Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
 
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
 
 
 
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include "trace.h"
 
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
 
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34	unsigned long tmp = 0;
  35	int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38	shift = 56;
  39#endif
  40	while (shift >= 0) {
  41		tmp |= (unsigned long)str[idx++] << shift;
  42		shift -= BITS_PER_BYTE;
  43	}
  44	return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53	int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56	if ((word & 0xffffffff00000000UL) == 0)
  57		num += 32;
  58	else
  59		word >>= 32;
  60#endif
  61	if ((word & 0xffff0000) == 0)
  62		num += 16;
  63	else
  64		word >>= 16;
  65
  66	if ((word & 0xff00) == 0)
  67		num += 8;
  68	else
  69		word >>= 8;
  70
  71	if ((word & 0xf0) == 0)
  72		num += 4;
  73	else
  74		word >>= 4;
  75
  76	if ((word & 0xc) == 0)
  77		num += 2;
  78	else
  79		word >>= 2;
  80
  81	if ((word & 0x2) == 0)
  82		num += 1;
  83	return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96			unsigned long size, unsigned long offset)
  97{
  98	const unsigned long *p = addr + BIT_WORD(offset);
  99	unsigned long result = size;
 100	unsigned long tmp;
 101
 102	if (offset >= size)
 103		return size;
 104
 105	size -= (offset & ~(BITS_PER_LONG - 1));
 106	offset %= BITS_PER_LONG;
 107
 108	while (1) {
 109		if (*p == 0)
 110			goto pass;
 111
 112		tmp = __reverse_ulong((unsigned char *)p);
 113
 114		tmp &= ~0UL >> offset;
 115		if (size < BITS_PER_LONG)
 116			tmp &= (~0UL << (BITS_PER_LONG - size));
 117		if (tmp)
 118			goto found;
 119pass:
 120		if (size <= BITS_PER_LONG)
 121			break;
 122		size -= BITS_PER_LONG;
 123		offset = 0;
 124		p++;
 125	}
 126	return result;
 127found:
 128	return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132			unsigned long size, unsigned long offset)
 133{
 134	const unsigned long *p = addr + BIT_WORD(offset);
 135	unsigned long result = size;
 136	unsigned long tmp;
 137
 138	if (offset >= size)
 139		return size;
 140
 141	size -= (offset & ~(BITS_PER_LONG - 1));
 142	offset %= BITS_PER_LONG;
 143
 144	while (1) {
 145		if (*p == ~0UL)
 146			goto pass;
 147
 148		tmp = __reverse_ulong((unsigned char *)p);
 149
 150		if (offset)
 151			tmp |= ~0UL << (BITS_PER_LONG - offset);
 152		if (size < BITS_PER_LONG)
 153			tmp |= ~0UL >> size;
 154		if (tmp != ~0UL)
 155			goto found;
 156pass:
 157		if (size <= BITS_PER_LONG)
 158			break;
 159		size -= BITS_PER_LONG;
 160		offset = 0;
 161		p++;
 162	}
 163	return result;
 164found:
 165	return result - size + __reverse_ffz(tmp);
 166}
 167
 168void register_inmem_page(struct inode *inode, struct page *page)
 169{
 170	struct f2fs_inode_info *fi = F2FS_I(inode);
 171	struct inmem_pages *new;
 
 172
 173	f2fs_trace_pid(page);
 
 
 
 
 
 174
 175	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 176	SetPagePrivate(page);
 
 
 
 
 
 
 
 
 177
 178	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 
 179
 180	/* add atomic page indices to the list */
 181	new->page = page;
 182	INIT_LIST_HEAD(&new->list);
 
 
 
 
 
 
 183
 184	/* increase reference count with clean state */
 185	mutex_lock(&fi->inmem_lock);
 186	get_page(page);
 187	list_add_tail(&new->list, &fi->inmem_pages);
 188	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 189	mutex_unlock(&fi->inmem_lock);
 190
 191	trace_f2fs_register_inmem_page(page, INMEM);
 
 
 
 
 
 192}
 193
 194static int __revoke_inmem_pages(struct inode *inode,
 195				struct list_head *head, bool drop, bool recover)
 196{
 197	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 198	struct inmem_pages *cur, *tmp;
 199	int err = 0;
 200
 201	list_for_each_entry_safe(cur, tmp, head, list) {
 202		struct page *page = cur->page;
 203
 204		if (drop)
 205			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 206
 207		lock_page(page);
 208
 209		if (recover) {
 210			struct dnode_of_data dn;
 211			struct node_info ni;
 
 
 
 
 
 
 
 212
 213			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 
 
 
 
 214
 215			set_new_dnode(&dn, inode, NULL, NULL, 0);
 216			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 217				err = -EAGAIN;
 218				goto next;
 219			}
 220			get_node_info(sbi, dn.nid, &ni);
 
 
 221			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 222					cur->old_addr, ni.version, true, true);
 
 
 
 
 
 
 223			f2fs_put_dnode(&dn);
 
 224		}
 225next:
 226		ClearPageUptodate(page);
 227		set_page_private(page, 0);
 228		ClearPageUptodate(page);
 229		f2fs_put_page(page, 1);
 230
 231		list_del(&cur->list);
 232		kmem_cache_free(inmem_entry_slab, cur);
 233		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 
 
 
 234	}
 235	return err;
 
 
 
 
 
 236}
 237
 238void drop_inmem_pages(struct inode *inode)
 
 239{
 240	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241
 242	mutex_lock(&fi->inmem_lock);
 243	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 244	mutex_unlock(&fi->inmem_lock);
 245}
 246
 247static int __commit_inmem_pages(struct inode *inode,
 248					struct list_head *revoke_list)
 249{
 250	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 251	struct f2fs_inode_info *fi = F2FS_I(inode);
 252	struct inmem_pages *cur, *tmp;
 253	struct f2fs_io_info fio = {
 254		.sbi = sbi,
 255		.type = DATA,
 256		.rw = WRITE_SYNC | REQ_PRIO,
 257		.encrypted_page = NULL,
 258	};
 259	bool submit_bio = false;
 260	int err = 0;
 261
 262	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 263		struct page *page = cur->page;
 264
 265		lock_page(page);
 266		if (page->mapping == inode->i_mapping) {
 267			trace_f2fs_commit_inmem_page(page, INMEM);
 268
 269			set_page_dirty(page);
 270			f2fs_wait_on_page_writeback(page, DATA, true);
 271			if (clear_page_dirty_for_io(page))
 272				inode_dec_dirty_pages(inode);
 273
 274			fio.page = page;
 275			err = do_write_data_page(&fio);
 276			if (err) {
 277				unlock_page(page);
 278				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279			}
 280
 281			/* record old blkaddr for revoking */
 282			cur->old_addr = fio.old_blkaddr;
 
 
 
 
 
 
 
 
 283
 284			clear_cold_data(page);
 285			submit_bio = true;
 
 286		}
 287		unlock_page(page);
 288		list_move_tail(&cur->list, revoke_list);
 
 
 289	}
 290
 291	if (submit_bio)
 292		f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 
 
 
 
 
 
 
 
 
 293
 294	if (!err)
 295		__revoke_inmem_pages(inode, revoke_list, false, false);
 296
 297	return err;
 298}
 299
 300int commit_inmem_pages(struct inode *inode)
 301{
 302	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 303	struct f2fs_inode_info *fi = F2FS_I(inode);
 304	struct list_head revoke_list;
 305	int err;
 306
 307	INIT_LIST_HEAD(&revoke_list);
 308	f2fs_balance_fs(sbi, true);
 309	f2fs_lock_op(sbi);
 310
 311	mutex_lock(&fi->inmem_lock);
 312	err = __commit_inmem_pages(inode, &revoke_list);
 313	if (err) {
 314		int ret;
 315		/*
 316		 * try to revoke all committed pages, but still we could fail
 317		 * due to no memory or other reason, if that happened, EAGAIN
 318		 * will be returned, which means in such case, transaction is
 319		 * already not integrity, caller should use journal to do the
 320		 * recovery or rewrite & commit last transaction. For other
 321		 * error number, revoking was done by filesystem itself.
 322		 */
 323		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 324		if (ret)
 325			err = ret;
 326
 327		/* drop all uncommitted pages */
 328		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 329	}
 330	mutex_unlock(&fi->inmem_lock);
 331
 332	f2fs_unlock_op(sbi);
 
 
 333	return err;
 334}
 335
 336/*
 337 * This function balances dirty node and dentry pages.
 338 * In addition, it controls garbage collection.
 339 */
 340void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 341{
 342	if (!need)
 
 
 
 
 
 
 
 
 
 
 343		return;
 
 344	/*
 345	 * We should do GC or end up with checkpoint, if there are so many dirty
 346	 * dir/node pages without enough free segments.
 347	 */
 348	if (has_not_enough_free_secs(sbi, 0)) {
 349		mutex_lock(&sbi->gc_mutex);
 350		f2fs_gc(sbi, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351	}
 352}
 353
 354void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355{
 
 
 
 356	/* try to shrink extent cache when there is no enough memory */
 357	if (!available_free_memory(sbi, EXTENT_CACHE))
 358		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 
 
 
 
 
 
 359
 360	/* check the # of cached NAT entries */
 361	if (!available_free_memory(sbi, NAT_ENTRIES))
 362		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363
 364	if (!available_free_memory(sbi, FREE_NIDS))
 365		try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
 
 366
 367	/* checkpoint is the only way to shrink partial cached entries */
 368	if (!available_free_memory(sbi, NAT_ENTRIES) ||
 369			!available_free_memory(sbi, INO_ENTRIES) ||
 370			excess_prefree_segs(sbi) ||
 371			excess_dirty_nats(sbi) ||
 372			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
 373		if (test_opt(sbi, DATA_FLUSH)) {
 374			struct blk_plug plug;
 375
 376			blk_start_plug(&plug);
 377			sync_dirty_inodes(sbi, FILE_INODE);
 378			blk_finish_plug(&plug);
 379		}
 380		f2fs_sync_fs(sbi->sb, true);
 381		stat_inc_bg_cp_count(sbi->stat_info);
 
 
 
 
 
 382	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383}
 384
 385static int issue_flush_thread(void *data)
 386{
 387	struct f2fs_sb_info *sbi = data;
 388	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 389	wait_queue_head_t *q = &fcc->flush_wait_queue;
 390repeat:
 391	if (kthread_should_stop())
 392		return 0;
 393
 394	if (!llist_empty(&fcc->issue_list)) {
 395		struct bio *bio;
 396		struct flush_cmd *cmd, *next;
 397		int ret;
 398
 399		bio = f2fs_bio_alloc(0);
 400
 401		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 402		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 403
 404		bio->bi_bdev = sbi->sb->s_bdev;
 405		ret = submit_bio_wait(WRITE_FLUSH, bio);
 
 
 406
 407		llist_for_each_entry_safe(cmd, next,
 408					  fcc->dispatch_list, llnode) {
 409			cmd->ret = ret;
 410			complete(&cmd->wait);
 411		}
 412		bio_put(bio);
 413		fcc->dispatch_list = NULL;
 414	}
 415
 416	wait_event_interruptible(*q,
 417		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 418	goto repeat;
 419}
 420
 421int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 422{
 423	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 424	struct flush_cmd cmd;
 425
 426	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 427					test_opt(sbi, FLUSH_MERGE));
 428
 429	if (test_opt(sbi, NOBARRIER))
 430		return 0;
 431
 432	if (!test_opt(sbi, FLUSH_MERGE)) {
 433		struct bio *bio = f2fs_bio_alloc(0);
 434		int ret;
 
 
 
 
 
 
 
 
 
 435
 436		bio->bi_bdev = sbi->sb->s_bdev;
 437		ret = submit_bio_wait(WRITE_FLUSH, bio);
 438		bio_put(bio);
 439		return ret;
 440	}
 441
 
 442	init_completion(&cmd.wait);
 443
 444	llist_add(&cmd.llnode, &fcc->issue_list);
 445
 446	if (!fcc->dispatch_list)
 
 
 
 
 
 
 
 447		wake_up(&fcc->flush_wait_queue);
 448
 449	wait_for_completion(&cmd.wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450
 451	return cmd.ret;
 452}
 453
 454int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 455{
 456	dev_t dev = sbi->sb->s_bdev->bd_dev;
 457	struct flush_cmd_control *fcc;
 458	int err = 0;
 459
 460	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 
 
 
 
 
 
 
 461	if (!fcc)
 462		return -ENOMEM;
 
 
 463	init_waitqueue_head(&fcc->flush_wait_queue);
 464	init_llist_head(&fcc->issue_list);
 465	SM_I(sbi)->cmd_control_info = fcc;
 
 
 
 
 466	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 467				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 468	if (IS_ERR(fcc->f2fs_issue_flush)) {
 469		err = PTR_ERR(fcc->f2fs_issue_flush);
 470		kfree(fcc);
 471		SM_I(sbi)->cmd_control_info = NULL;
 472		return err;
 473	}
 474
 475	return err;
 476}
 477
 478void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 479{
 480	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 
 
 
 481
 482	if (fcc && fcc->f2fs_issue_flush)
 483		kthread_stop(fcc->f2fs_issue_flush);
 484	kfree(fcc);
 485	SM_I(sbi)->cmd_control_info = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486}
 487
 488static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 489		enum dirty_type dirty_type)
 490{
 491	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 492
 493	/* need not be added */
 494	if (IS_CURSEG(sbi, segno))
 495		return;
 496
 497	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 498		dirty_i->nr_dirty[dirty_type]++;
 499
 500	if (dirty_type == DIRTY) {
 501		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 502		enum dirty_type t = sentry->type;
 503
 504		if (unlikely(t >= DIRTY)) {
 505			f2fs_bug_on(sbi, 1);
 506			return;
 507		}
 508		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 509			dirty_i->nr_dirty[t]++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510	}
 511}
 512
 513static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 514		enum dirty_type dirty_type)
 515{
 516	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 
 517
 518	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 519		dirty_i->nr_dirty[dirty_type]--;
 520
 521	if (dirty_type == DIRTY) {
 522		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 523		enum dirty_type t = sentry->type;
 524
 525		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 526			dirty_i->nr_dirty[t]--;
 527
 528		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 529			clear_bit(GET_SECNO(sbi, segno),
 
 530						dirty_i->victim_secmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531	}
 532}
 533
 534/*
 535 * Should not occur error such as -ENOMEM.
 536 * Adding dirty entry into seglist is not critical operation.
 537 * If a given segment is one of current working segments, it won't be added.
 538 */
 539static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 540{
 541	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 542	unsigned short valid_blocks;
 
 543
 544	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 545		return;
 546
 
 547	mutex_lock(&dirty_i->seglist_lock);
 548
 549	valid_blocks = get_valid_blocks(sbi, segno, 0);
 
 550
 551	if (valid_blocks == 0) {
 
 552		__locate_dirty_segment(sbi, segno, PRE);
 553		__remove_dirty_segment(sbi, segno, DIRTY);
 554	} else if (valid_blocks < sbi->blocks_per_seg) {
 555		__locate_dirty_segment(sbi, segno, DIRTY);
 556	} else {
 557		/* Recovery routine with SSR needs this */
 558		__remove_dirty_segment(sbi, segno, DIRTY);
 559	}
 560
 561	mutex_unlock(&dirty_i->seglist_lock);
 562}
 563
 564static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 565				block_t blkstart, block_t blklen)
 566{
 567	sector_t start = SECTOR_FROM_BLOCK(blkstart);
 568	sector_t len = SECTOR_FROM_BLOCK(blklen);
 569	struct seg_entry *se;
 570	unsigned int offset;
 571	block_t i;
 572
 573	for (i = blkstart; i < blkstart + blklen; i++) {
 574		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 575		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 
 
 
 
 
 
 
 
 576
 577		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 578			sbi->discard_blks--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579	}
 580	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 581	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582}
 583
 584bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
 
 585{
 586	int err = -EOPNOTSUPP;
 
 587
 588	if (test_opt(sbi, DISCARD)) {
 589		struct seg_entry *se = get_seg_entry(sbi,
 590				GET_SEGNO(sbi, blkaddr));
 591		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 
 
 
 
 
 
 
 
 592
 593		if (f2fs_test_bit(offset, se->discard_map))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 594			return false;
 
 
 
 
 
 
 595
 596		err = f2fs_issue_discard(sbi, blkaddr, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 
 
 598
 599	if (err) {
 600		update_meta_page(sbi, NULL, blkaddr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602	}
 603	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604}
 
 605
 606static void __add_discard_entry(struct f2fs_sb_info *sbi,
 607		struct cp_control *cpc, struct seg_entry *se,
 608		unsigned int start, unsigned int end)
 609{
 610	struct list_head *head = &SM_I(sbi)->discard_list;
 611	struct discard_entry *new, *last;
 
 
 
 
 
 612
 613	if (!list_empty(head)) {
 614		last = list_last_entry(head, struct discard_entry, list);
 615		if (START_BLOCK(sbi, cpc->trim_start) + start ==
 616						last->blkaddr + last->len) {
 617			last->len += end - start;
 618			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619		}
 
 
 
 
 
 
 
 620	}
 621
 622	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 623	INIT_LIST_HEAD(&new->list);
 624	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 625	new->len = end - start;
 626	list_add_tail(&new->list, head);
 627done:
 628	SM_I(sbi)->nr_discards += end - start;
 629}
 630
 631static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 632{
 633	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 634	int max_blocks = sbi->blocks_per_seg;
 635	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 636	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 637	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 638	unsigned long *discard_map = (unsigned long *)se->discard_map;
 639	unsigned long *dmap = SIT_I(sbi)->tmp_map;
 640	unsigned int start = 0, end = -1;
 641	bool force = (cpc->reason == CP_DISCARD);
 
 
 642	int i;
 643
 644	if (se->valid_blocks == max_blocks)
 645		return;
 
 
 646
 647	if (!force) {
 648		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 649		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 650			return;
 
 651	}
 652
 653	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 654	for (i = 0; i < entries; i++)
 655		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 656				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 657
 658	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 659		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 660		if (start >= max_blocks)
 
 661			break;
 662
 663		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 664		__add_discard_entry(sbi, cpc, se, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	}
 
 
 
 
 
 
 
 666}
 667
 668void release_discard_addrs(struct f2fs_sb_info *sbi)
 669{
 670	struct list_head *head = &(SM_I(sbi)->discard_list);
 671	struct discard_entry *entry, *this;
 672
 673	/* drop caches */
 674	list_for_each_entry_safe(entry, this, head, list) {
 675		list_del(&entry->list);
 676		kmem_cache_free(discard_entry_slab, entry);
 677	}
 678}
 679
 680/*
 681 * Should call clear_prefree_segments after checkpoint is done.
 682 */
 683static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 684{
 685	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 686	unsigned int segno;
 687
 688	mutex_lock(&dirty_i->seglist_lock);
 689	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 690		__set_test_and_free(sbi, segno);
 691	mutex_unlock(&dirty_i->seglist_lock);
 692}
 693
 694void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 695{
 696	struct list_head *head = &(SM_I(sbi)->discard_list);
 
 697	struct discard_entry *entry, *this;
 698	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 699	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 700	unsigned int start = 0, end = -1;
 
 
 
 
 
 
 
 701
 702	mutex_lock(&dirty_i->seglist_lock);
 703
 704	while (1) {
 705		int i;
 
 
 
 706		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 707		if (start >= MAIN_SEGS(sbi))
 708			break;
 709		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 710								start + 1);
 711
 712		for (i = start; i < end; i++)
 713			clear_bit(i, prefree_map);
 
 
 714
 715		dirty_i->nr_dirty[PRE] -= end - start;
 
 
 
 
 
 
 716
 717		if (!test_opt(sbi, DISCARD))
 
 718			continue;
 719
 720		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 721				(end - start) << sbi->log_blocks_per_seg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	}
 723	mutex_unlock(&dirty_i->seglist_lock);
 724
 
 
 
 725	/* send small discards */
 726	list_for_each_entry_safe(entry, this, head, list) {
 727		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
 728			goto skip;
 729		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 730		cpc->trimmed += entry->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731skip:
 732		list_del(&entry->list);
 733		SM_I(sbi)->nr_discards -= entry->len;
 734		kmem_cache_free(discard_entry_slab, entry);
 
 
 
 
 
 735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737
 738static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 739{
 740	struct sit_info *sit_i = SIT_I(sbi);
 741
 742	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 743		sit_i->dirty_sentries++;
 744		return false;
 745	}
 746
 747	return true;
 748}
 749
 750static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 751					unsigned int segno, int modified)
 752{
 753	struct seg_entry *se = get_seg_entry(sbi, segno);
 
 754	se->type = type;
 755	if (modified)
 756		__mark_sit_entry_dirty(sbi, segno);
 757}
 758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 760{
 761	struct seg_entry *se;
 762	unsigned int segno, offset;
 763	long int new_vblocks;
 
 
 
 
 764
 765	segno = GET_SEGNO(sbi, blkaddr);
 
 
 766
 767	se = get_seg_entry(sbi, segno);
 768	new_vblocks = se->valid_blocks + del;
 769	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 770
 771	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 772				(new_vblocks > sbi->blocks_per_seg)));
 773
 774	se->valid_blocks = new_vblocks;
 775	se->mtime = get_mtime(sbi);
 776	SIT_I(sbi)->max_mtime = se->mtime;
 777
 778	/* Update valid block bitmap */
 779	if (del > 0) {
 780		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 
 
 
 
 
 
 781			f2fs_bug_on(sbi, 1);
 782		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 
 
 
 
 
 
 
 
 
 
 
 783			sbi->discard_blks--;
 
 
 
 
 
 
 
 
 
 784	} else {
 785		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
 
 
 
 
 
 
 786			f2fs_bug_on(sbi, 1);
 787		if (f2fs_test_and_clear_bit(offset, se->discard_map))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788			sbi->discard_blks++;
 789	}
 790	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 791		se->ckpt_valid_blocks += del;
 792
 793	__mark_sit_entry_dirty(sbi, segno);
 794
 795	/* update total number of valid blocks to be written in ckpt area */
 796	SIT_I(sbi)->written_valid_blocks += del;
 797
 798	if (sbi->segs_per_sec > 1)
 799		get_sec_entry(sbi, segno)->valid_blocks += del;
 800}
 801
 802void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 803{
 804	update_sit_entry(sbi, new, 1);
 805	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 806		update_sit_entry(sbi, old, -1);
 807
 808	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 809	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 810}
 811
 812void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 813{
 814	unsigned int segno = GET_SEGNO(sbi, addr);
 815	struct sit_info *sit_i = SIT_I(sbi);
 816
 817	f2fs_bug_on(sbi, addr == NULL_ADDR);
 818	if (addr == NEW_ADDR)
 819		return;
 820
 
 
 821	/* add it into sit main buffer */
 822	mutex_lock(&sit_i->sentry_lock);
 823
 
 824	update_sit_entry(sbi, addr, -1);
 825
 826	/* add it into dirty seglist */
 827	locate_dirty_segment(sbi, segno);
 828
 829	mutex_unlock(&sit_i->sentry_lock);
 830}
 831
 832bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 833{
 834	struct sit_info *sit_i = SIT_I(sbi);
 835	unsigned int segno, offset;
 836	struct seg_entry *se;
 837	bool is_cp = false;
 838
 839	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 840		return true;
 841
 842	mutex_lock(&sit_i->sentry_lock);
 843
 844	segno = GET_SEGNO(sbi, blkaddr);
 845	se = get_seg_entry(sbi, segno);
 846	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 847
 848	if (f2fs_test_bit(offset, se->ckpt_valid_map))
 849		is_cp = true;
 850
 851	mutex_unlock(&sit_i->sentry_lock);
 852
 853	return is_cp;
 854}
 855
 856/*
 857 * This function should be resided under the curseg_mutex lock
 858 */
 859static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 860					struct f2fs_summary *sum)
 861{
 862	struct curseg_info *curseg = CURSEG_I(sbi, type);
 863	void *addr = curseg->sum_blk;
 864	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 865	memcpy(addr, sum, sizeof(struct f2fs_summary));
 
 866}
 867
 868/*
 869 * Calculate the number of current summary pages for writing
 870 */
 871int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 872{
 873	int valid_sum_count = 0;
 874	int i, sum_in_page;
 875
 876	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 877		if (sbi->ckpt->alloc_type[i] == SSR)
 878			valid_sum_count += sbi->blocks_per_seg;
 879		else {
 880			if (for_ra)
 881				valid_sum_count += le16_to_cpu(
 882					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 883			else
 884				valid_sum_count += curseg_blkoff(sbi, i);
 885		}
 886	}
 887
 888	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 889			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 890	if (valid_sum_count <= sum_in_page)
 891		return 1;
 892	else if ((valid_sum_count - sum_in_page) <=
 893		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 894		return 2;
 895	return 3;
 896}
 897
 898/*
 899 * Caller should put this summary page
 900 */
 901struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 902{
 903	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 
 
 904}
 905
 906void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
 
 907{
 908	struct page *page = grab_meta_page(sbi, blk_addr);
 909	void *dst = page_address(page);
 910
 911	if (src)
 912		memcpy(dst, src, PAGE_SIZE);
 913	else
 914		memset(dst, 0, PAGE_SIZE);
 915	set_page_dirty(page);
 916	f2fs_put_page(page, 1);
 917}
 918
 919static void write_sum_page(struct f2fs_sb_info *sbi,
 920			struct f2fs_summary_block *sum_blk, block_t blk_addr)
 921{
 922	update_meta_page(sbi, (void *)sum_blk, blk_addr);
 923}
 924
 925static void write_current_sum_page(struct f2fs_sb_info *sbi,
 926						int type, block_t blk_addr)
 927{
 928	struct curseg_info *curseg = CURSEG_I(sbi, type);
 929	struct page *page = grab_meta_page(sbi, blk_addr);
 930	struct f2fs_summary_block *src = curseg->sum_blk;
 931	struct f2fs_summary_block *dst;
 932
 933	dst = (struct f2fs_summary_block *)page_address(page);
 
 934
 935	mutex_lock(&curseg->curseg_mutex);
 936
 937	down_read(&curseg->journal_rwsem);
 938	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 939	up_read(&curseg->journal_rwsem);
 940
 941	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 942	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 943
 944	mutex_unlock(&curseg->curseg_mutex);
 945
 946	set_page_dirty(page);
 947	f2fs_put_page(page, 1);
 948}
 949
 950static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
 
 951{
 952	struct curseg_info *curseg = CURSEG_I(sbi, type);
 953	unsigned int segno = curseg->segno + 1;
 954	struct free_segmap_info *free_i = FREE_I(sbi);
 955
 956	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 957		return !test_bit(segno, free_i->free_segmap);
 958	return 0;
 959}
 960
 961/*
 962 * Find a new segment from the free segments bitmap to right order
 963 * This function should be returned with success, otherwise BUG
 964 */
 965static void get_new_segment(struct f2fs_sb_info *sbi,
 966			unsigned int *newseg, bool new_sec, int dir)
 967{
 968	struct free_segmap_info *free_i = FREE_I(sbi);
 969	unsigned int segno, secno, zoneno;
 970	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 971	unsigned int hint = *newseg / sbi->segs_per_sec;
 972	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 973	unsigned int left_start = hint;
 974	bool init = true;
 975	int go_left = 0;
 976	int i;
 
 977
 978	spin_lock(&free_i->segmap_lock);
 979
 980	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 
 
 
 
 
 981		segno = find_next_zero_bit(free_i->free_segmap,
 982				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
 983		if (segno < (hint + 1) * sbi->segs_per_sec)
 984			goto got_it;
 985	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 986find_other_zone:
 987	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 988	if (secno >= MAIN_SECS(sbi)) {
 989		if (dir == ALLOC_RIGHT) {
 990			secno = find_next_zero_bit(free_i->free_secmap,
 991							MAIN_SECS(sbi), 0);
 992			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 993		} else {
 994			go_left = 1;
 995			left_start = hint - 1;
 
 
 
 
 
 
 996		}
 997	}
 998	if (go_left == 0)
 999		goto skip_left;
1000
1001	while (test_bit(left_start, free_i->free_secmap)) {
1002		if (left_start > 0) {
1003			left_start--;
1004			continue;
 
 
 
1005		}
1006		left_start = find_next_zero_bit(free_i->free_secmap,
1007							MAIN_SECS(sbi), 0);
1008		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1009		break;
1010	}
1011	secno = left_start;
1012skip_left:
1013	hint = secno;
1014	segno = secno * sbi->segs_per_sec;
1015	zoneno = secno / sbi->secs_per_zone;
1016
1017	/* give up on finding another zone */
1018	if (!init)
1019		goto got_it;
1020	if (sbi->secs_per_zone == 1)
1021		goto got_it;
1022	if (zoneno == old_zoneno)
1023		goto got_it;
1024	if (dir == ALLOC_LEFT) {
1025		if (!go_left && zoneno + 1 >= total_zones)
1026			goto got_it;
1027		if (go_left && zoneno == 0)
1028			goto got_it;
1029	}
1030	for (i = 0; i < NR_CURSEG_TYPE; i++)
1031		if (CURSEG_I(sbi, i)->zone == zoneno)
1032			break;
1033
1034	if (i < NR_CURSEG_TYPE) {
1035		/* zone is in user, try another */
1036		if (go_left)
1037			hint = zoneno * sbi->secs_per_zone - 1;
1038		else if (zoneno + 1 >= total_zones)
1039			hint = 0;
1040		else
1041			hint = (zoneno + 1) * sbi->secs_per_zone;
1042		init = false;
1043		goto find_other_zone;
1044	}
1045got_it:
1046	/* set it as dirty segment in free segmap */
1047	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
 
 
 
 
 
 
 
1048	__set_inuse(sbi, segno);
1049	*newseg = segno;
 
1050	spin_unlock(&free_i->segmap_lock);
 
 
 
 
1051}
1052
1053static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1054{
1055	struct curseg_info *curseg = CURSEG_I(sbi, type);
1056	struct summary_footer *sum_footer;
 
1057
 
 
 
 
 
1058	curseg->segno = curseg->next_segno;
1059	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1060	curseg->next_blkoff = 0;
1061	curseg->next_segno = NULL_SEGNO;
1062
1063	sum_footer = &(curseg->sum_blk->footer);
1064	memset(sum_footer, 0, sizeof(struct summary_footer));
1065	if (IS_DATASEG(type))
 
 
 
1066		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1067	if (IS_NODESEG(type))
1068		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1069	__set_sit_entry_type(sbi, type, curseg->segno, modified);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072/*
1073 * Allocate a current working segment.
1074 * This function always allocates a free segment in LFS manner.
1075 */
1076static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1077{
1078	struct curseg_info *curseg = CURSEG_I(sbi, type);
1079	unsigned int segno = curseg->segno;
1080	int dir = ALLOC_LEFT;
 
1081
1082	write_sum_page(sbi, curseg->sum_blk,
1083				GET_SUM_BLOCK(sbi, segno));
1084	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1085		dir = ALLOC_RIGHT;
1086
1087	if (test_opt(sbi, NOHEAP))
1088		dir = ALLOC_RIGHT;
 
 
 
 
 
1089
1090	get_new_segment(sbi, &segno, new_sec, dir);
1091	curseg->next_segno = segno;
1092	reset_curseg(sbi, type, 1);
1093	curseg->alloc_type = LFS;
 
 
 
 
1094}
1095
1096static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1097			struct curseg_info *seg, block_t start)
1098{
1099	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1100	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1101	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1102	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1103	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1104	int i, pos;
1105
1106	for (i = 0; i < entries; i++)
1107		target_map[i] = ckpt_map[i] | cur_map[i];
1108
1109	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
 
1110
1111	seg->next_blkoff = pos;
 
 
 
1112}
1113
1114/*
1115 * If a segment is written by LFS manner, next block offset is just obtained
1116 * by increasing the current block offset. However, if a segment is written by
1117 * SSR manner, next block offset obtained by calling __next_free_blkoff
1118 */
1119static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1120				struct curseg_info *seg)
1121{
1122	if (seg->alloc_type == SSR)
1123		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1124	else
1125		seg->next_blkoff++;
1126}
1127
1128/*
1129 * This function always allocates a used segment(from dirty seglist) by SSR
1130 * manner, so it should recover the existing segment information of valid blocks
1131 */
1132static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1133{
1134	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1135	struct curseg_info *curseg = CURSEG_I(sbi, type);
1136	unsigned int new_segno = curseg->next_segno;
1137	struct f2fs_summary_block *sum_node;
1138	struct page *sum_page;
1139
1140	write_sum_page(sbi, curseg->sum_blk,
1141				GET_SUM_BLOCK(sbi, curseg->segno));
 
1142	__set_test_and_inuse(sbi, new_segno);
1143
1144	mutex_lock(&dirty_i->seglist_lock);
1145	__remove_dirty_segment(sbi, new_segno, PRE);
1146	__remove_dirty_segment(sbi, new_segno, DIRTY);
1147	mutex_unlock(&dirty_i->seglist_lock);
1148
1149	reset_curseg(sbi, type, 1);
1150	curseg->alloc_type = SSR;
1151	__next_free_blkoff(sbi, curseg, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152
1153	if (reuse) {
1154		sum_page = get_sum_page(sbi, new_segno);
1155		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1156		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1157		f2fs_put_page(sum_page, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
1158	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159}
1160
1161static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1162{
1163	struct curseg_info *curseg = CURSEG_I(sbi, type);
1164	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1165
1166	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1167		return v_ops->get_victim(sbi,
1168				&(curseg)->next_segno, BG_GC, type, SSR);
1169
1170	/* For data segments, let's do SSR more intensively */
1171	for (; type >= CURSEG_HOT_DATA; type--)
1172		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1173						BG_GC, type, SSR))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1174			return 1;
 
 
 
 
 
 
 
 
 
 
 
1175	return 0;
1176}
1177
1178/*
1179 * flush out current segment and replace it with new segment
1180 * This function should be returned with success, otherwise BUG
1181 */
1182static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1183						int type, bool force)
 
 
 
 
 
 
 
 
 
 
 
1184{
1185	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
 
 
 
 
 
1186
1187	if (force)
1188		new_curseg(sbi, type, true);
1189	else if (type == CURSEG_WARM_NODE)
1190		new_curseg(sbi, type, false);
1191	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1192		new_curseg(sbi, type, false);
1193	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1194		change_curseg(sbi, type, true);
1195	else
1196		new_curseg(sbi, type, false);
1197
1198	stat_inc_seg_type(sbi, curseg);
 
 
 
 
 
 
 
 
 
 
 
 
1199}
1200
1201static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
 
1202{
1203	struct curseg_info *curseg = CURSEG_I(sbi, type);
1204	unsigned int old_segno;
 
 
 
 
1205
 
 
 
 
 
 
 
1206	old_segno = curseg->segno;
1207	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
 
 
 
1208	locate_dirty_segment(sbi, old_segno);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1209}
1210
1211void allocate_new_segments(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212{
1213	int i;
 
1214
 
 
1215	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1216		__allocate_new_segments(sbi, i);
 
 
 
 
1217}
1218
1219static const struct segment_allocation default_salloc_ops = {
1220	.allocate_segment = allocate_segment_by_default,
1221};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222
1223int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1224{
1225	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1226	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1227	unsigned int start_segno, end_segno;
 
1228	struct cp_control cpc;
 
 
1229	int err = 0;
 
1230
1231	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1232		return -EINVAL;
1233
1234	cpc.trimmed = 0;
1235	if (end <= MAIN_BLKADDR(sbi))
1236		goto out;
1237
 
 
 
 
 
1238	/* start/end segment number in main_area */
1239	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1240	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1241						GET_SEGNO(sbi, end);
 
 
 
 
 
1242	cpc.reason = CP_DISCARD;
1243	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
 
 
1244
1245	/* do checkpoint to issue discard commands safely */
1246	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1247		cpc.trim_start = start_segno;
1248
1249		if (sbi->discard_blks == 0)
1250			break;
1251		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1252			cpc.trim_end = end_segno;
1253		else
1254			cpc.trim_end = min_t(unsigned int,
1255				rounddown(start_segno +
1256				BATCHED_TRIM_SEGMENTS(sbi),
1257				sbi->segs_per_sec) - 1, end_segno);
1258
1259		mutex_lock(&sbi->gc_mutex);
1260		err = write_checkpoint(sbi, &cpc);
1261		mutex_unlock(&sbi->gc_mutex);
1262	}
 
 
 
 
 
 
 
 
 
 
 
1263out:
1264	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
 
1265	return err;
1266}
1267
1268static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1269{
1270	struct curseg_info *curseg = CURSEG_I(sbi, type);
1271	if (curseg->next_blkoff < sbi->blocks_per_seg)
1272		return true;
1273	return false;
 
 
 
 
 
 
 
 
 
 
1274}
1275
1276static int __get_segment_type_2(struct page *page, enum page_type p_type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1277{
1278	if (p_type == DATA)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279		return CURSEG_HOT_DATA;
1280	else
1281		return CURSEG_HOT_NODE;
1282}
1283
1284static int __get_segment_type_4(struct page *page, enum page_type p_type)
1285{
1286	if (p_type == DATA) {
1287		struct inode *inode = page->mapping->host;
1288
1289		if (S_ISDIR(inode->i_mode))
1290			return CURSEG_HOT_DATA;
1291		else
1292			return CURSEG_COLD_DATA;
1293	} else {
1294		if (IS_DNODE(page) && is_cold_node(page))
1295			return CURSEG_WARM_NODE;
1296		else
1297			return CURSEG_COLD_NODE;
1298	}
1299}
1300
1301static int __get_segment_type_6(struct page *page, enum page_type p_type)
1302{
1303	if (p_type == DATA) {
1304		struct inode *inode = page->mapping->host;
1305
1306		if (S_ISDIR(inode->i_mode))
 
 
 
1307			return CURSEG_HOT_DATA;
1308		else if (is_cold_data(page) || file_is_cold(inode))
1309			return CURSEG_COLD_DATA;
1310		else
1311			return CURSEG_WARM_DATA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	} else {
1313		if (IS_DNODE(page))
1314			return is_cold_node(page) ? CURSEG_WARM_NODE :
1315						CURSEG_HOT_NODE;
1316		else
1317			return CURSEG_COLD_NODE;
1318	}
1319}
1320
1321static int __get_segment_type(struct page *page, enum page_type p_type)
 
1322{
1323	switch (F2FS_P_SB(page)->active_logs) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324	case 2:
1325		return __get_segment_type_2(page, p_type);
 
1326	case 4:
1327		return __get_segment_type_4(page, p_type);
 
 
 
 
 
 
1328	}
1329	/* NR_CURSEG_TYPE(6) logs by default */
1330	f2fs_bug_on(F2FS_P_SB(page),
1331		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1332	return __get_segment_type_6(page, p_type);
1333}
1334
1335void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336		block_t old_blkaddr, block_t *new_blkaddr,
1337		struct f2fs_summary *sum, int type)
 
1338{
1339	struct sit_info *sit_i = SIT_I(sbi);
1340	struct curseg_info *curseg;
1341	bool direct_io = (type == CURSEG_DIRECT_IO);
1342
1343	type = direct_io ? CURSEG_WARM_DATA : type;
 
 
1344
1345	curseg = CURSEG_I(sbi, type);
1346
1347	mutex_lock(&curseg->curseg_mutex);
1348	mutex_lock(&sit_i->sentry_lock);
1349
1350	/* direct_io'ed data is aligned to the segment for better performance */
1351	if (direct_io && curseg->next_blkoff &&
1352				!has_not_enough_free_secs(sbi, 0))
1353		__allocate_new_segments(sbi, type);
1354
 
 
 
 
 
 
1355	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1356
1357	/*
1358	 * __add_sum_entry should be resided under the curseg_mutex
1359	 * because, this function updates a summary entry in the
1360	 * current summary block.
1361	 */
1362	__add_sum_entry(sbi, type, sum);
1363
1364	__refresh_next_blkoff(sbi, curseg);
1365
 
 
 
 
 
 
 
 
 
 
1366	stat_inc_block_count(sbi, curseg);
1367
1368	if (!__has_curseg_space(sbi, type))
1369		sit_i->s_ops->allocate_segment(sbi, type, false);
 
 
 
 
 
 
1370	/*
1371	 * SIT information should be updated before segment allocation,
1372	 * since SSR needs latest valid block information.
1373	 */
1374	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
 
1375
1376	mutex_unlock(&sit_i->sentry_lock);
 
 
 
 
 
 
 
 
 
 
 
1377
1378	if (page && IS_NODESEG(type))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1379		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381	mutex_unlock(&curseg->curseg_mutex);
 
 
1382}
1383
1384static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
1386	int type = __get_segment_type(fio->page, fio->type);
1387
1388	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1389					&fio->new_blkaddr, sum, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1390
1391	/* writeout dirty page into bdev */
1392	f2fs_submit_page_mbio(fio);
 
 
 
 
 
1393}
1394
1395void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
 
1396{
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
1399		.type = META,
1400		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1401		.old_blkaddr = page->index,
1402		.new_blkaddr = page->index,
1403		.page = page,
 
 
1404		.encrypted_page = NULL,
 
1405	};
1406
1407	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1408		fio.rw &= ~REQ_META;
 
 
 
1409
1410	set_page_writeback(page);
1411	f2fs_submit_page_mbio(&fio);
1412}
1413
1414void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1415{
1416	struct f2fs_summary sum;
1417
1418	set_summary(&sum, nid, 0, 0);
1419	do_write_page(&sum, fio);
 
 
1420}
1421
1422void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
 
1423{
1424	struct f2fs_sb_info *sbi = fio->sbi;
1425	struct f2fs_summary sum;
1426	struct node_info ni;
1427
1428	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1429	get_node_info(sbi, dn->nid, &ni);
1430	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
 
1431	do_write_page(&sum, fio);
1432	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
 
 
1433}
1434
1435void rewrite_data_page(struct f2fs_io_info *fio)
1436{
 
 
 
 
1437	fio->new_blkaddr = fio->old_blkaddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438	stat_inc_inplace_blocks(fio->sbi);
1439	f2fs_submit_page_mbio(fio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440}
1441
1442void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
 
 
 
 
 
 
 
 
 
 
 
 
1443				block_t old_blkaddr, block_t new_blkaddr,
1444				bool recover_curseg, bool recover_newaddr)
 
1445{
1446	struct sit_info *sit_i = SIT_I(sbi);
1447	struct curseg_info *curseg;
1448	unsigned int segno, old_cursegno;
1449	struct seg_entry *se;
1450	int type;
1451	unsigned short old_blkoff;
 
1452
1453	segno = GET_SEGNO(sbi, new_blkaddr);
1454	se = get_seg_entry(sbi, segno);
1455	type = se->type;
1456
 
 
1457	if (!recover_curseg) {
1458		/* for recovery flow */
1459		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1460			if (old_blkaddr == NULL_ADDR)
1461				type = CURSEG_COLD_DATA;
1462			else
1463				type = CURSEG_WARM_DATA;
1464		}
1465	} else {
1466		if (!IS_CURSEG(sbi, segno))
 
 
 
 
1467			type = CURSEG_WARM_DATA;
 
1468	}
1469
1470	curseg = CURSEG_I(sbi, type);
 
1471
1472	mutex_lock(&curseg->curseg_mutex);
1473	mutex_lock(&sit_i->sentry_lock);
1474
1475	old_cursegno = curseg->segno;
1476	old_blkoff = curseg->next_blkoff;
 
1477
1478	/* change the current segment */
1479	if (segno != curseg->segno) {
1480		curseg->next_segno = segno;
1481		change_curseg(sbi, type, true);
 
1482	}
1483
1484	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1485	__add_sum_entry(sbi, type, sum);
1486
1487	if (!recover_curseg || recover_newaddr)
 
 
1488		update_sit_entry(sbi, new_blkaddr, 1);
1489	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
 
 
 
 
1490		update_sit_entry(sbi, old_blkaddr, -1);
 
1491
1492	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1493	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1494
1495	locate_dirty_segment(sbi, old_cursegno);
1496
1497	if (recover_curseg) {
1498		if (old_cursegno != curseg->segno) {
1499			curseg->next_segno = old_cursegno;
1500			change_curseg(sbi, type, true);
 
1501		}
1502		curseg->next_blkoff = old_blkoff;
 
1503	}
1504
1505	mutex_unlock(&sit_i->sentry_lock);
 
1506	mutex_unlock(&curseg->curseg_mutex);
 
1507}
1508
1509void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1510				block_t old_addr, block_t new_addr,
1511				unsigned char version, bool recover_curseg,
1512				bool recover_newaddr)
1513{
1514	struct f2fs_summary sum;
1515
1516	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1517
1518	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1519					recover_curseg, recover_newaddr);
1520
1521	f2fs_update_data_blkaddr(dn, new_addr);
1522}
1523
1524void f2fs_wait_on_page_writeback(struct page *page,
1525				enum page_type type, bool ordered)
1526{
1527	if (PageWriteback(page)) {
1528		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1529
1530		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1531		if (ordered)
 
 
 
1532			wait_on_page_writeback(page);
1533		else
 
 
1534			wait_for_stable_page(page);
 
1535	}
1536}
1537
1538void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1539							block_t blkaddr)
1540{
 
1541	struct page *cpage;
1542
1543	if (blkaddr == NEW_ADDR)
1544		return;
1545
1546	f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
 
1547
1548	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1549	if (cpage) {
1550		f2fs_wait_on_page_writeback(cpage, DATA, true);
1551		f2fs_put_page(cpage, 1);
1552	}
1553}
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1556{
1557	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558	struct curseg_info *seg_i;
1559	unsigned char *kaddr;
1560	struct page *page;
1561	block_t start;
1562	int i, j, offset;
1563
1564	start = start_sum_block(sbi);
1565
1566	page = get_meta_page(sbi, start++);
 
 
1567	kaddr = (unsigned char *)page_address(page);
1568
1569	/* Step 1: restore nat cache */
1570	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1571	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1572
1573	/* Step 2: restore sit cache */
1574	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1575	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1576	offset = 2 * SUM_JOURNAL_SIZE;
1577
1578	/* Step 3: restore summary entries */
1579	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1580		unsigned short blk_off;
1581		unsigned int segno;
1582
1583		seg_i = CURSEG_I(sbi, i);
1584		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1585		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1586		seg_i->next_segno = segno;
1587		reset_curseg(sbi, i, 0);
1588		seg_i->alloc_type = ckpt->alloc_type[i];
1589		seg_i->next_blkoff = blk_off;
1590
1591		if (seg_i->alloc_type == SSR)
1592			blk_off = sbi->blocks_per_seg;
1593
1594		for (j = 0; j < blk_off; j++) {
1595			struct f2fs_summary *s;
 
1596			s = (struct f2fs_summary *)(kaddr + offset);
1597			seg_i->sum_blk->entries[j] = *s;
1598			offset += SUMMARY_SIZE;
1599			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1600						SUM_FOOTER_SIZE)
1601				continue;
1602
1603			f2fs_put_page(page, 1);
1604			page = NULL;
1605
1606			page = get_meta_page(sbi, start++);
 
 
1607			kaddr = (unsigned char *)page_address(page);
1608			offset = 0;
1609		}
1610	}
1611	f2fs_put_page(page, 1);
1612	return 0;
1613}
1614
1615static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1616{
1617	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618	struct f2fs_summary_block *sum;
1619	struct curseg_info *curseg;
1620	struct page *new;
1621	unsigned short blk_off;
1622	unsigned int segno = 0;
1623	block_t blk_addr = 0;
 
1624
1625	/* get segment number and block addr */
1626	if (IS_DATASEG(type)) {
1627		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1628		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1629							CURSEG_HOT_DATA]);
1630		if (__exist_node_summaries(sbi))
1631			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1632		else
1633			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1634	} else {
1635		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1636							CURSEG_HOT_NODE]);
1637		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1638							CURSEG_HOT_NODE]);
1639		if (__exist_node_summaries(sbi))
1640			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1641							type - CURSEG_HOT_NODE);
1642		else
1643			blk_addr = GET_SUM_BLOCK(sbi, segno);
1644	}
1645
1646	new = get_meta_page(sbi, blk_addr);
 
 
1647	sum = (struct f2fs_summary_block *)page_address(new);
1648
1649	if (IS_NODESEG(type)) {
1650		if (__exist_node_summaries(sbi)) {
1651			struct f2fs_summary *ns = &sum->entries[0];
1652			int i;
1653			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
 
1654				ns->version = 0;
1655				ns->ofs_in_node = 0;
1656			}
1657		} else {
1658			int err;
1659
1660			err = restore_node_summary(sbi, segno, sum);
1661			if (err) {
1662				f2fs_put_page(new, 1);
1663				return err;
1664			}
1665		}
1666	}
1667
1668	/* set uncompleted segment to curseg */
1669	curseg = CURSEG_I(sbi, type);
1670	mutex_lock(&curseg->curseg_mutex);
1671
1672	/* update journal info */
1673	down_write(&curseg->journal_rwsem);
1674	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1675	up_write(&curseg->journal_rwsem);
1676
1677	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1678	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1679	curseg->next_segno = segno;
1680	reset_curseg(sbi, type, 0);
1681	curseg->alloc_type = ckpt->alloc_type[type];
1682	curseg->next_blkoff = blk_off;
1683	mutex_unlock(&curseg->curseg_mutex);
 
1684	f2fs_put_page(new, 1);
1685	return 0;
1686}
1687
1688static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1689{
 
 
1690	int type = CURSEG_HOT_DATA;
1691	int err;
1692
1693	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1694		int npages = npages_for_summary_flush(sbi, true);
1695
1696		if (npages >= 2)
1697			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1698							META_CP, true);
1699
1700		/* restore for compacted data summary */
1701		if (read_compacted_summaries(sbi))
1702			return -EINVAL;
 
1703		type = CURSEG_HOT_NODE;
1704	}
1705
1706	if (__exist_node_summaries(sbi))
1707		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1708					NR_CURSEG_TYPE - type, META_CP, true);
 
1709
1710	for (; type <= CURSEG_COLD_NODE; type++) {
1711		err = read_normal_summaries(sbi, type);
1712		if (err)
1713			return err;
1714	}
1715
 
 
 
 
 
 
 
 
1716	return 0;
1717}
1718
1719static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1720{
1721	struct page *page;
1722	unsigned char *kaddr;
1723	struct f2fs_summary *summary;
1724	struct curseg_info *seg_i;
1725	int written_size = 0;
1726	int i, j;
1727
1728	page = grab_meta_page(sbi, blkaddr++);
1729	kaddr = (unsigned char *)page_address(page);
 
1730
1731	/* Step 1: write nat cache */
1732	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1733	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1734	written_size += SUM_JOURNAL_SIZE;
1735
1736	/* Step 2: write sit cache */
1737	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1738	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1739	written_size += SUM_JOURNAL_SIZE;
1740
1741	/* Step 3: write summary entries */
1742	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1743		unsigned short blkoff;
1744		seg_i = CURSEG_I(sbi, i);
1745		if (sbi->ckpt->alloc_type[i] == SSR)
1746			blkoff = sbi->blocks_per_seg;
1747		else
1748			blkoff = curseg_blkoff(sbi, i);
1749
1750		for (j = 0; j < blkoff; j++) {
1751			if (!page) {
1752				page = grab_meta_page(sbi, blkaddr++);
1753				kaddr = (unsigned char *)page_address(page);
 
1754				written_size = 0;
1755			}
1756			summary = (struct f2fs_summary *)(kaddr + written_size);
1757			*summary = seg_i->sum_blk->entries[j];
1758			written_size += SUMMARY_SIZE;
1759
1760			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1761							SUM_FOOTER_SIZE)
1762				continue;
1763
1764			set_page_dirty(page);
1765			f2fs_put_page(page, 1);
1766			page = NULL;
1767		}
1768	}
1769	if (page) {
1770		set_page_dirty(page);
1771		f2fs_put_page(page, 1);
1772	}
1773}
1774
1775static void write_normal_summaries(struct f2fs_sb_info *sbi,
1776					block_t blkaddr, int type)
1777{
1778	int i, end;
 
1779	if (IS_DATASEG(type))
1780		end = type + NR_CURSEG_DATA_TYPE;
1781	else
1782		end = type + NR_CURSEG_NODE_TYPE;
1783
1784	for (i = type; i < end; i++)
1785		write_current_sum_page(sbi, i, blkaddr + (i - type));
1786}
1787
1788void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1789{
1790	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1791		write_compacted_summaries(sbi, start_blk);
1792	else
1793		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1794}
1795
1796void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1797{
1798	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1799}
1800
1801int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1802					unsigned int val, int alloc)
1803{
1804	int i;
1805
1806	if (type == NAT_JOURNAL) {
1807		for (i = 0; i < nats_in_cursum(journal); i++) {
1808			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1809				return i;
1810		}
1811		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1812			return update_nats_in_cursum(journal, 1);
1813	} else if (type == SIT_JOURNAL) {
1814		for (i = 0; i < sits_in_cursum(journal); i++)
1815			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1816				return i;
1817		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1818			return update_sits_in_cursum(journal, 1);
1819	}
1820	return -1;
1821}
1822
1823static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1824					unsigned int segno)
1825{
1826	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1827}
1828
1829static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1830					unsigned int start)
1831{
1832	struct sit_info *sit_i = SIT_I(sbi);
1833	struct page *src_page, *dst_page;
1834	pgoff_t src_off, dst_off;
1835	void *src_addr, *dst_addr;
1836
1837	src_off = current_sit_addr(sbi, start);
1838	dst_off = next_sit_addr(sbi, src_off);
1839
1840	/* get current sit block page without lock */
1841	src_page = get_meta_page(sbi, src_off);
1842	dst_page = grab_meta_page(sbi, dst_off);
1843	f2fs_bug_on(sbi, PageDirty(src_page));
1844
1845	src_addr = page_address(src_page);
1846	dst_addr = page_address(dst_page);
1847	memcpy(dst_addr, src_addr, PAGE_SIZE);
1848
1849	set_page_dirty(dst_page);
1850	f2fs_put_page(src_page, 1);
1851
 
1852	set_to_next_sit(sit_i, start);
1853
1854	return dst_page;
1855}
1856
1857static struct sit_entry_set *grab_sit_entry_set(void)
1858{
1859	struct sit_entry_set *ses =
1860			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
 
1861
1862	ses->entry_cnt = 0;
1863	INIT_LIST_HEAD(&ses->set_list);
1864	return ses;
1865}
1866
1867static void release_sit_entry_set(struct sit_entry_set *ses)
1868{
1869	list_del(&ses->set_list);
1870	kmem_cache_free(sit_entry_set_slab, ses);
1871}
1872
1873static void adjust_sit_entry_set(struct sit_entry_set *ses,
1874						struct list_head *head)
1875{
1876	struct sit_entry_set *next = ses;
1877
1878	if (list_is_last(&ses->set_list, head))
1879		return;
1880
1881	list_for_each_entry_continue(next, head, set_list)
1882		if (ses->entry_cnt <= next->entry_cnt)
1883			break;
 
 
1884
1885	list_move_tail(&ses->set_list, &next->set_list);
1886}
1887
1888static void add_sit_entry(unsigned int segno, struct list_head *head)
1889{
1890	struct sit_entry_set *ses;
1891	unsigned int start_segno = START_SEGNO(segno);
1892
1893	list_for_each_entry(ses, head, set_list) {
1894		if (ses->start_segno == start_segno) {
1895			ses->entry_cnt++;
1896			adjust_sit_entry_set(ses, head);
1897			return;
1898		}
1899	}
1900
1901	ses = grab_sit_entry_set();
1902
1903	ses->start_segno = start_segno;
1904	ses->entry_cnt++;
1905	list_add(&ses->set_list, head);
1906}
1907
1908static void add_sits_in_set(struct f2fs_sb_info *sbi)
1909{
1910	struct f2fs_sm_info *sm_info = SM_I(sbi);
1911	struct list_head *set_list = &sm_info->sit_entry_set;
1912	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1913	unsigned int segno;
1914
1915	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1916		add_sit_entry(segno, set_list);
1917}
1918
1919static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1920{
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < sits_in_cursum(journal); i++) {
1927		unsigned int segno;
1928		bool dirtied;
1929
1930		segno = le32_to_cpu(segno_in_journal(journal, i));
1931		dirtied = __mark_sit_entry_dirty(sbi, segno);
1932
1933		if (!dirtied)
1934			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1935	}
1936	update_sits_in_cursum(journal, -i);
1937	up_write(&curseg->journal_rwsem);
1938}
1939
1940/*
1941 * CP calls this function, which flushes SIT entries including sit_journal,
1942 * and moves prefree segs to free segs.
1943 */
1944void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1945{
1946	struct sit_info *sit_i = SIT_I(sbi);
1947	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1948	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1949	struct f2fs_journal *journal = curseg->journal;
1950	struct sit_entry_set *ses, *tmp;
1951	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1952	bool to_journal = true;
1953	struct seg_entry *se;
1954
1955	mutex_lock(&sit_i->sentry_lock);
1956
1957	if (!sit_i->dirty_sentries)
1958		goto out;
1959
1960	/*
1961	 * add and account sit entries of dirty bitmap in sit entry
1962	 * set temporarily
1963	 */
1964	add_sits_in_set(sbi);
1965
1966	/*
1967	 * if there are no enough space in journal to store dirty sit
1968	 * entries, remove all entries from journal and add and account
1969	 * them in sit entry set.
1970	 */
1971	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
 
1972		remove_sits_in_journal(sbi);
1973
1974	/*
1975	 * there are two steps to flush sit entries:
1976	 * #1, flush sit entries to journal in current cold data summary block.
1977	 * #2, flush sit entries to sit page.
1978	 */
1979	list_for_each_entry_safe(ses, tmp, head, set_list) {
1980		struct page *page = NULL;
1981		struct f2fs_sit_block *raw_sit = NULL;
1982		unsigned int start_segno = ses->start_segno;
1983		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1984						(unsigned long)MAIN_SEGS(sbi));
1985		unsigned int segno = start_segno;
1986
1987		if (to_journal &&
1988			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1989			to_journal = false;
1990
1991		if (to_journal) {
1992			down_write(&curseg->journal_rwsem);
1993		} else {
1994			page = get_next_sit_page(sbi, start_segno);
1995			raw_sit = page_address(page);
1996		}
1997
1998		/* flush dirty sit entries in region of current sit set */
1999		for_each_set_bit_from(segno, bitmap, end) {
2000			int offset, sit_offset;
2001
2002			se = get_seg_entry(sbi, segno);
 
 
 
 
 
2003
2004			/* add discard candidates */
2005			if (cpc->reason != CP_DISCARD) {
2006				cpc->trim_start = segno;
2007				add_discard_addrs(sbi, cpc);
2008			}
2009
2010			if (to_journal) {
2011				offset = lookup_journal_in_cursum(journal,
2012							SIT_JOURNAL, segno, 1);
2013				f2fs_bug_on(sbi, offset < 0);
2014				segno_in_journal(journal, offset) =
2015							cpu_to_le32(segno);
2016				seg_info_to_raw_sit(se,
2017					&sit_in_journal(journal, offset));
 
 
2018			} else {
2019				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2020				seg_info_to_raw_sit(se,
2021						&raw_sit->entries[sit_offset]);
 
 
2022			}
2023
2024			__clear_bit(segno, bitmap);
2025			sit_i->dirty_sentries--;
2026			ses->entry_cnt--;
2027		}
2028
2029		if (to_journal)
2030			up_write(&curseg->journal_rwsem);
2031		else
2032			f2fs_put_page(page, 1);
2033
2034		f2fs_bug_on(sbi, ses->entry_cnt);
2035		release_sit_entry_set(ses);
2036	}
2037
2038	f2fs_bug_on(sbi, !list_empty(head));
2039	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2040out:
2041	if (cpc->reason == CP_DISCARD) {
 
 
2042		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2043			add_discard_addrs(sbi, cpc);
 
 
2044	}
2045	mutex_unlock(&sit_i->sentry_lock);
2046
2047	set_prefree_as_free_segments(sbi);
2048}
2049
2050static int build_sit_info(struct f2fs_sb_info *sbi)
2051{
2052	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2053	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054	struct sit_info *sit_i;
2055	unsigned int sit_segs, start;
2056	char *src_bitmap, *dst_bitmap;
2057	unsigned int bitmap_size;
 
2058
2059	/* allocate memory for SIT information */
2060	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2061	if (!sit_i)
2062		return -ENOMEM;
2063
2064	SM_I(sbi)->sit_info = sit_i;
2065
2066	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2067					sizeof(struct seg_entry), GFP_KERNEL);
 
 
2068	if (!sit_i->sentries)
2069		return -ENOMEM;
2070
2071	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2072	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 
2073	if (!sit_i->dirty_sentries_bitmap)
2074		return -ENOMEM;
2075
 
 
 
 
 
 
 
 
 
 
 
2076	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2077		sit_i->sentries[start].cur_valid_map
2078			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2079		sit_i->sentries[start].ckpt_valid_map
2080			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2081		sit_i->sentries[start].discard_map
2082			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083		if (!sit_i->sentries[start].cur_valid_map ||
2084				!sit_i->sentries[start].ckpt_valid_map ||
2085				!sit_i->sentries[start].discard_map)
2086			return -ENOMEM;
 
 
 
 
 
2087	}
2088
2089	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090	if (!sit_i->tmp_map)
2091		return -ENOMEM;
2092
2093	if (sbi->segs_per_sec > 1) {
2094		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2095					sizeof(struct sec_entry), GFP_KERNEL);
 
 
2096		if (!sit_i->sec_entries)
2097			return -ENOMEM;
2098	}
2099
2100	/* get information related with SIT */
2101	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2102
2103	/* setup SIT bitmap from ckeckpoint pack */
2104	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2105	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2106
2107	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2108	if (!dst_bitmap)
2109		return -ENOMEM;
2110
2111	/* init SIT information */
2112	sit_i->s_ops = &default_salloc_ops;
 
 
 
 
 
 
 
 
 
2113
2114	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2115	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2116	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2117	sit_i->sit_bitmap = dst_bitmap;
2118	sit_i->bitmap_size = bitmap_size;
2119	sit_i->dirty_sentries = 0;
2120	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2121	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2122	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2123	mutex_init(&sit_i->sentry_lock);
2124	return 0;
2125}
2126
2127static int build_free_segmap(struct f2fs_sb_info *sbi)
2128{
2129	struct free_segmap_info *free_i;
2130	unsigned int bitmap_size, sec_bitmap_size;
2131
2132	/* allocate memory for free segmap information */
2133	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2134	if (!free_i)
2135		return -ENOMEM;
2136
2137	SM_I(sbi)->free_info = free_i;
2138
2139	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2140	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2141	if (!free_i->free_segmap)
2142		return -ENOMEM;
2143
2144	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2145	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2146	if (!free_i->free_secmap)
2147		return -ENOMEM;
2148
2149	/* set all segments as dirty temporarily */
2150	memset(free_i->free_segmap, 0xff, bitmap_size);
2151	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2152
2153	/* init free segmap information */
2154	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2155	free_i->free_segments = 0;
2156	free_i->free_sections = 0;
2157	spin_lock_init(&free_i->segmap_lock);
2158	return 0;
2159}
2160
2161static int build_curseg(struct f2fs_sb_info *sbi)
2162{
2163	struct curseg_info *array;
2164	int i;
2165
2166	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
 
2167	if (!array)
2168		return -ENOMEM;
2169
2170	SM_I(sbi)->curseg_array = array;
2171
2172	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2173		mutex_init(&array[i].curseg_mutex);
2174		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2175		if (!array[i].sum_blk)
2176			return -ENOMEM;
2177		init_rwsem(&array[i].journal_rwsem);
2178		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2179							GFP_KERNEL);
2180		if (!array[i].journal)
2181			return -ENOMEM;
2182		array[i].segno = NULL_SEGNO;
2183		array[i].next_blkoff = 0;
2184	}
2185	return restore_curseg_summaries(sbi);
2186}
2187
2188static void build_sit_entries(struct f2fs_sb_info *sbi)
2189{
2190	struct sit_info *sit_i = SIT_I(sbi);
2191	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2192	struct f2fs_journal *journal = curseg->journal;
 
 
2193	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2194	unsigned int i, start, end;
2195	unsigned int readed, start_blk = 0;
2196	int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
 
2197
2198	do {
2199		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
 
2200
2201		start = start_blk * sit_i->sents_per_block;
2202		end = (start_blk + readed) * sit_i->sents_per_block;
2203
2204		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2205			struct seg_entry *se = &sit_i->sentries[start];
2206			struct f2fs_sit_block *sit_blk;
2207			struct f2fs_sit_entry sit;
2208			struct page *page;
2209
2210			down_read(&curseg->journal_rwsem);
2211			for (i = 0; i < sits_in_cursum(journal); i++) {
2212				if (le32_to_cpu(segno_in_journal(journal, i))
2213								== start) {
2214					sit = sit_in_journal(journal, i);
2215					up_read(&curseg->journal_rwsem);
2216					goto got_it;
2217				}
2218			}
2219			up_read(&curseg->journal_rwsem);
2220
2221			page = get_current_sit_page(sbi, start);
 
 
2222			sit_blk = (struct f2fs_sit_block *)page_address(page);
2223			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2224			f2fs_put_page(page, 1);
2225got_it:
2226			check_block_count(sbi, start, &sit);
 
 
2227			seg_info_from_raw_sit(se, &sit);
2228
2229			/* build discard map only one time */
2230			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2231			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
 
 
 
 
 
 
2232
2233			if (sbi->segs_per_sec > 1) {
2234				struct sec_entry *e = get_sec_entry(sbi, start);
2235				e->valid_blocks += se->valid_blocks;
 
 
 
 
 
2236			}
 
 
 
 
 
 
 
 
2237		}
2238		start_blk += readed;
2239	} while (start_blk < sit_blk_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2240}
2241
2242static void init_free_segmap(struct f2fs_sb_info *sbi)
2243{
2244	unsigned int start;
2245	int type;
 
2246
2247	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2248		struct seg_entry *sentry = get_seg_entry(sbi, start);
 
 
2249		if (!sentry->valid_blocks)
2250			__set_free(sbi, start);
 
 
 
2251	}
2252
2253	/* set use the current segments */
2254	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2255		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
 
2256		__set_test_and_inuse(sbi, curseg_t->segno);
2257	}
2258}
2259
2260static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2261{
2262	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2263	struct free_segmap_info *free_i = FREE_I(sbi);
2264	unsigned int segno = 0, offset = 0;
2265	unsigned short valid_blocks;
2266
2267	while (1) {
2268		/* find dirty segment based on free segmap */
2269		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2270		if (segno >= MAIN_SEGS(sbi))
2271			break;
2272		offset = segno + 1;
2273		valid_blocks = get_valid_blocks(sbi, segno, 0);
2274		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
 
2275			continue;
2276		if (valid_blocks > sbi->blocks_per_seg) {
2277			f2fs_bug_on(sbi, 1);
2278			continue;
2279		}
2280		mutex_lock(&dirty_i->seglist_lock);
2281		__locate_dirty_segment(sbi, segno, DIRTY);
2282		mutex_unlock(&dirty_i->seglist_lock);
2283	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284}
2285
2286static int init_victim_secmap(struct f2fs_sb_info *sbi)
2287{
2288	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2289	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2290
2291	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2292	if (!dirty_i->victim_secmap)
2293		return -ENOMEM;
 
 
 
 
 
 
 
2294	return 0;
2295}
2296
2297static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2298{
2299	struct dirty_seglist_info *dirty_i;
2300	unsigned int bitmap_size, i;
2301
2302	/* allocate memory for dirty segments list information */
2303	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
 
2304	if (!dirty_i)
2305		return -ENOMEM;
2306
2307	SM_I(sbi)->dirty_info = dirty_i;
2308	mutex_init(&dirty_i->seglist_lock);
2309
2310	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2311
2312	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2313		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 
2314		if (!dirty_i->dirty_segmap[i])
2315			return -ENOMEM;
2316	}
2317
 
 
 
 
 
 
 
 
2318	init_dirty_segmap(sbi);
2319	return init_victim_secmap(sbi);
2320}
2321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322/*
2323 * Update min, max modified time for cost-benefit GC algorithm
2324 */
2325static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2326{
2327	struct sit_info *sit_i = SIT_I(sbi);
2328	unsigned int segno;
2329
2330	mutex_lock(&sit_i->sentry_lock);
2331
2332	sit_i->min_mtime = LLONG_MAX;
2333
2334	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2335		unsigned int i;
2336		unsigned long long mtime = 0;
2337
2338		for (i = 0; i < sbi->segs_per_sec; i++)
2339			mtime += get_seg_entry(sbi, segno + i)->mtime;
2340
2341		mtime = div_u64(mtime, sbi->segs_per_sec);
2342
2343		if (sit_i->min_mtime > mtime)
2344			sit_i->min_mtime = mtime;
2345	}
2346	sit_i->max_mtime = get_mtime(sbi);
2347	mutex_unlock(&sit_i->sentry_lock);
 
2348}
2349
2350int build_segment_manager(struct f2fs_sb_info *sbi)
2351{
2352	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2353	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2354	struct f2fs_sm_info *sm_info;
2355	int err;
2356
2357	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2358	if (!sm_info)
2359		return -ENOMEM;
2360
2361	/* init sm info */
2362	sbi->sm_info = sm_info;
2363	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2364	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2365	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2366	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2367	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2368	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2369	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2370	sm_info->rec_prefree_segments = sm_info->main_segments *
2371					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2372	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
 
 
 
 
2373	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2374	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
 
 
 
2375
2376	INIT_LIST_HEAD(&sm_info->discard_list);
2377	sm_info->nr_discards = 0;
2378	sm_info->max_discards = 0;
2379
2380	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2381
2382	INIT_LIST_HEAD(&sm_info->sit_entry_set);
 
 
2383
2384	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2385		err = create_flush_cmd_control(sbi);
2386		if (err)
2387			return err;
2388	}
2389
2390	err = build_sit_info(sbi);
2391	if (err)
2392		return err;
2393	err = build_free_segmap(sbi);
2394	if (err)
2395		return err;
2396	err = build_curseg(sbi);
2397	if (err)
2398		return err;
2399
2400	/* reinit free segmap based on SIT */
2401	build_sit_entries(sbi);
 
 
2402
2403	init_free_segmap(sbi);
2404	err = build_dirty_segmap(sbi);
2405	if (err)
2406		return err;
2407
 
 
 
 
2408	init_min_max_mtime(sbi);
2409	return 0;
2410}
2411
2412static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2413		enum dirty_type dirty_type)
2414{
2415	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416
2417	mutex_lock(&dirty_i->seglist_lock);
2418	kvfree(dirty_i->dirty_segmap[dirty_type]);
2419	dirty_i->nr_dirty[dirty_type] = 0;
2420	mutex_unlock(&dirty_i->seglist_lock);
2421}
2422
2423static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2424{
2425	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 
 
2426	kvfree(dirty_i->victim_secmap);
2427}
2428
2429static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2430{
2431	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2432	int i;
2433
2434	if (!dirty_i)
2435		return;
2436
2437	/* discard pre-free/dirty segments list */
2438	for (i = 0; i < NR_DIRTY_TYPE; i++)
2439		discard_dirty_segmap(sbi, i);
2440
 
 
 
 
 
 
2441	destroy_victim_secmap(sbi);
2442	SM_I(sbi)->dirty_info = NULL;
2443	kfree(dirty_i);
2444}
2445
2446static void destroy_curseg(struct f2fs_sb_info *sbi)
2447{
2448	struct curseg_info *array = SM_I(sbi)->curseg_array;
2449	int i;
2450
2451	if (!array)
2452		return;
2453	SM_I(sbi)->curseg_array = NULL;
2454	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2455		kfree(array[i].sum_blk);
2456		kfree(array[i].journal);
2457	}
2458	kfree(array);
2459}
2460
2461static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2462{
2463	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
 
2464	if (!free_i)
2465		return;
2466	SM_I(sbi)->free_info = NULL;
2467	kvfree(free_i->free_segmap);
2468	kvfree(free_i->free_secmap);
2469	kfree(free_i);
2470}
2471
2472static void destroy_sit_info(struct f2fs_sb_info *sbi)
2473{
2474	struct sit_info *sit_i = SIT_I(sbi);
2475	unsigned int start;
2476
2477	if (!sit_i)
2478		return;
2479
2480	if (sit_i->sentries) {
2481		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2482			kfree(sit_i->sentries[start].cur_valid_map);
2483			kfree(sit_i->sentries[start].ckpt_valid_map);
2484			kfree(sit_i->sentries[start].discard_map);
2485		}
2486	}
2487	kfree(sit_i->tmp_map);
2488
2489	kvfree(sit_i->sentries);
2490	kvfree(sit_i->sec_entries);
2491	kvfree(sit_i->dirty_sentries_bitmap);
2492
2493	SM_I(sbi)->sit_info = NULL;
2494	kfree(sit_i->sit_bitmap);
 
 
 
 
2495	kfree(sit_i);
2496}
2497
2498void destroy_segment_manager(struct f2fs_sb_info *sbi)
2499{
2500	struct f2fs_sm_info *sm_info = SM_I(sbi);
2501
2502	if (!sm_info)
2503		return;
2504	destroy_flush_cmd_control(sbi);
 
2505	destroy_dirty_segmap(sbi);
2506	destroy_curseg(sbi);
2507	destroy_free_segmap(sbi);
2508	destroy_sit_info(sbi);
2509	sbi->sm_info = NULL;
2510	kfree(sm_info);
2511}
2512
2513int __init create_segment_manager_caches(void)
2514{
2515	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2516			sizeof(struct discard_entry));
2517	if (!discard_entry_slab)
2518		goto fail;
2519
2520	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
 
 
 
 
 
2521			sizeof(struct sit_entry_set));
2522	if (!sit_entry_set_slab)
2523		goto destory_discard_entry;
2524
2525	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2526			sizeof(struct inmem_pages));
2527	if (!inmem_entry_slab)
2528		goto destroy_sit_entry_set;
2529	return 0;
2530
2531destroy_sit_entry_set:
2532	kmem_cache_destroy(sit_entry_set_slab);
2533destory_discard_entry:
 
 
2534	kmem_cache_destroy(discard_entry_slab);
2535fail:
2536	return -ENOMEM;
2537}
2538
2539void destroy_segment_manager_caches(void)
2540{
2541	kmem_cache_destroy(sit_entry_set_slab);
 
2542	kmem_cache_destroy(discard_entry_slab);
2543	kmem_cache_destroy(inmem_entry_slab);
2544}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/sched/mm.h>
  13#include <linux/prefetch.h>
  14#include <linux/kthread.h>
  15#include <linux/swap.h>
  16#include <linux/timer.h>
  17#include <linux/freezer.h>
  18#include <linux/sched/signal.h>
  19#include <linux/random.h>
  20
  21#include "f2fs.h"
  22#include "segment.h"
  23#include "node.h"
  24#include "gc.h"
  25#include "iostat.h"
  26#include <trace/events/f2fs.h>
  27
  28#define __reverse_ffz(x) __reverse_ffs(~(x))
  29
  30static struct kmem_cache *discard_entry_slab;
  31static struct kmem_cache *discard_cmd_slab;
  32static struct kmem_cache *sit_entry_set_slab;
  33static struct kmem_cache *revoke_entry_slab;
  34
  35static unsigned long __reverse_ulong(unsigned char *str)
  36{
  37	unsigned long tmp = 0;
  38	int shift = 24, idx = 0;
  39
  40#if BITS_PER_LONG == 64
  41	shift = 56;
  42#endif
  43	while (shift >= 0) {
  44		tmp |= (unsigned long)str[idx++] << shift;
  45		shift -= BITS_PER_BYTE;
  46	}
  47	return tmp;
  48}
  49
  50/*
  51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  53 */
  54static inline unsigned long __reverse_ffs(unsigned long word)
  55{
  56	int num = 0;
  57
  58#if BITS_PER_LONG == 64
  59	if ((word & 0xffffffff00000000UL) == 0)
  60		num += 32;
  61	else
  62		word >>= 32;
  63#endif
  64	if ((word & 0xffff0000) == 0)
  65		num += 16;
  66	else
  67		word >>= 16;
  68
  69	if ((word & 0xff00) == 0)
  70		num += 8;
  71	else
  72		word >>= 8;
  73
  74	if ((word & 0xf0) == 0)
  75		num += 4;
  76	else
  77		word >>= 4;
  78
  79	if ((word & 0xc) == 0)
  80		num += 2;
  81	else
  82		word >>= 2;
  83
  84	if ((word & 0x2) == 0)
  85		num += 1;
  86	return num;
  87}
  88
  89/*
  90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  92 * @size must be integral times of unsigned long.
  93 * Example:
  94 *                             MSB <--> LSB
  95 *   f2fs_set_bit(0, bitmap) => 1000 0000
  96 *   f2fs_set_bit(7, bitmap) => 0000 0001
  97 */
  98static unsigned long __find_rev_next_bit(const unsigned long *addr,
  99			unsigned long size, unsigned long offset)
 100{
 101	const unsigned long *p = addr + BIT_WORD(offset);
 102	unsigned long result = size;
 103	unsigned long tmp;
 104
 105	if (offset >= size)
 106		return size;
 107
 108	size -= (offset & ~(BITS_PER_LONG - 1));
 109	offset %= BITS_PER_LONG;
 110
 111	while (1) {
 112		if (*p == 0)
 113			goto pass;
 114
 115		tmp = __reverse_ulong((unsigned char *)p);
 116
 117		tmp &= ~0UL >> offset;
 118		if (size < BITS_PER_LONG)
 119			tmp &= (~0UL << (BITS_PER_LONG - size));
 120		if (tmp)
 121			goto found;
 122pass:
 123		if (size <= BITS_PER_LONG)
 124			break;
 125		size -= BITS_PER_LONG;
 126		offset = 0;
 127		p++;
 128	}
 129	return result;
 130found:
 131	return result - size + __reverse_ffs(tmp);
 132}
 133
 134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 135			unsigned long size, unsigned long offset)
 136{
 137	const unsigned long *p = addr + BIT_WORD(offset);
 138	unsigned long result = size;
 139	unsigned long tmp;
 140
 141	if (offset >= size)
 142		return size;
 143
 144	size -= (offset & ~(BITS_PER_LONG - 1));
 145	offset %= BITS_PER_LONG;
 146
 147	while (1) {
 148		if (*p == ~0UL)
 149			goto pass;
 150
 151		tmp = __reverse_ulong((unsigned char *)p);
 152
 153		if (offset)
 154			tmp |= ~0UL << (BITS_PER_LONG - offset);
 155		if (size < BITS_PER_LONG)
 156			tmp |= ~0UL >> size;
 157		if (tmp != ~0UL)
 158			goto found;
 159pass:
 160		if (size <= BITS_PER_LONG)
 161			break;
 162		size -= BITS_PER_LONG;
 163		offset = 0;
 164		p++;
 165	}
 166	return result;
 167found:
 168	return result - size + __reverse_ffz(tmp);
 169}
 170
 171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 172{
 173	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 174	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 175	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 176
 177	if (f2fs_lfs_mode(sbi))
 178		return false;
 179	if (sbi->gc_mode == GC_URGENT_HIGH)
 180		return true;
 181	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 182		return true;
 183
 184	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 185			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 186}
 187
 188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
 189{
 190	struct f2fs_inode_info *fi = F2FS_I(inode);
 191
 192	if (!f2fs_is_atomic_file(inode))
 193		return;
 194
 195	if (clean)
 196		truncate_inode_pages_final(inode->i_mapping);
 197
 198	release_atomic_write_cnt(inode);
 199	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
 200	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
 201	clear_inode_flag(inode, FI_ATOMIC_FILE);
 202	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
 203		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
 204		f2fs_mark_inode_dirty_sync(inode, true);
 205	}
 206	stat_dec_atomic_inode(inode);
 207
 208	F2FS_I(inode)->atomic_write_task = NULL;
 
 
 
 
 
 209
 210	if (clean) {
 211		f2fs_i_size_write(inode, fi->original_i_size);
 212		fi->original_i_size = 0;
 213	}
 214	/* avoid stale dirty inode during eviction */
 215	sync_inode_metadata(inode, 0);
 216}
 217
 218static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
 219			block_t new_addr, block_t *old_addr, bool recover)
 220{
 221	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 222	struct dnode_of_data dn;
 223	struct node_info ni;
 224	int err;
 
 
 
 
 
 
 
 225
 226retry:
 227	set_new_dnode(&dn, inode, NULL, NULL, 0);
 228	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
 229	if (err) {
 230		if (err == -ENOMEM) {
 231			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 232			goto retry;
 233		}
 234		return err;
 235	}
 236
 237	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
 238	if (err) {
 239		f2fs_put_dnode(&dn);
 240		return err;
 241	}
 242
 243	if (recover) {
 244		/* dn.data_blkaddr is always valid */
 245		if (!__is_valid_data_blkaddr(new_addr)) {
 246			if (new_addr == NULL_ADDR)
 247				dec_valid_block_count(sbi, inode, 1);
 248			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 249			f2fs_update_data_blkaddr(&dn, new_addr);
 250		} else {
 251			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 252				new_addr, ni.version, true, true);
 253		}
 254	} else {
 255		blkcnt_t count = 1;
 256
 257		err = inc_valid_block_count(sbi, inode, &count, true);
 258		if (err) {
 259			f2fs_put_dnode(&dn);
 260			return err;
 261		}
 
 
 
 
 
 262
 263		*old_addr = dn.data_blkaddr;
 264		f2fs_truncate_data_blocks_range(&dn, 1);
 265		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
 266
 267		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
 268					ni.version, true, false);
 269	}
 270
 271	f2fs_put_dnode(&dn);
 272
 273	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
 274			index, old_addr ? *old_addr : 0, new_addr, recover);
 275	return 0;
 276}
 277
 278static void __complete_revoke_list(struct inode *inode, struct list_head *head,
 279					bool revoke)
 280{
 281	struct revoke_entry *cur, *tmp;
 282	pgoff_t start_index = 0;
 283	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
 284
 285	list_for_each_entry_safe(cur, tmp, head, list) {
 286		if (revoke) {
 287			__replace_atomic_write_block(inode, cur->index,
 288						cur->old_addr, NULL, true);
 289		} else if (truncate) {
 290			f2fs_truncate_hole(inode, start_index, cur->index);
 291			start_index = cur->index + 1;
 292		}
 293
 294		list_del(&cur->list);
 295		kmem_cache_free(revoke_entry_slab, cur);
 296	}
 297
 298	if (!revoke && truncate)
 299		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
 
 300}
 301
 302static int __f2fs_commit_atomic_write(struct inode *inode)
 
 303{
 304	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 305	struct f2fs_inode_info *fi = F2FS_I(inode);
 306	struct inode *cow_inode = fi->cow_inode;
 307	struct revoke_entry *new;
 308	struct list_head revoke_list;
 309	block_t blkaddr;
 310	struct dnode_of_data dn;
 311	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 312	pgoff_t off = 0, blen, index;
 313	int ret = 0, i;
 
 314
 315	INIT_LIST_HEAD(&revoke_list);
 
 316
 317	while (len) {
 318		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
 
 319
 320		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
 321		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 322		if (ret && ret != -ENOENT) {
 323			goto out;
 324		} else if (ret == -ENOENT) {
 325			ret = 0;
 326			if (dn.max_level == 0)
 327				goto out;
 328			goto next;
 329		}
 330
 331		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
 332				len);
 333		index = off;
 334		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
 335			blkaddr = f2fs_data_blkaddr(&dn);
 336
 337			if (!__is_valid_data_blkaddr(blkaddr)) {
 338				continue;
 339			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
 340					DATA_GENERIC_ENHANCE)) {
 341				f2fs_put_dnode(&dn);
 342				ret = -EFSCORRUPTED;
 343				goto out;
 344			}
 345
 346			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
 347							true, NULL);
 348
 349			ret = __replace_atomic_write_block(inode, index, blkaddr,
 350							&new->old_addr, false);
 351			if (ret) {
 352				f2fs_put_dnode(&dn);
 353				kmem_cache_free(revoke_entry_slab, new);
 354				goto out;
 355			}
 356
 357			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 358			new->index = index;
 359			list_add_tail(&new->list, &revoke_list);
 360		}
 361		f2fs_put_dnode(&dn);
 362next:
 363		off += blen;
 364		len -= blen;
 365	}
 366
 367out:
 368	if (ret) {
 369		sbi->revoked_atomic_block += fi->atomic_write_cnt;
 370	} else {
 371		sbi->committed_atomic_block += fi->atomic_write_cnt;
 372		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
 373		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
 374			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
 375			f2fs_mark_inode_dirty_sync(inode, true);
 376		}
 377	}
 378
 379	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
 
 380
 381	return ret;
 382}
 383
 384int f2fs_commit_atomic_write(struct inode *inode)
 385{
 386	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 387	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 388	int err;
 389
 390	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
 391	if (err)
 392		return err;
 393
 394	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
 395	f2fs_lock_op(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 396
 397	err = __f2fs_commit_atomic_write(inode);
 
 
 
 398
 399	f2fs_unlock_op(sbi);
 400	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
 401
 402	return err;
 403}
 404
 405/*
 406 * This function balances dirty node and dentry pages.
 407 * In addition, it controls garbage collection.
 408 */
 409void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 410{
 411	if (f2fs_cp_error(sbi))
 412		return;
 413
 414	if (time_to_inject(sbi, FAULT_CHECKPOINT))
 415		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
 416
 417	/* balance_fs_bg is able to be pending */
 418	if (need && excess_cached_nats(sbi))
 419		f2fs_balance_fs_bg(sbi, false);
 420
 421	if (!f2fs_is_checkpoint_ready(sbi))
 422		return;
 423
 424	/*
 425	 * We should do GC or end up with checkpoint, if there are so many dirty
 426	 * dir/node pages without enough free segments.
 427	 */
 428	if (has_enough_free_secs(sbi, 0, 0))
 429		return;
 430
 431	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 432				sbi->gc_thread->f2fs_gc_task) {
 433		DEFINE_WAIT(wait);
 434
 435		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 436					TASK_UNINTERRUPTIBLE);
 437		wake_up(&sbi->gc_thread->gc_wait_queue_head);
 438		io_schedule();
 439		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 440	} else {
 441		struct f2fs_gc_control gc_control = {
 442			.victim_segno = NULL_SEGNO,
 443			.init_gc_type = BG_GC,
 444			.no_bg_gc = true,
 445			.should_migrate_blocks = false,
 446			.err_gc_skipped = false,
 447			.nr_free_secs = 1 };
 448		f2fs_down_write(&sbi->gc_lock);
 449		stat_inc_gc_call_count(sbi, FOREGROUND);
 450		f2fs_gc(sbi, &gc_control);
 451	}
 452}
 453
 454static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 455{
 456	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 457	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 458	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 459	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 460	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 461	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 462	unsigned int threshold =
 463		SEGS_TO_BLKS(sbi, (factor * DEFAULT_DIRTY_THRESHOLD));
 464	unsigned int global_threshold = threshold * 3 / 2;
 465
 466	if (dents >= threshold || qdata >= threshold ||
 467		nodes >= threshold || meta >= threshold ||
 468		imeta >= threshold)
 469		return true;
 470	return dents + qdata + nodes + meta + imeta >  global_threshold;
 471}
 472
 473void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 474{
 475	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 476		return;
 477
 478	/* try to shrink extent cache when there is no enough memory */
 479	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
 480		f2fs_shrink_read_extent_tree(sbi,
 481				READ_EXTENT_CACHE_SHRINK_NUMBER);
 482
 483	/* try to shrink age extent cache when there is no enough memory */
 484	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
 485		f2fs_shrink_age_extent_tree(sbi,
 486				AGE_EXTENT_CACHE_SHRINK_NUMBER);
 487
 488	/* check the # of cached NAT entries */
 489	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 490		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 491
 492	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 493		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 494	else
 495		f2fs_build_free_nids(sbi, false, false);
 496
 497	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 498		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 499		goto do_sync;
 500
 501	/* there is background inflight IO or foreground operation recently */
 502	if (is_inflight_io(sbi, REQ_TIME) ||
 503		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
 504		return;
 505
 506	/* exceed periodical checkpoint timeout threshold */
 507	if (f2fs_time_over(sbi, CP_TIME))
 508		goto do_sync;
 509
 510	/* checkpoint is the only way to shrink partial cached entries */
 511	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 512		f2fs_available_free_memory(sbi, INO_ENTRIES))
 513		return;
 
 
 
 
 514
 515do_sync:
 516	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 517		struct blk_plug plug;
 518
 519		mutex_lock(&sbi->flush_lock);
 520
 521		blk_start_plug(&plug);
 522		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
 523		blk_finish_plug(&plug);
 524
 525		mutex_unlock(&sbi->flush_lock);
 526	}
 527	stat_inc_cp_call_count(sbi, BACKGROUND);
 528	f2fs_sync_fs(sbi->sb, 1);
 529}
 530
 531static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 532				struct block_device *bdev)
 533{
 534	int ret = blkdev_issue_flush(bdev);
 535
 536	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 537				test_opt(sbi, FLUSH_MERGE), ret);
 538	if (!ret)
 539		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
 540	return ret;
 541}
 542
 543static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 544{
 545	int ret = 0;
 546	int i;
 547
 548	if (!f2fs_is_multi_device(sbi))
 549		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 550
 551	for (i = 0; i < sbi->s_ndevs; i++) {
 552		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 553			continue;
 554		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 555		if (ret)
 556			break;
 557	}
 558	return ret;
 559}
 560
 561static int issue_flush_thread(void *data)
 562{
 563	struct f2fs_sb_info *sbi = data;
 564	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 565	wait_queue_head_t *q = &fcc->flush_wait_queue;
 566repeat:
 567	if (kthread_should_stop())
 568		return 0;
 569
 570	if (!llist_empty(&fcc->issue_list)) {
 
 571		struct flush_cmd *cmd, *next;
 572		int ret;
 573
 
 
 574		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 575		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 576
 577		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 578
 579		ret = submit_flush_wait(sbi, cmd->ino);
 580		atomic_inc(&fcc->issued_flush);
 581
 582		llist_for_each_entry_safe(cmd, next,
 583					  fcc->dispatch_list, llnode) {
 584			cmd->ret = ret;
 585			complete(&cmd->wait);
 586		}
 
 587		fcc->dispatch_list = NULL;
 588	}
 589
 590	wait_event_interruptible(*q,
 591		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 592	goto repeat;
 593}
 594
 595int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 596{
 597	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 598	struct flush_cmd cmd;
 599	int ret;
 
 
 600
 601	if (test_opt(sbi, NOBARRIER))
 602		return 0;
 603
 604	if (!test_opt(sbi, FLUSH_MERGE)) {
 605		atomic_inc(&fcc->queued_flush);
 606		ret = submit_flush_wait(sbi, ino);
 607		atomic_dec(&fcc->queued_flush);
 608		atomic_inc(&fcc->issued_flush);
 609		return ret;
 610	}
 611
 612	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 613	    f2fs_is_multi_device(sbi)) {
 614		ret = submit_flush_wait(sbi, ino);
 615		atomic_dec(&fcc->queued_flush);
 616
 617		atomic_inc(&fcc->issued_flush);
 
 
 618		return ret;
 619	}
 620
 621	cmd.ino = ino;
 622	init_completion(&cmd.wait);
 623
 624	llist_add(&cmd.llnode, &fcc->issue_list);
 625
 626	/*
 627	 * update issue_list before we wake up issue_flush thread, this
 628	 * smp_mb() pairs with another barrier in ___wait_event(), see
 629	 * more details in comments of waitqueue_active().
 630	 */
 631	smp_mb();
 632
 633	if (waitqueue_active(&fcc->flush_wait_queue))
 634		wake_up(&fcc->flush_wait_queue);
 635
 636	if (fcc->f2fs_issue_flush) {
 637		wait_for_completion(&cmd.wait);
 638		atomic_dec(&fcc->queued_flush);
 639	} else {
 640		struct llist_node *list;
 641
 642		list = llist_del_all(&fcc->issue_list);
 643		if (!list) {
 644			wait_for_completion(&cmd.wait);
 645			atomic_dec(&fcc->queued_flush);
 646		} else {
 647			struct flush_cmd *tmp, *next;
 648
 649			ret = submit_flush_wait(sbi, ino);
 650
 651			llist_for_each_entry_safe(tmp, next, list, llnode) {
 652				if (tmp == &cmd) {
 653					cmd.ret = ret;
 654					atomic_dec(&fcc->queued_flush);
 655					continue;
 656				}
 657				tmp->ret = ret;
 658				complete(&tmp->wait);
 659			}
 660		}
 661	}
 662
 663	return cmd.ret;
 664}
 665
 666int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 667{
 668	dev_t dev = sbi->sb->s_bdev->bd_dev;
 669	struct flush_cmd_control *fcc;
 
 670
 671	if (SM_I(sbi)->fcc_info) {
 672		fcc = SM_I(sbi)->fcc_info;
 673		if (fcc->f2fs_issue_flush)
 674			return 0;
 675		goto init_thread;
 676	}
 677
 678	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 679	if (!fcc)
 680		return -ENOMEM;
 681	atomic_set(&fcc->issued_flush, 0);
 682	atomic_set(&fcc->queued_flush, 0);
 683	init_waitqueue_head(&fcc->flush_wait_queue);
 684	init_llist_head(&fcc->issue_list);
 685	SM_I(sbi)->fcc_info = fcc;
 686	if (!test_opt(sbi, FLUSH_MERGE))
 687		return 0;
 688
 689init_thread:
 690	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 691				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 692	if (IS_ERR(fcc->f2fs_issue_flush)) {
 693		int err = PTR_ERR(fcc->f2fs_issue_flush);
 694
 695		fcc->f2fs_issue_flush = NULL;
 696		return err;
 697	}
 698
 699	return 0;
 700}
 701
 702void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 703{
 704	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 705
 706	if (fcc && fcc->f2fs_issue_flush) {
 707		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 708
 709		fcc->f2fs_issue_flush = NULL;
 710		kthread_stop(flush_thread);
 711	}
 712	if (free) {
 713		kfree(fcc);
 714		SM_I(sbi)->fcc_info = NULL;
 715	}
 716}
 717
 718int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 719{
 720	int ret = 0, i;
 721
 722	if (!f2fs_is_multi_device(sbi))
 723		return 0;
 724
 725	if (test_opt(sbi, NOBARRIER))
 726		return 0;
 727
 728	for (i = 1; i < sbi->s_ndevs; i++) {
 729		int count = DEFAULT_RETRY_IO_COUNT;
 730
 731		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 732			continue;
 733
 734		do {
 735			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 736			if (ret)
 737				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 738		} while (ret && --count);
 739
 740		if (ret) {
 741			f2fs_stop_checkpoint(sbi, false,
 742					STOP_CP_REASON_FLUSH_FAIL);
 743			break;
 744		}
 745
 746		spin_lock(&sbi->dev_lock);
 747		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 748		spin_unlock(&sbi->dev_lock);
 749	}
 750
 751	return ret;
 752}
 753
 754static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 755		enum dirty_type dirty_type)
 756{
 757	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 758
 759	/* need not be added */
 760	if (IS_CURSEG(sbi, segno))
 761		return;
 762
 763	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 764		dirty_i->nr_dirty[dirty_type]++;
 765
 766	if (dirty_type == DIRTY) {
 767		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 768		enum dirty_type t = sentry->type;
 769
 770		if (unlikely(t >= DIRTY)) {
 771			f2fs_bug_on(sbi, 1);
 772			return;
 773		}
 774		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 775			dirty_i->nr_dirty[t]++;
 776
 777		if (__is_large_section(sbi)) {
 778			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 779			block_t valid_blocks =
 780				get_valid_blocks(sbi, segno, true);
 781
 782			f2fs_bug_on(sbi,
 783				(!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
 784				!valid_blocks) ||
 785				valid_blocks == CAP_BLKS_PER_SEC(sbi));
 786
 787			if (!IS_CURSEC(sbi, secno))
 788				set_bit(secno, dirty_i->dirty_secmap);
 789		}
 790	}
 791}
 792
 793static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 794		enum dirty_type dirty_type)
 795{
 796	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 797	block_t valid_blocks;
 798
 799	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 800		dirty_i->nr_dirty[dirty_type]--;
 801
 802	if (dirty_type == DIRTY) {
 803		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 804		enum dirty_type t = sentry->type;
 805
 806		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 807			dirty_i->nr_dirty[t]--;
 808
 809		valid_blocks = get_valid_blocks(sbi, segno, true);
 810		if (valid_blocks == 0) {
 811			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 812						dirty_i->victim_secmap);
 813#ifdef CONFIG_F2FS_CHECK_FS
 814			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 815#endif
 816		}
 817		if (__is_large_section(sbi)) {
 818			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 819
 820			if (!valid_blocks ||
 821					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
 822				clear_bit(secno, dirty_i->dirty_secmap);
 823				return;
 824			}
 825
 826			if (!IS_CURSEC(sbi, secno))
 827				set_bit(secno, dirty_i->dirty_secmap);
 828		}
 829	}
 830}
 831
 832/*
 833 * Should not occur error such as -ENOMEM.
 834 * Adding dirty entry into seglist is not critical operation.
 835 * If a given segment is one of current working segments, it won't be added.
 836 */
 837static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 838{
 839	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 840	unsigned short valid_blocks, ckpt_valid_blocks;
 841	unsigned int usable_blocks;
 842
 843	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 844		return;
 845
 846	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 847	mutex_lock(&dirty_i->seglist_lock);
 848
 849	valid_blocks = get_valid_blocks(sbi, segno, false);
 850	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 851
 852	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 853		ckpt_valid_blocks == usable_blocks)) {
 854		__locate_dirty_segment(sbi, segno, PRE);
 855		__remove_dirty_segment(sbi, segno, DIRTY);
 856	} else if (valid_blocks < usable_blocks) {
 857		__locate_dirty_segment(sbi, segno, DIRTY);
 858	} else {
 859		/* Recovery routine with SSR needs this */
 860		__remove_dirty_segment(sbi, segno, DIRTY);
 861	}
 862
 863	mutex_unlock(&dirty_i->seglist_lock);
 864}
 865
 866/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 867void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 868{
 869	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 870	unsigned int segno;
 
 
 
 871
 872	mutex_lock(&dirty_i->seglist_lock);
 873	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 874		if (get_valid_blocks(sbi, segno, false))
 875			continue;
 876		if (IS_CURSEG(sbi, segno))
 877			continue;
 878		__locate_dirty_segment(sbi, segno, PRE);
 879		__remove_dirty_segment(sbi, segno, DIRTY);
 880	}
 881	mutex_unlock(&dirty_i->seglist_lock);
 882}
 883
 884block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 885{
 886	int ovp_hole_segs =
 887		(overprovision_segments(sbi) - reserved_segments(sbi));
 888	block_t ovp_holes = SEGS_TO_BLKS(sbi, ovp_hole_segs);
 889	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 890	block_t holes[2] = {0, 0};	/* DATA and NODE */
 891	block_t unusable;
 892	struct seg_entry *se;
 893	unsigned int segno;
 894
 895	mutex_lock(&dirty_i->seglist_lock);
 896	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 897		se = get_seg_entry(sbi, segno);
 898		if (IS_NODESEG(se->type))
 899			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 900							se->valid_blocks;
 901		else
 902			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 903							se->valid_blocks;
 904	}
 905	mutex_unlock(&dirty_i->seglist_lock);
 906
 907	unusable = max(holes[DATA], holes[NODE]);
 908	if (unusable > ovp_holes)
 909		return unusable - ovp_holes;
 910	return 0;
 911}
 912
 913int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 914{
 915	int ovp_hole_segs =
 916		(overprovision_segments(sbi) - reserved_segments(sbi));
 917
 918	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
 919		return 0;
 920	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 921		return -EAGAIN;
 922	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 923		dirty_segments(sbi) > ovp_hole_segs)
 924		return -EAGAIN;
 925	if (has_not_enough_free_secs(sbi, 0, 0))
 926		return -EAGAIN;
 927	return 0;
 928}
 929
 930/* This is only used by SBI_CP_DISABLED */
 931static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 932{
 933	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 934	unsigned int segno = 0;
 935
 936	mutex_lock(&dirty_i->seglist_lock);
 937	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 938		if (get_valid_blocks(sbi, segno, false))
 939			continue;
 940		if (get_ckpt_valid_blocks(sbi, segno, false))
 941			continue;
 942		mutex_unlock(&dirty_i->seglist_lock);
 943		return segno;
 944	}
 945	mutex_unlock(&dirty_i->seglist_lock);
 946	return NULL_SEGNO;
 947}
 948
 949static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 950		struct block_device *bdev, block_t lstart,
 951		block_t start, block_t len)
 952{
 953	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 954	struct list_head *pend_list;
 955	struct discard_cmd *dc;
 956
 957	f2fs_bug_on(sbi, !len);
 958
 959	pend_list = &dcc->pend_list[plist_idx(len)];
 960
 961	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
 962	INIT_LIST_HEAD(&dc->list);
 963	dc->bdev = bdev;
 964	dc->di.lstart = lstart;
 965	dc->di.start = start;
 966	dc->di.len = len;
 967	dc->ref = 0;
 968	dc->state = D_PREP;
 969	dc->queued = 0;
 970	dc->error = 0;
 971	init_completion(&dc->wait);
 972	list_add_tail(&dc->list, pend_list);
 973	spin_lock_init(&dc->lock);
 974	dc->bio_ref = 0;
 975	atomic_inc(&dcc->discard_cmd_cnt);
 976	dcc->undiscard_blks += len;
 977
 978	return dc;
 979}
 980
 981static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
 982{
 983#ifdef CONFIG_F2FS_CHECK_FS
 984	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 985	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
 986	struct discard_cmd *cur_dc, *next_dc;
 987
 988	while (cur) {
 989		next = rb_next(cur);
 990		if (!next)
 991			return true;
 992
 993		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
 994		next_dc = rb_entry(next, struct discard_cmd, rb_node);
 995
 996		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
 997			f2fs_info(sbi, "broken discard_rbtree, "
 998				"cur(%u, %u) next(%u, %u)",
 999				cur_dc->di.lstart, cur_dc->di.len,
1000				next_dc->di.lstart, next_dc->di.len);
1001			return false;
1002		}
1003		cur = next;
1004	}
1005#endif
1006	return true;
1007}
1008
1009static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1010						block_t blkaddr)
1011{
1012	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1013	struct rb_node *node = dcc->root.rb_root.rb_node;
1014	struct discard_cmd *dc;
1015
1016	while (node) {
1017		dc = rb_entry(node, struct discard_cmd, rb_node);
1018
1019		if (blkaddr < dc->di.lstart)
1020			node = node->rb_left;
1021		else if (blkaddr >= dc->di.lstart + dc->di.len)
1022			node = node->rb_right;
1023		else
1024			return dc;
1025	}
1026	return NULL;
1027}
1028
1029static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1030				block_t blkaddr,
1031				struct discard_cmd **prev_entry,
1032				struct discard_cmd **next_entry,
1033				struct rb_node ***insert_p,
1034				struct rb_node **insert_parent)
1035{
1036	struct rb_node **pnode = &root->rb_root.rb_node;
1037	struct rb_node *parent = NULL, *tmp_node;
1038	struct discard_cmd *dc;
1039
1040	*insert_p = NULL;
1041	*insert_parent = NULL;
1042	*prev_entry = NULL;
1043	*next_entry = NULL;
1044
1045	if (RB_EMPTY_ROOT(&root->rb_root))
1046		return NULL;
1047
1048	while (*pnode) {
1049		parent = *pnode;
1050		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1051
1052		if (blkaddr < dc->di.lstart)
1053			pnode = &(*pnode)->rb_left;
1054		else if (blkaddr >= dc->di.lstart + dc->di.len)
1055			pnode = &(*pnode)->rb_right;
1056		else
1057			goto lookup_neighbors;
1058	}
1059
1060	*insert_p = pnode;
1061	*insert_parent = parent;
1062
1063	dc = rb_entry(parent, struct discard_cmd, rb_node);
1064	tmp_node = parent;
1065	if (parent && blkaddr > dc->di.lstart)
1066		tmp_node = rb_next(parent);
1067	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1068
1069	tmp_node = parent;
1070	if (parent && blkaddr < dc->di.lstart)
1071		tmp_node = rb_prev(parent);
1072	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1073	return NULL;
1074
1075lookup_neighbors:
1076	/* lookup prev node for merging backward later */
1077	tmp_node = rb_prev(&dc->rb_node);
1078	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1079
1080	/* lookup next node for merging frontward later */
1081	tmp_node = rb_next(&dc->rb_node);
1082	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1083	return dc;
1084}
1085
1086static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1087							struct discard_cmd *dc)
1088{
1089	if (dc->state == D_DONE)
1090		atomic_sub(dc->queued, &dcc->queued_discard);
1091
1092	list_del(&dc->list);
1093	rb_erase_cached(&dc->rb_node, &dcc->root);
1094	dcc->undiscard_blks -= dc->di.len;
1095
1096	kmem_cache_free(discard_cmd_slab, dc);
1097
1098	atomic_dec(&dcc->discard_cmd_cnt);
1099}
1100
1101static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1102							struct discard_cmd *dc)
1103{
1104	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105	unsigned long flags;
1106
1107	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1108
1109	spin_lock_irqsave(&dc->lock, flags);
1110	if (dc->bio_ref) {
1111		spin_unlock_irqrestore(&dc->lock, flags);
1112		return;
1113	}
1114	spin_unlock_irqrestore(&dc->lock, flags);
1115
1116	f2fs_bug_on(sbi, dc->ref);
1117
1118	if (dc->error == -EOPNOTSUPP)
1119		dc->error = 0;
1120
1121	if (dc->error)
1122		f2fs_info_ratelimited(sbi,
1123			"Issue discard(%u, %u, %u) failed, ret: %d",
1124			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1125	__detach_discard_cmd(dcc, dc);
1126}
1127
1128static void f2fs_submit_discard_endio(struct bio *bio)
1129{
1130	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1131	unsigned long flags;
1132
1133	spin_lock_irqsave(&dc->lock, flags);
1134	if (!dc->error)
1135		dc->error = blk_status_to_errno(bio->bi_status);
1136	dc->bio_ref--;
1137	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1138		dc->state = D_DONE;
1139		complete_all(&dc->wait);
1140	}
1141	spin_unlock_irqrestore(&dc->lock, flags);
1142	bio_put(bio);
1143}
1144
1145static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1146				block_t start, block_t end)
1147{
1148#ifdef CONFIG_F2FS_CHECK_FS
1149	struct seg_entry *sentry;
1150	unsigned int segno;
1151	block_t blk = start;
1152	unsigned long offset, size, *map;
1153
1154	while (blk < end) {
1155		segno = GET_SEGNO(sbi, blk);
1156		sentry = get_seg_entry(sbi, segno);
1157		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1158
1159		if (end < START_BLOCK(sbi, segno + 1))
1160			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1161		else
1162			size = BLKS_PER_SEG(sbi);
1163		map = (unsigned long *)(sentry->cur_valid_map);
1164		offset = __find_rev_next_bit(map, size, offset);
1165		f2fs_bug_on(sbi, offset != size);
1166		blk = START_BLOCK(sbi, segno + 1);
1167	}
1168#endif
1169}
1170
1171static void __init_discard_policy(struct f2fs_sb_info *sbi,
1172				struct discard_policy *dpolicy,
1173				int discard_type, unsigned int granularity)
1174{
1175	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1176
1177	/* common policy */
1178	dpolicy->type = discard_type;
1179	dpolicy->sync = true;
1180	dpolicy->ordered = false;
1181	dpolicy->granularity = granularity;
1182
1183	dpolicy->max_requests = dcc->max_discard_request;
1184	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1185	dpolicy->timeout = false;
1186
1187	if (discard_type == DPOLICY_BG) {
1188		dpolicy->min_interval = dcc->min_discard_issue_time;
1189		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1190		dpolicy->max_interval = dcc->max_discard_issue_time;
1191		if (dcc->discard_io_aware == DPOLICY_IO_AWARE_ENABLE)
1192			dpolicy->io_aware = true;
1193		else if (dcc->discard_io_aware == DPOLICY_IO_AWARE_DISABLE)
1194			dpolicy->io_aware = false;
1195		dpolicy->sync = false;
1196		dpolicy->ordered = true;
1197		if (utilization(sbi) > dcc->discard_urgent_util) {
1198			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1199			if (atomic_read(&dcc->discard_cmd_cnt))
1200				dpolicy->max_interval =
1201					dcc->min_discard_issue_time;
1202		}
1203	} else if (discard_type == DPOLICY_FORCE) {
1204		dpolicy->min_interval = dcc->min_discard_issue_time;
1205		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1206		dpolicy->max_interval = dcc->max_discard_issue_time;
1207		dpolicy->io_aware = false;
1208	} else if (discard_type == DPOLICY_FSTRIM) {
1209		dpolicy->io_aware = false;
1210	} else if (discard_type == DPOLICY_UMOUNT) {
1211		dpolicy->io_aware = false;
1212		/* we need to issue all to keep CP_TRIMMED_FLAG */
1213		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1214		dpolicy->timeout = true;
1215	}
1216}
1217
1218static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1219				struct block_device *bdev, block_t lstart,
1220				block_t start, block_t len);
1221
1222#ifdef CONFIG_BLK_DEV_ZONED
1223static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1224				   struct discard_cmd *dc, blk_opf_t flag,
1225				   struct list_head *wait_list,
1226				   unsigned int *issued)
1227{
1228	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1229	struct block_device *bdev = dc->bdev;
1230	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1231	unsigned long flags;
1232
1233	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1234
1235	spin_lock_irqsave(&dc->lock, flags);
1236	dc->state = D_SUBMIT;
1237	dc->bio_ref++;
1238	spin_unlock_irqrestore(&dc->lock, flags);
1239
1240	if (issued)
1241		(*issued)++;
1242
1243	atomic_inc(&dcc->queued_discard);
1244	dc->queued++;
1245	list_move_tail(&dc->list, wait_list);
1246
1247	/* sanity check on discard range */
1248	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1249
1250	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1251	bio->bi_private = dc;
1252	bio->bi_end_io = f2fs_submit_discard_endio;
1253	submit_bio(bio);
1254
1255	atomic_inc(&dcc->issued_discard);
1256	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1257}
1258#endif
1259
1260/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1261static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1262				struct discard_policy *dpolicy,
1263				struct discard_cmd *dc, int *issued)
1264{
1265	struct block_device *bdev = dc->bdev;
1266	unsigned int max_discard_blocks =
1267			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1268	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1269	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1270					&(dcc->fstrim_list) : &(dcc->wait_list);
1271	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1272	block_t lstart, start, len, total_len;
1273	int err = 0;
1274
1275	if (dc->state != D_PREP)
1276		return 0;
1277
1278	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1279		return 0;
1280
1281#ifdef CONFIG_BLK_DEV_ZONED
1282	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1283		int devi = f2fs_bdev_index(sbi, bdev);
1284
1285		if (devi < 0)
1286			return -EINVAL;
1287
1288		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1289			__submit_zone_reset_cmd(sbi, dc, flag,
1290						wait_list, issued);
1291			return 0;
1292		}
1293	}
1294#endif
1295
1296	/*
1297	 * stop issuing discard for any of below cases:
1298	 * 1. device is conventional zone, but it doesn't support discard.
1299	 * 2. device is regulare device, after snapshot it doesn't support
1300	 * discard.
1301	 */
1302	if (!bdev_max_discard_sectors(bdev))
1303		return -EOPNOTSUPP;
1304
1305	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1306
1307	lstart = dc->di.lstart;
1308	start = dc->di.start;
1309	len = dc->di.len;
1310	total_len = len;
1311
1312	dc->di.len = 0;
1313
1314	while (total_len && *issued < dpolicy->max_requests && !err) {
1315		struct bio *bio = NULL;
1316		unsigned long flags;
1317		bool last = true;
1318
1319		if (len > max_discard_blocks) {
1320			len = max_discard_blocks;
1321			last = false;
1322		}
1323
1324		(*issued)++;
1325		if (*issued == dpolicy->max_requests)
1326			last = true;
1327
1328		dc->di.len += len;
1329
1330		if (time_to_inject(sbi, FAULT_DISCARD)) {
1331			err = -EIO;
1332		} else {
1333			err = __blkdev_issue_discard(bdev,
1334					SECTOR_FROM_BLOCK(start),
1335					SECTOR_FROM_BLOCK(len),
1336					GFP_NOFS, &bio);
1337		}
1338		if (err) {
1339			spin_lock_irqsave(&dc->lock, flags);
1340			if (dc->state == D_PARTIAL)
1341				dc->state = D_SUBMIT;
1342			spin_unlock_irqrestore(&dc->lock, flags);
1343
1344			break;
1345		}
1346
1347		f2fs_bug_on(sbi, !bio);
1348
1349		/*
1350		 * should keep before submission to avoid D_DONE
1351		 * right away
1352		 */
1353		spin_lock_irqsave(&dc->lock, flags);
1354		if (last)
1355			dc->state = D_SUBMIT;
1356		else
1357			dc->state = D_PARTIAL;
1358		dc->bio_ref++;
1359		spin_unlock_irqrestore(&dc->lock, flags);
1360
1361		atomic_inc(&dcc->queued_discard);
1362		dc->queued++;
1363		list_move_tail(&dc->list, wait_list);
1364
1365		/* sanity check on discard range */
1366		__check_sit_bitmap(sbi, lstart, lstart + len);
1367
1368		bio->bi_private = dc;
1369		bio->bi_end_io = f2fs_submit_discard_endio;
1370		bio->bi_opf |= flag;
1371		submit_bio(bio);
1372
1373		atomic_inc(&dcc->issued_discard);
1374
1375		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1376
1377		lstart += len;
1378		start += len;
1379		total_len -= len;
1380		len = total_len;
1381	}
1382
1383	if (!err && len) {
1384		dcc->undiscard_blks -= len;
1385		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1386	}
1387	return err;
1388}
1389
1390static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1391				struct block_device *bdev, block_t lstart,
1392				block_t start, block_t len)
1393{
1394	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1395	struct rb_node **p = &dcc->root.rb_root.rb_node;
1396	struct rb_node *parent = NULL;
1397	struct discard_cmd *dc;
1398	bool leftmost = true;
1399
1400	/* look up rb tree to find parent node */
1401	while (*p) {
1402		parent = *p;
1403		dc = rb_entry(parent, struct discard_cmd, rb_node);
1404
1405		if (lstart < dc->di.lstart) {
1406			p = &(*p)->rb_left;
1407		} else if (lstart >= dc->di.lstart + dc->di.len) {
1408			p = &(*p)->rb_right;
1409			leftmost = false;
1410		} else {
1411			/* Let's skip to add, if exists */
1412			return;
1413		}
1414	}
1415
1416	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1417
1418	rb_link_node(&dc->rb_node, parent, p);
1419	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1420}
1421
1422static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1423						struct discard_cmd *dc)
1424{
1425	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1426}
1427
1428static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1429				struct discard_cmd *dc, block_t blkaddr)
1430{
1431	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1432	struct discard_info di = dc->di;
1433	bool modified = false;
1434
1435	if (dc->state == D_DONE || dc->di.len == 1) {
1436		__remove_discard_cmd(sbi, dc);
1437		return;
1438	}
1439
1440	dcc->undiscard_blks -= di.len;
1441
1442	if (blkaddr > di.lstart) {
1443		dc->di.len = blkaddr - dc->di.lstart;
1444		dcc->undiscard_blks += dc->di.len;
1445		__relocate_discard_cmd(dcc, dc);
1446		modified = true;
1447	}
1448
1449	if (blkaddr < di.lstart + di.len - 1) {
1450		if (modified) {
1451			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1452					di.start + blkaddr + 1 - di.lstart,
1453					di.lstart + di.len - 1 - blkaddr);
1454		} else {
1455			dc->di.lstart++;
1456			dc->di.len--;
1457			dc->di.start++;
1458			dcc->undiscard_blks += dc->di.len;
1459			__relocate_discard_cmd(dcc, dc);
1460		}
1461	}
1462}
1463
1464static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1465				struct block_device *bdev, block_t lstart,
1466				block_t start, block_t len)
1467{
1468	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1469	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1470	struct discard_cmd *dc;
1471	struct discard_info di = {0};
1472	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1473	unsigned int max_discard_blocks =
1474			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1475	block_t end = lstart + len;
1476
1477	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1478				&prev_dc, &next_dc, &insert_p, &insert_parent);
1479	if (dc)
1480		prev_dc = dc;
1481
1482	if (!prev_dc) {
1483		di.lstart = lstart;
1484		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1485		di.len = min(di.len, len);
1486		di.start = start;
1487	}
1488
1489	while (1) {
1490		struct rb_node *node;
1491		bool merged = false;
1492		struct discard_cmd *tdc = NULL;
1493
1494		if (prev_dc) {
1495			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1496			if (di.lstart < lstart)
1497				di.lstart = lstart;
1498			if (di.lstart >= end)
1499				break;
1500
1501			if (!next_dc || next_dc->di.lstart > end)
1502				di.len = end - di.lstart;
1503			else
1504				di.len = next_dc->di.lstart - di.lstart;
1505			di.start = start + di.lstart - lstart;
1506		}
1507
1508		if (!di.len)
1509			goto next;
1510
1511		if (prev_dc && prev_dc->state == D_PREP &&
1512			prev_dc->bdev == bdev &&
1513			__is_discard_back_mergeable(&di, &prev_dc->di,
1514							max_discard_blocks)) {
1515			prev_dc->di.len += di.len;
1516			dcc->undiscard_blks += di.len;
1517			__relocate_discard_cmd(dcc, prev_dc);
1518			di = prev_dc->di;
1519			tdc = prev_dc;
1520			merged = true;
1521		}
1522
1523		if (next_dc && next_dc->state == D_PREP &&
1524			next_dc->bdev == bdev &&
1525			__is_discard_front_mergeable(&di, &next_dc->di,
1526							max_discard_blocks)) {
1527			next_dc->di.lstart = di.lstart;
1528			next_dc->di.len += di.len;
1529			next_dc->di.start = di.start;
1530			dcc->undiscard_blks += di.len;
1531			__relocate_discard_cmd(dcc, next_dc);
1532			if (tdc)
1533				__remove_discard_cmd(sbi, tdc);
1534			merged = true;
1535		}
1536
1537		if (!merged)
1538			__insert_discard_cmd(sbi, bdev,
1539						di.lstart, di.start, di.len);
1540 next:
1541		prev_dc = next_dc;
1542		if (!prev_dc)
1543			break;
1544
1545		node = rb_next(&prev_dc->rb_node);
1546		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1547	}
1548}
1549
1550#ifdef CONFIG_BLK_DEV_ZONED
1551static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1552		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1553		block_t blklen)
1554{
1555	trace_f2fs_queue_reset_zone(bdev, blkstart);
1556
1557	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1558	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1559	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1560}
1561#endif
1562
1563static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1564		struct block_device *bdev, block_t blkstart, block_t blklen)
1565{
1566	block_t lblkstart = blkstart;
1567
1568	if (!f2fs_bdev_support_discard(bdev))
1569		return;
1570
1571	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1572
1573	if (f2fs_is_multi_device(sbi)) {
1574		int devi = f2fs_target_device_index(sbi, blkstart);
1575
1576		blkstart -= FDEV(devi).start_blk;
1577	}
1578	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1579	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1580	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1581}
1582
1583static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1584		struct discard_policy *dpolicy, int *issued)
1585{
1586	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1587	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1588	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1589	struct discard_cmd *dc;
1590	struct blk_plug plug;
1591	bool io_interrupted = false;
1592
1593	mutex_lock(&dcc->cmd_lock);
1594	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1595				&prev_dc, &next_dc, &insert_p, &insert_parent);
1596	if (!dc)
1597		dc = next_dc;
1598
1599	blk_start_plug(&plug);
1600
1601	while (dc) {
1602		struct rb_node *node;
1603		int err = 0;
1604
1605		if (dc->state != D_PREP)
1606			goto next;
1607
1608		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1609			io_interrupted = true;
1610			break;
1611		}
1612
1613		dcc->next_pos = dc->di.lstart + dc->di.len;
1614		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1615
1616		if (*issued >= dpolicy->max_requests)
1617			break;
1618next:
1619		node = rb_next(&dc->rb_node);
1620		if (err)
1621			__remove_discard_cmd(sbi, dc);
1622		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1623	}
1624
1625	blk_finish_plug(&plug);
1626
1627	if (!dc)
1628		dcc->next_pos = 0;
1629
1630	mutex_unlock(&dcc->cmd_lock);
1631
1632	if (!(*issued) && io_interrupted)
1633		*issued = -1;
1634}
1635static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1636					struct discard_policy *dpolicy);
1637
1638static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1639					struct discard_policy *dpolicy)
1640{
1641	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642	struct list_head *pend_list;
1643	struct discard_cmd *dc, *tmp;
1644	struct blk_plug plug;
1645	int i, issued;
1646	bool io_interrupted = false;
1647
1648	if (dpolicy->timeout)
1649		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1650
1651retry:
1652	issued = 0;
1653	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1654		if (dpolicy->timeout &&
1655				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1656			break;
1657
1658		if (i + 1 < dpolicy->granularity)
1659			break;
1660
1661		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1662			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1663			return issued;
1664		}
1665
1666		pend_list = &dcc->pend_list[i];
1667
1668		mutex_lock(&dcc->cmd_lock);
1669		if (list_empty(pend_list))
1670			goto next;
1671		if (unlikely(dcc->rbtree_check))
1672			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1673		blk_start_plug(&plug);
1674		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1675			f2fs_bug_on(sbi, dc->state != D_PREP);
1676
1677			if (dpolicy->timeout &&
1678				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1679				break;
1680
1681			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1682						!is_idle(sbi, DISCARD_TIME)) {
1683				io_interrupted = true;
1684				break;
1685			}
1686
1687			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1688
1689			if (issued >= dpolicy->max_requests)
1690				break;
1691		}
1692		blk_finish_plug(&plug);
1693next:
1694		mutex_unlock(&dcc->cmd_lock);
1695
1696		if (issued >= dpolicy->max_requests || io_interrupted)
1697			break;
1698	}
1699
1700	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1701		__wait_all_discard_cmd(sbi, dpolicy);
1702		goto retry;
1703	}
1704
1705	if (!issued && io_interrupted)
1706		issued = -1;
1707
1708	return issued;
1709}
1710
1711static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1712{
1713	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1714	struct list_head *pend_list;
1715	struct discard_cmd *dc, *tmp;
1716	int i;
1717	bool dropped = false;
1718
1719	mutex_lock(&dcc->cmd_lock);
1720	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1721		pend_list = &dcc->pend_list[i];
1722		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1723			f2fs_bug_on(sbi, dc->state != D_PREP);
1724			__remove_discard_cmd(sbi, dc);
1725			dropped = true;
1726		}
1727	}
1728	mutex_unlock(&dcc->cmd_lock);
1729
1730	return dropped;
1731}
1732
1733void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1734{
1735	__drop_discard_cmd(sbi);
1736}
1737
1738static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1739							struct discard_cmd *dc)
1740{
1741	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1742	unsigned int len = 0;
1743
1744	wait_for_completion_io(&dc->wait);
1745	mutex_lock(&dcc->cmd_lock);
1746	f2fs_bug_on(sbi, dc->state != D_DONE);
1747	dc->ref--;
1748	if (!dc->ref) {
1749		if (!dc->error)
1750			len = dc->di.len;
1751		__remove_discard_cmd(sbi, dc);
1752	}
1753	mutex_unlock(&dcc->cmd_lock);
1754
1755	return len;
1756}
1757
1758static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1759						struct discard_policy *dpolicy,
1760						block_t start, block_t end)
1761{
1762	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1764					&(dcc->fstrim_list) : &(dcc->wait_list);
1765	struct discard_cmd *dc = NULL, *iter, *tmp;
1766	unsigned int trimmed = 0;
1767
1768next:
1769	dc = NULL;
1770
1771	mutex_lock(&dcc->cmd_lock);
1772	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1773		if (iter->di.lstart + iter->di.len <= start ||
1774					end <= iter->di.lstart)
1775			continue;
1776		if (iter->di.len < dpolicy->granularity)
1777			continue;
1778		if (iter->state == D_DONE && !iter->ref) {
1779			wait_for_completion_io(&iter->wait);
1780			if (!iter->error)
1781				trimmed += iter->di.len;
1782			__remove_discard_cmd(sbi, iter);
1783		} else {
1784			iter->ref++;
1785			dc = iter;
1786			break;
1787		}
1788	}
1789	mutex_unlock(&dcc->cmd_lock);
1790
1791	if (dc) {
1792		trimmed += __wait_one_discard_bio(sbi, dc);
1793		goto next;
1794	}
1795
1796	return trimmed;
1797}
1798
1799static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1800						struct discard_policy *dpolicy)
1801{
1802	struct discard_policy dp;
1803	unsigned int discard_blks;
1804
1805	if (dpolicy)
1806		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1807
1808	/* wait all */
1809	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1810	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1811	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1812	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1813
1814	return discard_blks;
1815}
1816
1817/* This should be covered by global mutex, &sit_i->sentry_lock */
1818static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1819{
1820	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1821	struct discard_cmd *dc;
1822	bool need_wait = false;
1823
1824	mutex_lock(&dcc->cmd_lock);
1825	dc = __lookup_discard_cmd(sbi, blkaddr);
1826#ifdef CONFIG_BLK_DEV_ZONED
1827	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1828		int devi = f2fs_bdev_index(sbi, dc->bdev);
1829
1830		if (devi < 0) {
1831			mutex_unlock(&dcc->cmd_lock);
1832			return;
1833		}
1834
1835		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1836			/* force submit zone reset */
1837			if (dc->state == D_PREP)
1838				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1839							&dcc->wait_list, NULL);
1840			dc->ref++;
1841			mutex_unlock(&dcc->cmd_lock);
1842			/* wait zone reset */
1843			__wait_one_discard_bio(sbi, dc);
1844			return;
1845		}
1846	}
1847#endif
1848	if (dc) {
1849		if (dc->state == D_PREP) {
1850			__punch_discard_cmd(sbi, dc, blkaddr);
1851		} else {
1852			dc->ref++;
1853			need_wait = true;
1854		}
1855	}
1856	mutex_unlock(&dcc->cmd_lock);
1857
1858	if (need_wait)
1859		__wait_one_discard_bio(sbi, dc);
1860}
1861
1862void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1863{
1864	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1865
1866	if (dcc && dcc->f2fs_issue_discard) {
1867		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1868
1869		dcc->f2fs_issue_discard = NULL;
1870		kthread_stop(discard_thread);
1871	}
1872}
1873
1874/**
1875 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1876 * @sbi: the f2fs_sb_info data for discard cmd to issue
1877 *
1878 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1879 *
1880 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1881 */
1882bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1883{
1884	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1885	struct discard_policy dpolicy;
1886	bool dropped;
1887
1888	if (!atomic_read(&dcc->discard_cmd_cnt))
1889		return true;
1890
1891	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1892					dcc->discard_granularity);
1893	__issue_discard_cmd(sbi, &dpolicy);
1894	dropped = __drop_discard_cmd(sbi);
1895
1896	/* just to make sure there is no pending discard commands */
1897	__wait_all_discard_cmd(sbi, NULL);
1898
1899	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1900	return !dropped;
1901}
1902
1903static int issue_discard_thread(void *data)
1904{
1905	struct f2fs_sb_info *sbi = data;
1906	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1907	wait_queue_head_t *q = &dcc->discard_wait_queue;
1908	struct discard_policy dpolicy;
1909	unsigned int wait_ms = dcc->min_discard_issue_time;
1910	int issued;
1911
1912	set_freezable();
1913
1914	do {
1915		wait_event_freezable_timeout(*q,
1916				kthread_should_stop() || dcc->discard_wake,
1917				msecs_to_jiffies(wait_ms));
1918
1919		if (sbi->gc_mode == GC_URGENT_HIGH ||
1920			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1921			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1922						MIN_DISCARD_GRANULARITY);
1923		else
1924			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1925						dcc->discard_granularity);
1926
1927		if (dcc->discard_wake)
1928			dcc->discard_wake = false;
1929
1930		/* clean up pending candidates before going to sleep */
1931		if (atomic_read(&dcc->queued_discard))
1932			__wait_all_discard_cmd(sbi, NULL);
1933
1934		if (f2fs_readonly(sbi->sb))
1935			continue;
1936		if (kthread_should_stop())
1937			return 0;
1938		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1939			!atomic_read(&dcc->discard_cmd_cnt)) {
1940			wait_ms = dpolicy.max_interval;
1941			continue;
1942		}
1943
1944		sb_start_intwrite(sbi->sb);
1945
1946		issued = __issue_discard_cmd(sbi, &dpolicy);
1947		if (issued > 0) {
1948			__wait_all_discard_cmd(sbi, &dpolicy);
1949			wait_ms = dpolicy.min_interval;
1950		} else if (issued == -1) {
1951			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1952			if (!wait_ms)
1953				wait_ms = dpolicy.mid_interval;
1954		} else {
1955			wait_ms = dpolicy.max_interval;
1956		}
1957		if (!atomic_read(&dcc->discard_cmd_cnt))
1958			wait_ms = dpolicy.max_interval;
1959
1960		sb_end_intwrite(sbi->sb);
1961
1962	} while (!kthread_should_stop());
1963	return 0;
1964}
1965
1966#ifdef CONFIG_BLK_DEV_ZONED
1967static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1968		struct block_device *bdev, block_t blkstart, block_t blklen)
1969{
1970	sector_t sector, nr_sects;
1971	block_t lblkstart = blkstart;
1972	int devi = 0;
1973	u64 remainder = 0;
1974
1975	if (f2fs_is_multi_device(sbi)) {
1976		devi = f2fs_target_device_index(sbi, blkstart);
1977		if (blkstart < FDEV(devi).start_blk ||
1978		    blkstart > FDEV(devi).end_blk) {
1979			f2fs_err(sbi, "Invalid block %x", blkstart);
1980			return -EIO;
1981		}
1982		blkstart -= FDEV(devi).start_blk;
1983	}
1984
1985	/* For sequential zones, reset the zone write pointer */
1986	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1987		sector = SECTOR_FROM_BLOCK(blkstart);
1988		nr_sects = SECTOR_FROM_BLOCK(blklen);
1989		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1990
1991		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1992			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1993				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1994				 blkstart, blklen);
1995			return -EIO;
1996		}
1997
1998		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1999			unsigned int nofs_flags;
2000			int ret;
2001
2002			trace_f2fs_issue_reset_zone(bdev, blkstart);
2003			nofs_flags = memalloc_nofs_save();
2004			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
2005						sector, nr_sects);
2006			memalloc_nofs_restore(nofs_flags);
2007			return ret;
2008		}
2009
2010		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
2011		return 0;
2012	}
2013
2014	/* For conventional zones, use regular discard if supported */
2015	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2016	return 0;
2017}
2018#endif
2019
2020static int __issue_discard_async(struct f2fs_sb_info *sbi,
2021		struct block_device *bdev, block_t blkstart, block_t blklen)
 
2022{
2023#ifdef CONFIG_BLK_DEV_ZONED
2024	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2025		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2026#endif
2027	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2028	return 0;
2029}
2030
2031static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2032				block_t blkstart, block_t blklen)
2033{
2034	sector_t start = blkstart, len = 0;
2035	struct block_device *bdev;
2036	struct seg_entry *se;
2037	unsigned int offset;
2038	block_t i;
2039	int err = 0;
2040
2041	bdev = f2fs_target_device(sbi, blkstart, NULL);
2042
2043	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2044		if (i != start) {
2045			struct block_device *bdev2 =
2046				f2fs_target_device(sbi, i, NULL);
2047
2048			if (bdev2 != bdev) {
2049				err = __issue_discard_async(sbi, bdev,
2050						start, len);
2051				if (err)
2052					return err;
2053				bdev = bdev2;
2054				start = i;
2055				len = 0;
2056			}
2057		}
2058
2059		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2060		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2061
2062		if (f2fs_block_unit_discard(sbi) &&
2063				!f2fs_test_and_set_bit(offset, se->discard_map))
2064			sbi->discard_blks--;
2065	}
2066
2067	if (len)
2068		err = __issue_discard_async(sbi, bdev, start, len);
2069	return err;
 
 
 
 
2070}
2071
2072static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2073							bool check_only)
2074{
2075	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 
2076	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2077	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2078	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2079	unsigned long *discard_map = (unsigned long *)se->discard_map;
2080	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2081	unsigned int start = 0, end = -1;
2082	bool force = (cpc->reason & CP_DISCARD);
2083	struct discard_entry *de = NULL;
2084	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2085	int i;
2086
2087	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2088	    !f2fs_hw_support_discard(sbi) ||
2089	    !f2fs_block_unit_discard(sbi))
2090		return false;
2091
2092	if (!force) {
2093		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2094			SM_I(sbi)->dcc_info->nr_discards >=
2095				SM_I(sbi)->dcc_info->max_discards)
2096			return false;
2097	}
2098
2099	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2100	for (i = 0; i < entries; i++)
2101		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2102				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2103
2104	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2105				SM_I(sbi)->dcc_info->max_discards) {
2106		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2107		if (start >= BLKS_PER_SEG(sbi))
2108			break;
2109
2110		end = __find_rev_next_zero_bit(dmap,
2111						BLKS_PER_SEG(sbi), start + 1);
2112		if (force && start && end != BLKS_PER_SEG(sbi) &&
2113		    (end - start) < cpc->trim_minlen)
2114			continue;
2115
2116		if (check_only)
2117			return true;
2118
2119		if (!de) {
2120			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2121						GFP_F2FS_ZERO, true, NULL);
2122			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2123			list_add_tail(&de->list, head);
2124		}
2125
2126		for (i = start; i < end; i++)
2127			__set_bit_le(i, (void *)de->discard_map);
2128
2129		SM_I(sbi)->dcc_info->nr_discards += end - start;
2130	}
2131	return false;
2132}
2133
2134static void release_discard_addr(struct discard_entry *entry)
2135{
2136	list_del(&entry->list);
2137	kmem_cache_free(discard_entry_slab, entry);
2138}
2139
2140void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2141{
2142	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2143	struct discard_entry *entry, *this;
2144
2145	/* drop caches */
2146	list_for_each_entry_safe(entry, this, head, list)
2147		release_discard_addr(entry);
 
 
2148}
2149
2150/*
2151 * Should call f2fs_clear_prefree_segments after checkpoint is done.
2152 */
2153static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2154{
2155	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2156	unsigned int segno;
2157
2158	mutex_lock(&dirty_i->seglist_lock);
2159	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2160		__set_test_and_free(sbi, segno, false);
2161	mutex_unlock(&dirty_i->seglist_lock);
2162}
2163
2164void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2165						struct cp_control *cpc)
2166{
2167	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2168	struct list_head *head = &dcc->entry_list;
2169	struct discard_entry *entry, *this;
2170	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2171	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2172	unsigned int start = 0, end = -1;
2173	unsigned int secno, start_segno;
2174	bool force = (cpc->reason & CP_DISCARD);
2175	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2176						DISCARD_UNIT_SECTION;
2177
2178	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2179		section_alignment = true;
2180
2181	mutex_lock(&dirty_i->seglist_lock);
2182
2183	while (1) {
2184		int i;
2185
2186		if (section_alignment && end != -1)
2187			end--;
2188		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2189		if (start >= MAIN_SEGS(sbi))
2190			break;
2191		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2192								start + 1);
2193
2194		if (section_alignment) {
2195			start = rounddown(start, SEGS_PER_SEC(sbi));
2196			end = roundup(end, SEGS_PER_SEC(sbi));
2197		}
2198
2199		for (i = start; i < end; i++) {
2200			if (test_and_clear_bit(i, prefree_map))
2201				dirty_i->nr_dirty[PRE]--;
2202		}
2203
2204		if (!f2fs_realtime_discard_enable(sbi))
2205			continue;
2206
2207		if (force && start >= cpc->trim_start &&
2208					(end - 1) <= cpc->trim_end)
2209			continue;
2210
2211		/* Should cover 2MB zoned device for zone-based reset */
2212		if (!f2fs_sb_has_blkzoned(sbi) &&
2213		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2214			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2215				SEGS_TO_BLKS(sbi, end - start));
2216			continue;
2217		}
2218next:
2219		secno = GET_SEC_FROM_SEG(sbi, start);
2220		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2221		if (!IS_CURSEC(sbi, secno) &&
2222			!get_valid_blocks(sbi, start, true))
2223			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2224						BLKS_PER_SEC(sbi));
2225
2226		start = start_segno + SEGS_PER_SEC(sbi);
2227		if (start < end)
2228			goto next;
2229		else
2230			end = start - 1;
2231	}
2232	mutex_unlock(&dirty_i->seglist_lock);
2233
2234	if (!f2fs_block_unit_discard(sbi))
2235		goto wakeup;
2236
2237	/* send small discards */
2238	list_for_each_entry_safe(entry, this, head, list) {
2239		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2240		bool is_valid = test_bit_le(0, entry->discard_map);
2241
2242find_next:
2243		if (is_valid) {
2244			next_pos = find_next_zero_bit_le(entry->discard_map,
2245						BLKS_PER_SEG(sbi), cur_pos);
2246			len = next_pos - cur_pos;
2247
2248			if (f2fs_sb_has_blkzoned(sbi) ||
2249			    (force && len < cpc->trim_minlen))
2250				goto skip;
2251
2252			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2253									len);
2254			total_len += len;
2255		} else {
2256			next_pos = find_next_bit_le(entry->discard_map,
2257						BLKS_PER_SEG(sbi), cur_pos);
2258		}
2259skip:
2260		cur_pos = next_pos;
2261		is_valid = !is_valid;
2262
2263		if (cur_pos < BLKS_PER_SEG(sbi))
2264			goto find_next;
2265
2266		release_discard_addr(entry);
2267		dcc->nr_discards -= total_len;
2268	}
2269
2270wakeup:
2271	wake_up_discard_thread(sbi, false);
2272}
2273
2274int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2275{
2276	dev_t dev = sbi->sb->s_bdev->bd_dev;
2277	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2278	int err = 0;
2279
2280	if (f2fs_sb_has_readonly(sbi)) {
2281		f2fs_info(sbi,
2282			"Skip to start discard thread for readonly image");
2283		return 0;
2284	}
2285
2286	if (!f2fs_realtime_discard_enable(sbi))
2287		return 0;
2288
2289	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2290				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2291	if (IS_ERR(dcc->f2fs_issue_discard)) {
2292		err = PTR_ERR(dcc->f2fs_issue_discard);
2293		dcc->f2fs_issue_discard = NULL;
2294	}
2295
2296	return err;
2297}
2298
2299static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2300{
2301	struct discard_cmd_control *dcc;
2302	int err = 0, i;
2303
2304	if (SM_I(sbi)->dcc_info) {
2305		dcc = SM_I(sbi)->dcc_info;
2306		goto init_thread;
2307	}
2308
2309	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2310	if (!dcc)
2311		return -ENOMEM;
2312
2313	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2314	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2315	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2316	dcc->discard_io_aware = DPOLICY_IO_AWARE_ENABLE;
2317	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2318		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2319	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2320		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2321
2322	INIT_LIST_HEAD(&dcc->entry_list);
2323	for (i = 0; i < MAX_PLIST_NUM; i++)
2324		INIT_LIST_HEAD(&dcc->pend_list[i]);
2325	INIT_LIST_HEAD(&dcc->wait_list);
2326	INIT_LIST_HEAD(&dcc->fstrim_list);
2327	mutex_init(&dcc->cmd_lock);
2328	atomic_set(&dcc->issued_discard, 0);
2329	atomic_set(&dcc->queued_discard, 0);
2330	atomic_set(&dcc->discard_cmd_cnt, 0);
2331	dcc->nr_discards = 0;
2332	dcc->max_discards = SEGS_TO_BLKS(sbi, MAIN_SEGS(sbi));
2333	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2334	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2335	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2336	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2337	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2338	dcc->undiscard_blks = 0;
2339	dcc->next_pos = 0;
2340	dcc->root = RB_ROOT_CACHED;
2341	dcc->rbtree_check = false;
2342
2343	init_waitqueue_head(&dcc->discard_wait_queue);
2344	SM_I(sbi)->dcc_info = dcc;
2345init_thread:
2346	err = f2fs_start_discard_thread(sbi);
2347	if (err) {
2348		kfree(dcc);
2349		SM_I(sbi)->dcc_info = NULL;
2350	}
2351
2352	return err;
2353}
2354
2355static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2356{
2357	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2358
2359	if (!dcc)
2360		return;
2361
2362	f2fs_stop_discard_thread(sbi);
2363
2364	/*
2365	 * Recovery can cache discard commands, so in error path of
2366	 * fill_super(), it needs to give a chance to handle them.
2367	 */
2368	f2fs_issue_discard_timeout(sbi);
2369
2370	kfree(dcc);
2371	SM_I(sbi)->dcc_info = NULL;
2372}
2373
2374static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2375{
2376	struct sit_info *sit_i = SIT_I(sbi);
2377
2378	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2379		sit_i->dirty_sentries++;
2380		return false;
2381	}
2382
2383	return true;
2384}
2385
2386static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2387					unsigned int segno, int modified)
2388{
2389	struct seg_entry *se = get_seg_entry(sbi, segno);
2390
2391	se->type = type;
2392	if (modified)
2393		__mark_sit_entry_dirty(sbi, segno);
2394}
2395
2396static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2397								block_t blkaddr)
2398{
2399	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2400
2401	if (segno == NULL_SEGNO)
2402		return 0;
2403	return get_seg_entry(sbi, segno)->mtime;
2404}
2405
2406static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2407						unsigned long long old_mtime)
2408{
2409	struct seg_entry *se;
2410	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2411	unsigned long long ctime = get_mtime(sbi, false);
2412	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2413
2414	if (segno == NULL_SEGNO)
2415		return;
2416
2417	se = get_seg_entry(sbi, segno);
2418
2419	if (!se->mtime)
2420		se->mtime = mtime;
2421	else
2422		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2423						se->valid_blocks + 1);
2424
2425	if (ctime > SIT_I(sbi)->max_mtime)
2426		SIT_I(sbi)->max_mtime = ctime;
2427}
2428
2429static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2430{
2431	struct seg_entry *se;
2432	unsigned int segno, offset;
2433	long int new_vblocks;
2434	bool exist;
2435#ifdef CONFIG_F2FS_CHECK_FS
2436	bool mir_exist;
2437#endif
2438
2439	segno = GET_SEGNO(sbi, blkaddr);
2440	if (segno == NULL_SEGNO)
2441		return;
2442
2443	se = get_seg_entry(sbi, segno);
2444	new_vblocks = se->valid_blocks + del;
2445	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2446
2447	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2448			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2449
2450	se->valid_blocks = new_vblocks;
 
 
2451
2452	/* Update valid block bitmap */
2453	if (del > 0) {
2454		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2455#ifdef CONFIG_F2FS_CHECK_FS
2456		mir_exist = f2fs_test_and_set_bit(offset,
2457						se->cur_valid_map_mir);
2458		if (unlikely(exist != mir_exist)) {
2459			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2460				 blkaddr, exist);
2461			f2fs_bug_on(sbi, 1);
2462		}
2463#endif
2464		if (unlikely(exist)) {
2465			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2466				 blkaddr);
2467			f2fs_bug_on(sbi, 1);
2468			se->valid_blocks--;
2469			del = 0;
2470		}
2471
2472		if (f2fs_block_unit_discard(sbi) &&
2473				!f2fs_test_and_set_bit(offset, se->discard_map))
2474			sbi->discard_blks--;
2475
2476		/*
2477		 * SSR should never reuse block which is checkpointed
2478		 * or newly invalidated.
2479		 */
2480		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2481			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2482				se->ckpt_valid_blocks++;
2483		}
2484	} else {
2485		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2486#ifdef CONFIG_F2FS_CHECK_FS
2487		mir_exist = f2fs_test_and_clear_bit(offset,
2488						se->cur_valid_map_mir);
2489		if (unlikely(exist != mir_exist)) {
2490			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2491				 blkaddr, exist);
2492			f2fs_bug_on(sbi, 1);
2493		}
2494#endif
2495		if (unlikely(!exist)) {
2496			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2497				 blkaddr);
2498			f2fs_bug_on(sbi, 1);
2499			se->valid_blocks++;
2500			del = 0;
2501		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2502			/*
2503			 * If checkpoints are off, we must not reuse data that
2504			 * was used in the previous checkpoint. If it was used
2505			 * before, we must track that to know how much space we
2506			 * really have.
2507			 */
2508			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2509				spin_lock(&sbi->stat_lock);
2510				sbi->unusable_block_count++;
2511				spin_unlock(&sbi->stat_lock);
2512			}
2513		}
2514
2515		if (f2fs_block_unit_discard(sbi) &&
2516			f2fs_test_and_clear_bit(offset, se->discard_map))
2517			sbi->discard_blks++;
2518	}
2519	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2520		se->ckpt_valid_blocks += del;
2521
2522	__mark_sit_entry_dirty(sbi, segno);
2523
2524	/* update total number of valid blocks to be written in ckpt area */
2525	SIT_I(sbi)->written_valid_blocks += del;
2526
2527	if (__is_large_section(sbi))
2528		get_sec_entry(sbi, segno)->valid_blocks += del;
2529}
2530
2531void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 
 
 
 
 
 
 
 
 
 
2532{
2533	unsigned int segno = GET_SEGNO(sbi, addr);
2534	struct sit_info *sit_i = SIT_I(sbi);
2535
2536	f2fs_bug_on(sbi, addr == NULL_ADDR);
2537	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2538		return;
2539
2540	f2fs_invalidate_internal_cache(sbi, addr);
2541
2542	/* add it into sit main buffer */
2543	down_write(&sit_i->sentry_lock);
2544
2545	update_segment_mtime(sbi, addr, 0);
2546	update_sit_entry(sbi, addr, -1);
2547
2548	/* add it into dirty seglist */
2549	locate_dirty_segment(sbi, segno);
2550
2551	up_write(&sit_i->sentry_lock);
2552}
2553
2554bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2555{
2556	struct sit_info *sit_i = SIT_I(sbi);
2557	unsigned int segno, offset;
2558	struct seg_entry *se;
2559	bool is_cp = false;
2560
2561	if (!__is_valid_data_blkaddr(blkaddr))
2562		return true;
2563
2564	down_read(&sit_i->sentry_lock);
2565
2566	segno = GET_SEGNO(sbi, blkaddr);
2567	se = get_seg_entry(sbi, segno);
2568	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2569
2570	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2571		is_cp = true;
2572
2573	up_read(&sit_i->sentry_lock);
2574
2575	return is_cp;
2576}
2577
2578static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
 
 
 
 
2579{
2580	struct curseg_info *curseg = CURSEG_I(sbi, type);
2581
2582	if (sbi->ckpt->alloc_type[type] == SSR)
2583		return BLKS_PER_SEG(sbi);
2584	return curseg->next_blkoff;
2585}
2586
2587/*
2588 * Calculate the number of current summary pages for writing
2589 */
2590int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2591{
2592	int valid_sum_count = 0;
2593	int i, sum_in_page;
2594
2595	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2596		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2597			valid_sum_count +=
2598				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2599		else
2600			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
 
 
 
 
2601	}
2602
2603	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2604			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2605	if (valid_sum_count <= sum_in_page)
2606		return 1;
2607	else if ((valid_sum_count - sum_in_page) <=
2608		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2609		return 2;
2610	return 3;
2611}
2612
2613/*
2614 * Caller should put this summary page
2615 */
2616struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2617{
2618	if (unlikely(f2fs_cp_error(sbi)))
2619		return ERR_PTR(-EIO);
2620	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2621}
2622
2623void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2624					void *src, block_t blk_addr)
2625{
2626	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
 
2627
2628	memcpy(page_address(page), src, PAGE_SIZE);
 
 
 
2629	set_page_dirty(page);
2630	f2fs_put_page(page, 1);
2631}
2632
2633static void write_sum_page(struct f2fs_sb_info *sbi,
2634			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2635{
2636	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2637}
2638
2639static void write_current_sum_page(struct f2fs_sb_info *sbi,
2640						int type, block_t blk_addr)
2641{
2642	struct curseg_info *curseg = CURSEG_I(sbi, type);
2643	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2644	struct f2fs_summary_block *src = curseg->sum_blk;
2645	struct f2fs_summary_block *dst;
2646
2647	dst = (struct f2fs_summary_block *)page_address(page);
2648	memset(dst, 0, PAGE_SIZE);
2649
2650	mutex_lock(&curseg->curseg_mutex);
2651
2652	down_read(&curseg->journal_rwsem);
2653	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2654	up_read(&curseg->journal_rwsem);
2655
2656	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2657	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2658
2659	mutex_unlock(&curseg->curseg_mutex);
2660
2661	set_page_dirty(page);
2662	f2fs_put_page(page, 1);
2663}
2664
2665static int is_next_segment_free(struct f2fs_sb_info *sbi,
2666				struct curseg_info *curseg)
2667{
 
2668	unsigned int segno = curseg->segno + 1;
2669	struct free_segmap_info *free_i = FREE_I(sbi);
2670
2671	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2672		return !test_bit(segno, free_i->free_segmap);
2673	return 0;
2674}
2675
2676/*
2677 * Find a new segment from the free segments bitmap to right order
2678 * This function should be returned with success, otherwise BUG
2679 */
2680static int get_new_segment(struct f2fs_sb_info *sbi,
2681			unsigned int *newseg, bool new_sec, bool pinning)
2682{
2683	struct free_segmap_info *free_i = FREE_I(sbi);
2684	unsigned int segno, secno, zoneno;
2685	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2686	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2687	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
 
2688	bool init = true;
 
2689	int i;
2690	int ret = 0;
2691
2692	spin_lock(&free_i->segmap_lock);
2693
2694	if (time_to_inject(sbi, FAULT_NO_SEGMENT)) {
2695		ret = -ENOSPC;
2696		goto out_unlock;
2697	}
2698
2699	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2700		segno = find_next_zero_bit(free_i->free_segmap,
2701			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2702		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2703			goto got_it;
2704	}
2705
2706#ifdef CONFIG_BLK_DEV_ZONED
2707	/*
2708	 * If we format f2fs on zoned storage, let's try to get pinned sections
2709	 * from beginning of the storage, which should be a conventional one.
2710	 */
2711	if (f2fs_sb_has_blkzoned(sbi)) {
2712		/* Prioritize writing to conventional zones */
2713		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_PRIOR_CONV || pinning)
2714			segno = 0;
2715		else
2716			segno = max(sbi->first_zoned_segno, *newseg);
2717		hint = GET_SEC_FROM_SEG(sbi, segno);
2718	}
2719#endif
2720
2721find_other_zone:
2722	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2723
2724#ifdef CONFIG_BLK_DEV_ZONED
2725	if (secno >= MAIN_SECS(sbi) && f2fs_sb_has_blkzoned(sbi)) {
2726		/* Write only to sequential zones */
2727		if (sbi->blkzone_alloc_policy == BLKZONE_ALLOC_ONLY_SEQ) {
2728			hint = GET_SEC_FROM_SEG(sbi, sbi->first_zoned_segno);
2729			secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2730		} else
2731			secno = find_first_zero_bit(free_i->free_secmap,
2732								MAIN_SECS(sbi));
2733		if (secno >= MAIN_SECS(sbi)) {
2734			ret = -ENOSPC;
2735			f2fs_bug_on(sbi, 1);
2736			goto out_unlock;
2737		}
2738	}
2739#endif
 
2740
2741	if (secno >= MAIN_SECS(sbi)) {
2742		secno = find_first_zero_bit(free_i->free_secmap,
2743							MAIN_SECS(sbi));
2744		if (secno >= MAIN_SECS(sbi)) {
2745			ret = -ENOSPC;
2746			f2fs_bug_on(sbi, 1);
2747			goto out_unlock;
2748		}
 
 
 
 
2749	}
2750	segno = GET_SEG_FROM_SEC(sbi, secno);
2751	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
 
 
 
2752
2753	/* give up on finding another zone */
2754	if (!init)
2755		goto got_it;
2756	if (sbi->secs_per_zone == 1)
2757		goto got_it;
2758	if (zoneno == old_zoneno)
2759		goto got_it;
 
 
 
 
 
 
2760	for (i = 0; i < NR_CURSEG_TYPE; i++)
2761		if (CURSEG_I(sbi, i)->zone == zoneno)
2762			break;
2763
2764	if (i < NR_CURSEG_TYPE) {
2765		/* zone is in user, try another */
2766		if (zoneno + 1 >= total_zones)
 
 
2767			hint = 0;
2768		else
2769			hint = (zoneno + 1) * sbi->secs_per_zone;
2770		init = false;
2771		goto find_other_zone;
2772	}
2773got_it:
2774	/* set it as dirty segment in free segmap */
2775	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2776
2777	/* no free section in conventional zone */
2778	if (new_sec && pinning &&
2779		!f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2780		ret = -EAGAIN;
2781		goto out_unlock;
2782	}
2783	__set_inuse(sbi, segno);
2784	*newseg = segno;
2785out_unlock:
2786	spin_unlock(&free_i->segmap_lock);
2787
2788	if (ret == -ENOSPC)
2789		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2790	return ret;
2791}
2792
2793static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2794{
2795	struct curseg_info *curseg = CURSEG_I(sbi, type);
2796	struct summary_footer *sum_footer;
2797	unsigned short seg_type = curseg->seg_type;
2798
2799	/* only happen when get_new_segment() fails */
2800	if (curseg->next_segno == NULL_SEGNO)
2801		return;
2802
2803	curseg->inited = true;
2804	curseg->segno = curseg->next_segno;
2805	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2806	curseg->next_blkoff = 0;
2807	curseg->next_segno = NULL_SEGNO;
2808
2809	sum_footer = &(curseg->sum_blk->footer);
2810	memset(sum_footer, 0, sizeof(struct summary_footer));
2811
2812	sanity_check_seg_type(sbi, seg_type);
2813
2814	if (IS_DATASEG(seg_type))
2815		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2816	if (IS_NODESEG(seg_type))
2817		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2818	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2819}
2820
2821static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2822{
2823	struct curseg_info *curseg = CURSEG_I(sbi, type);
2824	unsigned short seg_type = curseg->seg_type;
2825
2826	sanity_check_seg_type(sbi, seg_type);
2827	if (__is_large_section(sbi)) {
2828		if (f2fs_need_rand_seg(sbi)) {
2829			unsigned int hint = GET_SEC_FROM_SEG(sbi, curseg->segno);
2830
2831			if (GET_SEC_FROM_SEG(sbi, curseg->segno + 1) != hint)
2832				return curseg->segno;
2833			return get_random_u32_inclusive(curseg->segno + 1,
2834					GET_SEG_FROM_SEC(sbi, hint + 1) - 1);
2835		}
2836		return curseg->segno;
2837	} else if (f2fs_need_rand_seg(sbi)) {
2838		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2839	}
2840
2841	/* inmem log may not locate on any segment after mount */
2842	if (!curseg->inited)
2843		return 0;
2844
2845	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2846		return 0;
2847
2848	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2849		return 0;
2850
2851	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2852		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2853
2854	/* find segments from 0 to reuse freed segments */
2855	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2856		return 0;
2857
2858	return curseg->segno;
2859}
2860
2861/*
2862 * Allocate a current working segment.
2863 * This function always allocates a free segment in LFS manner.
2864 */
2865static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2866{
2867	struct curseg_info *curseg = CURSEG_I(sbi, type);
2868	unsigned int segno = curseg->segno;
2869	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2870	int ret;
2871
2872	if (curseg->inited)
2873		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
 
 
2874
2875	segno = __get_next_segno(sbi, type);
2876	ret = get_new_segment(sbi, &segno, new_sec, pinning);
2877	if (ret) {
2878		if (ret == -ENOSPC)
2879			curseg->segno = NULL_SEGNO;
2880		return ret;
2881	}
2882
 
2883	curseg->next_segno = segno;
2884	reset_curseg(sbi, type, 1);
2885	curseg->alloc_type = LFS;
2886	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2887		curseg->fragment_remained_chunk =
2888				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2889	return 0;
2890}
2891
2892static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2893					int segno, block_t start)
2894{
2895	struct seg_entry *se = get_seg_entry(sbi, segno);
2896	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2897	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2898	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2899	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2900	int i;
2901
2902	for (i = 0; i < entries; i++)
2903		target_map[i] = ckpt_map[i] | cur_map[i];
2904
2905	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2906}
2907
2908static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2909		struct curseg_info *seg)
2910{
2911	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2912}
2913
2914bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
 
 
 
 
 
 
2915{
2916	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
 
 
 
2917}
2918
2919/*
2920 * This function always allocates a used segment(from dirty seglist) by SSR
2921 * manner, so it should recover the existing segment information of valid blocks
2922 */
2923static int change_curseg(struct f2fs_sb_info *sbi, int type)
2924{
2925	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2926	struct curseg_info *curseg = CURSEG_I(sbi, type);
2927	unsigned int new_segno = curseg->next_segno;
2928	struct f2fs_summary_block *sum_node;
2929	struct page *sum_page;
2930
2931	if (curseg->inited)
2932		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2933
2934	__set_test_and_inuse(sbi, new_segno);
2935
2936	mutex_lock(&dirty_i->seglist_lock);
2937	__remove_dirty_segment(sbi, new_segno, PRE);
2938	__remove_dirty_segment(sbi, new_segno, DIRTY);
2939	mutex_unlock(&dirty_i->seglist_lock);
2940
2941	reset_curseg(sbi, type, 1);
2942	curseg->alloc_type = SSR;
2943	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2944
2945	sum_page = f2fs_get_sum_page(sbi, new_segno);
2946	if (IS_ERR(sum_page)) {
2947		/* GC won't be able to use stale summary pages by cp_error */
2948		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2949		return PTR_ERR(sum_page);
2950	}
2951	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2952	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2953	f2fs_put_page(sum_page, 1);
2954	return 0;
2955}
2956
2957static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2958				int alloc_mode, unsigned long long age);
2959
2960static int get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2961					int target_type, int alloc_mode,
2962					unsigned long long age)
2963{
2964	struct curseg_info *curseg = CURSEG_I(sbi, type);
2965	int ret = 0;
2966
2967	curseg->seg_type = target_type;
2968
2969	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2970		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2971
2972		curseg->seg_type = se->type;
2973		ret = change_curseg(sbi, type);
2974	} else {
2975		/* allocate cold segment by default */
2976		curseg->seg_type = CURSEG_COLD_DATA;
2977		ret = new_curseg(sbi, type, true);
2978	}
2979	stat_inc_seg_type(sbi, curseg);
2980	return ret;
2981}
2982
2983static int __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi, bool force)
2984{
2985	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2986	int ret = 0;
2987
2988	if (!sbi->am.atgc_enabled && !force)
2989		return 0;
2990
2991	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2992
2993	mutex_lock(&curseg->curseg_mutex);
2994	down_write(&SIT_I(sbi)->sentry_lock);
2995
2996	ret = get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC,
2997					CURSEG_COLD_DATA, SSR, 0);
2998
2999	up_write(&SIT_I(sbi)->sentry_lock);
3000	mutex_unlock(&curseg->curseg_mutex);
3001
3002	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3003	return ret;
3004}
3005
3006int f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
3007{
3008	return __f2fs_init_atgc_curseg(sbi, false);
3009}
3010
3011int f2fs_reinit_atgc_curseg(struct f2fs_sb_info *sbi)
3012{
3013	int ret;
3014
3015	if (!test_opt(sbi, ATGC))
3016		return 0;
3017	if (sbi->am.atgc_enabled)
3018		return 0;
3019	if (le64_to_cpu(F2FS_CKPT(sbi)->elapsed_time) <
3020			sbi->am.age_threshold)
3021		return 0;
3022
3023	ret = __f2fs_init_atgc_curseg(sbi, true);
3024	if (!ret) {
3025		sbi->am.atgc_enabled = true;
3026		f2fs_info(sbi, "reenabled age threshold GC");
3027	}
3028	return ret;
3029}
3030
3031static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3032{
3033	struct curseg_info *curseg = CURSEG_I(sbi, type);
3034
3035	mutex_lock(&curseg->curseg_mutex);
3036	if (!curseg->inited)
3037		goto out;
3038
3039	if (get_valid_blocks(sbi, curseg->segno, false)) {
3040		write_sum_page(sbi, curseg->sum_blk,
3041				GET_SUM_BLOCK(sbi, curseg->segno));
3042	} else {
3043		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3044		__set_test_and_free(sbi, curseg->segno, true);
3045		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3046	}
3047out:
3048	mutex_unlock(&curseg->curseg_mutex);
3049}
3050
3051void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
3052{
3053	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3054
3055	if (sbi->am.atgc_enabled)
3056		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3057}
3058
3059static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
3060{
3061	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
3062
3063	mutex_lock(&curseg->curseg_mutex);
3064	if (!curseg->inited)
3065		goto out;
3066	if (get_valid_blocks(sbi, curseg->segno, false))
3067		goto out;
3068
3069	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
3070	__set_test_and_inuse(sbi, curseg->segno);
3071	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
3072out:
3073	mutex_unlock(&curseg->curseg_mutex);
3074}
3075
3076void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
3077{
3078	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
3079
3080	if (sbi->am.atgc_enabled)
3081		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
3082}
3083
3084static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
3085				int alloc_mode, unsigned long long age)
3086{
3087	struct curseg_info *curseg = CURSEG_I(sbi, type);
3088	unsigned segno = NULL_SEGNO;
3089	unsigned short seg_type = curseg->seg_type;
3090	int i, cnt;
3091	bool reversed = false;
3092
3093	sanity_check_seg_type(sbi, seg_type);
3094
3095	/* f2fs_need_SSR() already forces to do this */
3096	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type,
3097				alloc_mode, age, false)) {
3098		curseg->next_segno = segno;
3099		return 1;
3100	}
3101
3102	/* For node segments, let's do SSR more intensively */
3103	if (IS_NODESEG(seg_type)) {
3104		if (seg_type >= CURSEG_WARM_NODE) {
3105			reversed = true;
3106			i = CURSEG_COLD_NODE;
3107		} else {
3108			i = CURSEG_HOT_NODE;
3109		}
3110		cnt = NR_CURSEG_NODE_TYPE;
3111	} else {
3112		if (seg_type >= CURSEG_WARM_DATA) {
3113			reversed = true;
3114			i = CURSEG_COLD_DATA;
3115		} else {
3116			i = CURSEG_HOT_DATA;
3117		}
3118		cnt = NR_CURSEG_DATA_TYPE;
3119	}
3120
3121	for (; cnt-- > 0; reversed ? i-- : i++) {
3122		if (i == seg_type)
3123			continue;
3124		if (!f2fs_get_victim(sbi, &segno, BG_GC, i,
3125					alloc_mode, age, false)) {
3126			curseg->next_segno = segno;
3127			return 1;
3128		}
3129	}
3130
3131	/* find valid_blocks=0 in dirty list */
3132	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3133		segno = get_free_segment(sbi);
3134		if (segno != NULL_SEGNO) {
3135			curseg->next_segno = segno;
3136			return 1;
3137		}
3138	}
3139	return 0;
3140}
3141
3142static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3143{
3144	struct curseg_info *curseg = CURSEG_I(sbi, type);
3145
3146	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3147	    curseg->seg_type == CURSEG_WARM_NODE)
3148		return true;
3149	if (curseg->alloc_type == LFS && is_next_segment_free(sbi, curseg) &&
3150	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3151		return true;
3152	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3153		return true;
3154	return false;
3155}
3156
3157int f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3158					unsigned int start, unsigned int end)
3159{
3160	struct curseg_info *curseg = CURSEG_I(sbi, type);
3161	unsigned int segno;
3162	int ret = 0;
3163
3164	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3165	mutex_lock(&curseg->curseg_mutex);
3166	down_write(&SIT_I(sbi)->sentry_lock);
3167
3168	segno = CURSEG_I(sbi, type)->segno;
3169	if (segno < start || segno > end)
3170		goto unlock;
3171
3172	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3173		ret = change_curseg(sbi, type);
 
 
3174	else
3175		ret = new_curseg(sbi, type, true);
3176
3177	stat_inc_seg_type(sbi, curseg);
3178
3179	locate_dirty_segment(sbi, segno);
3180unlock:
3181	up_write(&SIT_I(sbi)->sentry_lock);
3182
3183	if (segno != curseg->segno)
3184		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3185			    type, segno, curseg->segno);
3186
3187	mutex_unlock(&curseg->curseg_mutex);
3188	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3189	return ret;
3190}
3191
3192static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3193						bool new_sec, bool force)
3194{
3195	struct curseg_info *curseg = CURSEG_I(sbi, type);
3196	unsigned int old_segno;
3197	int err = 0;
3198
3199	if (type == CURSEG_COLD_DATA_PINNED && !curseg->inited)
3200		goto allocate;
3201
3202	if (!force && curseg->inited &&
3203	    !curseg->next_blkoff &&
3204	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3205	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3206		return 0;
3207
3208allocate:
3209	old_segno = curseg->segno;
3210	err = new_curseg(sbi, type, true);
3211	if (err)
3212		return err;
3213	stat_inc_seg_type(sbi, curseg);
3214	locate_dirty_segment(sbi, old_segno);
3215	return 0;
3216}
3217
3218int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3219{
3220	int ret;
3221
3222	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3223	down_write(&SIT_I(sbi)->sentry_lock);
3224	ret = __allocate_new_segment(sbi, type, true, force);
3225	up_write(&SIT_I(sbi)->sentry_lock);
3226	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3227
3228	return ret;
3229}
3230
3231int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3232{
3233	int err;
3234	bool gc_required = true;
3235
3236retry:
3237	f2fs_lock_op(sbi);
3238	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3239	f2fs_unlock_op(sbi);
3240
3241	if (f2fs_sb_has_blkzoned(sbi) && err == -EAGAIN && gc_required) {
3242		f2fs_down_write(&sbi->gc_lock);
3243		err = f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk),
3244				true, ZONED_PIN_SEC_REQUIRED_COUNT);
3245		f2fs_up_write(&sbi->gc_lock);
3246
3247		gc_required = false;
3248		if (!err)
3249			goto retry;
3250	}
3251
3252	return err;
3253}
3254
3255int f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3256{
3257	int i;
3258	int err = 0;
3259
3260	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3261	down_write(&SIT_I(sbi)->sentry_lock);
3262	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3263		err += __allocate_new_segment(sbi, i, false, false);
3264	up_write(&SIT_I(sbi)->sentry_lock);
3265	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3266
3267	return err;
3268}
3269
3270bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3271						struct cp_control *cpc)
3272{
3273	__u64 trim_start = cpc->trim_start;
3274	bool has_candidate = false;
3275
3276	down_write(&SIT_I(sbi)->sentry_lock);
3277	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3278		if (add_discard_addrs(sbi, cpc, true)) {
3279			has_candidate = true;
3280			break;
3281		}
3282	}
3283	up_write(&SIT_I(sbi)->sentry_lock);
3284
3285	cpc->trim_start = trim_start;
3286	return has_candidate;
3287}
3288
3289static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3290					struct discard_policy *dpolicy,
3291					unsigned int start, unsigned int end)
3292{
3293	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3294	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3295	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3296	struct discard_cmd *dc;
3297	struct blk_plug plug;
3298	int issued;
3299	unsigned int trimmed = 0;
3300
3301next:
3302	issued = 0;
3303
3304	mutex_lock(&dcc->cmd_lock);
3305	if (unlikely(dcc->rbtree_check))
3306		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3307
3308	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3309				&prev_dc, &next_dc, &insert_p, &insert_parent);
3310	if (!dc)
3311		dc = next_dc;
3312
3313	blk_start_plug(&plug);
3314
3315	while (dc && dc->di.lstart <= end) {
3316		struct rb_node *node;
3317		int err = 0;
3318
3319		if (dc->di.len < dpolicy->granularity)
3320			goto skip;
3321
3322		if (dc->state != D_PREP) {
3323			list_move_tail(&dc->list, &dcc->fstrim_list);
3324			goto skip;
3325		}
3326
3327		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3328
3329		if (issued >= dpolicy->max_requests) {
3330			start = dc->di.lstart + dc->di.len;
3331
3332			if (err)
3333				__remove_discard_cmd(sbi, dc);
3334
3335			blk_finish_plug(&plug);
3336			mutex_unlock(&dcc->cmd_lock);
3337			trimmed += __wait_all_discard_cmd(sbi, NULL);
3338			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3339			goto next;
3340		}
3341skip:
3342		node = rb_next(&dc->rb_node);
3343		if (err)
3344			__remove_discard_cmd(sbi, dc);
3345		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3346
3347		if (fatal_signal_pending(current))
3348			break;
3349	}
3350
3351	blk_finish_plug(&plug);
3352	mutex_unlock(&dcc->cmd_lock);
3353
3354	return trimmed;
3355}
3356
3357int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3358{
3359	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3360	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3361	unsigned int start_segno, end_segno;
3362	block_t start_block, end_block;
3363	struct cp_control cpc;
3364	struct discard_policy dpolicy;
3365	unsigned long long trimmed = 0;
3366	int err = 0;
3367	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3368
3369	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3370		return -EINVAL;
3371
3372	if (end < MAIN_BLKADDR(sbi))
 
3373		goto out;
3374
3375	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3376		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3377		return -EFSCORRUPTED;
3378	}
3379
3380	/* start/end segment number in main_area */
3381	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3382	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3383						GET_SEGNO(sbi, end);
3384	if (need_align) {
3385		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3386		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3387	}
3388
3389	cpc.reason = CP_DISCARD;
3390	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3391	cpc.trim_start = start_segno;
3392	cpc.trim_end = end_segno;
3393
3394	if (sbi->discard_blks == 0)
3395		goto out;
 
3396
3397	f2fs_down_write(&sbi->gc_lock);
3398	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3399	err = f2fs_write_checkpoint(sbi, &cpc);
3400	f2fs_up_write(&sbi->gc_lock);
3401	if (err)
3402		goto out;
3403
3404	/*
3405	 * We filed discard candidates, but actually we don't need to wait for
3406	 * all of them, since they'll be issued in idle time along with runtime
3407	 * discard option. User configuration looks like using runtime discard
3408	 * or periodic fstrim instead of it.
3409	 */
3410	if (f2fs_realtime_discard_enable(sbi))
3411		goto out;
3412
3413	start_block = START_BLOCK(sbi, start_segno);
3414	end_block = START_BLOCK(sbi, end_segno + 1);
3415
3416	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3417	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3418					start_block, end_block);
3419
3420	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3421					start_block, end_block);
3422out:
3423	if (!err)
3424		range->len = F2FS_BLK_TO_BYTES(trimmed);
3425	return err;
3426}
3427
3428int f2fs_rw_hint_to_seg_type(struct f2fs_sb_info *sbi, enum rw_hint hint)
3429{
3430	if (F2FS_OPTION(sbi).active_logs == 2)
3431		return CURSEG_HOT_DATA;
3432	else if (F2FS_OPTION(sbi).active_logs == 4)
3433		return CURSEG_COLD_DATA;
3434
3435	/* active_log == 6 */
3436	switch (hint) {
3437	case WRITE_LIFE_SHORT:
3438		return CURSEG_HOT_DATA;
3439	case WRITE_LIFE_EXTREME:
3440		return CURSEG_COLD_DATA;
3441	default:
3442		return CURSEG_WARM_DATA;
3443	}
3444}
3445
3446/*
3447 * This returns write hints for each segment type. This hints will be
3448 * passed down to block layer as below by default.
3449 *
3450 * User                  F2FS                     Block
3451 * ----                  ----                     -----
3452 *                       META                     WRITE_LIFE_NONE|REQ_META
3453 *                       HOT_NODE                 WRITE_LIFE_NONE
3454 *                       WARM_NODE                WRITE_LIFE_MEDIUM
3455 *                       COLD_NODE                WRITE_LIFE_LONG
3456 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3457 * extension list        "                        "
3458 *
3459 * -- buffered io
3460 *                       COLD_DATA                WRITE_LIFE_EXTREME
3461 *                       HOT_DATA                 WRITE_LIFE_SHORT
3462 *                       WARM_DATA                WRITE_LIFE_NOT_SET
3463 *
3464 * -- direct io
3465 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3466 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3467 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3468 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3469 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3470 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3471 */
3472enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3473				enum page_type type, enum temp_type temp)
3474{
3475	switch (type) {
3476	case DATA:
3477		switch (temp) {
3478		case WARM:
3479			return WRITE_LIFE_NOT_SET;
3480		case HOT:
3481			return WRITE_LIFE_SHORT;
3482		case COLD:
3483			return WRITE_LIFE_EXTREME;
3484		default:
3485			return WRITE_LIFE_NONE;
3486		}
3487	case NODE:
3488		switch (temp) {
3489		case WARM:
3490			return WRITE_LIFE_MEDIUM;
3491		case HOT:
3492			return WRITE_LIFE_NONE;
3493		case COLD:
3494			return WRITE_LIFE_LONG;
3495		default:
3496			return WRITE_LIFE_NONE;
3497		}
3498	case META:
3499		return WRITE_LIFE_NONE;
3500	default:
3501		return WRITE_LIFE_NONE;
3502	}
3503}
3504
3505static int __get_segment_type_2(struct f2fs_io_info *fio)
3506{
3507	if (fio->type == DATA)
3508		return CURSEG_HOT_DATA;
3509	else
3510		return CURSEG_HOT_NODE;
3511}
3512
3513static int __get_segment_type_4(struct f2fs_io_info *fio)
3514{
3515	if (fio->type == DATA) {
3516		struct inode *inode = fio->page->mapping->host;
3517
3518		if (S_ISDIR(inode->i_mode))
3519			return CURSEG_HOT_DATA;
3520		else
3521			return CURSEG_COLD_DATA;
3522	} else {
3523		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3524			return CURSEG_WARM_NODE;
3525		else
3526			return CURSEG_COLD_NODE;
3527	}
3528}
3529
3530static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3531{
3532	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3533	struct extent_info ei = {};
3534
3535	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3536		if (!ei.age)
3537			return NO_CHECK_TYPE;
3538		if (ei.age <= sbi->hot_data_age_threshold)
3539			return CURSEG_HOT_DATA;
3540		if (ei.age <= sbi->warm_data_age_threshold)
 
 
3541			return CURSEG_WARM_DATA;
3542		return CURSEG_COLD_DATA;
3543	}
3544	return NO_CHECK_TYPE;
3545}
3546
3547static int __get_segment_type_6(struct f2fs_io_info *fio)
3548{
3549	if (fio->type == DATA) {
3550		struct inode *inode = fio->page->mapping->host;
3551		int type;
3552
3553		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3554			return CURSEG_COLD_DATA_PINNED;
3555
3556		if (page_private_gcing(fio->page)) {
3557			if (fio->sbi->am.atgc_enabled &&
3558				(fio->io_type == FS_DATA_IO) &&
3559				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3560				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3561				!is_inode_flag_set(inode, FI_OPU_WRITE))
3562				return CURSEG_ALL_DATA_ATGC;
3563			else
3564				return CURSEG_COLD_DATA;
3565		}
3566		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3567			return CURSEG_COLD_DATA;
3568
3569		type = __get_age_segment_type(inode,
3570				page_folio(fio->page)->index);
3571		if (type != NO_CHECK_TYPE)
3572			return type;
3573
3574		if (file_is_hot(inode) ||
3575				is_inode_flag_set(inode, FI_HOT_DATA) ||
3576				f2fs_is_cow_file(inode))
3577			return CURSEG_HOT_DATA;
3578		return f2fs_rw_hint_to_seg_type(F2FS_I_SB(inode),
3579						inode->i_write_hint);
3580	} else {
3581		if (IS_DNODE(fio->page))
3582			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3583						CURSEG_HOT_NODE;
3584		return CURSEG_COLD_NODE;
 
3585	}
3586}
3587
3588enum temp_type f2fs_get_segment_temp(struct f2fs_sb_info *sbi,
3589						enum log_type type)
3590{
3591	struct curseg_info *curseg = CURSEG_I(sbi, type);
3592	enum temp_type temp = COLD;
3593
3594	switch (curseg->seg_type) {
3595	case CURSEG_HOT_NODE:
3596	case CURSEG_HOT_DATA:
3597		temp = HOT;
3598		break;
3599	case CURSEG_WARM_NODE:
3600	case CURSEG_WARM_DATA:
3601		temp = WARM;
3602		break;
3603	case CURSEG_COLD_NODE:
3604	case CURSEG_COLD_DATA:
3605		temp = COLD;
3606		break;
3607	default:
3608		f2fs_bug_on(sbi, 1);
3609	}
3610
3611	return temp;
3612}
3613
3614static int __get_segment_type(struct f2fs_io_info *fio)
3615{
3616	enum log_type type = CURSEG_HOT_DATA;
3617
3618	switch (F2FS_OPTION(fio->sbi).active_logs) {
3619	case 2:
3620		type = __get_segment_type_2(fio);
3621		break;
3622	case 4:
3623		type = __get_segment_type_4(fio);
3624		break;
3625	case 6:
3626		type = __get_segment_type_6(fio);
3627		break;
3628	default:
3629		f2fs_bug_on(fio->sbi, true);
3630	}
3631
3632	fio->temp = f2fs_get_segment_temp(fio->sbi, type);
3633
3634	return type;
3635}
3636
3637static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3638		struct curseg_info *seg)
3639{
3640	/* To allocate block chunks in different sizes, use random number */
3641	if (--seg->fragment_remained_chunk > 0)
3642		return;
3643
3644	seg->fragment_remained_chunk =
3645		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3646	seg->next_blkoff +=
3647		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3648}
3649
3650static void reset_curseg_fields(struct curseg_info *curseg)
3651{
3652	curseg->inited = false;
3653	curseg->segno = NULL_SEGNO;
3654	curseg->next_segno = 0;
3655}
3656
3657int f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3658		block_t old_blkaddr, block_t *new_blkaddr,
3659		struct f2fs_summary *sum, int type,
3660		struct f2fs_io_info *fio)
3661{
3662	struct sit_info *sit_i = SIT_I(sbi);
3663	struct curseg_info *curseg = CURSEG_I(sbi, type);
3664	unsigned long long old_mtime;
3665	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3666	struct seg_entry *se = NULL;
3667	bool segment_full = false;
3668	int ret = 0;
3669
3670	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3671
3672	mutex_lock(&curseg->curseg_mutex);
3673	down_write(&sit_i->sentry_lock);
3674
3675	if (curseg->segno == NULL_SEGNO) {
3676		ret = -ENOSPC;
3677		goto out_err;
3678	}
3679
3680	if (from_gc) {
3681		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3682		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3683		sanity_check_seg_type(sbi, se->type);
3684		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3685	}
3686	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3687
3688	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
 
 
 
 
 
3689
3690	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3691
3692	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3693	if (curseg->alloc_type == SSR) {
3694		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3695	} else {
3696		curseg->next_blkoff++;
3697		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3698			f2fs_randomize_chunk(sbi, curseg);
3699	}
3700	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3701		segment_full = true;
3702	stat_inc_block_count(sbi, curseg);
3703
3704	if (from_gc) {
3705		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3706	} else {
3707		update_segment_mtime(sbi, old_blkaddr, 0);
3708		old_mtime = 0;
3709	}
3710	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3711
3712	/*
3713	 * SIT information should be updated before segment allocation,
3714	 * since SSR needs latest valid block information.
3715	 */
3716	update_sit_entry(sbi, *new_blkaddr, 1);
3717	update_sit_entry(sbi, old_blkaddr, -1);
3718
3719	/*
3720	 * If the current segment is full, flush it out and replace it with a
3721	 * new segment.
3722	 */
3723	if (segment_full) {
3724		if (type == CURSEG_COLD_DATA_PINNED &&
3725		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3726			write_sum_page(sbi, curseg->sum_blk,
3727					GET_SUM_BLOCK(sbi, curseg->segno));
3728			reset_curseg_fields(curseg);
3729			goto skip_new_segment;
3730		}
3731
3732		if (from_gc) {
3733			ret = get_atssr_segment(sbi, type, se->type,
3734						AT_SSR, se->mtime);
3735		} else {
3736			if (need_new_seg(sbi, type))
3737				ret = new_curseg(sbi, type, false);
3738			else
3739				ret = change_curseg(sbi, type);
3740			stat_inc_seg_type(sbi, curseg);
3741		}
3742
3743		if (ret)
3744			goto out_err;
3745	}
3746
3747skip_new_segment:
3748	/*
3749	 * segment dirty status should be updated after segment allocation,
3750	 * so we just need to update status only one time after previous
3751	 * segment being closed.
3752	 */
3753	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3754	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3755
3756	if (IS_DATASEG(curseg->seg_type))
3757		atomic64_inc(&sbi->allocated_data_blocks);
3758
3759	up_write(&sit_i->sentry_lock);
3760
3761	if (page && IS_NODESEG(curseg->seg_type)) {
3762		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3763
3764		f2fs_inode_chksum_set(sbi, page);
3765	}
3766
3767	if (fio) {
3768		struct f2fs_bio_info *io;
3769
3770		INIT_LIST_HEAD(&fio->list);
3771		fio->in_list = 1;
3772		io = sbi->write_io[fio->type] + fio->temp;
3773		spin_lock(&io->io_lock);
3774		list_add_tail(&fio->list, &io->io_list);
3775		spin_unlock(&io->io_lock);
3776	}
3777
3778	mutex_unlock(&curseg->curseg_mutex);
3779	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3780	return 0;
3781
3782out_err:
3783	*new_blkaddr = NULL_ADDR;
3784	up_write(&sit_i->sentry_lock);
3785	mutex_unlock(&curseg->curseg_mutex);
3786	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3787	return ret;
3788}
3789
3790void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3791					block_t blkaddr, unsigned int blkcnt)
3792{
3793	if (!f2fs_is_multi_device(sbi))
3794		return;
3795
3796	while (1) {
3797		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3798		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3799
3800		/* update device state for fsync */
3801		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3802
3803		/* update device state for checkpoint */
3804		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3805			spin_lock(&sbi->dev_lock);
3806			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3807			spin_unlock(&sbi->dev_lock);
3808		}
3809
3810		if (blkcnt <= blks)
3811			break;
3812		blkcnt -= blks;
3813		blkaddr += blks;
3814	}
3815}
3816
3817static int log_type_to_seg_type(enum log_type type)
3818{
3819	int seg_type = CURSEG_COLD_DATA;
3820
3821	switch (type) {
3822	case CURSEG_HOT_DATA:
3823	case CURSEG_WARM_DATA:
3824	case CURSEG_COLD_DATA:
3825	case CURSEG_HOT_NODE:
3826	case CURSEG_WARM_NODE:
3827	case CURSEG_COLD_NODE:
3828		seg_type = (int)type;
3829		break;
3830	case CURSEG_COLD_DATA_PINNED:
3831	case CURSEG_ALL_DATA_ATGC:
3832		seg_type = CURSEG_COLD_DATA;
3833		break;
3834	default:
3835		break;
3836	}
3837	return seg_type;
3838}
3839
3840static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3841{
3842	enum log_type type = __get_segment_type(fio);
3843	int seg_type = log_type_to_seg_type(type);
3844	bool keep_order = (f2fs_lfs_mode(fio->sbi) &&
3845				seg_type == CURSEG_COLD_DATA);
3846
3847	if (keep_order)
3848		f2fs_down_read(&fio->sbi->io_order_lock);
3849
3850	if (f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3851			&fio->new_blkaddr, sum, type, fio)) {
3852		if (fscrypt_inode_uses_fs_layer_crypto(fio->page->mapping->host))
3853			fscrypt_finalize_bounce_page(&fio->encrypted_page);
3854		end_page_writeback(fio->page);
3855		if (f2fs_in_warm_node_list(fio->sbi, fio->page))
3856			f2fs_del_fsync_node_entry(fio->sbi, fio->page);
3857		goto out;
3858	}
3859	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3860		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3861
3862	/* writeout dirty page into bdev */
3863	f2fs_submit_page_write(fio);
3864
3865	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3866out:
3867	if (keep_order)
3868		f2fs_up_read(&fio->sbi->io_order_lock);
3869}
3870
3871void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct folio *folio,
3872					enum iostat_type io_type)
3873{
3874	struct f2fs_io_info fio = {
3875		.sbi = sbi,
3876		.type = META,
3877		.temp = HOT,
3878		.op = REQ_OP_WRITE,
3879		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3880		.old_blkaddr = folio->index,
3881		.new_blkaddr = folio->index,
3882		.page = folio_page(folio, 0),
3883		.encrypted_page = NULL,
3884		.in_list = 0,
3885	};
3886
3887	if (unlikely(folio->index >= MAIN_BLKADDR(sbi)))
3888		fio.op_flags &= ~REQ_META;
3889
3890	folio_start_writeback(folio);
3891	f2fs_submit_page_write(&fio);
3892
3893	stat_inc_meta_count(sbi, folio->index);
3894	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3895}
3896
3897void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3898{
3899	struct f2fs_summary sum;
3900
3901	set_summary(&sum, nid, 0, 0);
3902	do_write_page(&sum, fio);
3903
3904	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3905}
3906
3907void f2fs_outplace_write_data(struct dnode_of_data *dn,
3908					struct f2fs_io_info *fio)
3909{
3910	struct f2fs_sb_info *sbi = fio->sbi;
3911	struct f2fs_summary sum;
 
3912
3913	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3914	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3915		f2fs_update_age_extent_cache(dn);
3916	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3917	do_write_page(&sum, fio);
3918	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3919
3920	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3921}
3922
3923int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3924{
3925	int err;
3926	struct f2fs_sb_info *sbi = fio->sbi;
3927	unsigned int segno;
3928
3929	fio->new_blkaddr = fio->old_blkaddr;
3930	/* i/o temperature is needed for passing down write hints */
3931	__get_segment_type(fio);
3932
3933	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3934
3935	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3936		set_sbi_flag(sbi, SBI_NEED_FSCK);
3937		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3938			  __func__, segno);
3939		err = -EFSCORRUPTED;
3940		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3941		goto drop_bio;
3942	}
3943
3944	if (f2fs_cp_error(sbi)) {
3945		err = -EIO;
3946		goto drop_bio;
3947	}
3948
3949	if (fio->meta_gc)
3950		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3951
3952	stat_inc_inplace_blocks(fio->sbi);
3953
3954	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3955		err = f2fs_merge_page_bio(fio);
3956	else
3957		err = f2fs_submit_page_bio(fio);
3958	if (!err) {
3959		f2fs_update_device_state(fio->sbi, fio->ino,
3960						fio->new_blkaddr, 1);
3961		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3962						fio->io_type, F2FS_BLKSIZE);
3963	}
3964
3965	return err;
3966drop_bio:
3967	if (fio->bio && *(fio->bio)) {
3968		struct bio *bio = *(fio->bio);
3969
3970		bio->bi_status = BLK_STS_IOERR;
3971		bio_endio(bio);
3972		*(fio->bio) = NULL;
3973	}
3974	return err;
3975}
3976
3977static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3978						unsigned int segno)
3979{
3980	int i;
3981
3982	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3983		if (CURSEG_I(sbi, i)->segno == segno)
3984			break;
3985	}
3986	return i;
3987}
3988
3989void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3990				block_t old_blkaddr, block_t new_blkaddr,
3991				bool recover_curseg, bool recover_newaddr,
3992				bool from_gc)
3993{
3994	struct sit_info *sit_i = SIT_I(sbi);
3995	struct curseg_info *curseg;
3996	unsigned int segno, old_cursegno;
3997	struct seg_entry *se;
3998	int type;
3999	unsigned short old_blkoff;
4000	unsigned char old_alloc_type;
4001
4002	segno = GET_SEGNO(sbi, new_blkaddr);
4003	se = get_seg_entry(sbi, segno);
4004	type = se->type;
4005
4006	f2fs_down_write(&SM_I(sbi)->curseg_lock);
4007
4008	if (!recover_curseg) {
4009		/* for recovery flow */
4010		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
4011			if (old_blkaddr == NULL_ADDR)
4012				type = CURSEG_COLD_DATA;
4013			else
4014				type = CURSEG_WARM_DATA;
4015		}
4016	} else {
4017		if (IS_CURSEG(sbi, segno)) {
4018			/* se->type is volatile as SSR allocation */
4019			type = __f2fs_get_curseg(sbi, segno);
4020			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
4021		} else {
4022			type = CURSEG_WARM_DATA;
4023		}
4024	}
4025
4026	curseg = CURSEG_I(sbi, type);
4027	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
4028
4029	mutex_lock(&curseg->curseg_mutex);
4030	down_write(&sit_i->sentry_lock);
4031
4032	old_cursegno = curseg->segno;
4033	old_blkoff = curseg->next_blkoff;
4034	old_alloc_type = curseg->alloc_type;
4035
4036	/* change the current segment */
4037	if (segno != curseg->segno) {
4038		curseg->next_segno = segno;
4039		if (change_curseg(sbi, type))
4040			goto out_unlock;
4041	}
4042
4043	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
4044	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
4045
4046	if (!recover_curseg || recover_newaddr) {
4047		if (!from_gc)
4048			update_segment_mtime(sbi, new_blkaddr, 0);
4049		update_sit_entry(sbi, new_blkaddr, 1);
4050	}
4051	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
4052		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
4053		if (!from_gc)
4054			update_segment_mtime(sbi, old_blkaddr, 0);
4055		update_sit_entry(sbi, old_blkaddr, -1);
4056	}
4057
4058	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
4059	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
4060
4061	locate_dirty_segment(sbi, old_cursegno);
4062
4063	if (recover_curseg) {
4064		if (old_cursegno != curseg->segno) {
4065			curseg->next_segno = old_cursegno;
4066			if (change_curseg(sbi, type))
4067				goto out_unlock;
4068		}
4069		curseg->next_blkoff = old_blkoff;
4070		curseg->alloc_type = old_alloc_type;
4071	}
4072
4073out_unlock:
4074	up_write(&sit_i->sentry_lock);
4075	mutex_unlock(&curseg->curseg_mutex);
4076	f2fs_up_write(&SM_I(sbi)->curseg_lock);
4077}
4078
4079void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
4080				block_t old_addr, block_t new_addr,
4081				unsigned char version, bool recover_curseg,
4082				bool recover_newaddr)
4083{
4084	struct f2fs_summary sum;
4085
4086	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
4087
4088	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
4089					recover_curseg, recover_newaddr, false);
4090
4091	f2fs_update_data_blkaddr(dn, new_addr);
4092}
4093
4094void f2fs_wait_on_page_writeback(struct page *page,
4095				enum page_type type, bool ordered, bool locked)
4096{
4097	if (folio_test_writeback(page_folio(page))) {
4098		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
4099
4100		/* submit cached LFS IO */
4101		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
4102		/* submit cached IPU IO */
4103		f2fs_submit_merged_ipu_write(sbi, NULL, page);
4104		if (ordered) {
4105			wait_on_page_writeback(page);
4106			f2fs_bug_on(sbi, locked &&
4107				folio_test_writeback(page_folio(page)));
4108		} else {
4109			wait_for_stable_page(page);
4110		}
4111	}
4112}
4113
4114void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
 
4115{
4116	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4117	struct page *cpage;
4118
4119	if (!f2fs_meta_inode_gc_required(inode))
4120		return;
4121
4122	if (!__is_valid_data_blkaddr(blkaddr))
4123		return;
4124
4125	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
4126	if (cpage) {
4127		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
4128		f2fs_put_page(cpage, 1);
4129	}
4130}
4131
4132void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
4133								block_t len)
4134{
4135	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
4136	block_t i;
4137
4138	if (!f2fs_meta_inode_gc_required(inode))
4139		return;
4140
4141	for (i = 0; i < len; i++)
4142		f2fs_wait_on_block_writeback(inode, blkaddr + i);
4143
4144	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
4145}
4146
4147static int read_compacted_summaries(struct f2fs_sb_info *sbi)
4148{
4149	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4150	struct curseg_info *seg_i;
4151	unsigned char *kaddr;
4152	struct page *page;
4153	block_t start;
4154	int i, j, offset;
4155
4156	start = start_sum_block(sbi);
4157
4158	page = f2fs_get_meta_page(sbi, start++);
4159	if (IS_ERR(page))
4160		return PTR_ERR(page);
4161	kaddr = (unsigned char *)page_address(page);
4162
4163	/* Step 1: restore nat cache */
4164	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4165	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
4166
4167	/* Step 2: restore sit cache */
4168	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4169	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
4170	offset = 2 * SUM_JOURNAL_SIZE;
4171
4172	/* Step 3: restore summary entries */
4173	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4174		unsigned short blk_off;
4175		unsigned int segno;
4176
4177		seg_i = CURSEG_I(sbi, i);
4178		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
4179		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
4180		seg_i->next_segno = segno;
4181		reset_curseg(sbi, i, 0);
4182		seg_i->alloc_type = ckpt->alloc_type[i];
4183		seg_i->next_blkoff = blk_off;
4184
4185		if (seg_i->alloc_type == SSR)
4186			blk_off = BLKS_PER_SEG(sbi);
4187
4188		for (j = 0; j < blk_off; j++) {
4189			struct f2fs_summary *s;
4190
4191			s = (struct f2fs_summary *)(kaddr + offset);
4192			seg_i->sum_blk->entries[j] = *s;
4193			offset += SUMMARY_SIZE;
4194			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
4195						SUM_FOOTER_SIZE)
4196				continue;
4197
4198			f2fs_put_page(page, 1);
4199			page = NULL;
4200
4201			page = f2fs_get_meta_page(sbi, start++);
4202			if (IS_ERR(page))
4203				return PTR_ERR(page);
4204			kaddr = (unsigned char *)page_address(page);
4205			offset = 0;
4206		}
4207	}
4208	f2fs_put_page(page, 1);
4209	return 0;
4210}
4211
4212static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
4213{
4214	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4215	struct f2fs_summary_block *sum;
4216	struct curseg_info *curseg;
4217	struct page *new;
4218	unsigned short blk_off;
4219	unsigned int segno = 0;
4220	block_t blk_addr = 0;
4221	int err = 0;
4222
4223	/* get segment number and block addr */
4224	if (IS_DATASEG(type)) {
4225		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
4226		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
4227							CURSEG_HOT_DATA]);
4228		if (__exist_node_summaries(sbi))
4229			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
4230		else
4231			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
4232	} else {
4233		segno = le32_to_cpu(ckpt->cur_node_segno[type -
4234							CURSEG_HOT_NODE]);
4235		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
4236							CURSEG_HOT_NODE]);
4237		if (__exist_node_summaries(sbi))
4238			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
4239							type - CURSEG_HOT_NODE);
4240		else
4241			blk_addr = GET_SUM_BLOCK(sbi, segno);
4242	}
4243
4244	new = f2fs_get_meta_page(sbi, blk_addr);
4245	if (IS_ERR(new))
4246		return PTR_ERR(new);
4247	sum = (struct f2fs_summary_block *)page_address(new);
4248
4249	if (IS_NODESEG(type)) {
4250		if (__exist_node_summaries(sbi)) {
4251			struct f2fs_summary *ns = &sum->entries[0];
4252			int i;
4253
4254			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
4255				ns->version = 0;
4256				ns->ofs_in_node = 0;
4257			}
4258		} else {
4259			err = f2fs_restore_node_summary(sbi, segno, sum);
4260			if (err)
4261				goto out;
 
 
 
 
4262		}
4263	}
4264
4265	/* set uncompleted segment to curseg */
4266	curseg = CURSEG_I(sbi, type);
4267	mutex_lock(&curseg->curseg_mutex);
4268
4269	/* update journal info */
4270	down_write(&curseg->journal_rwsem);
4271	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4272	up_write(&curseg->journal_rwsem);
4273
4274	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4275	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4276	curseg->next_segno = segno;
4277	reset_curseg(sbi, type, 0);
4278	curseg->alloc_type = ckpt->alloc_type[type];
4279	curseg->next_blkoff = blk_off;
4280	mutex_unlock(&curseg->curseg_mutex);
4281out:
4282	f2fs_put_page(new, 1);
4283	return err;
4284}
4285
4286static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4287{
4288	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4289	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4290	int type = CURSEG_HOT_DATA;
4291	int err;
4292
4293	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4294		int npages = f2fs_npages_for_summary_flush(sbi, true);
4295
4296		if (npages >= 2)
4297			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4298							META_CP, true);
4299
4300		/* restore for compacted data summary */
4301		err = read_compacted_summaries(sbi);
4302		if (err)
4303			return err;
4304		type = CURSEG_HOT_NODE;
4305	}
4306
4307	if (__exist_node_summaries(sbi))
4308		f2fs_ra_meta_pages(sbi,
4309				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4310				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4311
4312	for (; type <= CURSEG_COLD_NODE; type++) {
4313		err = read_normal_summaries(sbi, type);
4314		if (err)
4315			return err;
4316	}
4317
4318	/* sanity check for summary blocks */
4319	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4320			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4321		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4322			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4323		return -EINVAL;
4324	}
4325
4326	return 0;
4327}
4328
4329static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4330{
4331	struct page *page;
4332	unsigned char *kaddr;
4333	struct f2fs_summary *summary;
4334	struct curseg_info *seg_i;
4335	int written_size = 0;
4336	int i, j;
4337
4338	page = f2fs_grab_meta_page(sbi, blkaddr++);
4339	kaddr = (unsigned char *)page_address(page);
4340	memset(kaddr, 0, PAGE_SIZE);
4341
4342	/* Step 1: write nat cache */
4343	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4344	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4345	written_size += SUM_JOURNAL_SIZE;
4346
4347	/* Step 2: write sit cache */
4348	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4349	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4350	written_size += SUM_JOURNAL_SIZE;
4351
4352	/* Step 3: write summary entries */
4353	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 
4354		seg_i = CURSEG_I(sbi, i);
4355		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
 
 
 
 
 
4356			if (!page) {
4357				page = f2fs_grab_meta_page(sbi, blkaddr++);
4358				kaddr = (unsigned char *)page_address(page);
4359				memset(kaddr, 0, PAGE_SIZE);
4360				written_size = 0;
4361			}
4362			summary = (struct f2fs_summary *)(kaddr + written_size);
4363			*summary = seg_i->sum_blk->entries[j];
4364			written_size += SUMMARY_SIZE;
4365
4366			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4367							SUM_FOOTER_SIZE)
4368				continue;
4369
4370			set_page_dirty(page);
4371			f2fs_put_page(page, 1);
4372			page = NULL;
4373		}
4374	}
4375	if (page) {
4376		set_page_dirty(page);
4377		f2fs_put_page(page, 1);
4378	}
4379}
4380
4381static void write_normal_summaries(struct f2fs_sb_info *sbi,
4382					block_t blkaddr, int type)
4383{
4384	int i, end;
4385
4386	if (IS_DATASEG(type))
4387		end = type + NR_CURSEG_DATA_TYPE;
4388	else
4389		end = type + NR_CURSEG_NODE_TYPE;
4390
4391	for (i = type; i < end; i++)
4392		write_current_sum_page(sbi, i, blkaddr + (i - type));
4393}
4394
4395void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4396{
4397	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4398		write_compacted_summaries(sbi, start_blk);
4399	else
4400		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4401}
4402
4403void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4404{
4405	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4406}
4407
4408int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4409					unsigned int val, int alloc)
4410{
4411	int i;
4412
4413	if (type == NAT_JOURNAL) {
4414		for (i = 0; i < nats_in_cursum(journal); i++) {
4415			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4416				return i;
4417		}
4418		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4419			return update_nats_in_cursum(journal, 1);
4420	} else if (type == SIT_JOURNAL) {
4421		for (i = 0; i < sits_in_cursum(journal); i++)
4422			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4423				return i;
4424		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4425			return update_sits_in_cursum(journal, 1);
4426	}
4427	return -1;
4428}
4429
4430static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4431					unsigned int segno)
4432{
4433	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4434}
4435
4436static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4437					unsigned int start)
4438{
4439	struct sit_info *sit_i = SIT_I(sbi);
4440	struct page *page;
4441	pgoff_t src_off, dst_off;
 
4442
4443	src_off = current_sit_addr(sbi, start);
4444	dst_off = next_sit_addr(sbi, src_off);
4445
4446	page = f2fs_grab_meta_page(sbi, dst_off);
4447	seg_info_to_sit_page(sbi, page, start);
 
 
 
 
 
 
 
 
 
4448
4449	set_page_dirty(page);
4450	set_to_next_sit(sit_i, start);
4451
4452	return page;
4453}
4454
4455static struct sit_entry_set *grab_sit_entry_set(void)
4456{
4457	struct sit_entry_set *ses =
4458			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4459						GFP_NOFS, true, NULL);
4460
4461	ses->entry_cnt = 0;
4462	INIT_LIST_HEAD(&ses->set_list);
4463	return ses;
4464}
4465
4466static void release_sit_entry_set(struct sit_entry_set *ses)
4467{
4468	list_del(&ses->set_list);
4469	kmem_cache_free(sit_entry_set_slab, ses);
4470}
4471
4472static void adjust_sit_entry_set(struct sit_entry_set *ses,
4473						struct list_head *head)
4474{
4475	struct sit_entry_set *next = ses;
4476
4477	if (list_is_last(&ses->set_list, head))
4478		return;
4479
4480	list_for_each_entry_continue(next, head, set_list)
4481		if (ses->entry_cnt <= next->entry_cnt) {
4482			list_move_tail(&ses->set_list, &next->set_list);
4483			return;
4484		}
4485
4486	list_move_tail(&ses->set_list, head);
4487}
4488
4489static void add_sit_entry(unsigned int segno, struct list_head *head)
4490{
4491	struct sit_entry_set *ses;
4492	unsigned int start_segno = START_SEGNO(segno);
4493
4494	list_for_each_entry(ses, head, set_list) {
4495		if (ses->start_segno == start_segno) {
4496			ses->entry_cnt++;
4497			adjust_sit_entry_set(ses, head);
4498			return;
4499		}
4500	}
4501
4502	ses = grab_sit_entry_set();
4503
4504	ses->start_segno = start_segno;
4505	ses->entry_cnt++;
4506	list_add(&ses->set_list, head);
4507}
4508
4509static void add_sits_in_set(struct f2fs_sb_info *sbi)
4510{
4511	struct f2fs_sm_info *sm_info = SM_I(sbi);
4512	struct list_head *set_list = &sm_info->sit_entry_set;
4513	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4514	unsigned int segno;
4515
4516	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4517		add_sit_entry(segno, set_list);
4518}
4519
4520static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4521{
4522	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4523	struct f2fs_journal *journal = curseg->journal;
4524	int i;
4525
4526	down_write(&curseg->journal_rwsem);
4527	for (i = 0; i < sits_in_cursum(journal); i++) {
4528		unsigned int segno;
4529		bool dirtied;
4530
4531		segno = le32_to_cpu(segno_in_journal(journal, i));
4532		dirtied = __mark_sit_entry_dirty(sbi, segno);
4533
4534		if (!dirtied)
4535			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4536	}
4537	update_sits_in_cursum(journal, -i);
4538	up_write(&curseg->journal_rwsem);
4539}
4540
4541/*
4542 * CP calls this function, which flushes SIT entries including sit_journal,
4543 * and moves prefree segs to free segs.
4544 */
4545void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4546{
4547	struct sit_info *sit_i = SIT_I(sbi);
4548	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4549	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4550	struct f2fs_journal *journal = curseg->journal;
4551	struct sit_entry_set *ses, *tmp;
4552	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4553	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4554	struct seg_entry *se;
4555
4556	down_write(&sit_i->sentry_lock);
4557
4558	if (!sit_i->dirty_sentries)
4559		goto out;
4560
4561	/*
4562	 * add and account sit entries of dirty bitmap in sit entry
4563	 * set temporarily
4564	 */
4565	add_sits_in_set(sbi);
4566
4567	/*
4568	 * if there are no enough space in journal to store dirty sit
4569	 * entries, remove all entries from journal and add and account
4570	 * them in sit entry set.
4571	 */
4572	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4573								!to_journal)
4574		remove_sits_in_journal(sbi);
4575
4576	/*
4577	 * there are two steps to flush sit entries:
4578	 * #1, flush sit entries to journal in current cold data summary block.
4579	 * #2, flush sit entries to sit page.
4580	 */
4581	list_for_each_entry_safe(ses, tmp, head, set_list) {
4582		struct page *page = NULL;
4583		struct f2fs_sit_block *raw_sit = NULL;
4584		unsigned int start_segno = ses->start_segno;
4585		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4586						(unsigned long)MAIN_SEGS(sbi));
4587		unsigned int segno = start_segno;
4588
4589		if (to_journal &&
4590			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4591			to_journal = false;
4592
4593		if (to_journal) {
4594			down_write(&curseg->journal_rwsem);
4595		} else {
4596			page = get_next_sit_page(sbi, start_segno);
4597			raw_sit = page_address(page);
4598		}
4599
4600		/* flush dirty sit entries in region of current sit set */
4601		for_each_set_bit_from(segno, bitmap, end) {
4602			int offset, sit_offset;
4603
4604			se = get_seg_entry(sbi, segno);
4605#ifdef CONFIG_F2FS_CHECK_FS
4606			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4607						SIT_VBLOCK_MAP_SIZE))
4608				f2fs_bug_on(sbi, 1);
4609#endif
4610
4611			/* add discard candidates */
4612			if (!(cpc->reason & CP_DISCARD)) {
4613				cpc->trim_start = segno;
4614				add_discard_addrs(sbi, cpc, false);
4615			}
4616
4617			if (to_journal) {
4618				offset = f2fs_lookup_journal_in_cursum(journal,
4619							SIT_JOURNAL, segno, 1);
4620				f2fs_bug_on(sbi, offset < 0);
4621				segno_in_journal(journal, offset) =
4622							cpu_to_le32(segno);
4623				seg_info_to_raw_sit(se,
4624					&sit_in_journal(journal, offset));
4625				check_block_count(sbi, segno,
4626					&sit_in_journal(journal, offset));
4627			} else {
4628				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4629				seg_info_to_raw_sit(se,
4630						&raw_sit->entries[sit_offset]);
4631				check_block_count(sbi, segno,
4632						&raw_sit->entries[sit_offset]);
4633			}
4634
4635			__clear_bit(segno, bitmap);
4636			sit_i->dirty_sentries--;
4637			ses->entry_cnt--;
4638		}
4639
4640		if (to_journal)
4641			up_write(&curseg->journal_rwsem);
4642		else
4643			f2fs_put_page(page, 1);
4644
4645		f2fs_bug_on(sbi, ses->entry_cnt);
4646		release_sit_entry_set(ses);
4647	}
4648
4649	f2fs_bug_on(sbi, !list_empty(head));
4650	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4651out:
4652	if (cpc->reason & CP_DISCARD) {
4653		__u64 trim_start = cpc->trim_start;
4654
4655		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4656			add_discard_addrs(sbi, cpc, false);
4657
4658		cpc->trim_start = trim_start;
4659	}
4660	up_write(&sit_i->sentry_lock);
4661
4662	set_prefree_as_free_segments(sbi);
4663}
4664
4665static int build_sit_info(struct f2fs_sb_info *sbi)
4666{
4667	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 
4668	struct sit_info *sit_i;
4669	unsigned int sit_segs, start;
4670	char *src_bitmap, *bitmap;
4671	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4672	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4673
4674	/* allocate memory for SIT information */
4675	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4676	if (!sit_i)
4677		return -ENOMEM;
4678
4679	SM_I(sbi)->sit_info = sit_i;
4680
4681	sit_i->sentries =
4682		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4683					      MAIN_SEGS(sbi)),
4684			      GFP_KERNEL);
4685	if (!sit_i->sentries)
4686		return -ENOMEM;
4687
4688	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4689	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4690								GFP_KERNEL);
4691	if (!sit_i->dirty_sentries_bitmap)
4692		return -ENOMEM;
4693
4694#ifdef CONFIG_F2FS_CHECK_FS
4695	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4696#else
4697	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4698#endif
4699	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4700	if (!sit_i->bitmap)
4701		return -ENOMEM;
4702
4703	bitmap = sit_i->bitmap;
4704
4705	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4706		sit_i->sentries[start].cur_valid_map = bitmap;
4707		bitmap += SIT_VBLOCK_MAP_SIZE;
4708
4709		sit_i->sentries[start].ckpt_valid_map = bitmap;
4710		bitmap += SIT_VBLOCK_MAP_SIZE;
4711
4712#ifdef CONFIG_F2FS_CHECK_FS
4713		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4714		bitmap += SIT_VBLOCK_MAP_SIZE;
4715#endif
4716
4717		if (discard_map) {
4718			sit_i->sentries[start].discard_map = bitmap;
4719			bitmap += SIT_VBLOCK_MAP_SIZE;
4720		}
4721	}
4722
4723	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4724	if (!sit_i->tmp_map)
4725		return -ENOMEM;
4726
4727	if (__is_large_section(sbi)) {
4728		sit_i->sec_entries =
4729			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4730						      MAIN_SECS(sbi)),
4731				      GFP_KERNEL);
4732		if (!sit_i->sec_entries)
4733			return -ENOMEM;
4734	}
4735
4736	/* get information related with SIT */
4737	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4738
4739	/* setup SIT bitmap from ckeckpoint pack */
4740	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4741	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4742
4743	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4744	if (!sit_i->sit_bitmap)
4745		return -ENOMEM;
4746
4747#ifdef CONFIG_F2FS_CHECK_FS
4748	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4749					sit_bitmap_size, GFP_KERNEL);
4750	if (!sit_i->sit_bitmap_mir)
4751		return -ENOMEM;
4752
4753	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4754					main_bitmap_size, GFP_KERNEL);
4755	if (!sit_i->invalid_segmap)
4756		return -ENOMEM;
4757#endif
4758
4759	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4760	sit_i->sit_blocks = SEGS_TO_BLKS(sbi, sit_segs);
4761	sit_i->written_valid_blocks = 0;
4762	sit_i->bitmap_size = sit_bitmap_size;
 
4763	sit_i->dirty_sentries = 0;
4764	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4765	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4766	sit_i->mounted_time = ktime_get_boottime_seconds();
4767	init_rwsem(&sit_i->sentry_lock);
4768	return 0;
4769}
4770
4771static int build_free_segmap(struct f2fs_sb_info *sbi)
4772{
4773	struct free_segmap_info *free_i;
4774	unsigned int bitmap_size, sec_bitmap_size;
4775
4776	/* allocate memory for free segmap information */
4777	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4778	if (!free_i)
4779		return -ENOMEM;
4780
4781	SM_I(sbi)->free_info = free_i;
4782
4783	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4784	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4785	if (!free_i->free_segmap)
4786		return -ENOMEM;
4787
4788	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4789	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4790	if (!free_i->free_secmap)
4791		return -ENOMEM;
4792
4793	/* set all segments as dirty temporarily */
4794	memset(free_i->free_segmap, 0xff, bitmap_size);
4795	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4796
4797	/* init free segmap information */
4798	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4799	free_i->free_segments = 0;
4800	free_i->free_sections = 0;
4801	spin_lock_init(&free_i->segmap_lock);
4802	return 0;
4803}
4804
4805static int build_curseg(struct f2fs_sb_info *sbi)
4806{
4807	struct curseg_info *array;
4808	int i;
4809
4810	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4811					sizeof(*array)), GFP_KERNEL);
4812	if (!array)
4813		return -ENOMEM;
4814
4815	SM_I(sbi)->curseg_array = array;
4816
4817	for (i = 0; i < NO_CHECK_TYPE; i++) {
4818		mutex_init(&array[i].curseg_mutex);
4819		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4820		if (!array[i].sum_blk)
4821			return -ENOMEM;
4822		init_rwsem(&array[i].journal_rwsem);
4823		array[i].journal = f2fs_kzalloc(sbi,
4824				sizeof(struct f2fs_journal), GFP_KERNEL);
4825		if (!array[i].journal)
4826			return -ENOMEM;
4827		array[i].seg_type = log_type_to_seg_type(i);
4828		reset_curseg_fields(&array[i]);
4829	}
4830	return restore_curseg_summaries(sbi);
4831}
4832
4833static int build_sit_entries(struct f2fs_sb_info *sbi)
4834{
4835	struct sit_info *sit_i = SIT_I(sbi);
4836	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4837	struct f2fs_journal *journal = curseg->journal;
4838	struct seg_entry *se;
4839	struct f2fs_sit_entry sit;
4840	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4841	unsigned int i, start, end;
4842	unsigned int readed, start_blk = 0;
4843	int err = 0;
4844	block_t sit_valid_blocks[2] = {0, 0};
4845
4846	do {
4847		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4848							META_SIT, true);
4849
4850		start = start_blk * sit_i->sents_per_block;
4851		end = (start_blk + readed) * sit_i->sents_per_block;
4852
4853		for (; start < end && start < MAIN_SEGS(sbi); start++) {
 
4854			struct f2fs_sit_block *sit_blk;
 
4855			struct page *page;
4856
4857			se = &sit_i->sentries[start];
 
 
 
 
 
 
 
 
 
 
4858			page = get_current_sit_page(sbi, start);
4859			if (IS_ERR(page))
4860				return PTR_ERR(page);
4861			sit_blk = (struct f2fs_sit_block *)page_address(page);
4862			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4863			f2fs_put_page(page, 1);
4864
4865			err = check_block_count(sbi, start, &sit);
4866			if (err)
4867				return err;
4868			seg_info_from_raw_sit(se, &sit);
4869
4870			if (se->type >= NR_PERSISTENT_LOG) {
4871				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4872							se->type, start);
4873				f2fs_handle_error(sbi,
4874						ERROR_INCONSISTENT_SUM_TYPE);
4875				return -EFSCORRUPTED;
4876			}
4877
4878			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4879
4880			if (!f2fs_block_unit_discard(sbi))
4881				goto init_discard_map_done;
4882
4883			/* build discard map only one time */
4884			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4885				memset(se->discard_map, 0xff,
4886						SIT_VBLOCK_MAP_SIZE);
4887				goto init_discard_map_done;
4888			}
4889			memcpy(se->discard_map, se->cur_valid_map,
4890						SIT_VBLOCK_MAP_SIZE);
4891			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4892						se->valid_blocks;
4893init_discard_map_done:
4894			if (__is_large_section(sbi))
4895				get_sec_entry(sbi, start)->valid_blocks +=
4896							se->valid_blocks;
4897		}
4898		start_blk += readed;
4899	} while (start_blk < sit_blk_cnt);
4900
4901	down_read(&curseg->journal_rwsem);
4902	for (i = 0; i < sits_in_cursum(journal); i++) {
4903		unsigned int old_valid_blocks;
4904
4905		start = le32_to_cpu(segno_in_journal(journal, i));
4906		if (start >= MAIN_SEGS(sbi)) {
4907			f2fs_err(sbi, "Wrong journal entry on segno %u",
4908				 start);
4909			err = -EFSCORRUPTED;
4910			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4911			break;
4912		}
4913
4914		se = &sit_i->sentries[start];
4915		sit = sit_in_journal(journal, i);
4916
4917		old_valid_blocks = se->valid_blocks;
4918
4919		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4920
4921		err = check_block_count(sbi, start, &sit);
4922		if (err)
4923			break;
4924		seg_info_from_raw_sit(se, &sit);
4925
4926		if (se->type >= NR_PERSISTENT_LOG) {
4927			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4928							se->type, start);
4929			err = -EFSCORRUPTED;
4930			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4931			break;
4932		}
4933
4934		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4935
4936		if (f2fs_block_unit_discard(sbi)) {
4937			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4938				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4939			} else {
4940				memcpy(se->discard_map, se->cur_valid_map,
4941							SIT_VBLOCK_MAP_SIZE);
4942				sbi->discard_blks += old_valid_blocks;
4943				sbi->discard_blks -= se->valid_blocks;
4944			}
4945		}
4946
4947		if (__is_large_section(sbi)) {
4948			get_sec_entry(sbi, start)->valid_blocks +=
4949							se->valid_blocks;
4950			get_sec_entry(sbi, start)->valid_blocks -=
4951							old_valid_blocks;
4952		}
4953	}
4954	up_read(&curseg->journal_rwsem);
4955
4956	if (err)
4957		return err;
4958
4959	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4960		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4961			 sit_valid_blocks[NODE], valid_node_count(sbi));
4962		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4963		return -EFSCORRUPTED;
4964	}
4965
4966	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4967				valid_user_blocks(sbi)) {
4968		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4969			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4970			 valid_user_blocks(sbi));
4971		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4972		return -EFSCORRUPTED;
4973	}
4974
4975	return 0;
4976}
4977
4978static void init_free_segmap(struct f2fs_sb_info *sbi)
4979{
4980	unsigned int start;
4981	int type;
4982	struct seg_entry *sentry;
4983
4984	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4985		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4986			continue;
4987		sentry = get_seg_entry(sbi, start);
4988		if (!sentry->valid_blocks)
4989			__set_free(sbi, start);
4990		else
4991			SIT_I(sbi)->written_valid_blocks +=
4992						sentry->valid_blocks;
4993	}
4994
4995	/* set use the current segments */
4996	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4997		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4998
4999		__set_test_and_inuse(sbi, curseg_t->segno);
5000	}
5001}
5002
5003static void init_dirty_segmap(struct f2fs_sb_info *sbi)
5004{
5005	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5006	struct free_segmap_info *free_i = FREE_I(sbi);
5007	unsigned int segno = 0, offset = 0, secno;
5008	block_t valid_blocks, usable_blks_in_seg;
5009
5010	while (1) {
5011		/* find dirty segment based on free segmap */
5012		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
5013		if (segno >= MAIN_SEGS(sbi))
5014			break;
5015		offset = segno + 1;
5016		valid_blocks = get_valid_blocks(sbi, segno, false);
5017		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
5018		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
5019			continue;
5020		if (valid_blocks > usable_blks_in_seg) {
5021			f2fs_bug_on(sbi, 1);
5022			continue;
5023		}
5024		mutex_lock(&dirty_i->seglist_lock);
5025		__locate_dirty_segment(sbi, segno, DIRTY);
5026		mutex_unlock(&dirty_i->seglist_lock);
5027	}
5028
5029	if (!__is_large_section(sbi))
5030		return;
5031
5032	mutex_lock(&dirty_i->seglist_lock);
5033	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5034		valid_blocks = get_valid_blocks(sbi, segno, true);
5035		secno = GET_SEC_FROM_SEG(sbi, segno);
5036
5037		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
5038			continue;
5039		if (IS_CURSEC(sbi, secno))
5040			continue;
5041		set_bit(secno, dirty_i->dirty_secmap);
5042	}
5043	mutex_unlock(&dirty_i->seglist_lock);
5044}
5045
5046static int init_victim_secmap(struct f2fs_sb_info *sbi)
5047{
5048	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5049	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5050
5051	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5052	if (!dirty_i->victim_secmap)
5053		return -ENOMEM;
5054
5055	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
5056	if (!dirty_i->pinned_secmap)
5057		return -ENOMEM;
5058
5059	dirty_i->pinned_secmap_cnt = 0;
5060	dirty_i->enable_pin_section = true;
5061	return 0;
5062}
5063
5064static int build_dirty_segmap(struct f2fs_sb_info *sbi)
5065{
5066	struct dirty_seglist_info *dirty_i;
5067	unsigned int bitmap_size, i;
5068
5069	/* allocate memory for dirty segments list information */
5070	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
5071								GFP_KERNEL);
5072	if (!dirty_i)
5073		return -ENOMEM;
5074
5075	SM_I(sbi)->dirty_info = dirty_i;
5076	mutex_init(&dirty_i->seglist_lock);
5077
5078	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
5079
5080	for (i = 0; i < NR_DIRTY_TYPE; i++) {
5081		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
5082								GFP_KERNEL);
5083		if (!dirty_i->dirty_segmap[i])
5084			return -ENOMEM;
5085	}
5086
5087	if (__is_large_section(sbi)) {
5088		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
5089		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
5090						bitmap_size, GFP_KERNEL);
5091		if (!dirty_i->dirty_secmap)
5092			return -ENOMEM;
5093	}
5094
5095	init_dirty_segmap(sbi);
5096	return init_victim_secmap(sbi);
5097}
5098
5099static int sanity_check_curseg(struct f2fs_sb_info *sbi)
5100{
5101	int i;
5102
5103	/*
5104	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
5105	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
5106	 */
5107	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5108		struct curseg_info *curseg = CURSEG_I(sbi, i);
5109		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
5110		unsigned int blkofs = curseg->next_blkoff;
5111
5112		if (f2fs_sb_has_readonly(sbi) &&
5113			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
5114			continue;
5115
5116		sanity_check_seg_type(sbi, curseg->seg_type);
5117
5118		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
5119			f2fs_err(sbi,
5120				 "Current segment has invalid alloc_type:%d",
5121				 curseg->alloc_type);
5122			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5123			return -EFSCORRUPTED;
5124		}
5125
5126		if (f2fs_test_bit(blkofs, se->cur_valid_map))
5127			goto out;
5128
5129		if (curseg->alloc_type == SSR)
5130			continue;
5131
5132		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
5133			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
5134				continue;
5135out:
5136			f2fs_err(sbi,
5137				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
5138				 i, curseg->segno, curseg->alloc_type,
5139				 curseg->next_blkoff, blkofs);
5140			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
5141			return -EFSCORRUPTED;
5142		}
5143	}
5144	return 0;
5145}
5146
5147#ifdef CONFIG_BLK_DEV_ZONED
5148static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
5149				    struct f2fs_dev_info *fdev,
5150				    struct blk_zone *zone)
5151{
5152	unsigned int zone_segno;
5153	block_t zone_block, valid_block_cnt;
5154	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5155	int ret;
5156	unsigned int nofs_flags;
5157
5158	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5159		return 0;
5160
5161	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
5162	zone_segno = GET_SEGNO(sbi, zone_block);
5163
5164	/*
5165	 * Skip check of zones cursegs point to, since
5166	 * fix_curseg_write_pointer() checks them.
5167	 */
5168	if (zone_segno >= MAIN_SEGS(sbi))
5169		return 0;
5170
5171	/*
5172	 * Get # of valid block of the zone.
5173	 */
5174	valid_block_cnt = get_valid_blocks(sbi, zone_segno, true);
5175	if (IS_CURSEC(sbi, GET_SEC_FROM_SEG(sbi, zone_segno))) {
5176		f2fs_notice(sbi, "Open zones: valid block[0x%x,0x%x] cond[%s]",
5177				zone_segno, valid_block_cnt,
5178				blk_zone_cond_str(zone->cond));
5179		return 0;
5180	}
5181
5182	if ((!valid_block_cnt && zone->cond == BLK_ZONE_COND_EMPTY) ||
5183	    (valid_block_cnt && zone->cond == BLK_ZONE_COND_FULL))
5184		return 0;
5185
5186	if (!valid_block_cnt) {
5187		f2fs_notice(sbi, "Zone without valid block has non-zero write "
5188			    "pointer. Reset the write pointer: cond[%s]",
5189			    blk_zone_cond_str(zone->cond));
5190		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
5191					zone->len >> log_sectors_per_block);
5192		if (ret)
5193			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5194				 fdev->path, ret);
5195		return ret;
5196	}
5197
5198	/*
5199	 * If there are valid blocks and the write pointer doesn't match
5200	 * with them, we need to report the inconsistency and fill
5201	 * the zone till the end to close the zone. This inconsistency
5202	 * does not cause write error because the zone will not be
5203	 * selected for write operation until it get discarded.
5204	 */
5205	f2fs_notice(sbi, "Valid blocks are not aligned with write "
5206		    "pointer: valid block[0x%x,0x%x] cond[%s]",
5207		    zone_segno, valid_block_cnt, blk_zone_cond_str(zone->cond));
5208
5209	nofs_flags = memalloc_nofs_save();
5210	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
5211				zone->start, zone->len);
5212	memalloc_nofs_restore(nofs_flags);
5213	if (ret == -EOPNOTSUPP) {
5214		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
5215					zone->len - (zone->wp - zone->start),
5216					GFP_NOFS, 0);
5217		if (ret)
5218			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
5219					fdev->path, ret);
5220	} else if (ret) {
5221		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
5222				fdev->path, ret);
5223	}
5224
5225	return ret;
5226}
5227
5228static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5229						  block_t zone_blkaddr)
5230{
5231	int i;
5232
5233	for (i = 0; i < sbi->s_ndevs; i++) {
5234		if (!bdev_is_zoned(FDEV(i).bdev))
5235			continue;
5236		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5237				zone_blkaddr <= FDEV(i).end_blk))
5238			return &FDEV(i);
5239	}
5240
5241	return NULL;
5242}
5243
5244static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5245			      void *data)
5246{
5247	memcpy(data, zone, sizeof(struct blk_zone));
5248	return 0;
5249}
5250
5251static int do_fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5252{
5253	struct curseg_info *cs = CURSEG_I(sbi, type);
5254	struct f2fs_dev_info *zbd;
5255	struct blk_zone zone;
5256	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5257	block_t cs_zone_block, wp_block;
5258	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5259	sector_t zone_sector;
5260	int err;
5261
5262	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5263	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5264
5265	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5266	if (!zbd)
5267		return 0;
5268
5269	/* report zone for the sector the curseg points to */
5270	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5271		<< log_sectors_per_block;
5272	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5273				  report_one_zone_cb, &zone);
5274	if (err != 1) {
5275		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5276			 zbd->path, err);
5277		return err;
5278	}
5279
5280	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5281		return 0;
5282
5283	/*
5284	 * When safely unmounted in the previous mount, we could use current
5285	 * segments. Otherwise, allocate new sections.
5286	 */
5287	if (is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
5288		wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5289		wp_segno = GET_SEGNO(sbi, wp_block);
5290		wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5291		wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5292
5293		if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5294				wp_sector_off == 0)
5295			return 0;
5296
5297		f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5298			    "curseg[0x%x,0x%x] wp[0x%x,0x%x]", type, cs->segno,
5299			    cs->next_blkoff, wp_segno, wp_blkoff);
5300	}
5301
5302	/* Allocate a new section if it's not new. */
5303	if (cs->next_blkoff ||
5304	    cs->segno != GET_SEG_FROM_SEC(sbi, GET_ZONE_FROM_SEC(sbi, cs_section))) {
5305		unsigned int old_segno = cs->segno, old_blkoff = cs->next_blkoff;
5306
5307		f2fs_allocate_new_section(sbi, type, true);
5308		f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5309				"[0x%x,0x%x] -> [0x%x,0x%x]",
5310				type, old_segno, old_blkoff,
5311				cs->segno, cs->next_blkoff);
5312	}
5313
5314	/* check consistency of the zone curseg pointed to */
5315	if (check_zone_write_pointer(sbi, zbd, &zone))
5316		return -EIO;
5317
5318	/* check newly assigned zone */
5319	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5320	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5321
5322	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5323	if (!zbd)
5324		return 0;
5325
5326	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5327		<< log_sectors_per_block;
5328	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5329				  report_one_zone_cb, &zone);
5330	if (err != 1) {
5331		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5332			 zbd->path, err);
5333		return err;
5334	}
5335
5336	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5337		return 0;
5338
5339	if (zone.wp != zone.start) {
5340		f2fs_notice(sbi,
5341			    "New zone for curseg[%d] is not yet discarded. "
5342			    "Reset the zone: curseg[0x%x,0x%x]",
5343			    type, cs->segno, cs->next_blkoff);
5344		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5345					zone.len >> log_sectors_per_block);
5346		if (err) {
5347			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5348				 zbd->path, err);
5349			return err;
5350		}
5351	}
5352
5353	return 0;
5354}
5355
5356static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5357{
5358	int i, ret;
5359
5360	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5361		ret = do_fix_curseg_write_pointer(sbi, i);
5362		if (ret)
5363			return ret;
5364	}
5365
5366	return 0;
5367}
5368
5369struct check_zone_write_pointer_args {
5370	struct f2fs_sb_info *sbi;
5371	struct f2fs_dev_info *fdev;
5372};
5373
5374static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5375				      void *data)
5376{
5377	struct check_zone_write_pointer_args *args;
5378
5379	args = (struct check_zone_write_pointer_args *)data;
5380
5381	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5382}
5383
5384static int check_write_pointer(struct f2fs_sb_info *sbi)
5385{
5386	int i, ret;
5387	struct check_zone_write_pointer_args args;
5388
5389	for (i = 0; i < sbi->s_ndevs; i++) {
5390		if (!bdev_is_zoned(FDEV(i).bdev))
5391			continue;
5392
5393		args.sbi = sbi;
5394		args.fdev = &FDEV(i);
5395		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5396					  check_zone_write_pointer_cb, &args);
5397		if (ret < 0)
5398			return ret;
5399	}
5400
5401	return 0;
5402}
5403
5404int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5405{
5406	int ret;
5407
5408	if (!f2fs_sb_has_blkzoned(sbi) || f2fs_readonly(sbi->sb))
5409		return 0;
5410
5411	f2fs_notice(sbi, "Checking entire write pointers");
5412	ret = fix_curseg_write_pointer(sbi);
5413	if (!ret)
5414		ret = check_write_pointer(sbi);
5415	return ret;
5416}
5417
5418/*
5419 * Return the number of usable blocks in a segment. The number of blocks
5420 * returned is always equal to the number of blocks in a segment for
5421 * segments fully contained within a sequential zone capacity or a
5422 * conventional zone. For segments partially contained in a sequential
5423 * zone capacity, the number of usable blocks up to the zone capacity
5424 * is returned. 0 is returned in all other cases.
5425 */
5426static inline unsigned int f2fs_usable_zone_blks_in_seg(
5427			struct f2fs_sb_info *sbi, unsigned int segno)
5428{
5429	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5430	unsigned int secno;
5431
5432	if (!sbi->unusable_blocks_per_sec)
5433		return BLKS_PER_SEG(sbi);
5434
5435	secno = GET_SEC_FROM_SEG(sbi, segno);
5436	seg_start = START_BLOCK(sbi, segno);
5437	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5438	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5439
5440	/*
5441	 * If segment starts before zone capacity and spans beyond
5442	 * zone capacity, then usable blocks are from seg start to
5443	 * zone capacity. If the segment starts after the zone capacity,
5444	 * then there are no usable blocks.
5445	 */
5446	if (seg_start >= sec_cap_blkaddr)
5447		return 0;
5448	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5449		return sec_cap_blkaddr - seg_start;
5450
5451	return BLKS_PER_SEG(sbi);
5452}
5453#else
5454int f2fs_check_and_fix_write_pointer(struct f2fs_sb_info *sbi)
5455{
5456	return 0;
5457}
5458
5459static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5460							unsigned int segno)
5461{
5462	return 0;
5463}
5464
5465#endif
5466unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5467					unsigned int segno)
5468{
5469	if (f2fs_sb_has_blkzoned(sbi))
5470		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5471
5472	return BLKS_PER_SEG(sbi);
5473}
5474
5475unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi)
5476{
5477	if (f2fs_sb_has_blkzoned(sbi))
5478		return CAP_SEGS_PER_SEC(sbi);
5479
5480	return SEGS_PER_SEC(sbi);
5481}
5482
5483unsigned long long f2fs_get_section_mtime(struct f2fs_sb_info *sbi,
5484	unsigned int segno)
5485{
5486	unsigned int usable_segs_per_sec = f2fs_usable_segs_in_sec(sbi);
5487	unsigned int secno = 0, start = 0;
5488	unsigned int total_valid_blocks = 0;
5489	unsigned long long mtime = 0;
5490	unsigned int i = 0;
5491
5492	secno = GET_SEC_FROM_SEG(sbi, segno);
5493	start = GET_SEG_FROM_SEC(sbi, secno);
5494
5495	if (!__is_large_section(sbi))
5496		return get_seg_entry(sbi, start + i)->mtime;
5497
5498	for (i = 0; i < usable_segs_per_sec; i++) {
5499		/* for large section, only check the mtime of valid segments */
5500		struct seg_entry *se = get_seg_entry(sbi, start+i);
5501
5502		mtime += se->mtime * se->valid_blocks;
5503		total_valid_blocks += se->valid_blocks;
5504	}
5505
5506	if (total_valid_blocks == 0)
5507		return INVALID_MTIME;
5508
5509	return div_u64(mtime, total_valid_blocks);
5510}
5511
5512/*
5513 * Update min, max modified time for cost-benefit GC algorithm
5514 */
5515static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5516{
5517	struct sit_info *sit_i = SIT_I(sbi);
5518	unsigned int segno;
5519
5520	down_write(&sit_i->sentry_lock);
5521
5522	sit_i->min_mtime = ULLONG_MAX;
5523
5524	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
 
5525		unsigned long long mtime = 0;
5526
5527		mtime = f2fs_get_section_mtime(sbi, segno);
 
 
 
5528
5529		if (sit_i->min_mtime > mtime)
5530			sit_i->min_mtime = mtime;
5531	}
5532	sit_i->max_mtime = get_mtime(sbi, false);
5533	sit_i->dirty_max_mtime = 0;
5534	up_write(&sit_i->sentry_lock);
5535}
5536
5537int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5538{
5539	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5540	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5541	struct f2fs_sm_info *sm_info;
5542	int err;
5543
5544	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5545	if (!sm_info)
5546		return -ENOMEM;
5547
5548	/* init sm info */
5549	sbi->sm_info = sm_info;
5550	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5551	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5552	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5553	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5554	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5555	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5556	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5557	sm_info->rec_prefree_segments = sm_info->main_segments *
5558					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5559	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5560		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5561
5562	if (!f2fs_lfs_mode(sbi))
5563		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5564	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5565	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5566	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5567	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5568	sm_info->min_ssr_sections = reserved_sections(sbi);
5569
5570	INIT_LIST_HEAD(&sm_info->sit_entry_set);
 
 
5571
5572	init_f2fs_rwsem(&sm_info->curseg_lock);
5573
5574	err = f2fs_create_flush_cmd_control(sbi);
5575	if (err)
5576		return err;
5577
5578	err = create_discard_cmd_control(sbi);
5579	if (err)
5580		return err;
 
 
5581
5582	err = build_sit_info(sbi);
5583	if (err)
5584		return err;
5585	err = build_free_segmap(sbi);
5586	if (err)
5587		return err;
5588	err = build_curseg(sbi);
5589	if (err)
5590		return err;
5591
5592	/* reinit free segmap based on SIT */
5593	err = build_sit_entries(sbi);
5594	if (err)
5595		return err;
5596
5597	init_free_segmap(sbi);
5598	err = build_dirty_segmap(sbi);
5599	if (err)
5600		return err;
5601
5602	err = sanity_check_curseg(sbi);
5603	if (err)
5604		return err;
5605
5606	init_min_max_mtime(sbi);
5607	return 0;
5608}
5609
5610static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5611		enum dirty_type dirty_type)
5612{
5613	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5614
5615	mutex_lock(&dirty_i->seglist_lock);
5616	kvfree(dirty_i->dirty_segmap[dirty_type]);
5617	dirty_i->nr_dirty[dirty_type] = 0;
5618	mutex_unlock(&dirty_i->seglist_lock);
5619}
5620
5621static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5622{
5623	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5624
5625	kvfree(dirty_i->pinned_secmap);
5626	kvfree(dirty_i->victim_secmap);
5627}
5628
5629static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5630{
5631	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5632	int i;
5633
5634	if (!dirty_i)
5635		return;
5636
5637	/* discard pre-free/dirty segments list */
5638	for (i = 0; i < NR_DIRTY_TYPE; i++)
5639		discard_dirty_segmap(sbi, i);
5640
5641	if (__is_large_section(sbi)) {
5642		mutex_lock(&dirty_i->seglist_lock);
5643		kvfree(dirty_i->dirty_secmap);
5644		mutex_unlock(&dirty_i->seglist_lock);
5645	}
5646
5647	destroy_victim_secmap(sbi);
5648	SM_I(sbi)->dirty_info = NULL;
5649	kfree(dirty_i);
5650}
5651
5652static void destroy_curseg(struct f2fs_sb_info *sbi)
5653{
5654	struct curseg_info *array = SM_I(sbi)->curseg_array;
5655	int i;
5656
5657	if (!array)
5658		return;
5659	SM_I(sbi)->curseg_array = NULL;
5660	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5661		kfree(array[i].sum_blk);
5662		kfree(array[i].journal);
5663	}
5664	kfree(array);
5665}
5666
5667static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5668{
5669	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5670
5671	if (!free_i)
5672		return;
5673	SM_I(sbi)->free_info = NULL;
5674	kvfree(free_i->free_segmap);
5675	kvfree(free_i->free_secmap);
5676	kfree(free_i);
5677}
5678
5679static void destroy_sit_info(struct f2fs_sb_info *sbi)
5680{
5681	struct sit_info *sit_i = SIT_I(sbi);
 
5682
5683	if (!sit_i)
5684		return;
5685
5686	if (sit_i->sentries)
5687		kvfree(sit_i->bitmap);
 
 
 
 
 
5688	kfree(sit_i->tmp_map);
5689
5690	kvfree(sit_i->sentries);
5691	kvfree(sit_i->sec_entries);
5692	kvfree(sit_i->dirty_sentries_bitmap);
5693
5694	SM_I(sbi)->sit_info = NULL;
5695	kvfree(sit_i->sit_bitmap);
5696#ifdef CONFIG_F2FS_CHECK_FS
5697	kvfree(sit_i->sit_bitmap_mir);
5698	kvfree(sit_i->invalid_segmap);
5699#endif
5700	kfree(sit_i);
5701}
5702
5703void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5704{
5705	struct f2fs_sm_info *sm_info = SM_I(sbi);
5706
5707	if (!sm_info)
5708		return;
5709	f2fs_destroy_flush_cmd_control(sbi, true);
5710	destroy_discard_cmd_control(sbi);
5711	destroy_dirty_segmap(sbi);
5712	destroy_curseg(sbi);
5713	destroy_free_segmap(sbi);
5714	destroy_sit_info(sbi);
5715	sbi->sm_info = NULL;
5716	kfree(sm_info);
5717}
5718
5719int __init f2fs_create_segment_manager_caches(void)
5720{
5721	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5722			sizeof(struct discard_entry));
5723	if (!discard_entry_slab)
5724		goto fail;
5725
5726	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5727			sizeof(struct discard_cmd));
5728	if (!discard_cmd_slab)
5729		goto destroy_discard_entry;
5730
5731	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5732			sizeof(struct sit_entry_set));
5733	if (!sit_entry_set_slab)
5734		goto destroy_discard_cmd;
5735
5736	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5737			sizeof(struct revoke_entry));
5738	if (!revoke_entry_slab)
5739		goto destroy_sit_entry_set;
5740	return 0;
5741
5742destroy_sit_entry_set:
5743	kmem_cache_destroy(sit_entry_set_slab);
5744destroy_discard_cmd:
5745	kmem_cache_destroy(discard_cmd_slab);
5746destroy_discard_entry:
5747	kmem_cache_destroy(discard_entry_slab);
5748fail:
5749	return -ENOMEM;
5750}
5751
5752void f2fs_destroy_segment_manager_caches(void)
5753{
5754	kmem_cache_destroy(sit_entry_set_slab);
5755	kmem_cache_destroy(discard_cmd_slab);
5756	kmem_cache_destroy(discard_entry_slab);
5757	kmem_cache_destroy(revoke_entry_slab);
5758}