Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * fs/f2fs/segment.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/bio.h>
  14#include <linux/blkdev.h>
 
  15#include <linux/prefetch.h>
  16#include <linux/kthread.h>
  17#include <linux/swap.h>
  18#include <linux/timer.h>
 
 
 
  19
  20#include "f2fs.h"
  21#include "segment.h"
  22#include "node.h"
  23#include "trace.h"
 
  24#include <trace/events/f2fs.h>
  25
  26#define __reverse_ffz(x) __reverse_ffs(~(x))
  27
  28static struct kmem_cache *discard_entry_slab;
 
  29static struct kmem_cache *sit_entry_set_slab;
  30static struct kmem_cache *inmem_entry_slab;
  31
  32static unsigned long __reverse_ulong(unsigned char *str)
  33{
  34	unsigned long tmp = 0;
  35	int shift = 24, idx = 0;
  36
  37#if BITS_PER_LONG == 64
  38	shift = 56;
  39#endif
  40	while (shift >= 0) {
  41		tmp |= (unsigned long)str[idx++] << shift;
  42		shift -= BITS_PER_BYTE;
  43	}
  44	return tmp;
  45}
  46
  47/*
  48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  49 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  50 */
  51static inline unsigned long __reverse_ffs(unsigned long word)
  52{
  53	int num = 0;
  54
  55#if BITS_PER_LONG == 64
  56	if ((word & 0xffffffff00000000UL) == 0)
  57		num += 32;
  58	else
  59		word >>= 32;
  60#endif
  61	if ((word & 0xffff0000) == 0)
  62		num += 16;
  63	else
  64		word >>= 16;
  65
  66	if ((word & 0xff00) == 0)
  67		num += 8;
  68	else
  69		word >>= 8;
  70
  71	if ((word & 0xf0) == 0)
  72		num += 4;
  73	else
  74		word >>= 4;
  75
  76	if ((word & 0xc) == 0)
  77		num += 2;
  78	else
  79		word >>= 2;
  80
  81	if ((word & 0x2) == 0)
  82		num += 1;
  83	return num;
  84}
  85
  86/*
  87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  88 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  89 * @size must be integral times of unsigned long.
  90 * Example:
  91 *                             MSB <--> LSB
  92 *   f2fs_set_bit(0, bitmap) => 1000 0000
  93 *   f2fs_set_bit(7, bitmap) => 0000 0001
  94 */
  95static unsigned long __find_rev_next_bit(const unsigned long *addr,
  96			unsigned long size, unsigned long offset)
  97{
  98	const unsigned long *p = addr + BIT_WORD(offset);
  99	unsigned long result = size;
 100	unsigned long tmp;
 101
 102	if (offset >= size)
 103		return size;
 104
 105	size -= (offset & ~(BITS_PER_LONG - 1));
 106	offset %= BITS_PER_LONG;
 107
 108	while (1) {
 109		if (*p == 0)
 110			goto pass;
 111
 112		tmp = __reverse_ulong((unsigned char *)p);
 113
 114		tmp &= ~0UL >> offset;
 115		if (size < BITS_PER_LONG)
 116			tmp &= (~0UL << (BITS_PER_LONG - size));
 117		if (tmp)
 118			goto found;
 119pass:
 120		if (size <= BITS_PER_LONG)
 121			break;
 122		size -= BITS_PER_LONG;
 123		offset = 0;
 124		p++;
 125	}
 126	return result;
 127found:
 128	return result - size + __reverse_ffs(tmp);
 129}
 130
 131static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 132			unsigned long size, unsigned long offset)
 133{
 134	const unsigned long *p = addr + BIT_WORD(offset);
 135	unsigned long result = size;
 136	unsigned long tmp;
 137
 138	if (offset >= size)
 139		return size;
 140
 141	size -= (offset & ~(BITS_PER_LONG - 1));
 142	offset %= BITS_PER_LONG;
 143
 144	while (1) {
 145		if (*p == ~0UL)
 146			goto pass;
 147
 148		tmp = __reverse_ulong((unsigned char *)p);
 149
 150		if (offset)
 151			tmp |= ~0UL << (BITS_PER_LONG - offset);
 152		if (size < BITS_PER_LONG)
 153			tmp |= ~0UL >> size;
 154		if (tmp != ~0UL)
 155			goto found;
 156pass:
 157		if (size <= BITS_PER_LONG)
 158			break;
 159		size -= BITS_PER_LONG;
 160		offset = 0;
 161		p++;
 162	}
 163	return result;
 164found:
 165	return result - size + __reverse_ffz(tmp);
 166}
 167
 168void register_inmem_page(struct inode *inode, struct page *page)
 169{
 170	struct f2fs_inode_info *fi = F2FS_I(inode);
 171	struct inmem_pages *new;
 172
 173	f2fs_trace_pid(page);
 174
 175	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
 176	SetPagePrivate(page);
 
 
 
 
 177
 178	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
 
 
 179
 180	/* add atomic page indices to the list */
 181	new->page = page;
 182	INIT_LIST_HEAD(&new->list);
 183
 184	/* increase reference count with clean state */
 185	mutex_lock(&fi->inmem_lock);
 186	get_page(page);
 187	list_add_tail(&new->list, &fi->inmem_pages);
 188	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 189	mutex_unlock(&fi->inmem_lock);
 190
 191	trace_f2fs_register_inmem_page(page, INMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 192}
 193
 194static int __revoke_inmem_pages(struct inode *inode,
 195				struct list_head *head, bool drop, bool recover)
 196{
 197	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 198	struct inmem_pages *cur, *tmp;
 199	int err = 0;
 200
 201	list_for_each_entry_safe(cur, tmp, head, list) {
 202		struct page *page = cur->page;
 203
 204		if (drop)
 205			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
 206
 207		lock_page(page);
 208
 209		if (recover) {
 210			struct dnode_of_data dn;
 211			struct node_info ni;
 
 
 
 
 
 
 
 212
 213			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
 
 
 
 
 214
 215			set_new_dnode(&dn, inode, NULL, NULL, 0);
 216			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
 217				err = -EAGAIN;
 218				goto next;
 219			}
 220			get_node_info(sbi, dn.nid, &ni);
 
 
 221			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 222					cur->old_addr, ni.version, true, true);
 223			f2fs_put_dnode(&dn);
 224		}
 225next:
 226		ClearPageUptodate(page);
 227		set_page_private(page, 0);
 228		ClearPageUptodate(page);
 229		f2fs_put_page(page, 1);
 230
 231		list_del(&cur->list);
 232		kmem_cache_free(inmem_entry_slab, cur);
 233		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
 
 
 
 234	}
 235	return err;
 
 
 236}
 237
 238void drop_inmem_pages(struct inode *inode)
 
 239{
 240	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 
 
 
 
 
 
 
 
 
 241
 242	mutex_lock(&fi->inmem_lock);
 243	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 244	mutex_unlock(&fi->inmem_lock);
 245}
 246
 247static int __commit_inmem_pages(struct inode *inode,
 248					struct list_head *revoke_list)
 249{
 250	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 251	struct f2fs_inode_info *fi = F2FS_I(inode);
 252	struct inmem_pages *cur, *tmp;
 253	struct f2fs_io_info fio = {
 254		.sbi = sbi,
 255		.type = DATA,
 256		.rw = WRITE_SYNC | REQ_PRIO,
 257		.encrypted_page = NULL,
 258	};
 259	bool submit_bio = false;
 260	int err = 0;
 261
 262	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
 263		struct page *page = cur->page;
 264
 265		lock_page(page);
 266		if (page->mapping == inode->i_mapping) {
 267			trace_f2fs_commit_inmem_page(page, INMEM);
 268
 269			set_page_dirty(page);
 270			f2fs_wait_on_page_writeback(page, DATA, true);
 271			if (clear_page_dirty_for_io(page))
 272				inode_dec_dirty_pages(inode);
 273
 274			fio.page = page;
 275			err = do_write_data_page(&fio);
 276			if (err) {
 277				unlock_page(page);
 278				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279			}
 280
 281			/* record old blkaddr for revoking */
 282			cur->old_addr = fio.old_blkaddr;
 
 
 
 
 
 
 
 
 283
 284			clear_cold_data(page);
 285			submit_bio = true;
 
 286		}
 287		unlock_page(page);
 288		list_move_tail(&cur->list, revoke_list);
 
 
 289	}
 290
 291	if (submit_bio)
 292		f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
 
 
 
 
 
 293
 294	if (!err)
 295		__revoke_inmem_pages(inode, revoke_list, false, false);
 296
 297	return err;
 298}
 299
 300int commit_inmem_pages(struct inode *inode)
 301{
 302	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 303	struct f2fs_inode_info *fi = F2FS_I(inode);
 304	struct list_head revoke_list;
 305	int err;
 306
 307	INIT_LIST_HEAD(&revoke_list);
 308	f2fs_balance_fs(sbi, true);
 309	f2fs_lock_op(sbi);
 310
 311	mutex_lock(&fi->inmem_lock);
 312	err = __commit_inmem_pages(inode, &revoke_list);
 313	if (err) {
 314		int ret;
 315		/*
 316		 * try to revoke all committed pages, but still we could fail
 317		 * due to no memory or other reason, if that happened, EAGAIN
 318		 * will be returned, which means in such case, transaction is
 319		 * already not integrity, caller should use journal to do the
 320		 * recovery or rewrite & commit last transaction. For other
 321		 * error number, revoking was done by filesystem itself.
 322		 */
 323		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
 324		if (ret)
 325			err = ret;
 326
 327		/* drop all uncommitted pages */
 328		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
 329	}
 330	mutex_unlock(&fi->inmem_lock);
 331
 332	f2fs_unlock_op(sbi);
 
 
 333	return err;
 334}
 335
 336/*
 337 * This function balances dirty node and dentry pages.
 338 * In addition, it controls garbage collection.
 339 */
 340void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 341{
 342	if (!need)
 
 
 
 
 
 
 
 
 
 343		return;
 
 344	/*
 345	 * We should do GC or end up with checkpoint, if there are so many dirty
 346	 * dir/node pages without enough free segments.
 347	 */
 348	if (has_not_enough_free_secs(sbi, 0)) {
 349		mutex_lock(&sbi->gc_mutex);
 350		f2fs_gc(sbi, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 351	}
 352}
 353
 354void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355{
 
 
 
 356	/* try to shrink extent cache when there is no enough memory */
 357	if (!available_free_memory(sbi, EXTENT_CACHE))
 358		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
 
 
 
 
 
 
 359
 360	/* check the # of cached NAT entries */
 361	if (!available_free_memory(sbi, NAT_ENTRIES))
 362		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 
 
 
 
 
 363
 364	if (!available_free_memory(sbi, FREE_NIDS))
 365		try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
 
 
 
 
 
 
 
 
 
 
 366
 367	/* checkpoint is the only way to shrink partial cached entries */
 368	if (!available_free_memory(sbi, NAT_ENTRIES) ||
 369			!available_free_memory(sbi, INO_ENTRIES) ||
 370			excess_prefree_segs(sbi) ||
 371			excess_dirty_nats(sbi) ||
 372			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
 373		if (test_opt(sbi, DATA_FLUSH)) {
 374			struct blk_plug plug;
 375
 376			blk_start_plug(&plug);
 377			sync_dirty_inodes(sbi, FILE_INODE);
 378			blk_finish_plug(&plug);
 379		}
 380		f2fs_sync_fs(sbi->sb, true);
 381		stat_inc_bg_cp_count(sbi->stat_info);
 
 
 
 
 
 382	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383}
 384
 385static int issue_flush_thread(void *data)
 386{
 387	struct f2fs_sb_info *sbi = data;
 388	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 389	wait_queue_head_t *q = &fcc->flush_wait_queue;
 390repeat:
 391	if (kthread_should_stop())
 392		return 0;
 393
 394	if (!llist_empty(&fcc->issue_list)) {
 395		struct bio *bio;
 396		struct flush_cmd *cmd, *next;
 397		int ret;
 398
 399		bio = f2fs_bio_alloc(0);
 400
 401		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 402		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 403
 404		bio->bi_bdev = sbi->sb->s_bdev;
 405		ret = submit_bio_wait(WRITE_FLUSH, bio);
 
 
 406
 407		llist_for_each_entry_safe(cmd, next,
 408					  fcc->dispatch_list, llnode) {
 409			cmd->ret = ret;
 410			complete(&cmd->wait);
 411		}
 412		bio_put(bio);
 413		fcc->dispatch_list = NULL;
 414	}
 415
 416	wait_event_interruptible(*q,
 417		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 418	goto repeat;
 419}
 420
 421int f2fs_issue_flush(struct f2fs_sb_info *sbi)
 422{
 423	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 424	struct flush_cmd cmd;
 425
 426	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
 427					test_opt(sbi, FLUSH_MERGE));
 428
 429	if (test_opt(sbi, NOBARRIER))
 430		return 0;
 431
 432	if (!test_opt(sbi, FLUSH_MERGE)) {
 433		struct bio *bio = f2fs_bio_alloc(0);
 434		int ret;
 
 
 
 
 
 
 
 
 
 435
 436		bio->bi_bdev = sbi->sb->s_bdev;
 437		ret = submit_bio_wait(WRITE_FLUSH, bio);
 438		bio_put(bio);
 439		return ret;
 440	}
 441
 
 442	init_completion(&cmd.wait);
 443
 444	llist_add(&cmd.llnode, &fcc->issue_list);
 445
 446	if (!fcc->dispatch_list)
 
 
 
 
 
 
 
 447		wake_up(&fcc->flush_wait_queue);
 448
 449	wait_for_completion(&cmd.wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 450
 451	return cmd.ret;
 452}
 453
 454int create_flush_cmd_control(struct f2fs_sb_info *sbi)
 455{
 456	dev_t dev = sbi->sb->s_bdev->bd_dev;
 457	struct flush_cmd_control *fcc;
 458	int err = 0;
 459
 460	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
 
 
 
 
 
 
 
 461	if (!fcc)
 462		return -ENOMEM;
 
 
 463	init_waitqueue_head(&fcc->flush_wait_queue);
 464	init_llist_head(&fcc->issue_list);
 465	SM_I(sbi)->cmd_control_info = fcc;
 
 
 
 
 466	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 467				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 468	if (IS_ERR(fcc->f2fs_issue_flush)) {
 469		err = PTR_ERR(fcc->f2fs_issue_flush);
 470		kfree(fcc);
 471		SM_I(sbi)->cmd_control_info = NULL;
 472		return err;
 473	}
 474
 475	return err;
 476}
 477
 478void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
 479{
 480	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
 
 
 
 481
 482	if (fcc && fcc->f2fs_issue_flush)
 483		kthread_stop(fcc->f2fs_issue_flush);
 484	kfree(fcc);
 485	SM_I(sbi)->cmd_control_info = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486}
 487
 488static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 489		enum dirty_type dirty_type)
 490{
 491	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 492
 493	/* need not be added */
 494	if (IS_CURSEG(sbi, segno))
 495		return;
 496
 497	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 498		dirty_i->nr_dirty[dirty_type]++;
 499
 500	if (dirty_type == DIRTY) {
 501		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 502		enum dirty_type t = sentry->type;
 503
 504		if (unlikely(t >= DIRTY)) {
 505			f2fs_bug_on(sbi, 1);
 506			return;
 507		}
 508		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 509			dirty_i->nr_dirty[t]++;
 
 
 
 
 
 
 
 
 
 
 
 
 510	}
 511}
 512
 513static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 514		enum dirty_type dirty_type)
 515{
 516	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 
 517
 518	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 519		dirty_i->nr_dirty[dirty_type]--;
 520
 521	if (dirty_type == DIRTY) {
 522		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 523		enum dirty_type t = sentry->type;
 524
 525		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 526			dirty_i->nr_dirty[t]--;
 527
 528		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
 529			clear_bit(GET_SECNO(sbi, segno),
 
 530						dirty_i->victim_secmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531	}
 532}
 533
 534/*
 535 * Should not occur error such as -ENOMEM.
 536 * Adding dirty entry into seglist is not critical operation.
 537 * If a given segment is one of current working segments, it won't be added.
 538 */
 539static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 540{
 541	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 542	unsigned short valid_blocks;
 
 543
 544	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 545		return;
 546
 
 547	mutex_lock(&dirty_i->seglist_lock);
 548
 549	valid_blocks = get_valid_blocks(sbi, segno, 0);
 
 550
 551	if (valid_blocks == 0) {
 
 552		__locate_dirty_segment(sbi, segno, PRE);
 553		__remove_dirty_segment(sbi, segno, DIRTY);
 554	} else if (valid_blocks < sbi->blocks_per_seg) {
 555		__locate_dirty_segment(sbi, segno, DIRTY);
 556	} else {
 557		/* Recovery routine with SSR needs this */
 558		__remove_dirty_segment(sbi, segno, DIRTY);
 559	}
 560
 561	mutex_unlock(&dirty_i->seglist_lock);
 562}
 563
 564static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
 565				block_t blkstart, block_t blklen)
 566{
 567	sector_t start = SECTOR_FROM_BLOCK(blkstart);
 568	sector_t len = SECTOR_FROM_BLOCK(blklen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569	struct seg_entry *se;
 570	unsigned int offset;
 571	block_t i;
 572
 573	for (i = blkstart; i < blkstart + blklen; i++) {
 574		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
 575		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
 
 
 
 
 
 
 
 
 576
 577		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 578			sbi->discard_blks--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579	}
 580	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
 581	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
 582}
 583
 584bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
 
 
 585{
 586	int err = -EOPNOTSUPP;
 
 
 587
 588	if (test_opt(sbi, DISCARD)) {
 589		struct seg_entry *se = get_seg_entry(sbi,
 590				GET_SEGNO(sbi, blkaddr));
 591		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 592
 593		if (f2fs_test_bit(offset, se->discard_map))
 594			return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 595
 596		err = f2fs_issue_discard(sbi, blkaddr, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597	}
 
 598
 599	if (err) {
 600		update_meta_page(sbi, NULL, blkaddr);
 601		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602	}
 603	return false;
 
 604}
 605
 606static void __add_discard_entry(struct f2fs_sb_info *sbi,
 607		struct cp_control *cpc, struct seg_entry *se,
 608		unsigned int start, unsigned int end)
 609{
 610	struct list_head *head = &SM_I(sbi)->discard_list;
 611	struct discard_entry *new, *last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612
 613	if (!list_empty(head)) {
 614		last = list_last_entry(head, struct discard_entry, list);
 615		if (START_BLOCK(sbi, cpc->trim_start) + start ==
 616						last->blkaddr + last->len) {
 617			last->len += end - start;
 618			goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619		}
 
 
 
 
 
 
 
 
 
 
 
 
 620	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621
 622	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
 623	INIT_LIST_HEAD(&new->list);
 624	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
 625	new->len = end - start;
 626	list_add_tail(&new->list, head);
 627done:
 628	SM_I(sbi)->nr_discards += end - start;
 
 
 
 
 
 
 629}
 630
 631static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632{
 633	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
 634	int max_blocks = sbi->blocks_per_seg;
 635	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
 636	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
 637	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
 638	unsigned long *discard_map = (unsigned long *)se->discard_map;
 639	unsigned long *dmap = SIT_I(sbi)->tmp_map;
 640	unsigned int start = 0, end = -1;
 641	bool force = (cpc->reason == CP_DISCARD);
 
 
 642	int i;
 643
 644	if (se->valid_blocks == max_blocks)
 645		return;
 
 646
 647	if (!force) {
 648		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
 649		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
 650			return;
 
 651	}
 652
 653	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
 654	for (i = 0; i < entries; i++)
 655		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
 656				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
 657
 658	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
 
 659		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
 660		if (start >= max_blocks)
 661			break;
 662
 663		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
 664		__add_discard_entry(sbi, cpc, se, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665	}
 
 
 
 
 
 
 
 666}
 667
 668void release_discard_addrs(struct f2fs_sb_info *sbi)
 669{
 670	struct list_head *head = &(SM_I(sbi)->discard_list);
 671	struct discard_entry *entry, *this;
 672
 673	/* drop caches */
 674	list_for_each_entry_safe(entry, this, head, list) {
 675		list_del(&entry->list);
 676		kmem_cache_free(discard_entry_slab, entry);
 677	}
 678}
 679
 680/*
 681 * Should call clear_prefree_segments after checkpoint is done.
 682 */
 683static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
 684{
 685	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 686	unsigned int segno;
 687
 688	mutex_lock(&dirty_i->seglist_lock);
 689	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
 690		__set_test_and_free(sbi, segno);
 691	mutex_unlock(&dirty_i->seglist_lock);
 692}
 693
 694void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
 
 695{
 696	struct list_head *head = &(SM_I(sbi)->discard_list);
 
 697	struct discard_entry *entry, *this;
 698	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 699	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
 700	unsigned int start = 0, end = -1;
 
 
 
 
 
 
 
 701
 702	mutex_lock(&dirty_i->seglist_lock);
 703
 704	while (1) {
 705		int i;
 
 
 
 706		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
 707		if (start >= MAIN_SEGS(sbi))
 708			break;
 709		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
 710								start + 1);
 711
 712		for (i = start; i < end; i++)
 713			clear_bit(i, prefree_map);
 
 
 714
 715		dirty_i->nr_dirty[PRE] -= end - start;
 
 
 
 716
 717		if (!test_opt(sbi, DISCARD))
 718			continue;
 719
 720		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
 
 
 
 
 
 721				(end - start) << sbi->log_blocks_per_seg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 722	}
 723	mutex_unlock(&dirty_i->seglist_lock);
 724
 
 
 
 725	/* send small discards */
 726	list_for_each_entry_safe(entry, this, head, list) {
 727		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
 728			goto skip;
 729		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
 730		cpc->trimmed += entry->len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731skip:
 732		list_del(&entry->list);
 733		SM_I(sbi)->nr_discards -= entry->len;
 734		kmem_cache_free(discard_entry_slab, entry);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 736}
 737
 738static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
 739{
 740	struct sit_info *sit_i = SIT_I(sbi);
 741
 742	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
 743		sit_i->dirty_sentries++;
 744		return false;
 745	}
 746
 747	return true;
 748}
 749
 750static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
 751					unsigned int segno, int modified)
 752{
 753	struct seg_entry *se = get_seg_entry(sbi, segno);
 
 754	se->type = type;
 755	if (modified)
 756		__mark_sit_entry_dirty(sbi, segno);
 757}
 758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
 760{
 761	struct seg_entry *se;
 762	unsigned int segno, offset;
 763	long int new_vblocks;
 
 
 
 
 764
 765	segno = GET_SEGNO(sbi, blkaddr);
 766
 767	se = get_seg_entry(sbi, segno);
 768	new_vblocks = se->valid_blocks + del;
 769	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 770
 771	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
 772				(new_vblocks > sbi->blocks_per_seg)));
 773
 774	se->valid_blocks = new_vblocks;
 775	se->mtime = get_mtime(sbi);
 776	SIT_I(sbi)->max_mtime = se->mtime;
 777
 778	/* Update valid block bitmap */
 779	if (del > 0) {
 780		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
 
 
 
 
 
 
 781			f2fs_bug_on(sbi, 1);
 782		if (!f2fs_test_and_set_bit(offset, se->discard_map))
 
 
 
 
 
 
 
 
 
 
 
 783			sbi->discard_blks--;
 
 
 
 
 
 
 
 
 
 784	} else {
 785		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
 
 
 
 
 
 
 
 
 
 
 
 
 786			f2fs_bug_on(sbi, 1);
 787		if (f2fs_test_and_clear_bit(offset, se->discard_map))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788			sbi->discard_blks++;
 789	}
 790	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
 791		se->ckpt_valid_blocks += del;
 792
 793	__mark_sit_entry_dirty(sbi, segno);
 794
 795	/* update total number of valid blocks to be written in ckpt area */
 796	SIT_I(sbi)->written_valid_blocks += del;
 797
 798	if (sbi->segs_per_sec > 1)
 799		get_sec_entry(sbi, segno)->valid_blocks += del;
 800}
 801
 802void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
 803{
 804	update_sit_entry(sbi, new, 1);
 805	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
 806		update_sit_entry(sbi, old, -1);
 807
 808	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
 809	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
 810}
 811
 812void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 813{
 814	unsigned int segno = GET_SEGNO(sbi, addr);
 815	struct sit_info *sit_i = SIT_I(sbi);
 816
 817	f2fs_bug_on(sbi, addr == NULL_ADDR);
 818	if (addr == NEW_ADDR)
 819		return;
 820
 
 
 
 821	/* add it into sit main buffer */
 822	mutex_lock(&sit_i->sentry_lock);
 823
 
 824	update_sit_entry(sbi, addr, -1);
 825
 826	/* add it into dirty seglist */
 827	locate_dirty_segment(sbi, segno);
 828
 829	mutex_unlock(&sit_i->sentry_lock);
 830}
 831
 832bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
 833{
 834	struct sit_info *sit_i = SIT_I(sbi);
 835	unsigned int segno, offset;
 836	struct seg_entry *se;
 837	bool is_cp = false;
 838
 839	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
 840		return true;
 841
 842	mutex_lock(&sit_i->sentry_lock);
 843
 844	segno = GET_SEGNO(sbi, blkaddr);
 845	se = get_seg_entry(sbi, segno);
 846	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
 847
 848	if (f2fs_test_bit(offset, se->ckpt_valid_map))
 849		is_cp = true;
 850
 851	mutex_unlock(&sit_i->sentry_lock);
 852
 853	return is_cp;
 854}
 855
 856/*
 857 * This function should be resided under the curseg_mutex lock
 858 */
 859static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
 860					struct f2fs_summary *sum)
 861{
 862	struct curseg_info *curseg = CURSEG_I(sbi, type);
 863	void *addr = curseg->sum_blk;
 
 864	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
 865	memcpy(addr, sum, sizeof(struct f2fs_summary));
 866}
 867
 868/*
 869 * Calculate the number of current summary pages for writing
 870 */
 871int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
 872{
 873	int valid_sum_count = 0;
 874	int i, sum_in_page;
 875
 876	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
 877		if (sbi->ckpt->alloc_type[i] == SSR)
 878			valid_sum_count += sbi->blocks_per_seg;
 879		else {
 880			if (for_ra)
 881				valid_sum_count += le16_to_cpu(
 882					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
 883			else
 884				valid_sum_count += curseg_blkoff(sbi, i);
 885		}
 886	}
 887
 888	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
 889			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
 890	if (valid_sum_count <= sum_in_page)
 891		return 1;
 892	else if ((valid_sum_count - sum_in_page) <=
 893		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
 894		return 2;
 895	return 3;
 896}
 897
 898/*
 899 * Caller should put this summary page
 900 */
 901struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
 902{
 903	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
 
 
 904}
 905
 906void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
 
 907{
 908	struct page *page = grab_meta_page(sbi, blk_addr);
 909	void *dst = page_address(page);
 910
 911	if (src)
 912		memcpy(dst, src, PAGE_SIZE);
 913	else
 914		memset(dst, 0, PAGE_SIZE);
 915	set_page_dirty(page);
 916	f2fs_put_page(page, 1);
 917}
 918
 919static void write_sum_page(struct f2fs_sb_info *sbi,
 920			struct f2fs_summary_block *sum_blk, block_t blk_addr)
 921{
 922	update_meta_page(sbi, (void *)sum_blk, blk_addr);
 923}
 924
 925static void write_current_sum_page(struct f2fs_sb_info *sbi,
 926						int type, block_t blk_addr)
 927{
 928	struct curseg_info *curseg = CURSEG_I(sbi, type);
 929	struct page *page = grab_meta_page(sbi, blk_addr);
 930	struct f2fs_summary_block *src = curseg->sum_blk;
 931	struct f2fs_summary_block *dst;
 932
 933	dst = (struct f2fs_summary_block *)page_address(page);
 
 934
 935	mutex_lock(&curseg->curseg_mutex);
 936
 937	down_read(&curseg->journal_rwsem);
 938	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
 939	up_read(&curseg->journal_rwsem);
 940
 941	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
 942	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
 943
 944	mutex_unlock(&curseg->curseg_mutex);
 945
 946	set_page_dirty(page);
 947	f2fs_put_page(page, 1);
 948}
 949
 950static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
 
 951{
 952	struct curseg_info *curseg = CURSEG_I(sbi, type);
 953	unsigned int segno = curseg->segno + 1;
 954	struct free_segmap_info *free_i = FREE_I(sbi);
 955
 956	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
 957		return !test_bit(segno, free_i->free_segmap);
 958	return 0;
 959}
 960
 961/*
 962 * Find a new segment from the free segments bitmap to right order
 963 * This function should be returned with success, otherwise BUG
 964 */
 965static void get_new_segment(struct f2fs_sb_info *sbi,
 966			unsigned int *newseg, bool new_sec, int dir)
 967{
 968	struct free_segmap_info *free_i = FREE_I(sbi);
 969	unsigned int segno, secno, zoneno;
 970	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
 971	unsigned int hint = *newseg / sbi->segs_per_sec;
 972	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
 973	unsigned int left_start = hint;
 974	bool init = true;
 975	int go_left = 0;
 976	int i;
 977
 978	spin_lock(&free_i->segmap_lock);
 979
 980	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
 981		segno = find_next_zero_bit(free_i->free_segmap,
 982				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
 983		if (segno < (hint + 1) * sbi->segs_per_sec)
 984			goto got_it;
 985	}
 986find_other_zone:
 987	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
 988	if (secno >= MAIN_SECS(sbi)) {
 989		if (dir == ALLOC_RIGHT) {
 990			secno = find_next_zero_bit(free_i->free_secmap,
 991							MAIN_SECS(sbi), 0);
 992			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
 993		} else {
 994			go_left = 1;
 995			left_start = hint - 1;
 996		}
 997	}
 998	if (go_left == 0)
 999		goto skip_left;
1000
1001	while (test_bit(left_start, free_i->free_secmap)) {
1002		if (left_start > 0) {
1003			left_start--;
1004			continue;
1005		}
1006		left_start = find_next_zero_bit(free_i->free_secmap,
1007							MAIN_SECS(sbi), 0);
1008		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1009		break;
1010	}
1011	secno = left_start;
1012skip_left:
1013	hint = secno;
1014	segno = secno * sbi->segs_per_sec;
1015	zoneno = secno / sbi->secs_per_zone;
1016
1017	/* give up on finding another zone */
1018	if (!init)
1019		goto got_it;
1020	if (sbi->secs_per_zone == 1)
1021		goto got_it;
1022	if (zoneno == old_zoneno)
1023		goto got_it;
1024	if (dir == ALLOC_LEFT) {
1025		if (!go_left && zoneno + 1 >= total_zones)
1026			goto got_it;
1027		if (go_left && zoneno == 0)
1028			goto got_it;
1029	}
1030	for (i = 0; i < NR_CURSEG_TYPE; i++)
1031		if (CURSEG_I(sbi, i)->zone == zoneno)
1032			break;
1033
1034	if (i < NR_CURSEG_TYPE) {
1035		/* zone is in user, try another */
1036		if (go_left)
1037			hint = zoneno * sbi->secs_per_zone - 1;
1038		else if (zoneno + 1 >= total_zones)
1039			hint = 0;
1040		else
1041			hint = (zoneno + 1) * sbi->secs_per_zone;
1042		init = false;
1043		goto find_other_zone;
1044	}
1045got_it:
1046	/* set it as dirty segment in free segmap */
1047	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1048	__set_inuse(sbi, segno);
1049	*newseg = segno;
1050	spin_unlock(&free_i->segmap_lock);
1051}
1052
1053static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1054{
1055	struct curseg_info *curseg = CURSEG_I(sbi, type);
1056	struct summary_footer *sum_footer;
 
1057
 
1058	curseg->segno = curseg->next_segno;
1059	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1060	curseg->next_blkoff = 0;
1061	curseg->next_segno = NULL_SEGNO;
1062
1063	sum_footer = &(curseg->sum_blk->footer);
1064	memset(sum_footer, 0, sizeof(struct summary_footer));
1065	if (IS_DATASEG(type))
 
 
 
1066		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1067	if (IS_NODESEG(type))
1068		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1069	__set_sit_entry_type(sbi, type, curseg->segno, modified);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070}
1071
1072/*
1073 * Allocate a current working segment.
1074 * This function always allocates a free segment in LFS manner.
1075 */
1076static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1077{
1078	struct curseg_info *curseg = CURSEG_I(sbi, type);
 
1079	unsigned int segno = curseg->segno;
1080	int dir = ALLOC_LEFT;
1081
1082	write_sum_page(sbi, curseg->sum_blk,
 
1083				GET_SUM_BLOCK(sbi, segno));
1084	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1085		dir = ALLOC_RIGHT;
1086
1087	if (test_opt(sbi, NOHEAP))
1088		dir = ALLOC_RIGHT;
1089
 
1090	get_new_segment(sbi, &segno, new_sec, dir);
1091	curseg->next_segno = segno;
1092	reset_curseg(sbi, type, 1);
1093	curseg->alloc_type = LFS;
 
 
 
1094}
1095
1096static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1097			struct curseg_info *seg, block_t start)
1098{
1099	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1100	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1101	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1102	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1103	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1104	int i, pos;
1105
1106	for (i = 0; i < entries; i++)
1107		target_map[i] = ckpt_map[i] | cur_map[i];
1108
1109	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1110
1111	seg->next_blkoff = pos;
1112}
1113
1114/*
1115 * If a segment is written by LFS manner, next block offset is just obtained
1116 * by increasing the current block offset. However, if a segment is written by
1117 * SSR manner, next block offset obtained by calling __next_free_blkoff
1118 */
1119static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1120				struct curseg_info *seg)
1121{
1122	if (seg->alloc_type == SSR)
1123		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1124	else
 
 
1125		seg->next_blkoff++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126}
1127
1128/*
1129 * This function always allocates a used segment(from dirty seglist) by SSR
1130 * manner, so it should recover the existing segment information of valid blocks
1131 */
1132static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1133{
1134	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1135	struct curseg_info *curseg = CURSEG_I(sbi, type);
1136	unsigned int new_segno = curseg->next_segno;
1137	struct f2fs_summary_block *sum_node;
1138	struct page *sum_page;
1139
1140	write_sum_page(sbi, curseg->sum_blk,
1141				GET_SUM_BLOCK(sbi, curseg->segno));
1142	__set_test_and_inuse(sbi, new_segno);
1143
1144	mutex_lock(&dirty_i->seglist_lock);
1145	__remove_dirty_segment(sbi, new_segno, PRE);
1146	__remove_dirty_segment(sbi, new_segno, DIRTY);
1147	mutex_unlock(&dirty_i->seglist_lock);
1148
1149	reset_curseg(sbi, type, 1);
1150	curseg->alloc_type = SSR;
1151	__next_free_blkoff(sbi, curseg, 0);
1152
1153	if (reuse) {
1154		sum_page = get_sum_page(sbi, new_segno);
1155		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1156		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1157		f2fs_put_page(sum_page, 1);
1158	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1159}
1160
1161static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162{
1163	struct curseg_info *curseg = CURSEG_I(sbi, type);
1164	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1165
1166	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1167		return v_ops->get_victim(sbi,
1168				&(curseg)->next_segno, BG_GC, type, SSR);
1169
1170	/* For data segments, let's do SSR more intensively */
1171	for (; type >= CURSEG_HOT_DATA; type--)
1172		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1173						BG_GC, type, SSR))
1174			return 1;
 
 
1175	return 0;
1176}
1177
1178/*
1179 * flush out current segment and replace it with new segment
1180 * This function should be returned with success, otherwise BUG
1181 */
1182static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1183						int type, bool force)
1184{
1185	struct curseg_info *curseg = CURSEG_I(sbi, type);
1186
1187	if (force)
1188		new_curseg(sbi, type, true);
1189	else if (type == CURSEG_WARM_NODE)
1190		new_curseg(sbi, type, false);
1191	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1192		new_curseg(sbi, type, false);
1193	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1194		change_curseg(sbi, type, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	else
1196		new_curseg(sbi, type, false);
1197
1198	stat_inc_seg_type(sbi, curseg);
 
 
 
 
 
 
 
 
 
 
 
1199}
1200
1201static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
 
1202{
1203	struct curseg_info *curseg = CURSEG_I(sbi, type);
1204	unsigned int old_segno;
1205
 
 
 
 
 
 
 
 
 
 
1206	old_segno = curseg->segno;
1207	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
 
1208	locate_dirty_segment(sbi, old_segno);
1209}
1210
1211void allocate_new_segments(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1212{
1213	int i;
1214
 
 
1215	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1216		__allocate_new_segments(sbi, i);
 
 
1217}
1218
1219static const struct segment_allocation default_salloc_ops = {
1220	.allocate_segment = allocate_segment_by_default,
1221};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222
1223int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1224{
1225	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1226	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1227	unsigned int start_segno, end_segno;
 
1228	struct cp_control cpc;
 
 
1229	int err = 0;
 
1230
1231	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1232		return -EINVAL;
1233
1234	cpc.trimmed = 0;
1235	if (end <= MAIN_BLKADDR(sbi))
1236		goto out;
1237
 
 
 
 
 
1238	/* start/end segment number in main_area */
1239	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1240	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1241						GET_SEGNO(sbi, end);
 
 
 
 
 
1242	cpc.reason = CP_DISCARD;
1243	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
 
 
1244
1245	/* do checkpoint to issue discard commands safely */
1246	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1247		cpc.trim_start = start_segno;
1248
1249		if (sbi->discard_blks == 0)
1250			break;
1251		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1252			cpc.trim_end = end_segno;
1253		else
1254			cpc.trim_end = min_t(unsigned int,
1255				rounddown(start_segno +
1256				BATCHED_TRIM_SEGMENTS(sbi),
1257				sbi->segs_per_sec) - 1, end_segno);
1258
1259		mutex_lock(&sbi->gc_mutex);
1260		err = write_checkpoint(sbi, &cpc);
1261		mutex_unlock(&sbi->gc_mutex);
1262	}
 
 
 
 
 
 
 
 
 
 
1263out:
1264	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
 
1265	return err;
1266}
1267
1268static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
 
1269{
1270	struct curseg_info *curseg = CURSEG_I(sbi, type);
1271	if (curseg->next_blkoff < sbi->blocks_per_seg)
1272		return true;
1273	return false;
 
 
 
 
 
 
 
 
 
 
1274}
1275
1276static int __get_segment_type_2(struct page *page, enum page_type p_type)
1277{
1278	if (p_type == DATA)
1279		return CURSEG_HOT_DATA;
1280	else
1281		return CURSEG_HOT_NODE;
1282}
1283
1284static int __get_segment_type_4(struct page *page, enum page_type p_type)
1285{
1286	if (p_type == DATA) {
1287		struct inode *inode = page->mapping->host;
1288
1289		if (S_ISDIR(inode->i_mode))
1290			return CURSEG_HOT_DATA;
1291		else
1292			return CURSEG_COLD_DATA;
1293	} else {
1294		if (IS_DNODE(page) && is_cold_node(page))
1295			return CURSEG_WARM_NODE;
1296		else
1297			return CURSEG_COLD_NODE;
1298	}
1299}
1300
1301static int __get_segment_type_6(struct page *page, enum page_type p_type)
1302{
1303	if (p_type == DATA) {
1304		struct inode *inode = page->mapping->host;
1305
1306		if (S_ISDIR(inode->i_mode))
 
 
 
1307			return CURSEG_HOT_DATA;
1308		else if (is_cold_data(page) || file_is_cold(inode))
1309			return CURSEG_COLD_DATA;
1310		else
1311			return CURSEG_WARM_DATA;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	} else {
1313		if (IS_DNODE(page))
1314			return is_cold_node(page) ? CURSEG_WARM_NODE :
1315						CURSEG_HOT_NODE;
1316		else
1317			return CURSEG_COLD_NODE;
1318	}
1319}
1320
1321static int __get_segment_type(struct page *page, enum page_type p_type)
1322{
1323	switch (F2FS_P_SB(page)->active_logs) {
 
 
1324	case 2:
1325		return __get_segment_type_2(page, p_type);
 
1326	case 4:
1327		return __get_segment_type_4(page, p_type);
 
 
 
 
 
 
1328	}
1329	/* NR_CURSEG_TYPE(6) logs by default */
1330	f2fs_bug_on(F2FS_P_SB(page),
1331		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1332	return __get_segment_type_6(page, p_type);
 
 
 
 
1333}
1334
1335void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1336		block_t old_blkaddr, block_t *new_blkaddr,
1337		struct f2fs_summary *sum, int type)
 
1338{
1339	struct sit_info *sit_i = SIT_I(sbi);
1340	struct curseg_info *curseg;
1341	bool direct_io = (type == CURSEG_DIRECT_IO);
 
 
1342
1343	type = direct_io ? CURSEG_WARM_DATA : type;
1344
1345	curseg = CURSEG_I(sbi, type);
1346
1347	mutex_lock(&curseg->curseg_mutex);
1348	mutex_lock(&sit_i->sentry_lock);
1349
1350	/* direct_io'ed data is aligned to the segment for better performance */
1351	if (direct_io && curseg->next_blkoff &&
1352				!has_not_enough_free_secs(sbi, 0))
1353		__allocate_new_segments(sbi, type);
1354
 
 
 
 
 
 
1355	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1356
 
 
 
 
1357	/*
1358	 * __add_sum_entry should be resided under the curseg_mutex
1359	 * because, this function updates a summary entry in the
1360	 * current summary block.
1361	 */
1362	__add_sum_entry(sbi, type, sum);
1363
1364	__refresh_next_blkoff(sbi, curseg);
1365
1366	stat_inc_block_count(sbi, curseg);
1367
1368	if (!__has_curseg_space(sbi, type))
1369		sit_i->s_ops->allocate_segment(sbi, type, false);
 
 
 
 
 
 
1370	/*
1371	 * SIT information should be updated before segment allocation,
1372	 * since SSR needs latest valid block information.
1373	 */
1374	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
 
 
1375
1376	mutex_unlock(&sit_i->sentry_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378	if (page && IS_NODESEG(type))
 
 
 
 
 
1379		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1380
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381	mutex_unlock(&curseg->curseg_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1382}
1383
1384static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1385{
1386	int type = __get_segment_type(fio->page, fio->type);
 
1387
1388	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1389					&fio->new_blkaddr, sum, type);
 
 
 
 
 
 
 
 
1390
1391	/* writeout dirty page into bdev */
1392	f2fs_submit_page_mbio(fio);
 
 
 
 
 
 
 
 
 
1393}
1394
1395void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
 
1396{
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
1399		.type = META,
1400		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
 
 
1401		.old_blkaddr = page->index,
1402		.new_blkaddr = page->index,
1403		.page = page,
1404		.encrypted_page = NULL,
 
1405	};
1406
1407	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1408		fio.rw &= ~REQ_META;
1409
1410	set_page_writeback(page);
1411	f2fs_submit_page_mbio(&fio);
 
 
 
 
1412}
1413
1414void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1415{
1416	struct f2fs_summary sum;
1417
1418	set_summary(&sum, nid, 0, 0);
1419	do_write_page(&sum, fio);
 
 
1420}
1421
1422void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
 
1423{
1424	struct f2fs_sb_info *sbi = fio->sbi;
1425	struct f2fs_summary sum;
1426	struct node_info ni;
1427
1428	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1429	get_node_info(sbi, dn->nid, &ni);
1430	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
 
1431	do_write_page(&sum, fio);
1432	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
 
 
1433}
1434
1435void rewrite_data_page(struct f2fs_io_info *fio)
1436{
 
 
 
 
1437	fio->new_blkaddr = fio->old_blkaddr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1438	stat_inc_inplace_blocks(fio->sbi);
1439	f2fs_submit_page_mbio(fio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1440}
1441
1442void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
 
 
 
 
 
 
 
 
 
 
 
 
1443				block_t old_blkaddr, block_t new_blkaddr,
1444				bool recover_curseg, bool recover_newaddr)
 
1445{
1446	struct sit_info *sit_i = SIT_I(sbi);
1447	struct curseg_info *curseg;
1448	unsigned int segno, old_cursegno;
1449	struct seg_entry *se;
1450	int type;
1451	unsigned short old_blkoff;
 
1452
1453	segno = GET_SEGNO(sbi, new_blkaddr);
1454	se = get_seg_entry(sbi, segno);
1455	type = se->type;
1456
 
 
1457	if (!recover_curseg) {
1458		/* for recovery flow */
1459		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1460			if (old_blkaddr == NULL_ADDR)
1461				type = CURSEG_COLD_DATA;
1462			else
1463				type = CURSEG_WARM_DATA;
1464		}
1465	} else {
1466		if (!IS_CURSEG(sbi, segno))
 
 
 
 
1467			type = CURSEG_WARM_DATA;
 
1468	}
1469
 
1470	curseg = CURSEG_I(sbi, type);
1471
1472	mutex_lock(&curseg->curseg_mutex);
1473	mutex_lock(&sit_i->sentry_lock);
1474
1475	old_cursegno = curseg->segno;
1476	old_blkoff = curseg->next_blkoff;
 
1477
1478	/* change the current segment */
1479	if (segno != curseg->segno) {
1480		curseg->next_segno = segno;
1481		change_curseg(sbi, type, true);
1482	}
1483
1484	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1485	__add_sum_entry(sbi, type, sum);
1486
1487	if (!recover_curseg || recover_newaddr)
 
 
1488		update_sit_entry(sbi, new_blkaddr, 1);
1489	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
 
 
 
 
 
 
1490		update_sit_entry(sbi, old_blkaddr, -1);
 
1491
1492	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1493	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1494
1495	locate_dirty_segment(sbi, old_cursegno);
1496
1497	if (recover_curseg) {
1498		if (old_cursegno != curseg->segno) {
1499			curseg->next_segno = old_cursegno;
1500			change_curseg(sbi, type, true);
1501		}
1502		curseg->next_blkoff = old_blkoff;
 
1503	}
1504
1505	mutex_unlock(&sit_i->sentry_lock);
1506	mutex_unlock(&curseg->curseg_mutex);
 
1507}
1508
1509void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1510				block_t old_addr, block_t new_addr,
1511				unsigned char version, bool recover_curseg,
1512				bool recover_newaddr)
1513{
1514	struct f2fs_summary sum;
1515
1516	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1517
1518	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1519					recover_curseg, recover_newaddr);
1520
1521	f2fs_update_data_blkaddr(dn, new_addr);
1522}
1523
1524void f2fs_wait_on_page_writeback(struct page *page,
1525				enum page_type type, bool ordered)
1526{
1527	if (PageWriteback(page)) {
1528		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1529
1530		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1531		if (ordered)
 
 
 
1532			wait_on_page_writeback(page);
1533		else
 
1534			wait_for_stable_page(page);
 
1535	}
1536}
1537
1538void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1539							block_t blkaddr)
1540{
 
1541	struct page *cpage;
1542
1543	if (blkaddr == NEW_ADDR)
1544		return;
1545
1546	f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
 
1547
1548	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1549	if (cpage) {
1550		f2fs_wait_on_page_writeback(cpage, DATA, true);
1551		f2fs_put_page(cpage, 1);
1552	}
1553}
1554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1556{
1557	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1558	struct curseg_info *seg_i;
1559	unsigned char *kaddr;
1560	struct page *page;
1561	block_t start;
1562	int i, j, offset;
1563
1564	start = start_sum_block(sbi);
1565
1566	page = get_meta_page(sbi, start++);
 
 
1567	kaddr = (unsigned char *)page_address(page);
1568
1569	/* Step 1: restore nat cache */
1570	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1571	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1572
1573	/* Step 2: restore sit cache */
1574	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1575	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1576	offset = 2 * SUM_JOURNAL_SIZE;
1577
1578	/* Step 3: restore summary entries */
1579	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1580		unsigned short blk_off;
1581		unsigned int segno;
1582
1583		seg_i = CURSEG_I(sbi, i);
1584		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1585		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1586		seg_i->next_segno = segno;
1587		reset_curseg(sbi, i, 0);
1588		seg_i->alloc_type = ckpt->alloc_type[i];
1589		seg_i->next_blkoff = blk_off;
1590
1591		if (seg_i->alloc_type == SSR)
1592			blk_off = sbi->blocks_per_seg;
1593
1594		for (j = 0; j < blk_off; j++) {
1595			struct f2fs_summary *s;
 
1596			s = (struct f2fs_summary *)(kaddr + offset);
1597			seg_i->sum_blk->entries[j] = *s;
1598			offset += SUMMARY_SIZE;
1599			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1600						SUM_FOOTER_SIZE)
1601				continue;
1602
1603			f2fs_put_page(page, 1);
1604			page = NULL;
1605
1606			page = get_meta_page(sbi, start++);
 
 
1607			kaddr = (unsigned char *)page_address(page);
1608			offset = 0;
1609		}
1610	}
1611	f2fs_put_page(page, 1);
1612	return 0;
1613}
1614
1615static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1616{
1617	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618	struct f2fs_summary_block *sum;
1619	struct curseg_info *curseg;
1620	struct page *new;
1621	unsigned short blk_off;
1622	unsigned int segno = 0;
1623	block_t blk_addr = 0;
 
1624
1625	/* get segment number and block addr */
1626	if (IS_DATASEG(type)) {
1627		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1628		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1629							CURSEG_HOT_DATA]);
1630		if (__exist_node_summaries(sbi))
1631			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1632		else
1633			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1634	} else {
1635		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1636							CURSEG_HOT_NODE]);
1637		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1638							CURSEG_HOT_NODE]);
1639		if (__exist_node_summaries(sbi))
1640			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1641							type - CURSEG_HOT_NODE);
1642		else
1643			blk_addr = GET_SUM_BLOCK(sbi, segno);
1644	}
1645
1646	new = get_meta_page(sbi, blk_addr);
 
 
1647	sum = (struct f2fs_summary_block *)page_address(new);
1648
1649	if (IS_NODESEG(type)) {
1650		if (__exist_node_summaries(sbi)) {
1651			struct f2fs_summary *ns = &sum->entries[0];
1652			int i;
 
1653			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1654				ns->version = 0;
1655				ns->ofs_in_node = 0;
1656			}
1657		} else {
1658			int err;
1659
1660			err = restore_node_summary(sbi, segno, sum);
1661			if (err) {
1662				f2fs_put_page(new, 1);
1663				return err;
1664			}
1665		}
1666	}
1667
1668	/* set uncompleted segment to curseg */
1669	curseg = CURSEG_I(sbi, type);
1670	mutex_lock(&curseg->curseg_mutex);
1671
1672	/* update journal info */
1673	down_write(&curseg->journal_rwsem);
1674	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1675	up_write(&curseg->journal_rwsem);
1676
1677	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1678	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1679	curseg->next_segno = segno;
1680	reset_curseg(sbi, type, 0);
1681	curseg->alloc_type = ckpt->alloc_type[type];
1682	curseg->next_blkoff = blk_off;
1683	mutex_unlock(&curseg->curseg_mutex);
 
1684	f2fs_put_page(new, 1);
1685	return 0;
1686}
1687
1688static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1689{
 
 
1690	int type = CURSEG_HOT_DATA;
1691	int err;
1692
1693	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1694		int npages = npages_for_summary_flush(sbi, true);
1695
1696		if (npages >= 2)
1697			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1698							META_CP, true);
1699
1700		/* restore for compacted data summary */
1701		if (read_compacted_summaries(sbi))
1702			return -EINVAL;
 
1703		type = CURSEG_HOT_NODE;
1704	}
1705
1706	if (__exist_node_summaries(sbi))
1707		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1708					NR_CURSEG_TYPE - type, META_CP, true);
 
1709
1710	for (; type <= CURSEG_COLD_NODE; type++) {
1711		err = read_normal_summaries(sbi, type);
1712		if (err)
1713			return err;
1714	}
1715
 
 
 
 
 
 
 
 
1716	return 0;
1717}
1718
1719static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1720{
1721	struct page *page;
1722	unsigned char *kaddr;
1723	struct f2fs_summary *summary;
1724	struct curseg_info *seg_i;
1725	int written_size = 0;
1726	int i, j;
1727
1728	page = grab_meta_page(sbi, blkaddr++);
1729	kaddr = (unsigned char *)page_address(page);
 
1730
1731	/* Step 1: write nat cache */
1732	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1733	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1734	written_size += SUM_JOURNAL_SIZE;
1735
1736	/* Step 2: write sit cache */
1737	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1738	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1739	written_size += SUM_JOURNAL_SIZE;
1740
1741	/* Step 3: write summary entries */
1742	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1743		unsigned short blkoff;
 
1744		seg_i = CURSEG_I(sbi, i);
1745		if (sbi->ckpt->alloc_type[i] == SSR)
1746			blkoff = sbi->blocks_per_seg;
1747		else
1748			blkoff = curseg_blkoff(sbi, i);
1749
1750		for (j = 0; j < blkoff; j++) {
1751			if (!page) {
1752				page = grab_meta_page(sbi, blkaddr++);
1753				kaddr = (unsigned char *)page_address(page);
 
1754				written_size = 0;
1755			}
1756			summary = (struct f2fs_summary *)(kaddr + written_size);
1757			*summary = seg_i->sum_blk->entries[j];
1758			written_size += SUMMARY_SIZE;
1759
1760			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1761							SUM_FOOTER_SIZE)
1762				continue;
1763
1764			set_page_dirty(page);
1765			f2fs_put_page(page, 1);
1766			page = NULL;
1767		}
1768	}
1769	if (page) {
1770		set_page_dirty(page);
1771		f2fs_put_page(page, 1);
1772	}
1773}
1774
1775static void write_normal_summaries(struct f2fs_sb_info *sbi,
1776					block_t blkaddr, int type)
1777{
1778	int i, end;
 
1779	if (IS_DATASEG(type))
1780		end = type + NR_CURSEG_DATA_TYPE;
1781	else
1782		end = type + NR_CURSEG_NODE_TYPE;
1783
1784	for (i = type; i < end; i++)
1785		write_current_sum_page(sbi, i, blkaddr + (i - type));
1786}
1787
1788void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1789{
1790	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1791		write_compacted_summaries(sbi, start_blk);
1792	else
1793		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1794}
1795
1796void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1797{
1798	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1799}
1800
1801int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1802					unsigned int val, int alloc)
1803{
1804	int i;
1805
1806	if (type == NAT_JOURNAL) {
1807		for (i = 0; i < nats_in_cursum(journal); i++) {
1808			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1809				return i;
1810		}
1811		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1812			return update_nats_in_cursum(journal, 1);
1813	} else if (type == SIT_JOURNAL) {
1814		for (i = 0; i < sits_in_cursum(journal); i++)
1815			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1816				return i;
1817		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1818			return update_sits_in_cursum(journal, 1);
1819	}
1820	return -1;
1821}
1822
1823static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1824					unsigned int segno)
1825{
1826	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1827}
1828
1829static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1830					unsigned int start)
1831{
1832	struct sit_info *sit_i = SIT_I(sbi);
1833	struct page *src_page, *dst_page;
1834	pgoff_t src_off, dst_off;
1835	void *src_addr, *dst_addr;
1836
1837	src_off = current_sit_addr(sbi, start);
1838	dst_off = next_sit_addr(sbi, src_off);
1839
1840	/* get current sit block page without lock */
1841	src_page = get_meta_page(sbi, src_off);
1842	dst_page = grab_meta_page(sbi, dst_off);
1843	f2fs_bug_on(sbi, PageDirty(src_page));
1844
1845	src_addr = page_address(src_page);
1846	dst_addr = page_address(dst_page);
1847	memcpy(dst_addr, src_addr, PAGE_SIZE);
1848
1849	set_page_dirty(dst_page);
1850	f2fs_put_page(src_page, 1);
1851
 
1852	set_to_next_sit(sit_i, start);
1853
1854	return dst_page;
1855}
1856
1857static struct sit_entry_set *grab_sit_entry_set(void)
1858{
1859	struct sit_entry_set *ses =
1860			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
 
1861
1862	ses->entry_cnt = 0;
1863	INIT_LIST_HEAD(&ses->set_list);
1864	return ses;
1865}
1866
1867static void release_sit_entry_set(struct sit_entry_set *ses)
1868{
1869	list_del(&ses->set_list);
1870	kmem_cache_free(sit_entry_set_slab, ses);
1871}
1872
1873static void adjust_sit_entry_set(struct sit_entry_set *ses,
1874						struct list_head *head)
1875{
1876	struct sit_entry_set *next = ses;
1877
1878	if (list_is_last(&ses->set_list, head))
1879		return;
1880
1881	list_for_each_entry_continue(next, head, set_list)
1882		if (ses->entry_cnt <= next->entry_cnt)
1883			break;
 
 
1884
1885	list_move_tail(&ses->set_list, &next->set_list);
1886}
1887
1888static void add_sit_entry(unsigned int segno, struct list_head *head)
1889{
1890	struct sit_entry_set *ses;
1891	unsigned int start_segno = START_SEGNO(segno);
1892
1893	list_for_each_entry(ses, head, set_list) {
1894		if (ses->start_segno == start_segno) {
1895			ses->entry_cnt++;
1896			adjust_sit_entry_set(ses, head);
1897			return;
1898		}
1899	}
1900
1901	ses = grab_sit_entry_set();
1902
1903	ses->start_segno = start_segno;
1904	ses->entry_cnt++;
1905	list_add(&ses->set_list, head);
1906}
1907
1908static void add_sits_in_set(struct f2fs_sb_info *sbi)
1909{
1910	struct f2fs_sm_info *sm_info = SM_I(sbi);
1911	struct list_head *set_list = &sm_info->sit_entry_set;
1912	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1913	unsigned int segno;
1914
1915	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1916		add_sit_entry(segno, set_list);
1917}
1918
1919static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1920{
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < sits_in_cursum(journal); i++) {
1927		unsigned int segno;
1928		bool dirtied;
1929
1930		segno = le32_to_cpu(segno_in_journal(journal, i));
1931		dirtied = __mark_sit_entry_dirty(sbi, segno);
1932
1933		if (!dirtied)
1934			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1935	}
1936	update_sits_in_cursum(journal, -i);
1937	up_write(&curseg->journal_rwsem);
1938}
1939
1940/*
1941 * CP calls this function, which flushes SIT entries including sit_journal,
1942 * and moves prefree segs to free segs.
1943 */
1944void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1945{
1946	struct sit_info *sit_i = SIT_I(sbi);
1947	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1948	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1949	struct f2fs_journal *journal = curseg->journal;
1950	struct sit_entry_set *ses, *tmp;
1951	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1952	bool to_journal = true;
1953	struct seg_entry *se;
1954
1955	mutex_lock(&sit_i->sentry_lock);
1956
1957	if (!sit_i->dirty_sentries)
1958		goto out;
1959
1960	/*
1961	 * add and account sit entries of dirty bitmap in sit entry
1962	 * set temporarily
1963	 */
1964	add_sits_in_set(sbi);
1965
1966	/*
1967	 * if there are no enough space in journal to store dirty sit
1968	 * entries, remove all entries from journal and add and account
1969	 * them in sit entry set.
1970	 */
1971	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
 
1972		remove_sits_in_journal(sbi);
1973
1974	/*
1975	 * there are two steps to flush sit entries:
1976	 * #1, flush sit entries to journal in current cold data summary block.
1977	 * #2, flush sit entries to sit page.
1978	 */
1979	list_for_each_entry_safe(ses, tmp, head, set_list) {
1980		struct page *page = NULL;
1981		struct f2fs_sit_block *raw_sit = NULL;
1982		unsigned int start_segno = ses->start_segno;
1983		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1984						(unsigned long)MAIN_SEGS(sbi));
1985		unsigned int segno = start_segno;
1986
1987		if (to_journal &&
1988			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1989			to_journal = false;
1990
1991		if (to_journal) {
1992			down_write(&curseg->journal_rwsem);
1993		} else {
1994			page = get_next_sit_page(sbi, start_segno);
1995			raw_sit = page_address(page);
1996		}
1997
1998		/* flush dirty sit entries in region of current sit set */
1999		for_each_set_bit_from(segno, bitmap, end) {
2000			int offset, sit_offset;
2001
2002			se = get_seg_entry(sbi, segno);
 
 
 
 
 
2003
2004			/* add discard candidates */
2005			if (cpc->reason != CP_DISCARD) {
2006				cpc->trim_start = segno;
2007				add_discard_addrs(sbi, cpc);
2008			}
2009
2010			if (to_journal) {
2011				offset = lookup_journal_in_cursum(journal,
2012							SIT_JOURNAL, segno, 1);
2013				f2fs_bug_on(sbi, offset < 0);
2014				segno_in_journal(journal, offset) =
2015							cpu_to_le32(segno);
2016				seg_info_to_raw_sit(se,
2017					&sit_in_journal(journal, offset));
 
 
2018			} else {
2019				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2020				seg_info_to_raw_sit(se,
2021						&raw_sit->entries[sit_offset]);
 
 
2022			}
2023
2024			__clear_bit(segno, bitmap);
2025			sit_i->dirty_sentries--;
2026			ses->entry_cnt--;
2027		}
2028
2029		if (to_journal)
2030			up_write(&curseg->journal_rwsem);
2031		else
2032			f2fs_put_page(page, 1);
2033
2034		f2fs_bug_on(sbi, ses->entry_cnt);
2035		release_sit_entry_set(ses);
2036	}
2037
2038	f2fs_bug_on(sbi, !list_empty(head));
2039	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2040out:
2041	if (cpc->reason == CP_DISCARD) {
 
 
2042		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2043			add_discard_addrs(sbi, cpc);
 
 
2044	}
2045	mutex_unlock(&sit_i->sentry_lock);
2046
2047	set_prefree_as_free_segments(sbi);
2048}
2049
2050static int build_sit_info(struct f2fs_sb_info *sbi)
2051{
2052	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2053	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2054	struct sit_info *sit_i;
2055	unsigned int sit_segs, start;
2056	char *src_bitmap, *dst_bitmap;
2057	unsigned int bitmap_size;
 
2058
2059	/* allocate memory for SIT information */
2060	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2061	if (!sit_i)
2062		return -ENOMEM;
2063
2064	SM_I(sbi)->sit_info = sit_i;
2065
2066	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2067					sizeof(struct seg_entry), GFP_KERNEL);
 
 
2068	if (!sit_i->sentries)
2069		return -ENOMEM;
2070
2071	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2072	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 
2073	if (!sit_i->dirty_sentries_bitmap)
2074		return -ENOMEM;
2075
 
 
 
 
 
 
 
 
 
 
 
2076	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2077		sit_i->sentries[start].cur_valid_map
2078			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2079		sit_i->sentries[start].ckpt_valid_map
2080			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2081		sit_i->sentries[start].discard_map
2082			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083		if (!sit_i->sentries[start].cur_valid_map ||
2084				!sit_i->sentries[start].ckpt_valid_map ||
2085				!sit_i->sentries[start].discard_map)
2086			return -ENOMEM;
 
 
 
 
 
2087	}
2088
2089	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2090	if (!sit_i->tmp_map)
2091		return -ENOMEM;
2092
2093	if (sbi->segs_per_sec > 1) {
2094		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2095					sizeof(struct sec_entry), GFP_KERNEL);
 
 
2096		if (!sit_i->sec_entries)
2097			return -ENOMEM;
2098	}
2099
2100	/* get information related with SIT */
2101	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2102
2103	/* setup SIT bitmap from ckeckpoint pack */
2104	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2105	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2106
2107	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2108	if (!dst_bitmap)
2109		return -ENOMEM;
2110
2111	/* init SIT information */
2112	sit_i->s_ops = &default_salloc_ops;
 
 
 
 
 
 
 
 
 
2113
2114	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2115	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2116	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2117	sit_i->sit_bitmap = dst_bitmap;
2118	sit_i->bitmap_size = bitmap_size;
2119	sit_i->dirty_sentries = 0;
2120	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2121	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2122	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2123	mutex_init(&sit_i->sentry_lock);
2124	return 0;
2125}
2126
2127static int build_free_segmap(struct f2fs_sb_info *sbi)
2128{
2129	struct free_segmap_info *free_i;
2130	unsigned int bitmap_size, sec_bitmap_size;
2131
2132	/* allocate memory for free segmap information */
2133	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2134	if (!free_i)
2135		return -ENOMEM;
2136
2137	SM_I(sbi)->free_info = free_i;
2138
2139	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2140	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2141	if (!free_i->free_segmap)
2142		return -ENOMEM;
2143
2144	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2145	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2146	if (!free_i->free_secmap)
2147		return -ENOMEM;
2148
2149	/* set all segments as dirty temporarily */
2150	memset(free_i->free_segmap, 0xff, bitmap_size);
2151	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2152
2153	/* init free segmap information */
2154	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2155	free_i->free_segments = 0;
2156	free_i->free_sections = 0;
2157	spin_lock_init(&free_i->segmap_lock);
2158	return 0;
2159}
2160
2161static int build_curseg(struct f2fs_sb_info *sbi)
2162{
2163	struct curseg_info *array;
2164	int i;
2165
2166	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
 
2167	if (!array)
2168		return -ENOMEM;
2169
2170	SM_I(sbi)->curseg_array = array;
2171
2172	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2173		mutex_init(&array[i].curseg_mutex);
2174		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2175		if (!array[i].sum_blk)
2176			return -ENOMEM;
2177		init_rwsem(&array[i].journal_rwsem);
2178		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2179							GFP_KERNEL);
2180		if (!array[i].journal)
2181			return -ENOMEM;
 
 
 
 
 
 
2182		array[i].segno = NULL_SEGNO;
2183		array[i].next_blkoff = 0;
 
2184	}
2185	return restore_curseg_summaries(sbi);
2186}
2187
2188static void build_sit_entries(struct f2fs_sb_info *sbi)
2189{
2190	struct sit_info *sit_i = SIT_I(sbi);
2191	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2192	struct f2fs_journal *journal = curseg->journal;
 
 
2193	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2194	unsigned int i, start, end;
2195	unsigned int readed, start_blk = 0;
2196	int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
 
2197
2198	do {
2199		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
 
2200
2201		start = start_blk * sit_i->sents_per_block;
2202		end = (start_blk + readed) * sit_i->sents_per_block;
2203
2204		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2205			struct seg_entry *se = &sit_i->sentries[start];
2206			struct f2fs_sit_block *sit_blk;
2207			struct f2fs_sit_entry sit;
2208			struct page *page;
2209
2210			down_read(&curseg->journal_rwsem);
2211			for (i = 0; i < sits_in_cursum(journal); i++) {
2212				if (le32_to_cpu(segno_in_journal(journal, i))
2213								== start) {
2214					sit = sit_in_journal(journal, i);
2215					up_read(&curseg->journal_rwsem);
2216					goto got_it;
2217				}
2218			}
2219			up_read(&curseg->journal_rwsem);
2220
2221			page = get_current_sit_page(sbi, start);
 
 
2222			sit_blk = (struct f2fs_sit_block *)page_address(page);
2223			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2224			f2fs_put_page(page, 1);
2225got_it:
2226			check_block_count(sbi, start, &sit);
 
 
2227			seg_info_from_raw_sit(se, &sit);
2228
2229			/* build discard map only one time */
2230			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2231			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2232
2233			if (sbi->segs_per_sec > 1) {
2234				struct sec_entry *e = get_sec_entry(sbi, start);
2235				e->valid_blocks += se->valid_blocks;
2236			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237		}
2238		start_blk += readed;
2239	} while (start_blk < sit_blk_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2240}
2241
2242static void init_free_segmap(struct f2fs_sb_info *sbi)
2243{
2244	unsigned int start;
2245	int type;
 
2246
2247	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2248		struct seg_entry *sentry = get_seg_entry(sbi, start);
 
 
2249		if (!sentry->valid_blocks)
2250			__set_free(sbi, start);
 
 
 
2251	}
2252
2253	/* set use the current segments */
2254	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2255		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
 
2256		__set_test_and_inuse(sbi, curseg_t->segno);
2257	}
2258}
2259
2260static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2261{
2262	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2263	struct free_segmap_info *free_i = FREE_I(sbi);
2264	unsigned int segno = 0, offset = 0;
2265	unsigned short valid_blocks;
2266
2267	while (1) {
2268		/* find dirty segment based on free segmap */
2269		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2270		if (segno >= MAIN_SEGS(sbi))
2271			break;
2272		offset = segno + 1;
2273		valid_blocks = get_valid_blocks(sbi, segno, 0);
2274		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
 
2275			continue;
2276		if (valid_blocks > sbi->blocks_per_seg) {
2277			f2fs_bug_on(sbi, 1);
2278			continue;
2279		}
2280		mutex_lock(&dirty_i->seglist_lock);
2281		__locate_dirty_segment(sbi, segno, DIRTY);
2282		mutex_unlock(&dirty_i->seglist_lock);
2283	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2284}
2285
2286static int init_victim_secmap(struct f2fs_sb_info *sbi)
2287{
2288	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2289	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2290
2291	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2292	if (!dirty_i->victim_secmap)
2293		return -ENOMEM;
 
 
 
 
 
 
 
2294	return 0;
2295}
2296
2297static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2298{
2299	struct dirty_seglist_info *dirty_i;
2300	unsigned int bitmap_size, i;
2301
2302	/* allocate memory for dirty segments list information */
2303	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
 
2304	if (!dirty_i)
2305		return -ENOMEM;
2306
2307	SM_I(sbi)->dirty_info = dirty_i;
2308	mutex_init(&dirty_i->seglist_lock);
2309
2310	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2311
2312	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2313		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
 
2314		if (!dirty_i->dirty_segmap[i])
2315			return -ENOMEM;
2316	}
2317
 
 
 
 
 
 
 
 
2318	init_dirty_segmap(sbi);
2319	return init_victim_secmap(sbi);
2320}
2321
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322/*
2323 * Update min, max modified time for cost-benefit GC algorithm
2324 */
2325static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2326{
2327	struct sit_info *sit_i = SIT_I(sbi);
2328	unsigned int segno;
2329
2330	mutex_lock(&sit_i->sentry_lock);
2331
2332	sit_i->min_mtime = LLONG_MAX;
2333
2334	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2335		unsigned int i;
2336		unsigned long long mtime = 0;
2337
2338		for (i = 0; i < sbi->segs_per_sec; i++)
2339			mtime += get_seg_entry(sbi, segno + i)->mtime;
2340
2341		mtime = div_u64(mtime, sbi->segs_per_sec);
2342
2343		if (sit_i->min_mtime > mtime)
2344			sit_i->min_mtime = mtime;
2345	}
2346	sit_i->max_mtime = get_mtime(sbi);
2347	mutex_unlock(&sit_i->sentry_lock);
 
2348}
2349
2350int build_segment_manager(struct f2fs_sb_info *sbi)
2351{
2352	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2353	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2354	struct f2fs_sm_info *sm_info;
2355	int err;
2356
2357	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2358	if (!sm_info)
2359		return -ENOMEM;
2360
2361	/* init sm info */
2362	sbi->sm_info = sm_info;
2363	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2364	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2365	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2366	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2367	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2368	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2369	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2370	sm_info->rec_prefree_segments = sm_info->main_segments *
2371					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2372	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
 
 
 
 
2373	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2374	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
 
 
 
2375
2376	INIT_LIST_HEAD(&sm_info->discard_list);
2377	sm_info->nr_discards = 0;
2378	sm_info->max_discards = 0;
2379
2380	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2381
2382	INIT_LIST_HEAD(&sm_info->sit_entry_set);
 
 
2383
2384	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2385		err = create_flush_cmd_control(sbi);
2386		if (err)
2387			return err;
2388	}
2389
2390	err = build_sit_info(sbi);
2391	if (err)
2392		return err;
2393	err = build_free_segmap(sbi);
2394	if (err)
2395		return err;
2396	err = build_curseg(sbi);
2397	if (err)
2398		return err;
2399
2400	/* reinit free segmap based on SIT */
2401	build_sit_entries(sbi);
 
 
2402
2403	init_free_segmap(sbi);
2404	err = build_dirty_segmap(sbi);
2405	if (err)
2406		return err;
2407
 
 
 
 
2408	init_min_max_mtime(sbi);
2409	return 0;
2410}
2411
2412static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2413		enum dirty_type dirty_type)
2414{
2415	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2416
2417	mutex_lock(&dirty_i->seglist_lock);
2418	kvfree(dirty_i->dirty_segmap[dirty_type]);
2419	dirty_i->nr_dirty[dirty_type] = 0;
2420	mutex_unlock(&dirty_i->seglist_lock);
2421}
2422
2423static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2424{
2425	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 
 
2426	kvfree(dirty_i->victim_secmap);
2427}
2428
2429static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2430{
2431	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2432	int i;
2433
2434	if (!dirty_i)
2435		return;
2436
2437	/* discard pre-free/dirty segments list */
2438	for (i = 0; i < NR_DIRTY_TYPE; i++)
2439		discard_dirty_segmap(sbi, i);
2440
 
 
 
 
 
 
2441	destroy_victim_secmap(sbi);
2442	SM_I(sbi)->dirty_info = NULL;
2443	kfree(dirty_i);
2444}
2445
2446static void destroy_curseg(struct f2fs_sb_info *sbi)
2447{
2448	struct curseg_info *array = SM_I(sbi)->curseg_array;
2449	int i;
2450
2451	if (!array)
2452		return;
2453	SM_I(sbi)->curseg_array = NULL;
2454	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2455		kfree(array[i].sum_blk);
2456		kfree(array[i].journal);
2457	}
2458	kfree(array);
2459}
2460
2461static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2462{
2463	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
 
2464	if (!free_i)
2465		return;
2466	SM_I(sbi)->free_info = NULL;
2467	kvfree(free_i->free_segmap);
2468	kvfree(free_i->free_secmap);
2469	kfree(free_i);
2470}
2471
2472static void destroy_sit_info(struct f2fs_sb_info *sbi)
2473{
2474	struct sit_info *sit_i = SIT_I(sbi);
2475	unsigned int start;
2476
2477	if (!sit_i)
2478		return;
2479
2480	if (sit_i->sentries) {
2481		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2482			kfree(sit_i->sentries[start].cur_valid_map);
2483			kfree(sit_i->sentries[start].ckpt_valid_map);
2484			kfree(sit_i->sentries[start].discard_map);
2485		}
2486	}
2487	kfree(sit_i->tmp_map);
2488
2489	kvfree(sit_i->sentries);
2490	kvfree(sit_i->sec_entries);
2491	kvfree(sit_i->dirty_sentries_bitmap);
2492
2493	SM_I(sbi)->sit_info = NULL;
2494	kfree(sit_i->sit_bitmap);
 
 
 
 
2495	kfree(sit_i);
2496}
2497
2498void destroy_segment_manager(struct f2fs_sb_info *sbi)
2499{
2500	struct f2fs_sm_info *sm_info = SM_I(sbi);
2501
2502	if (!sm_info)
2503		return;
2504	destroy_flush_cmd_control(sbi);
 
2505	destroy_dirty_segmap(sbi);
2506	destroy_curseg(sbi);
2507	destroy_free_segmap(sbi);
2508	destroy_sit_info(sbi);
2509	sbi->sm_info = NULL;
2510	kfree(sm_info);
2511}
2512
2513int __init create_segment_manager_caches(void)
2514{
2515	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2516			sizeof(struct discard_entry));
2517	if (!discard_entry_slab)
2518		goto fail;
2519
2520	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
 
 
 
 
 
2521			sizeof(struct sit_entry_set));
2522	if (!sit_entry_set_slab)
2523		goto destory_discard_entry;
2524
2525	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2526			sizeof(struct inmem_pages));
2527	if (!inmem_entry_slab)
2528		goto destroy_sit_entry_set;
2529	return 0;
2530
2531destroy_sit_entry_set:
2532	kmem_cache_destroy(sit_entry_set_slab);
2533destory_discard_entry:
 
 
2534	kmem_cache_destroy(discard_entry_slab);
2535fail:
2536	return -ENOMEM;
2537}
2538
2539void destroy_segment_manager_caches(void)
2540{
2541	kmem_cache_destroy(sit_entry_set_slab);
 
2542	kmem_cache_destroy(discard_entry_slab);
2543	kmem_cache_destroy(inmem_entry_slab);
2544}
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/segment.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/bio.h>
  11#include <linux/blkdev.h>
  12#include <linux/sched/mm.h>
  13#include <linux/prefetch.h>
  14#include <linux/kthread.h>
  15#include <linux/swap.h>
  16#include <linux/timer.h>
  17#include <linux/freezer.h>
  18#include <linux/sched/signal.h>
  19#include <linux/random.h>
  20
  21#include "f2fs.h"
  22#include "segment.h"
  23#include "node.h"
  24#include "gc.h"
  25#include "iostat.h"
  26#include <trace/events/f2fs.h>
  27
  28#define __reverse_ffz(x) __reverse_ffs(~(x))
  29
  30static struct kmem_cache *discard_entry_slab;
  31static struct kmem_cache *discard_cmd_slab;
  32static struct kmem_cache *sit_entry_set_slab;
  33static struct kmem_cache *revoke_entry_slab;
  34
  35static unsigned long __reverse_ulong(unsigned char *str)
  36{
  37	unsigned long tmp = 0;
  38	int shift = 24, idx = 0;
  39
  40#if BITS_PER_LONG == 64
  41	shift = 56;
  42#endif
  43	while (shift >= 0) {
  44		tmp |= (unsigned long)str[idx++] << shift;
  45		shift -= BITS_PER_BYTE;
  46	}
  47	return tmp;
  48}
  49
  50/*
  51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
  52 * MSB and LSB are reversed in a byte by f2fs_set_bit.
  53 */
  54static inline unsigned long __reverse_ffs(unsigned long word)
  55{
  56	int num = 0;
  57
  58#if BITS_PER_LONG == 64
  59	if ((word & 0xffffffff00000000UL) == 0)
  60		num += 32;
  61	else
  62		word >>= 32;
  63#endif
  64	if ((word & 0xffff0000) == 0)
  65		num += 16;
  66	else
  67		word >>= 16;
  68
  69	if ((word & 0xff00) == 0)
  70		num += 8;
  71	else
  72		word >>= 8;
  73
  74	if ((word & 0xf0) == 0)
  75		num += 4;
  76	else
  77		word >>= 4;
  78
  79	if ((word & 0xc) == 0)
  80		num += 2;
  81	else
  82		word >>= 2;
  83
  84	if ((word & 0x2) == 0)
  85		num += 1;
  86	return num;
  87}
  88
  89/*
  90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
  91 * f2fs_set_bit makes MSB and LSB reversed in a byte.
  92 * @size must be integral times of unsigned long.
  93 * Example:
  94 *                             MSB <--> LSB
  95 *   f2fs_set_bit(0, bitmap) => 1000 0000
  96 *   f2fs_set_bit(7, bitmap) => 0000 0001
  97 */
  98static unsigned long __find_rev_next_bit(const unsigned long *addr,
  99			unsigned long size, unsigned long offset)
 100{
 101	const unsigned long *p = addr + BIT_WORD(offset);
 102	unsigned long result = size;
 103	unsigned long tmp;
 104
 105	if (offset >= size)
 106		return size;
 107
 108	size -= (offset & ~(BITS_PER_LONG - 1));
 109	offset %= BITS_PER_LONG;
 110
 111	while (1) {
 112		if (*p == 0)
 113			goto pass;
 114
 115		tmp = __reverse_ulong((unsigned char *)p);
 116
 117		tmp &= ~0UL >> offset;
 118		if (size < BITS_PER_LONG)
 119			tmp &= (~0UL << (BITS_PER_LONG - size));
 120		if (tmp)
 121			goto found;
 122pass:
 123		if (size <= BITS_PER_LONG)
 124			break;
 125		size -= BITS_PER_LONG;
 126		offset = 0;
 127		p++;
 128	}
 129	return result;
 130found:
 131	return result - size + __reverse_ffs(tmp);
 132}
 133
 134static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
 135			unsigned long size, unsigned long offset)
 136{
 137	const unsigned long *p = addr + BIT_WORD(offset);
 138	unsigned long result = size;
 139	unsigned long tmp;
 140
 141	if (offset >= size)
 142		return size;
 143
 144	size -= (offset & ~(BITS_PER_LONG - 1));
 145	offset %= BITS_PER_LONG;
 146
 147	while (1) {
 148		if (*p == ~0UL)
 149			goto pass;
 150
 151		tmp = __reverse_ulong((unsigned char *)p);
 152
 153		if (offset)
 154			tmp |= ~0UL << (BITS_PER_LONG - offset);
 155		if (size < BITS_PER_LONG)
 156			tmp |= ~0UL >> size;
 157		if (tmp != ~0UL)
 158			goto found;
 159pass:
 160		if (size <= BITS_PER_LONG)
 161			break;
 162		size -= BITS_PER_LONG;
 163		offset = 0;
 164		p++;
 165	}
 166	return result;
 167found:
 168	return result - size + __reverse_ffz(tmp);
 169}
 170
 171bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
 172{
 173	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
 174	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
 175	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
 
 176
 177	if (f2fs_lfs_mode(sbi))
 178		return false;
 179	if (sbi->gc_mode == GC_URGENT_HIGH)
 180		return true;
 181	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
 182		return true;
 183
 184	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
 185			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
 186}
 187
 188void f2fs_abort_atomic_write(struct inode *inode, bool clean)
 189{
 190	struct f2fs_inode_info *fi = F2FS_I(inode);
 191
 192	if (!f2fs_is_atomic_file(inode))
 193		return;
 
 
 
 
 194
 195	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
 196	iput(fi->cow_inode);
 197	fi->cow_inode = NULL;
 198	release_atomic_write_cnt(inode);
 199	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
 200	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
 201	clear_inode_flag(inode, FI_ATOMIC_FILE);
 202	stat_dec_atomic_inode(inode);
 203
 204	if (clean) {
 205		truncate_inode_pages_final(inode->i_mapping);
 206		f2fs_i_size_write(inode, fi->original_i_size);
 207	}
 208}
 209
 210static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
 211			block_t new_addr, block_t *old_addr, bool recover)
 212{
 213	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 214	struct dnode_of_data dn;
 215	struct node_info ni;
 216	int err;
 
 
 
 
 
 
 
 217
 218retry:
 219	set_new_dnode(&dn, inode, NULL, NULL, 0);
 220	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
 221	if (err) {
 222		if (err == -ENOMEM) {
 223			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 224			goto retry;
 225		}
 226		return err;
 227	}
 228
 229	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
 230	if (err) {
 231		f2fs_put_dnode(&dn);
 232		return err;
 233	}
 234
 235	if (recover) {
 236		/* dn.data_blkaddr is always valid */
 237		if (!__is_valid_data_blkaddr(new_addr)) {
 238			if (new_addr == NULL_ADDR)
 239				dec_valid_block_count(sbi, inode, 1);
 240			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
 241			f2fs_update_data_blkaddr(&dn, new_addr);
 242		} else {
 243			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
 244				new_addr, ni.version, true, true);
 
 245		}
 246	} else {
 247		blkcnt_t count = 1;
 
 
 
 248
 249		*old_addr = dn.data_blkaddr;
 250		f2fs_truncate_data_blocks_range(&dn, 1);
 251		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
 252		inc_valid_block_count(sbi, inode, &count);
 253		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
 254					ni.version, true, false);
 255	}
 256
 257	f2fs_put_dnode(&dn);
 258	return 0;
 259}
 260
 261static void __complete_revoke_list(struct inode *inode, struct list_head *head,
 262					bool revoke)
 263{
 264	struct revoke_entry *cur, *tmp;
 265	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
 266
 267	list_for_each_entry_safe(cur, tmp, head, list) {
 268		if (revoke)
 269			__replace_atomic_write_block(inode, cur->index,
 270						cur->old_addr, NULL, true);
 271
 272		list_del(&cur->list);
 273		kmem_cache_free(revoke_entry_slab, cur);
 274	}
 275
 276	if (!revoke && truncate)
 277		f2fs_do_truncate_blocks(inode, 0, false);
 
 278}
 279
 280static int __f2fs_commit_atomic_write(struct inode *inode)
 
 281{
 282	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 283	struct f2fs_inode_info *fi = F2FS_I(inode);
 284	struct inode *cow_inode = fi->cow_inode;
 285	struct revoke_entry *new;
 286	struct list_head revoke_list;
 287	block_t blkaddr;
 288	struct dnode_of_data dn;
 289	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
 290	pgoff_t off = 0, blen, index;
 291	int ret = 0, i;
 
 292
 293	INIT_LIST_HEAD(&revoke_list);
 
 294
 295	while (len) {
 296		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
 
 297
 298		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
 299		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
 300		if (ret && ret != -ENOENT) {
 301			goto out;
 302		} else if (ret == -ENOENT) {
 303			ret = 0;
 304			if (dn.max_level == 0)
 305				goto out;
 306			goto next;
 307		}
 308
 309		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
 310				len);
 311		index = off;
 312		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
 313			blkaddr = f2fs_data_blkaddr(&dn);
 314
 315			if (!__is_valid_data_blkaddr(blkaddr)) {
 316				continue;
 317			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
 318					DATA_GENERIC_ENHANCE)) {
 319				f2fs_put_dnode(&dn);
 320				ret = -EFSCORRUPTED;
 321				f2fs_handle_error(sbi,
 322						ERROR_INVALID_BLKADDR);
 323				goto out;
 324			}
 325
 326			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
 327							true, NULL);
 328
 329			ret = __replace_atomic_write_block(inode, index, blkaddr,
 330							&new->old_addr, false);
 331			if (ret) {
 332				f2fs_put_dnode(&dn);
 333				kmem_cache_free(revoke_entry_slab, new);
 334				goto out;
 335			}
 336
 337			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
 338			new->index = index;
 339			list_add_tail(&new->list, &revoke_list);
 340		}
 341		f2fs_put_dnode(&dn);
 342next:
 343		off += blen;
 344		len -= blen;
 345	}
 346
 347out:
 348	if (ret) {
 349		sbi->revoked_atomic_block += fi->atomic_write_cnt;
 350	} else {
 351		sbi->committed_atomic_block += fi->atomic_write_cnt;
 352		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
 353	}
 354
 355	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
 
 356
 357	return ret;
 358}
 359
 360int f2fs_commit_atomic_write(struct inode *inode)
 361{
 362	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 363	struct f2fs_inode_info *fi = F2FS_I(inode);
 
 364	int err;
 365
 366	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
 367	if (err)
 368		return err;
 369
 370	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
 371	f2fs_lock_op(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 372
 373	err = __f2fs_commit_atomic_write(inode);
 
 
 
 374
 375	f2fs_unlock_op(sbi);
 376	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
 377
 378	return err;
 379}
 380
 381/*
 382 * This function balances dirty node and dentry pages.
 383 * In addition, it controls garbage collection.
 384 */
 385void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
 386{
 387	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
 388		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
 389		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
 390	}
 391
 392	/* balance_fs_bg is able to be pending */
 393	if (need && excess_cached_nats(sbi))
 394		f2fs_balance_fs_bg(sbi, false);
 395
 396	if (!f2fs_is_checkpoint_ready(sbi))
 397		return;
 398
 399	/*
 400	 * We should do GC or end up with checkpoint, if there are so many dirty
 401	 * dir/node pages without enough free segments.
 402	 */
 403	if (has_not_enough_free_secs(sbi, 0, 0)) {
 404		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
 405					sbi->gc_thread->f2fs_gc_task) {
 406			DEFINE_WAIT(wait);
 407
 408			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
 409						TASK_UNINTERRUPTIBLE);
 410			wake_up(&sbi->gc_thread->gc_wait_queue_head);
 411			io_schedule();
 412			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
 413		} else {
 414			struct f2fs_gc_control gc_control = {
 415				.victim_segno = NULL_SEGNO,
 416				.init_gc_type = BG_GC,
 417				.no_bg_gc = true,
 418				.should_migrate_blocks = false,
 419				.err_gc_skipped = false,
 420				.nr_free_secs = 1 };
 421			f2fs_down_write(&sbi->gc_lock);
 422			f2fs_gc(sbi, &gc_control);
 423		}
 424	}
 425}
 426
 427static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
 428{
 429	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
 430	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
 431	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
 432	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
 433	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
 434	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
 435	unsigned int threshold = sbi->blocks_per_seg * factor *
 436					DEFAULT_DIRTY_THRESHOLD;
 437	unsigned int global_threshold = threshold * 3 / 2;
 438
 439	if (dents >= threshold || qdata >= threshold ||
 440		nodes >= threshold || meta >= threshold ||
 441		imeta >= threshold)
 442		return true;
 443	return dents + qdata + nodes + meta + imeta >  global_threshold;
 444}
 445
 446void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
 447{
 448	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
 449		return;
 450
 451	/* try to shrink extent cache when there is no enough memory */
 452	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
 453		f2fs_shrink_read_extent_tree(sbi,
 454				READ_EXTENT_CACHE_SHRINK_NUMBER);
 455
 456	/* try to shrink age extent cache when there is no enough memory */
 457	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
 458		f2fs_shrink_age_extent_tree(sbi,
 459				AGE_EXTENT_CACHE_SHRINK_NUMBER);
 460
 461	/* check the # of cached NAT entries */
 462	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
 463		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
 464
 465	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
 466		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
 467	else
 468		f2fs_build_free_nids(sbi, false, false);
 469
 470	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
 471		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
 472		goto do_sync;
 473
 474	/* there is background inflight IO or foreground operation recently */
 475	if (is_inflight_io(sbi, REQ_TIME) ||
 476		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
 477		return;
 478
 479	/* exceed periodical checkpoint timeout threshold */
 480	if (f2fs_time_over(sbi, CP_TIME))
 481		goto do_sync;
 482
 483	/* checkpoint is the only way to shrink partial cached entries */
 484	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
 485		f2fs_available_free_memory(sbi, INO_ENTRIES))
 486		return;
 
 
 
 
 487
 488do_sync:
 489	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
 490		struct blk_plug plug;
 491
 492		mutex_lock(&sbi->flush_lock);
 493
 494		blk_start_plug(&plug);
 495		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
 496		blk_finish_plug(&plug);
 497
 498		mutex_unlock(&sbi->flush_lock);
 499	}
 500	f2fs_sync_fs(sbi->sb, 1);
 501	stat_inc_bg_cp_count(sbi->stat_info);
 502}
 503
 504static int __submit_flush_wait(struct f2fs_sb_info *sbi,
 505				struct block_device *bdev)
 506{
 507	int ret = blkdev_issue_flush(bdev);
 508
 509	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
 510				test_opt(sbi, FLUSH_MERGE), ret);
 511	return ret;
 512}
 513
 514static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
 515{
 516	int ret = 0;
 517	int i;
 518
 519	if (!f2fs_is_multi_device(sbi))
 520		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
 521
 522	for (i = 0; i < sbi->s_ndevs; i++) {
 523		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
 524			continue;
 525		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 526		if (ret)
 527			break;
 528	}
 529	return ret;
 530}
 531
 532static int issue_flush_thread(void *data)
 533{
 534	struct f2fs_sb_info *sbi = data;
 535	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 536	wait_queue_head_t *q = &fcc->flush_wait_queue;
 537repeat:
 538	if (kthread_should_stop())
 539		return 0;
 540
 541	if (!llist_empty(&fcc->issue_list)) {
 
 542		struct flush_cmd *cmd, *next;
 543		int ret;
 544
 
 
 545		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
 546		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
 547
 548		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
 549
 550		ret = submit_flush_wait(sbi, cmd->ino);
 551		atomic_inc(&fcc->issued_flush);
 552
 553		llist_for_each_entry_safe(cmd, next,
 554					  fcc->dispatch_list, llnode) {
 555			cmd->ret = ret;
 556			complete(&cmd->wait);
 557		}
 
 558		fcc->dispatch_list = NULL;
 559	}
 560
 561	wait_event_interruptible(*q,
 562		kthread_should_stop() || !llist_empty(&fcc->issue_list));
 563	goto repeat;
 564}
 565
 566int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
 567{
 568	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 569	struct flush_cmd cmd;
 570	int ret;
 
 
 571
 572	if (test_opt(sbi, NOBARRIER))
 573		return 0;
 574
 575	if (!test_opt(sbi, FLUSH_MERGE)) {
 576		atomic_inc(&fcc->queued_flush);
 577		ret = submit_flush_wait(sbi, ino);
 578		atomic_dec(&fcc->queued_flush);
 579		atomic_inc(&fcc->issued_flush);
 580		return ret;
 581	}
 582
 583	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
 584	    f2fs_is_multi_device(sbi)) {
 585		ret = submit_flush_wait(sbi, ino);
 586		atomic_dec(&fcc->queued_flush);
 587
 588		atomic_inc(&fcc->issued_flush);
 
 
 589		return ret;
 590	}
 591
 592	cmd.ino = ino;
 593	init_completion(&cmd.wait);
 594
 595	llist_add(&cmd.llnode, &fcc->issue_list);
 596
 597	/*
 598	 * update issue_list before we wake up issue_flush thread, this
 599	 * smp_mb() pairs with another barrier in ___wait_event(), see
 600	 * more details in comments of waitqueue_active().
 601	 */
 602	smp_mb();
 603
 604	if (waitqueue_active(&fcc->flush_wait_queue))
 605		wake_up(&fcc->flush_wait_queue);
 606
 607	if (fcc->f2fs_issue_flush) {
 608		wait_for_completion(&cmd.wait);
 609		atomic_dec(&fcc->queued_flush);
 610	} else {
 611		struct llist_node *list;
 612
 613		list = llist_del_all(&fcc->issue_list);
 614		if (!list) {
 615			wait_for_completion(&cmd.wait);
 616			atomic_dec(&fcc->queued_flush);
 617		} else {
 618			struct flush_cmd *tmp, *next;
 619
 620			ret = submit_flush_wait(sbi, ino);
 621
 622			llist_for_each_entry_safe(tmp, next, list, llnode) {
 623				if (tmp == &cmd) {
 624					cmd.ret = ret;
 625					atomic_dec(&fcc->queued_flush);
 626					continue;
 627				}
 628				tmp->ret = ret;
 629				complete(&tmp->wait);
 630			}
 631		}
 632	}
 633
 634	return cmd.ret;
 635}
 636
 637int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
 638{
 639	dev_t dev = sbi->sb->s_bdev->bd_dev;
 640	struct flush_cmd_control *fcc;
 
 641
 642	if (SM_I(sbi)->fcc_info) {
 643		fcc = SM_I(sbi)->fcc_info;
 644		if (fcc->f2fs_issue_flush)
 645			return 0;
 646		goto init_thread;
 647	}
 648
 649	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
 650	if (!fcc)
 651		return -ENOMEM;
 652	atomic_set(&fcc->issued_flush, 0);
 653	atomic_set(&fcc->queued_flush, 0);
 654	init_waitqueue_head(&fcc->flush_wait_queue);
 655	init_llist_head(&fcc->issue_list);
 656	SM_I(sbi)->fcc_info = fcc;
 657	if (!test_opt(sbi, FLUSH_MERGE))
 658		return 0;
 659
 660init_thread:
 661	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
 662				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
 663	if (IS_ERR(fcc->f2fs_issue_flush)) {
 664		int err = PTR_ERR(fcc->f2fs_issue_flush);
 665
 666		fcc->f2fs_issue_flush = NULL;
 667		return err;
 668	}
 669
 670	return 0;
 671}
 672
 673void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
 674{
 675	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
 676
 677	if (fcc && fcc->f2fs_issue_flush) {
 678		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
 679
 680		fcc->f2fs_issue_flush = NULL;
 681		kthread_stop(flush_thread);
 682	}
 683	if (free) {
 684		kfree(fcc);
 685		SM_I(sbi)->fcc_info = NULL;
 686	}
 687}
 688
 689int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
 690{
 691	int ret = 0, i;
 692
 693	if (!f2fs_is_multi_device(sbi))
 694		return 0;
 695
 696	if (test_opt(sbi, NOBARRIER))
 697		return 0;
 698
 699	for (i = 1; i < sbi->s_ndevs; i++) {
 700		int count = DEFAULT_RETRY_IO_COUNT;
 701
 702		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
 703			continue;
 704
 705		do {
 706			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
 707			if (ret)
 708				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
 709		} while (ret && --count);
 710
 711		if (ret) {
 712			f2fs_stop_checkpoint(sbi, false,
 713					STOP_CP_REASON_FLUSH_FAIL);
 714			break;
 715		}
 716
 717		spin_lock(&sbi->dev_lock);
 718		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
 719		spin_unlock(&sbi->dev_lock);
 720	}
 721
 722	return ret;
 723}
 724
 725static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 726		enum dirty_type dirty_type)
 727{
 728	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 729
 730	/* need not be added */
 731	if (IS_CURSEG(sbi, segno))
 732		return;
 733
 734	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 735		dirty_i->nr_dirty[dirty_type]++;
 736
 737	if (dirty_type == DIRTY) {
 738		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 739		enum dirty_type t = sentry->type;
 740
 741		if (unlikely(t >= DIRTY)) {
 742			f2fs_bug_on(sbi, 1);
 743			return;
 744		}
 745		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
 746			dirty_i->nr_dirty[t]++;
 747
 748		if (__is_large_section(sbi)) {
 749			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 750			block_t valid_blocks =
 751				get_valid_blocks(sbi, segno, true);
 752
 753			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
 754					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
 755
 756			if (!IS_CURSEC(sbi, secno))
 757				set_bit(secno, dirty_i->dirty_secmap);
 758		}
 759	}
 760}
 761
 762static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
 763		enum dirty_type dirty_type)
 764{
 765	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 766	block_t valid_blocks;
 767
 768	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
 769		dirty_i->nr_dirty[dirty_type]--;
 770
 771	if (dirty_type == DIRTY) {
 772		struct seg_entry *sentry = get_seg_entry(sbi, segno);
 773		enum dirty_type t = sentry->type;
 774
 775		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
 776			dirty_i->nr_dirty[t]--;
 777
 778		valid_blocks = get_valid_blocks(sbi, segno, true);
 779		if (valid_blocks == 0) {
 780			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
 781						dirty_i->victim_secmap);
 782#ifdef CONFIG_F2FS_CHECK_FS
 783			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
 784#endif
 785		}
 786		if (__is_large_section(sbi)) {
 787			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
 788
 789			if (!valid_blocks ||
 790					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
 791				clear_bit(secno, dirty_i->dirty_secmap);
 792				return;
 793			}
 794
 795			if (!IS_CURSEC(sbi, secno))
 796				set_bit(secno, dirty_i->dirty_secmap);
 797		}
 798	}
 799}
 800
 801/*
 802 * Should not occur error such as -ENOMEM.
 803 * Adding dirty entry into seglist is not critical operation.
 804 * If a given segment is one of current working segments, it won't be added.
 805 */
 806static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
 807{
 808	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 809	unsigned short valid_blocks, ckpt_valid_blocks;
 810	unsigned int usable_blocks;
 811
 812	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
 813		return;
 814
 815	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
 816	mutex_lock(&dirty_i->seglist_lock);
 817
 818	valid_blocks = get_valid_blocks(sbi, segno, false);
 819	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
 820
 821	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
 822		ckpt_valid_blocks == usable_blocks)) {
 823		__locate_dirty_segment(sbi, segno, PRE);
 824		__remove_dirty_segment(sbi, segno, DIRTY);
 825	} else if (valid_blocks < usable_blocks) {
 826		__locate_dirty_segment(sbi, segno, DIRTY);
 827	} else {
 828		/* Recovery routine with SSR needs this */
 829		__remove_dirty_segment(sbi, segno, DIRTY);
 830	}
 831
 832	mutex_unlock(&dirty_i->seglist_lock);
 833}
 834
 835/* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
 836void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
 837{
 838	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 839	unsigned int segno;
 840
 841	mutex_lock(&dirty_i->seglist_lock);
 842	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 843		if (get_valid_blocks(sbi, segno, false))
 844			continue;
 845		if (IS_CURSEG(sbi, segno))
 846			continue;
 847		__locate_dirty_segment(sbi, segno, PRE);
 848		__remove_dirty_segment(sbi, segno, DIRTY);
 849	}
 850	mutex_unlock(&dirty_i->seglist_lock);
 851}
 852
 853block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
 854{
 855	int ovp_hole_segs =
 856		(overprovision_segments(sbi) - reserved_segments(sbi));
 857	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
 858	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 859	block_t holes[2] = {0, 0};	/* DATA and NODE */
 860	block_t unusable;
 861	struct seg_entry *se;
 862	unsigned int segno;
 
 863
 864	mutex_lock(&dirty_i->seglist_lock);
 865	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 866		se = get_seg_entry(sbi, segno);
 867		if (IS_NODESEG(se->type))
 868			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
 869							se->valid_blocks;
 870		else
 871			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
 872							se->valid_blocks;
 873	}
 874	mutex_unlock(&dirty_i->seglist_lock);
 875
 876	unusable = max(holes[DATA], holes[NODE]);
 877	if (unusable > ovp_holes)
 878		return unusable - ovp_holes;
 879	return 0;
 880}
 881
 882int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
 883{
 884	int ovp_hole_segs =
 885		(overprovision_segments(sbi) - reserved_segments(sbi));
 886	if (unusable > F2FS_OPTION(sbi).unusable_cap)
 887		return -EAGAIN;
 888	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
 889		dirty_segments(sbi) > ovp_hole_segs)
 890		return -EAGAIN;
 891	return 0;
 892}
 893
 894/* This is only used by SBI_CP_DISABLED */
 895static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
 896{
 897	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
 898	unsigned int segno = 0;
 899
 900	mutex_lock(&dirty_i->seglist_lock);
 901	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
 902		if (get_valid_blocks(sbi, segno, false))
 903			continue;
 904		if (get_ckpt_valid_blocks(sbi, segno, false))
 905			continue;
 906		mutex_unlock(&dirty_i->seglist_lock);
 907		return segno;
 908	}
 909	mutex_unlock(&dirty_i->seglist_lock);
 910	return NULL_SEGNO;
 911}
 912
 913static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
 914		struct block_device *bdev, block_t lstart,
 915		block_t start, block_t len)
 916{
 917	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 918	struct list_head *pend_list;
 919	struct discard_cmd *dc;
 920
 921	f2fs_bug_on(sbi, !len);
 
 
 
 922
 923	pend_list = &dcc->pend_list[plist_idx(len)];
 924
 925	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
 926	INIT_LIST_HEAD(&dc->list);
 927	dc->bdev = bdev;
 928	dc->lstart = lstart;
 929	dc->start = start;
 930	dc->len = len;
 931	dc->ref = 0;
 932	dc->state = D_PREP;
 933	dc->queued = 0;
 934	dc->error = 0;
 935	init_completion(&dc->wait);
 936	list_add_tail(&dc->list, pend_list);
 937	spin_lock_init(&dc->lock);
 938	dc->bio_ref = 0;
 939	atomic_inc(&dcc->discard_cmd_cnt);
 940	dcc->undiscard_blks += len;
 941
 942	return dc;
 943}
 944
 945static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
 946				struct block_device *bdev, block_t lstart,
 947				block_t start, block_t len,
 948				struct rb_node *parent, struct rb_node **p,
 949				bool leftmost)
 950{
 951	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 952	struct discard_cmd *dc;
 953
 954	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
 955
 956	rb_link_node(&dc->rb_node, parent, p);
 957	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
 958
 959	return dc;
 960}
 961
 962static void __detach_discard_cmd(struct discard_cmd_control *dcc,
 963							struct discard_cmd *dc)
 964{
 965	if (dc->state == D_DONE)
 966		atomic_sub(dc->queued, &dcc->queued_discard);
 967
 968	list_del(&dc->list);
 969	rb_erase_cached(&dc->rb_node, &dcc->root);
 970	dcc->undiscard_blks -= dc->len;
 971
 972	kmem_cache_free(discard_cmd_slab, dc);
 973
 974	atomic_dec(&dcc->discard_cmd_cnt);
 975}
 976
 977static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
 978							struct discard_cmd *dc)
 979{
 980	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
 981	unsigned long flags;
 982
 983	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
 984
 985	spin_lock_irqsave(&dc->lock, flags);
 986	if (dc->bio_ref) {
 987		spin_unlock_irqrestore(&dc->lock, flags);
 988		return;
 989	}
 990	spin_unlock_irqrestore(&dc->lock, flags);
 991
 992	f2fs_bug_on(sbi, dc->ref);
 993
 994	if (dc->error == -EOPNOTSUPP)
 995		dc->error = 0;
 996
 997	if (dc->error)
 998		printk_ratelimited(
 999			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1000			KERN_INFO, sbi->sb->s_id,
1001			dc->lstart, dc->start, dc->len, dc->error);
1002	__detach_discard_cmd(dcc, dc);
1003}
1004
1005static void f2fs_submit_discard_endio(struct bio *bio)
1006{
1007	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1008	unsigned long flags;
1009
1010	spin_lock_irqsave(&dc->lock, flags);
1011	if (!dc->error)
1012		dc->error = blk_status_to_errno(bio->bi_status);
1013	dc->bio_ref--;
1014	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1015		dc->state = D_DONE;
1016		complete_all(&dc->wait);
1017	}
1018	spin_unlock_irqrestore(&dc->lock, flags);
1019	bio_put(bio);
1020}
1021
1022static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1023				block_t start, block_t end)
 
1024{
1025#ifdef CONFIG_F2FS_CHECK_FS
1026	struct seg_entry *sentry;
1027	unsigned int segno;
1028	block_t blk = start;
1029	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1030	unsigned long *map;
1031
1032	while (blk < end) {
1033		segno = GET_SEGNO(sbi, blk);
1034		sentry = get_seg_entry(sbi, segno);
1035		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1036
1037		if (end < START_BLOCK(sbi, segno + 1))
1038			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1039		else
1040			size = max_blocks;
1041		map = (unsigned long *)(sentry->cur_valid_map);
1042		offset = __find_rev_next_bit(map, size, offset);
1043		f2fs_bug_on(sbi, offset != size);
1044		blk = START_BLOCK(sbi, segno + 1);
1045	}
1046#endif
1047}
1048
1049static void __init_discard_policy(struct f2fs_sb_info *sbi,
1050				struct discard_policy *dpolicy,
1051				int discard_type, unsigned int granularity)
1052{
1053	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1054
1055	/* common policy */
1056	dpolicy->type = discard_type;
1057	dpolicy->sync = true;
1058	dpolicy->ordered = false;
1059	dpolicy->granularity = granularity;
1060
1061	dpolicy->max_requests = dcc->max_discard_request;
1062	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1063	dpolicy->timeout = false;
1064
1065	if (discard_type == DPOLICY_BG) {
1066		dpolicy->min_interval = dcc->min_discard_issue_time;
1067		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1068		dpolicy->max_interval = dcc->max_discard_issue_time;
1069		dpolicy->io_aware = true;
1070		dpolicy->sync = false;
1071		dpolicy->ordered = true;
1072		if (utilization(sbi) > dcc->discard_urgent_util) {
1073			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1074			if (atomic_read(&dcc->discard_cmd_cnt))
1075				dpolicy->max_interval =
1076					dcc->min_discard_issue_time;
1077		}
1078	} else if (discard_type == DPOLICY_FORCE) {
1079		dpolicy->min_interval = dcc->min_discard_issue_time;
1080		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1081		dpolicy->max_interval = dcc->max_discard_issue_time;
1082		dpolicy->io_aware = false;
1083	} else if (discard_type == DPOLICY_FSTRIM) {
1084		dpolicy->io_aware = false;
1085	} else if (discard_type == DPOLICY_UMOUNT) {
1086		dpolicy->io_aware = false;
1087		/* we need to issue all to keep CP_TRIMMED_FLAG */
1088		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1089		dpolicy->timeout = true;
1090	}
1091}
1092
1093static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1094				struct block_device *bdev, block_t lstart,
1095				block_t start, block_t len);
1096/* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1097static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1098						struct discard_policy *dpolicy,
1099						struct discard_cmd *dc,
1100						unsigned int *issued)
1101{
1102	struct block_device *bdev = dc->bdev;
1103	unsigned int max_discard_blocks =
1104			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1105	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1106	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1107					&(dcc->fstrim_list) : &(dcc->wait_list);
1108	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1109	block_t lstart, start, len, total_len;
1110	int err = 0;
1111
1112	if (dc->state != D_PREP)
1113		return 0;
1114
1115	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1116		return 0;
1117
1118	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1119
1120	lstart = dc->lstart;
1121	start = dc->start;
1122	len = dc->len;
1123	total_len = len;
1124
1125	dc->len = 0;
1126
1127	while (total_len && *issued < dpolicy->max_requests && !err) {
1128		struct bio *bio = NULL;
1129		unsigned long flags;
1130		bool last = true;
1131
1132		if (len > max_discard_blocks) {
1133			len = max_discard_blocks;
1134			last = false;
1135		}
1136
1137		(*issued)++;
1138		if (*issued == dpolicy->max_requests)
1139			last = true;
1140
1141		dc->len += len;
1142
1143		if (time_to_inject(sbi, FAULT_DISCARD)) {
1144			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1145			err = -EIO;
1146		} else {
1147			err = __blkdev_issue_discard(bdev,
1148					SECTOR_FROM_BLOCK(start),
1149					SECTOR_FROM_BLOCK(len),
1150					GFP_NOFS, &bio);
1151		}
1152		if (err) {
1153			spin_lock_irqsave(&dc->lock, flags);
1154			if (dc->state == D_PARTIAL)
1155				dc->state = D_SUBMIT;
1156			spin_unlock_irqrestore(&dc->lock, flags);
1157
1158			break;
1159		}
1160
1161		f2fs_bug_on(sbi, !bio);
1162
1163		/*
1164		 * should keep before submission to avoid D_DONE
1165		 * right away
1166		 */
1167		spin_lock_irqsave(&dc->lock, flags);
1168		if (last)
1169			dc->state = D_SUBMIT;
1170		else
1171			dc->state = D_PARTIAL;
1172		dc->bio_ref++;
1173		spin_unlock_irqrestore(&dc->lock, flags);
1174
1175		atomic_inc(&dcc->queued_discard);
1176		dc->queued++;
1177		list_move_tail(&dc->list, wait_list);
1178
1179		/* sanity check on discard range */
1180		__check_sit_bitmap(sbi, lstart, lstart + len);
1181
1182		bio->bi_private = dc;
1183		bio->bi_end_io = f2fs_submit_discard_endio;
1184		bio->bi_opf |= flag;
1185		submit_bio(bio);
1186
1187		atomic_inc(&dcc->issued_discard);
1188
1189		f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1190
1191		lstart += len;
1192		start += len;
1193		total_len -= len;
1194		len = total_len;
1195	}
1196
1197	if (!err && len) {
1198		dcc->undiscard_blks -= len;
1199		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1200	}
1201	return err;
1202}
1203
1204static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1205				struct block_device *bdev, block_t lstart,
1206				block_t start, block_t len,
1207				struct rb_node **insert_p,
1208				struct rb_node *insert_parent)
1209{
1210	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1211	struct rb_node **p;
1212	struct rb_node *parent = NULL;
1213	bool leftmost = true;
1214
1215	if (insert_p && insert_parent) {
1216		parent = insert_parent;
1217		p = insert_p;
1218		goto do_insert;
1219	}
1220
1221	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1222							lstart, &leftmost);
1223do_insert:
1224	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1225								p, leftmost);
1226}
1227
1228static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1229						struct discard_cmd *dc)
1230{
1231	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1232}
1233
1234static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1235				struct discard_cmd *dc, block_t blkaddr)
1236{
1237	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1238	struct discard_info di = dc->di;
1239	bool modified = false;
1240
1241	if (dc->state == D_DONE || dc->len == 1) {
1242		__remove_discard_cmd(sbi, dc);
1243		return;
1244	}
1245
1246	dcc->undiscard_blks -= di.len;
1247
1248	if (blkaddr > di.lstart) {
1249		dc->len = blkaddr - dc->lstart;
1250		dcc->undiscard_blks += dc->len;
1251		__relocate_discard_cmd(dcc, dc);
1252		modified = true;
1253	}
1254
1255	if (blkaddr < di.lstart + di.len - 1) {
1256		if (modified) {
1257			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1258					di.start + blkaddr + 1 - di.lstart,
1259					di.lstart + di.len - 1 - blkaddr,
1260					NULL, NULL);
1261		} else {
1262			dc->lstart++;
1263			dc->len--;
1264			dc->start++;
1265			dcc->undiscard_blks += dc->len;
1266			__relocate_discard_cmd(dcc, dc);
1267		}
1268	}
1269}
1270
1271static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1272				struct block_device *bdev, block_t lstart,
1273				block_t start, block_t len)
1274{
1275	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1276	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1277	struct discard_cmd *dc;
1278	struct discard_info di = {0};
1279	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1280	unsigned int max_discard_blocks =
1281			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1282	block_t end = lstart + len;
1283
1284	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1285					NULL, lstart,
1286					(struct rb_entry **)&prev_dc,
1287					(struct rb_entry **)&next_dc,
1288					&insert_p, &insert_parent, true, NULL);
1289	if (dc)
1290		prev_dc = dc;
1291
1292	if (!prev_dc) {
1293		di.lstart = lstart;
1294		di.len = next_dc ? next_dc->lstart - lstart : len;
1295		di.len = min(di.len, len);
1296		di.start = start;
1297	}
1298
1299	while (1) {
1300		struct rb_node *node;
1301		bool merged = false;
1302		struct discard_cmd *tdc = NULL;
1303
1304		if (prev_dc) {
1305			di.lstart = prev_dc->lstart + prev_dc->len;
1306			if (di.lstart < lstart)
1307				di.lstart = lstart;
1308			if (di.lstart >= end)
1309				break;
1310
1311			if (!next_dc || next_dc->lstart > end)
1312				di.len = end - di.lstart;
1313			else
1314				di.len = next_dc->lstart - di.lstart;
1315			di.start = start + di.lstart - lstart;
1316		}
1317
1318		if (!di.len)
1319			goto next;
1320
1321		if (prev_dc && prev_dc->state == D_PREP &&
1322			prev_dc->bdev == bdev &&
1323			__is_discard_back_mergeable(&di, &prev_dc->di,
1324							max_discard_blocks)) {
1325			prev_dc->di.len += di.len;
1326			dcc->undiscard_blks += di.len;
1327			__relocate_discard_cmd(dcc, prev_dc);
1328			di = prev_dc->di;
1329			tdc = prev_dc;
1330			merged = true;
1331		}
1332
1333		if (next_dc && next_dc->state == D_PREP &&
1334			next_dc->bdev == bdev &&
1335			__is_discard_front_mergeable(&di, &next_dc->di,
1336							max_discard_blocks)) {
1337			next_dc->di.lstart = di.lstart;
1338			next_dc->di.len += di.len;
1339			next_dc->di.start = di.start;
1340			dcc->undiscard_blks += di.len;
1341			__relocate_discard_cmd(dcc, next_dc);
1342			if (tdc)
1343				__remove_discard_cmd(sbi, tdc);
1344			merged = true;
1345		}
1346
1347		if (!merged) {
1348			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1349							di.len, NULL, NULL);
1350		}
1351 next:
1352		prev_dc = next_dc;
1353		if (!prev_dc)
1354			break;
1355
1356		node = rb_next(&prev_dc->rb_node);
1357		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1358	}
1359}
1360
1361static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1362		struct block_device *bdev, block_t blkstart, block_t blklen)
1363{
1364	block_t lblkstart = blkstart;
1365
1366	if (!f2fs_bdev_support_discard(bdev))
1367		return;
1368
1369	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1370
1371	if (f2fs_is_multi_device(sbi)) {
1372		int devi = f2fs_target_device_index(sbi, blkstart);
1373
1374		blkstart -= FDEV(devi).start_blk;
1375	}
1376	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1377	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1378	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1379}
1380
1381static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1382					struct discard_policy *dpolicy)
1383{
1384	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1385	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1386	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1387	struct discard_cmd *dc;
1388	struct blk_plug plug;
1389	unsigned int pos = dcc->next_pos;
1390	unsigned int issued = 0;
1391	bool io_interrupted = false;
1392
1393	mutex_lock(&dcc->cmd_lock);
1394	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1395					NULL, pos,
1396					(struct rb_entry **)&prev_dc,
1397					(struct rb_entry **)&next_dc,
1398					&insert_p, &insert_parent, true, NULL);
1399	if (!dc)
1400		dc = next_dc;
1401
1402	blk_start_plug(&plug);
1403
1404	while (dc) {
1405		struct rb_node *node;
1406		int err = 0;
1407
1408		if (dc->state != D_PREP)
1409			goto next;
1410
1411		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1412			io_interrupted = true;
1413			break;
1414		}
1415
1416		dcc->next_pos = dc->lstart + dc->len;
1417		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1418
1419		if (issued >= dpolicy->max_requests)
1420			break;
1421next:
1422		node = rb_next(&dc->rb_node);
1423		if (err)
1424			__remove_discard_cmd(sbi, dc);
1425		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1426	}
1427
1428	blk_finish_plug(&plug);
1429
1430	if (!dc)
1431		dcc->next_pos = 0;
1432
1433	mutex_unlock(&dcc->cmd_lock);
1434
1435	if (!issued && io_interrupted)
1436		issued = -1;
1437
1438	return issued;
1439}
1440static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1441					struct discard_policy *dpolicy);
1442
1443static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1444					struct discard_policy *dpolicy)
1445{
1446	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447	struct list_head *pend_list;
1448	struct discard_cmd *dc, *tmp;
1449	struct blk_plug plug;
1450	int i, issued;
1451	bool io_interrupted = false;
1452
1453	if (dpolicy->timeout)
1454		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1455
1456retry:
1457	issued = 0;
1458	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1459		if (dpolicy->timeout &&
1460				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1461			break;
1462
1463		if (i + 1 < dpolicy->granularity)
1464			break;
1465
1466		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1467			return __issue_discard_cmd_orderly(sbi, dpolicy);
1468
1469		pend_list = &dcc->pend_list[i];
1470
1471		mutex_lock(&dcc->cmd_lock);
1472		if (list_empty(pend_list))
1473			goto next;
1474		if (unlikely(dcc->rbtree_check))
1475			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1476							&dcc->root, false));
1477		blk_start_plug(&plug);
1478		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1479			f2fs_bug_on(sbi, dc->state != D_PREP);
1480
1481			if (dpolicy->timeout &&
1482				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483				break;
1484
1485			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1486						!is_idle(sbi, DISCARD_TIME)) {
1487				io_interrupted = true;
1488				break;
1489			}
1490
1491			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1492
1493			if (issued >= dpolicy->max_requests)
1494				break;
1495		}
1496		blk_finish_plug(&plug);
1497next:
1498		mutex_unlock(&dcc->cmd_lock);
1499
1500		if (issued >= dpolicy->max_requests || io_interrupted)
1501			break;
1502	}
1503
1504	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1505		__wait_all_discard_cmd(sbi, dpolicy);
1506		goto retry;
1507	}
1508
1509	if (!issued && io_interrupted)
1510		issued = -1;
1511
1512	return issued;
1513}
1514
1515static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1516{
1517	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1518	struct list_head *pend_list;
1519	struct discard_cmd *dc, *tmp;
1520	int i;
1521	bool dropped = false;
1522
1523	mutex_lock(&dcc->cmd_lock);
1524	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1525		pend_list = &dcc->pend_list[i];
1526		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1527			f2fs_bug_on(sbi, dc->state != D_PREP);
1528			__remove_discard_cmd(sbi, dc);
1529			dropped = true;
1530		}
1531	}
1532	mutex_unlock(&dcc->cmd_lock);
1533
1534	return dropped;
1535}
1536
1537void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1538{
1539	__drop_discard_cmd(sbi);
1540}
1541
1542static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1543							struct discard_cmd *dc)
1544{
1545	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1546	unsigned int len = 0;
1547
1548	wait_for_completion_io(&dc->wait);
1549	mutex_lock(&dcc->cmd_lock);
1550	f2fs_bug_on(sbi, dc->state != D_DONE);
1551	dc->ref--;
1552	if (!dc->ref) {
1553		if (!dc->error)
1554			len = dc->len;
1555		__remove_discard_cmd(sbi, dc);
1556	}
1557	mutex_unlock(&dcc->cmd_lock);
1558
1559	return len;
1560}
1561
1562static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1563						struct discard_policy *dpolicy,
1564						block_t start, block_t end)
1565{
1566	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1567	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1568					&(dcc->fstrim_list) : &(dcc->wait_list);
1569	struct discard_cmd *dc = NULL, *iter, *tmp;
1570	unsigned int trimmed = 0;
1571
1572next:
1573	dc = NULL;
1574
1575	mutex_lock(&dcc->cmd_lock);
1576	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1577		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1578			continue;
1579		if (iter->len < dpolicy->granularity)
1580			continue;
1581		if (iter->state == D_DONE && !iter->ref) {
1582			wait_for_completion_io(&iter->wait);
1583			if (!iter->error)
1584				trimmed += iter->len;
1585			__remove_discard_cmd(sbi, iter);
1586		} else {
1587			iter->ref++;
1588			dc = iter;
1589			break;
1590		}
1591	}
1592	mutex_unlock(&dcc->cmd_lock);
1593
1594	if (dc) {
1595		trimmed += __wait_one_discard_bio(sbi, dc);
1596		goto next;
1597	}
1598
1599	return trimmed;
1600}
1601
1602static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1603						struct discard_policy *dpolicy)
1604{
1605	struct discard_policy dp;
1606	unsigned int discard_blks;
1607
1608	if (dpolicy)
1609		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1610
1611	/* wait all */
1612	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1613	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1614	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1615	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1616
1617	return discard_blks;
1618}
1619
1620/* This should be covered by global mutex, &sit_i->sentry_lock */
1621static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1622{
1623	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1624	struct discard_cmd *dc;
1625	bool need_wait = false;
1626
1627	mutex_lock(&dcc->cmd_lock);
1628	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1629							NULL, blkaddr);
1630	if (dc) {
1631		if (dc->state == D_PREP) {
1632			__punch_discard_cmd(sbi, dc, blkaddr);
1633		} else {
1634			dc->ref++;
1635			need_wait = true;
1636		}
1637	}
1638	mutex_unlock(&dcc->cmd_lock);
1639
1640	if (need_wait)
1641		__wait_one_discard_bio(sbi, dc);
1642}
1643
1644void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1645{
1646	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1647
1648	if (dcc && dcc->f2fs_issue_discard) {
1649		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1650
1651		dcc->f2fs_issue_discard = NULL;
1652		kthread_stop(discard_thread);
1653	}
1654}
1655
1656/* This comes from f2fs_put_super */
1657bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1658{
1659	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1660	struct discard_policy dpolicy;
1661	bool dropped;
1662
1663	if (!atomic_read(&dcc->discard_cmd_cnt))
1664		return false;
1665
1666	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1667					dcc->discard_granularity);
1668	__issue_discard_cmd(sbi, &dpolicy);
1669	dropped = __drop_discard_cmd(sbi);
1670
1671	/* just to make sure there is no pending discard commands */
1672	__wait_all_discard_cmd(sbi, NULL);
1673
1674	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1675	return dropped;
1676}
1677
1678static int issue_discard_thread(void *data)
1679{
1680	struct f2fs_sb_info *sbi = data;
1681	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1682	wait_queue_head_t *q = &dcc->discard_wait_queue;
1683	struct discard_policy dpolicy;
1684	unsigned int wait_ms = dcc->min_discard_issue_time;
1685	int issued;
1686
1687	set_freezable();
1688
1689	do {
1690		wait_event_interruptible_timeout(*q,
1691				kthread_should_stop() || freezing(current) ||
1692				dcc->discard_wake,
1693				msecs_to_jiffies(wait_ms));
1694
1695		if (sbi->gc_mode == GC_URGENT_HIGH ||
1696			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1697			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1698		else
1699			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1700						dcc->discard_granularity);
1701
1702		if (dcc->discard_wake)
1703			dcc->discard_wake = 0;
1704
1705		/* clean up pending candidates before going to sleep */
1706		if (atomic_read(&dcc->queued_discard))
1707			__wait_all_discard_cmd(sbi, NULL);
1708
1709		if (try_to_freeze())
1710			continue;
1711		if (f2fs_readonly(sbi->sb))
1712			continue;
1713		if (kthread_should_stop())
1714			return 0;
1715		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1716			!atomic_read(&dcc->discard_cmd_cnt)) {
1717			wait_ms = dpolicy.max_interval;
1718			continue;
1719		}
1720
1721		sb_start_intwrite(sbi->sb);
1722
1723		issued = __issue_discard_cmd(sbi, &dpolicy);
1724		if (issued > 0) {
1725			__wait_all_discard_cmd(sbi, &dpolicy);
1726			wait_ms = dpolicy.min_interval;
1727		} else if (issued == -1) {
1728			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1729			if (!wait_ms)
1730				wait_ms = dpolicy.mid_interval;
1731		} else {
1732			wait_ms = dpolicy.max_interval;
1733		}
1734		if (!atomic_read(&dcc->discard_cmd_cnt))
1735			wait_ms = dpolicy.max_interval;
1736
1737		sb_end_intwrite(sbi->sb);
1738
1739	} while (!kthread_should_stop());
1740	return 0;
1741}
1742
1743#ifdef CONFIG_BLK_DEV_ZONED
1744static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1745		struct block_device *bdev, block_t blkstart, block_t blklen)
1746{
1747	sector_t sector, nr_sects;
1748	block_t lblkstart = blkstart;
1749	int devi = 0;
1750
1751	if (f2fs_is_multi_device(sbi)) {
1752		devi = f2fs_target_device_index(sbi, blkstart);
1753		if (blkstart < FDEV(devi).start_blk ||
1754		    blkstart > FDEV(devi).end_blk) {
1755			f2fs_err(sbi, "Invalid block %x", blkstart);
1756			return -EIO;
1757		}
1758		blkstart -= FDEV(devi).start_blk;
1759	}
1760
1761	/* For sequential zones, reset the zone write pointer */
1762	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1763		sector = SECTOR_FROM_BLOCK(blkstart);
1764		nr_sects = SECTOR_FROM_BLOCK(blklen);
1765
1766		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1767				nr_sects != bdev_zone_sectors(bdev)) {
1768			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1769				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1770				 blkstart, blklen);
1771			return -EIO;
1772		}
1773		trace_f2fs_issue_reset_zone(bdev, blkstart);
1774		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1775					sector, nr_sects, GFP_NOFS);
1776	}
1777
1778	/* For conventional zones, use regular discard if supported */
1779	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1780	return 0;
1781}
1782#endif
1783
1784static int __issue_discard_async(struct f2fs_sb_info *sbi,
1785		struct block_device *bdev, block_t blkstart, block_t blklen)
1786{
1787#ifdef CONFIG_BLK_DEV_ZONED
1788	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1789		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1790#endif
1791	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1792	return 0;
1793}
1794
1795static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1796				block_t blkstart, block_t blklen)
1797{
1798	sector_t start = blkstart, len = 0;
1799	struct block_device *bdev;
1800	struct seg_entry *se;
1801	unsigned int offset;
1802	block_t i;
1803	int err = 0;
1804
1805	bdev = f2fs_target_device(sbi, blkstart, NULL);
1806
1807	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1808		if (i != start) {
1809			struct block_device *bdev2 =
1810				f2fs_target_device(sbi, i, NULL);
1811
1812			if (bdev2 != bdev) {
1813				err = __issue_discard_async(sbi, bdev,
1814						start, len);
1815				if (err)
1816					return err;
1817				bdev = bdev2;
1818				start = i;
1819				len = 0;
1820			}
1821		}
1822
1823		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1824		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1825
1826		if (f2fs_block_unit_discard(sbi) &&
1827				!f2fs_test_and_set_bit(offset, se->discard_map))
1828			sbi->discard_blks--;
1829	}
1830
1831	if (len)
1832		err = __issue_discard_async(sbi, bdev, start, len);
1833	return err;
1834}
1835
1836static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1837							bool check_only)
1838{
1839	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1840	int max_blocks = sbi->blocks_per_seg;
1841	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1842	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1843	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1844	unsigned long *discard_map = (unsigned long *)se->discard_map;
1845	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1846	unsigned int start = 0, end = -1;
1847	bool force = (cpc->reason & CP_DISCARD);
1848	struct discard_entry *de = NULL;
1849	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1850	int i;
1851
1852	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1853			!f2fs_block_unit_discard(sbi))
1854		return false;
1855
1856	if (!force) {
1857		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1858			SM_I(sbi)->dcc_info->nr_discards >=
1859				SM_I(sbi)->dcc_info->max_discards)
1860			return false;
1861	}
1862
1863	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1864	for (i = 0; i < entries; i++)
1865		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1866				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1867
1868	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1869				SM_I(sbi)->dcc_info->max_discards) {
1870		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1871		if (start >= max_blocks)
1872			break;
1873
1874		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1875		if (force && start && end != max_blocks
1876					&& (end - start) < cpc->trim_minlen)
1877			continue;
1878
1879		if (check_only)
1880			return true;
1881
1882		if (!de) {
1883			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1884						GFP_F2FS_ZERO, true, NULL);
1885			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1886			list_add_tail(&de->list, head);
1887		}
1888
1889		for (i = start; i < end; i++)
1890			__set_bit_le(i, (void *)de->discard_map);
1891
1892		SM_I(sbi)->dcc_info->nr_discards += end - start;
1893	}
1894	return false;
1895}
1896
1897static void release_discard_addr(struct discard_entry *entry)
1898{
1899	list_del(&entry->list);
1900	kmem_cache_free(discard_entry_slab, entry);
1901}
1902
1903void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1904{
1905	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1906	struct discard_entry *entry, *this;
1907
1908	/* drop caches */
1909	list_for_each_entry_safe(entry, this, head, list)
1910		release_discard_addr(entry);
 
 
1911}
1912
1913/*
1914 * Should call f2fs_clear_prefree_segments after checkpoint is done.
1915 */
1916static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1917{
1918	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1919	unsigned int segno;
1920
1921	mutex_lock(&dirty_i->seglist_lock);
1922	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1923		__set_test_and_free(sbi, segno, false);
1924	mutex_unlock(&dirty_i->seglist_lock);
1925}
1926
1927void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1928						struct cp_control *cpc)
1929{
1930	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1931	struct list_head *head = &dcc->entry_list;
1932	struct discard_entry *entry, *this;
1933	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1934	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1935	unsigned int start = 0, end = -1;
1936	unsigned int secno, start_segno;
1937	bool force = (cpc->reason & CP_DISCARD);
1938	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1939						DISCARD_UNIT_SECTION;
1940
1941	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1942		section_alignment = true;
1943
1944	mutex_lock(&dirty_i->seglist_lock);
1945
1946	while (1) {
1947		int i;
1948
1949		if (section_alignment && end != -1)
1950			end--;
1951		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1952		if (start >= MAIN_SEGS(sbi))
1953			break;
1954		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1955								start + 1);
1956
1957		if (section_alignment) {
1958			start = rounddown(start, sbi->segs_per_sec);
1959			end = roundup(end, sbi->segs_per_sec);
1960		}
1961
1962		for (i = start; i < end; i++) {
1963			if (test_and_clear_bit(i, prefree_map))
1964				dirty_i->nr_dirty[PRE]--;
1965		}
1966
1967		if (!f2fs_realtime_discard_enable(sbi))
1968			continue;
1969
1970		if (force && start >= cpc->trim_start &&
1971					(end - 1) <= cpc->trim_end)
1972				continue;
1973
1974		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1975			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1976				(end - start) << sbi->log_blocks_per_seg);
1977			continue;
1978		}
1979next:
1980		secno = GET_SEC_FROM_SEG(sbi, start);
1981		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1982		if (!IS_CURSEC(sbi, secno) &&
1983			!get_valid_blocks(sbi, start, true))
1984			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1985				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1986
1987		start = start_segno + sbi->segs_per_sec;
1988		if (start < end)
1989			goto next;
1990		else
1991			end = start - 1;
1992	}
1993	mutex_unlock(&dirty_i->seglist_lock);
1994
1995	if (!f2fs_block_unit_discard(sbi))
1996		goto wakeup;
1997
1998	/* send small discards */
1999	list_for_each_entry_safe(entry, this, head, list) {
2000		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001		bool is_valid = test_bit_le(0, entry->discard_map);
2002
2003find_next:
2004		if (is_valid) {
2005			next_pos = find_next_zero_bit_le(entry->discard_map,
2006					sbi->blocks_per_seg, cur_pos);
2007			len = next_pos - cur_pos;
2008
2009			if (f2fs_sb_has_blkzoned(sbi) ||
2010			    (force && len < cpc->trim_minlen))
2011				goto skip;
2012
2013			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2014									len);
2015			total_len += len;
2016		} else {
2017			next_pos = find_next_bit_le(entry->discard_map,
2018					sbi->blocks_per_seg, cur_pos);
2019		}
2020skip:
2021		cur_pos = next_pos;
2022		is_valid = !is_valid;
2023
2024		if (cur_pos < sbi->blocks_per_seg)
2025			goto find_next;
2026
2027		release_discard_addr(entry);
2028		dcc->nr_discards -= total_len;
2029	}
2030
2031wakeup:
2032	wake_up_discard_thread(sbi, false);
2033}
2034
2035int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2036{
2037	dev_t dev = sbi->sb->s_bdev->bd_dev;
2038	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2039	int err = 0;
2040
2041	if (!f2fs_realtime_discard_enable(sbi))
2042		return 0;
2043
2044	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2045				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2046	if (IS_ERR(dcc->f2fs_issue_discard)) {
2047		err = PTR_ERR(dcc->f2fs_issue_discard);
2048		dcc->f2fs_issue_discard = NULL;
2049	}
2050
2051	return err;
2052}
2053
2054static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2055{
2056	struct discard_cmd_control *dcc;
2057	int err = 0, i;
2058
2059	if (SM_I(sbi)->dcc_info) {
2060		dcc = SM_I(sbi)->dcc_info;
2061		goto init_thread;
2062	}
2063
2064	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2065	if (!dcc)
2066		return -ENOMEM;
2067
2068	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2069	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2070	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2071		dcc->discard_granularity = sbi->blocks_per_seg;
2072	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2073		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2074
2075	INIT_LIST_HEAD(&dcc->entry_list);
2076	for (i = 0; i < MAX_PLIST_NUM; i++)
2077		INIT_LIST_HEAD(&dcc->pend_list[i]);
2078	INIT_LIST_HEAD(&dcc->wait_list);
2079	INIT_LIST_HEAD(&dcc->fstrim_list);
2080	mutex_init(&dcc->cmd_lock);
2081	atomic_set(&dcc->issued_discard, 0);
2082	atomic_set(&dcc->queued_discard, 0);
2083	atomic_set(&dcc->discard_cmd_cnt, 0);
2084	dcc->nr_discards = 0;
2085	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2086	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2087	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2088	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2089	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2090	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2091	dcc->undiscard_blks = 0;
2092	dcc->next_pos = 0;
2093	dcc->root = RB_ROOT_CACHED;
2094	dcc->rbtree_check = false;
2095
2096	init_waitqueue_head(&dcc->discard_wait_queue);
2097	SM_I(sbi)->dcc_info = dcc;
2098init_thread:
2099	err = f2fs_start_discard_thread(sbi);
2100	if (err) {
2101		kfree(dcc);
2102		SM_I(sbi)->dcc_info = NULL;
2103	}
2104
2105	return err;
2106}
2107
2108static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2109{
2110	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2111
2112	if (!dcc)
2113		return;
2114
2115	f2fs_stop_discard_thread(sbi);
2116
2117	/*
2118	 * Recovery can cache discard commands, so in error path of
2119	 * fill_super(), it needs to give a chance to handle them.
2120	 */
2121	f2fs_issue_discard_timeout(sbi);
2122
2123	kfree(dcc);
2124	SM_I(sbi)->dcc_info = NULL;
2125}
2126
2127static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2128{
2129	struct sit_info *sit_i = SIT_I(sbi);
2130
2131	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2132		sit_i->dirty_sentries++;
2133		return false;
2134	}
2135
2136	return true;
2137}
2138
2139static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2140					unsigned int segno, int modified)
2141{
2142	struct seg_entry *se = get_seg_entry(sbi, segno);
2143
2144	se->type = type;
2145	if (modified)
2146		__mark_sit_entry_dirty(sbi, segno);
2147}
2148
2149static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2150								block_t blkaddr)
2151{
2152	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2153
2154	if (segno == NULL_SEGNO)
2155		return 0;
2156	return get_seg_entry(sbi, segno)->mtime;
2157}
2158
2159static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2160						unsigned long long old_mtime)
2161{
2162	struct seg_entry *se;
2163	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2164	unsigned long long ctime = get_mtime(sbi, false);
2165	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2166
2167	if (segno == NULL_SEGNO)
2168		return;
2169
2170	se = get_seg_entry(sbi, segno);
2171
2172	if (!se->mtime)
2173		se->mtime = mtime;
2174	else
2175		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2176						se->valid_blocks + 1);
2177
2178	if (ctime > SIT_I(sbi)->max_mtime)
2179		SIT_I(sbi)->max_mtime = ctime;
2180}
2181
2182static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2183{
2184	struct seg_entry *se;
2185	unsigned int segno, offset;
2186	long int new_vblocks;
2187	bool exist;
2188#ifdef CONFIG_F2FS_CHECK_FS
2189	bool mir_exist;
2190#endif
2191
2192	segno = GET_SEGNO(sbi, blkaddr);
2193
2194	se = get_seg_entry(sbi, segno);
2195	new_vblocks = se->valid_blocks + del;
2196	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2197
2198	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2199			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2200
2201	se->valid_blocks = new_vblocks;
 
 
2202
2203	/* Update valid block bitmap */
2204	if (del > 0) {
2205		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2206#ifdef CONFIG_F2FS_CHECK_FS
2207		mir_exist = f2fs_test_and_set_bit(offset,
2208						se->cur_valid_map_mir);
2209		if (unlikely(exist != mir_exist)) {
2210			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2211				 blkaddr, exist);
2212			f2fs_bug_on(sbi, 1);
2213		}
2214#endif
2215		if (unlikely(exist)) {
2216			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2217				 blkaddr);
2218			f2fs_bug_on(sbi, 1);
2219			se->valid_blocks--;
2220			del = 0;
2221		}
2222
2223		if (f2fs_block_unit_discard(sbi) &&
2224				!f2fs_test_and_set_bit(offset, se->discard_map))
2225			sbi->discard_blks--;
2226
2227		/*
2228		 * SSR should never reuse block which is checkpointed
2229		 * or newly invalidated.
2230		 */
2231		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2232			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2233				se->ckpt_valid_blocks++;
2234		}
2235	} else {
2236		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2237#ifdef CONFIG_F2FS_CHECK_FS
2238		mir_exist = f2fs_test_and_clear_bit(offset,
2239						se->cur_valid_map_mir);
2240		if (unlikely(exist != mir_exist)) {
2241			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2242				 blkaddr, exist);
2243			f2fs_bug_on(sbi, 1);
2244		}
2245#endif
2246		if (unlikely(!exist)) {
2247			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2248				 blkaddr);
2249			f2fs_bug_on(sbi, 1);
2250			se->valid_blocks++;
2251			del = 0;
2252		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2253			/*
2254			 * If checkpoints are off, we must not reuse data that
2255			 * was used in the previous checkpoint. If it was used
2256			 * before, we must track that to know how much space we
2257			 * really have.
2258			 */
2259			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2260				spin_lock(&sbi->stat_lock);
2261				sbi->unusable_block_count++;
2262				spin_unlock(&sbi->stat_lock);
2263			}
2264		}
2265
2266		if (f2fs_block_unit_discard(sbi) &&
2267			f2fs_test_and_clear_bit(offset, se->discard_map))
2268			sbi->discard_blks++;
2269	}
2270	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2271		se->ckpt_valid_blocks += del;
2272
2273	__mark_sit_entry_dirty(sbi, segno);
2274
2275	/* update total number of valid blocks to be written in ckpt area */
2276	SIT_I(sbi)->written_valid_blocks += del;
2277
2278	if (__is_large_section(sbi))
2279		get_sec_entry(sbi, segno)->valid_blocks += del;
2280}
2281
2282void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
 
 
 
 
 
 
 
 
 
 
2283{
2284	unsigned int segno = GET_SEGNO(sbi, addr);
2285	struct sit_info *sit_i = SIT_I(sbi);
2286
2287	f2fs_bug_on(sbi, addr == NULL_ADDR);
2288	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2289		return;
2290
2291	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2292	f2fs_invalidate_compress_page(sbi, addr);
2293
2294	/* add it into sit main buffer */
2295	down_write(&sit_i->sentry_lock);
2296
2297	update_segment_mtime(sbi, addr, 0);
2298	update_sit_entry(sbi, addr, -1);
2299
2300	/* add it into dirty seglist */
2301	locate_dirty_segment(sbi, segno);
2302
2303	up_write(&sit_i->sentry_lock);
2304}
2305
2306bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2307{
2308	struct sit_info *sit_i = SIT_I(sbi);
2309	unsigned int segno, offset;
2310	struct seg_entry *se;
2311	bool is_cp = false;
2312
2313	if (!__is_valid_data_blkaddr(blkaddr))
2314		return true;
2315
2316	down_read(&sit_i->sentry_lock);
2317
2318	segno = GET_SEGNO(sbi, blkaddr);
2319	se = get_seg_entry(sbi, segno);
2320	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2321
2322	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2323		is_cp = true;
2324
2325	up_read(&sit_i->sentry_lock);
2326
2327	return is_cp;
2328}
2329
2330/*
2331 * This function should be resided under the curseg_mutex lock
2332 */
2333static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2334					struct f2fs_summary *sum)
2335{
2336	struct curseg_info *curseg = CURSEG_I(sbi, type);
2337	void *addr = curseg->sum_blk;
2338
2339	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2340	memcpy(addr, sum, sizeof(struct f2fs_summary));
2341}
2342
2343/*
2344 * Calculate the number of current summary pages for writing
2345 */
2346int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2347{
2348	int valid_sum_count = 0;
2349	int i, sum_in_page;
2350
2351	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2352		if (sbi->ckpt->alloc_type[i] == SSR)
2353			valid_sum_count += sbi->blocks_per_seg;
2354		else {
2355			if (for_ra)
2356				valid_sum_count += le16_to_cpu(
2357					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2358			else
2359				valid_sum_count += curseg_blkoff(sbi, i);
2360		}
2361	}
2362
2363	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2364			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2365	if (valid_sum_count <= sum_in_page)
2366		return 1;
2367	else if ((valid_sum_count - sum_in_page) <=
2368		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2369		return 2;
2370	return 3;
2371}
2372
2373/*
2374 * Caller should put this summary page
2375 */
2376struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2377{
2378	if (unlikely(f2fs_cp_error(sbi)))
2379		return ERR_PTR(-EIO);
2380	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2381}
2382
2383void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2384					void *src, block_t blk_addr)
2385{
2386	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
 
2387
2388	memcpy(page_address(page), src, PAGE_SIZE);
 
 
 
2389	set_page_dirty(page);
2390	f2fs_put_page(page, 1);
2391}
2392
2393static void write_sum_page(struct f2fs_sb_info *sbi,
2394			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2395{
2396	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2397}
2398
2399static void write_current_sum_page(struct f2fs_sb_info *sbi,
2400						int type, block_t blk_addr)
2401{
2402	struct curseg_info *curseg = CURSEG_I(sbi, type);
2403	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2404	struct f2fs_summary_block *src = curseg->sum_blk;
2405	struct f2fs_summary_block *dst;
2406
2407	dst = (struct f2fs_summary_block *)page_address(page);
2408	memset(dst, 0, PAGE_SIZE);
2409
2410	mutex_lock(&curseg->curseg_mutex);
2411
2412	down_read(&curseg->journal_rwsem);
2413	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2414	up_read(&curseg->journal_rwsem);
2415
2416	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2417	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2418
2419	mutex_unlock(&curseg->curseg_mutex);
2420
2421	set_page_dirty(page);
2422	f2fs_put_page(page, 1);
2423}
2424
2425static int is_next_segment_free(struct f2fs_sb_info *sbi,
2426				struct curseg_info *curseg, int type)
2427{
 
2428	unsigned int segno = curseg->segno + 1;
2429	struct free_segmap_info *free_i = FREE_I(sbi);
2430
2431	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2432		return !test_bit(segno, free_i->free_segmap);
2433	return 0;
2434}
2435
2436/*
2437 * Find a new segment from the free segments bitmap to right order
2438 * This function should be returned with success, otherwise BUG
2439 */
2440static void get_new_segment(struct f2fs_sb_info *sbi,
2441			unsigned int *newseg, bool new_sec, int dir)
2442{
2443	struct free_segmap_info *free_i = FREE_I(sbi);
2444	unsigned int segno, secno, zoneno;
2445	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2446	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2447	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2448	unsigned int left_start = hint;
2449	bool init = true;
2450	int go_left = 0;
2451	int i;
2452
2453	spin_lock(&free_i->segmap_lock);
2454
2455	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2456		segno = find_next_zero_bit(free_i->free_segmap,
2457			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2458		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2459			goto got_it;
2460	}
2461find_other_zone:
2462	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2463	if (secno >= MAIN_SECS(sbi)) {
2464		if (dir == ALLOC_RIGHT) {
2465			secno = find_first_zero_bit(free_i->free_secmap,
2466							MAIN_SECS(sbi));
2467			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2468		} else {
2469			go_left = 1;
2470			left_start = hint - 1;
2471		}
2472	}
2473	if (go_left == 0)
2474		goto skip_left;
2475
2476	while (test_bit(left_start, free_i->free_secmap)) {
2477		if (left_start > 0) {
2478			left_start--;
2479			continue;
2480		}
2481		left_start = find_first_zero_bit(free_i->free_secmap,
2482							MAIN_SECS(sbi));
2483		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2484		break;
2485	}
2486	secno = left_start;
2487skip_left:
2488	segno = GET_SEG_FROM_SEC(sbi, secno);
2489	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
 
2490
2491	/* give up on finding another zone */
2492	if (!init)
2493		goto got_it;
2494	if (sbi->secs_per_zone == 1)
2495		goto got_it;
2496	if (zoneno == old_zoneno)
2497		goto got_it;
2498	if (dir == ALLOC_LEFT) {
2499		if (!go_left && zoneno + 1 >= total_zones)
2500			goto got_it;
2501		if (go_left && zoneno == 0)
2502			goto got_it;
2503	}
2504	for (i = 0; i < NR_CURSEG_TYPE; i++)
2505		if (CURSEG_I(sbi, i)->zone == zoneno)
2506			break;
2507
2508	if (i < NR_CURSEG_TYPE) {
2509		/* zone is in user, try another */
2510		if (go_left)
2511			hint = zoneno * sbi->secs_per_zone - 1;
2512		else if (zoneno + 1 >= total_zones)
2513			hint = 0;
2514		else
2515			hint = (zoneno + 1) * sbi->secs_per_zone;
2516		init = false;
2517		goto find_other_zone;
2518	}
2519got_it:
2520	/* set it as dirty segment in free segmap */
2521	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2522	__set_inuse(sbi, segno);
2523	*newseg = segno;
2524	spin_unlock(&free_i->segmap_lock);
2525}
2526
2527static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2528{
2529	struct curseg_info *curseg = CURSEG_I(sbi, type);
2530	struct summary_footer *sum_footer;
2531	unsigned short seg_type = curseg->seg_type;
2532
2533	curseg->inited = true;
2534	curseg->segno = curseg->next_segno;
2535	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2536	curseg->next_blkoff = 0;
2537	curseg->next_segno = NULL_SEGNO;
2538
2539	sum_footer = &(curseg->sum_blk->footer);
2540	memset(sum_footer, 0, sizeof(struct summary_footer));
2541
2542	sanity_check_seg_type(sbi, seg_type);
2543
2544	if (IS_DATASEG(seg_type))
2545		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2546	if (IS_NODESEG(seg_type))
2547		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2548	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2549}
2550
2551static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2552{
2553	struct curseg_info *curseg = CURSEG_I(sbi, type);
2554	unsigned short seg_type = curseg->seg_type;
2555
2556	sanity_check_seg_type(sbi, seg_type);
2557	if (f2fs_need_rand_seg(sbi))
2558		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2559
2560	/* if segs_per_sec is large than 1, we need to keep original policy. */
2561	if (__is_large_section(sbi))
2562		return curseg->segno;
2563
2564	/* inmem log may not locate on any segment after mount */
2565	if (!curseg->inited)
2566		return 0;
2567
2568	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2569		return 0;
2570
2571	if (test_opt(sbi, NOHEAP) &&
2572		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2573		return 0;
2574
2575	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2576		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2577
2578	/* find segments from 0 to reuse freed segments */
2579	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2580		return 0;
2581
2582	return curseg->segno;
2583}
2584
2585/*
2586 * Allocate a current working segment.
2587 * This function always allocates a free segment in LFS manner.
2588 */
2589static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2590{
2591	struct curseg_info *curseg = CURSEG_I(sbi, type);
2592	unsigned short seg_type = curseg->seg_type;
2593	unsigned int segno = curseg->segno;
2594	int dir = ALLOC_LEFT;
2595
2596	if (curseg->inited)
2597		write_sum_page(sbi, curseg->sum_blk,
2598				GET_SUM_BLOCK(sbi, segno));
2599	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2600		dir = ALLOC_RIGHT;
2601
2602	if (test_opt(sbi, NOHEAP))
2603		dir = ALLOC_RIGHT;
2604
2605	segno = __get_next_segno(sbi, type);
2606	get_new_segment(sbi, &segno, new_sec, dir);
2607	curseg->next_segno = segno;
2608	reset_curseg(sbi, type, 1);
2609	curseg->alloc_type = LFS;
2610	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2611		curseg->fragment_remained_chunk =
2612				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2613}
2614
2615static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2616					int segno, block_t start)
2617{
2618	struct seg_entry *se = get_seg_entry(sbi, segno);
2619	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2620	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2621	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2622	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2623	int i;
2624
2625	for (i = 0; i < entries; i++)
2626		target_map[i] = ckpt_map[i] | cur_map[i];
2627
2628	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
 
 
2629}
2630
2631/*
2632 * If a segment is written by LFS manner, next block offset is just obtained
2633 * by increasing the current block offset. However, if a segment is written by
2634 * SSR manner, next block offset obtained by calling __next_free_blkoff
2635 */
2636static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2637				struct curseg_info *seg)
2638{
2639	if (seg->alloc_type == SSR) {
2640		seg->next_blkoff =
2641			__next_free_blkoff(sbi, seg->segno,
2642						seg->next_blkoff + 1);
2643	} else {
2644		seg->next_blkoff++;
2645		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2646			/* To allocate block chunks in different sizes, use random number */
2647			if (--seg->fragment_remained_chunk <= 0) {
2648				seg->fragment_remained_chunk =
2649				   get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2650				seg->next_blkoff +=
2651				   get_random_u32_inclusive(1, sbi->max_fragment_hole);
2652			}
2653		}
2654	}
2655}
2656
2657bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2658{
2659	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2660}
2661
2662/*
2663 * This function always allocates a used segment(from dirty seglist) by SSR
2664 * manner, so it should recover the existing segment information of valid blocks
2665 */
2666static void change_curseg(struct f2fs_sb_info *sbi, int type)
2667{
2668	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2669	struct curseg_info *curseg = CURSEG_I(sbi, type);
2670	unsigned int new_segno = curseg->next_segno;
2671	struct f2fs_summary_block *sum_node;
2672	struct page *sum_page;
2673
2674	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2675
2676	__set_test_and_inuse(sbi, new_segno);
2677
2678	mutex_lock(&dirty_i->seglist_lock);
2679	__remove_dirty_segment(sbi, new_segno, PRE);
2680	__remove_dirty_segment(sbi, new_segno, DIRTY);
2681	mutex_unlock(&dirty_i->seglist_lock);
2682
2683	reset_curseg(sbi, type, 1);
2684	curseg->alloc_type = SSR;
2685	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2686
2687	sum_page = f2fs_get_sum_page(sbi, new_segno);
2688	if (IS_ERR(sum_page)) {
2689		/* GC won't be able to use stale summary pages by cp_error */
2690		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2691		return;
2692	}
2693	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2694	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2695	f2fs_put_page(sum_page, 1);
2696}
2697
2698static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2699				int alloc_mode, unsigned long long age);
2700
2701static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2702					int target_type, int alloc_mode,
2703					unsigned long long age)
2704{
2705	struct curseg_info *curseg = CURSEG_I(sbi, type);
2706
2707	curseg->seg_type = target_type;
2708
2709	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2710		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2711
2712		curseg->seg_type = se->type;
2713		change_curseg(sbi, type);
2714	} else {
2715		/* allocate cold segment by default */
2716		curseg->seg_type = CURSEG_COLD_DATA;
2717		new_curseg(sbi, type, true);
2718	}
2719	stat_inc_seg_type(sbi, curseg);
2720}
2721
2722static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2723{
2724	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2725
2726	if (!sbi->am.atgc_enabled)
2727		return;
2728
2729	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2730
2731	mutex_lock(&curseg->curseg_mutex);
2732	down_write(&SIT_I(sbi)->sentry_lock);
2733
2734	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2735
2736	up_write(&SIT_I(sbi)->sentry_lock);
2737	mutex_unlock(&curseg->curseg_mutex);
2738
2739	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2740
2741}
2742void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2743{
2744	__f2fs_init_atgc_curseg(sbi);
2745}
2746
2747static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2748{
2749	struct curseg_info *curseg = CURSEG_I(sbi, type);
2750
2751	mutex_lock(&curseg->curseg_mutex);
2752	if (!curseg->inited)
2753		goto out;
2754
2755	if (get_valid_blocks(sbi, curseg->segno, false)) {
2756		write_sum_page(sbi, curseg->sum_blk,
2757				GET_SUM_BLOCK(sbi, curseg->segno));
2758	} else {
2759		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2760		__set_test_and_free(sbi, curseg->segno, true);
2761		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2762	}
2763out:
2764	mutex_unlock(&curseg->curseg_mutex);
2765}
2766
2767void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2768{
2769	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2770
2771	if (sbi->am.atgc_enabled)
2772		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2773}
2774
2775static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2776{
2777	struct curseg_info *curseg = CURSEG_I(sbi, type);
2778
2779	mutex_lock(&curseg->curseg_mutex);
2780	if (!curseg->inited)
2781		goto out;
2782	if (get_valid_blocks(sbi, curseg->segno, false))
2783		goto out;
2784
2785	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2786	__set_test_and_inuse(sbi, curseg->segno);
2787	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2788out:
2789	mutex_unlock(&curseg->curseg_mutex);
2790}
2791
2792void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2793{
2794	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2795
2796	if (sbi->am.atgc_enabled)
2797		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2798}
2799
2800static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2801				int alloc_mode, unsigned long long age)
2802{
2803	struct curseg_info *curseg = CURSEG_I(sbi, type);
2804	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2805	unsigned segno = NULL_SEGNO;
2806	unsigned short seg_type = curseg->seg_type;
2807	int i, cnt;
2808	bool reversed = false;
2809
2810	sanity_check_seg_type(sbi, seg_type);
2811
2812	/* f2fs_need_SSR() already forces to do this */
2813	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2814		curseg->next_segno = segno;
2815		return 1;
2816	}
2817
2818	/* For node segments, let's do SSR more intensively */
2819	if (IS_NODESEG(seg_type)) {
2820		if (seg_type >= CURSEG_WARM_NODE) {
2821			reversed = true;
2822			i = CURSEG_COLD_NODE;
2823		} else {
2824			i = CURSEG_HOT_NODE;
2825		}
2826		cnt = NR_CURSEG_NODE_TYPE;
2827	} else {
2828		if (seg_type >= CURSEG_WARM_DATA) {
2829			reversed = true;
2830			i = CURSEG_COLD_DATA;
2831		} else {
2832			i = CURSEG_HOT_DATA;
2833		}
2834		cnt = NR_CURSEG_DATA_TYPE;
2835	}
2836
2837	for (; cnt-- > 0; reversed ? i-- : i++) {
2838		if (i == seg_type)
2839			continue;
2840		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2841			curseg->next_segno = segno;
2842			return 1;
2843		}
2844	}
2845
2846	/* find valid_blocks=0 in dirty list */
2847	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2848		segno = get_free_segment(sbi);
2849		if (segno != NULL_SEGNO) {
2850			curseg->next_segno = segno;
 
 
 
2851			return 1;
2852		}
2853	}
2854	return 0;
2855}
2856
2857static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
 
 
 
 
 
2858{
2859	struct curseg_info *curseg = CURSEG_I(sbi, type);
2860
2861	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2862	    curseg->seg_type == CURSEG_WARM_NODE)
2863		return true;
2864	if (curseg->alloc_type == LFS &&
2865	    is_next_segment_free(sbi, curseg, type) &&
2866	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2867		return true;
2868	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2869		return true;
2870	return false;
2871}
2872
2873void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2874					unsigned int start, unsigned int end)
2875{
2876	struct curseg_info *curseg = CURSEG_I(sbi, type);
2877	unsigned int segno;
2878
2879	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2880	mutex_lock(&curseg->curseg_mutex);
2881	down_write(&SIT_I(sbi)->sentry_lock);
2882
2883	segno = CURSEG_I(sbi, type)->segno;
2884	if (segno < start || segno > end)
2885		goto unlock;
2886
2887	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2888		change_curseg(sbi, type);
2889	else
2890		new_curseg(sbi, type, true);
2891
2892	stat_inc_seg_type(sbi, curseg);
2893
2894	locate_dirty_segment(sbi, segno);
2895unlock:
2896	up_write(&SIT_I(sbi)->sentry_lock);
2897
2898	if (segno != curseg->segno)
2899		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2900			    type, segno, curseg->segno);
2901
2902	mutex_unlock(&curseg->curseg_mutex);
2903	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2904}
2905
2906static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2907						bool new_sec, bool force)
2908{
2909	struct curseg_info *curseg = CURSEG_I(sbi, type);
2910	unsigned int old_segno;
2911
2912	if (!curseg->inited)
2913		goto alloc;
2914
2915	if (force || curseg->next_blkoff ||
2916		get_valid_blocks(sbi, curseg->segno, new_sec))
2917		goto alloc;
2918
2919	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2920		return;
2921alloc:
2922	old_segno = curseg->segno;
2923	new_curseg(sbi, type, true);
2924	stat_inc_seg_type(sbi, curseg);
2925	locate_dirty_segment(sbi, old_segno);
2926}
2927
2928static void __allocate_new_section(struct f2fs_sb_info *sbi,
2929						int type, bool force)
2930{
2931	__allocate_new_segment(sbi, type, true, force);
2932}
2933
2934void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2935{
2936	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2937	down_write(&SIT_I(sbi)->sentry_lock);
2938	__allocate_new_section(sbi, type, force);
2939	up_write(&SIT_I(sbi)->sentry_lock);
2940	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2941}
2942
2943void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2944{
2945	int i;
2946
2947	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2948	down_write(&SIT_I(sbi)->sentry_lock);
2949	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2950		__allocate_new_segment(sbi, i, false, false);
2951	up_write(&SIT_I(sbi)->sentry_lock);
2952	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2953}
2954
2955bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2956						struct cp_control *cpc)
2957{
2958	__u64 trim_start = cpc->trim_start;
2959	bool has_candidate = false;
2960
2961	down_write(&SIT_I(sbi)->sentry_lock);
2962	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2963		if (add_discard_addrs(sbi, cpc, true)) {
2964			has_candidate = true;
2965			break;
2966		}
2967	}
2968	up_write(&SIT_I(sbi)->sentry_lock);
2969
2970	cpc->trim_start = trim_start;
2971	return has_candidate;
2972}
2973
2974static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2975					struct discard_policy *dpolicy,
2976					unsigned int start, unsigned int end)
2977{
2978	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2979	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2980	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2981	struct discard_cmd *dc;
2982	struct blk_plug plug;
2983	int issued;
2984	unsigned int trimmed = 0;
2985
2986next:
2987	issued = 0;
2988
2989	mutex_lock(&dcc->cmd_lock);
2990	if (unlikely(dcc->rbtree_check))
2991		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2992							&dcc->root, false));
2993
2994	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2995					NULL, start,
2996					(struct rb_entry **)&prev_dc,
2997					(struct rb_entry **)&next_dc,
2998					&insert_p, &insert_parent, true, NULL);
2999	if (!dc)
3000		dc = next_dc;
3001
3002	blk_start_plug(&plug);
3003
3004	while (dc && dc->lstart <= end) {
3005		struct rb_node *node;
3006		int err = 0;
3007
3008		if (dc->len < dpolicy->granularity)
3009			goto skip;
3010
3011		if (dc->state != D_PREP) {
3012			list_move_tail(&dc->list, &dcc->fstrim_list);
3013			goto skip;
3014		}
3015
3016		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3017
3018		if (issued >= dpolicy->max_requests) {
3019			start = dc->lstart + dc->len;
3020
3021			if (err)
3022				__remove_discard_cmd(sbi, dc);
3023
3024			blk_finish_plug(&plug);
3025			mutex_unlock(&dcc->cmd_lock);
3026			trimmed += __wait_all_discard_cmd(sbi, NULL);
3027			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3028			goto next;
3029		}
3030skip:
3031		node = rb_next(&dc->rb_node);
3032		if (err)
3033			__remove_discard_cmd(sbi, dc);
3034		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3035
3036		if (fatal_signal_pending(current))
3037			break;
3038	}
3039
3040	blk_finish_plug(&plug);
3041	mutex_unlock(&dcc->cmd_lock);
3042
3043	return trimmed;
3044}
3045
3046int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3047{
3048	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3049	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3050	unsigned int start_segno, end_segno;
3051	block_t start_block, end_block;
3052	struct cp_control cpc;
3053	struct discard_policy dpolicy;
3054	unsigned long long trimmed = 0;
3055	int err = 0;
3056	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3057
3058	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3059		return -EINVAL;
3060
3061	if (end < MAIN_BLKADDR(sbi))
 
3062		goto out;
3063
3064	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3065		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3066		return -EFSCORRUPTED;
3067	}
3068
3069	/* start/end segment number in main_area */
3070	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3071	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3072						GET_SEGNO(sbi, end);
3073	if (need_align) {
3074		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3075		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3076	}
3077
3078	cpc.reason = CP_DISCARD;
3079	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3080	cpc.trim_start = start_segno;
3081	cpc.trim_end = end_segno;
3082
3083	if (sbi->discard_blks == 0)
3084		goto out;
 
3085
3086	f2fs_down_write(&sbi->gc_lock);
3087	err = f2fs_write_checkpoint(sbi, &cpc);
3088	f2fs_up_write(&sbi->gc_lock);
3089	if (err)
3090		goto out;
3091
3092	/*
3093	 * We filed discard candidates, but actually we don't need to wait for
3094	 * all of them, since they'll be issued in idle time along with runtime
3095	 * discard option. User configuration looks like using runtime discard
3096	 * or periodic fstrim instead of it.
3097	 */
3098	if (f2fs_realtime_discard_enable(sbi))
3099		goto out;
3100
3101	start_block = START_BLOCK(sbi, start_segno);
3102	end_block = START_BLOCK(sbi, end_segno + 1);
3103
3104	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3105	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3106					start_block, end_block);
3107
3108	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3109					start_block, end_block);
3110out:
3111	if (!err)
3112		range->len = F2FS_BLK_TO_BYTES(trimmed);
3113	return err;
3114}
3115
3116static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3117					struct curseg_info *curseg)
3118{
3119	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3120							curseg->segno);
3121}
3122
3123int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3124{
3125	switch (hint) {
3126	case WRITE_LIFE_SHORT:
3127		return CURSEG_HOT_DATA;
3128	case WRITE_LIFE_EXTREME:
3129		return CURSEG_COLD_DATA;
3130	default:
3131		return CURSEG_WARM_DATA;
3132	}
3133}
3134
3135static int __get_segment_type_2(struct f2fs_io_info *fio)
3136{
3137	if (fio->type == DATA)
3138		return CURSEG_HOT_DATA;
3139	else
3140		return CURSEG_HOT_NODE;
3141}
3142
3143static int __get_segment_type_4(struct f2fs_io_info *fio)
3144{
3145	if (fio->type == DATA) {
3146		struct inode *inode = fio->page->mapping->host;
3147
3148		if (S_ISDIR(inode->i_mode))
3149			return CURSEG_HOT_DATA;
3150		else
3151			return CURSEG_COLD_DATA;
3152	} else {
3153		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3154			return CURSEG_WARM_NODE;
3155		else
3156			return CURSEG_COLD_NODE;
3157	}
3158}
3159
3160static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3161{
3162	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3163	struct extent_info ei = {};
3164
3165	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3166		if (!ei.age)
3167			return NO_CHECK_TYPE;
3168		if (ei.age <= sbi->hot_data_age_threshold)
3169			return CURSEG_HOT_DATA;
3170		if (ei.age <= sbi->warm_data_age_threshold)
 
 
3171			return CURSEG_WARM_DATA;
3172		return CURSEG_COLD_DATA;
3173	}
3174	return NO_CHECK_TYPE;
3175}
3176
3177static int __get_segment_type_6(struct f2fs_io_info *fio)
3178{
3179	if (fio->type == DATA) {
3180		struct inode *inode = fio->page->mapping->host;
3181		int type;
3182
3183		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3184			return CURSEG_COLD_DATA_PINNED;
3185
3186		if (page_private_gcing(fio->page)) {
3187			if (fio->sbi->am.atgc_enabled &&
3188				(fio->io_type == FS_DATA_IO) &&
3189				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3190				return CURSEG_ALL_DATA_ATGC;
3191			else
3192				return CURSEG_COLD_DATA;
3193		}
3194		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3195			return CURSEG_COLD_DATA;
3196
3197		type = __get_age_segment_type(inode, fio->page->index);
3198		if (type != NO_CHECK_TYPE)
3199			return type;
3200
3201		if (file_is_hot(inode) ||
3202				is_inode_flag_set(inode, FI_HOT_DATA) ||
3203				f2fs_is_cow_file(inode))
3204			return CURSEG_HOT_DATA;
3205		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3206	} else {
3207		if (IS_DNODE(fio->page))
3208			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3209						CURSEG_HOT_NODE;
3210		return CURSEG_COLD_NODE;
 
3211	}
3212}
3213
3214static int __get_segment_type(struct f2fs_io_info *fio)
3215{
3216	int type = 0;
3217
3218	switch (F2FS_OPTION(fio->sbi).active_logs) {
3219	case 2:
3220		type = __get_segment_type_2(fio);
3221		break;
3222	case 4:
3223		type = __get_segment_type_4(fio);
3224		break;
3225	case 6:
3226		type = __get_segment_type_6(fio);
3227		break;
3228	default:
3229		f2fs_bug_on(fio->sbi, true);
3230	}
3231
3232	if (IS_HOT(type))
3233		fio->temp = HOT;
3234	else if (IS_WARM(type))
3235		fio->temp = WARM;
3236	else
3237		fio->temp = COLD;
3238	return type;
3239}
3240
3241void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3242		block_t old_blkaddr, block_t *new_blkaddr,
3243		struct f2fs_summary *sum, int type,
3244		struct f2fs_io_info *fio)
3245{
3246	struct sit_info *sit_i = SIT_I(sbi);
3247	struct curseg_info *curseg = CURSEG_I(sbi, type);
3248	unsigned long long old_mtime;
3249	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3250	struct seg_entry *se = NULL;
3251
3252	f2fs_down_read(&SM_I(sbi)->curseg_lock);
 
 
3253
3254	mutex_lock(&curseg->curseg_mutex);
3255	down_write(&sit_i->sentry_lock);
 
 
 
 
 
3256
3257	if (from_gc) {
3258		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3259		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3260		sanity_check_seg_type(sbi, se->type);
3261		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3262	}
3263	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3264
3265	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3266
3267	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3268
3269	/*
3270	 * __add_sum_entry should be resided under the curseg_mutex
3271	 * because, this function updates a summary entry in the
3272	 * current summary block.
3273	 */
3274	__add_sum_entry(sbi, type, sum);
3275
3276	__refresh_next_blkoff(sbi, curseg);
3277
3278	stat_inc_block_count(sbi, curseg);
3279
3280	if (from_gc) {
3281		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3282	} else {
3283		update_segment_mtime(sbi, old_blkaddr, 0);
3284		old_mtime = 0;
3285	}
3286	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3287
3288	/*
3289	 * SIT information should be updated before segment allocation,
3290	 * since SSR needs latest valid block information.
3291	 */
3292	update_sit_entry(sbi, *new_blkaddr, 1);
3293	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3294		update_sit_entry(sbi, old_blkaddr, -1);
3295
3296	if (!__has_curseg_space(sbi, curseg)) {
3297		/*
3298		 * Flush out current segment and replace it with new segment.
3299		 */
3300		if (from_gc) {
3301			get_atssr_segment(sbi, type, se->type,
3302						AT_SSR, se->mtime);
3303		} else {
3304			if (need_new_seg(sbi, type))
3305				new_curseg(sbi, type, false);
3306			else
3307				change_curseg(sbi, type);
3308			stat_inc_seg_type(sbi, curseg);
3309		}
3310	}
3311	/*
3312	 * segment dirty status should be updated after segment allocation,
3313	 * so we just need to update status only one time after previous
3314	 * segment being closed.
3315	 */
3316	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3317	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3318
3319	if (IS_DATASEG(type))
3320		atomic64_inc(&sbi->allocated_data_blocks);
3321
3322	up_write(&sit_i->sentry_lock);
3323
3324	if (page && IS_NODESEG(type)) {
3325		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3326
3327		f2fs_inode_chksum_set(sbi, page);
3328	}
3329
3330	if (fio) {
3331		struct f2fs_bio_info *io;
3332
3333		if (F2FS_IO_ALIGNED(sbi))
3334			fio->retry = false;
3335
3336		INIT_LIST_HEAD(&fio->list);
3337		fio->in_list = true;
3338		io = sbi->write_io[fio->type] + fio->temp;
3339		spin_lock(&io->io_lock);
3340		list_add_tail(&fio->list, &io->io_list);
3341		spin_unlock(&io->io_lock);
3342	}
3343
3344	mutex_unlock(&curseg->curseg_mutex);
3345
3346	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3347}
3348
3349void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3350					block_t blkaddr, unsigned int blkcnt)
3351{
3352	if (!f2fs_is_multi_device(sbi))
3353		return;
3354
3355	while (1) {
3356		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3357		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3358
3359		/* update device state for fsync */
3360		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3361
3362		/* update device state for checkpoint */
3363		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3364			spin_lock(&sbi->dev_lock);
3365			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3366			spin_unlock(&sbi->dev_lock);
3367		}
3368
3369		if (blkcnt <= blks)
3370			break;
3371		blkcnt -= blks;
3372		blkaddr += blks;
3373	}
3374}
3375
3376static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3377{
3378	int type = __get_segment_type(fio);
3379	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3380
3381	if (keep_order)
3382		f2fs_down_read(&fio->sbi->io_order_lock);
3383reallocate:
3384	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3385			&fio->new_blkaddr, sum, type, fio);
3386	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3387		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3388					fio->old_blkaddr, fio->old_blkaddr);
3389		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3390	}
3391
3392	/* writeout dirty page into bdev */
3393	f2fs_submit_page_write(fio);
3394	if (fio->retry) {
3395		fio->old_blkaddr = fio->new_blkaddr;
3396		goto reallocate;
3397	}
3398
3399	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3400
3401	if (keep_order)
3402		f2fs_up_read(&fio->sbi->io_order_lock);
3403}
3404
3405void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3406					enum iostat_type io_type)
3407{
3408	struct f2fs_io_info fio = {
3409		.sbi = sbi,
3410		.type = META,
3411		.temp = HOT,
3412		.op = REQ_OP_WRITE,
3413		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3414		.old_blkaddr = page->index,
3415		.new_blkaddr = page->index,
3416		.page = page,
3417		.encrypted_page = NULL,
3418		.in_list = false,
3419	};
3420
3421	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3422		fio.op_flags &= ~REQ_META;
3423
3424	set_page_writeback(page);
3425	ClearPageError(page);
3426	f2fs_submit_page_write(&fio);
3427
3428	stat_inc_meta_count(sbi, page->index);
3429	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3430}
3431
3432void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3433{
3434	struct f2fs_summary sum;
3435
3436	set_summary(&sum, nid, 0, 0);
3437	do_write_page(&sum, fio);
3438
3439	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3440}
3441
3442void f2fs_outplace_write_data(struct dnode_of_data *dn,
3443					struct f2fs_io_info *fio)
3444{
3445	struct f2fs_sb_info *sbi = fio->sbi;
3446	struct f2fs_summary sum;
 
3447
3448	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3449	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3450		f2fs_update_age_extent_cache(dn);
3451	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3452	do_write_page(&sum, fio);
3453	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3454
3455	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3456}
3457
3458int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3459{
3460	int err;
3461	struct f2fs_sb_info *sbi = fio->sbi;
3462	unsigned int segno;
3463
3464	fio->new_blkaddr = fio->old_blkaddr;
3465	/* i/o temperature is needed for passing down write hints */
3466	__get_segment_type(fio);
3467
3468	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3469
3470	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3471		set_sbi_flag(sbi, SBI_NEED_FSCK);
3472		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3473			  __func__, segno);
3474		err = -EFSCORRUPTED;
3475		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3476		goto drop_bio;
3477	}
3478
3479	if (f2fs_cp_error(sbi)) {
3480		err = -EIO;
3481		goto drop_bio;
3482	}
3483
3484	if (fio->post_read)
3485		invalidate_mapping_pages(META_MAPPING(sbi),
3486				fio->new_blkaddr, fio->new_blkaddr);
3487
3488	stat_inc_inplace_blocks(fio->sbi);
3489
3490	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3491		err = f2fs_merge_page_bio(fio);
3492	else
3493		err = f2fs_submit_page_bio(fio);
3494	if (!err) {
3495		f2fs_update_device_state(fio->sbi, fio->ino,
3496						fio->new_blkaddr, 1);
3497		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3498						fio->io_type, F2FS_BLKSIZE);
3499	}
3500
3501	return err;
3502drop_bio:
3503	if (fio->bio && *(fio->bio)) {
3504		struct bio *bio = *(fio->bio);
3505
3506		bio->bi_status = BLK_STS_IOERR;
3507		bio_endio(bio);
3508		*(fio->bio) = NULL;
3509	}
3510	return err;
3511}
3512
3513static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3514						unsigned int segno)
3515{
3516	int i;
3517
3518	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3519		if (CURSEG_I(sbi, i)->segno == segno)
3520			break;
3521	}
3522	return i;
3523}
3524
3525void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3526				block_t old_blkaddr, block_t new_blkaddr,
3527				bool recover_curseg, bool recover_newaddr,
3528				bool from_gc)
3529{
3530	struct sit_info *sit_i = SIT_I(sbi);
3531	struct curseg_info *curseg;
3532	unsigned int segno, old_cursegno;
3533	struct seg_entry *se;
3534	int type;
3535	unsigned short old_blkoff;
3536	unsigned char old_alloc_type;
3537
3538	segno = GET_SEGNO(sbi, new_blkaddr);
3539	se = get_seg_entry(sbi, segno);
3540	type = se->type;
3541
3542	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3543
3544	if (!recover_curseg) {
3545		/* for recovery flow */
3546		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3547			if (old_blkaddr == NULL_ADDR)
3548				type = CURSEG_COLD_DATA;
3549			else
3550				type = CURSEG_WARM_DATA;
3551		}
3552	} else {
3553		if (IS_CURSEG(sbi, segno)) {
3554			/* se->type is volatile as SSR allocation */
3555			type = __f2fs_get_curseg(sbi, segno);
3556			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3557		} else {
3558			type = CURSEG_WARM_DATA;
3559		}
3560	}
3561
3562	f2fs_bug_on(sbi, !IS_DATASEG(type));
3563	curseg = CURSEG_I(sbi, type);
3564
3565	mutex_lock(&curseg->curseg_mutex);
3566	down_write(&sit_i->sentry_lock);
3567
3568	old_cursegno = curseg->segno;
3569	old_blkoff = curseg->next_blkoff;
3570	old_alloc_type = curseg->alloc_type;
3571
3572	/* change the current segment */
3573	if (segno != curseg->segno) {
3574		curseg->next_segno = segno;
3575		change_curseg(sbi, type);
3576	}
3577
3578	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3579	__add_sum_entry(sbi, type, sum);
3580
3581	if (!recover_curseg || recover_newaddr) {
3582		if (!from_gc)
3583			update_segment_mtime(sbi, new_blkaddr, 0);
3584		update_sit_entry(sbi, new_blkaddr, 1);
3585	}
3586	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3587		invalidate_mapping_pages(META_MAPPING(sbi),
3588					old_blkaddr, old_blkaddr);
3589		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3590		if (!from_gc)
3591			update_segment_mtime(sbi, old_blkaddr, 0);
3592		update_sit_entry(sbi, old_blkaddr, -1);
3593	}
3594
3595	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3596	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3597
3598	locate_dirty_segment(sbi, old_cursegno);
3599
3600	if (recover_curseg) {
3601		if (old_cursegno != curseg->segno) {
3602			curseg->next_segno = old_cursegno;
3603			change_curseg(sbi, type);
3604		}
3605		curseg->next_blkoff = old_blkoff;
3606		curseg->alloc_type = old_alloc_type;
3607	}
3608
3609	up_write(&sit_i->sentry_lock);
3610	mutex_unlock(&curseg->curseg_mutex);
3611	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3612}
3613
3614void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3615				block_t old_addr, block_t new_addr,
3616				unsigned char version, bool recover_curseg,
3617				bool recover_newaddr)
3618{
3619	struct f2fs_summary sum;
3620
3621	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3622
3623	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3624					recover_curseg, recover_newaddr, false);
3625
3626	f2fs_update_data_blkaddr(dn, new_addr);
3627}
3628
3629void f2fs_wait_on_page_writeback(struct page *page,
3630				enum page_type type, bool ordered, bool locked)
3631{
3632	if (PageWriteback(page)) {
3633		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3634
3635		/* submit cached LFS IO */
3636		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3637		/* sbumit cached IPU IO */
3638		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3639		if (ordered) {
3640			wait_on_page_writeback(page);
3641			f2fs_bug_on(sbi, locked && PageWriteback(page));
3642		} else {
3643			wait_for_stable_page(page);
3644		}
3645	}
3646}
3647
3648void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
 
3649{
3650	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3651	struct page *cpage;
3652
3653	if (!f2fs_post_read_required(inode))
3654		return;
3655
3656	if (!__is_valid_data_blkaddr(blkaddr))
3657		return;
3658
3659	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3660	if (cpage) {
3661		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3662		f2fs_put_page(cpage, 1);
3663	}
3664}
3665
3666void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3667								block_t len)
3668{
3669	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3670	block_t i;
3671
3672	if (!f2fs_post_read_required(inode))
3673		return;
3674
3675	for (i = 0; i < len; i++)
3676		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3677
3678	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3679}
3680
3681static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3682{
3683	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3684	struct curseg_info *seg_i;
3685	unsigned char *kaddr;
3686	struct page *page;
3687	block_t start;
3688	int i, j, offset;
3689
3690	start = start_sum_block(sbi);
3691
3692	page = f2fs_get_meta_page(sbi, start++);
3693	if (IS_ERR(page))
3694		return PTR_ERR(page);
3695	kaddr = (unsigned char *)page_address(page);
3696
3697	/* Step 1: restore nat cache */
3698	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3699	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3700
3701	/* Step 2: restore sit cache */
3702	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3703	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3704	offset = 2 * SUM_JOURNAL_SIZE;
3705
3706	/* Step 3: restore summary entries */
3707	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3708		unsigned short blk_off;
3709		unsigned int segno;
3710
3711		seg_i = CURSEG_I(sbi, i);
3712		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3713		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3714		seg_i->next_segno = segno;
3715		reset_curseg(sbi, i, 0);
3716		seg_i->alloc_type = ckpt->alloc_type[i];
3717		seg_i->next_blkoff = blk_off;
3718
3719		if (seg_i->alloc_type == SSR)
3720			blk_off = sbi->blocks_per_seg;
3721
3722		for (j = 0; j < blk_off; j++) {
3723			struct f2fs_summary *s;
3724
3725			s = (struct f2fs_summary *)(kaddr + offset);
3726			seg_i->sum_blk->entries[j] = *s;
3727			offset += SUMMARY_SIZE;
3728			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3729						SUM_FOOTER_SIZE)
3730				continue;
3731
3732			f2fs_put_page(page, 1);
3733			page = NULL;
3734
3735			page = f2fs_get_meta_page(sbi, start++);
3736			if (IS_ERR(page))
3737				return PTR_ERR(page);
3738			kaddr = (unsigned char *)page_address(page);
3739			offset = 0;
3740		}
3741	}
3742	f2fs_put_page(page, 1);
3743	return 0;
3744}
3745
3746static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3747{
3748	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3749	struct f2fs_summary_block *sum;
3750	struct curseg_info *curseg;
3751	struct page *new;
3752	unsigned short blk_off;
3753	unsigned int segno = 0;
3754	block_t blk_addr = 0;
3755	int err = 0;
3756
3757	/* get segment number and block addr */
3758	if (IS_DATASEG(type)) {
3759		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3760		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3761							CURSEG_HOT_DATA]);
3762		if (__exist_node_summaries(sbi))
3763			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3764		else
3765			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3766	} else {
3767		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3768							CURSEG_HOT_NODE]);
3769		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3770							CURSEG_HOT_NODE]);
3771		if (__exist_node_summaries(sbi))
3772			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3773							type - CURSEG_HOT_NODE);
3774		else
3775			blk_addr = GET_SUM_BLOCK(sbi, segno);
3776	}
3777
3778	new = f2fs_get_meta_page(sbi, blk_addr);
3779	if (IS_ERR(new))
3780		return PTR_ERR(new);
3781	sum = (struct f2fs_summary_block *)page_address(new);
3782
3783	if (IS_NODESEG(type)) {
3784		if (__exist_node_summaries(sbi)) {
3785			struct f2fs_summary *ns = &sum->entries[0];
3786			int i;
3787
3788			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3789				ns->version = 0;
3790				ns->ofs_in_node = 0;
3791			}
3792		} else {
3793			err = f2fs_restore_node_summary(sbi, segno, sum);
3794			if (err)
3795				goto out;
 
 
 
 
3796		}
3797	}
3798
3799	/* set uncompleted segment to curseg */
3800	curseg = CURSEG_I(sbi, type);
3801	mutex_lock(&curseg->curseg_mutex);
3802
3803	/* update journal info */
3804	down_write(&curseg->journal_rwsem);
3805	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3806	up_write(&curseg->journal_rwsem);
3807
3808	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3809	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3810	curseg->next_segno = segno;
3811	reset_curseg(sbi, type, 0);
3812	curseg->alloc_type = ckpt->alloc_type[type];
3813	curseg->next_blkoff = blk_off;
3814	mutex_unlock(&curseg->curseg_mutex);
3815out:
3816	f2fs_put_page(new, 1);
3817	return err;
3818}
3819
3820static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3821{
3822	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3823	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3824	int type = CURSEG_HOT_DATA;
3825	int err;
3826
3827	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3828		int npages = f2fs_npages_for_summary_flush(sbi, true);
3829
3830		if (npages >= 2)
3831			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3832							META_CP, true);
3833
3834		/* restore for compacted data summary */
3835		err = read_compacted_summaries(sbi);
3836		if (err)
3837			return err;
3838		type = CURSEG_HOT_NODE;
3839	}
3840
3841	if (__exist_node_summaries(sbi))
3842		f2fs_ra_meta_pages(sbi,
3843				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3844				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3845
3846	for (; type <= CURSEG_COLD_NODE; type++) {
3847		err = read_normal_summaries(sbi, type);
3848		if (err)
3849			return err;
3850	}
3851
3852	/* sanity check for summary blocks */
3853	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3854			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3855		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3856			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3857		return -EINVAL;
3858	}
3859
3860	return 0;
3861}
3862
3863static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3864{
3865	struct page *page;
3866	unsigned char *kaddr;
3867	struct f2fs_summary *summary;
3868	struct curseg_info *seg_i;
3869	int written_size = 0;
3870	int i, j;
3871
3872	page = f2fs_grab_meta_page(sbi, blkaddr++);
3873	kaddr = (unsigned char *)page_address(page);
3874	memset(kaddr, 0, PAGE_SIZE);
3875
3876	/* Step 1: write nat cache */
3877	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3878	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3879	written_size += SUM_JOURNAL_SIZE;
3880
3881	/* Step 2: write sit cache */
3882	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3883	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3884	written_size += SUM_JOURNAL_SIZE;
3885
3886	/* Step 3: write summary entries */
3887	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3888		unsigned short blkoff;
3889
3890		seg_i = CURSEG_I(sbi, i);
3891		if (sbi->ckpt->alloc_type[i] == SSR)
3892			blkoff = sbi->blocks_per_seg;
3893		else
3894			blkoff = curseg_blkoff(sbi, i);
3895
3896		for (j = 0; j < blkoff; j++) {
3897			if (!page) {
3898				page = f2fs_grab_meta_page(sbi, blkaddr++);
3899				kaddr = (unsigned char *)page_address(page);
3900				memset(kaddr, 0, PAGE_SIZE);
3901				written_size = 0;
3902			}
3903			summary = (struct f2fs_summary *)(kaddr + written_size);
3904			*summary = seg_i->sum_blk->entries[j];
3905			written_size += SUMMARY_SIZE;
3906
3907			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3908							SUM_FOOTER_SIZE)
3909				continue;
3910
3911			set_page_dirty(page);
3912			f2fs_put_page(page, 1);
3913			page = NULL;
3914		}
3915	}
3916	if (page) {
3917		set_page_dirty(page);
3918		f2fs_put_page(page, 1);
3919	}
3920}
3921
3922static void write_normal_summaries(struct f2fs_sb_info *sbi,
3923					block_t blkaddr, int type)
3924{
3925	int i, end;
3926
3927	if (IS_DATASEG(type))
3928		end = type + NR_CURSEG_DATA_TYPE;
3929	else
3930		end = type + NR_CURSEG_NODE_TYPE;
3931
3932	for (i = type; i < end; i++)
3933		write_current_sum_page(sbi, i, blkaddr + (i - type));
3934}
3935
3936void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3937{
3938	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3939		write_compacted_summaries(sbi, start_blk);
3940	else
3941		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3942}
3943
3944void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3945{
3946	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3947}
3948
3949int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3950					unsigned int val, int alloc)
3951{
3952	int i;
3953
3954	if (type == NAT_JOURNAL) {
3955		for (i = 0; i < nats_in_cursum(journal); i++) {
3956			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3957				return i;
3958		}
3959		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3960			return update_nats_in_cursum(journal, 1);
3961	} else if (type == SIT_JOURNAL) {
3962		for (i = 0; i < sits_in_cursum(journal); i++)
3963			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3964				return i;
3965		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3966			return update_sits_in_cursum(journal, 1);
3967	}
3968	return -1;
3969}
3970
3971static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3972					unsigned int segno)
3973{
3974	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3975}
3976
3977static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3978					unsigned int start)
3979{
3980	struct sit_info *sit_i = SIT_I(sbi);
3981	struct page *page;
3982	pgoff_t src_off, dst_off;
 
3983
3984	src_off = current_sit_addr(sbi, start);
3985	dst_off = next_sit_addr(sbi, src_off);
3986
3987	page = f2fs_grab_meta_page(sbi, dst_off);
3988	seg_info_to_sit_page(sbi, page, start);
 
 
 
 
 
 
 
 
 
3989
3990	set_page_dirty(page);
3991	set_to_next_sit(sit_i, start);
3992
3993	return page;
3994}
3995
3996static struct sit_entry_set *grab_sit_entry_set(void)
3997{
3998	struct sit_entry_set *ses =
3999			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4000						GFP_NOFS, true, NULL);
4001
4002	ses->entry_cnt = 0;
4003	INIT_LIST_HEAD(&ses->set_list);
4004	return ses;
4005}
4006
4007static void release_sit_entry_set(struct sit_entry_set *ses)
4008{
4009	list_del(&ses->set_list);
4010	kmem_cache_free(sit_entry_set_slab, ses);
4011}
4012
4013static void adjust_sit_entry_set(struct sit_entry_set *ses,
4014						struct list_head *head)
4015{
4016	struct sit_entry_set *next = ses;
4017
4018	if (list_is_last(&ses->set_list, head))
4019		return;
4020
4021	list_for_each_entry_continue(next, head, set_list)
4022		if (ses->entry_cnt <= next->entry_cnt) {
4023			list_move_tail(&ses->set_list, &next->set_list);
4024			return;
4025		}
4026
4027	list_move_tail(&ses->set_list, head);
4028}
4029
4030static void add_sit_entry(unsigned int segno, struct list_head *head)
4031{
4032	struct sit_entry_set *ses;
4033	unsigned int start_segno = START_SEGNO(segno);
4034
4035	list_for_each_entry(ses, head, set_list) {
4036		if (ses->start_segno == start_segno) {
4037			ses->entry_cnt++;
4038			adjust_sit_entry_set(ses, head);
4039			return;
4040		}
4041	}
4042
4043	ses = grab_sit_entry_set();
4044
4045	ses->start_segno = start_segno;
4046	ses->entry_cnt++;
4047	list_add(&ses->set_list, head);
4048}
4049
4050static void add_sits_in_set(struct f2fs_sb_info *sbi)
4051{
4052	struct f2fs_sm_info *sm_info = SM_I(sbi);
4053	struct list_head *set_list = &sm_info->sit_entry_set;
4054	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4055	unsigned int segno;
4056
4057	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4058		add_sit_entry(segno, set_list);
4059}
4060
4061static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4062{
4063	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4064	struct f2fs_journal *journal = curseg->journal;
4065	int i;
4066
4067	down_write(&curseg->journal_rwsem);
4068	for (i = 0; i < sits_in_cursum(journal); i++) {
4069		unsigned int segno;
4070		bool dirtied;
4071
4072		segno = le32_to_cpu(segno_in_journal(journal, i));
4073		dirtied = __mark_sit_entry_dirty(sbi, segno);
4074
4075		if (!dirtied)
4076			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4077	}
4078	update_sits_in_cursum(journal, -i);
4079	up_write(&curseg->journal_rwsem);
4080}
4081
4082/*
4083 * CP calls this function, which flushes SIT entries including sit_journal,
4084 * and moves prefree segs to free segs.
4085 */
4086void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4087{
4088	struct sit_info *sit_i = SIT_I(sbi);
4089	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4090	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4091	struct f2fs_journal *journal = curseg->journal;
4092	struct sit_entry_set *ses, *tmp;
4093	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4094	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4095	struct seg_entry *se;
4096
4097	down_write(&sit_i->sentry_lock);
4098
4099	if (!sit_i->dirty_sentries)
4100		goto out;
4101
4102	/*
4103	 * add and account sit entries of dirty bitmap in sit entry
4104	 * set temporarily
4105	 */
4106	add_sits_in_set(sbi);
4107
4108	/*
4109	 * if there are no enough space in journal to store dirty sit
4110	 * entries, remove all entries from journal and add and account
4111	 * them in sit entry set.
4112	 */
4113	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4114								!to_journal)
4115		remove_sits_in_journal(sbi);
4116
4117	/*
4118	 * there are two steps to flush sit entries:
4119	 * #1, flush sit entries to journal in current cold data summary block.
4120	 * #2, flush sit entries to sit page.
4121	 */
4122	list_for_each_entry_safe(ses, tmp, head, set_list) {
4123		struct page *page = NULL;
4124		struct f2fs_sit_block *raw_sit = NULL;
4125		unsigned int start_segno = ses->start_segno;
4126		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4127						(unsigned long)MAIN_SEGS(sbi));
4128		unsigned int segno = start_segno;
4129
4130		if (to_journal &&
4131			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4132			to_journal = false;
4133
4134		if (to_journal) {
4135			down_write(&curseg->journal_rwsem);
4136		} else {
4137			page = get_next_sit_page(sbi, start_segno);
4138			raw_sit = page_address(page);
4139		}
4140
4141		/* flush dirty sit entries in region of current sit set */
4142		for_each_set_bit_from(segno, bitmap, end) {
4143			int offset, sit_offset;
4144
4145			se = get_seg_entry(sbi, segno);
4146#ifdef CONFIG_F2FS_CHECK_FS
4147			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4148						SIT_VBLOCK_MAP_SIZE))
4149				f2fs_bug_on(sbi, 1);
4150#endif
4151
4152			/* add discard candidates */
4153			if (!(cpc->reason & CP_DISCARD)) {
4154				cpc->trim_start = segno;
4155				add_discard_addrs(sbi, cpc, false);
4156			}
4157
4158			if (to_journal) {
4159				offset = f2fs_lookup_journal_in_cursum(journal,
4160							SIT_JOURNAL, segno, 1);
4161				f2fs_bug_on(sbi, offset < 0);
4162				segno_in_journal(journal, offset) =
4163							cpu_to_le32(segno);
4164				seg_info_to_raw_sit(se,
4165					&sit_in_journal(journal, offset));
4166				check_block_count(sbi, segno,
4167					&sit_in_journal(journal, offset));
4168			} else {
4169				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4170				seg_info_to_raw_sit(se,
4171						&raw_sit->entries[sit_offset]);
4172				check_block_count(sbi, segno,
4173						&raw_sit->entries[sit_offset]);
4174			}
4175
4176			__clear_bit(segno, bitmap);
4177			sit_i->dirty_sentries--;
4178			ses->entry_cnt--;
4179		}
4180
4181		if (to_journal)
4182			up_write(&curseg->journal_rwsem);
4183		else
4184			f2fs_put_page(page, 1);
4185
4186		f2fs_bug_on(sbi, ses->entry_cnt);
4187		release_sit_entry_set(ses);
4188	}
4189
4190	f2fs_bug_on(sbi, !list_empty(head));
4191	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4192out:
4193	if (cpc->reason & CP_DISCARD) {
4194		__u64 trim_start = cpc->trim_start;
4195
4196		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4197			add_discard_addrs(sbi, cpc, false);
4198
4199		cpc->trim_start = trim_start;
4200	}
4201	up_write(&sit_i->sentry_lock);
4202
4203	set_prefree_as_free_segments(sbi);
4204}
4205
4206static int build_sit_info(struct f2fs_sb_info *sbi)
4207{
4208	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 
4209	struct sit_info *sit_i;
4210	unsigned int sit_segs, start;
4211	char *src_bitmap, *bitmap;
4212	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4213	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4214
4215	/* allocate memory for SIT information */
4216	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4217	if (!sit_i)
4218		return -ENOMEM;
4219
4220	SM_I(sbi)->sit_info = sit_i;
4221
4222	sit_i->sentries =
4223		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4224					      MAIN_SEGS(sbi)),
4225			      GFP_KERNEL);
4226	if (!sit_i->sentries)
4227		return -ENOMEM;
4228
4229	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4230	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4231								GFP_KERNEL);
4232	if (!sit_i->dirty_sentries_bitmap)
4233		return -ENOMEM;
4234
4235#ifdef CONFIG_F2FS_CHECK_FS
4236	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4237#else
4238	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4239#endif
4240	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4241	if (!sit_i->bitmap)
4242		return -ENOMEM;
4243
4244	bitmap = sit_i->bitmap;
4245
4246	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4247		sit_i->sentries[start].cur_valid_map = bitmap;
4248		bitmap += SIT_VBLOCK_MAP_SIZE;
4249
4250		sit_i->sentries[start].ckpt_valid_map = bitmap;
4251		bitmap += SIT_VBLOCK_MAP_SIZE;
4252
4253#ifdef CONFIG_F2FS_CHECK_FS
4254		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4255		bitmap += SIT_VBLOCK_MAP_SIZE;
4256#endif
4257
4258		if (discard_map) {
4259			sit_i->sentries[start].discard_map = bitmap;
4260			bitmap += SIT_VBLOCK_MAP_SIZE;
4261		}
4262	}
4263
4264	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4265	if (!sit_i->tmp_map)
4266		return -ENOMEM;
4267
4268	if (__is_large_section(sbi)) {
4269		sit_i->sec_entries =
4270			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4271						      MAIN_SECS(sbi)),
4272				      GFP_KERNEL);
4273		if (!sit_i->sec_entries)
4274			return -ENOMEM;
4275	}
4276
4277	/* get information related with SIT */
4278	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4279
4280	/* setup SIT bitmap from ckeckpoint pack */
4281	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4282	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4283
4284	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4285	if (!sit_i->sit_bitmap)
4286		return -ENOMEM;
4287
4288#ifdef CONFIG_F2FS_CHECK_FS
4289	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4290					sit_bitmap_size, GFP_KERNEL);
4291	if (!sit_i->sit_bitmap_mir)
4292		return -ENOMEM;
4293
4294	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4295					main_bitmap_size, GFP_KERNEL);
4296	if (!sit_i->invalid_segmap)
4297		return -ENOMEM;
4298#endif
4299
4300	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4301	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4302	sit_i->written_valid_blocks = 0;
4303	sit_i->bitmap_size = sit_bitmap_size;
 
4304	sit_i->dirty_sentries = 0;
4305	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4306	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4307	sit_i->mounted_time = ktime_get_boottime_seconds();
4308	init_rwsem(&sit_i->sentry_lock);
4309	return 0;
4310}
4311
4312static int build_free_segmap(struct f2fs_sb_info *sbi)
4313{
4314	struct free_segmap_info *free_i;
4315	unsigned int bitmap_size, sec_bitmap_size;
4316
4317	/* allocate memory for free segmap information */
4318	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4319	if (!free_i)
4320		return -ENOMEM;
4321
4322	SM_I(sbi)->free_info = free_i;
4323
4324	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4325	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4326	if (!free_i->free_segmap)
4327		return -ENOMEM;
4328
4329	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4330	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4331	if (!free_i->free_secmap)
4332		return -ENOMEM;
4333
4334	/* set all segments as dirty temporarily */
4335	memset(free_i->free_segmap, 0xff, bitmap_size);
4336	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4337
4338	/* init free segmap information */
4339	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4340	free_i->free_segments = 0;
4341	free_i->free_sections = 0;
4342	spin_lock_init(&free_i->segmap_lock);
4343	return 0;
4344}
4345
4346static int build_curseg(struct f2fs_sb_info *sbi)
4347{
4348	struct curseg_info *array;
4349	int i;
4350
4351	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4352					sizeof(*array)), GFP_KERNEL);
4353	if (!array)
4354		return -ENOMEM;
4355
4356	SM_I(sbi)->curseg_array = array;
4357
4358	for (i = 0; i < NO_CHECK_TYPE; i++) {
4359		mutex_init(&array[i].curseg_mutex);
4360		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4361		if (!array[i].sum_blk)
4362			return -ENOMEM;
4363		init_rwsem(&array[i].journal_rwsem);
4364		array[i].journal = f2fs_kzalloc(sbi,
4365				sizeof(struct f2fs_journal), GFP_KERNEL);
4366		if (!array[i].journal)
4367			return -ENOMEM;
4368		if (i < NR_PERSISTENT_LOG)
4369			array[i].seg_type = CURSEG_HOT_DATA + i;
4370		else if (i == CURSEG_COLD_DATA_PINNED)
4371			array[i].seg_type = CURSEG_COLD_DATA;
4372		else if (i == CURSEG_ALL_DATA_ATGC)
4373			array[i].seg_type = CURSEG_COLD_DATA;
4374		array[i].segno = NULL_SEGNO;
4375		array[i].next_blkoff = 0;
4376		array[i].inited = false;
4377	}
4378	return restore_curseg_summaries(sbi);
4379}
4380
4381static int build_sit_entries(struct f2fs_sb_info *sbi)
4382{
4383	struct sit_info *sit_i = SIT_I(sbi);
4384	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4385	struct f2fs_journal *journal = curseg->journal;
4386	struct seg_entry *se;
4387	struct f2fs_sit_entry sit;
4388	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4389	unsigned int i, start, end;
4390	unsigned int readed, start_blk = 0;
4391	int err = 0;
4392	block_t sit_valid_blocks[2] = {0, 0};
4393
4394	do {
4395		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4396							META_SIT, true);
4397
4398		start = start_blk * sit_i->sents_per_block;
4399		end = (start_blk + readed) * sit_i->sents_per_block;
4400
4401		for (; start < end && start < MAIN_SEGS(sbi); start++) {
 
4402			struct f2fs_sit_block *sit_blk;
 
4403			struct page *page;
4404
4405			se = &sit_i->sentries[start];
 
 
 
 
 
 
 
 
 
 
4406			page = get_current_sit_page(sbi, start);
4407			if (IS_ERR(page))
4408				return PTR_ERR(page);
4409			sit_blk = (struct f2fs_sit_block *)page_address(page);
4410			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4411			f2fs_put_page(page, 1);
4412
4413			err = check_block_count(sbi, start, &sit);
4414			if (err)
4415				return err;
4416			seg_info_from_raw_sit(se, &sit);
4417
4418			if (se->type >= NR_PERSISTENT_LOG) {
4419				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4420							se->type, start);
4421				f2fs_handle_error(sbi,
4422						ERROR_INCONSISTENT_SUM_TYPE);
4423				return -EFSCORRUPTED;
 
4424			}
4425
4426			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4427
4428			if (f2fs_block_unit_discard(sbi)) {
4429				/* build discard map only one time */
4430				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4431					memset(se->discard_map, 0xff,
4432						SIT_VBLOCK_MAP_SIZE);
4433				} else {
4434					memcpy(se->discard_map,
4435						se->cur_valid_map,
4436						SIT_VBLOCK_MAP_SIZE);
4437					sbi->discard_blks +=
4438						sbi->blocks_per_seg -
4439						se->valid_blocks;
4440				}
4441			}
4442
4443			if (__is_large_section(sbi))
4444				get_sec_entry(sbi, start)->valid_blocks +=
4445							se->valid_blocks;
4446		}
4447		start_blk += readed;
4448	} while (start_blk < sit_blk_cnt);
4449
4450	down_read(&curseg->journal_rwsem);
4451	for (i = 0; i < sits_in_cursum(journal); i++) {
4452		unsigned int old_valid_blocks;
4453
4454		start = le32_to_cpu(segno_in_journal(journal, i));
4455		if (start >= MAIN_SEGS(sbi)) {
4456			f2fs_err(sbi, "Wrong journal entry on segno %u",
4457				 start);
4458			err = -EFSCORRUPTED;
4459			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4460			break;
4461		}
4462
4463		se = &sit_i->sentries[start];
4464		sit = sit_in_journal(journal, i);
4465
4466		old_valid_blocks = se->valid_blocks;
4467
4468		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4469
4470		err = check_block_count(sbi, start, &sit);
4471		if (err)
4472			break;
4473		seg_info_from_raw_sit(se, &sit);
4474
4475		if (se->type >= NR_PERSISTENT_LOG) {
4476			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4477							se->type, start);
4478			err = -EFSCORRUPTED;
4479			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4480			break;
4481		}
4482
4483		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4484
4485		if (f2fs_block_unit_discard(sbi)) {
4486			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4487				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4488			} else {
4489				memcpy(se->discard_map, se->cur_valid_map,
4490							SIT_VBLOCK_MAP_SIZE);
4491				sbi->discard_blks += old_valid_blocks;
4492				sbi->discard_blks -= se->valid_blocks;
4493			}
4494		}
4495
4496		if (__is_large_section(sbi)) {
4497			get_sec_entry(sbi, start)->valid_blocks +=
4498							se->valid_blocks;
4499			get_sec_entry(sbi, start)->valid_blocks -=
4500							old_valid_blocks;
4501		}
4502	}
4503	up_read(&curseg->journal_rwsem);
4504
4505	if (err)
4506		return err;
4507
4508	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4509		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4510			 sit_valid_blocks[NODE], valid_node_count(sbi));
4511		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4512		return -EFSCORRUPTED;
4513	}
4514
4515	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4516				valid_user_blocks(sbi)) {
4517		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4518			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4519			 valid_user_blocks(sbi));
4520		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4521		return -EFSCORRUPTED;
4522	}
4523
4524	return 0;
4525}
4526
4527static void init_free_segmap(struct f2fs_sb_info *sbi)
4528{
4529	unsigned int start;
4530	int type;
4531	struct seg_entry *sentry;
4532
4533	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4534		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4535			continue;
4536		sentry = get_seg_entry(sbi, start);
4537		if (!sentry->valid_blocks)
4538			__set_free(sbi, start);
4539		else
4540			SIT_I(sbi)->written_valid_blocks +=
4541						sentry->valid_blocks;
4542	}
4543
4544	/* set use the current segments */
4545	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4546		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4547
4548		__set_test_and_inuse(sbi, curseg_t->segno);
4549	}
4550}
4551
4552static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4553{
4554	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4555	struct free_segmap_info *free_i = FREE_I(sbi);
4556	unsigned int segno = 0, offset = 0, secno;
4557	block_t valid_blocks, usable_blks_in_seg;
4558
4559	while (1) {
4560		/* find dirty segment based on free segmap */
4561		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4562		if (segno >= MAIN_SEGS(sbi))
4563			break;
4564		offset = segno + 1;
4565		valid_blocks = get_valid_blocks(sbi, segno, false);
4566		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4567		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4568			continue;
4569		if (valid_blocks > usable_blks_in_seg) {
4570			f2fs_bug_on(sbi, 1);
4571			continue;
4572		}
4573		mutex_lock(&dirty_i->seglist_lock);
4574		__locate_dirty_segment(sbi, segno, DIRTY);
4575		mutex_unlock(&dirty_i->seglist_lock);
4576	}
4577
4578	if (!__is_large_section(sbi))
4579		return;
4580
4581	mutex_lock(&dirty_i->seglist_lock);
4582	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4583		valid_blocks = get_valid_blocks(sbi, segno, true);
4584		secno = GET_SEC_FROM_SEG(sbi, segno);
4585
4586		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4587			continue;
4588		if (IS_CURSEC(sbi, secno))
4589			continue;
4590		set_bit(secno, dirty_i->dirty_secmap);
4591	}
4592	mutex_unlock(&dirty_i->seglist_lock);
4593}
4594
4595static int init_victim_secmap(struct f2fs_sb_info *sbi)
4596{
4597	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4598	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4599
4600	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4601	if (!dirty_i->victim_secmap)
4602		return -ENOMEM;
4603
4604	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4605	if (!dirty_i->pinned_secmap)
4606		return -ENOMEM;
4607
4608	dirty_i->pinned_secmap_cnt = 0;
4609	dirty_i->enable_pin_section = true;
4610	return 0;
4611}
4612
4613static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4614{
4615	struct dirty_seglist_info *dirty_i;
4616	unsigned int bitmap_size, i;
4617
4618	/* allocate memory for dirty segments list information */
4619	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4620								GFP_KERNEL);
4621	if (!dirty_i)
4622		return -ENOMEM;
4623
4624	SM_I(sbi)->dirty_info = dirty_i;
4625	mutex_init(&dirty_i->seglist_lock);
4626
4627	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4628
4629	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4630		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4631								GFP_KERNEL);
4632		if (!dirty_i->dirty_segmap[i])
4633			return -ENOMEM;
4634	}
4635
4636	if (__is_large_section(sbi)) {
4637		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4639						bitmap_size, GFP_KERNEL);
4640		if (!dirty_i->dirty_secmap)
4641			return -ENOMEM;
4642	}
4643
4644	init_dirty_segmap(sbi);
4645	return init_victim_secmap(sbi);
4646}
4647
4648static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4649{
4650	int i;
4651
4652	/*
4653	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4654	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4655	 */
4656	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4657		struct curseg_info *curseg = CURSEG_I(sbi, i);
4658		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4659		unsigned int blkofs = curseg->next_blkoff;
4660
4661		if (f2fs_sb_has_readonly(sbi) &&
4662			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4663			continue;
4664
4665		sanity_check_seg_type(sbi, curseg->seg_type);
4666
4667		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4668			f2fs_err(sbi,
4669				 "Current segment has invalid alloc_type:%d",
4670				 curseg->alloc_type);
4671			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4672			return -EFSCORRUPTED;
4673		}
4674
4675		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4676			goto out;
4677
4678		if (curseg->alloc_type == SSR)
4679			continue;
4680
4681		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4682			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4683				continue;
4684out:
4685			f2fs_err(sbi,
4686				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4687				 i, curseg->segno, curseg->alloc_type,
4688				 curseg->next_blkoff, blkofs);
4689			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4690			return -EFSCORRUPTED;
4691		}
4692	}
4693	return 0;
4694}
4695
4696#ifdef CONFIG_BLK_DEV_ZONED
4697
4698static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4699				    struct f2fs_dev_info *fdev,
4700				    struct blk_zone *zone)
4701{
4702	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4703	block_t zone_block, wp_block, last_valid_block;
4704	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4705	int i, s, b, ret;
4706	struct seg_entry *se;
4707
4708	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4709		return 0;
4710
4711	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4712	wp_segno = GET_SEGNO(sbi, wp_block);
4713	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4714	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4715	zone_segno = GET_SEGNO(sbi, zone_block);
4716	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4717
4718	if (zone_segno >= MAIN_SEGS(sbi))
4719		return 0;
4720
4721	/*
4722	 * Skip check of zones cursegs point to, since
4723	 * fix_curseg_write_pointer() checks them.
4724	 */
4725	for (i = 0; i < NO_CHECK_TYPE; i++)
4726		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4727						   CURSEG_I(sbi, i)->segno))
4728			return 0;
4729
4730	/*
4731	 * Get last valid block of the zone.
4732	 */
4733	last_valid_block = zone_block - 1;
4734	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4735		segno = zone_segno + s;
4736		se = get_seg_entry(sbi, segno);
4737		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4738			if (f2fs_test_bit(b, se->cur_valid_map)) {
4739				last_valid_block = START_BLOCK(sbi, segno) + b;
4740				break;
4741			}
4742		if (last_valid_block >= zone_block)
4743			break;
4744	}
4745
4746	/*
4747	 * If last valid block is beyond the write pointer, report the
4748	 * inconsistency. This inconsistency does not cause write error
4749	 * because the zone will not be selected for write operation until
4750	 * it get discarded. Just report it.
4751	 */
4752	if (last_valid_block >= wp_block) {
4753		f2fs_notice(sbi, "Valid block beyond write pointer: "
4754			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4755			    GET_SEGNO(sbi, last_valid_block),
4756			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4757			    wp_segno, wp_blkoff);
4758		return 0;
4759	}
4760
4761	/*
4762	 * If there is no valid block in the zone and if write pointer is
4763	 * not at zone start, reset the write pointer.
4764	 */
4765	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4766		f2fs_notice(sbi,
4767			    "Zone without valid block has non-zero write "
4768			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4769			    wp_segno, wp_blkoff);
4770		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4771					zone->len >> log_sectors_per_block);
4772		if (ret) {
4773			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4774				 fdev->path, ret);
4775			return ret;
4776		}
4777	}
4778
4779	return 0;
4780}
4781
4782static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4783						  block_t zone_blkaddr)
4784{
4785	int i;
4786
4787	for (i = 0; i < sbi->s_ndevs; i++) {
4788		if (!bdev_is_zoned(FDEV(i).bdev))
4789			continue;
4790		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4791				zone_blkaddr <= FDEV(i).end_blk))
4792			return &FDEV(i);
4793	}
4794
4795	return NULL;
4796}
4797
4798static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4799			      void *data)
4800{
4801	memcpy(data, zone, sizeof(struct blk_zone));
4802	return 0;
4803}
4804
4805static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4806{
4807	struct curseg_info *cs = CURSEG_I(sbi, type);
4808	struct f2fs_dev_info *zbd;
4809	struct blk_zone zone;
4810	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4811	block_t cs_zone_block, wp_block;
4812	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4813	sector_t zone_sector;
4814	int err;
4815
4816	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4817	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4818
4819	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4820	if (!zbd)
4821		return 0;
4822
4823	/* report zone for the sector the curseg points to */
4824	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4825		<< log_sectors_per_block;
4826	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4827				  report_one_zone_cb, &zone);
4828	if (err != 1) {
4829		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4830			 zbd->path, err);
4831		return err;
4832	}
4833
4834	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4835		return 0;
4836
4837	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4838	wp_segno = GET_SEGNO(sbi, wp_block);
4839	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4840	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4841
4842	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4843		wp_sector_off == 0)
4844		return 0;
4845
4846	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4847		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4848		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4849
4850	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4851		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4852
4853	f2fs_allocate_new_section(sbi, type, true);
4854
4855	/* check consistency of the zone curseg pointed to */
4856	if (check_zone_write_pointer(sbi, zbd, &zone))
4857		return -EIO;
4858
4859	/* check newly assigned zone */
4860	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4861	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4862
4863	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4864	if (!zbd)
4865		return 0;
4866
4867	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4868		<< log_sectors_per_block;
4869	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4870				  report_one_zone_cb, &zone);
4871	if (err != 1) {
4872		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4873			 zbd->path, err);
4874		return err;
4875	}
4876
4877	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4878		return 0;
4879
4880	if (zone.wp != zone.start) {
4881		f2fs_notice(sbi,
4882			    "New zone for curseg[%d] is not yet discarded. "
4883			    "Reset the zone: curseg[0x%x,0x%x]",
4884			    type, cs->segno, cs->next_blkoff);
4885		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4886				zone_sector >> log_sectors_per_block,
4887				zone.len >> log_sectors_per_block);
4888		if (err) {
4889			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4890				 zbd->path, err);
4891			return err;
4892		}
4893	}
4894
4895	return 0;
4896}
4897
4898int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4899{
4900	int i, ret;
4901
4902	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4903		ret = fix_curseg_write_pointer(sbi, i);
4904		if (ret)
4905			return ret;
4906	}
4907
4908	return 0;
4909}
4910
4911struct check_zone_write_pointer_args {
4912	struct f2fs_sb_info *sbi;
4913	struct f2fs_dev_info *fdev;
4914};
4915
4916static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4917				      void *data)
4918{
4919	struct check_zone_write_pointer_args *args;
4920
4921	args = (struct check_zone_write_pointer_args *)data;
4922
4923	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4924}
4925
4926int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4927{
4928	int i, ret;
4929	struct check_zone_write_pointer_args args;
4930
4931	for (i = 0; i < sbi->s_ndevs; i++) {
4932		if (!bdev_is_zoned(FDEV(i).bdev))
4933			continue;
4934
4935		args.sbi = sbi;
4936		args.fdev = &FDEV(i);
4937		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4938					  check_zone_write_pointer_cb, &args);
4939		if (ret < 0)
4940			return ret;
4941	}
4942
4943	return 0;
4944}
4945
4946static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4947						unsigned int dev_idx)
4948{
4949	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4950		return true;
4951	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4952}
4953
4954/* Return the zone index in the given device */
4955static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4956					int dev_idx)
4957{
4958	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4959
4960	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4961						sbi->log_blocks_per_blkz;
4962}
4963
4964/*
4965 * Return the usable segments in a section based on the zone's
4966 * corresponding zone capacity. Zone is equal to a section.
4967 */
4968static inline unsigned int f2fs_usable_zone_segs_in_sec(
4969		struct f2fs_sb_info *sbi, unsigned int segno)
4970{
4971	unsigned int dev_idx, zone_idx;
4972
4973	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4974	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4975
4976	/* Conventional zone's capacity is always equal to zone size */
4977	if (is_conv_zone(sbi, zone_idx, dev_idx))
4978		return sbi->segs_per_sec;
4979
4980	if (!sbi->unusable_blocks_per_sec)
4981		return sbi->segs_per_sec;
4982
4983	/* Get the segment count beyond zone capacity block */
4984	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4985						sbi->log_blocks_per_seg);
4986}
4987
4988/*
4989 * Return the number of usable blocks in a segment. The number of blocks
4990 * returned is always equal to the number of blocks in a segment for
4991 * segments fully contained within a sequential zone capacity or a
4992 * conventional zone. For segments partially contained in a sequential
4993 * zone capacity, the number of usable blocks up to the zone capacity
4994 * is returned. 0 is returned in all other cases.
4995 */
4996static inline unsigned int f2fs_usable_zone_blks_in_seg(
4997			struct f2fs_sb_info *sbi, unsigned int segno)
4998{
4999	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5000	unsigned int zone_idx, dev_idx, secno;
5001
5002	secno = GET_SEC_FROM_SEG(sbi, segno);
5003	seg_start = START_BLOCK(sbi, segno);
5004	dev_idx = f2fs_target_device_index(sbi, seg_start);
5005	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5006
5007	/*
5008	 * Conventional zone's capacity is always equal to zone size,
5009	 * so, blocks per segment is unchanged.
5010	 */
5011	if (is_conv_zone(sbi, zone_idx, dev_idx))
5012		return sbi->blocks_per_seg;
5013
5014	if (!sbi->unusable_blocks_per_sec)
5015		return sbi->blocks_per_seg;
5016
5017	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5018	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5019
5020	/*
5021	 * If segment starts before zone capacity and spans beyond
5022	 * zone capacity, then usable blocks are from seg start to
5023	 * zone capacity. If the segment starts after the zone capacity,
5024	 * then there are no usable blocks.
5025	 */
5026	if (seg_start >= sec_cap_blkaddr)
5027		return 0;
5028	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5029		return sec_cap_blkaddr - seg_start;
5030
5031	return sbi->blocks_per_seg;
5032}
5033#else
5034int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5035{
5036	return 0;
5037}
5038
5039int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5040{
5041	return 0;
5042}
5043
5044static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5045							unsigned int segno)
5046{
5047	return 0;
5048}
5049
5050static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5051							unsigned int segno)
5052{
5053	return 0;
5054}
5055#endif
5056unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5057					unsigned int segno)
5058{
5059	if (f2fs_sb_has_blkzoned(sbi))
5060		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5061
5062	return sbi->blocks_per_seg;
5063}
5064
5065unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5066					unsigned int segno)
5067{
5068	if (f2fs_sb_has_blkzoned(sbi))
5069		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5070
5071	return sbi->segs_per_sec;
5072}
5073
5074/*
5075 * Update min, max modified time for cost-benefit GC algorithm
5076 */
5077static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5078{
5079	struct sit_info *sit_i = SIT_I(sbi);
5080	unsigned int segno;
5081
5082	down_write(&sit_i->sentry_lock);
5083
5084	sit_i->min_mtime = ULLONG_MAX;
5085
5086	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5087		unsigned int i;
5088		unsigned long long mtime = 0;
5089
5090		for (i = 0; i < sbi->segs_per_sec; i++)
5091			mtime += get_seg_entry(sbi, segno + i)->mtime;
5092
5093		mtime = div_u64(mtime, sbi->segs_per_sec);
5094
5095		if (sit_i->min_mtime > mtime)
5096			sit_i->min_mtime = mtime;
5097	}
5098	sit_i->max_mtime = get_mtime(sbi, false);
5099	sit_i->dirty_max_mtime = 0;
5100	up_write(&sit_i->sentry_lock);
5101}
5102
5103int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5104{
5105	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5106	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5107	struct f2fs_sm_info *sm_info;
5108	int err;
5109
5110	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5111	if (!sm_info)
5112		return -ENOMEM;
5113
5114	/* init sm info */
5115	sbi->sm_info = sm_info;
5116	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5117	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5118	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5119	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5120	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5121	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5122	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5123	sm_info->rec_prefree_segments = sm_info->main_segments *
5124					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5125	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5126		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5127
5128	if (!f2fs_lfs_mode(sbi))
5129		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5130	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5131	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5132	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5133	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5134	sm_info->min_ssr_sections = reserved_sections(sbi);
5135
5136	INIT_LIST_HEAD(&sm_info->sit_entry_set);
 
 
5137
5138	init_f2fs_rwsem(&sm_info->curseg_lock);
5139
5140	err = f2fs_create_flush_cmd_control(sbi);
5141	if (err)
5142		return err;
5143
5144	err = create_discard_cmd_control(sbi);
5145	if (err)
5146		return err;
 
 
5147
5148	err = build_sit_info(sbi);
5149	if (err)
5150		return err;
5151	err = build_free_segmap(sbi);
5152	if (err)
5153		return err;
5154	err = build_curseg(sbi);
5155	if (err)
5156		return err;
5157
5158	/* reinit free segmap based on SIT */
5159	err = build_sit_entries(sbi);
5160	if (err)
5161		return err;
5162
5163	init_free_segmap(sbi);
5164	err = build_dirty_segmap(sbi);
5165	if (err)
5166		return err;
5167
5168	err = sanity_check_curseg(sbi);
5169	if (err)
5170		return err;
5171
5172	init_min_max_mtime(sbi);
5173	return 0;
5174}
5175
5176static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5177		enum dirty_type dirty_type)
5178{
5179	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5180
5181	mutex_lock(&dirty_i->seglist_lock);
5182	kvfree(dirty_i->dirty_segmap[dirty_type]);
5183	dirty_i->nr_dirty[dirty_type] = 0;
5184	mutex_unlock(&dirty_i->seglist_lock);
5185}
5186
5187static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5188{
5189	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5190
5191	kvfree(dirty_i->pinned_secmap);
5192	kvfree(dirty_i->victim_secmap);
5193}
5194
5195static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5196{
5197	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5198	int i;
5199
5200	if (!dirty_i)
5201		return;
5202
5203	/* discard pre-free/dirty segments list */
5204	for (i = 0; i < NR_DIRTY_TYPE; i++)
5205		discard_dirty_segmap(sbi, i);
5206
5207	if (__is_large_section(sbi)) {
5208		mutex_lock(&dirty_i->seglist_lock);
5209		kvfree(dirty_i->dirty_secmap);
5210		mutex_unlock(&dirty_i->seglist_lock);
5211	}
5212
5213	destroy_victim_secmap(sbi);
5214	SM_I(sbi)->dirty_info = NULL;
5215	kfree(dirty_i);
5216}
5217
5218static void destroy_curseg(struct f2fs_sb_info *sbi)
5219{
5220	struct curseg_info *array = SM_I(sbi)->curseg_array;
5221	int i;
5222
5223	if (!array)
5224		return;
5225	SM_I(sbi)->curseg_array = NULL;
5226	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5227		kfree(array[i].sum_blk);
5228		kfree(array[i].journal);
5229	}
5230	kfree(array);
5231}
5232
5233static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5234{
5235	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5236
5237	if (!free_i)
5238		return;
5239	SM_I(sbi)->free_info = NULL;
5240	kvfree(free_i->free_segmap);
5241	kvfree(free_i->free_secmap);
5242	kfree(free_i);
5243}
5244
5245static void destroy_sit_info(struct f2fs_sb_info *sbi)
5246{
5247	struct sit_info *sit_i = SIT_I(sbi);
 
5248
5249	if (!sit_i)
5250		return;
5251
5252	if (sit_i->sentries)
5253		kvfree(sit_i->bitmap);
 
 
 
 
 
5254	kfree(sit_i->tmp_map);
5255
5256	kvfree(sit_i->sentries);
5257	kvfree(sit_i->sec_entries);
5258	kvfree(sit_i->dirty_sentries_bitmap);
5259
5260	SM_I(sbi)->sit_info = NULL;
5261	kvfree(sit_i->sit_bitmap);
5262#ifdef CONFIG_F2FS_CHECK_FS
5263	kvfree(sit_i->sit_bitmap_mir);
5264	kvfree(sit_i->invalid_segmap);
5265#endif
5266	kfree(sit_i);
5267}
5268
5269void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5270{
5271	struct f2fs_sm_info *sm_info = SM_I(sbi);
5272
5273	if (!sm_info)
5274		return;
5275	f2fs_destroy_flush_cmd_control(sbi, true);
5276	destroy_discard_cmd_control(sbi);
5277	destroy_dirty_segmap(sbi);
5278	destroy_curseg(sbi);
5279	destroy_free_segmap(sbi);
5280	destroy_sit_info(sbi);
5281	sbi->sm_info = NULL;
5282	kfree(sm_info);
5283}
5284
5285int __init f2fs_create_segment_manager_caches(void)
5286{
5287	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5288			sizeof(struct discard_entry));
5289	if (!discard_entry_slab)
5290		goto fail;
5291
5292	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5293			sizeof(struct discard_cmd));
5294	if (!discard_cmd_slab)
5295		goto destroy_discard_entry;
5296
5297	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5298			sizeof(struct sit_entry_set));
5299	if (!sit_entry_set_slab)
5300		goto destroy_discard_cmd;
5301
5302	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5303			sizeof(struct revoke_entry));
5304	if (!revoke_entry_slab)
5305		goto destroy_sit_entry_set;
5306	return 0;
5307
5308destroy_sit_entry_set:
5309	kmem_cache_destroy(sit_entry_set_slab);
5310destroy_discard_cmd:
5311	kmem_cache_destroy(discard_cmd_slab);
5312destroy_discard_entry:
5313	kmem_cache_destroy(discard_entry_slab);
5314fail:
5315	return -ENOMEM;
5316}
5317
5318void f2fs_destroy_segment_manager_caches(void)
5319{
5320	kmem_cache_destroy(sit_entry_set_slab);
5321	kmem_cache_destroy(discard_cmd_slab);
5322	kmem_cache_destroy(discard_entry_slab);
5323	kmem_cache_destroy(revoke_entry_slab);
5324}