Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * fs/mpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains functions related to preparing and submitting BIOs which contain
  7 * multiple pagecache pages.
  8 *
  9 * 15May2002	Andrew Morton
 10 *		Initial version
 11 * 27Jun2002	axboe@suse.de
 12 *		use bio_add_page() to build bio's just the right size
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/export.h>
 17#include <linux/mm.h>
 18#include <linux/kdev_t.h>
 19#include <linux/gfp.h>
 20#include <linux/bio.h>
 21#include <linux/fs.h>
 22#include <linux/buffer_head.h>
 23#include <linux/blkdev.h>
 24#include <linux/highmem.h>
 25#include <linux/prefetch.h>
 26#include <linux/mpage.h>
 27#include <linux/mm_inline.h>
 28#include <linux/writeback.h>
 29#include <linux/backing-dev.h>
 30#include <linux/pagevec.h>
 31#include <linux/cleancache.h>
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_page().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_end_io(struct bio *bio)
 47{
 48	struct bio_vec *bv;
 49	int i;
 50
 51	bio_for_each_segment_all(bv, bio, i) {
 52		struct page *page = bv->bv_page;
 53		page_endio(page, bio_data_dir(bio), bio->bi_error);
 
 
 
 
 
 
 
 
 
 
 
 
 54	}
 55
 56	bio_put(bio);
 57}
 58
 59static struct bio *mpage_bio_submit(int rw, struct bio *bio)
 60{
 61	bio->bi_end_io = mpage_end_io;
 62	guard_bio_eod(rw, bio);
 63	submit_bio(rw, bio);
 64	return NULL;
 65}
 66
 67static struct bio *
 68mpage_alloc(struct block_device *bdev,
 69		sector_t first_sector, int nr_vecs,
 70		gfp_t gfp_flags)
 71{
 72	struct bio *bio;
 73
 74	bio = bio_alloc(gfp_flags, nr_vecs);
 75
 76	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 77		while (!bio && (nr_vecs /= 2))
 78			bio = bio_alloc(gfp_flags, nr_vecs);
 79	}
 80
 81	if (bio) {
 82		bio->bi_bdev = bdev;
 83		bio->bi_iter.bi_sector = first_sector;
 84	}
 85	return bio;
 86}
 87
 88/*
 89 * support function for mpage_readpages.  The fs supplied get_block might
 90 * return an up to date buffer.  This is used to map that buffer into
 91 * the page, which allows readpage to avoid triggering a duplicate call
 92 * to get_block.
 93 *
 94 * The idea is to avoid adding buffers to pages that don't already have
 95 * them.  So when the buffer is up to date and the page size == block size,
 96 * this marks the page up to date instead of adding new buffers.
 97 */
 98static void 
 99map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
100{
101	struct inode *inode = page->mapping->host;
102	struct buffer_head *page_bh, *head;
103	int block = 0;
104
105	if (!page_has_buffers(page)) {
 
106		/*
107		 * don't make any buffers if there is only one buffer on
108		 * the page and the page just needs to be set up to date
109		 */
110		if (inode->i_blkbits == PAGE_SHIFT &&
111		    buffer_uptodate(bh)) {
112			SetPageUptodate(page);    
113			return;
114		}
115		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
116	}
117	head = page_buffers(page);
118	page_bh = head;
119	do {
120		if (block == page_block) {
121			page_bh->b_state = bh->b_state;
122			page_bh->b_bdev = bh->b_bdev;
123			page_bh->b_blocknr = bh->b_blocknr;
124			break;
125		}
126		page_bh = page_bh->b_this_page;
127		block++;
128	} while (page_bh != head);
129}
130
 
 
 
 
 
 
 
 
 
 
 
131/*
132 * This is the worker routine which does all the work of mapping the disk
133 * blocks and constructs largest possible bios, submits them for IO if the
134 * blocks are not contiguous on the disk.
135 *
136 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
137 * represent the validity of its disk mapping and to decide when to do the next
138 * get_block() call.
139 */
140static struct bio *
141do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
142		sector_t *last_block_in_bio, struct buffer_head *map_bh,
143		unsigned long *first_logical_block, get_block_t get_block,
144		gfp_t gfp)
145{
146	struct inode *inode = page->mapping->host;
 
147	const unsigned blkbits = inode->i_blkbits;
148	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
149	const unsigned blocksize = 1 << blkbits;
 
150	sector_t block_in_file;
151	sector_t last_block;
152	sector_t last_block_in_file;
153	sector_t blocks[MAX_BUF_PER_PAGE];
154	unsigned page_block;
155	unsigned first_hole = blocks_per_page;
156	struct block_device *bdev = NULL;
157	int length;
158	int fully_mapped = 1;
 
159	unsigned nblocks;
160	unsigned relative_block;
 
 
 
 
 
 
 
 
 
161
162	if (page_has_buffers(page))
163		goto confused;
164
165	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
166	last_block = block_in_file + nr_pages * blocks_per_page;
167	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168	if (last_block > last_block_in_file)
169		last_block = last_block_in_file;
170	page_block = 0;
171
172	/*
173	 * Map blocks using the result from the previous get_blocks call first.
174	 */
175	nblocks = map_bh->b_size >> blkbits;
176	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
177			block_in_file < (*first_logical_block + nblocks)) {
178		unsigned map_offset = block_in_file - *first_logical_block;
 
179		unsigned last = nblocks - map_offset;
180
 
181		for (relative_block = 0; ; relative_block++) {
182			if (relative_block == last) {
183				clear_buffer_mapped(map_bh);
184				break;
185			}
186			if (page_block == blocks_per_page)
187				break;
188			blocks[page_block] = map_bh->b_blocknr + map_offset +
189						relative_block;
190			page_block++;
191			block_in_file++;
192		}
193		bdev = map_bh->b_bdev;
194	}
195
196	/*
197	 * Then do more get_blocks calls until we are done with this page.
198	 */
199	map_bh->b_page = page;
200	while (page_block < blocks_per_page) {
201		map_bh->b_state = 0;
202		map_bh->b_size = 0;
203
204		if (block_in_file < last_block) {
205			map_bh->b_size = (last_block-block_in_file) << blkbits;
206			if (get_block(inode, block_in_file, map_bh, 0))
207				goto confused;
208			*first_logical_block = block_in_file;
209		}
210
211		if (!buffer_mapped(map_bh)) {
212			fully_mapped = 0;
213			if (first_hole == blocks_per_page)
214				first_hole = page_block;
215			page_block++;
216			block_in_file++;
217			continue;
218		}
219
220		/* some filesystems will copy data into the page during
221		 * the get_block call, in which case we don't want to
222		 * read it again.  map_buffer_to_page copies the data
223		 * we just collected from get_block into the page's buffers
224		 * so readpage doesn't have to repeat the get_block call
225		 */
226		if (buffer_uptodate(map_bh)) {
227			map_buffer_to_page(page, map_bh, page_block);
228			goto confused;
229		}
230	
231		if (first_hole != blocks_per_page)
232			goto confused;		/* hole -> non-hole */
233
234		/* Contiguous blocks? */
235		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
 
 
236			goto confused;
237		nblocks = map_bh->b_size >> blkbits;
238		for (relative_block = 0; ; relative_block++) {
239			if (relative_block == nblocks) {
240				clear_buffer_mapped(map_bh);
241				break;
242			} else if (page_block == blocks_per_page)
243				break;
244			blocks[page_block] = map_bh->b_blocknr+relative_block;
245			page_block++;
246			block_in_file++;
247		}
248		bdev = map_bh->b_bdev;
249	}
250
251	if (first_hole != blocks_per_page) {
252		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
253		if (first_hole == 0) {
254			SetPageUptodate(page);
255			unlock_page(page);
256			goto out;
257		}
258	} else if (fully_mapped) {
259		SetPageMappedToDisk(page);
260	}
261
262	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
263	    cleancache_get_page(page) == 0) {
264		SetPageUptodate(page);
265		goto confused;
266	}
267
268	/*
269	 * This page will go to BIO.  Do we need to send this BIO off first?
270	 */
271	if (bio && (*last_block_in_bio != blocks[0] - 1))
272		bio = mpage_bio_submit(READ, bio);
273
274alloc_new:
275	if (bio == NULL) {
276		if (first_hole == blocks_per_page) {
277			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
278								page))
279				goto out;
280		}
281		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
282				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
283		if (bio == NULL)
284			goto confused;
 
285	}
286
287	length = first_hole << blkbits;
288	if (bio_add_page(bio, page, length, 0) < length) {
289		bio = mpage_bio_submit(READ, bio);
290		goto alloc_new;
291	}
292
293	relative_block = block_in_file - *first_logical_block;
294	nblocks = map_bh->b_size >> blkbits;
295	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
296	    (first_hole != blocks_per_page))
297		bio = mpage_bio_submit(READ, bio);
298	else
299		*last_block_in_bio = blocks[blocks_per_page - 1];
300out:
301	return bio;
302
303confused:
304	if (bio)
305		bio = mpage_bio_submit(READ, bio);
306	if (!PageUptodate(page))
307	        block_read_full_page(page, get_block);
308	else
309		unlock_page(page);
310	goto out;
311}
312
313/**
314 * mpage_readpages - populate an address space with some pages & start reads against them
315 * @mapping: the address_space
316 * @pages: The address of a list_head which contains the target pages.  These
317 *   pages have their ->index populated and are otherwise uninitialised.
318 *   The page at @pages->prev has the lowest file offset, and reads should be
319 *   issued in @pages->prev to @pages->next order.
320 * @nr_pages: The number of pages at *@pages
321 * @get_block: The filesystem's block mapper function.
322 *
323 * This function walks the pages and the blocks within each page, building and
324 * emitting large BIOs.
325 *
326 * If anything unusual happens, such as:
327 *
328 * - encountering a page which has buffers
329 * - encountering a page which has a non-hole after a hole
330 * - encountering a page with non-contiguous blocks
331 *
332 * then this code just gives up and calls the buffer_head-based read function.
333 * It does handle a page which has holes at the end - that is a common case:
334 * the end-of-file on blocksize < PAGE_SIZE setups.
335 *
336 * BH_Boundary explanation:
337 *
338 * There is a problem.  The mpage read code assembles several pages, gets all
339 * their disk mappings, and then submits them all.  That's fine, but obtaining
340 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
341 *
342 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
343 * submitted in the following order:
 
344 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
345 *
346 * because the indirect block has to be read to get the mappings of blocks
347 * 13,14,15,16.  Obviously, this impacts performance.
348 *
349 * So what we do it to allow the filesystem's get_block() function to set
350 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
351 * after this one will require I/O against a block which is probably close to
352 * this one.  So you should push what I/O you have currently accumulated.
353 *
354 * This all causes the disk requests to be issued in the correct order.
355 */
356int
357mpage_readpages(struct address_space *mapping, struct list_head *pages,
358				unsigned nr_pages, get_block_t get_block)
359{
360	struct bio *bio = NULL;
361	unsigned page_idx;
362	sector_t last_block_in_bio = 0;
363	struct buffer_head map_bh;
364	unsigned long first_logical_block = 0;
365	gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
366
367	map_bh.b_state = 0;
368	map_bh.b_size = 0;
369	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
370		struct page *page = lru_to_page(pages);
371
372		prefetchw(&page->flags);
373		list_del(&page->lru);
374		if (!add_to_page_cache_lru(page, mapping,
375					page->index,
376					gfp)) {
377			bio = do_mpage_readpage(bio, page,
378					nr_pages - page_idx,
379					&last_block_in_bio, &map_bh,
380					&first_logical_block,
381					get_block, gfp);
382		}
383		put_page(page);
384	}
385	BUG_ON(!list_empty(pages));
386	if (bio)
387		mpage_bio_submit(READ, bio);
388	return 0;
389}
390EXPORT_SYMBOL(mpage_readpages);
391
392/*
393 * This isn't called much at all
394 */
395int mpage_readpage(struct page *page, get_block_t get_block)
396{
397	struct bio *bio = NULL;
398	sector_t last_block_in_bio = 0;
399	struct buffer_head map_bh;
400	unsigned long first_logical_block = 0;
401	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
402
403	map_bh.b_state = 0;
404	map_bh.b_size = 0;
405	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
406			&map_bh, &first_logical_block, get_block, gfp);
407	if (bio)
408		mpage_bio_submit(READ, bio);
409	return 0;
410}
411EXPORT_SYMBOL(mpage_readpage);
412
413/*
414 * Writing is not so simple.
415 *
416 * If the page has buffers then they will be used for obtaining the disk
417 * mapping.  We only support pages which are fully mapped-and-dirty, with a
418 * special case for pages which are unmapped at the end: end-of-file.
419 *
420 * If the page has no buffers (preferred) then the page is mapped here.
421 *
422 * If all blocks are found to be contiguous then the page can go into the
423 * BIO.  Otherwise fall back to the mapping's writepage().
424 * 
425 * FIXME: This code wants an estimate of how many pages are still to be
426 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
427 * just allocate full-size (16-page) BIOs.
428 */
429
430struct mpage_data {
431	struct bio *bio;
432	sector_t last_block_in_bio;
433	get_block_t *get_block;
434	unsigned use_writepage;
435};
436
437/*
438 * We have our BIO, so we can now mark the buffers clean.  Make
439 * sure to only clean buffers which we know we'll be writing.
440 */
441static void clean_buffers(struct page *page, unsigned first_unmapped)
442{
443	unsigned buffer_counter = 0;
444	struct buffer_head *bh, *head;
445	if (!page_has_buffers(page))
 
446		return;
447	head = page_buffers(page);
448	bh = head;
449
450	do {
451		if (buffer_counter++ == first_unmapped)
452			break;
453		clear_buffer_dirty(bh);
454		bh = bh->b_this_page;
455	} while (bh != head);
456
457	/*
458	 * we cannot drop the bh if the page is not uptodate or a concurrent
459	 * readpage would fail to serialize with the bh and it would read from
460	 * disk before we reach the platter.
461	 */
462	if (buffer_heads_over_limit && PageUptodate(page))
463		try_to_free_buffers(page);
464}
465
466static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
467		      void *data)
468{
469	struct mpage_data *mpd = data;
470	struct bio *bio = mpd->bio;
471	struct address_space *mapping = page->mapping;
472	struct inode *inode = page->mapping->host;
473	const unsigned blkbits = inode->i_blkbits;
474	unsigned long end_index;
475	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
476	sector_t last_block;
477	sector_t block_in_file;
478	sector_t blocks[MAX_BUF_PER_PAGE];
479	unsigned page_block;
480	unsigned first_unmapped = blocks_per_page;
481	struct block_device *bdev = NULL;
482	int boundary = 0;
483	sector_t boundary_block = 0;
484	struct block_device *boundary_bdev = NULL;
485	int length;
486	struct buffer_head map_bh;
487	loff_t i_size = i_size_read(inode);
488	int ret = 0;
489	int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
490
491	if (page_has_buffers(page)) {
492		struct buffer_head *head = page_buffers(page);
493		struct buffer_head *bh = head;
494
495		/* If they're all mapped and dirty, do it */
496		page_block = 0;
497		do {
498			BUG_ON(buffer_locked(bh));
499			if (!buffer_mapped(bh)) {
500				/*
501				 * unmapped dirty buffers are created by
502				 * __set_page_dirty_buffers -> mmapped data
503				 */
504				if (buffer_dirty(bh))
505					goto confused;
506				if (first_unmapped == blocks_per_page)
507					first_unmapped = page_block;
508				continue;
509			}
510
511			if (first_unmapped != blocks_per_page)
512				goto confused;	/* hole -> non-hole */
513
514			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
515				goto confused;
516			if (page_block) {
517				if (bh->b_blocknr != blocks[page_block-1] + 1)
518					goto confused;
 
 
519			}
520			blocks[page_block++] = bh->b_blocknr;
521			boundary = buffer_boundary(bh);
522			if (boundary) {
523				boundary_block = bh->b_blocknr;
524				boundary_bdev = bh->b_bdev;
525			}
526			bdev = bh->b_bdev;
527		} while ((bh = bh->b_this_page) != head);
528
529		if (first_unmapped)
530			goto page_is_mapped;
531
532		/*
533		 * Page has buffers, but they are all unmapped. The page was
534		 * created by pagein or read over a hole which was handled by
535		 * block_read_full_page().  If this address_space is also
536		 * using mpage_readpages then this can rarely happen.
537		 */
538		goto confused;
539	}
540
541	/*
542	 * The page has no buffers: map it to disk
543	 */
544	BUG_ON(!PageUptodate(page));
545	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
 
 
 
 
 
 
546	last_block = (i_size - 1) >> blkbits;
547	map_bh.b_page = page;
548	for (page_block = 0; page_block < blocks_per_page; ) {
549
550		map_bh.b_state = 0;
551		map_bh.b_size = 1 << blkbits;
552		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
553			goto confused;
 
 
554		if (buffer_new(&map_bh))
555			unmap_underlying_metadata(map_bh.b_bdev,
556						map_bh.b_blocknr);
557		if (buffer_boundary(&map_bh)) {
558			boundary_block = map_bh.b_blocknr;
559			boundary_bdev = map_bh.b_bdev;
560		}
561		if (page_block) {
562			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
563				goto confused;
 
 
564		}
565		blocks[page_block++] = map_bh.b_blocknr;
566		boundary = buffer_boundary(&map_bh);
567		bdev = map_bh.b_bdev;
568		if (block_in_file == last_block)
569			break;
570		block_in_file++;
571	}
572	BUG_ON(page_block == 0);
573
574	first_unmapped = page_block;
575
576page_is_mapped:
577	end_index = i_size >> PAGE_SHIFT;
578	if (page->index >= end_index) {
 
 
 
579		/*
580		 * The page straddles i_size.  It must be zeroed out on each
581		 * and every writepage invocation because it may be mmapped.
582		 * "A file is mapped in multiples of the page size.  For a file
583		 * that is not a multiple of the page size, the remaining memory
584		 * is zeroed when mapped, and writes to that region are not
585		 * written out to the file."
586		 */
587		unsigned offset = i_size & (PAGE_SIZE - 1);
588
589		if (page->index > end_index || !offset)
590			goto confused;
591		zero_user_segment(page, offset, PAGE_SIZE);
592	}
593
594	/*
595	 * This page will go to BIO.  Do we need to send this BIO off first?
596	 */
597	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
598		bio = mpage_bio_submit(wr, bio);
599
600alloc_new:
601	if (bio == NULL) {
602		if (first_unmapped == blocks_per_page) {
603			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
604								page, wbc)) {
605				clean_buffers(page, first_unmapped);
606				goto out;
607			}
608		}
609		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
610				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
611		if (bio == NULL)
612			goto confused;
613
614		wbc_init_bio(wbc, bio);
 
615	}
616
617	/*
618	 * Must try to add the page before marking the buffer clean or
619	 * the confused fail path above (OOM) will be very confused when
620	 * it finds all bh marked clean (i.e. it will not write anything)
621	 */
622	wbc_account_io(wbc, page, PAGE_SIZE);
623	length = first_unmapped << blkbits;
624	if (bio_add_page(bio, page, length, 0) < length) {
625		bio = mpage_bio_submit(wr, bio);
626		goto alloc_new;
627	}
628
629	clean_buffers(page, first_unmapped);
630
631	BUG_ON(PageWriteback(page));
632	set_page_writeback(page);
633	unlock_page(page);
634	if (boundary || (first_unmapped != blocks_per_page)) {
635		bio = mpage_bio_submit(wr, bio);
636		if (boundary_block) {
637			write_boundary_block(boundary_bdev,
638					boundary_block, 1 << blkbits);
639		}
640	} else {
641		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
642	}
643	goto out;
644
645confused:
646	if (bio)
647		bio = mpage_bio_submit(wr, bio);
648
649	if (mpd->use_writepage) {
650		ret = mapping->a_ops->writepage(page, wbc);
651	} else {
652		ret = -EAGAIN;
653		goto out;
654	}
655	/*
656	 * The caller has a ref on the inode, so *mapping is stable
657	 */
 
658	mapping_set_error(mapping, ret);
659out:
660	mpd->bio = bio;
661	return ret;
662}
663
664/**
665 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
666 * @mapping: address space structure to write
667 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
668 * @get_block: the filesystem's block mapper function.
669 *             If this is NULL then use a_ops->writepage.  Otherwise, go
670 *             direct-to-BIO.
671 *
672 * This is a library function, which implements the writepages()
673 * address_space_operation.
674 *
675 * If a page is already under I/O, generic_writepages() skips it, even
676 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
677 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
678 * and msync() need to guarantee that all the data which was dirty at the time
679 * the call was made get new I/O started against them.  If wbc->sync_mode is
680 * WB_SYNC_ALL then we were called for data integrity and we must wait for
681 * existing IO to complete.
682 */
683int
684mpage_writepages(struct address_space *mapping,
685		struct writeback_control *wbc, get_block_t get_block)
686{
 
 
 
687	struct blk_plug plug;
688	int ret;
689
690	blk_start_plug(&plug);
691
692	if (!get_block)
693		ret = generic_writepages(mapping, wbc);
694	else {
695		struct mpage_data mpd = {
696			.bio = NULL,
697			.last_block_in_bio = 0,
698			.get_block = get_block,
699			.use_writepage = 1,
700		};
701
702		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
703		if (mpd.bio) {
704			int wr = (wbc->sync_mode == WB_SYNC_ALL ?
705				  WRITE_SYNC : WRITE);
706			mpage_bio_submit(wr, mpd.bio);
707		}
708	}
709	blk_finish_plug(&plug);
710	return ret;
711}
712EXPORT_SYMBOL(mpage_writepages);
713
714int mpage_writepage(struct page *page, get_block_t get_block,
715	struct writeback_control *wbc)
716{
717	struct mpage_data mpd = {
718		.bio = NULL,
719		.last_block_in_bio = 0,
720		.get_block = get_block,
721		.use_writepage = 0,
722	};
723	int ret = __mpage_writepage(page, wbc, &mpd);
724	if (mpd.bio) {
725		int wr = (wbc->sync_mode == WB_SYNC_ALL ?
726			  WRITE_SYNC : WRITE);
727		mpage_bio_submit(wr, mpd.bio);
728	}
729	return ret;
730}
731EXPORT_SYMBOL(mpage_writepage);
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/mpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 *
  7 * Contains functions related to preparing and submitting BIOs which contain
  8 * multiple pagecache pages.
  9 *
 10 * 15May2002	Andrew Morton
 11 *		Initial version
 12 * 27Jun2002	axboe@suse.de
 13 *		use bio_add_page() to build bio's just the right size
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/export.h>
 18#include <linux/mm.h>
 19#include <linux/kdev_t.h>
 20#include <linux/gfp.h>
 21#include <linux/bio.h>
 22#include <linux/fs.h>
 23#include <linux/buffer_head.h>
 24#include <linux/blkdev.h>
 25#include <linux/highmem.h>
 26#include <linux/prefetch.h>
 27#include <linux/mpage.h>
 28#include <linux/mm_inline.h>
 29#include <linux/writeback.h>
 30#include <linux/backing-dev.h>
 31#include <linux/pagevec.h>
 
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_folio().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_read_end_io(struct bio *bio)
 47{
 48	struct folio_iter fi;
 49	int err = blk_status_to_errno(bio->bi_status);
 50
 51	bio_for_each_folio_all(fi, bio)
 52		folio_end_read(fi.folio, err == 0);
 53
 54	bio_put(bio);
 55}
 56
 57static void mpage_write_end_io(struct bio *bio)
 58{
 59	struct folio_iter fi;
 60	int err = blk_status_to_errno(bio->bi_status);
 61
 62	bio_for_each_folio_all(fi, bio) {
 63		if (err)
 64			mapping_set_error(fi.folio->mapping, err);
 65		folio_end_writeback(fi.folio);
 66	}
 67
 68	bio_put(bio);
 69}
 70
 71static struct bio *mpage_bio_submit_read(struct bio *bio)
 72{
 73	bio->bi_end_io = mpage_read_end_io;
 74	guard_bio_eod(bio);
 75	submit_bio(bio);
 76	return NULL;
 77}
 78
 79static struct bio *mpage_bio_submit_write(struct bio *bio)
 
 
 
 80{
 81	bio->bi_end_io = mpage_write_end_io;
 82	guard_bio_eod(bio);
 83	submit_bio(bio);
 84	return NULL;
 
 
 
 
 
 
 
 
 
 
 85}
 86
 87/*
 88 * support function for mpage_readahead.  The fs supplied get_block might
 89 * return an up to date buffer.  This is used to map that buffer into
 90 * the page, which allows read_folio to avoid triggering a duplicate call
 91 * to get_block.
 92 *
 93 * The idea is to avoid adding buffers to pages that don't already have
 94 * them.  So when the buffer is up to date and the page size == block size,
 95 * this marks the page up to date instead of adding new buffers.
 96 */
 97static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
 98		int page_block)
 99{
100	struct inode *inode = folio->mapping->host;
101	struct buffer_head *page_bh, *head;
102	int block = 0;
103
104	head = folio_buffers(folio);
105	if (!head) {
106		/*
107		 * don't make any buffers if there is only one buffer on
108		 * the folio and the folio just needs to be set up to date
109		 */
110		if (inode->i_blkbits == PAGE_SHIFT &&
111		    buffer_uptodate(bh)) {
112			folio_mark_uptodate(folio);
113			return;
114		}
115		head = create_empty_buffers(folio, i_blocksize(inode), 0);
116	}
117
118	page_bh = head;
119	do {
120		if (block == page_block) {
121			page_bh->b_state = bh->b_state;
122			page_bh->b_bdev = bh->b_bdev;
123			page_bh->b_blocknr = bh->b_blocknr;
124			break;
125		}
126		page_bh = page_bh->b_this_page;
127		block++;
128	} while (page_bh != head);
129}
130
131struct mpage_readpage_args {
132	struct bio *bio;
133	struct folio *folio;
134	unsigned int nr_pages;
135	bool is_readahead;
136	sector_t last_block_in_bio;
137	struct buffer_head map_bh;
138	unsigned long first_logical_block;
139	get_block_t *get_block;
140};
141
142/*
143 * This is the worker routine which does all the work of mapping the disk
144 * blocks and constructs largest possible bios, submits them for IO if the
145 * blocks are not contiguous on the disk.
146 *
147 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
148 * represent the validity of its disk mapping and to decide when to do the next
149 * get_block() call.
150 */
151static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 
 
 
 
152{
153	struct folio *folio = args->folio;
154	struct inode *inode = folio->mapping->host;
155	const unsigned blkbits = inode->i_blkbits;
156	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
157	const unsigned blocksize = 1 << blkbits;
158	struct buffer_head *map_bh = &args->map_bh;
159	sector_t block_in_file;
160	sector_t last_block;
161	sector_t last_block_in_file;
162	sector_t first_block;
163	unsigned page_block;
164	unsigned first_hole = blocks_per_page;
165	struct block_device *bdev = NULL;
166	int length;
167	int fully_mapped = 1;
168	blk_opf_t opf = REQ_OP_READ;
169	unsigned nblocks;
170	unsigned relative_block;
171	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
172
173	/* MAX_BUF_PER_PAGE, for example */
174	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
175
176	if (args->is_readahead) {
177		opf |= REQ_RAHEAD;
178		gfp |= __GFP_NORETRY | __GFP_NOWARN;
179	}
180
181	if (folio_buffers(folio))
182		goto confused;
183
184	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
185	last_block = block_in_file + args->nr_pages * blocks_per_page;
186	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
187	if (last_block > last_block_in_file)
188		last_block = last_block_in_file;
189	page_block = 0;
190
191	/*
192	 * Map blocks using the result from the previous get_blocks call first.
193	 */
194	nblocks = map_bh->b_size >> blkbits;
195	if (buffer_mapped(map_bh) &&
196			block_in_file > args->first_logical_block &&
197			block_in_file < (args->first_logical_block + nblocks)) {
198		unsigned map_offset = block_in_file - args->first_logical_block;
199		unsigned last = nblocks - map_offset;
200
201		first_block = map_bh->b_blocknr + map_offset;
202		for (relative_block = 0; ; relative_block++) {
203			if (relative_block == last) {
204				clear_buffer_mapped(map_bh);
205				break;
206			}
207			if (page_block == blocks_per_page)
208				break;
 
 
209			page_block++;
210			block_in_file++;
211		}
212		bdev = map_bh->b_bdev;
213	}
214
215	/*
216	 * Then do more get_blocks calls until we are done with this folio.
217	 */
218	map_bh->b_folio = folio;
219	while (page_block < blocks_per_page) {
220		map_bh->b_state = 0;
221		map_bh->b_size = 0;
222
223		if (block_in_file < last_block) {
224			map_bh->b_size = (last_block-block_in_file) << blkbits;
225			if (args->get_block(inode, block_in_file, map_bh, 0))
226				goto confused;
227			args->first_logical_block = block_in_file;
228		}
229
230		if (!buffer_mapped(map_bh)) {
231			fully_mapped = 0;
232			if (first_hole == blocks_per_page)
233				first_hole = page_block;
234			page_block++;
235			block_in_file++;
236			continue;
237		}
238
239		/* some filesystems will copy data into the page during
240		 * the get_block call, in which case we don't want to
241		 * read it again.  map_buffer_to_folio copies the data
242		 * we just collected from get_block into the folio's buffers
243		 * so read_folio doesn't have to repeat the get_block call
244		 */
245		if (buffer_uptodate(map_bh)) {
246			map_buffer_to_folio(folio, map_bh, page_block);
247			goto confused;
248		}
249	
250		if (first_hole != blocks_per_page)
251			goto confused;		/* hole -> non-hole */
252
253		/* Contiguous blocks? */
254		if (!page_block)
255			first_block = map_bh->b_blocknr;
256		else if (first_block + page_block != map_bh->b_blocknr)
257			goto confused;
258		nblocks = map_bh->b_size >> blkbits;
259		for (relative_block = 0; ; relative_block++) {
260			if (relative_block == nblocks) {
261				clear_buffer_mapped(map_bh);
262				break;
263			} else if (page_block == blocks_per_page)
264				break;
 
265			page_block++;
266			block_in_file++;
267		}
268		bdev = map_bh->b_bdev;
269	}
270
271	if (first_hole != blocks_per_page) {
272		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
273		if (first_hole == 0) {
274			folio_mark_uptodate(folio);
275			folio_unlock(folio);
276			goto out;
277		}
278	} else if (fully_mapped) {
279		folio_set_mappedtodisk(folio);
 
 
 
 
 
 
280	}
281
282	/*
283	 * This folio will go to BIO.  Do we need to send this BIO off first?
284	 */
285	if (args->bio && (args->last_block_in_bio != first_block - 1))
286		args->bio = mpage_bio_submit_read(args->bio);
287
288alloc_new:
289	if (args->bio == NULL) {
290		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
291				      gfp);
292		if (args->bio == NULL)
 
 
 
 
 
293			goto confused;
294		args->bio->bi_iter.bi_sector = first_block << (blkbits - 9);
295	}
296
297	length = first_hole << blkbits;
298	if (!bio_add_folio(args->bio, folio, length, 0)) {
299		args->bio = mpage_bio_submit_read(args->bio);
300		goto alloc_new;
301	}
302
303	relative_block = block_in_file - args->first_logical_block;
304	nblocks = map_bh->b_size >> blkbits;
305	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
306	    (first_hole != blocks_per_page))
307		args->bio = mpage_bio_submit_read(args->bio);
308	else
309		args->last_block_in_bio = first_block + blocks_per_page - 1;
310out:
311	return args->bio;
312
313confused:
314	if (args->bio)
315		args->bio = mpage_bio_submit_read(args->bio);
316	if (!folio_test_uptodate(folio))
317		block_read_full_folio(folio, args->get_block);
318	else
319		folio_unlock(folio);
320	goto out;
321}
322
323/**
324 * mpage_readahead - start reads against pages
325 * @rac: Describes which pages to read.
 
 
 
 
 
326 * @get_block: The filesystem's block mapper function.
327 *
328 * This function walks the pages and the blocks within each page, building and
329 * emitting large BIOs.
330 *
331 * If anything unusual happens, such as:
332 *
333 * - encountering a page which has buffers
334 * - encountering a page which has a non-hole after a hole
335 * - encountering a page with non-contiguous blocks
336 *
337 * then this code just gives up and calls the buffer_head-based read function.
338 * It does handle a page which has holes at the end - that is a common case:
339 * the end-of-file on blocksize < PAGE_SIZE setups.
340 *
341 * BH_Boundary explanation:
342 *
343 * There is a problem.  The mpage read code assembles several pages, gets all
344 * their disk mappings, and then submits them all.  That's fine, but obtaining
345 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
346 *
347 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
348 * submitted in the following order:
349 *
350 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
351 *
352 * because the indirect block has to be read to get the mappings of blocks
353 * 13,14,15,16.  Obviously, this impacts performance.
354 *
355 * So what we do it to allow the filesystem's get_block() function to set
356 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
357 * after this one will require I/O against a block which is probably close to
358 * this one.  So you should push what I/O you have currently accumulated.
359 *
360 * This all causes the disk requests to be issued in the correct order.
361 */
362void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
 
 
363{
364	struct folio *folio;
365	struct mpage_readpage_args args = {
366		.get_block = get_block,
367		.is_readahead = true,
368	};
 
369
370	while ((folio = readahead_folio(rac))) {
371		prefetchw(&folio->flags);
372		args.folio = folio;
373		args.nr_pages = readahead_count(rac);
374		args.bio = do_mpage_readpage(&args);
 
 
 
 
 
 
 
 
 
 
 
 
375	}
376	if (args.bio)
377		mpage_bio_submit_read(args.bio);
 
 
378}
379EXPORT_SYMBOL(mpage_readahead);
380
381/*
382 * This isn't called much at all
383 */
384int mpage_read_folio(struct folio *folio, get_block_t get_block)
385{
386	struct mpage_readpage_args args = {
387		.folio = folio,
388		.nr_pages = 1,
389		.get_block = get_block,
390	};
391
392	args.bio = do_mpage_readpage(&args);
393	if (args.bio)
394		mpage_bio_submit_read(args.bio);
 
 
 
395	return 0;
396}
397EXPORT_SYMBOL(mpage_read_folio);
398
399/*
400 * Writing is not so simple.
401 *
402 * If the page has buffers then they will be used for obtaining the disk
403 * mapping.  We only support pages which are fully mapped-and-dirty, with a
404 * special case for pages which are unmapped at the end: end-of-file.
405 *
406 * If the page has no buffers (preferred) then the page is mapped here.
407 *
408 * If all blocks are found to be contiguous then the page can go into the
409 * BIO.  Otherwise fall back to the mapping's writepage().
410 * 
411 * FIXME: This code wants an estimate of how many pages are still to be
412 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
413 * just allocate full-size (16-page) BIOs.
414 */
415
416struct mpage_data {
417	struct bio *bio;
418	sector_t last_block_in_bio;
419	get_block_t *get_block;
 
420};
421
422/*
423 * We have our BIO, so we can now mark the buffers clean.  Make
424 * sure to only clean buffers which we know we'll be writing.
425 */
426static void clean_buffers(struct folio *folio, unsigned first_unmapped)
427{
428	unsigned buffer_counter = 0;
429	struct buffer_head *bh, *head = folio_buffers(folio);
430
431	if (!head)
432		return;
 
433	bh = head;
434
435	do {
436		if (buffer_counter++ == first_unmapped)
437			break;
438		clear_buffer_dirty(bh);
439		bh = bh->b_this_page;
440	} while (bh != head);
441
442	/*
443	 * we cannot drop the bh if the page is not uptodate or a concurrent
444	 * read_folio would fail to serialize with the bh and it would read from
445	 * disk before we reach the platter.
446	 */
447	if (buffer_heads_over_limit && folio_test_uptodate(folio))
448		try_to_free_buffers(folio);
449}
450
451static int __mpage_writepage(struct folio *folio, struct writeback_control *wbc,
452		      void *data)
453{
454	struct mpage_data *mpd = data;
455	struct bio *bio = mpd->bio;
456	struct address_space *mapping = folio->mapping;
457	struct inode *inode = mapping->host;
458	const unsigned blkbits = inode->i_blkbits;
 
459	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
460	sector_t last_block;
461	sector_t block_in_file;
462	sector_t first_block;
463	unsigned page_block;
464	unsigned first_unmapped = blocks_per_page;
465	struct block_device *bdev = NULL;
466	int boundary = 0;
467	sector_t boundary_block = 0;
468	struct block_device *boundary_bdev = NULL;
469	size_t length;
470	struct buffer_head map_bh;
471	loff_t i_size = i_size_read(inode);
472	int ret = 0;
473	struct buffer_head *head = folio_buffers(folio);
474
475	if (head) {
 
476		struct buffer_head *bh = head;
477
478		/* If they're all mapped and dirty, do it */
479		page_block = 0;
480		do {
481			BUG_ON(buffer_locked(bh));
482			if (!buffer_mapped(bh)) {
483				/*
484				 * unmapped dirty buffers are created by
485				 * block_dirty_folio -> mmapped data
486				 */
487				if (buffer_dirty(bh))
488					goto confused;
489				if (first_unmapped == blocks_per_page)
490					first_unmapped = page_block;
491				continue;
492			}
493
494			if (first_unmapped != blocks_per_page)
495				goto confused;	/* hole -> non-hole */
496
497			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
498				goto confused;
499			if (page_block) {
500				if (bh->b_blocknr != first_block + page_block)
501					goto confused;
502			} else {
503				first_block = bh->b_blocknr;
504			}
505			page_block++;
506			boundary = buffer_boundary(bh);
507			if (boundary) {
508				boundary_block = bh->b_blocknr;
509				boundary_bdev = bh->b_bdev;
510			}
511			bdev = bh->b_bdev;
512		} while ((bh = bh->b_this_page) != head);
513
514		if (first_unmapped)
515			goto page_is_mapped;
516
517		/*
518		 * Page has buffers, but they are all unmapped. The page was
519		 * created by pagein or read over a hole which was handled by
520		 * block_read_full_folio().  If this address_space is also
521		 * using mpage_readahead then this can rarely happen.
522		 */
523		goto confused;
524	}
525
526	/*
527	 * The page has no buffers: map it to disk
528	 */
529	BUG_ON(!folio_test_uptodate(folio));
530	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
531	/*
532	 * Whole page beyond EOF? Skip allocating blocks to avoid leaking
533	 * space.
534	 */
535	if (block_in_file >= (i_size + (1 << blkbits) - 1) >> blkbits)
536		goto page_is_mapped;
537	last_block = (i_size - 1) >> blkbits;
538	map_bh.b_folio = folio;
539	for (page_block = 0; page_block < blocks_per_page; ) {
540
541		map_bh.b_state = 0;
542		map_bh.b_size = 1 << blkbits;
543		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
544			goto confused;
545		if (!buffer_mapped(&map_bh))
546			goto confused;
547		if (buffer_new(&map_bh))
548			clean_bdev_bh_alias(&map_bh);
 
549		if (buffer_boundary(&map_bh)) {
550			boundary_block = map_bh.b_blocknr;
551			boundary_bdev = map_bh.b_bdev;
552		}
553		if (page_block) {
554			if (map_bh.b_blocknr != first_block + page_block)
555				goto confused;
556		} else {
557			first_block = map_bh.b_blocknr;
558		}
559		page_block++;
560		boundary = buffer_boundary(&map_bh);
561		bdev = map_bh.b_bdev;
562		if (block_in_file == last_block)
563			break;
564		block_in_file++;
565	}
566	BUG_ON(page_block == 0);
567
568	first_unmapped = page_block;
569
570page_is_mapped:
571	/* Don't bother writing beyond EOF, truncate will discard the folio */
572	if (folio_pos(folio) >= i_size)
573		goto confused;
574	length = folio_size(folio);
575	if (folio_pos(folio) + length > i_size) {
576		/*
577		 * The page straddles i_size.  It must be zeroed out on each
578		 * and every writepage invocation because it may be mmapped.
579		 * "A file is mapped in multiples of the page size.  For a file
580		 * that is not a multiple of the page size, the remaining memory
581		 * is zeroed when mapped, and writes to that region are not
582		 * written out to the file."
583		 */
584		length = i_size - folio_pos(folio);
585		folio_zero_segment(folio, length, folio_size(folio));
 
 
 
586	}
587
588	/*
589	 * This page will go to BIO.  Do we need to send this BIO off first?
590	 */
591	if (bio && mpd->last_block_in_bio != first_block - 1)
592		bio = mpage_bio_submit_write(bio);
593
594alloc_new:
595	if (bio == NULL) {
596		bio = bio_alloc(bdev, BIO_MAX_VECS,
597				REQ_OP_WRITE | wbc_to_write_flags(wbc),
598				GFP_NOFS);
599		bio->bi_iter.bi_sector = first_block << (blkbits - 9);
 
 
 
 
 
 
 
 
600		wbc_init_bio(wbc, bio);
601		bio->bi_write_hint = inode->i_write_hint;
602	}
603
604	/*
605	 * Must try to add the page before marking the buffer clean or
606	 * the confused fail path above (OOM) will be very confused when
607	 * it finds all bh marked clean (i.e. it will not write anything)
608	 */
609	wbc_account_cgroup_owner(wbc, folio, folio_size(folio));
610	length = first_unmapped << blkbits;
611	if (!bio_add_folio(bio, folio, length, 0)) {
612		bio = mpage_bio_submit_write(bio);
613		goto alloc_new;
614	}
615
616	clean_buffers(folio, first_unmapped);
617
618	BUG_ON(folio_test_writeback(folio));
619	folio_start_writeback(folio);
620	folio_unlock(folio);
621	if (boundary || (first_unmapped != blocks_per_page)) {
622		bio = mpage_bio_submit_write(bio);
623		if (boundary_block) {
624			write_boundary_block(boundary_bdev,
625					boundary_block, 1 << blkbits);
626		}
627	} else {
628		mpd->last_block_in_bio = first_block + blocks_per_page - 1;
629	}
630	goto out;
631
632confused:
633	if (bio)
634		bio = mpage_bio_submit_write(bio);
635
 
 
 
 
 
 
636	/*
637	 * The caller has a ref on the inode, so *mapping is stable
638	 */
639	ret = block_write_full_folio(folio, wbc, mpd->get_block);
640	mapping_set_error(mapping, ret);
641out:
642	mpd->bio = bio;
643	return ret;
644}
645
646/**
647 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
648 * @mapping: address space structure to write
649 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
650 * @get_block: the filesystem's block mapper function.
 
 
651 *
652 * This is a library function, which implements the writepages()
653 * address_space_operation.
 
 
 
 
 
 
 
 
654 */
655int
656mpage_writepages(struct address_space *mapping,
657		struct writeback_control *wbc, get_block_t get_block)
658{
659	struct mpage_data mpd = {
660		.get_block	= get_block,
661	};
662	struct blk_plug plug;
663	int ret;
664
665	blk_start_plug(&plug);
666	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
667	if (mpd.bio)
668		mpage_bio_submit_write(mpd.bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
669	blk_finish_plug(&plug);
670	return ret;
671}
672EXPORT_SYMBOL(mpage_writepages);