Linux Audio

Check our new training course

Loading...
  1/*
  2 * fs/mpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains functions related to preparing and submitting BIOs which contain
  7 * multiple pagecache pages.
  8 *
  9 * 15May2002	Andrew Morton
 10 *		Initial version
 11 * 27Jun2002	axboe@suse.de
 12 *		use bio_add_page() to build bio's just the right size
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/export.h>
 17#include <linux/mm.h>
 18#include <linux/kdev_t.h>
 19#include <linux/gfp.h>
 20#include <linux/bio.h>
 21#include <linux/fs.h>
 22#include <linux/buffer_head.h>
 23#include <linux/blkdev.h>
 24#include <linux/highmem.h>
 25#include <linux/prefetch.h>
 26#include <linux/mpage.h>
 27#include <linux/writeback.h>
 28#include <linux/backing-dev.h>
 29#include <linux/pagevec.h>
 30#include <linux/cleancache.h>
 31
 32/*
 33 * I/O completion handler for multipage BIOs.
 34 *
 35 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 36 * If a page does not map to a contiguous run of blocks then it simply falls
 37 * back to block_read_full_page().
 38 *
 39 * Why is this?  If a page's completion depends on a number of different BIOs
 40 * which can complete in any order (or at the same time) then determining the
 41 * status of that page is hard.  See end_buffer_async_read() for the details.
 42 * There is no point in duplicating all that complexity.
 43 */
 44static void mpage_end_io(struct bio *bio, int err)
 45{
 46	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
 47	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 48
 49	do {
 50		struct page *page = bvec->bv_page;
 51
 52		if (--bvec >= bio->bi_io_vec)
 53			prefetchw(&bvec->bv_page->flags);
 54		if (bio_data_dir(bio) == READ) {
 55			if (uptodate) {
 56				SetPageUptodate(page);
 57			} else {
 58				ClearPageUptodate(page);
 59				SetPageError(page);
 60			}
 61			unlock_page(page);
 62		} else { /* bio_data_dir(bio) == WRITE */
 63			if (!uptodate) {
 64				SetPageError(page);
 65				if (page->mapping)
 66					set_bit(AS_EIO, &page->mapping->flags);
 67			}
 68			end_page_writeback(page);
 69		}
 70	} while (bvec >= bio->bi_io_vec);
 71	bio_put(bio);
 72}
 73
 74static struct bio *mpage_bio_submit(int rw, struct bio *bio)
 75{
 76	bio->bi_end_io = mpage_end_io;
 77	submit_bio(rw, bio);
 78	return NULL;
 79}
 80
 81static struct bio *
 82mpage_alloc(struct block_device *bdev,
 83		sector_t first_sector, int nr_vecs,
 84		gfp_t gfp_flags)
 85{
 86	struct bio *bio;
 87
 88	bio = bio_alloc(gfp_flags, nr_vecs);
 89
 90	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 91		while (!bio && (nr_vecs /= 2))
 92			bio = bio_alloc(gfp_flags, nr_vecs);
 93	}
 94
 95	if (bio) {
 96		bio->bi_bdev = bdev;
 97		bio->bi_sector = first_sector;
 98	}
 99	return bio;
100}
101
102/*
103 * support function for mpage_readpages.  The fs supplied get_block might
104 * return an up to date buffer.  This is used to map that buffer into
105 * the page, which allows readpage to avoid triggering a duplicate call
106 * to get_block.
107 *
108 * The idea is to avoid adding buffers to pages that don't already have
109 * them.  So when the buffer is up to date and the page size == block size,
110 * this marks the page up to date instead of adding new buffers.
111 */
112static void 
113map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
114{
115	struct inode *inode = page->mapping->host;
116	struct buffer_head *page_bh, *head;
117	int block = 0;
118
119	if (!page_has_buffers(page)) {
120		/*
121		 * don't make any buffers if there is only one buffer on
122		 * the page and the page just needs to be set up to date
123		 */
124		if (inode->i_blkbits == PAGE_CACHE_SHIFT && 
125		    buffer_uptodate(bh)) {
126			SetPageUptodate(page);    
127			return;
128		}
129		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
130	}
131	head = page_buffers(page);
132	page_bh = head;
133	do {
134		if (block == page_block) {
135			page_bh->b_state = bh->b_state;
136			page_bh->b_bdev = bh->b_bdev;
137			page_bh->b_blocknr = bh->b_blocknr;
138			break;
139		}
140		page_bh = page_bh->b_this_page;
141		block++;
142	} while (page_bh != head);
143}
144
145/*
146 * This is the worker routine which does all the work of mapping the disk
147 * blocks and constructs largest possible bios, submits them for IO if the
148 * blocks are not contiguous on the disk.
149 *
150 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
151 * represent the validity of its disk mapping and to decide when to do the next
152 * get_block() call.
153 */
154static struct bio *
155do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
156		sector_t *last_block_in_bio, struct buffer_head *map_bh,
157		unsigned long *first_logical_block, get_block_t get_block)
158{
159	struct inode *inode = page->mapping->host;
160	const unsigned blkbits = inode->i_blkbits;
161	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
162	const unsigned blocksize = 1 << blkbits;
163	sector_t block_in_file;
164	sector_t last_block;
165	sector_t last_block_in_file;
166	sector_t blocks[MAX_BUF_PER_PAGE];
167	unsigned page_block;
168	unsigned first_hole = blocks_per_page;
169	struct block_device *bdev = NULL;
170	int length;
171	int fully_mapped = 1;
172	unsigned nblocks;
173	unsigned relative_block;
174
175	if (page_has_buffers(page))
176		goto confused;
177
178	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
179	last_block = block_in_file + nr_pages * blocks_per_page;
180	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
181	if (last_block > last_block_in_file)
182		last_block = last_block_in_file;
183	page_block = 0;
184
185	/*
186	 * Map blocks using the result from the previous get_blocks call first.
187	 */
188	nblocks = map_bh->b_size >> blkbits;
189	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
190			block_in_file < (*first_logical_block + nblocks)) {
191		unsigned map_offset = block_in_file - *first_logical_block;
192		unsigned last = nblocks - map_offset;
193
194		for (relative_block = 0; ; relative_block++) {
195			if (relative_block == last) {
196				clear_buffer_mapped(map_bh);
197				break;
198			}
199			if (page_block == blocks_per_page)
200				break;
201			blocks[page_block] = map_bh->b_blocknr + map_offset +
202						relative_block;
203			page_block++;
204			block_in_file++;
205		}
206		bdev = map_bh->b_bdev;
207	}
208
209	/*
210	 * Then do more get_blocks calls until we are done with this page.
211	 */
212	map_bh->b_page = page;
213	while (page_block < blocks_per_page) {
214		map_bh->b_state = 0;
215		map_bh->b_size = 0;
216
217		if (block_in_file < last_block) {
218			map_bh->b_size = (last_block-block_in_file) << blkbits;
219			if (get_block(inode, block_in_file, map_bh, 0))
220				goto confused;
221			*first_logical_block = block_in_file;
222		}
223
224		if (!buffer_mapped(map_bh)) {
225			fully_mapped = 0;
226			if (first_hole == blocks_per_page)
227				first_hole = page_block;
228			page_block++;
229			block_in_file++;
230			continue;
231		}
232
233		/* some filesystems will copy data into the page during
234		 * the get_block call, in which case we don't want to
235		 * read it again.  map_buffer_to_page copies the data
236		 * we just collected from get_block into the page's buffers
237		 * so readpage doesn't have to repeat the get_block call
238		 */
239		if (buffer_uptodate(map_bh)) {
240			map_buffer_to_page(page, map_bh, page_block);
241			goto confused;
242		}
243	
244		if (first_hole != blocks_per_page)
245			goto confused;		/* hole -> non-hole */
246
247		/* Contiguous blocks? */
248		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
249			goto confused;
250		nblocks = map_bh->b_size >> blkbits;
251		for (relative_block = 0; ; relative_block++) {
252			if (relative_block == nblocks) {
253				clear_buffer_mapped(map_bh);
254				break;
255			} else if (page_block == blocks_per_page)
256				break;
257			blocks[page_block] = map_bh->b_blocknr+relative_block;
258			page_block++;
259			block_in_file++;
260		}
261		bdev = map_bh->b_bdev;
262	}
263
264	if (first_hole != blocks_per_page) {
265		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
266		if (first_hole == 0) {
267			SetPageUptodate(page);
268			unlock_page(page);
269			goto out;
270		}
271	} else if (fully_mapped) {
272		SetPageMappedToDisk(page);
273	}
274
275	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
276	    cleancache_get_page(page) == 0) {
277		SetPageUptodate(page);
278		goto confused;
279	}
280
281	/*
282	 * This page will go to BIO.  Do we need to send this BIO off first?
283	 */
284	if (bio && (*last_block_in_bio != blocks[0] - 1))
285		bio = mpage_bio_submit(READ, bio);
286
287alloc_new:
288	if (bio == NULL) {
289		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
290			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
291				GFP_KERNEL);
292		if (bio == NULL)
293			goto confused;
294	}
295
296	length = first_hole << blkbits;
297	if (bio_add_page(bio, page, length, 0) < length) {
298		bio = mpage_bio_submit(READ, bio);
299		goto alloc_new;
300	}
301
302	relative_block = block_in_file - *first_logical_block;
303	nblocks = map_bh->b_size >> blkbits;
304	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
305	    (first_hole != blocks_per_page))
306		bio = mpage_bio_submit(READ, bio);
307	else
308		*last_block_in_bio = blocks[blocks_per_page - 1];
309out:
310	return bio;
311
312confused:
313	if (bio)
314		bio = mpage_bio_submit(READ, bio);
315	if (!PageUptodate(page))
316	        block_read_full_page(page, get_block);
317	else
318		unlock_page(page);
319	goto out;
320}
321
322/**
323 * mpage_readpages - populate an address space with some pages & start reads against them
324 * @mapping: the address_space
325 * @pages: The address of a list_head which contains the target pages.  These
326 *   pages have their ->index populated and are otherwise uninitialised.
327 *   The page at @pages->prev has the lowest file offset, and reads should be
328 *   issued in @pages->prev to @pages->next order.
329 * @nr_pages: The number of pages at *@pages
330 * @get_block: The filesystem's block mapper function.
331 *
332 * This function walks the pages and the blocks within each page, building and
333 * emitting large BIOs.
334 *
335 * If anything unusual happens, such as:
336 *
337 * - encountering a page which has buffers
338 * - encountering a page which has a non-hole after a hole
339 * - encountering a page with non-contiguous blocks
340 *
341 * then this code just gives up and calls the buffer_head-based read function.
342 * It does handle a page which has holes at the end - that is a common case:
343 * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
344 *
345 * BH_Boundary explanation:
346 *
347 * There is a problem.  The mpage read code assembles several pages, gets all
348 * their disk mappings, and then submits them all.  That's fine, but obtaining
349 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
350 *
351 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
352 * submitted in the following order:
353 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
354 *
355 * because the indirect block has to be read to get the mappings of blocks
356 * 13,14,15,16.  Obviously, this impacts performance.
357 *
358 * So what we do it to allow the filesystem's get_block() function to set
359 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
360 * after this one will require I/O against a block which is probably close to
361 * this one.  So you should push what I/O you have currently accumulated.
362 *
363 * This all causes the disk requests to be issued in the correct order.
364 */
365int
366mpage_readpages(struct address_space *mapping, struct list_head *pages,
367				unsigned nr_pages, get_block_t get_block)
368{
369	struct bio *bio = NULL;
370	unsigned page_idx;
371	sector_t last_block_in_bio = 0;
372	struct buffer_head map_bh;
373	unsigned long first_logical_block = 0;
374
375	map_bh.b_state = 0;
376	map_bh.b_size = 0;
377	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
378		struct page *page = list_entry(pages->prev, struct page, lru);
379
380		prefetchw(&page->flags);
381		list_del(&page->lru);
382		if (!add_to_page_cache_lru(page, mapping,
383					page->index, GFP_KERNEL)) {
384			bio = do_mpage_readpage(bio, page,
385					nr_pages - page_idx,
386					&last_block_in_bio, &map_bh,
387					&first_logical_block,
388					get_block);
389		}
390		page_cache_release(page);
391	}
392	BUG_ON(!list_empty(pages));
393	if (bio)
394		mpage_bio_submit(READ, bio);
395	return 0;
396}
397EXPORT_SYMBOL(mpage_readpages);
398
399/*
400 * This isn't called much at all
401 */
402int mpage_readpage(struct page *page, get_block_t get_block)
403{
404	struct bio *bio = NULL;
405	sector_t last_block_in_bio = 0;
406	struct buffer_head map_bh;
407	unsigned long first_logical_block = 0;
408
409	map_bh.b_state = 0;
410	map_bh.b_size = 0;
411	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
412			&map_bh, &first_logical_block, get_block);
413	if (bio)
414		mpage_bio_submit(READ, bio);
415	return 0;
416}
417EXPORT_SYMBOL(mpage_readpage);
418
419/*
420 * Writing is not so simple.
421 *
422 * If the page has buffers then they will be used for obtaining the disk
423 * mapping.  We only support pages which are fully mapped-and-dirty, with a
424 * special case for pages which are unmapped at the end: end-of-file.
425 *
426 * If the page has no buffers (preferred) then the page is mapped here.
427 *
428 * If all blocks are found to be contiguous then the page can go into the
429 * BIO.  Otherwise fall back to the mapping's writepage().
430 * 
431 * FIXME: This code wants an estimate of how many pages are still to be
432 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
433 * just allocate full-size (16-page) BIOs.
434 */
435
436struct mpage_data {
437	struct bio *bio;
438	sector_t last_block_in_bio;
439	get_block_t *get_block;
440	unsigned use_writepage;
441};
442
443static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
444		      void *data)
445{
446	struct mpage_data *mpd = data;
447	struct bio *bio = mpd->bio;
448	struct address_space *mapping = page->mapping;
449	struct inode *inode = page->mapping->host;
450	const unsigned blkbits = inode->i_blkbits;
451	unsigned long end_index;
452	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
453	sector_t last_block;
454	sector_t block_in_file;
455	sector_t blocks[MAX_BUF_PER_PAGE];
456	unsigned page_block;
457	unsigned first_unmapped = blocks_per_page;
458	struct block_device *bdev = NULL;
459	int boundary = 0;
460	sector_t boundary_block = 0;
461	struct block_device *boundary_bdev = NULL;
462	int length;
463	struct buffer_head map_bh;
464	loff_t i_size = i_size_read(inode);
465	int ret = 0;
466
467	if (page_has_buffers(page)) {
468		struct buffer_head *head = page_buffers(page);
469		struct buffer_head *bh = head;
470
471		/* If they're all mapped and dirty, do it */
472		page_block = 0;
473		do {
474			BUG_ON(buffer_locked(bh));
475			if (!buffer_mapped(bh)) {
476				/*
477				 * unmapped dirty buffers are created by
478				 * __set_page_dirty_buffers -> mmapped data
479				 */
480				if (buffer_dirty(bh))
481					goto confused;
482				if (first_unmapped == blocks_per_page)
483					first_unmapped = page_block;
484				continue;
485			}
486
487			if (first_unmapped != blocks_per_page)
488				goto confused;	/* hole -> non-hole */
489
490			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
491				goto confused;
492			if (page_block) {
493				if (bh->b_blocknr != blocks[page_block-1] + 1)
494					goto confused;
495			}
496			blocks[page_block++] = bh->b_blocknr;
497			boundary = buffer_boundary(bh);
498			if (boundary) {
499				boundary_block = bh->b_blocknr;
500				boundary_bdev = bh->b_bdev;
501			}
502			bdev = bh->b_bdev;
503		} while ((bh = bh->b_this_page) != head);
504
505		if (first_unmapped)
506			goto page_is_mapped;
507
508		/*
509		 * Page has buffers, but they are all unmapped. The page was
510		 * created by pagein or read over a hole which was handled by
511		 * block_read_full_page().  If this address_space is also
512		 * using mpage_readpages then this can rarely happen.
513		 */
514		goto confused;
515	}
516
517	/*
518	 * The page has no buffers: map it to disk
519	 */
520	BUG_ON(!PageUptodate(page));
521	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
522	last_block = (i_size - 1) >> blkbits;
523	map_bh.b_page = page;
524	for (page_block = 0; page_block < blocks_per_page; ) {
525
526		map_bh.b_state = 0;
527		map_bh.b_size = 1 << blkbits;
528		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
529			goto confused;
530		if (buffer_new(&map_bh))
531			unmap_underlying_metadata(map_bh.b_bdev,
532						map_bh.b_blocknr);
533		if (buffer_boundary(&map_bh)) {
534			boundary_block = map_bh.b_blocknr;
535			boundary_bdev = map_bh.b_bdev;
536		}
537		if (page_block) {
538			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
539				goto confused;
540		}
541		blocks[page_block++] = map_bh.b_blocknr;
542		boundary = buffer_boundary(&map_bh);
543		bdev = map_bh.b_bdev;
544		if (block_in_file == last_block)
545			break;
546		block_in_file++;
547	}
548	BUG_ON(page_block == 0);
549
550	first_unmapped = page_block;
551
552page_is_mapped:
553	end_index = i_size >> PAGE_CACHE_SHIFT;
554	if (page->index >= end_index) {
555		/*
556		 * The page straddles i_size.  It must be zeroed out on each
557		 * and every writepage invocation because it may be mmapped.
558		 * "A file is mapped in multiples of the page size.  For a file
559		 * that is not a multiple of the page size, the remaining memory
560		 * is zeroed when mapped, and writes to that region are not
561		 * written out to the file."
562		 */
563		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
564
565		if (page->index > end_index || !offset)
566			goto confused;
567		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
568	}
569
570	/*
571	 * This page will go to BIO.  Do we need to send this BIO off first?
572	 */
573	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
574		bio = mpage_bio_submit(WRITE, bio);
575
576alloc_new:
577	if (bio == NULL) {
578		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
579				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
580		if (bio == NULL)
581			goto confused;
582	}
583
584	/*
585	 * Must try to add the page before marking the buffer clean or
586	 * the confused fail path above (OOM) will be very confused when
587	 * it finds all bh marked clean (i.e. it will not write anything)
588	 */
589	length = first_unmapped << blkbits;
590	if (bio_add_page(bio, page, length, 0) < length) {
591		bio = mpage_bio_submit(WRITE, bio);
592		goto alloc_new;
593	}
594
595	/*
596	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
597	 * sure to only clean buffers which we know we'll be writing.
598	 */
599	if (page_has_buffers(page)) {
600		struct buffer_head *head = page_buffers(page);
601		struct buffer_head *bh = head;
602		unsigned buffer_counter = 0;
603
604		do {
605			if (buffer_counter++ == first_unmapped)
606				break;
607			clear_buffer_dirty(bh);
608			bh = bh->b_this_page;
609		} while (bh != head);
610
611		/*
612		 * we cannot drop the bh if the page is not uptodate
613		 * or a concurrent readpage would fail to serialize with the bh
614		 * and it would read from disk before we reach the platter.
615		 */
616		if (buffer_heads_over_limit && PageUptodate(page))
617			try_to_free_buffers(page);
618	}
619
620	BUG_ON(PageWriteback(page));
621	set_page_writeback(page);
622	unlock_page(page);
623	if (boundary || (first_unmapped != blocks_per_page)) {
624		bio = mpage_bio_submit(WRITE, bio);
625		if (boundary_block) {
626			write_boundary_block(boundary_bdev,
627					boundary_block, 1 << blkbits);
628		}
629	} else {
630		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
631	}
632	goto out;
633
634confused:
635	if (bio)
636		bio = mpage_bio_submit(WRITE, bio);
637
638	if (mpd->use_writepage) {
639		ret = mapping->a_ops->writepage(page, wbc);
640	} else {
641		ret = -EAGAIN;
642		goto out;
643	}
644	/*
645	 * The caller has a ref on the inode, so *mapping is stable
646	 */
647	mapping_set_error(mapping, ret);
648out:
649	mpd->bio = bio;
650	return ret;
651}
652
653/**
654 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
655 * @mapping: address space structure to write
656 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
657 * @get_block: the filesystem's block mapper function.
658 *             If this is NULL then use a_ops->writepage.  Otherwise, go
659 *             direct-to-BIO.
660 *
661 * This is a library function, which implements the writepages()
662 * address_space_operation.
663 *
664 * If a page is already under I/O, generic_writepages() skips it, even
665 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
666 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
667 * and msync() need to guarantee that all the data which was dirty at the time
668 * the call was made get new I/O started against them.  If wbc->sync_mode is
669 * WB_SYNC_ALL then we were called for data integrity and we must wait for
670 * existing IO to complete.
671 */
672int
673mpage_writepages(struct address_space *mapping,
674		struct writeback_control *wbc, get_block_t get_block)
675{
676	struct blk_plug plug;
677	int ret;
678
679	blk_start_plug(&plug);
680
681	if (!get_block)
682		ret = generic_writepages(mapping, wbc);
683	else {
684		struct mpage_data mpd = {
685			.bio = NULL,
686			.last_block_in_bio = 0,
687			.get_block = get_block,
688			.use_writepage = 1,
689		};
690
691		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
692		if (mpd.bio)
693			mpage_bio_submit(WRITE, mpd.bio);
694	}
695	blk_finish_plug(&plug);
696	return ret;
697}
698EXPORT_SYMBOL(mpage_writepages);
699
700int mpage_writepage(struct page *page, get_block_t get_block,
701	struct writeback_control *wbc)
702{
703	struct mpage_data mpd = {
704		.bio = NULL,
705		.last_block_in_bio = 0,
706		.get_block = get_block,
707		.use_writepage = 0,
708	};
709	int ret = __mpage_writepage(page, wbc, &mpd);
710	if (mpd.bio)
711		mpage_bio_submit(WRITE, mpd.bio);
712	return ret;
713}
714EXPORT_SYMBOL(mpage_writepage);