parent)
 810
 811#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 
 
 
 
 
 812
 813/**
 814 * highest_flag_domain - Return highest sched_domain containing flag.
 815 * @cpu:	The cpu whose highest level of sched domain is to
 816 *		be returned.
 817 * @flag:	The flag to check for the highest sched_domain
 818 *		for the given cpu.
 819 *
 820 * Returns the highest sched_domain of a cpu which contains the given flag.
 
 821 */
 822static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 823{
 824	struct sched_domain *sd, *hsd = NULL;
 825
 826	for_each_domain(cpu, sd) {
 827		if (!(sd->flags & flag))
 
 
 
 
 
 
 
 
 
 828			break;
 829		hsd = sd;
 830	}
 831
 832	return hsd;
 833}
 834
 835static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 836{
 837	struct sched_domain *sd;
 838
 839	for_each_domain(cpu, sd) {
 840		if (sd->flags & flag)
 841			break;
 842	}
 843
 844	return sd;
 845}
 846
 847DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 848DECLARE_PER_CPU(int, sd_llc_size);
 849DECLARE_PER_CPU(int, sd_llc_id);
 850DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 851DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 852DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 
 
 
 
 
 
 
 
 
 853
 854struct sched_group_capacity {
 855	atomic_t ref;
 856	/*
 857	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
 858	 * for a single CPU.
 859	 */
 860	unsigned int capacity;
 861	unsigned long next_update;
 862	int imbalance; /* XXX unrelated to capacity but shared group state */
 863	/*
 864	 * Number of busy cpus in this group.
 865	 */
 866	atomic_t nr_busy_cpus;
 867
 868	unsigned long cpumask[0]; /* iteration mask */
 
 
 
 
 869};
 870
 871struct sched_group {
 872	struct sched_group *next;	/* Must be a circular list */
 873	atomic_t ref;
 874
 875	unsigned int group_weight;
 
 876	struct sched_group_capacity *sgc;
 
 
 877
 878	/*
 879	 * The CPUs this group covers.
 880	 *
 881	 * NOTE: this field is variable length. (Allocated dynamically
 882	 * by attaching extra space to the end of the structure,
 883	 * depending on how many CPUs the kernel has booted up with)
 884	 */
 885	unsigned long cpumask[0];
 886};
 887
 888static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 889{
 890	return to_cpumask(sg->cpumask);
 891}
 892
 893/*
 894 * cpumask masking which cpus in the group are allowed to iterate up the domain
 895 * tree.
 896 */
 897static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 898{
 899	return to_cpumask(sg->sgc->cpumask);
 900}
 901
 902/**
 903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 904 * @group: The group whose first cpu is to be returned.
 905 */
 906static inline unsigned int group_first_cpu(struct sched_group *group)
 907{
 908	return cpumask_first(sched_group_cpus(group));
 909}
 910
 911extern int group_balance_cpu(struct sched_group *sg);
 912
 913#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 914void register_sched_domain_sysctl(void);
 915void unregister_sched_domain_sysctl(void);
 916#else
 917static inline void register_sched_domain_sysctl(void)
 918{
 919}
 920static inline void unregister_sched_domain_sysctl(void)
 921{
 922}
 923#endif
 924
 925#else
 926
 927static inline void sched_ttwu_pending(void) { }
 
 
 
 
 
 928
 929#endif /* CONFIG_SMP */
 930
 931#include "stats.h"
 932#include "auto_group.h"
 933
 934#ifdef CONFIG_CGROUP_SCHED
 935
 936/*
 937 * Return the group to which this tasks belongs.
 938 *
 939 * We cannot use task_css() and friends because the cgroup subsystem
 940 * changes that value before the cgroup_subsys::attach() method is called,
 941 * therefore we cannot pin it and might observe the wrong value.
 942 *
 943 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 944 * core changes this before calling sched_move_task().
 945 *
 946 * Instead we use a 'copy' which is updated from sched_move_task() while
 947 * holding both task_struct::pi_lock and rq::lock.
 948 */
 949static inline struct task_group *task_group(struct task_struct *p)
 950{
 951	return p->sched_task_group;
 952}
 953
 954/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 955static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 956{
 957#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 958	struct task_group *tg = task_group(p);
 959#endif
 960
 961#ifdef CONFIG_FAIR_GROUP_SCHED
 962	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
 963	p->se.cfs_rq = tg->cfs_rq[cpu];
 964	p->se.parent = tg->se[cpu];
 
 965#endif
 966
 967#ifdef CONFIG_RT_GROUP_SCHED
 968	p->rt.rt_rq  = tg->rt_rq[cpu];
 969	p->rt.parent = tg->rt_se[cpu];
 970#endif
 971}
 972
 973#else /* CONFIG_CGROUP_SCHED */
 974
 975static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 
 976static inline struct task_group *task_group(struct task_struct *p)
 977{
 978	return NULL;
 979}
 980
 981#endif /* CONFIG_CGROUP_SCHED */
 982
 983static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 984{
 985	set_task_rq(p, cpu);
 986#ifdef CONFIG_SMP
 987	/*
 988	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 989	 * successfuly executed on another CPU. We must ensure that updates of
 990	 * per-task data have been completed by this moment.
 991	 */
 992	smp_wmb();
 993	task_thread_info(p)->cpu = cpu;
 994	p->wake_cpu = cpu;
 995#endif
 996}
 997
 998/*
 999 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1000 */
1001#ifdef CONFIG_SCHED_DEBUG
1002# include <linux/static_key.h>
1003# define const_debug __read_mostly
1004#else
1005# define const_debug const
1006#endif
1007
1008extern const_debug unsigned int sysctl_sched_features;
1009
1010#define SCHED_FEAT(name, enabled)	\
1011	__SCHED_FEAT_##name ,
1012
1013enum {
1014#include "features.h"
1015	__SCHED_FEAT_NR,
1016};
1017
1018#undef SCHED_FEAT
1019
1020#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 
 
 
 
 
 
 
 
 
1021#define SCHED_FEAT(name, enabled)					\
1022static __always_inline bool static_branch_##name(struct static_key *key) \
1023{									\
1024	return static_key_##enabled(key);				\
1025}
1026
1027#include "features.h"
1028
1029#undef SCHED_FEAT
1030
1031extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1032#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1033#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 
 
1034#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1035#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037extern struct static_key_false sched_numa_balancing;
1038extern struct static_key_false sched_schedstats;
1039
1040static inline u64 global_rt_period(void)
1041{
1042	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1043}
1044
1045static inline u64 global_rt_runtime(void)
1046{
1047	if (sysctl_sched_rt_runtime < 0)
1048		return RUNTIME_INF;
1049
1050	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1051}
1052
 
 
 
1053static inline int task_current(struct rq *rq, struct task_struct *p)
1054{
1055	return rq->curr == p;
1056}
1057
1058static inline int task_running(struct rq *rq, struct task_struct *p)
 
 
 
 
 
 
 
 
 
 
 
1059{
1060#ifdef CONFIG_SMP
1061	return p->on_cpu;
1062#else
1063	return task_current(rq, p);
1064#endif
1065}
1066
1067static inline int task_on_rq_queued(struct task_struct *p)
1068{
1069	return p->on_rq == TASK_ON_RQ_QUEUED;
1070}
1071
1072static inline int task_on_rq_migrating(struct task_struct *p)
1073{
1074	return p->on_rq == TASK_ON_RQ_MIGRATING;
1075}
1076
1077#ifndef prepare_arch_switch
1078# define prepare_arch_switch(next)	do { } while (0)
1079#endif
1080#ifndef finish_arch_post_lock_switch
1081# define finish_arch_post_lock_switch()	do { } while (0)
1082#endif
1083
1084static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1085{
1086#ifdef CONFIG_SMP
1087	/*
1088	 * We can optimise this out completely for !SMP, because the
1089	 * SMP rebalancing from interrupt is the only thing that cares
1090	 * here.
1091	 */
1092	next->on_cpu = 1;
1093#endif
1094}
1095
1096static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1097{
1098#ifdef CONFIG_SMP
1099	/*
1100	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1101	 * We must ensure this doesn't happen until the switch is completely
1102	 * finished.
1103	 *
1104	 * In particular, the load of prev->state in finish_task_switch() must
1105	 * happen before this.
1106	 *
1107	 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1108	 */
1109	smp_store_release(&prev->on_cpu, 0);
1110#endif
1111#ifdef CONFIG_DEBUG_SPINLOCK
1112	/* this is a valid case when another task releases the spinlock */
1113	rq->lock.owner = current;
1114#endif
1115	/*
1116	 * If we are tracking spinlock dependencies then we have to
1117	 * fix up the runqueue lock - which gets 'carried over' from
1118	 * prev into current:
1119	 */
1120	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1121
1122	raw_spin_unlock_irq(&rq->lock);
1123}
1124
1125/*
1126 * wake flags
1127 */
1128#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1129#define WF_FORK		0x02		/* child wakeup after fork */
1130#define WF_MIGRATED	0x4		/* internal use, task got migrated */
1131
1132/*
1133 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1134 * of tasks with abnormal "nice" values across CPUs the contribution that
1135 * each task makes to its run queue's load is weighted according to its
1136 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1137 * scaled version of the new time slice allocation that they receive on time
1138 * slice expiry etc.
1139 */
1140
1141#define WEIGHT_IDLEPRIO                3
1142#define WMULT_IDLEPRIO         1431655765
1143
1144extern const int sched_prio_to_weight[40];
1145extern const u32 sched_prio_to_wmult[40];
1146
1147/*
1148 * {de,en}queue flags:
1149 *
1150 * DEQUEUE_SLEEP  - task is no longer runnable
1151 * ENQUEUE_WAKEUP - task just became runnable
1152 *
1153 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1154 *                are in a known state which allows modification. Such pairs
1155 *                should preserve as much state as possible.
1156 *
1157 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1158 *        in the runqueue.
1159 *
 
 
 
 
1160 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1161 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1162 * ENQUEUE_WAKING    - sched_class::task_waking was called
 
1163 *
1164 */
1165
1166#define DEQUEUE_SLEEP		0x01
1167#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1168#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
 
 
 
 
1169
1170#define ENQUEUE_WAKEUP		0x01
1171#define ENQUEUE_RESTORE		0x02
1172#define ENQUEUE_MOVE		0x04
 
1173
1174#define ENQUEUE_HEAD		0x08
1175#define ENQUEUE_REPLENISH	0x10
1176#ifdef CONFIG_SMP
1177#define ENQUEUE_WAKING		0x20
1178#else
1179#define ENQUEUE_WAKING		0x00
1180#endif
 
 
 
 
1181
1182#define RETRY_TASK		((void *)-1UL)
1183
 
 
 
 
 
 
 
 
1184struct sched_class {
1185	const struct sched_class *next;
 
 
 
1186
1187	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1188	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1189	void (*yield_task) (struct rq *rq);
1190	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1191
1192	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1193
 
 
1194	/*
1195	 * It is the responsibility of the pick_next_task() method that will
1196	 * return the next task to call put_prev_task() on the @prev task or
1197	 * something equivalent.
1198	 *
1199	 * May return RETRY_TASK when it finds a higher prio class has runnable
1200	 * tasks.
 
 
 
1201	 */
1202	struct task_struct * (*pick_next_task) (struct rq *rq,
1203						struct task_struct *prev);
1204	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
 
1205
1206#ifdef CONFIG_SMP
1207	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1208	void (*migrate_task_rq)(struct task_struct *p);
1209
1210	void (*task_waking) (struct task_struct *task);
1211	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1212
1213	void (*set_cpus_allowed)(struct task_struct *p,
1214				 const struct cpumask *newmask);
 
1215
1216	void (*rq_online)(struct rq *rq);
1217	void (*rq_offline)(struct rq *rq);
 
 
1218#endif
1219
1220	void (*set_curr_task) (struct rq *rq);
1221	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1222	void (*task_fork) (struct task_struct *p);
1223	void (*task_dead) (struct task_struct *p);
1224
1225	/*
1226	 * The switched_from() call is allowed to drop rq->lock, therefore we
1227	 * cannot assume the switched_from/switched_to pair is serliazed by
1228	 * rq->lock. They are however serialized by p->pi_lock.
1229	 */
1230	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1231	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
 
 
 
1232	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1233			     int oldprio);
1234
1235	unsigned int (*get_rr_interval) (struct rq *rq,
1236					 struct task_struct *task);
1237
1238	void (*update_curr) (struct rq *rq);
1239
1240#ifdef CONFIG_FAIR_GROUP_SCHED
1241	void (*task_move_group) (struct task_struct *p);
 
 
 
 
1242#endif
1243};
1244
1245static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1246{
1247	prev->sched_class->put_prev_task(rq, prev);
 
1248}
1249
1250#define sched_class_highest (&stop_sched_class)
1251#define for_each_class(class) \
1252   for (class = sched_class_highest; class; class = class->next)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253
1254extern const struct sched_class stop_sched_class;
1255extern const struct sched_class dl_sched_class;
1256extern const struct sched_class rt_sched_class;
1257extern const struct sched_class fair_sched_class;
1258extern const struct sched_class idle_sched_class;
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261#ifdef CONFIG_SMP
1262
1263extern void update_group_capacity(struct sched_domain *sd, int cpu);
1264
1265extern void trigger_load_balance(struct rq *rq);
1266
1267extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
 
1268
1269#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1270
1271#ifdef CONFIG_CPU_IDLE
 
1272static inline void idle_set_state(struct rq *rq,
1273				  struct cpuidle_state *idle_state)
1274{
1275	rq->idle_state = idle_state;
1276}
1277
1278static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1279{
1280	WARN_ON(!rcu_read_lock_held());
 
1281	return rq->idle_state;
1282}
1283#else
 
 
1284static inline void idle_set_state(struct rq *rq,
1285				  struct cpuidle_state *idle_state)
1286{
1287}
1288
1289static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1290{
1291	return NULL;
1292}
1293#endif
 
 
 
 
1294
1295extern void sysrq_sched_debug_show(void);
1296extern void sched_init_granularity(void);
1297extern void update_max_interval(void);
1298
1299extern void init_sched_dl_class(void);
1300extern void init_sched_rt_class(void);
1301extern void init_sched_fair_class(void);
1302
1303extern void resched_curr(struct rq *rq);
 
1304extern void resched_cpu(int cpu);
1305
1306extern struct rt_bandwidth def_rt_bandwidth;
1307extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 
 
 
1308
1309extern struct dl_bandwidth def_dl_bandwidth;
1310extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1311extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 
 
1312
1313unsigned long to_ratio(u64 period, u64 runtime);
1314
1315extern void init_entity_runnable_average(struct sched_entity *se);
 
1316
1317#ifdef CONFIG_NO_HZ_FULL
1318extern bool sched_can_stop_tick(struct rq *rq);
 
1319
1320/*
1321 * Tick may be needed by tasks in the runqueue depending on their policy and
1322 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1323 * nohz mode if necessary.
1324 */
1325static inline void sched_update_tick_dependency(struct rq *rq)
1326{
1327	int cpu;
1328
1329	if (!tick_nohz_full_enabled())
1330		return;
1331
1332	cpu = cpu_of(rq);
1333
1334	if (!tick_nohz_full_cpu(cpu))
1335		return;
1336
1337	if (sched_can_stop_tick(rq))
1338		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1339	else
1340		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1341}
1342#else
 
1343static inline void sched_update_tick_dependency(struct rq *rq) { }
1344#endif
1345
1346static inline void add_nr_running(struct rq *rq, unsigned count)
1347{
1348	unsigned prev_nr = rq->nr_running;
1349
1350	rq->nr_running = prev_nr + count;
 
 
 
1351
1352	if (prev_nr < 2 && rq->nr_running >= 2) {
1353#ifdef CONFIG_SMP
1354		if (!rq->rd->overload)
1355			rq->rd->overload = true;
1356#endif
1357	}
1358
1359	sched_update_tick_dependency(rq);
1360}
1361
1362static inline void sub_nr_running(struct rq *rq, unsigned count)
1363{
1364	rq->nr_running -= count;
 
 
 
 
1365	/* Check if we still need preemption */
1366	sched_update_tick_dependency(rq);
1367}
1368
1369static inline void rq_last_tick_reset(struct rq *rq)
1370{
1371#ifdef CONFIG_NO_HZ_FULL
1372	rq->last_sched_tick = jiffies;
1373#endif
1374}
1375
1376extern void update_rq_clock(struct rq *rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1379extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1380
1381extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 
 
 
 
 
 
1382
1383extern const_debug unsigned int sysctl_sched_time_avg;
1384extern const_debug unsigned int sysctl_sched_nr_migrate;
1385extern const_debug unsigned int sysctl_sched_migration_cost;
1386
1387static inline u64 sched_avg_period(void)
1388{
1389	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1390}
 
 
 
 
 
 
 
 
 
 
1391
1392#ifdef CONFIG_SCHED_HRTICK
1393
1394/*
1395 * Use hrtick when:
1396 *  - enabled by features
1397 *  - hrtimer is actually high res
1398 */
1399static inline int hrtick_enabled(struct rq *rq)
1400{
1401	if (!sched_feat(HRTICK))
1402		return 0;
1403	if (!cpu_active(cpu_of(rq)))
1404		return 0;
1405	return hrtimer_is_hres_active(&rq->hrtick_timer);
1406}
1407
1408void hrtick_start(struct rq *rq, u64 delay);
1409
1410#else
 
 
 
1411
1412static inline int hrtick_enabled(struct rq *rq)
1413{
1414	return 0;
 
 
1415}
1416
1417#endif /* CONFIG_SCHED_HRTICK */
1418
1419#ifdef CONFIG_SMP
1420extern void sched_avg_update(struct rq *rq);
1421
1422#ifndef arch_scale_freq_capacity
1423static __always_inline
1424unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1425{
1426	return SCHED_CAPACITY_SCALE;
1427}
1428#endif
1429
1430#ifndef arch_scale_cpu_capacity
1431static __always_inline
1432unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1433{
1434	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1435		return sd->smt_gain / sd->span_weight;
1436
1437	return SCHED_CAPACITY_SCALE;
1438}
1439#endif
1440
1441static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1442{
1443	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1444	sched_avg_update(rq);
1445}
1446#else
1447static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1448static inline void sched_avg_update(struct rq *rq) { }
 
 
1449#endif
1450
1451/*
1452 * __task_rq_lock - lock the rq @p resides on.
 
 
 
 
 
 
 
 
1453 */
1454static inline struct rq *__task_rq_lock(struct task_struct *p)
1455	__acquires(rq->lock)
1456{
1457	struct rq *rq;
1458
1459	lockdep_assert_held(&p->pi_lock);
1460
1461	for (;;) {
1462		rq = task_rq(p);
1463		raw_spin_lock(&rq->lock);
1464		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1465			lockdep_pin_lock(&rq->lock);
1466			return rq;
1467		}
1468		raw_spin_unlock(&rq->lock);
1469
1470		while (unlikely(task_on_rq_migrating(p)))
1471			cpu_relax();
1472	}
1473}
 
1474
 
1475/*
1476 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
 
 
 
1477 */
1478static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1479	__acquires(p->pi_lock)
1480	__acquires(rq->lock)
1481{
1482	struct rq *rq;
 
 
 
 
 
 
 
 
1483
1484	for (;;) {
1485		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1486		rq = task_rq(p);
1487		raw_spin_lock(&rq->lock);
1488		/*
1489		 *	move_queued_task()		task_rq_lock()
1490		 *
1491		 *	ACQUIRE (rq->lock)
1492		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
1493		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
1494		 *	[S] ->cpu = new_cpu		[L] task_rq()
1495		 *					[L] ->on_rq
1496		 *	RELEASE (rq->lock)
1497		 *
1498		 * If we observe the old cpu in task_rq_lock, the acquire of
1499		 * the old rq->lock will fully serialize against the stores.
1500		 *
1501		 * If we observe the new cpu in task_rq_lock, the acquire will
1502		 * pair with the WMB to ensure we must then also see migrating.
1503		 */
1504		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1505			lockdep_pin_lock(&rq->lock);
1506			return rq;
1507		}
1508		raw_spin_unlock(&rq->lock);
1509		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1510
1511		while (unlikely(task_on_rq_migrating(p)))
1512			cpu_relax();
1513	}
1514}
1515
1516static inline void __task_rq_unlock(struct rq *rq)
1517	__releases(rq->lock)
1518{
1519	lockdep_unpin_lock(&rq->lock);
1520	raw_spin_unlock(&rq->lock);
1521}
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523static inline void
1524task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1525	__releases(rq->lock)
1526	__releases(p->pi_lock)
1527{
1528	lockdep_unpin_lock(&rq->lock);
1529	raw_spin_unlock(&rq->lock);
1530	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1531}
1532
1533#ifdef CONFIG_SMP
1534#ifdef CONFIG_PREEMPT
1535
1536static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1537
1538/*
1539 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1540 * way at the expense of forcing extra atomic operations in all
1541 * invocations.  This assures that the double_lock is acquired using the
1542 * same underlying policy as the spinlock_t on this architecture, which
1543 * reduces latency compared to the unfair variant below.  However, it
1544 * also adds more overhead and therefore may reduce throughput.
1545 */
1546static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1547	__releases(this_rq->lock)
1548	__acquires(busiest->lock)
1549	__acquires(this_rq->lock)
1550{
1551	raw_spin_unlock(&this_rq->lock);
1552	double_rq_lock(this_rq, busiest);
1553
1554	return 1;
1555}
1556
1557#else
1558/*
1559 * Unfair double_lock_balance: Optimizes throughput at the expense of
1560 * latency by eliminating extra atomic operations when the locks are
1561 * already in proper order on entry.  This favors lower cpu-ids and will
1562 * grant the double lock to lower cpus over higher ids under contention,
1563 * regardless of entry order into the function.
1564 */
1565static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566	__releases(this_rq->lock)
1567	__acquires(busiest->lock)
1568	__acquires(this_rq->lock)
1569{
1570	int ret = 0;
 
 
 
 
1571
1572	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1573		if (busiest < this_rq) {
1574			raw_spin_unlock(&this_rq->lock);
1575			raw_spin_lock(&busiest->lock);
1576			raw_spin_lock_nested(&this_rq->lock,
1577					      SINGLE_DEPTH_NESTING);
1578			ret = 1;
1579		} else
1580			raw_spin_lock_nested(&busiest->lock,
1581					      SINGLE_DEPTH_NESTING);
1582	}
1583	return ret;
 
 
 
 
1584}
1585
1586#endif /* CONFIG_PREEMPT */
1587
1588/*
1589 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1590 */
1591static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592{
1593	if (unlikely(!irqs_disabled())) {
1594		/* printk() doesn't work good under rq->lock */
1595		raw_spin_unlock(&this_rq->lock);
1596		BUG_ON(1);
1597	}
1598
1599	return _double_lock_balance(this_rq, busiest);
1600}
1601
1602static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1603	__releases(busiest->lock)
1604{
1605	raw_spin_unlock(&busiest->lock);
1606	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 
1607}
1608
1609static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1610{
1611	if (l1 > l2)
1612		swap(l1, l2);
1613
1614	spin_lock(l1);
1615	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1616}
1617
1618static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1619{
1620	if (l1 > l2)
1621		swap(l1, l2);
1622
1623	spin_lock_irq(l1);
1624	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1625}
1626
1627static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1628{
1629	if (l1 > l2)
1630		swap(l1, l2);
1631
1632	raw_spin_lock(l1);
1633	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1634}
1635
1636/*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643	__acquires(rq1->lock)
1644	__acquires(rq2->lock)
1645{
1646	BUG_ON(!irqs_disabled());
1647	if (rq1 == rq2) {
1648		raw_spin_lock(&rq1->lock);
1649		__acquire(rq2->lock);	/* Fake it out ;) */
1650	} else {
1651		if (rq1 < rq2) {
1652			raw_spin_lock(&rq1->lock);
1653			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1654		} else {
1655			raw_spin_lock(&rq2->lock);
1656			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1657		}
1658	}
1659}
1660
 
 
 
 
1661/*
1662 * double_rq_unlock - safely unlock two runqueues
1663 *
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1666 */
1667static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1668	__releases(rq1->lock)
1669	__releases(rq2->lock)
1670{
1671	raw_spin_unlock(&rq1->lock);
1672	if (rq1 != rq2)
1673		raw_spin_unlock(&rq2->lock);
1674	else
1675		__release(rq2->lock);
 
1676}
1677
1678#else /* CONFIG_SMP */
 
 
 
 
 
1679
1680/*
1681 * double_rq_lock - safely lock two runqueues
1682 *
1683 * Note this does not disable interrupts like task_rq_lock,
1684 * you need to do so manually before calling.
1685 */
1686static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1687	__acquires(rq1->lock)
1688	__acquires(rq2->lock)
1689{
1690	BUG_ON(!irqs_disabled());
1691	BUG_ON(rq1 != rq2);
1692	raw_spin_lock(&rq1->lock);
1693	__acquire(rq2->lock);	/* Fake it out ;) */
 
1694}
1695
1696/*
1697 * double_rq_unlock - safely unlock two runqueues
1698 *
1699 * Note this does not restore interrupts like task_rq_unlock,
1700 * you need to do so manually after calling.
1701 */
1702static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1703	__releases(rq1->lock)
1704	__releases(rq2->lock)
1705{
1706	BUG_ON(rq1 != rq2);
1707	raw_spin_unlock(&rq1->lock);
1708	__release(rq2->lock);
1709}
1710
1711#endif
1712
 
 
 
 
 
1713extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1714extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1715
1716#ifdef	CONFIG_SCHED_DEBUG
 
 
1717extern void print_cfs_stats(struct seq_file *m, int cpu);
1718extern void print_rt_stats(struct seq_file *m, int cpu);
1719extern void print_dl_stats(struct seq_file *m, int cpu);
1720extern void
1721print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
1722
1723#ifdef CONFIG_NUMA_BALANCING
1724extern void
1725show_numa_stats(struct task_struct *p, struct seq_file *m);
 
1726extern void
1727print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1728	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1729#endif /* CONFIG_NUMA_BALANCING */
1730#endif /* CONFIG_SCHED_DEBUG */
 
 
1731
1732extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1733extern void init_rt_rq(struct rt_rq *rt_rq);
1734extern void init_dl_rq(struct dl_rq *dl_rq);
1735
1736extern void cfs_bandwidth_usage_inc(void);
1737extern void cfs_bandwidth_usage_dec(void);
1738
1739#ifdef CONFIG_NO_HZ_COMMON
1740enum rq_nohz_flag_bits {
1741	NOHZ_TICK_STOPPED,
1742	NOHZ_BALANCE_KICK,
1743};
1744
1745#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746#endif
1747
1748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1749
1750DECLARE_PER_CPU(u64, cpu_hardirq_time);
1751DECLARE_PER_CPU(u64, cpu_softirq_time);
1752
1753#ifndef CONFIG_64BIT
1754DECLARE_PER_CPU(seqcount_t, irq_time_seq);
1755
1756static inline void irq_time_write_begin(void)
1757{
1758	__this_cpu_inc(irq_time_seq.sequence);
1759	smp_wmb();
1760}
1761
1762static inline void irq_time_write_end(void)
 
 
1763{
1764	smp_wmb();
1765	__this_cpu_inc(irq_time_seq.sequence);
1766}
1767
1768static inline u64 irq_time_read(int cpu)
1769{
1770	u64 irq_time;
1771	unsigned seq;
1772
1773	do {
1774		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1775		irq_time = per_cpu(cpu_softirq_time, cpu) +
1776			   per_cpu(cpu_hardirq_time, cpu);
1777	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1778
1779	return irq_time;
1780}
1781#else /* CONFIG_64BIT */
1782static inline void irq_time_write_begin(void)
1783{
1784}
1785
1786static inline void irq_time_write_end(void)
1787{
1788}
1789
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790static inline u64 irq_time_read(int cpu)
1791{
1792	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
 
 
 
 
 
 
 
 
 
1793}
1794#endif /* CONFIG_64BIT */
1795#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1796
1797#ifdef CONFIG_CPU_FREQ
1798DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
 
1799
1800/**
1801 * cpufreq_update_util - Take a note about CPU utilization changes.
1802 * @time: Current time.
1803 * @util: Current utilization.
1804 * @max: Utilization ceiling.
1805 *
1806 * This function is called by the scheduler on every invocation of
1807 * update_load_avg() on the CPU whose utilization is being updated.
1808 *
1809 * It can only be called from RCU-sched read-side critical sections.
1810 */
1811static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1812{
1813       struct update_util_data *data;
1814
1815       data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1816       if (data)
1817               data->func(data, time, util, max);
1818}
1819
1820/**
1821 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1822 * @time: Current time.
1823 *
1824 * The way cpufreq is currently arranged requires it to evaluate the CPU
1825 * performance state (frequency/voltage) on a regular basis to prevent it from
1826 * being stuck in a completely inadequate performance level for too long.
1827 * That is not guaranteed to happen if the updates are only triggered from CFS,
1828 * though, because they may not be coming in if RT or deadline tasks are active
1829 * all the time (or there are RT and DL tasks only).
1830 *
1831 * As a workaround for that issue, this function is called by the RT and DL
1832 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1833 * but that really is a band-aid.  Going forward it should be replaced with
1834 * solutions targeted more specifically at RT and DL tasks.
1835 */
1836static inline void cpufreq_trigger_update(u64 time)
1837{
1838	cpufreq_update_util(time, ULONG_MAX, 0);
 
 
 
 
 
1839}
 
 
 
 
 
 
 
 
1840#else
1841static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1842static inline void cpufreq_trigger_update(u64 time) {}
1843#endif /* CONFIG_CPU_FREQ */
 
 
 
 
 
 
 
 
 
1844
1845static inline void account_reset_rq(struct rq *rq)
 
 
 
 
 
 
 
 
 
1846{
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848	rq->prev_irq_time = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1849#endif
1850#ifdef CONFIG_PARAVIRT
1851	rq->prev_steal_time = 0;
 
 
 
 
 
 
 
 
1852#endif
1853#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1854	rq->prev_steal_time_rq = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856}
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#ifndef _KERNEL_SCHED_SCHED_H
   6#define _KERNEL_SCHED_SCHED_H
   7
   8#include <linux/sched/affinity.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/deadline.h>
  12#include <linux/sched.h>
  13#include <linux/sched/loadavg.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/rseq_api.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/smt.h>
  18#include <linux/sched/stat.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/sched/task_flags.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/topology.h>
  23
  24#include <linux/atomic.h>
  25#include <linux/bitmap.h>
  26#include <linux/bug.h>
  27#include <linux/capability.h>
  28#include <linux/cgroup_api.h>
  29#include <linux/cgroup.h>
  30#include <linux/context_tracking.h>
  31#include <linux/cpufreq.h>
  32#include <linux/cpumask_api.h>
  33#include <linux/ctype.h>
  34#include <linux/file.h>
  35#include <linux/fs_api.h>
  36#include <linux/hrtimer_api.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq_work.h>
  39#include <linux/jiffies.h>
  40#include <linux/kref_api.h>
  41#include <linux/kthread.h>
  42#include <linux/ktime_api.h>
  43#include <linux/lockdep_api.h>
  44#include <linux/lockdep.h>
  45#include <linux/minmax.h>
  46#include <linux/mm.h>
  47#include <linux/module.h>
  48#include <linux/mutex_api.h>
  49#include <linux/plist.h>
  50#include <linux/poll.h>
  51#include <linux/proc_fs.h>
  52#include <linux/profile.h>
  53#include <linux/psi.h>
  54#include <linux/rcupdate.h>
  55#include <linux/seq_file.h>
  56#include <linux/seqlock.h>
  57#include <linux/softirq.h>
  58#include <linux/spinlock_api.h>
  59#include <linux/static_key.h>
  60#include <linux/stop_machine.h>
  61#include <linux/syscalls_api.h>
  62#include <linux/syscalls.h>
  63#include <linux/tick.h>
  64#include <linux/topology.h>
  65#include <linux/types.h>
  66#include <linux/u64_stats_sync_api.h>
  67#include <linux/uaccess.h>
  68#include <linux/wait_api.h>
  69#include <linux/wait_bit.h>
  70#include <linux/workqueue_api.h>
  71#include <linux/delayacct.h>
  72
  73#include <trace/events/power.h>
  74#include <trace/events/sched.h>
  75
  76#include "../workqueue_internal.h"
  77
  78struct rq;
  79struct cfs_rq;
  80struct rt_rq;
  81struct sched_group;
  82struct cpuidle_state;
  83
  84#ifdef CONFIG_PARAVIRT
  85# include <asm/paravirt.h>
  86# include <asm/paravirt_api_clock.h>
  87#endif
  88
  89#include <asm/barrier.h>
  90
  91#include "cpupri.h"
  92#include "cpudeadline.h"
  93
  94#ifdef CONFIG_SCHED_DEBUG
  95# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
  96#else
  97# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
  98#endif
  99
 100/* task_struct::on_rq states: */
 101#define TASK_ON_RQ_QUEUED	1
 102#define TASK_ON_RQ_MIGRATING	2
 103
 104extern __read_mostly int scheduler_running;
 105
 106extern unsigned long calc_load_update;
 107extern atomic_long_t calc_load_tasks;
 108
 109extern void calc_global_load_tick(struct rq *this_rq);
 110extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 111
 112extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 113
 114extern int sysctl_sched_rt_period;
 115extern int sysctl_sched_rt_runtime;
 116extern int sched_rr_timeslice;
 117
 118/*
 119 * Asymmetric CPU capacity bits
 120 */
 121struct asym_cap_data {
 122	struct list_head link;
 123	struct rcu_head rcu;
 124	unsigned long capacity;
 125	unsigned long cpus[];
 126};
 127
 128extern struct list_head asym_cap_list;
 129
 130#define cpu_capacity_span(asym_data) to_cpumask((asym_data)->cpus)
 131
 132/*
 133 * Helpers for converting nanosecond timing to jiffy resolution
 134 */
 135#define NS_TO_JIFFIES(time)	((unsigned long)(time) / (NSEC_PER_SEC/HZ))
 136
 137/*
 138 * Increase resolution of nice-level calculations for 64-bit architectures.
 139 * The extra resolution improves shares distribution and load balancing of
 140 * low-weight task groups (eg. nice +19 on an autogroup), deeper task-group
 141 * hierarchies, especially on larger systems. This is not a user-visible change
 142 * and does not change the user-interface for setting shares/weights.
 143 *
 144 * We increase resolution only if we have enough bits to allow this increased
 145 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 146 * are pretty high and the returns do not justify the increased costs.
 147 *
 148 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 149 * increase coverage and consistency always enable it on 64-bit platforms.
 150 */
 151#ifdef CONFIG_64BIT
 152# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 153# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 154# define scale_load_down(w)					\
 155({								\
 156	unsigned long __w = (w);				\
 157								\
 158	if (__w)						\
 159		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT);	\
 160	__w;							\
 161})
 162#else
 163# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 164# define scale_load(w)		(w)
 165# define scale_load_down(w)	(w)
 166#endif
 167
 168/*
 169 * Task weight (visible to users) and its load (invisible to users) have
 170 * independent resolution, but they should be well calibrated. We use
 171 * scale_load() and scale_load_down(w) to convert between them. The
 172 * following must be true:
 173 *
 174 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 175 *
 176 */
 177#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 178
 179/*
 180 * Single value that decides SCHED_DEADLINE internal math precision.
 181 * 10 -> just above 1us
 182 * 9  -> just above 0.5us
 183 */
 184#define DL_SCALE		10
 
 
 
 
 185
 186/*
 187 * Single value that denotes runtime == period, ie unlimited time.
 188 */
 189#define RUNTIME_INF		((u64)~0ULL)
 190
 191static inline int idle_policy(int policy)
 192{
 193	return policy == SCHED_IDLE;
 194}
 195
 196static inline int normal_policy(int policy)
 197{
 198#ifdef CONFIG_SCHED_CLASS_EXT
 199	if (policy == SCHED_EXT)
 200		return true;
 201#endif
 202	return policy == SCHED_NORMAL;
 203}
 204
 205static inline int fair_policy(int policy)
 206{
 207	return normal_policy(policy) || policy == SCHED_BATCH;
 208}
 209
 210static inline int rt_policy(int policy)
 211{
 212	return policy == SCHED_FIFO || policy == SCHED_RR;
 213}
 214
 215static inline int dl_policy(int policy)
 216{
 217	return policy == SCHED_DEADLINE;
 218}
 219
 220static inline bool valid_policy(int policy)
 221{
 222	return idle_policy(policy) || fair_policy(policy) ||
 223		rt_policy(policy) || dl_policy(policy);
 224}
 225
 226static inline int task_has_idle_policy(struct task_struct *p)
 227{
 228	return idle_policy(p->policy);
 229}
 230
 231static inline int task_has_rt_policy(struct task_struct *p)
 232{
 233	return rt_policy(p->policy);
 234}
 235
 236static inline int task_has_dl_policy(struct task_struct *p)
 237{
 238	return dl_policy(p->policy);
 239}
 240
 241#define cap_scale(v, s)		((v)*(s) >> SCHED_CAPACITY_SHIFT)
 242
 243static inline void update_avg(u64 *avg, u64 sample)
 244{
 245	s64 diff = sample - *avg;
 246
 247	*avg += diff / 8;
 248}
 249
 250/*
 251 * Shifting a value by an exponent greater *or equal* to the size of said value
 252 * is UB; cap at size-1.
 253 */
 254#define shr_bound(val, shift)							\
 255	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 256
 257/*
 258 * cgroup weight knobs should use the common MIN, DFL and MAX values which are
 259 * 1, 100 and 10000 respectively. While it loses a bit of range on both ends, it
 260 * maps pretty well onto the shares value used by scheduler and the round-trip
 261 * conversions preserve the original value over the entire range.
 262 */
 263static inline unsigned long sched_weight_from_cgroup(unsigned long cgrp_weight)
 264{
 265	return DIV_ROUND_CLOSEST_ULL(cgrp_weight * 1024, CGROUP_WEIGHT_DFL);
 266}
 267
 268static inline unsigned long sched_weight_to_cgroup(unsigned long weight)
 269{
 270	return clamp_t(unsigned long,
 271		       DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024),
 272		       CGROUP_WEIGHT_MIN, CGROUP_WEIGHT_MAX);
 273}
 274
 275/*
 276 * !! For sched_setattr_nocheck() (kernel) only !!
 277 *
 278 * This is actually gross. :(
 279 *
 280 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 281 * tasks, but still be able to sleep. We need this on platforms that cannot
 282 * atomically change clock frequency. Remove once fast switching will be
 283 * available on such platforms.
 284 *
 285 * SUGOV stands for SchedUtil GOVernor.
 286 */
 287#define SCHED_FLAG_SUGOV	0x10000000
 288
 289#define SCHED_DL_FLAGS		(SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 290
 291static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
 292{
 293#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 294	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 295#else
 296	return false;
 297#endif
 298}
 299
 300/*
 301 * Tells if entity @a should preempt entity @b.
 302 */
 303static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
 304				     const struct sched_dl_entity *b)
 305{
 306	return dl_entity_is_special(a) ||
 307	       dl_time_before(a->deadline, b->deadline);
 308}
 309
 310/*
 311 * This is the priority-queue data structure of the RT scheduling class:
 312 */
 313struct rt_prio_array {
 314	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 315	struct list_head queue[MAX_RT_PRIO];
 316};
 317
 318struct rt_bandwidth {
 319	/* nests inside the rq lock: */
 320	raw_spinlock_t		rt_runtime_lock;
 321	ktime_t			rt_period;
 322	u64			rt_runtime;
 323	struct hrtimer		rt_period_timer;
 324	unsigned int		rt_period_active;
 325};
 326
 327static inline int dl_bandwidth_enabled(void)
 328{
 329	return sysctl_sched_rt_runtime >= 0;
 330}
 331
 332/*
 333 * To keep the bandwidth of -deadline tasks under control
 334 * we need some place where:
 335 *  - store the maximum -deadline bandwidth of each cpu;
 336 *  - cache the fraction of bandwidth that is currently allocated in
 337 *    each root domain;
 338 *
 339 * This is all done in the data structure below. It is similar to the
 340 * one used for RT-throttling (rt_bandwidth), with the main difference
 341 * that, since here we are only interested in admission control, we
 342 * do not decrease any runtime while the group "executes", neither we
 343 * need a timer to replenish it.
 344 *
 345 * With respect to SMP, bandwidth is given on a per root domain basis,
 346 * meaning that:
 347 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 348 *  - total_bw is the currently allocated bandwidth in each root domain;
 349 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350struct dl_bw {
 351	raw_spinlock_t		lock;
 352	u64			bw;
 353	u64			total_bw;
 354};
 355
 356extern void init_dl_bw(struct dl_bw *dl_b);
 357extern int  sched_dl_global_validate(void);
 358extern void sched_dl_do_global(void);
 359extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 360extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 361extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 362extern bool __checkparam_dl(const struct sched_attr *attr);
 363extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 364extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 365extern int  dl_bw_check_overflow(int cpu);
 366extern s64 dl_scaled_delta_exec(struct rq *rq, struct sched_dl_entity *dl_se, s64 delta_exec);
 367/*
 368 * SCHED_DEADLINE supports servers (nested scheduling) with the following
 369 * interface:
 370 *
 371 *   dl_se::rq -- runqueue we belong to.
 372 *
 373 *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
 374 *                                server when it runs out of tasks to run.
 375 *
 376 *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
 377 *                           returns NULL.
 378 *
 379 *   dl_server_update() -- called from update_curr_common(), propagates runtime
 380 *                         to the server.
 381 *
 382 *   dl_server_start()
 383 *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
 384 *
 385 *   dl_server_init() -- initializes the server.
 386 */
 387extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
 388extern void dl_server_start(struct sched_dl_entity *dl_se);
 389extern void dl_server_stop(struct sched_dl_entity *dl_se);
 390extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
 391		    dl_server_has_tasks_f has_tasks,
 392		    dl_server_pick_f pick_task);
 393
 394extern void dl_server_update_idle_time(struct rq *rq,
 395		    struct task_struct *p);
 396extern void fair_server_init(struct rq *rq);
 397extern void __dl_server_attach_root(struct sched_dl_entity *dl_se, struct rq *rq);
 398extern int dl_server_apply_params(struct sched_dl_entity *dl_se,
 399		    u64 runtime, u64 period, bool init);
 400
 401static inline bool dl_server_active(struct sched_dl_entity *dl_se)
 
 402{
 403	return dl_se->dl_server_active;
 
 404}
 405
 
 
 406#ifdef CONFIG_CGROUP_SCHED
 407
 
 
 
 
 
 408extern struct list_head task_groups;
 409
 410struct cfs_bandwidth {
 411#ifdef CONFIG_CFS_BANDWIDTH
 412	raw_spinlock_t		lock;
 413	ktime_t			period;
 414	u64			quota;
 415	u64			runtime;
 416	u64			burst;
 417	u64			runtime_snap;
 418	s64			hierarchical_quota;
 419
 420	u8			idle;
 421	u8			period_active;
 422	u8			slack_started;
 423	struct hrtimer		period_timer;
 424	struct hrtimer		slack_timer;
 425	struct list_head	throttled_cfs_rq;
 426
 427	/* Statistics: */
 428	int			nr_periods;
 429	int			nr_throttled;
 430	int			nr_burst;
 431	u64			throttled_time;
 432	u64			burst_time;
 433#endif
 434};
 435
 436/* Task group related information */
 437struct task_group {
 438	struct cgroup_subsys_state css;
 439
 440#ifdef CONFIG_GROUP_SCHED_WEIGHT
 441	/* A positive value indicates that this is a SCHED_IDLE group. */
 442	int			idle;
 443#endif
 
 
 444
 445#ifdef CONFIG_FAIR_GROUP_SCHED
 446	/* schedulable entities of this group on each CPU */
 447	struct sched_entity	**se;
 448	/* runqueue "owned" by this group on each CPU */
 449	struct cfs_rq		**cfs_rq;
 450	unsigned long		shares;
 451#ifdef	CONFIG_SMP
 452	/*
 453	 * load_avg can be heavily contended at clock tick time, so put
 454	 * it in its own cache-line separated from the fields above which
 455	 * will also be accessed at each tick.
 456	 */
 457	atomic_long_t		load_avg ____cacheline_aligned;
 458#endif
 459#endif
 460
 461#ifdef CONFIG_RT_GROUP_SCHED
 462	struct sched_rt_entity	**rt_se;
 463	struct rt_rq		**rt_rq;
 464
 465	struct rt_bandwidth	rt_bandwidth;
 466#endif
 467
 468#ifdef CONFIG_EXT_GROUP_SCHED
 469	u32			scx_flags;	/* SCX_TG_* */
 470	u32			scx_weight;
 471#endif
 472
 473	struct rcu_head		rcu;
 474	struct list_head	list;
 475
 476	struct task_group	*parent;
 477	struct list_head	siblings;
 478	struct list_head	children;
 479
 480#ifdef CONFIG_SCHED_AUTOGROUP
 481	struct autogroup	*autogroup;
 482#endif
 483
 484	struct cfs_bandwidth	cfs_bandwidth;
 485
 486#ifdef CONFIG_UCLAMP_TASK_GROUP
 487	/* The two decimal precision [%] value requested from user-space */
 488	unsigned int		uclamp_pct[UCLAMP_CNT];
 489	/* Clamp values requested for a task group */
 490	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 491	/* Effective clamp values used for a task group */
 492	struct uclamp_se	uclamp[UCLAMP_CNT];
 493#endif
 494
 
 495};
 496
 497#ifdef CONFIG_GROUP_SCHED_WEIGHT
 498#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 499
 500/*
 501 * A weight of 0 or 1 can cause arithmetics problems.
 502 * A weight of a cfs_rq is the sum of weights of which entities
 503 * are queued on this cfs_rq, so a weight of a entity should not be
 504 * too large, so as the shares value of a task group.
 505 * (The default weight is 1024 - so there's no practical
 506 *  limitation from this.)
 507 */
 508#define MIN_SHARES		(1UL <<  1)
 509#define MAX_SHARES		(1UL << 18)
 510#endif
 511
 512typedef int (*tg_visitor)(struct task_group *, void *);
 513
 514extern int walk_tg_tree_from(struct task_group *from,
 515			     tg_visitor down, tg_visitor up, void *data);
 516
 517/*
 518 * Iterate the full tree, calling @down when first entering a node and @up when
 519 * leaving it for the final time.
 520 *
 521 * Caller must hold rcu_lock or sufficient equivalent.
 522 */
 523static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 524{
 525	return walk_tg_tree_from(&root_task_group, down, up, data);
 526}
 527
 528static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
 529{
 530	return css ? container_of(css, struct task_group, css) : NULL;
 531}
 532
 533extern int tg_nop(struct task_group *tg, void *data);
 534
 535#ifdef CONFIG_FAIR_GROUP_SCHED
 536extern void free_fair_sched_group(struct task_group *tg);
 537extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 538extern void online_fair_sched_group(struct task_group *tg);
 539extern void unregister_fair_sched_group(struct task_group *tg);
 540#else
 541static inline void free_fair_sched_group(struct task_group *tg) { }
 542static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 543{
 544       return 1;
 545}
 546static inline void online_fair_sched_group(struct task_group *tg) { }
 547static inline void unregister_fair_sched_group(struct task_group *tg) { }
 548#endif
 549
 550extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 551			struct sched_entity *se, int cpu,
 552			struct sched_entity *parent);
 553extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
 554
 555extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 556extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 557extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 558extern bool cfs_task_bw_constrained(struct task_struct *p);
 559
 
 
 560extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 561		struct sched_rt_entity *rt_se, int cpu,
 562		struct sched_rt_entity *parent);
 563extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 564extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 565extern long sched_group_rt_runtime(struct task_group *tg);
 566extern long sched_group_rt_period(struct task_group *tg);
 567extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 568
 569extern struct task_group *sched_create_group(struct task_group *parent);
 570extern void sched_online_group(struct task_group *tg,
 571			       struct task_group *parent);
 572extern void sched_destroy_group(struct task_group *tg);
 573extern void sched_release_group(struct task_group *tg);
 574
 575extern void sched_move_task(struct task_struct *tsk, bool for_autogroup);
 576
 577#ifdef CONFIG_FAIR_GROUP_SCHED
 578extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 579
 580extern int sched_group_set_idle(struct task_group *tg, long idle);
 581
 582#ifdef CONFIG_SMP
 583extern void set_task_rq_fair(struct sched_entity *se,
 584			     struct cfs_rq *prev, struct cfs_rq *next);
 585#else /* !CONFIG_SMP */
 586static inline void set_task_rq_fair(struct sched_entity *se,
 587			     struct cfs_rq *prev, struct cfs_rq *next) { }
 588#endif /* CONFIG_SMP */
 589#else /* !CONFIG_FAIR_GROUP_SCHED */
 590static inline int sched_group_set_shares(struct task_group *tg, unsigned long shares) { return 0; }
 591static inline int sched_group_set_idle(struct task_group *tg, long idle) { return 0; }
 592#endif /* CONFIG_FAIR_GROUP_SCHED */
 593
 594#else /* CONFIG_CGROUP_SCHED */
 595
 596struct cfs_bandwidth { };
 597
 598static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
 599
 600#endif	/* CONFIG_CGROUP_SCHED */
 601
 602extern void unregister_rt_sched_group(struct task_group *tg);
 603extern void free_rt_sched_group(struct task_group *tg);
 604extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 605
 606/*
 607 * u64_u32_load/u64_u32_store
 608 *
 609 * Use a copy of a u64 value to protect against data race. This is only
 610 * applicable for 32-bits architectures.
 611 */
 612#ifdef CONFIG_64BIT
 613# define u64_u32_load_copy(var, copy)		var
 614# define u64_u32_store_copy(var, copy, val)	(var = val)
 615#else
 616# define u64_u32_load_copy(var, copy)					\
 617({									\
 618	u64 __val, __val_copy;						\
 619	do {								\
 620		__val_copy = copy;					\
 621		/*							\
 622		 * paired with u64_u32_store_copy(), ordering access	\
 623		 * to var and copy.					\
 624		 */							\
 625		smp_rmb();						\
 626		__val = var;						\
 627	} while (__val != __val_copy);					\
 628	__val;								\
 629})
 630# define u64_u32_store_copy(var, copy, val)				\
 631do {									\
 632	typeof(val) __val = (val);					\
 633	var = __val;							\
 634	/*								\
 635	 * paired with u64_u32_load_copy(), ordering access to var and	\
 636	 * copy.							\
 637	 */								\
 638	smp_wmb();							\
 639	copy = __val;							\
 640} while (0)
 641#endif
 642# define u64_u32_load(var)		u64_u32_load_copy(var, var##_copy)
 643# define u64_u32_store(var, val)	u64_u32_store_copy(var, var##_copy, val)
 644
 645struct balance_callback {
 646	struct balance_callback *next;
 647	void (*func)(struct rq *rq);
 648};
 649
 650/* CFS-related fields in a runqueue */
 651struct cfs_rq {
 652	struct load_weight	load;
 653	unsigned int		nr_running;
 654	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 655	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 656	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 657	unsigned int		h_nr_delayed;
 658
 659	s64			avg_vruntime;
 660	u64			avg_load;
 661
 662	u64			min_vruntime;
 663#ifdef CONFIG_SCHED_CORE
 664	unsigned int		forceidle_seq;
 665	u64			min_vruntime_fi;
 666#endif
 667
 668	struct rb_root_cached	tasks_timeline;
 
 669
 670	/*
 671	 * 'curr' points to currently running entity on this cfs_rq.
 672	 * It is set to NULL otherwise (i.e when none are currently running).
 673	 */
 674	struct sched_entity	*curr;
 675	struct sched_entity	*next;
 
 
 
 676
 677#ifdef CONFIG_SMP
 678	/*
 679	 * CFS load tracking
 680	 */
 681	struct sched_avg	avg;
 
 
 
 
 
 
 682#ifndef CONFIG_64BIT
 683	u64			last_update_time_copy;
 684#endif
 685	struct {
 686		raw_spinlock_t	lock ____cacheline_aligned;
 687		int		nr;
 688		unsigned long	load_avg;
 689		unsigned long	util_avg;
 690		unsigned long	runnable_avg;
 691	} removed;
 692
 693#ifdef CONFIG_FAIR_GROUP_SCHED
 694	u64			last_update_tg_load_avg;
 695	unsigned long		tg_load_avg_contrib;
 696	long			propagate;
 697	long			prop_runnable_sum;
 698
 699	/*
 700	 *   h_load = weight * f(tg)
 701	 *
 702	 * Where f(tg) is the recursive weight fraction assigned to
 703	 * this group.
 704	 */
 705	unsigned long		h_load;
 706	u64			last_h_load_update;
 707	struct sched_entity	*h_load_next;
 708#endif /* CONFIG_FAIR_GROUP_SCHED */
 709#endif /* CONFIG_SMP */
 710
 711#ifdef CONFIG_FAIR_GROUP_SCHED
 712	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 713
 714	/*
 715	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 716	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 717	 * (like users, containers etc.)
 718	 *
 719	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 720	 * This list is used during load balance.
 721	 */
 722	int			on_list;
 723	struct list_head	leaf_cfs_rq_list;
 724	struct task_group	*tg;	/* group that "owns" this runqueue */
 725
 726	/* Locally cached copy of our task_group's idle value */
 727	int			idle;
 728
 729#ifdef CONFIG_CFS_BANDWIDTH
 730	int			runtime_enabled;
 731	s64			runtime_remaining;
 732
 733	u64			throttled_pelt_idle;
 734#ifndef CONFIG_64BIT
 735	u64                     throttled_pelt_idle_copy;
 736#endif
 737	u64			throttled_clock;
 738	u64			throttled_clock_pelt;
 739	u64			throttled_clock_pelt_time;
 740	u64			throttled_clock_self;
 741	u64			throttled_clock_self_time;
 742	int			throttled;
 743	int			throttle_count;
 744	struct list_head	throttled_list;
 745	struct list_head	throttled_csd_list;
 746#endif /* CONFIG_CFS_BANDWIDTH */
 747#endif /* CONFIG_FAIR_GROUP_SCHED */
 748};
 749
 750#ifdef CONFIG_SCHED_CLASS_EXT
 751/* scx_rq->flags, protected by the rq lock */
 752enum scx_rq_flags {
 753	/*
 754	 * A hotplugged CPU starts scheduling before rq_online_scx(). Track
 755	 * ops.cpu_on/offline() state so that ops.enqueue/dispatch() are called
 756	 * only while the BPF scheduler considers the CPU to be online.
 757	 */
 758	SCX_RQ_ONLINE		= 1 << 0,
 759	SCX_RQ_CAN_STOP_TICK	= 1 << 1,
 760	SCX_RQ_BAL_PENDING	= 1 << 2, /* balance hasn't run yet */
 761	SCX_RQ_BAL_KEEP		= 1 << 3, /* balance decided to keep current */
 762	SCX_RQ_BYPASSING	= 1 << 4,
 763
 764	SCX_RQ_IN_WAKEUP	= 1 << 16,
 765	SCX_RQ_IN_BALANCE	= 1 << 17,
 766};
 767
 768struct scx_rq {
 769	struct scx_dispatch_q	local_dsq;
 770	struct list_head	runnable_list;		/* runnable tasks on this rq */
 771	struct list_head	ddsp_deferred_locals;	/* deferred ddsps from enq */
 772	unsigned long		ops_qseq;
 773	u64			extra_enq_flags;	/* see move_task_to_local_dsq() */
 774	u32			nr_running;
 775	u32			flags;
 776	u32			cpuperf_target;		/* [0, SCHED_CAPACITY_SCALE] */
 777	bool			cpu_released;
 778	cpumask_var_t		cpus_to_kick;
 779	cpumask_var_t		cpus_to_kick_if_idle;
 780	cpumask_var_t		cpus_to_preempt;
 781	cpumask_var_t		cpus_to_wait;
 782	unsigned long		pnt_seq;
 783	struct balance_callback	deferred_bal_cb;
 784	struct irq_work		deferred_irq_work;
 785	struct irq_work		kick_cpus_irq_work;
 786};
 787#endif /* CONFIG_SCHED_CLASS_EXT */
 788
 789static inline int rt_bandwidth_enabled(void)
 790{
 791	return sysctl_sched_rt_runtime >= 0;
 792}
 793
 794/* RT IPI pull logic requires IRQ_WORK */
 795#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 796# define HAVE_RT_PUSH_IPI
 797#endif
 798
 799/* Real-Time classes' related field in a runqueue: */
 800struct rt_rq {
 801	struct rt_prio_array	active;
 802	unsigned int		rt_nr_running;
 803	unsigned int		rr_nr_running;
 804#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 805	struct {
 806		int		curr; /* highest queued rt task prio */
 807#ifdef CONFIG_SMP
 808		int		next; /* next highest */
 809#endif
 810	} highest_prio;
 811#endif
 812#ifdef CONFIG_SMP
 813	bool			overloaded;
 814	struct plist_head	pushable_tasks;
 815
 
 
 
 
 
 
 
 816#endif /* CONFIG_SMP */
 817	int			rt_queued;
 818
 819#ifdef CONFIG_RT_GROUP_SCHED
 820	int			rt_throttled;
 821	u64			rt_time;
 822	u64			rt_runtime;
 823	/* Nests inside the rq lock: */
 824	raw_spinlock_t		rt_runtime_lock;
 825
 826	unsigned int		rt_nr_boosted;
 
 827
 828	struct rq		*rq;
 829	struct task_group	*tg;
 830#endif
 831};
 832
 833static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 834{
 835	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 836}
 837
 838/* Deadline class' related fields in a runqueue */
 839struct dl_rq {
 840	/* runqueue is an rbtree, ordered by deadline */
 841	struct rb_root_cached	root;
 
 842
 843	unsigned int		dl_nr_running;
 844
 845#ifdef CONFIG_SMP
 846	/*
 847	 * Deadline values of the currently executing and the
 848	 * earliest ready task on this rq. Caching these facilitates
 849	 * the decision whether or not a ready but not running task
 850	 * should migrate somewhere else.
 851	 */
 852	struct {
 853		u64		curr;
 854		u64		next;
 855	} earliest_dl;
 856
 857	bool			overloaded;
 
 858
 859	/*
 860	 * Tasks on this rq that can be pushed away. They are kept in
 861	 * an rb-tree, ordered by tasks' deadlines, with caching
 862	 * of the leftmost (earliest deadline) element.
 863	 */
 864	struct rb_root_cached	pushable_dl_tasks_root;
 
 865#else
 866	struct dl_bw		dl_bw;
 867#endif
 868	/*
 869	 * "Active utilization" for this runqueue: increased when a
 870	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 871	 * task blocks
 872	 */
 873	u64			running_bw;
 874
 875	/*
 876	 * Utilization of the tasks "assigned" to this runqueue (including
 877	 * the tasks that are in runqueue and the tasks that executed on this
 878	 * CPU and blocked). Increased when a task moves to this runqueue, and
 879	 * decreased when the task moves away (migrates, changes scheduling
 880	 * policy, or terminates).
 881	 * This is needed to compute the "inactive utilization" for the
 882	 * runqueue (inactive utilization = this_bw - running_bw).
 883	 */
 884	u64			this_bw;
 885	u64			extra_bw;
 886
 887	/*
 888	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
 889	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
 890	 */
 891	u64			max_bw;
 892
 893	/*
 894	 * Inverse of the fraction of CPU utilization that can be reclaimed
 895	 * by the GRUB algorithm.
 896	 */
 897	u64			bw_ratio;
 898};
 899
 900#ifdef CONFIG_FAIR_GROUP_SCHED
 901
 902/* An entity is a task if it doesn't "own" a runqueue */
 903#define entity_is_task(se)	(!se->my_q)
 904
 905static inline void se_update_runnable(struct sched_entity *se)
 906{
 907	if (!entity_is_task(se)) {
 908		struct cfs_rq *cfs_rq = se->my_q;
 909
 910		se->runnable_weight = cfs_rq->h_nr_running - cfs_rq->h_nr_delayed;
 911	}
 912}
 913
 914static inline long se_runnable(struct sched_entity *se)
 915{
 916	if (se->sched_delayed)
 917		return false;
 918
 919	if (entity_is_task(se))
 920		return !!se->on_rq;
 921	else
 922		return se->runnable_weight;
 923}
 924
 925#else /* !CONFIG_FAIR_GROUP_SCHED: */
 926
 927#define entity_is_task(se)	1
 928
 929static inline void se_update_runnable(struct sched_entity *se) { }
 930
 931static inline long se_runnable(struct sched_entity *se)
 932{
 933	if (se->sched_delayed)
 934		return false;
 935
 936	return !!se->on_rq;
 937}
 938
 939#endif /* !CONFIG_FAIR_GROUP_SCHED */
 940
 941#ifdef CONFIG_SMP
 942/*
 943 * XXX we want to get rid of these helpers and use the full load resolution.
 944 */
 945static inline long se_weight(struct sched_entity *se)
 946{
 947	return scale_load_down(se->load.weight);
 948}
 949
 950
 951static inline bool sched_asym_prefer(int a, int b)
 952{
 953	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 954}
 955
 956struct perf_domain {
 957	struct em_perf_domain *em_pd;
 958	struct perf_domain *next;
 959	struct rcu_head rcu;
 960};
 961
 962/*
 963 * We add the notion of a root-domain which will be used to define per-domain
 964 * variables. Each exclusive cpuset essentially defines an island domain by
 965 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 966 * exclusive cpuset is created, we also create and attach a new root-domain
 967 * object.
 968 *
 969 */
 970struct root_domain {
 971	atomic_t		refcount;
 972	atomic_t		rto_count;
 973	struct rcu_head		rcu;
 974	cpumask_var_t		span;
 975	cpumask_var_t		online;
 976
 977	/*
 978	 * Indicate pullable load on at least one CPU, e.g:
 979	 * - More than one runnable task
 980	 * - Running task is misfit
 981	 */
 982	bool			overloaded;
 983
 984	/* Indicate one or more CPUs over-utilized (tipping point) */
 985	bool			overutilized;
 986
 987	/*
 988	 * The bit corresponding to a CPU gets set here if such CPU has more
 989	 * than one runnable -deadline task (as it is below for RT tasks).
 990	 */
 991	cpumask_var_t		dlo_mask;
 992	atomic_t		dlo_count;
 993	struct dl_bw		dl_bw;
 994	struct cpudl		cpudl;
 995
 996	/*
 997	 * Indicate whether a root_domain's dl_bw has been checked or
 998	 * updated. It's monotonously increasing value.
 999	 *
1000	 * Also, some corner cases, like 'wrap around' is dangerous, but given
1001	 * that u64 is 'big enough'. So that shouldn't be a concern.
1002	 */
1003	u64 visit_gen;
1004
1005#ifdef HAVE_RT_PUSH_IPI
1006	/*
1007	 * For IPI pull requests, loop across the rto_mask.
1008	 */
1009	struct irq_work		rto_push_work;
1010	raw_spinlock_t		rto_lock;
1011	/* These are only updated and read within rto_lock */
1012	int			rto_loop;
1013	int			rto_cpu;
1014	/* These atomics are updated outside of a lock */
1015	atomic_t		rto_loop_next;
1016	atomic_t		rto_loop_start;
1017#endif
1018	/*
1019	 * The "RT overload" flag: it gets set if a CPU has more than
1020	 * one runnable RT task.
1021	 */
1022	cpumask_var_t		rto_mask;
1023	struct cpupri		cpupri;
1024
1025	/*
1026	 * NULL-terminated list of performance domains intersecting with the
1027	 * CPUs of the rd. Protected by RCU.
1028	 */
1029	struct perf_domain __rcu *pd;
1030};
1031
1032extern void init_defrootdomain(void);
1033extern int sched_init_domains(const struct cpumask *cpu_map);
1034extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
1035extern void sched_get_rd(struct root_domain *rd);
1036extern void sched_put_rd(struct root_domain *rd);
1037
1038static inline int get_rd_overloaded(struct root_domain *rd)
1039{
1040	return READ_ONCE(rd->overloaded);
1041}
1042
1043static inline void set_rd_overloaded(struct root_domain *rd, int status)
1044{
1045	if (get_rd_overloaded(rd) != status)
1046		WRITE_ONCE(rd->overloaded, status);
1047}
1048
1049#ifdef HAVE_RT_PUSH_IPI
1050extern void rto_push_irq_work_func(struct irq_work *work);
1051#endif
1052#endif /* CONFIG_SMP */
1053
1054#ifdef CONFIG_UCLAMP_TASK
1055/*
1056 * struct uclamp_bucket - Utilization clamp bucket
1057 * @value: utilization clamp value for tasks on this clamp bucket
1058 * @tasks: number of RUNNABLE tasks on this clamp bucket
1059 *
1060 * Keep track of how many tasks are RUNNABLE for a given utilization
1061 * clamp value.
1062 */
1063struct uclamp_bucket {
1064	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
1065	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
1066};
1067
1068/*
1069 * struct uclamp_rq - rq's utilization clamp
1070 * @value: currently active clamp values for a rq
1071 * @bucket: utilization clamp buckets affecting a rq
1072 *
1073 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
1074 * A clamp value is affecting a rq when there is at least one task RUNNABLE
1075 * (or actually running) with that value.
1076 *
1077 * There are up to UCLAMP_CNT possible different clamp values, currently there
1078 * are only two: minimum utilization and maximum utilization.
1079 *
1080 * All utilization clamping values are MAX aggregated, since:
1081 * - for util_min: we want to run the CPU at least at the max of the minimum
1082 *   utilization required by its currently RUNNABLE tasks.
1083 * - for util_max: we want to allow the CPU to run up to the max of the
1084 *   maximum utilization allowed by its currently RUNNABLE tasks.
1085 *
1086 * Since on each system we expect only a limited number of different
1087 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
1088 * the metrics required to compute all the per-rq utilization clamp values.
1089 */
1090struct uclamp_rq {
1091	unsigned int value;
1092	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
1093};
1094
1095DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
1096#endif /* CONFIG_UCLAMP_TASK */
1097
1098/*
1099 * This is the main, per-CPU runqueue data structure.
1100 *
1101 * Locking rule: those places that want to lock multiple runqueues
1102 * (such as the load balancing or the thread migration code), lock
1103 * acquire operations must be ordered by ascending &runqueue.
1104 */
1105struct rq {
1106	/* runqueue lock: */
1107	raw_spinlock_t		__lock;
1108
1109	unsigned int		nr_running;
 
 
 
 
1110#ifdef CONFIG_NUMA_BALANCING
1111	unsigned int		nr_numa_running;
1112	unsigned int		nr_preferred_running;
1113	unsigned int		numa_migrate_on;
1114#endif
 
 
 
1115#ifdef CONFIG_NO_HZ_COMMON
1116#ifdef CONFIG_SMP
1117	unsigned long		last_blocked_load_update_tick;
1118	unsigned int		has_blocked_load;
1119	call_single_data_t	nohz_csd;
1120#endif /* CONFIG_SMP */
1121	unsigned int		nohz_tick_stopped;
1122	atomic_t		nohz_flags;
1123#endif /* CONFIG_NO_HZ_COMMON */
1124
1125#ifdef CONFIG_SMP
1126	unsigned int		ttwu_pending;
1127#endif
1128	u64			nr_switches;
1129
1130#ifdef CONFIG_UCLAMP_TASK
1131	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1132	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1133	unsigned int		uclamp_flags;
1134#define UCLAMP_FLAG_IDLE 0x01
1135#endif
1136
1137	struct cfs_rq		cfs;
1138	struct rt_rq		rt;
1139	struct dl_rq		dl;
1140#ifdef CONFIG_SCHED_CLASS_EXT
1141	struct scx_rq		scx;
1142#endif
1143
1144	struct sched_dl_entity	fair_server;
1145
1146#ifdef CONFIG_FAIR_GROUP_SCHED
1147	/* list of leaf cfs_rq on this CPU: */
1148	struct list_head	leaf_cfs_rq_list;
1149	struct list_head	*tmp_alone_branch;
1150#endif /* CONFIG_FAIR_GROUP_SCHED */
1151
1152	/*
1153	 * This is part of a global counter where only the total sum
1154	 * over all CPUs matters. A task can increase this counter on
1155	 * one CPU and if it got migrated afterwards it may decrease
1156	 * it on another CPU. Always updated under the runqueue lock:
1157	 */
1158	unsigned int		nr_uninterruptible;
1159
1160	union {
1161		struct task_struct __rcu *donor; /* Scheduler context */
1162		struct task_struct __rcu *curr;  /* Execution context */
1163	};
1164	struct sched_dl_entity	*dl_server;
1165	struct task_struct	*idle;
1166	struct task_struct	*stop;
1167	unsigned long		next_balance;
1168	struct mm_struct	*prev_mm;
1169
1170	unsigned int		clock_update_flags;
1171	u64			clock;
1172	/* Ensure that all clocks are in the same cache line */
1173	u64			clock_task ____cacheline_aligned;
1174	u64			clock_pelt;
1175	unsigned long		lost_idle_time;
1176	u64			clock_pelt_idle;
1177	u64			clock_idle;
1178#ifndef CONFIG_64BIT
1179	u64			clock_pelt_idle_copy;
1180	u64			clock_idle_copy;
1181#endif
1182
1183	atomic_t		nr_iowait;
 
 
1184
1185#ifdef CONFIG_SCHED_DEBUG
1186	u64 last_seen_need_resched_ns;
1187	int ticks_without_resched;
1188#endif
1189
1190#ifdef CONFIG_MEMBARRIER
1191	int membarrier_state;
1192#endif
1193
1194#ifdef CONFIG_SMP
1195	struct root_domain		*rd;
1196	struct sched_domain __rcu	*sd;
1197
1198	unsigned long		cpu_capacity;
1199
1200	struct balance_callback *balance_callback;
1201
1202	unsigned char		nohz_idle_balance;
1203	unsigned char		idle_balance;
1204
1205	unsigned long		misfit_task_load;
1206
 
1207	/* For active balancing */
1208	int			active_balance;
1209	int			push_cpu;
1210	struct cpu_stop_work	active_balance_work;
1211
1212	/* CPU of this runqueue: */
1213	int			cpu;
1214	int			online;
1215
1216	struct list_head cfs_tasks;
1217
1218	struct sched_avg	avg_rt;
1219	struct sched_avg	avg_dl;
1220#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1221	struct sched_avg	avg_irq;
1222#endif
1223#ifdef CONFIG_SCHED_HW_PRESSURE
1224	struct sched_avg	avg_hw;
1225#endif
1226	u64			idle_stamp;
1227	u64			avg_idle;
1228
1229	/* This is used to determine avg_idle's max value */
1230	u64			max_idle_balance_cost;
1231
1232#ifdef CONFIG_HOTPLUG_CPU
1233	struct rcuwait		hotplug_wait;
1234#endif
1235#endif /* CONFIG_SMP */
1236
1237#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1238	u64			prev_irq_time;
1239	u64			psi_irq_time;
1240#endif
1241#ifdef CONFIG_PARAVIRT
1242	u64			prev_steal_time;
1243#endif
1244#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1245	u64			prev_steal_time_rq;
1246#endif
1247
1248	/* calc_load related fields */
1249	unsigned long		calc_load_update;
1250	long			calc_load_active;
1251
1252#ifdef CONFIG_SCHED_HRTICK
1253#ifdef CONFIG_SMP
1254	call_single_data_t	hrtick_csd;
 
1255#endif
1256	struct hrtimer		hrtick_timer;
1257	ktime_t			hrtick_time;
1258#endif
1259
1260#ifdef CONFIG_SCHEDSTATS
1261	/* latency stats */
1262	struct sched_info	rq_sched_info;
1263	unsigned long long	rq_cpu_time;
 
1264
1265	/* sys_sched_yield() stats */
1266	unsigned int		yld_count;
1267
1268	/* schedule() stats */
1269	unsigned int		sched_count;
1270	unsigned int		sched_goidle;
1271
1272	/* try_to_wake_up() stats */
1273	unsigned int		ttwu_count;
1274	unsigned int		ttwu_local;
1275#endif
1276
1277#ifdef CONFIG_CPU_IDLE
1278	/* Must be inspected within a RCU lock section */
1279	struct cpuidle_state	*idle_state;
1280#endif
1281
1282#ifdef CONFIG_SMP
1283	unsigned int		nr_pinned;
1284#endif
1285	unsigned int		push_busy;
1286	struct cpu_stop_work	push_work;
1287
1288#ifdef CONFIG_SCHED_CORE
1289	/* per rq */
1290	struct rq		*core;
1291	struct task_struct	*core_pick;
1292	struct sched_dl_entity	*core_dl_server;
1293	unsigned int		core_enabled;
1294	unsigned int		core_sched_seq;
1295	struct rb_root		core_tree;
1296
1297	/* shared state -- careful with sched_core_cpu_deactivate() */
1298	unsigned int		core_task_seq;
1299	unsigned int		core_pick_seq;
1300	unsigned long		core_cookie;
1301	unsigned int		core_forceidle_count;
1302	unsigned int		core_forceidle_seq;
1303	unsigned int		core_forceidle_occupation;
1304	u64			core_forceidle_start;
1305#endif
1306
1307	/* Scratch cpumask to be temporarily used under rq_lock */
1308	cpumask_var_t		scratch_mask;
1309
1310#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1311	call_single_data_t	cfsb_csd;
1312	struct list_head	cfsb_csd_list;
1313#endif
1314};
1315
1316#ifdef CONFIG_FAIR_GROUP_SCHED
1317
1318/* CPU runqueue to which this cfs_rq is attached */
1319static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1320{
1321	return cfs_rq->rq;
1322}
1323
1324#else
1325
1326static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1327{
1328	return container_of(cfs_rq, struct rq, cfs);
1329}
1330#endif
1331
1332static inline int cpu_of(struct rq *rq)
1333{
1334#ifdef CONFIG_SMP
1335	return rq->cpu;
1336#else
1337	return 0;
1338#endif
1339}
1340
1341#define MDF_PUSH		0x01
1342
1343static inline bool is_migration_disabled(struct task_struct *p)
1344{
1345#ifdef CONFIG_SMP
1346	return p->migration_disabled;
1347#else
1348	return false;
1349#endif
1350}
1351
1352DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1353
1354#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1355#define this_rq()		this_cpu_ptr(&runqueues)
1356#define task_rq(p)		cpu_rq(task_cpu(p))
1357#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1358#define raw_rq()		raw_cpu_ptr(&runqueues)
1359
1360static inline void rq_set_donor(struct rq *rq, struct task_struct *t)
1361{
1362	/* Do nothing */
1363}
1364
1365#ifdef CONFIG_SCHED_CORE
1366static inline struct cpumask *sched_group_span(struct sched_group *sg);
1367
1368DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1369
1370static inline bool sched_core_enabled(struct rq *rq)
1371{
1372	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1373}
1374
1375static inline bool sched_core_disabled(void)
1376{
1377	return !static_branch_unlikely(&__sched_core_enabled);
1378}
1379
1380/*
1381 * Be careful with this function; not for general use. The return value isn't
1382 * stable unless you actually hold a relevant rq->__lock.
1383 */
1384static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1385{
1386	if (sched_core_enabled(rq))
1387		return &rq->core->__lock;
1388
1389	return &rq->__lock;
1390}
1391
1392static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1393{
1394	if (rq->core_enabled)
1395		return &rq->core->__lock;
1396
1397	return &rq->__lock;
1398}
1399
1400extern bool
1401cfs_prio_less(const struct task_struct *a, const struct task_struct *b, bool fi);
1402
1403extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1404
1405/*
1406 * Helpers to check if the CPU's core cookie matches with the task's cookie
1407 * when core scheduling is enabled.
1408 * A special case is that the task's cookie always matches with CPU's core
1409 * cookie if the CPU is in an idle core.
1410 */
1411static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1412{
1413	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1414	if (!sched_core_enabled(rq))
1415		return true;
1416
1417	return rq->core->core_cookie == p->core_cookie;
1418}
1419
1420static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1421{
1422	bool idle_core = true;
1423	int cpu;
1424
1425	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1426	if (!sched_core_enabled(rq))
1427		return true;
1428
1429	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1430		if (!available_idle_cpu(cpu)) {
1431			idle_core = false;
1432			break;
1433		}
1434	}
1435
1436	/*
1437	 * A CPU in an idle core is always the best choice for tasks with
1438	 * cookies.
1439	 */
1440	return idle_core || rq->core->core_cookie == p->core_cookie;
1441}
1442
1443static inline bool sched_group_cookie_match(struct rq *rq,
1444					    struct task_struct *p,
1445					    struct sched_group *group)
1446{
1447	int cpu;
1448
1449	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1450	if (!sched_core_enabled(rq))
1451		return true;
1452
1453	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1454		if (sched_core_cookie_match(cpu_rq(cpu), p))
1455			return true;
1456	}
1457	return false;
1458}
1459
1460static inline bool sched_core_enqueued(struct task_struct *p)
1461{
1462	return !RB_EMPTY_NODE(&p->core_node);
1463}
1464
1465extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1466extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1467
1468extern void sched_core_get(void);
1469extern void sched_core_put(void);
1470
1471#else /* !CONFIG_SCHED_CORE: */
1472
1473static inline bool sched_core_enabled(struct rq *rq)
1474{
1475	return false;
1476}
1477
1478static inline bool sched_core_disabled(void)
1479{
1480	return true;
1481}
1482
1483static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1484{
1485	return &rq->__lock;
1486}
1487
1488static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1489{
1490	return &rq->__lock;
1491}
1492
1493static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1494{
1495	return true;
1496}
1497
1498static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1499{
1500	return true;
1501}
1502
1503static inline bool sched_group_cookie_match(struct rq *rq,
1504					    struct task_struct *p,
1505					    struct sched_group *group)
1506{
1507	return true;
1508}
1509
1510#endif /* !CONFIG_SCHED_CORE */
1511
1512static inline void lockdep_assert_rq_held(struct rq *rq)
1513{
1514	lockdep_assert_held(__rq_lockp(rq));
1515}
1516
1517extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1518extern bool raw_spin_rq_trylock(struct rq *rq);
1519extern void raw_spin_rq_unlock(struct rq *rq);
1520
1521static inline void raw_spin_rq_lock(struct rq *rq)
1522{
1523	raw_spin_rq_lock_nested(rq, 0);
1524}
1525
1526static inline void raw_spin_rq_lock_irq(struct rq *rq)
1527{
1528	local_irq_disable();
1529	raw_spin_rq_lock(rq);
1530}
1531
1532static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1533{
1534	raw_spin_rq_unlock(rq);
1535	local_irq_enable();
1536}
1537
1538static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1539{
1540	unsigned long flags;
1541
1542	local_irq_save(flags);
1543	raw_spin_rq_lock(rq);
1544
1545	return flags;
1546}
1547
1548static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1549{
1550	raw_spin_rq_unlock(rq);
1551	local_irq_restore(flags);
1552}
1553
1554#define raw_spin_rq_lock_irqsave(rq, flags)	\
1555do {						\
1556	flags = _raw_spin_rq_lock_irqsave(rq);	\
1557} while (0)
1558
1559#ifdef CONFIG_SCHED_SMT
1560extern void __update_idle_core(struct rq *rq);
1561
1562static inline void update_idle_core(struct rq *rq)
1563{
1564	if (static_branch_unlikely(&sched_smt_present))
1565		__update_idle_core(rq);
1566}
1567
1568#else
1569static inline void update_idle_core(struct rq *rq) { }
1570#endif
1571
1572#ifdef CONFIG_FAIR_GROUP_SCHED
1573
1574static inline struct task_struct *task_of(struct sched_entity *se)
1575{
1576	SCHED_WARN_ON(!entity_is_task(se));
1577	return container_of(se, struct task_struct, se);
1578}
1579
1580static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1581{
1582	return p->se.cfs_rq;
1583}
1584
1585/* runqueue on which this entity is (to be) queued */
1586static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1587{
1588	return se->cfs_rq;
1589}
1590
1591/* runqueue "owned" by this group */
1592static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1593{
1594	return grp->my_q;
1595}
1596
1597#else /* !CONFIG_FAIR_GROUP_SCHED: */
1598
1599#define task_of(_se)		container_of(_se, struct task_struct, se)
1600
1601static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1602{
1603	return &task_rq(p)->cfs;
1604}
1605
1606static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1607{
1608	const struct task_struct *p = task_of(se);
1609	struct rq *rq = task_rq(p);
1610
1611	return &rq->cfs;
1612}
1613
1614/* runqueue "owned" by this group */
1615static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1616{
1617	return NULL;
1618}
1619
1620#endif /* !CONFIG_FAIR_GROUP_SCHED */
1621
1622extern void update_rq_clock(struct rq *rq);
1623
1624/*
1625 * rq::clock_update_flags bits
1626 *
1627 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1628 *  call to __schedule(). This is an optimisation to avoid
1629 *  neighbouring rq clock updates.
1630 *
1631 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1632 *  in effect and calls to update_rq_clock() are being ignored.
1633 *
1634 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1635 *  made to update_rq_clock() since the last time rq::lock was pinned.
1636 *
1637 * If inside of __schedule(), clock_update_flags will have been
1638 * shifted left (a left shift is a cheap operation for the fast path
1639 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1640 *
1641 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1642 *
1643 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1644 * one position though, because the next rq_unpin_lock() will shift it
1645 * back.
1646 */
1647#define RQCF_REQ_SKIP		0x01
1648#define RQCF_ACT_SKIP		0x02
1649#define RQCF_UPDATED		0x04
1650
1651static inline void assert_clock_updated(struct rq *rq)
1652{
1653	/*
1654	 * The only reason for not seeing a clock update since the
1655	 * last rq_pin_lock() is if we're currently skipping updates.
1656	 */
1657	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1658}
1659
1660static inline u64 rq_clock(struct rq *rq)
1661{
1662	lockdep_assert_rq_held(rq);
1663	assert_clock_updated(rq);
1664
1665	return rq->clock;
1666}
1667
1668static inline u64 rq_clock_task(struct rq *rq)
1669{
1670	lockdep_assert_rq_held(rq);
1671	assert_clock_updated(rq);
1672
1673	return rq->clock_task;
1674}
1675
1676static inline void rq_clock_skip_update(struct rq *rq)
1677{
1678	lockdep_assert_rq_held(rq);
1679	rq->clock_update_flags |= RQCF_REQ_SKIP;
1680}
1681
1682/*
1683 * See rt task throttling, which is the only time a skip
1684 * request is canceled.
1685 */
1686static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1687{
1688	lockdep_assert_rq_held(rq);
1689	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1690}
1691
1692/*
1693 * During cpu offlining and rq wide unthrottling, we can trigger
1694 * an update_rq_clock() for several cfs and rt runqueues (Typically
1695 * when using list_for_each_entry_*)
1696 * rq_clock_start_loop_update() can be called after updating the clock
1697 * once and before iterating over the list to prevent multiple update.
1698 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1699 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1700 */
1701static inline void rq_clock_start_loop_update(struct rq *rq)
1702{
1703	lockdep_assert_rq_held(rq);
1704	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1705	rq->clock_update_flags |= RQCF_ACT_SKIP;
1706}
1707
1708static inline void rq_clock_stop_loop_update(struct rq *rq)
1709{
1710	lockdep_assert_rq_held(rq);
1711	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1712}
1713
1714struct rq_flags {
1715	unsigned long flags;
1716	struct pin_cookie cookie;
1717#ifdef CONFIG_SCHED_DEBUG
1718	/*
1719	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1720	 * current pin context is stashed here in case it needs to be
1721	 * restored in rq_repin_lock().
1722	 */
1723	unsigned int clock_update_flags;
1724#endif
1725};
1726
1727extern struct balance_callback balance_push_callback;
1728
1729/*
1730 * Lockdep annotation that avoids accidental unlocks; it's like a
1731 * sticky/continuous lockdep_assert_held().
1732 *
1733 * This avoids code that has access to 'struct rq *rq' (basically everything in
1734 * the scheduler) from accidentally unlocking the rq if they do not also have a
1735 * copy of the (on-stack) 'struct rq_flags rf'.
1736 *
1737 * Also see Documentation/locking/lockdep-design.rst.
1738 */
1739static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1740{
1741	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1742
1743#ifdef CONFIG_SCHED_DEBUG
1744	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1745	rf->clock_update_flags = 0;
1746# ifdef CONFIG_SMP
1747	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1748# endif
1749#endif
1750}
1751
1752static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1753{
1754#ifdef CONFIG_SCHED_DEBUG
1755	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1756		rf->clock_update_flags = RQCF_UPDATED;
1757#endif
1758
1759	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1760}
1761
1762static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1763{
1764	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1765
1766#ifdef CONFIG_SCHED_DEBUG
1767	/*
1768	 * Restore the value we stashed in @rf for this pin context.
1769	 */
1770	rq->clock_update_flags |= rf->clock_update_flags;
1771#endif
1772}
1773
1774extern
1775struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1776	__acquires(rq->lock);
1777
1778extern
1779struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1780	__acquires(p->pi_lock)
1781	__acquires(rq->lock);
1782
1783static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1784	__releases(rq->lock)
1785{
1786	rq_unpin_lock(rq, rf);
1787	raw_spin_rq_unlock(rq);
1788}
1789
1790static inline void
1791task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1792	__releases(rq->lock)
1793	__releases(p->pi_lock)
1794{
1795	rq_unpin_lock(rq, rf);
1796	raw_spin_rq_unlock(rq);
1797	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1798}
1799
1800DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1801		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1802		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1803		    struct rq *rq; struct rq_flags rf)
1804
1805static inline void rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1806	__acquires(rq->lock)
1807{
1808	raw_spin_rq_lock_irqsave(rq, rf->flags);
1809	rq_pin_lock(rq, rf);
1810}
1811
1812static inline void rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1813	__acquires(rq->lock)
1814{
1815	raw_spin_rq_lock_irq(rq);
1816	rq_pin_lock(rq, rf);
1817}
1818
1819static inline void rq_lock(struct rq *rq, struct rq_flags *rf)
1820	__acquires(rq->lock)
1821{
1822	raw_spin_rq_lock(rq);
1823	rq_pin_lock(rq, rf);
1824}
1825
1826static inline void rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1827	__releases(rq->lock)
1828{
1829	rq_unpin_lock(rq, rf);
1830	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1831}
1832
1833static inline void rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1834	__releases(rq->lock)
1835{
1836	rq_unpin_lock(rq, rf);
1837	raw_spin_rq_unlock_irq(rq);
1838}
1839
1840static inline void rq_unlock(struct rq *rq, struct rq_flags *rf)
1841	__releases(rq->lock)
1842{
1843	rq_unpin_lock(rq, rf);
1844	raw_spin_rq_unlock(rq);
1845}
1846
1847DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1848		    rq_lock(_T->lock, &_T->rf),
1849		    rq_unlock(_T->lock, &_T->rf),
1850		    struct rq_flags rf)
1851
1852DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1853		    rq_lock_irq(_T->lock, &_T->rf),
1854		    rq_unlock_irq(_T->lock, &_T->rf),
1855		    struct rq_flags rf)
1856
1857DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1858		    rq_lock_irqsave(_T->lock, &_T->rf),
1859		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1860		    struct rq_flags rf)
1861
1862static inline struct rq *this_rq_lock_irq(struct rq_flags *rf)
1863	__acquires(rq->lock)
1864{
1865	struct rq *rq;
1866
1867	local_irq_disable();
1868	rq = this_rq();
1869	rq_lock(rq, rf);
1870
1871	return rq;
1872}
1873
1874#ifdef CONFIG_NUMA
1875
1876enum numa_topology_type {
1877	NUMA_DIRECT,
1878	NUMA_GLUELESS_MESH,
1879	NUMA_BACKPLANE,
1880};
1881
1882extern enum numa_topology_type sched_numa_topology_type;
1883extern int sched_max_numa_distance;
1884extern bool find_numa_distance(int distance);
1885extern void sched_init_numa(int offline_node);
1886extern void sched_update_numa(int cpu, bool online);
1887extern void sched_domains_numa_masks_set(unsigned int cpu);
1888extern void sched_domains_numa_masks_clear(unsigned int cpu);
1889extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1890
1891#else /* !CONFIG_NUMA: */
1892
1893static inline void sched_init_numa(int offline_node) { }
1894static inline void sched_update_numa(int cpu, bool online) { }
1895static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1896static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1897
1898static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1899{
1900	return nr_cpu_ids;
1901}
1902
1903#endif /* !CONFIG_NUMA */
1904
1905#ifdef CONFIG_NUMA_BALANCING
1906
1907/* The regions in numa_faults array from task_struct */
1908enum numa_faults_stats {
1909	NUMA_MEM = 0,
1910	NUMA_CPU,
1911	NUMA_MEMBUF,
1912	NUMA_CPUBUF
1913};
1914
1915extern void sched_setnuma(struct task_struct *p, int node);
1916extern int migrate_task_to(struct task_struct *p, int cpu);
1917extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1918			int cpu, int scpu);
1919extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1920
1921#else /* !CONFIG_NUMA_BALANCING: */
1922
1923static inline void
1924init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1925{
1926}
1927
1928#endif /* !CONFIG_NUMA_BALANCING */
1929
1930#ifdef CONFIG_SMP
1931
1932static inline void
1933queue_balance_callback(struct rq *rq,
1934		       struct balance_callback *head,
1935		       void (*func)(struct rq *rq))
1936{
1937	lockdep_assert_rq_held(rq);
1938
1939	/*
1940	 * Don't (re)queue an already queued item; nor queue anything when
1941	 * balance_push() is active, see the comment with
1942	 * balance_push_callback.
1943	 */
1944	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1945		return;
1946
1947	head->func = func;
1948	head->next = rq->balance_callback;
1949	rq->balance_callback = head;
1950}
1951
 
 
1952#define rcu_dereference_check_sched_domain(p) \
1953	rcu_dereference_check((p), lockdep_is_held(&sched_domains_mutex))
 
1954
1955/*
1956 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1957 * See destroy_sched_domains: call_rcu for details.
1958 *
1959 * The domain tree of any CPU may only be accessed from within
1960 * preempt-disabled sections.
1961 */
1962#define for_each_domain(cpu, __sd) \
1963	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1964			__sd; __sd = __sd->parent)
1965
1966/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1967#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1968static const unsigned int SD_SHARED_CHILD_MASK =
1969#include <linux/sched/sd_flags.h>
19700;
1971#undef SD_FLAG
1972
1973/**
1974 * highest_flag_domain - Return highest sched_domain containing flag.
1975 * @cpu:	The CPU whose highest level of sched domain is to
1976 *		be returned.
1977 * @flag:	The flag to check for the highest sched_domain
1978 *		for the given CPU.
1979 *
1980 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1981 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1982 */
1983static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1984{
1985	struct sched_domain *sd, *hsd = NULL;
1986
1987	for_each_domain(cpu, sd) {
1988		if (sd->flags & flag) {
1989			hsd = sd;
1990			continue;
1991		}
1992
1993		/*
1994		 * Stop the search if @flag is known to be shared at lower
1995		 * levels. It will not be found further up.
1996		 */
1997		if (flag & SD_SHARED_CHILD_MASK)
1998			break;
 
1999	}
2000
2001	return hsd;
2002}
2003
2004static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
2005{
2006	struct sched_domain *sd;
2007
2008	for_each_domain(cpu, sd) {
2009		if (sd->flags & flag)
2010			break;
2011	}
2012
2013	return sd;
2014}
2015
2016DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
2017DECLARE_PER_CPU(int, sd_llc_size);
2018DECLARE_PER_CPU(int, sd_llc_id);
2019DECLARE_PER_CPU(int, sd_share_id);
2020DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
2021DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
2022DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
2023DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
2024
2025extern struct static_key_false sched_asym_cpucapacity;
2026extern struct static_key_false sched_cluster_active;
2027
2028static __always_inline bool sched_asym_cpucap_active(void)
2029{
2030	return static_branch_unlikely(&sched_asym_cpucapacity);
2031}
2032
2033struct sched_group_capacity {
2034	atomic_t		ref;
2035	/*
2036	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
2037	 * for a single CPU.
2038	 */
2039	unsigned long		capacity;
2040	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
2041	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
2042	unsigned long		next_update;
2043	int			imbalance;		/* XXX unrelated to capacity but shared group state */
 
 
2044
2045#ifdef CONFIG_SCHED_DEBUG
2046	int			id;
2047#endif
2048
2049	unsigned long		cpumask[];		/* Balance mask */
2050};
2051
2052struct sched_group {
2053	struct sched_group	*next;			/* Must be a circular list */
2054	atomic_t		ref;
2055
2056	unsigned int		group_weight;
2057	unsigned int		cores;
2058	struct sched_group_capacity *sgc;
2059	int			asym_prefer_cpu;	/* CPU of highest priority in group */
2060	int			flags;
2061
2062	/*
2063	 * The CPUs this group covers.
2064	 *
2065	 * NOTE: this field is variable length. (Allocated dynamically
2066	 * by attaching extra space to the end of the structure,
2067	 * depending on how many CPUs the kernel has booted up with)
2068	 */
2069	unsigned long		cpumask[];
2070};
2071
2072static inline struct cpumask *sched_group_span(struct sched_group *sg)
2073{
2074	return to_cpumask(sg->cpumask);
2075}
2076
2077/*
2078 * See build_balance_mask().
 
2079 */
2080static inline struct cpumask *group_balance_mask(struct sched_group *sg)
2081{
2082	return to_cpumask(sg->sgc->cpumask);
2083}
2084
 
 
 
 
 
 
 
 
 
2085extern int group_balance_cpu(struct sched_group *sg);
2086
2087#ifdef CONFIG_SCHED_DEBUG
2088extern void update_sched_domain_debugfs(void);
2089extern void dirty_sched_domain_sysctl(int cpu);
2090#else
2091static inline void update_sched_domain_debugfs(void) { }
2092static inline void dirty_sched_domain_sysctl(int cpu) { }
 
 
 
 
2093#endif
2094
2095extern int sched_update_scaling(void);
2096
2097static inline const struct cpumask *task_user_cpus(struct task_struct *p)
2098{
2099	if (!p->user_cpus_ptr)
2100		return cpu_possible_mask; /* &init_task.cpus_mask */
2101	return p->user_cpus_ptr;
2102}
2103
2104#endif /* CONFIG_SMP */
2105
 
 
 
2106#ifdef CONFIG_CGROUP_SCHED
2107
2108/*
2109 * Return the group to which this tasks belongs.
2110 *
2111 * We cannot use task_css() and friends because the cgroup subsystem
2112 * changes that value before the cgroup_subsys::attach() method is called,
2113 * therefore we cannot pin it and might observe the wrong value.
2114 *
2115 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2116 * core changes this before calling sched_move_task().
2117 *
2118 * Instead we use a 'copy' which is updated from sched_move_task() while
2119 * holding both task_struct::pi_lock and rq::lock.
2120 */
2121static inline struct task_group *task_group(struct task_struct *p)
2122{
2123	return p->sched_task_group;
2124}
2125
2126/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2127static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2128{
2129#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2130	struct task_group *tg = task_group(p);
2131#endif
2132
2133#ifdef CONFIG_FAIR_GROUP_SCHED
2134	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2135	p->se.cfs_rq = tg->cfs_rq[cpu];
2136	p->se.parent = tg->se[cpu];
2137	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2138#endif
2139
2140#ifdef CONFIG_RT_GROUP_SCHED
2141	p->rt.rt_rq  = tg->rt_rq[cpu];
2142	p->rt.parent = tg->rt_se[cpu];
2143#endif
2144}
2145
2146#else /* !CONFIG_CGROUP_SCHED: */
2147
2148static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2149
2150static inline struct task_group *task_group(struct task_struct *p)
2151{
2152	return NULL;
2153}
2154
2155#endif /* !CONFIG_CGROUP_SCHED */
2156
2157static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2158{
2159	set_task_rq(p, cpu);
2160#ifdef CONFIG_SMP
2161	/*
2162	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2163	 * successfully executed on another CPU. We must ensure that updates of
2164	 * per-task data have been completed by this moment.
2165	 */
2166	smp_wmb();
2167	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2168	p->wake_cpu = cpu;
2169#endif
2170}
2171
2172/*
2173 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2174 */
2175#ifdef CONFIG_SCHED_DEBUG
 
2176# define const_debug __read_mostly
2177#else
2178# define const_debug const
2179#endif
2180
 
 
2181#define SCHED_FEAT(name, enabled)	\
2182	__SCHED_FEAT_##name ,
2183
2184enum {
2185#include "features.h"
2186	__SCHED_FEAT_NR,
2187};
2188
2189#undef SCHED_FEAT
2190
2191#ifdef CONFIG_SCHED_DEBUG
2192
2193/*
2194 * To support run-time toggling of sched features, all the translation units
2195 * (but core.c) reference the sysctl_sched_features defined in core.c.
2196 */
2197extern const_debug unsigned int sysctl_sched_features;
2198
2199#ifdef CONFIG_JUMP_LABEL
2200
2201#define SCHED_FEAT(name, enabled)					\
2202static __always_inline bool static_branch_##name(struct static_key *key) \
2203{									\
2204	return static_key_##enabled(key);				\
2205}
2206
2207#include "features.h"
 
2208#undef SCHED_FEAT
2209
2210extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2211#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2212
2213#else /* !CONFIG_JUMP_LABEL: */
2214
2215#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2216
2217#endif /* !CONFIG_JUMP_LABEL */
2218
2219#else /* !SCHED_DEBUG: */
2220
2221/*
2222 * Each translation unit has its own copy of sysctl_sched_features to allow
2223 * constants propagation at compile time and compiler optimization based on
2224 * features default.
2225 */
2226#define SCHED_FEAT(name, enabled)	\
2227	(1UL << __SCHED_FEAT_##name) * enabled |
2228static const_debug __maybe_unused unsigned int sysctl_sched_features =
2229#include "features.h"
2230	0;
2231#undef SCHED_FEAT
2232
2233#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2234
2235#endif /* !SCHED_DEBUG */
2236
2237extern struct static_key_false sched_numa_balancing;
2238extern struct static_key_false sched_schedstats;
2239
2240static inline u64 global_rt_period(void)
2241{
2242	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2243}
2244
2245static inline u64 global_rt_runtime(void)
2246{
2247	if (sysctl_sched_rt_runtime < 0)
2248		return RUNTIME_INF;
2249
2250	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2251}
2252
2253/*
2254 * Is p the current execution context?
2255 */
2256static inline int task_current(struct rq *rq, struct task_struct *p)
2257{
2258	return rq->curr == p;
2259}
2260
2261/*
2262 * Is p the current scheduling context?
2263 *
2264 * Note that it might be the current execution context at the same time if
2265 * rq->curr == rq->donor == p.
2266 */
2267static inline int task_current_donor(struct rq *rq, struct task_struct *p)
2268{
2269	return rq->donor == p;
2270}
2271
2272static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2273{
2274#ifdef CONFIG_SMP
2275	return p->on_cpu;
2276#else
2277	return task_current(rq, p);
2278#endif
2279}
2280
2281static inline int task_on_rq_queued(struct task_struct *p)
2282{
2283	return p->on_rq == TASK_ON_RQ_QUEUED;
2284}
2285
2286static inline int task_on_rq_migrating(struct task_struct *p)
2287{
2288	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2289}
2290
2291/* Wake flags. The first three directly map to some SD flag value */
2292#define WF_EXEC			0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2293#define WF_FORK			0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2294#define WF_TTWU			0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
 
 
2295
2296#define WF_SYNC			0x10 /* Waker goes to sleep after wakeup */
2297#define WF_MIGRATED		0x20 /* Internal use, task got migrated */
2298#define WF_CURRENT_CPU		0x40 /* Prefer to move the wakee to the current CPU. */
2299#define WF_RQ_SELECTED		0x80 /* ->select_task_rq() was called */
 
 
 
 
 
 
 
2300
 
 
2301#ifdef CONFIG_SMP
2302static_assert(WF_EXEC == SD_BALANCE_EXEC);
2303static_assert(WF_FORK == SD_BALANCE_FORK);
2304static_assert(WF_TTWU == SD_BALANCE_WAKE);
 
 
 
 
 
 
 
 
2305#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2306
2307/*
2308 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2309 * of tasks with abnormal "nice" values across CPUs the contribution that
2310 * each task makes to its run queue's load is weighted according to its
2311 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2312 * scaled version of the new time slice allocation that they receive on time
2313 * slice expiry etc.
2314 */
2315
2316#define WEIGHT_IDLEPRIO		3
2317#define WMULT_IDLEPRIO		1431655765
2318
2319extern const int		sched_prio_to_weight[40];
2320extern const u32		sched_prio_to_wmult[40];
2321
2322/*
2323 * {de,en}queue flags:
2324 *
2325 * DEQUEUE_SLEEP  - task is no longer runnable
2326 * ENQUEUE_WAKEUP - task just became runnable
2327 *
2328 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2329 *                are in a known state which allows modification. Such pairs
2330 *                should preserve as much state as possible.
2331 *
2332 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2333 *        in the runqueue.
2334 *
2335 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2336 *
2337 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2338 *
2339 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2340 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2341 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2342 * ENQUEUE_RQ_SELECTED - ->select_task_rq() was called
2343 *
2344 */
2345
2346#define DEQUEUE_SLEEP		0x01 /* Matches ENQUEUE_WAKEUP */
2347#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2348#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2349#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2350#define DEQUEUE_SPECIAL		0x10
2351#define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2352#define DEQUEUE_DELAYED		0x200 /* Matches ENQUEUE_DELAYED */
2353
2354#define ENQUEUE_WAKEUP		0x01
2355#define ENQUEUE_RESTORE		0x02
2356#define ENQUEUE_MOVE		0x04
2357#define ENQUEUE_NOCLOCK		0x08
2358
2359#define ENQUEUE_HEAD		0x10
2360#define ENQUEUE_REPLENISH	0x20
2361#ifdef CONFIG_SMP
2362#define ENQUEUE_MIGRATED	0x40
2363#else
2364#define ENQUEUE_MIGRATED	0x00
2365#endif
2366#define ENQUEUE_INITIAL		0x80
2367#define ENQUEUE_MIGRATING	0x100
2368#define ENQUEUE_DELAYED		0x200
2369#define ENQUEUE_RQ_SELECTED	0x400
2370
2371#define RETRY_TASK		((void *)-1UL)
2372
2373struct affinity_context {
2374	const struct cpumask	*new_mask;
2375	struct cpumask		*user_mask;
2376	unsigned int		flags;
2377};
2378
2379extern s64 update_curr_common(struct rq *rq);
2380
2381struct sched_class {
2382
2383#ifdef CONFIG_UCLAMP_TASK
2384	int uclamp_enabled;
2385#endif
2386
2387	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2388	bool (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2389	void (*yield_task)   (struct rq *rq);
2390	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2391
2392	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2393
2394	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2395	struct task_struct *(*pick_task)(struct rq *rq);
2396	/*
2397	 * Optional! When implemented pick_next_task() should be equivalent to:
 
 
2398	 *
2399	 *   next = pick_task();
2400	 *   if (next) {
2401	 *       put_prev_task(prev);
2402	 *       set_next_task_first(next);
2403	 *   }
2404	 */
2405	struct task_struct *(*pick_next_task)(struct rq *rq, struct task_struct *prev);
2406
2407	void (*put_prev_task)(struct rq *rq, struct task_struct *p, struct task_struct *next);
2408	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
2409
2410#ifdef CONFIG_SMP
2411	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
 
2412
2413	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
 
2414
2415	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2416
2417	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2418
2419	void (*rq_online)(struct rq *rq);
2420	void (*rq_offline)(struct rq *rq);
2421
2422	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2423#endif
2424
2425	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2426	void (*task_fork)(struct task_struct *p);
2427	void (*task_dead)(struct task_struct *p);
 
2428
2429	/*
2430	 * The switched_from() call is allowed to drop rq->lock, therefore we
2431	 * cannot assume the switched_from/switched_to pair is serialized by
2432	 * rq->lock. They are however serialized by p->pi_lock.
2433	 */
2434	void (*switching_to) (struct rq *this_rq, struct task_struct *task);
2435	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2436	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2437	void (*reweight_task)(struct rq *this_rq, struct task_struct *task,
2438			      const struct load_weight *lw);
2439	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2440			      int oldprio);
2441
2442	unsigned int (*get_rr_interval)(struct rq *rq,
2443					struct task_struct *task);
2444
2445	void (*update_curr)(struct rq *rq);
2446
2447#ifdef CONFIG_FAIR_GROUP_SCHED
2448	void (*task_change_group)(struct task_struct *p);
2449#endif
2450
2451#ifdef CONFIG_SCHED_CORE
2452	int (*task_is_throttled)(struct task_struct *p, int cpu);
2453#endif
2454};
2455
2456static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2457{
2458	WARN_ON_ONCE(rq->donor != prev);
2459	prev->sched_class->put_prev_task(rq, prev, NULL);
2460}
2461
2462static inline void set_next_task(struct rq *rq, struct task_struct *next)
2463{
2464	next->sched_class->set_next_task(rq, next, false);
2465}
2466
2467static inline void
2468__put_prev_set_next_dl_server(struct rq *rq,
2469			      struct task_struct *prev,
2470			      struct task_struct *next)
2471{
2472	prev->dl_server = NULL;
2473	next->dl_server = rq->dl_server;
2474	rq->dl_server = NULL;
2475}
2476
2477static inline void put_prev_set_next_task(struct rq *rq,
2478					  struct task_struct *prev,
2479					  struct task_struct *next)
2480{
2481	WARN_ON_ONCE(rq->curr != prev);
2482
2483	__put_prev_set_next_dl_server(rq, prev, next);
2484
2485	if (next == prev)
2486		return;
2487
2488	prev->sched_class->put_prev_task(rq, prev, next);
2489	next->sched_class->set_next_task(rq, next, true);
2490}
2491
2492/*
2493 * Helper to define a sched_class instance; each one is placed in a separate
2494 * section which is ordered by the linker script:
2495 *
2496 *   include/asm-generic/vmlinux.lds.h
2497 *
2498 * *CAREFUL* they are laid out in *REVERSE* order!!!
2499 *
2500 * Also enforce alignment on the instance, not the type, to guarantee layout.
2501 */
2502#define DEFINE_SCHED_CLASS(name) \
2503const struct sched_class name##_sched_class \
2504	__aligned(__alignof__(struct sched_class)) \
2505	__section("__" #name "_sched_class")
2506
2507/* Defined in include/asm-generic/vmlinux.lds.h */
2508extern struct sched_class __sched_class_highest[];
2509extern struct sched_class __sched_class_lowest[];
2510
2511extern const struct sched_class stop_sched_class;
2512extern const struct sched_class dl_sched_class;
2513extern const struct sched_class rt_sched_class;
2514extern const struct sched_class fair_sched_class;
2515extern const struct sched_class idle_sched_class;
2516
2517#ifdef CONFIG_SCHED_CLASS_EXT
2518extern const struct sched_class ext_sched_class;
2519
2520DECLARE_STATIC_KEY_FALSE(__scx_ops_enabled);	/* SCX BPF scheduler loaded */
2521DECLARE_STATIC_KEY_FALSE(__scx_switched_all);	/* all fair class tasks on SCX */
2522
2523#define scx_enabled()		static_branch_unlikely(&__scx_ops_enabled)
2524#define scx_switched_all()	static_branch_unlikely(&__scx_switched_all)
2525#else /* !CONFIG_SCHED_CLASS_EXT */
2526#define scx_enabled()		false
2527#define scx_switched_all()	false
2528#endif /* !CONFIG_SCHED_CLASS_EXT */
2529
2530/*
2531 * Iterate only active classes. SCX can take over all fair tasks or be
2532 * completely disabled. If the former, skip fair. If the latter, skip SCX.
2533 */
2534static inline const struct sched_class *next_active_class(const struct sched_class *class)
2535{
2536	class++;
2537#ifdef CONFIG_SCHED_CLASS_EXT
2538	if (scx_switched_all() && class == &fair_sched_class)
2539		class++;
2540	if (!scx_enabled() && class == &ext_sched_class)
2541		class++;
2542#endif
2543	return class;
2544}
2545
2546#define for_class_range(class, _from, _to) \
2547	for (class = (_from); class < (_to); class++)
2548
2549#define for_each_class(class) \
2550	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2551
2552#define for_active_class_range(class, _from, _to)				\
2553	for (class = (_from); class != (_to); class = next_active_class(class))
2554
2555#define for_each_active_class(class)						\
2556	for_active_class_range(class, __sched_class_highest, __sched_class_lowest)
2557
2558#define sched_class_above(_a, _b)	((_a) < (_b))
2559
2560static inline bool sched_stop_runnable(struct rq *rq)
2561{
2562	return rq->stop && task_on_rq_queued(rq->stop);
2563}
2564
2565static inline bool sched_dl_runnable(struct rq *rq)
2566{
2567	return rq->dl.dl_nr_running > 0;
2568}
2569
2570static inline bool sched_rt_runnable(struct rq *rq)
2571{
2572	return rq->rt.rt_queued > 0;
2573}
2574
2575static inline bool sched_fair_runnable(struct rq *rq)
2576{
2577	return rq->cfs.nr_running > 0;
2578}
2579
2580extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2581extern struct task_struct *pick_task_idle(struct rq *rq);
2582
2583#define SCA_CHECK		0x01
2584#define SCA_MIGRATE_DISABLE	0x02
2585#define SCA_MIGRATE_ENABLE	0x04
2586#define SCA_USER		0x08
2587
2588#ifdef CONFIG_SMP
2589
2590extern void update_group_capacity(struct sched_domain *sd, int cpu);
2591
2592extern void sched_balance_trigger(struct rq *rq);
2593
2594extern int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx);
2595extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2596
2597static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2598{
2599	/* When not in the task's cpumask, no point in looking further. */
2600	if (!cpumask_test_cpu(cpu, p->cpus_ptr))
2601		return false;
2602
2603	/* Can @cpu run a user thread? */
2604	if (!(p->flags & PF_KTHREAD) && !task_cpu_possible(cpu, p))
2605		return false;
2606
2607	return true;
2608}
2609
2610static inline cpumask_t *alloc_user_cpus_ptr(int node)
2611{
2612	/*
2613	 * See do_set_cpus_allowed() above for the rcu_head usage.
2614	 */
2615	int size = max_t(int, cpumask_size(), sizeof(struct rcu_head));
2616
2617	return kmalloc_node(size, GFP_KERNEL, node);
2618}
2619
2620static inline struct task_struct *get_push_task(struct rq *rq)
2621{
2622	struct task_struct *p = rq->donor;
2623
2624	lockdep_assert_rq_held(rq);
2625
2626	if (rq->push_busy)
2627		return NULL;
2628
2629	if (p->nr_cpus_allowed == 1)
2630		return NULL;
2631
2632	if (p->migration_disabled)
2633		return NULL;
2634
2635	rq->push_busy = true;
2636	return get_task_struct(p);
2637}
2638
2639extern int push_cpu_stop(void *arg);
2640
2641#else /* !CONFIG_SMP: */
2642
2643static inline bool task_allowed_on_cpu(struct task_struct *p, int cpu)
2644{
2645	return true;
2646}
2647
2648static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2649					 struct affinity_context *ctx)
2650{
2651	return set_cpus_allowed_ptr(p, ctx->new_mask);
2652}
2653
2654static inline cpumask_t *alloc_user_cpus_ptr(int node)
2655{
2656	return NULL;
2657}
2658
2659#endif /* !CONFIG_SMP */
2660
2661#ifdef CONFIG_CPU_IDLE
2662
2663static inline void idle_set_state(struct rq *rq,
2664				  struct cpuidle_state *idle_state)
2665{
2666	rq->idle_state = idle_state;
2667}
2668
2669static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2670{
2671	SCHED_WARN_ON(!rcu_read_lock_held());
2672
2673	return rq->idle_state;
2674}
2675
2676#else /* !CONFIG_CPU_IDLE: */
2677
2678static inline void idle_set_state(struct rq *rq,
2679				  struct cpuidle_state *idle_state)
2680{
2681}
2682
2683static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2684{
2685	return NULL;
2686}
2687
2688#endif /* !CONFIG_CPU_IDLE */
2689
2690extern void schedule_idle(void);
2691asmlinkage void schedule_user(void);
2692
2693extern void sysrq_sched_debug_show(void);
2694extern void sched_init_granularity(void);
2695extern void update_max_interval(void);
2696
2697extern void init_sched_dl_class(void);
2698extern void init_sched_rt_class(void);
2699extern void init_sched_fair_class(void);
2700
2701extern void resched_curr(struct rq *rq);
2702extern void resched_curr_lazy(struct rq *rq);
2703extern void resched_cpu(int cpu);
2704
 
2705extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2706extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2707
2708extern void init_dl_entity(struct sched_dl_entity *dl_se);
2709
2710#define BW_SHIFT		20
2711#define BW_UNIT			(1 << BW_SHIFT)
2712#define RATIO_SHIFT		8
2713#define MAX_BW_BITS		(64 - BW_SHIFT)
2714#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2715
2716extern unsigned long to_ratio(u64 period, u64 runtime);
2717
2718extern void init_entity_runnable_average(struct sched_entity *se);
2719extern void post_init_entity_util_avg(struct task_struct *p);
2720
2721#ifdef CONFIG_NO_HZ_FULL
2722extern bool sched_can_stop_tick(struct rq *rq);
2723extern int __init sched_tick_offload_init(void);
2724
2725/*
2726 * Tick may be needed by tasks in the runqueue depending on their policy and
2727 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2728 * nohz mode if necessary.
2729 */
2730static inline void sched_update_tick_dependency(struct rq *rq)
2731{
2732	int cpu = cpu_of(rq);
 
 
 
 
 
2733
2734	if (!tick_nohz_full_cpu(cpu))
2735		return;
2736
2737	if (sched_can_stop_tick(rq))
2738		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2739	else
2740		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2741}
2742#else /* !CONFIG_NO_HZ_FULL: */
2743static inline int sched_tick_offload_init(void) { return 0; }
2744static inline void sched_update_tick_dependency(struct rq *rq) { }
2745#endif /* !CONFIG_NO_HZ_FULL */
2746
2747static inline void add_nr_running(struct rq *rq, unsigned count)
2748{
2749	unsigned prev_nr = rq->nr_running;
2750
2751	rq->nr_running = prev_nr + count;
2752	if (trace_sched_update_nr_running_tp_enabled()) {
2753		call_trace_sched_update_nr_running(rq, count);
2754	}
2755
 
2756#ifdef CONFIG_SMP
2757	if (prev_nr < 2 && rq->nr_running >= 2)
2758		set_rd_overloaded(rq->rd, 1);
2759#endif
 
2760
2761	sched_update_tick_dependency(rq);
2762}
2763
2764static inline void sub_nr_running(struct rq *rq, unsigned count)
2765{
2766	rq->nr_running -= count;
2767	if (trace_sched_update_nr_running_tp_enabled()) {
2768		call_trace_sched_update_nr_running(rq, -count);
2769	}
2770
2771	/* Check if we still need preemption */
2772	sched_update_tick_dependency(rq);
2773}
2774
2775static inline void __block_task(struct rq *rq, struct task_struct *p)
2776{
2777	if (p->sched_contributes_to_load)
2778		rq->nr_uninterruptible++;
 
 
2779
2780	if (p->in_iowait) {
2781		atomic_inc(&rq->nr_iowait);
2782		delayacct_blkio_start();
2783	}
2784
2785	ASSERT_EXCLUSIVE_WRITER(p->on_rq);
2786
2787	/*
2788	 * The moment this write goes through, ttwu() can swoop in and migrate
2789	 * this task, rendering our rq->__lock ineffective.
2790	 *
2791	 * __schedule()				try_to_wake_up()
2792	 *   LOCK rq->__lock			  LOCK p->pi_lock
2793	 *   pick_next_task()
2794	 *     pick_next_task_fair()
2795	 *       pick_next_entity()
2796	 *         dequeue_entities()
2797	 *           __block_task()
2798	 *             RELEASE p->on_rq = 0	  if (p->on_rq && ...)
2799	 *					    break;
2800	 *
2801	 *					  ACQUIRE (after ctrl-dep)
2802	 *
2803	 *					  cpu = select_task_rq();
2804	 *					  set_task_cpu(p, cpu);
2805	 *					  ttwu_queue()
2806	 *					    ttwu_do_activate()
2807	 *					      LOCK rq->__lock
2808	 *					      activate_task()
2809	 *					        STORE p->on_rq = 1
2810	 *   UNLOCK rq->__lock
2811	 *
2812	 * Callers must ensure to not reference @p after this -- we no longer
2813	 * own it.
2814	 */
2815	smp_store_release(&p->on_rq, 0);
2816}
2817
2818extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2819extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2820
2821extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2822
2823#ifdef CONFIG_PREEMPT_RT
2824# define SCHED_NR_MIGRATE_BREAK 8
2825#else
2826# define SCHED_NR_MIGRATE_BREAK 32
2827#endif
2828
 
2829extern const_debug unsigned int sysctl_sched_nr_migrate;
2830extern const_debug unsigned int sysctl_sched_migration_cost;
2831
2832extern unsigned int sysctl_sched_base_slice;
2833
2834#ifdef CONFIG_SCHED_DEBUG
2835extern int sysctl_resched_latency_warn_ms;
2836extern int sysctl_resched_latency_warn_once;
2837
2838extern unsigned int sysctl_sched_tunable_scaling;
2839
2840extern unsigned int sysctl_numa_balancing_scan_delay;
2841extern unsigned int sysctl_numa_balancing_scan_period_min;
2842extern unsigned int sysctl_numa_balancing_scan_period_max;
2843extern unsigned int sysctl_numa_balancing_scan_size;
2844extern unsigned int sysctl_numa_balancing_hot_threshold;
2845#endif
2846
2847#ifdef CONFIG_SCHED_HRTICK
2848
2849/*
2850 * Use hrtick when:
2851 *  - enabled by features
2852 *  - hrtimer is actually high res
2853 */
2854static inline int hrtick_enabled(struct rq *rq)
2855{
 
 
2856	if (!cpu_active(cpu_of(rq)))
2857		return 0;
2858	return hrtimer_is_hres_active(&rq->hrtick_timer);
2859}
2860
2861static inline int hrtick_enabled_fair(struct rq *rq)
2862{
2863	if (!sched_feat(HRTICK))
2864		return 0;
2865	return hrtick_enabled(rq);
2866}
2867
2868static inline int hrtick_enabled_dl(struct rq *rq)
2869{
2870	if (!sched_feat(HRTICK_DL))
2871		return 0;
2872	return hrtick_enabled(rq);
2873}
2874
2875extern void hrtick_start(struct rq *rq, u64 delay);
2876
2877#else /* !CONFIG_SCHED_HRTICK: */
 
2878
2879static inline int hrtick_enabled_fair(struct rq *rq)
 
 
2880{
2881	return 0;
2882}
 
2883
2884static inline int hrtick_enabled_dl(struct rq *rq)
 
 
2885{
2886	return 0;
 
 
 
2887}
 
2888
2889static inline int hrtick_enabled(struct rq *rq)
2890{
2891	return 0;
 
2892}
2893
2894#endif /* !CONFIG_SCHED_HRTICK */
2895
2896#ifndef arch_scale_freq_tick
2897static __always_inline void arch_scale_freq_tick(void) { }
2898#endif
2899
2900#ifndef arch_scale_freq_capacity
2901/**
2902 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2903 * @cpu: the CPU in question.
2904 *
2905 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2906 *
2907 *     f_curr
2908 *     ------ * SCHED_CAPACITY_SCALE
2909 *     f_max
2910 */
2911static __always_inline
2912unsigned long arch_scale_freq_capacity(int cpu)
2913{
2914	return SCHED_CAPACITY_SCALE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915}
2916#endif
2917
2918#ifdef CONFIG_SCHED_DEBUG
2919/*
2920 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2921 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2922 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2923 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2924 */
2925static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
 
 
2926{
2927	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2928	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2929#ifdef CONFIG_SMP
2930	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2931#endif
2932}
2933#else
2934static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) { }
2935#endif
2936
2937#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)				\
2938__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__)			\
2939static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2)	\
2940{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;			\
2941  _lock; return _t; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942
2943#ifdef CONFIG_SMP
 
 
 
2944
2945static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
 
2946{
2947#ifdef CONFIG_SCHED_CORE
2948	/*
2949	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2950	 * order by core-id first and cpu-id second.
2951	 *
2952	 * Notably:
2953	 *
2954	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2955	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2956	 *
2957	 * when only cpu-id is considered.
2958	 */
2959	if (rq1->core->cpu < rq2->core->cpu)
2960		return true;
2961	if (rq1->core->cpu > rq2->core->cpu)
2962		return false;
2963
2964	/*
2965	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2966	 */
2967#endif
2968	return rq1->cpu < rq2->cpu;
 
 
 
2969}
2970
2971extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
 
2972
2973#ifdef CONFIG_PREEMPTION
2974
2975/*
2976 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2977 * way at the expense of forcing extra atomic operations in all
2978 * invocations.  This assures that the double_lock is acquired using the
2979 * same underlying policy as the spinlock_t on this architecture, which
2980 * reduces latency compared to the unfair variant below.  However, it
2981 * also adds more overhead and therefore may reduce throughput.
2982 */
2983static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2984	__releases(this_rq->lock)
2985	__acquires(busiest->lock)
2986	__acquires(this_rq->lock)
2987{
2988	raw_spin_rq_unlock(this_rq);
2989	double_rq_lock(this_rq, busiest);
2990
2991	return 1;
2992}
2993
2994#else /* !CONFIG_PREEMPTION: */
2995/*
2996 * Unfair double_lock_balance: Optimizes throughput at the expense of
2997 * latency by eliminating extra atomic operations when the locks are
2998 * already in proper order on entry.  This favors lower CPU-ids and will
2999 * grant the double lock to lower CPUs over higher ids under contention,
3000 * regardless of entry order into the function.
3001 */
3002static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
3003	__releases(this_rq->lock)
3004	__acquires(busiest->lock)
3005	__acquires(this_rq->lock)
3006{
3007	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
3008	    likely(raw_spin_rq_trylock(busiest))) {
3009		double_rq_clock_clear_update(this_rq, busiest);
3010		return 0;
3011	}
3012
3013	if (rq_order_less(this_rq, busiest)) {
3014		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
3015		double_rq_clock_clear_update(this_rq, busiest);
3016		return 0;
 
 
 
 
 
 
3017	}
3018
3019	raw_spin_rq_unlock(this_rq);
3020	double_rq_lock(this_rq, busiest);
3021
3022	return 1;
3023}
3024
3025#endif /* !CONFIG_PREEMPTION */
3026
3027/*
3028 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
3029 */
3030static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
3031{
3032	lockdep_assert_irqs_disabled();
 
 
 
 
3033
3034	return _double_lock_balance(this_rq, busiest);
3035}
3036
3037static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
3038	__releases(busiest->lock)
3039{
3040	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
3041		raw_spin_rq_unlock(busiest);
3042	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
3043}
3044
3045static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
3046{
3047	if (l1 > l2)
3048		swap(l1, l2);
3049
3050	spin_lock(l1);
3051	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3052}
3053
3054static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
3055{
3056	if (l1 > l2)
3057		swap(l1, l2);
3058
3059	spin_lock_irq(l1);
3060	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3061}
3062
3063static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
3064{
3065	if (l1 > l2)
3066		swap(l1, l2);
3067
3068	raw_spin_lock(l1);
3069	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
3070}
3071
3072static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
 
 
 
 
 
 
 
 
3073{
3074	raw_spin_unlock(l1);
3075	raw_spin_unlock(l2);
 
 
 
 
 
 
 
 
 
 
 
3076}
3077
3078DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
3079		    double_raw_lock(_T->lock, _T->lock2),
3080		    double_raw_unlock(_T->lock, _T->lock2))
3081
3082/*
3083 * double_rq_unlock - safely unlock two runqueues
3084 *
3085 * Note this does not restore interrupts like task_rq_unlock,
3086 * you need to do so manually after calling.
3087 */
3088static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3089	__releases(rq1->lock)
3090	__releases(rq2->lock)
3091{
3092	if (__rq_lockp(rq1) != __rq_lockp(rq2))
3093		raw_spin_rq_unlock(rq2);
 
3094	else
3095		__release(rq2->lock);
3096	raw_spin_rq_unlock(rq1);
3097}
3098
3099extern void set_rq_online (struct rq *rq);
3100extern void set_rq_offline(struct rq *rq);
3101
3102extern bool sched_smp_initialized;
3103
3104#else /* !CONFIG_SMP: */
3105
3106/*
3107 * double_rq_lock - safely lock two runqueues
3108 *
3109 * Note this does not disable interrupts like task_rq_lock,
3110 * you need to do so manually before calling.
3111 */
3112static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
3113	__acquires(rq1->lock)
3114	__acquires(rq2->lock)
3115{
3116	WARN_ON_ONCE(!irqs_disabled());
3117	WARN_ON_ONCE(rq1 != rq2);
3118	raw_spin_rq_lock(rq1);
3119	__acquire(rq2->lock);	/* Fake it out ;) */
3120	double_rq_clock_clear_update(rq1, rq2);
3121}
3122
3123/*
3124 * double_rq_unlock - safely unlock two runqueues
3125 *
3126 * Note this does not restore interrupts like task_rq_unlock,
3127 * you need to do so manually after calling.
3128 */
3129static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3130	__releases(rq1->lock)
3131	__releases(rq2->lock)
3132{
3133	WARN_ON_ONCE(rq1 != rq2);
3134	raw_spin_rq_unlock(rq1);
3135	__release(rq2->lock);
3136}
3137
3138#endif /* !CONFIG_SMP */
3139
3140DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
3141		    double_rq_lock(_T->lock, _T->lock2),
3142		    double_rq_unlock(_T->lock, _T->lock2))
3143
3144extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
3145extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
3146extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
3147
3148#ifdef	CONFIG_SCHED_DEBUG
3149extern bool sched_debug_verbose;
3150
3151extern void print_cfs_stats(struct seq_file *m, int cpu);
3152extern void print_rt_stats(struct seq_file *m, int cpu);
3153extern void print_dl_stats(struct seq_file *m, int cpu);
3154extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
3155extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
3156extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
3157
3158extern void resched_latency_warn(int cpu, u64 latency);
3159# ifdef CONFIG_NUMA_BALANCING
3160extern void show_numa_stats(struct task_struct *p, struct seq_file *m);
3161extern void
3162print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
3163		 unsigned long tpf, unsigned long gsf, unsigned long gpf);
3164# endif /* CONFIG_NUMA_BALANCING */
3165#else /* !CONFIG_SCHED_DEBUG: */
3166static inline void resched_latency_warn(int cpu, u64 latency) { }
3167#endif /* !CONFIG_SCHED_DEBUG */
3168
3169extern void init_cfs_rq(struct cfs_rq *cfs_rq);
3170extern void init_rt_rq(struct rt_rq *rt_rq);
3171extern void init_dl_rq(struct dl_rq *dl_rq);
3172
3173extern void cfs_bandwidth_usage_inc(void);
3174extern void cfs_bandwidth_usage_dec(void);
3175
3176#ifdef CONFIG_NO_HZ_COMMON
 
 
 
 
3177
3178#define NOHZ_BALANCE_KICK_BIT	0
3179#define NOHZ_STATS_KICK_BIT	1
3180#define NOHZ_NEWILB_KICK_BIT	2
3181#define NOHZ_NEXT_KICK_BIT	3
3182
3183/* Run sched_balance_domains() */
3184#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
3185/* Update blocked load */
3186#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
3187/* Update blocked load when entering idle */
3188#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
3189/* Update nohz.next_balance */
3190#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
3191
3192#define NOHZ_KICK_MASK		(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
3193
3194#define nohz_flags(cpu)		(&cpu_rq(cpu)->nohz_flags)
3195
3196extern void nohz_balance_exit_idle(struct rq *rq);
3197#else /* !CONFIG_NO_HZ_COMMON: */
3198static inline void nohz_balance_exit_idle(struct rq *rq) { }
3199#endif /* !CONFIG_NO_HZ_COMMON */
3200
3201#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
3202extern void nohz_run_idle_balance(int cpu);
3203#else
3204static inline void nohz_run_idle_balance(int cpu) { }
3205#endif
3206
3207#include "stats.h"
3208
3209#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
 
3210
3211extern void __sched_core_account_forceidle(struct rq *rq);
 
3212
3213static inline void sched_core_account_forceidle(struct rq *rq)
3214{
3215	if (schedstat_enabled())
3216		__sched_core_account_forceidle(rq);
3217}
3218
3219extern void __sched_core_tick(struct rq *rq);
3220
3221static inline void sched_core_tick(struct rq *rq)
3222{
3223	if (sched_core_enabled(rq) && schedstat_enabled())
3224		__sched_core_tick(rq);
3225}
3226
3227#else /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS): */
 
 
 
3228
3229static inline void sched_core_account_forceidle(struct rq *rq) { }
 
 
 
 
3230
3231static inline void sched_core_tick(struct rq *rq) { }
 
 
 
 
 
3232
3233#endif /* !(CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS) */
3234
3235#ifdef CONFIG_IRQ_TIME_ACCOUNTING
3236
3237struct irqtime {
3238	u64			total;
3239	u64			tick_delta;
3240	u64			irq_start_time;
3241	struct u64_stats_sync	sync;
3242};
3243
3244DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
3245
3246/*
3247 * Returns the irqtime minus the softirq time computed by ksoftirqd.
3248 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
3249 * and never move forward.
3250 */
3251static inline u64 irq_time_read(int cpu)
3252{
3253	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
3254	unsigned int seq;
3255	u64 total;
3256
3257	do {
3258		seq = __u64_stats_fetch_begin(&irqtime->sync);
3259		total = irqtime->total;
3260	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
3261
3262	return total;
3263}
3264
3265#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
3266
3267#ifdef CONFIG_CPU_FREQ
3268
3269DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
3270
3271/**
3272 * cpufreq_update_util - Take a note about CPU utilization changes.
3273 * @rq: Runqueue to carry out the update for.
3274 * @flags: Update reason flags.
 
3275 *
3276 * This function is called by the scheduler on the CPU whose utilization is
3277 * being updated.
3278 *
3279 * It can only be called from RCU-sched read-side critical sections.
 
 
 
 
 
 
 
 
 
 
 
 
 
3280 *
3281 * The way cpufreq is currently arranged requires it to evaluate the CPU
3282 * performance state (frequency/voltage) on a regular basis to prevent it from
3283 * being stuck in a completely inadequate performance level for too long.
3284 * That is not guaranteed to happen if the updates are only triggered from CFS
3285 * and DL, though, because they may not be coming in if only RT tasks are
3286 * active all the time (or there are RT tasks only).
3287 *
3288 * As a workaround for that issue, this function is called periodically by the
3289 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
3290 * but that really is a band-aid.  Going forward it should be replaced with
3291 * solutions targeted more specifically at RT tasks.
3292 */
3293static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
3294{
3295	struct update_util_data *data;
3296
3297	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
3298						  cpu_of(rq)));
3299	if (data)
3300		data->func(data, rq_clock(rq), flags);
3301}
3302#else /* !CONFIG_CPU_FREQ: */
3303static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) { }
3304#endif /* !CONFIG_CPU_FREQ */
3305
3306#ifdef arch_scale_freq_capacity
3307# ifndef arch_scale_freq_invariant
3308#  define arch_scale_freq_invariant()	true
3309# endif
3310#else
3311# define arch_scale_freq_invariant()	false
3312#endif
3313
3314#ifdef CONFIG_SMP
3315
3316unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3317				 unsigned long *min,
3318				 unsigned long *max);
3319
3320unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3321				 unsigned long min,
3322				 unsigned long max);
3323
3324
3325/*
3326 * Verify the fitness of task @p to run on @cpu taking into account the
3327 * CPU original capacity and the runtime/deadline ratio of the task.
3328 *
3329 * The function will return true if the original capacity of @cpu is
3330 * greater than or equal to task's deadline density right shifted by
3331 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3332 */
3333static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3334{
3335	unsigned long cap = arch_scale_cpu_capacity(cpu);
3336
3337	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3338}
3339
3340static inline unsigned long cpu_bw_dl(struct rq *rq)
3341{
3342	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3343}
3344
3345static inline unsigned long cpu_util_dl(struct rq *rq)
3346{
3347	return READ_ONCE(rq->avg_dl.util_avg);
3348}
3349
3350
3351extern unsigned long cpu_util_cfs(int cpu);
3352extern unsigned long cpu_util_cfs_boost(int cpu);
3353
3354static inline unsigned long cpu_util_rt(struct rq *rq)
3355{
3356	return READ_ONCE(rq->avg_rt.util_avg);
3357}
3358
3359#else /* !CONFIG_SMP */
3360static inline bool update_other_load_avgs(struct rq *rq) { return false; }
3361#endif /* CONFIG_SMP */
3362
3363#ifdef CONFIG_UCLAMP_TASK
3364
3365unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3366
3367static inline unsigned long uclamp_rq_get(struct rq *rq,
3368					  enum uclamp_id clamp_id)
3369{
3370	return READ_ONCE(rq->uclamp[clamp_id].value);
3371}
3372
3373static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3374				 unsigned int value)
3375{
3376	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3377}
3378
3379static inline bool uclamp_rq_is_idle(struct rq *rq)
3380{
3381	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3382}
3383
3384/* Is the rq being capped/throttled by uclamp_max? */
3385static inline bool uclamp_rq_is_capped(struct rq *rq)
3386{
3387	unsigned long rq_util;
3388	unsigned long max_util;
3389
3390	if (!static_branch_likely(&sched_uclamp_used))
3391		return false;
3392
3393	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3394	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3395
3396	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3397}
3398
3399/*
3400 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3401 * by default in the fast path and only gets turned on once userspace performs
3402 * an operation that requires it.
3403 *
3404 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3405 * hence is active.
3406 */
3407static inline bool uclamp_is_used(void)
3408{
3409	return static_branch_likely(&sched_uclamp_used);
3410}
3411
3412#define for_each_clamp_id(clamp_id) \
3413	for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
3414
3415extern unsigned int sysctl_sched_uclamp_util_min_rt_default;
3416
3417
3418static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
3419{
3420	if (clamp_id == UCLAMP_MIN)
3421		return 0;
3422	return SCHED_CAPACITY_SCALE;
3423}
3424
3425/* Integer rounded range for each bucket */
3426#define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
3427
3428static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
3429{
3430	return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
3431}
3432
3433static inline void
3434uclamp_se_set(struct uclamp_se *uc_se, unsigned int value, bool user_defined)
3435{
3436	uc_se->value = value;
3437	uc_se->bucket_id = uclamp_bucket_id(value);
3438	uc_se->user_defined = user_defined;
3439}
3440
3441#else /* !CONFIG_UCLAMP_TASK: */
3442
3443static inline unsigned long
3444uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
3445{
3446	if (clamp_id == UCLAMP_MIN)
3447		return 0;
3448
3449	return SCHED_CAPACITY_SCALE;
3450}
3451
3452static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3453
3454static inline bool uclamp_is_used(void)
3455{
3456	return false;
3457}
3458
3459static inline unsigned long
3460uclamp_rq_get(struct rq *rq, enum uclamp_id clamp_id)
3461{
3462	if (clamp_id == UCLAMP_MIN)
3463		return 0;
3464
3465	return SCHED_CAPACITY_SCALE;
3466}
3467
3468static inline void
3469uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id, unsigned int value)
3470{
3471}
3472
3473static inline bool uclamp_rq_is_idle(struct rq *rq)
3474{
3475	return false;
3476}
3477
3478#endif /* !CONFIG_UCLAMP_TASK */
3479
3480#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3481
3482static inline unsigned long cpu_util_irq(struct rq *rq)
3483{
3484	return READ_ONCE(rq->avg_irq.util_avg);
3485}
3486
3487static inline
3488unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3489{
3490	util *= (max - irq);
3491	util /= max;
3492
3493	return util;
3494
3495}
3496
3497#else /* !CONFIG_HAVE_SCHED_AVG_IRQ: */
3498
3499static inline unsigned long cpu_util_irq(struct rq *rq)
3500{
3501	return 0;
3502}
3503
3504static inline
3505unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3506{
3507	return util;
3508}
3509
3510#endif /* !CONFIG_HAVE_SCHED_AVG_IRQ */
3511
3512#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3513
3514#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3515
3516DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3517
3518static inline bool sched_energy_enabled(void)
3519{
3520	return static_branch_unlikely(&sched_energy_present);
3521}
3522
3523extern struct cpufreq_governor schedutil_gov;
3524
3525#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3526
3527#define perf_domain_span(pd) NULL
3528
3529static inline bool sched_energy_enabled(void) { return false; }
3530
3531#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3532
3533#ifdef CONFIG_MEMBARRIER
3534
3535/*
3536 * The scheduler provides memory barriers required by membarrier between:
3537 * - prior user-space memory accesses and store to rq->membarrier_state,
3538 * - store to rq->membarrier_state and following user-space memory accesses.
3539 * In the same way it provides those guarantees around store to rq->curr.
3540 */
3541static inline void membarrier_switch_mm(struct rq *rq,
3542					struct mm_struct *prev_mm,
3543					struct mm_struct *next_mm)
3544{
3545	int membarrier_state;
3546
3547	if (prev_mm == next_mm)
3548		return;
3549
3550	membarrier_state = atomic_read(&next_mm->membarrier_state);
3551	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3552		return;
3553
3554	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3555}
3556
3557#else /* !CONFIG_MEMBARRIER :*/
3558
3559static inline void membarrier_switch_mm(struct rq *rq,
3560					struct mm_struct *prev_mm,
3561					struct mm_struct *next_mm)
3562{
3563}
3564
3565#endif /* !CONFIG_MEMBARRIER */
3566
3567#ifdef CONFIG_SMP
3568static inline bool is_per_cpu_kthread(struct task_struct *p)
3569{
3570	if (!(p->flags & PF_KTHREAD))
3571		return false;
3572
3573	if (p->nr_cpus_allowed != 1)
3574		return false;
3575
3576	return true;
3577}
3578#endif
3579
3580extern void swake_up_all_locked(struct swait_queue_head *q);
3581extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3582
3583extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3584
3585#ifdef CONFIG_PREEMPT_DYNAMIC
3586extern int preempt_dynamic_mode;
3587extern int sched_dynamic_mode(const char *str);
3588extern void sched_dynamic_update(int mode);
3589#endif
3590
3591#ifdef CONFIG_SCHED_MM_CID
3592
3593#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3594#define MM_CID_SCAN_DELAY	100			/* 100ms */
3595
3596extern raw_spinlock_t cid_lock;
3597extern int use_cid_lock;
3598
3599extern void sched_mm_cid_migrate_from(struct task_struct *t);
3600extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3601extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3602extern void init_sched_mm_cid(struct task_struct *t);
3603
3604static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3605{
3606	if (cid < 0)
3607		return;
3608	cpumask_clear_cpu(cid, mm_cidmask(mm));
3609}
3610
3611/*
3612 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3613 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3614 * be held to transition to other states.
3615 *
3616 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3617 * consistent across CPUs, which prevents use of this_cpu_cmpxchg.
3618 */
3619static inline void mm_cid_put_lazy(struct task_struct *t)
3620{
3621	struct mm_struct *mm = t->mm;
3622	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3623	int cid;
3624
3625	lockdep_assert_irqs_disabled();
3626	cid = __this_cpu_read(pcpu_cid->cid);
3627	if (!mm_cid_is_lazy_put(cid) ||
3628	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3629		return;
3630	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3631}
3632
3633static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3634{
3635	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3636	int cid, res;
3637
3638	lockdep_assert_irqs_disabled();
3639	cid = __this_cpu_read(pcpu_cid->cid);
3640	for (;;) {
3641		if (mm_cid_is_unset(cid))
3642			return MM_CID_UNSET;
3643		/*
3644		 * Attempt transition from valid or lazy-put to unset.
3645		 */
3646		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3647		if (res == cid)
3648			break;
3649		cid = res;
3650	}
3651	return cid;
3652}
3653
3654static inline void mm_cid_put(struct mm_struct *mm)
3655{
3656	int cid;
3657
3658	lockdep_assert_irqs_disabled();
3659	cid = mm_cid_pcpu_unset(mm);
3660	if (cid == MM_CID_UNSET)
3661		return;
3662	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3663}
3664
3665static inline int __mm_cid_try_get(struct task_struct *t, struct mm_struct *mm)
3666{
3667	struct cpumask *cidmask = mm_cidmask(mm);
3668	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3669	int cid, max_nr_cid, allowed_max_nr_cid;
3670
3671	/*
3672	 * After shrinking the number of threads or reducing the number
3673	 * of allowed cpus, reduce the value of max_nr_cid so expansion
3674	 * of cid allocation will preserve cache locality if the number
3675	 * of threads or allowed cpus increase again.
3676	 */
3677	max_nr_cid = atomic_read(&mm->max_nr_cid);
3678	while ((allowed_max_nr_cid = min_t(int, READ_ONCE(mm->nr_cpus_allowed),
3679					   atomic_read(&mm->mm_users))),
3680	       max_nr_cid > allowed_max_nr_cid) {
3681		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into max_nr_cid. */
3682		if (atomic_try_cmpxchg(&mm->max_nr_cid, &max_nr_cid, allowed_max_nr_cid)) {
3683			max_nr_cid = allowed_max_nr_cid;
3684			break;
3685		}
3686	}
3687	/* Try to re-use recent cid. This improves cache locality. */
3688	cid = __this_cpu_read(pcpu_cid->recent_cid);
3689	if (!mm_cid_is_unset(cid) && cid < max_nr_cid &&
3690	    !cpumask_test_and_set_cpu(cid, cidmask))
3691		return cid;
3692	/*
3693	 * Expand cid allocation if the maximum number of concurrency
3694	 * IDs allocated (max_nr_cid) is below the number cpus allowed
3695	 * and number of threads. Expanding cid allocation as much as
3696	 * possible improves cache locality.
3697	 */
3698	cid = max_nr_cid;
3699	while (cid < READ_ONCE(mm->nr_cpus_allowed) && cid < atomic_read(&mm->mm_users)) {
3700		/* atomic_try_cmpxchg loads previous mm->max_nr_cid into cid. */
3701		if (!atomic_try_cmpxchg(&mm->max_nr_cid, &cid, cid + 1))
3702			continue;
3703		if (!cpumask_test_and_set_cpu(cid, cidmask))
3704			return cid;
3705	}
3706	/*
3707	 * Find the first available concurrency id.
3708	 * Retry finding first zero bit if the mask is temporarily
3709	 * filled. This only happens during concurrent remote-clear
3710	 * which owns a cid without holding a rq lock.
3711	 */
3712	for (;;) {
3713		cid = cpumask_first_zero(cidmask);
3714		if (cid < READ_ONCE(mm->nr_cpus_allowed))
3715			break;
3716		cpu_relax();
3717	}
3718	if (cpumask_test_and_set_cpu(cid, cidmask))
3719		return -1;
3720
3721	return cid;
3722}
3723
3724/*
3725 * Save a snapshot of the current runqueue time of this cpu
3726 * with the per-cpu cid value, allowing to estimate how recently it was used.
3727 */
3728static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3729{
3730	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3731
3732	lockdep_assert_rq_held(rq);
3733	WRITE_ONCE(pcpu_cid->time, rq->clock);
3734}
3735
3736static inline int __mm_cid_get(struct rq *rq, struct task_struct *t,
3737			       struct mm_struct *mm)
3738{
3739	int cid;
3740
3741	/*
3742	 * All allocations (even those using the cid_lock) are lock-free. If
3743	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3744	 * guarantee forward progress.
3745	 */
3746	if (!READ_ONCE(use_cid_lock)) {
3747		cid = __mm_cid_try_get(t, mm);
3748		if (cid >= 0)
3749			goto end;
3750		raw_spin_lock(&cid_lock);
3751	} else {
3752		raw_spin_lock(&cid_lock);
3753		cid = __mm_cid_try_get(t, mm);
3754		if (cid >= 0)
3755			goto unlock;
3756	}
3757
3758	/*
3759	 * cid concurrently allocated. Retry while forcing following
3760	 * allocations to use the cid_lock to ensure forward progress.
3761	 */
3762	WRITE_ONCE(use_cid_lock, 1);
3763	/*
3764	 * Set use_cid_lock before allocation. Only care about program order
3765	 * because this is only required for forward progress.
3766	 */
3767	barrier();
3768	/*
3769	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3770	 * all newcoming allocations observe the use_cid_lock flag set.
3771	 */
3772	do {
3773		cid = __mm_cid_try_get(t, mm);
3774		cpu_relax();
3775	} while (cid < 0);
3776	/*
3777	 * Allocate before clearing use_cid_lock. Only care about
3778	 * program order because this is for forward progress.
3779	 */
3780	barrier();
3781	WRITE_ONCE(use_cid_lock, 0);
3782unlock:
3783	raw_spin_unlock(&cid_lock);
3784end:
3785	mm_cid_snapshot_time(rq, mm);
3786
3787	return cid;
3788}
3789
3790static inline int mm_cid_get(struct rq *rq, struct task_struct *t,
3791			     struct mm_struct *mm)
3792{
3793	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3794	struct cpumask *cpumask;
3795	int cid;
3796
3797	lockdep_assert_rq_held(rq);
3798	cpumask = mm_cidmask(mm);
3799	cid = __this_cpu_read(pcpu_cid->cid);
3800	if (mm_cid_is_valid(cid)) {
3801		mm_cid_snapshot_time(rq, mm);
3802		return cid;
3803	}
3804	if (mm_cid_is_lazy_put(cid)) {
3805		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3806			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3807	}
3808	cid = __mm_cid_get(rq, t, mm);
3809	__this_cpu_write(pcpu_cid->cid, cid);
3810	__this_cpu_write(pcpu_cid->recent_cid, cid);
3811
3812	return cid;
3813}
3814
3815static inline void switch_mm_cid(struct rq *rq,
3816				 struct task_struct *prev,
3817				 struct task_struct *next)
3818{
3819	/*
3820	 * Provide a memory barrier between rq->curr store and load of
3821	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3822	 *
3823	 * Should be adapted if context_switch() is modified.
3824	 */
3825	if (!next->mm) {                                // to kernel
3826		/*
3827		 * user -> kernel transition does not guarantee a barrier, but
3828		 * we can use the fact that it performs an atomic operation in
3829		 * mmgrab().
3830		 */
3831		if (prev->mm)                           // from user
3832			smp_mb__after_mmgrab();
3833		/*
3834		 * kernel -> kernel transition does not change rq->curr->mm
3835		 * state. It stays NULL.
3836		 */
3837	} else {                                        // to user
3838		/*
3839		 * kernel -> user transition does not provide a barrier
3840		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3841		 * Provide it here.
3842		 */
3843		if (!prev->mm) {                        // from kernel
3844			smp_mb();
3845		} else {				// from user
3846			/*
3847			 * user->user transition relies on an implicit
3848			 * memory barrier in switch_mm() when
3849			 * current->mm changes. If the architecture
3850			 * switch_mm() does not have an implicit memory
3851			 * barrier, it is emitted here.  If current->mm
3852			 * is unchanged, no barrier is needed.
3853			 */
3854			smp_mb__after_switch_mm();
3855		}
3856	}
3857	if (prev->mm_cid_active) {
3858		mm_cid_snapshot_time(rq, prev->mm);
3859		mm_cid_put_lazy(prev);
3860		prev->mm_cid = -1;
3861	}
3862	if (next->mm_cid_active)
3863		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next, next->mm);
3864}
3865
3866#else /* !CONFIG_SCHED_MM_CID: */
3867static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3868static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3869static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3870static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3871static inline void init_sched_mm_cid(struct task_struct *t) { }
3872#endif /* !CONFIG_SCHED_MM_CID */
3873
3874extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3875extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3876#ifdef CONFIG_SMP
3877static inline
3878void move_queued_task_locked(struct rq *src_rq, struct rq *dst_rq, struct task_struct *task)
3879{
3880	lockdep_assert_rq_held(src_rq);
3881	lockdep_assert_rq_held(dst_rq);
3882
3883	deactivate_task(src_rq, task, 0);
3884	set_task_cpu(task, dst_rq->cpu);
3885	activate_task(dst_rq, task, 0);
3886}
3887
3888static inline
3889bool task_is_pushable(struct rq *rq, struct task_struct *p, int cpu)
3890{
3891	if (!task_on_cpu(rq, p) &&
3892	    cpumask_test_cpu(cpu, &p->cpus_mask))
3893		return true;
3894
3895	return false;
3896}
3897#endif
3898
3899#ifdef CONFIG_RT_MUTEXES
3900
3901static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
3902{
3903	if (pi_task)
3904		prio = min(prio, pi_task->prio);
3905
3906	return prio;
3907}
3908
3909static inline int rt_effective_prio(struct task_struct *p, int prio)
3910{
3911	struct task_struct *pi_task = rt_mutex_get_top_task(p);
3912
3913	return __rt_effective_prio(pi_task, prio);
3914}
3915
3916#else /* !CONFIG_RT_MUTEXES: */
3917
3918static inline int rt_effective_prio(struct task_struct *p, int prio)
3919{
3920	return prio;
3921}
3922
3923#endif /* !CONFIG_RT_MUTEXES */
3924
3925extern int __sched_setscheduler(struct task_struct *p, const struct sched_attr *attr, bool user, bool pi);
3926extern int __sched_setaffinity(struct task_struct *p, struct affinity_context *ctx);
3927extern const struct sched_class *__setscheduler_class(int policy, int prio);
3928extern void set_load_weight(struct task_struct *p, bool update_load);
3929extern void enqueue_task(struct rq *rq, struct task_struct *p, int flags);
3930extern bool dequeue_task(struct rq *rq, struct task_struct *p, int flags);
3931
3932extern void check_class_changing(struct rq *rq, struct task_struct *p,
3933				 const struct sched_class *prev_class);
3934extern void check_class_changed(struct rq *rq, struct task_struct *p,
3935				const struct sched_class *prev_class,
3936				int oldprio);
3937
3938#ifdef CONFIG_SMP
3939extern struct balance_callback *splice_balance_callbacks(struct rq *rq);
3940extern void balance_callbacks(struct rq *rq, struct balance_callback *head);
3941#else
3942
3943static inline struct balance_callback *splice_balance_callbacks(struct rq *rq)
3944{
3945	return NULL;
3946}
3947
3948static inline void balance_callbacks(struct rq *rq, struct balance_callback *head)
3949{
3950}
3951
3952#endif
3953
3954#ifdef CONFIG_SCHED_CLASS_EXT
3955/*
3956 * Used by SCX in the enable/disable paths to move tasks between sched_classes
3957 * and establish invariants.
3958 */
3959struct sched_enq_and_set_ctx {
3960	struct task_struct	*p;
3961	int			queue_flags;
3962	bool			queued;
3963	bool			running;
3964};
3965
3966void sched_deq_and_put_task(struct task_struct *p, int queue_flags,
3967			    struct sched_enq_and_set_ctx *ctx);
3968void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx);
3969
3970#endif /* CONFIG_SCHED_CLASS_EXT */
3971
3972#include "ext.h"
3973
3974#endif /* _KERNEL_SCHED_SCHED_H */