Linux Audio

Check our new training course

Loading...
v4.6
 
 
 
 
 
 
   1
 
 
 
 
   2#include <linux/sched.h>
 
 
 
 
 
 
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/sched/deadline.h>
   6#include <linux/binfmts.h>
   7#include <linux/mutex.h>
   8#include <linux/spinlock.h>
   9#include <linux/stop_machine.h>
 
 
 
 
 
 
 
 
 
 
 
 
  10#include <linux/irq_work.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11#include <linux/tick.h>
  12#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  13
  14#include "cpupri.h"
  15#include "cpudeadline.h"
  16#include "cpuacct.h"
 
 
 
 
 
  17
  18struct rq;
  19struct cpuidle_state;
  20
  21/* task_struct::on_rq states: */
  22#define TASK_ON_RQ_QUEUED	1
  23#define TASK_ON_RQ_MIGRATING	2
  24
  25extern __read_mostly int scheduler_running;
  26
  27extern unsigned long calc_load_update;
  28extern atomic_long_t calc_load_tasks;
  29
 
 
  30extern void calc_global_load_tick(struct rq *this_rq);
  31extern long calc_load_fold_active(struct rq *this_rq);
  32
  33#ifdef CONFIG_SMP
  34extern void update_cpu_load_active(struct rq *this_rq);
  35#else
  36static inline void update_cpu_load_active(struct rq *this_rq) { }
  37#endif
  38
  39/*
  40 * Helpers for converting nanosecond timing to jiffy resolution
  41 */
  42#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  43
  44/*
  45 * Increase resolution of nice-level calculations for 64-bit architectures.
  46 * The extra resolution improves shares distribution and load balancing of
  47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  48 * hierarchies, especially on larger systems. This is not a user-visible change
  49 * and does not change the user-interface for setting shares/weights.
  50 *
  51 * We increase resolution only if we have enough bits to allow this increased
  52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  54 * increased costs.
  55 */
  56#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  57# define SCHED_LOAD_RESOLUTION	10
  58# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
  59# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
 
 
 
 
 
 
 
 
  60#else
  61# define SCHED_LOAD_RESOLUTION	0
  62# define scale_load(w)		(w)
  63# define scale_load_down(w)	(w)
  64#endif
  65
  66#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
  67#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
  68
  69#define NICE_0_LOAD		SCHED_LOAD_SCALE
  70#define NICE_0_SHIFT		SCHED_LOAD_SHIFT
 
 
 
 
 
  71
  72/*
  73 * Single value that decides SCHED_DEADLINE internal math precision.
  74 * 10 -> just above 1us
  75 * 9  -> just above 0.5us
  76 */
  77#define DL_SCALE (10)
  78
  79/*
  80 * These are the 'tuning knobs' of the scheduler:
  81 */
  82
  83/*
  84 * single value that denotes runtime == period, ie unlimited time.
  85 */
  86#define RUNTIME_INF	((u64)~0ULL)
  87
  88static inline int idle_policy(int policy)
  89{
  90	return policy == SCHED_IDLE;
  91}
  92static inline int fair_policy(int policy)
  93{
  94	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  95}
  96
  97static inline int rt_policy(int policy)
  98{
  99	return policy == SCHED_FIFO || policy == SCHED_RR;
 100}
 101
 102static inline int dl_policy(int policy)
 103{
 104	return policy == SCHED_DEADLINE;
 105}
 106static inline bool valid_policy(int policy)
 107{
 108	return idle_policy(policy) || fair_policy(policy) ||
 109		rt_policy(policy) || dl_policy(policy);
 110}
 111
 
 
 
 
 
 112static inline int task_has_rt_policy(struct task_struct *p)
 113{
 114	return rt_policy(p->policy);
 115}
 116
 117static inline int task_has_dl_policy(struct task_struct *p)
 118{
 119	return dl_policy(p->policy);
 120}
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/*
 123 * Tells if entity @a should preempt entity @b.
 124 */
 125static inline bool
 126dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 127{
 128	return dl_time_before(a->deadline, b->deadline);
 
 129}
 130
 131/*
 132 * This is the priority-queue data structure of the RT scheduling class:
 133 */
 134struct rt_prio_array {
 135	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 136	struct list_head queue[MAX_RT_PRIO];
 137};
 138
 139struct rt_bandwidth {
 140	/* nests inside the rq lock: */
 141	raw_spinlock_t		rt_runtime_lock;
 142	ktime_t			rt_period;
 143	u64			rt_runtime;
 144	struct hrtimer		rt_period_timer;
 145	unsigned int		rt_period_active;
 146};
 147
 148void __dl_clear_params(struct task_struct *p);
 149
 
 
 
 
 
 
 
 
 
 
 
 150/*
 151 * To keep the bandwidth of -deadline tasks and groups under control
 152 * we need some place where:
 153 *  - store the maximum -deadline bandwidth of the system (the group);
 154 *  - cache the fraction of that bandwidth that is currently allocated.
 
 155 *
 156 * This is all done in the data structure below. It is similar to the
 157 * one used for RT-throttling (rt_bandwidth), with the main difference
 158 * that, since here we are only interested in admission control, we
 159 * do not decrease any runtime while the group "executes", neither we
 160 * need a timer to replenish it.
 161 *
 162 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 163 * meaning that:
 164 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 165 *  - dl_total_bw array contains, in the i-eth element, the currently
 166 *    allocated bandwidth on the i-eth CPU.
 167 * Moreover, groups consume bandwidth on each CPU, while tasks only
 168 * consume bandwidth on the CPU they're running on.
 169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 170 * that will be shown the next time the proc or cgroup controls will
 171 * be red. It on its turn can be changed by writing on its own
 172 * control.
 173 */
 174struct dl_bandwidth {
 175	raw_spinlock_t dl_runtime_lock;
 176	u64 dl_runtime;
 177	u64 dl_period;
 178};
 179
 180static inline int dl_bandwidth_enabled(void)
 181{
 182	return sysctl_sched_rt_runtime >= 0;
 183}
 184
 185extern struct dl_bw *dl_bw_of(int i);
 186
 187struct dl_bw {
 188	raw_spinlock_t lock;
 189	u64 bw, total_bw;
 
 190};
 191
 192static inline
 193void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 194{
 195	dl_b->total_bw -= tsk_bw;
 196}
 197
 198static inline
 199void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 200{
 201	dl_b->total_bw += tsk_bw;
 202}
 203
 204static inline
 205bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 206{
 207	return dl_b->bw != -1 &&
 208	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 209}
 210
 211extern struct mutex sched_domains_mutex;
 212
 213#ifdef CONFIG_CGROUP_SCHED
 214
 215#include <linux/cgroup.h>
 216
 217struct cfs_rq;
 218struct rt_rq;
 219
 220extern struct list_head task_groups;
 221
 222struct cfs_bandwidth {
 223#ifdef CONFIG_CFS_BANDWIDTH
 224	raw_spinlock_t lock;
 225	ktime_t period;
 226	u64 quota, runtime;
 227	s64 hierarchical_quota;
 228	u64 runtime_expires;
 229
 230	int idle, period_active;
 231	struct hrtimer period_timer, slack_timer;
 232	struct list_head throttled_cfs_rq;
 233
 234	/* statistics */
 235	int nr_periods, nr_throttled;
 236	u64 throttled_time;
 
 
 
 
 
 
 
 
 237#endif
 238};
 239
 240/* task group related information */
 241struct task_group {
 242	struct cgroup_subsys_state css;
 243
 244#ifdef CONFIG_FAIR_GROUP_SCHED
 245	/* schedulable entities of this group on each cpu */
 246	struct sched_entity **se;
 247	/* runqueue "owned" by this group on each cpu */
 248	struct cfs_rq **cfs_rq;
 249	unsigned long shares;
 
 
 
 250
 251#ifdef	CONFIG_SMP
 252	/*
 253	 * load_avg can be heavily contended at clock tick time, so put
 254	 * it in its own cacheline separated from the fields above which
 255	 * will also be accessed at each tick.
 256	 */
 257	atomic_long_t load_avg ____cacheline_aligned;
 258#endif
 259#endif
 260
 261#ifdef CONFIG_RT_GROUP_SCHED
 262	struct sched_rt_entity **rt_se;
 263	struct rt_rq **rt_rq;
 264
 265	struct rt_bandwidth rt_bandwidth;
 266#endif
 267
 268	struct rcu_head rcu;
 269	struct list_head list;
 270
 271	struct task_group *parent;
 272	struct list_head siblings;
 273	struct list_head children;
 274
 275#ifdef CONFIG_SCHED_AUTOGROUP
 276	struct autogroup *autogroup;
 
 
 
 
 
 
 
 
 
 
 
 277#endif
 278
 279	struct cfs_bandwidth cfs_bandwidth;
 280};
 281
 282#ifdef CONFIG_FAIR_GROUP_SCHED
 283#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 284
 285/*
 286 * A weight of 0 or 1 can cause arithmetics problems.
 287 * A weight of a cfs_rq is the sum of weights of which entities
 288 * are queued on this cfs_rq, so a weight of a entity should not be
 289 * too large, so as the shares value of a task group.
 290 * (The default weight is 1024 - so there's no practical
 291 *  limitation from this.)
 292 */
 293#define MIN_SHARES	(1UL <<  1)
 294#define MAX_SHARES	(1UL << 18)
 295#endif
 296
 297typedef int (*tg_visitor)(struct task_group *, void *);
 298
 299extern int walk_tg_tree_from(struct task_group *from,
 300			     tg_visitor down, tg_visitor up, void *data);
 301
 302/*
 303 * Iterate the full tree, calling @down when first entering a node and @up when
 304 * leaving it for the final time.
 305 *
 306 * Caller must hold rcu_lock or sufficient equivalent.
 307 */
 308static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 309{
 310	return walk_tg_tree_from(&root_task_group, down, up, data);
 311}
 312
 313extern int tg_nop(struct task_group *tg, void *data);
 314
 315extern void free_fair_sched_group(struct task_group *tg);
 316extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 
 317extern void unregister_fair_sched_group(struct task_group *tg);
 318extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 319			struct sched_entity *se, int cpu,
 320			struct sched_entity *parent);
 321extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 322
 323extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 324extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 325extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 326
 327extern void free_rt_sched_group(struct task_group *tg);
 328extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 329extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 330		struct sched_rt_entity *rt_se, int cpu,
 331		struct sched_rt_entity *parent);
 
 
 
 
 
 332
 333extern struct task_group *sched_create_group(struct task_group *parent);
 334extern void sched_online_group(struct task_group *tg,
 335			       struct task_group *parent);
 336extern void sched_destroy_group(struct task_group *tg);
 337extern void sched_offline_group(struct task_group *tg);
 338
 339extern void sched_move_task(struct task_struct *tsk);
 340
 341#ifdef CONFIG_FAIR_GROUP_SCHED
 342extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 343
 
 
 344#ifdef CONFIG_SMP
 345extern void set_task_rq_fair(struct sched_entity *se,
 346			     struct cfs_rq *prev, struct cfs_rq *next);
 347#else /* !CONFIG_SMP */
 348static inline void set_task_rq_fair(struct sched_entity *se,
 349			     struct cfs_rq *prev, struct cfs_rq *next) { }
 350#endif /* CONFIG_SMP */
 351#endif /* CONFIG_FAIR_GROUP_SCHED */
 352
 353#else /* CONFIG_CGROUP_SCHED */
 354
 355struct cfs_bandwidth { };
 356
 357#endif	/* CONFIG_CGROUP_SCHED */
 358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359/* CFS-related fields in a runqueue */
 360struct cfs_rq {
 361	struct load_weight load;
 362	unsigned int nr_running, h_nr_running;
 
 
 
 
 
 
 
 
 
 
 363
 364	u64 exec_clock;
 365	u64 min_vruntime;
 366#ifndef CONFIG_64BIT
 367	u64 min_vruntime_copy;
 368#endif
 369
 370	struct rb_root tasks_timeline;
 371	struct rb_node *rb_leftmost;
 372
 373	/*
 374	 * 'curr' points to currently running entity on this cfs_rq.
 375	 * It is set to NULL otherwise (i.e when none are currently running).
 376	 */
 377	struct sched_entity *curr, *next, *last, *skip;
 
 
 
 378
 379#ifdef	CONFIG_SCHED_DEBUG
 380	unsigned int nr_spread_over;
 381#endif
 382
 383#ifdef CONFIG_SMP
 384	/*
 385	 * CFS load tracking
 386	 */
 387	struct sched_avg avg;
 388	u64 runnable_load_sum;
 389	unsigned long runnable_load_avg;
 390#ifdef CONFIG_FAIR_GROUP_SCHED
 391	unsigned long tg_load_avg_contrib;
 392#endif
 393	atomic_long_t removed_load_avg, removed_util_avg;
 394#ifndef CONFIG_64BIT
 395	u64 load_last_update_time_copy;
 396#endif
 
 
 
 
 
 
 
 397
 398#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 399	/*
 400	 *   h_load = weight * f(tg)
 401	 *
 402	 * Where f(tg) is the recursive weight fraction assigned to
 403	 * this group.
 404	 */
 405	unsigned long h_load;
 406	u64 last_h_load_update;
 407	struct sched_entity *h_load_next;
 408#endif /* CONFIG_FAIR_GROUP_SCHED */
 409#endif /* CONFIG_SMP */
 410
 411#ifdef CONFIG_FAIR_GROUP_SCHED
 412	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 413
 414	/*
 415	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 416	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 417	 * (like users, containers etc.)
 418	 *
 419	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 420	 * list is used during load balance.
 421	 */
 422	int on_list;
 423	struct list_head leaf_cfs_rq_list;
 424	struct task_group *tg;	/* group that "owns" this runqueue */
 
 
 
 425
 426#ifdef CONFIG_CFS_BANDWIDTH
 427	int runtime_enabled;
 428	u64 runtime_expires;
 429	s64 runtime_remaining;
 430
 431	u64 throttled_clock, throttled_clock_task;
 432	u64 throttled_clock_task_time;
 433	int throttled, throttle_count;
 434	struct list_head throttled_list;
 
 
 
 
 
 435#endif /* CONFIG_CFS_BANDWIDTH */
 436#endif /* CONFIG_FAIR_GROUP_SCHED */
 437};
 438
 439static inline int rt_bandwidth_enabled(void)
 440{
 441	return sysctl_sched_rt_runtime >= 0;
 442}
 443
 444/* RT IPI pull logic requires IRQ_WORK */
 445#ifdef CONFIG_IRQ_WORK
 446# define HAVE_RT_PUSH_IPI
 447#endif
 448
 449/* Real-Time classes' related field in a runqueue: */
 450struct rt_rq {
 451	struct rt_prio_array active;
 452	unsigned int rt_nr_running;
 453	unsigned int rr_nr_running;
 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 455	struct {
 456		int curr; /* highest queued rt task prio */
 457#ifdef CONFIG_SMP
 458		int next; /* next highest */
 459#endif
 460	} highest_prio;
 461#endif
 462#ifdef CONFIG_SMP
 463	unsigned long rt_nr_migratory;
 464	unsigned long rt_nr_total;
 465	int overloaded;
 466	struct plist_head pushable_tasks;
 467#ifdef HAVE_RT_PUSH_IPI
 468	int push_flags;
 469	int push_cpu;
 470	struct irq_work push_work;
 471	raw_spinlock_t push_lock;
 472#endif
 473#endif /* CONFIG_SMP */
 474	int rt_queued;
 475
 476	int rt_throttled;
 477	u64 rt_time;
 478	u64 rt_runtime;
 479	/* Nests inside the rq lock: */
 480	raw_spinlock_t rt_runtime_lock;
 481
 482#ifdef CONFIG_RT_GROUP_SCHED
 483	unsigned long rt_nr_boosted;
 484
 485	struct rq *rq;
 486	struct task_group *tg;
 487#endif
 488};
 489
 
 
 
 
 
 490/* Deadline class' related fields in a runqueue */
 491struct dl_rq {
 492	/* runqueue is an rbtree, ordered by deadline */
 493	struct rb_root rb_root;
 494	struct rb_node *rb_leftmost;
 495
 496	unsigned long dl_nr_running;
 497
 498#ifdef CONFIG_SMP
 499	/*
 500	 * Deadline values of the currently executing and the
 501	 * earliest ready task on this rq. Caching these facilitates
 502	 * the decision wether or not a ready but not running task
 503	 * should migrate somewhere else.
 504	 */
 505	struct {
 506		u64 curr;
 507		u64 next;
 508	} earliest_dl;
 509
 510	unsigned long dl_nr_migratory;
 511	int overloaded;
 512
 513	/*
 514	 * Tasks on this rq that can be pushed away. They are kept in
 515	 * an rb-tree, ordered by tasks' deadlines, with caching
 516	 * of the leftmost (earliest deadline) element.
 517	 */
 518	struct rb_root pushable_dl_tasks_root;
 519	struct rb_node *pushable_dl_tasks_leftmost;
 520#else
 521	struct dl_bw dl_bw;
 522#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527/*
 528 * We add the notion of a root-domain which will be used to define per-domain
 529 * variables. Each exclusive cpuset essentially defines an island domain by
 530 * fully partitioning the member cpus from any other cpuset. Whenever a new
 531 * exclusive cpuset is created, we also create and attach a new root-domain
 532 * object.
 533 *
 534 */
 535struct root_domain {
 536	atomic_t refcount;
 537	atomic_t rto_count;
 538	struct rcu_head rcu;
 539	cpumask_var_t span;
 540	cpumask_var_t online;
 541
 542	/* Indicate more than one runnable task for any CPU */
 543	bool overload;
 
 
 
 
 
 
 
 544
 545	/*
 546	 * The bit corresponding to a CPU gets set here if such CPU has more
 547	 * than one runnable -deadline task (as it is below for RT tasks).
 548	 */
 549	cpumask_var_t dlo_mask;
 550	atomic_t dlo_count;
 551	struct dl_bw dl_bw;
 552	struct cpudl cpudl;
 553
 554	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 555	 * The "RT overload" flag: it gets set if a CPU has more than
 556	 * one runnable RT task.
 557	 */
 558	cpumask_var_t rto_mask;
 559	struct cpupri cpupri;
 
 
 
 
 
 
 
 
 560};
 561
 562extern struct root_domain def_root_domain;
 
 
 
 
 563
 
 
 
 564#endif /* CONFIG_SMP */
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566/*
 567 * This is the main, per-CPU runqueue data structure.
 568 *
 569 * Locking rule: those places that want to lock multiple runqueues
 570 * (such as the load balancing or the thread migration code), lock
 571 * acquire operations must be ordered by ascending &runqueue.
 572 */
 573struct rq {
 574	/* runqueue lock: */
 575	raw_spinlock_t lock;
 576
 577	/*
 578	 * nr_running and cpu_load should be in the same cacheline because
 579	 * remote CPUs use both these fields when doing load calculation.
 580	 */
 581	unsigned int nr_running;
 582#ifdef CONFIG_NUMA_BALANCING
 583	unsigned int nr_numa_running;
 584	unsigned int nr_preferred_running;
 
 585#endif
 586	#define CPU_LOAD_IDX_MAX 5
 587	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 588	unsigned long last_load_update_tick;
 589#ifdef CONFIG_NO_HZ_COMMON
 590	u64 nohz_stamp;
 591	unsigned long nohz_flags;
 
 
 
 
 
 
 
 
 
 592#endif
 593#ifdef CONFIG_NO_HZ_FULL
 594	unsigned long last_sched_tick;
 
 
 
 
 
 595#endif
 596	/* capture load from *all* tasks on this cpu: */
 597	struct load_weight load;
 598	unsigned long nr_load_updates;
 599	u64 nr_switches;
 600
 601	struct cfs_rq cfs;
 602	struct rt_rq rt;
 603	struct dl_rq dl;
 604
 605#ifdef CONFIG_FAIR_GROUP_SCHED
 606	/* list of leaf cfs_rq on this cpu: */
 607	struct list_head leaf_cfs_rq_list;
 
 608#endif /* CONFIG_FAIR_GROUP_SCHED */
 609
 610	/*
 611	 * This is part of a global counter where only the total sum
 612	 * over all CPUs matters. A task can increase this counter on
 613	 * one CPU and if it got migrated afterwards it may decrease
 614	 * it on another CPU. Always updated under the runqueue lock:
 615	 */
 616	unsigned long nr_uninterruptible;
 617
 618	struct task_struct *curr, *idle, *stop;
 619	unsigned long next_balance;
 620	struct mm_struct *prev_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	unsigned int clock_skip_update;
 623	u64 clock;
 624	u64 clock_task;
 625
 626	atomic_t nr_iowait;
 
 
 
 
 
 
 
 627
 628#ifdef CONFIG_SMP
 629	struct root_domain *rd;
 630	struct sched_domain *sd;
 
 
 
 
 
 
 631
 632	unsigned long cpu_capacity;
 633	unsigned long cpu_capacity_orig;
 634
 635	struct callback_head *balance_callback;
 636
 637	unsigned char idle_balance;
 638	/* For active balancing */
 639	int active_balance;
 640	int push_cpu;
 641	struct cpu_stop_work active_balance_work;
 642	/* cpu of this runqueue: */
 643	int cpu;
 644	int online;
 
 645
 646	struct list_head cfs_tasks;
 647
 648	u64 rt_avg;
 649	u64 age_stamp;
 650	u64 idle_stamp;
 651	u64 avg_idle;
 
 
 
 
 
 
 
 
 
 652
 653	/* This is used to determine avg_idle's max value */
 654	u64 max_idle_balance_cost;
 
 
 
 655#endif
 
 656
 657#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 658	u64 prev_irq_time;
 659#endif
 660#ifdef CONFIG_PARAVIRT
 661	u64 prev_steal_time;
 662#endif
 663#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 664	u64 prev_steal_time_rq;
 665#endif
 666
 667	/* calc_load related fields */
 668	unsigned long calc_load_update;
 669	long calc_load_active;
 670
 671#ifdef CONFIG_SCHED_HRTICK
 672#ifdef CONFIG_SMP
 673	int hrtick_csd_pending;
 674	struct call_single_data hrtick_csd;
 675#endif
 676	struct hrtimer hrtick_timer;
 
 677#endif
 678
 679#ifdef CONFIG_SCHEDSTATS
 680	/* latency stats */
 681	struct sched_info rq_sched_info;
 682	unsigned long long rq_cpu_time;
 683	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 684
 685	/* sys_sched_yield() stats */
 686	unsigned int yld_count;
 687
 688	/* schedule() stats */
 689	unsigned int sched_count;
 690	unsigned int sched_goidle;
 691
 692	/* try_to_wake_up() stats */
 693	unsigned int ttwu_count;
 694	unsigned int ttwu_local;
 
 
 
 
 
 695#endif
 696
 697#ifdef CONFIG_SMP
 698	struct llist_head wake_list;
 699#endif
 
 
 700
 701#ifdef CONFIG_CPU_IDLE
 702	/* Must be inspected within a rcu lock section */
 703	struct cpuidle_state *idle_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 704#endif
 
 
 
 705};
 706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707static inline int cpu_of(struct rq *rq)
 708{
 709#ifdef CONFIG_SMP
 710	return rq->cpu;
 711#else
 712	return 0;
 713#endif
 714}
 715
 
 
 
 
 
 
 
 
 
 
 
 716DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 717
 718#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 719#define this_rq()		this_cpu_ptr(&runqueues)
 720#define task_rq(p)		cpu_rq(task_cpu(p))
 721#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 722#define raw_rq()		raw_cpu_ptr(&runqueues)
 723
 724static inline u64 __rq_clock_broken(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725{
 726	return READ_ONCE(rq->clock);
 
 
 
 
 727}
 728
 729static inline u64 rq_clock(struct rq *rq)
 730{
 731	lockdep_assert_held(&rq->lock);
 
 
 732	return rq->clock;
 733}
 734
 735static inline u64 rq_clock_task(struct rq *rq)
 736{
 737	lockdep_assert_held(&rq->lock);
 
 
 738	return rq->clock_task;
 739}
 740
 741#define RQCF_REQ_SKIP	0x01
 742#define RQCF_ACT_SKIP	0x02
 
 
 
 
 
 
 
 
 
 
 743
 744static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 745{
 746	lockdep_assert_held(&rq->lock);
 747	if (skip)
 748		rq->clock_skip_update |= RQCF_REQ_SKIP;
 749	else
 750		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753#ifdef CONFIG_NUMA
 754enum numa_topology_type {
 755	NUMA_DIRECT,
 756	NUMA_GLUELESS_MESH,
 757	NUMA_BACKPLANE,
 758};
 759extern enum numa_topology_type sched_numa_topology_type;
 760extern int sched_max_numa_distance;
 761extern bool find_numa_distance(int distance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762#endif
 763
 764#ifdef CONFIG_NUMA_BALANCING
 765/* The regions in numa_faults array from task_struct */
 766enum numa_faults_stats {
 767	NUMA_MEM = 0,
 768	NUMA_CPU,
 769	NUMA_MEMBUF,
 770	NUMA_CPUBUF
 771};
 772extern void sched_setnuma(struct task_struct *p, int node);
 773extern int migrate_task_to(struct task_struct *p, int cpu);
 774extern int migrate_swap(struct task_struct *, struct task_struct *);
 
 
 
 
 
 
 
 775#endif /* CONFIG_NUMA_BALANCING */
 776
 777#ifdef CONFIG_SMP
 778
 779static inline void
 780queue_balance_callback(struct rq *rq,
 781		       struct callback_head *head,
 782		       void (*func)(struct rq *rq))
 783{
 784	lockdep_assert_held(&rq->lock);
 785
 786	if (unlikely(head->next))
 
 
 
 
 
 787		return;
 788
 789	head->func = (void (*)(struct callback_head *))func;
 790	head->next = rq->balance_callback;
 791	rq->balance_callback = head;
 792}
 793
 794extern void sched_ttwu_pending(void);
 795
 796#define rcu_dereference_check_sched_domain(p) \
 797	rcu_dereference_check((p), \
 798			      lockdep_is_held(&sched_domains_mutex))
 799
 800/*
 801 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 802 * See detach_destroy_domains: synchronize_sched for details.
 803 *
 804 * The domain tree of any CPU may only be accessed from within
 805 * preempt-disabled sections.
 806 */
 807#define for_each_domain(cpu, __sd) \
 808	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 809			__sd; __sd = __sd->parent)
 810
 811#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 812
 813/**
 814 * highest_flag_domain - Return highest sched_domain containing flag.
 815 * @cpu:	The cpu whose highest level of sched domain is to
 816 *		be returned.
 817 * @flag:	The flag to check for the highest sched_domain
 818 *		for the given cpu.
 819 *
 820 * Returns the highest sched_domain of a cpu which contains the given flag.
 821 */
 822static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 823{
 824	struct sched_domain *sd, *hsd = NULL;
 825
 826	for_each_domain(cpu, sd) {
 827		if (!(sd->flags & flag))
 828			break;
 829		hsd = sd;
 830	}
 831
 832	return hsd;
 833}
 834
 835static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 836{
 837	struct sched_domain *sd;
 838
 839	for_each_domain(cpu, sd) {
 840		if (sd->flags & flag)
 841			break;
 842	}
 843
 844	return sd;
 845}
 846
 847DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 848DECLARE_PER_CPU(int, sd_llc_size);
 849DECLARE_PER_CPU(int, sd_llc_id);
 850DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 851DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 852DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 
 
 
 
 
 
 853
 854struct sched_group_capacity {
 855	atomic_t ref;
 856	/*
 857	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
 858	 * for a single CPU.
 859	 */
 860	unsigned int capacity;
 861	unsigned long next_update;
 862	int imbalance; /* XXX unrelated to capacity but shared group state */
 863	/*
 864	 * Number of busy cpus in this group.
 865	 */
 866	atomic_t nr_busy_cpus;
 
 
 867
 868	unsigned long cpumask[0]; /* iteration mask */
 869};
 870
 871struct sched_group {
 872	struct sched_group *next;	/* Must be a circular list */
 873	atomic_t ref;
 874
 875	unsigned int group_weight;
 876	struct sched_group_capacity *sgc;
 
 
 877
 878	/*
 879	 * The CPUs this group covers.
 880	 *
 881	 * NOTE: this field is variable length. (Allocated dynamically
 882	 * by attaching extra space to the end of the structure,
 883	 * depending on how many CPUs the kernel has booted up with)
 884	 */
 885	unsigned long cpumask[0];
 886};
 887
 888static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 889{
 890	return to_cpumask(sg->cpumask);
 891}
 892
 893/*
 894 * cpumask masking which cpus in the group are allowed to iterate up the domain
 895 * tree.
 896 */
 897static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 898{
 899	return to_cpumask(sg->sgc->cpumask);
 900}
 901
 902/**
 903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 904 * @group: The group whose first cpu is to be returned.
 905 */
 906static inline unsigned int group_first_cpu(struct sched_group *group)
 907{
 908	return cpumask_first(sched_group_cpus(group));
 909}
 910
 911extern int group_balance_cpu(struct sched_group *sg);
 912
 913#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 914void register_sched_domain_sysctl(void);
 915void unregister_sched_domain_sysctl(void);
 916#else
 917static inline void register_sched_domain_sysctl(void)
 918{
 919}
 920static inline void unregister_sched_domain_sysctl(void)
 921{
 922}
 923#endif
 924
 925#else
 926
 927static inline void sched_ttwu_pending(void) { }
 928
 
 
 
 
 
 
 929#endif /* CONFIG_SMP */
 930
 931#include "stats.h"
 932#include "auto_group.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934#ifdef CONFIG_CGROUP_SCHED
 935
 936/*
 937 * Return the group to which this tasks belongs.
 938 *
 939 * We cannot use task_css() and friends because the cgroup subsystem
 940 * changes that value before the cgroup_subsys::attach() method is called,
 941 * therefore we cannot pin it and might observe the wrong value.
 942 *
 943 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 944 * core changes this before calling sched_move_task().
 945 *
 946 * Instead we use a 'copy' which is updated from sched_move_task() while
 947 * holding both task_struct::pi_lock and rq::lock.
 948 */
 949static inline struct task_group *task_group(struct task_struct *p)
 950{
 951	return p->sched_task_group;
 952}
 953
 954/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 955static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 956{
 957#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 958	struct task_group *tg = task_group(p);
 959#endif
 960
 961#ifdef CONFIG_FAIR_GROUP_SCHED
 962	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
 963	p->se.cfs_rq = tg->cfs_rq[cpu];
 964	p->se.parent = tg->se[cpu];
 
 965#endif
 966
 967#ifdef CONFIG_RT_GROUP_SCHED
 968	p->rt.rt_rq  = tg->rt_rq[cpu];
 969	p->rt.parent = tg->rt_se[cpu];
 970#endif
 971}
 972
 973#else /* CONFIG_CGROUP_SCHED */
 974
 975static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 976static inline struct task_group *task_group(struct task_struct *p)
 977{
 978	return NULL;
 979}
 980
 981#endif /* CONFIG_CGROUP_SCHED */
 982
 983static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 984{
 985	set_task_rq(p, cpu);
 986#ifdef CONFIG_SMP
 987	/*
 988	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 989	 * successfuly executed on another CPU. We must ensure that updates of
 990	 * per-task data have been completed by this moment.
 991	 */
 992	smp_wmb();
 993	task_thread_info(p)->cpu = cpu;
 994	p->wake_cpu = cpu;
 995#endif
 996}
 997
 998/*
 999 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1000 */
1001#ifdef CONFIG_SCHED_DEBUG
1002# include <linux/static_key.h>
1003# define const_debug __read_mostly
1004#else
1005# define const_debug const
1006#endif
1007
1008extern const_debug unsigned int sysctl_sched_features;
1009
1010#define SCHED_FEAT(name, enabled)	\
1011	__SCHED_FEAT_##name ,
1012
1013enum {
1014#include "features.h"
1015	__SCHED_FEAT_NR,
1016};
1017
1018#undef SCHED_FEAT
1019
1020#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 
 
 
 
 
 
 
 
1021#define SCHED_FEAT(name, enabled)					\
1022static __always_inline bool static_branch_##name(struct static_key *key) \
1023{									\
1024	return static_key_##enabled(key);				\
1025}
1026
1027#include "features.h"
1028
1029#undef SCHED_FEAT
1030
1031extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1032#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1033#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 
 
1034#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1035#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037extern struct static_key_false sched_numa_balancing;
1038extern struct static_key_false sched_schedstats;
1039
1040static inline u64 global_rt_period(void)
1041{
1042	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1043}
1044
1045static inline u64 global_rt_runtime(void)
1046{
1047	if (sysctl_sched_rt_runtime < 0)
1048		return RUNTIME_INF;
1049
1050	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1051}
1052
1053static inline int task_current(struct rq *rq, struct task_struct *p)
1054{
1055	return rq->curr == p;
1056}
1057
1058static inline int task_running(struct rq *rq, struct task_struct *p)
1059{
1060#ifdef CONFIG_SMP
1061	return p->on_cpu;
1062#else
1063	return task_current(rq, p);
1064#endif
1065}
1066
1067static inline int task_on_rq_queued(struct task_struct *p)
1068{
1069	return p->on_rq == TASK_ON_RQ_QUEUED;
1070}
1071
1072static inline int task_on_rq_migrating(struct task_struct *p)
1073{
1074	return p->on_rq == TASK_ON_RQ_MIGRATING;
1075}
1076
1077#ifndef prepare_arch_switch
1078# define prepare_arch_switch(next)	do { } while (0)
1079#endif
1080#ifndef finish_arch_post_lock_switch
1081# define finish_arch_post_lock_switch()	do { } while (0)
1082#endif
1083
1084static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1085{
1086#ifdef CONFIG_SMP
1087	/*
1088	 * We can optimise this out completely for !SMP, because the
1089	 * SMP rebalancing from interrupt is the only thing that cares
1090	 * here.
1091	 */
1092	next->on_cpu = 1;
1093#endif
1094}
1095
1096static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1097{
1098#ifdef CONFIG_SMP
1099	/*
1100	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1101	 * We must ensure this doesn't happen until the switch is completely
1102	 * finished.
1103	 *
1104	 * In particular, the load of prev->state in finish_task_switch() must
1105	 * happen before this.
1106	 *
1107	 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1108	 */
1109	smp_store_release(&prev->on_cpu, 0);
1110#endif
1111#ifdef CONFIG_DEBUG_SPINLOCK
1112	/* this is a valid case when another task releases the spinlock */
1113	rq->lock.owner = current;
1114#endif
1115	/*
1116	 * If we are tracking spinlock dependencies then we have to
1117	 * fix up the runqueue lock - which gets 'carried over' from
1118	 * prev into current:
1119	 */
1120	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1121
1122	raw_spin_unlock_irq(&rq->lock);
1123}
1124
1125/*
1126 * wake flags
1127 */
1128#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1129#define WF_FORK		0x02		/* child wakeup after fork */
1130#define WF_MIGRATED	0x4		/* internal use, task got migrated */
1131
1132/*
1133 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1134 * of tasks with abnormal "nice" values across CPUs the contribution that
1135 * each task makes to its run queue's load is weighted according to its
1136 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1137 * scaled version of the new time slice allocation that they receive on time
1138 * slice expiry etc.
1139 */
1140
1141#define WEIGHT_IDLEPRIO                3
1142#define WMULT_IDLEPRIO         1431655765
1143
1144extern const int sched_prio_to_weight[40];
1145extern const u32 sched_prio_to_wmult[40];
1146
1147/*
1148 * {de,en}queue flags:
1149 *
1150 * DEQUEUE_SLEEP  - task is no longer runnable
1151 * ENQUEUE_WAKEUP - task just became runnable
1152 *
1153 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1154 *                are in a known state which allows modification. Such pairs
1155 *                should preserve as much state as possible.
1156 *
1157 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1158 *        in the runqueue.
1159 *
1160 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1161 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1162 * ENQUEUE_WAKING    - sched_class::task_waking was called
1163 *
1164 */
1165
1166#define DEQUEUE_SLEEP		0x01
1167#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1168#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
 
1169
1170#define ENQUEUE_WAKEUP		0x01
1171#define ENQUEUE_RESTORE		0x02
1172#define ENQUEUE_MOVE		0x04
 
1173
1174#define ENQUEUE_HEAD		0x08
1175#define ENQUEUE_REPLENISH	0x10
1176#ifdef CONFIG_SMP
1177#define ENQUEUE_WAKING		0x20
1178#else
1179#define ENQUEUE_WAKING		0x00
1180#endif
1181
1182#define RETRY_TASK		((void *)-1UL)
1183
 
 
 
 
 
 
1184struct sched_class {
1185	const struct sched_class *next;
 
 
 
1186
1187	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1188	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1189	void (*yield_task) (struct rq *rq);
1190	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1191
1192	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1193
1194	/*
1195	 * It is the responsibility of the pick_next_task() method that will
1196	 * return the next task to call put_prev_task() on the @prev task or
1197	 * something equivalent.
1198	 *
1199	 * May return RETRY_TASK when it finds a higher prio class has runnable
1200	 * tasks.
1201	 */
1202	struct task_struct * (*pick_next_task) (struct rq *rq,
1203						struct task_struct *prev);
1204	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1205
1206#ifdef CONFIG_SMP
1207	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1208	void (*migrate_task_rq)(struct task_struct *p);
 
 
1209
1210	void (*task_waking) (struct task_struct *task);
1211	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1212
1213	void (*set_cpus_allowed)(struct task_struct *p,
1214				 const struct cpumask *newmask);
 
1215
1216	void (*rq_online)(struct rq *rq);
1217	void (*rq_offline)(struct rq *rq);
 
 
1218#endif
1219
1220	void (*set_curr_task) (struct rq *rq);
1221	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1222	void (*task_fork) (struct task_struct *p);
1223	void (*task_dead) (struct task_struct *p);
1224
1225	/*
1226	 * The switched_from() call is allowed to drop rq->lock, therefore we
1227	 * cannot assume the switched_from/switched_to pair is serliazed by
1228	 * rq->lock. They are however serialized by p->pi_lock.
1229	 */
1230	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1231	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1232	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1233			     int oldprio);
1234
1235	unsigned int (*get_rr_interval) (struct rq *rq,
1236					 struct task_struct *task);
1237
1238	void (*update_curr) (struct rq *rq);
1239
1240#ifdef CONFIG_FAIR_GROUP_SCHED
1241	void (*task_move_group) (struct task_struct *p);
1242#endif
1243};
1244
1245static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1246{
 
1247	prev->sched_class->put_prev_task(rq, prev);
1248}
1249
1250#define sched_class_highest (&stop_sched_class)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251#define for_each_class(class) \
1252   for (class = sched_class_highest; class; class = class->next)
 
 
1253
1254extern const struct sched_class stop_sched_class;
1255extern const struct sched_class dl_sched_class;
1256extern const struct sched_class rt_sched_class;
1257extern const struct sched_class fair_sched_class;
1258extern const struct sched_class idle_sched_class;
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261#ifdef CONFIG_SMP
1262
1263extern void update_group_capacity(struct sched_domain *sd, int cpu);
1264
1265extern void trigger_load_balance(struct rq *rq);
1266
1267extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268
1269#endif
1270
1271#ifdef CONFIG_CPU_IDLE
1272static inline void idle_set_state(struct rq *rq,
1273				  struct cpuidle_state *idle_state)
1274{
1275	rq->idle_state = idle_state;
1276}
1277
1278static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1279{
1280	WARN_ON(!rcu_read_lock_held());
 
1281	return rq->idle_state;
1282}
1283#else
1284static inline void idle_set_state(struct rq *rq,
1285				  struct cpuidle_state *idle_state)
1286{
1287}
1288
1289static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1290{
1291	return NULL;
1292}
1293#endif
1294
 
 
1295extern void sysrq_sched_debug_show(void);
1296extern void sched_init_granularity(void);
1297extern void update_max_interval(void);
1298
1299extern void init_sched_dl_class(void);
1300extern void init_sched_rt_class(void);
1301extern void init_sched_fair_class(void);
1302
 
 
1303extern void resched_curr(struct rq *rq);
1304extern void resched_cpu(int cpu);
1305
1306extern struct rt_bandwidth def_rt_bandwidth;
1307extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 
1308
1309extern struct dl_bandwidth def_dl_bandwidth;
1310extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1311extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
 
1312
 
 
 
 
 
1313unsigned long to_ratio(u64 period, u64 runtime);
1314
1315extern void init_entity_runnable_average(struct sched_entity *se);
 
1316
1317#ifdef CONFIG_NO_HZ_FULL
1318extern bool sched_can_stop_tick(struct rq *rq);
 
1319
1320/*
1321 * Tick may be needed by tasks in the runqueue depending on their policy and
1322 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1323 * nohz mode if necessary.
1324 */
1325static inline void sched_update_tick_dependency(struct rq *rq)
1326{
1327	int cpu;
1328
1329	if (!tick_nohz_full_enabled())
1330		return;
1331
1332	cpu = cpu_of(rq);
1333
1334	if (!tick_nohz_full_cpu(cpu))
1335		return;
1336
1337	if (sched_can_stop_tick(rq))
1338		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1339	else
1340		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1341}
1342#else
 
1343static inline void sched_update_tick_dependency(struct rq *rq) { }
1344#endif
1345
1346static inline void add_nr_running(struct rq *rq, unsigned count)
1347{
1348	unsigned prev_nr = rq->nr_running;
1349
1350	rq->nr_running = prev_nr + count;
 
 
 
1351
1352	if (prev_nr < 2 && rq->nr_running >= 2) {
1353#ifdef CONFIG_SMP
1354		if (!rq->rd->overload)
1355			rq->rd->overload = true;
1356#endif
1357	}
 
1358
1359	sched_update_tick_dependency(rq);
1360}
1361
1362static inline void sub_nr_running(struct rq *rq, unsigned count)
1363{
1364	rq->nr_running -= count;
 
 
 
 
1365	/* Check if we still need preemption */
1366	sched_update_tick_dependency(rq);
1367}
1368
1369static inline void rq_last_tick_reset(struct rq *rq)
1370{
1371#ifdef CONFIG_NO_HZ_FULL
1372	rq->last_sched_tick = jiffies;
1373#endif
1374}
1375
1376extern void update_rq_clock(struct rq *rq);
1377
1378extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1379extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1380
1381extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1382
1383extern const_debug unsigned int sysctl_sched_time_avg;
 
 
 
 
 
1384extern const_debug unsigned int sysctl_sched_nr_migrate;
1385extern const_debug unsigned int sysctl_sched_migration_cost;
1386
1387static inline u64 sched_avg_period(void)
1388{
1389	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1390}
 
 
 
 
 
 
 
 
 
 
 
 
1391
1392#ifdef CONFIG_SCHED_HRTICK
1393
1394/*
1395 * Use hrtick when:
1396 *  - enabled by features
1397 *  - hrtimer is actually high res
1398 */
1399static inline int hrtick_enabled(struct rq *rq)
1400{
1401	if (!sched_feat(HRTICK))
1402		return 0;
1403	if (!cpu_active(cpu_of(rq)))
1404		return 0;
1405	return hrtimer_is_hres_active(&rq->hrtick_timer);
1406}
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408void hrtick_start(struct rq *rq, u64 delay);
1409
1410#else
1411
 
 
 
 
 
 
 
 
 
 
1412static inline int hrtick_enabled(struct rq *rq)
1413{
1414	return 0;
1415}
1416
1417#endif /* CONFIG_SCHED_HRTICK */
1418
1419#ifdef CONFIG_SMP
1420extern void sched_avg_update(struct rq *rq);
1421
1422#ifndef arch_scale_freq_capacity
1423static __always_inline
1424unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1425{
1426	return SCHED_CAPACITY_SCALE;
1427}
1428#endif
1429
1430#ifndef arch_scale_cpu_capacity
 
 
 
 
 
 
 
 
 
 
1431static __always_inline
1432unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1433{
1434	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1435		return sd->smt_gain / sd->span_weight;
1436
1437	return SCHED_CAPACITY_SCALE;
1438}
1439#endif
1440
1441static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1442{
1443	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1444	sched_avg_update(rq);
1445}
1446#else
1447static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1448static inline void sched_avg_update(struct rq *rq) { }
1449#endif
1450
1451/*
1452 * __task_rq_lock - lock the rq @p resides on.
 
 
 
1453 */
1454static inline struct rq *__task_rq_lock(struct task_struct *p)
1455	__acquires(rq->lock)
1456{
1457	struct rq *rq;
1458
1459	lockdep_assert_held(&p->pi_lock);
1460
1461	for (;;) {
1462		rq = task_rq(p);
1463		raw_spin_lock(&rq->lock);
1464		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1465			lockdep_pin_lock(&rq->lock);
1466			return rq;
1467		}
1468		raw_spin_unlock(&rq->lock);
1469
1470		while (unlikely(task_on_rq_migrating(p)))
1471			cpu_relax();
1472	}
1473}
 
 
 
1474
1475/*
1476 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1477 */
1478static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1479	__acquires(p->pi_lock)
1480	__acquires(rq->lock)
1481{
1482	struct rq *rq;
1483
1484	for (;;) {
1485		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1486		rq = task_rq(p);
1487		raw_spin_lock(&rq->lock);
1488		/*
1489		 *	move_queued_task()		task_rq_lock()
1490		 *
1491		 *	ACQUIRE (rq->lock)
1492		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
1493		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
1494		 *	[S] ->cpu = new_cpu		[L] task_rq()
1495		 *					[L] ->on_rq
1496		 *	RELEASE (rq->lock)
1497		 *
1498		 * If we observe the old cpu in task_rq_lock, the acquire of
1499		 * the old rq->lock will fully serialize against the stores.
1500		 *
1501		 * If we observe the new cpu in task_rq_lock, the acquire will
1502		 * pair with the WMB to ensure we must then also see migrating.
1503		 */
1504		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1505			lockdep_pin_lock(&rq->lock);
1506			return rq;
1507		}
1508		raw_spin_unlock(&rq->lock);
1509		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1510
1511		while (unlikely(task_on_rq_migrating(p)))
1512			cpu_relax();
1513	}
1514}
1515
1516static inline void __task_rq_unlock(struct rq *rq)
1517	__releases(rq->lock)
1518{
1519	lockdep_unpin_lock(&rq->lock);
1520	raw_spin_unlock(&rq->lock);
1521}
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523static inline void
1524task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1525	__releases(rq->lock)
1526	__releases(p->pi_lock)
1527{
1528	lockdep_unpin_lock(&rq->lock);
1529	raw_spin_unlock(&rq->lock);
1530	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1531}
1532
1533#ifdef CONFIG_SMP
1534#ifdef CONFIG_PREEMPT
1535
1536static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1537
1538/*
1539 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1540 * way at the expense of forcing extra atomic operations in all
1541 * invocations.  This assures that the double_lock is acquired using the
1542 * same underlying policy as the spinlock_t on this architecture, which
1543 * reduces latency compared to the unfair variant below.  However, it
1544 * also adds more overhead and therefore may reduce throughput.
1545 */
1546static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1547	__releases(this_rq->lock)
1548	__acquires(busiest->lock)
1549	__acquires(this_rq->lock)
1550{
1551	raw_spin_unlock(&this_rq->lock);
1552	double_rq_lock(this_rq, busiest);
1553
1554	return 1;
1555}
1556
1557#else
1558/*
1559 * Unfair double_lock_balance: Optimizes throughput at the expense of
1560 * latency by eliminating extra atomic operations when the locks are
1561 * already in proper order on entry.  This favors lower cpu-ids and will
1562 * grant the double lock to lower cpus over higher ids under contention,
1563 * regardless of entry order into the function.
1564 */
1565static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566	__releases(this_rq->lock)
1567	__acquires(busiest->lock)
1568	__acquires(this_rq->lock)
1569{
1570	int ret = 0;
 
 
 
 
1571
1572	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1573		if (busiest < this_rq) {
1574			raw_spin_unlock(&this_rq->lock);
1575			raw_spin_lock(&busiest->lock);
1576			raw_spin_lock_nested(&this_rq->lock,
1577					      SINGLE_DEPTH_NESTING);
1578			ret = 1;
1579		} else
1580			raw_spin_lock_nested(&busiest->lock,
1581					      SINGLE_DEPTH_NESTING);
1582	}
1583	return ret;
 
 
 
 
1584}
1585
1586#endif /* CONFIG_PREEMPT */
1587
1588/*
1589 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1590 */
1591static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592{
1593	if (unlikely(!irqs_disabled())) {
1594		/* printk() doesn't work good under rq->lock */
1595		raw_spin_unlock(&this_rq->lock);
1596		BUG_ON(1);
1597	}
1598
1599	return _double_lock_balance(this_rq, busiest);
1600}
1601
1602static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1603	__releases(busiest->lock)
1604{
1605	raw_spin_unlock(&busiest->lock);
1606	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 
1607}
1608
1609static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1610{
1611	if (l1 > l2)
1612		swap(l1, l2);
1613
1614	spin_lock(l1);
1615	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1616}
1617
1618static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1619{
1620	if (l1 > l2)
1621		swap(l1, l2);
1622
1623	spin_lock_irq(l1);
1624	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1625}
1626
1627static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1628{
1629	if (l1 > l2)
1630		swap(l1, l2);
1631
1632	raw_spin_lock(l1);
1633	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1634}
1635
1636/*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643	__acquires(rq1->lock)
1644	__acquires(rq2->lock)
1645{
1646	BUG_ON(!irqs_disabled());
1647	if (rq1 == rq2) {
1648		raw_spin_lock(&rq1->lock);
1649		__acquire(rq2->lock);	/* Fake it out ;) */
1650	} else {
1651		if (rq1 < rq2) {
1652			raw_spin_lock(&rq1->lock);
1653			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1654		} else {
1655			raw_spin_lock(&rq2->lock);
1656			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1657		}
1658	}
1659}
1660
1661/*
1662 * double_rq_unlock - safely unlock two runqueues
1663 *
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1666 */
1667static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1668	__releases(rq1->lock)
1669	__releases(rq2->lock)
1670{
1671	raw_spin_unlock(&rq1->lock);
1672	if (rq1 != rq2)
1673		raw_spin_unlock(&rq2->lock);
1674	else
1675		__release(rq2->lock);
 
1676}
1677
 
 
 
 
1678#else /* CONFIG_SMP */
1679
1680/*
1681 * double_rq_lock - safely lock two runqueues
1682 *
1683 * Note this does not disable interrupts like task_rq_lock,
1684 * you need to do so manually before calling.
1685 */
1686static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1687	__acquires(rq1->lock)
1688	__acquires(rq2->lock)
1689{
1690	BUG_ON(!irqs_disabled());
1691	BUG_ON(rq1 != rq2);
1692	raw_spin_lock(&rq1->lock);
1693	__acquire(rq2->lock);	/* Fake it out ;) */
 
1694}
1695
1696/*
1697 * double_rq_unlock - safely unlock two runqueues
1698 *
1699 * Note this does not restore interrupts like task_rq_unlock,
1700 * you need to do so manually after calling.
1701 */
1702static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1703	__releases(rq1->lock)
1704	__releases(rq2->lock)
1705{
1706	BUG_ON(rq1 != rq2);
1707	raw_spin_unlock(&rq1->lock);
1708	__release(rq2->lock);
1709}
1710
1711#endif
1712
1713extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1714extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1715
1716#ifdef	CONFIG_SCHED_DEBUG
 
 
1717extern void print_cfs_stats(struct seq_file *m, int cpu);
1718extern void print_rt_stats(struct seq_file *m, int cpu);
1719extern void print_dl_stats(struct seq_file *m, int cpu);
1720extern void
1721print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 
1722
 
1723#ifdef CONFIG_NUMA_BALANCING
1724extern void
1725show_numa_stats(struct task_struct *p, struct seq_file *m);
1726extern void
1727print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1728	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1729#endif /* CONFIG_NUMA_BALANCING */
 
 
1730#endif /* CONFIG_SCHED_DEBUG */
1731
1732extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1733extern void init_rt_rq(struct rt_rq *rt_rq);
1734extern void init_dl_rq(struct dl_rq *dl_rq);
1735
1736extern void cfs_bandwidth_usage_inc(void);
1737extern void cfs_bandwidth_usage_dec(void);
1738
1739#ifdef CONFIG_NO_HZ_COMMON
1740enum rq_nohz_flag_bits {
1741	NOHZ_TICK_STOPPED,
1742	NOHZ_BALANCE_KICK,
1743};
 
 
 
 
 
 
 
 
 
 
 
1744
1745#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
 
 
 
 
 
 
 
 
 
 
1746#endif
1747
1748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 
 
 
 
 
 
1749
1750DECLARE_PER_CPU(u64, cpu_hardirq_time);
1751DECLARE_PER_CPU(u64, cpu_softirq_time);
1752
1753#ifndef CONFIG_64BIT
1754DECLARE_PER_CPU(seqcount_t, irq_time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
1756static inline void irq_time_write_begin(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757{
1758	__this_cpu_inc(irq_time_seq.sequence);
1759	smp_wmb();
 
 
 
 
1760}
 
 
 
1761
1762static inline void irq_time_write_end(void)
 
 
 
 
 
 
 
 
 
1763{
1764	smp_wmb();
1765	__this_cpu_inc(irq_time_seq.sequence);
1766}
1767
1768static inline u64 irq_time_read(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
1769{
1770	u64 irq_time;
1771	unsigned seq;
1772
1773	do {
1774		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1775		irq_time = per_cpu(cpu_softirq_time, cpu) +
1776			   per_cpu(cpu_hardirq_time, cpu);
1777	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
 
 
 
 
 
 
 
 
 
1778
1779	return irq_time;
1780}
1781#else /* CONFIG_64BIT */
1782static inline void irq_time_write_begin(void)
 
 
 
 
 
 
 
 
 
1783{
 
 
 
1784}
1785
1786static inline void irq_time_write_end(void)
1787{
 
1788}
1789
1790static inline u64 irq_time_read(int cpu)
1791{
1792	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1793}
1794#endif /* CONFIG_64BIT */
1795#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1796
1797#ifdef CONFIG_CPU_FREQ
1798DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
1799
1800/**
1801 * cpufreq_update_util - Take a note about CPU utilization changes.
1802 * @time: Current time.
1803 * @util: Current utilization.
1804 * @max: Utilization ceiling.
1805 *
1806 * This function is called by the scheduler on every invocation of
1807 * update_load_avg() on the CPU whose utilization is being updated.
1808 *
1809 * It can only be called from RCU-sched read-side critical sections.
1810 */
1811static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812{
1813       struct update_util_data *data;
 
 
 
 
 
 
 
 
 
 
 
1814
1815       data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1816       if (data)
1817               data->func(data, time, util, max);
 
 
 
 
 
 
1818}
1819
1820/**
1821 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1822 * @time: Current time.
1823 *
1824 * The way cpufreq is currently arranged requires it to evaluate the CPU
1825 * performance state (frequency/voltage) on a regular basis to prevent it from
1826 * being stuck in a completely inadequate performance level for too long.
1827 * That is not guaranteed to happen if the updates are only triggered from CFS,
1828 * though, because they may not be coming in if RT or deadline tasks are active
1829 * all the time (or there are RT and DL tasks only).
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830 *
1831 * As a workaround for that issue, this function is called by the RT and DL
1832 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1833 * but that really is a band-aid.  Going forward it should be replaced with
1834 * solutions targeted more specifically at RT and DL tasks.
1835 */
1836static inline void cpufreq_trigger_update(u64 time)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837{
1838	cpufreq_update_util(time, ULONG_MAX, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839}
1840#else
1841static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1842static inline void cpufreq_trigger_update(u64 time) {}
1843#endif /* CONFIG_CPU_FREQ */
 
1844
1845static inline void account_reset_rq(struct rq *rq)
 
1846{
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848	rq->prev_irq_time = 0;
1849#endif
1850#ifdef CONFIG_PARAVIRT
1851	rq->prev_steal_time = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852#endif
1853#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1854	rq->prev_steal_time_rq = 0;
 
 
 
 
 
 
 
 
 
 
1855#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856}
v6.2
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#ifndef _KERNEL_SCHED_SCHED_H
   6#define _KERNEL_SCHED_SCHED_H
   7
   8#include <linux/sched/affinity.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/deadline.h>
  12#include <linux/sched.h>
  13#include <linux/sched/loadavg.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/rseq_api.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/smt.h>
  18#include <linux/sched/stat.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/sched/task_flags.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/topology.h>
  23
  24#include <linux/atomic.h>
  25#include <linux/bitmap.h>
  26#include <linux/bug.h>
  27#include <linux/capability.h>
  28#include <linux/cgroup_api.h>
  29#include <linux/cgroup.h>
  30#include <linux/context_tracking.h>
  31#include <linux/cpufreq.h>
  32#include <linux/cpumask_api.h>
  33#include <linux/ctype.h>
  34#include <linux/file.h>
  35#include <linux/fs_api.h>
  36#include <linux/hrtimer_api.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq_work.h>
  39#include <linux/jiffies.h>
  40#include <linux/kref_api.h>
  41#include <linux/kthread.h>
  42#include <linux/ktime_api.h>
  43#include <linux/lockdep_api.h>
  44#include <linux/lockdep.h>
  45#include <linux/minmax.h>
  46#include <linux/mm.h>
  47#include <linux/module.h>
  48#include <linux/mutex_api.h>
  49#include <linux/plist.h>
  50#include <linux/poll.h>
  51#include <linux/proc_fs.h>
  52#include <linux/profile.h>
  53#include <linux/psi.h>
  54#include <linux/rcupdate.h>
  55#include <linux/seq_file.h>
  56#include <linux/seqlock.h>
  57#include <linux/softirq.h>
  58#include <linux/spinlock_api.h>
  59#include <linux/static_key.h>
  60#include <linux/stop_machine.h>
  61#include <linux/syscalls_api.h>
  62#include <linux/syscalls.h>
  63#include <linux/tick.h>
  64#include <linux/topology.h>
  65#include <linux/types.h>
  66#include <linux/u64_stats_sync_api.h>
  67#include <linux/uaccess.h>
  68#include <linux/wait_api.h>
  69#include <linux/wait_bit.h>
  70#include <linux/workqueue_api.h>
  71
  72#include <trace/events/power.h>
  73#include <trace/events/sched.h>
  74
  75#include "../workqueue_internal.h"
  76
  77#ifdef CONFIG_CGROUP_SCHED
  78#include <linux/cgroup.h>
  79#include <linux/psi.h>
  80#endif
  81
  82#ifdef CONFIG_SCHED_DEBUG
  83# include <linux/static_key.h>
  84#endif
  85
  86#ifdef CONFIG_PARAVIRT
  87# include <asm/paravirt.h>
  88# include <asm/paravirt_api_clock.h>
  89#endif
  90
  91#include "cpupri.h"
  92#include "cpudeadline.h"
  93
  94#ifdef CONFIG_SCHED_DEBUG
  95# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
  96#else
  97# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
  98#endif
  99
 100struct rq;
 101struct cpuidle_state;
 102
 103/* task_struct::on_rq states: */
 104#define TASK_ON_RQ_QUEUED	1
 105#define TASK_ON_RQ_MIGRATING	2
 106
 107extern __read_mostly int scheduler_running;
 108
 109extern unsigned long calc_load_update;
 110extern atomic_long_t calc_load_tasks;
 111
 112extern unsigned int sysctl_sched_child_runs_first;
 113
 114extern void calc_global_load_tick(struct rq *this_rq);
 115extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 116
 117extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 118
 119extern unsigned int sysctl_sched_rt_period;
 120extern int sysctl_sched_rt_runtime;
 121extern int sched_rr_timeslice;
 122
 123/*
 124 * Helpers for converting nanosecond timing to jiffy resolution
 125 */
 126#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 127
 128/*
 129 * Increase resolution of nice-level calculations for 64-bit architectures.
 130 * The extra resolution improves shares distribution and load balancing of
 131 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 132 * hierarchies, especially on larger systems. This is not a user-visible change
 133 * and does not change the user-interface for setting shares/weights.
 134 *
 135 * We increase resolution only if we have enough bits to allow this increased
 136 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 137 * are pretty high and the returns do not justify the increased costs.
 138 *
 139 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 140 * increase coverage and consistency always enable it on 64-bit platforms.
 141 */
 142#ifdef CONFIG_64BIT
 143# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 144# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 145# define scale_load_down(w) \
 146({ \
 147	unsigned long __w = (w); \
 148	if (__w) \
 149		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 150	__w; \
 151})
 152#else
 153# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 154# define scale_load(w)		(w)
 155# define scale_load_down(w)	(w)
 156#endif
 157
 158/*
 159 * Task weight (visible to users) and its load (invisible to users) have
 160 * independent resolution, but they should be well calibrated. We use
 161 * scale_load() and scale_load_down(w) to convert between them. The
 162 * following must be true:
 163 *
 164 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 165 *
 166 */
 167#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 168
 169/*
 170 * Single value that decides SCHED_DEADLINE internal math precision.
 171 * 10 -> just above 1us
 172 * 9  -> just above 0.5us
 173 */
 174#define DL_SCALE		10
 175
 176/*
 177 * Single value that denotes runtime == period, ie unlimited time.
 178 */
 179#define RUNTIME_INF		((u64)~0ULL)
 
 
 
 
 180
 181static inline int idle_policy(int policy)
 182{
 183	return policy == SCHED_IDLE;
 184}
 185static inline int fair_policy(int policy)
 186{
 187	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 188}
 189
 190static inline int rt_policy(int policy)
 191{
 192	return policy == SCHED_FIFO || policy == SCHED_RR;
 193}
 194
 195static inline int dl_policy(int policy)
 196{
 197	return policy == SCHED_DEADLINE;
 198}
 199static inline bool valid_policy(int policy)
 200{
 201	return idle_policy(policy) || fair_policy(policy) ||
 202		rt_policy(policy) || dl_policy(policy);
 203}
 204
 205static inline int task_has_idle_policy(struct task_struct *p)
 206{
 207	return idle_policy(p->policy);
 208}
 209
 210static inline int task_has_rt_policy(struct task_struct *p)
 211{
 212	return rt_policy(p->policy);
 213}
 214
 215static inline int task_has_dl_policy(struct task_struct *p)
 216{
 217	return dl_policy(p->policy);
 218}
 219
 220#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 221
 222static inline void update_avg(u64 *avg, u64 sample)
 223{
 224	s64 diff = sample - *avg;
 225	*avg += diff / 8;
 226}
 227
 228/*
 229 * Shifting a value by an exponent greater *or equal* to the size of said value
 230 * is UB; cap at size-1.
 231 */
 232#define shr_bound(val, shift)							\
 233	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 234
 235/*
 236 * !! For sched_setattr_nocheck() (kernel) only !!
 237 *
 238 * This is actually gross. :(
 239 *
 240 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 241 * tasks, but still be able to sleep. We need this on platforms that cannot
 242 * atomically change clock frequency. Remove once fast switching will be
 243 * available on such platforms.
 244 *
 245 * SUGOV stands for SchedUtil GOVernor.
 246 */
 247#define SCHED_FLAG_SUGOV	0x10000000
 248
 249#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 250
 251static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
 252{
 253#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 254	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 255#else
 256	return false;
 257#endif
 258}
 259
 260/*
 261 * Tells if entity @a should preempt entity @b.
 262 */
 263static inline bool
 264dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 265{
 266	return dl_entity_is_special(a) ||
 267	       dl_time_before(a->deadline, b->deadline);
 268}
 269
 270/*
 271 * This is the priority-queue data structure of the RT scheduling class:
 272 */
 273struct rt_prio_array {
 274	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 275	struct list_head queue[MAX_RT_PRIO];
 276};
 277
 278struct rt_bandwidth {
 279	/* nests inside the rq lock: */
 280	raw_spinlock_t		rt_runtime_lock;
 281	ktime_t			rt_period;
 282	u64			rt_runtime;
 283	struct hrtimer		rt_period_timer;
 284	unsigned int		rt_period_active;
 285};
 286
 287void __dl_clear_params(struct task_struct *p);
 288
 289struct dl_bandwidth {
 290	raw_spinlock_t		dl_runtime_lock;
 291	u64			dl_runtime;
 292	u64			dl_period;
 293};
 294
 295static inline int dl_bandwidth_enabled(void)
 296{
 297	return sysctl_sched_rt_runtime >= 0;
 298}
 299
 300/*
 301 * To keep the bandwidth of -deadline tasks under control
 302 * we need some place where:
 303 *  - store the maximum -deadline bandwidth of each cpu;
 304 *  - cache the fraction of bandwidth that is currently allocated in
 305 *    each root domain;
 306 *
 307 * This is all done in the data structure below. It is similar to the
 308 * one used for RT-throttling (rt_bandwidth), with the main difference
 309 * that, since here we are only interested in admission control, we
 310 * do not decrease any runtime while the group "executes", neither we
 311 * need a timer to replenish it.
 312 *
 313 * With respect to SMP, bandwidth is given on a per root domain basis,
 314 * meaning that:
 315 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 316 *  - total_bw is the currently allocated bandwidth in each root domain;
 
 
 
 
 
 
 
 317 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 318struct dl_bw {
 319	raw_spinlock_t		lock;
 320	u64			bw;
 321	u64			total_bw;
 322};
 323
 324extern void init_dl_bw(struct dl_bw *dl_b);
 325extern int  sched_dl_global_validate(void);
 326extern void sched_dl_do_global(void);
 327extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 328extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 329extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 330extern bool __checkparam_dl(const struct sched_attr *attr);
 331extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 332extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 333extern int  dl_cpu_busy(int cpu, struct task_struct *p);
 
 
 
 
 
 
 
 
 
 
 334
 335#ifdef CONFIG_CGROUP_SCHED
 336
 
 
 337struct cfs_rq;
 338struct rt_rq;
 339
 340extern struct list_head task_groups;
 341
 342struct cfs_bandwidth {
 343#ifdef CONFIG_CFS_BANDWIDTH
 344	raw_spinlock_t		lock;
 345	ktime_t			period;
 346	u64			quota;
 347	u64			runtime;
 348	u64			burst;
 349	u64			runtime_snap;
 350	s64			hierarchical_quota;
 351
 352	u8			idle;
 353	u8			period_active;
 354	u8			slack_started;
 355	struct hrtimer		period_timer;
 356	struct hrtimer		slack_timer;
 357	struct list_head	throttled_cfs_rq;
 358
 359	/* Statistics: */
 360	int			nr_periods;
 361	int			nr_throttled;
 362	int			nr_burst;
 363	u64			throttled_time;
 364	u64			burst_time;
 365#endif
 366};
 367
 368/* Task group related information */
 369struct task_group {
 370	struct cgroup_subsys_state css;
 371
 372#ifdef CONFIG_FAIR_GROUP_SCHED
 373	/* schedulable entities of this group on each CPU */
 374	struct sched_entity	**se;
 375	/* runqueue "owned" by this group on each CPU */
 376	struct cfs_rq		**cfs_rq;
 377	unsigned long		shares;
 378
 379	/* A positive value indicates that this is a SCHED_IDLE group. */
 380	int			idle;
 381
 382#ifdef	CONFIG_SMP
 383	/*
 384	 * load_avg can be heavily contended at clock tick time, so put
 385	 * it in its own cacheline separated from the fields above which
 386	 * will also be accessed at each tick.
 387	 */
 388	atomic_long_t		load_avg ____cacheline_aligned;
 389#endif
 390#endif
 391
 392#ifdef CONFIG_RT_GROUP_SCHED
 393	struct sched_rt_entity	**rt_se;
 394	struct rt_rq		**rt_rq;
 395
 396	struct rt_bandwidth	rt_bandwidth;
 397#endif
 398
 399	struct rcu_head		rcu;
 400	struct list_head	list;
 401
 402	struct task_group	*parent;
 403	struct list_head	siblings;
 404	struct list_head	children;
 405
 406#ifdef CONFIG_SCHED_AUTOGROUP
 407	struct autogroup	*autogroup;
 408#endif
 409
 410	struct cfs_bandwidth	cfs_bandwidth;
 411
 412#ifdef CONFIG_UCLAMP_TASK_GROUP
 413	/* The two decimal precision [%] value requested from user-space */
 414	unsigned int		uclamp_pct[UCLAMP_CNT];
 415	/* Clamp values requested for a task group */
 416	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 417	/* Effective clamp values used for a task group */
 418	struct uclamp_se	uclamp[UCLAMP_CNT];
 419#endif
 420
 
 421};
 422
 423#ifdef CONFIG_FAIR_GROUP_SCHED
 424#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 425
 426/*
 427 * A weight of 0 or 1 can cause arithmetics problems.
 428 * A weight of a cfs_rq is the sum of weights of which entities
 429 * are queued on this cfs_rq, so a weight of a entity should not be
 430 * too large, so as the shares value of a task group.
 431 * (The default weight is 1024 - so there's no practical
 432 *  limitation from this.)
 433 */
 434#define MIN_SHARES		(1UL <<  1)
 435#define MAX_SHARES		(1UL << 18)
 436#endif
 437
 438typedef int (*tg_visitor)(struct task_group *, void *);
 439
 440extern int walk_tg_tree_from(struct task_group *from,
 441			     tg_visitor down, tg_visitor up, void *data);
 442
 443/*
 444 * Iterate the full tree, calling @down when first entering a node and @up when
 445 * leaving it for the final time.
 446 *
 447 * Caller must hold rcu_lock or sufficient equivalent.
 448 */
 449static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 450{
 451	return walk_tg_tree_from(&root_task_group, down, up, data);
 452}
 453
 454extern int tg_nop(struct task_group *tg, void *data);
 455
 456extern void free_fair_sched_group(struct task_group *tg);
 457extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 458extern void online_fair_sched_group(struct task_group *tg);
 459extern void unregister_fair_sched_group(struct task_group *tg);
 460extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 461			struct sched_entity *se, int cpu,
 462			struct sched_entity *parent);
 463extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 464
 465extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 466extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 467extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 468
 
 
 469extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 470		struct sched_rt_entity *rt_se, int cpu,
 471		struct sched_rt_entity *parent);
 472extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 473extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 474extern long sched_group_rt_runtime(struct task_group *tg);
 475extern long sched_group_rt_period(struct task_group *tg);
 476extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 477
 478extern struct task_group *sched_create_group(struct task_group *parent);
 479extern void sched_online_group(struct task_group *tg,
 480			       struct task_group *parent);
 481extern void sched_destroy_group(struct task_group *tg);
 482extern void sched_release_group(struct task_group *tg);
 483
 484extern void sched_move_task(struct task_struct *tsk);
 485
 486#ifdef CONFIG_FAIR_GROUP_SCHED
 487extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 488
 489extern int sched_group_set_idle(struct task_group *tg, long idle);
 490
 491#ifdef CONFIG_SMP
 492extern void set_task_rq_fair(struct sched_entity *se,
 493			     struct cfs_rq *prev, struct cfs_rq *next);
 494#else /* !CONFIG_SMP */
 495static inline void set_task_rq_fair(struct sched_entity *se,
 496			     struct cfs_rq *prev, struct cfs_rq *next) { }
 497#endif /* CONFIG_SMP */
 498#endif /* CONFIG_FAIR_GROUP_SCHED */
 499
 500#else /* CONFIG_CGROUP_SCHED */
 501
 502struct cfs_bandwidth { };
 503
 504#endif	/* CONFIG_CGROUP_SCHED */
 505
 506extern void unregister_rt_sched_group(struct task_group *tg);
 507extern void free_rt_sched_group(struct task_group *tg);
 508extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 509
 510/*
 511 * u64_u32_load/u64_u32_store
 512 *
 513 * Use a copy of a u64 value to protect against data race. This is only
 514 * applicable for 32-bits architectures.
 515 */
 516#ifdef CONFIG_64BIT
 517# define u64_u32_load_copy(var, copy)       var
 518# define u64_u32_store_copy(var, copy, val) (var = val)
 519#else
 520# define u64_u32_load_copy(var, copy)					\
 521({									\
 522	u64 __val, __val_copy;						\
 523	do {								\
 524		__val_copy = copy;					\
 525		/*							\
 526		 * paired with u64_u32_store_copy(), ordering access	\
 527		 * to var and copy.					\
 528		 */							\
 529		smp_rmb();						\
 530		__val = var;						\
 531	} while (__val != __val_copy);					\
 532	__val;								\
 533})
 534# define u64_u32_store_copy(var, copy, val)				\
 535do {									\
 536	typeof(val) __val = (val);					\
 537	var = __val;							\
 538	/*								\
 539	 * paired with u64_u32_load_copy(), ordering access to var and	\
 540	 * copy.							\
 541	 */								\
 542	smp_wmb();							\
 543	copy = __val;							\
 544} while (0)
 545#endif
 546# define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
 547# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
 548
 549/* CFS-related fields in a runqueue */
 550struct cfs_rq {
 551	struct load_weight	load;
 552	unsigned int		nr_running;
 553	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 554	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 555	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 556
 557	u64			exec_clock;
 558	u64			min_vruntime;
 559#ifdef CONFIG_SCHED_CORE
 560	unsigned int		forceidle_seq;
 561	u64			min_vruntime_fi;
 562#endif
 563
 
 
 564#ifndef CONFIG_64BIT
 565	u64			min_vruntime_copy;
 566#endif
 567
 568	struct rb_root_cached	tasks_timeline;
 
 569
 570	/*
 571	 * 'curr' points to currently running entity on this cfs_rq.
 572	 * It is set to NULL otherwise (i.e when none are currently running).
 573	 */
 574	struct sched_entity	*curr;
 575	struct sched_entity	*next;
 576	struct sched_entity	*last;
 577	struct sched_entity	*skip;
 578
 579#ifdef	CONFIG_SCHED_DEBUG
 580	unsigned int		nr_spread_over;
 581#endif
 582
 583#ifdef CONFIG_SMP
 584	/*
 585	 * CFS load tracking
 586	 */
 587	struct sched_avg	avg;
 
 
 
 
 
 
 588#ifndef CONFIG_64BIT
 589	u64			last_update_time_copy;
 590#endif
 591	struct {
 592		raw_spinlock_t	lock ____cacheline_aligned;
 593		int		nr;
 594		unsigned long	load_avg;
 595		unsigned long	util_avg;
 596		unsigned long	runnable_avg;
 597	} removed;
 598
 599#ifdef CONFIG_FAIR_GROUP_SCHED
 600	unsigned long		tg_load_avg_contrib;
 601	long			propagate;
 602	long			prop_runnable_sum;
 603
 604	/*
 605	 *   h_load = weight * f(tg)
 606	 *
 607	 * Where f(tg) is the recursive weight fraction assigned to
 608	 * this group.
 609	 */
 610	unsigned long		h_load;
 611	u64			last_h_load_update;
 612	struct sched_entity	*h_load_next;
 613#endif /* CONFIG_FAIR_GROUP_SCHED */
 614#endif /* CONFIG_SMP */
 615
 616#ifdef CONFIG_FAIR_GROUP_SCHED
 617	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 618
 619	/*
 620	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 621	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 622	 * (like users, containers etc.)
 623	 *
 624	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 625	 * This list is used during load balance.
 626	 */
 627	int			on_list;
 628	struct list_head	leaf_cfs_rq_list;
 629	struct task_group	*tg;	/* group that "owns" this runqueue */
 630
 631	/* Locally cached copy of our task_group's idle value */
 632	int			idle;
 633
 634#ifdef CONFIG_CFS_BANDWIDTH
 635	int			runtime_enabled;
 636	s64			runtime_remaining;
 637
 638	u64			throttled_pelt_idle;
 639#ifndef CONFIG_64BIT
 640	u64                     throttled_pelt_idle_copy;
 641#endif
 642	u64			throttled_clock;
 643	u64			throttled_clock_pelt;
 644	u64			throttled_clock_pelt_time;
 645	int			throttled;
 646	int			throttle_count;
 647	struct list_head	throttled_list;
 648#endif /* CONFIG_CFS_BANDWIDTH */
 649#endif /* CONFIG_FAIR_GROUP_SCHED */
 650};
 651
 652static inline int rt_bandwidth_enabled(void)
 653{
 654	return sysctl_sched_rt_runtime >= 0;
 655}
 656
 657/* RT IPI pull logic requires IRQ_WORK */
 658#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 659# define HAVE_RT_PUSH_IPI
 660#endif
 661
 662/* Real-Time classes' related field in a runqueue: */
 663struct rt_rq {
 664	struct rt_prio_array	active;
 665	unsigned int		rt_nr_running;
 666	unsigned int		rr_nr_running;
 667#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 668	struct {
 669		int		curr; /* highest queued rt task prio */
 670#ifdef CONFIG_SMP
 671		int		next; /* next highest */
 672#endif
 673	} highest_prio;
 674#endif
 675#ifdef CONFIG_SMP
 676	unsigned int		rt_nr_migratory;
 677	unsigned int		rt_nr_total;
 678	int			overloaded;
 679	struct plist_head	pushable_tasks;
 680
 
 
 
 
 
 681#endif /* CONFIG_SMP */
 682	int			rt_queued;
 683
 684	int			rt_throttled;
 685	u64			rt_time;
 686	u64			rt_runtime;
 687	/* Nests inside the rq lock: */
 688	raw_spinlock_t		rt_runtime_lock;
 689
 690#ifdef CONFIG_RT_GROUP_SCHED
 691	unsigned int		rt_nr_boosted;
 692
 693	struct rq		*rq;
 694	struct task_group	*tg;
 695#endif
 696};
 697
 698static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 699{
 700	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 701}
 702
 703/* Deadline class' related fields in a runqueue */
 704struct dl_rq {
 705	/* runqueue is an rbtree, ordered by deadline */
 706	struct rb_root_cached	root;
 
 707
 708	unsigned int		dl_nr_running;
 709
 710#ifdef CONFIG_SMP
 711	/*
 712	 * Deadline values of the currently executing and the
 713	 * earliest ready task on this rq. Caching these facilitates
 714	 * the decision whether or not a ready but not running task
 715	 * should migrate somewhere else.
 716	 */
 717	struct {
 718		u64		curr;
 719		u64		next;
 720	} earliest_dl;
 721
 722	unsigned int		dl_nr_migratory;
 723	int			overloaded;
 724
 725	/*
 726	 * Tasks on this rq that can be pushed away. They are kept in
 727	 * an rb-tree, ordered by tasks' deadlines, with caching
 728	 * of the leftmost (earliest deadline) element.
 729	 */
 730	struct rb_root_cached	pushable_dl_tasks_root;
 
 731#else
 732	struct dl_bw		dl_bw;
 733#endif
 734	/*
 735	 * "Active utilization" for this runqueue: increased when a
 736	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 737	 * task blocks
 738	 */
 739	u64			running_bw;
 740
 741	/*
 742	 * Utilization of the tasks "assigned" to this runqueue (including
 743	 * the tasks that are in runqueue and the tasks that executed on this
 744	 * CPU and blocked). Increased when a task moves to this runqueue, and
 745	 * decreased when the task moves away (migrates, changes scheduling
 746	 * policy, or terminates).
 747	 * This is needed to compute the "inactive utilization" for the
 748	 * runqueue (inactive utilization = this_bw - running_bw).
 749	 */
 750	u64			this_bw;
 751	u64			extra_bw;
 752
 753	/*
 754	 * Inverse of the fraction of CPU utilization that can be reclaimed
 755	 * by the GRUB algorithm.
 756	 */
 757	u64			bw_ratio;
 758};
 759
 760#ifdef CONFIG_FAIR_GROUP_SCHED
 761/* An entity is a task if it doesn't "own" a runqueue */
 762#define entity_is_task(se)	(!se->my_q)
 763
 764static inline void se_update_runnable(struct sched_entity *se)
 765{
 766	if (!entity_is_task(se))
 767		se->runnable_weight = se->my_q->h_nr_running;
 768}
 769
 770static inline long se_runnable(struct sched_entity *se)
 771{
 772	if (entity_is_task(se))
 773		return !!se->on_rq;
 774	else
 775		return se->runnable_weight;
 776}
 777
 778#else
 779#define entity_is_task(se)	1
 780
 781static inline void se_update_runnable(struct sched_entity *se) {}
 782
 783static inline long se_runnable(struct sched_entity *se)
 784{
 785	return !!se->on_rq;
 786}
 787#endif
 788
 789#ifdef CONFIG_SMP
 790/*
 791 * XXX we want to get rid of these helpers and use the full load resolution.
 792 */
 793static inline long se_weight(struct sched_entity *se)
 794{
 795	return scale_load_down(se->load.weight);
 796}
 797
 798
 799static inline bool sched_asym_prefer(int a, int b)
 800{
 801	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 802}
 803
 804struct perf_domain {
 805	struct em_perf_domain *em_pd;
 806	struct perf_domain *next;
 807	struct rcu_head rcu;
 808};
 809
 810/* Scheduling group status flags */
 811#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 812#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 813
 814/*
 815 * We add the notion of a root-domain which will be used to define per-domain
 816 * variables. Each exclusive cpuset essentially defines an island domain by
 817 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 818 * exclusive cpuset is created, we also create and attach a new root-domain
 819 * object.
 820 *
 821 */
 822struct root_domain {
 823	atomic_t		refcount;
 824	atomic_t		rto_count;
 825	struct rcu_head		rcu;
 826	cpumask_var_t		span;
 827	cpumask_var_t		online;
 828
 829	/*
 830	 * Indicate pullable load on at least one CPU, e.g:
 831	 * - More than one runnable task
 832	 * - Running task is misfit
 833	 */
 834	int			overload;
 835
 836	/* Indicate one or more cpus over-utilized (tipping point) */
 837	int			overutilized;
 838
 839	/*
 840	 * The bit corresponding to a CPU gets set here if such CPU has more
 841	 * than one runnable -deadline task (as it is below for RT tasks).
 842	 */
 843	cpumask_var_t		dlo_mask;
 844	atomic_t		dlo_count;
 845	struct dl_bw		dl_bw;
 846	struct cpudl		cpudl;
 847
 848	/*
 849	 * Indicate whether a root_domain's dl_bw has been checked or
 850	 * updated. It's monotonously increasing value.
 851	 *
 852	 * Also, some corner cases, like 'wrap around' is dangerous, but given
 853	 * that u64 is 'big enough'. So that shouldn't be a concern.
 854	 */
 855	u64 visit_gen;
 856
 857#ifdef HAVE_RT_PUSH_IPI
 858	/*
 859	 * For IPI pull requests, loop across the rto_mask.
 860	 */
 861	struct irq_work		rto_push_work;
 862	raw_spinlock_t		rto_lock;
 863	/* These are only updated and read within rto_lock */
 864	int			rto_loop;
 865	int			rto_cpu;
 866	/* These atomics are updated outside of a lock */
 867	atomic_t		rto_loop_next;
 868	atomic_t		rto_loop_start;
 869#endif
 870	/*
 871	 * The "RT overload" flag: it gets set if a CPU has more than
 872	 * one runnable RT task.
 873	 */
 874	cpumask_var_t		rto_mask;
 875	struct cpupri		cpupri;
 876
 877	unsigned long		max_cpu_capacity;
 878
 879	/*
 880	 * NULL-terminated list of performance domains intersecting with the
 881	 * CPUs of the rd. Protected by RCU.
 882	 */
 883	struct perf_domain __rcu *pd;
 884};
 885
 886extern void init_defrootdomain(void);
 887extern int sched_init_domains(const struct cpumask *cpu_map);
 888extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 889extern void sched_get_rd(struct root_domain *rd);
 890extern void sched_put_rd(struct root_domain *rd);
 891
 892#ifdef HAVE_RT_PUSH_IPI
 893extern void rto_push_irq_work_func(struct irq_work *work);
 894#endif
 895#endif /* CONFIG_SMP */
 896
 897#ifdef CONFIG_UCLAMP_TASK
 898/*
 899 * struct uclamp_bucket - Utilization clamp bucket
 900 * @value: utilization clamp value for tasks on this clamp bucket
 901 * @tasks: number of RUNNABLE tasks on this clamp bucket
 902 *
 903 * Keep track of how many tasks are RUNNABLE for a given utilization
 904 * clamp value.
 905 */
 906struct uclamp_bucket {
 907	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 908	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 909};
 910
 911/*
 912 * struct uclamp_rq - rq's utilization clamp
 913 * @value: currently active clamp values for a rq
 914 * @bucket: utilization clamp buckets affecting a rq
 915 *
 916 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 917 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 918 * (or actually running) with that value.
 919 *
 920 * There are up to UCLAMP_CNT possible different clamp values, currently there
 921 * are only two: minimum utilization and maximum utilization.
 922 *
 923 * All utilization clamping values are MAX aggregated, since:
 924 * - for util_min: we want to run the CPU at least at the max of the minimum
 925 *   utilization required by its currently RUNNABLE tasks.
 926 * - for util_max: we want to allow the CPU to run up to the max of the
 927 *   maximum utilization allowed by its currently RUNNABLE tasks.
 928 *
 929 * Since on each system we expect only a limited number of different
 930 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 931 * the metrics required to compute all the per-rq utilization clamp values.
 932 */
 933struct uclamp_rq {
 934	unsigned int value;
 935	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 936};
 937
 938DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 939#endif /* CONFIG_UCLAMP_TASK */
 940
 941struct rq;
 942struct balance_callback {
 943	struct balance_callback *next;
 944	void (*func)(struct rq *rq);
 945};
 946
 947/*
 948 * This is the main, per-CPU runqueue data structure.
 949 *
 950 * Locking rule: those places that want to lock multiple runqueues
 951 * (such as the load balancing or the thread migration code), lock
 952 * acquire operations must be ordered by ascending &runqueue.
 953 */
 954struct rq {
 955	/* runqueue lock: */
 956	raw_spinlock_t		__lock;
 957
 958	/*
 959	 * nr_running and cpu_load should be in the same cacheline because
 960	 * remote CPUs use both these fields when doing load calculation.
 961	 */
 962	unsigned int		nr_running;
 963#ifdef CONFIG_NUMA_BALANCING
 964	unsigned int		nr_numa_running;
 965	unsigned int		nr_preferred_running;
 966	unsigned int		numa_migrate_on;
 967#endif
 
 
 
 968#ifdef CONFIG_NO_HZ_COMMON
 969#ifdef CONFIG_SMP
 970	unsigned long		last_blocked_load_update_tick;
 971	unsigned int		has_blocked_load;
 972	call_single_data_t	nohz_csd;
 973#endif /* CONFIG_SMP */
 974	unsigned int		nohz_tick_stopped;
 975	atomic_t		nohz_flags;
 976#endif /* CONFIG_NO_HZ_COMMON */
 977
 978#ifdef CONFIG_SMP
 979	unsigned int		ttwu_pending;
 980#endif
 981	u64			nr_switches;
 982
 983#ifdef CONFIG_UCLAMP_TASK
 984	/* Utilization clamp values based on CPU's RUNNABLE tasks */
 985	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
 986	unsigned int		uclamp_flags;
 987#define UCLAMP_FLAG_IDLE 0x01
 988#endif
 989
 990	struct cfs_rq		cfs;
 991	struct rt_rq		rt;
 992	struct dl_rq		dl;
 
 
 
 
 993
 994#ifdef CONFIG_FAIR_GROUP_SCHED
 995	/* list of leaf cfs_rq on this CPU: */
 996	struct list_head	leaf_cfs_rq_list;
 997	struct list_head	*tmp_alone_branch;
 998#endif /* CONFIG_FAIR_GROUP_SCHED */
 999
1000	/*
1001	 * This is part of a global counter where only the total sum
1002	 * over all CPUs matters. A task can increase this counter on
1003	 * one CPU and if it got migrated afterwards it may decrease
1004	 * it on another CPU. Always updated under the runqueue lock:
1005	 */
1006	unsigned int		nr_uninterruptible;
1007
1008	struct task_struct __rcu	*curr;
1009	struct task_struct	*idle;
1010	struct task_struct	*stop;
1011	unsigned long		next_balance;
1012	struct mm_struct	*prev_mm;
1013
1014	unsigned int		clock_update_flags;
1015	u64			clock;
1016	/* Ensure that all clocks are in the same cache line */
1017	u64			clock_task ____cacheline_aligned;
1018	u64			clock_pelt;
1019	unsigned long		lost_idle_time;
1020	u64			clock_pelt_idle;
1021	u64			clock_idle;
1022#ifndef CONFIG_64BIT
1023	u64			clock_pelt_idle_copy;
1024	u64			clock_idle_copy;
1025#endif
1026
1027	atomic_t		nr_iowait;
 
 
1028
1029#ifdef CONFIG_SCHED_DEBUG
1030	u64 last_seen_need_resched_ns;
1031	int ticks_without_resched;
1032#endif
1033
1034#ifdef CONFIG_MEMBARRIER
1035	int membarrier_state;
1036#endif
1037
1038#ifdef CONFIG_SMP
1039	struct root_domain		*rd;
1040	struct sched_domain __rcu	*sd;
1041
1042	unsigned long		cpu_capacity;
1043	unsigned long		cpu_capacity_orig;
1044	unsigned long		cpu_capacity_inverted;
1045
1046	struct balance_callback *balance_callback;
1047
1048	unsigned char		nohz_idle_balance;
1049	unsigned char		idle_balance;
1050
1051	unsigned long		misfit_task_load;
1052
 
1053	/* For active balancing */
1054	int			active_balance;
1055	int			push_cpu;
1056	struct cpu_stop_work	active_balance_work;
1057
1058	/* CPU of this runqueue: */
1059	int			cpu;
1060	int			online;
1061
1062	struct list_head cfs_tasks;
1063
1064	struct sched_avg	avg_rt;
1065	struct sched_avg	avg_dl;
1066#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1067	struct sched_avg	avg_irq;
1068#endif
1069#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1070	struct sched_avg	avg_thermal;
1071#endif
1072	u64			idle_stamp;
1073	u64			avg_idle;
1074
1075	unsigned long		wake_stamp;
1076	u64			wake_avg_idle;
1077
1078	/* This is used to determine avg_idle's max value */
1079	u64			max_idle_balance_cost;
1080
1081#ifdef CONFIG_HOTPLUG_CPU
1082	struct rcuwait		hotplug_wait;
1083#endif
1084#endif /* CONFIG_SMP */
1085
1086#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1087	u64			prev_irq_time;
1088#endif
1089#ifdef CONFIG_PARAVIRT
1090	u64			prev_steal_time;
1091#endif
1092#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1093	u64			prev_steal_time_rq;
1094#endif
1095
1096	/* calc_load related fields */
1097	unsigned long		calc_load_update;
1098	long			calc_load_active;
1099
1100#ifdef CONFIG_SCHED_HRTICK
1101#ifdef CONFIG_SMP
1102	call_single_data_t	hrtick_csd;
 
1103#endif
1104	struct hrtimer		hrtick_timer;
1105	ktime_t 		hrtick_time;
1106#endif
1107
1108#ifdef CONFIG_SCHEDSTATS
1109	/* latency stats */
1110	struct sched_info	rq_sched_info;
1111	unsigned long long	rq_cpu_time;
1112	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1113
1114	/* sys_sched_yield() stats */
1115	unsigned int		yld_count;
1116
1117	/* schedule() stats */
1118	unsigned int		sched_count;
1119	unsigned int		sched_goidle;
1120
1121	/* try_to_wake_up() stats */
1122	unsigned int		ttwu_count;
1123	unsigned int		ttwu_local;
1124#endif
1125
1126#ifdef CONFIG_CPU_IDLE
1127	/* Must be inspected within a rcu lock section */
1128	struct cpuidle_state	*idle_state;
1129#endif
1130
1131#ifdef CONFIG_SMP
1132	unsigned int		nr_pinned;
1133#endif
1134	unsigned int		push_busy;
1135	struct cpu_stop_work	push_work;
1136
1137#ifdef CONFIG_SCHED_CORE
1138	/* per rq */
1139	struct rq		*core;
1140	struct task_struct	*core_pick;
1141	unsigned int		core_enabled;
1142	unsigned int		core_sched_seq;
1143	struct rb_root		core_tree;
1144
1145	/* shared state -- careful with sched_core_cpu_deactivate() */
1146	unsigned int		core_task_seq;
1147	unsigned int		core_pick_seq;
1148	unsigned long		core_cookie;
1149	unsigned int		core_forceidle_count;
1150	unsigned int		core_forceidle_seq;
1151	unsigned int		core_forceidle_occupation;
1152	u64			core_forceidle_start;
1153#endif
1154
1155	/* Scratch cpumask to be temporarily used under rq_lock */
1156	cpumask_var_t		scratch_mask;
1157};
1158
1159#ifdef CONFIG_FAIR_GROUP_SCHED
1160
1161/* CPU runqueue to which this cfs_rq is attached */
1162static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1163{
1164	return cfs_rq->rq;
1165}
1166
1167#else
1168
1169static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1170{
1171	return container_of(cfs_rq, struct rq, cfs);
1172}
1173#endif
1174
1175static inline int cpu_of(struct rq *rq)
1176{
1177#ifdef CONFIG_SMP
1178	return rq->cpu;
1179#else
1180	return 0;
1181#endif
1182}
1183
1184#define MDF_PUSH	0x01
1185
1186static inline bool is_migration_disabled(struct task_struct *p)
1187{
1188#ifdef CONFIG_SMP
1189	return p->migration_disabled;
1190#else
1191	return false;
1192#endif
1193}
1194
1195DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1196
1197#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1198#define this_rq()		this_cpu_ptr(&runqueues)
1199#define task_rq(p)		cpu_rq(task_cpu(p))
1200#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1201#define raw_rq()		raw_cpu_ptr(&runqueues)
1202
1203struct sched_group;
1204#ifdef CONFIG_SCHED_CORE
1205static inline struct cpumask *sched_group_span(struct sched_group *sg);
1206
1207DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1208
1209static inline bool sched_core_enabled(struct rq *rq)
1210{
1211	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1212}
1213
1214static inline bool sched_core_disabled(void)
1215{
1216	return !static_branch_unlikely(&__sched_core_enabled);
1217}
1218
1219/*
1220 * Be careful with this function; not for general use. The return value isn't
1221 * stable unless you actually hold a relevant rq->__lock.
1222 */
1223static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1224{
1225	if (sched_core_enabled(rq))
1226		return &rq->core->__lock;
1227
1228	return &rq->__lock;
1229}
1230
1231static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1232{
1233	if (rq->core_enabled)
1234		return &rq->core->__lock;
1235
1236	return &rq->__lock;
1237}
1238
1239bool cfs_prio_less(struct task_struct *a, struct task_struct *b, bool fi);
1240
1241/*
1242 * Helpers to check if the CPU's core cookie matches with the task's cookie
1243 * when core scheduling is enabled.
1244 * A special case is that the task's cookie always matches with CPU's core
1245 * cookie if the CPU is in an idle core.
1246 */
1247static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1248{
1249	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1250	if (!sched_core_enabled(rq))
1251		return true;
1252
1253	return rq->core->core_cookie == p->core_cookie;
1254}
1255
1256static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1257{
1258	bool idle_core = true;
1259	int cpu;
1260
1261	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1262	if (!sched_core_enabled(rq))
1263		return true;
1264
1265	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1266		if (!available_idle_cpu(cpu)) {
1267			idle_core = false;
1268			break;
1269		}
1270	}
1271
1272	/*
1273	 * A CPU in an idle core is always the best choice for tasks with
1274	 * cookies.
1275	 */
1276	return idle_core || rq->core->core_cookie == p->core_cookie;
1277}
1278
1279static inline bool sched_group_cookie_match(struct rq *rq,
1280					    struct task_struct *p,
1281					    struct sched_group *group)
1282{
1283	int cpu;
1284
1285	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1286	if (!sched_core_enabled(rq))
1287		return true;
1288
1289	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1290		if (sched_core_cookie_match(cpu_rq(cpu), p))
1291			return true;
1292	}
1293	return false;
1294}
1295
1296static inline bool sched_core_enqueued(struct task_struct *p)
1297{
1298	return !RB_EMPTY_NODE(&p->core_node);
1299}
1300
1301extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1302extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1303
1304extern void sched_core_get(void);
1305extern void sched_core_put(void);
1306
1307#else /* !CONFIG_SCHED_CORE */
1308
1309static inline bool sched_core_enabled(struct rq *rq)
1310{
1311	return false;
1312}
1313
1314static inline bool sched_core_disabled(void)
1315{
1316	return true;
1317}
1318
1319static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1320{
1321	return &rq->__lock;
1322}
1323
1324static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1325{
1326	return &rq->__lock;
1327}
1328
1329static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1330{
1331	return true;
1332}
1333
1334static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1335{
1336	return true;
1337}
1338
1339static inline bool sched_group_cookie_match(struct rq *rq,
1340					    struct task_struct *p,
1341					    struct sched_group *group)
1342{
1343	return true;
1344}
1345#endif /* CONFIG_SCHED_CORE */
1346
1347static inline void lockdep_assert_rq_held(struct rq *rq)
1348{
1349	lockdep_assert_held(__rq_lockp(rq));
1350}
1351
1352extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1353extern bool raw_spin_rq_trylock(struct rq *rq);
1354extern void raw_spin_rq_unlock(struct rq *rq);
1355
1356static inline void raw_spin_rq_lock(struct rq *rq)
1357{
1358	raw_spin_rq_lock_nested(rq, 0);
1359}
1360
1361static inline void raw_spin_rq_lock_irq(struct rq *rq)
1362{
1363	local_irq_disable();
1364	raw_spin_rq_lock(rq);
1365}
1366
1367static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1368{
1369	raw_spin_rq_unlock(rq);
1370	local_irq_enable();
1371}
1372
1373static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1374{
1375	unsigned long flags;
1376	local_irq_save(flags);
1377	raw_spin_rq_lock(rq);
1378	return flags;
1379}
1380
1381static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1382{
1383	raw_spin_rq_unlock(rq);
1384	local_irq_restore(flags);
1385}
1386
1387#define raw_spin_rq_lock_irqsave(rq, flags)	\
1388do {						\
1389	flags = _raw_spin_rq_lock_irqsave(rq);	\
1390} while (0)
1391
1392#ifdef CONFIG_SCHED_SMT
1393extern void __update_idle_core(struct rq *rq);
1394
1395static inline void update_idle_core(struct rq *rq)
1396{
1397	if (static_branch_unlikely(&sched_smt_present))
1398		__update_idle_core(rq);
1399}
1400
1401#else
1402static inline void update_idle_core(struct rq *rq) { }
1403#endif
1404
1405#ifdef CONFIG_FAIR_GROUP_SCHED
1406static inline struct task_struct *task_of(struct sched_entity *se)
1407{
1408	SCHED_WARN_ON(!entity_is_task(se));
1409	return container_of(se, struct task_struct, se);
1410}
1411
1412static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1413{
1414	return p->se.cfs_rq;
1415}
1416
1417/* runqueue on which this entity is (to be) queued */
1418static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1419{
1420	return se->cfs_rq;
1421}
1422
1423/* runqueue "owned" by this group */
1424static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1425{
1426	return grp->my_q;
1427}
1428
1429#else
1430
1431static inline struct task_struct *task_of(struct sched_entity *se)
1432{
1433	return container_of(se, struct task_struct, se);
1434}
1435
1436static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1437{
1438	return &task_rq(p)->cfs;
1439}
1440
1441static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
1442{
1443	struct task_struct *p = task_of(se);
1444	struct rq *rq = task_rq(p);
1445
1446	return &rq->cfs;
1447}
1448
1449/* runqueue "owned" by this group */
1450static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1451{
1452	return NULL;
1453}
1454#endif
1455
1456extern void update_rq_clock(struct rq *rq);
1457
1458/*
1459 * rq::clock_update_flags bits
1460 *
1461 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1462 *  call to __schedule(). This is an optimisation to avoid
1463 *  neighbouring rq clock updates.
1464 *
1465 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1466 *  in effect and calls to update_rq_clock() are being ignored.
1467 *
1468 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1469 *  made to update_rq_clock() since the last time rq::lock was pinned.
1470 *
1471 * If inside of __schedule(), clock_update_flags will have been
1472 * shifted left (a left shift is a cheap operation for the fast path
1473 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1474 *
1475 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1476 *
1477 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1478 * one position though, because the next rq_unpin_lock() will shift it
1479 * back.
1480 */
1481#define RQCF_REQ_SKIP		0x01
1482#define RQCF_ACT_SKIP		0x02
1483#define RQCF_UPDATED		0x04
1484
1485static inline void assert_clock_updated(struct rq *rq)
1486{
1487	/*
1488	 * The only reason for not seeing a clock update since the
1489	 * last rq_pin_lock() is if we're currently skipping updates.
1490	 */
1491	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1492}
1493
1494static inline u64 rq_clock(struct rq *rq)
1495{
1496	lockdep_assert_rq_held(rq);
1497	assert_clock_updated(rq);
1498
1499	return rq->clock;
1500}
1501
1502static inline u64 rq_clock_task(struct rq *rq)
1503{
1504	lockdep_assert_rq_held(rq);
1505	assert_clock_updated(rq);
1506
1507	return rq->clock_task;
1508}
1509
1510/**
1511 * By default the decay is the default pelt decay period.
1512 * The decay shift can change the decay period in
1513 * multiples of 32.
1514 *  Decay shift		Decay period(ms)
1515 *	0			32
1516 *	1			64
1517 *	2			128
1518 *	3			256
1519 *	4			512
1520 */
1521extern int sched_thermal_decay_shift;
1522
1523static inline u64 rq_clock_thermal(struct rq *rq)
1524{
1525	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1526}
1527
1528static inline void rq_clock_skip_update(struct rq *rq)
1529{
1530	lockdep_assert_rq_held(rq);
1531	rq->clock_update_flags |= RQCF_REQ_SKIP;
1532}
1533
1534/*
1535 * See rt task throttling, which is the only time a skip
1536 * request is canceled.
1537 */
1538static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1539{
1540	lockdep_assert_rq_held(rq);
1541	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1542}
1543
1544struct rq_flags {
1545	unsigned long flags;
1546	struct pin_cookie cookie;
1547#ifdef CONFIG_SCHED_DEBUG
1548	/*
1549	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1550	 * current pin context is stashed here in case it needs to be
1551	 * restored in rq_repin_lock().
1552	 */
1553	unsigned int clock_update_flags;
1554#endif
1555};
1556
1557extern struct balance_callback balance_push_callback;
1558
1559/*
1560 * Lockdep annotation that avoids accidental unlocks; it's like a
1561 * sticky/continuous lockdep_assert_held().
1562 *
1563 * This avoids code that has access to 'struct rq *rq' (basically everything in
1564 * the scheduler) from accidentally unlocking the rq if they do not also have a
1565 * copy of the (on-stack) 'struct rq_flags rf'.
1566 *
1567 * Also see Documentation/locking/lockdep-design.rst.
1568 */
1569static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1570{
1571	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1572
1573#ifdef CONFIG_SCHED_DEBUG
1574	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1575	rf->clock_update_flags = 0;
1576#ifdef CONFIG_SMP
1577	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1578#endif
1579#endif
1580}
1581
1582static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1583{
1584#ifdef CONFIG_SCHED_DEBUG
1585	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1586		rf->clock_update_flags = RQCF_UPDATED;
1587#endif
1588
1589	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1590}
1591
1592static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1593{
1594	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1595
1596#ifdef CONFIG_SCHED_DEBUG
1597	/*
1598	 * Restore the value we stashed in @rf for this pin context.
1599	 */
1600	rq->clock_update_flags |= rf->clock_update_flags;
1601#endif
1602}
1603
1604struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1605	__acquires(rq->lock);
1606
1607struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1608	__acquires(p->pi_lock)
1609	__acquires(rq->lock);
1610
1611static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1612	__releases(rq->lock)
1613{
1614	rq_unpin_lock(rq, rf);
1615	raw_spin_rq_unlock(rq);
1616}
1617
1618static inline void
1619task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1620	__releases(rq->lock)
1621	__releases(p->pi_lock)
1622{
1623	rq_unpin_lock(rq, rf);
1624	raw_spin_rq_unlock(rq);
1625	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1626}
1627
1628static inline void
1629rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1630	__acquires(rq->lock)
1631{
1632	raw_spin_rq_lock_irqsave(rq, rf->flags);
1633	rq_pin_lock(rq, rf);
1634}
1635
1636static inline void
1637rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1638	__acquires(rq->lock)
1639{
1640	raw_spin_rq_lock_irq(rq);
1641	rq_pin_lock(rq, rf);
1642}
1643
1644static inline void
1645rq_lock(struct rq *rq, struct rq_flags *rf)
1646	__acquires(rq->lock)
1647{
1648	raw_spin_rq_lock(rq);
1649	rq_pin_lock(rq, rf);
1650}
1651
1652static inline void
1653rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1654	__releases(rq->lock)
1655{
1656	rq_unpin_lock(rq, rf);
1657	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1658}
1659
1660static inline void
1661rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1662	__releases(rq->lock)
1663{
1664	rq_unpin_lock(rq, rf);
1665	raw_spin_rq_unlock_irq(rq);
1666}
1667
1668static inline void
1669rq_unlock(struct rq *rq, struct rq_flags *rf)
1670	__releases(rq->lock)
1671{
1672	rq_unpin_lock(rq, rf);
1673	raw_spin_rq_unlock(rq);
1674}
1675
1676static inline struct rq *
1677this_rq_lock_irq(struct rq_flags *rf)
1678	__acquires(rq->lock)
1679{
1680	struct rq *rq;
1681
1682	local_irq_disable();
1683	rq = this_rq();
1684	rq_lock(rq, rf);
1685	return rq;
1686}
1687
1688#ifdef CONFIG_NUMA
1689enum numa_topology_type {
1690	NUMA_DIRECT,
1691	NUMA_GLUELESS_MESH,
1692	NUMA_BACKPLANE,
1693};
1694extern enum numa_topology_type sched_numa_topology_type;
1695extern int sched_max_numa_distance;
1696extern bool find_numa_distance(int distance);
1697extern void sched_init_numa(int offline_node);
1698extern void sched_update_numa(int cpu, bool online);
1699extern void sched_domains_numa_masks_set(unsigned int cpu);
1700extern void sched_domains_numa_masks_clear(unsigned int cpu);
1701extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1702#else
1703static inline void sched_init_numa(int offline_node) { }
1704static inline void sched_update_numa(int cpu, bool online) { }
1705static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1706static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1707static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1708{
1709	return nr_cpu_ids;
1710}
1711#endif
1712
1713#ifdef CONFIG_NUMA_BALANCING
1714/* The regions in numa_faults array from task_struct */
1715enum numa_faults_stats {
1716	NUMA_MEM = 0,
1717	NUMA_CPU,
1718	NUMA_MEMBUF,
1719	NUMA_CPUBUF
1720};
1721extern void sched_setnuma(struct task_struct *p, int node);
1722extern int migrate_task_to(struct task_struct *p, int cpu);
1723extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1724			int cpu, int scpu);
1725extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1726#else
1727static inline void
1728init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1729{
1730}
1731#endif /* CONFIG_NUMA_BALANCING */
1732
1733#ifdef CONFIG_SMP
1734
1735static inline void
1736queue_balance_callback(struct rq *rq,
1737		       struct balance_callback *head,
1738		       void (*func)(struct rq *rq))
1739{
1740	lockdep_assert_rq_held(rq);
1741
1742	/*
1743	 * Don't (re)queue an already queued item; nor queue anything when
1744	 * balance_push() is active, see the comment with
1745	 * balance_push_callback.
1746	 */
1747	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1748		return;
1749
1750	head->func = func;
1751	head->next = rq->balance_callback;
1752	rq->balance_callback = head;
1753}
1754
 
 
1755#define rcu_dereference_check_sched_domain(p) \
1756	rcu_dereference_check((p), \
1757			      lockdep_is_held(&sched_domains_mutex))
1758
1759/*
1760 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1761 * See destroy_sched_domains: call_rcu for details.
1762 *
1763 * The domain tree of any CPU may only be accessed from within
1764 * preempt-disabled sections.
1765 */
1766#define for_each_domain(cpu, __sd) \
1767	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1768			__sd; __sd = __sd->parent)
1769
 
 
1770/**
1771 * highest_flag_domain - Return highest sched_domain containing flag.
1772 * @cpu:	The CPU whose highest level of sched domain is to
1773 *		be returned.
1774 * @flag:	The flag to check for the highest sched_domain
1775 *		for the given CPU.
1776 *
1777 * Returns the highest sched_domain of a CPU which contains the given flag.
1778 */
1779static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1780{
1781	struct sched_domain *sd, *hsd = NULL;
1782
1783	for_each_domain(cpu, sd) {
1784		if (!(sd->flags & flag))
1785			break;
1786		hsd = sd;
1787	}
1788
1789	return hsd;
1790}
1791
1792static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1793{
1794	struct sched_domain *sd;
1795
1796	for_each_domain(cpu, sd) {
1797		if (sd->flags & flag)
1798			break;
1799	}
1800
1801	return sd;
1802}
1803
1804DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1805DECLARE_PER_CPU(int, sd_llc_size);
1806DECLARE_PER_CPU(int, sd_llc_id);
1807DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1808DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1809DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1810DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1811extern struct static_key_false sched_asym_cpucapacity;
1812
1813static __always_inline bool sched_asym_cpucap_active(void)
1814{
1815	return static_branch_unlikely(&sched_asym_cpucapacity);
1816}
1817
1818struct sched_group_capacity {
1819	atomic_t		ref;
1820	/*
1821	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1822	 * for a single CPU.
1823	 */
1824	unsigned long		capacity;
1825	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1826	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1827	unsigned long		next_update;
1828	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1829
1830#ifdef CONFIG_SCHED_DEBUG
1831	int			id;
1832#endif
1833
1834	unsigned long		cpumask[];		/* Balance mask */
1835};
1836
1837struct sched_group {
1838	struct sched_group	*next;			/* Must be a circular list */
1839	atomic_t		ref;
1840
1841	unsigned int		group_weight;
1842	struct sched_group_capacity *sgc;
1843	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1844	int			flags;
1845
1846	/*
1847	 * The CPUs this group covers.
1848	 *
1849	 * NOTE: this field is variable length. (Allocated dynamically
1850	 * by attaching extra space to the end of the structure,
1851	 * depending on how many CPUs the kernel has booted up with)
1852	 */
1853	unsigned long		cpumask[];
1854};
1855
1856static inline struct cpumask *sched_group_span(struct sched_group *sg)
1857{
1858	return to_cpumask(sg->cpumask);
1859}
1860
1861/*
1862 * See build_balance_mask().
 
1863 */
1864static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1865{
1866	return to_cpumask(sg->sgc->cpumask);
1867}
1868
 
 
 
 
 
 
 
 
 
1869extern int group_balance_cpu(struct sched_group *sg);
1870
1871#ifdef CONFIG_SCHED_DEBUG
1872void update_sched_domain_debugfs(void);
1873void dirty_sched_domain_sysctl(int cpu);
1874#else
1875static inline void update_sched_domain_debugfs(void)
1876{
1877}
1878static inline void dirty_sched_domain_sysctl(int cpu)
1879{
1880}
1881#endif
1882
1883extern int sched_update_scaling(void);
 
 
1884
1885static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1886{
1887	if (!p->user_cpus_ptr)
1888		return cpu_possible_mask; /* &init_task.cpus_mask */
1889	return p->user_cpus_ptr;
1890}
1891#endif /* CONFIG_SMP */
1892
1893#include "stats.h"
1894
1895#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1896
1897extern void __sched_core_account_forceidle(struct rq *rq);
1898
1899static inline void sched_core_account_forceidle(struct rq *rq)
1900{
1901	if (schedstat_enabled())
1902		__sched_core_account_forceidle(rq);
1903}
1904
1905extern void __sched_core_tick(struct rq *rq);
1906
1907static inline void sched_core_tick(struct rq *rq)
1908{
1909	if (sched_core_enabled(rq) && schedstat_enabled())
1910		__sched_core_tick(rq);
1911}
1912
1913#else
1914
1915static inline void sched_core_account_forceidle(struct rq *rq) {}
1916
1917static inline void sched_core_tick(struct rq *rq) {}
1918
1919#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
1920
1921#ifdef CONFIG_CGROUP_SCHED
1922
1923/*
1924 * Return the group to which this tasks belongs.
1925 *
1926 * We cannot use task_css() and friends because the cgroup subsystem
1927 * changes that value before the cgroup_subsys::attach() method is called,
1928 * therefore we cannot pin it and might observe the wrong value.
1929 *
1930 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1931 * core changes this before calling sched_move_task().
1932 *
1933 * Instead we use a 'copy' which is updated from sched_move_task() while
1934 * holding both task_struct::pi_lock and rq::lock.
1935 */
1936static inline struct task_group *task_group(struct task_struct *p)
1937{
1938	return p->sched_task_group;
1939}
1940
1941/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1942static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1943{
1944#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1945	struct task_group *tg = task_group(p);
1946#endif
1947
1948#ifdef CONFIG_FAIR_GROUP_SCHED
1949	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
1950	p->se.cfs_rq = tg->cfs_rq[cpu];
1951	p->se.parent = tg->se[cpu];
1952	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
1953#endif
1954
1955#ifdef CONFIG_RT_GROUP_SCHED
1956	p->rt.rt_rq  = tg->rt_rq[cpu];
1957	p->rt.parent = tg->rt_se[cpu];
1958#endif
1959}
1960
1961#else /* CONFIG_CGROUP_SCHED */
1962
1963static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1964static inline struct task_group *task_group(struct task_struct *p)
1965{
1966	return NULL;
1967}
1968
1969#endif /* CONFIG_CGROUP_SCHED */
1970
1971static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1972{
1973	set_task_rq(p, cpu);
1974#ifdef CONFIG_SMP
1975	/*
1976	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1977	 * successfully executed on another CPU. We must ensure that updates of
1978	 * per-task data have been completed by this moment.
1979	 */
1980	smp_wmb();
1981	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
1982	p->wake_cpu = cpu;
1983#endif
1984}
1985
1986/*
1987 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1988 */
1989#ifdef CONFIG_SCHED_DEBUG
 
1990# define const_debug __read_mostly
1991#else
1992# define const_debug const
1993#endif
1994
 
 
1995#define SCHED_FEAT(name, enabled)	\
1996	__SCHED_FEAT_##name ,
1997
1998enum {
1999#include "features.h"
2000	__SCHED_FEAT_NR,
2001};
2002
2003#undef SCHED_FEAT
2004
2005#ifdef CONFIG_SCHED_DEBUG
2006
2007/*
2008 * To support run-time toggling of sched features, all the translation units
2009 * (but core.c) reference the sysctl_sched_features defined in core.c.
2010 */
2011extern const_debug unsigned int sysctl_sched_features;
2012
2013#ifdef CONFIG_JUMP_LABEL
2014#define SCHED_FEAT(name, enabled)					\
2015static __always_inline bool static_branch_##name(struct static_key *key) \
2016{									\
2017	return static_key_##enabled(key);				\
2018}
2019
2020#include "features.h"
 
2021#undef SCHED_FEAT
2022
2023extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2024#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2025
2026#else /* !CONFIG_JUMP_LABEL */
2027
2028#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2029
2030#endif /* CONFIG_JUMP_LABEL */
2031
2032#else /* !SCHED_DEBUG */
2033
2034/*
2035 * Each translation unit has its own copy of sysctl_sched_features to allow
2036 * constants propagation at compile time and compiler optimization based on
2037 * features default.
2038 */
2039#define SCHED_FEAT(name, enabled)	\
2040	(1UL << __SCHED_FEAT_##name) * enabled |
2041static const_debug __maybe_unused unsigned int sysctl_sched_features =
2042#include "features.h"
2043	0;
2044#undef SCHED_FEAT
2045
2046#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2047
2048#endif /* SCHED_DEBUG */
2049
2050extern struct static_key_false sched_numa_balancing;
2051extern struct static_key_false sched_schedstats;
2052
2053static inline u64 global_rt_period(void)
2054{
2055	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2056}
2057
2058static inline u64 global_rt_runtime(void)
2059{
2060	if (sysctl_sched_rt_runtime < 0)
2061		return RUNTIME_INF;
2062
2063	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2064}
2065
2066static inline int task_current(struct rq *rq, struct task_struct *p)
2067{
2068	return rq->curr == p;
2069}
2070
2071static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2072{
2073#ifdef CONFIG_SMP
2074	return p->on_cpu;
2075#else
2076	return task_current(rq, p);
2077#endif
2078}
2079
2080static inline int task_on_rq_queued(struct task_struct *p)
2081{
2082	return p->on_rq == TASK_ON_RQ_QUEUED;
2083}
2084
2085static inline int task_on_rq_migrating(struct task_struct *p)
2086{
2087	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2088}
2089
2090/* Wake flags. The first three directly map to some SD flag value */
2091#define WF_EXEC     0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2092#define WF_FORK     0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2093#define WF_TTWU     0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
 
 
2094
2095#define WF_SYNC     0x10 /* Waker goes to sleep after wakeup */
2096#define WF_MIGRATED 0x20 /* Internal use, task got migrated */
 
 
 
 
 
 
 
 
 
2097
 
 
2098#ifdef CONFIG_SMP
2099static_assert(WF_EXEC == SD_BALANCE_EXEC);
2100static_assert(WF_FORK == SD_BALANCE_FORK);
2101static_assert(WF_TTWU == SD_BALANCE_WAKE);
 
 
 
 
 
 
 
 
 
 
 
 
2102#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2103
2104/*
2105 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2106 * of tasks with abnormal "nice" values across CPUs the contribution that
2107 * each task makes to its run queue's load is weighted according to its
2108 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2109 * scaled version of the new time slice allocation that they receive on time
2110 * slice expiry etc.
2111 */
2112
2113#define WEIGHT_IDLEPRIO		3
2114#define WMULT_IDLEPRIO		1431655765
2115
2116extern const int		sched_prio_to_weight[40];
2117extern const u32		sched_prio_to_wmult[40];
2118
2119/*
2120 * {de,en}queue flags:
2121 *
2122 * DEQUEUE_SLEEP  - task is no longer runnable
2123 * ENQUEUE_WAKEUP - task just became runnable
2124 *
2125 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2126 *                are in a known state which allows modification. Such pairs
2127 *                should preserve as much state as possible.
2128 *
2129 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2130 *        in the runqueue.
2131 *
2132 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2133 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2134 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2135 *
2136 */
2137
2138#define DEQUEUE_SLEEP		0x01
2139#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2140#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2141#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2142
2143#define ENQUEUE_WAKEUP		0x01
2144#define ENQUEUE_RESTORE		0x02
2145#define ENQUEUE_MOVE		0x04
2146#define ENQUEUE_NOCLOCK		0x08
2147
2148#define ENQUEUE_HEAD		0x10
2149#define ENQUEUE_REPLENISH	0x20
2150#ifdef CONFIG_SMP
2151#define ENQUEUE_MIGRATED	0x40
2152#else
2153#define ENQUEUE_MIGRATED	0x00
2154#endif
2155
2156#define RETRY_TASK		((void *)-1UL)
2157
2158struct affinity_context {
2159	const struct cpumask *new_mask;
2160	struct cpumask *user_mask;
2161	unsigned int flags;
2162};
2163
2164struct sched_class {
2165
2166#ifdef CONFIG_UCLAMP_TASK
2167	int uclamp_enabled;
2168#endif
2169
2170	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2171	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2172	void (*yield_task)   (struct rq *rq);
2173	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2174
2175	void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
2176
2177	struct task_struct *(*pick_next_task)(struct rq *rq);
2178
2179	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2180	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
 
 
 
 
 
 
 
2181
2182#ifdef CONFIG_SMP
2183	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2184	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2185
2186	struct task_struct * (*pick_task)(struct rq *rq);
2187
2188	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
 
2189
2190	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2191
2192	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2193
2194	void (*rq_online)(struct rq *rq);
2195	void (*rq_offline)(struct rq *rq);
2196
2197	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2198#endif
2199
2200	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2201	void (*task_fork)(struct task_struct *p);
2202	void (*task_dead)(struct task_struct *p);
 
2203
2204	/*
2205	 * The switched_from() call is allowed to drop rq->lock, therefore we
2206	 * cannot assume the switched_from/switched_to pair is serialized by
2207	 * rq->lock. They are however serialized by p->pi_lock.
2208	 */
2209	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2210	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2211	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2212			      int oldprio);
2213
2214	unsigned int (*get_rr_interval)(struct rq *rq,
2215					struct task_struct *task);
2216
2217	void (*update_curr)(struct rq *rq);
2218
2219#ifdef CONFIG_FAIR_GROUP_SCHED
2220	void (*task_change_group)(struct task_struct *p);
2221#endif
2222};
2223
2224static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2225{
2226	WARN_ON_ONCE(rq->curr != prev);
2227	prev->sched_class->put_prev_task(rq, prev);
2228}
2229
2230static inline void set_next_task(struct rq *rq, struct task_struct *next)
2231{
2232	next->sched_class->set_next_task(rq, next, false);
2233}
2234
2235
2236/*
2237 * Helper to define a sched_class instance; each one is placed in a separate
2238 * section which is ordered by the linker script:
2239 *
2240 *   include/asm-generic/vmlinux.lds.h
2241 *
2242 * *CAREFUL* they are laid out in *REVERSE* order!!!
2243 *
2244 * Also enforce alignment on the instance, not the type, to guarantee layout.
2245 */
2246#define DEFINE_SCHED_CLASS(name) \
2247const struct sched_class name##_sched_class \
2248	__aligned(__alignof__(struct sched_class)) \
2249	__section("__" #name "_sched_class")
2250
2251/* Defined in include/asm-generic/vmlinux.lds.h */
2252extern struct sched_class __sched_class_highest[];
2253extern struct sched_class __sched_class_lowest[];
2254
2255#define for_class_range(class, _from, _to) \
2256	for (class = (_from); class < (_to); class++)
2257
2258#define for_each_class(class) \
2259	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2260
2261#define sched_class_above(_a, _b)	((_a) < (_b))
2262
2263extern const struct sched_class stop_sched_class;
2264extern const struct sched_class dl_sched_class;
2265extern const struct sched_class rt_sched_class;
2266extern const struct sched_class fair_sched_class;
2267extern const struct sched_class idle_sched_class;
2268
2269static inline bool sched_stop_runnable(struct rq *rq)
2270{
2271	return rq->stop && task_on_rq_queued(rq->stop);
2272}
2273
2274static inline bool sched_dl_runnable(struct rq *rq)
2275{
2276	return rq->dl.dl_nr_running > 0;
2277}
2278
2279static inline bool sched_rt_runnable(struct rq *rq)
2280{
2281	return rq->rt.rt_queued > 0;
2282}
2283
2284static inline bool sched_fair_runnable(struct rq *rq)
2285{
2286	return rq->cfs.nr_running > 0;
2287}
2288
2289extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2290extern struct task_struct *pick_next_task_idle(struct rq *rq);
2291
2292#define SCA_CHECK		0x01
2293#define SCA_MIGRATE_DISABLE	0x02
2294#define SCA_MIGRATE_ENABLE	0x04
2295#define SCA_USER		0x08
2296
2297#ifdef CONFIG_SMP
2298
2299extern void update_group_capacity(struct sched_domain *sd, int cpu);
2300
2301extern void trigger_load_balance(struct rq *rq);
2302
2303extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2304
2305static inline struct task_struct *get_push_task(struct rq *rq)
2306{
2307	struct task_struct *p = rq->curr;
2308
2309	lockdep_assert_rq_held(rq);
2310
2311	if (rq->push_busy)
2312		return NULL;
2313
2314	if (p->nr_cpus_allowed == 1)
2315		return NULL;
2316
2317	if (p->migration_disabled)
2318		return NULL;
2319
2320	rq->push_busy = true;
2321	return get_task_struct(p);
2322}
2323
2324extern int push_cpu_stop(void *arg);
2325
2326#endif
2327
2328#ifdef CONFIG_CPU_IDLE
2329static inline void idle_set_state(struct rq *rq,
2330				  struct cpuidle_state *idle_state)
2331{
2332	rq->idle_state = idle_state;
2333}
2334
2335static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2336{
2337	SCHED_WARN_ON(!rcu_read_lock_held());
2338
2339	return rq->idle_state;
2340}
2341#else
2342static inline void idle_set_state(struct rq *rq,
2343				  struct cpuidle_state *idle_state)
2344{
2345}
2346
2347static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2348{
2349	return NULL;
2350}
2351#endif
2352
2353extern void schedule_idle(void);
2354
2355extern void sysrq_sched_debug_show(void);
2356extern void sched_init_granularity(void);
2357extern void update_max_interval(void);
2358
2359extern void init_sched_dl_class(void);
2360extern void init_sched_rt_class(void);
2361extern void init_sched_fair_class(void);
2362
2363extern void reweight_task(struct task_struct *p, int prio);
2364
2365extern void resched_curr(struct rq *rq);
2366extern void resched_cpu(int cpu);
2367
2368extern struct rt_bandwidth def_rt_bandwidth;
2369extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2370extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2371
 
2372extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
2373extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
2374extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
2375
2376#define BW_SHIFT		20
2377#define BW_UNIT			(1 << BW_SHIFT)
2378#define RATIO_SHIFT		8
2379#define MAX_BW_BITS		(64 - BW_SHIFT)
2380#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2381unsigned long to_ratio(u64 period, u64 runtime);
2382
2383extern void init_entity_runnable_average(struct sched_entity *se);
2384extern void post_init_entity_util_avg(struct task_struct *p);
2385
2386#ifdef CONFIG_NO_HZ_FULL
2387extern bool sched_can_stop_tick(struct rq *rq);
2388extern int __init sched_tick_offload_init(void);
2389
2390/*
2391 * Tick may be needed by tasks in the runqueue depending on their policy and
2392 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2393 * nohz mode if necessary.
2394 */
2395static inline void sched_update_tick_dependency(struct rq *rq)
2396{
2397	int cpu = cpu_of(rq);
 
 
 
 
 
2398
2399	if (!tick_nohz_full_cpu(cpu))
2400		return;
2401
2402	if (sched_can_stop_tick(rq))
2403		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2404	else
2405		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2406}
2407#else
2408static inline int sched_tick_offload_init(void) { return 0; }
2409static inline void sched_update_tick_dependency(struct rq *rq) { }
2410#endif
2411
2412static inline void add_nr_running(struct rq *rq, unsigned count)
2413{
2414	unsigned prev_nr = rq->nr_running;
2415
2416	rq->nr_running = prev_nr + count;
2417	if (trace_sched_update_nr_running_tp_enabled()) {
2418		call_trace_sched_update_nr_running(rq, count);
2419	}
2420
 
2421#ifdef CONFIG_SMP
2422	if (prev_nr < 2 && rq->nr_running >= 2) {
2423		if (!READ_ONCE(rq->rd->overload))
2424			WRITE_ONCE(rq->rd->overload, 1);
2425	}
2426#endif
2427
2428	sched_update_tick_dependency(rq);
2429}
2430
2431static inline void sub_nr_running(struct rq *rq, unsigned count)
2432{
2433	rq->nr_running -= count;
2434	if (trace_sched_update_nr_running_tp_enabled()) {
2435		call_trace_sched_update_nr_running(rq, -count);
2436	}
2437
2438	/* Check if we still need preemption */
2439	sched_update_tick_dependency(rq);
2440}
2441
 
 
 
 
 
 
 
 
 
2442extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2443extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2444
2445extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
2446
2447#ifdef CONFIG_PREEMPT_RT
2448#define SCHED_NR_MIGRATE_BREAK 8
2449#else
2450#define SCHED_NR_MIGRATE_BREAK 32
2451#endif
2452
2453extern const_debug unsigned int sysctl_sched_nr_migrate;
2454extern const_debug unsigned int sysctl_sched_migration_cost;
2455
2456#ifdef CONFIG_SCHED_DEBUG
2457extern unsigned int sysctl_sched_latency;
2458extern unsigned int sysctl_sched_min_granularity;
2459extern unsigned int sysctl_sched_idle_min_granularity;
2460extern unsigned int sysctl_sched_wakeup_granularity;
2461extern int sysctl_resched_latency_warn_ms;
2462extern int sysctl_resched_latency_warn_once;
2463
2464extern unsigned int sysctl_sched_tunable_scaling;
2465
2466extern unsigned int sysctl_numa_balancing_scan_delay;
2467extern unsigned int sysctl_numa_balancing_scan_period_min;
2468extern unsigned int sysctl_numa_balancing_scan_period_max;
2469extern unsigned int sysctl_numa_balancing_scan_size;
2470extern unsigned int sysctl_numa_balancing_hot_threshold;
2471#endif
2472
2473#ifdef CONFIG_SCHED_HRTICK
2474
2475/*
2476 * Use hrtick when:
2477 *  - enabled by features
2478 *  - hrtimer is actually high res
2479 */
2480static inline int hrtick_enabled(struct rq *rq)
2481{
 
 
2482	if (!cpu_active(cpu_of(rq)))
2483		return 0;
2484	return hrtimer_is_hres_active(&rq->hrtick_timer);
2485}
2486
2487static inline int hrtick_enabled_fair(struct rq *rq)
2488{
2489	if (!sched_feat(HRTICK))
2490		return 0;
2491	return hrtick_enabled(rq);
2492}
2493
2494static inline int hrtick_enabled_dl(struct rq *rq)
2495{
2496	if (!sched_feat(HRTICK_DL))
2497		return 0;
2498	return hrtick_enabled(rq);
2499}
2500
2501void hrtick_start(struct rq *rq, u64 delay);
2502
2503#else
2504
2505static inline int hrtick_enabled_fair(struct rq *rq)
2506{
2507	return 0;
2508}
2509
2510static inline int hrtick_enabled_dl(struct rq *rq)
2511{
2512	return 0;
2513}
2514
2515static inline int hrtick_enabled(struct rq *rq)
2516{
2517	return 0;
2518}
2519
2520#endif /* CONFIG_SCHED_HRTICK */
2521
2522#ifndef arch_scale_freq_tick
 
 
 
2523static __always_inline
2524void arch_scale_freq_tick(void)
2525{
 
2526}
2527#endif
2528
2529#ifndef arch_scale_freq_capacity
2530/**
2531 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2532 * @cpu: the CPU in question.
2533 *
2534 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2535 *
2536 *     f_curr
2537 *     ------ * SCHED_CAPACITY_SCALE
2538 *     f_max
2539 */
2540static __always_inline
2541unsigned long arch_scale_freq_capacity(int cpu)
2542{
 
 
 
2543	return SCHED_CAPACITY_SCALE;
2544}
2545#endif
2546
2547#ifdef CONFIG_SCHED_DEBUG
 
 
 
 
 
 
 
 
 
2548/*
2549 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2550 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2551 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2552 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2553 */
2554static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
 
2555{
2556	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2557	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2558#ifdef CONFIG_SMP
2559	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2560#endif
 
 
 
 
 
 
 
 
 
 
 
2561}
2562#else
2563static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2564#endif
2565
2566#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2567
2568static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
 
2569{
2570#ifdef CONFIG_SCHED_CORE
2571	/*
2572	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2573	 * order by core-id first and cpu-id second.
2574	 *
2575	 * Notably:
2576	 *
2577	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2578	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2579	 *
2580	 * when only cpu-id is considered.
2581	 */
2582	if (rq1->core->cpu < rq2->core->cpu)
2583		return true;
2584	if (rq1->core->cpu > rq2->core->cpu)
2585		return false;
2586
2587	/*
2588	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2589	 */
2590#endif
2591	return rq1->cpu < rq2->cpu;
 
 
 
2592}
2593
2594extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
 
2595
2596#ifdef CONFIG_PREEMPTION
2597
2598/*
2599 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2600 * way at the expense of forcing extra atomic operations in all
2601 * invocations.  This assures that the double_lock is acquired using the
2602 * same underlying policy as the spinlock_t on this architecture, which
2603 * reduces latency compared to the unfair variant below.  However, it
2604 * also adds more overhead and therefore may reduce throughput.
2605 */
2606static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2607	__releases(this_rq->lock)
2608	__acquires(busiest->lock)
2609	__acquires(this_rq->lock)
2610{
2611	raw_spin_rq_unlock(this_rq);
2612	double_rq_lock(this_rq, busiest);
2613
2614	return 1;
2615}
2616
2617#else
2618/*
2619 * Unfair double_lock_balance: Optimizes throughput at the expense of
2620 * latency by eliminating extra atomic operations when the locks are
2621 * already in proper order on entry.  This favors lower CPU-ids and will
2622 * grant the double lock to lower CPUs over higher ids under contention,
2623 * regardless of entry order into the function.
2624 */
2625static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2626	__releases(this_rq->lock)
2627	__acquires(busiest->lock)
2628	__acquires(this_rq->lock)
2629{
2630	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2631	    likely(raw_spin_rq_trylock(busiest))) {
2632		double_rq_clock_clear_update(this_rq, busiest);
2633		return 0;
2634	}
2635
2636	if (rq_order_less(this_rq, busiest)) {
2637		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2638		double_rq_clock_clear_update(this_rq, busiest);
2639		return 0;
 
 
 
 
 
 
2640	}
2641
2642	raw_spin_rq_unlock(this_rq);
2643	double_rq_lock(this_rq, busiest);
2644
2645	return 1;
2646}
2647
2648#endif /* CONFIG_PREEMPTION */
2649
2650/*
2651 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2652 */
2653static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2654{
2655	lockdep_assert_irqs_disabled();
 
 
 
 
2656
2657	return _double_lock_balance(this_rq, busiest);
2658}
2659
2660static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2661	__releases(busiest->lock)
2662{
2663	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2664		raw_spin_rq_unlock(busiest);
2665	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2666}
2667
2668static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2669{
2670	if (l1 > l2)
2671		swap(l1, l2);
2672
2673	spin_lock(l1);
2674	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2675}
2676
2677static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2678{
2679	if (l1 > l2)
2680		swap(l1, l2);
2681
2682	spin_lock_irq(l1);
2683	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2684}
2685
2686static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2687{
2688	if (l1 > l2)
2689		swap(l1, l2);
2690
2691	raw_spin_lock(l1);
2692	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2693}
2694
2695/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2696 * double_rq_unlock - safely unlock two runqueues
2697 *
2698 * Note this does not restore interrupts like task_rq_unlock,
2699 * you need to do so manually after calling.
2700 */
2701static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2702	__releases(rq1->lock)
2703	__releases(rq2->lock)
2704{
2705	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2706		raw_spin_rq_unlock(rq2);
 
2707	else
2708		__release(rq2->lock);
2709	raw_spin_rq_unlock(rq1);
2710}
2711
2712extern void set_rq_online (struct rq *rq);
2713extern void set_rq_offline(struct rq *rq);
2714extern bool sched_smp_initialized;
2715
2716#else /* CONFIG_SMP */
2717
2718/*
2719 * double_rq_lock - safely lock two runqueues
2720 *
2721 * Note this does not disable interrupts like task_rq_lock,
2722 * you need to do so manually before calling.
2723 */
2724static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2725	__acquires(rq1->lock)
2726	__acquires(rq2->lock)
2727{
2728	WARN_ON_ONCE(!irqs_disabled());
2729	WARN_ON_ONCE(rq1 != rq2);
2730	raw_spin_rq_lock(rq1);
2731	__acquire(rq2->lock);	/* Fake it out ;) */
2732	double_rq_clock_clear_update(rq1, rq2);
2733}
2734
2735/*
2736 * double_rq_unlock - safely unlock two runqueues
2737 *
2738 * Note this does not restore interrupts like task_rq_unlock,
2739 * you need to do so manually after calling.
2740 */
2741static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2742	__releases(rq1->lock)
2743	__releases(rq2->lock)
2744{
2745	WARN_ON_ONCE(rq1 != rq2);
2746	raw_spin_rq_unlock(rq1);
2747	__release(rq2->lock);
2748}
2749
2750#endif
2751
2752extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2753extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2754
2755#ifdef	CONFIG_SCHED_DEBUG
2756extern bool sched_debug_verbose;
2757
2758extern void print_cfs_stats(struct seq_file *m, int cpu);
2759extern void print_rt_stats(struct seq_file *m, int cpu);
2760extern void print_dl_stats(struct seq_file *m, int cpu);
2761extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2762extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2763extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2764
2765extern void resched_latency_warn(int cpu, u64 latency);
2766#ifdef CONFIG_NUMA_BALANCING
2767extern void
2768show_numa_stats(struct task_struct *p, struct seq_file *m);
2769extern void
2770print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2771	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2772#endif /* CONFIG_NUMA_BALANCING */
2773#else
2774static inline void resched_latency_warn(int cpu, u64 latency) {}
2775#endif /* CONFIG_SCHED_DEBUG */
2776
2777extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2778extern void init_rt_rq(struct rt_rq *rt_rq);
2779extern void init_dl_rq(struct dl_rq *dl_rq);
2780
2781extern void cfs_bandwidth_usage_inc(void);
2782extern void cfs_bandwidth_usage_dec(void);
2783
2784#ifdef CONFIG_NO_HZ_COMMON
2785#define NOHZ_BALANCE_KICK_BIT	0
2786#define NOHZ_STATS_KICK_BIT	1
2787#define NOHZ_NEWILB_KICK_BIT	2
2788#define NOHZ_NEXT_KICK_BIT	3
2789
2790/* Run rebalance_domains() */
2791#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2792/* Update blocked load */
2793#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2794/* Update blocked load when entering idle */
2795#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2796/* Update nohz.next_balance */
2797#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2798
2799#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2800
2801#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2802
2803extern void nohz_balance_exit_idle(struct rq *rq);
2804#else
2805static inline void nohz_balance_exit_idle(struct rq *rq) { }
2806#endif
2807
2808#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2809extern void nohz_run_idle_balance(int cpu);
2810#else
2811static inline void nohz_run_idle_balance(int cpu) { }
2812#endif
2813
2814#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2815struct irqtime {
2816	u64			total;
2817	u64			tick_delta;
2818	u64			irq_start_time;
2819	struct u64_stats_sync	sync;
2820};
2821
2822DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
 
2823
2824/*
2825 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2826 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2827 * and never move forward.
2828 */
2829static inline u64 irq_time_read(int cpu)
2830{
2831	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2832	unsigned int seq;
2833	u64 total;
2834
2835	do {
2836		seq = __u64_stats_fetch_begin(&irqtime->sync);
2837		total = irqtime->total;
2838	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2839
2840	return total;
2841}
2842#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2843
2844#ifdef CONFIG_CPU_FREQ
2845DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2846
2847/**
2848 * cpufreq_update_util - Take a note about CPU utilization changes.
2849 * @rq: Runqueue to carry out the update for.
2850 * @flags: Update reason flags.
2851 *
2852 * This function is called by the scheduler on the CPU whose utilization is
2853 * being updated.
2854 *
2855 * It can only be called from RCU-sched read-side critical sections.
2856 *
2857 * The way cpufreq is currently arranged requires it to evaluate the CPU
2858 * performance state (frequency/voltage) on a regular basis to prevent it from
2859 * being stuck in a completely inadequate performance level for too long.
2860 * That is not guaranteed to happen if the updates are only triggered from CFS
2861 * and DL, though, because they may not be coming in if only RT tasks are
2862 * active all the time (or there are RT tasks only).
2863 *
2864 * As a workaround for that issue, this function is called periodically by the
2865 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2866 * but that really is a band-aid.  Going forward it should be replaced with
2867 * solutions targeted more specifically at RT tasks.
2868 */
2869static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2870{
2871	struct update_util_data *data;
2872
2873	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2874						  cpu_of(rq)));
2875	if (data)
2876		data->func(data, rq_clock(rq), flags);
2877}
2878#else
2879static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2880#endif /* CONFIG_CPU_FREQ */
2881
2882#ifdef arch_scale_freq_capacity
2883# ifndef arch_scale_freq_invariant
2884#  define arch_scale_freq_invariant()	true
2885# endif
2886#else
2887# define arch_scale_freq_invariant()	false
2888#endif
2889
2890#ifdef CONFIG_SMP
2891static inline unsigned long capacity_orig_of(int cpu)
2892{
2893	return cpu_rq(cpu)->cpu_capacity_orig;
 
2894}
2895
2896/*
2897 * Returns inverted capacity if the CPU is in capacity inversion state.
2898 * 0 otherwise.
2899 *
2900 * Capacity inversion detection only considers thermal impact where actual
2901 * performance points (OPPs) gets dropped.
2902 *
2903 * Capacity inversion state happens when another performance domain that has
2904 * equal or lower capacity_orig_of() becomes effectively larger than the perf
2905 * domain this CPU belongs to due to thermal pressure throttling it hard.
2906 *
2907 * See comment in update_cpu_capacity().
2908 */
2909static inline unsigned long cpu_in_capacity_inversion(int cpu)
2910{
2911	return cpu_rq(cpu)->cpu_capacity_inverted;
2912}
2913
2914/**
2915 * enum cpu_util_type - CPU utilization type
2916 * @FREQUENCY_UTIL:	Utilization used to select frequency
2917 * @ENERGY_UTIL:	Utilization used during energy calculation
2918 *
2919 * The utilization signals of all scheduling classes (CFS/RT/DL) and IRQ time
2920 * need to be aggregated differently depending on the usage made of them. This
2921 * enum is used within effective_cpu_util() to differentiate the types of
2922 * utilization expected by the callers, and adjust the aggregation accordingly.
2923 */
2924enum cpu_util_type {
2925	FREQUENCY_UTIL,
2926	ENERGY_UTIL,
2927};
2928
2929unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
2930				 enum cpu_util_type type,
2931				 struct task_struct *p);
2932
2933/*
2934 * Verify the fitness of task @p to run on @cpu taking into account the
2935 * CPU original capacity and the runtime/deadline ratio of the task.
2936 *
2937 * The function will return true if the original capacity of @cpu is
2938 * greater than or equal to task's deadline density right shifted by
2939 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
2940 */
2941static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
2942{
2943	unsigned long cap = arch_scale_cpu_capacity(cpu);
2944
2945	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
2946}
2947
2948static inline unsigned long cpu_bw_dl(struct rq *rq)
2949{
2950	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2951}
2952
2953static inline unsigned long cpu_util_dl(struct rq *rq)
2954{
2955	return READ_ONCE(rq->avg_dl.util_avg);
2956}
 
 
 
 
 
2957
2958/**
2959 * cpu_util_cfs() - Estimates the amount of CPU capacity used by CFS tasks.
2960 * @cpu: the CPU to get the utilization for.
 
 
2961 *
2962 * The unit of the return value must be the same as the one of CPU capacity
2963 * so that CPU utilization can be compared with CPU capacity.
2964 *
2965 * CPU utilization is the sum of running time of runnable tasks plus the
2966 * recent utilization of currently non-runnable tasks on that CPU.
2967 * It represents the amount of CPU capacity currently used by CFS tasks in
2968 * the range [0..max CPU capacity] with max CPU capacity being the CPU
2969 * capacity at f_max.
2970 *
2971 * The estimated CPU utilization is defined as the maximum between CPU
2972 * utilization and sum of the estimated utilization of the currently
2973 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
2974 * previously-executed tasks, which helps better deduce how busy a CPU will
2975 * be when a long-sleeping task wakes up. The contribution to CPU utilization
2976 * of such a task would be significantly decayed at this point of time.
2977 *
2978 * CPU utilization can be higher than the current CPU capacity
2979 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
2980 * of rounding errors as well as task migrations or wakeups of new tasks.
2981 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
2982 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
2983 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
2984 * capacity. CPU utilization is allowed to overshoot current CPU capacity
2985 * though since this is useful for predicting the CPU capacity required
2986 * after task migrations (scheduler-driven DVFS).
2987 *
2988 * Return: (Estimated) utilization for the specified CPU.
2989 */
2990static inline unsigned long cpu_util_cfs(int cpu)
2991{
2992	struct cfs_rq *cfs_rq;
2993	unsigned long util;
2994
2995	cfs_rq = &cpu_rq(cpu)->cfs;
2996	util = READ_ONCE(cfs_rq->avg.util_avg);
2997
2998	if (sched_feat(UTIL_EST)) {
2999		util = max_t(unsigned long, util,
3000			     READ_ONCE(cfs_rq->avg.util_est.enqueued));
3001	}
3002
3003	return min(util, capacity_orig_of(cpu));
3004}
3005
3006static inline unsigned long cpu_util_rt(struct rq *rq)
3007{
3008	return READ_ONCE(rq->avg_rt.util_avg);
3009}
3010#endif
3011
3012#ifdef CONFIG_UCLAMP_TASK
3013unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3014
3015static inline unsigned long uclamp_rq_get(struct rq *rq,
3016					  enum uclamp_id clamp_id)
3017{
3018	return READ_ONCE(rq->uclamp[clamp_id].value);
3019}
3020
3021static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3022				 unsigned int value)
3023{
3024	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3025}
3026
3027static inline bool uclamp_rq_is_idle(struct rq *rq)
3028{
3029	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3030}
3031
3032/**
3033 * uclamp_rq_util_with - clamp @util with @rq and @p effective uclamp values.
3034 * @rq:		The rq to clamp against. Must not be NULL.
3035 * @util:	The util value to clamp.
3036 * @p:		The task to clamp against. Can be NULL if you want to clamp
3037 *		against @rq only.
3038 *
3039 * Clamps the passed @util to the max(@rq, @p) effective uclamp values.
3040 *
3041 * If sched_uclamp_used static key is disabled, then just return the util
3042 * without any clamping since uclamp aggregation at the rq level in the fast
3043 * path is disabled, rendering this operation a NOP.
3044 *
3045 * Use uclamp_eff_value() if you don't care about uclamp values at rq level. It
3046 * will return the correct effective uclamp value of the task even if the
3047 * static key is disabled.
3048 */
3049static __always_inline
3050unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3051				  struct task_struct *p)
3052{
3053	unsigned long min_util = 0;
3054	unsigned long max_util = 0;
3055
3056	if (!static_branch_likely(&sched_uclamp_used))
3057		return util;
3058
3059	if (p) {
3060		min_util = uclamp_eff_value(p, UCLAMP_MIN);
3061		max_util = uclamp_eff_value(p, UCLAMP_MAX);
3062
3063		/*
3064		 * Ignore last runnable task's max clamp, as this task will
3065		 * reset it. Similarly, no need to read the rq's min clamp.
3066		 */
3067		if (uclamp_rq_is_idle(rq))
3068			goto out;
3069	}
3070
3071	min_util = max_t(unsigned long, min_util, uclamp_rq_get(rq, UCLAMP_MIN));
3072	max_util = max_t(unsigned long, max_util, uclamp_rq_get(rq, UCLAMP_MAX));
3073out:
3074	/*
3075	 * Since CPU's {min,max}_util clamps are MAX aggregated considering
3076	 * RUNNABLE tasks with _different_ clamps, we can end up with an
3077	 * inversion. Fix it now when the clamps are applied.
3078	 */
3079	if (unlikely(min_util >= max_util))
3080		return min_util;
3081
3082	return clamp(util, min_util, max_util);
3083}
3084
3085/* Is the rq being capped/throttled by uclamp_max? */
3086static inline bool uclamp_rq_is_capped(struct rq *rq)
3087{
3088	unsigned long rq_util;
3089	unsigned long max_util;
3090
3091	if (!static_branch_likely(&sched_uclamp_used))
3092		return false;
3093
3094	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3095	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3096
3097	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3098}
3099
3100/*
3101 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3102 * by default in the fast path and only gets turned on once userspace performs
3103 * an operation that requires it.
3104 *
3105 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3106 * hence is active.
 
 
3107 */
3108static inline bool uclamp_is_used(void)
3109{
3110	return static_branch_likely(&sched_uclamp_used);
3111}
3112#else /* CONFIG_UCLAMP_TASK */
3113static inline unsigned long uclamp_eff_value(struct task_struct *p,
3114					     enum uclamp_id clamp_id)
3115{
3116	if (clamp_id == UCLAMP_MIN)
3117		return 0;
3118
3119	return SCHED_CAPACITY_SCALE;
3120}
3121
3122static inline
3123unsigned long uclamp_rq_util_with(struct rq *rq, unsigned long util,
3124				  struct task_struct *p)
3125{
3126	return util;
3127}
3128
3129static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3130
3131static inline bool uclamp_is_used(void)
3132{
3133	return false;
3134}
3135
3136static inline unsigned long uclamp_rq_get(struct rq *rq,
3137					  enum uclamp_id clamp_id)
3138{
3139	if (clamp_id == UCLAMP_MIN)
3140		return 0;
3141
3142	return SCHED_CAPACITY_SCALE;
3143}
3144
3145static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3146				 unsigned int value)
3147{
3148}
3149
3150static inline bool uclamp_rq_is_idle(struct rq *rq)
3151{
3152	return false;
3153}
3154#endif /* CONFIG_UCLAMP_TASK */
3155
3156#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3157static inline unsigned long cpu_util_irq(struct rq *rq)
3158{
3159	return rq->avg_irq.util_avg;
3160}
3161
3162static inline
3163unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3164{
3165	util *= (max - irq);
3166	util /= max;
3167
3168	return util;
3169
3170}
3171#else
3172static inline unsigned long cpu_util_irq(struct rq *rq)
3173{
3174	return 0;
3175}
3176
3177static inline
3178unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3179{
3180	return util;
3181}
3182#endif
3183
3184#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3185
3186#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3187
3188DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3189
3190static inline bool sched_energy_enabled(void)
3191{
3192	return static_branch_unlikely(&sched_energy_present);
3193}
3194
3195#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3196
3197#define perf_domain_span(pd) NULL
3198static inline bool sched_energy_enabled(void) { return false; }
3199
3200#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3201
3202#ifdef CONFIG_MEMBARRIER
3203/*
3204 * The scheduler provides memory barriers required by membarrier between:
3205 * - prior user-space memory accesses and store to rq->membarrier_state,
3206 * - store to rq->membarrier_state and following user-space memory accesses.
3207 * In the same way it provides those guarantees around store to rq->curr.
3208 */
3209static inline void membarrier_switch_mm(struct rq *rq,
3210					struct mm_struct *prev_mm,
3211					struct mm_struct *next_mm)
3212{
3213	int membarrier_state;
3214
3215	if (prev_mm == next_mm)
3216		return;
3217
3218	membarrier_state = atomic_read(&next_mm->membarrier_state);
3219	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3220		return;
3221
3222	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3223}
3224#else
3225static inline void membarrier_switch_mm(struct rq *rq,
3226					struct mm_struct *prev_mm,
3227					struct mm_struct *next_mm)
3228{
3229}
3230#endif
3231
3232#ifdef CONFIG_SMP
3233static inline bool is_per_cpu_kthread(struct task_struct *p)
3234{
3235	if (!(p->flags & PF_KTHREAD))
3236		return false;
3237
3238	if (p->nr_cpus_allowed != 1)
3239		return false;
3240
3241	return true;
3242}
3243#endif
3244
3245extern void swake_up_all_locked(struct swait_queue_head *q);
3246extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3247
3248#ifdef CONFIG_PREEMPT_DYNAMIC
3249extern int preempt_dynamic_mode;
3250extern int sched_dynamic_mode(const char *str);
3251extern void sched_dynamic_update(int mode);
3252#endif
3253
3254static inline void update_current_exec_runtime(struct task_struct *curr,
3255						u64 now, u64 delta_exec)
3256{
3257	curr->se.sum_exec_runtime += delta_exec;
3258	account_group_exec_runtime(curr, delta_exec);
3259
3260	curr->se.exec_start = now;
3261	cgroup_account_cputime(curr, delta_exec);
3262}
3263
3264#endif /* _KERNEL_SCHED_SCHED_H */