Loading...
1/*
2 * fs/f2fs/segment.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/bio.h>
14#include <linux/blkdev.h>
15#include <linux/prefetch.h>
16#include <linux/kthread.h>
17#include <linux/swap.h>
18#include <linux/timer.h>
19
20#include "f2fs.h"
21#include "segment.h"
22#include "node.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define __reverse_ffz(x) __reverse_ffs(~(x))
27
28static struct kmem_cache *discard_entry_slab;
29static struct kmem_cache *sit_entry_set_slab;
30static struct kmem_cache *inmem_entry_slab;
31
32static unsigned long __reverse_ulong(unsigned char *str)
33{
34 unsigned long tmp = 0;
35 int shift = 24, idx = 0;
36
37#if BITS_PER_LONG == 64
38 shift = 56;
39#endif
40 while (shift >= 0) {
41 tmp |= (unsigned long)str[idx++] << shift;
42 shift -= BITS_PER_BYTE;
43 }
44 return tmp;
45}
46
47/*
48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
50 */
51static inline unsigned long __reverse_ffs(unsigned long word)
52{
53 int num = 0;
54
55#if BITS_PER_LONG == 64
56 if ((word & 0xffffffff00000000UL) == 0)
57 num += 32;
58 else
59 word >>= 32;
60#endif
61 if ((word & 0xffff0000) == 0)
62 num += 16;
63 else
64 word >>= 16;
65
66 if ((word & 0xff00) == 0)
67 num += 8;
68 else
69 word >>= 8;
70
71 if ((word & 0xf0) == 0)
72 num += 4;
73 else
74 word >>= 4;
75
76 if ((word & 0xc) == 0)
77 num += 2;
78 else
79 word >>= 2;
80
81 if ((word & 0x2) == 0)
82 num += 1;
83 return num;
84}
85
86/*
87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
89 * @size must be integral times of unsigned long.
90 * Example:
91 * MSB <--> LSB
92 * f2fs_set_bit(0, bitmap) => 1000 0000
93 * f2fs_set_bit(7, bitmap) => 0000 0001
94 */
95static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 unsigned long size, unsigned long offset)
97{
98 const unsigned long *p = addr + BIT_WORD(offset);
99 unsigned long result = size;
100 unsigned long tmp;
101
102 if (offset >= size)
103 return size;
104
105 size -= (offset & ~(BITS_PER_LONG - 1));
106 offset %= BITS_PER_LONG;
107
108 while (1) {
109 if (*p == 0)
110 goto pass;
111
112 tmp = __reverse_ulong((unsigned char *)p);
113
114 tmp &= ~0UL >> offset;
115 if (size < BITS_PER_LONG)
116 tmp &= (~0UL << (BITS_PER_LONG - size));
117 if (tmp)
118 goto found;
119pass:
120 if (size <= BITS_PER_LONG)
121 break;
122 size -= BITS_PER_LONG;
123 offset = 0;
124 p++;
125 }
126 return result;
127found:
128 return result - size + __reverse_ffs(tmp);
129}
130
131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 unsigned long size, unsigned long offset)
133{
134 const unsigned long *p = addr + BIT_WORD(offset);
135 unsigned long result = size;
136 unsigned long tmp;
137
138 if (offset >= size)
139 return size;
140
141 size -= (offset & ~(BITS_PER_LONG - 1));
142 offset %= BITS_PER_LONG;
143
144 while (1) {
145 if (*p == ~0UL)
146 goto pass;
147
148 tmp = __reverse_ulong((unsigned char *)p);
149
150 if (offset)
151 tmp |= ~0UL << (BITS_PER_LONG - offset);
152 if (size < BITS_PER_LONG)
153 tmp |= ~0UL >> size;
154 if (tmp != ~0UL)
155 goto found;
156pass:
157 if (size <= BITS_PER_LONG)
158 break;
159 size -= BITS_PER_LONG;
160 offset = 0;
161 p++;
162 }
163 return result;
164found:
165 return result - size + __reverse_ffz(tmp);
166}
167
168void register_inmem_page(struct inode *inode, struct page *page)
169{
170 struct f2fs_inode_info *fi = F2FS_I(inode);
171 struct inmem_pages *new;
172
173 f2fs_trace_pid(page);
174
175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176 SetPagePrivate(page);
177
178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179
180 /* add atomic page indices to the list */
181 new->page = page;
182 INIT_LIST_HEAD(&new->list);
183
184 /* increase reference count with clean state */
185 mutex_lock(&fi->inmem_lock);
186 get_page(page);
187 list_add_tail(&new->list, &fi->inmem_pages);
188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189 mutex_unlock(&fi->inmem_lock);
190
191 trace_f2fs_register_inmem_page(page, INMEM);
192}
193
194static int __revoke_inmem_pages(struct inode *inode,
195 struct list_head *head, bool drop, bool recover)
196{
197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198 struct inmem_pages *cur, *tmp;
199 int err = 0;
200
201 list_for_each_entry_safe(cur, tmp, head, list) {
202 struct page *page = cur->page;
203
204 if (drop)
205 trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206
207 lock_page(page);
208
209 if (recover) {
210 struct dnode_of_data dn;
211 struct node_info ni;
212
213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214
215 set_new_dnode(&dn, inode, NULL, NULL, 0);
216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217 err = -EAGAIN;
218 goto next;
219 }
220 get_node_info(sbi, dn.nid, &ni);
221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222 cur->old_addr, ni.version, true, true);
223 f2fs_put_dnode(&dn);
224 }
225next:
226 ClearPageUptodate(page);
227 set_page_private(page, 0);
228 ClearPageUptodate(page);
229 f2fs_put_page(page, 1);
230
231 list_del(&cur->list);
232 kmem_cache_free(inmem_entry_slab, cur);
233 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
234 }
235 return err;
236}
237
238void drop_inmem_pages(struct inode *inode)
239{
240 struct f2fs_inode_info *fi = F2FS_I(inode);
241
242 mutex_lock(&fi->inmem_lock);
243 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
244 mutex_unlock(&fi->inmem_lock);
245}
246
247static int __commit_inmem_pages(struct inode *inode,
248 struct list_head *revoke_list)
249{
250 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
251 struct f2fs_inode_info *fi = F2FS_I(inode);
252 struct inmem_pages *cur, *tmp;
253 struct f2fs_io_info fio = {
254 .sbi = sbi,
255 .type = DATA,
256 .rw = WRITE_SYNC | REQ_PRIO,
257 .encrypted_page = NULL,
258 };
259 bool submit_bio = false;
260 int err = 0;
261
262 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
263 struct page *page = cur->page;
264
265 lock_page(page);
266 if (page->mapping == inode->i_mapping) {
267 trace_f2fs_commit_inmem_page(page, INMEM);
268
269 set_page_dirty(page);
270 f2fs_wait_on_page_writeback(page, DATA, true);
271 if (clear_page_dirty_for_io(page))
272 inode_dec_dirty_pages(inode);
273
274 fio.page = page;
275 err = do_write_data_page(&fio);
276 if (err) {
277 unlock_page(page);
278 break;
279 }
280
281 /* record old blkaddr for revoking */
282 cur->old_addr = fio.old_blkaddr;
283
284 clear_cold_data(page);
285 submit_bio = true;
286 }
287 unlock_page(page);
288 list_move_tail(&cur->list, revoke_list);
289 }
290
291 if (submit_bio)
292 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
293
294 if (!err)
295 __revoke_inmem_pages(inode, revoke_list, false, false);
296
297 return err;
298}
299
300int commit_inmem_pages(struct inode *inode)
301{
302 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
303 struct f2fs_inode_info *fi = F2FS_I(inode);
304 struct list_head revoke_list;
305 int err;
306
307 INIT_LIST_HEAD(&revoke_list);
308 f2fs_balance_fs(sbi, true);
309 f2fs_lock_op(sbi);
310
311 mutex_lock(&fi->inmem_lock);
312 err = __commit_inmem_pages(inode, &revoke_list);
313 if (err) {
314 int ret;
315 /*
316 * try to revoke all committed pages, but still we could fail
317 * due to no memory or other reason, if that happened, EAGAIN
318 * will be returned, which means in such case, transaction is
319 * already not integrity, caller should use journal to do the
320 * recovery or rewrite & commit last transaction. For other
321 * error number, revoking was done by filesystem itself.
322 */
323 ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
324 if (ret)
325 err = ret;
326
327 /* drop all uncommitted pages */
328 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
329 }
330 mutex_unlock(&fi->inmem_lock);
331
332 f2fs_unlock_op(sbi);
333 return err;
334}
335
336/*
337 * This function balances dirty node and dentry pages.
338 * In addition, it controls garbage collection.
339 */
340void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
341{
342 if (!need)
343 return;
344 /*
345 * We should do GC or end up with checkpoint, if there are so many dirty
346 * dir/node pages without enough free segments.
347 */
348 if (has_not_enough_free_secs(sbi, 0)) {
349 mutex_lock(&sbi->gc_mutex);
350 f2fs_gc(sbi, false);
351 }
352}
353
354void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
355{
356 /* try to shrink extent cache when there is no enough memory */
357 if (!available_free_memory(sbi, EXTENT_CACHE))
358 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
359
360 /* check the # of cached NAT entries */
361 if (!available_free_memory(sbi, NAT_ENTRIES))
362 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
363
364 if (!available_free_memory(sbi, FREE_NIDS))
365 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
366
367 /* checkpoint is the only way to shrink partial cached entries */
368 if (!available_free_memory(sbi, NAT_ENTRIES) ||
369 !available_free_memory(sbi, INO_ENTRIES) ||
370 excess_prefree_segs(sbi) ||
371 excess_dirty_nats(sbi) ||
372 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
373 if (test_opt(sbi, DATA_FLUSH)) {
374 struct blk_plug plug;
375
376 blk_start_plug(&plug);
377 sync_dirty_inodes(sbi, FILE_INODE);
378 blk_finish_plug(&plug);
379 }
380 f2fs_sync_fs(sbi->sb, true);
381 stat_inc_bg_cp_count(sbi->stat_info);
382 }
383}
384
385static int issue_flush_thread(void *data)
386{
387 struct f2fs_sb_info *sbi = data;
388 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
389 wait_queue_head_t *q = &fcc->flush_wait_queue;
390repeat:
391 if (kthread_should_stop())
392 return 0;
393
394 if (!llist_empty(&fcc->issue_list)) {
395 struct bio *bio;
396 struct flush_cmd *cmd, *next;
397 int ret;
398
399 bio = f2fs_bio_alloc(0);
400
401 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
402 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
403
404 bio->bi_bdev = sbi->sb->s_bdev;
405 ret = submit_bio_wait(WRITE_FLUSH, bio);
406
407 llist_for_each_entry_safe(cmd, next,
408 fcc->dispatch_list, llnode) {
409 cmd->ret = ret;
410 complete(&cmd->wait);
411 }
412 bio_put(bio);
413 fcc->dispatch_list = NULL;
414 }
415
416 wait_event_interruptible(*q,
417 kthread_should_stop() || !llist_empty(&fcc->issue_list));
418 goto repeat;
419}
420
421int f2fs_issue_flush(struct f2fs_sb_info *sbi)
422{
423 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
424 struct flush_cmd cmd;
425
426 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
427 test_opt(sbi, FLUSH_MERGE));
428
429 if (test_opt(sbi, NOBARRIER))
430 return 0;
431
432 if (!test_opt(sbi, FLUSH_MERGE)) {
433 struct bio *bio = f2fs_bio_alloc(0);
434 int ret;
435
436 bio->bi_bdev = sbi->sb->s_bdev;
437 ret = submit_bio_wait(WRITE_FLUSH, bio);
438 bio_put(bio);
439 return ret;
440 }
441
442 init_completion(&cmd.wait);
443
444 llist_add(&cmd.llnode, &fcc->issue_list);
445
446 if (!fcc->dispatch_list)
447 wake_up(&fcc->flush_wait_queue);
448
449 wait_for_completion(&cmd.wait);
450
451 return cmd.ret;
452}
453
454int create_flush_cmd_control(struct f2fs_sb_info *sbi)
455{
456 dev_t dev = sbi->sb->s_bdev->bd_dev;
457 struct flush_cmd_control *fcc;
458 int err = 0;
459
460 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
461 if (!fcc)
462 return -ENOMEM;
463 init_waitqueue_head(&fcc->flush_wait_queue);
464 init_llist_head(&fcc->issue_list);
465 SM_I(sbi)->cmd_control_info = fcc;
466 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
467 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
468 if (IS_ERR(fcc->f2fs_issue_flush)) {
469 err = PTR_ERR(fcc->f2fs_issue_flush);
470 kfree(fcc);
471 SM_I(sbi)->cmd_control_info = NULL;
472 return err;
473 }
474
475 return err;
476}
477
478void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
479{
480 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
481
482 if (fcc && fcc->f2fs_issue_flush)
483 kthread_stop(fcc->f2fs_issue_flush);
484 kfree(fcc);
485 SM_I(sbi)->cmd_control_info = NULL;
486}
487
488static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
489 enum dirty_type dirty_type)
490{
491 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
492
493 /* need not be added */
494 if (IS_CURSEG(sbi, segno))
495 return;
496
497 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
498 dirty_i->nr_dirty[dirty_type]++;
499
500 if (dirty_type == DIRTY) {
501 struct seg_entry *sentry = get_seg_entry(sbi, segno);
502 enum dirty_type t = sentry->type;
503
504 if (unlikely(t >= DIRTY)) {
505 f2fs_bug_on(sbi, 1);
506 return;
507 }
508 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
509 dirty_i->nr_dirty[t]++;
510 }
511}
512
513static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
514 enum dirty_type dirty_type)
515{
516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517
518 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
519 dirty_i->nr_dirty[dirty_type]--;
520
521 if (dirty_type == DIRTY) {
522 struct seg_entry *sentry = get_seg_entry(sbi, segno);
523 enum dirty_type t = sentry->type;
524
525 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
526 dirty_i->nr_dirty[t]--;
527
528 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
529 clear_bit(GET_SECNO(sbi, segno),
530 dirty_i->victim_secmap);
531 }
532}
533
534/*
535 * Should not occur error such as -ENOMEM.
536 * Adding dirty entry into seglist is not critical operation.
537 * If a given segment is one of current working segments, it won't be added.
538 */
539static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
540{
541 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
542 unsigned short valid_blocks;
543
544 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
545 return;
546
547 mutex_lock(&dirty_i->seglist_lock);
548
549 valid_blocks = get_valid_blocks(sbi, segno, 0);
550
551 if (valid_blocks == 0) {
552 __locate_dirty_segment(sbi, segno, PRE);
553 __remove_dirty_segment(sbi, segno, DIRTY);
554 } else if (valid_blocks < sbi->blocks_per_seg) {
555 __locate_dirty_segment(sbi, segno, DIRTY);
556 } else {
557 /* Recovery routine with SSR needs this */
558 __remove_dirty_segment(sbi, segno, DIRTY);
559 }
560
561 mutex_unlock(&dirty_i->seglist_lock);
562}
563
564static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
565 block_t blkstart, block_t blklen)
566{
567 sector_t start = SECTOR_FROM_BLOCK(blkstart);
568 sector_t len = SECTOR_FROM_BLOCK(blklen);
569 struct seg_entry *se;
570 unsigned int offset;
571 block_t i;
572
573 for (i = blkstart; i < blkstart + blklen; i++) {
574 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
575 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
576
577 if (!f2fs_test_and_set_bit(offset, se->discard_map))
578 sbi->discard_blks--;
579 }
580 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
581 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
582}
583
584bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
585{
586 int err = -EOPNOTSUPP;
587
588 if (test_opt(sbi, DISCARD)) {
589 struct seg_entry *se = get_seg_entry(sbi,
590 GET_SEGNO(sbi, blkaddr));
591 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
592
593 if (f2fs_test_bit(offset, se->discard_map))
594 return false;
595
596 err = f2fs_issue_discard(sbi, blkaddr, 1);
597 }
598
599 if (err) {
600 update_meta_page(sbi, NULL, blkaddr);
601 return true;
602 }
603 return false;
604}
605
606static void __add_discard_entry(struct f2fs_sb_info *sbi,
607 struct cp_control *cpc, struct seg_entry *se,
608 unsigned int start, unsigned int end)
609{
610 struct list_head *head = &SM_I(sbi)->discard_list;
611 struct discard_entry *new, *last;
612
613 if (!list_empty(head)) {
614 last = list_last_entry(head, struct discard_entry, list);
615 if (START_BLOCK(sbi, cpc->trim_start) + start ==
616 last->blkaddr + last->len) {
617 last->len += end - start;
618 goto done;
619 }
620 }
621
622 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
623 INIT_LIST_HEAD(&new->list);
624 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
625 new->len = end - start;
626 list_add_tail(&new->list, head);
627done:
628 SM_I(sbi)->nr_discards += end - start;
629}
630
631static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
632{
633 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
634 int max_blocks = sbi->blocks_per_seg;
635 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
636 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
637 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
638 unsigned long *discard_map = (unsigned long *)se->discard_map;
639 unsigned long *dmap = SIT_I(sbi)->tmp_map;
640 unsigned int start = 0, end = -1;
641 bool force = (cpc->reason == CP_DISCARD);
642 int i;
643
644 if (se->valid_blocks == max_blocks)
645 return;
646
647 if (!force) {
648 if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
649 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
650 return;
651 }
652
653 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
654 for (i = 0; i < entries; i++)
655 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
656 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
657
658 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
659 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
660 if (start >= max_blocks)
661 break;
662
663 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
664 __add_discard_entry(sbi, cpc, se, start, end);
665 }
666}
667
668void release_discard_addrs(struct f2fs_sb_info *sbi)
669{
670 struct list_head *head = &(SM_I(sbi)->discard_list);
671 struct discard_entry *entry, *this;
672
673 /* drop caches */
674 list_for_each_entry_safe(entry, this, head, list) {
675 list_del(&entry->list);
676 kmem_cache_free(discard_entry_slab, entry);
677 }
678}
679
680/*
681 * Should call clear_prefree_segments after checkpoint is done.
682 */
683static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
684{
685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
686 unsigned int segno;
687
688 mutex_lock(&dirty_i->seglist_lock);
689 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
690 __set_test_and_free(sbi, segno);
691 mutex_unlock(&dirty_i->seglist_lock);
692}
693
694void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
695{
696 struct list_head *head = &(SM_I(sbi)->discard_list);
697 struct discard_entry *entry, *this;
698 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
699 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
700 unsigned int start = 0, end = -1;
701
702 mutex_lock(&dirty_i->seglist_lock);
703
704 while (1) {
705 int i;
706 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
707 if (start >= MAIN_SEGS(sbi))
708 break;
709 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
710 start + 1);
711
712 for (i = start; i < end; i++)
713 clear_bit(i, prefree_map);
714
715 dirty_i->nr_dirty[PRE] -= end - start;
716
717 if (!test_opt(sbi, DISCARD))
718 continue;
719
720 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
721 (end - start) << sbi->log_blocks_per_seg);
722 }
723 mutex_unlock(&dirty_i->seglist_lock);
724
725 /* send small discards */
726 list_for_each_entry_safe(entry, this, head, list) {
727 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
728 goto skip;
729 f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
730 cpc->trimmed += entry->len;
731skip:
732 list_del(&entry->list);
733 SM_I(sbi)->nr_discards -= entry->len;
734 kmem_cache_free(discard_entry_slab, entry);
735 }
736}
737
738static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
739{
740 struct sit_info *sit_i = SIT_I(sbi);
741
742 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
743 sit_i->dirty_sentries++;
744 return false;
745 }
746
747 return true;
748}
749
750static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
751 unsigned int segno, int modified)
752{
753 struct seg_entry *se = get_seg_entry(sbi, segno);
754 se->type = type;
755 if (modified)
756 __mark_sit_entry_dirty(sbi, segno);
757}
758
759static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
760{
761 struct seg_entry *se;
762 unsigned int segno, offset;
763 long int new_vblocks;
764
765 segno = GET_SEGNO(sbi, blkaddr);
766
767 se = get_seg_entry(sbi, segno);
768 new_vblocks = se->valid_blocks + del;
769 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
770
771 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
772 (new_vblocks > sbi->blocks_per_seg)));
773
774 se->valid_blocks = new_vblocks;
775 se->mtime = get_mtime(sbi);
776 SIT_I(sbi)->max_mtime = se->mtime;
777
778 /* Update valid block bitmap */
779 if (del > 0) {
780 if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
781 f2fs_bug_on(sbi, 1);
782 if (!f2fs_test_and_set_bit(offset, se->discard_map))
783 sbi->discard_blks--;
784 } else {
785 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
786 f2fs_bug_on(sbi, 1);
787 if (f2fs_test_and_clear_bit(offset, se->discard_map))
788 sbi->discard_blks++;
789 }
790 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
791 se->ckpt_valid_blocks += del;
792
793 __mark_sit_entry_dirty(sbi, segno);
794
795 /* update total number of valid blocks to be written in ckpt area */
796 SIT_I(sbi)->written_valid_blocks += del;
797
798 if (sbi->segs_per_sec > 1)
799 get_sec_entry(sbi, segno)->valid_blocks += del;
800}
801
802void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
803{
804 update_sit_entry(sbi, new, 1);
805 if (GET_SEGNO(sbi, old) != NULL_SEGNO)
806 update_sit_entry(sbi, old, -1);
807
808 locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
809 locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
810}
811
812void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
813{
814 unsigned int segno = GET_SEGNO(sbi, addr);
815 struct sit_info *sit_i = SIT_I(sbi);
816
817 f2fs_bug_on(sbi, addr == NULL_ADDR);
818 if (addr == NEW_ADDR)
819 return;
820
821 /* add it into sit main buffer */
822 mutex_lock(&sit_i->sentry_lock);
823
824 update_sit_entry(sbi, addr, -1);
825
826 /* add it into dirty seglist */
827 locate_dirty_segment(sbi, segno);
828
829 mutex_unlock(&sit_i->sentry_lock);
830}
831
832bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
833{
834 struct sit_info *sit_i = SIT_I(sbi);
835 unsigned int segno, offset;
836 struct seg_entry *se;
837 bool is_cp = false;
838
839 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
840 return true;
841
842 mutex_lock(&sit_i->sentry_lock);
843
844 segno = GET_SEGNO(sbi, blkaddr);
845 se = get_seg_entry(sbi, segno);
846 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
847
848 if (f2fs_test_bit(offset, se->ckpt_valid_map))
849 is_cp = true;
850
851 mutex_unlock(&sit_i->sentry_lock);
852
853 return is_cp;
854}
855
856/*
857 * This function should be resided under the curseg_mutex lock
858 */
859static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
860 struct f2fs_summary *sum)
861{
862 struct curseg_info *curseg = CURSEG_I(sbi, type);
863 void *addr = curseg->sum_blk;
864 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
865 memcpy(addr, sum, sizeof(struct f2fs_summary));
866}
867
868/*
869 * Calculate the number of current summary pages for writing
870 */
871int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
872{
873 int valid_sum_count = 0;
874 int i, sum_in_page;
875
876 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
877 if (sbi->ckpt->alloc_type[i] == SSR)
878 valid_sum_count += sbi->blocks_per_seg;
879 else {
880 if (for_ra)
881 valid_sum_count += le16_to_cpu(
882 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
883 else
884 valid_sum_count += curseg_blkoff(sbi, i);
885 }
886 }
887
888 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
889 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
890 if (valid_sum_count <= sum_in_page)
891 return 1;
892 else if ((valid_sum_count - sum_in_page) <=
893 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
894 return 2;
895 return 3;
896}
897
898/*
899 * Caller should put this summary page
900 */
901struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
902{
903 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
904}
905
906void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
907{
908 struct page *page = grab_meta_page(sbi, blk_addr);
909 void *dst = page_address(page);
910
911 if (src)
912 memcpy(dst, src, PAGE_SIZE);
913 else
914 memset(dst, 0, PAGE_SIZE);
915 set_page_dirty(page);
916 f2fs_put_page(page, 1);
917}
918
919static void write_sum_page(struct f2fs_sb_info *sbi,
920 struct f2fs_summary_block *sum_blk, block_t blk_addr)
921{
922 update_meta_page(sbi, (void *)sum_blk, blk_addr);
923}
924
925static void write_current_sum_page(struct f2fs_sb_info *sbi,
926 int type, block_t blk_addr)
927{
928 struct curseg_info *curseg = CURSEG_I(sbi, type);
929 struct page *page = grab_meta_page(sbi, blk_addr);
930 struct f2fs_summary_block *src = curseg->sum_blk;
931 struct f2fs_summary_block *dst;
932
933 dst = (struct f2fs_summary_block *)page_address(page);
934
935 mutex_lock(&curseg->curseg_mutex);
936
937 down_read(&curseg->journal_rwsem);
938 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
939 up_read(&curseg->journal_rwsem);
940
941 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
942 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
943
944 mutex_unlock(&curseg->curseg_mutex);
945
946 set_page_dirty(page);
947 f2fs_put_page(page, 1);
948}
949
950static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
951{
952 struct curseg_info *curseg = CURSEG_I(sbi, type);
953 unsigned int segno = curseg->segno + 1;
954 struct free_segmap_info *free_i = FREE_I(sbi);
955
956 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
957 return !test_bit(segno, free_i->free_segmap);
958 return 0;
959}
960
961/*
962 * Find a new segment from the free segments bitmap to right order
963 * This function should be returned with success, otherwise BUG
964 */
965static void get_new_segment(struct f2fs_sb_info *sbi,
966 unsigned int *newseg, bool new_sec, int dir)
967{
968 struct free_segmap_info *free_i = FREE_I(sbi);
969 unsigned int segno, secno, zoneno;
970 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
971 unsigned int hint = *newseg / sbi->segs_per_sec;
972 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
973 unsigned int left_start = hint;
974 bool init = true;
975 int go_left = 0;
976 int i;
977
978 spin_lock(&free_i->segmap_lock);
979
980 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
981 segno = find_next_zero_bit(free_i->free_segmap,
982 (hint + 1) * sbi->segs_per_sec, *newseg + 1);
983 if (segno < (hint + 1) * sbi->segs_per_sec)
984 goto got_it;
985 }
986find_other_zone:
987 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
988 if (secno >= MAIN_SECS(sbi)) {
989 if (dir == ALLOC_RIGHT) {
990 secno = find_next_zero_bit(free_i->free_secmap,
991 MAIN_SECS(sbi), 0);
992 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
993 } else {
994 go_left = 1;
995 left_start = hint - 1;
996 }
997 }
998 if (go_left == 0)
999 goto skip_left;
1000
1001 while (test_bit(left_start, free_i->free_secmap)) {
1002 if (left_start > 0) {
1003 left_start--;
1004 continue;
1005 }
1006 left_start = find_next_zero_bit(free_i->free_secmap,
1007 MAIN_SECS(sbi), 0);
1008 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1009 break;
1010 }
1011 secno = left_start;
1012skip_left:
1013 hint = secno;
1014 segno = secno * sbi->segs_per_sec;
1015 zoneno = secno / sbi->secs_per_zone;
1016
1017 /* give up on finding another zone */
1018 if (!init)
1019 goto got_it;
1020 if (sbi->secs_per_zone == 1)
1021 goto got_it;
1022 if (zoneno == old_zoneno)
1023 goto got_it;
1024 if (dir == ALLOC_LEFT) {
1025 if (!go_left && zoneno + 1 >= total_zones)
1026 goto got_it;
1027 if (go_left && zoneno == 0)
1028 goto got_it;
1029 }
1030 for (i = 0; i < NR_CURSEG_TYPE; i++)
1031 if (CURSEG_I(sbi, i)->zone == zoneno)
1032 break;
1033
1034 if (i < NR_CURSEG_TYPE) {
1035 /* zone is in user, try another */
1036 if (go_left)
1037 hint = zoneno * sbi->secs_per_zone - 1;
1038 else if (zoneno + 1 >= total_zones)
1039 hint = 0;
1040 else
1041 hint = (zoneno + 1) * sbi->secs_per_zone;
1042 init = false;
1043 goto find_other_zone;
1044 }
1045got_it:
1046 /* set it as dirty segment in free segmap */
1047 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1048 __set_inuse(sbi, segno);
1049 *newseg = segno;
1050 spin_unlock(&free_i->segmap_lock);
1051}
1052
1053static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1054{
1055 struct curseg_info *curseg = CURSEG_I(sbi, type);
1056 struct summary_footer *sum_footer;
1057
1058 curseg->segno = curseg->next_segno;
1059 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1060 curseg->next_blkoff = 0;
1061 curseg->next_segno = NULL_SEGNO;
1062
1063 sum_footer = &(curseg->sum_blk->footer);
1064 memset(sum_footer, 0, sizeof(struct summary_footer));
1065 if (IS_DATASEG(type))
1066 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1067 if (IS_NODESEG(type))
1068 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1069 __set_sit_entry_type(sbi, type, curseg->segno, modified);
1070}
1071
1072/*
1073 * Allocate a current working segment.
1074 * This function always allocates a free segment in LFS manner.
1075 */
1076static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1077{
1078 struct curseg_info *curseg = CURSEG_I(sbi, type);
1079 unsigned int segno = curseg->segno;
1080 int dir = ALLOC_LEFT;
1081
1082 write_sum_page(sbi, curseg->sum_blk,
1083 GET_SUM_BLOCK(sbi, segno));
1084 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1085 dir = ALLOC_RIGHT;
1086
1087 if (test_opt(sbi, NOHEAP))
1088 dir = ALLOC_RIGHT;
1089
1090 get_new_segment(sbi, &segno, new_sec, dir);
1091 curseg->next_segno = segno;
1092 reset_curseg(sbi, type, 1);
1093 curseg->alloc_type = LFS;
1094}
1095
1096static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1097 struct curseg_info *seg, block_t start)
1098{
1099 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1100 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1101 unsigned long *target_map = SIT_I(sbi)->tmp_map;
1102 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1103 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1104 int i, pos;
1105
1106 for (i = 0; i < entries; i++)
1107 target_map[i] = ckpt_map[i] | cur_map[i];
1108
1109 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1110
1111 seg->next_blkoff = pos;
1112}
1113
1114/*
1115 * If a segment is written by LFS manner, next block offset is just obtained
1116 * by increasing the current block offset. However, if a segment is written by
1117 * SSR manner, next block offset obtained by calling __next_free_blkoff
1118 */
1119static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1120 struct curseg_info *seg)
1121{
1122 if (seg->alloc_type == SSR)
1123 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1124 else
1125 seg->next_blkoff++;
1126}
1127
1128/*
1129 * This function always allocates a used segment(from dirty seglist) by SSR
1130 * manner, so it should recover the existing segment information of valid blocks
1131 */
1132static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1133{
1134 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1135 struct curseg_info *curseg = CURSEG_I(sbi, type);
1136 unsigned int new_segno = curseg->next_segno;
1137 struct f2fs_summary_block *sum_node;
1138 struct page *sum_page;
1139
1140 write_sum_page(sbi, curseg->sum_blk,
1141 GET_SUM_BLOCK(sbi, curseg->segno));
1142 __set_test_and_inuse(sbi, new_segno);
1143
1144 mutex_lock(&dirty_i->seglist_lock);
1145 __remove_dirty_segment(sbi, new_segno, PRE);
1146 __remove_dirty_segment(sbi, new_segno, DIRTY);
1147 mutex_unlock(&dirty_i->seglist_lock);
1148
1149 reset_curseg(sbi, type, 1);
1150 curseg->alloc_type = SSR;
1151 __next_free_blkoff(sbi, curseg, 0);
1152
1153 if (reuse) {
1154 sum_page = get_sum_page(sbi, new_segno);
1155 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1156 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1157 f2fs_put_page(sum_page, 1);
1158 }
1159}
1160
1161static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1162{
1163 struct curseg_info *curseg = CURSEG_I(sbi, type);
1164 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1165
1166 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1167 return v_ops->get_victim(sbi,
1168 &(curseg)->next_segno, BG_GC, type, SSR);
1169
1170 /* For data segments, let's do SSR more intensively */
1171 for (; type >= CURSEG_HOT_DATA; type--)
1172 if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1173 BG_GC, type, SSR))
1174 return 1;
1175 return 0;
1176}
1177
1178/*
1179 * flush out current segment and replace it with new segment
1180 * This function should be returned with success, otherwise BUG
1181 */
1182static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1183 int type, bool force)
1184{
1185 struct curseg_info *curseg = CURSEG_I(sbi, type);
1186
1187 if (force)
1188 new_curseg(sbi, type, true);
1189 else if (type == CURSEG_WARM_NODE)
1190 new_curseg(sbi, type, false);
1191 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1192 new_curseg(sbi, type, false);
1193 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1194 change_curseg(sbi, type, true);
1195 else
1196 new_curseg(sbi, type, false);
1197
1198 stat_inc_seg_type(sbi, curseg);
1199}
1200
1201static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1202{
1203 struct curseg_info *curseg = CURSEG_I(sbi, type);
1204 unsigned int old_segno;
1205
1206 old_segno = curseg->segno;
1207 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1208 locate_dirty_segment(sbi, old_segno);
1209}
1210
1211void allocate_new_segments(struct f2fs_sb_info *sbi)
1212{
1213 int i;
1214
1215 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1216 __allocate_new_segments(sbi, i);
1217}
1218
1219static const struct segment_allocation default_salloc_ops = {
1220 .allocate_segment = allocate_segment_by_default,
1221};
1222
1223int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1224{
1225 __u64 start = F2FS_BYTES_TO_BLK(range->start);
1226 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1227 unsigned int start_segno, end_segno;
1228 struct cp_control cpc;
1229 int err = 0;
1230
1231 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1232 return -EINVAL;
1233
1234 cpc.trimmed = 0;
1235 if (end <= MAIN_BLKADDR(sbi))
1236 goto out;
1237
1238 /* start/end segment number in main_area */
1239 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1240 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1241 GET_SEGNO(sbi, end);
1242 cpc.reason = CP_DISCARD;
1243 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1244
1245 /* do checkpoint to issue discard commands safely */
1246 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1247 cpc.trim_start = start_segno;
1248
1249 if (sbi->discard_blks == 0)
1250 break;
1251 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1252 cpc.trim_end = end_segno;
1253 else
1254 cpc.trim_end = min_t(unsigned int,
1255 rounddown(start_segno +
1256 BATCHED_TRIM_SEGMENTS(sbi),
1257 sbi->segs_per_sec) - 1, end_segno);
1258
1259 mutex_lock(&sbi->gc_mutex);
1260 err = write_checkpoint(sbi, &cpc);
1261 mutex_unlock(&sbi->gc_mutex);
1262 }
1263out:
1264 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1265 return err;
1266}
1267
1268static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1269{
1270 struct curseg_info *curseg = CURSEG_I(sbi, type);
1271 if (curseg->next_blkoff < sbi->blocks_per_seg)
1272 return true;
1273 return false;
1274}
1275
1276static int __get_segment_type_2(struct page *page, enum page_type p_type)
1277{
1278 if (p_type == DATA)
1279 return CURSEG_HOT_DATA;
1280 else
1281 return CURSEG_HOT_NODE;
1282}
1283
1284static int __get_segment_type_4(struct page *page, enum page_type p_type)
1285{
1286 if (p_type == DATA) {
1287 struct inode *inode = page->mapping->host;
1288
1289 if (S_ISDIR(inode->i_mode))
1290 return CURSEG_HOT_DATA;
1291 else
1292 return CURSEG_COLD_DATA;
1293 } else {
1294 if (IS_DNODE(page) && is_cold_node(page))
1295 return CURSEG_WARM_NODE;
1296 else
1297 return CURSEG_COLD_NODE;
1298 }
1299}
1300
1301static int __get_segment_type_6(struct page *page, enum page_type p_type)
1302{
1303 if (p_type == DATA) {
1304 struct inode *inode = page->mapping->host;
1305
1306 if (S_ISDIR(inode->i_mode))
1307 return CURSEG_HOT_DATA;
1308 else if (is_cold_data(page) || file_is_cold(inode))
1309 return CURSEG_COLD_DATA;
1310 else
1311 return CURSEG_WARM_DATA;
1312 } else {
1313 if (IS_DNODE(page))
1314 return is_cold_node(page) ? CURSEG_WARM_NODE :
1315 CURSEG_HOT_NODE;
1316 else
1317 return CURSEG_COLD_NODE;
1318 }
1319}
1320
1321static int __get_segment_type(struct page *page, enum page_type p_type)
1322{
1323 switch (F2FS_P_SB(page)->active_logs) {
1324 case 2:
1325 return __get_segment_type_2(page, p_type);
1326 case 4:
1327 return __get_segment_type_4(page, p_type);
1328 }
1329 /* NR_CURSEG_TYPE(6) logs by default */
1330 f2fs_bug_on(F2FS_P_SB(page),
1331 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1332 return __get_segment_type_6(page, p_type);
1333}
1334
1335void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1336 block_t old_blkaddr, block_t *new_blkaddr,
1337 struct f2fs_summary *sum, int type)
1338{
1339 struct sit_info *sit_i = SIT_I(sbi);
1340 struct curseg_info *curseg;
1341 bool direct_io = (type == CURSEG_DIRECT_IO);
1342
1343 type = direct_io ? CURSEG_WARM_DATA : type;
1344
1345 curseg = CURSEG_I(sbi, type);
1346
1347 mutex_lock(&curseg->curseg_mutex);
1348 mutex_lock(&sit_i->sentry_lock);
1349
1350 /* direct_io'ed data is aligned to the segment for better performance */
1351 if (direct_io && curseg->next_blkoff &&
1352 !has_not_enough_free_secs(sbi, 0))
1353 __allocate_new_segments(sbi, type);
1354
1355 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1356
1357 /*
1358 * __add_sum_entry should be resided under the curseg_mutex
1359 * because, this function updates a summary entry in the
1360 * current summary block.
1361 */
1362 __add_sum_entry(sbi, type, sum);
1363
1364 __refresh_next_blkoff(sbi, curseg);
1365
1366 stat_inc_block_count(sbi, curseg);
1367
1368 if (!__has_curseg_space(sbi, type))
1369 sit_i->s_ops->allocate_segment(sbi, type, false);
1370 /*
1371 * SIT information should be updated before segment allocation,
1372 * since SSR needs latest valid block information.
1373 */
1374 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1375
1376 mutex_unlock(&sit_i->sentry_lock);
1377
1378 if (page && IS_NODESEG(type))
1379 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1380
1381 mutex_unlock(&curseg->curseg_mutex);
1382}
1383
1384static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1385{
1386 int type = __get_segment_type(fio->page, fio->type);
1387
1388 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1389 &fio->new_blkaddr, sum, type);
1390
1391 /* writeout dirty page into bdev */
1392 f2fs_submit_page_mbio(fio);
1393}
1394
1395void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1396{
1397 struct f2fs_io_info fio = {
1398 .sbi = sbi,
1399 .type = META,
1400 .rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1401 .old_blkaddr = page->index,
1402 .new_blkaddr = page->index,
1403 .page = page,
1404 .encrypted_page = NULL,
1405 };
1406
1407 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1408 fio.rw &= ~REQ_META;
1409
1410 set_page_writeback(page);
1411 f2fs_submit_page_mbio(&fio);
1412}
1413
1414void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1415{
1416 struct f2fs_summary sum;
1417
1418 set_summary(&sum, nid, 0, 0);
1419 do_write_page(&sum, fio);
1420}
1421
1422void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1423{
1424 struct f2fs_sb_info *sbi = fio->sbi;
1425 struct f2fs_summary sum;
1426 struct node_info ni;
1427
1428 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1429 get_node_info(sbi, dn->nid, &ni);
1430 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1431 do_write_page(&sum, fio);
1432 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1433}
1434
1435void rewrite_data_page(struct f2fs_io_info *fio)
1436{
1437 fio->new_blkaddr = fio->old_blkaddr;
1438 stat_inc_inplace_blocks(fio->sbi);
1439 f2fs_submit_page_mbio(fio);
1440}
1441
1442void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1443 block_t old_blkaddr, block_t new_blkaddr,
1444 bool recover_curseg, bool recover_newaddr)
1445{
1446 struct sit_info *sit_i = SIT_I(sbi);
1447 struct curseg_info *curseg;
1448 unsigned int segno, old_cursegno;
1449 struct seg_entry *se;
1450 int type;
1451 unsigned short old_blkoff;
1452
1453 segno = GET_SEGNO(sbi, new_blkaddr);
1454 se = get_seg_entry(sbi, segno);
1455 type = se->type;
1456
1457 if (!recover_curseg) {
1458 /* for recovery flow */
1459 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1460 if (old_blkaddr == NULL_ADDR)
1461 type = CURSEG_COLD_DATA;
1462 else
1463 type = CURSEG_WARM_DATA;
1464 }
1465 } else {
1466 if (!IS_CURSEG(sbi, segno))
1467 type = CURSEG_WARM_DATA;
1468 }
1469
1470 curseg = CURSEG_I(sbi, type);
1471
1472 mutex_lock(&curseg->curseg_mutex);
1473 mutex_lock(&sit_i->sentry_lock);
1474
1475 old_cursegno = curseg->segno;
1476 old_blkoff = curseg->next_blkoff;
1477
1478 /* change the current segment */
1479 if (segno != curseg->segno) {
1480 curseg->next_segno = segno;
1481 change_curseg(sbi, type, true);
1482 }
1483
1484 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1485 __add_sum_entry(sbi, type, sum);
1486
1487 if (!recover_curseg || recover_newaddr)
1488 update_sit_entry(sbi, new_blkaddr, 1);
1489 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1490 update_sit_entry(sbi, old_blkaddr, -1);
1491
1492 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1493 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1494
1495 locate_dirty_segment(sbi, old_cursegno);
1496
1497 if (recover_curseg) {
1498 if (old_cursegno != curseg->segno) {
1499 curseg->next_segno = old_cursegno;
1500 change_curseg(sbi, type, true);
1501 }
1502 curseg->next_blkoff = old_blkoff;
1503 }
1504
1505 mutex_unlock(&sit_i->sentry_lock);
1506 mutex_unlock(&curseg->curseg_mutex);
1507}
1508
1509void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1510 block_t old_addr, block_t new_addr,
1511 unsigned char version, bool recover_curseg,
1512 bool recover_newaddr)
1513{
1514 struct f2fs_summary sum;
1515
1516 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1517
1518 __f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1519 recover_curseg, recover_newaddr);
1520
1521 f2fs_update_data_blkaddr(dn, new_addr);
1522}
1523
1524void f2fs_wait_on_page_writeback(struct page *page,
1525 enum page_type type, bool ordered)
1526{
1527 if (PageWriteback(page)) {
1528 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1529
1530 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1531 if (ordered)
1532 wait_on_page_writeback(page);
1533 else
1534 wait_for_stable_page(page);
1535 }
1536}
1537
1538void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1539 block_t blkaddr)
1540{
1541 struct page *cpage;
1542
1543 if (blkaddr == NEW_ADDR)
1544 return;
1545
1546 f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1547
1548 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1549 if (cpage) {
1550 f2fs_wait_on_page_writeback(cpage, DATA, true);
1551 f2fs_put_page(cpage, 1);
1552 }
1553}
1554
1555static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1556{
1557 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558 struct curseg_info *seg_i;
1559 unsigned char *kaddr;
1560 struct page *page;
1561 block_t start;
1562 int i, j, offset;
1563
1564 start = start_sum_block(sbi);
1565
1566 page = get_meta_page(sbi, start++);
1567 kaddr = (unsigned char *)page_address(page);
1568
1569 /* Step 1: restore nat cache */
1570 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1571 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1572
1573 /* Step 2: restore sit cache */
1574 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1575 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1576 offset = 2 * SUM_JOURNAL_SIZE;
1577
1578 /* Step 3: restore summary entries */
1579 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1580 unsigned short blk_off;
1581 unsigned int segno;
1582
1583 seg_i = CURSEG_I(sbi, i);
1584 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1585 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1586 seg_i->next_segno = segno;
1587 reset_curseg(sbi, i, 0);
1588 seg_i->alloc_type = ckpt->alloc_type[i];
1589 seg_i->next_blkoff = blk_off;
1590
1591 if (seg_i->alloc_type == SSR)
1592 blk_off = sbi->blocks_per_seg;
1593
1594 for (j = 0; j < blk_off; j++) {
1595 struct f2fs_summary *s;
1596 s = (struct f2fs_summary *)(kaddr + offset);
1597 seg_i->sum_blk->entries[j] = *s;
1598 offset += SUMMARY_SIZE;
1599 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1600 SUM_FOOTER_SIZE)
1601 continue;
1602
1603 f2fs_put_page(page, 1);
1604 page = NULL;
1605
1606 page = get_meta_page(sbi, start++);
1607 kaddr = (unsigned char *)page_address(page);
1608 offset = 0;
1609 }
1610 }
1611 f2fs_put_page(page, 1);
1612 return 0;
1613}
1614
1615static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1616{
1617 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618 struct f2fs_summary_block *sum;
1619 struct curseg_info *curseg;
1620 struct page *new;
1621 unsigned short blk_off;
1622 unsigned int segno = 0;
1623 block_t blk_addr = 0;
1624
1625 /* get segment number and block addr */
1626 if (IS_DATASEG(type)) {
1627 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1628 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1629 CURSEG_HOT_DATA]);
1630 if (__exist_node_summaries(sbi))
1631 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1632 else
1633 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1634 } else {
1635 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1636 CURSEG_HOT_NODE]);
1637 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1638 CURSEG_HOT_NODE]);
1639 if (__exist_node_summaries(sbi))
1640 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1641 type - CURSEG_HOT_NODE);
1642 else
1643 blk_addr = GET_SUM_BLOCK(sbi, segno);
1644 }
1645
1646 new = get_meta_page(sbi, blk_addr);
1647 sum = (struct f2fs_summary_block *)page_address(new);
1648
1649 if (IS_NODESEG(type)) {
1650 if (__exist_node_summaries(sbi)) {
1651 struct f2fs_summary *ns = &sum->entries[0];
1652 int i;
1653 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1654 ns->version = 0;
1655 ns->ofs_in_node = 0;
1656 }
1657 } else {
1658 int err;
1659
1660 err = restore_node_summary(sbi, segno, sum);
1661 if (err) {
1662 f2fs_put_page(new, 1);
1663 return err;
1664 }
1665 }
1666 }
1667
1668 /* set uncompleted segment to curseg */
1669 curseg = CURSEG_I(sbi, type);
1670 mutex_lock(&curseg->curseg_mutex);
1671
1672 /* update journal info */
1673 down_write(&curseg->journal_rwsem);
1674 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1675 up_write(&curseg->journal_rwsem);
1676
1677 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1678 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1679 curseg->next_segno = segno;
1680 reset_curseg(sbi, type, 0);
1681 curseg->alloc_type = ckpt->alloc_type[type];
1682 curseg->next_blkoff = blk_off;
1683 mutex_unlock(&curseg->curseg_mutex);
1684 f2fs_put_page(new, 1);
1685 return 0;
1686}
1687
1688static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1689{
1690 int type = CURSEG_HOT_DATA;
1691 int err;
1692
1693 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1694 int npages = npages_for_summary_flush(sbi, true);
1695
1696 if (npages >= 2)
1697 ra_meta_pages(sbi, start_sum_block(sbi), npages,
1698 META_CP, true);
1699
1700 /* restore for compacted data summary */
1701 if (read_compacted_summaries(sbi))
1702 return -EINVAL;
1703 type = CURSEG_HOT_NODE;
1704 }
1705
1706 if (__exist_node_summaries(sbi))
1707 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1708 NR_CURSEG_TYPE - type, META_CP, true);
1709
1710 for (; type <= CURSEG_COLD_NODE; type++) {
1711 err = read_normal_summaries(sbi, type);
1712 if (err)
1713 return err;
1714 }
1715
1716 return 0;
1717}
1718
1719static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1720{
1721 struct page *page;
1722 unsigned char *kaddr;
1723 struct f2fs_summary *summary;
1724 struct curseg_info *seg_i;
1725 int written_size = 0;
1726 int i, j;
1727
1728 page = grab_meta_page(sbi, blkaddr++);
1729 kaddr = (unsigned char *)page_address(page);
1730
1731 /* Step 1: write nat cache */
1732 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1733 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1734 written_size += SUM_JOURNAL_SIZE;
1735
1736 /* Step 2: write sit cache */
1737 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1738 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1739 written_size += SUM_JOURNAL_SIZE;
1740
1741 /* Step 3: write summary entries */
1742 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1743 unsigned short blkoff;
1744 seg_i = CURSEG_I(sbi, i);
1745 if (sbi->ckpt->alloc_type[i] == SSR)
1746 blkoff = sbi->blocks_per_seg;
1747 else
1748 blkoff = curseg_blkoff(sbi, i);
1749
1750 for (j = 0; j < blkoff; j++) {
1751 if (!page) {
1752 page = grab_meta_page(sbi, blkaddr++);
1753 kaddr = (unsigned char *)page_address(page);
1754 written_size = 0;
1755 }
1756 summary = (struct f2fs_summary *)(kaddr + written_size);
1757 *summary = seg_i->sum_blk->entries[j];
1758 written_size += SUMMARY_SIZE;
1759
1760 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1761 SUM_FOOTER_SIZE)
1762 continue;
1763
1764 set_page_dirty(page);
1765 f2fs_put_page(page, 1);
1766 page = NULL;
1767 }
1768 }
1769 if (page) {
1770 set_page_dirty(page);
1771 f2fs_put_page(page, 1);
1772 }
1773}
1774
1775static void write_normal_summaries(struct f2fs_sb_info *sbi,
1776 block_t blkaddr, int type)
1777{
1778 int i, end;
1779 if (IS_DATASEG(type))
1780 end = type + NR_CURSEG_DATA_TYPE;
1781 else
1782 end = type + NR_CURSEG_NODE_TYPE;
1783
1784 for (i = type; i < end; i++)
1785 write_current_sum_page(sbi, i, blkaddr + (i - type));
1786}
1787
1788void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1789{
1790 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1791 write_compacted_summaries(sbi, start_blk);
1792 else
1793 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1794}
1795
1796void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1797{
1798 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1799}
1800
1801int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1802 unsigned int val, int alloc)
1803{
1804 int i;
1805
1806 if (type == NAT_JOURNAL) {
1807 for (i = 0; i < nats_in_cursum(journal); i++) {
1808 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1809 return i;
1810 }
1811 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1812 return update_nats_in_cursum(journal, 1);
1813 } else if (type == SIT_JOURNAL) {
1814 for (i = 0; i < sits_in_cursum(journal); i++)
1815 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1816 return i;
1817 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1818 return update_sits_in_cursum(journal, 1);
1819 }
1820 return -1;
1821}
1822
1823static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1824 unsigned int segno)
1825{
1826 return get_meta_page(sbi, current_sit_addr(sbi, segno));
1827}
1828
1829static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1830 unsigned int start)
1831{
1832 struct sit_info *sit_i = SIT_I(sbi);
1833 struct page *src_page, *dst_page;
1834 pgoff_t src_off, dst_off;
1835 void *src_addr, *dst_addr;
1836
1837 src_off = current_sit_addr(sbi, start);
1838 dst_off = next_sit_addr(sbi, src_off);
1839
1840 /* get current sit block page without lock */
1841 src_page = get_meta_page(sbi, src_off);
1842 dst_page = grab_meta_page(sbi, dst_off);
1843 f2fs_bug_on(sbi, PageDirty(src_page));
1844
1845 src_addr = page_address(src_page);
1846 dst_addr = page_address(dst_page);
1847 memcpy(dst_addr, src_addr, PAGE_SIZE);
1848
1849 set_page_dirty(dst_page);
1850 f2fs_put_page(src_page, 1);
1851
1852 set_to_next_sit(sit_i, start);
1853
1854 return dst_page;
1855}
1856
1857static struct sit_entry_set *grab_sit_entry_set(void)
1858{
1859 struct sit_entry_set *ses =
1860 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1861
1862 ses->entry_cnt = 0;
1863 INIT_LIST_HEAD(&ses->set_list);
1864 return ses;
1865}
1866
1867static void release_sit_entry_set(struct sit_entry_set *ses)
1868{
1869 list_del(&ses->set_list);
1870 kmem_cache_free(sit_entry_set_slab, ses);
1871}
1872
1873static void adjust_sit_entry_set(struct sit_entry_set *ses,
1874 struct list_head *head)
1875{
1876 struct sit_entry_set *next = ses;
1877
1878 if (list_is_last(&ses->set_list, head))
1879 return;
1880
1881 list_for_each_entry_continue(next, head, set_list)
1882 if (ses->entry_cnt <= next->entry_cnt)
1883 break;
1884
1885 list_move_tail(&ses->set_list, &next->set_list);
1886}
1887
1888static void add_sit_entry(unsigned int segno, struct list_head *head)
1889{
1890 struct sit_entry_set *ses;
1891 unsigned int start_segno = START_SEGNO(segno);
1892
1893 list_for_each_entry(ses, head, set_list) {
1894 if (ses->start_segno == start_segno) {
1895 ses->entry_cnt++;
1896 adjust_sit_entry_set(ses, head);
1897 return;
1898 }
1899 }
1900
1901 ses = grab_sit_entry_set();
1902
1903 ses->start_segno = start_segno;
1904 ses->entry_cnt++;
1905 list_add(&ses->set_list, head);
1906}
1907
1908static void add_sits_in_set(struct f2fs_sb_info *sbi)
1909{
1910 struct f2fs_sm_info *sm_info = SM_I(sbi);
1911 struct list_head *set_list = &sm_info->sit_entry_set;
1912 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1913 unsigned int segno;
1914
1915 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1916 add_sit_entry(segno, set_list);
1917}
1918
1919static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1920{
1921 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1922 struct f2fs_journal *journal = curseg->journal;
1923 int i;
1924
1925 down_write(&curseg->journal_rwsem);
1926 for (i = 0; i < sits_in_cursum(journal); i++) {
1927 unsigned int segno;
1928 bool dirtied;
1929
1930 segno = le32_to_cpu(segno_in_journal(journal, i));
1931 dirtied = __mark_sit_entry_dirty(sbi, segno);
1932
1933 if (!dirtied)
1934 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1935 }
1936 update_sits_in_cursum(journal, -i);
1937 up_write(&curseg->journal_rwsem);
1938}
1939
1940/*
1941 * CP calls this function, which flushes SIT entries including sit_journal,
1942 * and moves prefree segs to free segs.
1943 */
1944void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1945{
1946 struct sit_info *sit_i = SIT_I(sbi);
1947 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1948 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1949 struct f2fs_journal *journal = curseg->journal;
1950 struct sit_entry_set *ses, *tmp;
1951 struct list_head *head = &SM_I(sbi)->sit_entry_set;
1952 bool to_journal = true;
1953 struct seg_entry *se;
1954
1955 mutex_lock(&sit_i->sentry_lock);
1956
1957 if (!sit_i->dirty_sentries)
1958 goto out;
1959
1960 /*
1961 * add and account sit entries of dirty bitmap in sit entry
1962 * set temporarily
1963 */
1964 add_sits_in_set(sbi);
1965
1966 /*
1967 * if there are no enough space in journal to store dirty sit
1968 * entries, remove all entries from journal and add and account
1969 * them in sit entry set.
1970 */
1971 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
1972 remove_sits_in_journal(sbi);
1973
1974 /*
1975 * there are two steps to flush sit entries:
1976 * #1, flush sit entries to journal in current cold data summary block.
1977 * #2, flush sit entries to sit page.
1978 */
1979 list_for_each_entry_safe(ses, tmp, head, set_list) {
1980 struct page *page = NULL;
1981 struct f2fs_sit_block *raw_sit = NULL;
1982 unsigned int start_segno = ses->start_segno;
1983 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1984 (unsigned long)MAIN_SEGS(sbi));
1985 unsigned int segno = start_segno;
1986
1987 if (to_journal &&
1988 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1989 to_journal = false;
1990
1991 if (to_journal) {
1992 down_write(&curseg->journal_rwsem);
1993 } else {
1994 page = get_next_sit_page(sbi, start_segno);
1995 raw_sit = page_address(page);
1996 }
1997
1998 /* flush dirty sit entries in region of current sit set */
1999 for_each_set_bit_from(segno, bitmap, end) {
2000 int offset, sit_offset;
2001
2002 se = get_seg_entry(sbi, segno);
2003
2004 /* add discard candidates */
2005 if (cpc->reason != CP_DISCARD) {
2006 cpc->trim_start = segno;
2007 add_discard_addrs(sbi, cpc);
2008 }
2009
2010 if (to_journal) {
2011 offset = lookup_journal_in_cursum(journal,
2012 SIT_JOURNAL, segno, 1);
2013 f2fs_bug_on(sbi, offset < 0);
2014 segno_in_journal(journal, offset) =
2015 cpu_to_le32(segno);
2016 seg_info_to_raw_sit(se,
2017 &sit_in_journal(journal, offset));
2018 } else {
2019 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2020 seg_info_to_raw_sit(se,
2021 &raw_sit->entries[sit_offset]);
2022 }
2023
2024 __clear_bit(segno, bitmap);
2025 sit_i->dirty_sentries--;
2026 ses->entry_cnt--;
2027 }
2028
2029 if (to_journal)
2030 up_write(&curseg->journal_rwsem);
2031 else
2032 f2fs_put_page(page, 1);
2033
2034 f2fs_bug_on(sbi, ses->entry_cnt);
2035 release_sit_entry_set(ses);
2036 }
2037
2038 f2fs_bug_on(sbi, !list_empty(head));
2039 f2fs_bug_on(sbi, sit_i->dirty_sentries);
2040out:
2041 if (cpc->reason == CP_DISCARD) {
2042 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2043 add_discard_addrs(sbi, cpc);
2044 }
2045 mutex_unlock(&sit_i->sentry_lock);
2046
2047 set_prefree_as_free_segments(sbi);
2048}
2049
2050static int build_sit_info(struct f2fs_sb_info *sbi)
2051{
2052 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2053 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054 struct sit_info *sit_i;
2055 unsigned int sit_segs, start;
2056 char *src_bitmap, *dst_bitmap;
2057 unsigned int bitmap_size;
2058
2059 /* allocate memory for SIT information */
2060 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2061 if (!sit_i)
2062 return -ENOMEM;
2063
2064 SM_I(sbi)->sit_info = sit_i;
2065
2066 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2067 sizeof(struct seg_entry), GFP_KERNEL);
2068 if (!sit_i->sentries)
2069 return -ENOMEM;
2070
2071 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2072 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2073 if (!sit_i->dirty_sentries_bitmap)
2074 return -ENOMEM;
2075
2076 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2077 sit_i->sentries[start].cur_valid_map
2078 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2079 sit_i->sentries[start].ckpt_valid_map
2080 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2081 sit_i->sentries[start].discard_map
2082 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083 if (!sit_i->sentries[start].cur_valid_map ||
2084 !sit_i->sentries[start].ckpt_valid_map ||
2085 !sit_i->sentries[start].discard_map)
2086 return -ENOMEM;
2087 }
2088
2089 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090 if (!sit_i->tmp_map)
2091 return -ENOMEM;
2092
2093 if (sbi->segs_per_sec > 1) {
2094 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2095 sizeof(struct sec_entry), GFP_KERNEL);
2096 if (!sit_i->sec_entries)
2097 return -ENOMEM;
2098 }
2099
2100 /* get information related with SIT */
2101 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2102
2103 /* setup SIT bitmap from ckeckpoint pack */
2104 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2105 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2106
2107 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2108 if (!dst_bitmap)
2109 return -ENOMEM;
2110
2111 /* init SIT information */
2112 sit_i->s_ops = &default_salloc_ops;
2113
2114 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2115 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2116 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2117 sit_i->sit_bitmap = dst_bitmap;
2118 sit_i->bitmap_size = bitmap_size;
2119 sit_i->dirty_sentries = 0;
2120 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2121 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2122 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2123 mutex_init(&sit_i->sentry_lock);
2124 return 0;
2125}
2126
2127static int build_free_segmap(struct f2fs_sb_info *sbi)
2128{
2129 struct free_segmap_info *free_i;
2130 unsigned int bitmap_size, sec_bitmap_size;
2131
2132 /* allocate memory for free segmap information */
2133 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2134 if (!free_i)
2135 return -ENOMEM;
2136
2137 SM_I(sbi)->free_info = free_i;
2138
2139 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2140 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2141 if (!free_i->free_segmap)
2142 return -ENOMEM;
2143
2144 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2145 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2146 if (!free_i->free_secmap)
2147 return -ENOMEM;
2148
2149 /* set all segments as dirty temporarily */
2150 memset(free_i->free_segmap, 0xff, bitmap_size);
2151 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2152
2153 /* init free segmap information */
2154 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2155 free_i->free_segments = 0;
2156 free_i->free_sections = 0;
2157 spin_lock_init(&free_i->segmap_lock);
2158 return 0;
2159}
2160
2161static int build_curseg(struct f2fs_sb_info *sbi)
2162{
2163 struct curseg_info *array;
2164 int i;
2165
2166 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2167 if (!array)
2168 return -ENOMEM;
2169
2170 SM_I(sbi)->curseg_array = array;
2171
2172 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2173 mutex_init(&array[i].curseg_mutex);
2174 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2175 if (!array[i].sum_blk)
2176 return -ENOMEM;
2177 init_rwsem(&array[i].journal_rwsem);
2178 array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2179 GFP_KERNEL);
2180 if (!array[i].journal)
2181 return -ENOMEM;
2182 array[i].segno = NULL_SEGNO;
2183 array[i].next_blkoff = 0;
2184 }
2185 return restore_curseg_summaries(sbi);
2186}
2187
2188static void build_sit_entries(struct f2fs_sb_info *sbi)
2189{
2190 struct sit_info *sit_i = SIT_I(sbi);
2191 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2192 struct f2fs_journal *journal = curseg->journal;
2193 int sit_blk_cnt = SIT_BLK_CNT(sbi);
2194 unsigned int i, start, end;
2195 unsigned int readed, start_blk = 0;
2196 int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2197
2198 do {
2199 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2200
2201 start = start_blk * sit_i->sents_per_block;
2202 end = (start_blk + readed) * sit_i->sents_per_block;
2203
2204 for (; start < end && start < MAIN_SEGS(sbi); start++) {
2205 struct seg_entry *se = &sit_i->sentries[start];
2206 struct f2fs_sit_block *sit_blk;
2207 struct f2fs_sit_entry sit;
2208 struct page *page;
2209
2210 down_read(&curseg->journal_rwsem);
2211 for (i = 0; i < sits_in_cursum(journal); i++) {
2212 if (le32_to_cpu(segno_in_journal(journal, i))
2213 == start) {
2214 sit = sit_in_journal(journal, i);
2215 up_read(&curseg->journal_rwsem);
2216 goto got_it;
2217 }
2218 }
2219 up_read(&curseg->journal_rwsem);
2220
2221 page = get_current_sit_page(sbi, start);
2222 sit_blk = (struct f2fs_sit_block *)page_address(page);
2223 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2224 f2fs_put_page(page, 1);
2225got_it:
2226 check_block_count(sbi, start, &sit);
2227 seg_info_from_raw_sit(se, &sit);
2228
2229 /* build discard map only one time */
2230 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2231 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2232
2233 if (sbi->segs_per_sec > 1) {
2234 struct sec_entry *e = get_sec_entry(sbi, start);
2235 e->valid_blocks += se->valid_blocks;
2236 }
2237 }
2238 start_blk += readed;
2239 } while (start_blk < sit_blk_cnt);
2240}
2241
2242static void init_free_segmap(struct f2fs_sb_info *sbi)
2243{
2244 unsigned int start;
2245 int type;
2246
2247 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2248 struct seg_entry *sentry = get_seg_entry(sbi, start);
2249 if (!sentry->valid_blocks)
2250 __set_free(sbi, start);
2251 }
2252
2253 /* set use the current segments */
2254 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2255 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2256 __set_test_and_inuse(sbi, curseg_t->segno);
2257 }
2258}
2259
2260static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2261{
2262 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2263 struct free_segmap_info *free_i = FREE_I(sbi);
2264 unsigned int segno = 0, offset = 0;
2265 unsigned short valid_blocks;
2266
2267 while (1) {
2268 /* find dirty segment based on free segmap */
2269 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2270 if (segno >= MAIN_SEGS(sbi))
2271 break;
2272 offset = segno + 1;
2273 valid_blocks = get_valid_blocks(sbi, segno, 0);
2274 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2275 continue;
2276 if (valid_blocks > sbi->blocks_per_seg) {
2277 f2fs_bug_on(sbi, 1);
2278 continue;
2279 }
2280 mutex_lock(&dirty_i->seglist_lock);
2281 __locate_dirty_segment(sbi, segno, DIRTY);
2282 mutex_unlock(&dirty_i->seglist_lock);
2283 }
2284}
2285
2286static int init_victim_secmap(struct f2fs_sb_info *sbi)
2287{
2288 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2289 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2290
2291 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2292 if (!dirty_i->victim_secmap)
2293 return -ENOMEM;
2294 return 0;
2295}
2296
2297static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2298{
2299 struct dirty_seglist_info *dirty_i;
2300 unsigned int bitmap_size, i;
2301
2302 /* allocate memory for dirty segments list information */
2303 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2304 if (!dirty_i)
2305 return -ENOMEM;
2306
2307 SM_I(sbi)->dirty_info = dirty_i;
2308 mutex_init(&dirty_i->seglist_lock);
2309
2310 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2311
2312 for (i = 0; i < NR_DIRTY_TYPE; i++) {
2313 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2314 if (!dirty_i->dirty_segmap[i])
2315 return -ENOMEM;
2316 }
2317
2318 init_dirty_segmap(sbi);
2319 return init_victim_secmap(sbi);
2320}
2321
2322/*
2323 * Update min, max modified time for cost-benefit GC algorithm
2324 */
2325static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2326{
2327 struct sit_info *sit_i = SIT_I(sbi);
2328 unsigned int segno;
2329
2330 mutex_lock(&sit_i->sentry_lock);
2331
2332 sit_i->min_mtime = LLONG_MAX;
2333
2334 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2335 unsigned int i;
2336 unsigned long long mtime = 0;
2337
2338 for (i = 0; i < sbi->segs_per_sec; i++)
2339 mtime += get_seg_entry(sbi, segno + i)->mtime;
2340
2341 mtime = div_u64(mtime, sbi->segs_per_sec);
2342
2343 if (sit_i->min_mtime > mtime)
2344 sit_i->min_mtime = mtime;
2345 }
2346 sit_i->max_mtime = get_mtime(sbi);
2347 mutex_unlock(&sit_i->sentry_lock);
2348}
2349
2350int build_segment_manager(struct f2fs_sb_info *sbi)
2351{
2352 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2353 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2354 struct f2fs_sm_info *sm_info;
2355 int err;
2356
2357 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2358 if (!sm_info)
2359 return -ENOMEM;
2360
2361 /* init sm info */
2362 sbi->sm_info = sm_info;
2363 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2364 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2365 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2366 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2367 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2368 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2369 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2370 sm_info->rec_prefree_segments = sm_info->main_segments *
2371 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2372 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2373 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2374 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2375
2376 INIT_LIST_HEAD(&sm_info->discard_list);
2377 sm_info->nr_discards = 0;
2378 sm_info->max_discards = 0;
2379
2380 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2381
2382 INIT_LIST_HEAD(&sm_info->sit_entry_set);
2383
2384 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2385 err = create_flush_cmd_control(sbi);
2386 if (err)
2387 return err;
2388 }
2389
2390 err = build_sit_info(sbi);
2391 if (err)
2392 return err;
2393 err = build_free_segmap(sbi);
2394 if (err)
2395 return err;
2396 err = build_curseg(sbi);
2397 if (err)
2398 return err;
2399
2400 /* reinit free segmap based on SIT */
2401 build_sit_entries(sbi);
2402
2403 init_free_segmap(sbi);
2404 err = build_dirty_segmap(sbi);
2405 if (err)
2406 return err;
2407
2408 init_min_max_mtime(sbi);
2409 return 0;
2410}
2411
2412static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2413 enum dirty_type dirty_type)
2414{
2415 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416
2417 mutex_lock(&dirty_i->seglist_lock);
2418 kvfree(dirty_i->dirty_segmap[dirty_type]);
2419 dirty_i->nr_dirty[dirty_type] = 0;
2420 mutex_unlock(&dirty_i->seglist_lock);
2421}
2422
2423static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2424{
2425 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2426 kvfree(dirty_i->victim_secmap);
2427}
2428
2429static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2430{
2431 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2432 int i;
2433
2434 if (!dirty_i)
2435 return;
2436
2437 /* discard pre-free/dirty segments list */
2438 for (i = 0; i < NR_DIRTY_TYPE; i++)
2439 discard_dirty_segmap(sbi, i);
2440
2441 destroy_victim_secmap(sbi);
2442 SM_I(sbi)->dirty_info = NULL;
2443 kfree(dirty_i);
2444}
2445
2446static void destroy_curseg(struct f2fs_sb_info *sbi)
2447{
2448 struct curseg_info *array = SM_I(sbi)->curseg_array;
2449 int i;
2450
2451 if (!array)
2452 return;
2453 SM_I(sbi)->curseg_array = NULL;
2454 for (i = 0; i < NR_CURSEG_TYPE; i++) {
2455 kfree(array[i].sum_blk);
2456 kfree(array[i].journal);
2457 }
2458 kfree(array);
2459}
2460
2461static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2462{
2463 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2464 if (!free_i)
2465 return;
2466 SM_I(sbi)->free_info = NULL;
2467 kvfree(free_i->free_segmap);
2468 kvfree(free_i->free_secmap);
2469 kfree(free_i);
2470}
2471
2472static void destroy_sit_info(struct f2fs_sb_info *sbi)
2473{
2474 struct sit_info *sit_i = SIT_I(sbi);
2475 unsigned int start;
2476
2477 if (!sit_i)
2478 return;
2479
2480 if (sit_i->sentries) {
2481 for (start = 0; start < MAIN_SEGS(sbi); start++) {
2482 kfree(sit_i->sentries[start].cur_valid_map);
2483 kfree(sit_i->sentries[start].ckpt_valid_map);
2484 kfree(sit_i->sentries[start].discard_map);
2485 }
2486 }
2487 kfree(sit_i->tmp_map);
2488
2489 kvfree(sit_i->sentries);
2490 kvfree(sit_i->sec_entries);
2491 kvfree(sit_i->dirty_sentries_bitmap);
2492
2493 SM_I(sbi)->sit_info = NULL;
2494 kfree(sit_i->sit_bitmap);
2495 kfree(sit_i);
2496}
2497
2498void destroy_segment_manager(struct f2fs_sb_info *sbi)
2499{
2500 struct f2fs_sm_info *sm_info = SM_I(sbi);
2501
2502 if (!sm_info)
2503 return;
2504 destroy_flush_cmd_control(sbi);
2505 destroy_dirty_segmap(sbi);
2506 destroy_curseg(sbi);
2507 destroy_free_segmap(sbi);
2508 destroy_sit_info(sbi);
2509 sbi->sm_info = NULL;
2510 kfree(sm_info);
2511}
2512
2513int __init create_segment_manager_caches(void)
2514{
2515 discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2516 sizeof(struct discard_entry));
2517 if (!discard_entry_slab)
2518 goto fail;
2519
2520 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2521 sizeof(struct sit_entry_set));
2522 if (!sit_entry_set_slab)
2523 goto destory_discard_entry;
2524
2525 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2526 sizeof(struct inmem_pages));
2527 if (!inmem_entry_slab)
2528 goto destroy_sit_entry_set;
2529 return 0;
2530
2531destroy_sit_entry_set:
2532 kmem_cache_destroy(sit_entry_set_slab);
2533destory_discard_entry:
2534 kmem_cache_destroy(discard_entry_slab);
2535fail:
2536 return -ENOMEM;
2537}
2538
2539void destroy_segment_manager_caches(void)
2540{
2541 kmem_cache_destroy(sit_entry_set_slab);
2542 kmem_cache_destroy(discard_entry_slab);
2543 kmem_cache_destroy(inmem_entry_slab);
2544}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/segment.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/bio.h>
11#include <linux/blkdev.h>
12#include <linux/sched/mm.h>
13#include <linux/prefetch.h>
14#include <linux/kthread.h>
15#include <linux/swap.h>
16#include <linux/timer.h>
17#include <linux/freezer.h>
18#include <linux/sched/signal.h>
19#include <linux/random.h>
20
21#include "f2fs.h"
22#include "segment.h"
23#include "node.h"
24#include "gc.h"
25#include "iostat.h"
26#include <trace/events/f2fs.h>
27
28#define __reverse_ffz(x) __reverse_ffs(~(x))
29
30static struct kmem_cache *discard_entry_slab;
31static struct kmem_cache *discard_cmd_slab;
32static struct kmem_cache *sit_entry_set_slab;
33static struct kmem_cache *revoke_entry_slab;
34
35static unsigned long __reverse_ulong(unsigned char *str)
36{
37 unsigned long tmp = 0;
38 int shift = 24, idx = 0;
39
40#if BITS_PER_LONG == 64
41 shift = 56;
42#endif
43 while (shift >= 0) {
44 tmp |= (unsigned long)str[idx++] << shift;
45 shift -= BITS_PER_BYTE;
46 }
47 return tmp;
48}
49
50/*
51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
53 */
54static inline unsigned long __reverse_ffs(unsigned long word)
55{
56 int num = 0;
57
58#if BITS_PER_LONG == 64
59 if ((word & 0xffffffff00000000UL) == 0)
60 num += 32;
61 else
62 word >>= 32;
63#endif
64 if ((word & 0xffff0000) == 0)
65 num += 16;
66 else
67 word >>= 16;
68
69 if ((word & 0xff00) == 0)
70 num += 8;
71 else
72 word >>= 8;
73
74 if ((word & 0xf0) == 0)
75 num += 4;
76 else
77 word >>= 4;
78
79 if ((word & 0xc) == 0)
80 num += 2;
81 else
82 word >>= 2;
83
84 if ((word & 0x2) == 0)
85 num += 1;
86 return num;
87}
88
89/*
90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
92 * @size must be integral times of unsigned long.
93 * Example:
94 * MSB <--> LSB
95 * f2fs_set_bit(0, bitmap) => 1000 0000
96 * f2fs_set_bit(7, bitmap) => 0000 0001
97 */
98static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 unsigned long size, unsigned long offset)
100{
101 const unsigned long *p = addr + BIT_WORD(offset);
102 unsigned long result = size;
103 unsigned long tmp;
104
105 if (offset >= size)
106 return size;
107
108 size -= (offset & ~(BITS_PER_LONG - 1));
109 offset %= BITS_PER_LONG;
110
111 while (1) {
112 if (*p == 0)
113 goto pass;
114
115 tmp = __reverse_ulong((unsigned char *)p);
116
117 tmp &= ~0UL >> offset;
118 if (size < BITS_PER_LONG)
119 tmp &= (~0UL << (BITS_PER_LONG - size));
120 if (tmp)
121 goto found;
122pass:
123 if (size <= BITS_PER_LONG)
124 break;
125 size -= BITS_PER_LONG;
126 offset = 0;
127 p++;
128 }
129 return result;
130found:
131 return result - size + __reverse_ffs(tmp);
132}
133
134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 unsigned long size, unsigned long offset)
136{
137 const unsigned long *p = addr + BIT_WORD(offset);
138 unsigned long result = size;
139 unsigned long tmp;
140
141 if (offset >= size)
142 return size;
143
144 size -= (offset & ~(BITS_PER_LONG - 1));
145 offset %= BITS_PER_LONG;
146
147 while (1) {
148 if (*p == ~0UL)
149 goto pass;
150
151 tmp = __reverse_ulong((unsigned char *)p);
152
153 if (offset)
154 tmp |= ~0UL << (BITS_PER_LONG - offset);
155 if (size < BITS_PER_LONG)
156 tmp |= ~0UL >> size;
157 if (tmp != ~0UL)
158 goto found;
159pass:
160 if (size <= BITS_PER_LONG)
161 break;
162 size -= BITS_PER_LONG;
163 offset = 0;
164 p++;
165 }
166 return result;
167found:
168 return result - size + __reverse_ffz(tmp);
169}
170
171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172{
173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176
177 if (f2fs_lfs_mode(sbi))
178 return false;
179 if (sbi->gc_mode == GC_URGENT_HIGH)
180 return true;
181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 return true;
183
184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186}
187
188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189{
190 struct f2fs_inode_info *fi = F2FS_I(inode);
191
192 if (!f2fs_is_atomic_file(inode))
193 return;
194
195 clear_inode_flag(fi->cow_inode, FI_COW_FILE);
196 iput(fi->cow_inode);
197 fi->cow_inode = NULL;
198 release_atomic_write_cnt(inode);
199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 clear_inode_flag(inode, FI_ATOMIC_FILE);
202 stat_dec_atomic_inode(inode);
203
204 if (clean) {
205 truncate_inode_pages_final(inode->i_mapping);
206 f2fs_i_size_write(inode, fi->original_i_size);
207 }
208}
209
210static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 block_t new_addr, block_t *old_addr, bool recover)
212{
213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 struct dnode_of_data dn;
215 struct node_info ni;
216 int err;
217
218retry:
219 set_new_dnode(&dn, inode, NULL, NULL, 0);
220 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
221 if (err) {
222 if (err == -ENOMEM) {
223 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
224 goto retry;
225 }
226 return err;
227 }
228
229 err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
230 if (err) {
231 f2fs_put_dnode(&dn);
232 return err;
233 }
234
235 if (recover) {
236 /* dn.data_blkaddr is always valid */
237 if (!__is_valid_data_blkaddr(new_addr)) {
238 if (new_addr == NULL_ADDR)
239 dec_valid_block_count(sbi, inode, 1);
240 f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 f2fs_update_data_blkaddr(&dn, new_addr);
242 } else {
243 f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 new_addr, ni.version, true, true);
245 }
246 } else {
247 blkcnt_t count = 1;
248
249 *old_addr = dn.data_blkaddr;
250 f2fs_truncate_data_blocks_range(&dn, 1);
251 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 inc_valid_block_count(sbi, inode, &count);
253 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 ni.version, true, false);
255 }
256
257 f2fs_put_dnode(&dn);
258 return 0;
259}
260
261static void __complete_revoke_list(struct inode *inode, struct list_head *head,
262 bool revoke)
263{
264 struct revoke_entry *cur, *tmp;
265 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
266
267 list_for_each_entry_safe(cur, tmp, head, list) {
268 if (revoke)
269 __replace_atomic_write_block(inode, cur->index,
270 cur->old_addr, NULL, true);
271
272 list_del(&cur->list);
273 kmem_cache_free(revoke_entry_slab, cur);
274 }
275
276 if (!revoke && truncate)
277 f2fs_do_truncate_blocks(inode, 0, false);
278}
279
280static int __f2fs_commit_atomic_write(struct inode *inode)
281{
282 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
283 struct f2fs_inode_info *fi = F2FS_I(inode);
284 struct inode *cow_inode = fi->cow_inode;
285 struct revoke_entry *new;
286 struct list_head revoke_list;
287 block_t blkaddr;
288 struct dnode_of_data dn;
289 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
290 pgoff_t off = 0, blen, index;
291 int ret = 0, i;
292
293 INIT_LIST_HEAD(&revoke_list);
294
295 while (len) {
296 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
297
298 set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
299 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
300 if (ret && ret != -ENOENT) {
301 goto out;
302 } else if (ret == -ENOENT) {
303 ret = 0;
304 if (dn.max_level == 0)
305 goto out;
306 goto next;
307 }
308
309 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
310 len);
311 index = off;
312 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
313 blkaddr = f2fs_data_blkaddr(&dn);
314
315 if (!__is_valid_data_blkaddr(blkaddr)) {
316 continue;
317 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
318 DATA_GENERIC_ENHANCE)) {
319 f2fs_put_dnode(&dn);
320 ret = -EFSCORRUPTED;
321 f2fs_handle_error(sbi,
322 ERROR_INVALID_BLKADDR);
323 goto out;
324 }
325
326 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
327 true, NULL);
328
329 ret = __replace_atomic_write_block(inode, index, blkaddr,
330 &new->old_addr, false);
331 if (ret) {
332 f2fs_put_dnode(&dn);
333 kmem_cache_free(revoke_entry_slab, new);
334 goto out;
335 }
336
337 f2fs_update_data_blkaddr(&dn, NULL_ADDR);
338 new->index = index;
339 list_add_tail(&new->list, &revoke_list);
340 }
341 f2fs_put_dnode(&dn);
342next:
343 off += blen;
344 len -= blen;
345 }
346
347out:
348 if (ret) {
349 sbi->revoked_atomic_block += fi->atomic_write_cnt;
350 } else {
351 sbi->committed_atomic_block += fi->atomic_write_cnt;
352 set_inode_flag(inode, FI_ATOMIC_COMMITTED);
353 }
354
355 __complete_revoke_list(inode, &revoke_list, ret ? true : false);
356
357 return ret;
358}
359
360int f2fs_commit_atomic_write(struct inode *inode)
361{
362 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
363 struct f2fs_inode_info *fi = F2FS_I(inode);
364 int err;
365
366 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
367 if (err)
368 return err;
369
370 f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
371 f2fs_lock_op(sbi);
372
373 err = __f2fs_commit_atomic_write(inode);
374
375 f2fs_unlock_op(sbi);
376 f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
377
378 return err;
379}
380
381/*
382 * This function balances dirty node and dentry pages.
383 * In addition, it controls garbage collection.
384 */
385void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
386{
387 if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
389 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
390 }
391
392 /* balance_fs_bg is able to be pending */
393 if (need && excess_cached_nats(sbi))
394 f2fs_balance_fs_bg(sbi, false);
395
396 if (!f2fs_is_checkpoint_ready(sbi))
397 return;
398
399 /*
400 * We should do GC or end up with checkpoint, if there are so many dirty
401 * dir/node pages without enough free segments.
402 */
403 if (has_not_enough_free_secs(sbi, 0, 0)) {
404 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
405 sbi->gc_thread->f2fs_gc_task) {
406 DEFINE_WAIT(wait);
407
408 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
409 TASK_UNINTERRUPTIBLE);
410 wake_up(&sbi->gc_thread->gc_wait_queue_head);
411 io_schedule();
412 finish_wait(&sbi->gc_thread->fggc_wq, &wait);
413 } else {
414 struct f2fs_gc_control gc_control = {
415 .victim_segno = NULL_SEGNO,
416 .init_gc_type = BG_GC,
417 .no_bg_gc = true,
418 .should_migrate_blocks = false,
419 .err_gc_skipped = false,
420 .nr_free_secs = 1 };
421 f2fs_down_write(&sbi->gc_lock);
422 f2fs_gc(sbi, &gc_control);
423 }
424 }
425}
426
427static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
428{
429 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
430 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
431 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
432 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
433 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
434 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
435 unsigned int threshold = sbi->blocks_per_seg * factor *
436 DEFAULT_DIRTY_THRESHOLD;
437 unsigned int global_threshold = threshold * 3 / 2;
438
439 if (dents >= threshold || qdata >= threshold ||
440 nodes >= threshold || meta >= threshold ||
441 imeta >= threshold)
442 return true;
443 return dents + qdata + nodes + meta + imeta > global_threshold;
444}
445
446void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
447{
448 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
449 return;
450
451 /* try to shrink extent cache when there is no enough memory */
452 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
453 f2fs_shrink_read_extent_tree(sbi,
454 READ_EXTENT_CACHE_SHRINK_NUMBER);
455
456 /* try to shrink age extent cache when there is no enough memory */
457 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
458 f2fs_shrink_age_extent_tree(sbi,
459 AGE_EXTENT_CACHE_SHRINK_NUMBER);
460
461 /* check the # of cached NAT entries */
462 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
463 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
464
465 if (!f2fs_available_free_memory(sbi, FREE_NIDS))
466 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
467 else
468 f2fs_build_free_nids(sbi, false, false);
469
470 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
471 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
472 goto do_sync;
473
474 /* there is background inflight IO or foreground operation recently */
475 if (is_inflight_io(sbi, REQ_TIME) ||
476 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
477 return;
478
479 /* exceed periodical checkpoint timeout threshold */
480 if (f2fs_time_over(sbi, CP_TIME))
481 goto do_sync;
482
483 /* checkpoint is the only way to shrink partial cached entries */
484 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
485 f2fs_available_free_memory(sbi, INO_ENTRIES))
486 return;
487
488do_sync:
489 if (test_opt(sbi, DATA_FLUSH) && from_bg) {
490 struct blk_plug plug;
491
492 mutex_lock(&sbi->flush_lock);
493
494 blk_start_plug(&plug);
495 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
496 blk_finish_plug(&plug);
497
498 mutex_unlock(&sbi->flush_lock);
499 }
500 f2fs_sync_fs(sbi->sb, 1);
501 stat_inc_bg_cp_count(sbi->stat_info);
502}
503
504static int __submit_flush_wait(struct f2fs_sb_info *sbi,
505 struct block_device *bdev)
506{
507 int ret = blkdev_issue_flush(bdev);
508
509 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
510 test_opt(sbi, FLUSH_MERGE), ret);
511 return ret;
512}
513
514static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
515{
516 int ret = 0;
517 int i;
518
519 if (!f2fs_is_multi_device(sbi))
520 return __submit_flush_wait(sbi, sbi->sb->s_bdev);
521
522 for (i = 0; i < sbi->s_ndevs; i++) {
523 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
524 continue;
525 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
526 if (ret)
527 break;
528 }
529 return ret;
530}
531
532static int issue_flush_thread(void *data)
533{
534 struct f2fs_sb_info *sbi = data;
535 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
536 wait_queue_head_t *q = &fcc->flush_wait_queue;
537repeat:
538 if (kthread_should_stop())
539 return 0;
540
541 if (!llist_empty(&fcc->issue_list)) {
542 struct flush_cmd *cmd, *next;
543 int ret;
544
545 fcc->dispatch_list = llist_del_all(&fcc->issue_list);
546 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
547
548 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
549
550 ret = submit_flush_wait(sbi, cmd->ino);
551 atomic_inc(&fcc->issued_flush);
552
553 llist_for_each_entry_safe(cmd, next,
554 fcc->dispatch_list, llnode) {
555 cmd->ret = ret;
556 complete(&cmd->wait);
557 }
558 fcc->dispatch_list = NULL;
559 }
560
561 wait_event_interruptible(*q,
562 kthread_should_stop() || !llist_empty(&fcc->issue_list));
563 goto repeat;
564}
565
566int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
567{
568 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
569 struct flush_cmd cmd;
570 int ret;
571
572 if (test_opt(sbi, NOBARRIER))
573 return 0;
574
575 if (!test_opt(sbi, FLUSH_MERGE)) {
576 atomic_inc(&fcc->queued_flush);
577 ret = submit_flush_wait(sbi, ino);
578 atomic_dec(&fcc->queued_flush);
579 atomic_inc(&fcc->issued_flush);
580 return ret;
581 }
582
583 if (atomic_inc_return(&fcc->queued_flush) == 1 ||
584 f2fs_is_multi_device(sbi)) {
585 ret = submit_flush_wait(sbi, ino);
586 atomic_dec(&fcc->queued_flush);
587
588 atomic_inc(&fcc->issued_flush);
589 return ret;
590 }
591
592 cmd.ino = ino;
593 init_completion(&cmd.wait);
594
595 llist_add(&cmd.llnode, &fcc->issue_list);
596
597 /*
598 * update issue_list before we wake up issue_flush thread, this
599 * smp_mb() pairs with another barrier in ___wait_event(), see
600 * more details in comments of waitqueue_active().
601 */
602 smp_mb();
603
604 if (waitqueue_active(&fcc->flush_wait_queue))
605 wake_up(&fcc->flush_wait_queue);
606
607 if (fcc->f2fs_issue_flush) {
608 wait_for_completion(&cmd.wait);
609 atomic_dec(&fcc->queued_flush);
610 } else {
611 struct llist_node *list;
612
613 list = llist_del_all(&fcc->issue_list);
614 if (!list) {
615 wait_for_completion(&cmd.wait);
616 atomic_dec(&fcc->queued_flush);
617 } else {
618 struct flush_cmd *tmp, *next;
619
620 ret = submit_flush_wait(sbi, ino);
621
622 llist_for_each_entry_safe(tmp, next, list, llnode) {
623 if (tmp == &cmd) {
624 cmd.ret = ret;
625 atomic_dec(&fcc->queued_flush);
626 continue;
627 }
628 tmp->ret = ret;
629 complete(&tmp->wait);
630 }
631 }
632 }
633
634 return cmd.ret;
635}
636
637int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
638{
639 dev_t dev = sbi->sb->s_bdev->bd_dev;
640 struct flush_cmd_control *fcc;
641
642 if (SM_I(sbi)->fcc_info) {
643 fcc = SM_I(sbi)->fcc_info;
644 if (fcc->f2fs_issue_flush)
645 return 0;
646 goto init_thread;
647 }
648
649 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
650 if (!fcc)
651 return -ENOMEM;
652 atomic_set(&fcc->issued_flush, 0);
653 atomic_set(&fcc->queued_flush, 0);
654 init_waitqueue_head(&fcc->flush_wait_queue);
655 init_llist_head(&fcc->issue_list);
656 SM_I(sbi)->fcc_info = fcc;
657 if (!test_opt(sbi, FLUSH_MERGE))
658 return 0;
659
660init_thread:
661 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
662 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
663 if (IS_ERR(fcc->f2fs_issue_flush)) {
664 int err = PTR_ERR(fcc->f2fs_issue_flush);
665
666 fcc->f2fs_issue_flush = NULL;
667 return err;
668 }
669
670 return 0;
671}
672
673void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
674{
675 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
676
677 if (fcc && fcc->f2fs_issue_flush) {
678 struct task_struct *flush_thread = fcc->f2fs_issue_flush;
679
680 fcc->f2fs_issue_flush = NULL;
681 kthread_stop(flush_thread);
682 }
683 if (free) {
684 kfree(fcc);
685 SM_I(sbi)->fcc_info = NULL;
686 }
687}
688
689int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
690{
691 int ret = 0, i;
692
693 if (!f2fs_is_multi_device(sbi))
694 return 0;
695
696 if (test_opt(sbi, NOBARRIER))
697 return 0;
698
699 for (i = 1; i < sbi->s_ndevs; i++) {
700 int count = DEFAULT_RETRY_IO_COUNT;
701
702 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
703 continue;
704
705 do {
706 ret = __submit_flush_wait(sbi, FDEV(i).bdev);
707 if (ret)
708 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
709 } while (ret && --count);
710
711 if (ret) {
712 f2fs_stop_checkpoint(sbi, false,
713 STOP_CP_REASON_FLUSH_FAIL);
714 break;
715 }
716
717 spin_lock(&sbi->dev_lock);
718 f2fs_clear_bit(i, (char *)&sbi->dirty_device);
719 spin_unlock(&sbi->dev_lock);
720 }
721
722 return ret;
723}
724
725static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
726 enum dirty_type dirty_type)
727{
728 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
729
730 /* need not be added */
731 if (IS_CURSEG(sbi, segno))
732 return;
733
734 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
735 dirty_i->nr_dirty[dirty_type]++;
736
737 if (dirty_type == DIRTY) {
738 struct seg_entry *sentry = get_seg_entry(sbi, segno);
739 enum dirty_type t = sentry->type;
740
741 if (unlikely(t >= DIRTY)) {
742 f2fs_bug_on(sbi, 1);
743 return;
744 }
745 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
746 dirty_i->nr_dirty[t]++;
747
748 if (__is_large_section(sbi)) {
749 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
750 block_t valid_blocks =
751 get_valid_blocks(sbi, segno, true);
752
753 f2fs_bug_on(sbi, unlikely(!valid_blocks ||
754 valid_blocks == CAP_BLKS_PER_SEC(sbi)));
755
756 if (!IS_CURSEC(sbi, secno))
757 set_bit(secno, dirty_i->dirty_secmap);
758 }
759 }
760}
761
762static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
763 enum dirty_type dirty_type)
764{
765 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
766 block_t valid_blocks;
767
768 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
769 dirty_i->nr_dirty[dirty_type]--;
770
771 if (dirty_type == DIRTY) {
772 struct seg_entry *sentry = get_seg_entry(sbi, segno);
773 enum dirty_type t = sentry->type;
774
775 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
776 dirty_i->nr_dirty[t]--;
777
778 valid_blocks = get_valid_blocks(sbi, segno, true);
779 if (valid_blocks == 0) {
780 clear_bit(GET_SEC_FROM_SEG(sbi, segno),
781 dirty_i->victim_secmap);
782#ifdef CONFIG_F2FS_CHECK_FS
783 clear_bit(segno, SIT_I(sbi)->invalid_segmap);
784#endif
785 }
786 if (__is_large_section(sbi)) {
787 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
788
789 if (!valid_blocks ||
790 valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
791 clear_bit(secno, dirty_i->dirty_secmap);
792 return;
793 }
794
795 if (!IS_CURSEC(sbi, secno))
796 set_bit(secno, dirty_i->dirty_secmap);
797 }
798 }
799}
800
801/*
802 * Should not occur error such as -ENOMEM.
803 * Adding dirty entry into seglist is not critical operation.
804 * If a given segment is one of current working segments, it won't be added.
805 */
806static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
807{
808 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
809 unsigned short valid_blocks, ckpt_valid_blocks;
810 unsigned int usable_blocks;
811
812 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
813 return;
814
815 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
816 mutex_lock(&dirty_i->seglist_lock);
817
818 valid_blocks = get_valid_blocks(sbi, segno, false);
819 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
820
821 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
822 ckpt_valid_blocks == usable_blocks)) {
823 __locate_dirty_segment(sbi, segno, PRE);
824 __remove_dirty_segment(sbi, segno, DIRTY);
825 } else if (valid_blocks < usable_blocks) {
826 __locate_dirty_segment(sbi, segno, DIRTY);
827 } else {
828 /* Recovery routine with SSR needs this */
829 __remove_dirty_segment(sbi, segno, DIRTY);
830 }
831
832 mutex_unlock(&dirty_i->seglist_lock);
833}
834
835/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
836void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
837{
838 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
839 unsigned int segno;
840
841 mutex_lock(&dirty_i->seglist_lock);
842 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
843 if (get_valid_blocks(sbi, segno, false))
844 continue;
845 if (IS_CURSEG(sbi, segno))
846 continue;
847 __locate_dirty_segment(sbi, segno, PRE);
848 __remove_dirty_segment(sbi, segno, DIRTY);
849 }
850 mutex_unlock(&dirty_i->seglist_lock);
851}
852
853block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
854{
855 int ovp_hole_segs =
856 (overprovision_segments(sbi) - reserved_segments(sbi));
857 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
858 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
859 block_t holes[2] = {0, 0}; /* DATA and NODE */
860 block_t unusable;
861 struct seg_entry *se;
862 unsigned int segno;
863
864 mutex_lock(&dirty_i->seglist_lock);
865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
866 se = get_seg_entry(sbi, segno);
867 if (IS_NODESEG(se->type))
868 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
869 se->valid_blocks;
870 else
871 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
872 se->valid_blocks;
873 }
874 mutex_unlock(&dirty_i->seglist_lock);
875
876 unusable = max(holes[DATA], holes[NODE]);
877 if (unusable > ovp_holes)
878 return unusable - ovp_holes;
879 return 0;
880}
881
882int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
883{
884 int ovp_hole_segs =
885 (overprovision_segments(sbi) - reserved_segments(sbi));
886 if (unusable > F2FS_OPTION(sbi).unusable_cap)
887 return -EAGAIN;
888 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
889 dirty_segments(sbi) > ovp_hole_segs)
890 return -EAGAIN;
891 return 0;
892}
893
894/* This is only used by SBI_CP_DISABLED */
895static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
896{
897 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
898 unsigned int segno = 0;
899
900 mutex_lock(&dirty_i->seglist_lock);
901 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
902 if (get_valid_blocks(sbi, segno, false))
903 continue;
904 if (get_ckpt_valid_blocks(sbi, segno, false))
905 continue;
906 mutex_unlock(&dirty_i->seglist_lock);
907 return segno;
908 }
909 mutex_unlock(&dirty_i->seglist_lock);
910 return NULL_SEGNO;
911}
912
913static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
914 struct block_device *bdev, block_t lstart,
915 block_t start, block_t len)
916{
917 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
918 struct list_head *pend_list;
919 struct discard_cmd *dc;
920
921 f2fs_bug_on(sbi, !len);
922
923 pend_list = &dcc->pend_list[plist_idx(len)];
924
925 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
926 INIT_LIST_HEAD(&dc->list);
927 dc->bdev = bdev;
928 dc->lstart = lstart;
929 dc->start = start;
930 dc->len = len;
931 dc->ref = 0;
932 dc->state = D_PREP;
933 dc->queued = 0;
934 dc->error = 0;
935 init_completion(&dc->wait);
936 list_add_tail(&dc->list, pend_list);
937 spin_lock_init(&dc->lock);
938 dc->bio_ref = 0;
939 atomic_inc(&dcc->discard_cmd_cnt);
940 dcc->undiscard_blks += len;
941
942 return dc;
943}
944
945static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
946 struct block_device *bdev, block_t lstart,
947 block_t start, block_t len,
948 struct rb_node *parent, struct rb_node **p,
949 bool leftmost)
950{
951 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
952 struct discard_cmd *dc;
953
954 dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
955
956 rb_link_node(&dc->rb_node, parent, p);
957 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
958
959 return dc;
960}
961
962static void __detach_discard_cmd(struct discard_cmd_control *dcc,
963 struct discard_cmd *dc)
964{
965 if (dc->state == D_DONE)
966 atomic_sub(dc->queued, &dcc->queued_discard);
967
968 list_del(&dc->list);
969 rb_erase_cached(&dc->rb_node, &dcc->root);
970 dcc->undiscard_blks -= dc->len;
971
972 kmem_cache_free(discard_cmd_slab, dc);
973
974 atomic_dec(&dcc->discard_cmd_cnt);
975}
976
977static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
978 struct discard_cmd *dc)
979{
980 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
981 unsigned long flags;
982
983 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
984
985 spin_lock_irqsave(&dc->lock, flags);
986 if (dc->bio_ref) {
987 spin_unlock_irqrestore(&dc->lock, flags);
988 return;
989 }
990 spin_unlock_irqrestore(&dc->lock, flags);
991
992 f2fs_bug_on(sbi, dc->ref);
993
994 if (dc->error == -EOPNOTSUPP)
995 dc->error = 0;
996
997 if (dc->error)
998 printk_ratelimited(
999 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1000 KERN_INFO, sbi->sb->s_id,
1001 dc->lstart, dc->start, dc->len, dc->error);
1002 __detach_discard_cmd(dcc, dc);
1003}
1004
1005static void f2fs_submit_discard_endio(struct bio *bio)
1006{
1007 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1008 unsigned long flags;
1009
1010 spin_lock_irqsave(&dc->lock, flags);
1011 if (!dc->error)
1012 dc->error = blk_status_to_errno(bio->bi_status);
1013 dc->bio_ref--;
1014 if (!dc->bio_ref && dc->state == D_SUBMIT) {
1015 dc->state = D_DONE;
1016 complete_all(&dc->wait);
1017 }
1018 spin_unlock_irqrestore(&dc->lock, flags);
1019 bio_put(bio);
1020}
1021
1022static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1023 block_t start, block_t end)
1024{
1025#ifdef CONFIG_F2FS_CHECK_FS
1026 struct seg_entry *sentry;
1027 unsigned int segno;
1028 block_t blk = start;
1029 unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1030 unsigned long *map;
1031
1032 while (blk < end) {
1033 segno = GET_SEGNO(sbi, blk);
1034 sentry = get_seg_entry(sbi, segno);
1035 offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1036
1037 if (end < START_BLOCK(sbi, segno + 1))
1038 size = GET_BLKOFF_FROM_SEG0(sbi, end);
1039 else
1040 size = max_blocks;
1041 map = (unsigned long *)(sentry->cur_valid_map);
1042 offset = __find_rev_next_bit(map, size, offset);
1043 f2fs_bug_on(sbi, offset != size);
1044 blk = START_BLOCK(sbi, segno + 1);
1045 }
1046#endif
1047}
1048
1049static void __init_discard_policy(struct f2fs_sb_info *sbi,
1050 struct discard_policy *dpolicy,
1051 int discard_type, unsigned int granularity)
1052{
1053 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1054
1055 /* common policy */
1056 dpolicy->type = discard_type;
1057 dpolicy->sync = true;
1058 dpolicy->ordered = false;
1059 dpolicy->granularity = granularity;
1060
1061 dpolicy->max_requests = dcc->max_discard_request;
1062 dpolicy->io_aware_gran = MAX_PLIST_NUM;
1063 dpolicy->timeout = false;
1064
1065 if (discard_type == DPOLICY_BG) {
1066 dpolicy->min_interval = dcc->min_discard_issue_time;
1067 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1068 dpolicy->max_interval = dcc->max_discard_issue_time;
1069 dpolicy->io_aware = true;
1070 dpolicy->sync = false;
1071 dpolicy->ordered = true;
1072 if (utilization(sbi) > dcc->discard_urgent_util) {
1073 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1074 if (atomic_read(&dcc->discard_cmd_cnt))
1075 dpolicy->max_interval =
1076 dcc->min_discard_issue_time;
1077 }
1078 } else if (discard_type == DPOLICY_FORCE) {
1079 dpolicy->min_interval = dcc->min_discard_issue_time;
1080 dpolicy->mid_interval = dcc->mid_discard_issue_time;
1081 dpolicy->max_interval = dcc->max_discard_issue_time;
1082 dpolicy->io_aware = false;
1083 } else if (discard_type == DPOLICY_FSTRIM) {
1084 dpolicy->io_aware = false;
1085 } else if (discard_type == DPOLICY_UMOUNT) {
1086 dpolicy->io_aware = false;
1087 /* we need to issue all to keep CP_TRIMMED_FLAG */
1088 dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1089 dpolicy->timeout = true;
1090 }
1091}
1092
1093static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1094 struct block_device *bdev, block_t lstart,
1095 block_t start, block_t len);
1096/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1097static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1098 struct discard_policy *dpolicy,
1099 struct discard_cmd *dc,
1100 unsigned int *issued)
1101{
1102 struct block_device *bdev = dc->bdev;
1103 unsigned int max_discard_blocks =
1104 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1105 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107 &(dcc->fstrim_list) : &(dcc->wait_list);
1108 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1109 block_t lstart, start, len, total_len;
1110 int err = 0;
1111
1112 if (dc->state != D_PREP)
1113 return 0;
1114
1115 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1116 return 0;
1117
1118 trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1119
1120 lstart = dc->lstart;
1121 start = dc->start;
1122 len = dc->len;
1123 total_len = len;
1124
1125 dc->len = 0;
1126
1127 while (total_len && *issued < dpolicy->max_requests && !err) {
1128 struct bio *bio = NULL;
1129 unsigned long flags;
1130 bool last = true;
1131
1132 if (len > max_discard_blocks) {
1133 len = max_discard_blocks;
1134 last = false;
1135 }
1136
1137 (*issued)++;
1138 if (*issued == dpolicy->max_requests)
1139 last = true;
1140
1141 dc->len += len;
1142
1143 if (time_to_inject(sbi, FAULT_DISCARD)) {
1144 f2fs_show_injection_info(sbi, FAULT_DISCARD);
1145 err = -EIO;
1146 } else {
1147 err = __blkdev_issue_discard(bdev,
1148 SECTOR_FROM_BLOCK(start),
1149 SECTOR_FROM_BLOCK(len),
1150 GFP_NOFS, &bio);
1151 }
1152 if (err) {
1153 spin_lock_irqsave(&dc->lock, flags);
1154 if (dc->state == D_PARTIAL)
1155 dc->state = D_SUBMIT;
1156 spin_unlock_irqrestore(&dc->lock, flags);
1157
1158 break;
1159 }
1160
1161 f2fs_bug_on(sbi, !bio);
1162
1163 /*
1164 * should keep before submission to avoid D_DONE
1165 * right away
1166 */
1167 spin_lock_irqsave(&dc->lock, flags);
1168 if (last)
1169 dc->state = D_SUBMIT;
1170 else
1171 dc->state = D_PARTIAL;
1172 dc->bio_ref++;
1173 spin_unlock_irqrestore(&dc->lock, flags);
1174
1175 atomic_inc(&dcc->queued_discard);
1176 dc->queued++;
1177 list_move_tail(&dc->list, wait_list);
1178
1179 /* sanity check on discard range */
1180 __check_sit_bitmap(sbi, lstart, lstart + len);
1181
1182 bio->bi_private = dc;
1183 bio->bi_end_io = f2fs_submit_discard_endio;
1184 bio->bi_opf |= flag;
1185 submit_bio(bio);
1186
1187 atomic_inc(&dcc->issued_discard);
1188
1189 f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1190
1191 lstart += len;
1192 start += len;
1193 total_len -= len;
1194 len = total_len;
1195 }
1196
1197 if (!err && len) {
1198 dcc->undiscard_blks -= len;
1199 __update_discard_tree_range(sbi, bdev, lstart, start, len);
1200 }
1201 return err;
1202}
1203
1204static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1205 struct block_device *bdev, block_t lstart,
1206 block_t start, block_t len,
1207 struct rb_node **insert_p,
1208 struct rb_node *insert_parent)
1209{
1210 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1211 struct rb_node **p;
1212 struct rb_node *parent = NULL;
1213 bool leftmost = true;
1214
1215 if (insert_p && insert_parent) {
1216 parent = insert_parent;
1217 p = insert_p;
1218 goto do_insert;
1219 }
1220
1221 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1222 lstart, &leftmost);
1223do_insert:
1224 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1225 p, leftmost);
1226}
1227
1228static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1229 struct discard_cmd *dc)
1230{
1231 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1232}
1233
1234static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1235 struct discard_cmd *dc, block_t blkaddr)
1236{
1237 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1238 struct discard_info di = dc->di;
1239 bool modified = false;
1240
1241 if (dc->state == D_DONE || dc->len == 1) {
1242 __remove_discard_cmd(sbi, dc);
1243 return;
1244 }
1245
1246 dcc->undiscard_blks -= di.len;
1247
1248 if (blkaddr > di.lstart) {
1249 dc->len = blkaddr - dc->lstart;
1250 dcc->undiscard_blks += dc->len;
1251 __relocate_discard_cmd(dcc, dc);
1252 modified = true;
1253 }
1254
1255 if (blkaddr < di.lstart + di.len - 1) {
1256 if (modified) {
1257 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1258 di.start + blkaddr + 1 - di.lstart,
1259 di.lstart + di.len - 1 - blkaddr,
1260 NULL, NULL);
1261 } else {
1262 dc->lstart++;
1263 dc->len--;
1264 dc->start++;
1265 dcc->undiscard_blks += dc->len;
1266 __relocate_discard_cmd(dcc, dc);
1267 }
1268 }
1269}
1270
1271static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1272 struct block_device *bdev, block_t lstart,
1273 block_t start, block_t len)
1274{
1275 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1276 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1277 struct discard_cmd *dc;
1278 struct discard_info di = {0};
1279 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1280 unsigned int max_discard_blocks =
1281 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1282 block_t end = lstart + len;
1283
1284 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1285 NULL, lstart,
1286 (struct rb_entry **)&prev_dc,
1287 (struct rb_entry **)&next_dc,
1288 &insert_p, &insert_parent, true, NULL);
1289 if (dc)
1290 prev_dc = dc;
1291
1292 if (!prev_dc) {
1293 di.lstart = lstart;
1294 di.len = next_dc ? next_dc->lstart - lstart : len;
1295 di.len = min(di.len, len);
1296 di.start = start;
1297 }
1298
1299 while (1) {
1300 struct rb_node *node;
1301 bool merged = false;
1302 struct discard_cmd *tdc = NULL;
1303
1304 if (prev_dc) {
1305 di.lstart = prev_dc->lstart + prev_dc->len;
1306 if (di.lstart < lstart)
1307 di.lstart = lstart;
1308 if (di.lstart >= end)
1309 break;
1310
1311 if (!next_dc || next_dc->lstart > end)
1312 di.len = end - di.lstart;
1313 else
1314 di.len = next_dc->lstart - di.lstart;
1315 di.start = start + di.lstart - lstart;
1316 }
1317
1318 if (!di.len)
1319 goto next;
1320
1321 if (prev_dc && prev_dc->state == D_PREP &&
1322 prev_dc->bdev == bdev &&
1323 __is_discard_back_mergeable(&di, &prev_dc->di,
1324 max_discard_blocks)) {
1325 prev_dc->di.len += di.len;
1326 dcc->undiscard_blks += di.len;
1327 __relocate_discard_cmd(dcc, prev_dc);
1328 di = prev_dc->di;
1329 tdc = prev_dc;
1330 merged = true;
1331 }
1332
1333 if (next_dc && next_dc->state == D_PREP &&
1334 next_dc->bdev == bdev &&
1335 __is_discard_front_mergeable(&di, &next_dc->di,
1336 max_discard_blocks)) {
1337 next_dc->di.lstart = di.lstart;
1338 next_dc->di.len += di.len;
1339 next_dc->di.start = di.start;
1340 dcc->undiscard_blks += di.len;
1341 __relocate_discard_cmd(dcc, next_dc);
1342 if (tdc)
1343 __remove_discard_cmd(sbi, tdc);
1344 merged = true;
1345 }
1346
1347 if (!merged) {
1348 __insert_discard_tree(sbi, bdev, di.lstart, di.start,
1349 di.len, NULL, NULL);
1350 }
1351 next:
1352 prev_dc = next_dc;
1353 if (!prev_dc)
1354 break;
1355
1356 node = rb_next(&prev_dc->rb_node);
1357 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1358 }
1359}
1360
1361static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1362 struct block_device *bdev, block_t blkstart, block_t blklen)
1363{
1364 block_t lblkstart = blkstart;
1365
1366 if (!f2fs_bdev_support_discard(bdev))
1367 return;
1368
1369 trace_f2fs_queue_discard(bdev, blkstart, blklen);
1370
1371 if (f2fs_is_multi_device(sbi)) {
1372 int devi = f2fs_target_device_index(sbi, blkstart);
1373
1374 blkstart -= FDEV(devi).start_blk;
1375 }
1376 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1377 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1378 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1379}
1380
1381static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1382 struct discard_policy *dpolicy)
1383{
1384 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1385 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1386 struct rb_node **insert_p = NULL, *insert_parent = NULL;
1387 struct discard_cmd *dc;
1388 struct blk_plug plug;
1389 unsigned int pos = dcc->next_pos;
1390 unsigned int issued = 0;
1391 bool io_interrupted = false;
1392
1393 mutex_lock(&dcc->cmd_lock);
1394 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1395 NULL, pos,
1396 (struct rb_entry **)&prev_dc,
1397 (struct rb_entry **)&next_dc,
1398 &insert_p, &insert_parent, true, NULL);
1399 if (!dc)
1400 dc = next_dc;
1401
1402 blk_start_plug(&plug);
1403
1404 while (dc) {
1405 struct rb_node *node;
1406 int err = 0;
1407
1408 if (dc->state != D_PREP)
1409 goto next;
1410
1411 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1412 io_interrupted = true;
1413 break;
1414 }
1415
1416 dcc->next_pos = dc->lstart + dc->len;
1417 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1418
1419 if (issued >= dpolicy->max_requests)
1420 break;
1421next:
1422 node = rb_next(&dc->rb_node);
1423 if (err)
1424 __remove_discard_cmd(sbi, dc);
1425 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1426 }
1427
1428 blk_finish_plug(&plug);
1429
1430 if (!dc)
1431 dcc->next_pos = 0;
1432
1433 mutex_unlock(&dcc->cmd_lock);
1434
1435 if (!issued && io_interrupted)
1436 issued = -1;
1437
1438 return issued;
1439}
1440static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1441 struct discard_policy *dpolicy);
1442
1443static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1444 struct discard_policy *dpolicy)
1445{
1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 struct list_head *pend_list;
1448 struct discard_cmd *dc, *tmp;
1449 struct blk_plug plug;
1450 int i, issued;
1451 bool io_interrupted = false;
1452
1453 if (dpolicy->timeout)
1454 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1455
1456retry:
1457 issued = 0;
1458 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1459 if (dpolicy->timeout &&
1460 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1461 break;
1462
1463 if (i + 1 < dpolicy->granularity)
1464 break;
1465
1466 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1467 return __issue_discard_cmd_orderly(sbi, dpolicy);
1468
1469 pend_list = &dcc->pend_list[i];
1470
1471 mutex_lock(&dcc->cmd_lock);
1472 if (list_empty(pend_list))
1473 goto next;
1474 if (unlikely(dcc->rbtree_check))
1475 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1476 &dcc->root, false));
1477 blk_start_plug(&plug);
1478 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1479 f2fs_bug_on(sbi, dc->state != D_PREP);
1480
1481 if (dpolicy->timeout &&
1482 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483 break;
1484
1485 if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1486 !is_idle(sbi, DISCARD_TIME)) {
1487 io_interrupted = true;
1488 break;
1489 }
1490
1491 __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1492
1493 if (issued >= dpolicy->max_requests)
1494 break;
1495 }
1496 blk_finish_plug(&plug);
1497next:
1498 mutex_unlock(&dcc->cmd_lock);
1499
1500 if (issued >= dpolicy->max_requests || io_interrupted)
1501 break;
1502 }
1503
1504 if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1505 __wait_all_discard_cmd(sbi, dpolicy);
1506 goto retry;
1507 }
1508
1509 if (!issued && io_interrupted)
1510 issued = -1;
1511
1512 return issued;
1513}
1514
1515static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1516{
1517 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1518 struct list_head *pend_list;
1519 struct discard_cmd *dc, *tmp;
1520 int i;
1521 bool dropped = false;
1522
1523 mutex_lock(&dcc->cmd_lock);
1524 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1525 pend_list = &dcc->pend_list[i];
1526 list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527 f2fs_bug_on(sbi, dc->state != D_PREP);
1528 __remove_discard_cmd(sbi, dc);
1529 dropped = true;
1530 }
1531 }
1532 mutex_unlock(&dcc->cmd_lock);
1533
1534 return dropped;
1535}
1536
1537void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1538{
1539 __drop_discard_cmd(sbi);
1540}
1541
1542static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1543 struct discard_cmd *dc)
1544{
1545 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1546 unsigned int len = 0;
1547
1548 wait_for_completion_io(&dc->wait);
1549 mutex_lock(&dcc->cmd_lock);
1550 f2fs_bug_on(sbi, dc->state != D_DONE);
1551 dc->ref--;
1552 if (!dc->ref) {
1553 if (!dc->error)
1554 len = dc->len;
1555 __remove_discard_cmd(sbi, dc);
1556 }
1557 mutex_unlock(&dcc->cmd_lock);
1558
1559 return len;
1560}
1561
1562static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1563 struct discard_policy *dpolicy,
1564 block_t start, block_t end)
1565{
1566 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1567 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1568 &(dcc->fstrim_list) : &(dcc->wait_list);
1569 struct discard_cmd *dc = NULL, *iter, *tmp;
1570 unsigned int trimmed = 0;
1571
1572next:
1573 dc = NULL;
1574
1575 mutex_lock(&dcc->cmd_lock);
1576 list_for_each_entry_safe(iter, tmp, wait_list, list) {
1577 if (iter->lstart + iter->len <= start || end <= iter->lstart)
1578 continue;
1579 if (iter->len < dpolicy->granularity)
1580 continue;
1581 if (iter->state == D_DONE && !iter->ref) {
1582 wait_for_completion_io(&iter->wait);
1583 if (!iter->error)
1584 trimmed += iter->len;
1585 __remove_discard_cmd(sbi, iter);
1586 } else {
1587 iter->ref++;
1588 dc = iter;
1589 break;
1590 }
1591 }
1592 mutex_unlock(&dcc->cmd_lock);
1593
1594 if (dc) {
1595 trimmed += __wait_one_discard_bio(sbi, dc);
1596 goto next;
1597 }
1598
1599 return trimmed;
1600}
1601
1602static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1603 struct discard_policy *dpolicy)
1604{
1605 struct discard_policy dp;
1606 unsigned int discard_blks;
1607
1608 if (dpolicy)
1609 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1610
1611 /* wait all */
1612 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1613 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1614 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1615 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1616
1617 return discard_blks;
1618}
1619
1620/* This should be covered by global mutex, &sit_i->sentry_lock */
1621static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1622{
1623 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624 struct discard_cmd *dc;
1625 bool need_wait = false;
1626
1627 mutex_lock(&dcc->cmd_lock);
1628 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1629 NULL, blkaddr);
1630 if (dc) {
1631 if (dc->state == D_PREP) {
1632 __punch_discard_cmd(sbi, dc, blkaddr);
1633 } else {
1634 dc->ref++;
1635 need_wait = true;
1636 }
1637 }
1638 mutex_unlock(&dcc->cmd_lock);
1639
1640 if (need_wait)
1641 __wait_one_discard_bio(sbi, dc);
1642}
1643
1644void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1645{
1646 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1647
1648 if (dcc && dcc->f2fs_issue_discard) {
1649 struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1650
1651 dcc->f2fs_issue_discard = NULL;
1652 kthread_stop(discard_thread);
1653 }
1654}
1655
1656/* This comes from f2fs_put_super */
1657bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1658{
1659 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1660 struct discard_policy dpolicy;
1661 bool dropped;
1662
1663 if (!atomic_read(&dcc->discard_cmd_cnt))
1664 return false;
1665
1666 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1667 dcc->discard_granularity);
1668 __issue_discard_cmd(sbi, &dpolicy);
1669 dropped = __drop_discard_cmd(sbi);
1670
1671 /* just to make sure there is no pending discard commands */
1672 __wait_all_discard_cmd(sbi, NULL);
1673
1674 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1675 return dropped;
1676}
1677
1678static int issue_discard_thread(void *data)
1679{
1680 struct f2fs_sb_info *sbi = data;
1681 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1682 wait_queue_head_t *q = &dcc->discard_wait_queue;
1683 struct discard_policy dpolicy;
1684 unsigned int wait_ms = dcc->min_discard_issue_time;
1685 int issued;
1686
1687 set_freezable();
1688
1689 do {
1690 wait_event_interruptible_timeout(*q,
1691 kthread_should_stop() || freezing(current) ||
1692 dcc->discard_wake,
1693 msecs_to_jiffies(wait_ms));
1694
1695 if (sbi->gc_mode == GC_URGENT_HIGH ||
1696 !f2fs_available_free_memory(sbi, DISCARD_CACHE))
1697 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1698 else
1699 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1700 dcc->discard_granularity);
1701
1702 if (dcc->discard_wake)
1703 dcc->discard_wake = 0;
1704
1705 /* clean up pending candidates before going to sleep */
1706 if (atomic_read(&dcc->queued_discard))
1707 __wait_all_discard_cmd(sbi, NULL);
1708
1709 if (try_to_freeze())
1710 continue;
1711 if (f2fs_readonly(sbi->sb))
1712 continue;
1713 if (kthread_should_stop())
1714 return 0;
1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1716 !atomic_read(&dcc->discard_cmd_cnt)) {
1717 wait_ms = dpolicy.max_interval;
1718 continue;
1719 }
1720
1721 sb_start_intwrite(sbi->sb);
1722
1723 issued = __issue_discard_cmd(sbi, &dpolicy);
1724 if (issued > 0) {
1725 __wait_all_discard_cmd(sbi, &dpolicy);
1726 wait_ms = dpolicy.min_interval;
1727 } else if (issued == -1) {
1728 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1729 if (!wait_ms)
1730 wait_ms = dpolicy.mid_interval;
1731 } else {
1732 wait_ms = dpolicy.max_interval;
1733 }
1734 if (!atomic_read(&dcc->discard_cmd_cnt))
1735 wait_ms = dpolicy.max_interval;
1736
1737 sb_end_intwrite(sbi->sb);
1738
1739 } while (!kthread_should_stop());
1740 return 0;
1741}
1742
1743#ifdef CONFIG_BLK_DEV_ZONED
1744static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745 struct block_device *bdev, block_t blkstart, block_t blklen)
1746{
1747 sector_t sector, nr_sects;
1748 block_t lblkstart = blkstart;
1749 int devi = 0;
1750
1751 if (f2fs_is_multi_device(sbi)) {
1752 devi = f2fs_target_device_index(sbi, blkstart);
1753 if (blkstart < FDEV(devi).start_blk ||
1754 blkstart > FDEV(devi).end_blk) {
1755 f2fs_err(sbi, "Invalid block %x", blkstart);
1756 return -EIO;
1757 }
1758 blkstart -= FDEV(devi).start_blk;
1759 }
1760
1761 /* For sequential zones, reset the zone write pointer */
1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763 sector = SECTOR_FROM_BLOCK(blkstart);
1764 nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766 if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767 nr_sects != bdev_zone_sectors(bdev)) {
1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770 blkstart, blklen);
1771 return -EIO;
1772 }
1773 trace_f2fs_issue_reset_zone(bdev, blkstart);
1774 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1775 sector, nr_sects, GFP_NOFS);
1776 }
1777
1778 /* For conventional zones, use regular discard if supported */
1779 __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1780 return 0;
1781}
1782#endif
1783
1784static int __issue_discard_async(struct f2fs_sb_info *sbi,
1785 struct block_device *bdev, block_t blkstart, block_t blklen)
1786{
1787#ifdef CONFIG_BLK_DEV_ZONED
1788 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1789 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1790#endif
1791 __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1792 return 0;
1793}
1794
1795static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1796 block_t blkstart, block_t blklen)
1797{
1798 sector_t start = blkstart, len = 0;
1799 struct block_device *bdev;
1800 struct seg_entry *se;
1801 unsigned int offset;
1802 block_t i;
1803 int err = 0;
1804
1805 bdev = f2fs_target_device(sbi, blkstart, NULL);
1806
1807 for (i = blkstart; i < blkstart + blklen; i++, len++) {
1808 if (i != start) {
1809 struct block_device *bdev2 =
1810 f2fs_target_device(sbi, i, NULL);
1811
1812 if (bdev2 != bdev) {
1813 err = __issue_discard_async(sbi, bdev,
1814 start, len);
1815 if (err)
1816 return err;
1817 bdev = bdev2;
1818 start = i;
1819 len = 0;
1820 }
1821 }
1822
1823 se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1824 offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1825
1826 if (f2fs_block_unit_discard(sbi) &&
1827 !f2fs_test_and_set_bit(offset, se->discard_map))
1828 sbi->discard_blks--;
1829 }
1830
1831 if (len)
1832 err = __issue_discard_async(sbi, bdev, start, len);
1833 return err;
1834}
1835
1836static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1837 bool check_only)
1838{
1839 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1840 int max_blocks = sbi->blocks_per_seg;
1841 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1842 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1843 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1844 unsigned long *discard_map = (unsigned long *)se->discard_map;
1845 unsigned long *dmap = SIT_I(sbi)->tmp_map;
1846 unsigned int start = 0, end = -1;
1847 bool force = (cpc->reason & CP_DISCARD);
1848 struct discard_entry *de = NULL;
1849 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1850 int i;
1851
1852 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1853 !f2fs_block_unit_discard(sbi))
1854 return false;
1855
1856 if (!force) {
1857 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1858 SM_I(sbi)->dcc_info->nr_discards >=
1859 SM_I(sbi)->dcc_info->max_discards)
1860 return false;
1861 }
1862
1863 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1864 for (i = 0; i < entries; i++)
1865 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1866 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1867
1868 while (force || SM_I(sbi)->dcc_info->nr_discards <=
1869 SM_I(sbi)->dcc_info->max_discards) {
1870 start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1871 if (start >= max_blocks)
1872 break;
1873
1874 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1875 if (force && start && end != max_blocks
1876 && (end - start) < cpc->trim_minlen)
1877 continue;
1878
1879 if (check_only)
1880 return true;
1881
1882 if (!de) {
1883 de = f2fs_kmem_cache_alloc(discard_entry_slab,
1884 GFP_F2FS_ZERO, true, NULL);
1885 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1886 list_add_tail(&de->list, head);
1887 }
1888
1889 for (i = start; i < end; i++)
1890 __set_bit_le(i, (void *)de->discard_map);
1891
1892 SM_I(sbi)->dcc_info->nr_discards += end - start;
1893 }
1894 return false;
1895}
1896
1897static void release_discard_addr(struct discard_entry *entry)
1898{
1899 list_del(&entry->list);
1900 kmem_cache_free(discard_entry_slab, entry);
1901}
1902
1903void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1904{
1905 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1906 struct discard_entry *entry, *this;
1907
1908 /* drop caches */
1909 list_for_each_entry_safe(entry, this, head, list)
1910 release_discard_addr(entry);
1911}
1912
1913/*
1914 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1915 */
1916static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1917{
1918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1919 unsigned int segno;
1920
1921 mutex_lock(&dirty_i->seglist_lock);
1922 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1923 __set_test_and_free(sbi, segno, false);
1924 mutex_unlock(&dirty_i->seglist_lock);
1925}
1926
1927void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1928 struct cp_control *cpc)
1929{
1930 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1931 struct list_head *head = &dcc->entry_list;
1932 struct discard_entry *entry, *this;
1933 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1934 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1935 unsigned int start = 0, end = -1;
1936 unsigned int secno, start_segno;
1937 bool force = (cpc->reason & CP_DISCARD);
1938 bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1939 DISCARD_UNIT_SECTION;
1940
1941 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1942 section_alignment = true;
1943
1944 mutex_lock(&dirty_i->seglist_lock);
1945
1946 while (1) {
1947 int i;
1948
1949 if (section_alignment && end != -1)
1950 end--;
1951 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952 if (start >= MAIN_SEGS(sbi))
1953 break;
1954 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1955 start + 1);
1956
1957 if (section_alignment) {
1958 start = rounddown(start, sbi->segs_per_sec);
1959 end = roundup(end, sbi->segs_per_sec);
1960 }
1961
1962 for (i = start; i < end; i++) {
1963 if (test_and_clear_bit(i, prefree_map))
1964 dirty_i->nr_dirty[PRE]--;
1965 }
1966
1967 if (!f2fs_realtime_discard_enable(sbi))
1968 continue;
1969
1970 if (force && start >= cpc->trim_start &&
1971 (end - 1) <= cpc->trim_end)
1972 continue;
1973
1974 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1975 f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976 (end - start) << sbi->log_blocks_per_seg);
1977 continue;
1978 }
1979next:
1980 secno = GET_SEC_FROM_SEG(sbi, start);
1981 start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982 if (!IS_CURSEC(sbi, secno) &&
1983 !get_valid_blocks(sbi, start, true))
1984 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985 sbi->segs_per_sec << sbi->log_blocks_per_seg);
1986
1987 start = start_segno + sbi->segs_per_sec;
1988 if (start < end)
1989 goto next;
1990 else
1991 end = start - 1;
1992 }
1993 mutex_unlock(&dirty_i->seglist_lock);
1994
1995 if (!f2fs_block_unit_discard(sbi))
1996 goto wakeup;
1997
1998 /* send small discards */
1999 list_for_each_entry_safe(entry, this, head, list) {
2000 unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001 bool is_valid = test_bit_le(0, entry->discard_map);
2002
2003find_next:
2004 if (is_valid) {
2005 next_pos = find_next_zero_bit_le(entry->discard_map,
2006 sbi->blocks_per_seg, cur_pos);
2007 len = next_pos - cur_pos;
2008
2009 if (f2fs_sb_has_blkzoned(sbi) ||
2010 (force && len < cpc->trim_minlen))
2011 goto skip;
2012
2013 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2014 len);
2015 total_len += len;
2016 } else {
2017 next_pos = find_next_bit_le(entry->discard_map,
2018 sbi->blocks_per_seg, cur_pos);
2019 }
2020skip:
2021 cur_pos = next_pos;
2022 is_valid = !is_valid;
2023
2024 if (cur_pos < sbi->blocks_per_seg)
2025 goto find_next;
2026
2027 release_discard_addr(entry);
2028 dcc->nr_discards -= total_len;
2029 }
2030
2031wakeup:
2032 wake_up_discard_thread(sbi, false);
2033}
2034
2035int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2036{
2037 dev_t dev = sbi->sb->s_bdev->bd_dev;
2038 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2039 int err = 0;
2040
2041 if (!f2fs_realtime_discard_enable(sbi))
2042 return 0;
2043
2044 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2045 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2046 if (IS_ERR(dcc->f2fs_issue_discard)) {
2047 err = PTR_ERR(dcc->f2fs_issue_discard);
2048 dcc->f2fs_issue_discard = NULL;
2049 }
2050
2051 return err;
2052}
2053
2054static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2055{
2056 struct discard_cmd_control *dcc;
2057 int err = 0, i;
2058
2059 if (SM_I(sbi)->dcc_info) {
2060 dcc = SM_I(sbi)->dcc_info;
2061 goto init_thread;
2062 }
2063
2064 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2065 if (!dcc)
2066 return -ENOMEM;
2067
2068 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2069 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2070 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2071 dcc->discard_granularity = sbi->blocks_per_seg;
2072 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2073 dcc->discard_granularity = BLKS_PER_SEC(sbi);
2074
2075 INIT_LIST_HEAD(&dcc->entry_list);
2076 for (i = 0; i < MAX_PLIST_NUM; i++)
2077 INIT_LIST_HEAD(&dcc->pend_list[i]);
2078 INIT_LIST_HEAD(&dcc->wait_list);
2079 INIT_LIST_HEAD(&dcc->fstrim_list);
2080 mutex_init(&dcc->cmd_lock);
2081 atomic_set(&dcc->issued_discard, 0);
2082 atomic_set(&dcc->queued_discard, 0);
2083 atomic_set(&dcc->discard_cmd_cnt, 0);
2084 dcc->nr_discards = 0;
2085 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2086 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2087 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2088 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2089 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2090 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2091 dcc->undiscard_blks = 0;
2092 dcc->next_pos = 0;
2093 dcc->root = RB_ROOT_CACHED;
2094 dcc->rbtree_check = false;
2095
2096 init_waitqueue_head(&dcc->discard_wait_queue);
2097 SM_I(sbi)->dcc_info = dcc;
2098init_thread:
2099 err = f2fs_start_discard_thread(sbi);
2100 if (err) {
2101 kfree(dcc);
2102 SM_I(sbi)->dcc_info = NULL;
2103 }
2104
2105 return err;
2106}
2107
2108static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2109{
2110 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2111
2112 if (!dcc)
2113 return;
2114
2115 f2fs_stop_discard_thread(sbi);
2116
2117 /*
2118 * Recovery can cache discard commands, so in error path of
2119 * fill_super(), it needs to give a chance to handle them.
2120 */
2121 f2fs_issue_discard_timeout(sbi);
2122
2123 kfree(dcc);
2124 SM_I(sbi)->dcc_info = NULL;
2125}
2126
2127static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2128{
2129 struct sit_info *sit_i = SIT_I(sbi);
2130
2131 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2132 sit_i->dirty_sentries++;
2133 return false;
2134 }
2135
2136 return true;
2137}
2138
2139static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2140 unsigned int segno, int modified)
2141{
2142 struct seg_entry *se = get_seg_entry(sbi, segno);
2143
2144 se->type = type;
2145 if (modified)
2146 __mark_sit_entry_dirty(sbi, segno);
2147}
2148
2149static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2150 block_t blkaddr)
2151{
2152 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2153
2154 if (segno == NULL_SEGNO)
2155 return 0;
2156 return get_seg_entry(sbi, segno)->mtime;
2157}
2158
2159static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2160 unsigned long long old_mtime)
2161{
2162 struct seg_entry *se;
2163 unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164 unsigned long long ctime = get_mtime(sbi, false);
2165 unsigned long long mtime = old_mtime ? old_mtime : ctime;
2166
2167 if (segno == NULL_SEGNO)
2168 return;
2169
2170 se = get_seg_entry(sbi, segno);
2171
2172 if (!se->mtime)
2173 se->mtime = mtime;
2174 else
2175 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2176 se->valid_blocks + 1);
2177
2178 if (ctime > SIT_I(sbi)->max_mtime)
2179 SIT_I(sbi)->max_mtime = ctime;
2180}
2181
2182static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2183{
2184 struct seg_entry *se;
2185 unsigned int segno, offset;
2186 long int new_vblocks;
2187 bool exist;
2188#ifdef CONFIG_F2FS_CHECK_FS
2189 bool mir_exist;
2190#endif
2191
2192 segno = GET_SEGNO(sbi, blkaddr);
2193
2194 se = get_seg_entry(sbi, segno);
2195 new_vblocks = se->valid_blocks + del;
2196 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2197
2198 f2fs_bug_on(sbi, (new_vblocks < 0 ||
2199 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2200
2201 se->valid_blocks = new_vblocks;
2202
2203 /* Update valid block bitmap */
2204 if (del > 0) {
2205 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2206#ifdef CONFIG_F2FS_CHECK_FS
2207 mir_exist = f2fs_test_and_set_bit(offset,
2208 se->cur_valid_map_mir);
2209 if (unlikely(exist != mir_exist)) {
2210 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2211 blkaddr, exist);
2212 f2fs_bug_on(sbi, 1);
2213 }
2214#endif
2215 if (unlikely(exist)) {
2216 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2217 blkaddr);
2218 f2fs_bug_on(sbi, 1);
2219 se->valid_blocks--;
2220 del = 0;
2221 }
2222
2223 if (f2fs_block_unit_discard(sbi) &&
2224 !f2fs_test_and_set_bit(offset, se->discard_map))
2225 sbi->discard_blks--;
2226
2227 /*
2228 * SSR should never reuse block which is checkpointed
2229 * or newly invalidated.
2230 */
2231 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233 se->ckpt_valid_blocks++;
2234 }
2235 } else {
2236 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237#ifdef CONFIG_F2FS_CHECK_FS
2238 mir_exist = f2fs_test_and_clear_bit(offset,
2239 se->cur_valid_map_mir);
2240 if (unlikely(exist != mir_exist)) {
2241 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2242 blkaddr, exist);
2243 f2fs_bug_on(sbi, 1);
2244 }
2245#endif
2246 if (unlikely(!exist)) {
2247 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2248 blkaddr);
2249 f2fs_bug_on(sbi, 1);
2250 se->valid_blocks++;
2251 del = 0;
2252 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2253 /*
2254 * If checkpoints are off, we must not reuse data that
2255 * was used in the previous checkpoint. If it was used
2256 * before, we must track that to know how much space we
2257 * really have.
2258 */
2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260 spin_lock(&sbi->stat_lock);
2261 sbi->unusable_block_count++;
2262 spin_unlock(&sbi->stat_lock);
2263 }
2264 }
2265
2266 if (f2fs_block_unit_discard(sbi) &&
2267 f2fs_test_and_clear_bit(offset, se->discard_map))
2268 sbi->discard_blks++;
2269 }
2270 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2271 se->ckpt_valid_blocks += del;
2272
2273 __mark_sit_entry_dirty(sbi, segno);
2274
2275 /* update total number of valid blocks to be written in ckpt area */
2276 SIT_I(sbi)->written_valid_blocks += del;
2277
2278 if (__is_large_section(sbi))
2279 get_sec_entry(sbi, segno)->valid_blocks += del;
2280}
2281
2282void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2283{
2284 unsigned int segno = GET_SEGNO(sbi, addr);
2285 struct sit_info *sit_i = SIT_I(sbi);
2286
2287 f2fs_bug_on(sbi, addr == NULL_ADDR);
2288 if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2289 return;
2290
2291 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2292 f2fs_invalidate_compress_page(sbi, addr);
2293
2294 /* add it into sit main buffer */
2295 down_write(&sit_i->sentry_lock);
2296
2297 update_segment_mtime(sbi, addr, 0);
2298 update_sit_entry(sbi, addr, -1);
2299
2300 /* add it into dirty seglist */
2301 locate_dirty_segment(sbi, segno);
2302
2303 up_write(&sit_i->sentry_lock);
2304}
2305
2306bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2307{
2308 struct sit_info *sit_i = SIT_I(sbi);
2309 unsigned int segno, offset;
2310 struct seg_entry *se;
2311 bool is_cp = false;
2312
2313 if (!__is_valid_data_blkaddr(blkaddr))
2314 return true;
2315
2316 down_read(&sit_i->sentry_lock);
2317
2318 segno = GET_SEGNO(sbi, blkaddr);
2319 se = get_seg_entry(sbi, segno);
2320 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2321
2322 if (f2fs_test_bit(offset, se->ckpt_valid_map))
2323 is_cp = true;
2324
2325 up_read(&sit_i->sentry_lock);
2326
2327 return is_cp;
2328}
2329
2330/*
2331 * This function should be resided under the curseg_mutex lock
2332 */
2333static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2334 struct f2fs_summary *sum)
2335{
2336 struct curseg_info *curseg = CURSEG_I(sbi, type);
2337 void *addr = curseg->sum_blk;
2338
2339 addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2340 memcpy(addr, sum, sizeof(struct f2fs_summary));
2341}
2342
2343/*
2344 * Calculate the number of current summary pages for writing
2345 */
2346int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2347{
2348 int valid_sum_count = 0;
2349 int i, sum_in_page;
2350
2351 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2352 if (sbi->ckpt->alloc_type[i] == SSR)
2353 valid_sum_count += sbi->blocks_per_seg;
2354 else {
2355 if (for_ra)
2356 valid_sum_count += le16_to_cpu(
2357 F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2358 else
2359 valid_sum_count += curseg_blkoff(sbi, i);
2360 }
2361 }
2362
2363 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2364 SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2365 if (valid_sum_count <= sum_in_page)
2366 return 1;
2367 else if ((valid_sum_count - sum_in_page) <=
2368 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2369 return 2;
2370 return 3;
2371}
2372
2373/*
2374 * Caller should put this summary page
2375 */
2376struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2377{
2378 if (unlikely(f2fs_cp_error(sbi)))
2379 return ERR_PTR(-EIO);
2380 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2381}
2382
2383void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2384 void *src, block_t blk_addr)
2385{
2386 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2387
2388 memcpy(page_address(page), src, PAGE_SIZE);
2389 set_page_dirty(page);
2390 f2fs_put_page(page, 1);
2391}
2392
2393static void write_sum_page(struct f2fs_sb_info *sbi,
2394 struct f2fs_summary_block *sum_blk, block_t blk_addr)
2395{
2396 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2397}
2398
2399static void write_current_sum_page(struct f2fs_sb_info *sbi,
2400 int type, block_t blk_addr)
2401{
2402 struct curseg_info *curseg = CURSEG_I(sbi, type);
2403 struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2404 struct f2fs_summary_block *src = curseg->sum_blk;
2405 struct f2fs_summary_block *dst;
2406
2407 dst = (struct f2fs_summary_block *)page_address(page);
2408 memset(dst, 0, PAGE_SIZE);
2409
2410 mutex_lock(&curseg->curseg_mutex);
2411
2412 down_read(&curseg->journal_rwsem);
2413 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2414 up_read(&curseg->journal_rwsem);
2415
2416 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2417 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2418
2419 mutex_unlock(&curseg->curseg_mutex);
2420
2421 set_page_dirty(page);
2422 f2fs_put_page(page, 1);
2423}
2424
2425static int is_next_segment_free(struct f2fs_sb_info *sbi,
2426 struct curseg_info *curseg, int type)
2427{
2428 unsigned int segno = curseg->segno + 1;
2429 struct free_segmap_info *free_i = FREE_I(sbi);
2430
2431 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2432 return !test_bit(segno, free_i->free_segmap);
2433 return 0;
2434}
2435
2436/*
2437 * Find a new segment from the free segments bitmap to right order
2438 * This function should be returned with success, otherwise BUG
2439 */
2440static void get_new_segment(struct f2fs_sb_info *sbi,
2441 unsigned int *newseg, bool new_sec, int dir)
2442{
2443 struct free_segmap_info *free_i = FREE_I(sbi);
2444 unsigned int segno, secno, zoneno;
2445 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2446 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2447 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2448 unsigned int left_start = hint;
2449 bool init = true;
2450 int go_left = 0;
2451 int i;
2452
2453 spin_lock(&free_i->segmap_lock);
2454
2455 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2456 segno = find_next_zero_bit(free_i->free_segmap,
2457 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2458 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2459 goto got_it;
2460 }
2461find_other_zone:
2462 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2463 if (secno >= MAIN_SECS(sbi)) {
2464 if (dir == ALLOC_RIGHT) {
2465 secno = find_first_zero_bit(free_i->free_secmap,
2466 MAIN_SECS(sbi));
2467 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2468 } else {
2469 go_left = 1;
2470 left_start = hint - 1;
2471 }
2472 }
2473 if (go_left == 0)
2474 goto skip_left;
2475
2476 while (test_bit(left_start, free_i->free_secmap)) {
2477 if (left_start > 0) {
2478 left_start--;
2479 continue;
2480 }
2481 left_start = find_first_zero_bit(free_i->free_secmap,
2482 MAIN_SECS(sbi));
2483 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2484 break;
2485 }
2486 secno = left_start;
2487skip_left:
2488 segno = GET_SEG_FROM_SEC(sbi, secno);
2489 zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2490
2491 /* give up on finding another zone */
2492 if (!init)
2493 goto got_it;
2494 if (sbi->secs_per_zone == 1)
2495 goto got_it;
2496 if (zoneno == old_zoneno)
2497 goto got_it;
2498 if (dir == ALLOC_LEFT) {
2499 if (!go_left && zoneno + 1 >= total_zones)
2500 goto got_it;
2501 if (go_left && zoneno == 0)
2502 goto got_it;
2503 }
2504 for (i = 0; i < NR_CURSEG_TYPE; i++)
2505 if (CURSEG_I(sbi, i)->zone == zoneno)
2506 break;
2507
2508 if (i < NR_CURSEG_TYPE) {
2509 /* zone is in user, try another */
2510 if (go_left)
2511 hint = zoneno * sbi->secs_per_zone - 1;
2512 else if (zoneno + 1 >= total_zones)
2513 hint = 0;
2514 else
2515 hint = (zoneno + 1) * sbi->secs_per_zone;
2516 init = false;
2517 goto find_other_zone;
2518 }
2519got_it:
2520 /* set it as dirty segment in free segmap */
2521 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2522 __set_inuse(sbi, segno);
2523 *newseg = segno;
2524 spin_unlock(&free_i->segmap_lock);
2525}
2526
2527static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2528{
2529 struct curseg_info *curseg = CURSEG_I(sbi, type);
2530 struct summary_footer *sum_footer;
2531 unsigned short seg_type = curseg->seg_type;
2532
2533 curseg->inited = true;
2534 curseg->segno = curseg->next_segno;
2535 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2536 curseg->next_blkoff = 0;
2537 curseg->next_segno = NULL_SEGNO;
2538
2539 sum_footer = &(curseg->sum_blk->footer);
2540 memset(sum_footer, 0, sizeof(struct summary_footer));
2541
2542 sanity_check_seg_type(sbi, seg_type);
2543
2544 if (IS_DATASEG(seg_type))
2545 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2546 if (IS_NODESEG(seg_type))
2547 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2548 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2549}
2550
2551static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2552{
2553 struct curseg_info *curseg = CURSEG_I(sbi, type);
2554 unsigned short seg_type = curseg->seg_type;
2555
2556 sanity_check_seg_type(sbi, seg_type);
2557 if (f2fs_need_rand_seg(sbi))
2558 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2559
2560 /* if segs_per_sec is large than 1, we need to keep original policy. */
2561 if (__is_large_section(sbi))
2562 return curseg->segno;
2563
2564 /* inmem log may not locate on any segment after mount */
2565 if (!curseg->inited)
2566 return 0;
2567
2568 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2569 return 0;
2570
2571 if (test_opt(sbi, NOHEAP) &&
2572 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2573 return 0;
2574
2575 if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2576 return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2577
2578 /* find segments from 0 to reuse freed segments */
2579 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2580 return 0;
2581
2582 return curseg->segno;
2583}
2584
2585/*
2586 * Allocate a current working segment.
2587 * This function always allocates a free segment in LFS manner.
2588 */
2589static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2590{
2591 struct curseg_info *curseg = CURSEG_I(sbi, type);
2592 unsigned short seg_type = curseg->seg_type;
2593 unsigned int segno = curseg->segno;
2594 int dir = ALLOC_LEFT;
2595
2596 if (curseg->inited)
2597 write_sum_page(sbi, curseg->sum_blk,
2598 GET_SUM_BLOCK(sbi, segno));
2599 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2600 dir = ALLOC_RIGHT;
2601
2602 if (test_opt(sbi, NOHEAP))
2603 dir = ALLOC_RIGHT;
2604
2605 segno = __get_next_segno(sbi, type);
2606 get_new_segment(sbi, &segno, new_sec, dir);
2607 curseg->next_segno = segno;
2608 reset_curseg(sbi, type, 1);
2609 curseg->alloc_type = LFS;
2610 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2611 curseg->fragment_remained_chunk =
2612 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2613}
2614
2615static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2616 int segno, block_t start)
2617{
2618 struct seg_entry *se = get_seg_entry(sbi, segno);
2619 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2620 unsigned long *target_map = SIT_I(sbi)->tmp_map;
2621 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2622 unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2623 int i;
2624
2625 for (i = 0; i < entries; i++)
2626 target_map[i] = ckpt_map[i] | cur_map[i];
2627
2628 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2629}
2630
2631/*
2632 * If a segment is written by LFS manner, next block offset is just obtained
2633 * by increasing the current block offset. However, if a segment is written by
2634 * SSR manner, next block offset obtained by calling __next_free_blkoff
2635 */
2636static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2637 struct curseg_info *seg)
2638{
2639 if (seg->alloc_type == SSR) {
2640 seg->next_blkoff =
2641 __next_free_blkoff(sbi, seg->segno,
2642 seg->next_blkoff + 1);
2643 } else {
2644 seg->next_blkoff++;
2645 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2646 /* To allocate block chunks in different sizes, use random number */
2647 if (--seg->fragment_remained_chunk <= 0) {
2648 seg->fragment_remained_chunk =
2649 get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2650 seg->next_blkoff +=
2651 get_random_u32_inclusive(1, sbi->max_fragment_hole);
2652 }
2653 }
2654 }
2655}
2656
2657bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2658{
2659 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2660}
2661
2662/*
2663 * This function always allocates a used segment(from dirty seglist) by SSR
2664 * manner, so it should recover the existing segment information of valid blocks
2665 */
2666static void change_curseg(struct f2fs_sb_info *sbi, int type)
2667{
2668 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2669 struct curseg_info *curseg = CURSEG_I(sbi, type);
2670 unsigned int new_segno = curseg->next_segno;
2671 struct f2fs_summary_block *sum_node;
2672 struct page *sum_page;
2673
2674 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2675
2676 __set_test_and_inuse(sbi, new_segno);
2677
2678 mutex_lock(&dirty_i->seglist_lock);
2679 __remove_dirty_segment(sbi, new_segno, PRE);
2680 __remove_dirty_segment(sbi, new_segno, DIRTY);
2681 mutex_unlock(&dirty_i->seglist_lock);
2682
2683 reset_curseg(sbi, type, 1);
2684 curseg->alloc_type = SSR;
2685 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2686
2687 sum_page = f2fs_get_sum_page(sbi, new_segno);
2688 if (IS_ERR(sum_page)) {
2689 /* GC won't be able to use stale summary pages by cp_error */
2690 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2691 return;
2692 }
2693 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2694 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2695 f2fs_put_page(sum_page, 1);
2696}
2697
2698static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2699 int alloc_mode, unsigned long long age);
2700
2701static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2702 int target_type, int alloc_mode,
2703 unsigned long long age)
2704{
2705 struct curseg_info *curseg = CURSEG_I(sbi, type);
2706
2707 curseg->seg_type = target_type;
2708
2709 if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2710 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2711
2712 curseg->seg_type = se->type;
2713 change_curseg(sbi, type);
2714 } else {
2715 /* allocate cold segment by default */
2716 curseg->seg_type = CURSEG_COLD_DATA;
2717 new_curseg(sbi, type, true);
2718 }
2719 stat_inc_seg_type(sbi, curseg);
2720}
2721
2722static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2723{
2724 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2725
2726 if (!sbi->am.atgc_enabled)
2727 return;
2728
2729 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2730
2731 mutex_lock(&curseg->curseg_mutex);
2732 down_write(&SIT_I(sbi)->sentry_lock);
2733
2734 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2735
2736 up_write(&SIT_I(sbi)->sentry_lock);
2737 mutex_unlock(&curseg->curseg_mutex);
2738
2739 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2740
2741}
2742void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2743{
2744 __f2fs_init_atgc_curseg(sbi);
2745}
2746
2747static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2748{
2749 struct curseg_info *curseg = CURSEG_I(sbi, type);
2750
2751 mutex_lock(&curseg->curseg_mutex);
2752 if (!curseg->inited)
2753 goto out;
2754
2755 if (get_valid_blocks(sbi, curseg->segno, false)) {
2756 write_sum_page(sbi, curseg->sum_blk,
2757 GET_SUM_BLOCK(sbi, curseg->segno));
2758 } else {
2759 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2760 __set_test_and_free(sbi, curseg->segno, true);
2761 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2762 }
2763out:
2764 mutex_unlock(&curseg->curseg_mutex);
2765}
2766
2767void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2768{
2769 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2770
2771 if (sbi->am.atgc_enabled)
2772 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2773}
2774
2775static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2776{
2777 struct curseg_info *curseg = CURSEG_I(sbi, type);
2778
2779 mutex_lock(&curseg->curseg_mutex);
2780 if (!curseg->inited)
2781 goto out;
2782 if (get_valid_blocks(sbi, curseg->segno, false))
2783 goto out;
2784
2785 mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2786 __set_test_and_inuse(sbi, curseg->segno);
2787 mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2788out:
2789 mutex_unlock(&curseg->curseg_mutex);
2790}
2791
2792void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2793{
2794 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2795
2796 if (sbi->am.atgc_enabled)
2797 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2798}
2799
2800static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2801 int alloc_mode, unsigned long long age)
2802{
2803 struct curseg_info *curseg = CURSEG_I(sbi, type);
2804 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2805 unsigned segno = NULL_SEGNO;
2806 unsigned short seg_type = curseg->seg_type;
2807 int i, cnt;
2808 bool reversed = false;
2809
2810 sanity_check_seg_type(sbi, seg_type);
2811
2812 /* f2fs_need_SSR() already forces to do this */
2813 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2814 curseg->next_segno = segno;
2815 return 1;
2816 }
2817
2818 /* For node segments, let's do SSR more intensively */
2819 if (IS_NODESEG(seg_type)) {
2820 if (seg_type >= CURSEG_WARM_NODE) {
2821 reversed = true;
2822 i = CURSEG_COLD_NODE;
2823 } else {
2824 i = CURSEG_HOT_NODE;
2825 }
2826 cnt = NR_CURSEG_NODE_TYPE;
2827 } else {
2828 if (seg_type >= CURSEG_WARM_DATA) {
2829 reversed = true;
2830 i = CURSEG_COLD_DATA;
2831 } else {
2832 i = CURSEG_HOT_DATA;
2833 }
2834 cnt = NR_CURSEG_DATA_TYPE;
2835 }
2836
2837 for (; cnt-- > 0; reversed ? i-- : i++) {
2838 if (i == seg_type)
2839 continue;
2840 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2841 curseg->next_segno = segno;
2842 return 1;
2843 }
2844 }
2845
2846 /* find valid_blocks=0 in dirty list */
2847 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2848 segno = get_free_segment(sbi);
2849 if (segno != NULL_SEGNO) {
2850 curseg->next_segno = segno;
2851 return 1;
2852 }
2853 }
2854 return 0;
2855}
2856
2857static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2858{
2859 struct curseg_info *curseg = CURSEG_I(sbi, type);
2860
2861 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2862 curseg->seg_type == CURSEG_WARM_NODE)
2863 return true;
2864 if (curseg->alloc_type == LFS &&
2865 is_next_segment_free(sbi, curseg, type) &&
2866 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2867 return true;
2868 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2869 return true;
2870 return false;
2871}
2872
2873void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2874 unsigned int start, unsigned int end)
2875{
2876 struct curseg_info *curseg = CURSEG_I(sbi, type);
2877 unsigned int segno;
2878
2879 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2880 mutex_lock(&curseg->curseg_mutex);
2881 down_write(&SIT_I(sbi)->sentry_lock);
2882
2883 segno = CURSEG_I(sbi, type)->segno;
2884 if (segno < start || segno > end)
2885 goto unlock;
2886
2887 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2888 change_curseg(sbi, type);
2889 else
2890 new_curseg(sbi, type, true);
2891
2892 stat_inc_seg_type(sbi, curseg);
2893
2894 locate_dirty_segment(sbi, segno);
2895unlock:
2896 up_write(&SIT_I(sbi)->sentry_lock);
2897
2898 if (segno != curseg->segno)
2899 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2900 type, segno, curseg->segno);
2901
2902 mutex_unlock(&curseg->curseg_mutex);
2903 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2904}
2905
2906static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2907 bool new_sec, bool force)
2908{
2909 struct curseg_info *curseg = CURSEG_I(sbi, type);
2910 unsigned int old_segno;
2911
2912 if (!curseg->inited)
2913 goto alloc;
2914
2915 if (force || curseg->next_blkoff ||
2916 get_valid_blocks(sbi, curseg->segno, new_sec))
2917 goto alloc;
2918
2919 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2920 return;
2921alloc:
2922 old_segno = curseg->segno;
2923 new_curseg(sbi, type, true);
2924 stat_inc_seg_type(sbi, curseg);
2925 locate_dirty_segment(sbi, old_segno);
2926}
2927
2928static void __allocate_new_section(struct f2fs_sb_info *sbi,
2929 int type, bool force)
2930{
2931 __allocate_new_segment(sbi, type, true, force);
2932}
2933
2934void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2935{
2936 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2937 down_write(&SIT_I(sbi)->sentry_lock);
2938 __allocate_new_section(sbi, type, force);
2939 up_write(&SIT_I(sbi)->sentry_lock);
2940 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2941}
2942
2943void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2944{
2945 int i;
2946
2947 f2fs_down_read(&SM_I(sbi)->curseg_lock);
2948 down_write(&SIT_I(sbi)->sentry_lock);
2949 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2950 __allocate_new_segment(sbi, i, false, false);
2951 up_write(&SIT_I(sbi)->sentry_lock);
2952 f2fs_up_read(&SM_I(sbi)->curseg_lock);
2953}
2954
2955bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2956 struct cp_control *cpc)
2957{
2958 __u64 trim_start = cpc->trim_start;
2959 bool has_candidate = false;
2960
2961 down_write(&SIT_I(sbi)->sentry_lock);
2962 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2963 if (add_discard_addrs(sbi, cpc, true)) {
2964 has_candidate = true;
2965 break;
2966 }
2967 }
2968 up_write(&SIT_I(sbi)->sentry_lock);
2969
2970 cpc->trim_start = trim_start;
2971 return has_candidate;
2972}
2973
2974static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2975 struct discard_policy *dpolicy,
2976 unsigned int start, unsigned int end)
2977{
2978 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2979 struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2980 struct rb_node **insert_p = NULL, *insert_parent = NULL;
2981 struct discard_cmd *dc;
2982 struct blk_plug plug;
2983 int issued;
2984 unsigned int trimmed = 0;
2985
2986next:
2987 issued = 0;
2988
2989 mutex_lock(&dcc->cmd_lock);
2990 if (unlikely(dcc->rbtree_check))
2991 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2992 &dcc->root, false));
2993
2994 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2995 NULL, start,
2996 (struct rb_entry **)&prev_dc,
2997 (struct rb_entry **)&next_dc,
2998 &insert_p, &insert_parent, true, NULL);
2999 if (!dc)
3000 dc = next_dc;
3001
3002 blk_start_plug(&plug);
3003
3004 while (dc && dc->lstart <= end) {
3005 struct rb_node *node;
3006 int err = 0;
3007
3008 if (dc->len < dpolicy->granularity)
3009 goto skip;
3010
3011 if (dc->state != D_PREP) {
3012 list_move_tail(&dc->list, &dcc->fstrim_list);
3013 goto skip;
3014 }
3015
3016 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3017
3018 if (issued >= dpolicy->max_requests) {
3019 start = dc->lstart + dc->len;
3020
3021 if (err)
3022 __remove_discard_cmd(sbi, dc);
3023
3024 blk_finish_plug(&plug);
3025 mutex_unlock(&dcc->cmd_lock);
3026 trimmed += __wait_all_discard_cmd(sbi, NULL);
3027 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3028 goto next;
3029 }
3030skip:
3031 node = rb_next(&dc->rb_node);
3032 if (err)
3033 __remove_discard_cmd(sbi, dc);
3034 dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3035
3036 if (fatal_signal_pending(current))
3037 break;
3038 }
3039
3040 blk_finish_plug(&plug);
3041 mutex_unlock(&dcc->cmd_lock);
3042
3043 return trimmed;
3044}
3045
3046int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3047{
3048 __u64 start = F2FS_BYTES_TO_BLK(range->start);
3049 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3050 unsigned int start_segno, end_segno;
3051 block_t start_block, end_block;
3052 struct cp_control cpc;
3053 struct discard_policy dpolicy;
3054 unsigned long long trimmed = 0;
3055 int err = 0;
3056 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3057
3058 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3059 return -EINVAL;
3060
3061 if (end < MAIN_BLKADDR(sbi))
3062 goto out;
3063
3064 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3065 f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3066 return -EFSCORRUPTED;
3067 }
3068
3069 /* start/end segment number in main_area */
3070 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3071 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3072 GET_SEGNO(sbi, end);
3073 if (need_align) {
3074 start_segno = rounddown(start_segno, sbi->segs_per_sec);
3075 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3076 }
3077
3078 cpc.reason = CP_DISCARD;
3079 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3080 cpc.trim_start = start_segno;
3081 cpc.trim_end = end_segno;
3082
3083 if (sbi->discard_blks == 0)
3084 goto out;
3085
3086 f2fs_down_write(&sbi->gc_lock);
3087 err = f2fs_write_checkpoint(sbi, &cpc);
3088 f2fs_up_write(&sbi->gc_lock);
3089 if (err)
3090 goto out;
3091
3092 /*
3093 * We filed discard candidates, but actually we don't need to wait for
3094 * all of them, since they'll be issued in idle time along with runtime
3095 * discard option. User configuration looks like using runtime discard
3096 * or periodic fstrim instead of it.
3097 */
3098 if (f2fs_realtime_discard_enable(sbi))
3099 goto out;
3100
3101 start_block = START_BLOCK(sbi, start_segno);
3102 end_block = START_BLOCK(sbi, end_segno + 1);
3103
3104 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3105 trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3106 start_block, end_block);
3107
3108 trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3109 start_block, end_block);
3110out:
3111 if (!err)
3112 range->len = F2FS_BLK_TO_BYTES(trimmed);
3113 return err;
3114}
3115
3116static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3117 struct curseg_info *curseg)
3118{
3119 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3120 curseg->segno);
3121}
3122
3123int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3124{
3125 switch (hint) {
3126 case WRITE_LIFE_SHORT:
3127 return CURSEG_HOT_DATA;
3128 case WRITE_LIFE_EXTREME:
3129 return CURSEG_COLD_DATA;
3130 default:
3131 return CURSEG_WARM_DATA;
3132 }
3133}
3134
3135static int __get_segment_type_2(struct f2fs_io_info *fio)
3136{
3137 if (fio->type == DATA)
3138 return CURSEG_HOT_DATA;
3139 else
3140 return CURSEG_HOT_NODE;
3141}
3142
3143static int __get_segment_type_4(struct f2fs_io_info *fio)
3144{
3145 if (fio->type == DATA) {
3146 struct inode *inode = fio->page->mapping->host;
3147
3148 if (S_ISDIR(inode->i_mode))
3149 return CURSEG_HOT_DATA;
3150 else
3151 return CURSEG_COLD_DATA;
3152 } else {
3153 if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3154 return CURSEG_WARM_NODE;
3155 else
3156 return CURSEG_COLD_NODE;
3157 }
3158}
3159
3160static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3161{
3162 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3163 struct extent_info ei = {};
3164
3165 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3166 if (!ei.age)
3167 return NO_CHECK_TYPE;
3168 if (ei.age <= sbi->hot_data_age_threshold)
3169 return CURSEG_HOT_DATA;
3170 if (ei.age <= sbi->warm_data_age_threshold)
3171 return CURSEG_WARM_DATA;
3172 return CURSEG_COLD_DATA;
3173 }
3174 return NO_CHECK_TYPE;
3175}
3176
3177static int __get_segment_type_6(struct f2fs_io_info *fio)
3178{
3179 if (fio->type == DATA) {
3180 struct inode *inode = fio->page->mapping->host;
3181 int type;
3182
3183 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3184 return CURSEG_COLD_DATA_PINNED;
3185
3186 if (page_private_gcing(fio->page)) {
3187 if (fio->sbi->am.atgc_enabled &&
3188 (fio->io_type == FS_DATA_IO) &&
3189 (fio->sbi->gc_mode != GC_URGENT_HIGH))
3190 return CURSEG_ALL_DATA_ATGC;
3191 else
3192 return CURSEG_COLD_DATA;
3193 }
3194 if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3195 return CURSEG_COLD_DATA;
3196
3197 type = __get_age_segment_type(inode, fio->page->index);
3198 if (type != NO_CHECK_TYPE)
3199 return type;
3200
3201 if (file_is_hot(inode) ||
3202 is_inode_flag_set(inode, FI_HOT_DATA) ||
3203 f2fs_is_cow_file(inode))
3204 return CURSEG_HOT_DATA;
3205 return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3206 } else {
3207 if (IS_DNODE(fio->page))
3208 return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3209 CURSEG_HOT_NODE;
3210 return CURSEG_COLD_NODE;
3211 }
3212}
3213
3214static int __get_segment_type(struct f2fs_io_info *fio)
3215{
3216 int type = 0;
3217
3218 switch (F2FS_OPTION(fio->sbi).active_logs) {
3219 case 2:
3220 type = __get_segment_type_2(fio);
3221 break;
3222 case 4:
3223 type = __get_segment_type_4(fio);
3224 break;
3225 case 6:
3226 type = __get_segment_type_6(fio);
3227 break;
3228 default:
3229 f2fs_bug_on(fio->sbi, true);
3230 }
3231
3232 if (IS_HOT(type))
3233 fio->temp = HOT;
3234 else if (IS_WARM(type))
3235 fio->temp = WARM;
3236 else
3237 fio->temp = COLD;
3238 return type;
3239}
3240
3241void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3242 block_t old_blkaddr, block_t *new_blkaddr,
3243 struct f2fs_summary *sum, int type,
3244 struct f2fs_io_info *fio)
3245{
3246 struct sit_info *sit_i = SIT_I(sbi);
3247 struct curseg_info *curseg = CURSEG_I(sbi, type);
3248 unsigned long long old_mtime;
3249 bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3250 struct seg_entry *se = NULL;
3251
3252 f2fs_down_read(&SM_I(sbi)->curseg_lock);
3253
3254 mutex_lock(&curseg->curseg_mutex);
3255 down_write(&sit_i->sentry_lock);
3256
3257 if (from_gc) {
3258 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3259 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3260 sanity_check_seg_type(sbi, se->type);
3261 f2fs_bug_on(sbi, IS_NODESEG(se->type));
3262 }
3263 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3264
3265 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3266
3267 f2fs_wait_discard_bio(sbi, *new_blkaddr);
3268
3269 /*
3270 * __add_sum_entry should be resided under the curseg_mutex
3271 * because, this function updates a summary entry in the
3272 * current summary block.
3273 */
3274 __add_sum_entry(sbi, type, sum);
3275
3276 __refresh_next_blkoff(sbi, curseg);
3277
3278 stat_inc_block_count(sbi, curseg);
3279
3280 if (from_gc) {
3281 old_mtime = get_segment_mtime(sbi, old_blkaddr);
3282 } else {
3283 update_segment_mtime(sbi, old_blkaddr, 0);
3284 old_mtime = 0;
3285 }
3286 update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3287
3288 /*
3289 * SIT information should be updated before segment allocation,
3290 * since SSR needs latest valid block information.
3291 */
3292 update_sit_entry(sbi, *new_blkaddr, 1);
3293 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3294 update_sit_entry(sbi, old_blkaddr, -1);
3295
3296 if (!__has_curseg_space(sbi, curseg)) {
3297 /*
3298 * Flush out current segment and replace it with new segment.
3299 */
3300 if (from_gc) {
3301 get_atssr_segment(sbi, type, se->type,
3302 AT_SSR, se->mtime);
3303 } else {
3304 if (need_new_seg(sbi, type))
3305 new_curseg(sbi, type, false);
3306 else
3307 change_curseg(sbi, type);
3308 stat_inc_seg_type(sbi, curseg);
3309 }
3310 }
3311 /*
3312 * segment dirty status should be updated after segment allocation,
3313 * so we just need to update status only one time after previous
3314 * segment being closed.
3315 */
3316 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3317 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3318
3319 if (IS_DATASEG(type))
3320 atomic64_inc(&sbi->allocated_data_blocks);
3321
3322 up_write(&sit_i->sentry_lock);
3323
3324 if (page && IS_NODESEG(type)) {
3325 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3326
3327 f2fs_inode_chksum_set(sbi, page);
3328 }
3329
3330 if (fio) {
3331 struct f2fs_bio_info *io;
3332
3333 if (F2FS_IO_ALIGNED(sbi))
3334 fio->retry = false;
3335
3336 INIT_LIST_HEAD(&fio->list);
3337 fio->in_list = true;
3338 io = sbi->write_io[fio->type] + fio->temp;
3339 spin_lock(&io->io_lock);
3340 list_add_tail(&fio->list, &io->io_list);
3341 spin_unlock(&io->io_lock);
3342 }
3343
3344 mutex_unlock(&curseg->curseg_mutex);
3345
3346 f2fs_up_read(&SM_I(sbi)->curseg_lock);
3347}
3348
3349void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3350 block_t blkaddr, unsigned int blkcnt)
3351{
3352 if (!f2fs_is_multi_device(sbi))
3353 return;
3354
3355 while (1) {
3356 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3357 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3358
3359 /* update device state for fsync */
3360 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3361
3362 /* update device state for checkpoint */
3363 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3364 spin_lock(&sbi->dev_lock);
3365 f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3366 spin_unlock(&sbi->dev_lock);
3367 }
3368
3369 if (blkcnt <= blks)
3370 break;
3371 blkcnt -= blks;
3372 blkaddr += blks;
3373 }
3374}
3375
3376static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3377{
3378 int type = __get_segment_type(fio);
3379 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3380
3381 if (keep_order)
3382 f2fs_down_read(&fio->sbi->io_order_lock);
3383reallocate:
3384 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3385 &fio->new_blkaddr, sum, type, fio);
3386 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3387 invalidate_mapping_pages(META_MAPPING(fio->sbi),
3388 fio->old_blkaddr, fio->old_blkaddr);
3389 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3390 }
3391
3392 /* writeout dirty page into bdev */
3393 f2fs_submit_page_write(fio);
3394 if (fio->retry) {
3395 fio->old_blkaddr = fio->new_blkaddr;
3396 goto reallocate;
3397 }
3398
3399 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3400
3401 if (keep_order)
3402 f2fs_up_read(&fio->sbi->io_order_lock);
3403}
3404
3405void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3406 enum iostat_type io_type)
3407{
3408 struct f2fs_io_info fio = {
3409 .sbi = sbi,
3410 .type = META,
3411 .temp = HOT,
3412 .op = REQ_OP_WRITE,
3413 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3414 .old_blkaddr = page->index,
3415 .new_blkaddr = page->index,
3416 .page = page,
3417 .encrypted_page = NULL,
3418 .in_list = false,
3419 };
3420
3421 if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3422 fio.op_flags &= ~REQ_META;
3423
3424 set_page_writeback(page);
3425 ClearPageError(page);
3426 f2fs_submit_page_write(&fio);
3427
3428 stat_inc_meta_count(sbi, page->index);
3429 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3430}
3431
3432void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3433{
3434 struct f2fs_summary sum;
3435
3436 set_summary(&sum, nid, 0, 0);
3437 do_write_page(&sum, fio);
3438
3439 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3440}
3441
3442void f2fs_outplace_write_data(struct dnode_of_data *dn,
3443 struct f2fs_io_info *fio)
3444{
3445 struct f2fs_sb_info *sbi = fio->sbi;
3446 struct f2fs_summary sum;
3447
3448 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3449 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3450 f2fs_update_age_extent_cache(dn);
3451 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3452 do_write_page(&sum, fio);
3453 f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3454
3455 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3456}
3457
3458int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3459{
3460 int err;
3461 struct f2fs_sb_info *sbi = fio->sbi;
3462 unsigned int segno;
3463
3464 fio->new_blkaddr = fio->old_blkaddr;
3465 /* i/o temperature is needed for passing down write hints */
3466 __get_segment_type(fio);
3467
3468 segno = GET_SEGNO(sbi, fio->new_blkaddr);
3469
3470 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3471 set_sbi_flag(sbi, SBI_NEED_FSCK);
3472 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3473 __func__, segno);
3474 err = -EFSCORRUPTED;
3475 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3476 goto drop_bio;
3477 }
3478
3479 if (f2fs_cp_error(sbi)) {
3480 err = -EIO;
3481 goto drop_bio;
3482 }
3483
3484 if (fio->post_read)
3485 invalidate_mapping_pages(META_MAPPING(sbi),
3486 fio->new_blkaddr, fio->new_blkaddr);
3487
3488 stat_inc_inplace_blocks(fio->sbi);
3489
3490 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3491 err = f2fs_merge_page_bio(fio);
3492 else
3493 err = f2fs_submit_page_bio(fio);
3494 if (!err) {
3495 f2fs_update_device_state(fio->sbi, fio->ino,
3496 fio->new_blkaddr, 1);
3497 f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3498 fio->io_type, F2FS_BLKSIZE);
3499 }
3500
3501 return err;
3502drop_bio:
3503 if (fio->bio && *(fio->bio)) {
3504 struct bio *bio = *(fio->bio);
3505
3506 bio->bi_status = BLK_STS_IOERR;
3507 bio_endio(bio);
3508 *(fio->bio) = NULL;
3509 }
3510 return err;
3511}
3512
3513static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3514 unsigned int segno)
3515{
3516 int i;
3517
3518 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3519 if (CURSEG_I(sbi, i)->segno == segno)
3520 break;
3521 }
3522 return i;
3523}
3524
3525void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3526 block_t old_blkaddr, block_t new_blkaddr,
3527 bool recover_curseg, bool recover_newaddr,
3528 bool from_gc)
3529{
3530 struct sit_info *sit_i = SIT_I(sbi);
3531 struct curseg_info *curseg;
3532 unsigned int segno, old_cursegno;
3533 struct seg_entry *se;
3534 int type;
3535 unsigned short old_blkoff;
3536 unsigned char old_alloc_type;
3537
3538 segno = GET_SEGNO(sbi, new_blkaddr);
3539 se = get_seg_entry(sbi, segno);
3540 type = se->type;
3541
3542 f2fs_down_write(&SM_I(sbi)->curseg_lock);
3543
3544 if (!recover_curseg) {
3545 /* for recovery flow */
3546 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3547 if (old_blkaddr == NULL_ADDR)
3548 type = CURSEG_COLD_DATA;
3549 else
3550 type = CURSEG_WARM_DATA;
3551 }
3552 } else {
3553 if (IS_CURSEG(sbi, segno)) {
3554 /* se->type is volatile as SSR allocation */
3555 type = __f2fs_get_curseg(sbi, segno);
3556 f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3557 } else {
3558 type = CURSEG_WARM_DATA;
3559 }
3560 }
3561
3562 f2fs_bug_on(sbi, !IS_DATASEG(type));
3563 curseg = CURSEG_I(sbi, type);
3564
3565 mutex_lock(&curseg->curseg_mutex);
3566 down_write(&sit_i->sentry_lock);
3567
3568 old_cursegno = curseg->segno;
3569 old_blkoff = curseg->next_blkoff;
3570 old_alloc_type = curseg->alloc_type;
3571
3572 /* change the current segment */
3573 if (segno != curseg->segno) {
3574 curseg->next_segno = segno;
3575 change_curseg(sbi, type);
3576 }
3577
3578 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3579 __add_sum_entry(sbi, type, sum);
3580
3581 if (!recover_curseg || recover_newaddr) {
3582 if (!from_gc)
3583 update_segment_mtime(sbi, new_blkaddr, 0);
3584 update_sit_entry(sbi, new_blkaddr, 1);
3585 }
3586 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3587 invalidate_mapping_pages(META_MAPPING(sbi),
3588 old_blkaddr, old_blkaddr);
3589 f2fs_invalidate_compress_page(sbi, old_blkaddr);
3590 if (!from_gc)
3591 update_segment_mtime(sbi, old_blkaddr, 0);
3592 update_sit_entry(sbi, old_blkaddr, -1);
3593 }
3594
3595 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3596 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3597
3598 locate_dirty_segment(sbi, old_cursegno);
3599
3600 if (recover_curseg) {
3601 if (old_cursegno != curseg->segno) {
3602 curseg->next_segno = old_cursegno;
3603 change_curseg(sbi, type);
3604 }
3605 curseg->next_blkoff = old_blkoff;
3606 curseg->alloc_type = old_alloc_type;
3607 }
3608
3609 up_write(&sit_i->sentry_lock);
3610 mutex_unlock(&curseg->curseg_mutex);
3611 f2fs_up_write(&SM_I(sbi)->curseg_lock);
3612}
3613
3614void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3615 block_t old_addr, block_t new_addr,
3616 unsigned char version, bool recover_curseg,
3617 bool recover_newaddr)
3618{
3619 struct f2fs_summary sum;
3620
3621 set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3622
3623 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3624 recover_curseg, recover_newaddr, false);
3625
3626 f2fs_update_data_blkaddr(dn, new_addr);
3627}
3628
3629void f2fs_wait_on_page_writeback(struct page *page,
3630 enum page_type type, bool ordered, bool locked)
3631{
3632 if (PageWriteback(page)) {
3633 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3634
3635 /* submit cached LFS IO */
3636 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3637 /* sbumit cached IPU IO */
3638 f2fs_submit_merged_ipu_write(sbi, NULL, page);
3639 if (ordered) {
3640 wait_on_page_writeback(page);
3641 f2fs_bug_on(sbi, locked && PageWriteback(page));
3642 } else {
3643 wait_for_stable_page(page);
3644 }
3645 }
3646}
3647
3648void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3649{
3650 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3651 struct page *cpage;
3652
3653 if (!f2fs_post_read_required(inode))
3654 return;
3655
3656 if (!__is_valid_data_blkaddr(blkaddr))
3657 return;
3658
3659 cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3660 if (cpage) {
3661 f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3662 f2fs_put_page(cpage, 1);
3663 }
3664}
3665
3666void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3667 block_t len)
3668{
3669 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670 block_t i;
3671
3672 if (!f2fs_post_read_required(inode))
3673 return;
3674
3675 for (i = 0; i < len; i++)
3676 f2fs_wait_on_block_writeback(inode, blkaddr + i);
3677
3678 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3679}
3680
3681static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3682{
3683 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3684 struct curseg_info *seg_i;
3685 unsigned char *kaddr;
3686 struct page *page;
3687 block_t start;
3688 int i, j, offset;
3689
3690 start = start_sum_block(sbi);
3691
3692 page = f2fs_get_meta_page(sbi, start++);
3693 if (IS_ERR(page))
3694 return PTR_ERR(page);
3695 kaddr = (unsigned char *)page_address(page);
3696
3697 /* Step 1: restore nat cache */
3698 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3699 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3700
3701 /* Step 2: restore sit cache */
3702 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3703 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3704 offset = 2 * SUM_JOURNAL_SIZE;
3705
3706 /* Step 3: restore summary entries */
3707 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3708 unsigned short blk_off;
3709 unsigned int segno;
3710
3711 seg_i = CURSEG_I(sbi, i);
3712 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3713 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3714 seg_i->next_segno = segno;
3715 reset_curseg(sbi, i, 0);
3716 seg_i->alloc_type = ckpt->alloc_type[i];
3717 seg_i->next_blkoff = blk_off;
3718
3719 if (seg_i->alloc_type == SSR)
3720 blk_off = sbi->blocks_per_seg;
3721
3722 for (j = 0; j < blk_off; j++) {
3723 struct f2fs_summary *s;
3724
3725 s = (struct f2fs_summary *)(kaddr + offset);
3726 seg_i->sum_blk->entries[j] = *s;
3727 offset += SUMMARY_SIZE;
3728 if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3729 SUM_FOOTER_SIZE)
3730 continue;
3731
3732 f2fs_put_page(page, 1);
3733 page = NULL;
3734
3735 page = f2fs_get_meta_page(sbi, start++);
3736 if (IS_ERR(page))
3737 return PTR_ERR(page);
3738 kaddr = (unsigned char *)page_address(page);
3739 offset = 0;
3740 }
3741 }
3742 f2fs_put_page(page, 1);
3743 return 0;
3744}
3745
3746static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3747{
3748 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3749 struct f2fs_summary_block *sum;
3750 struct curseg_info *curseg;
3751 struct page *new;
3752 unsigned short blk_off;
3753 unsigned int segno = 0;
3754 block_t blk_addr = 0;
3755 int err = 0;
3756
3757 /* get segment number and block addr */
3758 if (IS_DATASEG(type)) {
3759 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3760 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3761 CURSEG_HOT_DATA]);
3762 if (__exist_node_summaries(sbi))
3763 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3764 else
3765 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3766 } else {
3767 segno = le32_to_cpu(ckpt->cur_node_segno[type -
3768 CURSEG_HOT_NODE]);
3769 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3770 CURSEG_HOT_NODE]);
3771 if (__exist_node_summaries(sbi))
3772 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3773 type - CURSEG_HOT_NODE);
3774 else
3775 blk_addr = GET_SUM_BLOCK(sbi, segno);
3776 }
3777
3778 new = f2fs_get_meta_page(sbi, blk_addr);
3779 if (IS_ERR(new))
3780 return PTR_ERR(new);
3781 sum = (struct f2fs_summary_block *)page_address(new);
3782
3783 if (IS_NODESEG(type)) {
3784 if (__exist_node_summaries(sbi)) {
3785 struct f2fs_summary *ns = &sum->entries[0];
3786 int i;
3787
3788 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3789 ns->version = 0;
3790 ns->ofs_in_node = 0;
3791 }
3792 } else {
3793 err = f2fs_restore_node_summary(sbi, segno, sum);
3794 if (err)
3795 goto out;
3796 }
3797 }
3798
3799 /* set uncompleted segment to curseg */
3800 curseg = CURSEG_I(sbi, type);
3801 mutex_lock(&curseg->curseg_mutex);
3802
3803 /* update journal info */
3804 down_write(&curseg->journal_rwsem);
3805 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3806 up_write(&curseg->journal_rwsem);
3807
3808 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3809 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3810 curseg->next_segno = segno;
3811 reset_curseg(sbi, type, 0);
3812 curseg->alloc_type = ckpt->alloc_type[type];
3813 curseg->next_blkoff = blk_off;
3814 mutex_unlock(&curseg->curseg_mutex);
3815out:
3816 f2fs_put_page(new, 1);
3817 return err;
3818}
3819
3820static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3821{
3822 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3823 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3824 int type = CURSEG_HOT_DATA;
3825 int err;
3826
3827 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3828 int npages = f2fs_npages_for_summary_flush(sbi, true);
3829
3830 if (npages >= 2)
3831 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3832 META_CP, true);
3833
3834 /* restore for compacted data summary */
3835 err = read_compacted_summaries(sbi);
3836 if (err)
3837 return err;
3838 type = CURSEG_HOT_NODE;
3839 }
3840
3841 if (__exist_node_summaries(sbi))
3842 f2fs_ra_meta_pages(sbi,
3843 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3844 NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3845
3846 for (; type <= CURSEG_COLD_NODE; type++) {
3847 err = read_normal_summaries(sbi, type);
3848 if (err)
3849 return err;
3850 }
3851
3852 /* sanity check for summary blocks */
3853 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3854 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3855 f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3856 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3857 return -EINVAL;
3858 }
3859
3860 return 0;
3861}
3862
3863static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3864{
3865 struct page *page;
3866 unsigned char *kaddr;
3867 struct f2fs_summary *summary;
3868 struct curseg_info *seg_i;
3869 int written_size = 0;
3870 int i, j;
3871
3872 page = f2fs_grab_meta_page(sbi, blkaddr++);
3873 kaddr = (unsigned char *)page_address(page);
3874 memset(kaddr, 0, PAGE_SIZE);
3875
3876 /* Step 1: write nat cache */
3877 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3878 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3879 written_size += SUM_JOURNAL_SIZE;
3880
3881 /* Step 2: write sit cache */
3882 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3883 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3884 written_size += SUM_JOURNAL_SIZE;
3885
3886 /* Step 3: write summary entries */
3887 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3888 unsigned short blkoff;
3889
3890 seg_i = CURSEG_I(sbi, i);
3891 if (sbi->ckpt->alloc_type[i] == SSR)
3892 blkoff = sbi->blocks_per_seg;
3893 else
3894 blkoff = curseg_blkoff(sbi, i);
3895
3896 for (j = 0; j < blkoff; j++) {
3897 if (!page) {
3898 page = f2fs_grab_meta_page(sbi, blkaddr++);
3899 kaddr = (unsigned char *)page_address(page);
3900 memset(kaddr, 0, PAGE_SIZE);
3901 written_size = 0;
3902 }
3903 summary = (struct f2fs_summary *)(kaddr + written_size);
3904 *summary = seg_i->sum_blk->entries[j];
3905 written_size += SUMMARY_SIZE;
3906
3907 if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3908 SUM_FOOTER_SIZE)
3909 continue;
3910
3911 set_page_dirty(page);
3912 f2fs_put_page(page, 1);
3913 page = NULL;
3914 }
3915 }
3916 if (page) {
3917 set_page_dirty(page);
3918 f2fs_put_page(page, 1);
3919 }
3920}
3921
3922static void write_normal_summaries(struct f2fs_sb_info *sbi,
3923 block_t blkaddr, int type)
3924{
3925 int i, end;
3926
3927 if (IS_DATASEG(type))
3928 end = type + NR_CURSEG_DATA_TYPE;
3929 else
3930 end = type + NR_CURSEG_NODE_TYPE;
3931
3932 for (i = type; i < end; i++)
3933 write_current_sum_page(sbi, i, blkaddr + (i - type));
3934}
3935
3936void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3937{
3938 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3939 write_compacted_summaries(sbi, start_blk);
3940 else
3941 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3942}
3943
3944void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3945{
3946 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3947}
3948
3949int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3950 unsigned int val, int alloc)
3951{
3952 int i;
3953
3954 if (type == NAT_JOURNAL) {
3955 for (i = 0; i < nats_in_cursum(journal); i++) {
3956 if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3957 return i;
3958 }
3959 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3960 return update_nats_in_cursum(journal, 1);
3961 } else if (type == SIT_JOURNAL) {
3962 for (i = 0; i < sits_in_cursum(journal); i++)
3963 if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3964 return i;
3965 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3966 return update_sits_in_cursum(journal, 1);
3967 }
3968 return -1;
3969}
3970
3971static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3972 unsigned int segno)
3973{
3974 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3975}
3976
3977static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3978 unsigned int start)
3979{
3980 struct sit_info *sit_i = SIT_I(sbi);
3981 struct page *page;
3982 pgoff_t src_off, dst_off;
3983
3984 src_off = current_sit_addr(sbi, start);
3985 dst_off = next_sit_addr(sbi, src_off);
3986
3987 page = f2fs_grab_meta_page(sbi, dst_off);
3988 seg_info_to_sit_page(sbi, page, start);
3989
3990 set_page_dirty(page);
3991 set_to_next_sit(sit_i, start);
3992
3993 return page;
3994}
3995
3996static struct sit_entry_set *grab_sit_entry_set(void)
3997{
3998 struct sit_entry_set *ses =
3999 f2fs_kmem_cache_alloc(sit_entry_set_slab,
4000 GFP_NOFS, true, NULL);
4001
4002 ses->entry_cnt = 0;
4003 INIT_LIST_HEAD(&ses->set_list);
4004 return ses;
4005}
4006
4007static void release_sit_entry_set(struct sit_entry_set *ses)
4008{
4009 list_del(&ses->set_list);
4010 kmem_cache_free(sit_entry_set_slab, ses);
4011}
4012
4013static void adjust_sit_entry_set(struct sit_entry_set *ses,
4014 struct list_head *head)
4015{
4016 struct sit_entry_set *next = ses;
4017
4018 if (list_is_last(&ses->set_list, head))
4019 return;
4020
4021 list_for_each_entry_continue(next, head, set_list)
4022 if (ses->entry_cnt <= next->entry_cnt) {
4023 list_move_tail(&ses->set_list, &next->set_list);
4024 return;
4025 }
4026
4027 list_move_tail(&ses->set_list, head);
4028}
4029
4030static void add_sit_entry(unsigned int segno, struct list_head *head)
4031{
4032 struct sit_entry_set *ses;
4033 unsigned int start_segno = START_SEGNO(segno);
4034
4035 list_for_each_entry(ses, head, set_list) {
4036 if (ses->start_segno == start_segno) {
4037 ses->entry_cnt++;
4038 adjust_sit_entry_set(ses, head);
4039 return;
4040 }
4041 }
4042
4043 ses = grab_sit_entry_set();
4044
4045 ses->start_segno = start_segno;
4046 ses->entry_cnt++;
4047 list_add(&ses->set_list, head);
4048}
4049
4050static void add_sits_in_set(struct f2fs_sb_info *sbi)
4051{
4052 struct f2fs_sm_info *sm_info = SM_I(sbi);
4053 struct list_head *set_list = &sm_info->sit_entry_set;
4054 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4055 unsigned int segno;
4056
4057 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4058 add_sit_entry(segno, set_list);
4059}
4060
4061static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4062{
4063 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4064 struct f2fs_journal *journal = curseg->journal;
4065 int i;
4066
4067 down_write(&curseg->journal_rwsem);
4068 for (i = 0; i < sits_in_cursum(journal); i++) {
4069 unsigned int segno;
4070 bool dirtied;
4071
4072 segno = le32_to_cpu(segno_in_journal(journal, i));
4073 dirtied = __mark_sit_entry_dirty(sbi, segno);
4074
4075 if (!dirtied)
4076 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4077 }
4078 update_sits_in_cursum(journal, -i);
4079 up_write(&curseg->journal_rwsem);
4080}
4081
4082/*
4083 * CP calls this function, which flushes SIT entries including sit_journal,
4084 * and moves prefree segs to free segs.
4085 */
4086void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4087{
4088 struct sit_info *sit_i = SIT_I(sbi);
4089 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4090 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4091 struct f2fs_journal *journal = curseg->journal;
4092 struct sit_entry_set *ses, *tmp;
4093 struct list_head *head = &SM_I(sbi)->sit_entry_set;
4094 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4095 struct seg_entry *se;
4096
4097 down_write(&sit_i->sentry_lock);
4098
4099 if (!sit_i->dirty_sentries)
4100 goto out;
4101
4102 /*
4103 * add and account sit entries of dirty bitmap in sit entry
4104 * set temporarily
4105 */
4106 add_sits_in_set(sbi);
4107
4108 /*
4109 * if there are no enough space in journal to store dirty sit
4110 * entries, remove all entries from journal and add and account
4111 * them in sit entry set.
4112 */
4113 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4114 !to_journal)
4115 remove_sits_in_journal(sbi);
4116
4117 /*
4118 * there are two steps to flush sit entries:
4119 * #1, flush sit entries to journal in current cold data summary block.
4120 * #2, flush sit entries to sit page.
4121 */
4122 list_for_each_entry_safe(ses, tmp, head, set_list) {
4123 struct page *page = NULL;
4124 struct f2fs_sit_block *raw_sit = NULL;
4125 unsigned int start_segno = ses->start_segno;
4126 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4127 (unsigned long)MAIN_SEGS(sbi));
4128 unsigned int segno = start_segno;
4129
4130 if (to_journal &&
4131 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4132 to_journal = false;
4133
4134 if (to_journal) {
4135 down_write(&curseg->journal_rwsem);
4136 } else {
4137 page = get_next_sit_page(sbi, start_segno);
4138 raw_sit = page_address(page);
4139 }
4140
4141 /* flush dirty sit entries in region of current sit set */
4142 for_each_set_bit_from(segno, bitmap, end) {
4143 int offset, sit_offset;
4144
4145 se = get_seg_entry(sbi, segno);
4146#ifdef CONFIG_F2FS_CHECK_FS
4147 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4148 SIT_VBLOCK_MAP_SIZE))
4149 f2fs_bug_on(sbi, 1);
4150#endif
4151
4152 /* add discard candidates */
4153 if (!(cpc->reason & CP_DISCARD)) {
4154 cpc->trim_start = segno;
4155 add_discard_addrs(sbi, cpc, false);
4156 }
4157
4158 if (to_journal) {
4159 offset = f2fs_lookup_journal_in_cursum(journal,
4160 SIT_JOURNAL, segno, 1);
4161 f2fs_bug_on(sbi, offset < 0);
4162 segno_in_journal(journal, offset) =
4163 cpu_to_le32(segno);
4164 seg_info_to_raw_sit(se,
4165 &sit_in_journal(journal, offset));
4166 check_block_count(sbi, segno,
4167 &sit_in_journal(journal, offset));
4168 } else {
4169 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4170 seg_info_to_raw_sit(se,
4171 &raw_sit->entries[sit_offset]);
4172 check_block_count(sbi, segno,
4173 &raw_sit->entries[sit_offset]);
4174 }
4175
4176 __clear_bit(segno, bitmap);
4177 sit_i->dirty_sentries--;
4178 ses->entry_cnt--;
4179 }
4180
4181 if (to_journal)
4182 up_write(&curseg->journal_rwsem);
4183 else
4184 f2fs_put_page(page, 1);
4185
4186 f2fs_bug_on(sbi, ses->entry_cnt);
4187 release_sit_entry_set(ses);
4188 }
4189
4190 f2fs_bug_on(sbi, !list_empty(head));
4191 f2fs_bug_on(sbi, sit_i->dirty_sentries);
4192out:
4193 if (cpc->reason & CP_DISCARD) {
4194 __u64 trim_start = cpc->trim_start;
4195
4196 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4197 add_discard_addrs(sbi, cpc, false);
4198
4199 cpc->trim_start = trim_start;
4200 }
4201 up_write(&sit_i->sentry_lock);
4202
4203 set_prefree_as_free_segments(sbi);
4204}
4205
4206static int build_sit_info(struct f2fs_sb_info *sbi)
4207{
4208 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4209 struct sit_info *sit_i;
4210 unsigned int sit_segs, start;
4211 char *src_bitmap, *bitmap;
4212 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4213 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4214
4215 /* allocate memory for SIT information */
4216 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4217 if (!sit_i)
4218 return -ENOMEM;
4219
4220 SM_I(sbi)->sit_info = sit_i;
4221
4222 sit_i->sentries =
4223 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4224 MAIN_SEGS(sbi)),
4225 GFP_KERNEL);
4226 if (!sit_i->sentries)
4227 return -ENOMEM;
4228
4229 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4230 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4231 GFP_KERNEL);
4232 if (!sit_i->dirty_sentries_bitmap)
4233 return -ENOMEM;
4234
4235#ifdef CONFIG_F2FS_CHECK_FS
4236 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4237#else
4238 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4239#endif
4240 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4241 if (!sit_i->bitmap)
4242 return -ENOMEM;
4243
4244 bitmap = sit_i->bitmap;
4245
4246 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4247 sit_i->sentries[start].cur_valid_map = bitmap;
4248 bitmap += SIT_VBLOCK_MAP_SIZE;
4249
4250 sit_i->sentries[start].ckpt_valid_map = bitmap;
4251 bitmap += SIT_VBLOCK_MAP_SIZE;
4252
4253#ifdef CONFIG_F2FS_CHECK_FS
4254 sit_i->sentries[start].cur_valid_map_mir = bitmap;
4255 bitmap += SIT_VBLOCK_MAP_SIZE;
4256#endif
4257
4258 if (discard_map) {
4259 sit_i->sentries[start].discard_map = bitmap;
4260 bitmap += SIT_VBLOCK_MAP_SIZE;
4261 }
4262 }
4263
4264 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4265 if (!sit_i->tmp_map)
4266 return -ENOMEM;
4267
4268 if (__is_large_section(sbi)) {
4269 sit_i->sec_entries =
4270 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4271 MAIN_SECS(sbi)),
4272 GFP_KERNEL);
4273 if (!sit_i->sec_entries)
4274 return -ENOMEM;
4275 }
4276
4277 /* get information related with SIT */
4278 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4279
4280 /* setup SIT bitmap from ckeckpoint pack */
4281 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4282 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4283
4284 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4285 if (!sit_i->sit_bitmap)
4286 return -ENOMEM;
4287
4288#ifdef CONFIG_F2FS_CHECK_FS
4289 sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4290 sit_bitmap_size, GFP_KERNEL);
4291 if (!sit_i->sit_bitmap_mir)
4292 return -ENOMEM;
4293
4294 sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4295 main_bitmap_size, GFP_KERNEL);
4296 if (!sit_i->invalid_segmap)
4297 return -ENOMEM;
4298#endif
4299
4300 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4301 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4302 sit_i->written_valid_blocks = 0;
4303 sit_i->bitmap_size = sit_bitmap_size;
4304 sit_i->dirty_sentries = 0;
4305 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4306 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4307 sit_i->mounted_time = ktime_get_boottime_seconds();
4308 init_rwsem(&sit_i->sentry_lock);
4309 return 0;
4310}
4311
4312static int build_free_segmap(struct f2fs_sb_info *sbi)
4313{
4314 struct free_segmap_info *free_i;
4315 unsigned int bitmap_size, sec_bitmap_size;
4316
4317 /* allocate memory for free segmap information */
4318 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4319 if (!free_i)
4320 return -ENOMEM;
4321
4322 SM_I(sbi)->free_info = free_i;
4323
4324 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4325 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4326 if (!free_i->free_segmap)
4327 return -ENOMEM;
4328
4329 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4330 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4331 if (!free_i->free_secmap)
4332 return -ENOMEM;
4333
4334 /* set all segments as dirty temporarily */
4335 memset(free_i->free_segmap, 0xff, bitmap_size);
4336 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4337
4338 /* init free segmap information */
4339 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4340 free_i->free_segments = 0;
4341 free_i->free_sections = 0;
4342 spin_lock_init(&free_i->segmap_lock);
4343 return 0;
4344}
4345
4346static int build_curseg(struct f2fs_sb_info *sbi)
4347{
4348 struct curseg_info *array;
4349 int i;
4350
4351 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4352 sizeof(*array)), GFP_KERNEL);
4353 if (!array)
4354 return -ENOMEM;
4355
4356 SM_I(sbi)->curseg_array = array;
4357
4358 for (i = 0; i < NO_CHECK_TYPE; i++) {
4359 mutex_init(&array[i].curseg_mutex);
4360 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4361 if (!array[i].sum_blk)
4362 return -ENOMEM;
4363 init_rwsem(&array[i].journal_rwsem);
4364 array[i].journal = f2fs_kzalloc(sbi,
4365 sizeof(struct f2fs_journal), GFP_KERNEL);
4366 if (!array[i].journal)
4367 return -ENOMEM;
4368 if (i < NR_PERSISTENT_LOG)
4369 array[i].seg_type = CURSEG_HOT_DATA + i;
4370 else if (i == CURSEG_COLD_DATA_PINNED)
4371 array[i].seg_type = CURSEG_COLD_DATA;
4372 else if (i == CURSEG_ALL_DATA_ATGC)
4373 array[i].seg_type = CURSEG_COLD_DATA;
4374 array[i].segno = NULL_SEGNO;
4375 array[i].next_blkoff = 0;
4376 array[i].inited = false;
4377 }
4378 return restore_curseg_summaries(sbi);
4379}
4380
4381static int build_sit_entries(struct f2fs_sb_info *sbi)
4382{
4383 struct sit_info *sit_i = SIT_I(sbi);
4384 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4385 struct f2fs_journal *journal = curseg->journal;
4386 struct seg_entry *se;
4387 struct f2fs_sit_entry sit;
4388 int sit_blk_cnt = SIT_BLK_CNT(sbi);
4389 unsigned int i, start, end;
4390 unsigned int readed, start_blk = 0;
4391 int err = 0;
4392 block_t sit_valid_blocks[2] = {0, 0};
4393
4394 do {
4395 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4396 META_SIT, true);
4397
4398 start = start_blk * sit_i->sents_per_block;
4399 end = (start_blk + readed) * sit_i->sents_per_block;
4400
4401 for (; start < end && start < MAIN_SEGS(sbi); start++) {
4402 struct f2fs_sit_block *sit_blk;
4403 struct page *page;
4404
4405 se = &sit_i->sentries[start];
4406 page = get_current_sit_page(sbi, start);
4407 if (IS_ERR(page))
4408 return PTR_ERR(page);
4409 sit_blk = (struct f2fs_sit_block *)page_address(page);
4410 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4411 f2fs_put_page(page, 1);
4412
4413 err = check_block_count(sbi, start, &sit);
4414 if (err)
4415 return err;
4416 seg_info_from_raw_sit(se, &sit);
4417
4418 if (se->type >= NR_PERSISTENT_LOG) {
4419 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4420 se->type, start);
4421 f2fs_handle_error(sbi,
4422 ERROR_INCONSISTENT_SUM_TYPE);
4423 return -EFSCORRUPTED;
4424 }
4425
4426 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4427
4428 if (f2fs_block_unit_discard(sbi)) {
4429 /* build discard map only one time */
4430 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4431 memset(se->discard_map, 0xff,
4432 SIT_VBLOCK_MAP_SIZE);
4433 } else {
4434 memcpy(se->discard_map,
4435 se->cur_valid_map,
4436 SIT_VBLOCK_MAP_SIZE);
4437 sbi->discard_blks +=
4438 sbi->blocks_per_seg -
4439 se->valid_blocks;
4440 }
4441 }
4442
4443 if (__is_large_section(sbi))
4444 get_sec_entry(sbi, start)->valid_blocks +=
4445 se->valid_blocks;
4446 }
4447 start_blk += readed;
4448 } while (start_blk < sit_blk_cnt);
4449
4450 down_read(&curseg->journal_rwsem);
4451 for (i = 0; i < sits_in_cursum(journal); i++) {
4452 unsigned int old_valid_blocks;
4453
4454 start = le32_to_cpu(segno_in_journal(journal, i));
4455 if (start >= MAIN_SEGS(sbi)) {
4456 f2fs_err(sbi, "Wrong journal entry on segno %u",
4457 start);
4458 err = -EFSCORRUPTED;
4459 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4460 break;
4461 }
4462
4463 se = &sit_i->sentries[start];
4464 sit = sit_in_journal(journal, i);
4465
4466 old_valid_blocks = se->valid_blocks;
4467
4468 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4469
4470 err = check_block_count(sbi, start, &sit);
4471 if (err)
4472 break;
4473 seg_info_from_raw_sit(se, &sit);
4474
4475 if (se->type >= NR_PERSISTENT_LOG) {
4476 f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4477 se->type, start);
4478 err = -EFSCORRUPTED;
4479 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4480 break;
4481 }
4482
4483 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4484
4485 if (f2fs_block_unit_discard(sbi)) {
4486 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4487 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4488 } else {
4489 memcpy(se->discard_map, se->cur_valid_map,
4490 SIT_VBLOCK_MAP_SIZE);
4491 sbi->discard_blks += old_valid_blocks;
4492 sbi->discard_blks -= se->valid_blocks;
4493 }
4494 }
4495
4496 if (__is_large_section(sbi)) {
4497 get_sec_entry(sbi, start)->valid_blocks +=
4498 se->valid_blocks;
4499 get_sec_entry(sbi, start)->valid_blocks -=
4500 old_valid_blocks;
4501 }
4502 }
4503 up_read(&curseg->journal_rwsem);
4504
4505 if (err)
4506 return err;
4507
4508 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4509 f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4510 sit_valid_blocks[NODE], valid_node_count(sbi));
4511 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4512 return -EFSCORRUPTED;
4513 }
4514
4515 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4516 valid_user_blocks(sbi)) {
4517 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4518 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4519 valid_user_blocks(sbi));
4520 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4521 return -EFSCORRUPTED;
4522 }
4523
4524 return 0;
4525}
4526
4527static void init_free_segmap(struct f2fs_sb_info *sbi)
4528{
4529 unsigned int start;
4530 int type;
4531 struct seg_entry *sentry;
4532
4533 for (start = 0; start < MAIN_SEGS(sbi); start++) {
4534 if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4535 continue;
4536 sentry = get_seg_entry(sbi, start);
4537 if (!sentry->valid_blocks)
4538 __set_free(sbi, start);
4539 else
4540 SIT_I(sbi)->written_valid_blocks +=
4541 sentry->valid_blocks;
4542 }
4543
4544 /* set use the current segments */
4545 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4546 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4547
4548 __set_test_and_inuse(sbi, curseg_t->segno);
4549 }
4550}
4551
4552static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4553{
4554 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4555 struct free_segmap_info *free_i = FREE_I(sbi);
4556 unsigned int segno = 0, offset = 0, secno;
4557 block_t valid_blocks, usable_blks_in_seg;
4558
4559 while (1) {
4560 /* find dirty segment based on free segmap */
4561 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4562 if (segno >= MAIN_SEGS(sbi))
4563 break;
4564 offset = segno + 1;
4565 valid_blocks = get_valid_blocks(sbi, segno, false);
4566 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4567 if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4568 continue;
4569 if (valid_blocks > usable_blks_in_seg) {
4570 f2fs_bug_on(sbi, 1);
4571 continue;
4572 }
4573 mutex_lock(&dirty_i->seglist_lock);
4574 __locate_dirty_segment(sbi, segno, DIRTY);
4575 mutex_unlock(&dirty_i->seglist_lock);
4576 }
4577
4578 if (!__is_large_section(sbi))
4579 return;
4580
4581 mutex_lock(&dirty_i->seglist_lock);
4582 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4583 valid_blocks = get_valid_blocks(sbi, segno, true);
4584 secno = GET_SEC_FROM_SEG(sbi, segno);
4585
4586 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4587 continue;
4588 if (IS_CURSEC(sbi, secno))
4589 continue;
4590 set_bit(secno, dirty_i->dirty_secmap);
4591 }
4592 mutex_unlock(&dirty_i->seglist_lock);
4593}
4594
4595static int init_victim_secmap(struct f2fs_sb_info *sbi)
4596{
4597 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4598 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4599
4600 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4601 if (!dirty_i->victim_secmap)
4602 return -ENOMEM;
4603
4604 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4605 if (!dirty_i->pinned_secmap)
4606 return -ENOMEM;
4607
4608 dirty_i->pinned_secmap_cnt = 0;
4609 dirty_i->enable_pin_section = true;
4610 return 0;
4611}
4612
4613static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4614{
4615 struct dirty_seglist_info *dirty_i;
4616 unsigned int bitmap_size, i;
4617
4618 /* allocate memory for dirty segments list information */
4619 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4620 GFP_KERNEL);
4621 if (!dirty_i)
4622 return -ENOMEM;
4623
4624 SM_I(sbi)->dirty_info = dirty_i;
4625 mutex_init(&dirty_i->seglist_lock);
4626
4627 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4628
4629 for (i = 0; i < NR_DIRTY_TYPE; i++) {
4630 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4631 GFP_KERNEL);
4632 if (!dirty_i->dirty_segmap[i])
4633 return -ENOMEM;
4634 }
4635
4636 if (__is_large_section(sbi)) {
4637 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4639 bitmap_size, GFP_KERNEL);
4640 if (!dirty_i->dirty_secmap)
4641 return -ENOMEM;
4642 }
4643
4644 init_dirty_segmap(sbi);
4645 return init_victim_secmap(sbi);
4646}
4647
4648static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4649{
4650 int i;
4651
4652 /*
4653 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4654 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4655 */
4656 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4657 struct curseg_info *curseg = CURSEG_I(sbi, i);
4658 struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4659 unsigned int blkofs = curseg->next_blkoff;
4660
4661 if (f2fs_sb_has_readonly(sbi) &&
4662 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4663 continue;
4664
4665 sanity_check_seg_type(sbi, curseg->seg_type);
4666
4667 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4668 f2fs_err(sbi,
4669 "Current segment has invalid alloc_type:%d",
4670 curseg->alloc_type);
4671 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4672 return -EFSCORRUPTED;
4673 }
4674
4675 if (f2fs_test_bit(blkofs, se->cur_valid_map))
4676 goto out;
4677
4678 if (curseg->alloc_type == SSR)
4679 continue;
4680
4681 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4682 if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4683 continue;
4684out:
4685 f2fs_err(sbi,
4686 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4687 i, curseg->segno, curseg->alloc_type,
4688 curseg->next_blkoff, blkofs);
4689 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4690 return -EFSCORRUPTED;
4691 }
4692 }
4693 return 0;
4694}
4695
4696#ifdef CONFIG_BLK_DEV_ZONED
4697
4698static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4699 struct f2fs_dev_info *fdev,
4700 struct blk_zone *zone)
4701{
4702 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4703 block_t zone_block, wp_block, last_valid_block;
4704 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4705 int i, s, b, ret;
4706 struct seg_entry *se;
4707
4708 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4709 return 0;
4710
4711 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4712 wp_segno = GET_SEGNO(sbi, wp_block);
4713 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4714 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4715 zone_segno = GET_SEGNO(sbi, zone_block);
4716 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4717
4718 if (zone_segno >= MAIN_SEGS(sbi))
4719 return 0;
4720
4721 /*
4722 * Skip check of zones cursegs point to, since
4723 * fix_curseg_write_pointer() checks them.
4724 */
4725 for (i = 0; i < NO_CHECK_TYPE; i++)
4726 if (zone_secno == GET_SEC_FROM_SEG(sbi,
4727 CURSEG_I(sbi, i)->segno))
4728 return 0;
4729
4730 /*
4731 * Get last valid block of the zone.
4732 */
4733 last_valid_block = zone_block - 1;
4734 for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4735 segno = zone_segno + s;
4736 se = get_seg_entry(sbi, segno);
4737 for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4738 if (f2fs_test_bit(b, se->cur_valid_map)) {
4739 last_valid_block = START_BLOCK(sbi, segno) + b;
4740 break;
4741 }
4742 if (last_valid_block >= zone_block)
4743 break;
4744 }
4745
4746 /*
4747 * If last valid block is beyond the write pointer, report the
4748 * inconsistency. This inconsistency does not cause write error
4749 * because the zone will not be selected for write operation until
4750 * it get discarded. Just report it.
4751 */
4752 if (last_valid_block >= wp_block) {
4753 f2fs_notice(sbi, "Valid block beyond write pointer: "
4754 "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4755 GET_SEGNO(sbi, last_valid_block),
4756 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4757 wp_segno, wp_blkoff);
4758 return 0;
4759 }
4760
4761 /*
4762 * If there is no valid block in the zone and if write pointer is
4763 * not at zone start, reset the write pointer.
4764 */
4765 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4766 f2fs_notice(sbi,
4767 "Zone without valid block has non-zero write "
4768 "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4769 wp_segno, wp_blkoff);
4770 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4771 zone->len >> log_sectors_per_block);
4772 if (ret) {
4773 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4774 fdev->path, ret);
4775 return ret;
4776 }
4777 }
4778
4779 return 0;
4780}
4781
4782static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4783 block_t zone_blkaddr)
4784{
4785 int i;
4786
4787 for (i = 0; i < sbi->s_ndevs; i++) {
4788 if (!bdev_is_zoned(FDEV(i).bdev))
4789 continue;
4790 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4791 zone_blkaddr <= FDEV(i).end_blk))
4792 return &FDEV(i);
4793 }
4794
4795 return NULL;
4796}
4797
4798static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4799 void *data)
4800{
4801 memcpy(data, zone, sizeof(struct blk_zone));
4802 return 0;
4803}
4804
4805static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4806{
4807 struct curseg_info *cs = CURSEG_I(sbi, type);
4808 struct f2fs_dev_info *zbd;
4809 struct blk_zone zone;
4810 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4811 block_t cs_zone_block, wp_block;
4812 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4813 sector_t zone_sector;
4814 int err;
4815
4816 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4817 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4818
4819 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4820 if (!zbd)
4821 return 0;
4822
4823 /* report zone for the sector the curseg points to */
4824 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4825 << log_sectors_per_block;
4826 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4827 report_one_zone_cb, &zone);
4828 if (err != 1) {
4829 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4830 zbd->path, err);
4831 return err;
4832 }
4833
4834 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4835 return 0;
4836
4837 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4838 wp_segno = GET_SEGNO(sbi, wp_block);
4839 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4840 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4841
4842 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4843 wp_sector_off == 0)
4844 return 0;
4845
4846 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4847 "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4848 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4849
4850 f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4851 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4852
4853 f2fs_allocate_new_section(sbi, type, true);
4854
4855 /* check consistency of the zone curseg pointed to */
4856 if (check_zone_write_pointer(sbi, zbd, &zone))
4857 return -EIO;
4858
4859 /* check newly assigned zone */
4860 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4861 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4862
4863 zbd = get_target_zoned_dev(sbi, cs_zone_block);
4864 if (!zbd)
4865 return 0;
4866
4867 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4868 << log_sectors_per_block;
4869 err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4870 report_one_zone_cb, &zone);
4871 if (err != 1) {
4872 f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4873 zbd->path, err);
4874 return err;
4875 }
4876
4877 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4878 return 0;
4879
4880 if (zone.wp != zone.start) {
4881 f2fs_notice(sbi,
4882 "New zone for curseg[%d] is not yet discarded. "
4883 "Reset the zone: curseg[0x%x,0x%x]",
4884 type, cs->segno, cs->next_blkoff);
4885 err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4886 zone_sector >> log_sectors_per_block,
4887 zone.len >> log_sectors_per_block);
4888 if (err) {
4889 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4890 zbd->path, err);
4891 return err;
4892 }
4893 }
4894
4895 return 0;
4896}
4897
4898int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4899{
4900 int i, ret;
4901
4902 for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4903 ret = fix_curseg_write_pointer(sbi, i);
4904 if (ret)
4905 return ret;
4906 }
4907
4908 return 0;
4909}
4910
4911struct check_zone_write_pointer_args {
4912 struct f2fs_sb_info *sbi;
4913 struct f2fs_dev_info *fdev;
4914};
4915
4916static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4917 void *data)
4918{
4919 struct check_zone_write_pointer_args *args;
4920
4921 args = (struct check_zone_write_pointer_args *)data;
4922
4923 return check_zone_write_pointer(args->sbi, args->fdev, zone);
4924}
4925
4926int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4927{
4928 int i, ret;
4929 struct check_zone_write_pointer_args args;
4930
4931 for (i = 0; i < sbi->s_ndevs; i++) {
4932 if (!bdev_is_zoned(FDEV(i).bdev))
4933 continue;
4934
4935 args.sbi = sbi;
4936 args.fdev = &FDEV(i);
4937 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4938 check_zone_write_pointer_cb, &args);
4939 if (ret < 0)
4940 return ret;
4941 }
4942
4943 return 0;
4944}
4945
4946static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4947 unsigned int dev_idx)
4948{
4949 if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4950 return true;
4951 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4952}
4953
4954/* Return the zone index in the given device */
4955static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4956 int dev_idx)
4957{
4958 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4959
4960 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4961 sbi->log_blocks_per_blkz;
4962}
4963
4964/*
4965 * Return the usable segments in a section based on the zone's
4966 * corresponding zone capacity. Zone is equal to a section.
4967 */
4968static inline unsigned int f2fs_usable_zone_segs_in_sec(
4969 struct f2fs_sb_info *sbi, unsigned int segno)
4970{
4971 unsigned int dev_idx, zone_idx;
4972
4973 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4974 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4975
4976 /* Conventional zone's capacity is always equal to zone size */
4977 if (is_conv_zone(sbi, zone_idx, dev_idx))
4978 return sbi->segs_per_sec;
4979
4980 if (!sbi->unusable_blocks_per_sec)
4981 return sbi->segs_per_sec;
4982
4983 /* Get the segment count beyond zone capacity block */
4984 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4985 sbi->log_blocks_per_seg);
4986}
4987
4988/*
4989 * Return the number of usable blocks in a segment. The number of blocks
4990 * returned is always equal to the number of blocks in a segment for
4991 * segments fully contained within a sequential zone capacity or a
4992 * conventional zone. For segments partially contained in a sequential
4993 * zone capacity, the number of usable blocks up to the zone capacity
4994 * is returned. 0 is returned in all other cases.
4995 */
4996static inline unsigned int f2fs_usable_zone_blks_in_seg(
4997 struct f2fs_sb_info *sbi, unsigned int segno)
4998{
4999 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5000 unsigned int zone_idx, dev_idx, secno;
5001
5002 secno = GET_SEC_FROM_SEG(sbi, segno);
5003 seg_start = START_BLOCK(sbi, segno);
5004 dev_idx = f2fs_target_device_index(sbi, seg_start);
5005 zone_idx = get_zone_idx(sbi, secno, dev_idx);
5006
5007 /*
5008 * Conventional zone's capacity is always equal to zone size,
5009 * so, blocks per segment is unchanged.
5010 */
5011 if (is_conv_zone(sbi, zone_idx, dev_idx))
5012 return sbi->blocks_per_seg;
5013
5014 if (!sbi->unusable_blocks_per_sec)
5015 return sbi->blocks_per_seg;
5016
5017 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5018 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5019
5020 /*
5021 * If segment starts before zone capacity and spans beyond
5022 * zone capacity, then usable blocks are from seg start to
5023 * zone capacity. If the segment starts after the zone capacity,
5024 * then there are no usable blocks.
5025 */
5026 if (seg_start >= sec_cap_blkaddr)
5027 return 0;
5028 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5029 return sec_cap_blkaddr - seg_start;
5030
5031 return sbi->blocks_per_seg;
5032}
5033#else
5034int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5035{
5036 return 0;
5037}
5038
5039int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5040{
5041 return 0;
5042}
5043
5044static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5045 unsigned int segno)
5046{
5047 return 0;
5048}
5049
5050static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5051 unsigned int segno)
5052{
5053 return 0;
5054}
5055#endif
5056unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5057 unsigned int segno)
5058{
5059 if (f2fs_sb_has_blkzoned(sbi))
5060 return f2fs_usable_zone_blks_in_seg(sbi, segno);
5061
5062 return sbi->blocks_per_seg;
5063}
5064
5065unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5066 unsigned int segno)
5067{
5068 if (f2fs_sb_has_blkzoned(sbi))
5069 return f2fs_usable_zone_segs_in_sec(sbi, segno);
5070
5071 return sbi->segs_per_sec;
5072}
5073
5074/*
5075 * Update min, max modified time for cost-benefit GC algorithm
5076 */
5077static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5078{
5079 struct sit_info *sit_i = SIT_I(sbi);
5080 unsigned int segno;
5081
5082 down_write(&sit_i->sentry_lock);
5083
5084 sit_i->min_mtime = ULLONG_MAX;
5085
5086 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5087 unsigned int i;
5088 unsigned long long mtime = 0;
5089
5090 for (i = 0; i < sbi->segs_per_sec; i++)
5091 mtime += get_seg_entry(sbi, segno + i)->mtime;
5092
5093 mtime = div_u64(mtime, sbi->segs_per_sec);
5094
5095 if (sit_i->min_mtime > mtime)
5096 sit_i->min_mtime = mtime;
5097 }
5098 sit_i->max_mtime = get_mtime(sbi, false);
5099 sit_i->dirty_max_mtime = 0;
5100 up_write(&sit_i->sentry_lock);
5101}
5102
5103int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5104{
5105 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5106 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5107 struct f2fs_sm_info *sm_info;
5108 int err;
5109
5110 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5111 if (!sm_info)
5112 return -ENOMEM;
5113
5114 /* init sm info */
5115 sbi->sm_info = sm_info;
5116 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5117 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5118 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5119 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5120 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5121 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5122 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5123 sm_info->rec_prefree_segments = sm_info->main_segments *
5124 DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5125 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5126 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5127
5128 if (!f2fs_lfs_mode(sbi))
5129 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5130 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5131 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5132 sm_info->min_seq_blocks = sbi->blocks_per_seg;
5133 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5134 sm_info->min_ssr_sections = reserved_sections(sbi);
5135
5136 INIT_LIST_HEAD(&sm_info->sit_entry_set);
5137
5138 init_f2fs_rwsem(&sm_info->curseg_lock);
5139
5140 err = f2fs_create_flush_cmd_control(sbi);
5141 if (err)
5142 return err;
5143
5144 err = create_discard_cmd_control(sbi);
5145 if (err)
5146 return err;
5147
5148 err = build_sit_info(sbi);
5149 if (err)
5150 return err;
5151 err = build_free_segmap(sbi);
5152 if (err)
5153 return err;
5154 err = build_curseg(sbi);
5155 if (err)
5156 return err;
5157
5158 /* reinit free segmap based on SIT */
5159 err = build_sit_entries(sbi);
5160 if (err)
5161 return err;
5162
5163 init_free_segmap(sbi);
5164 err = build_dirty_segmap(sbi);
5165 if (err)
5166 return err;
5167
5168 err = sanity_check_curseg(sbi);
5169 if (err)
5170 return err;
5171
5172 init_min_max_mtime(sbi);
5173 return 0;
5174}
5175
5176static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5177 enum dirty_type dirty_type)
5178{
5179 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5180
5181 mutex_lock(&dirty_i->seglist_lock);
5182 kvfree(dirty_i->dirty_segmap[dirty_type]);
5183 dirty_i->nr_dirty[dirty_type] = 0;
5184 mutex_unlock(&dirty_i->seglist_lock);
5185}
5186
5187static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5188{
5189 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5190
5191 kvfree(dirty_i->pinned_secmap);
5192 kvfree(dirty_i->victim_secmap);
5193}
5194
5195static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5196{
5197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5198 int i;
5199
5200 if (!dirty_i)
5201 return;
5202
5203 /* discard pre-free/dirty segments list */
5204 for (i = 0; i < NR_DIRTY_TYPE; i++)
5205 discard_dirty_segmap(sbi, i);
5206
5207 if (__is_large_section(sbi)) {
5208 mutex_lock(&dirty_i->seglist_lock);
5209 kvfree(dirty_i->dirty_secmap);
5210 mutex_unlock(&dirty_i->seglist_lock);
5211 }
5212
5213 destroy_victim_secmap(sbi);
5214 SM_I(sbi)->dirty_info = NULL;
5215 kfree(dirty_i);
5216}
5217
5218static void destroy_curseg(struct f2fs_sb_info *sbi)
5219{
5220 struct curseg_info *array = SM_I(sbi)->curseg_array;
5221 int i;
5222
5223 if (!array)
5224 return;
5225 SM_I(sbi)->curseg_array = NULL;
5226 for (i = 0; i < NR_CURSEG_TYPE; i++) {
5227 kfree(array[i].sum_blk);
5228 kfree(array[i].journal);
5229 }
5230 kfree(array);
5231}
5232
5233static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5234{
5235 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5236
5237 if (!free_i)
5238 return;
5239 SM_I(sbi)->free_info = NULL;
5240 kvfree(free_i->free_segmap);
5241 kvfree(free_i->free_secmap);
5242 kfree(free_i);
5243}
5244
5245static void destroy_sit_info(struct f2fs_sb_info *sbi)
5246{
5247 struct sit_info *sit_i = SIT_I(sbi);
5248
5249 if (!sit_i)
5250 return;
5251
5252 if (sit_i->sentries)
5253 kvfree(sit_i->bitmap);
5254 kfree(sit_i->tmp_map);
5255
5256 kvfree(sit_i->sentries);
5257 kvfree(sit_i->sec_entries);
5258 kvfree(sit_i->dirty_sentries_bitmap);
5259
5260 SM_I(sbi)->sit_info = NULL;
5261 kvfree(sit_i->sit_bitmap);
5262#ifdef CONFIG_F2FS_CHECK_FS
5263 kvfree(sit_i->sit_bitmap_mir);
5264 kvfree(sit_i->invalid_segmap);
5265#endif
5266 kfree(sit_i);
5267}
5268
5269void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5270{
5271 struct f2fs_sm_info *sm_info = SM_I(sbi);
5272
5273 if (!sm_info)
5274 return;
5275 f2fs_destroy_flush_cmd_control(sbi, true);
5276 destroy_discard_cmd_control(sbi);
5277 destroy_dirty_segmap(sbi);
5278 destroy_curseg(sbi);
5279 destroy_free_segmap(sbi);
5280 destroy_sit_info(sbi);
5281 sbi->sm_info = NULL;
5282 kfree(sm_info);
5283}
5284
5285int __init f2fs_create_segment_manager_caches(void)
5286{
5287 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5288 sizeof(struct discard_entry));
5289 if (!discard_entry_slab)
5290 goto fail;
5291
5292 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5293 sizeof(struct discard_cmd));
5294 if (!discard_cmd_slab)
5295 goto destroy_discard_entry;
5296
5297 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5298 sizeof(struct sit_entry_set));
5299 if (!sit_entry_set_slab)
5300 goto destroy_discard_cmd;
5301
5302 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5303 sizeof(struct revoke_entry));
5304 if (!revoke_entry_slab)
5305 goto destroy_sit_entry_set;
5306 return 0;
5307
5308destroy_sit_entry_set:
5309 kmem_cache_destroy(sit_entry_set_slab);
5310destroy_discard_cmd:
5311 kmem_cache_destroy(discard_cmd_slab);
5312destroy_discard_entry:
5313 kmem_cache_destroy(discard_entry_slab);
5314fail:
5315 return -ENOMEM;
5316}
5317
5318void f2fs_destroy_segment_manager_caches(void)
5319{
5320 kmem_cache_destroy(sit_entry_set_slab);
5321 kmem_cache_destroy(discard_cmd_slab);
5322 kmem_cache_destroy(discard_entry_slab);
5323 kmem_cache_destroy(revoke_entry_slab);
5324}