Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * fs/mpage.c
  3 *
  4 * Copyright (C) 2002, Linus Torvalds.
  5 *
  6 * Contains functions related to preparing and submitting BIOs which contain
  7 * multiple pagecache pages.
  8 *
  9 * 15May2002	Andrew Morton
 10 *		Initial version
 11 * 27Jun2002	axboe@suse.de
 12 *		use bio_add_page() to build bio's just the right size
 13 */
 14
 15#include <linux/kernel.h>
 16#include <linux/export.h>
 17#include <linux/mm.h>
 18#include <linux/kdev_t.h>
 19#include <linux/gfp.h>
 20#include <linux/bio.h>
 21#include <linux/fs.h>
 22#include <linux/buffer_head.h>
 23#include <linux/blkdev.h>
 24#include <linux/highmem.h>
 25#include <linux/prefetch.h>
 26#include <linux/mpage.h>
 27#include <linux/mm_inline.h>
 28#include <linux/writeback.h>
 29#include <linux/backing-dev.h>
 30#include <linux/pagevec.h>
 31#include <linux/cleancache.h>
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_page().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_end_io(struct bio *bio)
 47{
 48	struct bio_vec *bv;
 49	int i;
 50
 51	bio_for_each_segment_all(bv, bio, i) {
 52		struct page *page = bv->bv_page;
 53		page_endio(page, bio_data_dir(bio), bio->bi_error);
 
 54	}
 55
 56	bio_put(bio);
 57}
 58
 59static struct bio *mpage_bio_submit(int rw, struct bio *bio)
 60{
 61	bio->bi_end_io = mpage_end_io;
 62	guard_bio_eod(rw, bio);
 63	submit_bio(rw, bio);
 64	return NULL;
 65}
 66
 67static struct bio *
 68mpage_alloc(struct block_device *bdev,
 69		sector_t first_sector, int nr_vecs,
 70		gfp_t gfp_flags)
 71{
 72	struct bio *bio;
 73
 74	bio = bio_alloc(gfp_flags, nr_vecs);
 75
 76	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
 77		while (!bio && (nr_vecs /= 2))
 78			bio = bio_alloc(gfp_flags, nr_vecs);
 79	}
 80
 81	if (bio) {
 82		bio->bi_bdev = bdev;
 83		bio->bi_iter.bi_sector = first_sector;
 84	}
 85	return bio;
 86}
 87
 88/*
 89 * support function for mpage_readpages.  The fs supplied get_block might
 90 * return an up to date buffer.  This is used to map that buffer into
 91 * the page, which allows readpage to avoid triggering a duplicate call
 92 * to get_block.
 93 *
 94 * The idea is to avoid adding buffers to pages that don't already have
 95 * them.  So when the buffer is up to date and the page size == block size,
 96 * this marks the page up to date instead of adding new buffers.
 97 */
 98static void 
 99map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block) 
100{
101	struct inode *inode = page->mapping->host;
102	struct buffer_head *page_bh, *head;
103	int block = 0;
104
105	if (!page_has_buffers(page)) {
 
106		/*
107		 * don't make any buffers if there is only one buffer on
108		 * the page and the page just needs to be set up to date
109		 */
110		if (inode->i_blkbits == PAGE_SHIFT &&
111		    buffer_uptodate(bh)) {
112			SetPageUptodate(page);    
113			return;
114		}
115		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
 
116	}
117	head = page_buffers(page);
118	page_bh = head;
119	do {
120		if (block == page_block) {
121			page_bh->b_state = bh->b_state;
122			page_bh->b_bdev = bh->b_bdev;
123			page_bh->b_blocknr = bh->b_blocknr;
124			break;
125		}
126		page_bh = page_bh->b_this_page;
127		block++;
128	} while (page_bh != head);
129}
130
 
 
 
 
 
 
 
 
 
 
 
131/*
132 * This is the worker routine which does all the work of mapping the disk
133 * blocks and constructs largest possible bios, submits them for IO if the
134 * blocks are not contiguous on the disk.
135 *
136 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
137 * represent the validity of its disk mapping and to decide when to do the next
138 * get_block() call.
139 */
140static struct bio *
141do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
142		sector_t *last_block_in_bio, struct buffer_head *map_bh,
143		unsigned long *first_logical_block, get_block_t get_block,
144		gfp_t gfp)
145{
146	struct inode *inode = page->mapping->host;
 
147	const unsigned blkbits = inode->i_blkbits;
148	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
149	const unsigned blocksize = 1 << blkbits;
 
150	sector_t block_in_file;
151	sector_t last_block;
152	sector_t last_block_in_file;
153	sector_t blocks[MAX_BUF_PER_PAGE];
154	unsigned page_block;
155	unsigned first_hole = blocks_per_page;
156	struct block_device *bdev = NULL;
157	int length;
158	int fully_mapped = 1;
 
159	unsigned nblocks;
160	unsigned relative_block;
 
 
 
 
 
 
 
 
 
161
162	if (page_has_buffers(page))
163		goto confused;
164
165	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
166	last_block = block_in_file + nr_pages * blocks_per_page;
167	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
168	if (last_block > last_block_in_file)
169		last_block = last_block_in_file;
170	page_block = 0;
171
172	/*
173	 * Map blocks using the result from the previous get_blocks call first.
174	 */
175	nblocks = map_bh->b_size >> blkbits;
176	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
177			block_in_file < (*first_logical_block + nblocks)) {
178		unsigned map_offset = block_in_file - *first_logical_block;
 
179		unsigned last = nblocks - map_offset;
180
181		for (relative_block = 0; ; relative_block++) {
182			if (relative_block == last) {
183				clear_buffer_mapped(map_bh);
184				break;
185			}
186			if (page_block == blocks_per_page)
187				break;
188			blocks[page_block] = map_bh->b_blocknr + map_offset +
189						relative_block;
190			page_block++;
191			block_in_file++;
192		}
193		bdev = map_bh->b_bdev;
194	}
195
196	/*
197	 * Then do more get_blocks calls until we are done with this page.
198	 */
199	map_bh->b_page = page;
200	while (page_block < blocks_per_page) {
201		map_bh->b_state = 0;
202		map_bh->b_size = 0;
203
204		if (block_in_file < last_block) {
205			map_bh->b_size = (last_block-block_in_file) << blkbits;
206			if (get_block(inode, block_in_file, map_bh, 0))
207				goto confused;
208			*first_logical_block = block_in_file;
209		}
210
211		if (!buffer_mapped(map_bh)) {
212			fully_mapped = 0;
213			if (first_hole == blocks_per_page)
214				first_hole = page_block;
215			page_block++;
216			block_in_file++;
217			continue;
218		}
219
220		/* some filesystems will copy data into the page during
221		 * the get_block call, in which case we don't want to
222		 * read it again.  map_buffer_to_page copies the data
223		 * we just collected from get_block into the page's buffers
224		 * so readpage doesn't have to repeat the get_block call
225		 */
226		if (buffer_uptodate(map_bh)) {
227			map_buffer_to_page(page, map_bh, page_block);
228			goto confused;
229		}
230	
231		if (first_hole != blocks_per_page)
232			goto confused;		/* hole -> non-hole */
233
234		/* Contiguous blocks? */
235		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
236			goto confused;
237		nblocks = map_bh->b_size >> blkbits;
238		for (relative_block = 0; ; relative_block++) {
239			if (relative_block == nblocks) {
240				clear_buffer_mapped(map_bh);
241				break;
242			} else if (page_block == blocks_per_page)
243				break;
244			blocks[page_block] = map_bh->b_blocknr+relative_block;
245			page_block++;
246			block_in_file++;
247		}
248		bdev = map_bh->b_bdev;
249	}
250
251	if (first_hole != blocks_per_page) {
252		zero_user_segment(page, first_hole << blkbits, PAGE_SIZE);
253		if (first_hole == 0) {
254			SetPageUptodate(page);
255			unlock_page(page);
256			goto out;
257		}
258	} else if (fully_mapped) {
259		SetPageMappedToDisk(page);
260	}
261
262	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
263	    cleancache_get_page(page) == 0) {
264		SetPageUptodate(page);
265		goto confused;
266	}
267
268	/*
269	 * This page will go to BIO.  Do we need to send this BIO off first?
270	 */
271	if (bio && (*last_block_in_bio != blocks[0] - 1))
272		bio = mpage_bio_submit(READ, bio);
273
274alloc_new:
275	if (bio == NULL) {
276		if (first_hole == blocks_per_page) {
277			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
278								page))
279				goto out;
280		}
281		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
282				min_t(int, nr_pages, BIO_MAX_PAGES), gfp);
283		if (bio == NULL)
284			goto confused;
 
285	}
286
287	length = first_hole << blkbits;
288	if (bio_add_page(bio, page, length, 0) < length) {
289		bio = mpage_bio_submit(READ, bio);
290		goto alloc_new;
291	}
292
293	relative_block = block_in_file - *first_logical_block;
294	nblocks = map_bh->b_size >> blkbits;
295	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
296	    (first_hole != blocks_per_page))
297		bio = mpage_bio_submit(READ, bio);
298	else
299		*last_block_in_bio = blocks[blocks_per_page - 1];
300out:
301	return bio;
302
303confused:
304	if (bio)
305		bio = mpage_bio_submit(READ, bio);
306	if (!PageUptodate(page))
307	        block_read_full_page(page, get_block);
308	else
309		unlock_page(page);
310	goto out;
311}
312
313/**
314 * mpage_readpages - populate an address space with some pages & start reads against them
315 * @mapping: the address_space
316 * @pages: The address of a list_head which contains the target pages.  These
317 *   pages have their ->index populated and are otherwise uninitialised.
318 *   The page at @pages->prev has the lowest file offset, and reads should be
319 *   issued in @pages->prev to @pages->next order.
320 * @nr_pages: The number of pages at *@pages
321 * @get_block: The filesystem's block mapper function.
322 *
323 * This function walks the pages and the blocks within each page, building and
324 * emitting large BIOs.
325 *
326 * If anything unusual happens, such as:
327 *
328 * - encountering a page which has buffers
329 * - encountering a page which has a non-hole after a hole
330 * - encountering a page with non-contiguous blocks
331 *
332 * then this code just gives up and calls the buffer_head-based read function.
333 * It does handle a page which has holes at the end - that is a common case:
334 * the end-of-file on blocksize < PAGE_SIZE setups.
335 *
336 * BH_Boundary explanation:
337 *
338 * There is a problem.  The mpage read code assembles several pages, gets all
339 * their disk mappings, and then submits them all.  That's fine, but obtaining
340 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
341 *
342 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
343 * submitted in the following order:
 
344 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
345 *
346 * because the indirect block has to be read to get the mappings of blocks
347 * 13,14,15,16.  Obviously, this impacts performance.
348 *
349 * So what we do it to allow the filesystem's get_block() function to set
350 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
351 * after this one will require I/O against a block which is probably close to
352 * this one.  So you should push what I/O you have currently accumulated.
353 *
354 * This all causes the disk requests to be issued in the correct order.
355 */
356int
357mpage_readpages(struct address_space *mapping, struct list_head *pages,
358				unsigned nr_pages, get_block_t get_block)
359{
360	struct bio *bio = NULL;
361	unsigned page_idx;
362	sector_t last_block_in_bio = 0;
363	struct buffer_head map_bh;
364	unsigned long first_logical_block = 0;
365	gfp_t gfp = mapping_gfp_constraint(mapping, GFP_KERNEL);
366
367	map_bh.b_state = 0;
368	map_bh.b_size = 0;
369	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
370		struct page *page = lru_to_page(pages);
371
372		prefetchw(&page->flags);
373		list_del(&page->lru);
374		if (!add_to_page_cache_lru(page, mapping,
375					page->index,
376					gfp)) {
377			bio = do_mpage_readpage(bio, page,
378					nr_pages - page_idx,
379					&last_block_in_bio, &map_bh,
380					&first_logical_block,
381					get_block, gfp);
382		}
383		put_page(page);
384	}
385	BUG_ON(!list_empty(pages));
386	if (bio)
387		mpage_bio_submit(READ, bio);
388	return 0;
389}
390EXPORT_SYMBOL(mpage_readpages);
391
392/*
393 * This isn't called much at all
394 */
395int mpage_readpage(struct page *page, get_block_t get_block)
396{
397	struct bio *bio = NULL;
398	sector_t last_block_in_bio = 0;
399	struct buffer_head map_bh;
400	unsigned long first_logical_block = 0;
401	gfp_t gfp = mapping_gfp_constraint(page->mapping, GFP_KERNEL);
402
403	map_bh.b_state = 0;
404	map_bh.b_size = 0;
405	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
406			&map_bh, &first_logical_block, get_block, gfp);
407	if (bio)
408		mpage_bio_submit(READ, bio);
409	return 0;
410}
411EXPORT_SYMBOL(mpage_readpage);
412
413/*
414 * Writing is not so simple.
415 *
416 * If the page has buffers then they will be used for obtaining the disk
417 * mapping.  We only support pages which are fully mapped-and-dirty, with a
418 * special case for pages which are unmapped at the end: end-of-file.
419 *
420 * If the page has no buffers (preferred) then the page is mapped here.
421 *
422 * If all blocks are found to be contiguous then the page can go into the
423 * BIO.  Otherwise fall back to the mapping's writepage().
424 * 
425 * FIXME: This code wants an estimate of how many pages are still to be
426 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
427 * just allocate full-size (16-page) BIOs.
428 */
429
430struct mpage_data {
431	struct bio *bio;
432	sector_t last_block_in_bio;
433	get_block_t *get_block;
434	unsigned use_writepage;
435};
436
437/*
438 * We have our BIO, so we can now mark the buffers clean.  Make
439 * sure to only clean buffers which we know we'll be writing.
440 */
441static void clean_buffers(struct page *page, unsigned first_unmapped)
442{
443	unsigned buffer_counter = 0;
444	struct buffer_head *bh, *head;
445	if (!page_has_buffers(page))
446		return;
447	head = page_buffers(page);
448	bh = head;
449
450	do {
451		if (buffer_counter++ == first_unmapped)
452			break;
453		clear_buffer_dirty(bh);
454		bh = bh->b_this_page;
455	} while (bh != head);
456
457	/*
458	 * we cannot drop the bh if the page is not uptodate or a concurrent
459	 * readpage would fail to serialize with the bh and it would read from
460	 * disk before we reach the platter.
461	 */
462	if (buffer_heads_over_limit && PageUptodate(page))
463		try_to_free_buffers(page);
 
 
 
 
 
 
 
 
 
 
464}
465
466static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
467		      void *data)
468{
469	struct mpage_data *mpd = data;
470	struct bio *bio = mpd->bio;
471	struct address_space *mapping = page->mapping;
472	struct inode *inode = page->mapping->host;
473	const unsigned blkbits = inode->i_blkbits;
474	unsigned long end_index;
475	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
476	sector_t last_block;
477	sector_t block_in_file;
478	sector_t blocks[MAX_BUF_PER_PAGE];
479	unsigned page_block;
480	unsigned first_unmapped = blocks_per_page;
481	struct block_device *bdev = NULL;
482	int boundary = 0;
483	sector_t boundary_block = 0;
484	struct block_device *boundary_bdev = NULL;
485	int length;
486	struct buffer_head map_bh;
487	loff_t i_size = i_size_read(inode);
488	int ret = 0;
489	int wr = (wbc->sync_mode == WB_SYNC_ALL ?  WRITE_SYNC : WRITE);
490
491	if (page_has_buffers(page)) {
492		struct buffer_head *head = page_buffers(page);
493		struct buffer_head *bh = head;
494
495		/* If they're all mapped and dirty, do it */
496		page_block = 0;
497		do {
498			BUG_ON(buffer_locked(bh));
499			if (!buffer_mapped(bh)) {
500				/*
501				 * unmapped dirty buffers are created by
502				 * __set_page_dirty_buffers -> mmapped data
503				 */
504				if (buffer_dirty(bh))
505					goto confused;
506				if (first_unmapped == blocks_per_page)
507					first_unmapped = page_block;
508				continue;
509			}
510
511			if (first_unmapped != blocks_per_page)
512				goto confused;	/* hole -> non-hole */
513
514			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
515				goto confused;
516			if (page_block) {
517				if (bh->b_blocknr != blocks[page_block-1] + 1)
518					goto confused;
519			}
520			blocks[page_block++] = bh->b_blocknr;
521			boundary = buffer_boundary(bh);
522			if (boundary) {
523				boundary_block = bh->b_blocknr;
524				boundary_bdev = bh->b_bdev;
525			}
526			bdev = bh->b_bdev;
527		} while ((bh = bh->b_this_page) != head);
528
529		if (first_unmapped)
530			goto page_is_mapped;
531
532		/*
533		 * Page has buffers, but they are all unmapped. The page was
534		 * created by pagein or read over a hole which was handled by
535		 * block_read_full_page().  If this address_space is also
536		 * using mpage_readpages then this can rarely happen.
537		 */
538		goto confused;
539	}
540
541	/*
542	 * The page has no buffers: map it to disk
543	 */
544	BUG_ON(!PageUptodate(page));
545	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
546	last_block = (i_size - 1) >> blkbits;
547	map_bh.b_page = page;
548	for (page_block = 0; page_block < blocks_per_page; ) {
549
550		map_bh.b_state = 0;
551		map_bh.b_size = 1 << blkbits;
552		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
553			goto confused;
554		if (buffer_new(&map_bh))
555			unmap_underlying_metadata(map_bh.b_bdev,
556						map_bh.b_blocknr);
557		if (buffer_boundary(&map_bh)) {
558			boundary_block = map_bh.b_blocknr;
559			boundary_bdev = map_bh.b_bdev;
560		}
561		if (page_block) {
562			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
563				goto confused;
564		}
565		blocks[page_block++] = map_bh.b_blocknr;
566		boundary = buffer_boundary(&map_bh);
567		bdev = map_bh.b_bdev;
568		if (block_in_file == last_block)
569			break;
570		block_in_file++;
571	}
572	BUG_ON(page_block == 0);
573
574	first_unmapped = page_block;
575
576page_is_mapped:
577	end_index = i_size >> PAGE_SHIFT;
578	if (page->index >= end_index) {
579		/*
580		 * The page straddles i_size.  It must be zeroed out on each
581		 * and every writepage invocation because it may be mmapped.
582		 * "A file is mapped in multiples of the page size.  For a file
583		 * that is not a multiple of the page size, the remaining memory
584		 * is zeroed when mapped, and writes to that region are not
585		 * written out to the file."
586		 */
587		unsigned offset = i_size & (PAGE_SIZE - 1);
588
589		if (page->index > end_index || !offset)
590			goto confused;
591		zero_user_segment(page, offset, PAGE_SIZE);
592	}
593
594	/*
595	 * This page will go to BIO.  Do we need to send this BIO off first?
596	 */
597	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
598		bio = mpage_bio_submit(wr, bio);
599
600alloc_new:
601	if (bio == NULL) {
602		if (first_unmapped == blocks_per_page) {
603			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
604								page, wbc)) {
605				clean_buffers(page, first_unmapped);
606				goto out;
607			}
608		}
609		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
610				BIO_MAX_PAGES, GFP_NOFS|__GFP_HIGH);
611		if (bio == NULL)
612			goto confused;
613
614		wbc_init_bio(wbc, bio);
615	}
616
617	/*
618	 * Must try to add the page before marking the buffer clean or
619	 * the confused fail path above (OOM) will be very confused when
620	 * it finds all bh marked clean (i.e. it will not write anything)
621	 */
622	wbc_account_io(wbc, page, PAGE_SIZE);
623	length = first_unmapped << blkbits;
624	if (bio_add_page(bio, page, length, 0) < length) {
625		bio = mpage_bio_submit(wr, bio);
626		goto alloc_new;
627	}
628
629	clean_buffers(page, first_unmapped);
630
631	BUG_ON(PageWriteback(page));
632	set_page_writeback(page);
633	unlock_page(page);
634	if (boundary || (first_unmapped != blocks_per_page)) {
635		bio = mpage_bio_submit(wr, bio);
636		if (boundary_block) {
637			write_boundary_block(boundary_bdev,
638					boundary_block, 1 << blkbits);
639		}
640	} else {
641		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
642	}
643	goto out;
644
645confused:
646	if (bio)
647		bio = mpage_bio_submit(wr, bio);
648
649	if (mpd->use_writepage) {
650		ret = mapping->a_ops->writepage(page, wbc);
651	} else {
652		ret = -EAGAIN;
653		goto out;
654	}
655	/*
656	 * The caller has a ref on the inode, so *mapping is stable
657	 */
 
658	mapping_set_error(mapping, ret);
659out:
660	mpd->bio = bio;
661	return ret;
662}
663
664/**
665 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
666 * @mapping: address space structure to write
667 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
668 * @get_block: the filesystem's block mapper function.
669 *             If this is NULL then use a_ops->writepage.  Otherwise, go
670 *             direct-to-BIO.
671 *
672 * This is a library function, which implements the writepages()
673 * address_space_operation.
674 *
675 * If a page is already under I/O, generic_writepages() skips it, even
676 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
677 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
678 * and msync() need to guarantee that all the data which was dirty at the time
679 * the call was made get new I/O started against them.  If wbc->sync_mode is
680 * WB_SYNC_ALL then we were called for data integrity and we must wait for
681 * existing IO to complete.
682 */
683int
684mpage_writepages(struct address_space *mapping,
685		struct writeback_control *wbc, get_block_t get_block)
686{
 
 
 
687	struct blk_plug plug;
688	int ret;
689
690	blk_start_plug(&plug);
691
692	if (!get_block)
693		ret = generic_writepages(mapping, wbc);
694	else {
695		struct mpage_data mpd = {
696			.bio = NULL,
697			.last_block_in_bio = 0,
698			.get_block = get_block,
699			.use_writepage = 1,
700		};
701
702		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
703		if (mpd.bio) {
704			int wr = (wbc->sync_mode == WB_SYNC_ALL ?
705				  WRITE_SYNC : WRITE);
706			mpage_bio_submit(wr, mpd.bio);
707		}
708	}
709	blk_finish_plug(&plug);
710	return ret;
711}
712EXPORT_SYMBOL(mpage_writepages);
713
714int mpage_writepage(struct page *page, get_block_t get_block,
715	struct writeback_control *wbc)
716{
717	struct mpage_data mpd = {
718		.bio = NULL,
719		.last_block_in_bio = 0,
720		.get_block = get_block,
721		.use_writepage = 0,
722	};
723	int ret = __mpage_writepage(page, wbc, &mpd);
724	if (mpd.bio) {
725		int wr = (wbc->sync_mode == WB_SYNC_ALL ?
726			  WRITE_SYNC : WRITE);
727		mpage_bio_submit(wr, mpd.bio);
728	}
729	return ret;
730}
731EXPORT_SYMBOL(mpage_writepage);
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/mpage.c
  4 *
  5 * Copyright (C) 2002, Linus Torvalds.
  6 *
  7 * Contains functions related to preparing and submitting BIOs which contain
  8 * multiple pagecache pages.
  9 *
 10 * 15May2002	Andrew Morton
 11 *		Initial version
 12 * 27Jun2002	axboe@suse.de
 13 *		use bio_add_page() to build bio's just the right size
 14 */
 15
 16#include <linux/kernel.h>
 17#include <linux/export.h>
 18#include <linux/mm.h>
 19#include <linux/kdev_t.h>
 20#include <linux/gfp.h>
 21#include <linux/bio.h>
 22#include <linux/fs.h>
 23#include <linux/buffer_head.h>
 24#include <linux/blkdev.h>
 25#include <linux/highmem.h>
 26#include <linux/prefetch.h>
 27#include <linux/mpage.h>
 28#include <linux/mm_inline.h>
 29#include <linux/writeback.h>
 30#include <linux/backing-dev.h>
 31#include <linux/pagevec.h>
 
 32#include "internal.h"
 33
 34/*
 35 * I/O completion handler for multipage BIOs.
 36 *
 37 * The mpage code never puts partial pages into a BIO (except for end-of-file).
 38 * If a page does not map to a contiguous run of blocks then it simply falls
 39 * back to block_read_full_folio().
 40 *
 41 * Why is this?  If a page's completion depends on a number of different BIOs
 42 * which can complete in any order (or at the same time) then determining the
 43 * status of that page is hard.  See end_buffer_async_read() for the details.
 44 * There is no point in duplicating all that complexity.
 45 */
 46static void mpage_end_io(struct bio *bio)
 47{
 48	struct bio_vec *bv;
 49	struct bvec_iter_all iter_all;
 50
 51	bio_for_each_segment_all(bv, bio, iter_all) {
 52		struct page *page = bv->bv_page;
 53		page_endio(page, bio_op(bio),
 54			   blk_status_to_errno(bio->bi_status));
 55	}
 56
 57	bio_put(bio);
 58}
 59
 60static struct bio *mpage_bio_submit(struct bio *bio)
 61{
 62	bio->bi_end_io = mpage_end_io;
 63	guard_bio_eod(bio);
 64	submit_bio(bio);
 65	return NULL;
 66}
 67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 68/*
 69 * support function for mpage_readahead.  The fs supplied get_block might
 70 * return an up to date buffer.  This is used to map that buffer into
 71 * the page, which allows read_folio to avoid triggering a duplicate call
 72 * to get_block.
 73 *
 74 * The idea is to avoid adding buffers to pages that don't already have
 75 * them.  So when the buffer is up to date and the page size == block size,
 76 * this marks the page up to date instead of adding new buffers.
 77 */
 78static void map_buffer_to_folio(struct folio *folio, struct buffer_head *bh,
 79		int page_block)
 80{
 81	struct inode *inode = folio->mapping->host;
 82	struct buffer_head *page_bh, *head;
 83	int block = 0;
 84
 85	head = folio_buffers(folio);
 86	if (!head) {
 87		/*
 88		 * don't make any buffers if there is only one buffer on
 89		 * the folio and the folio just needs to be set up to date
 90		 */
 91		if (inode->i_blkbits == PAGE_SHIFT &&
 92		    buffer_uptodate(bh)) {
 93			folio_mark_uptodate(folio);
 94			return;
 95		}
 96		create_empty_buffers(&folio->page, i_blocksize(inode), 0);
 97		head = folio_buffers(folio);
 98	}
 99
100	page_bh = head;
101	do {
102		if (block == page_block) {
103			page_bh->b_state = bh->b_state;
104			page_bh->b_bdev = bh->b_bdev;
105			page_bh->b_blocknr = bh->b_blocknr;
106			break;
107		}
108		page_bh = page_bh->b_this_page;
109		block++;
110	} while (page_bh != head);
111}
112
113struct mpage_readpage_args {
114	struct bio *bio;
115	struct folio *folio;
116	unsigned int nr_pages;
117	bool is_readahead;
118	sector_t last_block_in_bio;
119	struct buffer_head map_bh;
120	unsigned long first_logical_block;
121	get_block_t *get_block;
122};
123
124/*
125 * This is the worker routine which does all the work of mapping the disk
126 * blocks and constructs largest possible bios, submits them for IO if the
127 * blocks are not contiguous on the disk.
128 *
129 * We pass a buffer_head back and forth and use its buffer_mapped() flag to
130 * represent the validity of its disk mapping and to decide when to do the next
131 * get_block() call.
132 */
133static struct bio *do_mpage_readpage(struct mpage_readpage_args *args)
 
 
 
 
134{
135	struct folio *folio = args->folio;
136	struct inode *inode = folio->mapping->host;
137	const unsigned blkbits = inode->i_blkbits;
138	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
139	const unsigned blocksize = 1 << blkbits;
140	struct buffer_head *map_bh = &args->map_bh;
141	sector_t block_in_file;
142	sector_t last_block;
143	sector_t last_block_in_file;
144	sector_t blocks[MAX_BUF_PER_PAGE];
145	unsigned page_block;
146	unsigned first_hole = blocks_per_page;
147	struct block_device *bdev = NULL;
148	int length;
149	int fully_mapped = 1;
150	blk_opf_t opf = REQ_OP_READ;
151	unsigned nblocks;
152	unsigned relative_block;
153	gfp_t gfp = mapping_gfp_constraint(folio->mapping, GFP_KERNEL);
154
155	/* MAX_BUF_PER_PAGE, for example */
156	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
157
158	if (args->is_readahead) {
159		opf |= REQ_RAHEAD;
160		gfp |= __GFP_NORETRY | __GFP_NOWARN;
161	}
162
163	if (folio_buffers(folio))
164		goto confused;
165
166	block_in_file = (sector_t)folio->index << (PAGE_SHIFT - blkbits);
167	last_block = block_in_file + args->nr_pages * blocks_per_page;
168	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
169	if (last_block > last_block_in_file)
170		last_block = last_block_in_file;
171	page_block = 0;
172
173	/*
174	 * Map blocks using the result from the previous get_blocks call first.
175	 */
176	nblocks = map_bh->b_size >> blkbits;
177	if (buffer_mapped(map_bh) &&
178			block_in_file > args->first_logical_block &&
179			block_in_file < (args->first_logical_block + nblocks)) {
180		unsigned map_offset = block_in_file - args->first_logical_block;
181		unsigned last = nblocks - map_offset;
182
183		for (relative_block = 0; ; relative_block++) {
184			if (relative_block == last) {
185				clear_buffer_mapped(map_bh);
186				break;
187			}
188			if (page_block == blocks_per_page)
189				break;
190			blocks[page_block] = map_bh->b_blocknr + map_offset +
191						relative_block;
192			page_block++;
193			block_in_file++;
194		}
195		bdev = map_bh->b_bdev;
196	}
197
198	/*
199	 * Then do more get_blocks calls until we are done with this folio.
200	 */
201	map_bh->b_page = &folio->page;
202	while (page_block < blocks_per_page) {
203		map_bh->b_state = 0;
204		map_bh->b_size = 0;
205
206		if (block_in_file < last_block) {
207			map_bh->b_size = (last_block-block_in_file) << blkbits;
208			if (args->get_block(inode, block_in_file, map_bh, 0))
209				goto confused;
210			args->first_logical_block = block_in_file;
211		}
212
213		if (!buffer_mapped(map_bh)) {
214			fully_mapped = 0;
215			if (first_hole == blocks_per_page)
216				first_hole = page_block;
217			page_block++;
218			block_in_file++;
219			continue;
220		}
221
222		/* some filesystems will copy data into the page during
223		 * the get_block call, in which case we don't want to
224		 * read it again.  map_buffer_to_folio copies the data
225		 * we just collected from get_block into the folio's buffers
226		 * so read_folio doesn't have to repeat the get_block call
227		 */
228		if (buffer_uptodate(map_bh)) {
229			map_buffer_to_folio(folio, map_bh, page_block);
230			goto confused;
231		}
232	
233		if (first_hole != blocks_per_page)
234			goto confused;		/* hole -> non-hole */
235
236		/* Contiguous blocks? */
237		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
238			goto confused;
239		nblocks = map_bh->b_size >> blkbits;
240		for (relative_block = 0; ; relative_block++) {
241			if (relative_block == nblocks) {
242				clear_buffer_mapped(map_bh);
243				break;
244			} else if (page_block == blocks_per_page)
245				break;
246			blocks[page_block] = map_bh->b_blocknr+relative_block;
247			page_block++;
248			block_in_file++;
249		}
250		bdev = map_bh->b_bdev;
251	}
252
253	if (first_hole != blocks_per_page) {
254		folio_zero_segment(folio, first_hole << blkbits, PAGE_SIZE);
255		if (first_hole == 0) {
256			folio_mark_uptodate(folio);
257			folio_unlock(folio);
258			goto out;
259		}
260	} else if (fully_mapped) {
261		folio_set_mappedtodisk(folio);
 
 
 
 
 
 
262	}
263
264	/*
265	 * This folio will go to BIO.  Do we need to send this BIO off first?
266	 */
267	if (args->bio && (args->last_block_in_bio != blocks[0] - 1))
268		args->bio = mpage_bio_submit(args->bio);
269
270alloc_new:
271	if (args->bio == NULL) {
272		if (first_hole == blocks_per_page) {
273			if (!bdev_read_page(bdev, blocks[0] << (blkbits - 9),
274								&folio->page))
275				goto out;
276		}
277		args->bio = bio_alloc(bdev, bio_max_segs(args->nr_pages), opf,
278				      gfp);
279		if (args->bio == NULL)
280			goto confused;
281		args->bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
282	}
283
284	length = first_hole << blkbits;
285	if (!bio_add_folio(args->bio, folio, length, 0)) {
286		args->bio = mpage_bio_submit(args->bio);
287		goto alloc_new;
288	}
289
290	relative_block = block_in_file - args->first_logical_block;
291	nblocks = map_bh->b_size >> blkbits;
292	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
293	    (first_hole != blocks_per_page))
294		args->bio = mpage_bio_submit(args->bio);
295	else
296		args->last_block_in_bio = blocks[blocks_per_page - 1];
297out:
298	return args->bio;
299
300confused:
301	if (args->bio)
302		args->bio = mpage_bio_submit(args->bio);
303	if (!folio_test_uptodate(folio))
304		block_read_full_folio(folio, args->get_block);
305	else
306		folio_unlock(folio);
307	goto out;
308}
309
310/**
311 * mpage_readahead - start reads against pages
312 * @rac: Describes which pages to read.
 
 
 
 
 
313 * @get_block: The filesystem's block mapper function.
314 *
315 * This function walks the pages and the blocks within each page, building and
316 * emitting large BIOs.
317 *
318 * If anything unusual happens, such as:
319 *
320 * - encountering a page which has buffers
321 * - encountering a page which has a non-hole after a hole
322 * - encountering a page with non-contiguous blocks
323 *
324 * then this code just gives up and calls the buffer_head-based read function.
325 * It does handle a page which has holes at the end - that is a common case:
326 * the end-of-file on blocksize < PAGE_SIZE setups.
327 *
328 * BH_Boundary explanation:
329 *
330 * There is a problem.  The mpage read code assembles several pages, gets all
331 * their disk mappings, and then submits them all.  That's fine, but obtaining
332 * the disk mappings may require I/O.  Reads of indirect blocks, for example.
333 *
334 * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
335 * submitted in the following order:
336 *
337 * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
338 *
339 * because the indirect block has to be read to get the mappings of blocks
340 * 13,14,15,16.  Obviously, this impacts performance.
341 *
342 * So what we do it to allow the filesystem's get_block() function to set
343 * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
344 * after this one will require I/O against a block which is probably close to
345 * this one.  So you should push what I/O you have currently accumulated.
346 *
347 * This all causes the disk requests to be issued in the correct order.
348 */
349void mpage_readahead(struct readahead_control *rac, get_block_t get_block)
 
 
350{
351	struct folio *folio;
352	struct mpage_readpage_args args = {
353		.get_block = get_block,
354		.is_readahead = true,
355	};
 
356
357	while ((folio = readahead_folio(rac))) {
358		prefetchw(&folio->flags);
359		args.folio = folio;
360		args.nr_pages = readahead_count(rac);
361		args.bio = do_mpage_readpage(&args);
 
 
 
 
 
 
 
 
 
 
 
 
362	}
363	if (args.bio)
364		mpage_bio_submit(args.bio);
 
 
365}
366EXPORT_SYMBOL(mpage_readahead);
367
368/*
369 * This isn't called much at all
370 */
371int mpage_read_folio(struct folio *folio, get_block_t get_block)
372{
373	struct mpage_readpage_args args = {
374		.folio = folio,
375		.nr_pages = 1,
376		.get_block = get_block,
377	};
378
379	args.bio = do_mpage_readpage(&args);
380	if (args.bio)
381		mpage_bio_submit(args.bio);
 
 
 
382	return 0;
383}
384EXPORT_SYMBOL(mpage_read_folio);
385
386/*
387 * Writing is not so simple.
388 *
389 * If the page has buffers then they will be used for obtaining the disk
390 * mapping.  We only support pages which are fully mapped-and-dirty, with a
391 * special case for pages which are unmapped at the end: end-of-file.
392 *
393 * If the page has no buffers (preferred) then the page is mapped here.
394 *
395 * If all blocks are found to be contiguous then the page can go into the
396 * BIO.  Otherwise fall back to the mapping's writepage().
397 * 
398 * FIXME: This code wants an estimate of how many pages are still to be
399 * written, so it can intelligently allocate a suitably-sized BIO.  For now,
400 * just allocate full-size (16-page) BIOs.
401 */
402
403struct mpage_data {
404	struct bio *bio;
405	sector_t last_block_in_bio;
406	get_block_t *get_block;
 
407};
408
409/*
410 * We have our BIO, so we can now mark the buffers clean.  Make
411 * sure to only clean buffers which we know we'll be writing.
412 */
413static void clean_buffers(struct page *page, unsigned first_unmapped)
414{
415	unsigned buffer_counter = 0;
416	struct buffer_head *bh, *head;
417	if (!page_has_buffers(page))
418		return;
419	head = page_buffers(page);
420	bh = head;
421
422	do {
423		if (buffer_counter++ == first_unmapped)
424			break;
425		clear_buffer_dirty(bh);
426		bh = bh->b_this_page;
427	} while (bh != head);
428
429	/*
430	 * we cannot drop the bh if the page is not uptodate or a concurrent
431	 * read_folio would fail to serialize with the bh and it would read from
432	 * disk before we reach the platter.
433	 */
434	if (buffer_heads_over_limit && PageUptodate(page))
435		try_to_free_buffers(page_folio(page));
436}
437
438/*
439 * For situations where we want to clean all buffers attached to a page.
440 * We don't need to calculate how many buffers are attached to the page,
441 * we just need to specify a number larger than the maximum number of buffers.
442 */
443void clean_page_buffers(struct page *page)
444{
445	clean_buffers(page, ~0U);
446}
447
448static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
449		      void *data)
450{
451	struct mpage_data *mpd = data;
452	struct bio *bio = mpd->bio;
453	struct address_space *mapping = page->mapping;
454	struct inode *inode = page->mapping->host;
455	const unsigned blkbits = inode->i_blkbits;
456	unsigned long end_index;
457	const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
458	sector_t last_block;
459	sector_t block_in_file;
460	sector_t blocks[MAX_BUF_PER_PAGE];
461	unsigned page_block;
462	unsigned first_unmapped = blocks_per_page;
463	struct block_device *bdev = NULL;
464	int boundary = 0;
465	sector_t boundary_block = 0;
466	struct block_device *boundary_bdev = NULL;
467	int length;
468	struct buffer_head map_bh;
469	loff_t i_size = i_size_read(inode);
470	int ret = 0;
 
471
472	if (page_has_buffers(page)) {
473		struct buffer_head *head = page_buffers(page);
474		struct buffer_head *bh = head;
475
476		/* If they're all mapped and dirty, do it */
477		page_block = 0;
478		do {
479			BUG_ON(buffer_locked(bh));
480			if (!buffer_mapped(bh)) {
481				/*
482				 * unmapped dirty buffers are created by
483				 * block_dirty_folio -> mmapped data
484				 */
485				if (buffer_dirty(bh))
486					goto confused;
487				if (first_unmapped == blocks_per_page)
488					first_unmapped = page_block;
489				continue;
490			}
491
492			if (first_unmapped != blocks_per_page)
493				goto confused;	/* hole -> non-hole */
494
495			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
496				goto confused;
497			if (page_block) {
498				if (bh->b_blocknr != blocks[page_block-1] + 1)
499					goto confused;
500			}
501			blocks[page_block++] = bh->b_blocknr;
502			boundary = buffer_boundary(bh);
503			if (boundary) {
504				boundary_block = bh->b_blocknr;
505				boundary_bdev = bh->b_bdev;
506			}
507			bdev = bh->b_bdev;
508		} while ((bh = bh->b_this_page) != head);
509
510		if (first_unmapped)
511			goto page_is_mapped;
512
513		/*
514		 * Page has buffers, but they are all unmapped. The page was
515		 * created by pagein or read over a hole which was handled by
516		 * block_read_full_folio().  If this address_space is also
517		 * using mpage_readahead then this can rarely happen.
518		 */
519		goto confused;
520	}
521
522	/*
523	 * The page has no buffers: map it to disk
524	 */
525	BUG_ON(!PageUptodate(page));
526	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
527	last_block = (i_size - 1) >> blkbits;
528	map_bh.b_page = page;
529	for (page_block = 0; page_block < blocks_per_page; ) {
530
531		map_bh.b_state = 0;
532		map_bh.b_size = 1 << blkbits;
533		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
534			goto confused;
535		if (buffer_new(&map_bh))
536			clean_bdev_bh_alias(&map_bh);
 
537		if (buffer_boundary(&map_bh)) {
538			boundary_block = map_bh.b_blocknr;
539			boundary_bdev = map_bh.b_bdev;
540		}
541		if (page_block) {
542			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
543				goto confused;
544		}
545		blocks[page_block++] = map_bh.b_blocknr;
546		boundary = buffer_boundary(&map_bh);
547		bdev = map_bh.b_bdev;
548		if (block_in_file == last_block)
549			break;
550		block_in_file++;
551	}
552	BUG_ON(page_block == 0);
553
554	first_unmapped = page_block;
555
556page_is_mapped:
557	end_index = i_size >> PAGE_SHIFT;
558	if (page->index >= end_index) {
559		/*
560		 * The page straddles i_size.  It must be zeroed out on each
561		 * and every writepage invocation because it may be mmapped.
562		 * "A file is mapped in multiples of the page size.  For a file
563		 * that is not a multiple of the page size, the remaining memory
564		 * is zeroed when mapped, and writes to that region are not
565		 * written out to the file."
566		 */
567		unsigned offset = i_size & (PAGE_SIZE - 1);
568
569		if (page->index > end_index || !offset)
570			goto confused;
571		zero_user_segment(page, offset, PAGE_SIZE);
572	}
573
574	/*
575	 * This page will go to BIO.  Do we need to send this BIO off first?
576	 */
577	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
578		bio = mpage_bio_submit(bio);
579
580alloc_new:
581	if (bio == NULL) {
582		if (first_unmapped == blocks_per_page) {
583			if (!bdev_write_page(bdev, blocks[0] << (blkbits - 9),
584								page, wbc))
 
585				goto out;
 
586		}
587		bio = bio_alloc(bdev, BIO_MAX_VECS,
588				REQ_OP_WRITE | wbc_to_write_flags(wbc),
589				GFP_NOFS);
590		bio->bi_iter.bi_sector = blocks[0] << (blkbits - 9);
 
591		wbc_init_bio(wbc, bio);
592	}
593
594	/*
595	 * Must try to add the page before marking the buffer clean or
596	 * the confused fail path above (OOM) will be very confused when
597	 * it finds all bh marked clean (i.e. it will not write anything)
598	 */
599	wbc_account_cgroup_owner(wbc, page, PAGE_SIZE);
600	length = first_unmapped << blkbits;
601	if (bio_add_page(bio, page, length, 0) < length) {
602		bio = mpage_bio_submit(bio);
603		goto alloc_new;
604	}
605
606	clean_buffers(page, first_unmapped);
607
608	BUG_ON(PageWriteback(page));
609	set_page_writeback(page);
610	unlock_page(page);
611	if (boundary || (first_unmapped != blocks_per_page)) {
612		bio = mpage_bio_submit(bio);
613		if (boundary_block) {
614			write_boundary_block(boundary_bdev,
615					boundary_block, 1 << blkbits);
616		}
617	} else {
618		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
619	}
620	goto out;
621
622confused:
623	if (bio)
624		bio = mpage_bio_submit(bio);
625
 
 
 
 
 
 
626	/*
627	 * The caller has a ref on the inode, so *mapping is stable
628	 */
629	ret = block_write_full_page(page, mpd->get_block, wbc);
630	mapping_set_error(mapping, ret);
631out:
632	mpd->bio = bio;
633	return ret;
634}
635
636/**
637 * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
638 * @mapping: address space structure to write
639 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
640 * @get_block: the filesystem's block mapper function.
 
 
641 *
642 * This is a library function, which implements the writepages()
643 * address_space_operation.
644 *
645 * If a page is already under I/O, generic_writepages() skips it, even
646 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
647 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
648 * and msync() need to guarantee that all the data which was dirty at the time
649 * the call was made get new I/O started against them.  If wbc->sync_mode is
650 * WB_SYNC_ALL then we were called for data integrity and we must wait for
651 * existing IO to complete.
652 */
653int
654mpage_writepages(struct address_space *mapping,
655		struct writeback_control *wbc, get_block_t get_block)
656{
657	struct mpage_data mpd = {
658		.get_block	= get_block,
659	};
660	struct blk_plug plug;
661	int ret;
662
663	blk_start_plug(&plug);
664	ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
665	if (mpd.bio)
666		mpage_bio_submit(mpd.bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667	blk_finish_plug(&plug);
668	return ret;
669}
670EXPORT_SYMBOL(mpage_writepages);