Linux Audio

Check our new training course

Loading...
v4.6
 
 
 
 
 
 
   1
 
 
 
 
   2#include <linux/sched.h>
 
 
 
 
 
 
   3#include <linux/sched/sysctl.h>
   4#include <linux/sched/rt.h>
   5#include <linux/sched/deadline.h>
   6#include <linux/binfmts.h>
   7#include <linux/mutex.h>
   8#include <linux/spinlock.h>
   9#include <linux/stop_machine.h>
 
 
 
 
 
 
 
 
 
 
 
 
  10#include <linux/irq_work.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  11#include <linux/tick.h>
  12#include <linux/slab.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  13
  14#include "cpupri.h"
  15#include "cpudeadline.h"
  16#include "cpuacct.h"
 
 
 
 
 
  17
  18struct rq;
  19struct cpuidle_state;
  20
  21/* task_struct::on_rq states: */
  22#define TASK_ON_RQ_QUEUED	1
  23#define TASK_ON_RQ_MIGRATING	2
  24
  25extern __read_mostly int scheduler_running;
  26
  27extern unsigned long calc_load_update;
  28extern atomic_long_t calc_load_tasks;
  29
  30extern void calc_global_load_tick(struct rq *this_rq);
  31extern long calc_load_fold_active(struct rq *this_rq);
  32
  33#ifdef CONFIG_SMP
  34extern void update_cpu_load_active(struct rq *this_rq);
  35#else
  36static inline void update_cpu_load_active(struct rq *this_rq) { }
  37#endif
  38
  39/*
  40 * Helpers for converting nanosecond timing to jiffy resolution
  41 */
  42#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
  43
  44/*
  45 * Increase resolution of nice-level calculations for 64-bit architectures.
  46 * The extra resolution improves shares distribution and load balancing of
  47 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
  48 * hierarchies, especially on larger systems. This is not a user-visible change
  49 * and does not change the user-interface for setting shares/weights.
  50 *
  51 * We increase resolution only if we have enough bits to allow this increased
  52 * resolution (i.e. BITS_PER_LONG > 32). The costs for increasing resolution
  53 * when BITS_PER_LONG <= 32 are pretty high and the returns do not justify the
  54 * increased costs.
  55 */
  56#if 0 /* BITS_PER_LONG > 32 -- currently broken: it increases power usage under light load  */
  57# define SCHED_LOAD_RESOLUTION	10
  58# define scale_load(w)		((w) << SCHED_LOAD_RESOLUTION)
  59# define scale_load_down(w)	((w) >> SCHED_LOAD_RESOLUTION)
 
 
 
 
 
 
 
 
  60#else
  61# define SCHED_LOAD_RESOLUTION	0
  62# define scale_load(w)		(w)
  63# define scale_load_down(w)	(w)
  64#endif
  65
  66#define SCHED_LOAD_SHIFT	(10 + SCHED_LOAD_RESOLUTION)
  67#define SCHED_LOAD_SCALE	(1L << SCHED_LOAD_SHIFT)
  68
  69#define NICE_0_LOAD		SCHED_LOAD_SCALE
  70#define NICE_0_SHIFT		SCHED_LOAD_SHIFT
 
 
 
 
 
  71
  72/*
  73 * Single value that decides SCHED_DEADLINE internal math precision.
  74 * 10 -> just above 1us
  75 * 9  -> just above 0.5us
  76 */
  77#define DL_SCALE (10)
  78
  79/*
  80 * These are the 'tuning knobs' of the scheduler:
  81 */
  82
  83/*
  84 * single value that denotes runtime == period, ie unlimited time.
  85 */
  86#define RUNTIME_INF	((u64)~0ULL)
  87
  88static inline int idle_policy(int policy)
  89{
  90	return policy == SCHED_IDLE;
  91}
  92static inline int fair_policy(int policy)
  93{
  94	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
  95}
  96
  97static inline int rt_policy(int policy)
  98{
  99	return policy == SCHED_FIFO || policy == SCHED_RR;
 100}
 101
 102static inline int dl_policy(int policy)
 103{
 104	return policy == SCHED_DEADLINE;
 105}
 106static inline bool valid_policy(int policy)
 107{
 108	return idle_policy(policy) || fair_policy(policy) ||
 109		rt_policy(policy) || dl_policy(policy);
 110}
 111
 
 
 
 
 
 112static inline int task_has_rt_policy(struct task_struct *p)
 113{
 114	return rt_policy(p->policy);
 115}
 116
 117static inline int task_has_dl_policy(struct task_struct *p)
 118{
 119	return dl_policy(p->policy);
 120}
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122/*
 123 * Tells if entity @a should preempt entity @b.
 124 */
 125static inline bool
 126dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
 127{
 128	return dl_time_before(a->deadline, b->deadline);
 
 129}
 130
 131/*
 132 * This is the priority-queue data structure of the RT scheduling class:
 133 */
 134struct rt_prio_array {
 135	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 136	struct list_head queue[MAX_RT_PRIO];
 137};
 138
 139struct rt_bandwidth {
 140	/* nests inside the rq lock: */
 141	raw_spinlock_t		rt_runtime_lock;
 142	ktime_t			rt_period;
 143	u64			rt_runtime;
 144	struct hrtimer		rt_period_timer;
 145	unsigned int		rt_period_active;
 146};
 147
 148void __dl_clear_params(struct task_struct *p);
 
 
 
 149
 150/*
 151 * To keep the bandwidth of -deadline tasks and groups under control
 152 * we need some place where:
 153 *  - store the maximum -deadline bandwidth of the system (the group);
 154 *  - cache the fraction of that bandwidth that is currently allocated.
 
 155 *
 156 * This is all done in the data structure below. It is similar to the
 157 * one used for RT-throttling (rt_bandwidth), with the main difference
 158 * that, since here we are only interested in admission control, we
 159 * do not decrease any runtime while the group "executes", neither we
 160 * need a timer to replenish it.
 161 *
 162 * With respect to SMP, the bandwidth is given on a per-CPU basis,
 163 * meaning that:
 164 *  - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
 165 *  - dl_total_bw array contains, in the i-eth element, the currently
 166 *    allocated bandwidth on the i-eth CPU.
 167 * Moreover, groups consume bandwidth on each CPU, while tasks only
 168 * consume bandwidth on the CPU they're running on.
 169 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
 170 * that will be shown the next time the proc or cgroup controls will
 171 * be red. It on its turn can be changed by writing on its own
 172 * control.
 173 */
 174struct dl_bandwidth {
 175	raw_spinlock_t dl_runtime_lock;
 176	u64 dl_runtime;
 177	u64 dl_period;
 178};
 179
 180static inline int dl_bandwidth_enabled(void)
 181{
 182	return sysctl_sched_rt_runtime >= 0;
 183}
 184
 185extern struct dl_bw *dl_bw_of(int i);
 186
 187struct dl_bw {
 188	raw_spinlock_t lock;
 189	u64 bw, total_bw;
 
 190};
 191
 192static inline
 193void __dl_clear(struct dl_bw *dl_b, u64 tsk_bw)
 194{
 195	dl_b->total_bw -= tsk_bw;
 196}
 197
 198static inline
 199void __dl_add(struct dl_bw *dl_b, u64 tsk_bw)
 200{
 201	dl_b->total_bw += tsk_bw;
 202}
 203
 204static inline
 205bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
 206{
 207	return dl_b->bw != -1 &&
 208	       dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
 209}
 210
 211extern struct mutex sched_domains_mutex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212
 213#ifdef CONFIG_CGROUP_SCHED
 214
 215#include <linux/cgroup.h>
 216
 217struct cfs_rq;
 218struct rt_rq;
 219
 220extern struct list_head task_groups;
 221
 222struct cfs_bandwidth {
 223#ifdef CONFIG_CFS_BANDWIDTH
 224	raw_spinlock_t lock;
 225	ktime_t period;
 226	u64 quota, runtime;
 227	s64 hierarchical_quota;
 228	u64 runtime_expires;
 229
 230	int idle, period_active;
 231	struct hrtimer period_timer, slack_timer;
 232	struct list_head throttled_cfs_rq;
 233
 234	/* statistics */
 235	int nr_periods, nr_throttled;
 236	u64 throttled_time;
 
 
 
 
 
 
 
 
 237#endif
 238};
 239
 240/* task group related information */
 241struct task_group {
 242	struct cgroup_subsys_state css;
 243
 244#ifdef CONFIG_FAIR_GROUP_SCHED
 245	/* schedulable entities of this group on each cpu */
 246	struct sched_entity **se;
 247	/* runqueue "owned" by this group on each cpu */
 248	struct cfs_rq **cfs_rq;
 249	unsigned long shares;
 
 
 
 250
 251#ifdef	CONFIG_SMP
 252	/*
 253	 * load_avg can be heavily contended at clock tick time, so put
 254	 * it in its own cacheline separated from the fields above which
 255	 * will also be accessed at each tick.
 256	 */
 257	atomic_long_t load_avg ____cacheline_aligned;
 258#endif
 259#endif
 260
 261#ifdef CONFIG_RT_GROUP_SCHED
 262	struct sched_rt_entity **rt_se;
 263	struct rt_rq **rt_rq;
 264
 265	struct rt_bandwidth rt_bandwidth;
 266#endif
 267
 268	struct rcu_head rcu;
 269	struct list_head list;
 270
 271	struct task_group *parent;
 272	struct list_head siblings;
 273	struct list_head children;
 274
 275#ifdef CONFIG_SCHED_AUTOGROUP
 276	struct autogroup *autogroup;
 
 
 
 
 
 
 
 
 
 
 
 277#endif
 278
 279	struct cfs_bandwidth cfs_bandwidth;
 280};
 281
 282#ifdef CONFIG_FAIR_GROUP_SCHED
 283#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 284
 285/*
 286 * A weight of 0 or 1 can cause arithmetics problems.
 287 * A weight of a cfs_rq is the sum of weights of which entities
 288 * are queued on this cfs_rq, so a weight of a entity should not be
 289 * too large, so as the shares value of a task group.
 290 * (The default weight is 1024 - so there's no practical
 291 *  limitation from this.)
 292 */
 293#define MIN_SHARES	(1UL <<  1)
 294#define MAX_SHARES	(1UL << 18)
 295#endif
 296
 297typedef int (*tg_visitor)(struct task_group *, void *);
 298
 299extern int walk_tg_tree_from(struct task_group *from,
 300			     tg_visitor down, tg_visitor up, void *data);
 301
 302/*
 303 * Iterate the full tree, calling @down when first entering a node and @up when
 304 * leaving it for the final time.
 305 *
 306 * Caller must hold rcu_lock or sufficient equivalent.
 307 */
 308static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 309{
 310	return walk_tg_tree_from(&root_task_group, down, up, data);
 311}
 312
 313extern int tg_nop(struct task_group *tg, void *data);
 314
 
 315extern void free_fair_sched_group(struct task_group *tg);
 316extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 
 317extern void unregister_fair_sched_group(struct task_group *tg);
 
 
 
 
 
 
 
 
 
 
 318extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 319			struct sched_entity *se, int cpu,
 320			struct sched_entity *parent);
 321extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 322
 323extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 324extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 325extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 
 326
 327extern void free_rt_sched_group(struct task_group *tg);
 328extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 329extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 330		struct sched_rt_entity *rt_se, int cpu,
 331		struct sched_rt_entity *parent);
 
 
 
 
 
 332
 333extern struct task_group *sched_create_group(struct task_group *parent);
 334extern void sched_online_group(struct task_group *tg,
 335			       struct task_group *parent);
 336extern void sched_destroy_group(struct task_group *tg);
 337extern void sched_offline_group(struct task_group *tg);
 338
 339extern void sched_move_task(struct task_struct *tsk);
 340
 341#ifdef CONFIG_FAIR_GROUP_SCHED
 342extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 343
 
 
 344#ifdef CONFIG_SMP
 345extern void set_task_rq_fair(struct sched_entity *se,
 346			     struct cfs_rq *prev, struct cfs_rq *next);
 347#else /* !CONFIG_SMP */
 348static inline void set_task_rq_fair(struct sched_entity *se,
 349			     struct cfs_rq *prev, struct cfs_rq *next) { }
 350#endif /* CONFIG_SMP */
 351#endif /* CONFIG_FAIR_GROUP_SCHED */
 352
 353#else /* CONFIG_CGROUP_SCHED */
 354
 355struct cfs_bandwidth { };
 
 356
 357#endif	/* CONFIG_CGROUP_SCHED */
 358
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 359/* CFS-related fields in a runqueue */
 360struct cfs_rq {
 361	struct load_weight load;
 362	unsigned int nr_running, h_nr_running;
 
 
 
 
 
 
 
 
 
 
 
 
 
 363
 364	u64 exec_clock;
 365	u64 min_vruntime;
 366#ifndef CONFIG_64BIT
 367	u64 min_vruntime_copy;
 368#endif
 369
 370	struct rb_root tasks_timeline;
 371	struct rb_node *rb_leftmost;
 372
 373	/*
 374	 * 'curr' points to currently running entity on this cfs_rq.
 375	 * It is set to NULL otherwise (i.e when none are currently running).
 376	 */
 377	struct sched_entity *curr, *next, *last, *skip;
 
 378
 379#ifdef	CONFIG_SCHED_DEBUG
 380	unsigned int nr_spread_over;
 381#endif
 382
 383#ifdef CONFIG_SMP
 384	/*
 385	 * CFS load tracking
 386	 */
 387	struct sched_avg avg;
 388	u64 runnable_load_sum;
 389	unsigned long runnable_load_avg;
 390#ifdef CONFIG_FAIR_GROUP_SCHED
 391	unsigned long tg_load_avg_contrib;
 392#endif
 393	atomic_long_t removed_load_avg, removed_util_avg;
 394#ifndef CONFIG_64BIT
 395	u64 load_last_update_time_copy;
 396#endif
 
 
 
 
 
 
 
 397
 398#ifdef CONFIG_FAIR_GROUP_SCHED
 
 
 
 
 
 399	/*
 400	 *   h_load = weight * f(tg)
 401	 *
 402	 * Where f(tg) is the recursive weight fraction assigned to
 403	 * this group.
 404	 */
 405	unsigned long h_load;
 406	u64 last_h_load_update;
 407	struct sched_entity *h_load_next;
 408#endif /* CONFIG_FAIR_GROUP_SCHED */
 409#endif /* CONFIG_SMP */
 410
 411#ifdef CONFIG_FAIR_GROUP_SCHED
 412	struct rq *rq;	/* cpu runqueue to which this cfs_rq is attached */
 413
 414	/*
 415	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 416	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 417	 * (like users, containers etc.)
 418	 *
 419	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
 420	 * list is used during load balance.
 421	 */
 422	int on_list;
 423	struct list_head leaf_cfs_rq_list;
 424	struct task_group *tg;	/* group that "owns" this runqueue */
 
 
 
 425
 426#ifdef CONFIG_CFS_BANDWIDTH
 427	int runtime_enabled;
 428	u64 runtime_expires;
 429	s64 runtime_remaining;
 430
 431	u64 throttled_clock, throttled_clock_task;
 432	u64 throttled_clock_task_time;
 433	int throttled, throttle_count;
 434	struct list_head throttled_list;
 
 
 
 
 
 
 
 
 435#endif /* CONFIG_CFS_BANDWIDTH */
 436#endif /* CONFIG_FAIR_GROUP_SCHED */
 437};
 438
 439static inline int rt_bandwidth_enabled(void)
 440{
 441	return sysctl_sched_rt_runtime >= 0;
 442}
 443
 444/* RT IPI pull logic requires IRQ_WORK */
 445#ifdef CONFIG_IRQ_WORK
 446# define HAVE_RT_PUSH_IPI
 447#endif
 448
 449/* Real-Time classes' related field in a runqueue: */
 450struct rt_rq {
 451	struct rt_prio_array active;
 452	unsigned int rt_nr_running;
 453	unsigned int rr_nr_running;
 454#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 455	struct {
 456		int curr; /* highest queued rt task prio */
 457#ifdef CONFIG_SMP
 458		int next; /* next highest */
 459#endif
 460	} highest_prio;
 461#endif
 462#ifdef CONFIG_SMP
 463	unsigned long rt_nr_migratory;
 464	unsigned long rt_nr_total;
 465	int overloaded;
 466	struct plist_head pushable_tasks;
 467#ifdef HAVE_RT_PUSH_IPI
 468	int push_flags;
 469	int push_cpu;
 470	struct irq_work push_work;
 471	raw_spinlock_t push_lock;
 472#endif
 473#endif /* CONFIG_SMP */
 474	int rt_queued;
 475
 476	int rt_throttled;
 477	u64 rt_time;
 478	u64 rt_runtime;
 479	/* Nests inside the rq lock: */
 480	raw_spinlock_t rt_runtime_lock;
 481
 482#ifdef CONFIG_RT_GROUP_SCHED
 483	unsigned long rt_nr_boosted;
 484
 485	struct rq *rq;
 486	struct task_group *tg;
 487#endif
 488};
 489
 
 
 
 
 
 490/* Deadline class' related fields in a runqueue */
 491struct dl_rq {
 492	/* runqueue is an rbtree, ordered by deadline */
 493	struct rb_root rb_root;
 494	struct rb_node *rb_leftmost;
 495
 496	unsigned long dl_nr_running;
 497
 498#ifdef CONFIG_SMP
 499	/*
 500	 * Deadline values of the currently executing and the
 501	 * earliest ready task on this rq. Caching these facilitates
 502	 * the decision wether or not a ready but not running task
 503	 * should migrate somewhere else.
 504	 */
 505	struct {
 506		u64 curr;
 507		u64 next;
 508	} earliest_dl;
 509
 510	unsigned long dl_nr_migratory;
 511	int overloaded;
 512
 513	/*
 514	 * Tasks on this rq that can be pushed away. They are kept in
 515	 * an rb-tree, ordered by tasks' deadlines, with caching
 516	 * of the leftmost (earliest deadline) element.
 517	 */
 518	struct rb_root pushable_dl_tasks_root;
 519	struct rb_node *pushable_dl_tasks_leftmost;
 520#else
 521	struct dl_bw dl_bw;
 522#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 523};
 524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525#ifdef CONFIG_SMP
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526
 527/*
 528 * We add the notion of a root-domain which will be used to define per-domain
 529 * variables. Each exclusive cpuset essentially defines an island domain by
 530 * fully partitioning the member cpus from any other cpuset. Whenever a new
 531 * exclusive cpuset is created, we also create and attach a new root-domain
 532 * object.
 533 *
 534 */
 535struct root_domain {
 536	atomic_t refcount;
 537	atomic_t rto_count;
 538	struct rcu_head rcu;
 539	cpumask_var_t span;
 540	cpumask_var_t online;
 
 
 
 
 
 
 
 541
 542	/* Indicate more than one runnable task for any CPU */
 543	bool overload;
 544
 545	/*
 546	 * The bit corresponding to a CPU gets set here if such CPU has more
 547	 * than one runnable -deadline task (as it is below for RT tasks).
 548	 */
 549	cpumask_var_t dlo_mask;
 550	atomic_t dlo_count;
 551	struct dl_bw dl_bw;
 552	struct cpudl cpudl;
 
 
 
 
 
 
 
 
 
 553
 
 
 
 
 
 
 
 
 
 
 
 
 
 554	/*
 555	 * The "RT overload" flag: it gets set if a CPU has more than
 556	 * one runnable RT task.
 557	 */
 558	cpumask_var_t rto_mask;
 559	struct cpupri cpupri;
 
 
 
 
 
 
 
 
 560};
 561
 562extern struct root_domain def_root_domain;
 
 
 
 
 563
 
 
 
 564#endif /* CONFIG_SMP */
 565
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 566/*
 567 * This is the main, per-CPU runqueue data structure.
 568 *
 569 * Locking rule: those places that want to lock multiple runqueues
 570 * (such as the load balancing or the thread migration code), lock
 571 * acquire operations must be ordered by ascending &runqueue.
 572 */
 573struct rq {
 574	/* runqueue lock: */
 575	raw_spinlock_t lock;
 576
 577	/*
 578	 * nr_running and cpu_load should be in the same cacheline because
 579	 * remote CPUs use both these fields when doing load calculation.
 580	 */
 581	unsigned int nr_running;
 582#ifdef CONFIG_NUMA_BALANCING
 583	unsigned int nr_numa_running;
 584	unsigned int nr_preferred_running;
 
 585#endif
 586	#define CPU_LOAD_IDX_MAX 5
 587	unsigned long cpu_load[CPU_LOAD_IDX_MAX];
 588	unsigned long last_load_update_tick;
 589#ifdef CONFIG_NO_HZ_COMMON
 590	u64 nohz_stamp;
 591	unsigned long nohz_flags;
 
 
 
 
 
 
 
 
 
 592#endif
 593#ifdef CONFIG_NO_HZ_FULL
 594	unsigned long last_sched_tick;
 
 
 
 
 
 595#endif
 596	/* capture load from *all* tasks on this cpu: */
 597	struct load_weight load;
 598	unsigned long nr_load_updates;
 599	u64 nr_switches;
 600
 601	struct cfs_rq cfs;
 602	struct rt_rq rt;
 603	struct dl_rq dl;
 604
 605#ifdef CONFIG_FAIR_GROUP_SCHED
 606	/* list of leaf cfs_rq on this cpu: */
 607	struct list_head leaf_cfs_rq_list;
 
 608#endif /* CONFIG_FAIR_GROUP_SCHED */
 609
 610	/*
 611	 * This is part of a global counter where only the total sum
 612	 * over all CPUs matters. A task can increase this counter on
 613	 * one CPU and if it got migrated afterwards it may decrease
 614	 * it on another CPU. Always updated under the runqueue lock:
 615	 */
 616	unsigned long nr_uninterruptible;
 617
 618	struct task_struct *curr, *idle, *stop;
 619	unsigned long next_balance;
 620	struct mm_struct *prev_mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	unsigned int clock_skip_update;
 623	u64 clock;
 624	u64 clock_task;
 625
 626	atomic_t nr_iowait;
 
 
 
 
 
 
 
 627
 628#ifdef CONFIG_SMP
 629	struct root_domain *rd;
 630	struct sched_domain *sd;
 
 
 631
 632	unsigned long cpu_capacity;
 633	unsigned long cpu_capacity_orig;
 634
 635	struct callback_head *balance_callback;
 
 
 
 636
 637	unsigned char idle_balance;
 638	/* For active balancing */
 639	int active_balance;
 640	int push_cpu;
 641	struct cpu_stop_work active_balance_work;
 642	/* cpu of this runqueue: */
 643	int cpu;
 644	int online;
 
 645
 646	struct list_head cfs_tasks;
 647
 648	u64 rt_avg;
 649	u64 age_stamp;
 650	u64 idle_stamp;
 651	u64 avg_idle;
 
 
 
 
 
 
 652
 653	/* This is used to determine avg_idle's max value */
 654	u64 max_idle_balance_cost;
 
 
 
 655#endif
 
 656
 657#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 658	u64 prev_irq_time;
 659#endif
 660#ifdef CONFIG_PARAVIRT
 661	u64 prev_steal_time;
 662#endif
 663#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
 664	u64 prev_steal_time_rq;
 665#endif
 666
 667	/* calc_load related fields */
 668	unsigned long calc_load_update;
 669	long calc_load_active;
 670
 671#ifdef CONFIG_SCHED_HRTICK
 672#ifdef CONFIG_SMP
 673	int hrtick_csd_pending;
 674	struct call_single_data hrtick_csd;
 675#endif
 676	struct hrtimer hrtick_timer;
 
 677#endif
 678
 679#ifdef CONFIG_SCHEDSTATS
 680	/* latency stats */
 681	struct sched_info rq_sched_info;
 682	unsigned long long rq_cpu_time;
 683	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
 684
 685	/* sys_sched_yield() stats */
 686	unsigned int yld_count;
 687
 688	/* schedule() stats */
 689	unsigned int sched_count;
 690	unsigned int sched_goidle;
 691
 692	/* try_to_wake_up() stats */
 693	unsigned int ttwu_count;
 694	unsigned int ttwu_local;
 
 
 
 
 
 695#endif
 696
 697#ifdef CONFIG_SMP
 698	struct llist_head wake_list;
 699#endif
 
 
 700
 701#ifdef CONFIG_CPU_IDLE
 702	/* Must be inspected within a rcu lock section */
 703	struct cpuidle_state *idle_state;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 704#endif
 705};
 706
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707static inline int cpu_of(struct rq *rq)
 708{
 709#ifdef CONFIG_SMP
 710	return rq->cpu;
 711#else
 712	return 0;
 713#endif
 714}
 715
 
 
 
 
 
 
 
 
 
 
 
 716DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
 717
 718#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
 719#define this_rq()		this_cpu_ptr(&runqueues)
 720#define task_rq(p)		cpu_rq(task_cpu(p))
 721#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
 722#define raw_rq()		raw_cpu_ptr(&runqueues)
 723
 724static inline u64 __rq_clock_broken(struct rq *rq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725{
 726	return READ_ONCE(rq->clock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727}
 728
 729static inline u64 rq_clock(struct rq *rq)
 730{
 731	lockdep_assert_held(&rq->lock);
 
 
 732	return rq->clock;
 733}
 734
 735static inline u64 rq_clock_task(struct rq *rq)
 736{
 737	lockdep_assert_held(&rq->lock);
 
 
 738	return rq->clock_task;
 739}
 740
 741#define RQCF_REQ_SKIP	0x01
 742#define RQCF_ACT_SKIP	0x02
 
 
 
 
 
 
 
 
 
 
 743
 744static inline void rq_clock_skip_update(struct rq *rq, bool skip)
 745{
 746	lockdep_assert_held(&rq->lock);
 747	if (skip)
 748		rq->clock_skip_update |= RQCF_REQ_SKIP;
 749	else
 750		rq->clock_skip_update &= ~RQCF_REQ_SKIP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751}
 752
 753#ifdef CONFIG_NUMA
 754enum numa_topology_type {
 755	NUMA_DIRECT,
 756	NUMA_GLUELESS_MESH,
 757	NUMA_BACKPLANE,
 758};
 759extern enum numa_topology_type sched_numa_topology_type;
 760extern int sched_max_numa_distance;
 761extern bool find_numa_distance(int distance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 762#endif
 763
 764#ifdef CONFIG_NUMA_BALANCING
 765/* The regions in numa_faults array from task_struct */
 766enum numa_faults_stats {
 767	NUMA_MEM = 0,
 768	NUMA_CPU,
 769	NUMA_MEMBUF,
 770	NUMA_CPUBUF
 771};
 772extern void sched_setnuma(struct task_struct *p, int node);
 773extern int migrate_task_to(struct task_struct *p, int cpu);
 774extern int migrate_swap(struct task_struct *, struct task_struct *);
 
 
 
 
 
 
 
 775#endif /* CONFIG_NUMA_BALANCING */
 776
 777#ifdef CONFIG_SMP
 778
 779static inline void
 780queue_balance_callback(struct rq *rq,
 781		       struct callback_head *head,
 782		       void (*func)(struct rq *rq))
 783{
 784	lockdep_assert_held(&rq->lock);
 785
 786	if (unlikely(head->next))
 
 
 
 
 
 787		return;
 788
 789	head->func = (void (*)(struct callback_head *))func;
 790	head->next = rq->balance_callback;
 791	rq->balance_callback = head;
 792}
 793
 794extern void sched_ttwu_pending(void);
 795
 796#define rcu_dereference_check_sched_domain(p) \
 797	rcu_dereference_check((p), \
 798			      lockdep_is_held(&sched_domains_mutex))
 799
 800/*
 801 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
 802 * See detach_destroy_domains: synchronize_sched for details.
 803 *
 804 * The domain tree of any CPU may only be accessed from within
 805 * preempt-disabled sections.
 806 */
 807#define for_each_domain(cpu, __sd) \
 808	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
 809			__sd; __sd = __sd->parent)
 810
 811#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
 
 
 
 
 
 812
 813/**
 814 * highest_flag_domain - Return highest sched_domain containing flag.
 815 * @cpu:	The cpu whose highest level of sched domain is to
 816 *		be returned.
 817 * @flag:	The flag to check for the highest sched_domain
 818 *		for the given cpu.
 819 *
 820 * Returns the highest sched_domain of a cpu which contains the given flag.
 
 821 */
 822static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
 823{
 824	struct sched_domain *sd, *hsd = NULL;
 825
 826	for_each_domain(cpu, sd) {
 827		if (!(sd->flags & flag))
 
 
 
 
 
 
 
 
 
 828			break;
 829		hsd = sd;
 830	}
 831
 832	return hsd;
 833}
 834
 835static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
 836{
 837	struct sched_domain *sd;
 838
 839	for_each_domain(cpu, sd) {
 840		if (sd->flags & flag)
 841			break;
 842	}
 843
 844	return sd;
 845}
 846
 847DECLARE_PER_CPU(struct sched_domain *, sd_llc);
 848DECLARE_PER_CPU(int, sd_llc_size);
 849DECLARE_PER_CPU(int, sd_llc_id);
 850DECLARE_PER_CPU(struct sched_domain *, sd_numa);
 851DECLARE_PER_CPU(struct sched_domain *, sd_busy);
 852DECLARE_PER_CPU(struct sched_domain *, sd_asym);
 
 
 
 
 
 
 
 
 
 853
 854struct sched_group_capacity {
 855	atomic_t ref;
 856	/*
 857	 * CPU capacity of this group, SCHED_LOAD_SCALE being max capacity
 858	 * for a single CPU.
 859	 */
 860	unsigned int capacity;
 861	unsigned long next_update;
 862	int imbalance; /* XXX unrelated to capacity but shared group state */
 863	/*
 864	 * Number of busy cpus in this group.
 865	 */
 866	atomic_t nr_busy_cpus;
 
 
 867
 868	unsigned long cpumask[0]; /* iteration mask */
 869};
 870
 871struct sched_group {
 872	struct sched_group *next;	/* Must be a circular list */
 873	atomic_t ref;
 874
 875	unsigned int group_weight;
 
 876	struct sched_group_capacity *sgc;
 
 
 877
 878	/*
 879	 * The CPUs this group covers.
 880	 *
 881	 * NOTE: this field is variable length. (Allocated dynamically
 882	 * by attaching extra space to the end of the structure,
 883	 * depending on how many CPUs the kernel has booted up with)
 884	 */
 885	unsigned long cpumask[0];
 886};
 887
 888static inline struct cpumask *sched_group_cpus(struct sched_group *sg)
 889{
 890	return to_cpumask(sg->cpumask);
 891}
 892
 893/*
 894 * cpumask masking which cpus in the group are allowed to iterate up the domain
 895 * tree.
 896 */
 897static inline struct cpumask *sched_group_mask(struct sched_group *sg)
 898{
 899	return to_cpumask(sg->sgc->cpumask);
 900}
 901
 902/**
 903 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
 904 * @group: The group whose first cpu is to be returned.
 905 */
 906static inline unsigned int group_first_cpu(struct sched_group *group)
 907{
 908	return cpumask_first(sched_group_cpus(group));
 909}
 910
 911extern int group_balance_cpu(struct sched_group *sg);
 912
 913#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
 914void register_sched_domain_sysctl(void);
 915void unregister_sched_domain_sysctl(void);
 916#else
 917static inline void register_sched_domain_sysctl(void)
 918{
 919}
 920static inline void unregister_sched_domain_sysctl(void)
 921{
 922}
 923#endif
 924
 925#else
 926
 927static inline void sched_ttwu_pending(void) { }
 928
 
 
 
 
 
 
 929#endif /* CONFIG_SMP */
 930
 931#include "stats.h"
 932#include "auto_group.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 933
 934#ifdef CONFIG_CGROUP_SCHED
 935
 936/*
 937 * Return the group to which this tasks belongs.
 938 *
 939 * We cannot use task_css() and friends because the cgroup subsystem
 940 * changes that value before the cgroup_subsys::attach() method is called,
 941 * therefore we cannot pin it and might observe the wrong value.
 942 *
 943 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
 944 * core changes this before calling sched_move_task().
 945 *
 946 * Instead we use a 'copy' which is updated from sched_move_task() while
 947 * holding both task_struct::pi_lock and rq::lock.
 948 */
 949static inline struct task_group *task_group(struct task_struct *p)
 950{
 951	return p->sched_task_group;
 952}
 953
 954/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
 955static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
 956{
 957#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
 958	struct task_group *tg = task_group(p);
 959#endif
 960
 961#ifdef CONFIG_FAIR_GROUP_SCHED
 962	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
 963	p->se.cfs_rq = tg->cfs_rq[cpu];
 964	p->se.parent = tg->se[cpu];
 
 965#endif
 966
 967#ifdef CONFIG_RT_GROUP_SCHED
 968	p->rt.rt_rq  = tg->rt_rq[cpu];
 969	p->rt.parent = tg->rt_se[cpu];
 970#endif
 971}
 972
 973#else /* CONFIG_CGROUP_SCHED */
 974
 975static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
 976static inline struct task_group *task_group(struct task_struct *p)
 977{
 978	return NULL;
 979}
 980
 981#endif /* CONFIG_CGROUP_SCHED */
 982
 983static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
 984{
 985	set_task_rq(p, cpu);
 986#ifdef CONFIG_SMP
 987	/*
 988	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
 989	 * successfuly executed on another CPU. We must ensure that updates of
 990	 * per-task data have been completed by this moment.
 991	 */
 992	smp_wmb();
 993	task_thread_info(p)->cpu = cpu;
 994	p->wake_cpu = cpu;
 995#endif
 996}
 997
 998/*
 999 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1000 */
1001#ifdef CONFIG_SCHED_DEBUG
1002# include <linux/static_key.h>
1003# define const_debug __read_mostly
1004#else
1005# define const_debug const
1006#endif
1007
1008extern const_debug unsigned int sysctl_sched_features;
1009
1010#define SCHED_FEAT(name, enabled)	\
1011	__SCHED_FEAT_##name ,
1012
1013enum {
1014#include "features.h"
1015	__SCHED_FEAT_NR,
1016};
1017
1018#undef SCHED_FEAT
1019
1020#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
 
 
 
 
 
 
 
 
1021#define SCHED_FEAT(name, enabled)					\
1022static __always_inline bool static_branch_##name(struct static_key *key) \
1023{									\
1024	return static_key_##enabled(key);				\
1025}
1026
1027#include "features.h"
1028
1029#undef SCHED_FEAT
1030
1031extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
1032#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
1033#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
 
 
1034#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
1035#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1036
1037extern struct static_key_false sched_numa_balancing;
1038extern struct static_key_false sched_schedstats;
1039
1040static inline u64 global_rt_period(void)
1041{
1042	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1043}
1044
1045static inline u64 global_rt_runtime(void)
1046{
1047	if (sysctl_sched_rt_runtime < 0)
1048		return RUNTIME_INF;
1049
1050	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1051}
1052
1053static inline int task_current(struct rq *rq, struct task_struct *p)
1054{
1055	return rq->curr == p;
1056}
1057
1058static inline int task_running(struct rq *rq, struct task_struct *p)
1059{
1060#ifdef CONFIG_SMP
1061	return p->on_cpu;
1062#else
1063	return task_current(rq, p);
1064#endif
1065}
1066
1067static inline int task_on_rq_queued(struct task_struct *p)
1068{
1069	return p->on_rq == TASK_ON_RQ_QUEUED;
1070}
1071
1072static inline int task_on_rq_migrating(struct task_struct *p)
1073{
1074	return p->on_rq == TASK_ON_RQ_MIGRATING;
1075}
1076
1077#ifndef prepare_arch_switch
1078# define prepare_arch_switch(next)	do { } while (0)
1079#endif
1080#ifndef finish_arch_post_lock_switch
1081# define finish_arch_post_lock_switch()	do { } while (0)
1082#endif
1083
1084static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1085{
1086#ifdef CONFIG_SMP
1087	/*
1088	 * We can optimise this out completely for !SMP, because the
1089	 * SMP rebalancing from interrupt is the only thing that cares
1090	 * here.
1091	 */
1092	next->on_cpu = 1;
1093#endif
1094}
1095
1096static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1097{
1098#ifdef CONFIG_SMP
1099	/*
1100	 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1101	 * We must ensure this doesn't happen until the switch is completely
1102	 * finished.
1103	 *
1104	 * In particular, the load of prev->state in finish_task_switch() must
1105	 * happen before this.
1106	 *
1107	 * Pairs with the smp_cond_acquire() in try_to_wake_up().
1108	 */
1109	smp_store_release(&prev->on_cpu, 0);
1110#endif
1111#ifdef CONFIG_DEBUG_SPINLOCK
1112	/* this is a valid case when another task releases the spinlock */
1113	rq->lock.owner = current;
1114#endif
1115	/*
1116	 * If we are tracking spinlock dependencies then we have to
1117	 * fix up the runqueue lock - which gets 'carried over' from
1118	 * prev into current:
1119	 */
1120	spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1121
1122	raw_spin_unlock_irq(&rq->lock);
1123}
1124
1125/*
1126 * wake flags
1127 */
1128#define WF_SYNC		0x01		/* waker goes to sleep after wakeup */
1129#define WF_FORK		0x02		/* child wakeup after fork */
1130#define WF_MIGRATED	0x4		/* internal use, task got migrated */
1131
1132/*
1133 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1134 * of tasks with abnormal "nice" values across CPUs the contribution that
1135 * each task makes to its run queue's load is weighted according to its
1136 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1137 * scaled version of the new time slice allocation that they receive on time
1138 * slice expiry etc.
1139 */
1140
1141#define WEIGHT_IDLEPRIO                3
1142#define WMULT_IDLEPRIO         1431655765
1143
1144extern const int sched_prio_to_weight[40];
1145extern const u32 sched_prio_to_wmult[40];
1146
1147/*
1148 * {de,en}queue flags:
1149 *
1150 * DEQUEUE_SLEEP  - task is no longer runnable
1151 * ENQUEUE_WAKEUP - task just became runnable
1152 *
1153 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1154 *                are in a known state which allows modification. Such pairs
1155 *                should preserve as much state as possible.
1156 *
1157 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1158 *        in the runqueue.
1159 *
 
 
 
 
1160 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
1161 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
1162 * ENQUEUE_WAKING    - sched_class::task_waking was called
1163 *
1164 */
1165
1166#define DEQUEUE_SLEEP		0x01
1167#define DEQUEUE_SAVE		0x02 /* matches ENQUEUE_RESTORE */
1168#define DEQUEUE_MOVE		0x04 /* matches ENQUEUE_MOVE */
 
 
1169
1170#define ENQUEUE_WAKEUP		0x01
1171#define ENQUEUE_RESTORE		0x02
1172#define ENQUEUE_MOVE		0x04
 
1173
1174#define ENQUEUE_HEAD		0x08
1175#define ENQUEUE_REPLENISH	0x10
1176#ifdef CONFIG_SMP
1177#define ENQUEUE_WAKING		0x20
1178#else
1179#define ENQUEUE_WAKING		0x00
1180#endif
 
 
1181
1182#define RETRY_TASK		((void *)-1UL)
1183
 
 
 
 
 
 
 
 
1184struct sched_class {
1185	const struct sched_class *next;
 
 
 
1186
1187	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1188	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
1189	void (*yield_task) (struct rq *rq);
1190	bool (*yield_to_task) (struct rq *rq, struct task_struct *p, bool preempt);
1191
1192	void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
1193
1194	/*
1195	 * It is the responsibility of the pick_next_task() method that will
1196	 * return the next task to call put_prev_task() on the @prev task or
1197	 * something equivalent.
1198	 *
1199	 * May return RETRY_TASK when it finds a higher prio class has runnable
1200	 * tasks.
1201	 */
1202	struct task_struct * (*pick_next_task) (struct rq *rq,
1203						struct task_struct *prev);
1204	void (*put_prev_task) (struct rq *rq, struct task_struct *p);
1205
1206#ifdef CONFIG_SMP
1207	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1208	void (*migrate_task_rq)(struct task_struct *p);
 
 
1209
1210	void (*task_waking) (struct task_struct *task);
1211	void (*task_woken) (struct rq *this_rq, struct task_struct *task);
1212
1213	void (*set_cpus_allowed)(struct task_struct *p,
1214				 const struct cpumask *newmask);
 
1215
1216	void (*rq_online)(struct rq *rq);
1217	void (*rq_offline)(struct rq *rq);
 
 
1218#endif
1219
1220	void (*set_curr_task) (struct rq *rq);
1221	void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
1222	void (*task_fork) (struct task_struct *p);
1223	void (*task_dead) (struct task_struct *p);
1224
1225	/*
1226	 * The switched_from() call is allowed to drop rq->lock, therefore we
1227	 * cannot assume the switched_from/switched_to pair is serliazed by
1228	 * rq->lock. They are however serialized by p->pi_lock.
1229	 */
1230	void (*switched_from) (struct rq *this_rq, struct task_struct *task);
1231	void (*switched_to) (struct rq *this_rq, struct task_struct *task);
1232	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
1233			     int oldprio);
1234
1235	unsigned int (*get_rr_interval) (struct rq *rq,
1236					 struct task_struct *task);
1237
1238	void (*update_curr) (struct rq *rq);
1239
1240#ifdef CONFIG_FAIR_GROUP_SCHED
1241	void (*task_move_group) (struct task_struct *p);
 
 
 
 
1242#endif
1243};
1244
1245static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1246{
 
1247	prev->sched_class->put_prev_task(rq, prev);
1248}
1249
1250#define sched_class_highest (&stop_sched_class)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251#define for_each_class(class) \
1252   for (class = sched_class_highest; class; class = class->next)
 
 
1253
1254extern const struct sched_class stop_sched_class;
1255extern const struct sched_class dl_sched_class;
1256extern const struct sched_class rt_sched_class;
1257extern const struct sched_class fair_sched_class;
1258extern const struct sched_class idle_sched_class;
1259
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1260
1261#ifdef CONFIG_SMP
1262
1263extern void update_group_capacity(struct sched_domain *sd, int cpu);
1264
1265extern void trigger_load_balance(struct rq *rq);
1266
1267extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1268
1269#endif
1270
1271#ifdef CONFIG_CPU_IDLE
1272static inline void idle_set_state(struct rq *rq,
1273				  struct cpuidle_state *idle_state)
1274{
1275	rq->idle_state = idle_state;
1276}
1277
1278static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1279{
1280	WARN_ON(!rcu_read_lock_held());
 
1281	return rq->idle_state;
1282}
1283#else
1284static inline void idle_set_state(struct rq *rq,
1285				  struct cpuidle_state *idle_state)
1286{
1287}
1288
1289static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1290{
1291	return NULL;
1292}
1293#endif
1294
 
 
 
1295extern void sysrq_sched_debug_show(void);
1296extern void sched_init_granularity(void);
1297extern void update_max_interval(void);
1298
1299extern void init_sched_dl_class(void);
1300extern void init_sched_rt_class(void);
1301extern void init_sched_fair_class(void);
1302
 
 
1303extern void resched_curr(struct rq *rq);
1304extern void resched_cpu(int cpu);
1305
1306extern struct rt_bandwidth def_rt_bandwidth;
1307extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
 
1308
1309extern struct dl_bandwidth def_dl_bandwidth;
1310extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
1311extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
1312
 
 
 
 
 
1313unsigned long to_ratio(u64 period, u64 runtime);
1314
1315extern void init_entity_runnable_average(struct sched_entity *se);
 
1316
1317#ifdef CONFIG_NO_HZ_FULL
1318extern bool sched_can_stop_tick(struct rq *rq);
 
1319
1320/*
1321 * Tick may be needed by tasks in the runqueue depending on their policy and
1322 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1323 * nohz mode if necessary.
1324 */
1325static inline void sched_update_tick_dependency(struct rq *rq)
1326{
1327	int cpu;
1328
1329	if (!tick_nohz_full_enabled())
1330		return;
1331
1332	cpu = cpu_of(rq);
1333
1334	if (!tick_nohz_full_cpu(cpu))
1335		return;
1336
1337	if (sched_can_stop_tick(rq))
1338		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1339	else
1340		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1341}
1342#else
 
1343static inline void sched_update_tick_dependency(struct rq *rq) { }
1344#endif
1345
1346static inline void add_nr_running(struct rq *rq, unsigned count)
1347{
1348	unsigned prev_nr = rq->nr_running;
1349
1350	rq->nr_running = prev_nr + count;
 
 
 
1351
1352	if (prev_nr < 2 && rq->nr_running >= 2) {
1353#ifdef CONFIG_SMP
1354		if (!rq->rd->overload)
1355			rq->rd->overload = true;
1356#endif
1357	}
 
1358
1359	sched_update_tick_dependency(rq);
1360}
1361
1362static inline void sub_nr_running(struct rq *rq, unsigned count)
1363{
1364	rq->nr_running -= count;
 
 
 
 
1365	/* Check if we still need preemption */
1366	sched_update_tick_dependency(rq);
1367}
1368
1369static inline void rq_last_tick_reset(struct rq *rq)
1370{
1371#ifdef CONFIG_NO_HZ_FULL
1372	rq->last_sched_tick = jiffies;
1373#endif
1374}
1375
1376extern void update_rq_clock(struct rq *rq);
1377
1378extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1379extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1380
1381extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
 
 
 
 
 
 
1382
1383extern const_debug unsigned int sysctl_sched_time_avg;
1384extern const_debug unsigned int sysctl_sched_nr_migrate;
1385extern const_debug unsigned int sysctl_sched_migration_cost;
1386
1387static inline u64 sched_avg_period(void)
1388{
1389	return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1390}
 
 
 
 
 
 
 
 
 
 
1391
1392#ifdef CONFIG_SCHED_HRTICK
1393
1394/*
1395 * Use hrtick when:
1396 *  - enabled by features
1397 *  - hrtimer is actually high res
1398 */
1399static inline int hrtick_enabled(struct rq *rq)
1400{
1401	if (!sched_feat(HRTICK))
1402		return 0;
1403	if (!cpu_active(cpu_of(rq)))
1404		return 0;
1405	return hrtimer_is_hres_active(&rq->hrtick_timer);
1406}
1407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408void hrtick_start(struct rq *rq, u64 delay);
1409
1410#else
1411
 
 
 
 
 
 
 
 
 
 
1412static inline int hrtick_enabled(struct rq *rq)
1413{
1414	return 0;
1415}
1416
1417#endif /* CONFIG_SCHED_HRTICK */
1418
1419#ifdef CONFIG_SMP
1420extern void sched_avg_update(struct rq *rq);
1421
1422#ifndef arch_scale_freq_capacity
1423static __always_inline
1424unsigned long arch_scale_freq_capacity(struct sched_domain *sd, int cpu)
1425{
1426	return SCHED_CAPACITY_SCALE;
1427}
1428#endif
1429
1430#ifndef arch_scale_cpu_capacity
 
 
 
 
 
 
 
 
 
 
1431static __always_inline
1432unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1433{
1434	if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
1435		return sd->smt_gain / sd->span_weight;
1436
1437	return SCHED_CAPACITY_SCALE;
1438}
1439#endif
1440
1441static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1442{
1443	rq->rt_avg += rt_delta * arch_scale_freq_capacity(NULL, cpu_of(rq));
1444	sched_avg_update(rq);
1445}
1446#else
1447static inline void sched_rt_avg_update(struct rq *rq, u64 rt_delta) { }
1448static inline void sched_avg_update(struct rq *rq) { }
1449#endif
1450
1451/*
1452 * __task_rq_lock - lock the rq @p resides on.
 
 
 
1453 */
1454static inline struct rq *__task_rq_lock(struct task_struct *p)
1455	__acquires(rq->lock)
1456{
1457	struct rq *rq;
1458
1459	lockdep_assert_held(&p->pi_lock);
1460
1461	for (;;) {
1462		rq = task_rq(p);
1463		raw_spin_lock(&rq->lock);
1464		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1465			lockdep_pin_lock(&rq->lock);
1466			return rq;
1467		}
1468		raw_spin_unlock(&rq->lock);
1469
1470		while (unlikely(task_on_rq_migrating(p)))
1471			cpu_relax();
1472	}
1473}
 
 
 
1474
1475/*
1476 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1477 */
1478static inline struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1479	__acquires(p->pi_lock)
1480	__acquires(rq->lock)
1481{
1482	struct rq *rq;
1483
1484	for (;;) {
1485		raw_spin_lock_irqsave(&p->pi_lock, *flags);
1486		rq = task_rq(p);
1487		raw_spin_lock(&rq->lock);
1488		/*
1489		 *	move_queued_task()		task_rq_lock()
1490		 *
1491		 *	ACQUIRE (rq->lock)
1492		 *	[S] ->on_rq = MIGRATING		[L] rq = task_rq()
1493		 *	WMB (__set_task_cpu())		ACQUIRE (rq->lock);
1494		 *	[S] ->cpu = new_cpu		[L] task_rq()
1495		 *					[L] ->on_rq
1496		 *	RELEASE (rq->lock)
1497		 *
1498		 * If we observe the old cpu in task_rq_lock, the acquire of
1499		 * the old rq->lock will fully serialize against the stores.
1500		 *
1501		 * If we observe the new cpu in task_rq_lock, the acquire will
1502		 * pair with the WMB to ensure we must then also see migrating.
1503		 */
1504		if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
1505			lockdep_pin_lock(&rq->lock);
1506			return rq;
1507		}
1508		raw_spin_unlock(&rq->lock);
1509		raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1510
1511		while (unlikely(task_on_rq_migrating(p)))
1512			cpu_relax();
1513	}
1514}
1515
1516static inline void __task_rq_unlock(struct rq *rq)
1517	__releases(rq->lock)
1518{
1519	lockdep_unpin_lock(&rq->lock);
1520	raw_spin_unlock(&rq->lock);
1521}
 
 
 
 
 
 
 
 
 
 
 
 
 
1522
1523static inline void
1524task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1525	__releases(rq->lock)
1526	__releases(p->pi_lock)
1527{
1528	lockdep_unpin_lock(&rq->lock);
1529	raw_spin_unlock(&rq->lock);
1530	raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1531}
1532
1533#ifdef CONFIG_SMP
1534#ifdef CONFIG_PREEMPT
1535
1536static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1537
1538/*
1539 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1540 * way at the expense of forcing extra atomic operations in all
1541 * invocations.  This assures that the double_lock is acquired using the
1542 * same underlying policy as the spinlock_t on this architecture, which
1543 * reduces latency compared to the unfair variant below.  However, it
1544 * also adds more overhead and therefore may reduce throughput.
1545 */
1546static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1547	__releases(this_rq->lock)
1548	__acquires(busiest->lock)
1549	__acquires(this_rq->lock)
1550{
1551	raw_spin_unlock(&this_rq->lock);
1552	double_rq_lock(this_rq, busiest);
1553
1554	return 1;
1555}
1556
1557#else
1558/*
1559 * Unfair double_lock_balance: Optimizes throughput at the expense of
1560 * latency by eliminating extra atomic operations when the locks are
1561 * already in proper order on entry.  This favors lower cpu-ids and will
1562 * grant the double lock to lower cpus over higher ids under contention,
1563 * regardless of entry order into the function.
1564 */
1565static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1566	__releases(this_rq->lock)
1567	__acquires(busiest->lock)
1568	__acquires(this_rq->lock)
1569{
1570	int ret = 0;
 
 
 
 
1571
1572	if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1573		if (busiest < this_rq) {
1574			raw_spin_unlock(&this_rq->lock);
1575			raw_spin_lock(&busiest->lock);
1576			raw_spin_lock_nested(&this_rq->lock,
1577					      SINGLE_DEPTH_NESTING);
1578			ret = 1;
1579		} else
1580			raw_spin_lock_nested(&busiest->lock,
1581					      SINGLE_DEPTH_NESTING);
1582	}
1583	return ret;
 
 
 
 
1584}
1585
1586#endif /* CONFIG_PREEMPT */
1587
1588/*
1589 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1590 */
1591static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1592{
1593	if (unlikely(!irqs_disabled())) {
1594		/* printk() doesn't work good under rq->lock */
1595		raw_spin_unlock(&this_rq->lock);
1596		BUG_ON(1);
1597	}
1598
1599	return _double_lock_balance(this_rq, busiest);
1600}
1601
1602static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1603	__releases(busiest->lock)
1604{
1605	raw_spin_unlock(&busiest->lock);
1606	lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
 
1607}
1608
1609static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1610{
1611	if (l1 > l2)
1612		swap(l1, l2);
1613
1614	spin_lock(l1);
1615	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1616}
1617
1618static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1619{
1620	if (l1 > l2)
1621		swap(l1, l2);
1622
1623	spin_lock_irq(l1);
1624	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1625}
1626
1627static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1628{
1629	if (l1 > l2)
1630		swap(l1, l2);
1631
1632	raw_spin_lock(l1);
1633	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1634}
1635
1636/*
1637 * double_rq_lock - safely lock two runqueues
1638 *
1639 * Note this does not disable interrupts like task_rq_lock,
1640 * you need to do so manually before calling.
1641 */
1642static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1643	__acquires(rq1->lock)
1644	__acquires(rq2->lock)
1645{
1646	BUG_ON(!irqs_disabled());
1647	if (rq1 == rq2) {
1648		raw_spin_lock(&rq1->lock);
1649		__acquire(rq2->lock);	/* Fake it out ;) */
1650	} else {
1651		if (rq1 < rq2) {
1652			raw_spin_lock(&rq1->lock);
1653			raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1654		} else {
1655			raw_spin_lock(&rq2->lock);
1656			raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1657		}
1658	}
1659}
1660
 
 
 
 
1661/*
1662 * double_rq_unlock - safely unlock two runqueues
1663 *
1664 * Note this does not restore interrupts like task_rq_unlock,
1665 * you need to do so manually after calling.
1666 */
1667static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1668	__releases(rq1->lock)
1669	__releases(rq2->lock)
1670{
1671	raw_spin_unlock(&rq1->lock);
1672	if (rq1 != rq2)
1673		raw_spin_unlock(&rq2->lock);
1674	else
1675		__release(rq2->lock);
 
1676}
1677
 
 
 
 
1678#else /* CONFIG_SMP */
1679
1680/*
1681 * double_rq_lock - safely lock two runqueues
1682 *
1683 * Note this does not disable interrupts like task_rq_lock,
1684 * you need to do so manually before calling.
1685 */
1686static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1687	__acquires(rq1->lock)
1688	__acquires(rq2->lock)
1689{
1690	BUG_ON(!irqs_disabled());
1691	BUG_ON(rq1 != rq2);
1692	raw_spin_lock(&rq1->lock);
1693	__acquire(rq2->lock);	/* Fake it out ;) */
 
1694}
1695
1696/*
1697 * double_rq_unlock - safely unlock two runqueues
1698 *
1699 * Note this does not restore interrupts like task_rq_unlock,
1700 * you need to do so manually after calling.
1701 */
1702static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1703	__releases(rq1->lock)
1704	__releases(rq2->lock)
1705{
1706	BUG_ON(rq1 != rq2);
1707	raw_spin_unlock(&rq1->lock);
1708	__release(rq2->lock);
1709}
1710
1711#endif
1712
 
 
 
 
 
1713extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
1714extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
1715
1716#ifdef	CONFIG_SCHED_DEBUG
 
 
1717extern void print_cfs_stats(struct seq_file *m, int cpu);
1718extern void print_rt_stats(struct seq_file *m, int cpu);
1719extern void print_dl_stats(struct seq_file *m, int cpu);
1720extern void
1721print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
 
1722
 
1723#ifdef CONFIG_NUMA_BALANCING
1724extern void
1725show_numa_stats(struct task_struct *p, struct seq_file *m);
1726extern void
1727print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
1728	unsigned long tpf, unsigned long gsf, unsigned long gpf);
1729#endif /* CONFIG_NUMA_BALANCING */
 
 
1730#endif /* CONFIG_SCHED_DEBUG */
1731
1732extern void init_cfs_rq(struct cfs_rq *cfs_rq);
1733extern void init_rt_rq(struct rt_rq *rt_rq);
1734extern void init_dl_rq(struct dl_rq *dl_rq);
1735
1736extern void cfs_bandwidth_usage_inc(void);
1737extern void cfs_bandwidth_usage_dec(void);
1738
1739#ifdef CONFIG_NO_HZ_COMMON
1740enum rq_nohz_flag_bits {
1741	NOHZ_TICK_STOPPED,
1742	NOHZ_BALANCE_KICK,
1743};
 
 
 
 
 
 
 
 
 
 
 
1744
1745#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
 
 
 
 
 
 
 
 
 
 
1746#endif
1747
1748#ifdef CONFIG_IRQ_TIME_ACCOUNTING
 
 
 
 
 
 
1749
1750DECLARE_PER_CPU(u64, cpu_hardirq_time);
1751DECLARE_PER_CPU(u64, cpu_softirq_time);
1752
1753#ifndef CONFIG_64BIT
1754DECLARE_PER_CPU(seqcount_t, irq_time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755
1756static inline void irq_time_write_begin(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1757{
1758	__this_cpu_inc(irq_time_seq.sequence);
1759	smp_wmb();
 
 
 
 
1760}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1761
1762static inline void irq_time_write_end(void)
 
 
 
 
 
 
 
 
 
1763{
1764	smp_wmb();
1765	__this_cpu_inc(irq_time_seq.sequence);
 
1766}
1767
1768static inline u64 irq_time_read(int cpu)
1769{
1770	u64 irq_time;
1771	unsigned seq;
1772
1773	do {
1774		seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
1775		irq_time = per_cpu(cpu_softirq_time, cpu) +
1776			   per_cpu(cpu_hardirq_time, cpu);
1777	} while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
1778
1779	return irq_time;
 
 
 
 
 
 
1780}
1781#else /* CONFIG_64BIT */
1782static inline void irq_time_write_begin(void)
 
 
 
 
 
1783{
 
1784}
1785
1786static inline void irq_time_write_end(void)
 
1787{
 
1788}
1789
1790static inline u64 irq_time_read(int cpu)
1791{
1792	return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
1793}
1794#endif /* CONFIG_64BIT */
1795#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
1796
1797#ifdef CONFIG_CPU_FREQ
1798DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
 
 
 
1799
1800/**
1801 * cpufreq_update_util - Take a note about CPU utilization changes.
1802 * @time: Current time.
1803 * @util: Current utilization.
1804 * @max: Utilization ceiling.
1805 *
1806 * This function is called by the scheduler on every invocation of
1807 * update_load_avg() on the CPU whose utilization is being updated.
 
 
 
 
 
1808 *
1809 * It can only be called from RCU-sched read-side critical sections.
 
1810 */
1811static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max)
1812{
1813       struct update_util_data *data;
 
 
 
 
 
 
 
1814
1815       data = rcu_dereference_sched(*this_cpu_ptr(&cpufreq_update_util_data));
1816       if (data)
1817               data->func(data, time, util, max);
1818}
1819
1820/**
1821 * cpufreq_trigger_update - Trigger CPU performance state evaluation if needed.
1822 * @time: Current time.
1823 *
1824 * The way cpufreq is currently arranged requires it to evaluate the CPU
1825 * performance state (frequency/voltage) on a regular basis to prevent it from
1826 * being stuck in a completely inadequate performance level for too long.
1827 * That is not guaranteed to happen if the updates are only triggered from CFS,
1828 * though, because they may not be coming in if RT or deadline tasks are active
1829 * all the time (or there are RT and DL tasks only).
1830 *
1831 * As a workaround for that issue, this function is called by the RT and DL
1832 * sched classes to trigger extra cpufreq updates to prevent it from stalling,
1833 * but that really is a band-aid.  Going forward it should be replaced with
1834 * solutions targeted more specifically at RT and DL tasks.
1835 */
1836static inline void cpufreq_trigger_update(u64 time)
 
 
 
 
 
 
 
 
 
 
 
 
1837{
1838	cpufreq_update_util(time, ULONG_MAX, 0);
 
 
 
 
 
 
 
 
 
 
1839}
1840#else
1841static inline void cpufreq_update_util(u64 time, unsigned long util, unsigned long max) {}
1842static inline void cpufreq_trigger_update(u64 time) {}
1843#endif /* CONFIG_CPU_FREQ */
 
1844
1845static inline void account_reset_rq(struct rq *rq)
 
1846{
1847#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1848	rq->prev_irq_time = 0;
1849#endif
1850#ifdef CONFIG_PARAVIRT
1851	rq->prev_steal_time = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852#endif
1853#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1854	rq->prev_steal_time_rq = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856}
v6.8
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Scheduler internal types and methods:
   4 */
   5#ifndef _KERNEL_SCHED_SCHED_H
   6#define _KERNEL_SCHED_SCHED_H
   7
   8#include <linux/sched/affinity.h>
   9#include <linux/sched/autogroup.h>
  10#include <linux/sched/cpufreq.h>
  11#include <linux/sched/deadline.h>
  12#include <linux/sched.h>
  13#include <linux/sched/loadavg.h>
  14#include <linux/sched/mm.h>
  15#include <linux/sched/rseq_api.h>
  16#include <linux/sched/signal.h>
  17#include <linux/sched/smt.h>
  18#include <linux/sched/stat.h>
  19#include <linux/sched/sysctl.h>
  20#include <linux/sched/task_flags.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/topology.h>
  23
  24#include <linux/atomic.h>
  25#include <linux/bitmap.h>
  26#include <linux/bug.h>
  27#include <linux/capability.h>
  28#include <linux/cgroup_api.h>
  29#include <linux/cgroup.h>
  30#include <linux/context_tracking.h>
  31#include <linux/cpufreq.h>
  32#include <linux/cpumask_api.h>
  33#include <linux/ctype.h>
  34#include <linux/file.h>
  35#include <linux/fs_api.h>
  36#include <linux/hrtimer_api.h>
  37#include <linux/interrupt.h>
  38#include <linux/irq_work.h>
  39#include <linux/jiffies.h>
  40#include <linux/kref_api.h>
  41#include <linux/kthread.h>
  42#include <linux/ktime_api.h>
  43#include <linux/lockdep_api.h>
  44#include <linux/lockdep.h>
  45#include <linux/minmax.h>
  46#include <linux/mm.h>
  47#include <linux/module.h>
  48#include <linux/mutex_api.h>
  49#include <linux/plist.h>
  50#include <linux/poll.h>
  51#include <linux/proc_fs.h>
  52#include <linux/profile.h>
  53#include <linux/psi.h>
  54#include <linux/rcupdate.h>
  55#include <linux/seq_file.h>
  56#include <linux/seqlock.h>
  57#include <linux/softirq.h>
  58#include <linux/spinlock_api.h>
  59#include <linux/static_key.h>
  60#include <linux/stop_machine.h>
  61#include <linux/syscalls_api.h>
  62#include <linux/syscalls.h>
  63#include <linux/tick.h>
  64#include <linux/topology.h>
  65#include <linux/types.h>
  66#include <linux/u64_stats_sync_api.h>
  67#include <linux/uaccess.h>
  68#include <linux/wait_api.h>
  69#include <linux/wait_bit.h>
  70#include <linux/workqueue_api.h>
  71
  72#include <trace/events/power.h>
  73#include <trace/events/sched.h>
  74
  75#include "../workqueue_internal.h"
  76
  77#ifdef CONFIG_PARAVIRT
  78# include <asm/paravirt.h>
  79# include <asm/paravirt_api_clock.h>
  80#endif
  81
  82#include "cpupri.h"
  83#include "cpudeadline.h"
  84
  85#ifdef CONFIG_SCHED_DEBUG
  86# define SCHED_WARN_ON(x)      WARN_ONCE(x, #x)
  87#else
  88# define SCHED_WARN_ON(x)      ({ (void)(x), 0; })
  89#endif
  90
  91struct rq;
  92struct cpuidle_state;
  93
  94/* task_struct::on_rq states: */
  95#define TASK_ON_RQ_QUEUED	1
  96#define TASK_ON_RQ_MIGRATING	2
  97
  98extern __read_mostly int scheduler_running;
  99
 100extern unsigned long calc_load_update;
 101extern atomic_long_t calc_load_tasks;
 102
 103extern void calc_global_load_tick(struct rq *this_rq);
 104extern long calc_load_fold_active(struct rq *this_rq, long adjust);
 105
 106extern void call_trace_sched_update_nr_running(struct rq *rq, int count);
 107
 108extern int sysctl_sched_rt_period;
 109extern int sysctl_sched_rt_runtime;
 110extern int sched_rr_timeslice;
 111
 112/*
 113 * Helpers for converting nanosecond timing to jiffy resolution
 114 */
 115#define NS_TO_JIFFIES(TIME)	((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
 116
 117/*
 118 * Increase resolution of nice-level calculations for 64-bit architectures.
 119 * The extra resolution improves shares distribution and load balancing of
 120 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
 121 * hierarchies, especially on larger systems. This is not a user-visible change
 122 * and does not change the user-interface for setting shares/weights.
 123 *
 124 * We increase resolution only if we have enough bits to allow this increased
 125 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
 126 * are pretty high and the returns do not justify the increased costs.
 127 *
 128 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
 129 * increase coverage and consistency always enable it on 64-bit platforms.
 130 */
 131#ifdef CONFIG_64BIT
 132# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
 133# define scale_load(w)		((w) << SCHED_FIXEDPOINT_SHIFT)
 134# define scale_load_down(w) \
 135({ \
 136	unsigned long __w = (w); \
 137	if (__w) \
 138		__w = max(2UL, __w >> SCHED_FIXEDPOINT_SHIFT); \
 139	__w; \
 140})
 141#else
 142# define NICE_0_LOAD_SHIFT	(SCHED_FIXEDPOINT_SHIFT)
 143# define scale_load(w)		(w)
 144# define scale_load_down(w)	(w)
 145#endif
 146
 147/*
 148 * Task weight (visible to users) and its load (invisible to users) have
 149 * independent resolution, but they should be well calibrated. We use
 150 * scale_load() and scale_load_down(w) to convert between them. The
 151 * following must be true:
 152 *
 153 *  scale_load(sched_prio_to_weight[NICE_TO_PRIO(0)-MAX_RT_PRIO]) == NICE_0_LOAD
 154 *
 155 */
 156#define NICE_0_LOAD		(1L << NICE_0_LOAD_SHIFT)
 157
 158/*
 159 * Single value that decides SCHED_DEADLINE internal math precision.
 160 * 10 -> just above 1us
 161 * 9  -> just above 0.5us
 162 */
 163#define DL_SCALE		10
 164
 165/*
 166 * Single value that denotes runtime == period, ie unlimited time.
 167 */
 168#define RUNTIME_INF		((u64)~0ULL)
 
 
 
 
 169
 170static inline int idle_policy(int policy)
 171{
 172	return policy == SCHED_IDLE;
 173}
 174static inline int fair_policy(int policy)
 175{
 176	return policy == SCHED_NORMAL || policy == SCHED_BATCH;
 177}
 178
 179static inline int rt_policy(int policy)
 180{
 181	return policy == SCHED_FIFO || policy == SCHED_RR;
 182}
 183
 184static inline int dl_policy(int policy)
 185{
 186	return policy == SCHED_DEADLINE;
 187}
 188static inline bool valid_policy(int policy)
 189{
 190	return idle_policy(policy) || fair_policy(policy) ||
 191		rt_policy(policy) || dl_policy(policy);
 192}
 193
 194static inline int task_has_idle_policy(struct task_struct *p)
 195{
 196	return idle_policy(p->policy);
 197}
 198
 199static inline int task_has_rt_policy(struct task_struct *p)
 200{
 201	return rt_policy(p->policy);
 202}
 203
 204static inline int task_has_dl_policy(struct task_struct *p)
 205{
 206	return dl_policy(p->policy);
 207}
 208
 209#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
 210
 211static inline void update_avg(u64 *avg, u64 sample)
 212{
 213	s64 diff = sample - *avg;
 214	*avg += diff / 8;
 215}
 216
 217/*
 218 * Shifting a value by an exponent greater *or equal* to the size of said value
 219 * is UB; cap at size-1.
 220 */
 221#define shr_bound(val, shift)							\
 222	(val >> min_t(typeof(shift), shift, BITS_PER_TYPE(typeof(val)) - 1))
 223
 224/*
 225 * !! For sched_setattr_nocheck() (kernel) only !!
 226 *
 227 * This is actually gross. :(
 228 *
 229 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
 230 * tasks, but still be able to sleep. We need this on platforms that cannot
 231 * atomically change clock frequency. Remove once fast switching will be
 232 * available on such platforms.
 233 *
 234 * SUGOV stands for SchedUtil GOVernor.
 235 */
 236#define SCHED_FLAG_SUGOV	0x10000000
 237
 238#define SCHED_DL_FLAGS (SCHED_FLAG_RECLAIM | SCHED_FLAG_DL_OVERRUN | SCHED_FLAG_SUGOV)
 239
 240static inline bool dl_entity_is_special(const struct sched_dl_entity *dl_se)
 241{
 242#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
 243	return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
 244#else
 245	return false;
 246#endif
 247}
 248
 249/*
 250 * Tells if entity @a should preempt entity @b.
 251 */
 252static inline bool dl_entity_preempt(const struct sched_dl_entity *a,
 253				     const struct sched_dl_entity *b)
 254{
 255	return dl_entity_is_special(a) ||
 256	       dl_time_before(a->deadline, b->deadline);
 257}
 258
 259/*
 260 * This is the priority-queue data structure of the RT scheduling class:
 261 */
 262struct rt_prio_array {
 263	DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
 264	struct list_head queue[MAX_RT_PRIO];
 265};
 266
 267struct rt_bandwidth {
 268	/* nests inside the rq lock: */
 269	raw_spinlock_t		rt_runtime_lock;
 270	ktime_t			rt_period;
 271	u64			rt_runtime;
 272	struct hrtimer		rt_period_timer;
 273	unsigned int		rt_period_active;
 274};
 275
 276static inline int dl_bandwidth_enabled(void)
 277{
 278	return sysctl_sched_rt_runtime >= 0;
 279}
 280
 281/*
 282 * To keep the bandwidth of -deadline tasks under control
 283 * we need some place where:
 284 *  - store the maximum -deadline bandwidth of each cpu;
 285 *  - cache the fraction of bandwidth that is currently allocated in
 286 *    each root domain;
 287 *
 288 * This is all done in the data structure below. It is similar to the
 289 * one used for RT-throttling (rt_bandwidth), with the main difference
 290 * that, since here we are only interested in admission control, we
 291 * do not decrease any runtime while the group "executes", neither we
 292 * need a timer to replenish it.
 293 *
 294 * With respect to SMP, bandwidth is given on a per root domain basis,
 295 * meaning that:
 296 *  - bw (< 100%) is the deadline bandwidth of each CPU;
 297 *  - total_bw is the currently allocated bandwidth in each root domain;
 298 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 299struct dl_bw {
 300	raw_spinlock_t		lock;
 301	u64			bw;
 302	u64			total_bw;
 303};
 304
 305extern void init_dl_bw(struct dl_bw *dl_b);
 306extern int  sched_dl_global_validate(void);
 307extern void sched_dl_do_global(void);
 308extern int  sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
 309extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
 310extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
 311extern bool __checkparam_dl(const struct sched_attr *attr);
 312extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
 313extern int  dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
 314extern int  dl_bw_check_overflow(int cpu);
 315
 316/*
 317 * SCHED_DEADLINE supports servers (nested scheduling) with the following
 318 * interface:
 319 *
 320 *   dl_se::rq -- runqueue we belong to.
 321 *
 322 *   dl_se::server_has_tasks() -- used on bandwidth enforcement; we 'stop' the
 323 *                                server when it runs out of tasks to run.
 324 *
 325 *   dl_se::server_pick() -- nested pick_next_task(); we yield the period if this
 326 *                           returns NULL.
 327 *
 328 *   dl_server_update() -- called from update_curr_common(), propagates runtime
 329 *                         to the server.
 330 *
 331 *   dl_server_start()
 332 *   dl_server_stop()  -- start/stop the server when it has (no) tasks.
 333 *
 334 *   dl_server_init() -- initializes the server.
 335 */
 336extern void dl_server_update(struct sched_dl_entity *dl_se, s64 delta_exec);
 337extern void dl_server_start(struct sched_dl_entity *dl_se);
 338extern void dl_server_stop(struct sched_dl_entity *dl_se);
 339extern void dl_server_init(struct sched_dl_entity *dl_se, struct rq *rq,
 340		    dl_server_has_tasks_f has_tasks,
 341		    dl_server_pick_f pick);
 342
 343#ifdef CONFIG_CGROUP_SCHED
 344
 
 
 345struct cfs_rq;
 346struct rt_rq;
 347
 348extern struct list_head task_groups;
 349
 350struct cfs_bandwidth {
 351#ifdef CONFIG_CFS_BANDWIDTH
 352	raw_spinlock_t		lock;
 353	ktime_t			period;
 354	u64			quota;
 355	u64			runtime;
 356	u64			burst;
 357	u64			runtime_snap;
 358	s64			hierarchical_quota;
 359
 360	u8			idle;
 361	u8			period_active;
 362	u8			slack_started;
 363	struct hrtimer		period_timer;
 364	struct hrtimer		slack_timer;
 365	struct list_head	throttled_cfs_rq;
 366
 367	/* Statistics: */
 368	int			nr_periods;
 369	int			nr_throttled;
 370	int			nr_burst;
 371	u64			throttled_time;
 372	u64			burst_time;
 373#endif
 374};
 375
 376/* Task group related information */
 377struct task_group {
 378	struct cgroup_subsys_state css;
 379
 380#ifdef CONFIG_FAIR_GROUP_SCHED
 381	/* schedulable entities of this group on each CPU */
 382	struct sched_entity	**se;
 383	/* runqueue "owned" by this group on each CPU */
 384	struct cfs_rq		**cfs_rq;
 385	unsigned long		shares;
 386
 387	/* A positive value indicates that this is a SCHED_IDLE group. */
 388	int			idle;
 389
 390#ifdef	CONFIG_SMP
 391	/*
 392	 * load_avg can be heavily contended at clock tick time, so put
 393	 * it in its own cacheline separated from the fields above which
 394	 * will also be accessed at each tick.
 395	 */
 396	atomic_long_t		load_avg ____cacheline_aligned;
 397#endif
 398#endif
 399
 400#ifdef CONFIG_RT_GROUP_SCHED
 401	struct sched_rt_entity	**rt_se;
 402	struct rt_rq		**rt_rq;
 403
 404	struct rt_bandwidth	rt_bandwidth;
 405#endif
 406
 407	struct rcu_head		rcu;
 408	struct list_head	list;
 409
 410	struct task_group	*parent;
 411	struct list_head	siblings;
 412	struct list_head	children;
 413
 414#ifdef CONFIG_SCHED_AUTOGROUP
 415	struct autogroup	*autogroup;
 416#endif
 417
 418	struct cfs_bandwidth	cfs_bandwidth;
 419
 420#ifdef CONFIG_UCLAMP_TASK_GROUP
 421	/* The two decimal precision [%] value requested from user-space */
 422	unsigned int		uclamp_pct[UCLAMP_CNT];
 423	/* Clamp values requested for a task group */
 424	struct uclamp_se	uclamp_req[UCLAMP_CNT];
 425	/* Effective clamp values used for a task group */
 426	struct uclamp_se	uclamp[UCLAMP_CNT];
 427#endif
 428
 
 429};
 430
 431#ifdef CONFIG_FAIR_GROUP_SCHED
 432#define ROOT_TASK_GROUP_LOAD	NICE_0_LOAD
 433
 434/*
 435 * A weight of 0 or 1 can cause arithmetics problems.
 436 * A weight of a cfs_rq is the sum of weights of which entities
 437 * are queued on this cfs_rq, so a weight of a entity should not be
 438 * too large, so as the shares value of a task group.
 439 * (The default weight is 1024 - so there's no practical
 440 *  limitation from this.)
 441 */
 442#define MIN_SHARES		(1UL <<  1)
 443#define MAX_SHARES		(1UL << 18)
 444#endif
 445
 446typedef int (*tg_visitor)(struct task_group *, void *);
 447
 448extern int walk_tg_tree_from(struct task_group *from,
 449			     tg_visitor down, tg_visitor up, void *data);
 450
 451/*
 452 * Iterate the full tree, calling @down when first entering a node and @up when
 453 * leaving it for the final time.
 454 *
 455 * Caller must hold rcu_lock or sufficient equivalent.
 456 */
 457static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
 458{
 459	return walk_tg_tree_from(&root_task_group, down, up, data);
 460}
 461
 462extern int tg_nop(struct task_group *tg, void *data);
 463
 464#ifdef CONFIG_FAIR_GROUP_SCHED
 465extern void free_fair_sched_group(struct task_group *tg);
 466extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
 467extern void online_fair_sched_group(struct task_group *tg);
 468extern void unregister_fair_sched_group(struct task_group *tg);
 469#else
 470static inline void free_fair_sched_group(struct task_group *tg) { }
 471static inline int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
 472{
 473       return 1;
 474}
 475static inline void online_fair_sched_group(struct task_group *tg) { }
 476static inline void unregister_fair_sched_group(struct task_group *tg) { }
 477#endif
 478
 479extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
 480			struct sched_entity *se, int cpu,
 481			struct sched_entity *parent);
 482extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent);
 483
 484extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
 485extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
 486extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
 487extern bool cfs_task_bw_constrained(struct task_struct *p);
 488
 
 
 489extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
 490		struct sched_rt_entity *rt_se, int cpu,
 491		struct sched_rt_entity *parent);
 492extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
 493extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
 494extern long sched_group_rt_runtime(struct task_group *tg);
 495extern long sched_group_rt_period(struct task_group *tg);
 496extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
 497
 498extern struct task_group *sched_create_group(struct task_group *parent);
 499extern void sched_online_group(struct task_group *tg,
 500			       struct task_group *parent);
 501extern void sched_destroy_group(struct task_group *tg);
 502extern void sched_release_group(struct task_group *tg);
 503
 504extern void sched_move_task(struct task_struct *tsk);
 505
 506#ifdef CONFIG_FAIR_GROUP_SCHED
 507extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
 508
 509extern int sched_group_set_idle(struct task_group *tg, long idle);
 510
 511#ifdef CONFIG_SMP
 512extern void set_task_rq_fair(struct sched_entity *se,
 513			     struct cfs_rq *prev, struct cfs_rq *next);
 514#else /* !CONFIG_SMP */
 515static inline void set_task_rq_fair(struct sched_entity *se,
 516			     struct cfs_rq *prev, struct cfs_rq *next) { }
 517#endif /* CONFIG_SMP */
 518#endif /* CONFIG_FAIR_GROUP_SCHED */
 519
 520#else /* CONFIG_CGROUP_SCHED */
 521
 522struct cfs_bandwidth { };
 523static inline bool cfs_task_bw_constrained(struct task_struct *p) { return false; }
 524
 525#endif	/* CONFIG_CGROUP_SCHED */
 526
 527extern void unregister_rt_sched_group(struct task_group *tg);
 528extern void free_rt_sched_group(struct task_group *tg);
 529extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
 530
 531/*
 532 * u64_u32_load/u64_u32_store
 533 *
 534 * Use a copy of a u64 value to protect against data race. This is only
 535 * applicable for 32-bits architectures.
 536 */
 537#ifdef CONFIG_64BIT
 538# define u64_u32_load_copy(var, copy)       var
 539# define u64_u32_store_copy(var, copy, val) (var = val)
 540#else
 541# define u64_u32_load_copy(var, copy)					\
 542({									\
 543	u64 __val, __val_copy;						\
 544	do {								\
 545		__val_copy = copy;					\
 546		/*							\
 547		 * paired with u64_u32_store_copy(), ordering access	\
 548		 * to var and copy.					\
 549		 */							\
 550		smp_rmb();						\
 551		__val = var;						\
 552	} while (__val != __val_copy);					\
 553	__val;								\
 554})
 555# define u64_u32_store_copy(var, copy, val)				\
 556do {									\
 557	typeof(val) __val = (val);					\
 558	var = __val;							\
 559	/*								\
 560	 * paired with u64_u32_load_copy(), ordering access to var and	\
 561	 * copy.							\
 562	 */								\
 563	smp_wmb();							\
 564	copy = __val;							\
 565} while (0)
 566#endif
 567# define u64_u32_load(var)      u64_u32_load_copy(var, var##_copy)
 568# define u64_u32_store(var, val) u64_u32_store_copy(var, var##_copy, val)
 569
 570/* CFS-related fields in a runqueue */
 571struct cfs_rq {
 572	struct load_weight	load;
 573	unsigned int		nr_running;
 574	unsigned int		h_nr_running;      /* SCHED_{NORMAL,BATCH,IDLE} */
 575	unsigned int		idle_nr_running;   /* SCHED_IDLE */
 576	unsigned int		idle_h_nr_running; /* SCHED_IDLE */
 577
 578	s64			avg_vruntime;
 579	u64			avg_load;
 580
 581	u64			exec_clock;
 582	u64			min_vruntime;
 583#ifdef CONFIG_SCHED_CORE
 584	unsigned int		forceidle_seq;
 585	u64			min_vruntime_fi;
 586#endif
 587
 
 
 588#ifndef CONFIG_64BIT
 589	u64			min_vruntime_copy;
 590#endif
 591
 592	struct rb_root_cached	tasks_timeline;
 
 593
 594	/*
 595	 * 'curr' points to currently running entity on this cfs_rq.
 596	 * It is set to NULL otherwise (i.e when none are currently running).
 597	 */
 598	struct sched_entity	*curr;
 599	struct sched_entity	*next;
 600
 601#ifdef	CONFIG_SCHED_DEBUG
 602	unsigned int		nr_spread_over;
 603#endif
 604
 605#ifdef CONFIG_SMP
 606	/*
 607	 * CFS load tracking
 608	 */
 609	struct sched_avg	avg;
 
 
 
 
 
 
 610#ifndef CONFIG_64BIT
 611	u64			last_update_time_copy;
 612#endif
 613	struct {
 614		raw_spinlock_t	lock ____cacheline_aligned;
 615		int		nr;
 616		unsigned long	load_avg;
 617		unsigned long	util_avg;
 618		unsigned long	runnable_avg;
 619	} removed;
 620
 621#ifdef CONFIG_FAIR_GROUP_SCHED
 622	u64			last_update_tg_load_avg;
 623	unsigned long		tg_load_avg_contrib;
 624	long			propagate;
 625	long			prop_runnable_sum;
 626
 627	/*
 628	 *   h_load = weight * f(tg)
 629	 *
 630	 * Where f(tg) is the recursive weight fraction assigned to
 631	 * this group.
 632	 */
 633	unsigned long		h_load;
 634	u64			last_h_load_update;
 635	struct sched_entity	*h_load_next;
 636#endif /* CONFIG_FAIR_GROUP_SCHED */
 637#endif /* CONFIG_SMP */
 638
 639#ifdef CONFIG_FAIR_GROUP_SCHED
 640	struct rq		*rq;	/* CPU runqueue to which this cfs_rq is attached */
 641
 642	/*
 643	 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
 644	 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
 645	 * (like users, containers etc.)
 646	 *
 647	 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
 648	 * This list is used during load balance.
 649	 */
 650	int			on_list;
 651	struct list_head	leaf_cfs_rq_list;
 652	struct task_group	*tg;	/* group that "owns" this runqueue */
 653
 654	/* Locally cached copy of our task_group's idle value */
 655	int			idle;
 656
 657#ifdef CONFIG_CFS_BANDWIDTH
 658	int			runtime_enabled;
 659	s64			runtime_remaining;
 660
 661	u64			throttled_pelt_idle;
 662#ifndef CONFIG_64BIT
 663	u64                     throttled_pelt_idle_copy;
 664#endif
 665	u64			throttled_clock;
 666	u64			throttled_clock_pelt;
 667	u64			throttled_clock_pelt_time;
 668	u64			throttled_clock_self;
 669	u64			throttled_clock_self_time;
 670	int			throttled;
 671	int			throttle_count;
 672	struct list_head	throttled_list;
 673	struct list_head	throttled_csd_list;
 674#endif /* CONFIG_CFS_BANDWIDTH */
 675#endif /* CONFIG_FAIR_GROUP_SCHED */
 676};
 677
 678static inline int rt_bandwidth_enabled(void)
 679{
 680	return sysctl_sched_rt_runtime >= 0;
 681}
 682
 683/* RT IPI pull logic requires IRQ_WORK */
 684#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
 685# define HAVE_RT_PUSH_IPI
 686#endif
 687
 688/* Real-Time classes' related field in a runqueue: */
 689struct rt_rq {
 690	struct rt_prio_array	active;
 691	unsigned int		rt_nr_running;
 692	unsigned int		rr_nr_running;
 693#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
 694	struct {
 695		int		curr; /* highest queued rt task prio */
 696#ifdef CONFIG_SMP
 697		int		next; /* next highest */
 698#endif
 699	} highest_prio;
 700#endif
 701#ifdef CONFIG_SMP
 702	int			overloaded;
 703	struct plist_head	pushable_tasks;
 704
 
 
 
 
 
 
 
 705#endif /* CONFIG_SMP */
 706	int			rt_queued;
 707
 708	int			rt_throttled;
 709	u64			rt_time;
 710	u64			rt_runtime;
 711	/* Nests inside the rq lock: */
 712	raw_spinlock_t		rt_runtime_lock;
 713
 714#ifdef CONFIG_RT_GROUP_SCHED
 715	unsigned int		rt_nr_boosted;
 716
 717	struct rq		*rq;
 718	struct task_group	*tg;
 719#endif
 720};
 721
 722static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
 723{
 724	return rt_rq->rt_queued && rt_rq->rt_nr_running;
 725}
 726
 727/* Deadline class' related fields in a runqueue */
 728struct dl_rq {
 729	/* runqueue is an rbtree, ordered by deadline */
 730	struct rb_root_cached	root;
 
 731
 732	unsigned int		dl_nr_running;
 733
 734#ifdef CONFIG_SMP
 735	/*
 736	 * Deadline values of the currently executing and the
 737	 * earliest ready task on this rq. Caching these facilitates
 738	 * the decision whether or not a ready but not running task
 739	 * should migrate somewhere else.
 740	 */
 741	struct {
 742		u64		curr;
 743		u64		next;
 744	} earliest_dl;
 745
 746	int			overloaded;
 
 747
 748	/*
 749	 * Tasks on this rq that can be pushed away. They are kept in
 750	 * an rb-tree, ordered by tasks' deadlines, with caching
 751	 * of the leftmost (earliest deadline) element.
 752	 */
 753	struct rb_root_cached	pushable_dl_tasks_root;
 
 754#else
 755	struct dl_bw		dl_bw;
 756#endif
 757	/*
 758	 * "Active utilization" for this runqueue: increased when a
 759	 * task wakes up (becomes TASK_RUNNING) and decreased when a
 760	 * task blocks
 761	 */
 762	u64			running_bw;
 763
 764	/*
 765	 * Utilization of the tasks "assigned" to this runqueue (including
 766	 * the tasks that are in runqueue and the tasks that executed on this
 767	 * CPU and blocked). Increased when a task moves to this runqueue, and
 768	 * decreased when the task moves away (migrates, changes scheduling
 769	 * policy, or terminates).
 770	 * This is needed to compute the "inactive utilization" for the
 771	 * runqueue (inactive utilization = this_bw - running_bw).
 772	 */
 773	u64			this_bw;
 774	u64			extra_bw;
 775
 776	/*
 777	 * Maximum available bandwidth for reclaiming by SCHED_FLAG_RECLAIM
 778	 * tasks of this rq. Used in calculation of reclaimable bandwidth(GRUB).
 779	 */
 780	u64			max_bw;
 781
 782	/*
 783	 * Inverse of the fraction of CPU utilization that can be reclaimed
 784	 * by the GRUB algorithm.
 785	 */
 786	u64			bw_ratio;
 787};
 788
 789#ifdef CONFIG_FAIR_GROUP_SCHED
 790/* An entity is a task if it doesn't "own" a runqueue */
 791#define entity_is_task(se)	(!se->my_q)
 792
 793static inline void se_update_runnable(struct sched_entity *se)
 794{
 795	if (!entity_is_task(se))
 796		se->runnable_weight = se->my_q->h_nr_running;
 797}
 798
 799static inline long se_runnable(struct sched_entity *se)
 800{
 801	if (entity_is_task(se))
 802		return !!se->on_rq;
 803	else
 804		return se->runnable_weight;
 805}
 806
 807#else
 808#define entity_is_task(se)	1
 809
 810static inline void se_update_runnable(struct sched_entity *se) {}
 811
 812static inline long se_runnable(struct sched_entity *se)
 813{
 814	return !!se->on_rq;
 815}
 816#endif
 817
 818#ifdef CONFIG_SMP
 819/*
 820 * XXX we want to get rid of these helpers and use the full load resolution.
 821 */
 822static inline long se_weight(struct sched_entity *se)
 823{
 824	return scale_load_down(se->load.weight);
 825}
 826
 827
 828static inline bool sched_asym_prefer(int a, int b)
 829{
 830	return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
 831}
 832
 833struct perf_domain {
 834	struct em_perf_domain *em_pd;
 835	struct perf_domain *next;
 836	struct rcu_head rcu;
 837};
 838
 839/* Scheduling group status flags */
 840#define SG_OVERLOAD		0x1 /* More than one runnable task on a CPU. */
 841#define SG_OVERUTILIZED		0x2 /* One or more CPUs are over-utilized. */
 842
 843/*
 844 * We add the notion of a root-domain which will be used to define per-domain
 845 * variables. Each exclusive cpuset essentially defines an island domain by
 846 * fully partitioning the member CPUs from any other cpuset. Whenever a new
 847 * exclusive cpuset is created, we also create and attach a new root-domain
 848 * object.
 849 *
 850 */
 851struct root_domain {
 852	atomic_t		refcount;
 853	atomic_t		rto_count;
 854	struct rcu_head		rcu;
 855	cpumask_var_t		span;
 856	cpumask_var_t		online;
 857
 858	/*
 859	 * Indicate pullable load on at least one CPU, e.g:
 860	 * - More than one runnable task
 861	 * - Running task is misfit
 862	 */
 863	int			overload;
 864
 865	/* Indicate one or more cpus over-utilized (tipping point) */
 866	int			overutilized;
 867
 868	/*
 869	 * The bit corresponding to a CPU gets set here if such CPU has more
 870	 * than one runnable -deadline task (as it is below for RT tasks).
 871	 */
 872	cpumask_var_t		dlo_mask;
 873	atomic_t		dlo_count;
 874	struct dl_bw		dl_bw;
 875	struct cpudl		cpudl;
 876
 877	/*
 878	 * Indicate whether a root_domain's dl_bw has been checked or
 879	 * updated. It's monotonously increasing value.
 880	 *
 881	 * Also, some corner cases, like 'wrap around' is dangerous, but given
 882	 * that u64 is 'big enough'. So that shouldn't be a concern.
 883	 */
 884	u64 visit_gen;
 885
 886#ifdef HAVE_RT_PUSH_IPI
 887	/*
 888	 * For IPI pull requests, loop across the rto_mask.
 889	 */
 890	struct irq_work		rto_push_work;
 891	raw_spinlock_t		rto_lock;
 892	/* These are only updated and read within rto_lock */
 893	int			rto_loop;
 894	int			rto_cpu;
 895	/* These atomics are updated outside of a lock */
 896	atomic_t		rto_loop_next;
 897	atomic_t		rto_loop_start;
 898#endif
 899	/*
 900	 * The "RT overload" flag: it gets set if a CPU has more than
 901	 * one runnable RT task.
 902	 */
 903	cpumask_var_t		rto_mask;
 904	struct cpupri		cpupri;
 905
 906	unsigned long		max_cpu_capacity;
 907
 908	/*
 909	 * NULL-terminated list of performance domains intersecting with the
 910	 * CPUs of the rd. Protected by RCU.
 911	 */
 912	struct perf_domain __rcu *pd;
 913};
 914
 915extern void init_defrootdomain(void);
 916extern int sched_init_domains(const struct cpumask *cpu_map);
 917extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
 918extern void sched_get_rd(struct root_domain *rd);
 919extern void sched_put_rd(struct root_domain *rd);
 920
 921#ifdef HAVE_RT_PUSH_IPI
 922extern void rto_push_irq_work_func(struct irq_work *work);
 923#endif
 924#endif /* CONFIG_SMP */
 925
 926#ifdef CONFIG_UCLAMP_TASK
 927/*
 928 * struct uclamp_bucket - Utilization clamp bucket
 929 * @value: utilization clamp value for tasks on this clamp bucket
 930 * @tasks: number of RUNNABLE tasks on this clamp bucket
 931 *
 932 * Keep track of how many tasks are RUNNABLE for a given utilization
 933 * clamp value.
 934 */
 935struct uclamp_bucket {
 936	unsigned long value : bits_per(SCHED_CAPACITY_SCALE);
 937	unsigned long tasks : BITS_PER_LONG - bits_per(SCHED_CAPACITY_SCALE);
 938};
 939
 940/*
 941 * struct uclamp_rq - rq's utilization clamp
 942 * @value: currently active clamp values for a rq
 943 * @bucket: utilization clamp buckets affecting a rq
 944 *
 945 * Keep track of RUNNABLE tasks on a rq to aggregate their clamp values.
 946 * A clamp value is affecting a rq when there is at least one task RUNNABLE
 947 * (or actually running) with that value.
 948 *
 949 * There are up to UCLAMP_CNT possible different clamp values, currently there
 950 * are only two: minimum utilization and maximum utilization.
 951 *
 952 * All utilization clamping values are MAX aggregated, since:
 953 * - for util_min: we want to run the CPU at least at the max of the minimum
 954 *   utilization required by its currently RUNNABLE tasks.
 955 * - for util_max: we want to allow the CPU to run up to the max of the
 956 *   maximum utilization allowed by its currently RUNNABLE tasks.
 957 *
 958 * Since on each system we expect only a limited number of different
 959 * utilization clamp values (UCLAMP_BUCKETS), use a simple array to track
 960 * the metrics required to compute all the per-rq utilization clamp values.
 961 */
 962struct uclamp_rq {
 963	unsigned int value;
 964	struct uclamp_bucket bucket[UCLAMP_BUCKETS];
 965};
 966
 967DECLARE_STATIC_KEY_FALSE(sched_uclamp_used);
 968#endif /* CONFIG_UCLAMP_TASK */
 969
 970struct rq;
 971struct balance_callback {
 972	struct balance_callback *next;
 973	void (*func)(struct rq *rq);
 974};
 975
 976/*
 977 * This is the main, per-CPU runqueue data structure.
 978 *
 979 * Locking rule: those places that want to lock multiple runqueues
 980 * (such as the load balancing or the thread migration code), lock
 981 * acquire operations must be ordered by ascending &runqueue.
 982 */
 983struct rq {
 984	/* runqueue lock: */
 985	raw_spinlock_t		__lock;
 986
 987	unsigned int		nr_running;
 
 
 
 
 988#ifdef CONFIG_NUMA_BALANCING
 989	unsigned int		nr_numa_running;
 990	unsigned int		nr_preferred_running;
 991	unsigned int		numa_migrate_on;
 992#endif
 
 
 
 993#ifdef CONFIG_NO_HZ_COMMON
 994#ifdef CONFIG_SMP
 995	unsigned long		last_blocked_load_update_tick;
 996	unsigned int		has_blocked_load;
 997	call_single_data_t	nohz_csd;
 998#endif /* CONFIG_SMP */
 999	unsigned int		nohz_tick_stopped;
1000	atomic_t		nohz_flags;
1001#endif /* CONFIG_NO_HZ_COMMON */
1002
1003#ifdef CONFIG_SMP
1004	unsigned int		ttwu_pending;
1005#endif
1006	u64			nr_switches;
1007
1008#ifdef CONFIG_UCLAMP_TASK
1009	/* Utilization clamp values based on CPU's RUNNABLE tasks */
1010	struct uclamp_rq	uclamp[UCLAMP_CNT] ____cacheline_aligned;
1011	unsigned int		uclamp_flags;
1012#define UCLAMP_FLAG_IDLE 0x01
1013#endif
1014
1015	struct cfs_rq		cfs;
1016	struct rt_rq		rt;
1017	struct dl_rq		dl;
 
 
 
 
1018
1019#ifdef CONFIG_FAIR_GROUP_SCHED
1020	/* list of leaf cfs_rq on this CPU: */
1021	struct list_head	leaf_cfs_rq_list;
1022	struct list_head	*tmp_alone_branch;
1023#endif /* CONFIG_FAIR_GROUP_SCHED */
1024
1025	/*
1026	 * This is part of a global counter where only the total sum
1027	 * over all CPUs matters. A task can increase this counter on
1028	 * one CPU and if it got migrated afterwards it may decrease
1029	 * it on another CPU. Always updated under the runqueue lock:
1030	 */
1031	unsigned int		nr_uninterruptible;
1032
1033	struct task_struct __rcu	*curr;
1034	struct task_struct	*idle;
1035	struct task_struct	*stop;
1036	unsigned long		next_balance;
1037	struct mm_struct	*prev_mm;
1038
1039	unsigned int		clock_update_flags;
1040	u64			clock;
1041	/* Ensure that all clocks are in the same cache line */
1042	u64			clock_task ____cacheline_aligned;
1043	u64			clock_pelt;
1044	unsigned long		lost_idle_time;
1045	u64			clock_pelt_idle;
1046	u64			clock_idle;
1047#ifndef CONFIG_64BIT
1048	u64			clock_pelt_idle_copy;
1049	u64			clock_idle_copy;
1050#endif
1051
1052	atomic_t		nr_iowait;
 
 
1053
1054#ifdef CONFIG_SCHED_DEBUG
1055	u64 last_seen_need_resched_ns;
1056	int ticks_without_resched;
1057#endif
1058
1059#ifdef CONFIG_MEMBARRIER
1060	int membarrier_state;
1061#endif
1062
1063#ifdef CONFIG_SMP
1064	struct root_domain		*rd;
1065	struct sched_domain __rcu	*sd;
1066
1067	unsigned long		cpu_capacity;
1068
1069	struct balance_callback *balance_callback;
 
1070
1071	unsigned char		nohz_idle_balance;
1072	unsigned char		idle_balance;
1073
1074	unsigned long		misfit_task_load;
1075
 
1076	/* For active balancing */
1077	int			active_balance;
1078	int			push_cpu;
1079	struct cpu_stop_work	active_balance_work;
1080
1081	/* CPU of this runqueue: */
1082	int			cpu;
1083	int			online;
1084
1085	struct list_head cfs_tasks;
1086
1087	struct sched_avg	avg_rt;
1088	struct sched_avg	avg_dl;
1089#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
1090	struct sched_avg	avg_irq;
1091#endif
1092#ifdef CONFIG_SCHED_THERMAL_PRESSURE
1093	struct sched_avg	avg_thermal;
1094#endif
1095	u64			idle_stamp;
1096	u64			avg_idle;
1097
1098	/* This is used to determine avg_idle's max value */
1099	u64			max_idle_balance_cost;
1100
1101#ifdef CONFIG_HOTPLUG_CPU
1102	struct rcuwait		hotplug_wait;
1103#endif
1104#endif /* CONFIG_SMP */
1105
1106#ifdef CONFIG_IRQ_TIME_ACCOUNTING
1107	u64			prev_irq_time;
1108#endif
1109#ifdef CONFIG_PARAVIRT
1110	u64			prev_steal_time;
1111#endif
1112#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
1113	u64			prev_steal_time_rq;
1114#endif
1115
1116	/* calc_load related fields */
1117	unsigned long		calc_load_update;
1118	long			calc_load_active;
1119
1120#ifdef CONFIG_SCHED_HRTICK
1121#ifdef CONFIG_SMP
1122	call_single_data_t	hrtick_csd;
 
1123#endif
1124	struct hrtimer		hrtick_timer;
1125	ktime_t 		hrtick_time;
1126#endif
1127
1128#ifdef CONFIG_SCHEDSTATS
1129	/* latency stats */
1130	struct sched_info	rq_sched_info;
1131	unsigned long long	rq_cpu_time;
1132	/* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1133
1134	/* sys_sched_yield() stats */
1135	unsigned int		yld_count;
1136
1137	/* schedule() stats */
1138	unsigned int		sched_count;
1139	unsigned int		sched_goidle;
1140
1141	/* try_to_wake_up() stats */
1142	unsigned int		ttwu_count;
1143	unsigned int		ttwu_local;
1144#endif
1145
1146#ifdef CONFIG_CPU_IDLE
1147	/* Must be inspected within a rcu lock section */
1148	struct cpuidle_state	*idle_state;
1149#endif
1150
1151#ifdef CONFIG_SMP
1152	unsigned int		nr_pinned;
1153#endif
1154	unsigned int		push_busy;
1155	struct cpu_stop_work	push_work;
1156
1157#ifdef CONFIG_SCHED_CORE
1158	/* per rq */
1159	struct rq		*core;
1160	struct task_struct	*core_pick;
1161	unsigned int		core_enabled;
1162	unsigned int		core_sched_seq;
1163	struct rb_root		core_tree;
1164
1165	/* shared state -- careful with sched_core_cpu_deactivate() */
1166	unsigned int		core_task_seq;
1167	unsigned int		core_pick_seq;
1168	unsigned long		core_cookie;
1169	unsigned int		core_forceidle_count;
1170	unsigned int		core_forceidle_seq;
1171	unsigned int		core_forceidle_occupation;
1172	u64			core_forceidle_start;
1173#endif
1174
1175	/* Scratch cpumask to be temporarily used under rq_lock */
1176	cpumask_var_t		scratch_mask;
1177
1178#if defined(CONFIG_CFS_BANDWIDTH) && defined(CONFIG_SMP)
1179	call_single_data_t	cfsb_csd;
1180	struct list_head	cfsb_csd_list;
1181#endif
1182};
1183
1184#ifdef CONFIG_FAIR_GROUP_SCHED
1185
1186/* CPU runqueue to which this cfs_rq is attached */
1187static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1188{
1189	return cfs_rq->rq;
1190}
1191
1192#else
1193
1194static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
1195{
1196	return container_of(cfs_rq, struct rq, cfs);
1197}
1198#endif
1199
1200static inline int cpu_of(struct rq *rq)
1201{
1202#ifdef CONFIG_SMP
1203	return rq->cpu;
1204#else
1205	return 0;
1206#endif
1207}
1208
1209#define MDF_PUSH	0x01
1210
1211static inline bool is_migration_disabled(struct task_struct *p)
1212{
1213#ifdef CONFIG_SMP
1214	return p->migration_disabled;
1215#else
1216	return false;
1217#endif
1218}
1219
1220DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1221
1222#define cpu_rq(cpu)		(&per_cpu(runqueues, (cpu)))
1223#define this_rq()		this_cpu_ptr(&runqueues)
1224#define task_rq(p)		cpu_rq(task_cpu(p))
1225#define cpu_curr(cpu)		(cpu_rq(cpu)->curr)
1226#define raw_rq()		raw_cpu_ptr(&runqueues)
1227
1228struct sched_group;
1229#ifdef CONFIG_SCHED_CORE
1230static inline struct cpumask *sched_group_span(struct sched_group *sg);
1231
1232DECLARE_STATIC_KEY_FALSE(__sched_core_enabled);
1233
1234static inline bool sched_core_enabled(struct rq *rq)
1235{
1236	return static_branch_unlikely(&__sched_core_enabled) && rq->core_enabled;
1237}
1238
1239static inline bool sched_core_disabled(void)
1240{
1241	return !static_branch_unlikely(&__sched_core_enabled);
1242}
1243
1244/*
1245 * Be careful with this function; not for general use. The return value isn't
1246 * stable unless you actually hold a relevant rq->__lock.
1247 */
1248static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1249{
1250	if (sched_core_enabled(rq))
1251		return &rq->core->__lock;
1252
1253	return &rq->__lock;
1254}
1255
1256static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1257{
1258	if (rq->core_enabled)
1259		return &rq->core->__lock;
1260
1261	return &rq->__lock;
1262}
1263
1264bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
1265			bool fi);
1266void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi);
1267
1268/*
1269 * Helpers to check if the CPU's core cookie matches with the task's cookie
1270 * when core scheduling is enabled.
1271 * A special case is that the task's cookie always matches with CPU's core
1272 * cookie if the CPU is in an idle core.
1273 */
1274static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1275{
1276	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1277	if (!sched_core_enabled(rq))
1278		return true;
1279
1280	return rq->core->core_cookie == p->core_cookie;
1281}
1282
1283static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1284{
1285	bool idle_core = true;
1286	int cpu;
1287
1288	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1289	if (!sched_core_enabled(rq))
1290		return true;
1291
1292	for_each_cpu(cpu, cpu_smt_mask(cpu_of(rq))) {
1293		if (!available_idle_cpu(cpu)) {
1294			idle_core = false;
1295			break;
1296		}
1297	}
1298
1299	/*
1300	 * A CPU in an idle core is always the best choice for tasks with
1301	 * cookies.
1302	 */
1303	return idle_core || rq->core->core_cookie == p->core_cookie;
1304}
1305
1306static inline bool sched_group_cookie_match(struct rq *rq,
1307					    struct task_struct *p,
1308					    struct sched_group *group)
1309{
1310	int cpu;
1311
1312	/* Ignore cookie match if core scheduler is not enabled on the CPU. */
1313	if (!sched_core_enabled(rq))
1314		return true;
1315
1316	for_each_cpu_and(cpu, sched_group_span(group), p->cpus_ptr) {
1317		if (sched_core_cookie_match(cpu_rq(cpu), p))
1318			return true;
1319	}
1320	return false;
1321}
1322
1323static inline bool sched_core_enqueued(struct task_struct *p)
1324{
1325	return !RB_EMPTY_NODE(&p->core_node);
1326}
1327
1328extern void sched_core_enqueue(struct rq *rq, struct task_struct *p);
1329extern void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags);
1330
1331extern void sched_core_get(void);
1332extern void sched_core_put(void);
1333
1334#else /* !CONFIG_SCHED_CORE */
1335
1336static inline bool sched_core_enabled(struct rq *rq)
1337{
1338	return false;
1339}
1340
1341static inline bool sched_core_disabled(void)
1342{
1343	return true;
1344}
1345
1346static inline raw_spinlock_t *rq_lockp(struct rq *rq)
1347{
1348	return &rq->__lock;
1349}
1350
1351static inline raw_spinlock_t *__rq_lockp(struct rq *rq)
1352{
1353	return &rq->__lock;
1354}
1355
1356static inline bool sched_cpu_cookie_match(struct rq *rq, struct task_struct *p)
1357{
1358	return true;
1359}
1360
1361static inline bool sched_core_cookie_match(struct rq *rq, struct task_struct *p)
1362{
1363	return true;
1364}
1365
1366static inline bool sched_group_cookie_match(struct rq *rq,
1367					    struct task_struct *p,
1368					    struct sched_group *group)
1369{
1370	return true;
1371}
1372#endif /* CONFIG_SCHED_CORE */
1373
1374static inline void lockdep_assert_rq_held(struct rq *rq)
1375{
1376	lockdep_assert_held(__rq_lockp(rq));
1377}
1378
1379extern void raw_spin_rq_lock_nested(struct rq *rq, int subclass);
1380extern bool raw_spin_rq_trylock(struct rq *rq);
1381extern void raw_spin_rq_unlock(struct rq *rq);
1382
1383static inline void raw_spin_rq_lock(struct rq *rq)
1384{
1385	raw_spin_rq_lock_nested(rq, 0);
1386}
1387
1388static inline void raw_spin_rq_lock_irq(struct rq *rq)
1389{
1390	local_irq_disable();
1391	raw_spin_rq_lock(rq);
1392}
1393
1394static inline void raw_spin_rq_unlock_irq(struct rq *rq)
1395{
1396	raw_spin_rq_unlock(rq);
1397	local_irq_enable();
1398}
1399
1400static inline unsigned long _raw_spin_rq_lock_irqsave(struct rq *rq)
1401{
1402	unsigned long flags;
1403	local_irq_save(flags);
1404	raw_spin_rq_lock(rq);
1405	return flags;
1406}
1407
1408static inline void raw_spin_rq_unlock_irqrestore(struct rq *rq, unsigned long flags)
1409{
1410	raw_spin_rq_unlock(rq);
1411	local_irq_restore(flags);
1412}
1413
1414#define raw_spin_rq_lock_irqsave(rq, flags)	\
1415do {						\
1416	flags = _raw_spin_rq_lock_irqsave(rq);	\
1417} while (0)
1418
1419#ifdef CONFIG_SCHED_SMT
1420extern void __update_idle_core(struct rq *rq);
1421
1422static inline void update_idle_core(struct rq *rq)
1423{
1424	if (static_branch_unlikely(&sched_smt_present))
1425		__update_idle_core(rq);
1426}
1427
1428#else
1429static inline void update_idle_core(struct rq *rq) { }
1430#endif
1431
1432#ifdef CONFIG_FAIR_GROUP_SCHED
1433static inline struct task_struct *task_of(struct sched_entity *se)
1434{
1435	SCHED_WARN_ON(!entity_is_task(se));
1436	return container_of(se, struct task_struct, se);
1437}
1438
1439static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
1440{
1441	return p->se.cfs_rq;
1442}
1443
1444/* runqueue on which this entity is (to be) queued */
1445static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1446{
1447	return se->cfs_rq;
1448}
1449
1450/* runqueue "owned" by this group */
1451static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1452{
1453	return grp->my_q;
1454}
1455
1456#else
1457
1458#define task_of(_se)	container_of(_se, struct task_struct, se)
1459
1460static inline struct cfs_rq *task_cfs_rq(const struct task_struct *p)
1461{
1462	return &task_rq(p)->cfs;
1463}
1464
1465static inline struct cfs_rq *cfs_rq_of(const struct sched_entity *se)
1466{
1467	const struct task_struct *p = task_of(se);
1468	struct rq *rq = task_rq(p);
1469
1470	return &rq->cfs;
1471}
1472
1473/* runqueue "owned" by this group */
1474static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
1475{
1476	return NULL;
1477}
1478#endif
1479
1480extern void update_rq_clock(struct rq *rq);
1481
1482/*
1483 * rq::clock_update_flags bits
1484 *
1485 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
1486 *  call to __schedule(). This is an optimisation to avoid
1487 *  neighbouring rq clock updates.
1488 *
1489 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
1490 *  in effect and calls to update_rq_clock() are being ignored.
1491 *
1492 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
1493 *  made to update_rq_clock() since the last time rq::lock was pinned.
1494 *
1495 * If inside of __schedule(), clock_update_flags will have been
1496 * shifted left (a left shift is a cheap operation for the fast path
1497 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
1498 *
1499 *	if (rq-clock_update_flags >= RQCF_UPDATED)
1500 *
1501 * to check if %RQCF_UPDATED is set. It'll never be shifted more than
1502 * one position though, because the next rq_unpin_lock() will shift it
1503 * back.
1504 */
1505#define RQCF_REQ_SKIP		0x01
1506#define RQCF_ACT_SKIP		0x02
1507#define RQCF_UPDATED		0x04
1508
1509static inline void assert_clock_updated(struct rq *rq)
1510{
1511	/*
1512	 * The only reason for not seeing a clock update since the
1513	 * last rq_pin_lock() is if we're currently skipping updates.
1514	 */
1515	SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1516}
1517
1518static inline u64 rq_clock(struct rq *rq)
1519{
1520	lockdep_assert_rq_held(rq);
1521	assert_clock_updated(rq);
1522
1523	return rq->clock;
1524}
1525
1526static inline u64 rq_clock_task(struct rq *rq)
1527{
1528	lockdep_assert_rq_held(rq);
1529	assert_clock_updated(rq);
1530
1531	return rq->clock_task;
1532}
1533
1534/**
1535 * By default the decay is the default pelt decay period.
1536 * The decay shift can change the decay period in
1537 * multiples of 32.
1538 *  Decay shift		Decay period(ms)
1539 *	0			32
1540 *	1			64
1541 *	2			128
1542 *	3			256
1543 *	4			512
1544 */
1545extern int sched_thermal_decay_shift;
1546
1547static inline u64 rq_clock_thermal(struct rq *rq)
1548{
1549	return rq_clock_task(rq) >> sched_thermal_decay_shift;
1550}
1551
1552static inline void rq_clock_skip_update(struct rq *rq)
1553{
1554	lockdep_assert_rq_held(rq);
1555	rq->clock_update_flags |= RQCF_REQ_SKIP;
1556}
1557
1558/*
1559 * See rt task throttling, which is the only time a skip
1560 * request is canceled.
1561 */
1562static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1563{
1564	lockdep_assert_rq_held(rq);
1565	rq->clock_update_flags &= ~RQCF_REQ_SKIP;
1566}
1567
1568/*
1569 * During cpu offlining and rq wide unthrottling, we can trigger
1570 * an update_rq_clock() for several cfs and rt runqueues (Typically
1571 * when using list_for_each_entry_*)
1572 * rq_clock_start_loop_update() can be called after updating the clock
1573 * once and before iterating over the list to prevent multiple update.
1574 * After the iterative traversal, we need to call rq_clock_stop_loop_update()
1575 * to clear RQCF_ACT_SKIP of rq->clock_update_flags.
1576 */
1577static inline void rq_clock_start_loop_update(struct rq *rq)
1578{
1579	lockdep_assert_rq_held(rq);
1580	SCHED_WARN_ON(rq->clock_update_flags & RQCF_ACT_SKIP);
1581	rq->clock_update_flags |= RQCF_ACT_SKIP;
1582}
1583
1584static inline void rq_clock_stop_loop_update(struct rq *rq)
1585{
1586	lockdep_assert_rq_held(rq);
1587	rq->clock_update_flags &= ~RQCF_ACT_SKIP;
1588}
1589
1590struct rq_flags {
1591	unsigned long flags;
1592	struct pin_cookie cookie;
1593#ifdef CONFIG_SCHED_DEBUG
1594	/*
1595	 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1596	 * current pin context is stashed here in case it needs to be
1597	 * restored in rq_repin_lock().
1598	 */
1599	unsigned int clock_update_flags;
1600#endif
1601};
1602
1603extern struct balance_callback balance_push_callback;
1604
1605/*
1606 * Lockdep annotation that avoids accidental unlocks; it's like a
1607 * sticky/continuous lockdep_assert_held().
1608 *
1609 * This avoids code that has access to 'struct rq *rq' (basically everything in
1610 * the scheduler) from accidentally unlocking the rq if they do not also have a
1611 * copy of the (on-stack) 'struct rq_flags rf'.
1612 *
1613 * Also see Documentation/locking/lockdep-design.rst.
1614 */
1615static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1616{
1617	rf->cookie = lockdep_pin_lock(__rq_lockp(rq));
1618
1619#ifdef CONFIG_SCHED_DEBUG
1620	rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1621	rf->clock_update_flags = 0;
1622#ifdef CONFIG_SMP
1623	SCHED_WARN_ON(rq->balance_callback && rq->balance_callback != &balance_push_callback);
1624#endif
1625#endif
1626}
1627
1628static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1629{
1630#ifdef CONFIG_SCHED_DEBUG
1631	if (rq->clock_update_flags > RQCF_ACT_SKIP)
1632		rf->clock_update_flags = RQCF_UPDATED;
1633#endif
1634
1635	lockdep_unpin_lock(__rq_lockp(rq), rf->cookie);
1636}
1637
1638static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1639{
1640	lockdep_repin_lock(__rq_lockp(rq), rf->cookie);
1641
1642#ifdef CONFIG_SCHED_DEBUG
1643	/*
1644	 * Restore the value we stashed in @rf for this pin context.
1645	 */
1646	rq->clock_update_flags |= rf->clock_update_flags;
1647#endif
1648}
1649
1650struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1651	__acquires(rq->lock);
1652
1653struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1654	__acquires(p->pi_lock)
1655	__acquires(rq->lock);
1656
1657static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1658	__releases(rq->lock)
1659{
1660	rq_unpin_lock(rq, rf);
1661	raw_spin_rq_unlock(rq);
1662}
1663
1664static inline void
1665task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1666	__releases(rq->lock)
1667	__releases(p->pi_lock)
1668{
1669	rq_unpin_lock(rq, rf);
1670	raw_spin_rq_unlock(rq);
1671	raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1672}
1673
1674DEFINE_LOCK_GUARD_1(task_rq_lock, struct task_struct,
1675		    _T->rq = task_rq_lock(_T->lock, &_T->rf),
1676		    task_rq_unlock(_T->rq, _T->lock, &_T->rf),
1677		    struct rq *rq; struct rq_flags rf)
1678
1679static inline void
1680rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1681	__acquires(rq->lock)
1682{
1683	raw_spin_rq_lock_irqsave(rq, rf->flags);
1684	rq_pin_lock(rq, rf);
1685}
1686
1687static inline void
1688rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1689	__acquires(rq->lock)
1690{
1691	raw_spin_rq_lock_irq(rq);
1692	rq_pin_lock(rq, rf);
1693}
1694
1695static inline void
1696rq_lock(struct rq *rq, struct rq_flags *rf)
1697	__acquires(rq->lock)
1698{
1699	raw_spin_rq_lock(rq);
1700	rq_pin_lock(rq, rf);
1701}
1702
1703static inline void
1704rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1705	__releases(rq->lock)
1706{
1707	rq_unpin_lock(rq, rf);
1708	raw_spin_rq_unlock_irqrestore(rq, rf->flags);
1709}
1710
1711static inline void
1712rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1713	__releases(rq->lock)
1714{
1715	rq_unpin_lock(rq, rf);
1716	raw_spin_rq_unlock_irq(rq);
1717}
1718
1719static inline void
1720rq_unlock(struct rq *rq, struct rq_flags *rf)
1721	__releases(rq->lock)
1722{
1723	rq_unpin_lock(rq, rf);
1724	raw_spin_rq_unlock(rq);
1725}
1726
1727DEFINE_LOCK_GUARD_1(rq_lock, struct rq,
1728		    rq_lock(_T->lock, &_T->rf),
1729		    rq_unlock(_T->lock, &_T->rf),
1730		    struct rq_flags rf)
1731
1732DEFINE_LOCK_GUARD_1(rq_lock_irq, struct rq,
1733		    rq_lock_irq(_T->lock, &_T->rf),
1734		    rq_unlock_irq(_T->lock, &_T->rf),
1735		    struct rq_flags rf)
1736
1737DEFINE_LOCK_GUARD_1(rq_lock_irqsave, struct rq,
1738		    rq_lock_irqsave(_T->lock, &_T->rf),
1739		    rq_unlock_irqrestore(_T->lock, &_T->rf),
1740		    struct rq_flags rf)
1741
1742static inline struct rq *
1743this_rq_lock_irq(struct rq_flags *rf)
1744	__acquires(rq->lock)
1745{
1746	struct rq *rq;
1747
1748	local_irq_disable();
1749	rq = this_rq();
1750	rq_lock(rq, rf);
1751	return rq;
1752}
1753
1754#ifdef CONFIG_NUMA
1755enum numa_topology_type {
1756	NUMA_DIRECT,
1757	NUMA_GLUELESS_MESH,
1758	NUMA_BACKPLANE,
1759};
1760extern enum numa_topology_type sched_numa_topology_type;
1761extern int sched_max_numa_distance;
1762extern bool find_numa_distance(int distance);
1763extern void sched_init_numa(int offline_node);
1764extern void sched_update_numa(int cpu, bool online);
1765extern void sched_domains_numa_masks_set(unsigned int cpu);
1766extern void sched_domains_numa_masks_clear(unsigned int cpu);
1767extern int sched_numa_find_closest(const struct cpumask *cpus, int cpu);
1768#else
1769static inline void sched_init_numa(int offline_node) { }
1770static inline void sched_update_numa(int cpu, bool online) { }
1771static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1772static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1773static inline int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
1774{
1775	return nr_cpu_ids;
1776}
1777#endif
1778
1779#ifdef CONFIG_NUMA_BALANCING
1780/* The regions in numa_faults array from task_struct */
1781enum numa_faults_stats {
1782	NUMA_MEM = 0,
1783	NUMA_CPU,
1784	NUMA_MEMBUF,
1785	NUMA_CPUBUF
1786};
1787extern void sched_setnuma(struct task_struct *p, int node);
1788extern int migrate_task_to(struct task_struct *p, int cpu);
1789extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1790			int cpu, int scpu);
1791extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1792#else
1793static inline void
1794init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1795{
1796}
1797#endif /* CONFIG_NUMA_BALANCING */
1798
1799#ifdef CONFIG_SMP
1800
1801static inline void
1802queue_balance_callback(struct rq *rq,
1803		       struct balance_callback *head,
1804		       void (*func)(struct rq *rq))
1805{
1806	lockdep_assert_rq_held(rq);
1807
1808	/*
1809	 * Don't (re)queue an already queued item; nor queue anything when
1810	 * balance_push() is active, see the comment with
1811	 * balance_push_callback.
1812	 */
1813	if (unlikely(head->next || rq->balance_callback == &balance_push_callback))
1814		return;
1815
1816	head->func = func;
1817	head->next = rq->balance_callback;
1818	rq->balance_callback = head;
1819}
1820
 
 
1821#define rcu_dereference_check_sched_domain(p) \
1822	rcu_dereference_check((p), \
1823			      lockdep_is_held(&sched_domains_mutex))
1824
1825/*
1826 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1827 * See destroy_sched_domains: call_rcu for details.
1828 *
1829 * The domain tree of any CPU may only be accessed from within
1830 * preempt-disabled sections.
1831 */
1832#define for_each_domain(cpu, __sd) \
1833	for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1834			__sd; __sd = __sd->parent)
1835
1836/* A mask of all the SD flags that have the SDF_SHARED_CHILD metaflag */
1837#define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_SHARED_CHILD)) |
1838static const unsigned int SD_SHARED_CHILD_MASK =
1839#include <linux/sched/sd_flags.h>
18400;
1841#undef SD_FLAG
1842
1843/**
1844 * highest_flag_domain - Return highest sched_domain containing flag.
1845 * @cpu:	The CPU whose highest level of sched domain is to
1846 *		be returned.
1847 * @flag:	The flag to check for the highest sched_domain
1848 *		for the given CPU.
1849 *
1850 * Returns the highest sched_domain of a CPU which contains @flag. If @flag has
1851 * the SDF_SHARED_CHILD metaflag, all the children domains also have @flag.
1852 */
1853static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1854{
1855	struct sched_domain *sd, *hsd = NULL;
1856
1857	for_each_domain(cpu, sd) {
1858		if (sd->flags & flag) {
1859			hsd = sd;
1860			continue;
1861		}
1862
1863		/*
1864		 * Stop the search if @flag is known to be shared at lower
1865		 * levels. It will not be found further up.
1866		 */
1867		if (flag & SD_SHARED_CHILD_MASK)
1868			break;
 
1869	}
1870
1871	return hsd;
1872}
1873
1874static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1875{
1876	struct sched_domain *sd;
1877
1878	for_each_domain(cpu, sd) {
1879		if (sd->flags & flag)
1880			break;
1881	}
1882
1883	return sd;
1884}
1885
1886DECLARE_PER_CPU(struct sched_domain __rcu *, sd_llc);
1887DECLARE_PER_CPU(int, sd_llc_size);
1888DECLARE_PER_CPU(int, sd_llc_id);
1889DECLARE_PER_CPU(int, sd_share_id);
1890DECLARE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
1891DECLARE_PER_CPU(struct sched_domain __rcu *, sd_numa);
1892DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
1893DECLARE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
1894extern struct static_key_false sched_asym_cpucapacity;
1895extern struct static_key_false sched_cluster_active;
1896
1897static __always_inline bool sched_asym_cpucap_active(void)
1898{
1899	return static_branch_unlikely(&sched_asym_cpucapacity);
1900}
1901
1902struct sched_group_capacity {
1903	atomic_t		ref;
1904	/*
1905	 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
1906	 * for a single CPU.
1907	 */
1908	unsigned long		capacity;
1909	unsigned long		min_capacity;		/* Min per-CPU capacity in group */
1910	unsigned long		max_capacity;		/* Max per-CPU capacity in group */
1911	unsigned long		next_update;
1912	int			imbalance;		/* XXX unrelated to capacity but shared group state */
1913
1914#ifdef CONFIG_SCHED_DEBUG
1915	int			id;
1916#endif
1917
1918	unsigned long		cpumask[];		/* Balance mask */
1919};
1920
1921struct sched_group {
1922	struct sched_group	*next;			/* Must be a circular list */
1923	atomic_t		ref;
1924
1925	unsigned int		group_weight;
1926	unsigned int		cores;
1927	struct sched_group_capacity *sgc;
1928	int			asym_prefer_cpu;	/* CPU of highest priority in group */
1929	int			flags;
1930
1931	/*
1932	 * The CPUs this group covers.
1933	 *
1934	 * NOTE: this field is variable length. (Allocated dynamically
1935	 * by attaching extra space to the end of the structure,
1936	 * depending on how many CPUs the kernel has booted up with)
1937	 */
1938	unsigned long		cpumask[];
1939};
1940
1941static inline struct cpumask *sched_group_span(struct sched_group *sg)
1942{
1943	return to_cpumask(sg->cpumask);
1944}
1945
1946/*
1947 * See build_balance_mask().
 
1948 */
1949static inline struct cpumask *group_balance_mask(struct sched_group *sg)
1950{
1951	return to_cpumask(sg->sgc->cpumask);
1952}
1953
 
 
 
 
 
 
 
 
 
1954extern int group_balance_cpu(struct sched_group *sg);
1955
1956#ifdef CONFIG_SCHED_DEBUG
1957void update_sched_domain_debugfs(void);
1958void dirty_sched_domain_sysctl(int cpu);
1959#else
1960static inline void update_sched_domain_debugfs(void)
1961{
1962}
1963static inline void dirty_sched_domain_sysctl(int cpu)
1964{
1965}
1966#endif
1967
1968extern int sched_update_scaling(void);
 
 
1969
1970static inline const struct cpumask *task_user_cpus(struct task_struct *p)
1971{
1972	if (!p->user_cpus_ptr)
1973		return cpu_possible_mask; /* &init_task.cpus_mask */
1974	return p->user_cpus_ptr;
1975}
1976#endif /* CONFIG_SMP */
1977
1978#include "stats.h"
1979
1980#if defined(CONFIG_SCHED_CORE) && defined(CONFIG_SCHEDSTATS)
1981
1982extern void __sched_core_account_forceidle(struct rq *rq);
1983
1984static inline void sched_core_account_forceidle(struct rq *rq)
1985{
1986	if (schedstat_enabled())
1987		__sched_core_account_forceidle(rq);
1988}
1989
1990extern void __sched_core_tick(struct rq *rq);
1991
1992static inline void sched_core_tick(struct rq *rq)
1993{
1994	if (sched_core_enabled(rq) && schedstat_enabled())
1995		__sched_core_tick(rq);
1996}
1997
1998#else
1999
2000static inline void sched_core_account_forceidle(struct rq *rq) {}
2001
2002static inline void sched_core_tick(struct rq *rq) {}
2003
2004#endif /* CONFIG_SCHED_CORE && CONFIG_SCHEDSTATS */
2005
2006#ifdef CONFIG_CGROUP_SCHED
2007
2008/*
2009 * Return the group to which this tasks belongs.
2010 *
2011 * We cannot use task_css() and friends because the cgroup subsystem
2012 * changes that value before the cgroup_subsys::attach() method is called,
2013 * therefore we cannot pin it and might observe the wrong value.
2014 *
2015 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
2016 * core changes this before calling sched_move_task().
2017 *
2018 * Instead we use a 'copy' which is updated from sched_move_task() while
2019 * holding both task_struct::pi_lock and rq::lock.
2020 */
2021static inline struct task_group *task_group(struct task_struct *p)
2022{
2023	return p->sched_task_group;
2024}
2025
2026/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
2027static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
2028{
2029#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
2030	struct task_group *tg = task_group(p);
2031#endif
2032
2033#ifdef CONFIG_FAIR_GROUP_SCHED
2034	set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
2035	p->se.cfs_rq = tg->cfs_rq[cpu];
2036	p->se.parent = tg->se[cpu];
2037	p->se.depth = tg->se[cpu] ? tg->se[cpu]->depth + 1 : 0;
2038#endif
2039
2040#ifdef CONFIG_RT_GROUP_SCHED
2041	p->rt.rt_rq  = tg->rt_rq[cpu];
2042	p->rt.parent = tg->rt_se[cpu];
2043#endif
2044}
2045
2046#else /* CONFIG_CGROUP_SCHED */
2047
2048static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
2049static inline struct task_group *task_group(struct task_struct *p)
2050{
2051	return NULL;
2052}
2053
2054#endif /* CONFIG_CGROUP_SCHED */
2055
2056static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
2057{
2058	set_task_rq(p, cpu);
2059#ifdef CONFIG_SMP
2060	/*
2061	 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
2062	 * successfully executed on another CPU. We must ensure that updates of
2063	 * per-task data have been completed by this moment.
2064	 */
2065	smp_wmb();
2066	WRITE_ONCE(task_thread_info(p)->cpu, cpu);
2067	p->wake_cpu = cpu;
2068#endif
2069}
2070
2071/*
2072 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
2073 */
2074#ifdef CONFIG_SCHED_DEBUG
 
2075# define const_debug __read_mostly
2076#else
2077# define const_debug const
2078#endif
2079
 
 
2080#define SCHED_FEAT(name, enabled)	\
2081	__SCHED_FEAT_##name ,
2082
2083enum {
2084#include "features.h"
2085	__SCHED_FEAT_NR,
2086};
2087
2088#undef SCHED_FEAT
2089
2090#ifdef CONFIG_SCHED_DEBUG
2091
2092/*
2093 * To support run-time toggling of sched features, all the translation units
2094 * (but core.c) reference the sysctl_sched_features defined in core.c.
2095 */
2096extern const_debug unsigned int sysctl_sched_features;
2097
2098#ifdef CONFIG_JUMP_LABEL
2099#define SCHED_FEAT(name, enabled)					\
2100static __always_inline bool static_branch_##name(struct static_key *key) \
2101{									\
2102	return static_key_##enabled(key);				\
2103}
2104
2105#include "features.h"
 
2106#undef SCHED_FEAT
2107
2108extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
2109#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
2110
2111#else /* !CONFIG_JUMP_LABEL */
2112
2113#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2114
2115#endif /* CONFIG_JUMP_LABEL */
2116
2117#else /* !SCHED_DEBUG */
2118
2119/*
2120 * Each translation unit has its own copy of sysctl_sched_features to allow
2121 * constants propagation at compile time and compiler optimization based on
2122 * features default.
2123 */
2124#define SCHED_FEAT(name, enabled)	\
2125	(1UL << __SCHED_FEAT_##name) * enabled |
2126static const_debug __maybe_unused unsigned int sysctl_sched_features =
2127#include "features.h"
2128	0;
2129#undef SCHED_FEAT
2130
2131#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
2132
2133#endif /* SCHED_DEBUG */
2134
2135extern struct static_key_false sched_numa_balancing;
2136extern struct static_key_false sched_schedstats;
2137
2138static inline u64 global_rt_period(void)
2139{
2140	return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
2141}
2142
2143static inline u64 global_rt_runtime(void)
2144{
2145	if (sysctl_sched_rt_runtime < 0)
2146		return RUNTIME_INF;
2147
2148	return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
2149}
2150
2151static inline int task_current(struct rq *rq, struct task_struct *p)
2152{
2153	return rq->curr == p;
2154}
2155
2156static inline int task_on_cpu(struct rq *rq, struct task_struct *p)
2157{
2158#ifdef CONFIG_SMP
2159	return p->on_cpu;
2160#else
2161	return task_current(rq, p);
2162#endif
2163}
2164
2165static inline int task_on_rq_queued(struct task_struct *p)
2166{
2167	return p->on_rq == TASK_ON_RQ_QUEUED;
2168}
2169
2170static inline int task_on_rq_migrating(struct task_struct *p)
2171{
2172	return READ_ONCE(p->on_rq) == TASK_ON_RQ_MIGRATING;
2173}
2174
2175/* Wake flags. The first three directly map to some SD flag value */
2176#define WF_EXEC         0x02 /* Wakeup after exec; maps to SD_BALANCE_EXEC */
2177#define WF_FORK         0x04 /* Wakeup after fork; maps to SD_BALANCE_FORK */
2178#define WF_TTWU         0x08 /* Wakeup;            maps to SD_BALANCE_WAKE */
 
 
2179
2180#define WF_SYNC         0x10 /* Waker goes to sleep after wakeup */
2181#define WF_MIGRATED     0x20 /* Internal use, task got migrated */
2182#define WF_CURRENT_CPU  0x40 /* Prefer to move the wakee to the current CPU. */
 
 
 
 
 
 
 
 
2183
 
 
2184#ifdef CONFIG_SMP
2185static_assert(WF_EXEC == SD_BALANCE_EXEC);
2186static_assert(WF_FORK == SD_BALANCE_FORK);
2187static_assert(WF_TTWU == SD_BALANCE_WAKE);
 
 
 
 
 
 
 
 
2188#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2189
2190/*
2191 * To aid in avoiding the subversion of "niceness" due to uneven distribution
2192 * of tasks with abnormal "nice" values across CPUs the contribution that
2193 * each task makes to its run queue's load is weighted according to its
2194 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2195 * scaled version of the new time slice allocation that they receive on time
2196 * slice expiry etc.
2197 */
2198
2199#define WEIGHT_IDLEPRIO		3
2200#define WMULT_IDLEPRIO		1431655765
2201
2202extern const int		sched_prio_to_weight[40];
2203extern const u32		sched_prio_to_wmult[40];
2204
2205/*
2206 * {de,en}queue flags:
2207 *
2208 * DEQUEUE_SLEEP  - task is no longer runnable
2209 * ENQUEUE_WAKEUP - task just became runnable
2210 *
2211 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
2212 *                are in a known state which allows modification. Such pairs
2213 *                should preserve as much state as possible.
2214 *
2215 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
2216 *        in the runqueue.
2217 *
2218 * NOCLOCK - skip the update_rq_clock() (avoids double updates)
2219 *
2220 * MIGRATION - p->on_rq == TASK_ON_RQ_MIGRATING (used for DEADLINE)
2221 *
2222 * ENQUEUE_HEAD      - place at front of runqueue (tail if not specified)
2223 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
2224 * ENQUEUE_MIGRATED  - the task was migrated during wakeup
2225 *
2226 */
2227
2228#define DEQUEUE_SLEEP		0x01
2229#define DEQUEUE_SAVE		0x02 /* Matches ENQUEUE_RESTORE */
2230#define DEQUEUE_MOVE		0x04 /* Matches ENQUEUE_MOVE */
2231#define DEQUEUE_NOCLOCK		0x08 /* Matches ENQUEUE_NOCLOCK */
2232#define DEQUEUE_MIGRATING	0x100 /* Matches ENQUEUE_MIGRATING */
2233
2234#define ENQUEUE_WAKEUP		0x01
2235#define ENQUEUE_RESTORE		0x02
2236#define ENQUEUE_MOVE		0x04
2237#define ENQUEUE_NOCLOCK		0x08
2238
2239#define ENQUEUE_HEAD		0x10
2240#define ENQUEUE_REPLENISH	0x20
2241#ifdef CONFIG_SMP
2242#define ENQUEUE_MIGRATED	0x40
2243#else
2244#define ENQUEUE_MIGRATED	0x00
2245#endif
2246#define ENQUEUE_INITIAL		0x80
2247#define ENQUEUE_MIGRATING	0x100
2248
2249#define RETRY_TASK		((void *)-1UL)
2250
2251struct affinity_context {
2252	const struct cpumask *new_mask;
2253	struct cpumask *user_mask;
2254	unsigned int flags;
2255};
2256
2257extern s64 update_curr_common(struct rq *rq);
2258
2259struct sched_class {
2260
2261#ifdef CONFIG_UCLAMP_TASK
2262	int uclamp_enabled;
2263#endif
2264
2265	void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
2266	void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
2267	void (*yield_task)   (struct rq *rq);
2268	bool (*yield_to_task)(struct rq *rq, struct task_struct *p);
2269
2270	void (*wakeup_preempt)(struct rq *rq, struct task_struct *p, int flags);
2271
2272	struct task_struct *(*pick_next_task)(struct rq *rq);
2273
2274	void (*put_prev_task)(struct rq *rq, struct task_struct *p);
2275	void (*set_next_task)(struct rq *rq, struct task_struct *p, bool first);
 
 
 
 
 
 
 
2276
2277#ifdef CONFIG_SMP
2278	int (*balance)(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2279	int  (*select_task_rq)(struct task_struct *p, int task_cpu, int flags);
2280
2281	struct task_struct * (*pick_task)(struct rq *rq);
2282
2283	void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
 
2284
2285	void (*task_woken)(struct rq *this_rq, struct task_struct *task);
2286
2287	void (*set_cpus_allowed)(struct task_struct *p, struct affinity_context *ctx);
2288
2289	void (*rq_online)(struct rq *rq);
2290	void (*rq_offline)(struct rq *rq);
2291
2292	struct rq *(*find_lock_rq)(struct task_struct *p, struct rq *rq);
2293#endif
2294
2295	void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
2296	void (*task_fork)(struct task_struct *p);
2297	void (*task_dead)(struct task_struct *p);
 
2298
2299	/*
2300	 * The switched_from() call is allowed to drop rq->lock, therefore we
2301	 * cannot assume the switched_from/switched_to pair is serialized by
2302	 * rq->lock. They are however serialized by p->pi_lock.
2303	 */
2304	void (*switched_from)(struct rq *this_rq, struct task_struct *task);
2305	void (*switched_to)  (struct rq *this_rq, struct task_struct *task);
2306	void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
2307			      int oldprio);
2308
2309	unsigned int (*get_rr_interval)(struct rq *rq,
2310					struct task_struct *task);
2311
2312	void (*update_curr)(struct rq *rq);
2313
2314#ifdef CONFIG_FAIR_GROUP_SCHED
2315	void (*task_change_group)(struct task_struct *p);
2316#endif
2317
2318#ifdef CONFIG_SCHED_CORE
2319	int (*task_is_throttled)(struct task_struct *p, int cpu);
2320#endif
2321};
2322
2323static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
2324{
2325	WARN_ON_ONCE(rq->curr != prev);
2326	prev->sched_class->put_prev_task(rq, prev);
2327}
2328
2329static inline void set_next_task(struct rq *rq, struct task_struct *next)
2330{
2331	next->sched_class->set_next_task(rq, next, false);
2332}
2333
2334
2335/*
2336 * Helper to define a sched_class instance; each one is placed in a separate
2337 * section which is ordered by the linker script:
2338 *
2339 *   include/asm-generic/vmlinux.lds.h
2340 *
2341 * *CAREFUL* they are laid out in *REVERSE* order!!!
2342 *
2343 * Also enforce alignment on the instance, not the type, to guarantee layout.
2344 */
2345#define DEFINE_SCHED_CLASS(name) \
2346const struct sched_class name##_sched_class \
2347	__aligned(__alignof__(struct sched_class)) \
2348	__section("__" #name "_sched_class")
2349
2350/* Defined in include/asm-generic/vmlinux.lds.h */
2351extern struct sched_class __sched_class_highest[];
2352extern struct sched_class __sched_class_lowest[];
2353
2354#define for_class_range(class, _from, _to) \
2355	for (class = (_from); class < (_to); class++)
2356
2357#define for_each_class(class) \
2358	for_class_range(class, __sched_class_highest, __sched_class_lowest)
2359
2360#define sched_class_above(_a, _b)	((_a) < (_b))
2361
2362extern const struct sched_class stop_sched_class;
2363extern const struct sched_class dl_sched_class;
2364extern const struct sched_class rt_sched_class;
2365extern const struct sched_class fair_sched_class;
2366extern const struct sched_class idle_sched_class;
2367
2368static inline bool sched_stop_runnable(struct rq *rq)
2369{
2370	return rq->stop && task_on_rq_queued(rq->stop);
2371}
2372
2373static inline bool sched_dl_runnable(struct rq *rq)
2374{
2375	return rq->dl.dl_nr_running > 0;
2376}
2377
2378static inline bool sched_rt_runnable(struct rq *rq)
2379{
2380	return rq->rt.rt_queued > 0;
2381}
2382
2383static inline bool sched_fair_runnable(struct rq *rq)
2384{
2385	return rq->cfs.nr_running > 0;
2386}
2387
2388extern struct task_struct *pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf);
2389extern struct task_struct *pick_next_task_idle(struct rq *rq);
2390
2391#define SCA_CHECK		0x01
2392#define SCA_MIGRATE_DISABLE	0x02
2393#define SCA_MIGRATE_ENABLE	0x04
2394#define SCA_USER		0x08
2395
2396#ifdef CONFIG_SMP
2397
2398extern void update_group_capacity(struct sched_domain *sd, int cpu);
2399
2400extern void trigger_load_balance(struct rq *rq);
2401
2402extern void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx);
2403
2404static inline struct task_struct *get_push_task(struct rq *rq)
2405{
2406	struct task_struct *p = rq->curr;
2407
2408	lockdep_assert_rq_held(rq);
2409
2410	if (rq->push_busy)
2411		return NULL;
2412
2413	if (p->nr_cpus_allowed == 1)
2414		return NULL;
2415
2416	if (p->migration_disabled)
2417		return NULL;
2418
2419	rq->push_busy = true;
2420	return get_task_struct(p);
2421}
2422
2423extern int push_cpu_stop(void *arg);
2424
2425#endif
2426
2427#ifdef CONFIG_CPU_IDLE
2428static inline void idle_set_state(struct rq *rq,
2429				  struct cpuidle_state *idle_state)
2430{
2431	rq->idle_state = idle_state;
2432}
2433
2434static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2435{
2436	SCHED_WARN_ON(!rcu_read_lock_held());
2437
2438	return rq->idle_state;
2439}
2440#else
2441static inline void idle_set_state(struct rq *rq,
2442				  struct cpuidle_state *idle_state)
2443{
2444}
2445
2446static inline struct cpuidle_state *idle_get_state(struct rq *rq)
2447{
2448	return NULL;
2449}
2450#endif
2451
2452extern void schedule_idle(void);
2453asmlinkage void schedule_user(void);
2454
2455extern void sysrq_sched_debug_show(void);
2456extern void sched_init_granularity(void);
2457extern void update_max_interval(void);
2458
2459extern void init_sched_dl_class(void);
2460extern void init_sched_rt_class(void);
2461extern void init_sched_fair_class(void);
2462
2463extern void reweight_task(struct task_struct *p, int prio);
2464
2465extern void resched_curr(struct rq *rq);
2466extern void resched_cpu(int cpu);
2467
2468extern struct rt_bandwidth def_rt_bandwidth;
2469extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
2470extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
2471
2472extern void init_dl_entity(struct sched_dl_entity *dl_se);
 
 
2473
2474#define BW_SHIFT		20
2475#define BW_UNIT			(1 << BW_SHIFT)
2476#define RATIO_SHIFT		8
2477#define MAX_BW_BITS		(64 - BW_SHIFT)
2478#define MAX_BW			((1ULL << MAX_BW_BITS) - 1)
2479unsigned long to_ratio(u64 period, u64 runtime);
2480
2481extern void init_entity_runnable_average(struct sched_entity *se);
2482extern void post_init_entity_util_avg(struct task_struct *p);
2483
2484#ifdef CONFIG_NO_HZ_FULL
2485extern bool sched_can_stop_tick(struct rq *rq);
2486extern int __init sched_tick_offload_init(void);
2487
2488/*
2489 * Tick may be needed by tasks in the runqueue depending on their policy and
2490 * requirements. If tick is needed, lets send the target an IPI to kick it out of
2491 * nohz mode if necessary.
2492 */
2493static inline void sched_update_tick_dependency(struct rq *rq)
2494{
2495	int cpu = cpu_of(rq);
 
 
 
 
 
2496
2497	if (!tick_nohz_full_cpu(cpu))
2498		return;
2499
2500	if (sched_can_stop_tick(rq))
2501		tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
2502	else
2503		tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
2504}
2505#else
2506static inline int sched_tick_offload_init(void) { return 0; }
2507static inline void sched_update_tick_dependency(struct rq *rq) { }
2508#endif
2509
2510static inline void add_nr_running(struct rq *rq, unsigned count)
2511{
2512	unsigned prev_nr = rq->nr_running;
2513
2514	rq->nr_running = prev_nr + count;
2515	if (trace_sched_update_nr_running_tp_enabled()) {
2516		call_trace_sched_update_nr_running(rq, count);
2517	}
2518
 
2519#ifdef CONFIG_SMP
2520	if (prev_nr < 2 && rq->nr_running >= 2) {
2521		if (!READ_ONCE(rq->rd->overload))
2522			WRITE_ONCE(rq->rd->overload, 1);
2523	}
2524#endif
2525
2526	sched_update_tick_dependency(rq);
2527}
2528
2529static inline void sub_nr_running(struct rq *rq, unsigned count)
2530{
2531	rq->nr_running -= count;
2532	if (trace_sched_update_nr_running_tp_enabled()) {
2533		call_trace_sched_update_nr_running(rq, -count);
2534	}
2535
2536	/* Check if we still need preemption */
2537	sched_update_tick_dependency(rq);
2538}
2539
 
 
 
 
 
 
 
 
 
2540extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
2541extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
2542
2543extern void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags);
2544
2545#ifdef CONFIG_PREEMPT_RT
2546#define SCHED_NR_MIGRATE_BREAK 8
2547#else
2548#define SCHED_NR_MIGRATE_BREAK 32
2549#endif
2550
 
2551extern const_debug unsigned int sysctl_sched_nr_migrate;
2552extern const_debug unsigned int sysctl_sched_migration_cost;
2553
2554extern unsigned int sysctl_sched_base_slice;
2555
2556#ifdef CONFIG_SCHED_DEBUG
2557extern int sysctl_resched_latency_warn_ms;
2558extern int sysctl_resched_latency_warn_once;
2559
2560extern unsigned int sysctl_sched_tunable_scaling;
2561
2562extern unsigned int sysctl_numa_balancing_scan_delay;
2563extern unsigned int sysctl_numa_balancing_scan_period_min;
2564extern unsigned int sysctl_numa_balancing_scan_period_max;
2565extern unsigned int sysctl_numa_balancing_scan_size;
2566extern unsigned int sysctl_numa_balancing_hot_threshold;
2567#endif
2568
2569#ifdef CONFIG_SCHED_HRTICK
2570
2571/*
2572 * Use hrtick when:
2573 *  - enabled by features
2574 *  - hrtimer is actually high res
2575 */
2576static inline int hrtick_enabled(struct rq *rq)
2577{
 
 
2578	if (!cpu_active(cpu_of(rq)))
2579		return 0;
2580	return hrtimer_is_hres_active(&rq->hrtick_timer);
2581}
2582
2583static inline int hrtick_enabled_fair(struct rq *rq)
2584{
2585	if (!sched_feat(HRTICK))
2586		return 0;
2587	return hrtick_enabled(rq);
2588}
2589
2590static inline int hrtick_enabled_dl(struct rq *rq)
2591{
2592	if (!sched_feat(HRTICK_DL))
2593		return 0;
2594	return hrtick_enabled(rq);
2595}
2596
2597void hrtick_start(struct rq *rq, u64 delay);
2598
2599#else
2600
2601static inline int hrtick_enabled_fair(struct rq *rq)
2602{
2603	return 0;
2604}
2605
2606static inline int hrtick_enabled_dl(struct rq *rq)
2607{
2608	return 0;
2609}
2610
2611static inline int hrtick_enabled(struct rq *rq)
2612{
2613	return 0;
2614}
2615
2616#endif /* CONFIG_SCHED_HRTICK */
2617
2618#ifndef arch_scale_freq_tick
 
 
 
2619static __always_inline
2620void arch_scale_freq_tick(void)
2621{
 
2622}
2623#endif
2624
2625#ifndef arch_scale_freq_capacity
2626/**
2627 * arch_scale_freq_capacity - get the frequency scale factor of a given CPU.
2628 * @cpu: the CPU in question.
2629 *
2630 * Return: the frequency scale factor normalized against SCHED_CAPACITY_SCALE, i.e.
2631 *
2632 *     f_curr
2633 *     ------ * SCHED_CAPACITY_SCALE
2634 *     f_max
2635 */
2636static __always_inline
2637unsigned long arch_scale_freq_capacity(int cpu)
2638{
 
 
 
2639	return SCHED_CAPACITY_SCALE;
2640}
2641#endif
2642
2643#ifdef CONFIG_SCHED_DEBUG
 
 
 
 
 
 
 
 
 
2644/*
2645 * In double_lock_balance()/double_rq_lock(), we use raw_spin_rq_lock() to
2646 * acquire rq lock instead of rq_lock(). So at the end of these two functions
2647 * we need to call double_rq_clock_clear_update() to clear RQCF_UPDATED of
2648 * rq->clock_update_flags to avoid the WARN_DOUBLE_CLOCK warning.
2649 */
2650static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2)
 
2651{
2652	rq1->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2653	/* rq1 == rq2 for !CONFIG_SMP, so just clear RQCF_UPDATED once. */
2654#ifdef CONFIG_SMP
2655	rq2->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
2656#endif
 
 
 
 
 
 
 
 
 
 
 
2657}
2658#else
2659static inline void double_rq_clock_clear_update(struct rq *rq1, struct rq *rq2) {}
2660#endif
2661
2662#define DEFINE_LOCK_GUARD_2(name, type, _lock, _unlock, ...)		\
2663__DEFINE_UNLOCK_GUARD(name, type, _unlock, type *lock2; __VA_ARGS__) \
2664static inline class_##name##_t class_##name##_constructor(type *lock, type *lock2) \
2665{ class_##name##_t _t = { .lock = lock, .lock2 = lock2 }, *_T = &_t;	\
2666  _lock; return _t; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2667
2668#ifdef CONFIG_SMP
 
 
 
2669
2670static inline bool rq_order_less(struct rq *rq1, struct rq *rq2)
 
2671{
2672#ifdef CONFIG_SCHED_CORE
2673	/*
2674	 * In order to not have {0,2},{1,3} turn into into an AB-BA,
2675	 * order by core-id first and cpu-id second.
2676	 *
2677	 * Notably:
2678	 *
2679	 *	double_rq_lock(0,3); will take core-0, core-1 lock
2680	 *	double_rq_lock(1,2); will take core-1, core-0 lock
2681	 *
2682	 * when only cpu-id is considered.
2683	 */
2684	if (rq1->core->cpu < rq2->core->cpu)
2685		return true;
2686	if (rq1->core->cpu > rq2->core->cpu)
2687		return false;
2688
2689	/*
2690	 * __sched_core_flip() relies on SMT having cpu-id lock order.
2691	 */
2692#endif
2693	return rq1->cpu < rq2->cpu;
 
 
 
2694}
2695
2696extern void double_rq_lock(struct rq *rq1, struct rq *rq2);
 
2697
2698#ifdef CONFIG_PREEMPTION
2699
2700/*
2701 * fair double_lock_balance: Safely acquires both rq->locks in a fair
2702 * way at the expense of forcing extra atomic operations in all
2703 * invocations.  This assures that the double_lock is acquired using the
2704 * same underlying policy as the spinlock_t on this architecture, which
2705 * reduces latency compared to the unfair variant below.  However, it
2706 * also adds more overhead and therefore may reduce throughput.
2707 */
2708static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2709	__releases(this_rq->lock)
2710	__acquires(busiest->lock)
2711	__acquires(this_rq->lock)
2712{
2713	raw_spin_rq_unlock(this_rq);
2714	double_rq_lock(this_rq, busiest);
2715
2716	return 1;
2717}
2718
2719#else
2720/*
2721 * Unfair double_lock_balance: Optimizes throughput at the expense of
2722 * latency by eliminating extra atomic operations when the locks are
2723 * already in proper order on entry.  This favors lower CPU-ids and will
2724 * grant the double lock to lower CPUs over higher ids under contention,
2725 * regardless of entry order into the function.
2726 */
2727static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
2728	__releases(this_rq->lock)
2729	__acquires(busiest->lock)
2730	__acquires(this_rq->lock)
2731{
2732	if (__rq_lockp(this_rq) == __rq_lockp(busiest) ||
2733	    likely(raw_spin_rq_trylock(busiest))) {
2734		double_rq_clock_clear_update(this_rq, busiest);
2735		return 0;
2736	}
2737
2738	if (rq_order_less(this_rq, busiest)) {
2739		raw_spin_rq_lock_nested(busiest, SINGLE_DEPTH_NESTING);
2740		double_rq_clock_clear_update(this_rq, busiest);
2741		return 0;
 
 
 
 
 
 
2742	}
2743
2744	raw_spin_rq_unlock(this_rq);
2745	double_rq_lock(this_rq, busiest);
2746
2747	return 1;
2748}
2749
2750#endif /* CONFIG_PREEMPTION */
2751
2752/*
2753 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2754 */
2755static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
2756{
2757	lockdep_assert_irqs_disabled();
 
 
 
 
2758
2759	return _double_lock_balance(this_rq, busiest);
2760}
2761
2762static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
2763	__releases(busiest->lock)
2764{
2765	if (__rq_lockp(this_rq) != __rq_lockp(busiest))
2766		raw_spin_rq_unlock(busiest);
2767	lock_set_subclass(&__rq_lockp(this_rq)->dep_map, 0, _RET_IP_);
2768}
2769
2770static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
2771{
2772	if (l1 > l2)
2773		swap(l1, l2);
2774
2775	spin_lock(l1);
2776	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2777}
2778
2779static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
2780{
2781	if (l1 > l2)
2782		swap(l1, l2);
2783
2784	spin_lock_irq(l1);
2785	spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2786}
2787
2788static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
2789{
2790	if (l1 > l2)
2791		swap(l1, l2);
2792
2793	raw_spin_lock(l1);
2794	raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
2795}
2796
2797static inline void double_raw_unlock(raw_spinlock_t *l1, raw_spinlock_t *l2)
 
 
 
 
 
 
 
 
2798{
2799	raw_spin_unlock(l1);
2800	raw_spin_unlock(l2);
 
 
 
 
 
 
 
 
 
 
 
2801}
2802
2803DEFINE_LOCK_GUARD_2(double_raw_spinlock, raw_spinlock_t,
2804		    double_raw_lock(_T->lock, _T->lock2),
2805		    double_raw_unlock(_T->lock, _T->lock2))
2806
2807/*
2808 * double_rq_unlock - safely unlock two runqueues
2809 *
2810 * Note this does not restore interrupts like task_rq_unlock,
2811 * you need to do so manually after calling.
2812 */
2813static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2814	__releases(rq1->lock)
2815	__releases(rq2->lock)
2816{
2817	if (__rq_lockp(rq1) != __rq_lockp(rq2))
2818		raw_spin_rq_unlock(rq2);
 
2819	else
2820		__release(rq2->lock);
2821	raw_spin_rq_unlock(rq1);
2822}
2823
2824extern void set_rq_online (struct rq *rq);
2825extern void set_rq_offline(struct rq *rq);
2826extern bool sched_smp_initialized;
2827
2828#else /* CONFIG_SMP */
2829
2830/*
2831 * double_rq_lock - safely lock two runqueues
2832 *
2833 * Note this does not disable interrupts like task_rq_lock,
2834 * you need to do so manually before calling.
2835 */
2836static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2837	__acquires(rq1->lock)
2838	__acquires(rq2->lock)
2839{
2840	WARN_ON_ONCE(!irqs_disabled());
2841	WARN_ON_ONCE(rq1 != rq2);
2842	raw_spin_rq_lock(rq1);
2843	__acquire(rq2->lock);	/* Fake it out ;) */
2844	double_rq_clock_clear_update(rq1, rq2);
2845}
2846
2847/*
2848 * double_rq_unlock - safely unlock two runqueues
2849 *
2850 * Note this does not restore interrupts like task_rq_unlock,
2851 * you need to do so manually after calling.
2852 */
2853static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2854	__releases(rq1->lock)
2855	__releases(rq2->lock)
2856{
2857	WARN_ON_ONCE(rq1 != rq2);
2858	raw_spin_rq_unlock(rq1);
2859	__release(rq2->lock);
2860}
2861
2862#endif
2863
2864DEFINE_LOCK_GUARD_2(double_rq_lock, struct rq,
2865		    double_rq_lock(_T->lock, _T->lock2),
2866		    double_rq_unlock(_T->lock, _T->lock2))
2867
2868extern struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq);
2869extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2870extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
2871
2872#ifdef	CONFIG_SCHED_DEBUG
2873extern bool sched_debug_verbose;
2874
2875extern void print_cfs_stats(struct seq_file *m, int cpu);
2876extern void print_rt_stats(struct seq_file *m, int cpu);
2877extern void print_dl_stats(struct seq_file *m, int cpu);
2878extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2879extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2880extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
2881
2882extern void resched_latency_warn(int cpu, u64 latency);
2883#ifdef CONFIG_NUMA_BALANCING
2884extern void
2885show_numa_stats(struct task_struct *p, struct seq_file *m);
2886extern void
2887print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2888	unsigned long tpf, unsigned long gsf, unsigned long gpf);
2889#endif /* CONFIG_NUMA_BALANCING */
2890#else
2891static inline void resched_latency_warn(int cpu, u64 latency) {}
2892#endif /* CONFIG_SCHED_DEBUG */
2893
2894extern void init_cfs_rq(struct cfs_rq *cfs_rq);
2895extern void init_rt_rq(struct rt_rq *rt_rq);
2896extern void init_dl_rq(struct dl_rq *dl_rq);
2897
2898extern void cfs_bandwidth_usage_inc(void);
2899extern void cfs_bandwidth_usage_dec(void);
2900
2901#ifdef CONFIG_NO_HZ_COMMON
2902#define NOHZ_BALANCE_KICK_BIT	0
2903#define NOHZ_STATS_KICK_BIT	1
2904#define NOHZ_NEWILB_KICK_BIT	2
2905#define NOHZ_NEXT_KICK_BIT	3
2906
2907/* Run rebalance_domains() */
2908#define NOHZ_BALANCE_KICK	BIT(NOHZ_BALANCE_KICK_BIT)
2909/* Update blocked load */
2910#define NOHZ_STATS_KICK		BIT(NOHZ_STATS_KICK_BIT)
2911/* Update blocked load when entering idle */
2912#define NOHZ_NEWILB_KICK	BIT(NOHZ_NEWILB_KICK_BIT)
2913/* Update nohz.next_balance */
2914#define NOHZ_NEXT_KICK		BIT(NOHZ_NEXT_KICK_BIT)
2915
2916#define NOHZ_KICK_MASK	(NOHZ_BALANCE_KICK | NOHZ_STATS_KICK | NOHZ_NEXT_KICK)
2917
2918#define nohz_flags(cpu)	(&cpu_rq(cpu)->nohz_flags)
2919
2920extern void nohz_balance_exit_idle(struct rq *rq);
2921#else
2922static inline void nohz_balance_exit_idle(struct rq *rq) { }
2923#endif
2924
2925#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
2926extern void nohz_run_idle_balance(int cpu);
2927#else
2928static inline void nohz_run_idle_balance(int cpu) { }
2929#endif
2930
2931#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2932struct irqtime {
2933	u64			total;
2934	u64			tick_delta;
2935	u64			irq_start_time;
2936	struct u64_stats_sync	sync;
2937};
2938
2939DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
 
2940
2941/*
2942 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2943 * Otherwise ksoftirqd's sum_exec_runtime is subtracted its own runtime
2944 * and never move forward.
2945 */
2946static inline u64 irq_time_read(int cpu)
2947{
2948	struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2949	unsigned int seq;
2950	u64 total;
2951
2952	do {
2953		seq = __u64_stats_fetch_begin(&irqtime->sync);
2954		total = irqtime->total;
2955	} while (__u64_stats_fetch_retry(&irqtime->sync, seq));
2956
2957	return total;
2958}
2959#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2960
2961#ifdef CONFIG_CPU_FREQ
2962DECLARE_PER_CPU(struct update_util_data __rcu *, cpufreq_update_util_data);
2963
2964/**
2965 * cpufreq_update_util - Take a note about CPU utilization changes.
2966 * @rq: Runqueue to carry out the update for.
2967 * @flags: Update reason flags.
2968 *
2969 * This function is called by the scheduler on the CPU whose utilization is
2970 * being updated.
2971 *
2972 * It can only be called from RCU-sched read-side critical sections.
2973 *
2974 * The way cpufreq is currently arranged requires it to evaluate the CPU
2975 * performance state (frequency/voltage) on a regular basis to prevent it from
2976 * being stuck in a completely inadequate performance level for too long.
2977 * That is not guaranteed to happen if the updates are only triggered from CFS
2978 * and DL, though, because they may not be coming in if only RT tasks are
2979 * active all the time (or there are RT tasks only).
2980 *
2981 * As a workaround for that issue, this function is called periodically by the
2982 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
2983 * but that really is a band-aid.  Going forward it should be replaced with
2984 * solutions targeted more specifically at RT tasks.
2985 */
2986static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
2987{
2988	struct update_util_data *data;
2989
2990	data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2991						  cpu_of(rq)));
2992	if (data)
2993		data->func(data, rq_clock(rq), flags);
2994}
2995#else
2996static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
2997#endif /* CONFIG_CPU_FREQ */
2998
2999#ifdef arch_scale_freq_capacity
3000# ifndef arch_scale_freq_invariant
3001#  define arch_scale_freq_invariant()	true
3002# endif
3003#else
3004# define arch_scale_freq_invariant()	false
3005#endif
3006
3007#ifdef CONFIG_SMP
3008unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
3009				 unsigned long *min,
3010				 unsigned long *max);
3011
3012unsigned long sugov_effective_cpu_perf(int cpu, unsigned long actual,
3013				 unsigned long min,
3014				 unsigned long max);
3015
3016
3017/*
3018 * Verify the fitness of task @p to run on @cpu taking into account the
3019 * CPU original capacity and the runtime/deadline ratio of the task.
3020 *
3021 * The function will return true if the original capacity of @cpu is
3022 * greater than or equal to task's deadline density right shifted by
3023 * (BW_SHIFT - SCHED_CAPACITY_SHIFT) and false otherwise.
3024 */
3025static inline bool dl_task_fits_capacity(struct task_struct *p, int cpu)
3026{
3027	unsigned long cap = arch_scale_cpu_capacity(cpu);
3028
3029	return cap >= p->dl.dl_density >> (BW_SHIFT - SCHED_CAPACITY_SHIFT);
3030}
3031
3032static inline unsigned long cpu_bw_dl(struct rq *rq)
3033{
3034	return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
3035}
3036
3037static inline unsigned long cpu_util_dl(struct rq *rq)
3038{
3039	return READ_ONCE(rq->avg_dl.util_avg);
3040}
 
3041
3042
3043extern unsigned long cpu_util_cfs(int cpu);
3044extern unsigned long cpu_util_cfs_boost(int cpu);
3045
3046static inline unsigned long cpu_util_rt(struct rq *rq)
3047{
3048	return READ_ONCE(rq->avg_rt.util_avg);
3049}
3050#endif
3051
3052#ifdef CONFIG_UCLAMP_TASK
3053unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id);
3054
3055static inline unsigned long uclamp_rq_get(struct rq *rq,
3056					  enum uclamp_id clamp_id)
3057{
3058	return READ_ONCE(rq->uclamp[clamp_id].value);
3059}
3060
3061static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3062				 unsigned int value)
3063{
3064	WRITE_ONCE(rq->uclamp[clamp_id].value, value);
3065}
3066
3067static inline bool uclamp_rq_is_idle(struct rq *rq)
3068{
3069	return rq->uclamp_flags & UCLAMP_FLAG_IDLE;
3070}
 
 
3071
3072/* Is the rq being capped/throttled by uclamp_max? */
3073static inline bool uclamp_rq_is_capped(struct rq *rq)
3074{
3075	unsigned long rq_util;
3076	unsigned long max_util;
3077
3078	if (!static_branch_likely(&sched_uclamp_used))
3079		return false;
3080
3081	rq_util = cpu_util_cfs(cpu_of(rq)) + cpu_util_rt(rq);
3082	max_util = READ_ONCE(rq->uclamp[UCLAMP_MAX].value);
3083
3084	return max_util != SCHED_CAPACITY_SCALE && rq_util >= max_util;
3085}
3086
3087/*
3088 * When uclamp is compiled in, the aggregation at rq level is 'turned off'
3089 * by default in the fast path and only gets turned on once userspace performs
3090 * an operation that requires it.
3091 *
3092 * Returns true if userspace opted-in to use uclamp and aggregation at rq level
3093 * hence is active.
3094 */
3095static inline bool uclamp_is_used(void)
3096{
3097	return static_branch_likely(&sched_uclamp_used);
3098}
3099#else /* CONFIG_UCLAMP_TASK */
3100static inline unsigned long uclamp_eff_value(struct task_struct *p,
3101					     enum uclamp_id clamp_id)
3102{
3103	if (clamp_id == UCLAMP_MIN)
3104		return 0;
3105
3106	return SCHED_CAPACITY_SCALE;
 
 
3107}
3108
3109static inline bool uclamp_rq_is_capped(struct rq *rq) { return false; }
3110
3111static inline bool uclamp_is_used(void)
3112{
3113	return false;
3114}
3115
3116static inline unsigned long uclamp_rq_get(struct rq *rq,
3117					  enum uclamp_id clamp_id)
3118{
3119	if (clamp_id == UCLAMP_MIN)
3120		return 0;
3121
3122	return SCHED_CAPACITY_SCALE;
3123}
3124
3125static inline void uclamp_rq_set(struct rq *rq, enum uclamp_id clamp_id,
3126				 unsigned int value)
3127{
3128}
3129
3130static inline bool uclamp_rq_is_idle(struct rq *rq)
3131{
3132	return false;
3133}
3134#endif /* CONFIG_UCLAMP_TASK */
3135
3136#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
3137static inline unsigned long cpu_util_irq(struct rq *rq)
3138{
3139	return rq->avg_irq.util_avg;
3140}
3141
3142static inline
3143unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3144{
3145	util *= (max - irq);
3146	util /= max;
3147
3148	return util;
3149
3150}
3151#else
3152static inline unsigned long cpu_util_irq(struct rq *rq)
3153{
3154	return 0;
3155}
3156
3157static inline
3158unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
3159{
3160	return util;
3161}
3162#endif
3163
3164#if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
3165
3166#define perf_domain_span(pd) (to_cpumask(((pd)->em_pd->cpus)))
3167
3168DECLARE_STATIC_KEY_FALSE(sched_energy_present);
3169
3170static inline bool sched_energy_enabled(void)
3171{
3172	return static_branch_unlikely(&sched_energy_present);
3173}
3174
3175extern struct cpufreq_governor schedutil_gov;
3176
3177#else /* ! (CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL) */
3178
3179#define perf_domain_span(pd) NULL
3180static inline bool sched_energy_enabled(void) { return false; }
3181
3182#endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL */
3183
3184#ifdef CONFIG_MEMBARRIER
3185/*
3186 * The scheduler provides memory barriers required by membarrier between:
3187 * - prior user-space memory accesses and store to rq->membarrier_state,
3188 * - store to rq->membarrier_state and following user-space memory accesses.
3189 * In the same way it provides those guarantees around store to rq->curr.
3190 */
3191static inline void membarrier_switch_mm(struct rq *rq,
3192					struct mm_struct *prev_mm,
3193					struct mm_struct *next_mm)
3194{
3195	int membarrier_state;
3196
3197	if (prev_mm == next_mm)
3198		return;
3199
3200	membarrier_state = atomic_read(&next_mm->membarrier_state);
3201	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
3202		return;
3203
3204	WRITE_ONCE(rq->membarrier_state, membarrier_state);
3205}
3206#else
3207static inline void membarrier_switch_mm(struct rq *rq,
3208					struct mm_struct *prev_mm,
3209					struct mm_struct *next_mm)
3210{
3211}
3212#endif
3213
3214#ifdef CONFIG_SMP
3215static inline bool is_per_cpu_kthread(struct task_struct *p)
3216{
3217	if (!(p->flags & PF_KTHREAD))
3218		return false;
3219
3220	if (p->nr_cpus_allowed != 1)
3221		return false;
3222
3223	return true;
3224}
3225#endif
3226
3227extern void swake_up_all_locked(struct swait_queue_head *q);
3228extern void __prepare_to_swait(struct swait_queue_head *q, struct swait_queue *wait);
3229
3230extern int try_to_wake_up(struct task_struct *tsk, unsigned int state, int wake_flags);
3231
3232#ifdef CONFIG_PREEMPT_DYNAMIC
3233extern int preempt_dynamic_mode;
3234extern int sched_dynamic_mode(const char *str);
3235extern void sched_dynamic_update(int mode);
3236#endif
3237
3238#ifdef CONFIG_SCHED_MM_CID
3239
3240#define SCHED_MM_CID_PERIOD_NS	(100ULL * 1000000)	/* 100ms */
3241#define MM_CID_SCAN_DELAY	100			/* 100ms */
3242
3243extern raw_spinlock_t cid_lock;
3244extern int use_cid_lock;
3245
3246extern void sched_mm_cid_migrate_from(struct task_struct *t);
3247extern void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t);
3248extern void task_tick_mm_cid(struct rq *rq, struct task_struct *curr);
3249extern void init_sched_mm_cid(struct task_struct *t);
3250
3251static inline void __mm_cid_put(struct mm_struct *mm, int cid)
3252{
3253	if (cid < 0)
3254		return;
3255	cpumask_clear_cpu(cid, mm_cidmask(mm));
3256}
3257
3258/*
3259 * The per-mm/cpu cid can have the MM_CID_LAZY_PUT flag set or transition to
3260 * the MM_CID_UNSET state without holding the rq lock, but the rq lock needs to
3261 * be held to transition to other states.
3262 *
3263 * State transitions synchronized with cmpxchg or try_cmpxchg need to be
3264 * consistent across cpus, which prevents use of this_cpu_cmpxchg.
3265 */
3266static inline void mm_cid_put_lazy(struct task_struct *t)
3267{
3268	struct mm_struct *mm = t->mm;
3269	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3270	int cid;
3271
3272	lockdep_assert_irqs_disabled();
3273	cid = __this_cpu_read(pcpu_cid->cid);
3274	if (!mm_cid_is_lazy_put(cid) ||
3275	    !try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3276		return;
3277	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3278}
3279
3280static inline int mm_cid_pcpu_unset(struct mm_struct *mm)
3281{
3282	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3283	int cid, res;
3284
3285	lockdep_assert_irqs_disabled();
3286	cid = __this_cpu_read(pcpu_cid->cid);
3287	for (;;) {
3288		if (mm_cid_is_unset(cid))
3289			return MM_CID_UNSET;
3290		/*
3291		 * Attempt transition from valid or lazy-put to unset.
3292		 */
3293		res = cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, cid, MM_CID_UNSET);
3294		if (res == cid)
3295			break;
3296		cid = res;
3297	}
3298	return cid;
3299}
3300
3301static inline void mm_cid_put(struct mm_struct *mm)
3302{
3303	int cid;
3304
3305	lockdep_assert_irqs_disabled();
3306	cid = mm_cid_pcpu_unset(mm);
3307	if (cid == MM_CID_UNSET)
3308		return;
3309	__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3310}
3311
3312static inline int __mm_cid_try_get(struct mm_struct *mm)
3313{
3314	struct cpumask *cpumask;
3315	int cid;
3316
3317	cpumask = mm_cidmask(mm);
3318	/*
3319	 * Retry finding first zero bit if the mask is temporarily
3320	 * filled. This only happens during concurrent remote-clear
3321	 * which owns a cid without holding a rq lock.
3322	 */
3323	for (;;) {
3324		cid = cpumask_first_zero(cpumask);
3325		if (cid < nr_cpu_ids)
3326			break;
3327		cpu_relax();
3328	}
3329	if (cpumask_test_and_set_cpu(cid, cpumask))
3330		return -1;
3331	return cid;
3332}
3333
3334/*
3335 * Save a snapshot of the current runqueue time of this cpu
3336 * with the per-cpu cid value, allowing to estimate how recently it was used.
3337 */
3338static inline void mm_cid_snapshot_time(struct rq *rq, struct mm_struct *mm)
3339{
3340	struct mm_cid *pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(rq));
3341
3342	lockdep_assert_rq_held(rq);
3343	WRITE_ONCE(pcpu_cid->time, rq->clock);
3344}
3345
3346static inline int __mm_cid_get(struct rq *rq, struct mm_struct *mm)
3347{
3348	int cid;
3349
3350	/*
3351	 * All allocations (even those using the cid_lock) are lock-free. If
3352	 * use_cid_lock is set, hold the cid_lock to perform cid allocation to
3353	 * guarantee forward progress.
3354	 */
3355	if (!READ_ONCE(use_cid_lock)) {
3356		cid = __mm_cid_try_get(mm);
3357		if (cid >= 0)
3358			goto end;
3359		raw_spin_lock(&cid_lock);
3360	} else {
3361		raw_spin_lock(&cid_lock);
3362		cid = __mm_cid_try_get(mm);
3363		if (cid >= 0)
3364			goto unlock;
3365	}
3366
3367	/*
3368	 * cid concurrently allocated. Retry while forcing following
3369	 * allocations to use the cid_lock to ensure forward progress.
3370	 */
3371	WRITE_ONCE(use_cid_lock, 1);
3372	/*
3373	 * Set use_cid_lock before allocation. Only care about program order
3374	 * because this is only required for forward progress.
3375	 */
3376	barrier();
3377	/*
3378	 * Retry until it succeeds. It is guaranteed to eventually succeed once
3379	 * all newcoming allocations observe the use_cid_lock flag set.
3380	 */
3381	do {
3382		cid = __mm_cid_try_get(mm);
3383		cpu_relax();
3384	} while (cid < 0);
3385	/*
3386	 * Allocate before clearing use_cid_lock. Only care about
3387	 * program order because this is for forward progress.
3388	 */
3389	barrier();
3390	WRITE_ONCE(use_cid_lock, 0);
3391unlock:
3392	raw_spin_unlock(&cid_lock);
3393end:
3394	mm_cid_snapshot_time(rq, mm);
3395	return cid;
3396}
3397
3398static inline int mm_cid_get(struct rq *rq, struct mm_struct *mm)
3399{
3400	struct mm_cid __percpu *pcpu_cid = mm->pcpu_cid;
3401	struct cpumask *cpumask;
3402	int cid;
3403
3404	lockdep_assert_rq_held(rq);
3405	cpumask = mm_cidmask(mm);
3406	cid = __this_cpu_read(pcpu_cid->cid);
3407	if (mm_cid_is_valid(cid)) {
3408		mm_cid_snapshot_time(rq, mm);
3409		return cid;
3410	}
3411	if (mm_cid_is_lazy_put(cid)) {
3412		if (try_cmpxchg(&this_cpu_ptr(pcpu_cid)->cid, &cid, MM_CID_UNSET))
3413			__mm_cid_put(mm, mm_cid_clear_lazy_put(cid));
3414	}
3415	cid = __mm_cid_get(rq, mm);
3416	__this_cpu_write(pcpu_cid->cid, cid);
3417	return cid;
3418}
3419
3420static inline void switch_mm_cid(struct rq *rq,
3421				 struct task_struct *prev,
3422				 struct task_struct *next)
3423{
3424	/*
3425	 * Provide a memory barrier between rq->curr store and load of
3426	 * {prev,next}->mm->pcpu_cid[cpu] on rq->curr->mm transition.
3427	 *
3428	 * Should be adapted if context_switch() is modified.
3429	 */
3430	if (!next->mm) {                                // to kernel
3431		/*
3432		 * user -> kernel transition does not guarantee a barrier, but
3433		 * we can use the fact that it performs an atomic operation in
3434		 * mmgrab().
3435		 */
3436		if (prev->mm)                           // from user
3437			smp_mb__after_mmgrab();
3438		/*
3439		 * kernel -> kernel transition does not change rq->curr->mm
3440		 * state. It stays NULL.
3441		 */
3442	} else {                                        // to user
3443		/*
3444		 * kernel -> user transition does not provide a barrier
3445		 * between rq->curr store and load of {prev,next}->mm->pcpu_cid[cpu].
3446		 * Provide it here.
3447		 */
3448		if (!prev->mm)                          // from kernel
3449			smp_mb();
3450		/*
3451		 * user -> user transition guarantees a memory barrier through
3452		 * switch_mm() when current->mm changes. If current->mm is
3453		 * unchanged, no barrier is needed.
3454		 */
3455	}
3456	if (prev->mm_cid_active) {
3457		mm_cid_snapshot_time(rq, prev->mm);
3458		mm_cid_put_lazy(prev);
3459		prev->mm_cid = -1;
3460	}
3461	if (next->mm_cid_active)
3462		next->last_mm_cid = next->mm_cid = mm_cid_get(rq, next->mm);
3463}
3464
3465#else
3466static inline void switch_mm_cid(struct rq *rq, struct task_struct *prev, struct task_struct *next) { }
3467static inline void sched_mm_cid_migrate_from(struct task_struct *t) { }
3468static inline void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) { }
3469static inline void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) { }
3470static inline void init_sched_mm_cid(struct task_struct *t) { }
3471#endif
3472
3473extern u64 avg_vruntime(struct cfs_rq *cfs_rq);
3474extern int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se);
3475
3476#endif /* _KERNEL_SCHED_SCHED_H */