Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
 
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
 
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					unsigned int cycle_state, gfp_t flags)
 
 
  41{
  42	struct xhci_segment *seg;
  43	dma_addr_t	dma;
  44	int		i;
  45
  46	seg = kzalloc(sizeof *seg, flags);
  47	if (!seg)
  48		return NULL;
  49
  50	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  51	if (!seg->trbs) {
  52		kfree(seg);
  53		return NULL;
  54	}
  55
  56	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  57	if (cycle_state == 0) {
  58		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  59			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
 
 
 
 
  60	}
 
  61	seg->dma = dma;
  62	seg->next = NULL;
  63
  64	return seg;
  65}
  66
  67static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  68{
  69	if (seg->trbs) {
  70		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  71		seg->trbs = NULL;
  72	}
 
  73	kfree(seg);
  74}
  75
  76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  77				struct xhci_segment *first)
  78{
  79	struct xhci_segment *seg;
 
 
 
  80
  81	seg = first->next;
  82	while (seg != first) {
  83		struct xhci_segment *next = seg->next;
  84		xhci_segment_free(xhci, seg);
  85		seg = next;
  86	}
  87	xhci_segment_free(xhci, first);
  88}
  89
  90/*
  91 * Make the prev segment point to the next segment.
 
  92 *
  93 * Change the last TRB in the prev segment to be a Link TRB which points to the
  94 * DMA address of the next segment.  The caller needs to set any Link TRB
  95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  96 */
  97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  98		struct xhci_segment *next, enum xhci_ring_type type)
  99{
 
 100	u32 val;
 101
 102	if (!prev || !next)
 103		return;
 104	prev->next = next;
 105	if (type != TYPE_EVENT) {
 106		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 107			cpu_to_le64(next->dma);
 108
 109		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 110		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 111		val &= ~TRB_TYPE_BITMASK;
 112		val |= TRB_TYPE(TRB_LINK);
 113		/* Always set the chain bit with 0.95 hardware */
 114		/* Set chain bit for isoc rings on AMD 0.96 host */
 115		if (xhci_link_trb_quirk(xhci) ||
 116				(type == TYPE_ISOC &&
 117				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 118			val |= TRB_CHAIN;
 119		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 120	}
 
 
 
 
 
 
 
 
 
 
 121}
 122
 123/*
 124 * Link the ring to the new segments.
 125 * Set Toggle Cycle for the new ring if needed.
 126 */
 127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 128		struct xhci_segment *first, struct xhci_segment *last,
 129		unsigned int num_segs)
 130{
 131	struct xhci_segment *next;
 
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	next = ring->enq_seg->next;
 137	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 138	xhci_link_segments(xhci, last, next, ring->type);
 139	ring->num_segs += num_segs;
 140	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 141
 142	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 143		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 144			&= ~cpu_to_le32(LINK_TOGGLE);
 145		last->trbs[TRBS_PER_SEGMENT-1].link.control
 146			|= cpu_to_le32(LINK_TOGGLE);
 147		ring->last_seg = last;
 
 
 
 
 
 
 
 
 
 
 
 
 
 148	}
 
 
 
 149}
 150
 151/*
 152 * We need a radix tree for mapping physical addresses of TRBs to which stream
 153 * ID they belong to.  We need to do this because the host controller won't tell
 154 * us which stream ring the TRB came from.  We could store the stream ID in an
 155 * event data TRB, but that doesn't help us for the cancellation case, since the
 156 * endpoint may stop before it reaches that event data TRB.
 157 *
 158 * The radix tree maps the upper portion of the TRB DMA address to a ring
 159 * segment that has the same upper portion of DMA addresses.  For example, say I
 160 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 161 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 162 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 163 * pass the radix tree a key to get the right stream ID:
 164 *
 165 *	0x10c90fff >> 10 = 0x43243
 166 *	0x10c912c0 >> 10 = 0x43244
 167 *	0x10c91400 >> 10 = 0x43245
 168 *
 169 * Obviously, only those TRBs with DMA addresses that are within the segment
 170 * will make the radix tree return the stream ID for that ring.
 171 *
 172 * Caveats for the radix tree:
 173 *
 174 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 176 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 178 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 179 * extended systems (where the DMA address can be bigger than 32-bits),
 180 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 181 */
 182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 183		struct xhci_ring *ring,
 184		struct xhci_segment *seg,
 185		gfp_t mem_flags)
 186{
 187	unsigned long key;
 188	int ret;
 189
 190	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 191	/* Skip any segments that were already added. */
 192	if (radix_tree_lookup(trb_address_map, key))
 193		return 0;
 194
 195	ret = radix_tree_maybe_preload(mem_flags);
 196	if (ret)
 197		return ret;
 198	ret = radix_tree_insert(trb_address_map,
 199			key, ring);
 200	radix_tree_preload_end();
 201	return ret;
 202}
 203
 204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 205		struct xhci_segment *seg)
 206{
 207	unsigned long key;
 208
 209	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 210	if (radix_tree_lookup(trb_address_map, key))
 211		radix_tree_delete(trb_address_map, key);
 212}
 213
 214static int xhci_update_stream_segment_mapping(
 215		struct radix_tree_root *trb_address_map,
 216		struct xhci_ring *ring,
 217		struct xhci_segment *first_seg,
 218		struct xhci_segment *last_seg,
 219		gfp_t mem_flags)
 220{
 221	struct xhci_segment *seg;
 222	struct xhci_segment *failed_seg;
 223	int ret;
 224
 225	if (WARN_ON_ONCE(trb_address_map == NULL))
 226		return 0;
 227
 228	seg = first_seg;
 229	do {
 230		ret = xhci_insert_segment_mapping(trb_address_map,
 231				ring, seg, mem_flags);
 232		if (ret)
 233			goto remove_streams;
 234		if (seg == last_seg)
 235			return 0;
 236		seg = seg->next;
 237	} while (seg != first_seg);
 238
 239	return 0;
 240
 241remove_streams:
 242	failed_seg = seg;
 243	seg = first_seg;
 244	do {
 245		xhci_remove_segment_mapping(trb_address_map, seg);
 246		if (seg == failed_seg)
 247			return ret;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return ret;
 252}
 253
 254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 255{
 256	struct xhci_segment *seg;
 257
 258	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 259		return;
 260
 261	seg = ring->first_seg;
 262	do {
 263		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 264		seg = seg->next;
 265	} while (seg != ring->first_seg);
 266}
 267
 268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 269{
 270	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 271			ring->first_seg, ring->last_seg, mem_flags);
 272}
 273
 274/* XXX: Do we need the hcd structure in all these functions? */
 275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 276{
 277	if (!ring)
 278		return;
 279
 
 
 280	if (ring->first_seg) {
 281		if (ring->type == TYPE_STREAM)
 282			xhci_remove_stream_mapping(ring);
 283		xhci_free_segments_for_ring(xhci, ring->first_seg);
 284	}
 285
 286	kfree(ring);
 287}
 288
 289static void xhci_initialize_ring_info(struct xhci_ring *ring,
 290					unsigned int cycle_state)
 291{
 292	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 293	ring->enqueue = ring->first_seg->trbs;
 294	ring->enq_seg = ring->first_seg;
 295	ring->dequeue = ring->enqueue;
 296	ring->deq_seg = ring->first_seg;
 297	/* The ring is initialized to 0. The producer must write 1 to the cycle
 298	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 299	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 300	 *
 301	 * New rings are initialized with cycle state equal to 1; if we are
 302	 * handling ring expansion, set the cycle state equal to the old ring.
 303	 */
 304	ring->cycle_state = cycle_state;
 305	/* Not necessary for new rings, but needed for re-initialized rings */
 306	ring->enq_updates = 0;
 307	ring->deq_updates = 0;
 308
 309	/*
 310	 * Each segment has a link TRB, and leave an extra TRB for SW
 311	 * accounting purpose
 312	 */
 313	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 314}
 
 315
 316/* Allocate segments and link them for a ring */
 317static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 318		struct xhci_segment **first, struct xhci_segment **last,
 319		unsigned int num_segs, unsigned int cycle_state,
 320		enum xhci_ring_type type, gfp_t flags)
 321{
 322	struct xhci_segment *prev;
 
 323
 324	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 325	if (!prev)
 326		return -ENOMEM;
 327	num_segs--;
 328
 329	*first = prev;
 330	while (num_segs > 0) {
 331		struct xhci_segment	*next;
 332
 333		next = xhci_segment_alloc(xhci, cycle_state, flags);
 334		if (!next) {
 335			prev = *first;
 336			while (prev) {
 337				next = prev->next;
 338				xhci_segment_free(xhci, prev);
 339				prev = next;
 340			}
 341			return -ENOMEM;
 342		}
 343		xhci_link_segments(xhci, prev, next, type);
 344
 
 345		prev = next;
 346		num_segs--;
 347	}
 348	xhci_link_segments(xhci, prev, *first, type);
 349	*last = prev;
 350
 
 351	return 0;
 
 
 
 
 
 352}
 353
 354/**
 355 * Create a new ring with zero or more segments.
 356 *
 357 * Link each segment together into a ring.
 358 * Set the end flag and the cycle toggle bit on the last segment.
 359 * See section 4.9.1 and figures 15 and 16.
 360 */
 361static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 362		unsigned int num_segs, unsigned int cycle_state,
 363		enum xhci_ring_type type, gfp_t flags)
 364{
 365	struct xhci_ring	*ring;
 366	int ret;
 
 367
 368	ring = kzalloc(sizeof *(ring), flags);
 369	if (!ring)
 370		return NULL;
 371
 372	ring->num_segs = num_segs;
 
 373	INIT_LIST_HEAD(&ring->td_list);
 374	ring->type = type;
 375	if (num_segs == 0)
 376		return ring;
 377
 378	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 379			&ring->last_seg, num_segs, cycle_state, type, flags);
 380	if (ret)
 381		goto fail;
 382
 383	/* Only event ring does not use link TRB */
 384	if (type != TYPE_EVENT) {
 385		/* See section 4.9.2.1 and 6.4.4.1 */
 386		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 387			cpu_to_le32(LINK_TOGGLE);
 388	}
 389	xhci_initialize_ring_info(ring, cycle_state);
 390	return ring;
 391
 392fail:
 393	kfree(ring);
 394	return NULL;
 395}
 396
 397void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 398		struct xhci_virt_device *virt_dev,
 399		unsigned int ep_index)
 400{
 401	int rings_cached;
 402
 403	rings_cached = virt_dev->num_rings_cached;
 404	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 405		virt_dev->ring_cache[rings_cached] =
 406			virt_dev->eps[ep_index].ring;
 407		virt_dev->num_rings_cached++;
 408		xhci_dbg(xhci, "Cached old ring, "
 409				"%d ring%s cached\n",
 410				virt_dev->num_rings_cached,
 411				(virt_dev->num_rings_cached > 1) ? "s" : "");
 412	} else {
 413		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 414		xhci_dbg(xhci, "Ring cache full (%d rings), "
 415				"freeing ring\n",
 416				virt_dev->num_rings_cached);
 417	}
 418	virt_dev->eps[ep_index].ring = NULL;
 419}
 420
 421/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 422 * pointers to the beginning of the ring.
 423 */
 424static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 425			struct xhci_ring *ring, unsigned int cycle_state,
 426			enum xhci_ring_type type)
 427{
 428	struct xhci_segment	*seg = ring->first_seg;
 429	int i;
 430
 431	do {
 432		memset(seg->trbs, 0,
 433				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 434		if (cycle_state == 0) {
 435			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 436				seg->trbs[i].link.control |=
 437					cpu_to_le32(TRB_CYCLE);
 438		}
 439		/* All endpoint rings have link TRBs */
 440		xhci_link_segments(xhci, seg, seg->next, type);
 441		seg = seg->next;
 442	} while (seg != ring->first_seg);
 443	ring->type = type;
 444	xhci_initialize_ring_info(ring, cycle_state);
 445	/* td list should be empty since all URBs have been cancelled,
 446	 * but just in case...
 447	 */
 448	INIT_LIST_HEAD(&ring->td_list);
 449}
 450
 451/*
 452 * Expand an existing ring.
 453 * Look for a cached ring or allocate a new ring which has same segment numbers
 454 * and link the two rings.
 455 */
 456int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 457				unsigned int num_trbs, gfp_t flags)
 458{
 459	struct xhci_segment	*first;
 460	struct xhci_segment	*last;
 461	unsigned int		num_segs;
 462	unsigned int		num_segs_needed;
 463	int			ret;
 464
 465	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 466				(TRBS_PER_SEGMENT - 1);
 467
 468	/* Allocate number of segments we needed, or double the ring size */
 469	num_segs = ring->num_segs > num_segs_needed ?
 470			ring->num_segs : num_segs_needed;
 471
 472	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 473			num_segs, ring->cycle_state, ring->type, flags);
 
 
 
 
 
 474	if (ret)
 475		return -ENOMEM;
 476
 477	if (ring->type == TYPE_STREAM)
 478		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 479						ring, first, last, flags);
 480	if (ret) {
 481		struct xhci_segment *next;
 482		do {
 483			next = first->next;
 484			xhci_segment_free(xhci, first);
 485			if (first == last)
 486				break;
 487			first = next;
 488		} while (true);
 489		return ret;
 490	}
 491
 492	xhci_link_rings(xhci, ring, first, last, num_segs);
 
 493	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 494			"ring expansion succeed, now has %d segments",
 495			ring->num_segs);
 496
 497	return 0;
 498}
 499
 500#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 
 
 
 501
 502static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 503						    int type, gfp_t flags)
 504{
 505	struct xhci_container_ctx *ctx;
 
 506
 507	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 508		return NULL;
 509
 510	ctx = kzalloc(sizeof(*ctx), flags);
 511	if (!ctx)
 512		return NULL;
 513
 514	ctx->type = type;
 515	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 516	if (type == XHCI_CTX_TYPE_INPUT)
 517		ctx->size += CTX_SIZE(xhci->hcc_params);
 518
 519	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 520	if (!ctx->bytes) {
 521		kfree(ctx);
 522		return NULL;
 523	}
 524	return ctx;
 525}
 526
 527static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 528			     struct xhci_container_ctx *ctx)
 529{
 530	if (!ctx)
 531		return;
 532	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 533	kfree(ctx);
 534}
 535
 536struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 537					      struct xhci_container_ctx *ctx)
 538{
 539	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 540		return NULL;
 541
 542	return (struct xhci_input_control_ctx *)ctx->bytes;
 543}
 544
 545struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 546					struct xhci_container_ctx *ctx)
 547{
 548	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 549		return (struct xhci_slot_ctx *)ctx->bytes;
 550
 551	return (struct xhci_slot_ctx *)
 552		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 553}
 554
 555struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 556				    struct xhci_container_ctx *ctx,
 557				    unsigned int ep_index)
 558{
 559	/* increment ep index by offset of start of ep ctx array */
 560	ep_index++;
 561	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 562		ep_index++;
 563
 564	return (struct xhci_ep_ctx *)
 565		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 566}
 567
 568
 569/***************** Streams structures manipulation *************************/
 570
 571static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 572		unsigned int num_stream_ctxs,
 573		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 574{
 575	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 576	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 577
 578	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 579		dma_free_coherent(dev, size,
 580				stream_ctx, dma);
 581	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 582		return dma_pool_free(xhci->small_streams_pool,
 583				stream_ctx, dma);
 584	else
 585		return dma_pool_free(xhci->medium_streams_pool,
 586				stream_ctx, dma);
 587}
 588
 589/*
 590 * The stream context array for each endpoint with bulk streams enabled can
 591 * vary in size, based on:
 592 *  - how many streams the endpoint supports,
 593 *  - the maximum primary stream array size the host controller supports,
 594 *  - and how many streams the device driver asks for.
 595 *
 596 * The stream context array must be a power of 2, and can be as small as
 597 * 64 bytes or as large as 1MB.
 598 */
 599static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 600		unsigned int num_stream_ctxs, dma_addr_t *dma,
 601		gfp_t mem_flags)
 602{
 603	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 604	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 605
 606	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 607		return dma_alloc_coherent(dev, size,
 608				dma, mem_flags);
 609	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 610		return dma_pool_alloc(xhci->small_streams_pool,
 611				mem_flags, dma);
 612	else
 613		return dma_pool_alloc(xhci->medium_streams_pool,
 614				mem_flags, dma);
 615}
 616
 617struct xhci_ring *xhci_dma_to_transfer_ring(
 618		struct xhci_virt_ep *ep,
 619		u64 address)
 620{
 621	if (ep->ep_state & EP_HAS_STREAMS)
 622		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 623				address >> TRB_SEGMENT_SHIFT);
 624	return ep->ring;
 625}
 626
 627struct xhci_ring *xhci_stream_id_to_ring(
 628		struct xhci_virt_device *dev,
 629		unsigned int ep_index,
 630		unsigned int stream_id)
 631{
 632	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 633
 634	if (stream_id == 0)
 635		return ep->ring;
 636	if (!ep->stream_info)
 637		return NULL;
 638
 639	if (stream_id > ep->stream_info->num_streams)
 640		return NULL;
 641	return ep->stream_info->stream_rings[stream_id];
 642}
 643
 644/*
 645 * Change an endpoint's internal structure so it supports stream IDs.  The
 646 * number of requested streams includes stream 0, which cannot be used by device
 647 * drivers.
 648 *
 649 * The number of stream contexts in the stream context array may be bigger than
 650 * the number of streams the driver wants to use.  This is because the number of
 651 * stream context array entries must be a power of two.
 652 */
 653struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 654		unsigned int num_stream_ctxs,
 655		unsigned int num_streams, gfp_t mem_flags)
 
 656{
 657	struct xhci_stream_info *stream_info;
 658	u32 cur_stream;
 659	struct xhci_ring *cur_ring;
 660	u64 addr;
 661	int ret;
 
 662
 663	xhci_dbg(xhci, "Allocating %u streams and %u "
 664			"stream context array entries.\n",
 665			num_streams, num_stream_ctxs);
 666	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 667		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 668		return NULL;
 669	}
 670	xhci->cmd_ring_reserved_trbs++;
 671
 672	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 
 673	if (!stream_info)
 674		goto cleanup_trbs;
 675
 676	stream_info->num_streams = num_streams;
 677	stream_info->num_stream_ctxs = num_stream_ctxs;
 678
 679	/* Initialize the array of virtual pointers to stream rings. */
 680	stream_info->stream_rings = kzalloc(
 681			sizeof(struct xhci_ring *)*num_streams,
 682			mem_flags);
 683	if (!stream_info->stream_rings)
 684		goto cleanup_info;
 685
 686	/* Initialize the array of DMA addresses for stream rings for the HW. */
 687	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 688			num_stream_ctxs, &stream_info->ctx_array_dma,
 689			mem_flags);
 690	if (!stream_info->stream_ctx_array)
 691		goto cleanup_ctx;
 692	memset(stream_info->stream_ctx_array, 0,
 693			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 694
 695	/* Allocate everything needed to free the stream rings later */
 696	stream_info->free_streams_command =
 697		xhci_alloc_command(xhci, true, true, mem_flags);
 698	if (!stream_info->free_streams_command)
 699		goto cleanup_ctx;
 700
 701	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 702
 703	/* Allocate rings for all the streams that the driver will use,
 704	 * and add their segment DMA addresses to the radix tree.
 705	 * Stream 0 is reserved.
 706	 */
 
 707	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 708		stream_info->stream_rings[cur_stream] =
 709			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 710		cur_ring = stream_info->stream_rings[cur_stream];
 711		if (!cur_ring)
 712			goto cleanup_rings;
 713		cur_ring->stream_id = cur_stream;
 714		cur_ring->trb_address_map = &stream_info->trb_address_map;
 715		/* Set deq ptr, cycle bit, and stream context type */
 716		addr = cur_ring->first_seg->dma |
 717			SCT_FOR_CTX(SCT_PRI_TR) |
 718			cur_ring->cycle_state;
 719		stream_info->stream_ctx_array[cur_stream].stream_ring =
 720			cpu_to_le64(addr);
 721		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 722				cur_stream, (unsigned long long) addr);
 723
 724		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 
 
 725		if (ret) {
 726			xhci_ring_free(xhci, cur_ring);
 727			stream_info->stream_rings[cur_stream] = NULL;
 728			goto cleanup_rings;
 729		}
 730	}
 731	/* Leave the other unused stream ring pointers in the stream context
 732	 * array initialized to zero.  This will cause the xHC to give us an
 733	 * error if the device asks for a stream ID we don't have setup (if it
 734	 * was any other way, the host controller would assume the ring is
 735	 * "empty" and wait forever for data to be queued to that stream ID).
 736	 */
 737
 738	return stream_info;
 739
 740cleanup_rings:
 741	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 742		cur_ring = stream_info->stream_rings[cur_stream];
 743		if (cur_ring) {
 744			xhci_ring_free(xhci, cur_ring);
 745			stream_info->stream_rings[cur_stream] = NULL;
 746		}
 747	}
 748	xhci_free_command(xhci, stream_info->free_streams_command);
 749cleanup_ctx:
 
 
 
 
 
 750	kfree(stream_info->stream_rings);
 751cleanup_info:
 752	kfree(stream_info);
 753cleanup_trbs:
 754	xhci->cmd_ring_reserved_trbs--;
 755	return NULL;
 756}
 757/*
 758 * Sets the MaxPStreams field and the Linear Stream Array field.
 759 * Sets the dequeue pointer to the stream context array.
 760 */
 761void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 762		struct xhci_ep_ctx *ep_ctx,
 763		struct xhci_stream_info *stream_info)
 764{
 765	u32 max_primary_streams;
 766	/* MaxPStreams is the number of stream context array entries, not the
 767	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 768	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 769	 */
 770	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 771	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 772			"Setting number of stream ctx array entries to %u",
 773			1 << (max_primary_streams + 1));
 774	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 775	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 776				       | EP_HAS_LSA);
 777	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 778}
 779
 780/*
 781 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 782 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 783 * not at the beginning of the ring).
 784 */
 785void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 786		struct xhci_virt_ep *ep)
 787{
 788	dma_addr_t addr;
 789	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 790	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 791	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 792}
 793
 794/* Frees all stream contexts associated with the endpoint,
 795 *
 796 * Caller should fix the endpoint context streams fields.
 797 */
 798void xhci_free_stream_info(struct xhci_hcd *xhci,
 799		struct xhci_stream_info *stream_info)
 800{
 801	int cur_stream;
 802	struct xhci_ring *cur_ring;
 803
 804	if (!stream_info)
 805		return;
 806
 807	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 808			cur_stream++) {
 809		cur_ring = stream_info->stream_rings[cur_stream];
 810		if (cur_ring) {
 811			xhci_ring_free(xhci, cur_ring);
 812			stream_info->stream_rings[cur_stream] = NULL;
 813		}
 814	}
 815	xhci_free_command(xhci, stream_info->free_streams_command);
 816	xhci->cmd_ring_reserved_trbs--;
 817	if (stream_info->stream_ctx_array)
 818		xhci_free_stream_ctx(xhci,
 819				stream_info->num_stream_ctxs,
 820				stream_info->stream_ctx_array,
 821				stream_info->ctx_array_dma);
 822
 823	kfree(stream_info->stream_rings);
 824	kfree(stream_info);
 825}
 826
 827
 828/***************** Device context manipulation *************************/
 829
 830static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 831		struct xhci_virt_ep *ep)
 832{
 833	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 834		    (unsigned long)ep);
 835	ep->xhci = xhci;
 836}
 837
 838static void xhci_free_tt_info(struct xhci_hcd *xhci,
 839		struct xhci_virt_device *virt_dev,
 840		int slot_id)
 841{
 842	struct list_head *tt_list_head;
 843	struct xhci_tt_bw_info *tt_info, *next;
 844	bool slot_found = false;
 845
 846	/* If the device never made it past the Set Address stage,
 847	 * it may not have the real_port set correctly.
 848	 */
 849	if (virt_dev->real_port == 0 ||
 850			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 851		xhci_dbg(xhci, "Bad real port.\n");
 852		return;
 853	}
 854
 855	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 856	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 857		/* Multi-TT hubs will have more than one entry */
 858		if (tt_info->slot_id == slot_id) {
 859			slot_found = true;
 860			list_del(&tt_info->tt_list);
 861			kfree(tt_info);
 862		} else if (slot_found) {
 863			break;
 864		}
 865	}
 866}
 867
 868int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 869		struct xhci_virt_device *virt_dev,
 870		struct usb_device *hdev,
 871		struct usb_tt *tt, gfp_t mem_flags)
 872{
 873	struct xhci_tt_bw_info		*tt_info;
 874	unsigned int			num_ports;
 875	int				i, j;
 
 876
 877	if (!tt->multi)
 878		num_ports = 1;
 879	else
 880		num_ports = hdev->maxchild;
 881
 882	for (i = 0; i < num_ports; i++, tt_info++) {
 883		struct xhci_interval_bw_table *bw_table;
 884
 885		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 
 886		if (!tt_info)
 887			goto free_tts;
 888		INIT_LIST_HEAD(&tt_info->tt_list);
 889		list_add(&tt_info->tt_list,
 890				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 891		tt_info->slot_id = virt_dev->udev->slot_id;
 892		if (tt->multi)
 893			tt_info->ttport = i+1;
 894		bw_table = &tt_info->bw_table;
 895		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 896			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 897	}
 898	return 0;
 899
 900free_tts:
 901	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 902	return -ENOMEM;
 903}
 904
 905
 906/* All the xhci_tds in the ring's TD list should be freed at this point.
 907 * Should be called with xhci->lock held if there is any chance the TT lists
 908 * will be manipulated by the configure endpoint, allocate device, or update
 909 * hub functions while this function is removing the TT entries from the list.
 910 */
 911void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 912{
 913	struct xhci_virt_device *dev;
 914	int i;
 915	int old_active_eps = 0;
 916
 917	/* Slot ID 0 is reserved */
 918	if (slot_id == 0 || !xhci->devs[slot_id])
 919		return;
 920
 921	dev = xhci->devs[slot_id];
 
 922	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 923	if (!dev)
 924		return;
 925
 
 
 926	if (dev->tt_info)
 927		old_active_eps = dev->tt_info->active_eps;
 928
 929	for (i = 0; i < 31; ++i) {
 930		if (dev->eps[i].ring)
 931			xhci_ring_free(xhci, dev->eps[i].ring);
 932		if (dev->eps[i].stream_info)
 933			xhci_free_stream_info(xhci,
 934					dev->eps[i].stream_info);
 935		/* Endpoints on the TT/root port lists should have been removed
 936		 * when usb_disable_device() was called for the device.
 937		 * We can't drop them anyway, because the udev might have gone
 938		 * away by this point, and we can't tell what speed it was.
 
 
 939		 */
 940		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 941			xhci_warn(xhci, "Slot %u endpoint %u "
 942					"not removed from BW list!\n",
 943					slot_id, i);
 
 
 944	}
 945	/* If this is a hub, free the TT(s) from the TT list */
 946	xhci_free_tt_info(xhci, dev, slot_id);
 947	/* If necessary, update the number of active TTs on this root port */
 948	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 949
 950	if (dev->ring_cache) {
 951		for (i = 0; i < dev->num_rings_cached; i++)
 952			xhci_ring_free(xhci, dev->ring_cache[i]);
 953		kfree(dev->ring_cache);
 954	}
 955
 956	if (dev->in_ctx)
 957		xhci_free_container_ctx(xhci, dev->in_ctx);
 958	if (dev->out_ctx)
 959		xhci_free_container_ctx(xhci, dev->out_ctx);
 960
 
 
 
 
 961	kfree(xhci->devs[slot_id]);
 962	xhci->devs[slot_id] = NULL;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 966		struct usb_device *udev, gfp_t flags)
 967{
 968	struct xhci_virt_device *dev;
 969	int i;
 970
 971	/* Slot ID 0 is reserved */
 972	if (slot_id == 0 || xhci->devs[slot_id]) {
 973		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 974		return 0;
 975	}
 976
 977	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 978	if (!xhci->devs[slot_id])
 979		return 0;
 980	dev = xhci->devs[slot_id];
 
 981
 982	/* Allocate the (output) device context that will be used in the HC. */
 983	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 984	if (!dev->out_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 988			(unsigned long long)dev->out_ctx->dma);
 989
 990	/* Allocate the (input) device context for address device command */
 991	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 992	if (!dev->in_ctx)
 993		goto fail;
 994
 995	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 996			(unsigned long long)dev->in_ctx->dma);
 997
 998	/* Initialize the cancellation list and watchdog timers for each ep */
 999	for (i = 0; i < 31; i++) {
1000		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 
 
1001		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003	}
1004
1005	/* Allocate endpoint 0 ring */
1006	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007	if (!dev->eps[0].ring)
1008		goto fail;
1009
1010	/* Allocate pointers to the ring cache */
1011	dev->ring_cache = kzalloc(
1012			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1013			flags);
1014	if (!dev->ring_cache)
1015		goto fail;
1016	dev->num_rings_cached = 0;
1017
1018	init_completion(&dev->cmd_completion);
1019	dev->udev = udev;
1020
1021	/* Point to output device context in dcbaa. */
1022	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1024		 slot_id,
1025		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027
 
 
 
 
1028	return 1;
1029fail:
1030	xhci_free_virt_device(xhci, slot_id);
 
 
 
 
 
 
1031	return 0;
1032}
1033
1034void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1035		struct usb_device *udev)
1036{
1037	struct xhci_virt_device *virt_dev;
1038	struct xhci_ep_ctx	*ep0_ctx;
1039	struct xhci_ring	*ep_ring;
1040
1041	virt_dev = xhci->devs[udev->slot_id];
1042	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1043	ep_ring = virt_dev->eps[0].ring;
1044	/*
1045	 * FIXME we don't keep track of the dequeue pointer very well after a
1046	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1047	 * host to our enqueue pointer.  This should only be called after a
1048	 * configured device has reset, so all control transfers should have
1049	 * been completed or cancelled before the reset.
1050	 */
1051	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1052							ep_ring->enqueue)
1053				   | ep_ring->cycle_state);
1054}
1055
1056/*
1057 * The xHCI roothub may have ports of differing speeds in any order in the port
1058 * status registers.  xhci->port_array provides an array of the port speed for
1059 * each offset into the port status registers.
1060 *
1061 * The xHCI hardware wants to know the roothub port number that the USB device
1062 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1063 * know is the index of that port under either the USB 2.0 or the USB 3.0
1064 * roothub, but that doesn't give us the real index into the HW port status
1065 * registers. Call xhci_find_raw_port_number() to get real index.
1066 */
1067static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1068		struct usb_device *udev)
1069{
1070	struct usb_device *top_dev;
 
1071	struct usb_hcd *hcd;
1072
1073	if (udev->speed >= USB_SPEED_SUPER)
1074		hcd = xhci->shared_hcd;
1075	else
1076		hcd = xhci->main_hcd;
1077
1078	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1079			top_dev = top_dev->parent)
1080		/* Found device below root hub */;
1081
1082	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
 
1083}
1084
1085/* Setup an xHCI virtual device for a Set Address command */
1086int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1087{
1088	struct xhci_virt_device *dev;
1089	struct xhci_ep_ctx	*ep0_ctx;
1090	struct xhci_slot_ctx    *slot_ctx;
1091	u32			port_num;
1092	u32			max_packets;
1093	struct usb_device *top_dev;
1094
1095	dev = xhci->devs[udev->slot_id];
1096	/* Slot ID 0 is reserved */
1097	if (udev->slot_id == 0 || !dev) {
1098		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1099				udev->slot_id);
1100		return -EINVAL;
1101	}
1102	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1103	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104
1105	/* 3) Only the control endpoint is valid - one endpoint context */
1106	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107	switch (udev->speed) {
1108	case USB_SPEED_SUPER_PLUS:
1109		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1110		max_packets = MAX_PACKET(512);
1111		break;
1112	case USB_SPEED_SUPER:
1113		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114		max_packets = MAX_PACKET(512);
1115		break;
1116	case USB_SPEED_HIGH:
1117		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118		max_packets = MAX_PACKET(64);
1119		break;
1120	/* USB core guesses at a 64-byte max packet first for FS devices */
1121	case USB_SPEED_FULL:
1122		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123		max_packets = MAX_PACKET(64);
1124		break;
1125	case USB_SPEED_LOW:
1126		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127		max_packets = MAX_PACKET(8);
1128		break;
1129	case USB_SPEED_WIRELESS:
1130		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1131		return -EINVAL;
1132		break;
1133	default:
1134		/* Speed was set earlier, this shouldn't happen. */
1135		return -EINVAL;
1136	}
1137	/* Find the root hub port this device is under */
1138	port_num = xhci_find_real_port_number(xhci, udev);
1139	if (!port_num)
1140		return -EINVAL;
1141	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142	/* Set the port number in the virtual_device to the faked port number */
1143	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144			top_dev = top_dev->parent)
1145		/* Found device below root hub */;
1146	dev->fake_port = top_dev->portnum;
1147	dev->real_port = port_num;
1148	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150
1151	/* Find the right bandwidth table that this device will be a part of.
1152	 * If this is a full speed device attached directly to a root port (or a
1153	 * decendent of one), it counts as a primary bandwidth domain, not a
1154	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155	 * will never be created for the HS root hub.
1156	 */
1157	if (!udev->tt || !udev->tt->hub->parent) {
1158		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159	} else {
1160		struct xhci_root_port_bw_info *rh_bw;
1161		struct xhci_tt_bw_info *tt_bw;
1162
1163		rh_bw = &xhci->rh_bw[port_num - 1];
1164		/* Find the right TT. */
1165		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167				continue;
1168
1169			if (!dev->udev->tt->multi ||
1170					(udev->tt->multi &&
1171					 tt_bw->ttport == dev->udev->ttport)) {
1172				dev->bw_table = &tt_bw->bw_table;
1173				dev->tt_info = tt_bw;
1174				break;
1175			}
1176		}
1177		if (!dev->tt_info)
1178			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179	}
1180
1181	/* Is this a LS/FS device under an external HS hub? */
1182	if (udev->tt && udev->tt->hub->parent) {
1183		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184						(udev->ttport << 8));
1185		if (udev->tt->multi)
1186			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187	}
1188	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190
1191	/* Step 4 - ring already allocated */
1192	/* Step 5 */
1193	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194
1195	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197					 max_packets);
1198
1199	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200				   dev->eps[0].ring->cycle_state);
1201
 
 
1202	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203
1204	return 0;
1205}
1206
1207/*
1208 * Convert interval expressed as 2^(bInterval - 1) == interval into
1209 * straight exponent value 2^n == interval.
1210 *
1211 */
1212static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213		struct usb_host_endpoint *ep)
1214{
1215	unsigned int interval;
1216
1217	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218	if (interval != ep->desc.bInterval - 1)
1219		dev_warn(&udev->dev,
1220			 "ep %#x - rounding interval to %d %sframes\n",
1221			 ep->desc.bEndpointAddress,
1222			 1 << interval,
1223			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224
1225	if (udev->speed == USB_SPEED_FULL) {
1226		/*
1227		 * Full speed isoc endpoints specify interval in frames,
1228		 * not microframes. We are using microframes everywhere,
1229		 * so adjust accordingly.
1230		 */
1231		interval += 3;	/* 1 frame = 2^3 uframes */
1232	}
1233
1234	return interval;
1235}
1236
1237/*
1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 * microframes, rounded down to nearest power of 2.
1240 */
1241static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242		struct usb_host_endpoint *ep, unsigned int desc_interval,
1243		unsigned int min_exponent, unsigned int max_exponent)
1244{
1245	unsigned int interval;
1246
1247	interval = fls(desc_interval) - 1;
1248	interval = clamp_val(interval, min_exponent, max_exponent);
1249	if ((1 << interval) != desc_interval)
1250		dev_dbg(&udev->dev,
1251			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252			 ep->desc.bEndpointAddress,
1253			 1 << interval,
1254			 desc_interval);
1255
1256	return interval;
1257}
1258
1259static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260		struct usb_host_endpoint *ep)
1261{
1262	if (ep->desc.bInterval == 0)
1263		return 0;
1264	return xhci_microframes_to_exponent(udev, ep,
1265			ep->desc.bInterval, 0, 15);
1266}
1267
1268
1269static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270		struct usb_host_endpoint *ep)
1271{
1272	return xhci_microframes_to_exponent(udev, ep,
1273			ep->desc.bInterval * 8, 3, 10);
1274}
1275
1276/* Return the polling or NAK interval.
1277 *
1278 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280 *
1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282 * is set to 0.
1283 */
1284static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285		struct usb_host_endpoint *ep)
1286{
1287	unsigned int interval = 0;
1288
1289	switch (udev->speed) {
1290	case USB_SPEED_HIGH:
1291		/* Max NAK rate */
1292		if (usb_endpoint_xfer_control(&ep->desc) ||
1293		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294			interval = xhci_parse_microframe_interval(udev, ep);
1295			break;
1296		}
1297		/* Fall through - SS and HS isoc/int have same decoding */
1298
1299	case USB_SPEED_SUPER_PLUS:
1300	case USB_SPEED_SUPER:
1301		if (usb_endpoint_xfer_int(&ep->desc) ||
1302		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303			interval = xhci_parse_exponent_interval(udev, ep);
1304		}
1305		break;
1306
1307	case USB_SPEED_FULL:
1308		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309			interval = xhci_parse_exponent_interval(udev, ep);
1310			break;
1311		}
1312		/*
1313		 * Fall through for interrupt endpoint interval decoding
1314		 * since it uses the same rules as low speed interrupt
1315		 * endpoints.
1316		 */
 
1317
1318	case USB_SPEED_LOW:
1319		if (usb_endpoint_xfer_int(&ep->desc) ||
1320		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322			interval = xhci_parse_frame_interval(udev, ep);
1323		}
1324		break;
1325
1326	default:
1327		BUG();
1328	}
1329	return interval;
1330}
1331
1332/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338		struct usb_host_endpoint *ep)
1339{
1340	if (udev->speed < USB_SPEED_SUPER ||
1341			!usb_endpoint_xfer_isoc(&ep->desc))
1342		return 0;
1343	return ep->ss_ep_comp.bmAttributes;
1344}
1345
1346static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1347				       struct usb_host_endpoint *ep)
1348{
1349	/* Super speed and Plus have max burst in ep companion desc */
1350	if (udev->speed >= USB_SPEED_SUPER)
1351		return ep->ss_ep_comp.bMaxBurst;
1352
1353	if (udev->speed == USB_SPEED_HIGH &&
1354	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1355	     usb_endpoint_xfer_int(&ep->desc)))
1356		return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1357
1358	return 0;
1359}
1360
1361static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1362{
1363	int in;
1364
1365	in = usb_endpoint_dir_in(&ep->desc);
1366
1367	if (usb_endpoint_xfer_control(&ep->desc))
 
1368		return CTRL_EP;
1369	if (usb_endpoint_xfer_bulk(&ep->desc))
1370		return in ? BULK_IN_EP : BULK_OUT_EP;
1371	if (usb_endpoint_xfer_isoc(&ep->desc))
1372		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1373	if (usb_endpoint_xfer_int(&ep->desc))
1374		return in ? INT_IN_EP : INT_OUT_EP;
 
1375	return 0;
1376}
1377
1378/* Return the maximum endpoint service interval time (ESIT) payload.
1379 * Basically, this is the maxpacket size, multiplied by the burst size
1380 * and mult size.
1381 */
1382static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1383		struct usb_host_endpoint *ep)
1384{
1385	int max_burst;
1386	int max_packet;
1387
1388	/* Only applies for interrupt or isochronous endpoints */
1389	if (usb_endpoint_xfer_control(&ep->desc) ||
1390			usb_endpoint_xfer_bulk(&ep->desc))
1391		return 0;
1392
1393	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1394	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1395	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1396		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
 
1397	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1398	else if (udev->speed >= USB_SPEED_SUPER)
1399		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1400
1401	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1402	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1403	/* A 0 in max burst means 1 transfer per ESIT */
1404	return max_packet * (max_burst + 1);
1405}
1406
1407/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1408 * Drivers will have to call usb_alloc_streams() to do that.
1409 */
1410int xhci_endpoint_init(struct xhci_hcd *xhci,
1411		struct xhci_virt_device *virt_dev,
1412		struct usb_device *udev,
1413		struct usb_host_endpoint *ep,
1414		gfp_t mem_flags)
1415{
1416	unsigned int ep_index;
1417	struct xhci_ep_ctx *ep_ctx;
1418	struct xhci_ring *ep_ring;
1419	unsigned int max_packet;
1420	enum xhci_ring_type ring_type;
1421	u32 max_esit_payload;
1422	u32 endpoint_type;
1423	unsigned int max_burst;
1424	unsigned int interval;
1425	unsigned int mult;
1426	unsigned int avg_trb_len;
1427	unsigned int err_count = 0;
1428
1429	ep_index = xhci_get_endpoint_index(&ep->desc);
1430	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1431
1432	endpoint_type = xhci_get_endpoint_type(ep);
1433	if (!endpoint_type)
1434		return -EINVAL;
1435
1436	ring_type = usb_endpoint_type(&ep->desc);
1437	/* Set up the endpoint ring */
1438	virt_dev->eps[ep_index].new_ring =
1439		xhci_ring_alloc(xhci, 2, 1, ring_type, mem_flags);
1440	if (!virt_dev->eps[ep_index].new_ring) {
1441		/* Attempt to use the ring cache */
1442		if (virt_dev->num_rings_cached == 0)
1443			return -ENOMEM;
1444		virt_dev->num_rings_cached--;
1445		virt_dev->eps[ep_index].new_ring =
1446			virt_dev->ring_cache[virt_dev->num_rings_cached];
1447		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1448		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1449					1, ring_type);
1450	}
1451	virt_dev->eps[ep_index].skip = false;
1452	ep_ring = virt_dev->eps[ep_index].new_ring;
1453
1454	/*
1455	 * Get values to fill the endpoint context, mostly from ep descriptor.
1456	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1457	 * have no clue on scatter gather list entry size. For Isoc and Int,
1458	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1459	 */
1460	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1461	interval = xhci_get_endpoint_interval(udev, ep);
 
 
 
 
 
 
 
 
 
 
 
1462	mult = xhci_get_endpoint_mult(udev, ep);
1463	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1464	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1465	avg_trb_len = max_esit_payload;
1466
1467	/* FIXME dig Mult and streams info out of ep companion desc */
1468
1469	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1470	if (!usb_endpoint_xfer_isoc(&ep->desc))
1471		err_count = 3;
1472	/* Some devices get this wrong */
1473	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1474		max_packet = 512;
 
 
 
 
 
 
1475	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1476	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1477		avg_trb_len = 8;
1478	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1479	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1480		mult = 0;
1481
 
 
 
 
 
 
 
 
 
1482	/* Fill the endpoint context */
1483	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1484				      EP_INTERVAL(interval) |
1485				      EP_MULT(mult));
1486	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1487				       MAX_PACKET(max_packet) |
1488				       MAX_BURST(max_burst) |
1489				       ERROR_COUNT(err_count));
1490	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1491				  ep_ring->cycle_state);
1492
1493	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1494				      EP_AVG_TRB_LENGTH(avg_trb_len));
1495
1496	/* FIXME Debug endpoint context */
1497	return 0;
1498}
1499
1500void xhci_endpoint_zero(struct xhci_hcd *xhci,
1501		struct xhci_virt_device *virt_dev,
1502		struct usb_host_endpoint *ep)
1503{
1504	unsigned int ep_index;
1505	struct xhci_ep_ctx *ep_ctx;
1506
1507	ep_index = xhci_get_endpoint_index(&ep->desc);
1508	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1509
1510	ep_ctx->ep_info = 0;
1511	ep_ctx->ep_info2 = 0;
1512	ep_ctx->deq = 0;
1513	ep_ctx->tx_info = 0;
1514	/* Don't free the endpoint ring until the set interface or configuration
1515	 * request succeeds.
1516	 */
1517}
1518
1519void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1520{
1521	bw_info->ep_interval = 0;
1522	bw_info->mult = 0;
1523	bw_info->num_packets = 0;
1524	bw_info->max_packet_size = 0;
1525	bw_info->type = 0;
1526	bw_info->max_esit_payload = 0;
1527}
1528
1529void xhci_update_bw_info(struct xhci_hcd *xhci,
1530		struct xhci_container_ctx *in_ctx,
1531		struct xhci_input_control_ctx *ctrl_ctx,
1532		struct xhci_virt_device *virt_dev)
1533{
1534	struct xhci_bw_info *bw_info;
1535	struct xhci_ep_ctx *ep_ctx;
1536	unsigned int ep_type;
1537	int i;
1538
1539	for (i = 1; i < 31; ++i) {
1540		bw_info = &virt_dev->eps[i].bw_info;
1541
1542		/* We can't tell what endpoint type is being dropped, but
1543		 * unconditionally clearing the bandwidth info for non-periodic
1544		 * endpoints should be harmless because the info will never be
1545		 * set in the first place.
1546		 */
1547		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1548			/* Dropped endpoint */
1549			xhci_clear_endpoint_bw_info(bw_info);
1550			continue;
1551		}
1552
1553		if (EP_IS_ADDED(ctrl_ctx, i)) {
1554			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1555			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1556
1557			/* Ignore non-periodic endpoints */
1558			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1559					ep_type != ISOC_IN_EP &&
1560					ep_type != INT_IN_EP)
1561				continue;
1562
1563			/* Added or changed endpoint */
1564			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1565					le32_to_cpu(ep_ctx->ep_info));
1566			/* Number of packets and mult are zero-based in the
1567			 * input context, but we want one-based for the
1568			 * interval table.
1569			 */
1570			bw_info->mult = CTX_TO_EP_MULT(
1571					le32_to_cpu(ep_ctx->ep_info)) + 1;
1572			bw_info->num_packets = CTX_TO_MAX_BURST(
1573					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1574			bw_info->max_packet_size = MAX_PACKET_DECODED(
1575					le32_to_cpu(ep_ctx->ep_info2));
1576			bw_info->type = ep_type;
1577			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1578					le32_to_cpu(ep_ctx->tx_info));
1579		}
1580	}
1581}
1582
1583/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1584 * Useful when you want to change one particular aspect of the endpoint and then
1585 * issue a configure endpoint command.
1586 */
1587void xhci_endpoint_copy(struct xhci_hcd *xhci,
1588		struct xhci_container_ctx *in_ctx,
1589		struct xhci_container_ctx *out_ctx,
1590		unsigned int ep_index)
1591{
1592	struct xhci_ep_ctx *out_ep_ctx;
1593	struct xhci_ep_ctx *in_ep_ctx;
1594
1595	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1596	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1597
1598	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1599	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1600	in_ep_ctx->deq = out_ep_ctx->deq;
1601	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
 
 
 
 
1602}
1603
1604/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1605 * Useful when you want to change one particular aspect of the endpoint and then
1606 * issue a configure endpoint command.  Only the context entries field matters,
1607 * but we'll copy the whole thing anyway.
1608 */
1609void xhci_slot_copy(struct xhci_hcd *xhci,
1610		struct xhci_container_ctx *in_ctx,
1611		struct xhci_container_ctx *out_ctx)
1612{
1613	struct xhci_slot_ctx *in_slot_ctx;
1614	struct xhci_slot_ctx *out_slot_ctx;
1615
1616	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1617	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1618
1619	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1620	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1621	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1622	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1623}
1624
1625/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1626static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1627{
1628	int i;
1629	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1630	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1631
1632	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1633			"Allocating %d scratchpad buffers", num_sp);
1634
1635	if (!num_sp)
1636		return 0;
1637
1638	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
 
1639	if (!xhci->scratchpad)
1640		goto fail_sp;
1641
1642	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1643				     num_sp * sizeof(u64),
1644				     &xhci->scratchpad->sp_dma, flags);
1645	if (!xhci->scratchpad->sp_array)
1646		goto fail_sp2;
1647
1648	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
 
1649	if (!xhci->scratchpad->sp_buffers)
1650		goto fail_sp3;
1651
1652	xhci->scratchpad->sp_dma_buffers =
1653		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1654
1655	if (!xhci->scratchpad->sp_dma_buffers)
1656		goto fail_sp4;
1657
1658	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1659	for (i = 0; i < num_sp; i++) {
1660		dma_addr_t dma;
1661		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1662				flags);
1663		if (!buf)
1664			goto fail_sp5;
1665
1666		xhci->scratchpad->sp_array[i] = dma;
1667		xhci->scratchpad->sp_buffers[i] = buf;
1668		xhci->scratchpad->sp_dma_buffers[i] = dma;
1669	}
1670
1671	return 0;
1672
1673 fail_sp5:
1674	for (i = i - 1; i >= 0; i--) {
1675		dma_free_coherent(dev, xhci->page_size,
1676				    xhci->scratchpad->sp_buffers[i],
1677				    xhci->scratchpad->sp_dma_buffers[i]);
1678	}
1679	kfree(xhci->scratchpad->sp_dma_buffers);
1680
1681 fail_sp4:
1682	kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685	dma_free_coherent(dev, num_sp * sizeof(u64),
1686			    xhci->scratchpad->sp_array,
1687			    xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690	kfree(xhci->scratchpad);
1691	xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694	return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699	int num_sp;
1700	int i;
1701	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1702
1703	if (!xhci->scratchpad)
1704		return;
1705
1706	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708	for (i = 0; i < num_sp; i++) {
1709		dma_free_coherent(dev, xhci->page_size,
1710				    xhci->scratchpad->sp_buffers[i],
1711				    xhci->scratchpad->sp_dma_buffers[i]);
1712	}
1713	kfree(xhci->scratchpad->sp_dma_buffers);
1714	kfree(xhci->scratchpad->sp_buffers);
1715	dma_free_coherent(dev, num_sp * sizeof(u64),
1716			    xhci->scratchpad->sp_array,
1717			    xhci->scratchpad->sp_dma);
1718	kfree(xhci->scratchpad);
1719	xhci->scratchpad = NULL;
1720}
1721
1722struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1723		bool allocate_in_ctx, bool allocate_completion,
1724		gfp_t mem_flags)
1725{
1726	struct xhci_command *command;
 
1727
1728	command = kzalloc(sizeof(*command), mem_flags);
1729	if (!command)
1730		return NULL;
1731
1732	if (allocate_in_ctx) {
1733		command->in_ctx =
1734			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1735					mem_flags);
1736		if (!command->in_ctx) {
1737			kfree(command);
1738			return NULL;
1739		}
1740	}
1741
1742	if (allocate_completion) {
1743		command->completion =
1744			kzalloc(sizeof(struct completion), mem_flags);
 
1745		if (!command->completion) {
1746			xhci_free_container_ctx(xhci, command->in_ctx);
1747			kfree(command);
1748			return NULL;
1749		}
1750		init_completion(command->completion);
1751	}
1752
1753	command->status = 0;
 
 
1754	INIT_LIST_HEAD(&command->cmd_list);
1755	return command;
1756}
1757
1758void xhci_urb_free_priv(struct urb_priv *urb_priv)
 
1759{
1760	if (urb_priv) {
1761		kfree(urb_priv->td[0]);
1762		kfree(urb_priv);
 
 
 
 
 
 
 
 
 
1763	}
 
 
 
 
 
 
1764}
1765
1766void xhci_free_command(struct xhci_hcd *xhci,
1767		struct xhci_command *command)
1768{
1769	xhci_free_container_ctx(xhci,
1770			command->in_ctx);
1771	kfree(command->completion);
1772	kfree(command);
1773}
1774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775void xhci_mem_cleanup(struct xhci_hcd *xhci)
1776{
1777	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1778	int size;
1779	int i, j, num_ports;
1780
1781	del_timer_sync(&xhci->cmd_timer);
 
 
 
 
 
 
 
 
 
1782
1783	/* Free the Event Ring Segment Table and the actual Event Ring */
1784	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1785	if (xhci->erst.entries)
1786		dma_free_coherent(dev, size,
1787				xhci->erst.entries, xhci->erst.erst_dma_addr);
1788	xhci->erst.entries = NULL;
1789	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1790	if (xhci->event_ring)
1791		xhci_ring_free(xhci, xhci->event_ring);
1792	xhci->event_ring = NULL;
1793	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1794
1795	if (xhci->lpm_command)
1796		xhci_free_command(xhci, xhci->lpm_command);
1797	xhci->lpm_command = NULL;
1798	if (xhci->cmd_ring)
1799		xhci_ring_free(xhci, xhci->cmd_ring);
1800	xhci->cmd_ring = NULL;
1801	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1802	xhci_cleanup_command_queue(xhci);
1803
1804	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1805	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1806		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1807		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1808			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1809			while (!list_empty(ep))
1810				list_del_init(ep->next);
1811		}
1812	}
1813
1814	for (i = 1; i < MAX_HC_SLOTS; ++i)
1815		xhci_free_virt_device(xhci, i);
1816
1817	dma_pool_destroy(xhci->segment_pool);
1818	xhci->segment_pool = NULL;
1819	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1820
1821	dma_pool_destroy(xhci->device_pool);
1822	xhci->device_pool = NULL;
1823	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1824
1825	dma_pool_destroy(xhci->small_streams_pool);
1826	xhci->small_streams_pool = NULL;
1827	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1828			"Freed small stream array pool");
1829
1830	dma_pool_destroy(xhci->medium_streams_pool);
1831	xhci->medium_streams_pool = NULL;
1832	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1833			"Freed medium stream array pool");
1834
1835	if (xhci->dcbaa)
1836		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1837				xhci->dcbaa, xhci->dcbaa->dma);
1838	xhci->dcbaa = NULL;
1839
1840	scratchpad_free(xhci);
1841
1842	if (!xhci->rh_bw)
1843		goto no_bw;
1844
1845	for (i = 0; i < num_ports; i++) {
1846		struct xhci_tt_bw_info *tt, *n;
1847		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1848			list_del(&tt->tt_list);
1849			kfree(tt);
1850		}
1851	}
1852
1853no_bw:
1854	xhci->cmd_ring_reserved_trbs = 0;
1855	xhci->num_usb2_ports = 0;
1856	xhci->num_usb3_ports = 0;
1857	xhci->num_active_eps = 0;
1858	kfree(xhci->usb2_ports);
1859	kfree(xhci->usb3_ports);
1860	kfree(xhci->port_array);
1861	kfree(xhci->rh_bw);
1862	kfree(xhci->ext_caps);
1863
1864	xhci->usb2_ports = NULL;
1865	xhci->usb3_ports = NULL;
1866	xhci->port_array = NULL;
 
 
 
 
1867	xhci->rh_bw = NULL;
1868	xhci->ext_caps = NULL;
 
1869
1870	xhci->page_size = 0;
1871	xhci->page_shift = 0;
1872	xhci->bus_state[0].bus_suspended = 0;
1873	xhci->bus_state[1].bus_suspended = 0;
1874}
1875
1876static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1877		struct xhci_segment *input_seg,
1878		union xhci_trb *start_trb,
1879		union xhci_trb *end_trb,
1880		dma_addr_t input_dma,
1881		struct xhci_segment *result_seg,
1882		char *test_name, int test_number)
1883{
1884	unsigned long long start_dma;
1885	unsigned long long end_dma;
1886	struct xhci_segment *seg;
1887
1888	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1889	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1890
1891	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1892	if (seg != result_seg) {
1893		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1894				test_name, test_number);
1895		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1896				"input DMA 0x%llx\n",
1897				input_seg,
1898				(unsigned long long) input_dma);
1899		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1900				"ending TRB %p (0x%llx DMA)\n",
1901				start_trb, start_dma,
1902				end_trb, end_dma);
1903		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1904				result_seg, seg);
1905		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1906			  true);
1907		return -1;
1908	}
1909	return 0;
1910}
1911
1912/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1913static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1914{
1915	struct {
1916		dma_addr_t		input_dma;
1917		struct xhci_segment	*result_seg;
1918	} simple_test_vector [] = {
1919		/* A zeroed DMA field should fail */
1920		{ 0, NULL },
1921		/* One TRB before the ring start should fail */
1922		{ xhci->event_ring->first_seg->dma - 16, NULL },
1923		/* One byte before the ring start should fail */
1924		{ xhci->event_ring->first_seg->dma - 1, NULL },
1925		/* Starting TRB should succeed */
1926		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1927		/* Ending TRB should succeed */
1928		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1929			xhci->event_ring->first_seg },
1930		/* One byte after the ring end should fail */
1931		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1932		/* One TRB after the ring end should fail */
1933		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1934		/* An address of all ones should fail */
1935		{ (dma_addr_t) (~0), NULL },
1936	};
1937	struct {
1938		struct xhci_segment	*input_seg;
1939		union xhci_trb		*start_trb;
1940		union xhci_trb		*end_trb;
1941		dma_addr_t		input_dma;
1942		struct xhci_segment	*result_seg;
1943	} complex_test_vector [] = {
1944		/* Test feeding a valid DMA address from a different ring */
1945		{	.input_seg = xhci->event_ring->first_seg,
1946			.start_trb = xhci->event_ring->first_seg->trbs,
1947			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1948			.input_dma = xhci->cmd_ring->first_seg->dma,
1949			.result_seg = NULL,
1950		},
1951		/* Test feeding a valid end TRB from a different ring */
1952		{	.input_seg = xhci->event_ring->first_seg,
1953			.start_trb = xhci->event_ring->first_seg->trbs,
1954			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1955			.input_dma = xhci->cmd_ring->first_seg->dma,
1956			.result_seg = NULL,
1957		},
1958		/* Test feeding a valid start and end TRB from a different ring */
1959		{	.input_seg = xhci->event_ring->first_seg,
1960			.start_trb = xhci->cmd_ring->first_seg->trbs,
1961			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1962			.input_dma = xhci->cmd_ring->first_seg->dma,
1963			.result_seg = NULL,
1964		},
1965		/* TRB in this ring, but after this TD */
1966		{	.input_seg = xhci->event_ring->first_seg,
1967			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1968			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1969			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1970			.result_seg = NULL,
1971		},
1972		/* TRB in this ring, but before this TD */
1973		{	.input_seg = xhci->event_ring->first_seg,
1974			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1975			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1976			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1977			.result_seg = NULL,
1978		},
1979		/* TRB in this ring, but after this wrapped TD */
1980		{	.input_seg = xhci->event_ring->first_seg,
1981			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1982			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1983			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1984			.result_seg = NULL,
1985		},
1986		/* TRB in this ring, but before this wrapped TD */
1987		{	.input_seg = xhci->event_ring->first_seg,
1988			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1989			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1990			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1991			.result_seg = NULL,
1992		},
1993		/* TRB not in this ring, and we have a wrapped TD */
1994		{	.input_seg = xhci->event_ring->first_seg,
1995			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1996			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1997			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1998			.result_seg = NULL,
1999		},
2000	};
2001
2002	unsigned int num_tests;
2003	int i, ret;
2004
2005	num_tests = ARRAY_SIZE(simple_test_vector);
2006	for (i = 0; i < num_tests; i++) {
2007		ret = xhci_test_trb_in_td(xhci,
2008				xhci->event_ring->first_seg,
2009				xhci->event_ring->first_seg->trbs,
2010				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011				simple_test_vector[i].input_dma,
2012				simple_test_vector[i].result_seg,
2013				"Simple", i);
2014		if (ret < 0)
2015			return ret;
2016	}
2017
2018	num_tests = ARRAY_SIZE(complex_test_vector);
2019	for (i = 0; i < num_tests; i++) {
2020		ret = xhci_test_trb_in_td(xhci,
2021				complex_test_vector[i].input_seg,
2022				complex_test_vector[i].start_trb,
2023				complex_test_vector[i].end_trb,
2024				complex_test_vector[i].input_dma,
2025				complex_test_vector[i].result_seg,
2026				"Complex", i);
2027		if (ret < 0)
2028			return ret;
2029	}
2030	xhci_dbg(xhci, "TRB math tests passed.\n");
2031	return 0;
2032}
2033
2034static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2035{
2036	u64 temp;
2037	dma_addr_t deq;
2038
2039	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2040			xhci->event_ring->dequeue);
2041	if (deq == 0 && !in_interrupt())
2042		xhci_warn(xhci, "WARN something wrong with SW event ring "
2043				"dequeue ptr.\n");
2044	/* Update HC event ring dequeue pointer */
2045	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2046	temp &= ERST_PTR_MASK;
2047	/* Don't clear the EHB bit (which is RW1C) because
2048	 * there might be more events to service.
2049	 */
2050	temp &= ~ERST_EHB;
2051	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2052			"// Write event ring dequeue pointer, "
2053			"preserving EHB bit");
2054	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2055			&xhci->ir_set->erst_dequeue);
2056}
2057
2058static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2059		__le32 __iomem *addr, int max_caps)
2060{
2061	u32 temp, port_offset, port_count;
2062	int i;
2063	u8 major_revision;
2064	struct xhci_hub *rhub;
 
 
2065
2066	temp = readl(addr);
2067	major_revision = XHCI_EXT_PORT_MAJOR(temp);
 
2068
2069	if (major_revision == 0x03) {
2070		rhub = &xhci->usb3_rhub;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2071	} else if (major_revision <= 0x02) {
2072		rhub = &xhci->usb2_rhub;
2073	} else {
2074		xhci_warn(xhci, "Ignoring unknown port speed, "
2075				"Ext Cap %p, revision = 0x%x\n",
2076				addr, major_revision);
2077		/* Ignoring port protocol we can't understand. FIXME */
2078		return;
2079	}
2080	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2081	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2082
2083	/* Port offset and count in the third dword, see section 7.2 */
2084	temp = readl(addr + 2);
2085	port_offset = XHCI_EXT_PORT_OFF(temp);
2086	port_count = XHCI_EXT_PORT_COUNT(temp);
2087	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2088			"Ext Cap %p, port offset = %u, "
2089			"count = %u, revision = 0x%x",
2090			addr, port_offset, port_count, major_revision);
2091	/* Port count includes the current port offset */
2092	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2093		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2094		return;
2095
2096	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2097	if (rhub->psi_count) {
2098		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2099				    GFP_KERNEL);
2100		if (!rhub->psi)
2101			rhub->psi_count = 0;
2102
2103		rhub->psi_uid_count++;
2104		for (i = 0; i < rhub->psi_count; i++) {
2105			rhub->psi[i] = readl(addr + 4 + i);
 
 
 
 
 
 
2106
2107			/* count unique ID values, two consecutive entries can
2108			 * have the same ID if link is assymetric
2109			 */
2110			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2111				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2112				rhub->psi_uid_count++;
 
 
 
 
 
2113
2114			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2115				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2116				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2117				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2118				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2119				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2120				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2121		}
2122	}
2123	/* cache usb2 port capabilities */
2124	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2125		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2126
2127	/* Check the host's USB2 LPM capability */
2128	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2129			(temp & XHCI_L1C)) {
2130		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2131				"xHCI 0.96: support USB2 software lpm");
2132		xhci->sw_lpm_support = 1;
2133	}
2134
2135	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
 
 
 
 
 
 
 
 
 
 
2136		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2137				"xHCI 1.0: support USB2 software lpm");
2138		xhci->sw_lpm_support = 1;
2139		if (temp & XHCI_HLC) {
2140			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2141					"xHCI 1.0: support USB2 hardware lpm");
2142			xhci->hw_lpm_support = 1;
2143		}
2144	}
2145
2146	port_offset--;
2147	for (i = port_offset; i < (port_offset + port_count); i++) {
 
2148		/* Duplicate entry.  Ignore the port if the revisions differ. */
2149		if (xhci->port_array[i] != 0) {
2150			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2151					" port %u\n", addr, i);
2152			xhci_warn(xhci, "Port was marked as USB %u, "
2153					"duplicated as USB %u\n",
2154					xhci->port_array[i], major_revision);
2155			/* Only adjust the roothub port counts if we haven't
2156			 * found a similar duplicate.
2157			 */
2158			if (xhci->port_array[i] != major_revision &&
2159				xhci->port_array[i] != DUPLICATE_ENTRY) {
2160				if (xhci->port_array[i] == 0x03)
2161					xhci->num_usb3_ports--;
2162				else
2163					xhci->num_usb2_ports--;
2164				xhci->port_array[i] = DUPLICATE_ENTRY;
2165			}
2166			/* FIXME: Should we disable the port? */
2167			continue;
2168		}
2169		xhci->port_array[i] = major_revision;
2170		if (major_revision == 0x03)
2171			xhci->num_usb3_ports++;
2172		else
2173			xhci->num_usb2_ports++;
2174	}
2175	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2176}
2177
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178/*
2179 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2180 * specify what speeds each port is supposed to be.  We can't count on the port
2181 * speed bits in the PORTSC register being correct until a device is connected,
2182 * but we need to set up the two fake roothubs with the correct number of USB
2183 * 3.0 and USB 2.0 ports at host controller initialization time.
2184 */
2185static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2186{
2187	void __iomem *base;
2188	u32 offset;
2189	unsigned int num_ports;
2190	int i, j, port_index;
2191	int cap_count = 0;
2192	u32 cap_start;
 
2193
2194	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2195	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2196	if (!xhci->port_array)
 
2197		return -ENOMEM;
2198
2199	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
 
 
 
 
 
 
 
 
 
 
2200	if (!xhci->rh_bw)
2201		return -ENOMEM;
2202	for (i = 0; i < num_ports; i++) {
2203		struct xhci_interval_bw_table *bw_table;
2204
2205		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206		bw_table = &xhci->rh_bw[i].bw_table;
2207		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209	}
2210	base = &xhci->cap_regs->hc_capbase;
2211
2212	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213	if (!cap_start) {
2214		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215		return -ENODEV;
2216	}
2217
2218	offset = cap_start;
2219	/* count extended protocol capability entries for later caching */
2220	while (offset) {
2221		cap_count++;
2222		offset = xhci_find_next_ext_cap(base, offset,
2223						      XHCI_EXT_CAPS_PROTOCOL);
2224	}
2225
2226	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2227	if (!xhci->ext_caps)
 
2228		return -ENOMEM;
2229
2230	offset = cap_start;
2231
2232	while (offset) {
2233		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2234		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
 
2235			break;
2236		offset = xhci_find_next_ext_cap(base, offset,
2237						XHCI_EXT_CAPS_PROTOCOL);
2238	}
2239
2240	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241		xhci_warn(xhci, "No ports on the roothubs?\n");
2242		return -ENODEV;
2243	}
2244	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247
2248	/* Place limits on the number of roothub ports so that the hub
2249	 * descriptors aren't longer than the USB core will allocate.
2250	 */
2251	if (xhci->num_usb3_ports > 15) {
2252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253				"Limiting USB 3.0 roothub ports to 15.");
2254		xhci->num_usb3_ports = 15;
 
2255	}
2256	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258				"Limiting USB 2.0 roothub ports to %u.",
2259				USB_MAXCHILDREN);
2260		xhci->num_usb2_ports = USB_MAXCHILDREN;
2261	}
2262
2263	/*
2264	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265	 * Not sure how the USB core will handle a hub with no ports...
2266	 */
2267	if (xhci->num_usb2_ports) {
2268		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269				xhci->num_usb2_ports, flags);
2270		if (!xhci->usb2_ports)
2271			return -ENOMEM;
2272
2273		port_index = 0;
2274		for (i = 0; i < num_ports; i++) {
2275			if (xhci->port_array[i] == 0x03 ||
2276					xhci->port_array[i] == 0 ||
2277					xhci->port_array[i] == DUPLICATE_ENTRY)
2278				continue;
2279
2280			xhci->usb2_ports[port_index] =
2281				&xhci->op_regs->port_status_base +
2282				NUM_PORT_REGS*i;
2283			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284					"USB 2.0 port at index %u, "
2285					"addr = %p", i,
2286					xhci->usb2_ports[port_index]);
2287			port_index++;
2288			if (port_index == xhci->num_usb2_ports)
2289				break;
2290		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291	}
2292	if (xhci->num_usb3_ports) {
2293		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294				xhci->num_usb3_ports, flags);
2295		if (!xhci->usb3_ports)
2296			return -ENOMEM;
2297
2298		port_index = 0;
2299		for (i = 0; i < num_ports; i++)
2300			if (xhci->port_array[i] == 0x03) {
2301				xhci->usb3_ports[port_index] =
2302					&xhci->op_regs->port_status_base +
2303					NUM_PORT_REGS*i;
2304				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305						"USB 3.0 port at index %u, "
2306						"addr = %p", i,
2307						xhci->usb3_ports[port_index]);
2308				port_index++;
2309				if (port_index == xhci->num_usb3_ports)
2310					break;
2311			}
 
 
 
 
 
 
 
 
2312	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2313	return 0;
2314}
2315
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2316int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317{
 
 
2318	dma_addr_t	dma;
2319	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320	unsigned int	val, val2;
2321	u64		val_64;
2322	struct xhci_segment	*seg;
2323	u32 page_size, temp;
2324	int i;
2325
2326	INIT_LIST_HEAD(&xhci->cmd_list);
2327
2328	/* init command timeout timer */
2329	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2330		    (unsigned long)xhci);
2331
2332	page_size = readl(&xhci->op_regs->page_size);
2333	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2334			"Supported page size register = 0x%x", page_size);
2335	for (i = 0; i < 16; i++) {
2336		if ((0x1 & page_size) != 0)
2337			break;
2338		page_size = page_size >> 1;
2339	}
2340	if (i < 16)
2341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342			"Supported page size of %iK", (1 << (i+12)) / 1024);
2343	else
2344		xhci_warn(xhci, "WARN: no supported page size\n");
2345	/* Use 4K pages, since that's common and the minimum the HC supports */
2346	xhci->page_shift = 12;
2347	xhci->page_size = 1 << xhci->page_shift;
2348	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2349			"HCD page size set to %iK", xhci->page_size / 1024);
2350
2351	/*
2352	 * Program the Number of Device Slots Enabled field in the CONFIG
2353	 * register with the max value of slots the HC can handle.
2354	 */
2355	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2356	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357			"// xHC can handle at most %d device slots.", val);
2358	val2 = readl(&xhci->op_regs->config_reg);
2359	val |= (val2 & ~HCS_SLOTS_MASK);
2360	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361			"// Setting Max device slots reg = 0x%x.", val);
2362	writel(val, &xhci->op_regs->config_reg);
2363
2364	/*
2365	 * Section 5.4.8 - doorbell array must be
2366	 * "physically contiguous and 64-byte (cache line) aligned".
2367	 */
2368	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2369			GFP_KERNEL);
2370	if (!xhci->dcbaa)
2371		goto fail;
2372	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2373	xhci->dcbaa->dma = dma;
2374	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2376			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2377	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2378
2379	/*
2380	 * Initialize the ring segment pool.  The ring must be a contiguous
2381	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2382	 * however, the command ring segment needs 64-byte aligned segments
2383	 * and our use of dma addresses in the trb_address_map radix tree needs
2384	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2385	 */
2386	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2387			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
 
 
 
 
 
2388
2389	/* See Table 46 and Note on Figure 55 */
2390	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2391			2112, 64, xhci->page_size);
2392	if (!xhci->segment_pool || !xhci->device_pool)
2393		goto fail;
2394
2395	/* Linear stream context arrays don't have any boundary restrictions,
2396	 * and only need to be 16-byte aligned.
2397	 */
2398	xhci->small_streams_pool =
2399		dma_pool_create("xHCI 256 byte stream ctx arrays",
2400			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2401	xhci->medium_streams_pool =
2402		dma_pool_create("xHCI 1KB stream ctx arrays",
2403			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2404	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2405	 * will be allocated with dma_alloc_coherent()
2406	 */
2407
2408	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2409		goto fail;
2410
2411	/* Set up the command ring to have one segments for now. */
2412	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2413	if (!xhci->cmd_ring)
2414		goto fail;
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"Allocated command ring at %p", xhci->cmd_ring);
2417	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2418			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2419
2420	/* Set the address in the Command Ring Control register */
2421	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2422	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2423		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2424		xhci->cmd_ring->cycle_state;
2425	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426			"// Setting command ring address to 0x%x", val);
2427	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2428	xhci_dbg_cmd_ptrs(xhci);
2429
2430	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2431	if (!xhci->lpm_command)
2432		goto fail;
2433
2434	/* Reserve one command ring TRB for disabling LPM.
2435	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2436	 * disabling LPM, we only need to reserve one TRB for all devices.
2437	 */
2438	xhci->cmd_ring_reserved_trbs++;
2439
2440	val = readl(&xhci->cap_regs->db_off);
2441	val &= DBOFF_MASK;
2442	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443			"// Doorbell array is located at offset 0x%x"
2444			" from cap regs base addr", val);
2445	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2446	xhci_dbg_regs(xhci);
2447	xhci_print_run_regs(xhci);
2448	/* Set ir_set to interrupt register set 0 */
2449	xhci->ir_set = &xhci->run_regs->ir_set[0];
2450
2451	/*
2452	 * Event ring setup: Allocate a normal ring, but also setup
2453	 * the event ring segment table (ERST).  Section 4.9.3.
2454	 */
2455	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2456	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2457						flags);
2458	if (!xhci->event_ring)
2459		goto fail;
2460	if (xhci_check_trb_in_td_math(xhci) < 0)
2461		goto fail;
2462
2463	xhci->erst.entries = dma_alloc_coherent(dev,
2464			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2465			GFP_KERNEL);
2466	if (!xhci->erst.entries)
2467		goto fail;
2468	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2469			"// Allocated event ring segment table at 0x%llx",
2470			(unsigned long long)dma);
2471
2472	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2473	xhci->erst.num_entries = ERST_NUM_SEGS;
2474	xhci->erst.erst_dma_addr = dma;
2475	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2476			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2477			xhci->erst.num_entries,
2478			xhci->erst.entries,
2479			(unsigned long long)xhci->erst.erst_dma_addr);
2480
2481	/* set ring base address and size for each segment table entry */
2482	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2483		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2484		entry->seg_addr = cpu_to_le64(seg->dma);
2485		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2486		entry->rsvd = 0;
2487		seg = seg->next;
2488	}
2489
2490	/* set ERST count with the number of entries in the segment table */
2491	val = readl(&xhci->ir_set->erst_size);
2492	val &= ERST_SIZE_MASK;
2493	val |= ERST_NUM_SEGS;
2494	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2495			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2496			val);
2497	writel(val, &xhci->ir_set->erst_size);
2498
2499	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2500			"// Set ERST entries to point to event ring.");
2501	/* set the segment table base address */
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503			"// Set ERST base address for ir_set 0 = 0x%llx",
2504			(unsigned long long)xhci->erst.erst_dma_addr);
2505	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2506	val_64 &= ERST_PTR_MASK;
2507	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2508	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2509
2510	/* Set the event ring dequeue address */
2511	xhci_set_hc_event_deq(xhci);
2512	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2513			"Wrote ERST address to ir_set 0.");
2514	xhci_print_ir_set(xhci, 0);
2515
2516	/*
2517	 * XXX: Might need to set the Interrupter Moderation Register to
2518	 * something other than the default (~1ms minimum between interrupts).
2519	 * See section 5.5.1.2.
2520	 */
2521	init_completion(&xhci->addr_dev);
2522	for (i = 0; i < MAX_HC_SLOTS; ++i)
2523		xhci->devs[i] = NULL;
2524	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2525		xhci->bus_state[0].resume_done[i] = 0;
2526		xhci->bus_state[1].resume_done[i] = 0;
2527		/* Only the USB 2.0 completions will ever be used. */
2528		init_completion(&xhci->bus_state[1].rexit_done[i]);
2529	}
2530
2531	if (scratchpad_alloc(xhci, flags))
2532		goto fail;
2533	if (xhci_setup_port_arrays(xhci, flags))
2534		goto fail;
2535
2536	/* Enable USB 3.0 device notifications for function remote wake, which
2537	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2538	 * U3 (device suspend).
2539	 */
2540	temp = readl(&xhci->op_regs->dev_notification);
2541	temp &= ~DEV_NOTE_MASK;
2542	temp |= DEV_NOTE_FWAKE;
2543	writel(temp, &xhci->op_regs->dev_notification);
2544
2545	return 0;
2546
2547fail:
2548	xhci_warn(xhci, "Couldn't initialize memory\n");
2549	xhci_halt(xhci);
2550	xhci_reset(xhci);
2551	xhci_mem_cleanup(xhci);
2552	return -ENOMEM;
2553}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/overflow.h>
  13#include <linux/pci.h>
  14#include <linux/slab.h>
  15#include <linux/dmapool.h>
  16#include <linux/dma-mapping.h>
  17
  18#include "xhci.h"
  19#include "xhci-trace.h"
  20#include "xhci-debugfs.h"
  21
  22/*
  23 * Allocates a generic ring segment from the ring pool, sets the dma address,
  24 * initializes the segment to zero, and sets the private next pointer to NULL.
  25 *
  26 * Section 4.11.1.1:
  27 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  28 */
  29static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  30					       unsigned int max_packet,
  31					       unsigned int num,
  32					       gfp_t flags)
  33{
  34	struct xhci_segment *seg;
  35	dma_addr_t	dma;
  36	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
  37
  38	seg = kzalloc_node(sizeof(*seg), flags, dev_to_node(dev));
  39	if (!seg)
  40		return NULL;
  41
  42	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  43	if (!seg->trbs) {
  44		kfree(seg);
  45		return NULL;
  46	}
  47
  48	if (max_packet) {
  49		seg->bounce_buf = kzalloc_node(max_packet, flags,
  50					dev_to_node(dev));
  51		if (!seg->bounce_buf) {
  52			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  53			kfree(seg);
  54			return NULL;
  55		}
  56	}
  57	seg->num = num;
  58	seg->dma = dma;
  59	seg->next = NULL;
  60
  61	return seg;
  62}
  63
  64static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  65{
  66	if (seg->trbs) {
  67		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  68		seg->trbs = NULL;
  69	}
  70	kfree(seg->bounce_buf);
  71	kfree(seg);
  72}
  73
  74static void xhci_ring_segments_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 
  75{
  76	struct xhci_segment *seg, *next;
  77
  78	ring->last_seg->next = NULL;
  79	seg = ring->first_seg;
  80
  81	while (seg) {
  82		next = seg->next;
 
  83		xhci_segment_free(xhci, seg);
  84		seg = next;
  85	}
 
  86}
  87
  88/*
  89 * Only for transfer and command rings where driver is the producer, not for
  90 * event rings.
  91 *
  92 * Change the last TRB in the segment to be a Link TRB which points to the
  93 * DMA address of the next segment.  The caller needs to set any Link TRB
  94 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  95 */
  96static void xhci_set_link_trb(struct xhci_segment *seg, bool chain_links)
 
  97{
  98	union xhci_trb *trb;
  99	u32 val;
 100
 101	if (!seg || !seg->next)
 102		return;
 103
 104	trb = &seg->trbs[TRBS_PER_SEGMENT - 1];
 105
 106	/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 107	val = le32_to_cpu(trb->link.control);
 108	val &= ~TRB_TYPE_BITMASK;
 109	val |= TRB_TYPE(TRB_LINK);
 110	if (chain_links)
 111		val |= TRB_CHAIN;
 112	trb->link.control = cpu_to_le32(val);
 113	trb->link.segment_ptr = cpu_to_le64(seg->next->dma);
 114}
 115
 116static void xhci_initialize_ring_segments(struct xhci_hcd *xhci, struct xhci_ring *ring)
 117{
 118	struct xhci_segment *seg;
 119	bool chain_links;
 120
 121	if (ring->type == TYPE_EVENT)
 122		return;
 123
 124	chain_links = xhci_link_chain_quirk(xhci, ring->type);
 125	xhci_for_each_ring_seg(ring->first_seg, seg)
 126		xhci_set_link_trb(seg, chain_links);
 127
 128	/* See section 4.9.2.1 and 6.4.4.1 */
 129	ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |= cpu_to_le32(LINK_TOGGLE);
 130}
 131
 132/*
 133 * Link the src ring segments to the dst ring.
 134 * Set Toggle Cycle for the new ring if needed.
 135 */
 136static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *src, struct xhci_ring *dst)
 
 
 137{
 138	struct xhci_segment *seg;
 139	bool chain_links;
 140
 141	if (!src || !dst)
 142		return;
 143
 144	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
 145	if (dst->cycle_state == 0) {
 146		xhci_for_each_ring_seg(src->first_seg, seg) {
 147			for (int i = 0; i < TRBS_PER_SEGMENT; i++)
 148				seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
 149		}
 150	}
 151
 152	src->last_seg->next = dst->enq_seg->next;
 153	dst->enq_seg->next = src->first_seg;
 154	if (dst->type != TYPE_EVENT) {
 155		chain_links = xhci_link_chain_quirk(xhci, dst->type);
 156		xhci_set_link_trb(dst->enq_seg, chain_links);
 157		xhci_set_link_trb(src->last_seg, chain_links);
 158	}
 159	dst->num_segs += src->num_segs;
 160
 161	if (dst->enq_seg == dst->last_seg) {
 162		if (dst->type != TYPE_EVENT)
 163			dst->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 164				&= ~cpu_to_le32(LINK_TOGGLE);
 165
 166		dst->last_seg = src->last_seg;
 167	} else if (dst->type != TYPE_EVENT) {
 168		src->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control &= ~cpu_to_le32(LINK_TOGGLE);
 169	}
 170
 171	for (seg = dst->enq_seg; seg != dst->last_seg; seg = seg->next)
 172		seg->next->num = seg->num + 1;
 173}
 174
 175/*
 176 * We need a radix tree for mapping physical addresses of TRBs to which stream
 177 * ID they belong to.  We need to do this because the host controller won't tell
 178 * us which stream ring the TRB came from.  We could store the stream ID in an
 179 * event data TRB, but that doesn't help us for the cancellation case, since the
 180 * endpoint may stop before it reaches that event data TRB.
 181 *
 182 * The radix tree maps the upper portion of the TRB DMA address to a ring
 183 * segment that has the same upper portion of DMA addresses.  For example, say I
 184 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 185 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 186 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 187 * pass the radix tree a key to get the right stream ID:
 188 *
 189 *	0x10c90fff >> 10 = 0x43243
 190 *	0x10c912c0 >> 10 = 0x43244
 191 *	0x10c91400 >> 10 = 0x43245
 192 *
 193 * Obviously, only those TRBs with DMA addresses that are within the segment
 194 * will make the radix tree return the stream ID for that ring.
 195 *
 196 * Caveats for the radix tree:
 197 *
 198 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 199 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 200 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 201 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 202 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 203 * extended systems (where the DMA address can be bigger than 32-bits),
 204 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 205 */
 206static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 207		struct xhci_ring *ring,
 208		struct xhci_segment *seg,
 209		gfp_t mem_flags)
 210{
 211	unsigned long key;
 212	int ret;
 213
 214	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 215	/* Skip any segments that were already added. */
 216	if (radix_tree_lookup(trb_address_map, key))
 217		return 0;
 218
 219	ret = radix_tree_maybe_preload(mem_flags);
 220	if (ret)
 221		return ret;
 222	ret = radix_tree_insert(trb_address_map,
 223			key, ring);
 224	radix_tree_preload_end();
 225	return ret;
 226}
 227
 228static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 229		struct xhci_segment *seg)
 230{
 231	unsigned long key;
 232
 233	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 234	if (radix_tree_lookup(trb_address_map, key))
 235		radix_tree_delete(trb_address_map, key);
 236}
 237
 238static int xhci_update_stream_segment_mapping(
 239		struct radix_tree_root *trb_address_map,
 240		struct xhci_ring *ring,
 241		struct xhci_segment *first_seg,
 
 242		gfp_t mem_flags)
 243{
 244	struct xhci_segment *seg;
 245	struct xhci_segment *failed_seg;
 246	int ret;
 247
 248	if (WARN_ON_ONCE(trb_address_map == NULL))
 249		return 0;
 250
 251	xhci_for_each_ring_seg(first_seg, seg) {
 
 252		ret = xhci_insert_segment_mapping(trb_address_map,
 253				ring, seg, mem_flags);
 254		if (ret)
 255			goto remove_streams;
 256	}
 
 
 
 257
 258	return 0;
 259
 260remove_streams:
 261	failed_seg = seg;
 262	xhci_for_each_ring_seg(first_seg, seg) {
 
 263		xhci_remove_segment_mapping(trb_address_map, seg);
 264		if (seg == failed_seg)
 265			return ret;
 266	}
 
 267
 268	return ret;
 269}
 270
 271static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 272{
 273	struct xhci_segment *seg;
 274
 275	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 276		return;
 277
 278	xhci_for_each_ring_seg(ring->first_seg, seg)
 
 279		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 
 
 280}
 281
 282static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 283{
 284	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 285			ring->first_seg, mem_flags);
 286}
 287
 288/* XXX: Do we need the hcd structure in all these functions? */
 289void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 290{
 291	if (!ring)
 292		return;
 293
 294	trace_xhci_ring_free(ring);
 295
 296	if (ring->first_seg) {
 297		if (ring->type == TYPE_STREAM)
 298			xhci_remove_stream_mapping(ring);
 299		xhci_ring_segments_free(xhci, ring);
 300	}
 301
 302	kfree(ring);
 303}
 304
 305void xhci_initialize_ring_info(struct xhci_ring *ring)
 
 306{
 307	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 308	ring->enqueue = ring->first_seg->trbs;
 309	ring->enq_seg = ring->first_seg;
 310	ring->dequeue = ring->enqueue;
 311	ring->deq_seg = ring->first_seg;
 312	/* The ring is initialized to 0. The producer must write 1 to the cycle
 313	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 314	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 315	 *
 316	 * New rings are initialized with cycle state equal to 1; if we are
 317	 * handling ring expansion, set the cycle state equal to the old ring.
 318	 */
 319	ring->cycle_state = 1;
 
 
 
 320
 321	/*
 322	 * Each segment has a link TRB, and leave an extra TRB for SW
 323	 * accounting purpose
 324	 */
 325	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 326}
 327EXPORT_SYMBOL_GPL(xhci_initialize_ring_info);
 328
 329/* Allocate segments and link them for a ring */
 330static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, gfp_t flags)
 
 
 
 331{
 332	struct xhci_segment *prev;
 333	unsigned int num = 0;
 334
 335	prev = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
 336	if (!prev)
 337		return -ENOMEM;
 338	num++;
 339
 340	ring->first_seg = prev;
 341	while (num < ring->num_segs) {
 342		struct xhci_segment	*next;
 343
 344		next = xhci_segment_alloc(xhci, ring->bounce_buf_len, num, flags);
 345		if (!next)
 346			goto free_segments;
 
 
 
 
 
 
 
 
 347
 348		prev->next = next;
 349		prev = next;
 350		num++;
 351	}
 352	ring->last_seg = prev;
 
 353
 354	ring->last_seg->next = ring->first_seg;
 355	return 0;
 356
 357free_segments:
 358	ring->last_seg = prev;
 359	xhci_ring_segments_free(xhci, ring);
 360	return -ENOMEM;
 361}
 362
 363/*
 364 * Create a new ring with zero or more segments.
 365 *
 366 * Link each segment together into a ring.
 367 * Set the end flag and the cycle toggle bit on the last segment.
 368 * See section 4.9.1 and figures 15 and 16.
 369 */
 370struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, unsigned int num_segs,
 371				  enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 
 372{
 373	struct xhci_ring	*ring;
 374	int ret;
 375	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 376
 377	ring = kzalloc_node(sizeof(*ring), flags, dev_to_node(dev));
 378	if (!ring)
 379		return NULL;
 380
 381	ring->num_segs = num_segs;
 382	ring->bounce_buf_len = max_packet;
 383	INIT_LIST_HEAD(&ring->td_list);
 384	ring->type = type;
 385	if (num_segs == 0)
 386		return ring;
 387
 388	ret = xhci_alloc_segments_for_ring(xhci, ring, flags);
 
 389	if (ret)
 390		goto fail;
 391
 392	xhci_initialize_ring_segments(xhci, ring);
 393	xhci_initialize_ring_info(ring);
 394	trace_xhci_ring_alloc(ring);
 
 
 
 
 395	return ring;
 396
 397fail:
 398	kfree(ring);
 399	return NULL;
 400}
 401
 402void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 403		struct xhci_virt_device *virt_dev,
 404		unsigned int ep_index)
 405{
 406	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	virt_dev->eps[ep_index].ring = NULL;
 408}
 409
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410/*
 411 * Expand an existing ring.
 412 * Allocate a new ring which has same segment numbers and link the two rings.
 
 413 */
 414int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 415				unsigned int num_new_segs, gfp_t flags)
 416{
 417	struct xhci_ring new_ring;
 418	int ret;
 
 
 
 
 
 
 
 
 
 
 419
 420	if (num_new_segs == 0)
 421		return 0;
 422
 423	new_ring.num_segs = num_new_segs;
 424	new_ring.bounce_buf_len = ring->bounce_buf_len;
 425	new_ring.type = ring->type;
 426	ret = xhci_alloc_segments_for_ring(xhci, &new_ring, flags);
 427	if (ret)
 428		return -ENOMEM;
 429
 430	xhci_initialize_ring_segments(xhci, &new_ring);
 431
 432	if (ring->type == TYPE_STREAM) {
 433		ret = xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 434							 new_ring.first_seg, flags);
 435		if (ret)
 436			goto free_segments;
 
 
 
 
 
 
 437	}
 438
 439	xhci_link_rings(xhci, &new_ring, ring);
 440	trace_xhci_ring_expansion(ring);
 441	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 442			"ring expansion succeed, now has %d segments",
 443			ring->num_segs);
 444
 445	return 0;
 
 446
 447free_segments:
 448	xhci_ring_segments_free(xhci, &new_ring);
 449	return ret;
 450}
 451
 452struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 453						    int type, gfp_t flags)
 454{
 455	struct xhci_container_ctx *ctx;
 456	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 457
 458	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 459		return NULL;
 460
 461	ctx = kzalloc_node(sizeof(*ctx), flags, dev_to_node(dev));
 462	if (!ctx)
 463		return NULL;
 464
 465	ctx->type = type;
 466	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 467	if (type == XHCI_CTX_TYPE_INPUT)
 468		ctx->size += CTX_SIZE(xhci->hcc_params);
 469
 470	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 471	if (!ctx->bytes) {
 472		kfree(ctx);
 473		return NULL;
 474	}
 475	return ctx;
 476}
 477
 478void xhci_free_container_ctx(struct xhci_hcd *xhci,
 479			     struct xhci_container_ctx *ctx)
 480{
 481	if (!ctx)
 482		return;
 483	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 484	kfree(ctx);
 485}
 486
 487struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 488					      struct xhci_container_ctx *ctx)
 489{
 490	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 491		return NULL;
 492
 493	return (struct xhci_input_control_ctx *)ctx->bytes;
 494}
 495
 496struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 497					struct xhci_container_ctx *ctx)
 498{
 499	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 500		return (struct xhci_slot_ctx *)ctx->bytes;
 501
 502	return (struct xhci_slot_ctx *)
 503		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 504}
 505
 506struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 507				    struct xhci_container_ctx *ctx,
 508				    unsigned int ep_index)
 509{
 510	/* increment ep index by offset of start of ep ctx array */
 511	ep_index++;
 512	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 513		ep_index++;
 514
 515	return (struct xhci_ep_ctx *)
 516		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 517}
 518EXPORT_SYMBOL_GPL(xhci_get_ep_ctx);
 519
 520/***************** Streams structures manipulation *************************/
 521
 522static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 523		unsigned int num_stream_ctxs,
 524		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 525{
 526	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 527	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 528
 529	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 530		dma_free_coherent(dev, size, stream_ctx, dma);
 531	else if (size > SMALL_STREAM_ARRAY_SIZE)
 532		dma_pool_free(xhci->medium_streams_pool, stream_ctx, dma);
 
 
 533	else
 534		dma_pool_free(xhci->small_streams_pool, stream_ctx, dma);
 
 535}
 536
 537/*
 538 * The stream context array for each endpoint with bulk streams enabled can
 539 * vary in size, based on:
 540 *  - how many streams the endpoint supports,
 541 *  - the maximum primary stream array size the host controller supports,
 542 *  - and how many streams the device driver asks for.
 543 *
 544 * The stream context array must be a power of 2, and can be as small as
 545 * 64 bytes or as large as 1MB.
 546 */
 547static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 548		unsigned int num_stream_ctxs, dma_addr_t *dma,
 549		gfp_t mem_flags)
 550{
 551	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 552	size_t size = array_size(sizeof(struct xhci_stream_ctx), num_stream_ctxs);
 553
 554	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 555		return dma_alloc_coherent(dev, size, dma, mem_flags);
 556	if (size > SMALL_STREAM_ARRAY_SIZE)
 557		return dma_pool_zalloc(xhci->medium_streams_pool, mem_flags, dma);
 
 
 558	else
 559		return dma_pool_zalloc(xhci->small_streams_pool, mem_flags, dma);
 
 560}
 561
 562struct xhci_ring *xhci_dma_to_transfer_ring(
 563		struct xhci_virt_ep *ep,
 564		u64 address)
 565{
 566	if (ep->ep_state & EP_HAS_STREAMS)
 567		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 568				address >> TRB_SEGMENT_SHIFT);
 569	return ep->ring;
 570}
 571
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572/*
 573 * Change an endpoint's internal structure so it supports stream IDs.  The
 574 * number of requested streams includes stream 0, which cannot be used by device
 575 * drivers.
 576 *
 577 * The number of stream contexts in the stream context array may be bigger than
 578 * the number of streams the driver wants to use.  This is because the number of
 579 * stream context array entries must be a power of two.
 580 */
 581struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 582		unsigned int num_stream_ctxs,
 583		unsigned int num_streams,
 584		unsigned int max_packet, gfp_t mem_flags)
 585{
 586	struct xhci_stream_info *stream_info;
 587	u32 cur_stream;
 588	struct xhci_ring *cur_ring;
 589	u64 addr;
 590	int ret;
 591	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 592
 593	xhci_dbg(xhci, "Allocating %u streams and %u stream context array entries.\n",
 
 594			num_streams, num_stream_ctxs);
 595	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 596		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 597		return NULL;
 598	}
 599	xhci->cmd_ring_reserved_trbs++;
 600
 601	stream_info = kzalloc_node(sizeof(*stream_info), mem_flags,
 602			dev_to_node(dev));
 603	if (!stream_info)
 604		goto cleanup_trbs;
 605
 606	stream_info->num_streams = num_streams;
 607	stream_info->num_stream_ctxs = num_stream_ctxs;
 608
 609	/* Initialize the array of virtual pointers to stream rings. */
 610	stream_info->stream_rings = kcalloc_node(
 611			num_streams, sizeof(struct xhci_ring *), mem_flags,
 612			dev_to_node(dev));
 613	if (!stream_info->stream_rings)
 614		goto cleanup_info;
 615
 616	/* Initialize the array of DMA addresses for stream rings for the HW. */
 617	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 618			num_stream_ctxs, &stream_info->ctx_array_dma,
 619			mem_flags);
 620	if (!stream_info->stream_ctx_array)
 621		goto cleanup_ring_array;
 
 
 622
 623	/* Allocate everything needed to free the stream rings later */
 624	stream_info->free_streams_command =
 625		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 626	if (!stream_info->free_streams_command)
 627		goto cleanup_ctx;
 628
 629	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 630
 631	/* Allocate rings for all the streams that the driver will use,
 632	 * and add their segment DMA addresses to the radix tree.
 633	 * Stream 0 is reserved.
 634	 */
 635
 636	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 637		stream_info->stream_rings[cur_stream] =
 638			xhci_ring_alloc(xhci, 2, TYPE_STREAM, max_packet, mem_flags);
 639		cur_ring = stream_info->stream_rings[cur_stream];
 640		if (!cur_ring)
 641			goto cleanup_rings;
 642		cur_ring->stream_id = cur_stream;
 643		cur_ring->trb_address_map = &stream_info->trb_address_map;
 644		/* Set deq ptr, cycle bit, and stream context type */
 645		addr = cur_ring->first_seg->dma |
 646			SCT_FOR_CTX(SCT_PRI_TR) |
 647			cur_ring->cycle_state;
 648		stream_info->stream_ctx_array[cur_stream].stream_ring =
 649			cpu_to_le64(addr);
 650		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", cur_stream, addr);
 
 651
 652		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 653
 654		trace_xhci_alloc_stream_info_ctx(stream_info, cur_stream);
 655		if (ret) {
 656			xhci_ring_free(xhci, cur_ring);
 657			stream_info->stream_rings[cur_stream] = NULL;
 658			goto cleanup_rings;
 659		}
 660	}
 661	/* Leave the other unused stream ring pointers in the stream context
 662	 * array initialized to zero.  This will cause the xHC to give us an
 663	 * error if the device asks for a stream ID we don't have setup (if it
 664	 * was any other way, the host controller would assume the ring is
 665	 * "empty" and wait forever for data to be queued to that stream ID).
 666	 */
 667
 668	return stream_info;
 669
 670cleanup_rings:
 671	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 672		cur_ring = stream_info->stream_rings[cur_stream];
 673		if (cur_ring) {
 674			xhci_ring_free(xhci, cur_ring);
 675			stream_info->stream_rings[cur_stream] = NULL;
 676		}
 677	}
 678	xhci_free_command(xhci, stream_info->free_streams_command);
 679cleanup_ctx:
 680	xhci_free_stream_ctx(xhci,
 681		stream_info->num_stream_ctxs,
 682		stream_info->stream_ctx_array,
 683		stream_info->ctx_array_dma);
 684cleanup_ring_array:
 685	kfree(stream_info->stream_rings);
 686cleanup_info:
 687	kfree(stream_info);
 688cleanup_trbs:
 689	xhci->cmd_ring_reserved_trbs--;
 690	return NULL;
 691}
 692/*
 693 * Sets the MaxPStreams field and the Linear Stream Array field.
 694 * Sets the dequeue pointer to the stream context array.
 695 */
 696void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 697		struct xhci_ep_ctx *ep_ctx,
 698		struct xhci_stream_info *stream_info)
 699{
 700	u32 max_primary_streams;
 701	/* MaxPStreams is the number of stream context array entries, not the
 702	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 703	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 704	 */
 705	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 706	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 707			"Setting number of stream ctx array entries to %u",
 708			1 << (max_primary_streams + 1));
 709	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 710	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 711				       | EP_HAS_LSA);
 712	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 713}
 714
 715/*
 716 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 717 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 718 * not at the beginning of the ring).
 719 */
 720void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 721		struct xhci_virt_ep *ep)
 722{
 723	dma_addr_t addr;
 724	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 725	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 726	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 727}
 728
 729/* Frees all stream contexts associated with the endpoint,
 730 *
 731 * Caller should fix the endpoint context streams fields.
 732 */
 733void xhci_free_stream_info(struct xhci_hcd *xhci,
 734		struct xhci_stream_info *stream_info)
 735{
 736	int cur_stream;
 737	struct xhci_ring *cur_ring;
 738
 739	if (!stream_info)
 740		return;
 741
 742	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 743			cur_stream++) {
 744		cur_ring = stream_info->stream_rings[cur_stream];
 745		if (cur_ring) {
 746			xhci_ring_free(xhci, cur_ring);
 747			stream_info->stream_rings[cur_stream] = NULL;
 748		}
 749	}
 750	xhci_free_command(xhci, stream_info->free_streams_command);
 751	xhci->cmd_ring_reserved_trbs--;
 752	if (stream_info->stream_ctx_array)
 753		xhci_free_stream_ctx(xhci,
 754				stream_info->num_stream_ctxs,
 755				stream_info->stream_ctx_array,
 756				stream_info->ctx_array_dma);
 757
 758	kfree(stream_info->stream_rings);
 759	kfree(stream_info);
 760}
 761
 762
 763/***************** Device context manipulation *************************/
 764
 
 
 
 
 
 
 
 
 765static void xhci_free_tt_info(struct xhci_hcd *xhci,
 766		struct xhci_virt_device *virt_dev,
 767		int slot_id)
 768{
 769	struct list_head *tt_list_head;
 770	struct xhci_tt_bw_info *tt_info, *next;
 771	bool slot_found = false;
 772
 773	/* If the device never made it past the Set Address stage,
 774	 * it may not have the root hub port pointer set correctly.
 775	 */
 776	if (!virt_dev->rhub_port) {
 777		xhci_dbg(xhci, "Bad rhub port.\n");
 
 778		return;
 779	}
 780
 781	tt_list_head = &(xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
 782	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 783		/* Multi-TT hubs will have more than one entry */
 784		if (tt_info->slot_id == slot_id) {
 785			slot_found = true;
 786			list_del(&tt_info->tt_list);
 787			kfree(tt_info);
 788		} else if (slot_found) {
 789			break;
 790		}
 791	}
 792}
 793
 794int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 795		struct xhci_virt_device *virt_dev,
 796		struct usb_device *hdev,
 797		struct usb_tt *tt, gfp_t mem_flags)
 798{
 799	struct xhci_tt_bw_info		*tt_info;
 800	unsigned int			num_ports;
 801	int				i, j;
 802	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 803
 804	if (!tt->multi)
 805		num_ports = 1;
 806	else
 807		num_ports = hdev->maxchild;
 808
 809	for (i = 0; i < num_ports; i++, tt_info++) {
 810		struct xhci_interval_bw_table *bw_table;
 811
 812		tt_info = kzalloc_node(sizeof(*tt_info), mem_flags,
 813				dev_to_node(dev));
 814		if (!tt_info)
 815			goto free_tts;
 816		INIT_LIST_HEAD(&tt_info->tt_list);
 817		list_add(&tt_info->tt_list,
 818				&xhci->rh_bw[virt_dev->rhub_port->hw_portnum].tts);
 819		tt_info->slot_id = virt_dev->udev->slot_id;
 820		if (tt->multi)
 821			tt_info->ttport = i+1;
 822		bw_table = &tt_info->bw_table;
 823		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 824			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 825	}
 826	return 0;
 827
 828free_tts:
 829	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 830	return -ENOMEM;
 831}
 832
 833
 834/* All the xhci_tds in the ring's TD list should be freed at this point.
 835 * Should be called with xhci->lock held if there is any chance the TT lists
 836 * will be manipulated by the configure endpoint, allocate device, or update
 837 * hub functions while this function is removing the TT entries from the list.
 838 */
 839void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 840{
 841	struct xhci_virt_device *dev;
 842	int i;
 843	int old_active_eps = 0;
 844
 845	/* Slot ID 0 is reserved */
 846	if (slot_id == 0 || !xhci->devs[slot_id])
 847		return;
 848
 849	dev = xhci->devs[slot_id];
 850
 851	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 852	if (!dev)
 853		return;
 854
 855	trace_xhci_free_virt_device(dev);
 856
 857	if (dev->tt_info)
 858		old_active_eps = dev->tt_info->active_eps;
 859
 860	for (i = 0; i < 31; i++) {
 861		if (dev->eps[i].ring)
 862			xhci_ring_free(xhci, dev->eps[i].ring);
 863		if (dev->eps[i].stream_info)
 864			xhci_free_stream_info(xhci,
 865					dev->eps[i].stream_info);
 866		/*
 867		 * Endpoints are normally deleted from the bandwidth list when
 868		 * endpoints are dropped, before device is freed.
 869		 * If host is dying or being removed then endpoints aren't
 870		 * dropped cleanly, so delete the endpoint from list here.
 871		 * Only applicable for hosts with software bandwidth checking.
 872		 */
 873
 874		if (!list_empty(&dev->eps[i].bw_endpoint_list)) {
 875			list_del_init(&dev->eps[i].bw_endpoint_list);
 876			xhci_dbg(xhci, "Slot %u endpoint %u not removed from BW list!\n",
 877				 slot_id, i);
 878		}
 879	}
 880	/* If this is a hub, free the TT(s) from the TT list */
 881	xhci_free_tt_info(xhci, dev, slot_id);
 882	/* If necessary, update the number of active TTs on this root port */
 883	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 884
 
 
 
 
 
 
 885	if (dev->in_ctx)
 886		xhci_free_container_ctx(xhci, dev->in_ctx);
 887	if (dev->out_ctx)
 888		xhci_free_container_ctx(xhci, dev->out_ctx);
 889
 890	if (dev->udev && dev->udev->slot_id)
 891		dev->udev->slot_id = 0;
 892	if (dev->rhub_port && dev->rhub_port->slot_id == slot_id)
 893		dev->rhub_port->slot_id = 0;
 894	kfree(xhci->devs[slot_id]);
 895	xhci->devs[slot_id] = NULL;
 896}
 897
 898/*
 899 * Free a virt_device structure.
 900 * If the virt_device added a tt_info (a hub) and has children pointing to
 901 * that tt_info, then free the child first. Recursive.
 902 * We can't rely on udev at this point to find child-parent relationships.
 903 */
 904static void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 905{
 906	struct xhci_virt_device *vdev;
 907	struct list_head *tt_list_head;
 908	struct xhci_tt_bw_info *tt_info, *next;
 909	int i;
 910
 911	vdev = xhci->devs[slot_id];
 912	if (!vdev)
 913		return;
 914
 915	if (!vdev->rhub_port) {
 916		xhci_dbg(xhci, "Bad rhub port.\n");
 917		goto out;
 918	}
 919
 920	tt_list_head = &(xhci->rh_bw[vdev->rhub_port->hw_portnum].tts);
 921	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 922		/* is this a hub device that added a tt_info to the tts list */
 923		if (tt_info->slot_id == slot_id) {
 924			/* are any devices using this tt_info? */
 925			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 926				vdev = xhci->devs[i];
 927				if (vdev && (vdev->tt_info == tt_info))
 928					xhci_free_virt_devices_depth_first(
 929						xhci, i);
 930			}
 931		}
 932	}
 933out:
 934	/* we are now at a leaf device */
 935	xhci_debugfs_remove_slot(xhci, slot_id);
 936	xhci_free_virt_device(xhci, slot_id);
 937}
 938
 939int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 940		struct usb_device *udev, gfp_t flags)
 941{
 942	struct xhci_virt_device *dev;
 943	int i;
 944
 945	/* Slot ID 0 is reserved */
 946	if (slot_id == 0 || xhci->devs[slot_id]) {
 947		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 948		return 0;
 949	}
 950
 951	dev = kzalloc(sizeof(*dev), flags);
 952	if (!dev)
 953		return 0;
 954
 955	dev->slot_id = slot_id;
 956
 957	/* Allocate the (output) device context that will be used in the HC. */
 958	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 959	if (!dev->out_ctx)
 960		goto fail;
 961
 962	xhci_dbg(xhci, "Slot %d output ctx = 0x%pad (dma)\n", slot_id, &dev->out_ctx->dma);
 
 963
 964	/* Allocate the (input) device context for address device command */
 965	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 966	if (!dev->in_ctx)
 967		goto fail;
 968
 969	xhci_dbg(xhci, "Slot %d input ctx = 0x%pad (dma)\n", slot_id, &dev->in_ctx->dma);
 
 970
 971	/* Initialize the cancellation and bandwidth list for each ep */
 972	for (i = 0; i < 31; i++) {
 973		dev->eps[i].ep_index = i;
 974		dev->eps[i].vdev = dev;
 975		dev->eps[i].xhci = xhci;
 976		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
 977		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
 978	}
 979
 980	/* Allocate endpoint 0 ring */
 981	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, TYPE_CTRL, 0, flags);
 982	if (!dev->eps[0].ring)
 983		goto fail;
 984
 
 
 
 
 
 
 
 
 
 985	dev->udev = udev;
 986
 987	/* Point to output device context in dcbaa. */
 988	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
 989	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
 990		 slot_id,
 991		 &xhci->dcbaa->dev_context_ptrs[slot_id],
 992		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
 993
 994	trace_xhci_alloc_virt_device(dev);
 995
 996	xhci->devs[slot_id] = dev;
 997
 998	return 1;
 999fail:
1000
1001	if (dev->in_ctx)
1002		xhci_free_container_ctx(xhci, dev->in_ctx);
1003	if (dev->out_ctx)
1004		xhci_free_container_ctx(xhci, dev->out_ctx);
1005	kfree(dev);
1006
1007	return 0;
1008}
1009
1010void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1011		struct usb_device *udev)
1012{
1013	struct xhci_virt_device *virt_dev;
1014	struct xhci_ep_ctx	*ep0_ctx;
1015	struct xhci_ring	*ep_ring;
1016
1017	virt_dev = xhci->devs[udev->slot_id];
1018	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1019	ep_ring = virt_dev->eps[0].ring;
1020	/*
1021	 * FIXME we don't keep track of the dequeue pointer very well after a
1022	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1023	 * host to our enqueue pointer.  This should only be called after a
1024	 * configured device has reset, so all control transfers should have
1025	 * been completed or cancelled before the reset.
1026	 */
1027	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1028							ep_ring->enqueue)
1029				   | ep_ring->cycle_state);
1030}
1031
1032/*
1033 * The xHCI roothub may have ports of differing speeds in any order in the port
1034 * status registers.
 
1035 *
1036 * The xHCI hardware wants to know the roothub port that the USB device
1037 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1038 * know is the index of that port under either the USB 2.0 or the USB 3.0
1039 * roothub, but that doesn't give us the real index into the HW port status
1040 * registers.
1041 */
1042static struct xhci_port *xhci_find_rhub_port(struct xhci_hcd *xhci, struct usb_device *udev)
 
1043{
1044	struct usb_device *top_dev;
1045	struct xhci_hub *rhub;
1046	struct usb_hcd *hcd;
1047
1048	if (udev->speed >= USB_SPEED_SUPER)
1049		hcd = xhci_get_usb3_hcd(xhci);
1050	else
1051		hcd = xhci->main_hcd;
1052
1053	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1054			top_dev = top_dev->parent)
1055		/* Found device below root hub */;
1056
1057	rhub = xhci_get_rhub(hcd);
1058	return rhub->ports[top_dev->portnum - 1];
1059}
1060
1061/* Setup an xHCI virtual device for a Set Address command */
1062int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1063{
1064	struct xhci_virt_device *dev;
1065	struct xhci_ep_ctx	*ep0_ctx;
1066	struct xhci_slot_ctx    *slot_ctx;
 
1067	u32			max_packets;
 
1068
1069	dev = xhci->devs[udev->slot_id];
1070	/* Slot ID 0 is reserved */
1071	if (udev->slot_id == 0 || !dev) {
1072		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1073				udev->slot_id);
1074		return -EINVAL;
1075	}
1076	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1077	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1078
1079	/* 3) Only the control endpoint is valid - one endpoint context */
1080	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1081	switch (udev->speed) {
1082	case USB_SPEED_SUPER_PLUS:
1083		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1084		max_packets = MAX_PACKET(512);
1085		break;
1086	case USB_SPEED_SUPER:
1087		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1088		max_packets = MAX_PACKET(512);
1089		break;
1090	case USB_SPEED_HIGH:
1091		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1092		max_packets = MAX_PACKET(64);
1093		break;
1094	/* USB core guesses at a 64-byte max packet first for FS devices */
1095	case USB_SPEED_FULL:
1096		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1097		max_packets = MAX_PACKET(64);
1098		break;
1099	case USB_SPEED_LOW:
1100		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1101		max_packets = MAX_PACKET(8);
1102		break;
 
 
 
 
1103	default:
1104		/* Speed was set earlier, this shouldn't happen. */
1105		return -EINVAL;
1106	}
1107	/* Find the root hub port this device is under */
1108	dev->rhub_port = xhci_find_rhub_port(xhci, udev);
1109	if (!dev->rhub_port)
1110		return -EINVAL;
1111	/* Slot ID is set to the device directly below the root hub */
1112	if (!udev->parent->parent)
1113		dev->rhub_port->slot_id = udev->slot_id;
1114	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(dev->rhub_port->hw_portnum + 1));
1115	xhci_dbg(xhci, "Slot ID %d: HW portnum %d, hcd portnum %d\n",
1116		 udev->slot_id, dev->rhub_port->hw_portnum, dev->rhub_port->hcd_portnum);
 
 
 
1117
1118	/* Find the right bandwidth table that this device will be a part of.
1119	 * If this is a full speed device attached directly to a root port (or a
1120	 * decendent of one), it counts as a primary bandwidth domain, not a
1121	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1122	 * will never be created for the HS root hub.
1123	 */
1124	if (!udev->tt || !udev->tt->hub->parent) {
1125		dev->bw_table = &xhci->rh_bw[dev->rhub_port->hw_portnum].bw_table;
1126	} else {
1127		struct xhci_root_port_bw_info *rh_bw;
1128		struct xhci_tt_bw_info *tt_bw;
1129
1130		rh_bw = &xhci->rh_bw[dev->rhub_port->hw_portnum];
1131		/* Find the right TT. */
1132		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1133			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1134				continue;
1135
1136			if (!dev->udev->tt->multi ||
1137					(udev->tt->multi &&
1138					 tt_bw->ttport == dev->udev->ttport)) {
1139				dev->bw_table = &tt_bw->bw_table;
1140				dev->tt_info = tt_bw;
1141				break;
1142			}
1143		}
1144		if (!dev->tt_info)
1145			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1146	}
1147
1148	/* Is this a LS/FS device under an external HS hub? */
1149	if (udev->tt && udev->tt->hub->parent) {
1150		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1151						(udev->ttport << 8));
1152		if (udev->tt->multi)
1153			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1154	}
1155	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1156	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1157
1158	/* Step 4 - ring already allocated */
1159	/* Step 5 */
1160	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1161
1162	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1163	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1164					 max_packets);
1165
1166	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1167				   dev->eps[0].ring->cycle_state);
1168
1169	trace_xhci_setup_addressable_virt_device(dev);
1170
1171	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1172
1173	return 0;
1174}
1175
1176/*
1177 * Convert interval expressed as 2^(bInterval - 1) == interval into
1178 * straight exponent value 2^n == interval.
1179 *
1180 */
1181static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1182		struct usb_host_endpoint *ep)
1183{
1184	unsigned int interval;
1185
1186	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1187	if (interval != ep->desc.bInterval - 1)
1188		dev_warn(&udev->dev,
1189			 "ep %#x - rounding interval to %d %sframes\n",
1190			 ep->desc.bEndpointAddress,
1191			 1 << interval,
1192			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1193
1194	if (udev->speed == USB_SPEED_FULL) {
1195		/*
1196		 * Full speed isoc endpoints specify interval in frames,
1197		 * not microframes. We are using microframes everywhere,
1198		 * so adjust accordingly.
1199		 */
1200		interval += 3;	/* 1 frame = 2^3 uframes */
1201	}
1202
1203	return interval;
1204}
1205
1206/*
1207 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1208 * microframes, rounded down to nearest power of 2.
1209 */
1210static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1211		struct usb_host_endpoint *ep, unsigned int desc_interval,
1212		unsigned int min_exponent, unsigned int max_exponent)
1213{
1214	unsigned int interval;
1215
1216	interval = fls(desc_interval) - 1;
1217	interval = clamp_val(interval, min_exponent, max_exponent);
1218	if ((1 << interval) != desc_interval)
1219		dev_dbg(&udev->dev,
1220			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1221			 ep->desc.bEndpointAddress,
1222			 1 << interval,
1223			 desc_interval);
1224
1225	return interval;
1226}
1227
1228static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1229		struct usb_host_endpoint *ep)
1230{
1231	if (ep->desc.bInterval == 0)
1232		return 0;
1233	return xhci_microframes_to_exponent(udev, ep,
1234			ep->desc.bInterval, 0, 15);
1235}
1236
1237
1238static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1239		struct usb_host_endpoint *ep)
1240{
1241	return xhci_microframes_to_exponent(udev, ep,
1242			ep->desc.bInterval * 8, 3, 10);
1243}
1244
1245/* Return the polling or NAK interval.
1246 *
1247 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1248 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1249 *
1250 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1251 * is set to 0.
1252 */
1253static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1254		struct usb_host_endpoint *ep)
1255{
1256	unsigned int interval = 0;
1257
1258	switch (udev->speed) {
1259	case USB_SPEED_HIGH:
1260		/* Max NAK rate */
1261		if (usb_endpoint_xfer_control(&ep->desc) ||
1262		    usb_endpoint_xfer_bulk(&ep->desc)) {
1263			interval = xhci_parse_microframe_interval(udev, ep);
1264			break;
1265		}
1266		fallthrough;	/* SS and HS isoc/int have same decoding */
1267
1268	case USB_SPEED_SUPER_PLUS:
1269	case USB_SPEED_SUPER:
1270		if (usb_endpoint_xfer_int(&ep->desc) ||
1271		    usb_endpoint_xfer_isoc(&ep->desc)) {
1272			interval = xhci_parse_exponent_interval(udev, ep);
1273		}
1274		break;
1275
1276	case USB_SPEED_FULL:
1277		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1278			interval = xhci_parse_exponent_interval(udev, ep);
1279			break;
1280		}
1281		/*
1282		 * Fall through for interrupt endpoint interval decoding
1283		 * since it uses the same rules as low speed interrupt
1284		 * endpoints.
1285		 */
1286		fallthrough;
1287
1288	case USB_SPEED_LOW:
1289		if (usb_endpoint_xfer_int(&ep->desc) ||
1290		    usb_endpoint_xfer_isoc(&ep->desc)) {
1291
1292			interval = xhci_parse_frame_interval(udev, ep);
1293		}
1294		break;
1295
1296	default:
1297		BUG();
1298	}
1299	return interval;
1300}
1301
1302/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1303 * High speed endpoint descriptors can define "the number of additional
1304 * transaction opportunities per microframe", but that goes in the Max Burst
1305 * endpoint context field.
1306 */
1307static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1308		struct usb_host_endpoint *ep)
1309{
1310	if (udev->speed < USB_SPEED_SUPER ||
1311			!usb_endpoint_xfer_isoc(&ep->desc))
1312		return 0;
1313	return ep->ss_ep_comp.bmAttributes;
1314}
1315
1316static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1317				       struct usb_host_endpoint *ep)
1318{
1319	/* Super speed and Plus have max burst in ep companion desc */
1320	if (udev->speed >= USB_SPEED_SUPER)
1321		return ep->ss_ep_comp.bMaxBurst;
1322
1323	if (udev->speed == USB_SPEED_HIGH &&
1324	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1325	     usb_endpoint_xfer_int(&ep->desc)))
1326		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1327
1328	return 0;
1329}
1330
1331static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1332{
1333	int in;
1334
1335	in = usb_endpoint_dir_in(&ep->desc);
1336
1337	switch (usb_endpoint_type(&ep->desc)) {
1338	case USB_ENDPOINT_XFER_CONTROL:
1339		return CTRL_EP;
1340	case USB_ENDPOINT_XFER_BULK:
1341		return in ? BULK_IN_EP : BULK_OUT_EP;
1342	case USB_ENDPOINT_XFER_ISOC:
1343		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1344	case USB_ENDPOINT_XFER_INT:
1345		return in ? INT_IN_EP : INT_OUT_EP;
1346	}
1347	return 0;
1348}
1349
1350/* Return the maximum endpoint service interval time (ESIT) payload.
1351 * Basically, this is the maxpacket size, multiplied by the burst size
1352 * and mult size.
1353 */
1354static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1355		struct usb_host_endpoint *ep)
1356{
1357	int max_burst;
1358	int max_packet;
1359
1360	/* Only applies for interrupt or isochronous endpoints */
1361	if (usb_endpoint_xfer_control(&ep->desc) ||
1362			usb_endpoint_xfer_bulk(&ep->desc))
1363		return 0;
1364
1365	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1366	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1367	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1368		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1369
1370	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1371	if (udev->speed >= USB_SPEED_SUPER)
1372		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1373
1374	max_packet = usb_endpoint_maxp(&ep->desc);
1375	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1376	/* A 0 in max burst means 1 transfer per ESIT */
1377	return max_packet * max_burst;
1378}
1379
1380/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1381 * Drivers will have to call usb_alloc_streams() to do that.
1382 */
1383int xhci_endpoint_init(struct xhci_hcd *xhci,
1384		struct xhci_virt_device *virt_dev,
1385		struct usb_device *udev,
1386		struct usb_host_endpoint *ep,
1387		gfp_t mem_flags)
1388{
1389	unsigned int ep_index;
1390	struct xhci_ep_ctx *ep_ctx;
1391	struct xhci_ring *ep_ring;
1392	unsigned int max_packet;
1393	enum xhci_ring_type ring_type;
1394	u32 max_esit_payload;
1395	u32 endpoint_type;
1396	unsigned int max_burst;
1397	unsigned int interval;
1398	unsigned int mult;
1399	unsigned int avg_trb_len;
1400	unsigned int err_count = 0;
1401
1402	ep_index = xhci_get_endpoint_index(&ep->desc);
1403	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1404
1405	endpoint_type = xhci_get_endpoint_type(ep);
1406	if (!endpoint_type)
1407		return -EINVAL;
1408
1409	ring_type = usb_endpoint_type(&ep->desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410
1411	/*
1412	 * Get values to fill the endpoint context, mostly from ep descriptor.
1413	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1414	 * have no clue on scatter gather list entry size. For Isoc and Int,
1415	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1416	 */
1417	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1418	interval = xhci_get_endpoint_interval(udev, ep);
1419
1420	/* Periodic endpoint bInterval limit quirk */
1421	if (usb_endpoint_xfer_int(&ep->desc) ||
1422	    usb_endpoint_xfer_isoc(&ep->desc)) {
1423		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1424		    udev->speed >= USB_SPEED_HIGH &&
1425		    interval >= 7) {
1426			interval = 6;
1427		}
1428	}
1429
1430	mult = xhci_get_endpoint_mult(udev, ep);
1431	max_packet = usb_endpoint_maxp(&ep->desc);
1432	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1433	avg_trb_len = max_esit_payload;
1434
1435	/* FIXME dig Mult and streams info out of ep companion desc */
1436
1437	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1438	if (!usb_endpoint_xfer_isoc(&ep->desc))
1439		err_count = 3;
1440	/* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1441	if (usb_endpoint_xfer_bulk(&ep->desc)) {
1442		if (udev->speed == USB_SPEED_HIGH)
1443			max_packet = 512;
1444		if (udev->speed == USB_SPEED_FULL) {
1445			max_packet = rounddown_pow_of_two(max_packet);
1446			max_packet = clamp_val(max_packet, 8, 64);
1447		}
1448	}
1449	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1450	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1451		avg_trb_len = 8;
1452	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1453	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1454		mult = 0;
1455
1456	/* Set up the endpoint ring */
1457	virt_dev->eps[ep_index].new_ring =
1458		xhci_ring_alloc(xhci, 2, ring_type, max_packet, mem_flags);
1459	if (!virt_dev->eps[ep_index].new_ring)
1460		return -ENOMEM;
1461
1462	virt_dev->eps[ep_index].skip = false;
1463	ep_ring = virt_dev->eps[ep_index].new_ring;
1464
1465	/* Fill the endpoint context */
1466	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1467				      EP_INTERVAL(interval) |
1468				      EP_MULT(mult));
1469	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1470				       MAX_PACKET(max_packet) |
1471				       MAX_BURST(max_burst) |
1472				       ERROR_COUNT(err_count));
1473	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1474				  ep_ring->cycle_state);
1475
1476	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1477				      EP_AVG_TRB_LENGTH(avg_trb_len));
1478
 
1479	return 0;
1480}
1481
1482void xhci_endpoint_zero(struct xhci_hcd *xhci,
1483		struct xhci_virt_device *virt_dev,
1484		struct usb_host_endpoint *ep)
1485{
1486	unsigned int ep_index;
1487	struct xhci_ep_ctx *ep_ctx;
1488
1489	ep_index = xhci_get_endpoint_index(&ep->desc);
1490	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1491
1492	ep_ctx->ep_info = 0;
1493	ep_ctx->ep_info2 = 0;
1494	ep_ctx->deq = 0;
1495	ep_ctx->tx_info = 0;
1496	/* Don't free the endpoint ring until the set interface or configuration
1497	 * request succeeds.
1498	 */
1499}
1500
1501void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1502{
1503	bw_info->ep_interval = 0;
1504	bw_info->mult = 0;
1505	bw_info->num_packets = 0;
1506	bw_info->max_packet_size = 0;
1507	bw_info->type = 0;
1508	bw_info->max_esit_payload = 0;
1509}
1510
1511void xhci_update_bw_info(struct xhci_hcd *xhci,
1512		struct xhci_container_ctx *in_ctx,
1513		struct xhci_input_control_ctx *ctrl_ctx,
1514		struct xhci_virt_device *virt_dev)
1515{
1516	struct xhci_bw_info *bw_info;
1517	struct xhci_ep_ctx *ep_ctx;
1518	unsigned int ep_type;
1519	int i;
1520
1521	for (i = 1; i < 31; i++) {
1522		bw_info = &virt_dev->eps[i].bw_info;
1523
1524		/* We can't tell what endpoint type is being dropped, but
1525		 * unconditionally clearing the bandwidth info for non-periodic
1526		 * endpoints should be harmless because the info will never be
1527		 * set in the first place.
1528		 */
1529		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1530			/* Dropped endpoint */
1531			xhci_clear_endpoint_bw_info(bw_info);
1532			continue;
1533		}
1534
1535		if (EP_IS_ADDED(ctrl_ctx, i)) {
1536			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1537			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1538
1539			/* Ignore non-periodic endpoints */
1540			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1541					ep_type != ISOC_IN_EP &&
1542					ep_type != INT_IN_EP)
1543				continue;
1544
1545			/* Added or changed endpoint */
1546			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1547					le32_to_cpu(ep_ctx->ep_info));
1548			/* Number of packets and mult are zero-based in the
1549			 * input context, but we want one-based for the
1550			 * interval table.
1551			 */
1552			bw_info->mult = CTX_TO_EP_MULT(
1553					le32_to_cpu(ep_ctx->ep_info)) + 1;
1554			bw_info->num_packets = CTX_TO_MAX_BURST(
1555					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1556			bw_info->max_packet_size = MAX_PACKET_DECODED(
1557					le32_to_cpu(ep_ctx->ep_info2));
1558			bw_info->type = ep_type;
1559			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1560					le32_to_cpu(ep_ctx->tx_info));
1561		}
1562	}
1563}
1564
1565/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1566 * Useful when you want to change one particular aspect of the endpoint and then
1567 * issue a configure endpoint command.
1568 */
1569void xhci_endpoint_copy(struct xhci_hcd *xhci,
1570		struct xhci_container_ctx *in_ctx,
1571		struct xhci_container_ctx *out_ctx,
1572		unsigned int ep_index)
1573{
1574	struct xhci_ep_ctx *out_ep_ctx;
1575	struct xhci_ep_ctx *in_ep_ctx;
1576
1577	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1578	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1579
1580	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1581	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1582	in_ep_ctx->deq = out_ep_ctx->deq;
1583	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1584	if (xhci->quirks & XHCI_MTK_HOST) {
1585		in_ep_ctx->reserved[0] = out_ep_ctx->reserved[0];
1586		in_ep_ctx->reserved[1] = out_ep_ctx->reserved[1];
1587	}
1588}
1589
1590/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1591 * Useful when you want to change one particular aspect of the endpoint and then
1592 * issue a configure endpoint command.  Only the context entries field matters,
1593 * but we'll copy the whole thing anyway.
1594 */
1595void xhci_slot_copy(struct xhci_hcd *xhci,
1596		struct xhci_container_ctx *in_ctx,
1597		struct xhci_container_ctx *out_ctx)
1598{
1599	struct xhci_slot_ctx *in_slot_ctx;
1600	struct xhci_slot_ctx *out_slot_ctx;
1601
1602	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1603	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1604
1605	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1606	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1607	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1608	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1609}
1610
1611/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1612static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1613{
1614	int i;
1615	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1616	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1617
1618	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1619			"Allocating %d scratchpad buffers", num_sp);
1620
1621	if (!num_sp)
1622		return 0;
1623
1624	xhci->scratchpad = kzalloc_node(sizeof(*xhci->scratchpad), flags,
1625				dev_to_node(dev));
1626	if (!xhci->scratchpad)
1627		goto fail_sp;
1628
1629	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1630				     array_size(sizeof(u64), num_sp),
1631				     &xhci->scratchpad->sp_dma, flags);
1632	if (!xhci->scratchpad->sp_array)
1633		goto fail_sp2;
1634
1635	xhci->scratchpad->sp_buffers = kcalloc_node(num_sp, sizeof(void *),
1636					flags, dev_to_node(dev));
1637	if (!xhci->scratchpad->sp_buffers)
1638		goto fail_sp3;
1639
 
 
 
 
 
 
1640	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1641	for (i = 0; i < num_sp; i++) {
1642		dma_addr_t dma;
1643		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1644					       flags);
1645		if (!buf)
1646			goto fail_sp4;
1647
1648		xhci->scratchpad->sp_array[i] = dma;
1649		xhci->scratchpad->sp_buffers[i] = buf;
 
1650	}
1651
1652	return 0;
1653
1654 fail_sp4:
1655	while (i--)
1656		dma_free_coherent(dev, xhci->page_size,
1657				    xhci->scratchpad->sp_buffers[i],
1658				    xhci->scratchpad->sp_array[i]);
 
 
1659
 
1660	kfree(xhci->scratchpad->sp_buffers);
1661
1662 fail_sp3:
1663	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1664			    xhci->scratchpad->sp_array,
1665			    xhci->scratchpad->sp_dma);
1666
1667 fail_sp2:
1668	kfree(xhci->scratchpad);
1669	xhci->scratchpad = NULL;
1670
1671 fail_sp:
1672	return -ENOMEM;
1673}
1674
1675static void scratchpad_free(struct xhci_hcd *xhci)
1676{
1677	int num_sp;
1678	int i;
1679	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1680
1681	if (!xhci->scratchpad)
1682		return;
1683
1684	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1685
1686	for (i = 0; i < num_sp; i++) {
1687		dma_free_coherent(dev, xhci->page_size,
1688				    xhci->scratchpad->sp_buffers[i],
1689				    xhci->scratchpad->sp_array[i]);
1690	}
 
1691	kfree(xhci->scratchpad->sp_buffers);
1692	dma_free_coherent(dev, array_size(sizeof(u64), num_sp),
1693			    xhci->scratchpad->sp_array,
1694			    xhci->scratchpad->sp_dma);
1695	kfree(xhci->scratchpad);
1696	xhci->scratchpad = NULL;
1697}
1698
1699struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1700		bool allocate_completion, gfp_t mem_flags)
 
1701{
1702	struct xhci_command *command;
1703	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1704
1705	command = kzalloc_node(sizeof(*command), mem_flags, dev_to_node(dev));
1706	if (!command)
1707		return NULL;
1708
 
 
 
 
 
 
 
 
 
 
1709	if (allocate_completion) {
1710		command->completion =
1711			kzalloc_node(sizeof(struct completion), mem_flags,
1712				dev_to_node(dev));
1713		if (!command->completion) {
 
1714			kfree(command);
1715			return NULL;
1716		}
1717		init_completion(command->completion);
1718	}
1719
1720	command->status = 0;
1721	/* set default timeout to 5000 ms */
1722	command->timeout_ms = XHCI_CMD_DEFAULT_TIMEOUT;
1723	INIT_LIST_HEAD(&command->cmd_list);
1724	return command;
1725}
1726
1727struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1728		bool allocate_completion, gfp_t mem_flags)
1729{
1730	struct xhci_command *command;
1731
1732	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1733	if (!command)
1734		return NULL;
1735
1736	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1737						   mem_flags);
1738	if (!command->in_ctx) {
1739		kfree(command->completion);
1740		kfree(command);
1741		return NULL;
1742	}
1743	return command;
1744}
1745
1746void xhci_urb_free_priv(struct urb_priv *urb_priv)
1747{
1748	kfree(urb_priv);
1749}
1750
1751void xhci_free_command(struct xhci_hcd *xhci,
1752		struct xhci_command *command)
1753{
1754	xhci_free_container_ctx(xhci,
1755			command->in_ctx);
1756	kfree(command->completion);
1757	kfree(command);
1758}
1759
1760static int xhci_alloc_erst(struct xhci_hcd *xhci,
1761		    struct xhci_ring *evt_ring,
1762		    struct xhci_erst *erst,
1763		    gfp_t flags)
1764{
1765	size_t size;
1766	unsigned int val;
1767	struct xhci_segment *seg;
1768	struct xhci_erst_entry *entry;
1769
1770	size = array_size(sizeof(struct xhci_erst_entry), evt_ring->num_segs);
1771	erst->entries = dma_alloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1772					   size, &erst->erst_dma_addr, flags);
1773	if (!erst->entries)
1774		return -ENOMEM;
1775
1776	erst->num_entries = evt_ring->num_segs;
1777
1778	seg = evt_ring->first_seg;
1779	for (val = 0; val < evt_ring->num_segs; val++) {
1780		entry = &erst->entries[val];
1781		entry->seg_addr = cpu_to_le64(seg->dma);
1782		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1783		entry->rsvd = 0;
1784		seg = seg->next;
1785	}
1786
1787	return 0;
1788}
1789
1790static void
1791xhci_remove_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1792{
1793	u32 tmp;
1794
1795	if (!ir)
1796		return;
1797
1798	/*
1799	 * Clean out interrupter registers except ERSTBA. Clearing either the
1800	 * low or high 32 bits of ERSTBA immediately causes the controller to
1801	 * dereference the partially cleared 64 bit address, causing IOMMU error.
1802	 */
1803	if (ir->ir_set) {
1804		tmp = readl(&ir->ir_set->erst_size);
1805		tmp &= ERST_SIZE_MASK;
1806		writel(tmp, &ir->ir_set->erst_size);
1807
1808		xhci_write_64(xhci, ERST_EHB, &ir->ir_set->erst_dequeue);
1809	}
1810}
1811
1812static void
1813xhci_free_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
1814{
1815	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1816	size_t erst_size;
1817
1818	if (!ir)
1819		return;
1820
1821	erst_size = array_size(sizeof(struct xhci_erst_entry), ir->erst.num_entries);
1822	if (ir->erst.entries)
1823		dma_free_coherent(dev, erst_size,
1824				  ir->erst.entries,
1825				  ir->erst.erst_dma_addr);
1826	ir->erst.entries = NULL;
1827
1828	/* free interrupter event ring */
1829	if (ir->event_ring)
1830		xhci_ring_free(xhci, ir->event_ring);
1831
1832	ir->event_ring = NULL;
1833
1834	kfree(ir);
1835}
1836
1837void xhci_remove_secondary_interrupter(struct usb_hcd *hcd, struct xhci_interrupter *ir)
1838{
1839	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1840	unsigned int intr_num;
1841
1842	spin_lock_irq(&xhci->lock);
1843
1844	/* interrupter 0 is primary interrupter, don't touch it */
1845	if (!ir || !ir->intr_num || ir->intr_num >= xhci->max_interrupters) {
1846		xhci_dbg(xhci, "Invalid secondary interrupter, can't remove\n");
1847		spin_unlock_irq(&xhci->lock);
1848		return;
1849	}
1850
1851	intr_num = ir->intr_num;
1852
1853	xhci_remove_interrupter(xhci, ir);
1854	xhci->interrupters[intr_num] = NULL;
1855
1856	spin_unlock_irq(&xhci->lock);
1857
1858	xhci_free_interrupter(xhci, ir);
1859}
1860EXPORT_SYMBOL_GPL(xhci_remove_secondary_interrupter);
1861
1862void xhci_mem_cleanup(struct xhci_hcd *xhci)
1863{
1864	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
 
1865	int i, j, num_ports;
1866
1867	cancel_delayed_work_sync(&xhci->cmd_timer);
1868
1869	for (i = 0; xhci->interrupters && i < xhci->max_interrupters; i++) {
1870		if (xhci->interrupters[i]) {
1871			xhci_remove_interrupter(xhci, xhci->interrupters[i]);
1872			xhci_free_interrupter(xhci, xhci->interrupters[i]);
1873			xhci->interrupters[i] = NULL;
1874		}
1875	}
1876	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed interrupters");
1877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878	if (xhci->cmd_ring)
1879		xhci_ring_free(xhci, xhci->cmd_ring);
1880	xhci->cmd_ring = NULL;
1881	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1882	xhci_cleanup_command_queue(xhci);
1883
1884	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1885	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1886		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1887		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1888			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1889			while (!list_empty(ep))
1890				list_del_init(ep->next);
1891		}
1892	}
1893
1894	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1895		xhci_free_virt_devices_depth_first(xhci, i);
1896
1897	dma_pool_destroy(xhci->segment_pool);
1898	xhci->segment_pool = NULL;
1899	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1900
1901	dma_pool_destroy(xhci->device_pool);
1902	xhci->device_pool = NULL;
1903	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1904
1905	dma_pool_destroy(xhci->small_streams_pool);
1906	xhci->small_streams_pool = NULL;
1907	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1908			"Freed small stream array pool");
1909
1910	dma_pool_destroy(xhci->medium_streams_pool);
1911	xhci->medium_streams_pool = NULL;
1912	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1913			"Freed medium stream array pool");
1914
1915	if (xhci->dcbaa)
1916		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1917				xhci->dcbaa, xhci->dcbaa->dma);
1918	xhci->dcbaa = NULL;
1919
1920	scratchpad_free(xhci);
1921
1922	if (!xhci->rh_bw)
1923		goto no_bw;
1924
1925	for (i = 0; i < num_ports; i++) {
1926		struct xhci_tt_bw_info *tt, *n;
1927		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1928			list_del(&tt->tt_list);
1929			kfree(tt);
1930		}
1931	}
1932
1933no_bw:
1934	xhci->cmd_ring_reserved_trbs = 0;
1935	xhci->usb2_rhub.num_ports = 0;
1936	xhci->usb3_rhub.num_ports = 0;
1937	xhci->num_active_eps = 0;
1938	kfree(xhci->usb2_rhub.ports);
1939	kfree(xhci->usb3_rhub.ports);
1940	kfree(xhci->hw_ports);
1941	kfree(xhci->rh_bw);
1942	for (i = 0; i < xhci->num_port_caps; i++)
1943		kfree(xhci->port_caps[i].psi);
1944	kfree(xhci->port_caps);
1945	kfree(xhci->interrupters);
1946	xhci->num_port_caps = 0;
1947
1948	xhci->usb2_rhub.ports = NULL;
1949	xhci->usb3_rhub.ports = NULL;
1950	xhci->hw_ports = NULL;
1951	xhci->rh_bw = NULL;
1952	xhci->port_caps = NULL;
1953	xhci->interrupters = NULL;
1954
1955	xhci->page_size = 0;
1956	xhci->page_shift = 0;
1957	xhci->usb2_rhub.bus_state.bus_suspended = 0;
1958	xhci->usb3_rhub.bus_state.bus_suspended = 0;
1959}
1960
1961static void xhci_set_hc_event_deq(struct xhci_hcd *xhci, struct xhci_interrupter *ir)
 
 
 
 
 
 
1962{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1963	dma_addr_t deq;
1964
1965	deq = xhci_trb_virt_to_dma(ir->event_ring->deq_seg,
1966			ir->event_ring->dequeue);
1967	if (!deq)
1968		xhci_warn(xhci, "WARN something wrong with SW event ring dequeue ptr.\n");
 
1969	/* Update HC event ring dequeue pointer */
 
 
1970	/* Don't clear the EHB bit (which is RW1C) because
1971	 * there might be more events to service.
1972	 */
 
1973	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1974		       "// Write event ring dequeue pointer, preserving EHB bit");
1975	xhci_write_64(xhci, deq & ERST_PTR_MASK, &ir->ir_set->erst_dequeue);
 
 
1976}
1977
1978static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1979		__le32 __iomem *addr, int max_caps)
1980{
1981	u32 temp, port_offset, port_count;
1982	int i;
1983	u8 major_revision, minor_revision, tmp_minor_revision;
1984	struct xhci_hub *rhub;
1985	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1986	struct xhci_port_cap *port_cap;
1987
1988	temp = readl(addr);
1989	major_revision = XHCI_EXT_PORT_MAJOR(temp);
1990	minor_revision = XHCI_EXT_PORT_MINOR(temp);
1991
1992	if (major_revision == 0x03) {
1993		rhub = &xhci->usb3_rhub;
1994		/*
1995		 * Some hosts incorrectly use sub-minor version for minor
1996		 * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
1997		 * for bcdUSB 0x310). Since there is no USB release with sub
1998		 * minor version 0x301 to 0x309, we can assume that they are
1999		 * incorrect and fix it here.
2000		 */
2001		if (minor_revision > 0x00 && minor_revision < 0x10)
2002			minor_revision <<= 4;
2003		/*
2004		 * Some zhaoxin's xHCI controller that follow usb3.1 spec
2005		 * but only support Gen1.
2006		 */
2007		if (xhci->quirks & XHCI_ZHAOXIN_HOST) {
2008			tmp_minor_revision = minor_revision;
2009			minor_revision = 0;
2010		}
2011
2012	} else if (major_revision <= 0x02) {
2013		rhub = &xhci->usb2_rhub;
2014	} else {
2015		xhci_warn(xhci, "Ignoring unknown port speed, Ext Cap %p, revision = 0x%x\n",
 
2016				addr, major_revision);
2017		/* Ignoring port protocol we can't understand. FIXME */
2018		return;
2019	}
 
 
2020
2021	/* Port offset and count in the third dword, see section 7.2 */
2022	temp = readl(addr + 2);
2023	port_offset = XHCI_EXT_PORT_OFF(temp);
2024	port_count = XHCI_EXT_PORT_COUNT(temp);
2025	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2026		       "Ext Cap %p, port offset = %u, count = %u, revision = 0x%x",
2027		       addr, port_offset, port_count, major_revision);
 
2028	/* Port count includes the current port offset */
2029	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2030		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2031		return;
2032
2033	port_cap = &xhci->port_caps[xhci->num_port_caps++];
2034	if (xhci->num_port_caps > max_caps)
2035		return;
2036
2037	port_cap->psi_count = XHCI_EXT_PORT_PSIC(temp);
2038
2039	if (port_cap->psi_count) {
2040		port_cap->psi = kcalloc_node(port_cap->psi_count,
2041					     sizeof(*port_cap->psi),
2042					     GFP_KERNEL, dev_to_node(dev));
2043		if (!port_cap->psi)
2044			port_cap->psi_count = 0;
2045
2046		port_cap->psi_uid_count++;
2047		for (i = 0; i < port_cap->psi_count; i++) {
2048			port_cap->psi[i] = readl(addr + 4 + i);
2049
2050			/* count unique ID values, two consecutive entries can
2051			 * have the same ID if link is assymetric
2052			 */
2053			if (i && (XHCI_EXT_PORT_PSIV(port_cap->psi[i]) !=
2054				  XHCI_EXT_PORT_PSIV(port_cap->psi[i - 1])))
2055				port_cap->psi_uid_count++;
2056
2057			if (xhci->quirks & XHCI_ZHAOXIN_HOST &&
2058			    major_revision == 0x03 &&
2059			    XHCI_EXT_PORT_PSIV(port_cap->psi[i]) >= 5)
2060				minor_revision = tmp_minor_revision;
2061
2062			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2063				  XHCI_EXT_PORT_PSIV(port_cap->psi[i]),
2064				  XHCI_EXT_PORT_PSIE(port_cap->psi[i]),
2065				  XHCI_EXT_PORT_PLT(port_cap->psi[i]),
2066				  XHCI_EXT_PORT_PFD(port_cap->psi[i]),
2067				  XHCI_EXT_PORT_LP(port_cap->psi[i]),
2068				  XHCI_EXT_PORT_PSIM(port_cap->psi[i]));
2069		}
2070	}
 
 
 
 
 
 
 
 
 
 
 
2071
2072	rhub->maj_rev = major_revision;
2073
2074	if (rhub->min_rev < minor_revision)
2075		rhub->min_rev = minor_revision;
2076
2077	port_cap->maj_rev = major_revision;
2078	port_cap->min_rev = minor_revision;
2079	port_cap->protocol_caps = temp;
2080
2081	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03) &&
2082		 (temp & XHCI_HLC)) {
2083		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2084			       "xHCI 1.0: support USB2 hardware lpm");
2085		xhci->hw_lpm_support = 1;
 
 
 
 
 
2086	}
2087
2088	port_offset--;
2089	for (i = port_offset; i < (port_offset + port_count); i++) {
2090		struct xhci_port *hw_port = &xhci->hw_ports[i];
2091		/* Duplicate entry.  Ignore the port if the revisions differ. */
2092		if (hw_port->rhub) {
2093			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p, port %u\n", addr, i);
2094			xhci_warn(xhci, "Port was marked as USB %u, duplicated as USB %u\n",
2095					hw_port->rhub->maj_rev, major_revision);
 
 
2096			/* Only adjust the roothub port counts if we haven't
2097			 * found a similar duplicate.
2098			 */
2099			if (hw_port->rhub != rhub &&
2100				 hw_port->hcd_portnum != DUPLICATE_ENTRY) {
2101				hw_port->rhub->num_ports--;
2102				hw_port->hcd_portnum = DUPLICATE_ENTRY;
 
 
 
2103			}
 
2104			continue;
2105		}
2106		hw_port->rhub = rhub;
2107		hw_port->port_cap = port_cap;
2108		rhub->num_ports++;
 
 
2109	}
2110	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2111}
2112
2113static void xhci_create_rhub_port_array(struct xhci_hcd *xhci,
2114					struct xhci_hub *rhub, gfp_t flags)
2115{
2116	int port_index = 0;
2117	int i;
2118	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2119
2120	if (!rhub->num_ports)
2121		return;
2122	rhub->ports = kcalloc_node(rhub->num_ports, sizeof(*rhub->ports),
2123			flags, dev_to_node(dev));
2124	if (!rhub->ports)
2125		return;
2126
2127	for (i = 0; i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
2128		if (xhci->hw_ports[i].rhub != rhub ||
2129		    xhci->hw_ports[i].hcd_portnum == DUPLICATE_ENTRY)
2130			continue;
2131		xhci->hw_ports[i].hcd_portnum = port_index;
2132		rhub->ports[port_index] = &xhci->hw_ports[i];
2133		port_index++;
2134		if (port_index == rhub->num_ports)
2135			break;
2136	}
2137}
2138
2139/*
2140 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2141 * specify what speeds each port is supposed to be.  We can't count on the port
2142 * speed bits in the PORTSC register being correct until a device is connected,
2143 * but we need to set up the two fake roothubs with the correct number of USB
2144 * 3.0 and USB 2.0 ports at host controller initialization time.
2145 */
2146static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2147{
2148	void __iomem *base;
2149	u32 offset;
2150	unsigned int num_ports;
2151	int i, j;
2152	int cap_count = 0;
2153	u32 cap_start;
2154	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2155
2156	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2157	xhci->hw_ports = kcalloc_node(num_ports, sizeof(*xhci->hw_ports),
2158				flags, dev_to_node(dev));
2159	if (!xhci->hw_ports)
2160		return -ENOMEM;
2161
2162	for (i = 0; i < num_ports; i++) {
2163		xhci->hw_ports[i].addr = &xhci->op_regs->port_status_base +
2164			NUM_PORT_REGS * i;
2165		xhci->hw_ports[i].hw_portnum = i;
2166
2167		init_completion(&xhci->hw_ports[i].rexit_done);
2168		init_completion(&xhci->hw_ports[i].u3exit_done);
2169	}
2170
2171	xhci->rh_bw = kcalloc_node(num_ports, sizeof(*xhci->rh_bw), flags,
2172				   dev_to_node(dev));
2173	if (!xhci->rh_bw)
2174		return -ENOMEM;
2175	for (i = 0; i < num_ports; i++) {
2176		struct xhci_interval_bw_table *bw_table;
2177
2178		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2179		bw_table = &xhci->rh_bw[i].bw_table;
2180		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2181			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2182	}
2183	base = &xhci->cap_regs->hc_capbase;
2184
2185	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2186	if (!cap_start) {
2187		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2188		return -ENODEV;
2189	}
2190
2191	offset = cap_start;
2192	/* count extended protocol capability entries for later caching */
2193	while (offset) {
2194		cap_count++;
2195		offset = xhci_find_next_ext_cap(base, offset,
2196						      XHCI_EXT_CAPS_PROTOCOL);
2197	}
2198
2199	xhci->port_caps = kcalloc_node(cap_count, sizeof(*xhci->port_caps),
2200				flags, dev_to_node(dev));
2201	if (!xhci->port_caps)
2202		return -ENOMEM;
2203
2204	offset = cap_start;
2205
2206	while (offset) {
2207		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2208		if (xhci->usb2_rhub.num_ports + xhci->usb3_rhub.num_ports ==
2209		    num_ports)
2210			break;
2211		offset = xhci_find_next_ext_cap(base, offset,
2212						XHCI_EXT_CAPS_PROTOCOL);
2213	}
2214	if (xhci->usb2_rhub.num_ports == 0 && xhci->usb3_rhub.num_ports == 0) {
 
2215		xhci_warn(xhci, "No ports on the roothubs?\n");
2216		return -ENODEV;
2217	}
2218	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2219		       "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2220		       xhci->usb2_rhub.num_ports, xhci->usb3_rhub.num_ports);
2221
2222	/* Place limits on the number of roothub ports so that the hub
2223	 * descriptors aren't longer than the USB core will allocate.
2224	 */
2225	if (xhci->usb3_rhub.num_ports > USB_SS_MAXPORTS) {
2226		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2227				"Limiting USB 3.0 roothub ports to %u.",
2228				USB_SS_MAXPORTS);
2229		xhci->usb3_rhub.num_ports = USB_SS_MAXPORTS;
2230	}
2231	if (xhci->usb2_rhub.num_ports > USB_MAXCHILDREN) {
2232		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2233				"Limiting USB 2.0 roothub ports to %u.",
2234				USB_MAXCHILDREN);
2235		xhci->usb2_rhub.num_ports = USB_MAXCHILDREN;
2236	}
2237
2238	if (!xhci->usb2_rhub.num_ports)
2239		xhci_info(xhci, "USB2 root hub has no ports\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2240
2241	if (!xhci->usb3_rhub.num_ports)
2242		xhci_info(xhci, "USB3 root hub has no ports\n");
2243
2244	xhci_create_rhub_port_array(xhci, &xhci->usb2_rhub, flags);
2245	xhci_create_rhub_port_array(xhci, &xhci->usb3_rhub, flags);
2246
2247	return 0;
2248}
2249
2250static struct xhci_interrupter *
2251xhci_alloc_interrupter(struct xhci_hcd *xhci, unsigned int segs, gfp_t flags)
2252{
2253	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
2254	struct xhci_interrupter *ir;
2255	unsigned int max_segs;
2256	int ret;
2257
2258	if (!segs)
2259		segs = ERST_DEFAULT_SEGS;
2260
2261	max_segs = BIT(HCS_ERST_MAX(xhci->hcs_params2));
2262	segs = min(segs, max_segs);
2263
2264	ir = kzalloc_node(sizeof(*ir), flags, dev_to_node(dev));
2265	if (!ir)
2266		return NULL;
2267
2268	ir->event_ring = xhci_ring_alloc(xhci, segs, TYPE_EVENT, 0, flags);
2269	if (!ir->event_ring) {
2270		xhci_warn(xhci, "Failed to allocate interrupter event ring\n");
2271		kfree(ir);
2272		return NULL;
2273	}
2274
2275	ret = xhci_alloc_erst(xhci, ir->event_ring, &ir->erst, flags);
2276	if (ret) {
2277		xhci_warn(xhci, "Failed to allocate interrupter erst\n");
2278		xhci_ring_free(xhci, ir->event_ring);
2279		kfree(ir);
2280		return NULL;
2281	}
2282
2283	return ir;
2284}
2285
2286static int
2287xhci_add_interrupter(struct xhci_hcd *xhci, struct xhci_interrupter *ir,
2288		     unsigned int intr_num)
2289{
2290	u64 erst_base;
2291	u32 erst_size;
2292
2293	if (intr_num >= xhci->max_interrupters) {
2294		xhci_warn(xhci, "Can't add interrupter %d, max interrupters %d\n",
2295			  intr_num, xhci->max_interrupters);
2296		return -EINVAL;
2297	}
2298
2299	if (xhci->interrupters[intr_num]) {
2300		xhci_warn(xhci, "Interrupter %d\n already set up", intr_num);
2301		return -EINVAL;
2302	}
2303
2304	xhci->interrupters[intr_num] = ir;
2305	ir->intr_num = intr_num;
2306	ir->ir_set = &xhci->run_regs->ir_set[intr_num];
2307
2308	/* set ERST count with the number of entries in the segment table */
2309	erst_size = readl(&ir->ir_set->erst_size);
2310	erst_size &= ERST_SIZE_MASK;
2311	erst_size |= ir->event_ring->num_segs;
2312	writel(erst_size, &ir->ir_set->erst_size);
2313
2314	erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
2315	erst_base &= ERST_BASE_RSVDP;
2316	erst_base |= ir->erst.erst_dma_addr & ~ERST_BASE_RSVDP;
2317	if (xhci->quirks & XHCI_WRITE_64_HI_LO)
2318		hi_lo_writeq(erst_base, &ir->ir_set->erst_base);
2319	else
2320		xhci_write_64(xhci, erst_base, &ir->ir_set->erst_base);
2321
2322	/* Set the event ring dequeue address of this interrupter */
2323	xhci_set_hc_event_deq(xhci, ir);
2324
2325	return 0;
2326}
2327
2328struct xhci_interrupter *
2329xhci_create_secondary_interrupter(struct usb_hcd *hcd, unsigned int segs,
2330				  u32 imod_interval)
2331{
2332	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2333	struct xhci_interrupter *ir;
2334	unsigned int i;
2335	int err = -ENOSPC;
2336
2337	if (!xhci->interrupters || xhci->max_interrupters <= 1)
2338		return NULL;
2339
2340	ir = xhci_alloc_interrupter(xhci, segs, GFP_KERNEL);
2341	if (!ir)
2342		return NULL;
2343
2344	spin_lock_irq(&xhci->lock);
2345
2346	/* Find available secondary interrupter, interrupter 0 is reserved for primary */
2347	for (i = 1; i < xhci->max_interrupters; i++) {
2348		if (xhci->interrupters[i] == NULL) {
2349			err = xhci_add_interrupter(xhci, ir, i);
2350			break;
2351		}
2352	}
2353
2354	spin_unlock_irq(&xhci->lock);
2355
2356	if (err) {
2357		xhci_warn(xhci, "Failed to add secondary interrupter, max interrupters %d\n",
2358			  xhci->max_interrupters);
2359		xhci_free_interrupter(xhci, ir);
2360		return NULL;
2361	}
2362
2363	err = xhci_set_interrupter_moderation(ir, imod_interval);
2364	if (err)
2365		xhci_warn(xhci, "Failed to set interrupter %d moderation to %uns\n",
2366			  i, imod_interval);
2367
2368	xhci_dbg(xhci, "Add secondary interrupter %d, max interrupters %d\n",
2369		 i, xhci->max_interrupters);
2370
2371	return ir;
2372}
2373EXPORT_SYMBOL_GPL(xhci_create_secondary_interrupter);
2374
2375int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2376{
2377	struct xhci_interrupter *ir;
2378	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2379	dma_addr_t	dma;
 
2380	unsigned int	val, val2;
2381	u64		val_64;
2382	u32		page_size, temp;
2383	int		i;
 
2384
2385	INIT_LIST_HEAD(&xhci->cmd_list);
2386
2387	/* init command timeout work */
2388	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2389	init_completion(&xhci->cmd_ring_stop_completion);
2390
2391	page_size = readl(&xhci->op_regs->page_size);
2392	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393			"Supported page size register = 0x%x", page_size);
2394	i = ffs(page_size);
 
 
 
 
2395	if (i < 16)
2396		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2397			"Supported page size of %iK", (1 << (i+12)) / 1024);
2398	else
2399		xhci_warn(xhci, "WARN: no supported page size\n");
2400	/* Use 4K pages, since that's common and the minimum the HC supports */
2401	xhci->page_shift = 12;
2402	xhci->page_size = 1 << xhci->page_shift;
2403	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404			"HCD page size set to %iK", xhci->page_size / 1024);
2405
2406	/*
2407	 * Program the Number of Device Slots Enabled field in the CONFIG
2408	 * register with the max value of slots the HC can handle.
2409	 */
2410	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2411	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412			"// xHC can handle at most %d device slots.", val);
2413	val2 = readl(&xhci->op_regs->config_reg);
2414	val |= (val2 & ~HCS_SLOTS_MASK);
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"// Setting Max device slots reg = 0x%x.", val);
2417	writel(val, &xhci->op_regs->config_reg);
2418
2419	/*
2420	 * xHCI section 5.4.6 - Device Context array must be
2421	 * "physically contiguous and 64-byte (cache line) aligned".
2422	 */
2423	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2424			flags);
2425	if (!xhci->dcbaa)
2426		goto fail;
 
2427	xhci->dcbaa->dma = dma;
2428	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2429			"// Device context base array address = 0x%pad (DMA), %p (virt)",
2430			&xhci->dcbaa->dma, xhci->dcbaa);
2431	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2432
2433	/*
2434	 * Initialize the ring segment pool.  The ring must be a contiguous
2435	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2436	 * however, the command ring segment needs 64-byte aligned segments
2437	 * and our use of dma addresses in the trb_address_map radix tree needs
2438	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2439	 */
2440	if (xhci->quirks & XHCI_TRB_OVERFETCH)
2441		/* Buggy HC prefetches beyond segment bounds - allocate dummy space at the end */
2442		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2443				TRB_SEGMENT_SIZE * 2, TRB_SEGMENT_SIZE * 2, xhci->page_size * 2);
2444	else
2445		xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2446				TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2447
2448	/* See Table 46 and Note on Figure 55 */
2449	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2450			2112, 64, xhci->page_size);
2451	if (!xhci->segment_pool || !xhci->device_pool)
2452		goto fail;
2453
2454	/* Linear stream context arrays don't have any boundary restrictions,
2455	 * and only need to be 16-byte aligned.
2456	 */
2457	xhci->small_streams_pool =
2458		dma_pool_create("xHCI 256 byte stream ctx arrays",
2459			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2460	xhci->medium_streams_pool =
2461		dma_pool_create("xHCI 1KB stream ctx arrays",
2462			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2463	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2464	 * will be allocated with dma_alloc_coherent()
2465	 */
2466
2467	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2468		goto fail;
2469
2470	/* Set up the command ring to have one segments for now. */
2471	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, TYPE_COMMAND, 0, flags);
2472	if (!xhci->cmd_ring)
2473		goto fail;
2474	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2475			"Allocated command ring at %p", xhci->cmd_ring);
2476	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%pad",
2477			&xhci->cmd_ring->first_seg->dma);
2478
2479	/* Set the address in the Command Ring Control register */
2480	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2481	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2482		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2483		xhci->cmd_ring->cycle_state;
2484	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2485			"// Setting command ring address to 0x%016llx", val_64);
2486	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 
 
 
 
 
2487
2488	/* Reserve one command ring TRB for disabling LPM.
2489	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2490	 * disabling LPM, we only need to reserve one TRB for all devices.
2491	 */
2492	xhci->cmd_ring_reserved_trbs++;
2493
2494	val = readl(&xhci->cap_regs->db_off);
2495	val &= DBOFF_MASK;
2496	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2497		       "// Doorbell array is located at offset 0x%x from cap regs base addr",
2498		       val);
2499	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
 
 
2500
2501	/* Allocate and set up primary interrupter 0 with an event ring. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503		       "Allocating primary event ring");
2504	xhci->interrupters = kcalloc_node(xhci->max_interrupters, sizeof(*xhci->interrupters),
2505					  flags, dev_to_node(dev));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2506
2507	ir = xhci_alloc_interrupter(xhci, 0, flags);
2508	if (!ir)
2509		goto fail;
 
 
 
 
 
2510
2511	if (xhci_add_interrupter(xhci, ir, 0))
2512		goto fail;
 
 
 
 
 
 
 
 
2513
2514	ir->isoc_bei_interval = AVOID_BEI_INTERVAL_MAX;
 
 
 
 
2515
2516	for (i = 0; i < MAX_HC_SLOTS; i++)
 
 
 
 
 
 
2517		xhci->devs[i] = NULL;
 
 
 
 
 
 
2518
2519	if (scratchpad_alloc(xhci, flags))
2520		goto fail;
2521	if (xhci_setup_port_arrays(xhci, flags))
2522		goto fail;
2523
2524	/* Enable USB 3.0 device notifications for function remote wake, which
2525	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2526	 * U3 (device suspend).
2527	 */
2528	temp = readl(&xhci->op_regs->dev_notification);
2529	temp &= ~DEV_NOTE_MASK;
2530	temp |= DEV_NOTE_FWAKE;
2531	writel(temp, &xhci->op_regs->dev_notification);
2532
2533	return 0;
2534
2535fail:
 
2536	xhci_halt(xhci);
2537	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
2538	xhci_mem_cleanup(xhci);
2539	return -ENOMEM;
2540}