Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
 
 
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
 
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
 
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34	unsigned long tmp = 0;
  35	int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38	shift = 56;
  39#endif
  40	while (shift >= 0) {
  41		tmp |= (unsigned long)str[idx++] << shift;
  42		shift -= BITS_PER_BYTE;
  43	}
  44	return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53	int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56	if ((word & 0xffffffff00000000UL) == 0)
  57		num += 32;
  58	else
  59		word >>= 32;
  60#endif
  61	if ((word & 0xffff0000) == 0)
  62		num += 16;
  63	else
  64		word >>= 16;
  65
  66	if ((word & 0xff00) == 0)
  67		num += 8;
  68	else
  69		word >>= 8;
  70
  71	if ((word & 0xf0) == 0)
  72		num += 4;
  73	else
  74		word >>= 4;
  75
  76	if ((word & 0xc) == 0)
  77		num += 2;
  78	else
  79		word >>= 2;
  80
  81	if ((word & 0x2) == 0)
  82		num += 1;
  83	return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96			unsigned long size, unsigned long offset)
  97{
  98	const unsigned long *p = addr + BIT_WORD(offset);
  99	unsigned long result = size;
 100	unsigned long tmp;
 101
 102	if (offset >= size)
 103		return size;
 104
 105	size -= (offset & ~(BITS_PER_LONG - 1));
 106	offset %= BITS_PER_LONG;
 107
 108	while (1) {
 109		if (*p == 0)
 110			goto pass;
 111
 112		tmp = __reverse_ulong((unsigned char *)p);
 113
 114		tmp &= ~0UL >> offset;
 115		if (size < BITS_PER_LONG)
 116			tmp &= (~0UL << (BITS_PER_LONG - size));
 117		if (tmp)
 118			goto found;
 119pass:
 120		if (size <= BITS_PER_LONG)
 121			break;
 122		size -= BITS_PER_LONG;
 123		offset = 0;
 124		p++;
 125	}
 126	return result;
 127found:
 128	return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132			unsigned long size, unsigned long offset)
 133{
 134	const unsigned long *p = addr + BIT_WORD(offset);
 135	unsigned long result = size;
 136	unsigned long tmp;
 137
 138	if (offset >= size)
 139		return size;
 140
 141	size -= (offset & ~(BITS_PER_LONG - 1));
 142	offset %= BITS_PER_LONG;
 143
 144	while (1) {
 145		if (*p == ~0UL)
 146			goto pass;
 147
 148		tmp = __reverse_ulong((unsigned char *)p);
 149
 150		if (offset)
 151			tmp |= ~0UL << (BITS_PER_LONG - offset);
 152		if (size < BITS_PER_LONG)
 153			tmp |= ~0UL >> size;
 154		if (tmp != ~0UL)
 155			goto found;
 156pass:
 157		if (size <= BITS_PER_LONG)
 158			break;
 159		size -= BITS_PER_LONG;
 160		offset = 0;
 161		p++;
 162	}
 163	return result;
 164found:
 165	return result - size + __reverse_ffz(tmp);
 166}
 167
 168void register_inmem_page(struct inode *inode, struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 169{
 170	struct f2fs_inode_info *fi = F2FS_I(inode);
 171	struct inmem_pages *new;
 172
 173	f2fs_trace_pid(page);
 174
 175	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 176	SetPagePrivate(page);
 177
 178	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 179
 180	/* add atomic page indices to the list */
 181	new->page = page;
 182	INIT_LIST_HEAD(&new->list);
 183
 184	/* increase reference count with clean state */
 185	mutex_lock(&fi->inmem_lock);
 186	get_page(page);
 187	list_add_tail(&new->list, &fi->inmem_pages);
 
 188	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 189	mutex_unlock(&fi->inmem_lock);
 190
 191	trace_f2fs_register_inmem_page(page, INMEM);
 192}
 193
 194static int __revoke_inmem_pages(struct inode *inode,
 195				struct list_head *head, bool drop, bool recover)
 
 196{
 197	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 198	struct inmem_pages *cur, *tmp;
 199	int err = 0;
 200
 201	list_for_each_entry_safe(cur, tmp, head, list) {
 202		struct page *page = cur->page;
 203
 204		if (drop)
 205			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 206
 207		lock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 208
 209		if (recover) {
 210			struct dnode_of_data dn;
 211			struct node_info ni;
 212
 213			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 214
 215			set_new_dnode(&dn, inode, NULL, NULL, 0);
 216			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 
 
 
 
 
 
 
 
 217				err = -EAGAIN;
 218				goto next;
 219			}
 220			get_node_info(sbi, dn.nid, &ni);
 221			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 
 
 
 
 
 
 
 
 
 
 222					cur->old_addr, ni.version, true, true);
 223			f2fs_put_dnode(&dn);
 224		}
 225next:
 226		ClearPageUptodate(page);
 227		set_page_private(page, 0);
 228		ClearPageUptodate(page);
 
 
 
 229		f2fs_put_page(page, 1);
 230
 231		list_del(&cur->list);
 232		kmem_cache_free(inmem_entry_slab, cur);
 233		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 234	}
 235	return err;
 236}
 237
 238void drop_inmem_pages(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239{
 240	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 
 
 
 
 241
 242	mutex_lock(&fi->inmem_lock);
 243	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 
 
 
 
 
 
 244	mutex_unlock(&fi->inmem_lock);
 
 
 
 
 
 
 
 
 
 245}
 246
 247static int __commit_inmem_pages(struct inode *inode,
 248					struct list_head *revoke_list)
 249{
 250	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 251	struct f2fs_inode_info *fi = F2FS_I(inode);
 252	struct inmem_pages *cur, *tmp;
 253	struct f2fs_io_info fio = {
 254		.sbi = sbi,
 
 255		.type = DATA,
 256		.rw = WRITE_SYNC | REQ_PRIO,
 257		.encrypted_page = NULL,
 
 258	};
 
 259	bool submit_bio = false;
 260	int err = 0;
 261
 
 
 262	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 263		struct page *page = cur->page;
 264
 265		lock_page(page);
 266		if (page->mapping == inode->i_mapping) {
 267			trace_f2fs_commit_inmem_page(page, INMEM);
 268
 
 
 269			set_page_dirty(page);
 270			f2fs_wait_on_page_writeback(page, DATA, true);
 271			if (clear_page_dirty_for_io(page))
 272				inode_dec_dirty_pages(inode);
 273
 
 
 274			fio.page = page;
 275			err = do_write_data_page(&fio);
 
 
 
 276			if (err) {
 
 
 
 
 
 
 277				unlock_page(page);
 278				break;
 279			}
 280
 281			/* record old blkaddr for revoking */
 282			cur->old_addr = fio.old_blkaddr;
 283
 284			clear_cold_data(page);
 285			submit_bio = true;
 286		}
 287		unlock_page(page);
 288		list_move_tail(&cur->list, revoke_list);
 289	}
 290
 291	if (submit_bio)
 292		f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 293
 294	if (!err)
 295		__revoke_inmem_pages(inode, revoke_list, false, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296
 297	return err;
 298}
 299
 300int commit_inmem_pages(struct inode *inode)
 301{
 302	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 303	struct f2fs_inode_info *fi = F2FS_I(inode);
 304	struct list_head revoke_list;
 305	int err;
 306
 307	INIT_LIST_HEAD(&revoke_list);
 308	f2fs_balance_fs(sbi, true);
 
 
 
 309	f2fs_lock_op(sbi);
 
 310
 311	mutex_lock(&fi->inmem_lock);
 312	err = __commit_inmem_pages(inode, &revoke_list);
 313	if (err) {
 314		int ret;
 315		/*
 316		 * try to revoke all committed pages, but still we could fail
 317		 * due to no memory or other reason, if that happened, EAGAIN
 318		 * will be returned, which means in such case, transaction is
 319		 * already not integrity, caller should use journal to do the
 320		 * recovery or rewrite & commit last transaction. For other
 321		 * error number, revoking was done by filesystem itself.
 322		 */
 323		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 324		if (ret)
 325			err = ret;
 326
 327		/* drop all uncommitted pages */
 328		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 329	}
 330	mutex_unlock(&fi->inmem_lock);
 331
 
 
 332	f2fs_unlock_op(sbi);
 
 
 333	return err;
 334}
 335
 336/*
 337 * This function balances dirty node and dentry pages.
 338 * In addition, it controls garbage collection.
 339 */
 340void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 341{
 342	if (!need)
 
 
 
 
 
 
 
 
 
 343		return;
 
 344	/*
 345	 * We should do GC or end up with checkpoint, if there are so many dirty
 346	 * dir/node pages without enough free segments.
 347	 */
 348	if (has_not_enough_free_secs(sbi, 0)) {
 349		mutex_lock(&sbi->gc_mutex);
 350		f2fs_gc(sbi, false);
 351	}
 352}
 353
 354void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 355{
 
 
 
 356	/* try to shrink extent cache when there is no enough memory */
 357	if (!available_free_memory(sbi, EXTENT_CACHE))
 358		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 359
 360	/* check the # of cached NAT entries */
 361	if (!available_free_memory(sbi, NAT_ENTRIES))
 362		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 
 
 
 
 
 363
 364	if (!available_free_memory(sbi, FREE_NIDS))
 365		try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
 
 366
 367	/* checkpoint is the only way to shrink partial cached entries */
 368	if (!available_free_memory(sbi, NAT_ENTRIES) ||
 369			!available_free_memory(sbi, INO_ENTRIES) ||
 370			excess_prefree_segs(sbi) ||
 371			excess_dirty_nats(sbi) ||
 372			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
 373		if (test_opt(sbi, DATA_FLUSH)) {
 
 374			struct blk_plug plug;
 375
 
 
 376			blk_start_plug(&plug);
 377			sync_dirty_inodes(sbi, FILE_INODE);
 378			blk_finish_plug(&plug);
 
 
 379		}
 380		f2fs_sync_fs(sbi->sb, true);
 381		stat_inc_bg_cp_count(sbi->stat_info);
 382	}
 383}
 384
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 385static int issue_flush_thread(void *data)
 386{
 387	struct f2fs_sb_info *sbi = data;
 388	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 389	wait_queue_head_t *q = &fcc->flush_wait_queue;
 390repeat:
 391	if (kthread_should_stop())
 392		return 0;
 393
 
 
 394	if (!llist_empty(&fcc->issue_list)) {
 395		struct bio *bio;
 396		struct flush_cmd *cmd, *next;
 397		int ret;
 398
 399		bio = f2fs_bio_alloc(0);
 400
 401		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 402		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 403
 404		bio->bi_bdev = sbi->sb->s_bdev;
 405		ret = submit_bio_wait(WRITE_FLUSH, bio);
 
 
 406
 407		llist_for_each_entry_safe(cmd, next,
 408					  fcc->dispatch_list, llnode) {
 409			cmd->ret = ret;
 410			complete(&cmd->wait);
 411		}
 412		bio_put(bio);
 413		fcc->dispatch_list = NULL;
 414	}
 415
 
 
 416	wait_event_interruptible(*q,
 417		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 418	goto repeat;
 419}
 420
 421int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 422{
 423	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 424	struct flush_cmd cmd;
 425
 426	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 427					test_opt(sbi, FLUSH_MERGE));
 428
 429	if (test_opt(sbi, NOBARRIER))
 430		return 0;
 431
 432	if (!test_opt(sbi, FLUSH_MERGE)) {
 433		struct bio *bio = f2fs_bio_alloc(0);
 434		int ret;
 
 
 
 
 435
 436		bio->bi_bdev = sbi->sb->s_bdev;
 437		ret = submit_bio_wait(WRITE_FLUSH, bio);
 438		bio_put(bio);
 
 
 
 439		return ret;
 440	}
 441
 
 442	init_completion(&cmd.wait);
 443
 444	llist_add(&cmd.llnode, &fcc->issue_list);
 445
 446	if (!fcc->dispatch_list)
 
 
 
 447		wake_up(&fcc->flush_wait_queue);
 448
 449	wait_for_completion(&cmd.wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450
 451	return cmd.ret;
 452}
 453
 454int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 455{
 456	dev_t dev = sbi->sb->s_bdev->bd_dev;
 457	struct flush_cmd_control *fcc;
 458	int err = 0;
 459
 460	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 
 
 
 
 
 
 
 461	if (!fcc)
 462		return -ENOMEM;
 
 
 463	init_waitqueue_head(&fcc->flush_wait_queue);
 464	init_llist_head(&fcc->issue_list);
 465	SM_I(sbi)->cmd_control_info = fcc;
 
 
 
 
 466	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 467				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 468	if (IS_ERR(fcc->f2fs_issue_flush)) {
 469		err = PTR_ERR(fcc->f2fs_issue_flush);
 470		kfree(fcc);
 471		SM_I(sbi)->cmd_control_info = NULL;
 472		return err;
 473	}
 474
 475	return err;
 476}
 477
 478void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 479{
 480	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 481
 482	if (fcc && fcc->f2fs_issue_flush)
 483		kthread_stop(fcc->f2fs_issue_flush);
 484	kfree(fcc);
 485	SM_I(sbi)->cmd_control_info = NULL;
 486}
 487
 488static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 489		enum dirty_type dirty_type)
 490{
 491	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 492
 493	/* need not be added */
 494	if (IS_CURSEG(sbi, segno))
 495		return;
 496
 497	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 498		dirty_i->nr_dirty[dirty_type]++;
 499
 500	if (dirty_type == DIRTY) {
 501		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 502		enum dirty_type t = sentry->type;
 503
 504		if (unlikely(t >= DIRTY)) {
 505			f2fs_bug_on(sbi, 1);
 506			return;
 507		}
 508		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 509			dirty_i->nr_dirty[t]++;
 
 
 
 
 
 
 
 
 
 
 
 
 510	}
 511}
 512
 513static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 514		enum dirty_type dirty_type)
 515{
 516	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 
 517
 518	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 519		dirty_i->nr_dirty[dirty_type]--;
 520
 521	if (dirty_type == DIRTY) {
 522		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 523		enum dirty_type t = sentry->type;
 524
 525		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 526			dirty_i->nr_dirty[t]--;
 527
 528		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 529			clear_bit(GET_SECNO(sbi, segno),
 
 530						dirty_i->victim_secmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531	}
 532}
 533
 534/*
 535 * Should not occur error such as -ENOMEM.
 536 * Adding dirty entry into seglist is not critical operation.
 537 * If a given segment is one of current working segments, it won't be added.
 538 */
 539static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 540{
 541	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 542	unsigned short valid_blocks;
 543
 544	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 545		return;
 546
 547	mutex_lock(&dirty_i->seglist_lock);
 548
 549	valid_blocks = get_valid_blocks(sbi, segno, 0);
 
 550
 551	if (valid_blocks == 0) {
 
 552		__locate_dirty_segment(sbi, segno, PRE);
 553		__remove_dirty_segment(sbi, segno, DIRTY);
 554	} else if (valid_blocks < sbi->blocks_per_seg) {
 555		__locate_dirty_segment(sbi, segno, DIRTY);
 556	} else {
 557		/* Recovery routine with SSR needs this */
 558		__remove_dirty_segment(sbi, segno, DIRTY);
 559	}
 560
 561	mutex_unlock(&dirty_i->seglist_lock);
 562}
 563
 564static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 565				block_t blkstart, block_t blklen)
 566{
 567	sector_t start = SECTOR_FROM_BLOCK(blkstart);
 568	sector_t len = SECTOR_FROM_BLOCK(blklen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569	struct seg_entry *se;
 570	unsigned int offset;
 571	block_t i;
 572
 573	for (i = blkstart; i < blkstart + blklen; i++) {
 574		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 575		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 
 
 
 
 
 
 576
 577		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 578			sbi->discard_blks--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579	}
 580	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 581	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
 582}
 583
 584bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
 
 
 585{
 586	int err = -EOPNOTSUPP;
 
 
 587
 588	if (test_opt(sbi, DISCARD)) {
 589		struct seg_entry *se = get_seg_entry(sbi,
 590				GET_SEGNO(sbi, blkaddr));
 591		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 592
 593		if (f2fs_test_bit(offset, se->discard_map))
 594			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596		err = f2fs_issue_discard(sbi, blkaddr, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 
 598
 599	if (err) {
 600		update_meta_page(sbi, NULL, blkaddr);
 601		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602	}
 603	return false;
 
 604}
 605
 606static void __add_discard_entry(struct f2fs_sb_info *sbi,
 607		struct cp_control *cpc, struct seg_entry *se,
 608		unsigned int start, unsigned int end)
 609{
 610	struct list_head *head = &SM_I(sbi)->discard_list;
 611	struct discard_entry *new, *last;
 
 
 
 
 
 
 
 
 
 612
 613	if (!list_empty(head)) {
 614		last = list_last_entry(head, struct discard_entry, list);
 615		if (START_BLOCK(sbi, cpc->trim_start) + start ==
 616						last->blkaddr + last->len) {
 617			last->len += end - start;
 618			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619		}
 
 
 
 
 
 
 
 
 
 
 
 
 620	}
 
 621
 622	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 623	INIT_LIST_HEAD(&new->list);
 624	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 625	new->len = end - start;
 626	list_add_tail(&new->list, head);
 627done:
 628	SM_I(sbi)->nr_discards += end - start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 629}
 630
 631static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632{
 633	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 634	int max_blocks = sbi->blocks_per_seg;
 635	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 636	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 637	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 638	unsigned long *discard_map = (unsigned long *)se->discard_map;
 639	unsigned long *dmap = SIT_I(sbi)->tmp_map;
 640	unsigned int start = 0, end = -1;
 641	bool force = (cpc->reason == CP_DISCARD);
 
 
 642	int i;
 643
 644	if (se->valid_blocks == max_blocks)
 645		return;
 646
 647	if (!force) {
 648		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 649		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 650			return;
 
 651	}
 652
 653	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 654	for (i = 0; i < entries; i++)
 655		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 656				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 657
 658	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 
 659		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 660		if (start >= max_blocks)
 661			break;
 662
 663		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 664		__add_discard_entry(sbi, cpc, se, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	}
 
 
 
 
 
 
 
 666}
 667
 668void release_discard_addrs(struct f2fs_sb_info *sbi)
 669{
 670	struct list_head *head = &(SM_I(sbi)->discard_list);
 671	struct discard_entry *entry, *this;
 672
 673	/* drop caches */
 674	list_for_each_entry_safe(entry, this, head, list) {
 675		list_del(&entry->list);
 676		kmem_cache_free(discard_entry_slab, entry);
 677	}
 678}
 679
 680/*
 681 * Should call clear_prefree_segments after checkpoint is done.
 682 */
 683static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 684{
 685	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 686	unsigned int segno;
 687
 688	mutex_lock(&dirty_i->seglist_lock);
 689	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 690		__set_test_and_free(sbi, segno);
 691	mutex_unlock(&dirty_i->seglist_lock);
 692}
 693
 694void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 695{
 696	struct list_head *head = &(SM_I(sbi)->discard_list);
 
 697	struct discard_entry *entry, *this;
 698	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 699	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 700	unsigned int start = 0, end = -1;
 
 
 
 701
 702	mutex_lock(&dirty_i->seglist_lock);
 703
 704	while (1) {
 705		int i;
 
 
 
 706		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 707		if (start >= MAIN_SEGS(sbi))
 708			break;
 709		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 710								start + 1);
 711
 712		for (i = start; i < end; i++)
 713			clear_bit(i, prefree_map);
 
 
 714
 715		dirty_i->nr_dirty[PRE] -= end - start;
 
 
 
 716
 717		if (!test_opt(sbi, DISCARD))
 718			continue;
 719
 720		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 
 
 
 
 
 721				(end - start) << sbi->log_blocks_per_seg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	}
 723	mutex_unlock(&dirty_i->seglist_lock);
 724
 725	/* send small discards */
 726	list_for_each_entry_safe(entry, this, head, list) {
 727		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
 728			goto skip;
 729		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 730		cpc->trimmed += entry->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731skip:
 732		list_del(&entry->list);
 733		SM_I(sbi)->nr_discards -= entry->len;
 734		kmem_cache_free(discard_entry_slab, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737
 738static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 739{
 740	struct sit_info *sit_i = SIT_I(sbi);
 741
 742	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 743		sit_i->dirty_sentries++;
 744		return false;
 745	}
 746
 747	return true;
 748}
 749
 750static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 751					unsigned int segno, int modified)
 752{
 753	struct seg_entry *se = get_seg_entry(sbi, segno);
 754	se->type = type;
 755	if (modified)
 756		__mark_sit_entry_dirty(sbi, segno);
 757}
 758
 759static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 760{
 761	struct seg_entry *se;
 762	unsigned int segno, offset;
 763	long int new_vblocks;
 
 
 
 
 764
 765	segno = GET_SEGNO(sbi, blkaddr);
 766
 767	se = get_seg_entry(sbi, segno);
 768	new_vblocks = se->valid_blocks + del;
 769	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 770
 771	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 772				(new_vblocks > sbi->blocks_per_seg)));
 773
 774	se->valid_blocks = new_vblocks;
 775	se->mtime = get_mtime(sbi);
 776	SIT_I(sbi)->max_mtime = se->mtime;
 
 777
 778	/* Update valid block bitmap */
 779	if (del > 0) {
 780		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 
 
 
 
 
 
 781			f2fs_bug_on(sbi, 1);
 
 
 
 
 
 
 
 
 
 
 782		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 783			sbi->discard_blks--;
 
 
 
 
 
 
 
 
 
 784	} else {
 785		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
 
 
 
 
 
 
 
 
 
 
 
 
 786			f2fs_bug_on(sbi, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 787		if (f2fs_test_and_clear_bit(offset, se->discard_map))
 788			sbi->discard_blks++;
 789	}
 790	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 791		se->ckpt_valid_blocks += del;
 792
 793	__mark_sit_entry_dirty(sbi, segno);
 794
 795	/* update total number of valid blocks to be written in ckpt area */
 796	SIT_I(sbi)->written_valid_blocks += del;
 797
 798	if (sbi->segs_per_sec > 1)
 799		get_sec_entry(sbi, segno)->valid_blocks += del;
 800}
 801
 802void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 803{
 804	update_sit_entry(sbi, new, 1);
 805	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 806		update_sit_entry(sbi, old, -1);
 807
 808	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 809	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 810}
 811
 812void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 813{
 814	unsigned int segno = GET_SEGNO(sbi, addr);
 815	struct sit_info *sit_i = SIT_I(sbi);
 816
 817	f2fs_bug_on(sbi, addr == NULL_ADDR);
 818	if (addr == NEW_ADDR)
 819		return;
 820
 
 
 821	/* add it into sit main buffer */
 822	mutex_lock(&sit_i->sentry_lock);
 823
 824	update_sit_entry(sbi, addr, -1);
 825
 826	/* add it into dirty seglist */
 827	locate_dirty_segment(sbi, segno);
 828
 829	mutex_unlock(&sit_i->sentry_lock);
 830}
 831
 832bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 833{
 834	struct sit_info *sit_i = SIT_I(sbi);
 835	unsigned int segno, offset;
 836	struct seg_entry *se;
 837	bool is_cp = false;
 838
 839	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 840		return true;
 841
 842	mutex_lock(&sit_i->sentry_lock);
 843
 844	segno = GET_SEGNO(sbi, blkaddr);
 845	se = get_seg_entry(sbi, segno);
 846	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 847
 848	if (f2fs_test_bit(offset, se->ckpt_valid_map))
 849		is_cp = true;
 850
 851	mutex_unlock(&sit_i->sentry_lock);
 852
 853	return is_cp;
 854}
 855
 856/*
 857 * This function should be resided under the curseg_mutex lock
 858 */
 859static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 860					struct f2fs_summary *sum)
 861{
 862	struct curseg_info *curseg = CURSEG_I(sbi, type);
 863	void *addr = curseg->sum_blk;
 864	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 865	memcpy(addr, sum, sizeof(struct f2fs_summary));
 866}
 867
 868/*
 869 * Calculate the number of current summary pages for writing
 870 */
 871int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 872{
 873	int valid_sum_count = 0;
 874	int i, sum_in_page;
 875
 876	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 877		if (sbi->ckpt->alloc_type[i] == SSR)
 878			valid_sum_count += sbi->blocks_per_seg;
 879		else {
 880			if (for_ra)
 881				valid_sum_count += le16_to_cpu(
 882					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 883			else
 884				valid_sum_count += curseg_blkoff(sbi, i);
 885		}
 886	}
 887
 888	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 889			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 890	if (valid_sum_count <= sum_in_page)
 891		return 1;
 892	else if ((valid_sum_count - sum_in_page) <=
 893		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 894		return 2;
 895	return 3;
 896}
 897
 898/*
 899 * Caller should put this summary page
 900 */
 901struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 902{
 903	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 904}
 905
 906void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
 
 907{
 908	struct page *page = grab_meta_page(sbi, blk_addr);
 909	void *dst = page_address(page);
 910
 911	if (src)
 912		memcpy(dst, src, PAGE_SIZE);
 913	else
 914		memset(dst, 0, PAGE_SIZE);
 915	set_page_dirty(page);
 916	f2fs_put_page(page, 1);
 917}
 918
 919static void write_sum_page(struct f2fs_sb_info *sbi,
 920			struct f2fs_summary_block *sum_blk, block_t blk_addr)
 921{
 922	update_meta_page(sbi, (void *)sum_blk, blk_addr);
 923}
 924
 925static void write_current_sum_page(struct f2fs_sb_info *sbi,
 926						int type, block_t blk_addr)
 927{
 928	struct curseg_info *curseg = CURSEG_I(sbi, type);
 929	struct page *page = grab_meta_page(sbi, blk_addr);
 930	struct f2fs_summary_block *src = curseg->sum_blk;
 931	struct f2fs_summary_block *dst;
 932
 933	dst = (struct f2fs_summary_block *)page_address(page);
 
 934
 935	mutex_lock(&curseg->curseg_mutex);
 936
 937	down_read(&curseg->journal_rwsem);
 938	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 939	up_read(&curseg->journal_rwsem);
 940
 941	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 942	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 943
 944	mutex_unlock(&curseg->curseg_mutex);
 945
 946	set_page_dirty(page);
 947	f2fs_put_page(page, 1);
 948}
 949
 950static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
 951{
 952	struct curseg_info *curseg = CURSEG_I(sbi, type);
 953	unsigned int segno = curseg->segno + 1;
 954	struct free_segmap_info *free_i = FREE_I(sbi);
 955
 956	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 957		return !test_bit(segno, free_i->free_segmap);
 958	return 0;
 959}
 960
 961/*
 962 * Find a new segment from the free segments bitmap to right order
 963 * This function should be returned with success, otherwise BUG
 964 */
 965static void get_new_segment(struct f2fs_sb_info *sbi,
 966			unsigned int *newseg, bool new_sec, int dir)
 967{
 968	struct free_segmap_info *free_i = FREE_I(sbi);
 969	unsigned int segno, secno, zoneno;
 970	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 971	unsigned int hint = *newseg / sbi->segs_per_sec;
 972	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 973	unsigned int left_start = hint;
 974	bool init = true;
 975	int go_left = 0;
 976	int i;
 977
 978	spin_lock(&free_i->segmap_lock);
 979
 980	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 981		segno = find_next_zero_bit(free_i->free_segmap,
 982				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
 983		if (segno < (hint + 1) * sbi->segs_per_sec)
 984			goto got_it;
 985	}
 986find_other_zone:
 987	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 988	if (secno >= MAIN_SECS(sbi)) {
 989		if (dir == ALLOC_RIGHT) {
 990			secno = find_next_zero_bit(free_i->free_secmap,
 991							MAIN_SECS(sbi), 0);
 992			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 993		} else {
 994			go_left = 1;
 995			left_start = hint - 1;
 996		}
 997	}
 998	if (go_left == 0)
 999		goto skip_left;
1000
1001	while (test_bit(left_start, free_i->free_secmap)) {
1002		if (left_start > 0) {
1003			left_start--;
1004			continue;
1005		}
1006		left_start = find_next_zero_bit(free_i->free_secmap,
1007							MAIN_SECS(sbi), 0);
1008		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1009		break;
1010	}
1011	secno = left_start;
1012skip_left:
1013	hint = secno;
1014	segno = secno * sbi->segs_per_sec;
1015	zoneno = secno / sbi->secs_per_zone;
1016
1017	/* give up on finding another zone */
1018	if (!init)
1019		goto got_it;
1020	if (sbi->secs_per_zone == 1)
1021		goto got_it;
1022	if (zoneno == old_zoneno)
1023		goto got_it;
1024	if (dir == ALLOC_LEFT) {
1025		if (!go_left && zoneno + 1 >= total_zones)
1026			goto got_it;
1027		if (go_left && zoneno == 0)
1028			goto got_it;
1029	}
1030	for (i = 0; i < NR_CURSEG_TYPE; i++)
1031		if (CURSEG_I(sbi, i)->zone == zoneno)
1032			break;
1033
1034	if (i < NR_CURSEG_TYPE) {
1035		/* zone is in user, try another */
1036		if (go_left)
1037			hint = zoneno * sbi->secs_per_zone - 1;
1038		else if (zoneno + 1 >= total_zones)
1039			hint = 0;
1040		else
1041			hint = (zoneno + 1) * sbi->secs_per_zone;
1042		init = false;
1043		goto find_other_zone;
1044	}
1045got_it:
1046	/* set it as dirty segment in free segmap */
1047	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1048	__set_inuse(sbi, segno);
1049	*newseg = segno;
1050	spin_unlock(&free_i->segmap_lock);
1051}
1052
1053static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1054{
1055	struct curseg_info *curseg = CURSEG_I(sbi, type);
1056	struct summary_footer *sum_footer;
1057
1058	curseg->segno = curseg->next_segno;
1059	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1060	curseg->next_blkoff = 0;
1061	curseg->next_segno = NULL_SEGNO;
1062
1063	sum_footer = &(curseg->sum_blk->footer);
1064	memset(sum_footer, 0, sizeof(struct summary_footer));
1065	if (IS_DATASEG(type))
1066		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1067	if (IS_NODESEG(type))
1068		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1069	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1070}
1071
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072/*
1073 * Allocate a current working segment.
1074 * This function always allocates a free segment in LFS manner.
1075 */
1076static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1077{
1078	struct curseg_info *curseg = CURSEG_I(sbi, type);
1079	unsigned int segno = curseg->segno;
1080	int dir = ALLOC_LEFT;
1081
1082	write_sum_page(sbi, curseg->sum_blk,
1083				GET_SUM_BLOCK(sbi, segno));
1084	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1085		dir = ALLOC_RIGHT;
1086
1087	if (test_opt(sbi, NOHEAP))
1088		dir = ALLOC_RIGHT;
1089
 
1090	get_new_segment(sbi, &segno, new_sec, dir);
1091	curseg->next_segno = segno;
1092	reset_curseg(sbi, type, 1);
1093	curseg->alloc_type = LFS;
1094}
1095
1096static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1097			struct curseg_info *seg, block_t start)
1098{
1099	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1100	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1101	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1102	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1103	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1104	int i, pos;
1105
1106	for (i = 0; i < entries; i++)
1107		target_map[i] = ckpt_map[i] | cur_map[i];
1108
1109	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1110
1111	seg->next_blkoff = pos;
1112}
1113
1114/*
1115 * If a segment is written by LFS manner, next block offset is just obtained
1116 * by increasing the current block offset. However, if a segment is written by
1117 * SSR manner, next block offset obtained by calling __next_free_blkoff
1118 */
1119static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1120				struct curseg_info *seg)
1121{
1122	if (seg->alloc_type == SSR)
1123		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1124	else
1125		seg->next_blkoff++;
1126}
1127
1128/*
1129 * This function always allocates a used segment(from dirty seglist) by SSR
1130 * manner, so it should recover the existing segment information of valid blocks
1131 */
1132static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1133{
1134	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1135	struct curseg_info *curseg = CURSEG_I(sbi, type);
1136	unsigned int new_segno = curseg->next_segno;
1137	struct f2fs_summary_block *sum_node;
1138	struct page *sum_page;
1139
1140	write_sum_page(sbi, curseg->sum_blk,
1141				GET_SUM_BLOCK(sbi, curseg->segno));
1142	__set_test_and_inuse(sbi, new_segno);
1143
1144	mutex_lock(&dirty_i->seglist_lock);
1145	__remove_dirty_segment(sbi, new_segno, PRE);
1146	__remove_dirty_segment(sbi, new_segno, DIRTY);
1147	mutex_unlock(&dirty_i->seglist_lock);
1148
1149	reset_curseg(sbi, type, 1);
1150	curseg->alloc_type = SSR;
1151	__next_free_blkoff(sbi, curseg, 0);
1152
1153	if (reuse) {
1154		sum_page = get_sum_page(sbi, new_segno);
1155		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1156		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1157		f2fs_put_page(sum_page, 1);
1158	}
1159}
1160
1161static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1162{
1163	struct curseg_info *curseg = CURSEG_I(sbi, type);
1164	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165
1166	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1167		return v_ops->get_victim(sbi,
1168				&(curseg)->next_segno, BG_GC, type, SSR);
1169
1170	/* For data segments, let's do SSR more intensively */
1171	for (; type >= CURSEG_HOT_DATA; type--)
1172		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1173						BG_GC, type, SSR))
1174			return 1;
 
 
 
 
 
 
 
 
 
 
 
1175	return 0;
1176}
1177
1178/*
1179 * flush out current segment and replace it with new segment
1180 * This function should be returned with success, otherwise BUG
1181 */
1182static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1183						int type, bool force)
1184{
1185	struct curseg_info *curseg = CURSEG_I(sbi, type);
1186
1187	if (force)
1188		new_curseg(sbi, type, true);
1189	else if (type == CURSEG_WARM_NODE)
 
1190		new_curseg(sbi, type, false);
1191	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
 
1192		new_curseg(sbi, type, false);
1193	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1194		change_curseg(sbi, type, true);
1195	else
1196		new_curseg(sbi, type, false);
1197
1198	stat_inc_seg_type(sbi, curseg);
1199}
1200
1201static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202{
1203	struct curseg_info *curseg = CURSEG_I(sbi, type);
1204	unsigned int old_segno;
1205
 
 
 
 
 
1206	old_segno = curseg->segno;
1207	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1208	locate_dirty_segment(sbi, old_segno);
1209}
1210
1211void allocate_new_segments(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
1212{
1213	int i;
1214
 
1215	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1216		__allocate_new_segments(sbi, i);
 
1217}
1218
1219static const struct segment_allocation default_salloc_ops = {
1220	.allocate_segment = allocate_segment_by_default,
1221};
1222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1223int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1224{
1225	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1226	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1227	unsigned int start_segno, end_segno;
 
1228	struct cp_control cpc;
 
 
1229	int err = 0;
 
1230
1231	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1232		return -EINVAL;
1233
1234	cpc.trimmed = 0;
1235	if (end <= MAIN_BLKADDR(sbi))
1236		goto out;
1237
 
 
 
 
 
1238	/* start/end segment number in main_area */
1239	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1240	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1241						GET_SEGNO(sbi, end);
 
 
 
 
 
1242	cpc.reason = CP_DISCARD;
1243	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
 
 
 
 
 
1244
1245	/* do checkpoint to issue discard commands safely */
1246	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1247		cpc.trim_start = start_segno;
 
 
1248
1249		if (sbi->discard_blks == 0)
1250			break;
1251		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1252			cpc.trim_end = end_segno;
1253		else
1254			cpc.trim_end = min_t(unsigned int,
1255				rounddown(start_segno +
1256				BATCHED_TRIM_SEGMENTS(sbi),
1257				sbi->segs_per_sec) - 1, end_segno);
1258
1259		mutex_lock(&sbi->gc_mutex);
1260		err = write_checkpoint(sbi, &cpc);
1261		mutex_unlock(&sbi->gc_mutex);
1262	}
 
 
 
 
1263out:
1264	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
 
1265	return err;
1266}
1267
1268static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1269{
1270	struct curseg_info *curseg = CURSEG_I(sbi, type);
1271	if (curseg->next_blkoff < sbi->blocks_per_seg)
1272		return true;
1273	return false;
1274}
1275
1276static int __get_segment_type_2(struct page *page, enum page_type p_type)
1277{
1278	if (p_type == DATA)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279		return CURSEG_HOT_DATA;
1280	else
1281		return CURSEG_HOT_NODE;
1282}
1283
1284static int __get_segment_type_4(struct page *page, enum page_type p_type)
1285{
1286	if (p_type == DATA) {
1287		struct inode *inode = page->mapping->host;
1288
1289		if (S_ISDIR(inode->i_mode))
1290			return CURSEG_HOT_DATA;
1291		else
1292			return CURSEG_COLD_DATA;
1293	} else {
1294		if (IS_DNODE(page) && is_cold_node(page))
1295			return CURSEG_WARM_NODE;
1296		else
1297			return CURSEG_COLD_NODE;
1298	}
1299}
1300
1301static int __get_segment_type_6(struct page *page, enum page_type p_type)
1302{
1303	if (p_type == DATA) {
1304		struct inode *inode = page->mapping->host;
1305
1306		if (S_ISDIR(inode->i_mode))
1307			return CURSEG_HOT_DATA;
1308		else if (is_cold_data(page) || file_is_cold(inode))
1309			return CURSEG_COLD_DATA;
1310		else
1311			return CURSEG_WARM_DATA;
 
 
 
 
1312	} else {
1313		if (IS_DNODE(page))
1314			return is_cold_node(page) ? CURSEG_WARM_NODE :
1315						CURSEG_HOT_NODE;
1316		else
1317			return CURSEG_COLD_NODE;
1318	}
1319}
1320
1321static int __get_segment_type(struct page *page, enum page_type p_type)
1322{
1323	switch (F2FS_P_SB(page)->active_logs) {
 
 
1324	case 2:
1325		return __get_segment_type_2(page, p_type);
 
1326	case 4:
1327		return __get_segment_type_4(page, p_type);
 
 
 
 
 
 
1328	}
1329	/* NR_CURSEG_TYPE(6) logs by default */
1330	f2fs_bug_on(F2FS_P_SB(page),
1331		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1332	return __get_segment_type_6(page, p_type);
 
 
 
 
1333}
1334
1335void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1336		block_t old_blkaddr, block_t *new_blkaddr,
1337		struct f2fs_summary *sum, int type)
 
1338{
1339	struct sit_info *sit_i = SIT_I(sbi);
1340	struct curseg_info *curseg;
1341	bool direct_io = (type == CURSEG_DIRECT_IO);
1342
1343	type = direct_io ? CURSEG_WARM_DATA : type;
 
 
 
 
 
 
 
 
 
 
1344
1345	curseg = CURSEG_I(sbi, type);
1346
1347	mutex_lock(&curseg->curseg_mutex);
1348	mutex_lock(&sit_i->sentry_lock);
1349
1350	/* direct_io'ed data is aligned to the segment for better performance */
1351	if (direct_io && curseg->next_blkoff &&
1352				!has_not_enough_free_secs(sbi, 0))
1353		__allocate_new_segments(sbi, type);
1354
1355	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1356
 
 
1357	/*
1358	 * __add_sum_entry should be resided under the curseg_mutex
1359	 * because, this function updates a summary entry in the
1360	 * current summary block.
1361	 */
1362	__add_sum_entry(sbi, type, sum);
1363
1364	__refresh_next_blkoff(sbi, curseg);
1365
1366	stat_inc_block_count(sbi, curseg);
1367
1368	if (!__has_curseg_space(sbi, type))
1369		sit_i->s_ops->allocate_segment(sbi, type, false);
1370	/*
1371	 * SIT information should be updated before segment allocation,
1372	 * since SSR needs latest valid block information.
1373	 */
1374	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
 
 
1375
1376	mutex_unlock(&sit_i->sentry_lock);
 
1377
1378	if (page && IS_NODESEG(type))
 
 
 
 
 
 
 
 
 
 
1379		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381	mutex_unlock(&curseg->curseg_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382}
1383
1384static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1385{
1386	int type = __get_segment_type(fio->page, fio->type);
 
1387
1388	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1389					&fio->new_blkaddr, sum, type);
 
 
 
 
 
 
1390
1391	/* writeout dirty page into bdev */
1392	f2fs_submit_page_mbio(fio);
 
 
 
 
 
 
 
 
 
1393}
1394
1395void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
 
1396{
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
1399		.type = META,
1400		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
 
 
1401		.old_blkaddr = page->index,
1402		.new_blkaddr = page->index,
1403		.page = page,
1404		.encrypted_page = NULL,
 
1405	};
1406
1407	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1408		fio.rw &= ~REQ_META;
1409
1410	set_page_writeback(page);
1411	f2fs_submit_page_mbio(&fio);
 
 
 
 
1412}
1413
1414void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1415{
1416	struct f2fs_summary sum;
1417
1418	set_summary(&sum, nid, 0, 0);
1419	do_write_page(&sum, fio);
 
 
1420}
1421
1422void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
 
1423{
1424	struct f2fs_sb_info *sbi = fio->sbi;
1425	struct f2fs_summary sum;
1426	struct node_info ni;
1427
1428	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1429	get_node_info(sbi, dn->nid, &ni);
1430	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1431	do_write_page(&sum, fio);
1432	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
 
 
1433}
1434
1435void rewrite_data_page(struct f2fs_io_info *fio)
1436{
 
 
 
 
1437	fio->new_blkaddr = fio->old_blkaddr;
 
 
 
 
 
 
 
 
 
 
 
 
1438	stat_inc_inplace_blocks(fio->sbi);
1439	f2fs_submit_page_mbio(fio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440}
1441
1442void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1443				block_t old_blkaddr, block_t new_blkaddr,
1444				bool recover_curseg, bool recover_newaddr)
1445{
1446	struct sit_info *sit_i = SIT_I(sbi);
1447	struct curseg_info *curseg;
1448	unsigned int segno, old_cursegno;
1449	struct seg_entry *se;
1450	int type;
1451	unsigned short old_blkoff;
1452
1453	segno = GET_SEGNO(sbi, new_blkaddr);
1454	se = get_seg_entry(sbi, segno);
1455	type = se->type;
1456
 
 
1457	if (!recover_curseg) {
1458		/* for recovery flow */
1459		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1460			if (old_blkaddr == NULL_ADDR)
1461				type = CURSEG_COLD_DATA;
1462			else
1463				type = CURSEG_WARM_DATA;
1464		}
1465	} else {
1466		if (!IS_CURSEG(sbi, segno))
 
 
 
 
1467			type = CURSEG_WARM_DATA;
 
1468	}
1469
 
1470	curseg = CURSEG_I(sbi, type);
1471
1472	mutex_lock(&curseg->curseg_mutex);
1473	mutex_lock(&sit_i->sentry_lock);
1474
1475	old_cursegno = curseg->segno;
1476	old_blkoff = curseg->next_blkoff;
1477
1478	/* change the current segment */
1479	if (segno != curseg->segno) {
1480		curseg->next_segno = segno;
1481		change_curseg(sbi, type, true);
1482	}
1483
1484	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1485	__add_sum_entry(sbi, type, sum);
1486
1487	if (!recover_curseg || recover_newaddr)
1488		update_sit_entry(sbi, new_blkaddr, 1);
1489	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
 
 
1490		update_sit_entry(sbi, old_blkaddr, -1);
 
1491
1492	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1493	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1494
1495	locate_dirty_segment(sbi, old_cursegno);
1496
1497	if (recover_curseg) {
1498		if (old_cursegno != curseg->segno) {
1499			curseg->next_segno = old_cursegno;
1500			change_curseg(sbi, type, true);
1501		}
1502		curseg->next_blkoff = old_blkoff;
1503	}
1504
1505	mutex_unlock(&sit_i->sentry_lock);
1506	mutex_unlock(&curseg->curseg_mutex);
 
1507}
1508
1509void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1510				block_t old_addr, block_t new_addr,
1511				unsigned char version, bool recover_curseg,
1512				bool recover_newaddr)
1513{
1514	struct f2fs_summary sum;
1515
1516	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1517
1518	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1519					recover_curseg, recover_newaddr);
1520
1521	f2fs_update_data_blkaddr(dn, new_addr);
1522}
1523
1524void f2fs_wait_on_page_writeback(struct page *page,
1525				enum page_type type, bool ordered)
1526{
1527	if (PageWriteback(page)) {
1528		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1529
1530		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1531		if (ordered)
 
 
 
1532			wait_on_page_writeback(page);
1533		else
 
1534			wait_for_stable_page(page);
 
1535	}
1536}
1537
1538void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1539							block_t blkaddr)
1540{
 
1541	struct page *cpage;
1542
1543	if (blkaddr == NEW_ADDR)
1544		return;
1545
1546	f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
 
1547
1548	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1549	if (cpage) {
1550		f2fs_wait_on_page_writeback(cpage, DATA, true);
1551		f2fs_put_page(cpage, 1);
1552	}
1553}
1554
 
 
 
 
 
 
 
 
 
1555static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1556{
1557	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558	struct curseg_info *seg_i;
1559	unsigned char *kaddr;
1560	struct page *page;
1561	block_t start;
1562	int i, j, offset;
1563
1564	start = start_sum_block(sbi);
1565
1566	page = get_meta_page(sbi, start++);
 
 
1567	kaddr = (unsigned char *)page_address(page);
1568
1569	/* Step 1: restore nat cache */
1570	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1571	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1572
1573	/* Step 2: restore sit cache */
1574	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1575	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1576	offset = 2 * SUM_JOURNAL_SIZE;
1577
1578	/* Step 3: restore summary entries */
1579	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1580		unsigned short blk_off;
1581		unsigned int segno;
1582
1583		seg_i = CURSEG_I(sbi, i);
1584		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1585		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1586		seg_i->next_segno = segno;
1587		reset_curseg(sbi, i, 0);
1588		seg_i->alloc_type = ckpt->alloc_type[i];
1589		seg_i->next_blkoff = blk_off;
1590
1591		if (seg_i->alloc_type == SSR)
1592			blk_off = sbi->blocks_per_seg;
1593
1594		for (j = 0; j < blk_off; j++) {
1595			struct f2fs_summary *s;
1596			s = (struct f2fs_summary *)(kaddr + offset);
1597			seg_i->sum_blk->entries[j] = *s;
1598			offset += SUMMARY_SIZE;
1599			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1600						SUM_FOOTER_SIZE)
1601				continue;
1602
1603			f2fs_put_page(page, 1);
1604			page = NULL;
1605
1606			page = get_meta_page(sbi, start++);
 
 
1607			kaddr = (unsigned char *)page_address(page);
1608			offset = 0;
1609		}
1610	}
1611	f2fs_put_page(page, 1);
1612	return 0;
1613}
1614
1615static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1616{
1617	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618	struct f2fs_summary_block *sum;
1619	struct curseg_info *curseg;
1620	struct page *new;
1621	unsigned short blk_off;
1622	unsigned int segno = 0;
1623	block_t blk_addr = 0;
 
1624
1625	/* get segment number and block addr */
1626	if (IS_DATASEG(type)) {
1627		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1628		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1629							CURSEG_HOT_DATA]);
1630		if (__exist_node_summaries(sbi))
1631			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1632		else
1633			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1634	} else {
1635		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1636							CURSEG_HOT_NODE]);
1637		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1638							CURSEG_HOT_NODE]);
1639		if (__exist_node_summaries(sbi))
1640			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1641							type - CURSEG_HOT_NODE);
1642		else
1643			blk_addr = GET_SUM_BLOCK(sbi, segno);
1644	}
1645
1646	new = get_meta_page(sbi, blk_addr);
 
 
1647	sum = (struct f2fs_summary_block *)page_address(new);
1648
1649	if (IS_NODESEG(type)) {
1650		if (__exist_node_summaries(sbi)) {
1651			struct f2fs_summary *ns = &sum->entries[0];
1652			int i;
1653			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1654				ns->version = 0;
1655				ns->ofs_in_node = 0;
1656			}
1657		} else {
1658			int err;
1659
1660			err = restore_node_summary(sbi, segno, sum);
1661			if (err) {
1662				f2fs_put_page(new, 1);
1663				return err;
1664			}
1665		}
1666	}
1667
1668	/* set uncompleted segment to curseg */
1669	curseg = CURSEG_I(sbi, type);
1670	mutex_lock(&curseg->curseg_mutex);
1671
1672	/* update journal info */
1673	down_write(&curseg->journal_rwsem);
1674	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1675	up_write(&curseg->journal_rwsem);
1676
1677	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1678	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1679	curseg->next_segno = segno;
1680	reset_curseg(sbi, type, 0);
1681	curseg->alloc_type = ckpt->alloc_type[type];
1682	curseg->next_blkoff = blk_off;
1683	mutex_unlock(&curseg->curseg_mutex);
 
1684	f2fs_put_page(new, 1);
1685	return 0;
1686}
1687
1688static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1689{
 
 
1690	int type = CURSEG_HOT_DATA;
1691	int err;
1692
1693	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1694		int npages = npages_for_summary_flush(sbi, true);
1695
1696		if (npages >= 2)
1697			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1698							META_CP, true);
1699
1700		/* restore for compacted data summary */
1701		if (read_compacted_summaries(sbi))
1702			return -EINVAL;
 
1703		type = CURSEG_HOT_NODE;
1704	}
1705
1706	if (__exist_node_summaries(sbi))
1707		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1708					NR_CURSEG_TYPE - type, META_CP, true);
1709
1710	for (; type <= CURSEG_COLD_NODE; type++) {
1711		err = read_normal_summaries(sbi, type);
1712		if (err)
1713			return err;
1714	}
1715
 
 
 
 
 
 
 
 
1716	return 0;
1717}
1718
1719static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1720{
1721	struct page *page;
1722	unsigned char *kaddr;
1723	struct f2fs_summary *summary;
1724	struct curseg_info *seg_i;
1725	int written_size = 0;
1726	int i, j;
1727
1728	page = grab_meta_page(sbi, blkaddr++);
1729	kaddr = (unsigned char *)page_address(page);
 
1730
1731	/* Step 1: write nat cache */
1732	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1733	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1734	written_size += SUM_JOURNAL_SIZE;
1735
1736	/* Step 2: write sit cache */
1737	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1738	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1739	written_size += SUM_JOURNAL_SIZE;
1740
1741	/* Step 3: write summary entries */
1742	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1743		unsigned short blkoff;
1744		seg_i = CURSEG_I(sbi, i);
1745		if (sbi->ckpt->alloc_type[i] == SSR)
1746			blkoff = sbi->blocks_per_seg;
1747		else
1748			blkoff = curseg_blkoff(sbi, i);
1749
1750		for (j = 0; j < blkoff; j++) {
1751			if (!page) {
1752				page = grab_meta_page(sbi, blkaddr++);
1753				kaddr = (unsigned char *)page_address(page);
 
1754				written_size = 0;
1755			}
1756			summary = (struct f2fs_summary *)(kaddr + written_size);
1757			*summary = seg_i->sum_blk->entries[j];
1758			written_size += SUMMARY_SIZE;
1759
1760			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1761							SUM_FOOTER_SIZE)
1762				continue;
1763
1764			set_page_dirty(page);
1765			f2fs_put_page(page, 1);
1766			page = NULL;
1767		}
1768	}
1769	if (page) {
1770		set_page_dirty(page);
1771		f2fs_put_page(page, 1);
1772	}
1773}
1774
1775static void write_normal_summaries(struct f2fs_sb_info *sbi,
1776					block_t blkaddr, int type)
1777{
1778	int i, end;
1779	if (IS_DATASEG(type))
1780		end = type + NR_CURSEG_DATA_TYPE;
1781	else
1782		end = type + NR_CURSEG_NODE_TYPE;
1783
1784	for (i = type; i < end; i++)
1785		write_current_sum_page(sbi, i, blkaddr + (i - type));
1786}
1787
1788void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1789{
1790	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1791		write_compacted_summaries(sbi, start_blk);
1792	else
1793		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1794}
1795
1796void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1797{
1798	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1799}
1800
1801int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1802					unsigned int val, int alloc)
1803{
1804	int i;
1805
1806	if (type == NAT_JOURNAL) {
1807		for (i = 0; i < nats_in_cursum(journal); i++) {
1808			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1809				return i;
1810		}
1811		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1812			return update_nats_in_cursum(journal, 1);
1813	} else if (type == SIT_JOURNAL) {
1814		for (i = 0; i < sits_in_cursum(journal); i++)
1815			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1816				return i;
1817		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1818			return update_sits_in_cursum(journal, 1);
1819	}
1820	return -1;
1821}
1822
1823static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1824					unsigned int segno)
1825{
1826	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1827}
1828
1829static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1830					unsigned int start)
1831{
1832	struct sit_info *sit_i = SIT_I(sbi);
1833	struct page *src_page, *dst_page;
1834	pgoff_t src_off, dst_off;
1835	void *src_addr, *dst_addr;
1836
1837	src_off = current_sit_addr(sbi, start);
1838	dst_off = next_sit_addr(sbi, src_off);
1839
1840	/* get current sit block page without lock */
1841	src_page = get_meta_page(sbi, src_off);
1842	dst_page = grab_meta_page(sbi, dst_off);
1843	f2fs_bug_on(sbi, PageDirty(src_page));
1844
1845	src_addr = page_address(src_page);
1846	dst_addr = page_address(dst_page);
1847	memcpy(dst_addr, src_addr, PAGE_SIZE);
1848
1849	set_page_dirty(dst_page);
1850	f2fs_put_page(src_page, 1);
1851
 
1852	set_to_next_sit(sit_i, start);
1853
1854	return dst_page;
1855}
1856
1857static struct sit_entry_set *grab_sit_entry_set(void)
1858{
1859	struct sit_entry_set *ses =
1860			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1861
1862	ses->entry_cnt = 0;
1863	INIT_LIST_HEAD(&ses->set_list);
1864	return ses;
1865}
1866
1867static void release_sit_entry_set(struct sit_entry_set *ses)
1868{
1869	list_del(&ses->set_list);
1870	kmem_cache_free(sit_entry_set_slab, ses);
1871}
1872
1873static void adjust_sit_entry_set(struct sit_entry_set *ses,
1874						struct list_head *head)
1875{
1876	struct sit_entry_set *next = ses;
1877
1878	if (list_is_last(&ses->set_list, head))
1879		return;
1880
1881	list_for_each_entry_continue(next, head, set_list)
1882		if (ses->entry_cnt <= next->entry_cnt)
1883			break;
1884
1885	list_move_tail(&ses->set_list, &next->set_list);
1886}
1887
1888static void add_sit_entry(unsigned int segno, struct list_head *head)
1889{
1890	struct sit_entry_set *ses;
1891	unsigned int start_segno = START_SEGNO(segno);
1892
1893	list_for_each_entry(ses, head, set_list) {
1894		if (ses->start_segno == start_segno) {
1895			ses->entry_cnt++;
1896			adjust_sit_entry_set(ses, head);
1897			return;
1898		}
1899	}
1900
1901	ses = grab_sit_entry_set();
1902
1903	ses->start_segno = start_segno;
1904	ses->entry_cnt++;
1905	list_add(&ses->set_list, head);
1906}
1907
1908static void add_sits_in_set(struct f2fs_sb_info *sbi)
1909{
1910	struct f2fs_sm_info *sm_info = SM_I(sbi);
1911	struct list_head *set_list = &sm_info->sit_entry_set;
1912	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1913	unsigned int segno;
1914
1915	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1916		add_sit_entry(segno, set_list);
1917}
1918
1919static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1920{
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < sits_in_cursum(journal); i++) {
1927		unsigned int segno;
1928		bool dirtied;
1929
1930		segno = le32_to_cpu(segno_in_journal(journal, i));
1931		dirtied = __mark_sit_entry_dirty(sbi, segno);
1932
1933		if (!dirtied)
1934			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1935	}
1936	update_sits_in_cursum(journal, -i);
1937	up_write(&curseg->journal_rwsem);
1938}
1939
1940/*
1941 * CP calls this function, which flushes SIT entries including sit_journal,
1942 * and moves prefree segs to free segs.
1943 */
1944void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1945{
1946	struct sit_info *sit_i = SIT_I(sbi);
1947	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1948	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1949	struct f2fs_journal *journal = curseg->journal;
1950	struct sit_entry_set *ses, *tmp;
1951	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1952	bool to_journal = true;
1953	struct seg_entry *se;
1954
1955	mutex_lock(&sit_i->sentry_lock);
1956
1957	if (!sit_i->dirty_sentries)
1958		goto out;
1959
1960	/*
1961	 * add and account sit entries of dirty bitmap in sit entry
1962	 * set temporarily
1963	 */
1964	add_sits_in_set(sbi);
1965
1966	/*
1967	 * if there are no enough space in journal to store dirty sit
1968	 * entries, remove all entries from journal and add and account
1969	 * them in sit entry set.
1970	 */
1971	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
 
1972		remove_sits_in_journal(sbi);
1973
1974	/*
1975	 * there are two steps to flush sit entries:
1976	 * #1, flush sit entries to journal in current cold data summary block.
1977	 * #2, flush sit entries to sit page.
1978	 */
1979	list_for_each_entry_safe(ses, tmp, head, set_list) {
1980		struct page *page = NULL;
1981		struct f2fs_sit_block *raw_sit = NULL;
1982		unsigned int start_segno = ses->start_segno;
1983		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1984						(unsigned long)MAIN_SEGS(sbi));
1985		unsigned int segno = start_segno;
1986
1987		if (to_journal &&
1988			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1989			to_journal = false;
1990
1991		if (to_journal) {
1992			down_write(&curseg->journal_rwsem);
1993		} else {
1994			page = get_next_sit_page(sbi, start_segno);
1995			raw_sit = page_address(page);
1996		}
1997
1998		/* flush dirty sit entries in region of current sit set */
1999		for_each_set_bit_from(segno, bitmap, end) {
2000			int offset, sit_offset;
2001
2002			se = get_seg_entry(sbi, segno);
 
 
 
 
 
2003
2004			/* add discard candidates */
2005			if (cpc->reason != CP_DISCARD) {
2006				cpc->trim_start = segno;
2007				add_discard_addrs(sbi, cpc);
2008			}
2009
2010			if (to_journal) {
2011				offset = lookup_journal_in_cursum(journal,
2012							SIT_JOURNAL, segno, 1);
2013				f2fs_bug_on(sbi, offset < 0);
2014				segno_in_journal(journal, offset) =
2015							cpu_to_le32(segno);
2016				seg_info_to_raw_sit(se,
2017					&sit_in_journal(journal, offset));
 
 
2018			} else {
2019				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2020				seg_info_to_raw_sit(se,
2021						&raw_sit->entries[sit_offset]);
 
 
2022			}
2023
2024			__clear_bit(segno, bitmap);
2025			sit_i->dirty_sentries--;
2026			ses->entry_cnt--;
2027		}
2028
2029		if (to_journal)
2030			up_write(&curseg->journal_rwsem);
2031		else
2032			f2fs_put_page(page, 1);
2033
2034		f2fs_bug_on(sbi, ses->entry_cnt);
2035		release_sit_entry_set(ses);
2036	}
2037
2038	f2fs_bug_on(sbi, !list_empty(head));
2039	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2040out:
2041	if (cpc->reason == CP_DISCARD) {
 
 
2042		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2043			add_discard_addrs(sbi, cpc);
 
 
2044	}
2045	mutex_unlock(&sit_i->sentry_lock);
2046
2047	set_prefree_as_free_segments(sbi);
2048}
2049
2050static int build_sit_info(struct f2fs_sb_info *sbi)
2051{
2052	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2053	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054	struct sit_info *sit_i;
2055	unsigned int sit_segs, start;
2056	char *src_bitmap, *dst_bitmap;
2057	unsigned int bitmap_size;
2058
2059	/* allocate memory for SIT information */
2060	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2061	if (!sit_i)
2062		return -ENOMEM;
2063
2064	SM_I(sbi)->sit_info = sit_i;
2065
2066	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2067					sizeof(struct seg_entry), GFP_KERNEL);
 
 
2068	if (!sit_i->sentries)
2069		return -ENOMEM;
2070
2071	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2072	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 
2073	if (!sit_i->dirty_sentries_bitmap)
2074		return -ENOMEM;
2075
 
 
 
 
 
 
 
 
 
 
 
2076	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2077		sit_i->sentries[start].cur_valid_map
2078			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2079		sit_i->sentries[start].ckpt_valid_map
2080			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2081		sit_i->sentries[start].discard_map
2082			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083		if (!sit_i->sentries[start].cur_valid_map ||
2084				!sit_i->sentries[start].ckpt_valid_map ||
2085				!sit_i->sentries[start].discard_map)
2086			return -ENOMEM;
 
 
 
2087	}
2088
2089	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090	if (!sit_i->tmp_map)
2091		return -ENOMEM;
2092
2093	if (sbi->segs_per_sec > 1) {
2094		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2095					sizeof(struct sec_entry), GFP_KERNEL);
 
 
2096		if (!sit_i->sec_entries)
2097			return -ENOMEM;
2098	}
2099
2100	/* get information related with SIT */
2101	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2102
2103	/* setup SIT bitmap from ckeckpoint pack */
2104	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2105	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2106
2107	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2108	if (!dst_bitmap)
2109		return -ENOMEM;
2110
 
 
 
 
 
 
 
 
 
 
 
 
2111	/* init SIT information */
2112	sit_i->s_ops = &default_salloc_ops;
2113
2114	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2115	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2116	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2117	sit_i->sit_bitmap = dst_bitmap;
2118	sit_i->bitmap_size = bitmap_size;
2119	sit_i->dirty_sentries = 0;
2120	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2121	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2122	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2123	mutex_init(&sit_i->sentry_lock);
2124	return 0;
2125}
2126
2127static int build_free_segmap(struct f2fs_sb_info *sbi)
2128{
2129	struct free_segmap_info *free_i;
2130	unsigned int bitmap_size, sec_bitmap_size;
2131
2132	/* allocate memory for free segmap information */
2133	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2134	if (!free_i)
2135		return -ENOMEM;
2136
2137	SM_I(sbi)->free_info = free_i;
2138
2139	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2140	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2141	if (!free_i->free_segmap)
2142		return -ENOMEM;
2143
2144	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2145	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2146	if (!free_i->free_secmap)
2147		return -ENOMEM;
2148
2149	/* set all segments as dirty temporarily */
2150	memset(free_i->free_segmap, 0xff, bitmap_size);
2151	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2152
2153	/* init free segmap information */
2154	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2155	free_i->free_segments = 0;
2156	free_i->free_sections = 0;
2157	spin_lock_init(&free_i->segmap_lock);
2158	return 0;
2159}
2160
2161static int build_curseg(struct f2fs_sb_info *sbi)
2162{
2163	struct curseg_info *array;
2164	int i;
2165
2166	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
 
2167	if (!array)
2168		return -ENOMEM;
2169
2170	SM_I(sbi)->curseg_array = array;
2171
2172	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2173		mutex_init(&array[i].curseg_mutex);
2174		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2175		if (!array[i].sum_blk)
2176			return -ENOMEM;
2177		init_rwsem(&array[i].journal_rwsem);
2178		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2179							GFP_KERNEL);
2180		if (!array[i].journal)
2181			return -ENOMEM;
2182		array[i].segno = NULL_SEGNO;
2183		array[i].next_blkoff = 0;
2184	}
2185	return restore_curseg_summaries(sbi);
2186}
2187
2188static void build_sit_entries(struct f2fs_sb_info *sbi)
2189{
2190	struct sit_info *sit_i = SIT_I(sbi);
2191	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2192	struct f2fs_journal *journal = curseg->journal;
 
 
2193	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2194	unsigned int i, start, end;
2195	unsigned int readed, start_blk = 0;
2196	int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
 
2197
2198	do {
2199		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
 
2200
2201		start = start_blk * sit_i->sents_per_block;
2202		end = (start_blk + readed) * sit_i->sents_per_block;
2203
2204		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2205			struct seg_entry *se = &sit_i->sentries[start];
2206			struct f2fs_sit_block *sit_blk;
2207			struct f2fs_sit_entry sit;
2208			struct page *page;
2209
2210			down_read(&curseg->journal_rwsem);
2211			for (i = 0; i < sits_in_cursum(journal); i++) {
2212				if (le32_to_cpu(segno_in_journal(journal, i))
2213								== start) {
2214					sit = sit_in_journal(journal, i);
2215					up_read(&curseg->journal_rwsem);
2216					goto got_it;
2217				}
2218			}
2219			up_read(&curseg->journal_rwsem);
2220
2221			page = get_current_sit_page(sbi, start);
 
 
2222			sit_blk = (struct f2fs_sit_block *)page_address(page);
2223			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2224			f2fs_put_page(page, 1);
2225got_it:
2226			check_block_count(sbi, start, &sit);
 
 
2227			seg_info_from_raw_sit(se, &sit);
 
 
2228
2229			/* build discard map only one time */
2230			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2231			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2232
2233			if (sbi->segs_per_sec > 1) {
2234				struct sec_entry *e = get_sec_entry(sbi, start);
2235				e->valid_blocks += se->valid_blocks;
 
 
 
 
2236			}
 
 
 
 
2237		}
2238		start_blk += readed;
2239	} while (start_blk < sit_blk_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2240}
2241
2242static void init_free_segmap(struct f2fs_sb_info *sbi)
2243{
2244	unsigned int start;
2245	int type;
2246
2247	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2248		struct seg_entry *sentry = get_seg_entry(sbi, start);
2249		if (!sentry->valid_blocks)
2250			__set_free(sbi, start);
 
 
 
2251	}
2252
2253	/* set use the current segments */
2254	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2255		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2256		__set_test_and_inuse(sbi, curseg_t->segno);
2257	}
2258}
2259
2260static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2261{
2262	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2263	struct free_segmap_info *free_i = FREE_I(sbi);
2264	unsigned int segno = 0, offset = 0;
2265	unsigned short valid_blocks;
 
2266
2267	while (1) {
2268		/* find dirty segment based on free segmap */
2269		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2270		if (segno >= MAIN_SEGS(sbi))
2271			break;
2272		offset = segno + 1;
2273		valid_blocks = get_valid_blocks(sbi, segno, 0);
2274		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2275			continue;
2276		if (valid_blocks > sbi->blocks_per_seg) {
2277			f2fs_bug_on(sbi, 1);
2278			continue;
2279		}
2280		mutex_lock(&dirty_i->seglist_lock);
2281		__locate_dirty_segment(sbi, segno, DIRTY);
2282		mutex_unlock(&dirty_i->seglist_lock);
2283	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284}
2285
2286static int init_victim_secmap(struct f2fs_sb_info *sbi)
2287{
2288	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2289	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2290
2291	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2292	if (!dirty_i->victim_secmap)
2293		return -ENOMEM;
2294	return 0;
2295}
2296
2297static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2298{
2299	struct dirty_seglist_info *dirty_i;
2300	unsigned int bitmap_size, i;
2301
2302	/* allocate memory for dirty segments list information */
2303	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
 
2304	if (!dirty_i)
2305		return -ENOMEM;
2306
2307	SM_I(sbi)->dirty_info = dirty_i;
2308	mutex_init(&dirty_i->seglist_lock);
2309
2310	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2311
2312	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2313		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 
2314		if (!dirty_i->dirty_segmap[i])
2315			return -ENOMEM;
2316	}
2317
 
 
 
 
 
 
 
 
2318	init_dirty_segmap(sbi);
2319	return init_victim_secmap(sbi);
2320}
2321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322/*
2323 * Update min, max modified time for cost-benefit GC algorithm
2324 */
2325static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2326{
2327	struct sit_info *sit_i = SIT_I(sbi);
2328	unsigned int segno;
2329
2330	mutex_lock(&sit_i->sentry_lock);
2331
2332	sit_i->min_mtime = LLONG_MAX;
2333
2334	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2335		unsigned int i;
2336		unsigned long long mtime = 0;
2337
2338		for (i = 0; i < sbi->segs_per_sec; i++)
2339			mtime += get_seg_entry(sbi, segno + i)->mtime;
2340
2341		mtime = div_u64(mtime, sbi->segs_per_sec);
2342
2343		if (sit_i->min_mtime > mtime)
2344			sit_i->min_mtime = mtime;
2345	}
2346	sit_i->max_mtime = get_mtime(sbi);
2347	mutex_unlock(&sit_i->sentry_lock);
2348}
2349
2350int build_segment_manager(struct f2fs_sb_info *sbi)
2351{
2352	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2353	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2354	struct f2fs_sm_info *sm_info;
2355	int err;
2356
2357	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2358	if (!sm_info)
2359		return -ENOMEM;
2360
2361	/* init sm info */
2362	sbi->sm_info = sm_info;
2363	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2364	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2365	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2366	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2367	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2368	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2369	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2370	sm_info->rec_prefree_segments = sm_info->main_segments *
2371					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2372	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
 
 
 
 
2373	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2374	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2375
2376	INIT_LIST_HEAD(&sm_info->discard_list);
2377	sm_info->nr_discards = 0;
2378	sm_info->max_discards = 0;
2379
2380	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2381
2382	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2383
2384	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2385		err = create_flush_cmd_control(sbi);
 
 
2386		if (err)
2387			return err;
2388	}
2389
 
 
 
 
2390	err = build_sit_info(sbi);
2391	if (err)
2392		return err;
2393	err = build_free_segmap(sbi);
2394	if (err)
2395		return err;
2396	err = build_curseg(sbi);
2397	if (err)
2398		return err;
2399
2400	/* reinit free segmap based on SIT */
2401	build_sit_entries(sbi);
 
 
2402
2403	init_free_segmap(sbi);
2404	err = build_dirty_segmap(sbi);
2405	if (err)
2406		return err;
2407
 
 
 
 
2408	init_min_max_mtime(sbi);
2409	return 0;
2410}
2411
2412static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2413		enum dirty_type dirty_type)
2414{
2415	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416
2417	mutex_lock(&dirty_i->seglist_lock);
2418	kvfree(dirty_i->dirty_segmap[dirty_type]);
2419	dirty_i->nr_dirty[dirty_type] = 0;
2420	mutex_unlock(&dirty_i->seglist_lock);
2421}
2422
2423static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2424{
2425	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2426	kvfree(dirty_i->victim_secmap);
2427}
2428
2429static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2430{
2431	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2432	int i;
2433
2434	if (!dirty_i)
2435		return;
2436
2437	/* discard pre-free/dirty segments list */
2438	for (i = 0; i < NR_DIRTY_TYPE; i++)
2439		discard_dirty_segmap(sbi, i);
2440
 
 
 
 
 
 
2441	destroy_victim_secmap(sbi);
2442	SM_I(sbi)->dirty_info = NULL;
2443	kfree(dirty_i);
2444}
2445
2446static void destroy_curseg(struct f2fs_sb_info *sbi)
2447{
2448	struct curseg_info *array = SM_I(sbi)->curseg_array;
2449	int i;
2450
2451	if (!array)
2452		return;
2453	SM_I(sbi)->curseg_array = NULL;
2454	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2455		kfree(array[i].sum_blk);
2456		kfree(array[i].journal);
2457	}
2458	kfree(array);
2459}
2460
2461static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2462{
2463	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2464	if (!free_i)
2465		return;
2466	SM_I(sbi)->free_info = NULL;
2467	kvfree(free_i->free_segmap);
2468	kvfree(free_i->free_secmap);
2469	kfree(free_i);
2470}
2471
2472static void destroy_sit_info(struct f2fs_sb_info *sbi)
2473{
2474	struct sit_info *sit_i = SIT_I(sbi);
2475	unsigned int start;
2476
2477	if (!sit_i)
2478		return;
2479
2480	if (sit_i->sentries) {
2481		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2482			kfree(sit_i->sentries[start].cur_valid_map);
2483			kfree(sit_i->sentries[start].ckpt_valid_map);
2484			kfree(sit_i->sentries[start].discard_map);
2485		}
2486	}
2487	kfree(sit_i->tmp_map);
2488
2489	kvfree(sit_i->sentries);
2490	kvfree(sit_i->sec_entries);
2491	kvfree(sit_i->dirty_sentries_bitmap);
2492
2493	SM_I(sbi)->sit_info = NULL;
2494	kfree(sit_i->sit_bitmap);
2495	kfree(sit_i);
 
 
 
 
2496}
2497
2498void destroy_segment_manager(struct f2fs_sb_info *sbi)
2499{
2500	struct f2fs_sm_info *sm_info = SM_I(sbi);
2501
2502	if (!sm_info)
2503		return;
2504	destroy_flush_cmd_control(sbi);
 
2505	destroy_dirty_segmap(sbi);
2506	destroy_curseg(sbi);
2507	destroy_free_segmap(sbi);
2508	destroy_sit_info(sbi);
2509	sbi->sm_info = NULL;
2510	kfree(sm_info);
2511}
2512
2513int __init create_segment_manager_caches(void)
2514{
2515	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2516			sizeof(struct discard_entry));
2517	if (!discard_entry_slab)
2518		goto fail;
2519
2520	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
 
 
 
 
 
2521			sizeof(struct sit_entry_set));
2522	if (!sit_entry_set_slab)
2523		goto destory_discard_entry;
2524
2525	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2526			sizeof(struct inmem_pages));
2527	if (!inmem_entry_slab)
2528		goto destroy_sit_entry_set;
2529	return 0;
2530
2531destroy_sit_entry_set:
2532	kmem_cache_destroy(sit_entry_set_slab);
2533destory_discard_entry:
 
 
2534	kmem_cache_destroy(discard_entry_slab);
2535fail:
2536	return -ENOMEM;
2537}
2538
2539void destroy_segment_manager_caches(void)
2540{
2541	kmem_cache_destroy(sit_entry_set_slab);
 
2542	kmem_cache_destroy(discard_entry_slab);
2543	kmem_cache_destroy(inmem_entry_slab);
2544}
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/prefetch.h>
  13#include <linux/kthread.h>
  14#include <linux/swap.h>
  15#include <linux/timer.h>
  16#include <linux/freezer.h>
  17#include <linux/sched/signal.h>
  18
  19#include "f2fs.h"
  20#include "segment.h"
  21#include "node.h"
  22#include "gc.h"
  23#include "trace.h"
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
  29static struct kmem_cache *discard_cmd_slab;
  30static struct kmem_cache *sit_entry_set_slab;
  31static struct kmem_cache *inmem_entry_slab;
  32
  33static unsigned long __reverse_ulong(unsigned char *str)
  34{
  35	unsigned long tmp = 0;
  36	int shift = 24, idx = 0;
  37
  38#if BITS_PER_LONG == 64
  39	shift = 56;
  40#endif
  41	while (shift >= 0) {
  42		tmp |= (unsigned long)str[idx++] << shift;
  43		shift -= BITS_PER_BYTE;
  44	}
  45	return tmp;
  46}
  47
  48/*
  49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  50 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  51 */
  52static inline unsigned long __reverse_ffs(unsigned long word)
  53{
  54	int num = 0;
  55
  56#if BITS_PER_LONG == 64
  57	if ((word & 0xffffffff00000000UL) == 0)
  58		num += 32;
  59	else
  60		word >>= 32;
  61#endif
  62	if ((word & 0xffff0000) == 0)
  63		num += 16;
  64	else
  65		word >>= 16;
  66
  67	if ((word & 0xff00) == 0)
  68		num += 8;
  69	else
  70		word >>= 8;
  71
  72	if ((word & 0xf0) == 0)
  73		num += 4;
  74	else
  75		word >>= 4;
  76
  77	if ((word & 0xc) == 0)
  78		num += 2;
  79	else
  80		word >>= 2;
  81
  82	if ((word & 0x2) == 0)
  83		num += 1;
  84	return num;
  85}
  86
  87/*
  88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  89 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  90 * @size must be integral times of unsigned long.
  91 * Example:
  92 *                             MSB <--> LSB
  93 *   f2fs_set_bit(0, bitmap) => 1000 0000
  94 *   f2fs_set_bit(7, bitmap) => 0000 0001
  95 */
  96static unsigned long __find_rev_next_bit(const unsigned long *addr,
  97			unsigned long size, unsigned long offset)
  98{
  99	const unsigned long *p = addr + BIT_WORD(offset);
 100	unsigned long result = size;
 101	unsigned long tmp;
 102
 103	if (offset >= size)
 104		return size;
 105
 106	size -= (offset & ~(BITS_PER_LONG - 1));
 107	offset %= BITS_PER_LONG;
 108
 109	while (1) {
 110		if (*p == 0)
 111			goto pass;
 112
 113		tmp = __reverse_ulong((unsigned char *)p);
 114
 115		tmp &= ~0UL >> offset;
 116		if (size < BITS_PER_LONG)
 117			tmp &= (~0UL << (BITS_PER_LONG - size));
 118		if (tmp)
 119			goto found;
 120pass:
 121		if (size <= BITS_PER_LONG)
 122			break;
 123		size -= BITS_PER_LONG;
 124		offset = 0;
 125		p++;
 126	}
 127	return result;
 128found:
 129	return result - size + __reverse_ffs(tmp);
 130}
 131
 132static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 133			unsigned long size, unsigned long offset)
 134{
 135	const unsigned long *p = addr + BIT_WORD(offset);
 136	unsigned long result = size;
 137	unsigned long tmp;
 138
 139	if (offset >= size)
 140		return size;
 141
 142	size -= (offset & ~(BITS_PER_LONG - 1));
 143	offset %= BITS_PER_LONG;
 144
 145	while (1) {
 146		if (*p == ~0UL)
 147			goto pass;
 148
 149		tmp = __reverse_ulong((unsigned char *)p);
 150
 151		if (offset)
 152			tmp |= ~0UL << (BITS_PER_LONG - offset);
 153		if (size < BITS_PER_LONG)
 154			tmp |= ~0UL >> size;
 155		if (tmp != ~0UL)
 156			goto found;
 157pass:
 158		if (size <= BITS_PER_LONG)
 159			break;
 160		size -= BITS_PER_LONG;
 161		offset = 0;
 162		p++;
 163	}
 164	return result;
 165found:
 166	return result - size + __reverse_ffz(tmp);
 167}
 168
 169bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 170{
 171	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 172	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 173	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 174
 175	if (f2fs_lfs_mode(sbi))
 176		return false;
 177	if (sbi->gc_mode == GC_URGENT_HIGH)
 178		return true;
 179	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 180		return true;
 181
 182	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 183			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 184}
 185
 186void f2fs_register_inmem_page(struct inode *inode, struct page *page)
 187{
 
 188	struct inmem_pages *new;
 189
 190	f2fs_trace_pid(page);
 191
 192	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 
 193
 194	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 195
 196	/* add atomic page indices to the list */
 197	new->page = page;
 198	INIT_LIST_HEAD(&new->list);
 199
 200	/* increase reference count with clean state */
 
 201	get_page(page);
 202	mutex_lock(&F2FS_I(inode)->inmem_lock);
 203	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
 204	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 205	mutex_unlock(&F2FS_I(inode)->inmem_lock);
 206
 207	trace_f2fs_register_inmem_page(page, INMEM);
 208}
 209
 210static int __revoke_inmem_pages(struct inode *inode,
 211				struct list_head *head, bool drop, bool recover,
 212				bool trylock)
 213{
 214	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 215	struct inmem_pages *cur, *tmp;
 216	int err = 0;
 217
 218	list_for_each_entry_safe(cur, tmp, head, list) {
 219		struct page *page = cur->page;
 220
 221		if (drop)
 222			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 223
 224		if (trylock) {
 225			/*
 226			 * to avoid deadlock in between page lock and
 227			 * inmem_lock.
 228			 */
 229			if (!trylock_page(page))
 230				continue;
 231		} else {
 232			lock_page(page);
 233		}
 234
 235		f2fs_wait_on_page_writeback(page, DATA, true, true);
 236
 237		if (recover) {
 238			struct dnode_of_data dn;
 239			struct node_info ni;
 240
 241			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 242retry:
 243			set_new_dnode(&dn, inode, NULL, NULL, 0);
 244			err = f2fs_get_dnode_of_data(&dn, page->index,
 245								LOOKUP_NODE);
 246			if (err) {
 247				if (err == -ENOMEM) {
 248					congestion_wait(BLK_RW_ASYNC,
 249							DEFAULT_IO_TIMEOUT);
 250					cond_resched();
 251					goto retry;
 252				}
 253				err = -EAGAIN;
 254				goto next;
 255			}
 256
 257			err = f2fs_get_node_info(sbi, dn.nid, &ni);
 258			if (err) {
 259				f2fs_put_dnode(&dn);
 260				return err;
 261			}
 262
 263			if (cur->old_addr == NEW_ADDR) {
 264				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 265				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
 266			} else
 267				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 268					cur->old_addr, ni.version, true, true);
 269			f2fs_put_dnode(&dn);
 270		}
 271next:
 272		/* we don't need to invalidate this in the sccessful status */
 273		if (drop || recover) {
 274			ClearPageUptodate(page);
 275			clear_cold_data(page);
 276		}
 277		f2fs_clear_page_private(page);
 278		f2fs_put_page(page, 1);
 279
 280		list_del(&cur->list);
 281		kmem_cache_free(inmem_entry_slab, cur);
 282		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 283	}
 284	return err;
 285}
 286
 287void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
 288{
 289	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
 290	struct inode *inode;
 291	struct f2fs_inode_info *fi;
 292	unsigned int count = sbi->atomic_files;
 293	unsigned int looped = 0;
 294next:
 295	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 296	if (list_empty(head)) {
 297		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 298		return;
 299	}
 300	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
 301	inode = igrab(&fi->vfs_inode);
 302	if (inode)
 303		list_move_tail(&fi->inmem_ilist, head);
 304	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 305
 306	if (inode) {
 307		if (gc_failure) {
 308			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
 309				goto skip;
 310		}
 311		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
 312		f2fs_drop_inmem_pages(inode);
 313skip:
 314		iput(inode);
 315	}
 316	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
 317	cond_resched();
 318	if (gc_failure) {
 319		if (++looped >= count)
 320			return;
 321	}
 322	goto next;
 323}
 324
 325void f2fs_drop_inmem_pages(struct inode *inode)
 326{
 327	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 328	struct f2fs_inode_info *fi = F2FS_I(inode);
 329
 330	while (!list_empty(&fi->inmem_pages)) {
 331		mutex_lock(&fi->inmem_lock);
 332		__revoke_inmem_pages(inode, &fi->inmem_pages,
 333						true, false, true);
 334		mutex_unlock(&fi->inmem_lock);
 335	}
 336
 337	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
 338
 339	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
 340	if (!list_empty(&fi->inmem_ilist))
 341		list_del_init(&fi->inmem_ilist);
 342	if (f2fs_is_atomic_file(inode)) {
 343		clear_inode_flag(inode, FI_ATOMIC_FILE);
 344		sbi->atomic_files--;
 345	}
 346	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
 347}
 348
 349void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
 350{
 351	struct f2fs_inode_info *fi = F2FS_I(inode);
 352	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 353	struct list_head *head = &fi->inmem_pages;
 354	struct inmem_pages *cur = NULL;
 355
 356	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
 357
 358	mutex_lock(&fi->inmem_lock);
 359	list_for_each_entry(cur, head, list) {
 360		if (cur->page == page)
 361			break;
 362	}
 363
 364	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
 365	list_del(&cur->list);
 366	mutex_unlock(&fi->inmem_lock);
 367
 368	dec_page_count(sbi, F2FS_INMEM_PAGES);
 369	kmem_cache_free(inmem_entry_slab, cur);
 370
 371	ClearPageUptodate(page);
 372	f2fs_clear_page_private(page);
 373	f2fs_put_page(page, 0);
 374
 375	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
 376}
 377
 378static int __f2fs_commit_inmem_pages(struct inode *inode)
 
 379{
 380	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 381	struct f2fs_inode_info *fi = F2FS_I(inode);
 382	struct inmem_pages *cur, *tmp;
 383	struct f2fs_io_info fio = {
 384		.sbi = sbi,
 385		.ino = inode->i_ino,
 386		.type = DATA,
 387		.op = REQ_OP_WRITE,
 388		.op_flags = REQ_SYNC | REQ_PRIO,
 389		.io_type = FS_DATA_IO,
 390	};
 391	struct list_head revoke_list;
 392	bool submit_bio = false;
 393	int err = 0;
 394
 395	INIT_LIST_HEAD(&revoke_list);
 396
 397	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 398		struct page *page = cur->page;
 399
 400		lock_page(page);
 401		if (page->mapping == inode->i_mapping) {
 402			trace_f2fs_commit_inmem_page(page, INMEM);
 403
 404			f2fs_wait_on_page_writeback(page, DATA, true, true);
 405
 406			set_page_dirty(page);
 407			if (clear_page_dirty_for_io(page)) {
 
 408				inode_dec_dirty_pages(inode);
 409				f2fs_remove_dirty_inode(inode);
 410			}
 411retry:
 412			fio.page = page;
 413			fio.old_blkaddr = NULL_ADDR;
 414			fio.encrypted_page = NULL;
 415			fio.need_lock = LOCK_DONE;
 416			err = f2fs_do_write_data_page(&fio);
 417			if (err) {
 418				if (err == -ENOMEM) {
 419					congestion_wait(BLK_RW_ASYNC,
 420							DEFAULT_IO_TIMEOUT);
 421					cond_resched();
 422					goto retry;
 423				}
 424				unlock_page(page);
 425				break;
 426			}
 
 427			/* record old blkaddr for revoking */
 428			cur->old_addr = fio.old_blkaddr;
 
 
 429			submit_bio = true;
 430		}
 431		unlock_page(page);
 432		list_move_tail(&cur->list, &revoke_list);
 433	}
 434
 435	if (submit_bio)
 436		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
 437
 438	if (err) {
 439		/*
 440		 * try to revoke all committed pages, but still we could fail
 441		 * due to no memory or other reason, if that happened, EAGAIN
 442		 * will be returned, which means in such case, transaction is
 443		 * already not integrity, caller should use journal to do the
 444		 * recovery or rewrite & commit last transaction. For other
 445		 * error number, revoking was done by filesystem itself.
 446		 */
 447		err = __revoke_inmem_pages(inode, &revoke_list,
 448						false, true, false);
 449
 450		/* drop all uncommitted pages */
 451		__revoke_inmem_pages(inode, &fi->inmem_pages,
 452						true, false, false);
 453	} else {
 454		__revoke_inmem_pages(inode, &revoke_list,
 455						false, false, false);
 456	}
 457
 458	return err;
 459}
 460
 461int f2fs_commit_inmem_pages(struct inode *inode)
 462{
 463	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 464	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 465	int err;
 466
 
 467	f2fs_balance_fs(sbi, true);
 468
 469	down_write(&fi->i_gc_rwsem[WRITE]);
 470
 471	f2fs_lock_op(sbi);
 472	set_inode_flag(inode, FI_ATOMIC_COMMIT);
 473
 474	mutex_lock(&fi->inmem_lock);
 475	err = __f2fs_commit_inmem_pages(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476	mutex_unlock(&fi->inmem_lock);
 477
 478	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
 479
 480	f2fs_unlock_op(sbi);
 481	up_write(&fi->i_gc_rwsem[WRITE]);
 482
 483	return err;
 484}
 485
 486/*
 487 * This function balances dirty node and dentry pages.
 488 * In addition, it controls garbage collection.
 489 */
 490void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 491{
 492	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 493		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 494		f2fs_stop_checkpoint(sbi, false);
 495	}
 496
 497	/* balance_fs_bg is able to be pending */
 498	if (need && excess_cached_nats(sbi))
 499		f2fs_balance_fs_bg(sbi, false);
 500
 501	if (!f2fs_is_checkpoint_ready(sbi))
 502		return;
 503
 504	/*
 505	 * We should do GC or end up with checkpoint, if there are so many dirty
 506	 * dir/node pages without enough free segments.
 507	 */
 508	if (has_not_enough_free_secs(sbi, 0, 0)) {
 509		down_write(&sbi->gc_lock);
 510		f2fs_gc(sbi, false, false, NULL_SEGNO);
 511	}
 512}
 513
 514void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 515{
 516	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 517		return;
 518
 519	/* try to shrink extent cache when there is no enough memory */
 520	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
 521		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 522
 523	/* check the # of cached NAT entries */
 524	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 525		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 526
 527	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 528		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 529	else
 530		f2fs_build_free_nids(sbi, false, false);
 531
 532	if (!is_idle(sbi, REQ_TIME) &&
 533		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
 534		return;
 535
 536	/* checkpoint is the only way to shrink partial cached entries */
 537	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
 538			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
 539			excess_prefree_segs(sbi) ||
 540			excess_dirty_nats(sbi) ||
 541			excess_dirty_nodes(sbi) ||
 542			f2fs_time_over(sbi, CP_TIME)) {
 543		if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 544			struct blk_plug plug;
 545
 546			mutex_lock(&sbi->flush_lock);
 547
 548			blk_start_plug(&plug);
 549			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
 550			blk_finish_plug(&plug);
 551
 552			mutex_unlock(&sbi->flush_lock);
 553		}
 554		f2fs_sync_fs(sbi->sb, true);
 555		stat_inc_bg_cp_count(sbi->stat_info);
 556	}
 557}
 558
 559static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 560				struct block_device *bdev)
 561{
 562	struct bio *bio;
 563	int ret;
 564
 565	bio = f2fs_bio_alloc(sbi, 0, false);
 566	if (!bio)
 567		return -ENOMEM;
 568
 569	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
 570	bio_set_dev(bio, bdev);
 571	ret = submit_bio_wait(bio);
 572	bio_put(bio);
 573
 574	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 575				test_opt(sbi, FLUSH_MERGE), ret);
 576	return ret;
 577}
 578
 579static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 580{
 581	int ret = 0;
 582	int i;
 583
 584	if (!f2fs_is_multi_device(sbi))
 585		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 586
 587	for (i = 0; i < sbi->s_ndevs; i++) {
 588		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 589			continue;
 590		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 591		if (ret)
 592			break;
 593	}
 594	return ret;
 595}
 596
 597static int issue_flush_thread(void *data)
 598{
 599	struct f2fs_sb_info *sbi = data;
 600	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 601	wait_queue_head_t *q = &fcc->flush_wait_queue;
 602repeat:
 603	if (kthread_should_stop())
 604		return 0;
 605
 606	sb_start_intwrite(sbi->sb);
 607
 608	if (!llist_empty(&fcc->issue_list)) {
 
 609		struct flush_cmd *cmd, *next;
 610		int ret;
 611
 
 
 612		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 613		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 614
 615		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 616
 617		ret = submit_flush_wait(sbi, cmd->ino);
 618		atomic_inc(&fcc->issued_flush);
 619
 620		llist_for_each_entry_safe(cmd, next,
 621					  fcc->dispatch_list, llnode) {
 622			cmd->ret = ret;
 623			complete(&cmd->wait);
 624		}
 
 625		fcc->dispatch_list = NULL;
 626	}
 627
 628	sb_end_intwrite(sbi->sb);
 629
 630	wait_event_interruptible(*q,
 631		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 632	goto repeat;
 633}
 634
 635int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 636{
 637	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 638	struct flush_cmd cmd;
 639	int ret;
 
 
 640
 641	if (test_opt(sbi, NOBARRIER))
 642		return 0;
 643
 644	if (!test_opt(sbi, FLUSH_MERGE)) {
 645		atomic_inc(&fcc->queued_flush);
 646		ret = submit_flush_wait(sbi, ino);
 647		atomic_dec(&fcc->queued_flush);
 648		atomic_inc(&fcc->issued_flush);
 649		return ret;
 650	}
 651
 652	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 653	    f2fs_is_multi_device(sbi)) {
 654		ret = submit_flush_wait(sbi, ino);
 655		atomic_dec(&fcc->queued_flush);
 656
 657		atomic_inc(&fcc->issued_flush);
 658		return ret;
 659	}
 660
 661	cmd.ino = ino;
 662	init_completion(&cmd.wait);
 663
 664	llist_add(&cmd.llnode, &fcc->issue_list);
 665
 666	/* update issue_list before we wake up issue_flush thread */
 667	smp_mb();
 668
 669	if (waitqueue_active(&fcc->flush_wait_queue))
 670		wake_up(&fcc->flush_wait_queue);
 671
 672	if (fcc->f2fs_issue_flush) {
 673		wait_for_completion(&cmd.wait);
 674		atomic_dec(&fcc->queued_flush);
 675	} else {
 676		struct llist_node *list;
 677
 678		list = llist_del_all(&fcc->issue_list);
 679		if (!list) {
 680			wait_for_completion(&cmd.wait);
 681			atomic_dec(&fcc->queued_flush);
 682		} else {
 683			struct flush_cmd *tmp, *next;
 684
 685			ret = submit_flush_wait(sbi, ino);
 686
 687			llist_for_each_entry_safe(tmp, next, list, llnode) {
 688				if (tmp == &cmd) {
 689					cmd.ret = ret;
 690					atomic_dec(&fcc->queued_flush);
 691					continue;
 692				}
 693				tmp->ret = ret;
 694				complete(&tmp->wait);
 695			}
 696		}
 697	}
 698
 699	return cmd.ret;
 700}
 701
 702int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 703{
 704	dev_t dev = sbi->sb->s_bdev->bd_dev;
 705	struct flush_cmd_control *fcc;
 706	int err = 0;
 707
 708	if (SM_I(sbi)->fcc_info) {
 709		fcc = SM_I(sbi)->fcc_info;
 710		if (fcc->f2fs_issue_flush)
 711			return err;
 712		goto init_thread;
 713	}
 714
 715	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 716	if (!fcc)
 717		return -ENOMEM;
 718	atomic_set(&fcc->issued_flush, 0);
 719	atomic_set(&fcc->queued_flush, 0);
 720	init_waitqueue_head(&fcc->flush_wait_queue);
 721	init_llist_head(&fcc->issue_list);
 722	SM_I(sbi)->fcc_info = fcc;
 723	if (!test_opt(sbi, FLUSH_MERGE))
 724		return err;
 725
 726init_thread:
 727	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 728				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 729	if (IS_ERR(fcc->f2fs_issue_flush)) {
 730		err = PTR_ERR(fcc->f2fs_issue_flush);
 731		kvfree(fcc);
 732		SM_I(sbi)->fcc_info = NULL;
 733		return err;
 734	}
 735
 736	return err;
 737}
 738
 739void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 740{
 741	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 742
 743	if (fcc && fcc->f2fs_issue_flush) {
 744		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 745
 746		fcc->f2fs_issue_flush = NULL;
 747		kthread_stop(flush_thread);
 748	}
 749	if (free) {
 750		kvfree(fcc);
 751		SM_I(sbi)->fcc_info = NULL;
 752	}
 753}
 754
 755int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 756{
 757	int ret = 0, i;
 758
 759	if (!f2fs_is_multi_device(sbi))
 760		return 0;
 761
 762	for (i = 1; i < sbi->s_ndevs; i++) {
 763		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 764			continue;
 765		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 766		if (ret)
 767			break;
 768
 769		spin_lock(&sbi->dev_lock);
 770		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 771		spin_unlock(&sbi->dev_lock);
 772	}
 773
 774	return ret;
 
 
 
 775}
 776
 777static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 778		enum dirty_type dirty_type)
 779{
 780	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 781
 782	/* need not be added */
 783	if (IS_CURSEG(sbi, segno))
 784		return;
 785
 786	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 787		dirty_i->nr_dirty[dirty_type]++;
 788
 789	if (dirty_type == DIRTY) {
 790		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 791		enum dirty_type t = sentry->type;
 792
 793		if (unlikely(t >= DIRTY)) {
 794			f2fs_bug_on(sbi, 1);
 795			return;
 796		}
 797		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 798			dirty_i->nr_dirty[t]++;
 799
 800		if (__is_large_section(sbi)) {
 801			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 802			block_t valid_blocks =
 803				get_valid_blocks(sbi, segno, true);
 804
 805			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 806					valid_blocks == BLKS_PER_SEC(sbi)));
 807
 808			if (!IS_CURSEC(sbi, secno))
 809				set_bit(secno, dirty_i->dirty_secmap);
 810		}
 811	}
 812}
 813
 814static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 815		enum dirty_type dirty_type)
 816{
 817	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 818	block_t valid_blocks;
 819
 820	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 821		dirty_i->nr_dirty[dirty_type]--;
 822
 823	if (dirty_type == DIRTY) {
 824		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 825		enum dirty_type t = sentry->type;
 826
 827		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 828			dirty_i->nr_dirty[t]--;
 829
 830		valid_blocks = get_valid_blocks(sbi, segno, true);
 831		if (valid_blocks == 0) {
 832			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 833						dirty_i->victim_secmap);
 834#ifdef CONFIG_F2FS_CHECK_FS
 835			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 836#endif
 837		}
 838		if (__is_large_section(sbi)) {
 839			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 840
 841			if (!valid_blocks ||
 842					valid_blocks == BLKS_PER_SEC(sbi)) {
 843				clear_bit(secno, dirty_i->dirty_secmap);
 844				return;
 845			}
 846
 847			if (!IS_CURSEC(sbi, secno))
 848				set_bit(secno, dirty_i->dirty_secmap);
 849		}
 850	}
 851}
 852
 853/*
 854 * Should not occur error such as -ENOMEM.
 855 * Adding dirty entry into seglist is not critical operation.
 856 * If a given segment is one of current working segments, it won't be added.
 857 */
 858static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 859{
 860	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 861	unsigned short valid_blocks, ckpt_valid_blocks;
 862
 863	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 864		return;
 865
 866	mutex_lock(&dirty_i->seglist_lock);
 867
 868	valid_blocks = get_valid_blocks(sbi, segno, false);
 869	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
 870
 871	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 872				ckpt_valid_blocks == sbi->blocks_per_seg)) {
 873		__locate_dirty_segment(sbi, segno, PRE);
 874		__remove_dirty_segment(sbi, segno, DIRTY);
 875	} else if (valid_blocks < sbi->blocks_per_seg) {
 876		__locate_dirty_segment(sbi, segno, DIRTY);
 877	} else {
 878		/* Recovery routine with SSR needs this */
 879		__remove_dirty_segment(sbi, segno, DIRTY);
 880	}
 881
 882	mutex_unlock(&dirty_i->seglist_lock);
 883}
 884
 885/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 886void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 887{
 888	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 889	unsigned int segno;
 890
 891	mutex_lock(&dirty_i->seglist_lock);
 892	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 893		if (get_valid_blocks(sbi, segno, false))
 894			continue;
 895		if (IS_CURSEG(sbi, segno))
 896			continue;
 897		__locate_dirty_segment(sbi, segno, PRE);
 898		__remove_dirty_segment(sbi, segno, DIRTY);
 899	}
 900	mutex_unlock(&dirty_i->seglist_lock);
 901}
 902
 903block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 904{
 905	int ovp_hole_segs =
 906		(overprovision_segments(sbi) - reserved_segments(sbi));
 907	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 908	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 909	block_t holes[2] = {0, 0};	/* DATA and NODE */
 910	block_t unusable;
 911	struct seg_entry *se;
 912	unsigned int segno;
 
 913
 914	mutex_lock(&dirty_i->seglist_lock);
 915	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 916		se = get_seg_entry(sbi, segno);
 917		if (IS_NODESEG(se->type))
 918			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
 919		else
 920			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
 921	}
 922	mutex_unlock(&dirty_i->seglist_lock);
 923
 924	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
 925	if (unusable > ovp_holes)
 926		return unusable - ovp_holes;
 927	return 0;
 928}
 929
 930int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 931{
 932	int ovp_hole_segs =
 933		(overprovision_segments(sbi) - reserved_segments(sbi));
 934	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 935		return -EAGAIN;
 936	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 937		dirty_segments(sbi) > ovp_hole_segs)
 938		return -EAGAIN;
 939	return 0;
 940}
 941
 942/* This is only used by SBI_CP_DISABLED */
 943static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 944{
 945	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 946	unsigned int segno = 0;
 947
 948	mutex_lock(&dirty_i->seglist_lock);
 949	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 950		if (get_valid_blocks(sbi, segno, false))
 951			continue;
 952		if (get_ckpt_valid_blocks(sbi, segno))
 953			continue;
 954		mutex_unlock(&dirty_i->seglist_lock);
 955		return segno;
 956	}
 957	mutex_unlock(&dirty_i->seglist_lock);
 958	return NULL_SEGNO;
 959}
 960
 961static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 962		struct block_device *bdev, block_t lstart,
 963		block_t start, block_t len)
 964{
 965	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 966	struct list_head *pend_list;
 967	struct discard_cmd *dc;
 968
 969	f2fs_bug_on(sbi, !len);
 
 
 
 970
 971	pend_list = &dcc->pend_list[plist_idx(len)];
 972
 973	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
 974	INIT_LIST_HEAD(&dc->list);
 975	dc->bdev = bdev;
 976	dc->lstart = lstart;
 977	dc->start = start;
 978	dc->len = len;
 979	dc->ref = 0;
 980	dc->state = D_PREP;
 981	dc->queued = 0;
 982	dc->error = 0;
 983	init_completion(&dc->wait);
 984	list_add_tail(&dc->list, pend_list);
 985	spin_lock_init(&dc->lock);
 986	dc->bio_ref = 0;
 987	atomic_inc(&dcc->discard_cmd_cnt);
 988	dcc->undiscard_blks += len;
 989
 990	return dc;
 991}
 992
 993static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 994				struct block_device *bdev, block_t lstart,
 995				block_t start, block_t len,
 996				struct rb_node *parent, struct rb_node **p,
 997				bool leftmost)
 998{
 999	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1000	struct discard_cmd *dc;
1001
1002	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1003
1004	rb_link_node(&dc->rb_node, parent, p);
1005	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1006
1007	return dc;
1008}
1009
1010static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1011							struct discard_cmd *dc)
1012{
1013	if (dc->state == D_DONE)
1014		atomic_sub(dc->queued, &dcc->queued_discard);
1015
1016	list_del(&dc->list);
1017	rb_erase_cached(&dc->rb_node, &dcc->root);
1018	dcc->undiscard_blks -= dc->len;
1019
1020	kmem_cache_free(discard_cmd_slab, dc);
1021
1022	atomic_dec(&dcc->discard_cmd_cnt);
1023}
1024
1025static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1026							struct discard_cmd *dc)
1027{
1028	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1029	unsigned long flags;
1030
1031	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1032
1033	spin_lock_irqsave(&dc->lock, flags);
1034	if (dc->bio_ref) {
1035		spin_unlock_irqrestore(&dc->lock, flags);
1036		return;
1037	}
1038	spin_unlock_irqrestore(&dc->lock, flags);
1039
1040	f2fs_bug_on(sbi, dc->ref);
1041
1042	if (dc->error == -EOPNOTSUPP)
1043		dc->error = 0;
1044
1045	if (dc->error)
1046		printk_ratelimited(
1047			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1048			KERN_INFO, sbi->sb->s_id,
1049			dc->lstart, dc->start, dc->len, dc->error);
1050	__detach_discard_cmd(dcc, dc);
1051}
1052
1053static void f2fs_submit_discard_endio(struct bio *bio)
1054{
1055	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1056	unsigned long flags;
1057
1058	spin_lock_irqsave(&dc->lock, flags);
1059	if (!dc->error)
1060		dc->error = blk_status_to_errno(bio->bi_status);
1061	dc->bio_ref--;
1062	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1063		dc->state = D_DONE;
1064		complete_all(&dc->wait);
1065	}
1066	spin_unlock_irqrestore(&dc->lock, flags);
1067	bio_put(bio);
1068}
1069
1070static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1071				block_t start, block_t end)
 
1072{
1073#ifdef CONFIG_F2FS_CHECK_FS
1074	struct seg_entry *sentry;
1075	unsigned int segno;
1076	block_t blk = start;
1077	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1078	unsigned long *map;
1079
1080	while (blk < end) {
1081		segno = GET_SEGNO(sbi, blk);
1082		sentry = get_seg_entry(sbi, segno);
1083		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1084
1085		if (end < START_BLOCK(sbi, segno + 1))
1086			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1087		else
1088			size = max_blocks;
1089		map = (unsigned long *)(sentry->cur_valid_map);
1090		offset = __find_rev_next_bit(map, size, offset);
1091		f2fs_bug_on(sbi, offset != size);
1092		blk = START_BLOCK(sbi, segno + 1);
1093	}
1094#endif
1095}
1096
1097static void __init_discard_policy(struct f2fs_sb_info *sbi,
1098				struct discard_policy *dpolicy,
1099				int discard_type, unsigned int granularity)
1100{
1101	/* common policy */
1102	dpolicy->type = discard_type;
1103	dpolicy->sync = true;
1104	dpolicy->ordered = false;
1105	dpolicy->granularity = granularity;
1106
1107	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1108	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1109	dpolicy->timeout = false;
1110
1111	if (discard_type == DPOLICY_BG) {
1112		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1113		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1114		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1115		dpolicy->io_aware = true;
1116		dpolicy->sync = false;
1117		dpolicy->ordered = true;
1118		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1119			dpolicy->granularity = 1;
1120			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1121		}
1122	} else if (discard_type == DPOLICY_FORCE) {
1123		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1124		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1125		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1126		dpolicy->io_aware = false;
1127	} else if (discard_type == DPOLICY_FSTRIM) {
1128		dpolicy->io_aware = false;
1129	} else if (discard_type == DPOLICY_UMOUNT) {
1130		dpolicy->io_aware = false;
1131		/* we need to issue all to keep CP_TRIMMED_FLAG */
1132		dpolicy->granularity = 1;
1133		dpolicy->timeout = true;
1134	}
1135}
1136
1137static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1138				struct block_device *bdev, block_t lstart,
1139				block_t start, block_t len);
1140/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1141static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1142						struct discard_policy *dpolicy,
1143						struct discard_cmd *dc,
1144						unsigned int *issued)
1145{
1146	struct block_device *bdev = dc->bdev;
1147	struct request_queue *q = bdev_get_queue(bdev);
1148	unsigned int max_discard_blocks =
1149			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1150	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1152					&(dcc->fstrim_list) : &(dcc->wait_list);
1153	int flag = dpolicy->sync ? REQ_SYNC : 0;
1154	block_t lstart, start, len, total_len;
1155	int err = 0;
1156
1157	if (dc->state != D_PREP)
1158		return 0;
1159
1160	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1161		return 0;
1162
1163	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1164
1165	lstart = dc->lstart;
1166	start = dc->start;
1167	len = dc->len;
1168	total_len = len;
1169
1170	dc->len = 0;
1171
1172	while (total_len && *issued < dpolicy->max_requests && !err) {
1173		struct bio *bio = NULL;
1174		unsigned long flags;
1175		bool last = true;
1176
1177		if (len > max_discard_blocks) {
1178			len = max_discard_blocks;
1179			last = false;
1180		}
1181
1182		(*issued)++;
1183		if (*issued == dpolicy->max_requests)
1184			last = true;
1185
1186		dc->len += len;
1187
1188		if (time_to_inject(sbi, FAULT_DISCARD)) {
1189			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1190			err = -EIO;
1191			goto submit;
1192		}
1193		err = __blkdev_issue_discard(bdev,
1194					SECTOR_FROM_BLOCK(start),
1195					SECTOR_FROM_BLOCK(len),
1196					GFP_NOFS, 0, &bio);
1197submit:
1198		if (err) {
1199			spin_lock_irqsave(&dc->lock, flags);
1200			if (dc->state == D_PARTIAL)
1201				dc->state = D_SUBMIT;
1202			spin_unlock_irqrestore(&dc->lock, flags);
1203
1204			break;
1205		}
1206
1207		f2fs_bug_on(sbi, !bio);
1208
1209		/*
1210		 * should keep before submission to avoid D_DONE
1211		 * right away
1212		 */
1213		spin_lock_irqsave(&dc->lock, flags);
1214		if (last)
1215			dc->state = D_SUBMIT;
1216		else
1217			dc->state = D_PARTIAL;
1218		dc->bio_ref++;
1219		spin_unlock_irqrestore(&dc->lock, flags);
1220
1221		atomic_inc(&dcc->queued_discard);
1222		dc->queued++;
1223		list_move_tail(&dc->list, wait_list);
1224
1225		/* sanity check on discard range */
1226		__check_sit_bitmap(sbi, lstart, lstart + len);
1227
1228		bio->bi_private = dc;
1229		bio->bi_end_io = f2fs_submit_discard_endio;
1230		bio->bi_opf |= flag;
1231		submit_bio(bio);
1232
1233		atomic_inc(&dcc->issued_discard);
1234
1235		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1236
1237		lstart += len;
1238		start += len;
1239		total_len -= len;
1240		len = total_len;
1241	}
1242
1243	if (!err && len) {
1244		dcc->undiscard_blks -= len;
1245		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1246	}
1247	return err;
1248}
1249
1250static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1251				struct block_device *bdev, block_t lstart,
1252				block_t start, block_t len,
1253				struct rb_node **insert_p,
1254				struct rb_node *insert_parent)
1255{
1256	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1257	struct rb_node **p;
1258	struct rb_node *parent = NULL;
1259	bool leftmost = true;
1260
1261	if (insert_p && insert_parent) {
1262		parent = insert_parent;
1263		p = insert_p;
1264		goto do_insert;
1265	}
1266
1267	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1268							lstart, &leftmost);
1269do_insert:
1270	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1271								p, leftmost);
1272}
1273
1274static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1275						struct discard_cmd *dc)
1276{
1277	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1278}
1279
1280static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1281				struct discard_cmd *dc, block_t blkaddr)
1282{
1283	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1284	struct discard_info di = dc->di;
1285	bool modified = false;
1286
1287	if (dc->state == D_DONE || dc->len == 1) {
1288		__remove_discard_cmd(sbi, dc);
1289		return;
1290	}
1291
1292	dcc->undiscard_blks -= di.len;
1293
1294	if (blkaddr > di.lstart) {
1295		dc->len = blkaddr - dc->lstart;
1296		dcc->undiscard_blks += dc->len;
1297		__relocate_discard_cmd(dcc, dc);
1298		modified = true;
1299	}
1300
1301	if (blkaddr < di.lstart + di.len - 1) {
1302		if (modified) {
1303			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1304					di.start + blkaddr + 1 - di.lstart,
1305					di.lstart + di.len - 1 - blkaddr,
1306					NULL, NULL);
1307		} else {
1308			dc->lstart++;
1309			dc->len--;
1310			dc->start++;
1311			dcc->undiscard_blks += dc->len;
1312			__relocate_discard_cmd(dcc, dc);
1313		}
1314	}
1315}
1316
1317static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1318				struct block_device *bdev, block_t lstart,
1319				block_t start, block_t len)
1320{
1321	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1322	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1323	struct discard_cmd *dc;
1324	struct discard_info di = {0};
1325	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1326	struct request_queue *q = bdev_get_queue(bdev);
1327	unsigned int max_discard_blocks =
1328			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1329	block_t end = lstart + len;
1330
1331	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1332					NULL, lstart,
1333					(struct rb_entry **)&prev_dc,
1334					(struct rb_entry **)&next_dc,
1335					&insert_p, &insert_parent, true, NULL);
1336	if (dc)
1337		prev_dc = dc;
1338
1339	if (!prev_dc) {
1340		di.lstart = lstart;
1341		di.len = next_dc ? next_dc->lstart - lstart : len;
1342		di.len = min(di.len, len);
1343		di.start = start;
1344	}
1345
1346	while (1) {
1347		struct rb_node *node;
1348		bool merged = false;
1349		struct discard_cmd *tdc = NULL;
1350
1351		if (prev_dc) {
1352			di.lstart = prev_dc->lstart + prev_dc->len;
1353			if (di.lstart < lstart)
1354				di.lstart = lstart;
1355			if (di.lstart >= end)
1356				break;
1357
1358			if (!next_dc || next_dc->lstart > end)
1359				di.len = end - di.lstart;
1360			else
1361				di.len = next_dc->lstart - di.lstart;
1362			di.start = start + di.lstart - lstart;
1363		}
1364
1365		if (!di.len)
1366			goto next;
1367
1368		if (prev_dc && prev_dc->state == D_PREP &&
1369			prev_dc->bdev == bdev &&
1370			__is_discard_back_mergeable(&di, &prev_dc->di,
1371							max_discard_blocks)) {
1372			prev_dc->di.len += di.len;
1373			dcc->undiscard_blks += di.len;
1374			__relocate_discard_cmd(dcc, prev_dc);
1375			di = prev_dc->di;
1376			tdc = prev_dc;
1377			merged = true;
1378		}
1379
1380		if (next_dc && next_dc->state == D_PREP &&
1381			next_dc->bdev == bdev &&
1382			__is_discard_front_mergeable(&di, &next_dc->di,
1383							max_discard_blocks)) {
1384			next_dc->di.lstart = di.lstart;
1385			next_dc->di.len += di.len;
1386			next_dc->di.start = di.start;
1387			dcc->undiscard_blks += di.len;
1388			__relocate_discard_cmd(dcc, next_dc);
1389			if (tdc)
1390				__remove_discard_cmd(sbi, tdc);
1391			merged = true;
1392		}
1393
1394		if (!merged) {
1395			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1396							di.len, NULL, NULL);
1397		}
1398 next:
1399		prev_dc = next_dc;
1400		if (!prev_dc)
1401			break;
1402
1403		node = rb_next(&prev_dc->rb_node);
1404		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1405	}
1406}
1407
1408static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1409		struct block_device *bdev, block_t blkstart, block_t blklen)
1410{
1411	block_t lblkstart = blkstart;
1412
1413	if (!f2fs_bdev_support_discard(bdev))
1414		return 0;
1415
1416	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1417
1418	if (f2fs_is_multi_device(sbi)) {
1419		int devi = f2fs_target_device_index(sbi, blkstart);
1420
1421		blkstart -= FDEV(devi).start_blk;
1422	}
1423	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1424	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1425	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1426	return 0;
1427}
1428
1429static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1430					struct discard_policy *dpolicy)
1431{
1432	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1433	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1434	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1435	struct discard_cmd *dc;
1436	struct blk_plug plug;
1437	unsigned int pos = dcc->next_pos;
1438	unsigned int issued = 0;
1439	bool io_interrupted = false;
1440
1441	mutex_lock(&dcc->cmd_lock);
1442	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1443					NULL, pos,
1444					(struct rb_entry **)&prev_dc,
1445					(struct rb_entry **)&next_dc,
1446					&insert_p, &insert_parent, true, NULL);
1447	if (!dc)
1448		dc = next_dc;
1449
1450	blk_start_plug(&plug);
1451
1452	while (dc) {
1453		struct rb_node *node;
1454		int err = 0;
1455
1456		if (dc->state != D_PREP)
1457			goto next;
1458
1459		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1460			io_interrupted = true;
1461			break;
1462		}
1463
1464		dcc->next_pos = dc->lstart + dc->len;
1465		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1466
1467		if (issued >= dpolicy->max_requests)
1468			break;
1469next:
1470		node = rb_next(&dc->rb_node);
1471		if (err)
1472			__remove_discard_cmd(sbi, dc);
1473		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1474	}
1475
1476	blk_finish_plug(&plug);
1477
1478	if (!dc)
1479		dcc->next_pos = 0;
1480
1481	mutex_unlock(&dcc->cmd_lock);
1482
1483	if (!issued && io_interrupted)
1484		issued = -1;
1485
1486	return issued;
1487}
1488static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1489					struct discard_policy *dpolicy);
1490
1491static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1492					struct discard_policy *dpolicy)
1493{
1494	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1495	struct list_head *pend_list;
1496	struct discard_cmd *dc, *tmp;
1497	struct blk_plug plug;
1498	int i, issued;
1499	bool io_interrupted = false;
1500
1501	if (dpolicy->timeout)
1502		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1503
1504retry:
1505	issued = 0;
1506	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1507		if (dpolicy->timeout &&
1508				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1509			break;
1510
1511		if (i + 1 < dpolicy->granularity)
1512			break;
1513
1514		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1515			return __issue_discard_cmd_orderly(sbi, dpolicy);
1516
1517		pend_list = &dcc->pend_list[i];
1518
1519		mutex_lock(&dcc->cmd_lock);
1520		if (list_empty(pend_list))
1521			goto next;
1522		if (unlikely(dcc->rbtree_check))
1523			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1524								&dcc->root));
1525		blk_start_plug(&plug);
1526		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527			f2fs_bug_on(sbi, dc->state != D_PREP);
1528
1529			if (dpolicy->timeout &&
1530				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1531				break;
1532
1533			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1534						!is_idle(sbi, DISCARD_TIME)) {
1535				io_interrupted = true;
1536				break;
1537			}
1538
1539			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1540
1541			if (issued >= dpolicy->max_requests)
1542				break;
1543		}
1544		blk_finish_plug(&plug);
1545next:
1546		mutex_unlock(&dcc->cmd_lock);
1547
1548		if (issued >= dpolicy->max_requests || io_interrupted)
1549			break;
1550	}
1551
1552	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1553		__wait_all_discard_cmd(sbi, dpolicy);
1554		goto retry;
1555	}
1556
1557	if (!issued && io_interrupted)
1558		issued = -1;
1559
1560	return issued;
1561}
1562
1563static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1564{
1565	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1566	struct list_head *pend_list;
1567	struct discard_cmd *dc, *tmp;
1568	int i;
1569	bool dropped = false;
1570
1571	mutex_lock(&dcc->cmd_lock);
1572	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1573		pend_list = &dcc->pend_list[i];
1574		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1575			f2fs_bug_on(sbi, dc->state != D_PREP);
1576			__remove_discard_cmd(sbi, dc);
1577			dropped = true;
1578		}
1579	}
1580	mutex_unlock(&dcc->cmd_lock);
1581
1582	return dropped;
1583}
1584
1585void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1586{
1587	__drop_discard_cmd(sbi);
1588}
1589
1590static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1591							struct discard_cmd *dc)
1592{
1593	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1594	unsigned int len = 0;
1595
1596	wait_for_completion_io(&dc->wait);
1597	mutex_lock(&dcc->cmd_lock);
1598	f2fs_bug_on(sbi, dc->state != D_DONE);
1599	dc->ref--;
1600	if (!dc->ref) {
1601		if (!dc->error)
1602			len = dc->len;
1603		__remove_discard_cmd(sbi, dc);
1604	}
1605	mutex_unlock(&dcc->cmd_lock);
1606
1607	return len;
1608}
1609
1610static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1611						struct discard_policy *dpolicy,
1612						block_t start, block_t end)
1613{
1614	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1615	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1616					&(dcc->fstrim_list) : &(dcc->wait_list);
1617	struct discard_cmd *dc, *tmp;
1618	bool need_wait;
1619	unsigned int trimmed = 0;
1620
1621next:
1622	need_wait = false;
1623
1624	mutex_lock(&dcc->cmd_lock);
1625	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1626		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1627			continue;
1628		if (dc->len < dpolicy->granularity)
1629			continue;
1630		if (dc->state == D_DONE && !dc->ref) {
1631			wait_for_completion_io(&dc->wait);
1632			if (!dc->error)
1633				trimmed += dc->len;
1634			__remove_discard_cmd(sbi, dc);
1635		} else {
1636			dc->ref++;
1637			need_wait = true;
1638			break;
1639		}
1640	}
1641	mutex_unlock(&dcc->cmd_lock);
1642
1643	if (need_wait) {
1644		trimmed += __wait_one_discard_bio(sbi, dc);
1645		goto next;
1646	}
1647
1648	return trimmed;
1649}
1650
1651static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1652						struct discard_policy *dpolicy)
1653{
1654	struct discard_policy dp;
1655	unsigned int discard_blks;
1656
1657	if (dpolicy)
1658		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1659
1660	/* wait all */
1661	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1662	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1663	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1664	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1665
1666	return discard_blks;
1667}
1668
1669/* This should be covered by global mutex, &sit_i->sentry_lock */
1670static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1671{
1672	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1673	struct discard_cmd *dc;
1674	bool need_wait = false;
1675
1676	mutex_lock(&dcc->cmd_lock);
1677	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1678							NULL, blkaddr);
1679	if (dc) {
1680		if (dc->state == D_PREP) {
1681			__punch_discard_cmd(sbi, dc, blkaddr);
1682		} else {
1683			dc->ref++;
1684			need_wait = true;
1685		}
1686	}
1687	mutex_unlock(&dcc->cmd_lock);
1688
1689	if (need_wait)
1690		__wait_one_discard_bio(sbi, dc);
1691}
1692
1693void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1694{
1695	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696
1697	if (dcc && dcc->f2fs_issue_discard) {
1698		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1699
1700		dcc->f2fs_issue_discard = NULL;
1701		kthread_stop(discard_thread);
1702	}
1703}
1704
1705/* This comes from f2fs_put_super */
1706bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1707{
1708	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1709	struct discard_policy dpolicy;
1710	bool dropped;
1711
1712	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1713					dcc->discard_granularity);
1714	__issue_discard_cmd(sbi, &dpolicy);
1715	dropped = __drop_discard_cmd(sbi);
1716
1717	/* just to make sure there is no pending discard commands */
1718	__wait_all_discard_cmd(sbi, NULL);
1719
1720	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1721	return dropped;
1722}
1723
1724static int issue_discard_thread(void *data)
1725{
1726	struct f2fs_sb_info *sbi = data;
1727	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1728	wait_queue_head_t *q = &dcc->discard_wait_queue;
1729	struct discard_policy dpolicy;
1730	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1731	int issued;
1732
1733	set_freezable();
1734
1735	do {
1736		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1737					dcc->discard_granularity);
1738
1739		wait_event_interruptible_timeout(*q,
1740				kthread_should_stop() || freezing(current) ||
1741				dcc->discard_wake,
1742				msecs_to_jiffies(wait_ms));
1743
1744		if (dcc->discard_wake)
1745			dcc->discard_wake = 0;
1746
1747		/* clean up pending candidates before going to sleep */
1748		if (atomic_read(&dcc->queued_discard))
1749			__wait_all_discard_cmd(sbi, NULL);
1750
1751		if (try_to_freeze())
1752			continue;
1753		if (f2fs_readonly(sbi->sb))
1754			continue;
1755		if (kthread_should_stop())
1756			return 0;
1757		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1758			wait_ms = dpolicy.max_interval;
1759			continue;
1760		}
1761
1762		if (sbi->gc_mode == GC_URGENT_HIGH)
1763			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1764
1765		sb_start_intwrite(sbi->sb);
1766
1767		issued = __issue_discard_cmd(sbi, &dpolicy);
1768		if (issued > 0) {
1769			__wait_all_discard_cmd(sbi, &dpolicy);
1770			wait_ms = dpolicy.min_interval;
1771		} else if (issued == -1){
1772			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1773			if (!wait_ms)
1774				wait_ms = dpolicy.mid_interval;
1775		} else {
1776			wait_ms = dpolicy.max_interval;
1777		}
1778
1779		sb_end_intwrite(sbi->sb);
1780
1781	} while (!kthread_should_stop());
1782	return 0;
1783}
1784
1785#ifdef CONFIG_BLK_DEV_ZONED
1786static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1787		struct block_device *bdev, block_t blkstart, block_t blklen)
1788{
1789	sector_t sector, nr_sects;
1790	block_t lblkstart = blkstart;
1791	int devi = 0;
1792
1793	if (f2fs_is_multi_device(sbi)) {
1794		devi = f2fs_target_device_index(sbi, blkstart);
1795		if (blkstart < FDEV(devi).start_blk ||
1796		    blkstart > FDEV(devi).end_blk) {
1797			f2fs_err(sbi, "Invalid block %x", blkstart);
1798			return -EIO;
1799		}
1800		blkstart -= FDEV(devi).start_blk;
1801	}
1802
1803	/* For sequential zones, reset the zone write pointer */
1804	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1805		sector = SECTOR_FROM_BLOCK(blkstart);
1806		nr_sects = SECTOR_FROM_BLOCK(blklen);
1807
1808		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1809				nr_sects != bdev_zone_sectors(bdev)) {
1810			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1811				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1812				 blkstart, blklen);
1813			return -EIO;
1814		}
1815		trace_f2fs_issue_reset_zone(bdev, blkstart);
1816		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1817					sector, nr_sects, GFP_NOFS);
1818	}
1819
1820	/* For conventional zones, use regular discard if supported */
1821	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1822}
1823#endif
1824
1825static int __issue_discard_async(struct f2fs_sb_info *sbi,
1826		struct block_device *bdev, block_t blkstart, block_t blklen)
1827{
1828#ifdef CONFIG_BLK_DEV_ZONED
1829	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1830		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1831#endif
1832	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1833}
1834
1835static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1836				block_t blkstart, block_t blklen)
1837{
1838	sector_t start = blkstart, len = 0;
1839	struct block_device *bdev;
1840	struct seg_entry *se;
1841	unsigned int offset;
1842	block_t i;
1843	int err = 0;
1844
1845	bdev = f2fs_target_device(sbi, blkstart, NULL);
1846
1847	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1848		if (i != start) {
1849			struct block_device *bdev2 =
1850				f2fs_target_device(sbi, i, NULL);
1851
1852			if (bdev2 != bdev) {
1853				err = __issue_discard_async(sbi, bdev,
1854						start, len);
1855				if (err)
1856					return err;
1857				bdev = bdev2;
1858				start = i;
1859				len = 0;
1860			}
1861		}
1862
1863		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1864		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1865
1866		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1867			sbi->discard_blks--;
1868	}
1869
1870	if (len)
1871		err = __issue_discard_async(sbi, bdev, start, len);
1872	return err;
1873}
1874
1875static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1876							bool check_only)
1877{
1878	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1879	int max_blocks = sbi->blocks_per_seg;
1880	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1881	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1882	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1883	unsigned long *discard_map = (unsigned long *)se->discard_map;
1884	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1885	unsigned int start = 0, end = -1;
1886	bool force = (cpc->reason & CP_DISCARD);
1887	struct discard_entry *de = NULL;
1888	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1889	int i;
1890
1891	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1892		return false;
1893
1894	if (!force) {
1895		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1896			SM_I(sbi)->dcc_info->nr_discards >=
1897				SM_I(sbi)->dcc_info->max_discards)
1898			return false;
1899	}
1900
1901	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1902	for (i = 0; i < entries; i++)
1903		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1904				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1905
1906	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1907				SM_I(sbi)->dcc_info->max_discards) {
1908		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1909		if (start >= max_blocks)
1910			break;
1911
1912		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1913		if (force && start && end != max_blocks
1914					&& (end - start) < cpc->trim_minlen)
1915			continue;
1916
1917		if (check_only)
1918			return true;
1919
1920		if (!de) {
1921			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1922								GFP_F2FS_ZERO);
1923			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1924			list_add_tail(&de->list, head);
1925		}
1926
1927		for (i = start; i < end; i++)
1928			__set_bit_le(i, (void *)de->discard_map);
1929
1930		SM_I(sbi)->dcc_info->nr_discards += end - start;
1931	}
1932	return false;
1933}
1934
1935static void release_discard_addr(struct discard_entry *entry)
1936{
1937	list_del(&entry->list);
1938	kmem_cache_free(discard_entry_slab, entry);
1939}
1940
1941void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1942{
1943	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1944	struct discard_entry *entry, *this;
1945
1946	/* drop caches */
1947	list_for_each_entry_safe(entry, this, head, list)
1948		release_discard_addr(entry);
 
 
1949}
1950
1951/*
1952 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1953 */
1954static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1955{
1956	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1957	unsigned int segno;
1958
1959	mutex_lock(&dirty_i->seglist_lock);
1960	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1961		__set_test_and_free(sbi, segno);
1962	mutex_unlock(&dirty_i->seglist_lock);
1963}
1964
1965void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1966						struct cp_control *cpc)
1967{
1968	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1969	struct list_head *head = &dcc->entry_list;
1970	struct discard_entry *entry, *this;
1971	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1972	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1973	unsigned int start = 0, end = -1;
1974	unsigned int secno, start_segno;
1975	bool force = (cpc->reason & CP_DISCARD);
1976	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1977
1978	mutex_lock(&dirty_i->seglist_lock);
1979
1980	while (1) {
1981		int i;
1982
1983		if (need_align && end != -1)
1984			end--;
1985		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1986		if (start >= MAIN_SEGS(sbi))
1987			break;
1988		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1989								start + 1);
1990
1991		if (need_align) {
1992			start = rounddown(start, sbi->segs_per_sec);
1993			end = roundup(end, sbi->segs_per_sec);
1994		}
1995
1996		for (i = start; i < end; i++) {
1997			if (test_and_clear_bit(i, prefree_map))
1998				dirty_i->nr_dirty[PRE]--;
1999		}
2000
2001		if (!f2fs_realtime_discard_enable(sbi))
2002			continue;
2003
2004		if (force && start >= cpc->trim_start &&
2005					(end - 1) <= cpc->trim_end)
2006				continue;
2007
2008		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2009			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2010				(end - start) << sbi->log_blocks_per_seg);
2011			continue;
2012		}
2013next:
2014		secno = GET_SEC_FROM_SEG(sbi, start);
2015		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2016		if (!IS_CURSEC(sbi, secno) &&
2017			!get_valid_blocks(sbi, start, true))
2018			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2019				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2020
2021		start = start_segno + sbi->segs_per_sec;
2022		if (start < end)
2023			goto next;
2024		else
2025			end = start - 1;
2026	}
2027	mutex_unlock(&dirty_i->seglist_lock);
2028
2029	/* send small discards */
2030	list_for_each_entry_safe(entry, this, head, list) {
2031		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2032		bool is_valid = test_bit_le(0, entry->discard_map);
2033
2034find_next:
2035		if (is_valid) {
2036			next_pos = find_next_zero_bit_le(entry->discard_map,
2037					sbi->blocks_per_seg, cur_pos);
2038			len = next_pos - cur_pos;
2039
2040			if (f2fs_sb_has_blkzoned(sbi) ||
2041			    (force && len < cpc->trim_minlen))
2042				goto skip;
2043
2044			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2045									len);
2046			total_len += len;
2047		} else {
2048			next_pos = find_next_bit_le(entry->discard_map,
2049					sbi->blocks_per_seg, cur_pos);
2050		}
2051skip:
2052		cur_pos = next_pos;
2053		is_valid = !is_valid;
2054
2055		if (cur_pos < sbi->blocks_per_seg)
2056			goto find_next;
2057
2058		release_discard_addr(entry);
2059		dcc->nr_discards -= total_len;
2060	}
2061
2062	wake_up_discard_thread(sbi, false);
2063}
2064
2065static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2066{
2067	dev_t dev = sbi->sb->s_bdev->bd_dev;
2068	struct discard_cmd_control *dcc;
2069	int err = 0, i;
2070
2071	if (SM_I(sbi)->dcc_info) {
2072		dcc = SM_I(sbi)->dcc_info;
2073		goto init_thread;
2074	}
2075
2076	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2077	if (!dcc)
2078		return -ENOMEM;
2079
2080	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2081	INIT_LIST_HEAD(&dcc->entry_list);
2082	for (i = 0; i < MAX_PLIST_NUM; i++)
2083		INIT_LIST_HEAD(&dcc->pend_list[i]);
2084	INIT_LIST_HEAD(&dcc->wait_list);
2085	INIT_LIST_HEAD(&dcc->fstrim_list);
2086	mutex_init(&dcc->cmd_lock);
2087	atomic_set(&dcc->issued_discard, 0);
2088	atomic_set(&dcc->queued_discard, 0);
2089	atomic_set(&dcc->discard_cmd_cnt, 0);
2090	dcc->nr_discards = 0;
2091	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2092	dcc->undiscard_blks = 0;
2093	dcc->next_pos = 0;
2094	dcc->root = RB_ROOT_CACHED;
2095	dcc->rbtree_check = false;
2096
2097	init_waitqueue_head(&dcc->discard_wait_queue);
2098	SM_I(sbi)->dcc_info = dcc;
2099init_thread:
2100	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2101				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2102	if (IS_ERR(dcc->f2fs_issue_discard)) {
2103		err = PTR_ERR(dcc->f2fs_issue_discard);
2104		kvfree(dcc);
2105		SM_I(sbi)->dcc_info = NULL;
2106		return err;
2107	}
2108
2109	return err;
2110}
2111
2112static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2113{
2114	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2115
2116	if (!dcc)
2117		return;
2118
2119	f2fs_stop_discard_thread(sbi);
2120
2121	/*
2122	 * Recovery can cache discard commands, so in error path of
2123	 * fill_super(), it needs to give a chance to handle them.
2124	 */
2125	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2126		f2fs_issue_discard_timeout(sbi);
2127
2128	kvfree(dcc);
2129	SM_I(sbi)->dcc_info = NULL;
2130}
2131
2132static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2133{
2134	struct sit_info *sit_i = SIT_I(sbi);
2135
2136	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2137		sit_i->dirty_sentries++;
2138		return false;
2139	}
2140
2141	return true;
2142}
2143
2144static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2145					unsigned int segno, int modified)
2146{
2147	struct seg_entry *se = get_seg_entry(sbi, segno);
2148	se->type = type;
2149	if (modified)
2150		__mark_sit_entry_dirty(sbi, segno);
2151}
2152
2153static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2154{
2155	struct seg_entry *se;
2156	unsigned int segno, offset;
2157	long int new_vblocks;
2158	bool exist;
2159#ifdef CONFIG_F2FS_CHECK_FS
2160	bool mir_exist;
2161#endif
2162
2163	segno = GET_SEGNO(sbi, blkaddr);
2164
2165	se = get_seg_entry(sbi, segno);
2166	new_vblocks = se->valid_blocks + del;
2167	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2168
2169	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2170				(new_vblocks > sbi->blocks_per_seg)));
2171
2172	se->valid_blocks = new_vblocks;
2173	se->mtime = get_mtime(sbi, false);
2174	if (se->mtime > SIT_I(sbi)->max_mtime)
2175		SIT_I(sbi)->max_mtime = se->mtime;
2176
2177	/* Update valid block bitmap */
2178	if (del > 0) {
2179		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2180#ifdef CONFIG_F2FS_CHECK_FS
2181		mir_exist = f2fs_test_and_set_bit(offset,
2182						se->cur_valid_map_mir);
2183		if (unlikely(exist != mir_exist)) {
2184			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2185				 blkaddr, exist);
2186			f2fs_bug_on(sbi, 1);
2187		}
2188#endif
2189		if (unlikely(exist)) {
2190			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2191				 blkaddr);
2192			f2fs_bug_on(sbi, 1);
2193			se->valid_blocks--;
2194			del = 0;
2195		}
2196
2197		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2198			sbi->discard_blks--;
2199
2200		/*
2201		 * SSR should never reuse block which is checkpointed
2202		 * or newly invalidated.
2203		 */
2204		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2205			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2206				se->ckpt_valid_blocks++;
2207		}
2208	} else {
2209		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2210#ifdef CONFIG_F2FS_CHECK_FS
2211		mir_exist = f2fs_test_and_clear_bit(offset,
2212						se->cur_valid_map_mir);
2213		if (unlikely(exist != mir_exist)) {
2214			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2215				 blkaddr, exist);
2216			f2fs_bug_on(sbi, 1);
2217		}
2218#endif
2219		if (unlikely(!exist)) {
2220			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2221				 blkaddr);
2222			f2fs_bug_on(sbi, 1);
2223			se->valid_blocks++;
2224			del = 0;
2225		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2226			/*
2227			 * If checkpoints are off, we must not reuse data that
2228			 * was used in the previous checkpoint. If it was used
2229			 * before, we must track that to know how much space we
2230			 * really have.
2231			 */
2232			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2233				spin_lock(&sbi->stat_lock);
2234				sbi->unusable_block_count++;
2235				spin_unlock(&sbi->stat_lock);
2236			}
2237		}
2238
2239		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2240			sbi->discard_blks++;
2241	}
2242	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2243		se->ckpt_valid_blocks += del;
2244
2245	__mark_sit_entry_dirty(sbi, segno);
2246
2247	/* update total number of valid blocks to be written in ckpt area */
2248	SIT_I(sbi)->written_valid_blocks += del;
2249
2250	if (__is_large_section(sbi))
2251		get_sec_entry(sbi, segno)->valid_blocks += del;
2252}
2253
2254void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 
 
 
 
 
 
 
 
 
 
2255{
2256	unsigned int segno = GET_SEGNO(sbi, addr);
2257	struct sit_info *sit_i = SIT_I(sbi);
2258
2259	f2fs_bug_on(sbi, addr == NULL_ADDR);
2260	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2261		return;
2262
2263	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2264
2265	/* add it into sit main buffer */
2266	down_write(&sit_i->sentry_lock);
2267
2268	update_sit_entry(sbi, addr, -1);
2269
2270	/* add it into dirty seglist */
2271	locate_dirty_segment(sbi, segno);
2272
2273	up_write(&sit_i->sentry_lock);
2274}
2275
2276bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2277{
2278	struct sit_info *sit_i = SIT_I(sbi);
2279	unsigned int segno, offset;
2280	struct seg_entry *se;
2281	bool is_cp = false;
2282
2283	if (!__is_valid_data_blkaddr(blkaddr))
2284		return true;
2285
2286	down_read(&sit_i->sentry_lock);
2287
2288	segno = GET_SEGNO(sbi, blkaddr);
2289	se = get_seg_entry(sbi, segno);
2290	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2291
2292	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2293		is_cp = true;
2294
2295	up_read(&sit_i->sentry_lock);
2296
2297	return is_cp;
2298}
2299
2300/*
2301 * This function should be resided under the curseg_mutex lock
2302 */
2303static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2304					struct f2fs_summary *sum)
2305{
2306	struct curseg_info *curseg = CURSEG_I(sbi, type);
2307	void *addr = curseg->sum_blk;
2308	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2309	memcpy(addr, sum, sizeof(struct f2fs_summary));
2310}
2311
2312/*
2313 * Calculate the number of current summary pages for writing
2314 */
2315int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2316{
2317	int valid_sum_count = 0;
2318	int i, sum_in_page;
2319
2320	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2321		if (sbi->ckpt->alloc_type[i] == SSR)
2322			valid_sum_count += sbi->blocks_per_seg;
2323		else {
2324			if (for_ra)
2325				valid_sum_count += le16_to_cpu(
2326					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2327			else
2328				valid_sum_count += curseg_blkoff(sbi, i);
2329		}
2330	}
2331
2332	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2333			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2334	if (valid_sum_count <= sum_in_page)
2335		return 1;
2336	else if ((valid_sum_count - sum_in_page) <=
2337		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2338		return 2;
2339	return 3;
2340}
2341
2342/*
2343 * Caller should put this summary page
2344 */
2345struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2346{
2347	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2348}
2349
2350void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2351					void *src, block_t blk_addr)
2352{
2353	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
 
2354
2355	memcpy(page_address(page), src, PAGE_SIZE);
 
 
 
2356	set_page_dirty(page);
2357	f2fs_put_page(page, 1);
2358}
2359
2360static void write_sum_page(struct f2fs_sb_info *sbi,
2361			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2362{
2363	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2364}
2365
2366static void write_current_sum_page(struct f2fs_sb_info *sbi,
2367						int type, block_t blk_addr)
2368{
2369	struct curseg_info *curseg = CURSEG_I(sbi, type);
2370	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2371	struct f2fs_summary_block *src = curseg->sum_blk;
2372	struct f2fs_summary_block *dst;
2373
2374	dst = (struct f2fs_summary_block *)page_address(page);
2375	memset(dst, 0, PAGE_SIZE);
2376
2377	mutex_lock(&curseg->curseg_mutex);
2378
2379	down_read(&curseg->journal_rwsem);
2380	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2381	up_read(&curseg->journal_rwsem);
2382
2383	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2384	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2385
2386	mutex_unlock(&curseg->curseg_mutex);
2387
2388	set_page_dirty(page);
2389	f2fs_put_page(page, 1);
2390}
2391
2392static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2393{
2394	struct curseg_info *curseg = CURSEG_I(sbi, type);
2395	unsigned int segno = curseg->segno + 1;
2396	struct free_segmap_info *free_i = FREE_I(sbi);
2397
2398	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2399		return !test_bit(segno, free_i->free_segmap);
2400	return 0;
2401}
2402
2403/*
2404 * Find a new segment from the free segments bitmap to right order
2405 * This function should be returned with success, otherwise BUG
2406 */
2407static void get_new_segment(struct f2fs_sb_info *sbi,
2408			unsigned int *newseg, bool new_sec, int dir)
2409{
2410	struct free_segmap_info *free_i = FREE_I(sbi);
2411	unsigned int segno, secno, zoneno;
2412	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2413	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2414	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2415	unsigned int left_start = hint;
2416	bool init = true;
2417	int go_left = 0;
2418	int i;
2419
2420	spin_lock(&free_i->segmap_lock);
2421
2422	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2423		segno = find_next_zero_bit(free_i->free_segmap,
2424			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2425		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2426			goto got_it;
2427	}
2428find_other_zone:
2429	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2430	if (secno >= MAIN_SECS(sbi)) {
2431		if (dir == ALLOC_RIGHT) {
2432			secno = find_next_zero_bit(free_i->free_secmap,
2433							MAIN_SECS(sbi), 0);
2434			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2435		} else {
2436			go_left = 1;
2437			left_start = hint - 1;
2438		}
2439	}
2440	if (go_left == 0)
2441		goto skip_left;
2442
2443	while (test_bit(left_start, free_i->free_secmap)) {
2444		if (left_start > 0) {
2445			left_start--;
2446			continue;
2447		}
2448		left_start = find_next_zero_bit(free_i->free_secmap,
2449							MAIN_SECS(sbi), 0);
2450		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2451		break;
2452	}
2453	secno = left_start;
2454skip_left:
2455	segno = GET_SEG_FROM_SEC(sbi, secno);
2456	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
 
2457
2458	/* give up on finding another zone */
2459	if (!init)
2460		goto got_it;
2461	if (sbi->secs_per_zone == 1)
2462		goto got_it;
2463	if (zoneno == old_zoneno)
2464		goto got_it;
2465	if (dir == ALLOC_LEFT) {
2466		if (!go_left && zoneno + 1 >= total_zones)
2467			goto got_it;
2468		if (go_left && zoneno == 0)
2469			goto got_it;
2470	}
2471	for (i = 0; i < NR_CURSEG_TYPE; i++)
2472		if (CURSEG_I(sbi, i)->zone == zoneno)
2473			break;
2474
2475	if (i < NR_CURSEG_TYPE) {
2476		/* zone is in user, try another */
2477		if (go_left)
2478			hint = zoneno * sbi->secs_per_zone - 1;
2479		else if (zoneno + 1 >= total_zones)
2480			hint = 0;
2481		else
2482			hint = (zoneno + 1) * sbi->secs_per_zone;
2483		init = false;
2484		goto find_other_zone;
2485	}
2486got_it:
2487	/* set it as dirty segment in free segmap */
2488	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2489	__set_inuse(sbi, segno);
2490	*newseg = segno;
2491	spin_unlock(&free_i->segmap_lock);
2492}
2493
2494static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2495{
2496	struct curseg_info *curseg = CURSEG_I(sbi, type);
2497	struct summary_footer *sum_footer;
2498
2499	curseg->segno = curseg->next_segno;
2500	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2501	curseg->next_blkoff = 0;
2502	curseg->next_segno = NULL_SEGNO;
2503
2504	sum_footer = &(curseg->sum_blk->footer);
2505	memset(sum_footer, 0, sizeof(struct summary_footer));
2506	if (IS_DATASEG(type))
2507		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2508	if (IS_NODESEG(type))
2509		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2510	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2511}
2512
2513static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2514{
2515	/* if segs_per_sec is large than 1, we need to keep original policy. */
2516	if (__is_large_section(sbi))
2517		return CURSEG_I(sbi, type)->segno;
2518
2519	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2520		return 0;
2521
2522	if (test_opt(sbi, NOHEAP) &&
2523		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2524		return 0;
2525
2526	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2527		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2528
2529	/* find segments from 0 to reuse freed segments */
2530	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2531		return 0;
2532
2533	return CURSEG_I(sbi, type)->segno;
2534}
2535
2536/*
2537 * Allocate a current working segment.
2538 * This function always allocates a free segment in LFS manner.
2539 */
2540static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2541{
2542	struct curseg_info *curseg = CURSEG_I(sbi, type);
2543	unsigned int segno = curseg->segno;
2544	int dir = ALLOC_LEFT;
2545
2546	write_sum_page(sbi, curseg->sum_blk,
2547				GET_SUM_BLOCK(sbi, segno));
2548	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2549		dir = ALLOC_RIGHT;
2550
2551	if (test_opt(sbi, NOHEAP))
2552		dir = ALLOC_RIGHT;
2553
2554	segno = __get_next_segno(sbi, type);
2555	get_new_segment(sbi, &segno, new_sec, dir);
2556	curseg->next_segno = segno;
2557	reset_curseg(sbi, type, 1);
2558	curseg->alloc_type = LFS;
2559}
2560
2561static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2562			struct curseg_info *seg, block_t start)
2563{
2564	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2565	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2566	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2567	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2568	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2569	int i, pos;
2570
2571	for (i = 0; i < entries; i++)
2572		target_map[i] = ckpt_map[i] | cur_map[i];
2573
2574	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2575
2576	seg->next_blkoff = pos;
2577}
2578
2579/*
2580 * If a segment is written by LFS manner, next block offset is just obtained
2581 * by increasing the current block offset. However, if a segment is written by
2582 * SSR manner, next block offset obtained by calling __next_free_blkoff
2583 */
2584static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2585				struct curseg_info *seg)
2586{
2587	if (seg->alloc_type == SSR)
2588		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2589	else
2590		seg->next_blkoff++;
2591}
2592
2593/*
2594 * This function always allocates a used segment(from dirty seglist) by SSR
2595 * manner, so it should recover the existing segment information of valid blocks
2596 */
2597static void change_curseg(struct f2fs_sb_info *sbi, int type)
2598{
2599	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2600	struct curseg_info *curseg = CURSEG_I(sbi, type);
2601	unsigned int new_segno = curseg->next_segno;
2602	struct f2fs_summary_block *sum_node;
2603	struct page *sum_page;
2604
2605	write_sum_page(sbi, curseg->sum_blk,
2606				GET_SUM_BLOCK(sbi, curseg->segno));
2607	__set_test_and_inuse(sbi, new_segno);
2608
2609	mutex_lock(&dirty_i->seglist_lock);
2610	__remove_dirty_segment(sbi, new_segno, PRE);
2611	__remove_dirty_segment(sbi, new_segno, DIRTY);
2612	mutex_unlock(&dirty_i->seglist_lock);
2613
2614	reset_curseg(sbi, type, 1);
2615	curseg->alloc_type = SSR;
2616	__next_free_blkoff(sbi, curseg, 0);
2617
2618	sum_page = f2fs_get_sum_page(sbi, new_segno);
2619	f2fs_bug_on(sbi, IS_ERR(sum_page));
2620	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2621	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2622	f2fs_put_page(sum_page, 1);
 
2623}
2624
2625static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2626{
2627	struct curseg_info *curseg = CURSEG_I(sbi, type);
2628	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2629	unsigned segno = NULL_SEGNO;
2630	int i, cnt;
2631	bool reversed = false;
2632
2633	/* f2fs_need_SSR() already forces to do this */
2634	if (!v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2635		curseg->next_segno = segno;
2636		return 1;
2637	}
2638
2639	/* For node segments, let's do SSR more intensively */
2640	if (IS_NODESEG(type)) {
2641		if (type >= CURSEG_WARM_NODE) {
2642			reversed = true;
2643			i = CURSEG_COLD_NODE;
2644		} else {
2645			i = CURSEG_HOT_NODE;
2646		}
2647		cnt = NR_CURSEG_NODE_TYPE;
2648	} else {
2649		if (type >= CURSEG_WARM_DATA) {
2650			reversed = true;
2651			i = CURSEG_COLD_DATA;
2652		} else {
2653			i = CURSEG_HOT_DATA;
2654		}
2655		cnt = NR_CURSEG_DATA_TYPE;
2656	}
2657
2658	for (; cnt-- > 0; reversed ? i-- : i++) {
2659		if (i == type)
2660			continue;
2661		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2662			curseg->next_segno = segno;
 
 
 
2663			return 1;
2664		}
2665	}
2666
2667	/* find valid_blocks=0 in dirty list */
2668	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2669		segno = get_free_segment(sbi);
2670		if (segno != NULL_SEGNO) {
2671			curseg->next_segno = segno;
2672			return 1;
2673		}
2674	}
2675	return 0;
2676}
2677
2678/*
2679 * flush out current segment and replace it with new segment
2680 * This function should be returned with success, otherwise BUG
2681 */
2682static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2683						int type, bool force)
2684{
2685	struct curseg_info *curseg = CURSEG_I(sbi, type);
2686
2687	if (force)
2688		new_curseg(sbi, type, true);
2689	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2690					type == CURSEG_WARM_NODE)
2691		new_curseg(sbi, type, false);
2692	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2693			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2694		new_curseg(sbi, type, false);
2695	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2696		change_curseg(sbi, type);
2697	else
2698		new_curseg(sbi, type, false);
2699
2700	stat_inc_seg_type(sbi, curseg);
2701}
2702
2703void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2704					unsigned int start, unsigned int end)
2705{
2706	struct curseg_info *curseg = CURSEG_I(sbi, type);
2707	unsigned int segno;
2708
2709	down_read(&SM_I(sbi)->curseg_lock);
2710	mutex_lock(&curseg->curseg_mutex);
2711	down_write(&SIT_I(sbi)->sentry_lock);
2712
2713	segno = CURSEG_I(sbi, type)->segno;
2714	if (segno < start || segno > end)
2715		goto unlock;
2716
2717	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2718		change_curseg(sbi, type);
2719	else
2720		new_curseg(sbi, type, true);
2721
2722	stat_inc_seg_type(sbi, curseg);
2723
2724	locate_dirty_segment(sbi, segno);
2725unlock:
2726	up_write(&SIT_I(sbi)->sentry_lock);
2727
2728	if (segno != curseg->segno)
2729		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2730			    type, segno, curseg->segno);
2731
2732	mutex_unlock(&curseg->curseg_mutex);
2733	up_read(&SM_I(sbi)->curseg_lock);
2734}
2735
2736static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2737{
2738	struct curseg_info *curseg = CURSEG_I(sbi, type);
2739	unsigned int old_segno;
2740
2741	if (!curseg->next_blkoff &&
2742		!get_valid_blocks(sbi, curseg->segno, false) &&
2743		!get_ckpt_valid_blocks(sbi, curseg->segno))
2744		return;
2745
2746	old_segno = curseg->segno;
2747	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2748	locate_dirty_segment(sbi, old_segno);
2749}
2750
2751void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type)
2752{
2753	down_write(&SIT_I(sbi)->sentry_lock);
2754	__allocate_new_segment(sbi, type);
2755	up_write(&SIT_I(sbi)->sentry_lock);
2756}
2757
2758void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2759{
2760	int i;
2761
2762	down_write(&SIT_I(sbi)->sentry_lock);
2763	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2764		__allocate_new_segment(sbi, i);
2765	up_write(&SIT_I(sbi)->sentry_lock);
2766}
2767
2768static const struct segment_allocation default_salloc_ops = {
2769	.allocate_segment = allocate_segment_by_default,
2770};
2771
2772bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2773						struct cp_control *cpc)
2774{
2775	__u64 trim_start = cpc->trim_start;
2776	bool has_candidate = false;
2777
2778	down_write(&SIT_I(sbi)->sentry_lock);
2779	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2780		if (add_discard_addrs(sbi, cpc, true)) {
2781			has_candidate = true;
2782			break;
2783		}
2784	}
2785	up_write(&SIT_I(sbi)->sentry_lock);
2786
2787	cpc->trim_start = trim_start;
2788	return has_candidate;
2789}
2790
2791static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2792					struct discard_policy *dpolicy,
2793					unsigned int start, unsigned int end)
2794{
2795	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2796	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2797	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2798	struct discard_cmd *dc;
2799	struct blk_plug plug;
2800	int issued;
2801	unsigned int trimmed = 0;
2802
2803next:
2804	issued = 0;
2805
2806	mutex_lock(&dcc->cmd_lock);
2807	if (unlikely(dcc->rbtree_check))
2808		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2809								&dcc->root));
2810
2811	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2812					NULL, start,
2813					(struct rb_entry **)&prev_dc,
2814					(struct rb_entry **)&next_dc,
2815					&insert_p, &insert_parent, true, NULL);
2816	if (!dc)
2817		dc = next_dc;
2818
2819	blk_start_plug(&plug);
2820
2821	while (dc && dc->lstart <= end) {
2822		struct rb_node *node;
2823		int err = 0;
2824
2825		if (dc->len < dpolicy->granularity)
2826			goto skip;
2827
2828		if (dc->state != D_PREP) {
2829			list_move_tail(&dc->list, &dcc->fstrim_list);
2830			goto skip;
2831		}
2832
2833		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2834
2835		if (issued >= dpolicy->max_requests) {
2836			start = dc->lstart + dc->len;
2837
2838			if (err)
2839				__remove_discard_cmd(sbi, dc);
2840
2841			blk_finish_plug(&plug);
2842			mutex_unlock(&dcc->cmd_lock);
2843			trimmed += __wait_all_discard_cmd(sbi, NULL);
2844			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2845			goto next;
2846		}
2847skip:
2848		node = rb_next(&dc->rb_node);
2849		if (err)
2850			__remove_discard_cmd(sbi, dc);
2851		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2852
2853		if (fatal_signal_pending(current))
2854			break;
2855	}
2856
2857	blk_finish_plug(&plug);
2858	mutex_unlock(&dcc->cmd_lock);
2859
2860	return trimmed;
2861}
2862
2863int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2864{
2865	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2866	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2867	unsigned int start_segno, end_segno;
2868	block_t start_block, end_block;
2869	struct cp_control cpc;
2870	struct discard_policy dpolicy;
2871	unsigned long long trimmed = 0;
2872	int err = 0;
2873	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2874
2875	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2876		return -EINVAL;
2877
2878	if (end < MAIN_BLKADDR(sbi))
 
2879		goto out;
2880
2881	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2882		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2883		return -EFSCORRUPTED;
2884	}
2885
2886	/* start/end segment number in main_area */
2887	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2888	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2889						GET_SEGNO(sbi, end);
2890	if (need_align) {
2891		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2892		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2893	}
2894
2895	cpc.reason = CP_DISCARD;
2896	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2897	cpc.trim_start = start_segno;
2898	cpc.trim_end = end_segno;
2899
2900	if (sbi->discard_blks == 0)
2901		goto out;
2902
2903	down_write(&sbi->gc_lock);
2904	err = f2fs_write_checkpoint(sbi, &cpc);
2905	up_write(&sbi->gc_lock);
2906	if (err)
2907		goto out;
2908
2909	/*
2910	 * We filed discard candidates, but actually we don't need to wait for
2911	 * all of them, since they'll be issued in idle time along with runtime
2912	 * discard option. User configuration looks like using runtime discard
2913	 * or periodic fstrim instead of it.
2914	 */
2915	if (f2fs_realtime_discard_enable(sbi))
2916		goto out;
2917
2918	start_block = START_BLOCK(sbi, start_segno);
2919	end_block = START_BLOCK(sbi, end_segno + 1);
2920
2921	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2922	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2923					start_block, end_block);
2924
2925	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2926					start_block, end_block);
2927out:
2928	if (!err)
2929		range->len = F2FS_BLK_TO_BYTES(trimmed);
2930	return err;
2931}
2932
2933static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2934{
2935	struct curseg_info *curseg = CURSEG_I(sbi, type);
2936	if (curseg->next_blkoff < sbi->blocks_per_seg)
2937		return true;
2938	return false;
2939}
2940
2941int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2942{
2943	switch (hint) {
2944	case WRITE_LIFE_SHORT:
2945		return CURSEG_HOT_DATA;
2946	case WRITE_LIFE_EXTREME:
2947		return CURSEG_COLD_DATA;
2948	default:
2949		return CURSEG_WARM_DATA;
2950	}
2951}
2952
2953/* This returns write hints for each segment type. This hints will be
2954 * passed down to block layer. There are mapping tables which depend on
2955 * the mount option 'whint_mode'.
2956 *
2957 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2958 *
2959 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2960 *
2961 * User                  F2FS                     Block
2962 * ----                  ----                     -----
2963 *                       META                     WRITE_LIFE_NOT_SET
2964 *                       HOT_NODE                 "
2965 *                       WARM_NODE                "
2966 *                       COLD_NODE                "
2967 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2968 * extension list        "                        "
2969 *
2970 * -- buffered io
2971 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2972 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2973 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2974 * WRITE_LIFE_NONE       "                        "
2975 * WRITE_LIFE_MEDIUM     "                        "
2976 * WRITE_LIFE_LONG       "                        "
2977 *
2978 * -- direct io
2979 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2980 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2981 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2982 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2983 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2984 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2985 *
2986 * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2987 *
2988 * User                  F2FS                     Block
2989 * ----                  ----                     -----
2990 *                       META                     WRITE_LIFE_MEDIUM;
2991 *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2992 *                       WARM_NODE                "
2993 *                       COLD_NODE                WRITE_LIFE_NONE
2994 * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2995 * extension list        "                        "
2996 *
2997 * -- buffered io
2998 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2999 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3000 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3001 * WRITE_LIFE_NONE       "                        "
3002 * WRITE_LIFE_MEDIUM     "                        "
3003 * WRITE_LIFE_LONG       "                        "
3004 *
3005 * -- direct io
3006 * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3007 * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3008 * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3009 * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3010 * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3011 * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3012 */
3013
3014enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3015				enum page_type type, enum temp_type temp)
3016{
3017	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3018		if (type == DATA) {
3019			if (temp == WARM)
3020				return WRITE_LIFE_NOT_SET;
3021			else if (temp == HOT)
3022				return WRITE_LIFE_SHORT;
3023			else if (temp == COLD)
3024				return WRITE_LIFE_EXTREME;
3025		} else {
3026			return WRITE_LIFE_NOT_SET;
3027		}
3028	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3029		if (type == DATA) {
3030			if (temp == WARM)
3031				return WRITE_LIFE_LONG;
3032			else if (temp == HOT)
3033				return WRITE_LIFE_SHORT;
3034			else if (temp == COLD)
3035				return WRITE_LIFE_EXTREME;
3036		} else if (type == NODE) {
3037			if (temp == WARM || temp == HOT)
3038				return WRITE_LIFE_NOT_SET;
3039			else if (temp == COLD)
3040				return WRITE_LIFE_NONE;
3041		} else if (type == META) {
3042			return WRITE_LIFE_MEDIUM;
3043		}
3044	}
3045	return WRITE_LIFE_NOT_SET;
3046}
3047
3048static int __get_segment_type_2(struct f2fs_io_info *fio)
3049{
3050	if (fio->type == DATA)
3051		return CURSEG_HOT_DATA;
3052	else
3053		return CURSEG_HOT_NODE;
3054}
3055
3056static int __get_segment_type_4(struct f2fs_io_info *fio)
3057{
3058	if (fio->type == DATA) {
3059		struct inode *inode = fio->page->mapping->host;
3060
3061		if (S_ISDIR(inode->i_mode))
3062			return CURSEG_HOT_DATA;
3063		else
3064			return CURSEG_COLD_DATA;
3065	} else {
3066		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3067			return CURSEG_WARM_NODE;
3068		else
3069			return CURSEG_COLD_NODE;
3070	}
3071}
3072
3073static int __get_segment_type_6(struct f2fs_io_info *fio)
3074{
3075	if (fio->type == DATA) {
3076		struct inode *inode = fio->page->mapping->host;
3077
3078		if (is_cold_data(fio->page) || file_is_cold(inode) ||
3079				f2fs_compressed_file(inode))
 
3080			return CURSEG_COLD_DATA;
3081		if (file_is_hot(inode) ||
3082				is_inode_flag_set(inode, FI_HOT_DATA) ||
3083				f2fs_is_atomic_file(inode) ||
3084				f2fs_is_volatile_file(inode))
3085			return CURSEG_HOT_DATA;
3086		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3087	} else {
3088		if (IS_DNODE(fio->page))
3089			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3090						CURSEG_HOT_NODE;
3091		return CURSEG_COLD_NODE;
 
3092	}
3093}
3094
3095static int __get_segment_type(struct f2fs_io_info *fio)
3096{
3097	int type = 0;
3098
3099	switch (F2FS_OPTION(fio->sbi).active_logs) {
3100	case 2:
3101		type = __get_segment_type_2(fio);
3102		break;
3103	case 4:
3104		type = __get_segment_type_4(fio);
3105		break;
3106	case 6:
3107		type = __get_segment_type_6(fio);
3108		break;
3109	default:
3110		f2fs_bug_on(fio->sbi, true);
3111	}
3112
3113	if (IS_HOT(type))
3114		fio->temp = HOT;
3115	else if (IS_WARM(type))
3116		fio->temp = WARM;
3117	else
3118		fio->temp = COLD;
3119	return type;
3120}
3121
3122void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3123		block_t old_blkaddr, block_t *new_blkaddr,
3124		struct f2fs_summary *sum, int type,
3125		struct f2fs_io_info *fio)
3126{
3127	struct sit_info *sit_i = SIT_I(sbi);
3128	struct curseg_info *curseg = CURSEG_I(sbi, type);
3129	bool put_pin_sem = false;
3130
3131	if (type == CURSEG_COLD_DATA) {
3132		/* GC during CURSEG_COLD_DATA_PINNED allocation */
3133		if (down_read_trylock(&sbi->pin_sem)) {
3134			put_pin_sem = true;
3135		} else {
3136			type = CURSEG_WARM_DATA;
3137			curseg = CURSEG_I(sbi, type);
3138		}
3139	} else if (type == CURSEG_COLD_DATA_PINNED) {
3140		type = CURSEG_COLD_DATA;
3141	}
3142
3143	down_read(&SM_I(sbi)->curseg_lock);
3144
3145	mutex_lock(&curseg->curseg_mutex);
3146	down_write(&sit_i->sentry_lock);
 
 
 
 
 
3147
3148	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3149
3150	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3151
3152	/*
3153	 * __add_sum_entry should be resided under the curseg_mutex
3154	 * because, this function updates a summary entry in the
3155	 * current summary block.
3156	 */
3157	__add_sum_entry(sbi, type, sum);
3158
3159	__refresh_next_blkoff(sbi, curseg);
3160
3161	stat_inc_block_count(sbi, curseg);
3162
 
 
3163	/*
3164	 * SIT information should be updated before segment allocation,
3165	 * since SSR needs latest valid block information.
3166	 */
3167	update_sit_entry(sbi, *new_blkaddr, 1);
3168	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3169		update_sit_entry(sbi, old_blkaddr, -1);
3170
3171	if (!__has_curseg_space(sbi, type))
3172		sit_i->s_ops->allocate_segment(sbi, type, false);
3173
3174	/*
3175	 * segment dirty status should be updated after segment allocation,
3176	 * so we just need to update status only one time after previous
3177	 * segment being closed.
3178	 */
3179	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3180	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3181
3182	up_write(&sit_i->sentry_lock);
3183
3184	if (page && IS_NODESEG(type)) {
3185		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3186
3187		f2fs_inode_chksum_set(sbi, page);
3188	}
3189
3190	if (F2FS_IO_ALIGNED(sbi))
3191		fio->retry = false;
3192
3193	if (fio) {
3194		struct f2fs_bio_info *io;
3195
3196		INIT_LIST_HEAD(&fio->list);
3197		fio->in_list = true;
3198		io = sbi->write_io[fio->type] + fio->temp;
3199		spin_lock(&io->io_lock);
3200		list_add_tail(&fio->list, &io->io_list);
3201		spin_unlock(&io->io_lock);
3202	}
3203
3204	mutex_unlock(&curseg->curseg_mutex);
3205
3206	up_read(&SM_I(sbi)->curseg_lock);
3207
3208	if (put_pin_sem)
3209		up_read(&sbi->pin_sem);
3210}
3211
3212static void update_device_state(struct f2fs_io_info *fio)
3213{
3214	struct f2fs_sb_info *sbi = fio->sbi;
3215	unsigned int devidx;
3216
3217	if (!f2fs_is_multi_device(sbi))
3218		return;
3219
3220	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3221
3222	/* update device state for fsync */
3223	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3224
3225	/* update device state for checkpoint */
3226	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3227		spin_lock(&sbi->dev_lock);
3228		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3229		spin_unlock(&sbi->dev_lock);
3230	}
3231}
3232
3233static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3234{
3235	int type = __get_segment_type(fio);
3236	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3237
3238	if (keep_order)
3239		down_read(&fio->sbi->io_order_lock);
3240reallocate:
3241	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3242			&fio->new_blkaddr, sum, type, fio);
3243	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3244		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3245					fio->old_blkaddr, fio->old_blkaddr);
3246
3247	/* writeout dirty page into bdev */
3248	f2fs_submit_page_write(fio);
3249	if (fio->retry) {
3250		fio->old_blkaddr = fio->new_blkaddr;
3251		goto reallocate;
3252	}
3253
3254	update_device_state(fio);
3255
3256	if (keep_order)
3257		up_read(&fio->sbi->io_order_lock);
3258}
3259
3260void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3261					enum iostat_type io_type)
3262{
3263	struct f2fs_io_info fio = {
3264		.sbi = sbi,
3265		.type = META,
3266		.temp = HOT,
3267		.op = REQ_OP_WRITE,
3268		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3269		.old_blkaddr = page->index,
3270		.new_blkaddr = page->index,
3271		.page = page,
3272		.encrypted_page = NULL,
3273		.in_list = false,
3274	};
3275
3276	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3277		fio.op_flags &= ~REQ_META;
3278
3279	set_page_writeback(page);
3280	ClearPageError(page);
3281	f2fs_submit_page_write(&fio);
3282
3283	stat_inc_meta_count(sbi, page->index);
3284	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3285}
3286
3287void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3288{
3289	struct f2fs_summary sum;
3290
3291	set_summary(&sum, nid, 0, 0);
3292	do_write_page(&sum, fio);
3293
3294	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3295}
3296
3297void f2fs_outplace_write_data(struct dnode_of_data *dn,
3298					struct f2fs_io_info *fio)
3299{
3300	struct f2fs_sb_info *sbi = fio->sbi;
3301	struct f2fs_summary sum;
 
3302
3303	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3304	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
 
3305	do_write_page(&sum, fio);
3306	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3307
3308	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3309}
3310
3311int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3312{
3313	int err;
3314	struct f2fs_sb_info *sbi = fio->sbi;
3315	unsigned int segno;
3316
3317	fio->new_blkaddr = fio->old_blkaddr;
3318	/* i/o temperature is needed for passing down write hints */
3319	__get_segment_type(fio);
3320
3321	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3322
3323	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3324		set_sbi_flag(sbi, SBI_NEED_FSCK);
3325		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3326			  __func__, segno);
3327		return -EFSCORRUPTED;
3328	}
3329
3330	stat_inc_inplace_blocks(fio->sbi);
3331
3332	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3333		err = f2fs_merge_page_bio(fio);
3334	else
3335		err = f2fs_submit_page_bio(fio);
3336	if (!err) {
3337		update_device_state(fio);
3338		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3339	}
3340
3341	return err;
3342}
3343
3344static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3345						unsigned int segno)
3346{
3347	int i;
3348
3349	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3350		if (CURSEG_I(sbi, i)->segno == segno)
3351			break;
3352	}
3353	return i;
3354}
3355
3356void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3357				block_t old_blkaddr, block_t new_blkaddr,
3358				bool recover_curseg, bool recover_newaddr)
3359{
3360	struct sit_info *sit_i = SIT_I(sbi);
3361	struct curseg_info *curseg;
3362	unsigned int segno, old_cursegno;
3363	struct seg_entry *se;
3364	int type;
3365	unsigned short old_blkoff;
3366
3367	segno = GET_SEGNO(sbi, new_blkaddr);
3368	se = get_seg_entry(sbi, segno);
3369	type = se->type;
3370
3371	down_write(&SM_I(sbi)->curseg_lock);
3372
3373	if (!recover_curseg) {
3374		/* for recovery flow */
3375		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3376			if (old_blkaddr == NULL_ADDR)
3377				type = CURSEG_COLD_DATA;
3378			else
3379				type = CURSEG_WARM_DATA;
3380		}
3381	} else {
3382		if (IS_CURSEG(sbi, segno)) {
3383			/* se->type is volatile as SSR allocation */
3384			type = __f2fs_get_curseg(sbi, segno);
3385			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3386		} else {
3387			type = CURSEG_WARM_DATA;
3388		}
3389	}
3390
3391	f2fs_bug_on(sbi, !IS_DATASEG(type));
3392	curseg = CURSEG_I(sbi, type);
3393
3394	mutex_lock(&curseg->curseg_mutex);
3395	down_write(&sit_i->sentry_lock);
3396
3397	old_cursegno = curseg->segno;
3398	old_blkoff = curseg->next_blkoff;
3399
3400	/* change the current segment */
3401	if (segno != curseg->segno) {
3402		curseg->next_segno = segno;
3403		change_curseg(sbi, type);
3404	}
3405
3406	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3407	__add_sum_entry(sbi, type, sum);
3408
3409	if (!recover_curseg || recover_newaddr)
3410		update_sit_entry(sbi, new_blkaddr, 1);
3411	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3412		invalidate_mapping_pages(META_MAPPING(sbi),
3413					old_blkaddr, old_blkaddr);
3414		update_sit_entry(sbi, old_blkaddr, -1);
3415	}
3416
3417	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3418	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3419
3420	locate_dirty_segment(sbi, old_cursegno);
3421
3422	if (recover_curseg) {
3423		if (old_cursegno != curseg->segno) {
3424			curseg->next_segno = old_cursegno;
3425			change_curseg(sbi, type);
3426		}
3427		curseg->next_blkoff = old_blkoff;
3428	}
3429
3430	up_write(&sit_i->sentry_lock);
3431	mutex_unlock(&curseg->curseg_mutex);
3432	up_write(&SM_I(sbi)->curseg_lock);
3433}
3434
3435void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3436				block_t old_addr, block_t new_addr,
3437				unsigned char version, bool recover_curseg,
3438				bool recover_newaddr)
3439{
3440	struct f2fs_summary sum;
3441
3442	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3443
3444	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3445					recover_curseg, recover_newaddr);
3446
3447	f2fs_update_data_blkaddr(dn, new_addr);
3448}
3449
3450void f2fs_wait_on_page_writeback(struct page *page,
3451				enum page_type type, bool ordered, bool locked)
3452{
3453	if (PageWriteback(page)) {
3454		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3455
3456		/* submit cached LFS IO */
3457		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3458		/* sbumit cached IPU IO */
3459		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3460		if (ordered) {
3461			wait_on_page_writeback(page);
3462			f2fs_bug_on(sbi, locked && PageWriteback(page));
3463		} else {
3464			wait_for_stable_page(page);
3465		}
3466	}
3467}
3468
3469void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
 
3470{
3471	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3472	struct page *cpage;
3473
3474	if (!f2fs_post_read_required(inode))
3475		return;
3476
3477	if (!__is_valid_data_blkaddr(blkaddr))
3478		return;
3479
3480	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3481	if (cpage) {
3482		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3483		f2fs_put_page(cpage, 1);
3484	}
3485}
3486
3487void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3488								block_t len)
3489{
3490	block_t i;
3491
3492	for (i = 0; i < len; i++)
3493		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3494}
3495
3496static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3497{
3498	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3499	struct curseg_info *seg_i;
3500	unsigned char *kaddr;
3501	struct page *page;
3502	block_t start;
3503	int i, j, offset;
3504
3505	start = start_sum_block(sbi);
3506
3507	page = f2fs_get_meta_page(sbi, start++);
3508	if (IS_ERR(page))
3509		return PTR_ERR(page);
3510	kaddr = (unsigned char *)page_address(page);
3511
3512	/* Step 1: restore nat cache */
3513	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3514	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3515
3516	/* Step 2: restore sit cache */
3517	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3518	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3519	offset = 2 * SUM_JOURNAL_SIZE;
3520
3521	/* Step 3: restore summary entries */
3522	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3523		unsigned short blk_off;
3524		unsigned int segno;
3525
3526		seg_i = CURSEG_I(sbi, i);
3527		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3528		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3529		seg_i->next_segno = segno;
3530		reset_curseg(sbi, i, 0);
3531		seg_i->alloc_type = ckpt->alloc_type[i];
3532		seg_i->next_blkoff = blk_off;
3533
3534		if (seg_i->alloc_type == SSR)
3535			blk_off = sbi->blocks_per_seg;
3536
3537		for (j = 0; j < blk_off; j++) {
3538			struct f2fs_summary *s;
3539			s = (struct f2fs_summary *)(kaddr + offset);
3540			seg_i->sum_blk->entries[j] = *s;
3541			offset += SUMMARY_SIZE;
3542			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3543						SUM_FOOTER_SIZE)
3544				continue;
3545
3546			f2fs_put_page(page, 1);
3547			page = NULL;
3548
3549			page = f2fs_get_meta_page(sbi, start++);
3550			if (IS_ERR(page))
3551				return PTR_ERR(page);
3552			kaddr = (unsigned char *)page_address(page);
3553			offset = 0;
3554		}
3555	}
3556	f2fs_put_page(page, 1);
3557	return 0;
3558}
3559
3560static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3561{
3562	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3563	struct f2fs_summary_block *sum;
3564	struct curseg_info *curseg;
3565	struct page *new;
3566	unsigned short blk_off;
3567	unsigned int segno = 0;
3568	block_t blk_addr = 0;
3569	int err = 0;
3570
3571	/* get segment number and block addr */
3572	if (IS_DATASEG(type)) {
3573		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3574		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3575							CURSEG_HOT_DATA]);
3576		if (__exist_node_summaries(sbi))
3577			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3578		else
3579			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3580	} else {
3581		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3582							CURSEG_HOT_NODE]);
3583		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3584							CURSEG_HOT_NODE]);
3585		if (__exist_node_summaries(sbi))
3586			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3587							type - CURSEG_HOT_NODE);
3588		else
3589			blk_addr = GET_SUM_BLOCK(sbi, segno);
3590	}
3591
3592	new = f2fs_get_meta_page(sbi, blk_addr);
3593	if (IS_ERR(new))
3594		return PTR_ERR(new);
3595	sum = (struct f2fs_summary_block *)page_address(new);
3596
3597	if (IS_NODESEG(type)) {
3598		if (__exist_node_summaries(sbi)) {
3599			struct f2fs_summary *ns = &sum->entries[0];
3600			int i;
3601			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3602				ns->version = 0;
3603				ns->ofs_in_node = 0;
3604			}
3605		} else {
3606			err = f2fs_restore_node_summary(sbi, segno, sum);
3607			if (err)
3608				goto out;
 
 
 
 
3609		}
3610	}
3611
3612	/* set uncompleted segment to curseg */
3613	curseg = CURSEG_I(sbi, type);
3614	mutex_lock(&curseg->curseg_mutex);
3615
3616	/* update journal info */
3617	down_write(&curseg->journal_rwsem);
3618	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3619	up_write(&curseg->journal_rwsem);
3620
3621	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3622	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3623	curseg->next_segno = segno;
3624	reset_curseg(sbi, type, 0);
3625	curseg->alloc_type = ckpt->alloc_type[type];
3626	curseg->next_blkoff = blk_off;
3627	mutex_unlock(&curseg->curseg_mutex);
3628out:
3629	f2fs_put_page(new, 1);
3630	return err;
3631}
3632
3633static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3634{
3635	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3636	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3637	int type = CURSEG_HOT_DATA;
3638	int err;
3639
3640	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3641		int npages = f2fs_npages_for_summary_flush(sbi, true);
3642
3643		if (npages >= 2)
3644			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3645							META_CP, true);
3646
3647		/* restore for compacted data summary */
3648		err = read_compacted_summaries(sbi);
3649		if (err)
3650			return err;
3651		type = CURSEG_HOT_NODE;
3652	}
3653
3654	if (__exist_node_summaries(sbi))
3655		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3656					NR_CURSEG_TYPE - type, META_CP, true);
3657
3658	for (; type <= CURSEG_COLD_NODE; type++) {
3659		err = read_normal_summaries(sbi, type);
3660		if (err)
3661			return err;
3662	}
3663
3664	/* sanity check for summary blocks */
3665	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3666			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3667		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3668			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3669		return -EINVAL;
3670	}
3671
3672	return 0;
3673}
3674
3675static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3676{
3677	struct page *page;
3678	unsigned char *kaddr;
3679	struct f2fs_summary *summary;
3680	struct curseg_info *seg_i;
3681	int written_size = 0;
3682	int i, j;
3683
3684	page = f2fs_grab_meta_page(sbi, blkaddr++);
3685	kaddr = (unsigned char *)page_address(page);
3686	memset(kaddr, 0, PAGE_SIZE);
3687
3688	/* Step 1: write nat cache */
3689	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3690	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3691	written_size += SUM_JOURNAL_SIZE;
3692
3693	/* Step 2: write sit cache */
3694	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3695	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3696	written_size += SUM_JOURNAL_SIZE;
3697
3698	/* Step 3: write summary entries */
3699	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3700		unsigned short blkoff;
3701		seg_i = CURSEG_I(sbi, i);
3702		if (sbi->ckpt->alloc_type[i] == SSR)
3703			blkoff = sbi->blocks_per_seg;
3704		else
3705			blkoff = curseg_blkoff(sbi, i);
3706
3707		for (j = 0; j < blkoff; j++) {
3708			if (!page) {
3709				page = f2fs_grab_meta_page(sbi, blkaddr++);
3710				kaddr = (unsigned char *)page_address(page);
3711				memset(kaddr, 0, PAGE_SIZE);
3712				written_size = 0;
3713			}
3714			summary = (struct f2fs_summary *)(kaddr + written_size);
3715			*summary = seg_i->sum_blk->entries[j];
3716			written_size += SUMMARY_SIZE;
3717
3718			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3719							SUM_FOOTER_SIZE)
3720				continue;
3721
3722			set_page_dirty(page);
3723			f2fs_put_page(page, 1);
3724			page = NULL;
3725		}
3726	}
3727	if (page) {
3728		set_page_dirty(page);
3729		f2fs_put_page(page, 1);
3730	}
3731}
3732
3733static void write_normal_summaries(struct f2fs_sb_info *sbi,
3734					block_t blkaddr, int type)
3735{
3736	int i, end;
3737	if (IS_DATASEG(type))
3738		end = type + NR_CURSEG_DATA_TYPE;
3739	else
3740		end = type + NR_CURSEG_NODE_TYPE;
3741
3742	for (i = type; i < end; i++)
3743		write_current_sum_page(sbi, i, blkaddr + (i - type));
3744}
3745
3746void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3747{
3748	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3749		write_compacted_summaries(sbi, start_blk);
3750	else
3751		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3752}
3753
3754void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3755{
3756	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3757}
3758
3759int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3760					unsigned int val, int alloc)
3761{
3762	int i;
3763
3764	if (type == NAT_JOURNAL) {
3765		for (i = 0; i < nats_in_cursum(journal); i++) {
3766			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3767				return i;
3768		}
3769		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3770			return update_nats_in_cursum(journal, 1);
3771	} else if (type == SIT_JOURNAL) {
3772		for (i = 0; i < sits_in_cursum(journal); i++)
3773			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3774				return i;
3775		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3776			return update_sits_in_cursum(journal, 1);
3777	}
3778	return -1;
3779}
3780
3781static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3782					unsigned int segno)
3783{
3784	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3785}
3786
3787static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3788					unsigned int start)
3789{
3790	struct sit_info *sit_i = SIT_I(sbi);
3791	struct page *page;
3792	pgoff_t src_off, dst_off;
 
3793
3794	src_off = current_sit_addr(sbi, start);
3795	dst_off = next_sit_addr(sbi, src_off);
3796
3797	page = f2fs_grab_meta_page(sbi, dst_off);
3798	seg_info_to_sit_page(sbi, page, start);
 
 
 
 
 
 
 
 
 
3799
3800	set_page_dirty(page);
3801	set_to_next_sit(sit_i, start);
3802
3803	return page;
3804}
3805
3806static struct sit_entry_set *grab_sit_entry_set(void)
3807{
3808	struct sit_entry_set *ses =
3809			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3810
3811	ses->entry_cnt = 0;
3812	INIT_LIST_HEAD(&ses->set_list);
3813	return ses;
3814}
3815
3816static void release_sit_entry_set(struct sit_entry_set *ses)
3817{
3818	list_del(&ses->set_list);
3819	kmem_cache_free(sit_entry_set_slab, ses);
3820}
3821
3822static void adjust_sit_entry_set(struct sit_entry_set *ses,
3823						struct list_head *head)
3824{
3825	struct sit_entry_set *next = ses;
3826
3827	if (list_is_last(&ses->set_list, head))
3828		return;
3829
3830	list_for_each_entry_continue(next, head, set_list)
3831		if (ses->entry_cnt <= next->entry_cnt)
3832			break;
3833
3834	list_move_tail(&ses->set_list, &next->set_list);
3835}
3836
3837static void add_sit_entry(unsigned int segno, struct list_head *head)
3838{
3839	struct sit_entry_set *ses;
3840	unsigned int start_segno = START_SEGNO(segno);
3841
3842	list_for_each_entry(ses, head, set_list) {
3843		if (ses->start_segno == start_segno) {
3844			ses->entry_cnt++;
3845			adjust_sit_entry_set(ses, head);
3846			return;
3847		}
3848	}
3849
3850	ses = grab_sit_entry_set();
3851
3852	ses->start_segno = start_segno;
3853	ses->entry_cnt++;
3854	list_add(&ses->set_list, head);
3855}
3856
3857static void add_sits_in_set(struct f2fs_sb_info *sbi)
3858{
3859	struct f2fs_sm_info *sm_info = SM_I(sbi);
3860	struct list_head *set_list = &sm_info->sit_entry_set;
3861	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3862	unsigned int segno;
3863
3864	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3865		add_sit_entry(segno, set_list);
3866}
3867
3868static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3869{
3870	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3871	struct f2fs_journal *journal = curseg->journal;
3872	int i;
3873
3874	down_write(&curseg->journal_rwsem);
3875	for (i = 0; i < sits_in_cursum(journal); i++) {
3876		unsigned int segno;
3877		bool dirtied;
3878
3879		segno = le32_to_cpu(segno_in_journal(journal, i));
3880		dirtied = __mark_sit_entry_dirty(sbi, segno);
3881
3882		if (!dirtied)
3883			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3884	}
3885	update_sits_in_cursum(journal, -i);
3886	up_write(&curseg->journal_rwsem);
3887}
3888
3889/*
3890 * CP calls this function, which flushes SIT entries including sit_journal,
3891 * and moves prefree segs to free segs.
3892 */
3893void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3894{
3895	struct sit_info *sit_i = SIT_I(sbi);
3896	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3897	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3898	struct f2fs_journal *journal = curseg->journal;
3899	struct sit_entry_set *ses, *tmp;
3900	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3901	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3902	struct seg_entry *se;
3903
3904	down_write(&sit_i->sentry_lock);
3905
3906	if (!sit_i->dirty_sentries)
3907		goto out;
3908
3909	/*
3910	 * add and account sit entries of dirty bitmap in sit entry
3911	 * set temporarily
3912	 */
3913	add_sits_in_set(sbi);
3914
3915	/*
3916	 * if there are no enough space in journal to store dirty sit
3917	 * entries, remove all entries from journal and add and account
3918	 * them in sit entry set.
3919	 */
3920	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3921								!to_journal)
3922		remove_sits_in_journal(sbi);
3923
3924	/*
3925	 * there are two steps to flush sit entries:
3926	 * #1, flush sit entries to journal in current cold data summary block.
3927	 * #2, flush sit entries to sit page.
3928	 */
3929	list_for_each_entry_safe(ses, tmp, head, set_list) {
3930		struct page *page = NULL;
3931		struct f2fs_sit_block *raw_sit = NULL;
3932		unsigned int start_segno = ses->start_segno;
3933		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3934						(unsigned long)MAIN_SEGS(sbi));
3935		unsigned int segno = start_segno;
3936
3937		if (to_journal &&
3938			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3939			to_journal = false;
3940
3941		if (to_journal) {
3942			down_write(&curseg->journal_rwsem);
3943		} else {
3944			page = get_next_sit_page(sbi, start_segno);
3945			raw_sit = page_address(page);
3946		}
3947
3948		/* flush dirty sit entries in region of current sit set */
3949		for_each_set_bit_from(segno, bitmap, end) {
3950			int offset, sit_offset;
3951
3952			se = get_seg_entry(sbi, segno);
3953#ifdef CONFIG_F2FS_CHECK_FS
3954			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3955						SIT_VBLOCK_MAP_SIZE))
3956				f2fs_bug_on(sbi, 1);
3957#endif
3958
3959			/* add discard candidates */
3960			if (!(cpc->reason & CP_DISCARD)) {
3961				cpc->trim_start = segno;
3962				add_discard_addrs(sbi, cpc, false);
3963			}
3964
3965			if (to_journal) {
3966				offset = f2fs_lookup_journal_in_cursum(journal,
3967							SIT_JOURNAL, segno, 1);
3968				f2fs_bug_on(sbi, offset < 0);
3969				segno_in_journal(journal, offset) =
3970							cpu_to_le32(segno);
3971				seg_info_to_raw_sit(se,
3972					&sit_in_journal(journal, offset));
3973				check_block_count(sbi, segno,
3974					&sit_in_journal(journal, offset));
3975			} else {
3976				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3977				seg_info_to_raw_sit(se,
3978						&raw_sit->entries[sit_offset]);
3979				check_block_count(sbi, segno,
3980						&raw_sit->entries[sit_offset]);
3981			}
3982
3983			__clear_bit(segno, bitmap);
3984			sit_i->dirty_sentries--;
3985			ses->entry_cnt--;
3986		}
3987
3988		if (to_journal)
3989			up_write(&curseg->journal_rwsem);
3990		else
3991			f2fs_put_page(page, 1);
3992
3993		f2fs_bug_on(sbi, ses->entry_cnt);
3994		release_sit_entry_set(ses);
3995	}
3996
3997	f2fs_bug_on(sbi, !list_empty(head));
3998	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3999out:
4000	if (cpc->reason & CP_DISCARD) {
4001		__u64 trim_start = cpc->trim_start;
4002
4003		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4004			add_discard_addrs(sbi, cpc, false);
4005
4006		cpc->trim_start = trim_start;
4007	}
4008	up_write(&sit_i->sentry_lock);
4009
4010	set_prefree_as_free_segments(sbi);
4011}
4012
4013static int build_sit_info(struct f2fs_sb_info *sbi)
4014{
4015	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 
4016	struct sit_info *sit_i;
4017	unsigned int sit_segs, start;
4018	char *src_bitmap, *bitmap;
4019	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4020
4021	/* allocate memory for SIT information */
4022	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4023	if (!sit_i)
4024		return -ENOMEM;
4025
4026	SM_I(sbi)->sit_info = sit_i;
4027
4028	sit_i->sentries =
4029		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4030					      MAIN_SEGS(sbi)),
4031			      GFP_KERNEL);
4032	if (!sit_i->sentries)
4033		return -ENOMEM;
4034
4035	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4036	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4037								GFP_KERNEL);
4038	if (!sit_i->dirty_sentries_bitmap)
4039		return -ENOMEM;
4040
4041#ifdef CONFIG_F2FS_CHECK_FS
4042	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4043#else
4044	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4045#endif
4046	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4047	if (!sit_i->bitmap)
4048		return -ENOMEM;
4049
4050	bitmap = sit_i->bitmap;
4051
4052	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4053		sit_i->sentries[start].cur_valid_map = bitmap;
4054		bitmap += SIT_VBLOCK_MAP_SIZE;
4055
4056		sit_i->sentries[start].ckpt_valid_map = bitmap;
4057		bitmap += SIT_VBLOCK_MAP_SIZE;
4058
4059#ifdef CONFIG_F2FS_CHECK_FS
4060		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4061		bitmap += SIT_VBLOCK_MAP_SIZE;
4062#endif
4063
4064		sit_i->sentries[start].discard_map = bitmap;
4065		bitmap += SIT_VBLOCK_MAP_SIZE;
4066	}
4067
4068	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4069	if (!sit_i->tmp_map)
4070		return -ENOMEM;
4071
4072	if (__is_large_section(sbi)) {
4073		sit_i->sec_entries =
4074			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4075						      MAIN_SECS(sbi)),
4076				      GFP_KERNEL);
4077		if (!sit_i->sec_entries)
4078			return -ENOMEM;
4079	}
4080
4081	/* get information related with SIT */
4082	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4083
4084	/* setup SIT bitmap from ckeckpoint pack */
4085	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4086	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4087
4088	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4089	if (!sit_i->sit_bitmap)
4090		return -ENOMEM;
4091
4092#ifdef CONFIG_F2FS_CHECK_FS
4093	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4094					sit_bitmap_size, GFP_KERNEL);
4095	if (!sit_i->sit_bitmap_mir)
4096		return -ENOMEM;
4097
4098	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4099					main_bitmap_size, GFP_KERNEL);
4100	if (!sit_i->invalid_segmap)
4101		return -ENOMEM;
4102#endif
4103
4104	/* init SIT information */
4105	sit_i->s_ops = &default_salloc_ops;
4106
4107	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4108	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4109	sit_i->written_valid_blocks = 0;
4110	sit_i->bitmap_size = sit_bitmap_size;
 
4111	sit_i->dirty_sentries = 0;
4112	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4113	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4114	sit_i->mounted_time = ktime_get_boottime_seconds();
4115	init_rwsem(&sit_i->sentry_lock);
4116	return 0;
4117}
4118
4119static int build_free_segmap(struct f2fs_sb_info *sbi)
4120{
4121	struct free_segmap_info *free_i;
4122	unsigned int bitmap_size, sec_bitmap_size;
4123
4124	/* allocate memory for free segmap information */
4125	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4126	if (!free_i)
4127		return -ENOMEM;
4128
4129	SM_I(sbi)->free_info = free_i;
4130
4131	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4132	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4133	if (!free_i->free_segmap)
4134		return -ENOMEM;
4135
4136	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4137	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4138	if (!free_i->free_secmap)
4139		return -ENOMEM;
4140
4141	/* set all segments as dirty temporarily */
4142	memset(free_i->free_segmap, 0xff, bitmap_size);
4143	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4144
4145	/* init free segmap information */
4146	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4147	free_i->free_segments = 0;
4148	free_i->free_sections = 0;
4149	spin_lock_init(&free_i->segmap_lock);
4150	return 0;
4151}
4152
4153static int build_curseg(struct f2fs_sb_info *sbi)
4154{
4155	struct curseg_info *array;
4156	int i;
4157
4158	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4159			     GFP_KERNEL);
4160	if (!array)
4161		return -ENOMEM;
4162
4163	SM_I(sbi)->curseg_array = array;
4164
4165	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4166		mutex_init(&array[i].curseg_mutex);
4167		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4168		if (!array[i].sum_blk)
4169			return -ENOMEM;
4170		init_rwsem(&array[i].journal_rwsem);
4171		array[i].journal = f2fs_kzalloc(sbi,
4172				sizeof(struct f2fs_journal), GFP_KERNEL);
4173		if (!array[i].journal)
4174			return -ENOMEM;
4175		array[i].segno = NULL_SEGNO;
4176		array[i].next_blkoff = 0;
4177	}
4178	return restore_curseg_summaries(sbi);
4179}
4180
4181static int build_sit_entries(struct f2fs_sb_info *sbi)
4182{
4183	struct sit_info *sit_i = SIT_I(sbi);
4184	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4185	struct f2fs_journal *journal = curseg->journal;
4186	struct seg_entry *se;
4187	struct f2fs_sit_entry sit;
4188	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4189	unsigned int i, start, end;
4190	unsigned int readed, start_blk = 0;
4191	int err = 0;
4192	block_t total_node_blocks = 0;
4193
4194	do {
4195		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4196							META_SIT, true);
4197
4198		start = start_blk * sit_i->sents_per_block;
4199		end = (start_blk + readed) * sit_i->sents_per_block;
4200
4201		for (; start < end && start < MAIN_SEGS(sbi); start++) {
 
4202			struct f2fs_sit_block *sit_blk;
 
4203			struct page *page;
4204
4205			se = &sit_i->sentries[start];
 
 
 
 
 
 
 
 
 
 
4206			page = get_current_sit_page(sbi, start);
4207			if (IS_ERR(page))
4208				return PTR_ERR(page);
4209			sit_blk = (struct f2fs_sit_block *)page_address(page);
4210			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4211			f2fs_put_page(page, 1);
4212
4213			err = check_block_count(sbi, start, &sit);
4214			if (err)
4215				return err;
4216			seg_info_from_raw_sit(se, &sit);
4217			if (IS_NODESEG(se->type))
4218				total_node_blocks += se->valid_blocks;
4219
4220			/* build discard map only one time */
4221			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4222				memset(se->discard_map, 0xff,
4223					SIT_VBLOCK_MAP_SIZE);
4224			} else {
4225				memcpy(se->discard_map,
4226					se->cur_valid_map,
4227					SIT_VBLOCK_MAP_SIZE);
4228				sbi->discard_blks +=
4229					sbi->blocks_per_seg -
4230					se->valid_blocks;
4231			}
4232
4233			if (__is_large_section(sbi))
4234				get_sec_entry(sbi, start)->valid_blocks +=
4235							se->valid_blocks;
4236		}
4237		start_blk += readed;
4238	} while (start_blk < sit_blk_cnt);
4239
4240	down_read(&curseg->journal_rwsem);
4241	for (i = 0; i < sits_in_cursum(journal); i++) {
4242		unsigned int old_valid_blocks;
4243
4244		start = le32_to_cpu(segno_in_journal(journal, i));
4245		if (start >= MAIN_SEGS(sbi)) {
4246			f2fs_err(sbi, "Wrong journal entry on segno %u",
4247				 start);
4248			err = -EFSCORRUPTED;
4249			break;
4250		}
4251
4252		se = &sit_i->sentries[start];
4253		sit = sit_in_journal(journal, i);
4254
4255		old_valid_blocks = se->valid_blocks;
4256		if (IS_NODESEG(se->type))
4257			total_node_blocks -= old_valid_blocks;
4258
4259		err = check_block_count(sbi, start, &sit);
4260		if (err)
4261			break;
4262		seg_info_from_raw_sit(se, &sit);
4263		if (IS_NODESEG(se->type))
4264			total_node_blocks += se->valid_blocks;
4265
4266		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4267			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4268		} else {
4269			memcpy(se->discard_map, se->cur_valid_map,
4270						SIT_VBLOCK_MAP_SIZE);
4271			sbi->discard_blks += old_valid_blocks;
4272			sbi->discard_blks -= se->valid_blocks;
4273		}
4274
4275		if (__is_large_section(sbi)) {
4276			get_sec_entry(sbi, start)->valid_blocks +=
4277							se->valid_blocks;
4278			get_sec_entry(sbi, start)->valid_blocks -=
4279							old_valid_blocks;
4280		}
4281	}
4282	up_read(&curseg->journal_rwsem);
4283
4284	if (!err && total_node_blocks != valid_node_count(sbi)) {
4285		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4286			 total_node_blocks, valid_node_count(sbi));
4287		err = -EFSCORRUPTED;
4288	}
4289
4290	return err;
4291}
4292
4293static void init_free_segmap(struct f2fs_sb_info *sbi)
4294{
4295	unsigned int start;
4296	int type;
4297
4298	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4299		struct seg_entry *sentry = get_seg_entry(sbi, start);
4300		if (!sentry->valid_blocks)
4301			__set_free(sbi, start);
4302		else
4303			SIT_I(sbi)->written_valid_blocks +=
4304						sentry->valid_blocks;
4305	}
4306
4307	/* set use the current segments */
4308	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4309		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4310		__set_test_and_inuse(sbi, curseg_t->segno);
4311	}
4312}
4313
4314static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4315{
4316	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4317	struct free_segmap_info *free_i = FREE_I(sbi);
4318	unsigned int segno = 0, offset = 0, secno;
4319	block_t valid_blocks;
4320	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4321
4322	while (1) {
4323		/* find dirty segment based on free segmap */
4324		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4325		if (segno >= MAIN_SEGS(sbi))
4326			break;
4327		offset = segno + 1;
4328		valid_blocks = get_valid_blocks(sbi, segno, false);
4329		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4330			continue;
4331		if (valid_blocks > sbi->blocks_per_seg) {
4332			f2fs_bug_on(sbi, 1);
4333			continue;
4334		}
4335		mutex_lock(&dirty_i->seglist_lock);
4336		__locate_dirty_segment(sbi, segno, DIRTY);
4337		mutex_unlock(&dirty_i->seglist_lock);
4338	}
4339
4340	if (!__is_large_section(sbi))
4341		return;
4342
4343	mutex_lock(&dirty_i->seglist_lock);
4344	for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) {
4345		valid_blocks = get_valid_blocks(sbi, segno, true);
4346		secno = GET_SEC_FROM_SEG(sbi, segno);
4347
4348		if (!valid_blocks || valid_blocks == blks_per_sec)
4349			continue;
4350		if (IS_CURSEC(sbi, secno))
4351			continue;
4352		set_bit(secno, dirty_i->dirty_secmap);
4353	}
4354	mutex_unlock(&dirty_i->seglist_lock);
4355}
4356
4357static int init_victim_secmap(struct f2fs_sb_info *sbi)
4358{
4359	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4360	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4361
4362	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4363	if (!dirty_i->victim_secmap)
4364		return -ENOMEM;
4365	return 0;
4366}
4367
4368static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4369{
4370	struct dirty_seglist_info *dirty_i;
4371	unsigned int bitmap_size, i;
4372
4373	/* allocate memory for dirty segments list information */
4374	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4375								GFP_KERNEL);
4376	if (!dirty_i)
4377		return -ENOMEM;
4378
4379	SM_I(sbi)->dirty_info = dirty_i;
4380	mutex_init(&dirty_i->seglist_lock);
4381
4382	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4383
4384	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4385		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4386								GFP_KERNEL);
4387		if (!dirty_i->dirty_segmap[i])
4388			return -ENOMEM;
4389	}
4390
4391	if (__is_large_section(sbi)) {
4392		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4393		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4394						bitmap_size, GFP_KERNEL);
4395		if (!dirty_i->dirty_secmap)
4396			return -ENOMEM;
4397	}
4398
4399	init_dirty_segmap(sbi);
4400	return init_victim_secmap(sbi);
4401}
4402
4403static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4404{
4405	int i;
4406
4407	/*
4408	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4409	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4410	 */
4411	for (i = 0; i < NO_CHECK_TYPE; i++) {
4412		struct curseg_info *curseg = CURSEG_I(sbi, i);
4413		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4414		unsigned int blkofs = curseg->next_blkoff;
4415
4416		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4417			goto out;
4418
4419		if (curseg->alloc_type == SSR)
4420			continue;
4421
4422		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4423			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4424				continue;
4425out:
4426			f2fs_err(sbi,
4427				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4428				 i, curseg->segno, curseg->alloc_type,
4429				 curseg->next_blkoff, blkofs);
4430			return -EFSCORRUPTED;
4431		}
4432	}
4433	return 0;
4434}
4435
4436#ifdef CONFIG_BLK_DEV_ZONED
4437
4438static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4439				    struct f2fs_dev_info *fdev,
4440				    struct blk_zone *zone)
4441{
4442	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4443	block_t zone_block, wp_block, last_valid_block;
4444	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4445	int i, s, b, ret;
4446	struct seg_entry *se;
4447
4448	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4449		return 0;
4450
4451	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4452	wp_segno = GET_SEGNO(sbi, wp_block);
4453	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4454	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4455	zone_segno = GET_SEGNO(sbi, zone_block);
4456	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4457
4458	if (zone_segno >= MAIN_SEGS(sbi))
4459		return 0;
4460
4461	/*
4462	 * Skip check of zones cursegs point to, since
4463	 * fix_curseg_write_pointer() checks them.
4464	 */
4465	for (i = 0; i < NO_CHECK_TYPE; i++)
4466		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4467						   CURSEG_I(sbi, i)->segno))
4468			return 0;
4469
4470	/*
4471	 * Get last valid block of the zone.
4472	 */
4473	last_valid_block = zone_block - 1;
4474	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4475		segno = zone_segno + s;
4476		se = get_seg_entry(sbi, segno);
4477		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4478			if (f2fs_test_bit(b, se->cur_valid_map)) {
4479				last_valid_block = START_BLOCK(sbi, segno) + b;
4480				break;
4481			}
4482		if (last_valid_block >= zone_block)
4483			break;
4484	}
4485
4486	/*
4487	 * If last valid block is beyond the write pointer, report the
4488	 * inconsistency. This inconsistency does not cause write error
4489	 * because the zone will not be selected for write operation until
4490	 * it get discarded. Just report it.
4491	 */
4492	if (last_valid_block >= wp_block) {
4493		f2fs_notice(sbi, "Valid block beyond write pointer: "
4494			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4495			    GET_SEGNO(sbi, last_valid_block),
4496			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4497			    wp_segno, wp_blkoff);
4498		return 0;
4499	}
4500
4501	/*
4502	 * If there is no valid block in the zone and if write pointer is
4503	 * not at zone start, reset the write pointer.
4504	 */
4505	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4506		f2fs_notice(sbi,
4507			    "Zone without valid block has non-zero write "
4508			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4509			    wp_segno, wp_blkoff);
4510		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4511					zone->len >> log_sectors_per_block);
4512		if (ret) {
4513			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4514				 fdev->path, ret);
4515			return ret;
4516		}
4517	}
4518
4519	return 0;
4520}
4521
4522static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4523						  block_t zone_blkaddr)
4524{
4525	int i;
4526
4527	for (i = 0; i < sbi->s_ndevs; i++) {
4528		if (!bdev_is_zoned(FDEV(i).bdev))
4529			continue;
4530		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4531				zone_blkaddr <= FDEV(i).end_blk))
4532			return &FDEV(i);
4533	}
4534
4535	return NULL;
4536}
4537
4538static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4539			      void *data) {
4540	memcpy(data, zone, sizeof(struct blk_zone));
4541	return 0;
4542}
4543
4544static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4545{
4546	struct curseg_info *cs = CURSEG_I(sbi, type);
4547	struct f2fs_dev_info *zbd;
4548	struct blk_zone zone;
4549	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4550	block_t cs_zone_block, wp_block;
4551	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4552	sector_t zone_sector;
4553	int err;
4554
4555	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4556	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4557
4558	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4559	if (!zbd)
4560		return 0;
4561
4562	/* report zone for the sector the curseg points to */
4563	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4564		<< log_sectors_per_block;
4565	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4566				  report_one_zone_cb, &zone);
4567	if (err != 1) {
4568		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4569			 zbd->path, err);
4570		return err;
4571	}
4572
4573	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4574		return 0;
4575
4576	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4577	wp_segno = GET_SEGNO(sbi, wp_block);
4578	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4579	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4580
4581	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4582		wp_sector_off == 0)
4583		return 0;
4584
4585	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4586		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4587		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4588
4589	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4590		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4591	allocate_segment_by_default(sbi, type, true);
4592
4593	/* check consistency of the zone curseg pointed to */
4594	if (check_zone_write_pointer(sbi, zbd, &zone))
4595		return -EIO;
4596
4597	/* check newly assigned zone */
4598	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4599	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4600
4601	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4602	if (!zbd)
4603		return 0;
4604
4605	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4606		<< log_sectors_per_block;
4607	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4608				  report_one_zone_cb, &zone);
4609	if (err != 1) {
4610		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4611			 zbd->path, err);
4612		return err;
4613	}
4614
4615	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4616		return 0;
4617
4618	if (zone.wp != zone.start) {
4619		f2fs_notice(sbi,
4620			    "New zone for curseg[%d] is not yet discarded. "
4621			    "Reset the zone: curseg[0x%x,0x%x]",
4622			    type, cs->segno, cs->next_blkoff);
4623		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4624				zone_sector >> log_sectors_per_block,
4625				zone.len >> log_sectors_per_block);
4626		if (err) {
4627			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4628				 zbd->path, err);
4629			return err;
4630		}
4631	}
4632
4633	return 0;
4634}
4635
4636int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4637{
4638	int i, ret;
4639
4640	for (i = 0; i < NO_CHECK_TYPE; i++) {
4641		ret = fix_curseg_write_pointer(sbi, i);
4642		if (ret)
4643			return ret;
4644	}
4645
4646	return 0;
4647}
4648
4649struct check_zone_write_pointer_args {
4650	struct f2fs_sb_info *sbi;
4651	struct f2fs_dev_info *fdev;
4652};
4653
4654static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4655				      void *data) {
4656	struct check_zone_write_pointer_args *args;
4657	args = (struct check_zone_write_pointer_args *)data;
4658
4659	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4660}
4661
4662int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4663{
4664	int i, ret;
4665	struct check_zone_write_pointer_args args;
4666
4667	for (i = 0; i < sbi->s_ndevs; i++) {
4668		if (!bdev_is_zoned(FDEV(i).bdev))
4669			continue;
4670
4671		args.sbi = sbi;
4672		args.fdev = &FDEV(i);
4673		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4674					  check_zone_write_pointer_cb, &args);
4675		if (ret < 0)
4676			return ret;
4677	}
4678
4679	return 0;
4680}
4681#else
4682int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4683{
4684	return 0;
4685}
4686
4687int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4688{
4689	return 0;
4690}
4691#endif
4692
4693/*
4694 * Update min, max modified time for cost-benefit GC algorithm
4695 */
4696static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4697{
4698	struct sit_info *sit_i = SIT_I(sbi);
4699	unsigned int segno;
4700
4701	down_write(&sit_i->sentry_lock);
4702
4703	sit_i->min_mtime = ULLONG_MAX;
4704
4705	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4706		unsigned int i;
4707		unsigned long long mtime = 0;
4708
4709		for (i = 0; i < sbi->segs_per_sec; i++)
4710			mtime += get_seg_entry(sbi, segno + i)->mtime;
4711
4712		mtime = div_u64(mtime, sbi->segs_per_sec);
4713
4714		if (sit_i->min_mtime > mtime)
4715			sit_i->min_mtime = mtime;
4716	}
4717	sit_i->max_mtime = get_mtime(sbi, false);
4718	up_write(&sit_i->sentry_lock);
4719}
4720
4721int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4722{
4723	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4724	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4725	struct f2fs_sm_info *sm_info;
4726	int err;
4727
4728	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4729	if (!sm_info)
4730		return -ENOMEM;
4731
4732	/* init sm info */
4733	sbi->sm_info = sm_info;
4734	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4735	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4736	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4737	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4738	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4739	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4740	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4741	sm_info->rec_prefree_segments = sm_info->main_segments *
4742					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4743	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4744		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4745
4746	if (!f2fs_lfs_mode(sbi))
4747		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4748	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4749	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4750	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4751	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4752	sm_info->min_ssr_sections = reserved_sections(sbi);
 
 
 
4753
4754	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4755
4756	init_rwsem(&sm_info->curseg_lock);
4757
4758	if (!f2fs_readonly(sbi->sb)) {
4759		err = f2fs_create_flush_cmd_control(sbi);
4760		if (err)
4761			return err;
4762	}
4763
4764	err = create_discard_cmd_control(sbi);
4765	if (err)
4766		return err;
4767
4768	err = build_sit_info(sbi);
4769	if (err)
4770		return err;
4771	err = build_free_segmap(sbi);
4772	if (err)
4773		return err;
4774	err = build_curseg(sbi);
4775	if (err)
4776		return err;
4777
4778	/* reinit free segmap based on SIT */
4779	err = build_sit_entries(sbi);
4780	if (err)
4781		return err;
4782
4783	init_free_segmap(sbi);
4784	err = build_dirty_segmap(sbi);
4785	if (err)
4786		return err;
4787
4788	err = sanity_check_curseg(sbi);
4789	if (err)
4790		return err;
4791
4792	init_min_max_mtime(sbi);
4793	return 0;
4794}
4795
4796static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4797		enum dirty_type dirty_type)
4798{
4799	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4800
4801	mutex_lock(&dirty_i->seglist_lock);
4802	kvfree(dirty_i->dirty_segmap[dirty_type]);
4803	dirty_i->nr_dirty[dirty_type] = 0;
4804	mutex_unlock(&dirty_i->seglist_lock);
4805}
4806
4807static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4808{
4809	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4810	kvfree(dirty_i->victim_secmap);
4811}
4812
4813static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4814{
4815	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4816	int i;
4817
4818	if (!dirty_i)
4819		return;
4820
4821	/* discard pre-free/dirty segments list */
4822	for (i = 0; i < NR_DIRTY_TYPE; i++)
4823		discard_dirty_segmap(sbi, i);
4824
4825	if (__is_large_section(sbi)) {
4826		mutex_lock(&dirty_i->seglist_lock);
4827		kvfree(dirty_i->dirty_secmap);
4828		mutex_unlock(&dirty_i->seglist_lock);
4829	}
4830
4831	destroy_victim_secmap(sbi);
4832	SM_I(sbi)->dirty_info = NULL;
4833	kvfree(dirty_i);
4834}
4835
4836static void destroy_curseg(struct f2fs_sb_info *sbi)
4837{
4838	struct curseg_info *array = SM_I(sbi)->curseg_array;
4839	int i;
4840
4841	if (!array)
4842		return;
4843	SM_I(sbi)->curseg_array = NULL;
4844	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4845		kvfree(array[i].sum_blk);
4846		kvfree(array[i].journal);
4847	}
4848	kvfree(array);
4849}
4850
4851static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4852{
4853	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4854	if (!free_i)
4855		return;
4856	SM_I(sbi)->free_info = NULL;
4857	kvfree(free_i->free_segmap);
4858	kvfree(free_i->free_secmap);
4859	kvfree(free_i);
4860}
4861
4862static void destroy_sit_info(struct f2fs_sb_info *sbi)
4863{
4864	struct sit_info *sit_i = SIT_I(sbi);
 
4865
4866	if (!sit_i)
4867		return;
4868
4869	if (sit_i->sentries)
4870		kvfree(sit_i->bitmap);
4871	kvfree(sit_i->tmp_map);
 
 
 
 
 
4872
4873	kvfree(sit_i->sentries);
4874	kvfree(sit_i->sec_entries);
4875	kvfree(sit_i->dirty_sentries_bitmap);
4876
4877	SM_I(sbi)->sit_info = NULL;
4878	kvfree(sit_i->sit_bitmap);
4879#ifdef CONFIG_F2FS_CHECK_FS
4880	kvfree(sit_i->sit_bitmap_mir);
4881	kvfree(sit_i->invalid_segmap);
4882#endif
4883	kvfree(sit_i);
4884}
4885
4886void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4887{
4888	struct f2fs_sm_info *sm_info = SM_I(sbi);
4889
4890	if (!sm_info)
4891		return;
4892	f2fs_destroy_flush_cmd_control(sbi, true);
4893	destroy_discard_cmd_control(sbi);
4894	destroy_dirty_segmap(sbi);
4895	destroy_curseg(sbi);
4896	destroy_free_segmap(sbi);
4897	destroy_sit_info(sbi);
4898	sbi->sm_info = NULL;
4899	kvfree(sm_info);
4900}
4901
4902int __init f2fs_create_segment_manager_caches(void)
4903{
4904	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4905			sizeof(struct discard_entry));
4906	if (!discard_entry_slab)
4907		goto fail;
4908
4909	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4910			sizeof(struct discard_cmd));
4911	if (!discard_cmd_slab)
4912		goto destroy_discard_entry;
4913
4914	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4915			sizeof(struct sit_entry_set));
4916	if (!sit_entry_set_slab)
4917		goto destroy_discard_cmd;
4918
4919	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4920			sizeof(struct inmem_pages));
4921	if (!inmem_entry_slab)
4922		goto destroy_sit_entry_set;
4923	return 0;
4924
4925destroy_sit_entry_set:
4926	kmem_cache_destroy(sit_entry_set_slab);
4927destroy_discard_cmd:
4928	kmem_cache_destroy(discard_cmd_slab);
4929destroy_discard_entry:
4930	kmem_cache_destroy(discard_entry_slab);
4931fail:
4932	return -ENOMEM;
4933}
4934
4935void f2fs_destroy_segment_manager_caches(void)
4936{
4937	kmem_cache_destroy(sit_entry_set_slab);
4938	kmem_cache_destroy(discard_cmd_slab);
4939	kmem_cache_destroy(discard_entry_slab);
4940	kmem_cache_destroy(inmem_entry_slab);
4941}