Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
 
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					unsigned int cycle_state, gfp_t flags)
 
 
  41{
  42	struct xhci_segment *seg;
  43	dma_addr_t	dma;
  44	int		i;
  45
  46	seg = kzalloc(sizeof *seg, flags);
  47	if (!seg)
  48		return NULL;
  49
  50	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  51	if (!seg->trbs) {
  52		kfree(seg);
  53		return NULL;
  54	}
  55
 
 
 
 
 
 
 
 
  56	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  57	if (cycle_state == 0) {
  58		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  59			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  60	}
  61	seg->dma = dma;
  62	seg->next = NULL;
  63
  64	return seg;
  65}
  66
  67static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  68{
  69	if (seg->trbs) {
  70		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  71		seg->trbs = NULL;
  72	}
 
  73	kfree(seg);
  74}
  75
  76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  77				struct xhci_segment *first)
  78{
  79	struct xhci_segment *seg;
  80
  81	seg = first->next;
  82	while (seg != first) {
  83		struct xhci_segment *next = seg->next;
  84		xhci_segment_free(xhci, seg);
  85		seg = next;
  86	}
  87	xhci_segment_free(xhci, first);
  88}
  89
  90/*
  91 * Make the prev segment point to the next segment.
  92 *
  93 * Change the last TRB in the prev segment to be a Link TRB which points to the
  94 * DMA address of the next segment.  The caller needs to set any Link TRB
  95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  96 */
  97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  98		struct xhci_segment *next, enum xhci_ring_type type)
  99{
 100	u32 val;
 101
 102	if (!prev || !next)
 103		return;
 104	prev->next = next;
 105	if (type != TYPE_EVENT) {
 106		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 107			cpu_to_le64(next->dma);
 108
 109		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 110		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 111		val &= ~TRB_TYPE_BITMASK;
 112		val |= TRB_TYPE(TRB_LINK);
 113		/* Always set the chain bit with 0.95 hardware */
 114		/* Set chain bit for isoc rings on AMD 0.96 host */
 115		if (xhci_link_trb_quirk(xhci) ||
 116				(type == TYPE_ISOC &&
 117				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 118			val |= TRB_CHAIN;
 119		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 120	}
 121}
 122
 123/*
 124 * Link the ring to the new segments.
 125 * Set Toggle Cycle for the new ring if needed.
 126 */
 127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 128		struct xhci_segment *first, struct xhci_segment *last,
 129		unsigned int num_segs)
 130{
 131	struct xhci_segment *next;
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	next = ring->enq_seg->next;
 137	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 138	xhci_link_segments(xhci, last, next, ring->type);
 139	ring->num_segs += num_segs;
 140	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 141
 142	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 143		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 144			&= ~cpu_to_le32(LINK_TOGGLE);
 145		last->trbs[TRBS_PER_SEGMENT-1].link.control
 146			|= cpu_to_le32(LINK_TOGGLE);
 147		ring->last_seg = last;
 148	}
 149}
 150
 151/*
 152 * We need a radix tree for mapping physical addresses of TRBs to which stream
 153 * ID they belong to.  We need to do this because the host controller won't tell
 154 * us which stream ring the TRB came from.  We could store the stream ID in an
 155 * event data TRB, but that doesn't help us for the cancellation case, since the
 156 * endpoint may stop before it reaches that event data TRB.
 157 *
 158 * The radix tree maps the upper portion of the TRB DMA address to a ring
 159 * segment that has the same upper portion of DMA addresses.  For example, say I
 160 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 161 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 162 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 163 * pass the radix tree a key to get the right stream ID:
 164 *
 165 *	0x10c90fff >> 10 = 0x43243
 166 *	0x10c912c0 >> 10 = 0x43244
 167 *	0x10c91400 >> 10 = 0x43245
 168 *
 169 * Obviously, only those TRBs with DMA addresses that are within the segment
 170 * will make the radix tree return the stream ID for that ring.
 171 *
 172 * Caveats for the radix tree:
 173 *
 174 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 176 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 178 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 179 * extended systems (where the DMA address can be bigger than 32-bits),
 180 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 181 */
 182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 183		struct xhci_ring *ring,
 184		struct xhci_segment *seg,
 185		gfp_t mem_flags)
 186{
 187	unsigned long key;
 188	int ret;
 189
 190	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 191	/* Skip any segments that were already added. */
 192	if (radix_tree_lookup(trb_address_map, key))
 193		return 0;
 194
 195	ret = radix_tree_maybe_preload(mem_flags);
 196	if (ret)
 197		return ret;
 198	ret = radix_tree_insert(trb_address_map,
 199			key, ring);
 200	radix_tree_preload_end();
 201	return ret;
 202}
 203
 204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 205		struct xhci_segment *seg)
 206{
 207	unsigned long key;
 208
 209	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 210	if (radix_tree_lookup(trb_address_map, key))
 211		radix_tree_delete(trb_address_map, key);
 212}
 213
 214static int xhci_update_stream_segment_mapping(
 215		struct radix_tree_root *trb_address_map,
 216		struct xhci_ring *ring,
 217		struct xhci_segment *first_seg,
 218		struct xhci_segment *last_seg,
 219		gfp_t mem_flags)
 220{
 221	struct xhci_segment *seg;
 222	struct xhci_segment *failed_seg;
 223	int ret;
 224
 225	if (WARN_ON_ONCE(trb_address_map == NULL))
 226		return 0;
 227
 228	seg = first_seg;
 229	do {
 230		ret = xhci_insert_segment_mapping(trb_address_map,
 231				ring, seg, mem_flags);
 232		if (ret)
 233			goto remove_streams;
 234		if (seg == last_seg)
 235			return 0;
 236		seg = seg->next;
 237	} while (seg != first_seg);
 238
 239	return 0;
 240
 241remove_streams:
 242	failed_seg = seg;
 243	seg = first_seg;
 244	do {
 245		xhci_remove_segment_mapping(trb_address_map, seg);
 246		if (seg == failed_seg)
 247			return ret;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return ret;
 252}
 253
 254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 255{
 256	struct xhci_segment *seg;
 257
 258	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 259		return;
 260
 261	seg = ring->first_seg;
 262	do {
 263		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 264		seg = seg->next;
 265	} while (seg != ring->first_seg);
 266}
 267
 268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 269{
 270	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 271			ring->first_seg, ring->last_seg, mem_flags);
 272}
 273
 274/* XXX: Do we need the hcd structure in all these functions? */
 275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 276{
 277	if (!ring)
 278		return;
 279
 
 
 280	if (ring->first_seg) {
 281		if (ring->type == TYPE_STREAM)
 282			xhci_remove_stream_mapping(ring);
 283		xhci_free_segments_for_ring(xhci, ring->first_seg);
 284	}
 285
 286	kfree(ring);
 287}
 288
 289static void xhci_initialize_ring_info(struct xhci_ring *ring,
 290					unsigned int cycle_state)
 291{
 292	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 293	ring->enqueue = ring->first_seg->trbs;
 294	ring->enq_seg = ring->first_seg;
 295	ring->dequeue = ring->enqueue;
 296	ring->deq_seg = ring->first_seg;
 297	/* The ring is initialized to 0. The producer must write 1 to the cycle
 298	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 299	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 300	 *
 301	 * New rings are initialized with cycle state equal to 1; if we are
 302	 * handling ring expansion, set the cycle state equal to the old ring.
 303	 */
 304	ring->cycle_state = cycle_state;
 305	/* Not necessary for new rings, but needed for re-initialized rings */
 306	ring->enq_updates = 0;
 307	ring->deq_updates = 0;
 308
 309	/*
 310	 * Each segment has a link TRB, and leave an extra TRB for SW
 311	 * accounting purpose
 312	 */
 313	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 314}
 315
 316/* Allocate segments and link them for a ring */
 317static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 318		struct xhci_segment **first, struct xhci_segment **last,
 319		unsigned int num_segs, unsigned int cycle_state,
 320		enum xhci_ring_type type, gfp_t flags)
 321{
 322	struct xhci_segment *prev;
 323
 324	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 325	if (!prev)
 326		return -ENOMEM;
 327	num_segs--;
 328
 329	*first = prev;
 330	while (num_segs > 0) {
 331		struct xhci_segment	*next;
 332
 333		next = xhci_segment_alloc(xhci, cycle_state, flags);
 334		if (!next) {
 335			prev = *first;
 336			while (prev) {
 337				next = prev->next;
 338				xhci_segment_free(xhci, prev);
 339				prev = next;
 340			}
 341			return -ENOMEM;
 342		}
 343		xhci_link_segments(xhci, prev, next, type);
 344
 345		prev = next;
 346		num_segs--;
 347	}
 348	xhci_link_segments(xhci, prev, *first, type);
 349	*last = prev;
 350
 351	return 0;
 352}
 353
 354/**
 355 * Create a new ring with zero or more segments.
 356 *
 357 * Link each segment together into a ring.
 358 * Set the end flag and the cycle toggle bit on the last segment.
 359 * See section 4.9.1 and figures 15 and 16.
 360 */
 361static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 362		unsigned int num_segs, unsigned int cycle_state,
 363		enum xhci_ring_type type, gfp_t flags)
 364{
 365	struct xhci_ring	*ring;
 366	int ret;
 367
 368	ring = kzalloc(sizeof *(ring), flags);
 369	if (!ring)
 370		return NULL;
 371
 372	ring->num_segs = num_segs;
 
 373	INIT_LIST_HEAD(&ring->td_list);
 374	ring->type = type;
 375	if (num_segs == 0)
 376		return ring;
 377
 378	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 379			&ring->last_seg, num_segs, cycle_state, type, flags);
 
 380	if (ret)
 381		goto fail;
 382
 383	/* Only event ring does not use link TRB */
 384	if (type != TYPE_EVENT) {
 385		/* See section 4.9.2.1 and 6.4.4.1 */
 386		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 387			cpu_to_le32(LINK_TOGGLE);
 388	}
 389	xhci_initialize_ring_info(ring, cycle_state);
 
 390	return ring;
 391
 392fail:
 393	kfree(ring);
 394	return NULL;
 395}
 396
 397void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 398		struct xhci_virt_device *virt_dev,
 399		unsigned int ep_index)
 400{
 401	int rings_cached;
 402
 403	rings_cached = virt_dev->num_rings_cached;
 404	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 405		virt_dev->ring_cache[rings_cached] =
 406			virt_dev->eps[ep_index].ring;
 407		virt_dev->num_rings_cached++;
 408		xhci_dbg(xhci, "Cached old ring, "
 409				"%d ring%s cached\n",
 410				virt_dev->num_rings_cached,
 411				(virt_dev->num_rings_cached > 1) ? "s" : "");
 412	} else {
 413		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 414		xhci_dbg(xhci, "Ring cache full (%d rings), "
 415				"freeing ring\n",
 416				virt_dev->num_rings_cached);
 417	}
 418	virt_dev->eps[ep_index].ring = NULL;
 419}
 420
 421/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 422 * pointers to the beginning of the ring.
 423 */
 424static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 425			struct xhci_ring *ring, unsigned int cycle_state,
 426			enum xhci_ring_type type)
 427{
 428	struct xhci_segment	*seg = ring->first_seg;
 429	int i;
 430
 431	do {
 432		memset(seg->trbs, 0,
 433				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 434		if (cycle_state == 0) {
 435			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 436				seg->trbs[i].link.control |=
 437					cpu_to_le32(TRB_CYCLE);
 438		}
 439		/* All endpoint rings have link TRBs */
 440		xhci_link_segments(xhci, seg, seg->next, type);
 441		seg = seg->next;
 442	} while (seg != ring->first_seg);
 443	ring->type = type;
 444	xhci_initialize_ring_info(ring, cycle_state);
 445	/* td list should be empty since all URBs have been cancelled,
 446	 * but just in case...
 447	 */
 448	INIT_LIST_HEAD(&ring->td_list);
 449}
 450
 451/*
 452 * Expand an existing ring.
 453 * Look for a cached ring or allocate a new ring which has same segment numbers
 454 * and link the two rings.
 455 */
 456int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 457				unsigned int num_trbs, gfp_t flags)
 458{
 459	struct xhci_segment	*first;
 460	struct xhci_segment	*last;
 461	unsigned int		num_segs;
 462	unsigned int		num_segs_needed;
 463	int			ret;
 464
 465	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 466				(TRBS_PER_SEGMENT - 1);
 467
 468	/* Allocate number of segments we needed, or double the ring size */
 469	num_segs = ring->num_segs > num_segs_needed ?
 470			ring->num_segs : num_segs_needed;
 471
 472	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 473			num_segs, ring->cycle_state, ring->type, flags);
 
 474	if (ret)
 475		return -ENOMEM;
 476
 477	if (ring->type == TYPE_STREAM)
 478		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 479						ring, first, last, flags);
 480	if (ret) {
 481		struct xhci_segment *next;
 482		do {
 483			next = first->next;
 484			xhci_segment_free(xhci, first);
 485			if (first == last)
 486				break;
 487			first = next;
 488		} while (true);
 489		return ret;
 490	}
 491
 492	xhci_link_rings(xhci, ring, first, last, num_segs);
 
 493	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 494			"ring expansion succeed, now has %d segments",
 495			ring->num_segs);
 496
 497	return 0;
 498}
 499
 500#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 501
 502static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 503						    int type, gfp_t flags)
 504{
 505	struct xhci_container_ctx *ctx;
 506
 507	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 508		return NULL;
 509
 510	ctx = kzalloc(sizeof(*ctx), flags);
 511	if (!ctx)
 512		return NULL;
 513
 514	ctx->type = type;
 515	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 516	if (type == XHCI_CTX_TYPE_INPUT)
 517		ctx->size += CTX_SIZE(xhci->hcc_params);
 518
 519	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 520	if (!ctx->bytes) {
 521		kfree(ctx);
 522		return NULL;
 523	}
 524	return ctx;
 525}
 526
 527static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 528			     struct xhci_container_ctx *ctx)
 529{
 530	if (!ctx)
 531		return;
 532	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 533	kfree(ctx);
 534}
 535
 536struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 537					      struct xhci_container_ctx *ctx)
 538{
 539	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 540		return NULL;
 541
 542	return (struct xhci_input_control_ctx *)ctx->bytes;
 543}
 544
 545struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 546					struct xhci_container_ctx *ctx)
 547{
 548	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 549		return (struct xhci_slot_ctx *)ctx->bytes;
 550
 551	return (struct xhci_slot_ctx *)
 552		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 553}
 554
 555struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 556				    struct xhci_container_ctx *ctx,
 557				    unsigned int ep_index)
 558{
 559	/* increment ep index by offset of start of ep ctx array */
 560	ep_index++;
 561	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 562		ep_index++;
 563
 564	return (struct xhci_ep_ctx *)
 565		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 566}
 567
 568
 569/***************** Streams structures manipulation *************************/
 570
 571static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 572		unsigned int num_stream_ctxs,
 573		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 574{
 575	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 576	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 577
 578	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 579		dma_free_coherent(dev, size,
 580				stream_ctx, dma);
 581	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 582		return dma_pool_free(xhci->small_streams_pool,
 583				stream_ctx, dma);
 584	else
 585		return dma_pool_free(xhci->medium_streams_pool,
 586				stream_ctx, dma);
 587}
 588
 589/*
 590 * The stream context array for each endpoint with bulk streams enabled can
 591 * vary in size, based on:
 592 *  - how many streams the endpoint supports,
 593 *  - the maximum primary stream array size the host controller supports,
 594 *  - and how many streams the device driver asks for.
 595 *
 596 * The stream context array must be a power of 2, and can be as small as
 597 * 64 bytes or as large as 1MB.
 598 */
 599static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 600		unsigned int num_stream_ctxs, dma_addr_t *dma,
 601		gfp_t mem_flags)
 602{
 603	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 604	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 605
 606	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 607		return dma_alloc_coherent(dev, size,
 608				dma, mem_flags);
 609	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 610		return dma_pool_alloc(xhci->small_streams_pool,
 611				mem_flags, dma);
 612	else
 613		return dma_pool_alloc(xhci->medium_streams_pool,
 614				mem_flags, dma);
 615}
 616
 617struct xhci_ring *xhci_dma_to_transfer_ring(
 618		struct xhci_virt_ep *ep,
 619		u64 address)
 620{
 621	if (ep->ep_state & EP_HAS_STREAMS)
 622		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 623				address >> TRB_SEGMENT_SHIFT);
 624	return ep->ring;
 625}
 626
 627struct xhci_ring *xhci_stream_id_to_ring(
 628		struct xhci_virt_device *dev,
 629		unsigned int ep_index,
 630		unsigned int stream_id)
 631{
 632	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 633
 634	if (stream_id == 0)
 635		return ep->ring;
 636	if (!ep->stream_info)
 637		return NULL;
 638
 639	if (stream_id > ep->stream_info->num_streams)
 640		return NULL;
 641	return ep->stream_info->stream_rings[stream_id];
 642}
 643
 644/*
 645 * Change an endpoint's internal structure so it supports stream IDs.  The
 646 * number of requested streams includes stream 0, which cannot be used by device
 647 * drivers.
 648 *
 649 * The number of stream contexts in the stream context array may be bigger than
 650 * the number of streams the driver wants to use.  This is because the number of
 651 * stream context array entries must be a power of two.
 652 */
 653struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 654		unsigned int num_stream_ctxs,
 655		unsigned int num_streams, gfp_t mem_flags)
 
 656{
 657	struct xhci_stream_info *stream_info;
 658	u32 cur_stream;
 659	struct xhci_ring *cur_ring;
 660	u64 addr;
 661	int ret;
 662
 663	xhci_dbg(xhci, "Allocating %u streams and %u "
 664			"stream context array entries.\n",
 665			num_streams, num_stream_ctxs);
 666	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 667		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 668		return NULL;
 669	}
 670	xhci->cmd_ring_reserved_trbs++;
 671
 672	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 673	if (!stream_info)
 674		goto cleanup_trbs;
 675
 676	stream_info->num_streams = num_streams;
 677	stream_info->num_stream_ctxs = num_stream_ctxs;
 678
 679	/* Initialize the array of virtual pointers to stream rings. */
 680	stream_info->stream_rings = kzalloc(
 681			sizeof(struct xhci_ring *)*num_streams,
 682			mem_flags);
 683	if (!stream_info->stream_rings)
 684		goto cleanup_info;
 685
 686	/* Initialize the array of DMA addresses for stream rings for the HW. */
 687	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 688			num_stream_ctxs, &stream_info->ctx_array_dma,
 689			mem_flags);
 690	if (!stream_info->stream_ctx_array)
 691		goto cleanup_ctx;
 692	memset(stream_info->stream_ctx_array, 0,
 693			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 694
 695	/* Allocate everything needed to free the stream rings later */
 696	stream_info->free_streams_command =
 697		xhci_alloc_command(xhci, true, true, mem_flags);
 698	if (!stream_info->free_streams_command)
 699		goto cleanup_ctx;
 700
 701	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 702
 703	/* Allocate rings for all the streams that the driver will use,
 704	 * and add their segment DMA addresses to the radix tree.
 705	 * Stream 0 is reserved.
 706	 */
 
 707	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 708		stream_info->stream_rings[cur_stream] =
 709			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 
 710		cur_ring = stream_info->stream_rings[cur_stream];
 711		if (!cur_ring)
 712			goto cleanup_rings;
 713		cur_ring->stream_id = cur_stream;
 714		cur_ring->trb_address_map = &stream_info->trb_address_map;
 715		/* Set deq ptr, cycle bit, and stream context type */
 716		addr = cur_ring->first_seg->dma |
 717			SCT_FOR_CTX(SCT_PRI_TR) |
 718			cur_ring->cycle_state;
 719		stream_info->stream_ctx_array[cur_stream].stream_ring =
 720			cpu_to_le64(addr);
 721		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 722				cur_stream, (unsigned long long) addr);
 723
 724		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 725		if (ret) {
 726			xhci_ring_free(xhci, cur_ring);
 727			stream_info->stream_rings[cur_stream] = NULL;
 728			goto cleanup_rings;
 729		}
 730	}
 731	/* Leave the other unused stream ring pointers in the stream context
 732	 * array initialized to zero.  This will cause the xHC to give us an
 733	 * error if the device asks for a stream ID we don't have setup (if it
 734	 * was any other way, the host controller would assume the ring is
 735	 * "empty" and wait forever for data to be queued to that stream ID).
 736	 */
 737
 738	return stream_info;
 739
 740cleanup_rings:
 741	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 742		cur_ring = stream_info->stream_rings[cur_stream];
 743		if (cur_ring) {
 744			xhci_ring_free(xhci, cur_ring);
 745			stream_info->stream_rings[cur_stream] = NULL;
 746		}
 747	}
 748	xhci_free_command(xhci, stream_info->free_streams_command);
 749cleanup_ctx:
 750	kfree(stream_info->stream_rings);
 751cleanup_info:
 752	kfree(stream_info);
 753cleanup_trbs:
 754	xhci->cmd_ring_reserved_trbs--;
 755	return NULL;
 756}
 757/*
 758 * Sets the MaxPStreams field and the Linear Stream Array field.
 759 * Sets the dequeue pointer to the stream context array.
 760 */
 761void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 762		struct xhci_ep_ctx *ep_ctx,
 763		struct xhci_stream_info *stream_info)
 764{
 765	u32 max_primary_streams;
 766	/* MaxPStreams is the number of stream context array entries, not the
 767	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 768	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 769	 */
 770	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 771	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 772			"Setting number of stream ctx array entries to %u",
 773			1 << (max_primary_streams + 1));
 774	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 775	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 776				       | EP_HAS_LSA);
 777	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 778}
 779
 780/*
 781 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 782 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 783 * not at the beginning of the ring).
 784 */
 785void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 786		struct xhci_virt_ep *ep)
 787{
 788	dma_addr_t addr;
 789	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 790	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 791	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 792}
 793
 794/* Frees all stream contexts associated with the endpoint,
 795 *
 796 * Caller should fix the endpoint context streams fields.
 797 */
 798void xhci_free_stream_info(struct xhci_hcd *xhci,
 799		struct xhci_stream_info *stream_info)
 800{
 801	int cur_stream;
 802	struct xhci_ring *cur_ring;
 803
 804	if (!stream_info)
 805		return;
 806
 807	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 808			cur_stream++) {
 809		cur_ring = stream_info->stream_rings[cur_stream];
 810		if (cur_ring) {
 811			xhci_ring_free(xhci, cur_ring);
 812			stream_info->stream_rings[cur_stream] = NULL;
 813		}
 814	}
 815	xhci_free_command(xhci, stream_info->free_streams_command);
 816	xhci->cmd_ring_reserved_trbs--;
 817	if (stream_info->stream_ctx_array)
 818		xhci_free_stream_ctx(xhci,
 819				stream_info->num_stream_ctxs,
 820				stream_info->stream_ctx_array,
 821				stream_info->ctx_array_dma);
 822
 823	kfree(stream_info->stream_rings);
 824	kfree(stream_info);
 825}
 826
 827
 828/***************** Device context manipulation *************************/
 829
 830static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 831		struct xhci_virt_ep *ep)
 832{
 833	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 834		    (unsigned long)ep);
 835	ep->xhci = xhci;
 836}
 837
 838static void xhci_free_tt_info(struct xhci_hcd *xhci,
 839		struct xhci_virt_device *virt_dev,
 840		int slot_id)
 841{
 842	struct list_head *tt_list_head;
 843	struct xhci_tt_bw_info *tt_info, *next;
 844	bool slot_found = false;
 845
 846	/* If the device never made it past the Set Address stage,
 847	 * it may not have the real_port set correctly.
 848	 */
 849	if (virt_dev->real_port == 0 ||
 850			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 851		xhci_dbg(xhci, "Bad real port.\n");
 852		return;
 853	}
 854
 855	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 856	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 857		/* Multi-TT hubs will have more than one entry */
 858		if (tt_info->slot_id == slot_id) {
 859			slot_found = true;
 860			list_del(&tt_info->tt_list);
 861			kfree(tt_info);
 862		} else if (slot_found) {
 863			break;
 864		}
 865	}
 866}
 867
 868int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 869		struct xhci_virt_device *virt_dev,
 870		struct usb_device *hdev,
 871		struct usb_tt *tt, gfp_t mem_flags)
 872{
 873	struct xhci_tt_bw_info		*tt_info;
 874	unsigned int			num_ports;
 875	int				i, j;
 876
 877	if (!tt->multi)
 878		num_ports = 1;
 879	else
 880		num_ports = hdev->maxchild;
 881
 882	for (i = 0; i < num_ports; i++, tt_info++) {
 883		struct xhci_interval_bw_table *bw_table;
 884
 885		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 886		if (!tt_info)
 887			goto free_tts;
 888		INIT_LIST_HEAD(&tt_info->tt_list);
 889		list_add(&tt_info->tt_list,
 890				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 891		tt_info->slot_id = virt_dev->udev->slot_id;
 892		if (tt->multi)
 893			tt_info->ttport = i+1;
 894		bw_table = &tt_info->bw_table;
 895		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 896			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 897	}
 898	return 0;
 899
 900free_tts:
 901	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 902	return -ENOMEM;
 903}
 904
 905
 906/* All the xhci_tds in the ring's TD list should be freed at this point.
 907 * Should be called with xhci->lock held if there is any chance the TT lists
 908 * will be manipulated by the configure endpoint, allocate device, or update
 909 * hub functions while this function is removing the TT entries from the list.
 910 */
 911void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 912{
 913	struct xhci_virt_device *dev;
 914	int i;
 915	int old_active_eps = 0;
 916
 917	/* Slot ID 0 is reserved */
 918	if (slot_id == 0 || !xhci->devs[slot_id])
 919		return;
 920
 921	dev = xhci->devs[slot_id];
 
 
 
 922	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 923	if (!dev)
 924		return;
 925
 926	if (dev->tt_info)
 927		old_active_eps = dev->tt_info->active_eps;
 928
 929	for (i = 0; i < 31; ++i) {
 930		if (dev->eps[i].ring)
 931			xhci_ring_free(xhci, dev->eps[i].ring);
 932		if (dev->eps[i].stream_info)
 933			xhci_free_stream_info(xhci,
 934					dev->eps[i].stream_info);
 935		/* Endpoints on the TT/root port lists should have been removed
 936		 * when usb_disable_device() was called for the device.
 937		 * We can't drop them anyway, because the udev might have gone
 938		 * away by this point, and we can't tell what speed it was.
 939		 */
 940		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 941			xhci_warn(xhci, "Slot %u endpoint %u "
 942					"not removed from BW list!\n",
 943					slot_id, i);
 944	}
 945	/* If this is a hub, free the TT(s) from the TT list */
 946	xhci_free_tt_info(xhci, dev, slot_id);
 947	/* If necessary, update the number of active TTs on this root port */
 948	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 949
 950	if (dev->ring_cache) {
 951		for (i = 0; i < dev->num_rings_cached; i++)
 952			xhci_ring_free(xhci, dev->ring_cache[i]);
 953		kfree(dev->ring_cache);
 954	}
 955
 956	if (dev->in_ctx)
 957		xhci_free_container_ctx(xhci, dev->in_ctx);
 958	if (dev->out_ctx)
 959		xhci_free_container_ctx(xhci, dev->out_ctx);
 960
 
 
 961	kfree(xhci->devs[slot_id]);
 962	xhci->devs[slot_id] = NULL;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 966		struct usb_device *udev, gfp_t flags)
 967{
 968	struct xhci_virt_device *dev;
 969	int i;
 970
 971	/* Slot ID 0 is reserved */
 972	if (slot_id == 0 || xhci->devs[slot_id]) {
 973		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 974		return 0;
 975	}
 976
 977	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 978	if (!xhci->devs[slot_id])
 979		return 0;
 980	dev = xhci->devs[slot_id];
 981
 982	/* Allocate the (output) device context that will be used in the HC. */
 983	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 984	if (!dev->out_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 988			(unsigned long long)dev->out_ctx->dma);
 989
 990	/* Allocate the (input) device context for address device command */
 991	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 992	if (!dev->in_ctx)
 993		goto fail;
 994
 995	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 996			(unsigned long long)dev->in_ctx->dma);
 997
 998	/* Initialize the cancellation list and watchdog timers for each ep */
 999	for (i = 0; i < 31; i++) {
1000		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1001		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003	}
1004
1005	/* Allocate endpoint 0 ring */
1006	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007	if (!dev->eps[0].ring)
1008		goto fail;
1009
1010	/* Allocate pointers to the ring cache */
1011	dev->ring_cache = kzalloc(
1012			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1013			flags);
1014	if (!dev->ring_cache)
1015		goto fail;
1016	dev->num_rings_cached = 0;
1017
1018	init_completion(&dev->cmd_completion);
1019	dev->udev = udev;
1020
1021	/* Point to output device context in dcbaa. */
1022	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1024		 slot_id,
1025		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027
 
 
 
 
1028	return 1;
1029fail:
1030	xhci_free_virt_device(xhci, slot_id);
 
 
 
 
 
 
1031	return 0;
1032}
1033
1034void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1035		struct usb_device *udev)
1036{
1037	struct xhci_virt_device *virt_dev;
1038	struct xhci_ep_ctx	*ep0_ctx;
1039	struct xhci_ring	*ep_ring;
1040
1041	virt_dev = xhci->devs[udev->slot_id];
1042	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1043	ep_ring = virt_dev->eps[0].ring;
1044	/*
1045	 * FIXME we don't keep track of the dequeue pointer very well after a
1046	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1047	 * host to our enqueue pointer.  This should only be called after a
1048	 * configured device has reset, so all control transfers should have
1049	 * been completed or cancelled before the reset.
1050	 */
1051	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1052							ep_ring->enqueue)
1053				   | ep_ring->cycle_state);
1054}
1055
1056/*
1057 * The xHCI roothub may have ports of differing speeds in any order in the port
1058 * status registers.  xhci->port_array provides an array of the port speed for
1059 * each offset into the port status registers.
1060 *
1061 * The xHCI hardware wants to know the roothub port number that the USB device
1062 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1063 * know is the index of that port under either the USB 2.0 or the USB 3.0
1064 * roothub, but that doesn't give us the real index into the HW port status
1065 * registers. Call xhci_find_raw_port_number() to get real index.
1066 */
1067static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1068		struct usb_device *udev)
1069{
1070	struct usb_device *top_dev;
1071	struct usb_hcd *hcd;
1072
1073	if (udev->speed >= USB_SPEED_SUPER)
1074		hcd = xhci->shared_hcd;
1075	else
1076		hcd = xhci->main_hcd;
1077
1078	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1079			top_dev = top_dev->parent)
1080		/* Found device below root hub */;
1081
1082	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1083}
1084
1085/* Setup an xHCI virtual device for a Set Address command */
1086int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1087{
1088	struct xhci_virt_device *dev;
1089	struct xhci_ep_ctx	*ep0_ctx;
1090	struct xhci_slot_ctx    *slot_ctx;
1091	u32			port_num;
1092	u32			max_packets;
1093	struct usb_device *top_dev;
1094
1095	dev = xhci->devs[udev->slot_id];
1096	/* Slot ID 0 is reserved */
1097	if (udev->slot_id == 0 || !dev) {
1098		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1099				udev->slot_id);
1100		return -EINVAL;
1101	}
1102	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1103	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104
1105	/* 3) Only the control endpoint is valid - one endpoint context */
1106	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107	switch (udev->speed) {
1108	case USB_SPEED_SUPER_PLUS:
1109		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1110		max_packets = MAX_PACKET(512);
1111		break;
1112	case USB_SPEED_SUPER:
1113		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114		max_packets = MAX_PACKET(512);
1115		break;
1116	case USB_SPEED_HIGH:
1117		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118		max_packets = MAX_PACKET(64);
1119		break;
1120	/* USB core guesses at a 64-byte max packet first for FS devices */
1121	case USB_SPEED_FULL:
1122		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123		max_packets = MAX_PACKET(64);
1124		break;
1125	case USB_SPEED_LOW:
1126		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127		max_packets = MAX_PACKET(8);
1128		break;
1129	case USB_SPEED_WIRELESS:
1130		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1131		return -EINVAL;
1132		break;
1133	default:
1134		/* Speed was set earlier, this shouldn't happen. */
1135		return -EINVAL;
1136	}
1137	/* Find the root hub port this device is under */
1138	port_num = xhci_find_real_port_number(xhci, udev);
1139	if (!port_num)
1140		return -EINVAL;
1141	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142	/* Set the port number in the virtual_device to the faked port number */
1143	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144			top_dev = top_dev->parent)
1145		/* Found device below root hub */;
1146	dev->fake_port = top_dev->portnum;
1147	dev->real_port = port_num;
1148	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150
1151	/* Find the right bandwidth table that this device will be a part of.
1152	 * If this is a full speed device attached directly to a root port (or a
1153	 * decendent of one), it counts as a primary bandwidth domain, not a
1154	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155	 * will never be created for the HS root hub.
1156	 */
1157	if (!udev->tt || !udev->tt->hub->parent) {
1158		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159	} else {
1160		struct xhci_root_port_bw_info *rh_bw;
1161		struct xhci_tt_bw_info *tt_bw;
1162
1163		rh_bw = &xhci->rh_bw[port_num - 1];
1164		/* Find the right TT. */
1165		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167				continue;
1168
1169			if (!dev->udev->tt->multi ||
1170					(udev->tt->multi &&
1171					 tt_bw->ttport == dev->udev->ttport)) {
1172				dev->bw_table = &tt_bw->bw_table;
1173				dev->tt_info = tt_bw;
1174				break;
1175			}
1176		}
1177		if (!dev->tt_info)
1178			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179	}
1180
1181	/* Is this a LS/FS device under an external HS hub? */
1182	if (udev->tt && udev->tt->hub->parent) {
1183		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184						(udev->ttport << 8));
1185		if (udev->tt->multi)
1186			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187	}
1188	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190
1191	/* Step 4 - ring already allocated */
1192	/* Step 5 */
1193	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194
1195	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197					 max_packets);
1198
1199	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200				   dev->eps[0].ring->cycle_state);
1201
 
 
1202	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203
1204	return 0;
1205}
1206
1207/*
1208 * Convert interval expressed as 2^(bInterval - 1) == interval into
1209 * straight exponent value 2^n == interval.
1210 *
1211 */
1212static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213		struct usb_host_endpoint *ep)
1214{
1215	unsigned int interval;
1216
1217	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218	if (interval != ep->desc.bInterval - 1)
1219		dev_warn(&udev->dev,
1220			 "ep %#x - rounding interval to %d %sframes\n",
1221			 ep->desc.bEndpointAddress,
1222			 1 << interval,
1223			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224
1225	if (udev->speed == USB_SPEED_FULL) {
1226		/*
1227		 * Full speed isoc endpoints specify interval in frames,
1228		 * not microframes. We are using microframes everywhere,
1229		 * so adjust accordingly.
1230		 */
1231		interval += 3;	/* 1 frame = 2^3 uframes */
1232	}
1233
1234	return interval;
1235}
1236
1237/*
1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 * microframes, rounded down to nearest power of 2.
1240 */
1241static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242		struct usb_host_endpoint *ep, unsigned int desc_interval,
1243		unsigned int min_exponent, unsigned int max_exponent)
1244{
1245	unsigned int interval;
1246
1247	interval = fls(desc_interval) - 1;
1248	interval = clamp_val(interval, min_exponent, max_exponent);
1249	if ((1 << interval) != desc_interval)
1250		dev_dbg(&udev->dev,
1251			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252			 ep->desc.bEndpointAddress,
1253			 1 << interval,
1254			 desc_interval);
1255
1256	return interval;
1257}
1258
1259static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260		struct usb_host_endpoint *ep)
1261{
1262	if (ep->desc.bInterval == 0)
1263		return 0;
1264	return xhci_microframes_to_exponent(udev, ep,
1265			ep->desc.bInterval, 0, 15);
1266}
1267
1268
1269static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270		struct usb_host_endpoint *ep)
1271{
1272	return xhci_microframes_to_exponent(udev, ep,
1273			ep->desc.bInterval * 8, 3, 10);
1274}
1275
1276/* Return the polling or NAK interval.
1277 *
1278 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280 *
1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282 * is set to 0.
1283 */
1284static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285		struct usb_host_endpoint *ep)
1286{
1287	unsigned int interval = 0;
1288
1289	switch (udev->speed) {
1290	case USB_SPEED_HIGH:
1291		/* Max NAK rate */
1292		if (usb_endpoint_xfer_control(&ep->desc) ||
1293		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294			interval = xhci_parse_microframe_interval(udev, ep);
1295			break;
1296		}
1297		/* Fall through - SS and HS isoc/int have same decoding */
1298
1299	case USB_SPEED_SUPER_PLUS:
1300	case USB_SPEED_SUPER:
1301		if (usb_endpoint_xfer_int(&ep->desc) ||
1302		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303			interval = xhci_parse_exponent_interval(udev, ep);
1304		}
1305		break;
1306
1307	case USB_SPEED_FULL:
1308		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309			interval = xhci_parse_exponent_interval(udev, ep);
1310			break;
1311		}
1312		/*
1313		 * Fall through for interrupt endpoint interval decoding
1314		 * since it uses the same rules as low speed interrupt
1315		 * endpoints.
1316		 */
 
1317
1318	case USB_SPEED_LOW:
1319		if (usb_endpoint_xfer_int(&ep->desc) ||
1320		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322			interval = xhci_parse_frame_interval(udev, ep);
1323		}
1324		break;
1325
1326	default:
1327		BUG();
1328	}
1329	return interval;
1330}
1331
1332/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338		struct usb_host_endpoint *ep)
1339{
1340	if (udev->speed < USB_SPEED_SUPER ||
1341			!usb_endpoint_xfer_isoc(&ep->desc))
1342		return 0;
1343	return ep->ss_ep_comp.bmAttributes;
1344}
1345
1346static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1347				       struct usb_host_endpoint *ep)
1348{
1349	/* Super speed and Plus have max burst in ep companion desc */
1350	if (udev->speed >= USB_SPEED_SUPER)
1351		return ep->ss_ep_comp.bMaxBurst;
1352
1353	if (udev->speed == USB_SPEED_HIGH &&
1354	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1355	     usb_endpoint_xfer_int(&ep->desc)))
1356		return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1357
1358	return 0;
1359}
1360
1361static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1362{
1363	int in;
1364
1365	in = usb_endpoint_dir_in(&ep->desc);
1366
1367	if (usb_endpoint_xfer_control(&ep->desc))
 
1368		return CTRL_EP;
1369	if (usb_endpoint_xfer_bulk(&ep->desc))
1370		return in ? BULK_IN_EP : BULK_OUT_EP;
1371	if (usb_endpoint_xfer_isoc(&ep->desc))
1372		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1373	if (usb_endpoint_xfer_int(&ep->desc))
1374		return in ? INT_IN_EP : INT_OUT_EP;
 
1375	return 0;
1376}
1377
1378/* Return the maximum endpoint service interval time (ESIT) payload.
1379 * Basically, this is the maxpacket size, multiplied by the burst size
1380 * and mult size.
1381 */
1382static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1383		struct usb_host_endpoint *ep)
1384{
1385	int max_burst;
1386	int max_packet;
1387
1388	/* Only applies for interrupt or isochronous endpoints */
1389	if (usb_endpoint_xfer_control(&ep->desc) ||
1390			usb_endpoint_xfer_bulk(&ep->desc))
1391		return 0;
1392
1393	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1394	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1395	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1396		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1397	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1398	else if (udev->speed >= USB_SPEED_SUPER)
1399		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1400
1401	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1402	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1403	/* A 0 in max burst means 1 transfer per ESIT */
1404	return max_packet * (max_burst + 1);
1405}
1406
1407/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1408 * Drivers will have to call usb_alloc_streams() to do that.
1409 */
1410int xhci_endpoint_init(struct xhci_hcd *xhci,
1411		struct xhci_virt_device *virt_dev,
1412		struct usb_device *udev,
1413		struct usb_host_endpoint *ep,
1414		gfp_t mem_flags)
1415{
1416	unsigned int ep_index;
1417	struct xhci_ep_ctx *ep_ctx;
1418	struct xhci_ring *ep_ring;
1419	unsigned int max_packet;
1420	enum xhci_ring_type ring_type;
1421	u32 max_esit_payload;
1422	u32 endpoint_type;
1423	unsigned int max_burst;
1424	unsigned int interval;
1425	unsigned int mult;
1426	unsigned int avg_trb_len;
1427	unsigned int err_count = 0;
1428
1429	ep_index = xhci_get_endpoint_index(&ep->desc);
1430	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1431
1432	endpoint_type = xhci_get_endpoint_type(ep);
1433	if (!endpoint_type)
1434		return -EINVAL;
1435
1436	ring_type = usb_endpoint_type(&ep->desc);
1437	/* Set up the endpoint ring */
1438	virt_dev->eps[ep_index].new_ring =
1439		xhci_ring_alloc(xhci, 2, 1, ring_type, mem_flags);
1440	if (!virt_dev->eps[ep_index].new_ring) {
1441		/* Attempt to use the ring cache */
1442		if (virt_dev->num_rings_cached == 0)
1443			return -ENOMEM;
1444		virt_dev->num_rings_cached--;
1445		virt_dev->eps[ep_index].new_ring =
1446			virt_dev->ring_cache[virt_dev->num_rings_cached];
1447		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1448		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1449					1, ring_type);
1450	}
1451	virt_dev->eps[ep_index].skip = false;
1452	ep_ring = virt_dev->eps[ep_index].new_ring;
1453
1454	/*
1455	 * Get values to fill the endpoint context, mostly from ep descriptor.
1456	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1457	 * have no clue on scatter gather list entry size. For Isoc and Int,
1458	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1459	 */
1460	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1461	interval = xhci_get_endpoint_interval(udev, ep);
 
 
 
 
 
 
 
 
 
 
 
1462	mult = xhci_get_endpoint_mult(udev, ep);
1463	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1464	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1465	avg_trb_len = max_esit_payload;
1466
1467	/* FIXME dig Mult and streams info out of ep companion desc */
1468
1469	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1470	if (!usb_endpoint_xfer_isoc(&ep->desc))
1471		err_count = 3;
1472	/* Some devices get this wrong */
1473	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1474		max_packet = 512;
1475	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1476	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1477		avg_trb_len = 8;
1478	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1479	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1480		mult = 0;
1481
 
 
 
 
 
 
 
 
 
1482	/* Fill the endpoint context */
1483	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1484				      EP_INTERVAL(interval) |
1485				      EP_MULT(mult));
1486	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1487				       MAX_PACKET(max_packet) |
1488				       MAX_BURST(max_burst) |
1489				       ERROR_COUNT(err_count));
1490	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1491				  ep_ring->cycle_state);
1492
1493	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1494				      EP_AVG_TRB_LENGTH(avg_trb_len));
1495
1496	/* FIXME Debug endpoint context */
1497	return 0;
1498}
1499
1500void xhci_endpoint_zero(struct xhci_hcd *xhci,
1501		struct xhci_virt_device *virt_dev,
1502		struct usb_host_endpoint *ep)
1503{
1504	unsigned int ep_index;
1505	struct xhci_ep_ctx *ep_ctx;
1506
1507	ep_index = xhci_get_endpoint_index(&ep->desc);
1508	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1509
1510	ep_ctx->ep_info = 0;
1511	ep_ctx->ep_info2 = 0;
1512	ep_ctx->deq = 0;
1513	ep_ctx->tx_info = 0;
1514	/* Don't free the endpoint ring until the set interface or configuration
1515	 * request succeeds.
1516	 */
1517}
1518
1519void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1520{
1521	bw_info->ep_interval = 0;
1522	bw_info->mult = 0;
1523	bw_info->num_packets = 0;
1524	bw_info->max_packet_size = 0;
1525	bw_info->type = 0;
1526	bw_info->max_esit_payload = 0;
1527}
1528
1529void xhci_update_bw_info(struct xhci_hcd *xhci,
1530		struct xhci_container_ctx *in_ctx,
1531		struct xhci_input_control_ctx *ctrl_ctx,
1532		struct xhci_virt_device *virt_dev)
1533{
1534	struct xhci_bw_info *bw_info;
1535	struct xhci_ep_ctx *ep_ctx;
1536	unsigned int ep_type;
1537	int i;
1538
1539	for (i = 1; i < 31; ++i) {
1540		bw_info = &virt_dev->eps[i].bw_info;
1541
1542		/* We can't tell what endpoint type is being dropped, but
1543		 * unconditionally clearing the bandwidth info for non-periodic
1544		 * endpoints should be harmless because the info will never be
1545		 * set in the first place.
1546		 */
1547		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1548			/* Dropped endpoint */
1549			xhci_clear_endpoint_bw_info(bw_info);
1550			continue;
1551		}
1552
1553		if (EP_IS_ADDED(ctrl_ctx, i)) {
1554			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1555			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1556
1557			/* Ignore non-periodic endpoints */
1558			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1559					ep_type != ISOC_IN_EP &&
1560					ep_type != INT_IN_EP)
1561				continue;
1562
1563			/* Added or changed endpoint */
1564			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1565					le32_to_cpu(ep_ctx->ep_info));
1566			/* Number of packets and mult are zero-based in the
1567			 * input context, but we want one-based for the
1568			 * interval table.
1569			 */
1570			bw_info->mult = CTX_TO_EP_MULT(
1571					le32_to_cpu(ep_ctx->ep_info)) + 1;
1572			bw_info->num_packets = CTX_TO_MAX_BURST(
1573					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1574			bw_info->max_packet_size = MAX_PACKET_DECODED(
1575					le32_to_cpu(ep_ctx->ep_info2));
1576			bw_info->type = ep_type;
1577			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1578					le32_to_cpu(ep_ctx->tx_info));
1579		}
1580	}
1581}
1582
1583/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1584 * Useful when you want to change one particular aspect of the endpoint and then
1585 * issue a configure endpoint command.
1586 */
1587void xhci_endpoint_copy(struct xhci_hcd *xhci,
1588		struct xhci_container_ctx *in_ctx,
1589		struct xhci_container_ctx *out_ctx,
1590		unsigned int ep_index)
1591{
1592	struct xhci_ep_ctx *out_ep_ctx;
1593	struct xhci_ep_ctx *in_ep_ctx;
1594
1595	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1596	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1597
1598	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1599	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1600	in_ep_ctx->deq = out_ep_ctx->deq;
1601	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1602}
1603
1604/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1605 * Useful when you want to change one particular aspect of the endpoint and then
1606 * issue a configure endpoint command.  Only the context entries field matters,
1607 * but we'll copy the whole thing anyway.
1608 */
1609void xhci_slot_copy(struct xhci_hcd *xhci,
1610		struct xhci_container_ctx *in_ctx,
1611		struct xhci_container_ctx *out_ctx)
1612{
1613	struct xhci_slot_ctx *in_slot_ctx;
1614	struct xhci_slot_ctx *out_slot_ctx;
1615
1616	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1617	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1618
1619	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1620	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1621	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1622	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1623}
1624
1625/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1626static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1627{
1628	int i;
1629	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1630	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1631
1632	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1633			"Allocating %d scratchpad buffers", num_sp);
1634
1635	if (!num_sp)
1636		return 0;
1637
1638	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1639	if (!xhci->scratchpad)
1640		goto fail_sp;
1641
1642	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1643				     num_sp * sizeof(u64),
1644				     &xhci->scratchpad->sp_dma, flags);
1645	if (!xhci->scratchpad->sp_array)
1646		goto fail_sp2;
1647
1648	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1649	if (!xhci->scratchpad->sp_buffers)
1650		goto fail_sp3;
1651
1652	xhci->scratchpad->sp_dma_buffers =
1653		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1654
1655	if (!xhci->scratchpad->sp_dma_buffers)
1656		goto fail_sp4;
1657
1658	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1659	for (i = 0; i < num_sp; i++) {
1660		dma_addr_t dma;
1661		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1662				flags);
1663		if (!buf)
1664			goto fail_sp5;
1665
1666		xhci->scratchpad->sp_array[i] = dma;
1667		xhci->scratchpad->sp_buffers[i] = buf;
1668		xhci->scratchpad->sp_dma_buffers[i] = dma;
1669	}
1670
1671	return 0;
1672
1673 fail_sp5:
1674	for (i = i - 1; i >= 0; i--) {
1675		dma_free_coherent(dev, xhci->page_size,
1676				    xhci->scratchpad->sp_buffers[i],
1677				    xhci->scratchpad->sp_dma_buffers[i]);
1678	}
1679	kfree(xhci->scratchpad->sp_dma_buffers);
1680
1681 fail_sp4:
1682	kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685	dma_free_coherent(dev, num_sp * sizeof(u64),
1686			    xhci->scratchpad->sp_array,
1687			    xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690	kfree(xhci->scratchpad);
1691	xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694	return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699	int num_sp;
1700	int i;
1701	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1702
1703	if (!xhci->scratchpad)
1704		return;
1705
1706	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708	for (i = 0; i < num_sp; i++) {
1709		dma_free_coherent(dev, xhci->page_size,
1710				    xhci->scratchpad->sp_buffers[i],
1711				    xhci->scratchpad->sp_dma_buffers[i]);
1712	}
1713	kfree(xhci->scratchpad->sp_dma_buffers);
1714	kfree(xhci->scratchpad->sp_buffers);
1715	dma_free_coherent(dev, num_sp * sizeof(u64),
1716			    xhci->scratchpad->sp_array,
1717			    xhci->scratchpad->sp_dma);
1718	kfree(xhci->scratchpad);
1719	xhci->scratchpad = NULL;
1720}
1721
1722struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1723		bool allocate_in_ctx, bool allocate_completion,
1724		gfp_t mem_flags)
1725{
1726	struct xhci_command *command;
1727
1728	command = kzalloc(sizeof(*command), mem_flags);
1729	if (!command)
1730		return NULL;
1731
1732	if (allocate_in_ctx) {
1733		command->in_ctx =
1734			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1735					mem_flags);
1736		if (!command->in_ctx) {
1737			kfree(command);
1738			return NULL;
1739		}
1740	}
1741
1742	if (allocate_completion) {
1743		command->completion =
1744			kzalloc(sizeof(struct completion), mem_flags);
1745		if (!command->completion) {
1746			xhci_free_container_ctx(xhci, command->in_ctx);
1747			kfree(command);
1748			return NULL;
1749		}
1750		init_completion(command->completion);
1751	}
1752
1753	command->status = 0;
1754	INIT_LIST_HEAD(&command->cmd_list);
1755	return command;
1756}
1757
1758void xhci_urb_free_priv(struct urb_priv *urb_priv)
 
1759{
1760	if (urb_priv) {
1761		kfree(urb_priv->td[0]);
1762		kfree(urb_priv);
 
 
 
 
 
 
 
 
 
1763	}
 
 
 
 
 
 
1764}
1765
1766void xhci_free_command(struct xhci_hcd *xhci,
1767		struct xhci_command *command)
1768{
1769	xhci_free_container_ctx(xhci,
1770			command->in_ctx);
1771	kfree(command->completion);
1772	kfree(command);
1773}
1774
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1775void xhci_mem_cleanup(struct xhci_hcd *xhci)
1776{
1777	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1778	int size;
1779	int i, j, num_ports;
1780
1781	del_timer_sync(&xhci->cmd_timer);
 
 
1782
1783	/* Free the Event Ring Segment Table and the actual Event Ring */
1784	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1785	if (xhci->erst.entries)
1786		dma_free_coherent(dev, size,
1787				xhci->erst.entries, xhci->erst.erst_dma_addr);
1788	xhci->erst.entries = NULL;
1789	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1790	if (xhci->event_ring)
1791		xhci_ring_free(xhci, xhci->event_ring);
1792	xhci->event_ring = NULL;
1793	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1794
1795	if (xhci->lpm_command)
1796		xhci_free_command(xhci, xhci->lpm_command);
1797	xhci->lpm_command = NULL;
1798	if (xhci->cmd_ring)
1799		xhci_ring_free(xhci, xhci->cmd_ring);
1800	xhci->cmd_ring = NULL;
1801	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1802	xhci_cleanup_command_queue(xhci);
1803
1804	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1805	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1806		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1807		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1808			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1809			while (!list_empty(ep))
1810				list_del_init(ep->next);
1811		}
1812	}
1813
1814	for (i = 1; i < MAX_HC_SLOTS; ++i)
1815		xhci_free_virt_device(xhci, i);
1816
1817	dma_pool_destroy(xhci->segment_pool);
1818	xhci->segment_pool = NULL;
1819	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1820
1821	dma_pool_destroy(xhci->device_pool);
1822	xhci->device_pool = NULL;
1823	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1824
1825	dma_pool_destroy(xhci->small_streams_pool);
1826	xhci->small_streams_pool = NULL;
1827	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1828			"Freed small stream array pool");
1829
1830	dma_pool_destroy(xhci->medium_streams_pool);
1831	xhci->medium_streams_pool = NULL;
1832	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1833			"Freed medium stream array pool");
1834
1835	if (xhci->dcbaa)
1836		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1837				xhci->dcbaa, xhci->dcbaa->dma);
1838	xhci->dcbaa = NULL;
1839
1840	scratchpad_free(xhci);
1841
1842	if (!xhci->rh_bw)
1843		goto no_bw;
1844
1845	for (i = 0; i < num_ports; i++) {
1846		struct xhci_tt_bw_info *tt, *n;
1847		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1848			list_del(&tt->tt_list);
1849			kfree(tt);
1850		}
1851	}
1852
1853no_bw:
1854	xhci->cmd_ring_reserved_trbs = 0;
1855	xhci->num_usb2_ports = 0;
1856	xhci->num_usb3_ports = 0;
1857	xhci->num_active_eps = 0;
1858	kfree(xhci->usb2_ports);
1859	kfree(xhci->usb3_ports);
1860	kfree(xhci->port_array);
1861	kfree(xhci->rh_bw);
1862	kfree(xhci->ext_caps);
1863
1864	xhci->usb2_ports = NULL;
1865	xhci->usb3_ports = NULL;
1866	xhci->port_array = NULL;
1867	xhci->rh_bw = NULL;
1868	xhci->ext_caps = NULL;
1869
1870	xhci->page_size = 0;
1871	xhci->page_shift = 0;
1872	xhci->bus_state[0].bus_suspended = 0;
1873	xhci->bus_state[1].bus_suspended = 0;
1874}
1875
1876static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1877		struct xhci_segment *input_seg,
1878		union xhci_trb *start_trb,
1879		union xhci_trb *end_trb,
1880		dma_addr_t input_dma,
1881		struct xhci_segment *result_seg,
1882		char *test_name, int test_number)
1883{
1884	unsigned long long start_dma;
1885	unsigned long long end_dma;
1886	struct xhci_segment *seg;
1887
1888	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1889	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1890
1891	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1892	if (seg != result_seg) {
1893		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1894				test_name, test_number);
1895		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1896				"input DMA 0x%llx\n",
1897				input_seg,
1898				(unsigned long long) input_dma);
1899		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1900				"ending TRB %p (0x%llx DMA)\n",
1901				start_trb, start_dma,
1902				end_trb, end_dma);
1903		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1904				result_seg, seg);
1905		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1906			  true);
1907		return -1;
1908	}
1909	return 0;
1910}
1911
1912/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1913static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1914{
1915	struct {
1916		dma_addr_t		input_dma;
1917		struct xhci_segment	*result_seg;
1918	} simple_test_vector [] = {
1919		/* A zeroed DMA field should fail */
1920		{ 0, NULL },
1921		/* One TRB before the ring start should fail */
1922		{ xhci->event_ring->first_seg->dma - 16, NULL },
1923		/* One byte before the ring start should fail */
1924		{ xhci->event_ring->first_seg->dma - 1, NULL },
1925		/* Starting TRB should succeed */
1926		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1927		/* Ending TRB should succeed */
1928		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1929			xhci->event_ring->first_seg },
1930		/* One byte after the ring end should fail */
1931		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1932		/* One TRB after the ring end should fail */
1933		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1934		/* An address of all ones should fail */
1935		{ (dma_addr_t) (~0), NULL },
1936	};
1937	struct {
1938		struct xhci_segment	*input_seg;
1939		union xhci_trb		*start_trb;
1940		union xhci_trb		*end_trb;
1941		dma_addr_t		input_dma;
1942		struct xhci_segment	*result_seg;
1943	} complex_test_vector [] = {
1944		/* Test feeding a valid DMA address from a different ring */
1945		{	.input_seg = xhci->event_ring->first_seg,
1946			.start_trb = xhci->event_ring->first_seg->trbs,
1947			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1948			.input_dma = xhci->cmd_ring->first_seg->dma,
1949			.result_seg = NULL,
1950		},
1951		/* Test feeding a valid end TRB from a different ring */
1952		{	.input_seg = xhci->event_ring->first_seg,
1953			.start_trb = xhci->event_ring->first_seg->trbs,
1954			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1955			.input_dma = xhci->cmd_ring->first_seg->dma,
1956			.result_seg = NULL,
1957		},
1958		/* Test feeding a valid start and end TRB from a different ring */
1959		{	.input_seg = xhci->event_ring->first_seg,
1960			.start_trb = xhci->cmd_ring->first_seg->trbs,
1961			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1962			.input_dma = xhci->cmd_ring->first_seg->dma,
1963			.result_seg = NULL,
1964		},
1965		/* TRB in this ring, but after this TD */
1966		{	.input_seg = xhci->event_ring->first_seg,
1967			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1968			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1969			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1970			.result_seg = NULL,
1971		},
1972		/* TRB in this ring, but before this TD */
1973		{	.input_seg = xhci->event_ring->first_seg,
1974			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1975			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1976			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1977			.result_seg = NULL,
1978		},
1979		/* TRB in this ring, but after this wrapped TD */
1980		{	.input_seg = xhci->event_ring->first_seg,
1981			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1982			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1983			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1984			.result_seg = NULL,
1985		},
1986		/* TRB in this ring, but before this wrapped TD */
1987		{	.input_seg = xhci->event_ring->first_seg,
1988			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1989			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1990			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1991			.result_seg = NULL,
1992		},
1993		/* TRB not in this ring, and we have a wrapped TD */
1994		{	.input_seg = xhci->event_ring->first_seg,
1995			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1996			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1997			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1998			.result_seg = NULL,
1999		},
2000	};
2001
2002	unsigned int num_tests;
2003	int i, ret;
2004
2005	num_tests = ARRAY_SIZE(simple_test_vector);
2006	for (i = 0; i < num_tests; i++) {
2007		ret = xhci_test_trb_in_td(xhci,
2008				xhci->event_ring->first_seg,
2009				xhci->event_ring->first_seg->trbs,
2010				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011				simple_test_vector[i].input_dma,
2012				simple_test_vector[i].result_seg,
2013				"Simple", i);
2014		if (ret < 0)
2015			return ret;
2016	}
2017
2018	num_tests = ARRAY_SIZE(complex_test_vector);
2019	for (i = 0; i < num_tests; i++) {
2020		ret = xhci_test_trb_in_td(xhci,
2021				complex_test_vector[i].input_seg,
2022				complex_test_vector[i].start_trb,
2023				complex_test_vector[i].end_trb,
2024				complex_test_vector[i].input_dma,
2025				complex_test_vector[i].result_seg,
2026				"Complex", i);
2027		if (ret < 0)
2028			return ret;
2029	}
2030	xhci_dbg(xhci, "TRB math tests passed.\n");
2031	return 0;
2032}
2033
2034static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2035{
2036	u64 temp;
2037	dma_addr_t deq;
2038
2039	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2040			xhci->event_ring->dequeue);
2041	if (deq == 0 && !in_interrupt())
2042		xhci_warn(xhci, "WARN something wrong with SW event ring "
2043				"dequeue ptr.\n");
2044	/* Update HC event ring dequeue pointer */
2045	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2046	temp &= ERST_PTR_MASK;
2047	/* Don't clear the EHB bit (which is RW1C) because
2048	 * there might be more events to service.
2049	 */
2050	temp &= ~ERST_EHB;
2051	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2052			"// Write event ring dequeue pointer, "
2053			"preserving EHB bit");
2054	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2055			&xhci->ir_set->erst_dequeue);
2056}
2057
2058static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2059		__le32 __iomem *addr, int max_caps)
2060{
2061	u32 temp, port_offset, port_count;
2062	int i;
2063	u8 major_revision;
2064	struct xhci_hub *rhub;
2065
2066	temp = readl(addr);
2067	major_revision = XHCI_EXT_PORT_MAJOR(temp);
 
2068
2069	if (major_revision == 0x03) {
2070		rhub = &xhci->usb3_rhub;
2071	} else if (major_revision <= 0x02) {
2072		rhub = &xhci->usb2_rhub;
2073	} else {
2074		xhci_warn(xhci, "Ignoring unknown port speed, "
2075				"Ext Cap %p, revision = 0x%x\n",
2076				addr, major_revision);
2077		/* Ignoring port protocol we can't understand. FIXME */
2078		return;
2079	}
2080	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2081	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
 
 
2082
2083	/* Port offset and count in the third dword, see section 7.2 */
2084	temp = readl(addr + 2);
2085	port_offset = XHCI_EXT_PORT_OFF(temp);
2086	port_count = XHCI_EXT_PORT_COUNT(temp);
2087	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2088			"Ext Cap %p, port offset = %u, "
2089			"count = %u, revision = 0x%x",
2090			addr, port_offset, port_count, major_revision);
2091	/* Port count includes the current port offset */
2092	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2093		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2094		return;
2095
2096	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2097	if (rhub->psi_count) {
2098		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2099				    GFP_KERNEL);
2100		if (!rhub->psi)
2101			rhub->psi_count = 0;
2102
2103		rhub->psi_uid_count++;
2104		for (i = 0; i < rhub->psi_count; i++) {
2105			rhub->psi[i] = readl(addr + 4 + i);
2106
2107			/* count unique ID values, two consecutive entries can
2108			 * have the same ID if link is assymetric
2109			 */
2110			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2111				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2112				rhub->psi_uid_count++;
2113
2114			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2115				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2116				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2117				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2118				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2119				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2120				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2121		}
2122	}
2123	/* cache usb2 port capabilities */
2124	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2125		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2126
2127	/* Check the host's USB2 LPM capability */
2128	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2129			(temp & XHCI_L1C)) {
2130		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2131				"xHCI 0.96: support USB2 software lpm");
2132		xhci->sw_lpm_support = 1;
2133	}
2134
2135	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2136		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2137				"xHCI 1.0: support USB2 software lpm");
2138		xhci->sw_lpm_support = 1;
2139		if (temp & XHCI_HLC) {
2140			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2141					"xHCI 1.0: support USB2 hardware lpm");
2142			xhci->hw_lpm_support = 1;
2143		}
2144	}
2145
2146	port_offset--;
2147	for (i = port_offset; i < (port_offset + port_count); i++) {
2148		/* Duplicate entry.  Ignore the port if the revisions differ. */
2149		if (xhci->port_array[i] != 0) {
2150			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2151					" port %u\n", addr, i);
2152			xhci_warn(xhci, "Port was marked as USB %u, "
2153					"duplicated as USB %u\n",
2154					xhci->port_array[i], major_revision);
2155			/* Only adjust the roothub port counts if we haven't
2156			 * found a similar duplicate.
2157			 */
2158			if (xhci->port_array[i] != major_revision &&
2159				xhci->port_array[i] != DUPLICATE_ENTRY) {
2160				if (xhci->port_array[i] == 0x03)
2161					xhci->num_usb3_ports--;
2162				else
2163					xhci->num_usb2_ports--;
2164				xhci->port_array[i] = DUPLICATE_ENTRY;
2165			}
2166			/* FIXME: Should we disable the port? */
2167			continue;
2168		}
2169		xhci->port_array[i] = major_revision;
2170		if (major_revision == 0x03)
2171			xhci->num_usb3_ports++;
2172		else
2173			xhci->num_usb2_ports++;
2174	}
2175	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2176}
2177
2178/*
2179 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2180 * specify what speeds each port is supposed to be.  We can't count on the port
2181 * speed bits in the PORTSC register being correct until a device is connected,
2182 * but we need to set up the two fake roothubs with the correct number of USB
2183 * 3.0 and USB 2.0 ports at host controller initialization time.
2184 */
2185static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2186{
2187	void __iomem *base;
2188	u32 offset;
2189	unsigned int num_ports;
2190	int i, j, port_index;
2191	int cap_count = 0;
2192	u32 cap_start;
2193
2194	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2195	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2196	if (!xhci->port_array)
2197		return -ENOMEM;
2198
2199	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2200	if (!xhci->rh_bw)
2201		return -ENOMEM;
2202	for (i = 0; i < num_ports; i++) {
2203		struct xhci_interval_bw_table *bw_table;
2204
2205		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206		bw_table = &xhci->rh_bw[i].bw_table;
2207		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209	}
2210	base = &xhci->cap_regs->hc_capbase;
2211
2212	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213	if (!cap_start) {
2214		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215		return -ENODEV;
2216	}
2217
2218	offset = cap_start;
2219	/* count extended protocol capability entries for later caching */
2220	while (offset) {
2221		cap_count++;
2222		offset = xhci_find_next_ext_cap(base, offset,
2223						      XHCI_EXT_CAPS_PROTOCOL);
2224	}
2225
2226	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2227	if (!xhci->ext_caps)
2228		return -ENOMEM;
2229
2230	offset = cap_start;
2231
2232	while (offset) {
2233		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2234		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2235			break;
2236		offset = xhci_find_next_ext_cap(base, offset,
2237						XHCI_EXT_CAPS_PROTOCOL);
2238	}
2239
2240	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241		xhci_warn(xhci, "No ports on the roothubs?\n");
2242		return -ENODEV;
2243	}
2244	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247
2248	/* Place limits on the number of roothub ports so that the hub
2249	 * descriptors aren't longer than the USB core will allocate.
2250	 */
2251	if (xhci->num_usb3_ports > 15) {
2252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253				"Limiting USB 3.0 roothub ports to 15.");
2254		xhci->num_usb3_ports = 15;
 
2255	}
2256	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258				"Limiting USB 2.0 roothub ports to %u.",
2259				USB_MAXCHILDREN);
2260		xhci->num_usb2_ports = USB_MAXCHILDREN;
2261	}
2262
2263	/*
2264	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265	 * Not sure how the USB core will handle a hub with no ports...
2266	 */
2267	if (xhci->num_usb2_ports) {
2268		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269				xhci->num_usb2_ports, flags);
2270		if (!xhci->usb2_ports)
2271			return -ENOMEM;
2272
2273		port_index = 0;
2274		for (i = 0; i < num_ports; i++) {
2275			if (xhci->port_array[i] == 0x03 ||
2276					xhci->port_array[i] == 0 ||
2277					xhci->port_array[i] == DUPLICATE_ENTRY)
2278				continue;
2279
2280			xhci->usb2_ports[port_index] =
2281				&xhci->op_regs->port_status_base +
2282				NUM_PORT_REGS*i;
2283			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284					"USB 2.0 port at index %u, "
2285					"addr = %p", i,
2286					xhci->usb2_ports[port_index]);
2287			port_index++;
2288			if (port_index == xhci->num_usb2_ports)
2289				break;
2290		}
2291	}
2292	if (xhci->num_usb3_ports) {
2293		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294				xhci->num_usb3_ports, flags);
2295		if (!xhci->usb3_ports)
2296			return -ENOMEM;
2297
2298		port_index = 0;
2299		for (i = 0; i < num_ports; i++)
2300			if (xhci->port_array[i] == 0x03) {
2301				xhci->usb3_ports[port_index] =
2302					&xhci->op_regs->port_status_base +
2303					NUM_PORT_REGS*i;
2304				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305						"USB 3.0 port at index %u, "
2306						"addr = %p", i,
2307						xhci->usb3_ports[port_index]);
2308				port_index++;
2309				if (port_index == xhci->num_usb3_ports)
2310					break;
2311			}
2312	}
2313	return 0;
2314}
2315
2316int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317{
2318	dma_addr_t	dma;
2319	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320	unsigned int	val, val2;
2321	u64		val_64;
2322	struct xhci_segment	*seg;
2323	u32 page_size, temp;
2324	int i;
2325
2326	INIT_LIST_HEAD(&xhci->cmd_list);
2327
2328	/* init command timeout timer */
2329	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2330		    (unsigned long)xhci);
2331
2332	page_size = readl(&xhci->op_regs->page_size);
2333	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2334			"Supported page size register = 0x%x", page_size);
2335	for (i = 0; i < 16; i++) {
2336		if ((0x1 & page_size) != 0)
2337			break;
2338		page_size = page_size >> 1;
2339	}
2340	if (i < 16)
2341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342			"Supported page size of %iK", (1 << (i+12)) / 1024);
2343	else
2344		xhci_warn(xhci, "WARN: no supported page size\n");
2345	/* Use 4K pages, since that's common and the minimum the HC supports */
2346	xhci->page_shift = 12;
2347	xhci->page_size = 1 << xhci->page_shift;
2348	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2349			"HCD page size set to %iK", xhci->page_size / 1024);
2350
2351	/*
2352	 * Program the Number of Device Slots Enabled field in the CONFIG
2353	 * register with the max value of slots the HC can handle.
2354	 */
2355	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2356	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357			"// xHC can handle at most %d device slots.", val);
2358	val2 = readl(&xhci->op_regs->config_reg);
2359	val |= (val2 & ~HCS_SLOTS_MASK);
2360	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361			"// Setting Max device slots reg = 0x%x.", val);
2362	writel(val, &xhci->op_regs->config_reg);
2363
2364	/*
2365	 * Section 5.4.8 - doorbell array must be
2366	 * "physically contiguous and 64-byte (cache line) aligned".
2367	 */
2368	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2369			GFP_KERNEL);
2370	if (!xhci->dcbaa)
2371		goto fail;
2372	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2373	xhci->dcbaa->dma = dma;
2374	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2376			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2377	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2378
2379	/*
2380	 * Initialize the ring segment pool.  The ring must be a contiguous
2381	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2382	 * however, the command ring segment needs 64-byte aligned segments
2383	 * and our use of dma addresses in the trb_address_map radix tree needs
2384	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2385	 */
2386	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2387			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2388
2389	/* See Table 46 and Note on Figure 55 */
2390	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2391			2112, 64, xhci->page_size);
2392	if (!xhci->segment_pool || !xhci->device_pool)
2393		goto fail;
2394
2395	/* Linear stream context arrays don't have any boundary restrictions,
2396	 * and only need to be 16-byte aligned.
2397	 */
2398	xhci->small_streams_pool =
2399		dma_pool_create("xHCI 256 byte stream ctx arrays",
2400			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2401	xhci->medium_streams_pool =
2402		dma_pool_create("xHCI 1KB stream ctx arrays",
2403			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2404	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2405	 * will be allocated with dma_alloc_coherent()
2406	 */
2407
2408	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2409		goto fail;
2410
2411	/* Set up the command ring to have one segments for now. */
2412	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2413	if (!xhci->cmd_ring)
2414		goto fail;
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"Allocated command ring at %p", xhci->cmd_ring);
2417	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2418			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2419
2420	/* Set the address in the Command Ring Control register */
2421	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2422	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2423		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2424		xhci->cmd_ring->cycle_state;
2425	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426			"// Setting command ring address to 0x%x", val);
2427	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2428	xhci_dbg_cmd_ptrs(xhci);
2429
2430	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2431	if (!xhci->lpm_command)
2432		goto fail;
2433
2434	/* Reserve one command ring TRB for disabling LPM.
2435	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2436	 * disabling LPM, we only need to reserve one TRB for all devices.
2437	 */
2438	xhci->cmd_ring_reserved_trbs++;
2439
2440	val = readl(&xhci->cap_regs->db_off);
2441	val &= DBOFF_MASK;
2442	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443			"// Doorbell array is located at offset 0x%x"
2444			" from cap regs base addr", val);
2445	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2446	xhci_dbg_regs(xhci);
2447	xhci_print_run_regs(xhci);
2448	/* Set ir_set to interrupt register set 0 */
2449	xhci->ir_set = &xhci->run_regs->ir_set[0];
2450
2451	/*
2452	 * Event ring setup: Allocate a normal ring, but also setup
2453	 * the event ring segment table (ERST).  Section 4.9.3.
2454	 */
2455	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2456	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2457						flags);
2458	if (!xhci->event_ring)
2459		goto fail;
2460	if (xhci_check_trb_in_td_math(xhci) < 0)
2461		goto fail;
2462
2463	xhci->erst.entries = dma_alloc_coherent(dev,
2464			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2465			GFP_KERNEL);
2466	if (!xhci->erst.entries)
2467		goto fail;
2468	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2469			"// Allocated event ring segment table at 0x%llx",
2470			(unsigned long long)dma);
2471
2472	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2473	xhci->erst.num_entries = ERST_NUM_SEGS;
2474	xhci->erst.erst_dma_addr = dma;
2475	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2476			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2477			xhci->erst.num_entries,
2478			xhci->erst.entries,
2479			(unsigned long long)xhci->erst.erst_dma_addr);
2480
2481	/* set ring base address and size for each segment table entry */
2482	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2483		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2484		entry->seg_addr = cpu_to_le64(seg->dma);
2485		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2486		entry->rsvd = 0;
2487		seg = seg->next;
2488	}
2489
2490	/* set ERST count with the number of entries in the segment table */
2491	val = readl(&xhci->ir_set->erst_size);
2492	val &= ERST_SIZE_MASK;
2493	val |= ERST_NUM_SEGS;
2494	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2495			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2496			val);
2497	writel(val, &xhci->ir_set->erst_size);
2498
2499	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2500			"// Set ERST entries to point to event ring.");
2501	/* set the segment table base address */
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503			"// Set ERST base address for ir_set 0 = 0x%llx",
2504			(unsigned long long)xhci->erst.erst_dma_addr);
2505	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2506	val_64 &= ERST_PTR_MASK;
2507	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2508	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2509
2510	/* Set the event ring dequeue address */
2511	xhci_set_hc_event_deq(xhci);
2512	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2513			"Wrote ERST address to ir_set 0.");
2514	xhci_print_ir_set(xhci, 0);
2515
2516	/*
2517	 * XXX: Might need to set the Interrupter Moderation Register to
2518	 * something other than the default (~1ms minimum between interrupts).
2519	 * See section 5.5.1.2.
2520	 */
2521	init_completion(&xhci->addr_dev);
2522	for (i = 0; i < MAX_HC_SLOTS; ++i)
2523		xhci->devs[i] = NULL;
2524	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2525		xhci->bus_state[0].resume_done[i] = 0;
2526		xhci->bus_state[1].resume_done[i] = 0;
2527		/* Only the USB 2.0 completions will ever be used. */
2528		init_completion(&xhci->bus_state[1].rexit_done[i]);
2529	}
2530
2531	if (scratchpad_alloc(xhci, flags))
2532		goto fail;
2533	if (xhci_setup_port_arrays(xhci, flags))
2534		goto fail;
2535
2536	/* Enable USB 3.0 device notifications for function remote wake, which
2537	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2538	 * U3 (device suspend).
2539	 */
2540	temp = readl(&xhci->op_regs->dev_notification);
2541	temp &= ~DEV_NOTE_MASK;
2542	temp |= DEV_NOTE_FWAKE;
2543	writel(temp, &xhci->op_regs->dev_notification);
2544
2545	return 0;
2546
2547fail:
2548	xhci_warn(xhci, "Couldn't initialize memory\n");
2549	xhci_halt(xhci);
2550	xhci_reset(xhci);
2551	xhci_mem_cleanup(xhci);
2552	return -ENOMEM;
2553}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/usb.h>
  12#include <linux/pci.h>
  13#include <linux/slab.h>
  14#include <linux/dmapool.h>
  15#include <linux/dma-mapping.h>
  16
  17#include "xhci.h"
  18#include "xhci-trace.h"
  19#include "xhci-debugfs.h"
  20
  21/*
  22 * Allocates a generic ring segment from the ring pool, sets the dma address,
  23 * initializes the segment to zero, and sets the private next pointer to NULL.
  24 *
  25 * Section 4.11.1.1:
  26 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  27 */
  28static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  29					       unsigned int cycle_state,
  30					       unsigned int max_packet,
  31					       gfp_t flags)
  32{
  33	struct xhci_segment *seg;
  34	dma_addr_t	dma;
  35	int		i;
  36
  37	seg = kzalloc(sizeof *seg, flags);
  38	if (!seg)
  39		return NULL;
  40
  41	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  42	if (!seg->trbs) {
  43		kfree(seg);
  44		return NULL;
  45	}
  46
  47	if (max_packet) {
  48		seg->bounce_buf = kzalloc(max_packet, flags);
  49		if (!seg->bounce_buf) {
  50			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  51			kfree(seg);
  52			return NULL;
  53		}
  54	}
  55	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  56	if (cycle_state == 0) {
  57		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  58			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  59	}
  60	seg->dma = dma;
  61	seg->next = NULL;
  62
  63	return seg;
  64}
  65
  66static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  67{
  68	if (seg->trbs) {
  69		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  70		seg->trbs = NULL;
  71	}
  72	kfree(seg->bounce_buf);
  73	kfree(seg);
  74}
  75
  76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  77				struct xhci_segment *first)
  78{
  79	struct xhci_segment *seg;
  80
  81	seg = first->next;
  82	while (seg != first) {
  83		struct xhci_segment *next = seg->next;
  84		xhci_segment_free(xhci, seg);
  85		seg = next;
  86	}
  87	xhci_segment_free(xhci, first);
  88}
  89
  90/*
  91 * Make the prev segment point to the next segment.
  92 *
  93 * Change the last TRB in the prev segment to be a Link TRB which points to the
  94 * DMA address of the next segment.  The caller needs to set any Link TRB
  95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  96 */
  97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  98		struct xhci_segment *next, enum xhci_ring_type type)
  99{
 100	u32 val;
 101
 102	if (!prev || !next)
 103		return;
 104	prev->next = next;
 105	if (type != TYPE_EVENT) {
 106		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 107			cpu_to_le64(next->dma);
 108
 109		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 110		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 111		val &= ~TRB_TYPE_BITMASK;
 112		val |= TRB_TYPE(TRB_LINK);
 113		/* Always set the chain bit with 0.95 hardware */
 114		/* Set chain bit for isoc rings on AMD 0.96 host */
 115		if (xhci_link_trb_quirk(xhci) ||
 116				(type == TYPE_ISOC &&
 117				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 118			val |= TRB_CHAIN;
 119		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 120	}
 121}
 122
 123/*
 124 * Link the ring to the new segments.
 125 * Set Toggle Cycle for the new ring if needed.
 126 */
 127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 128		struct xhci_segment *first, struct xhci_segment *last,
 129		unsigned int num_segs)
 130{
 131	struct xhci_segment *next;
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	next = ring->enq_seg->next;
 137	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 138	xhci_link_segments(xhci, last, next, ring->type);
 139	ring->num_segs += num_segs;
 140	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 141
 142	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 143		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 144			&= ~cpu_to_le32(LINK_TOGGLE);
 145		last->trbs[TRBS_PER_SEGMENT-1].link.control
 146			|= cpu_to_le32(LINK_TOGGLE);
 147		ring->last_seg = last;
 148	}
 149}
 150
 151/*
 152 * We need a radix tree for mapping physical addresses of TRBs to which stream
 153 * ID they belong to.  We need to do this because the host controller won't tell
 154 * us which stream ring the TRB came from.  We could store the stream ID in an
 155 * event data TRB, but that doesn't help us for the cancellation case, since the
 156 * endpoint may stop before it reaches that event data TRB.
 157 *
 158 * The radix tree maps the upper portion of the TRB DMA address to a ring
 159 * segment that has the same upper portion of DMA addresses.  For example, say I
 160 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 161 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 162 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 163 * pass the radix tree a key to get the right stream ID:
 164 *
 165 *	0x10c90fff >> 10 = 0x43243
 166 *	0x10c912c0 >> 10 = 0x43244
 167 *	0x10c91400 >> 10 = 0x43245
 168 *
 169 * Obviously, only those TRBs with DMA addresses that are within the segment
 170 * will make the radix tree return the stream ID for that ring.
 171 *
 172 * Caveats for the radix tree:
 173 *
 174 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 176 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 178 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 179 * extended systems (where the DMA address can be bigger than 32-bits),
 180 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 181 */
 182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 183		struct xhci_ring *ring,
 184		struct xhci_segment *seg,
 185		gfp_t mem_flags)
 186{
 187	unsigned long key;
 188	int ret;
 189
 190	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 191	/* Skip any segments that were already added. */
 192	if (radix_tree_lookup(trb_address_map, key))
 193		return 0;
 194
 195	ret = radix_tree_maybe_preload(mem_flags);
 196	if (ret)
 197		return ret;
 198	ret = radix_tree_insert(trb_address_map,
 199			key, ring);
 200	radix_tree_preload_end();
 201	return ret;
 202}
 203
 204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 205		struct xhci_segment *seg)
 206{
 207	unsigned long key;
 208
 209	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 210	if (radix_tree_lookup(trb_address_map, key))
 211		radix_tree_delete(trb_address_map, key);
 212}
 213
 214static int xhci_update_stream_segment_mapping(
 215		struct radix_tree_root *trb_address_map,
 216		struct xhci_ring *ring,
 217		struct xhci_segment *first_seg,
 218		struct xhci_segment *last_seg,
 219		gfp_t mem_flags)
 220{
 221	struct xhci_segment *seg;
 222	struct xhci_segment *failed_seg;
 223	int ret;
 224
 225	if (WARN_ON_ONCE(trb_address_map == NULL))
 226		return 0;
 227
 228	seg = first_seg;
 229	do {
 230		ret = xhci_insert_segment_mapping(trb_address_map,
 231				ring, seg, mem_flags);
 232		if (ret)
 233			goto remove_streams;
 234		if (seg == last_seg)
 235			return 0;
 236		seg = seg->next;
 237	} while (seg != first_seg);
 238
 239	return 0;
 240
 241remove_streams:
 242	failed_seg = seg;
 243	seg = first_seg;
 244	do {
 245		xhci_remove_segment_mapping(trb_address_map, seg);
 246		if (seg == failed_seg)
 247			return ret;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return ret;
 252}
 253
 254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 255{
 256	struct xhci_segment *seg;
 257
 258	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 259		return;
 260
 261	seg = ring->first_seg;
 262	do {
 263		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 264		seg = seg->next;
 265	} while (seg != ring->first_seg);
 266}
 267
 268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 269{
 270	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 271			ring->first_seg, ring->last_seg, mem_flags);
 272}
 273
 274/* XXX: Do we need the hcd structure in all these functions? */
 275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 276{
 277	if (!ring)
 278		return;
 279
 280	trace_xhci_ring_free(ring);
 281
 282	if (ring->first_seg) {
 283		if (ring->type == TYPE_STREAM)
 284			xhci_remove_stream_mapping(ring);
 285		xhci_free_segments_for_ring(xhci, ring->first_seg);
 286	}
 287
 288	kfree(ring);
 289}
 290
 291static void xhci_initialize_ring_info(struct xhci_ring *ring,
 292					unsigned int cycle_state)
 293{
 294	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 295	ring->enqueue = ring->first_seg->trbs;
 296	ring->enq_seg = ring->first_seg;
 297	ring->dequeue = ring->enqueue;
 298	ring->deq_seg = ring->first_seg;
 299	/* The ring is initialized to 0. The producer must write 1 to the cycle
 300	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 301	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 302	 *
 303	 * New rings are initialized with cycle state equal to 1; if we are
 304	 * handling ring expansion, set the cycle state equal to the old ring.
 305	 */
 306	ring->cycle_state = cycle_state;
 
 
 
 307
 308	/*
 309	 * Each segment has a link TRB, and leave an extra TRB for SW
 310	 * accounting purpose
 311	 */
 312	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 313}
 314
 315/* Allocate segments and link them for a ring */
 316static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 317		struct xhci_segment **first, struct xhci_segment **last,
 318		unsigned int num_segs, unsigned int cycle_state,
 319		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 320{
 321	struct xhci_segment *prev;
 322
 323	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 324	if (!prev)
 325		return -ENOMEM;
 326	num_segs--;
 327
 328	*first = prev;
 329	while (num_segs > 0) {
 330		struct xhci_segment	*next;
 331
 332		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 333		if (!next) {
 334			prev = *first;
 335			while (prev) {
 336				next = prev->next;
 337				xhci_segment_free(xhci, prev);
 338				prev = next;
 339			}
 340			return -ENOMEM;
 341		}
 342		xhci_link_segments(xhci, prev, next, type);
 343
 344		prev = next;
 345		num_segs--;
 346	}
 347	xhci_link_segments(xhci, prev, *first, type);
 348	*last = prev;
 349
 350	return 0;
 351}
 352
 353/**
 354 * Create a new ring with zero or more segments.
 355 *
 356 * Link each segment together into a ring.
 357 * Set the end flag and the cycle toggle bit on the last segment.
 358 * See section 4.9.1 and figures 15 and 16.
 359 */
 360struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 361		unsigned int num_segs, unsigned int cycle_state,
 362		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 363{
 364	struct xhci_ring	*ring;
 365	int ret;
 366
 367	ring = kzalloc(sizeof *(ring), flags);
 368	if (!ring)
 369		return NULL;
 370
 371	ring->num_segs = num_segs;
 372	ring->bounce_buf_len = max_packet;
 373	INIT_LIST_HEAD(&ring->td_list);
 374	ring->type = type;
 375	if (num_segs == 0)
 376		return ring;
 377
 378	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 379			&ring->last_seg, num_segs, cycle_state, type,
 380			max_packet, flags);
 381	if (ret)
 382		goto fail;
 383
 384	/* Only event ring does not use link TRB */
 385	if (type != TYPE_EVENT) {
 386		/* See section 4.9.2.1 and 6.4.4.1 */
 387		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 388			cpu_to_le32(LINK_TOGGLE);
 389	}
 390	xhci_initialize_ring_info(ring, cycle_state);
 391	trace_xhci_ring_alloc(ring);
 392	return ring;
 393
 394fail:
 395	kfree(ring);
 396	return NULL;
 397}
 398
 399void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
 400		struct xhci_virt_device *virt_dev,
 401		unsigned int ep_index)
 402{
 403	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404	virt_dev->eps[ep_index].ring = NULL;
 405}
 406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407/*
 408 * Expand an existing ring.
 409 * Allocate a new ring which has same segment numbers and link the two rings.
 
 410 */
 411int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 412				unsigned int num_trbs, gfp_t flags)
 413{
 414	struct xhci_segment	*first;
 415	struct xhci_segment	*last;
 416	unsigned int		num_segs;
 417	unsigned int		num_segs_needed;
 418	int			ret;
 419
 420	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 421				(TRBS_PER_SEGMENT - 1);
 422
 423	/* Allocate number of segments we needed, or double the ring size */
 424	num_segs = ring->num_segs > num_segs_needed ?
 425			ring->num_segs : num_segs_needed;
 426
 427	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 428			num_segs, ring->cycle_state, ring->type,
 429			ring->bounce_buf_len, flags);
 430	if (ret)
 431		return -ENOMEM;
 432
 433	if (ring->type == TYPE_STREAM)
 434		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 435						ring, first, last, flags);
 436	if (ret) {
 437		struct xhci_segment *next;
 438		do {
 439			next = first->next;
 440			xhci_segment_free(xhci, first);
 441			if (first == last)
 442				break;
 443			first = next;
 444		} while (true);
 445		return ret;
 446	}
 447
 448	xhci_link_rings(xhci, ring, first, last, num_segs);
 449	trace_xhci_ring_expansion(ring);
 450	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 451			"ring expansion succeed, now has %d segments",
 452			ring->num_segs);
 453
 454	return 0;
 455}
 456
 457struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 
 
 458						    int type, gfp_t flags)
 459{
 460	struct xhci_container_ctx *ctx;
 461
 462	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 463		return NULL;
 464
 465	ctx = kzalloc(sizeof(*ctx), flags);
 466	if (!ctx)
 467		return NULL;
 468
 469	ctx->type = type;
 470	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 471	if (type == XHCI_CTX_TYPE_INPUT)
 472		ctx->size += CTX_SIZE(xhci->hcc_params);
 473
 474	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 475	if (!ctx->bytes) {
 476		kfree(ctx);
 477		return NULL;
 478	}
 479	return ctx;
 480}
 481
 482void xhci_free_container_ctx(struct xhci_hcd *xhci,
 483			     struct xhci_container_ctx *ctx)
 484{
 485	if (!ctx)
 486		return;
 487	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 488	kfree(ctx);
 489}
 490
 491struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 492					      struct xhci_container_ctx *ctx)
 493{
 494	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 495		return NULL;
 496
 497	return (struct xhci_input_control_ctx *)ctx->bytes;
 498}
 499
 500struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 501					struct xhci_container_ctx *ctx)
 502{
 503	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 504		return (struct xhci_slot_ctx *)ctx->bytes;
 505
 506	return (struct xhci_slot_ctx *)
 507		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 508}
 509
 510struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 511				    struct xhci_container_ctx *ctx,
 512				    unsigned int ep_index)
 513{
 514	/* increment ep index by offset of start of ep ctx array */
 515	ep_index++;
 516	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 517		ep_index++;
 518
 519	return (struct xhci_ep_ctx *)
 520		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 521}
 522
 523
 524/***************** Streams structures manipulation *************************/
 525
 526static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 527		unsigned int num_stream_ctxs,
 528		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 529{
 530	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 531	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 532
 533	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 534		dma_free_coherent(dev, size,
 535				stream_ctx, dma);
 536	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 537		return dma_pool_free(xhci->small_streams_pool,
 538				stream_ctx, dma);
 539	else
 540		return dma_pool_free(xhci->medium_streams_pool,
 541				stream_ctx, dma);
 542}
 543
 544/*
 545 * The stream context array for each endpoint with bulk streams enabled can
 546 * vary in size, based on:
 547 *  - how many streams the endpoint supports,
 548 *  - the maximum primary stream array size the host controller supports,
 549 *  - and how many streams the device driver asks for.
 550 *
 551 * The stream context array must be a power of 2, and can be as small as
 552 * 64 bytes or as large as 1MB.
 553 */
 554static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 555		unsigned int num_stream_ctxs, dma_addr_t *dma,
 556		gfp_t mem_flags)
 557{
 558	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 559	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 560
 561	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 562		return dma_alloc_coherent(dev, size,
 563				dma, mem_flags);
 564	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 565		return dma_pool_alloc(xhci->small_streams_pool,
 566				mem_flags, dma);
 567	else
 568		return dma_pool_alloc(xhci->medium_streams_pool,
 569				mem_flags, dma);
 570}
 571
 572struct xhci_ring *xhci_dma_to_transfer_ring(
 573		struct xhci_virt_ep *ep,
 574		u64 address)
 575{
 576	if (ep->ep_state & EP_HAS_STREAMS)
 577		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 578				address >> TRB_SEGMENT_SHIFT);
 579	return ep->ring;
 580}
 581
 582struct xhci_ring *xhci_stream_id_to_ring(
 583		struct xhci_virt_device *dev,
 584		unsigned int ep_index,
 585		unsigned int stream_id)
 586{
 587	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 588
 589	if (stream_id == 0)
 590		return ep->ring;
 591	if (!ep->stream_info)
 592		return NULL;
 593
 594	if (stream_id > ep->stream_info->num_streams)
 595		return NULL;
 596	return ep->stream_info->stream_rings[stream_id];
 597}
 598
 599/*
 600 * Change an endpoint's internal structure so it supports stream IDs.  The
 601 * number of requested streams includes stream 0, which cannot be used by device
 602 * drivers.
 603 *
 604 * The number of stream contexts in the stream context array may be bigger than
 605 * the number of streams the driver wants to use.  This is because the number of
 606 * stream context array entries must be a power of two.
 607 */
 608struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 609		unsigned int num_stream_ctxs,
 610		unsigned int num_streams,
 611		unsigned int max_packet, gfp_t mem_flags)
 612{
 613	struct xhci_stream_info *stream_info;
 614	u32 cur_stream;
 615	struct xhci_ring *cur_ring;
 616	u64 addr;
 617	int ret;
 618
 619	xhci_dbg(xhci, "Allocating %u streams and %u "
 620			"stream context array entries.\n",
 621			num_streams, num_stream_ctxs);
 622	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 623		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 624		return NULL;
 625	}
 626	xhci->cmd_ring_reserved_trbs++;
 627
 628	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 629	if (!stream_info)
 630		goto cleanup_trbs;
 631
 632	stream_info->num_streams = num_streams;
 633	stream_info->num_stream_ctxs = num_stream_ctxs;
 634
 635	/* Initialize the array of virtual pointers to stream rings. */
 636	stream_info->stream_rings = kzalloc(
 637			sizeof(struct xhci_ring *)*num_streams,
 638			mem_flags);
 639	if (!stream_info->stream_rings)
 640		goto cleanup_info;
 641
 642	/* Initialize the array of DMA addresses for stream rings for the HW. */
 643	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 644			num_stream_ctxs, &stream_info->ctx_array_dma,
 645			mem_flags);
 646	if (!stream_info->stream_ctx_array)
 647		goto cleanup_ctx;
 648	memset(stream_info->stream_ctx_array, 0,
 649			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 650
 651	/* Allocate everything needed to free the stream rings later */
 652	stream_info->free_streams_command =
 653		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
 654	if (!stream_info->free_streams_command)
 655		goto cleanup_ctx;
 656
 657	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 658
 659	/* Allocate rings for all the streams that the driver will use,
 660	 * and add their segment DMA addresses to the radix tree.
 661	 * Stream 0 is reserved.
 662	 */
 663
 664	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 665		stream_info->stream_rings[cur_stream] =
 666			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 667					mem_flags);
 668		cur_ring = stream_info->stream_rings[cur_stream];
 669		if (!cur_ring)
 670			goto cleanup_rings;
 671		cur_ring->stream_id = cur_stream;
 672		cur_ring->trb_address_map = &stream_info->trb_address_map;
 673		/* Set deq ptr, cycle bit, and stream context type */
 674		addr = cur_ring->first_seg->dma |
 675			SCT_FOR_CTX(SCT_PRI_TR) |
 676			cur_ring->cycle_state;
 677		stream_info->stream_ctx_array[cur_stream].stream_ring =
 678			cpu_to_le64(addr);
 679		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 680				cur_stream, (unsigned long long) addr);
 681
 682		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 683		if (ret) {
 684			xhci_ring_free(xhci, cur_ring);
 685			stream_info->stream_rings[cur_stream] = NULL;
 686			goto cleanup_rings;
 687		}
 688	}
 689	/* Leave the other unused stream ring pointers in the stream context
 690	 * array initialized to zero.  This will cause the xHC to give us an
 691	 * error if the device asks for a stream ID we don't have setup (if it
 692	 * was any other way, the host controller would assume the ring is
 693	 * "empty" and wait forever for data to be queued to that stream ID).
 694	 */
 695
 696	return stream_info;
 697
 698cleanup_rings:
 699	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 700		cur_ring = stream_info->stream_rings[cur_stream];
 701		if (cur_ring) {
 702			xhci_ring_free(xhci, cur_ring);
 703			stream_info->stream_rings[cur_stream] = NULL;
 704		}
 705	}
 706	xhci_free_command(xhci, stream_info->free_streams_command);
 707cleanup_ctx:
 708	kfree(stream_info->stream_rings);
 709cleanup_info:
 710	kfree(stream_info);
 711cleanup_trbs:
 712	xhci->cmd_ring_reserved_trbs--;
 713	return NULL;
 714}
 715/*
 716 * Sets the MaxPStreams field and the Linear Stream Array field.
 717 * Sets the dequeue pointer to the stream context array.
 718 */
 719void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 720		struct xhci_ep_ctx *ep_ctx,
 721		struct xhci_stream_info *stream_info)
 722{
 723	u32 max_primary_streams;
 724	/* MaxPStreams is the number of stream context array entries, not the
 725	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 726	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 727	 */
 728	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 729	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 730			"Setting number of stream ctx array entries to %u",
 731			1 << (max_primary_streams + 1));
 732	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 733	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 734				       | EP_HAS_LSA);
 735	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 736}
 737
 738/*
 739 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 740 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 741 * not at the beginning of the ring).
 742 */
 743void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 744		struct xhci_virt_ep *ep)
 745{
 746	dma_addr_t addr;
 747	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 748	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 749	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 750}
 751
 752/* Frees all stream contexts associated with the endpoint,
 753 *
 754 * Caller should fix the endpoint context streams fields.
 755 */
 756void xhci_free_stream_info(struct xhci_hcd *xhci,
 757		struct xhci_stream_info *stream_info)
 758{
 759	int cur_stream;
 760	struct xhci_ring *cur_ring;
 761
 762	if (!stream_info)
 763		return;
 764
 765	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 766			cur_stream++) {
 767		cur_ring = stream_info->stream_rings[cur_stream];
 768		if (cur_ring) {
 769			xhci_ring_free(xhci, cur_ring);
 770			stream_info->stream_rings[cur_stream] = NULL;
 771		}
 772	}
 773	xhci_free_command(xhci, stream_info->free_streams_command);
 774	xhci->cmd_ring_reserved_trbs--;
 775	if (stream_info->stream_ctx_array)
 776		xhci_free_stream_ctx(xhci,
 777				stream_info->num_stream_ctxs,
 778				stream_info->stream_ctx_array,
 779				stream_info->ctx_array_dma);
 780
 781	kfree(stream_info->stream_rings);
 782	kfree(stream_info);
 783}
 784
 785
 786/***************** Device context manipulation *************************/
 787
 788static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 789		struct xhci_virt_ep *ep)
 790{
 791	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 792		    0);
 793	ep->xhci = xhci;
 794}
 795
 796static void xhci_free_tt_info(struct xhci_hcd *xhci,
 797		struct xhci_virt_device *virt_dev,
 798		int slot_id)
 799{
 800	struct list_head *tt_list_head;
 801	struct xhci_tt_bw_info *tt_info, *next;
 802	bool slot_found = false;
 803
 804	/* If the device never made it past the Set Address stage,
 805	 * it may not have the real_port set correctly.
 806	 */
 807	if (virt_dev->real_port == 0 ||
 808			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 809		xhci_dbg(xhci, "Bad real port.\n");
 810		return;
 811	}
 812
 813	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 814	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 815		/* Multi-TT hubs will have more than one entry */
 816		if (tt_info->slot_id == slot_id) {
 817			slot_found = true;
 818			list_del(&tt_info->tt_list);
 819			kfree(tt_info);
 820		} else if (slot_found) {
 821			break;
 822		}
 823	}
 824}
 825
 826int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 827		struct xhci_virt_device *virt_dev,
 828		struct usb_device *hdev,
 829		struct usb_tt *tt, gfp_t mem_flags)
 830{
 831	struct xhci_tt_bw_info		*tt_info;
 832	unsigned int			num_ports;
 833	int				i, j;
 834
 835	if (!tt->multi)
 836		num_ports = 1;
 837	else
 838		num_ports = hdev->maxchild;
 839
 840	for (i = 0; i < num_ports; i++, tt_info++) {
 841		struct xhci_interval_bw_table *bw_table;
 842
 843		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 844		if (!tt_info)
 845			goto free_tts;
 846		INIT_LIST_HEAD(&tt_info->tt_list);
 847		list_add(&tt_info->tt_list,
 848				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 849		tt_info->slot_id = virt_dev->udev->slot_id;
 850		if (tt->multi)
 851			tt_info->ttport = i+1;
 852		bw_table = &tt_info->bw_table;
 853		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 854			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 855	}
 856	return 0;
 857
 858free_tts:
 859	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 860	return -ENOMEM;
 861}
 862
 863
 864/* All the xhci_tds in the ring's TD list should be freed at this point.
 865 * Should be called with xhci->lock held if there is any chance the TT lists
 866 * will be manipulated by the configure endpoint, allocate device, or update
 867 * hub functions while this function is removing the TT entries from the list.
 868 */
 869void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 870{
 871	struct xhci_virt_device *dev;
 872	int i;
 873	int old_active_eps = 0;
 874
 875	/* Slot ID 0 is reserved */
 876	if (slot_id == 0 || !xhci->devs[slot_id])
 877		return;
 878
 879	dev = xhci->devs[slot_id];
 880
 881	trace_xhci_free_virt_device(dev);
 882
 883	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 884	if (!dev)
 885		return;
 886
 887	if (dev->tt_info)
 888		old_active_eps = dev->tt_info->active_eps;
 889
 890	for (i = 0; i < 31; i++) {
 891		if (dev->eps[i].ring)
 892			xhci_ring_free(xhci, dev->eps[i].ring);
 893		if (dev->eps[i].stream_info)
 894			xhci_free_stream_info(xhci,
 895					dev->eps[i].stream_info);
 896		/* Endpoints on the TT/root port lists should have been removed
 897		 * when usb_disable_device() was called for the device.
 898		 * We can't drop them anyway, because the udev might have gone
 899		 * away by this point, and we can't tell what speed it was.
 900		 */
 901		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 902			xhci_warn(xhci, "Slot %u endpoint %u "
 903					"not removed from BW list!\n",
 904					slot_id, i);
 905	}
 906	/* If this is a hub, free the TT(s) from the TT list */
 907	xhci_free_tt_info(xhci, dev, slot_id);
 908	/* If necessary, update the number of active TTs on this root port */
 909	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 910
 
 
 
 
 
 
 911	if (dev->in_ctx)
 912		xhci_free_container_ctx(xhci, dev->in_ctx);
 913	if (dev->out_ctx)
 914		xhci_free_container_ctx(xhci, dev->out_ctx);
 915
 916	if (dev->udev && dev->udev->slot_id)
 917		dev->udev->slot_id = 0;
 918	kfree(xhci->devs[slot_id]);
 919	xhci->devs[slot_id] = NULL;
 920}
 921
 922/*
 923 * Free a virt_device structure.
 924 * If the virt_device added a tt_info (a hub) and has children pointing to
 925 * that tt_info, then free the child first. Recursive.
 926 * We can't rely on udev at this point to find child-parent relationships.
 927 */
 928void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 929{
 930	struct xhci_virt_device *vdev;
 931	struct list_head *tt_list_head;
 932	struct xhci_tt_bw_info *tt_info, *next;
 933	int i;
 934
 935	vdev = xhci->devs[slot_id];
 936	if (!vdev)
 937		return;
 938
 939	if (vdev->real_port == 0 ||
 940			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 941		xhci_dbg(xhci, "Bad vdev->real_port.\n");
 942		goto out;
 943	}
 944
 945	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
 946	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 947		/* is this a hub device that added a tt_info to the tts list */
 948		if (tt_info->slot_id == slot_id) {
 949			/* are any devices using this tt_info? */
 950			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
 951				vdev = xhci->devs[i];
 952				if (vdev && (vdev->tt_info == tt_info))
 953					xhci_free_virt_devices_depth_first(
 954						xhci, i);
 955			}
 956		}
 957	}
 958out:
 959	/* we are now at a leaf device */
 960	xhci_debugfs_remove_slot(xhci, slot_id);
 961	xhci_free_virt_device(xhci, slot_id);
 962}
 963
 964int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 965		struct usb_device *udev, gfp_t flags)
 966{
 967	struct xhci_virt_device *dev;
 968	int i;
 969
 970	/* Slot ID 0 is reserved */
 971	if (slot_id == 0 || xhci->devs[slot_id]) {
 972		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 973		return 0;
 974	}
 975
 976	dev = kzalloc(sizeof(*dev), flags);
 977	if (!dev)
 978		return 0;
 
 979
 980	/* Allocate the (output) device context that will be used in the HC. */
 981	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 982	if (!dev->out_ctx)
 983		goto fail;
 984
 985	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 986			(unsigned long long)dev->out_ctx->dma);
 987
 988	/* Allocate the (input) device context for address device command */
 989	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 990	if (!dev->in_ctx)
 991		goto fail;
 992
 993	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 994			(unsigned long long)dev->in_ctx->dma);
 995
 996	/* Initialize the cancellation list and watchdog timers for each ep */
 997	for (i = 0; i < 31; i++) {
 998		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
 999		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1000		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1001	}
1002
1003	/* Allocate endpoint 0 ring */
1004	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1005	if (!dev->eps[0].ring)
1006		goto fail;
1007
 
 
 
 
 
 
 
 
 
1008	dev->udev = udev;
1009
1010	/* Point to output device context in dcbaa. */
1011	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1012	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1013		 slot_id,
1014		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1015		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1016
1017	trace_xhci_alloc_virt_device(dev);
1018
1019	xhci->devs[slot_id] = dev;
1020
1021	return 1;
1022fail:
1023
1024	if (dev->in_ctx)
1025		xhci_free_container_ctx(xhci, dev->in_ctx);
1026	if (dev->out_ctx)
1027		xhci_free_container_ctx(xhci, dev->out_ctx);
1028	kfree(dev);
1029
1030	return 0;
1031}
1032
1033void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1034		struct usb_device *udev)
1035{
1036	struct xhci_virt_device *virt_dev;
1037	struct xhci_ep_ctx	*ep0_ctx;
1038	struct xhci_ring	*ep_ring;
1039
1040	virt_dev = xhci->devs[udev->slot_id];
1041	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1042	ep_ring = virt_dev->eps[0].ring;
1043	/*
1044	 * FIXME we don't keep track of the dequeue pointer very well after a
1045	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1046	 * host to our enqueue pointer.  This should only be called after a
1047	 * configured device has reset, so all control transfers should have
1048	 * been completed or cancelled before the reset.
1049	 */
1050	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1051							ep_ring->enqueue)
1052				   | ep_ring->cycle_state);
1053}
1054
1055/*
1056 * The xHCI roothub may have ports of differing speeds in any order in the port
1057 * status registers.  xhci->port_array provides an array of the port speed for
1058 * each offset into the port status registers.
1059 *
1060 * The xHCI hardware wants to know the roothub port number that the USB device
1061 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1062 * know is the index of that port under either the USB 2.0 or the USB 3.0
1063 * roothub, but that doesn't give us the real index into the HW port status
1064 * registers. Call xhci_find_raw_port_number() to get real index.
1065 */
1066static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1067		struct usb_device *udev)
1068{
1069	struct usb_device *top_dev;
1070	struct usb_hcd *hcd;
1071
1072	if (udev->speed >= USB_SPEED_SUPER)
1073		hcd = xhci->shared_hcd;
1074	else
1075		hcd = xhci->main_hcd;
1076
1077	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1078			top_dev = top_dev->parent)
1079		/* Found device below root hub */;
1080
1081	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1082}
1083
1084/* Setup an xHCI virtual device for a Set Address command */
1085int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1086{
1087	struct xhci_virt_device *dev;
1088	struct xhci_ep_ctx	*ep0_ctx;
1089	struct xhci_slot_ctx    *slot_ctx;
1090	u32			port_num;
1091	u32			max_packets;
1092	struct usb_device *top_dev;
1093
1094	dev = xhci->devs[udev->slot_id];
1095	/* Slot ID 0 is reserved */
1096	if (udev->slot_id == 0 || !dev) {
1097		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1098				udev->slot_id);
1099		return -EINVAL;
1100	}
1101	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1102	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1103
1104	/* 3) Only the control endpoint is valid - one endpoint context */
1105	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1106	switch (udev->speed) {
1107	case USB_SPEED_SUPER_PLUS:
1108		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1109		max_packets = MAX_PACKET(512);
1110		break;
1111	case USB_SPEED_SUPER:
1112		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1113		max_packets = MAX_PACKET(512);
1114		break;
1115	case USB_SPEED_HIGH:
1116		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1117		max_packets = MAX_PACKET(64);
1118		break;
1119	/* USB core guesses at a 64-byte max packet first for FS devices */
1120	case USB_SPEED_FULL:
1121		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1122		max_packets = MAX_PACKET(64);
1123		break;
1124	case USB_SPEED_LOW:
1125		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1126		max_packets = MAX_PACKET(8);
1127		break;
1128	case USB_SPEED_WIRELESS:
1129		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1130		return -EINVAL;
1131		break;
1132	default:
1133		/* Speed was set earlier, this shouldn't happen. */
1134		return -EINVAL;
1135	}
1136	/* Find the root hub port this device is under */
1137	port_num = xhci_find_real_port_number(xhci, udev);
1138	if (!port_num)
1139		return -EINVAL;
1140	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1141	/* Set the port number in the virtual_device to the faked port number */
1142	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1143			top_dev = top_dev->parent)
1144		/* Found device below root hub */;
1145	dev->fake_port = top_dev->portnum;
1146	dev->real_port = port_num;
1147	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1148	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1149
1150	/* Find the right bandwidth table that this device will be a part of.
1151	 * If this is a full speed device attached directly to a root port (or a
1152	 * decendent of one), it counts as a primary bandwidth domain, not a
1153	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1154	 * will never be created for the HS root hub.
1155	 */
1156	if (!udev->tt || !udev->tt->hub->parent) {
1157		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1158	} else {
1159		struct xhci_root_port_bw_info *rh_bw;
1160		struct xhci_tt_bw_info *tt_bw;
1161
1162		rh_bw = &xhci->rh_bw[port_num - 1];
1163		/* Find the right TT. */
1164		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1165			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1166				continue;
1167
1168			if (!dev->udev->tt->multi ||
1169					(udev->tt->multi &&
1170					 tt_bw->ttport == dev->udev->ttport)) {
1171				dev->bw_table = &tt_bw->bw_table;
1172				dev->tt_info = tt_bw;
1173				break;
1174			}
1175		}
1176		if (!dev->tt_info)
1177			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1178	}
1179
1180	/* Is this a LS/FS device under an external HS hub? */
1181	if (udev->tt && udev->tt->hub->parent) {
1182		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1183						(udev->ttport << 8));
1184		if (udev->tt->multi)
1185			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1186	}
1187	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1188	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1189
1190	/* Step 4 - ring already allocated */
1191	/* Step 5 */
1192	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1193
1194	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1195	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1196					 max_packets);
1197
1198	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1199				   dev->eps[0].ring->cycle_state);
1200
1201	trace_xhci_setup_addressable_virt_device(dev);
1202
1203	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204
1205	return 0;
1206}
1207
1208/*
1209 * Convert interval expressed as 2^(bInterval - 1) == interval into
1210 * straight exponent value 2^n == interval.
1211 *
1212 */
1213static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214		struct usb_host_endpoint *ep)
1215{
1216	unsigned int interval;
1217
1218	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219	if (interval != ep->desc.bInterval - 1)
1220		dev_warn(&udev->dev,
1221			 "ep %#x - rounding interval to %d %sframes\n",
1222			 ep->desc.bEndpointAddress,
1223			 1 << interval,
1224			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225
1226	if (udev->speed == USB_SPEED_FULL) {
1227		/*
1228		 * Full speed isoc endpoints specify interval in frames,
1229		 * not microframes. We are using microframes everywhere,
1230		 * so adjust accordingly.
1231		 */
1232		interval += 3;	/* 1 frame = 2^3 uframes */
1233	}
1234
1235	return interval;
1236}
1237
1238/*
1239 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240 * microframes, rounded down to nearest power of 2.
1241 */
1242static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243		struct usb_host_endpoint *ep, unsigned int desc_interval,
1244		unsigned int min_exponent, unsigned int max_exponent)
1245{
1246	unsigned int interval;
1247
1248	interval = fls(desc_interval) - 1;
1249	interval = clamp_val(interval, min_exponent, max_exponent);
1250	if ((1 << interval) != desc_interval)
1251		dev_dbg(&udev->dev,
1252			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253			 ep->desc.bEndpointAddress,
1254			 1 << interval,
1255			 desc_interval);
1256
1257	return interval;
1258}
1259
1260static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261		struct usb_host_endpoint *ep)
1262{
1263	if (ep->desc.bInterval == 0)
1264		return 0;
1265	return xhci_microframes_to_exponent(udev, ep,
1266			ep->desc.bInterval, 0, 15);
1267}
1268
1269
1270static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271		struct usb_host_endpoint *ep)
1272{
1273	return xhci_microframes_to_exponent(udev, ep,
1274			ep->desc.bInterval * 8, 3, 10);
1275}
1276
1277/* Return the polling or NAK interval.
1278 *
1279 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281 *
1282 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283 * is set to 0.
1284 */
1285static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286		struct usb_host_endpoint *ep)
1287{
1288	unsigned int interval = 0;
1289
1290	switch (udev->speed) {
1291	case USB_SPEED_HIGH:
1292		/* Max NAK rate */
1293		if (usb_endpoint_xfer_control(&ep->desc) ||
1294		    usb_endpoint_xfer_bulk(&ep->desc)) {
1295			interval = xhci_parse_microframe_interval(udev, ep);
1296			break;
1297		}
1298		/* Fall through - SS and HS isoc/int have same decoding */
1299
1300	case USB_SPEED_SUPER_PLUS:
1301	case USB_SPEED_SUPER:
1302		if (usb_endpoint_xfer_int(&ep->desc) ||
1303		    usb_endpoint_xfer_isoc(&ep->desc)) {
1304			interval = xhci_parse_exponent_interval(udev, ep);
1305		}
1306		break;
1307
1308	case USB_SPEED_FULL:
1309		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1310			interval = xhci_parse_exponent_interval(udev, ep);
1311			break;
1312		}
1313		/*
1314		 * Fall through for interrupt endpoint interval decoding
1315		 * since it uses the same rules as low speed interrupt
1316		 * endpoints.
1317		 */
1318		/* fall through */
1319
1320	case USB_SPEED_LOW:
1321		if (usb_endpoint_xfer_int(&ep->desc) ||
1322		    usb_endpoint_xfer_isoc(&ep->desc)) {
1323
1324			interval = xhci_parse_frame_interval(udev, ep);
1325		}
1326		break;
1327
1328	default:
1329		BUG();
1330	}
1331	return interval;
1332}
1333
1334/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335 * High speed endpoint descriptors can define "the number of additional
1336 * transaction opportunities per microframe", but that goes in the Max Burst
1337 * endpoint context field.
1338 */
1339static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340		struct usb_host_endpoint *ep)
1341{
1342	if (udev->speed < USB_SPEED_SUPER ||
1343			!usb_endpoint_xfer_isoc(&ep->desc))
1344		return 0;
1345	return ep->ss_ep_comp.bmAttributes;
1346}
1347
1348static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1349				       struct usb_host_endpoint *ep)
1350{
1351	/* Super speed and Plus have max burst in ep companion desc */
1352	if (udev->speed >= USB_SPEED_SUPER)
1353		return ep->ss_ep_comp.bMaxBurst;
1354
1355	if (udev->speed == USB_SPEED_HIGH &&
1356	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1357	     usb_endpoint_xfer_int(&ep->desc)))
1358		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1359
1360	return 0;
1361}
1362
1363static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1364{
1365	int in;
1366
1367	in = usb_endpoint_dir_in(&ep->desc);
1368
1369	switch (usb_endpoint_type(&ep->desc)) {
1370	case USB_ENDPOINT_XFER_CONTROL:
1371		return CTRL_EP;
1372	case USB_ENDPOINT_XFER_BULK:
1373		return in ? BULK_IN_EP : BULK_OUT_EP;
1374	case USB_ENDPOINT_XFER_ISOC:
1375		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1376	case USB_ENDPOINT_XFER_INT:
1377		return in ? INT_IN_EP : INT_OUT_EP;
1378	}
1379	return 0;
1380}
1381
1382/* Return the maximum endpoint service interval time (ESIT) payload.
1383 * Basically, this is the maxpacket size, multiplied by the burst size
1384 * and mult size.
1385 */
1386static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1387		struct usb_host_endpoint *ep)
1388{
1389	int max_burst;
1390	int max_packet;
1391
1392	/* Only applies for interrupt or isochronous endpoints */
1393	if (usb_endpoint_xfer_control(&ep->desc) ||
1394			usb_endpoint_xfer_bulk(&ep->desc))
1395		return 0;
1396
1397	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1398	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1399	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1400		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1401	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1402	else if (udev->speed >= USB_SPEED_SUPER)
1403		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1404
1405	max_packet = usb_endpoint_maxp(&ep->desc);
1406	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1407	/* A 0 in max burst means 1 transfer per ESIT */
1408	return max_packet * max_burst;
1409}
1410
1411/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1412 * Drivers will have to call usb_alloc_streams() to do that.
1413 */
1414int xhci_endpoint_init(struct xhci_hcd *xhci,
1415		struct xhci_virt_device *virt_dev,
1416		struct usb_device *udev,
1417		struct usb_host_endpoint *ep,
1418		gfp_t mem_flags)
1419{
1420	unsigned int ep_index;
1421	struct xhci_ep_ctx *ep_ctx;
1422	struct xhci_ring *ep_ring;
1423	unsigned int max_packet;
1424	enum xhci_ring_type ring_type;
1425	u32 max_esit_payload;
1426	u32 endpoint_type;
1427	unsigned int max_burst;
1428	unsigned int interval;
1429	unsigned int mult;
1430	unsigned int avg_trb_len;
1431	unsigned int err_count = 0;
1432
1433	ep_index = xhci_get_endpoint_index(&ep->desc);
1434	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1435
1436	endpoint_type = xhci_get_endpoint_type(ep);
1437	if (!endpoint_type)
1438		return -EINVAL;
1439
1440	ring_type = usb_endpoint_type(&ep->desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441
1442	/*
1443	 * Get values to fill the endpoint context, mostly from ep descriptor.
1444	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1445	 * have no clue on scatter gather list entry size. For Isoc and Int,
1446	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1447	 */
1448	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1449	interval = xhci_get_endpoint_interval(udev, ep);
1450
1451	/* Periodic endpoint bInterval limit quirk */
1452	if (usb_endpoint_xfer_int(&ep->desc) ||
1453	    usb_endpoint_xfer_isoc(&ep->desc)) {
1454		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1455		    udev->speed >= USB_SPEED_HIGH &&
1456		    interval >= 7) {
1457			interval = 6;
1458		}
1459	}
1460
1461	mult = xhci_get_endpoint_mult(udev, ep);
1462	max_packet = usb_endpoint_maxp(&ep->desc);
1463	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1464	avg_trb_len = max_esit_payload;
1465
1466	/* FIXME dig Mult and streams info out of ep companion desc */
1467
1468	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1469	if (!usb_endpoint_xfer_isoc(&ep->desc))
1470		err_count = 3;
1471	/* Some devices get this wrong */
1472	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1473		max_packet = 512;
1474	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1475	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1476		avg_trb_len = 8;
1477	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1478	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1479		mult = 0;
1480
1481	/* Set up the endpoint ring */
1482	virt_dev->eps[ep_index].new_ring =
1483		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1484	if (!virt_dev->eps[ep_index].new_ring)
1485		return -ENOMEM;
1486
1487	virt_dev->eps[ep_index].skip = false;
1488	ep_ring = virt_dev->eps[ep_index].new_ring;
1489
1490	/* Fill the endpoint context */
1491	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1492				      EP_INTERVAL(interval) |
1493				      EP_MULT(mult));
1494	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1495				       MAX_PACKET(max_packet) |
1496				       MAX_BURST(max_burst) |
1497				       ERROR_COUNT(err_count));
1498	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1499				  ep_ring->cycle_state);
1500
1501	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1502				      EP_AVG_TRB_LENGTH(avg_trb_len));
1503
 
1504	return 0;
1505}
1506
1507void xhci_endpoint_zero(struct xhci_hcd *xhci,
1508		struct xhci_virt_device *virt_dev,
1509		struct usb_host_endpoint *ep)
1510{
1511	unsigned int ep_index;
1512	struct xhci_ep_ctx *ep_ctx;
1513
1514	ep_index = xhci_get_endpoint_index(&ep->desc);
1515	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1516
1517	ep_ctx->ep_info = 0;
1518	ep_ctx->ep_info2 = 0;
1519	ep_ctx->deq = 0;
1520	ep_ctx->tx_info = 0;
1521	/* Don't free the endpoint ring until the set interface or configuration
1522	 * request succeeds.
1523	 */
1524}
1525
1526void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1527{
1528	bw_info->ep_interval = 0;
1529	bw_info->mult = 0;
1530	bw_info->num_packets = 0;
1531	bw_info->max_packet_size = 0;
1532	bw_info->type = 0;
1533	bw_info->max_esit_payload = 0;
1534}
1535
1536void xhci_update_bw_info(struct xhci_hcd *xhci,
1537		struct xhci_container_ctx *in_ctx,
1538		struct xhci_input_control_ctx *ctrl_ctx,
1539		struct xhci_virt_device *virt_dev)
1540{
1541	struct xhci_bw_info *bw_info;
1542	struct xhci_ep_ctx *ep_ctx;
1543	unsigned int ep_type;
1544	int i;
1545
1546	for (i = 1; i < 31; i++) {
1547		bw_info = &virt_dev->eps[i].bw_info;
1548
1549		/* We can't tell what endpoint type is being dropped, but
1550		 * unconditionally clearing the bandwidth info for non-periodic
1551		 * endpoints should be harmless because the info will never be
1552		 * set in the first place.
1553		 */
1554		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1555			/* Dropped endpoint */
1556			xhci_clear_endpoint_bw_info(bw_info);
1557			continue;
1558		}
1559
1560		if (EP_IS_ADDED(ctrl_ctx, i)) {
1561			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1562			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1563
1564			/* Ignore non-periodic endpoints */
1565			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1566					ep_type != ISOC_IN_EP &&
1567					ep_type != INT_IN_EP)
1568				continue;
1569
1570			/* Added or changed endpoint */
1571			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1572					le32_to_cpu(ep_ctx->ep_info));
1573			/* Number of packets and mult are zero-based in the
1574			 * input context, but we want one-based for the
1575			 * interval table.
1576			 */
1577			bw_info->mult = CTX_TO_EP_MULT(
1578					le32_to_cpu(ep_ctx->ep_info)) + 1;
1579			bw_info->num_packets = CTX_TO_MAX_BURST(
1580					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1581			bw_info->max_packet_size = MAX_PACKET_DECODED(
1582					le32_to_cpu(ep_ctx->ep_info2));
1583			bw_info->type = ep_type;
1584			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1585					le32_to_cpu(ep_ctx->tx_info));
1586		}
1587	}
1588}
1589
1590/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1591 * Useful when you want to change one particular aspect of the endpoint and then
1592 * issue a configure endpoint command.
1593 */
1594void xhci_endpoint_copy(struct xhci_hcd *xhci,
1595		struct xhci_container_ctx *in_ctx,
1596		struct xhci_container_ctx *out_ctx,
1597		unsigned int ep_index)
1598{
1599	struct xhci_ep_ctx *out_ep_ctx;
1600	struct xhci_ep_ctx *in_ep_ctx;
1601
1602	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1604
1605	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1606	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1607	in_ep_ctx->deq = out_ep_ctx->deq;
1608	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1609}
1610
1611/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612 * Useful when you want to change one particular aspect of the endpoint and then
1613 * issue a configure endpoint command.  Only the context entries field matters,
1614 * but we'll copy the whole thing anyway.
1615 */
1616void xhci_slot_copy(struct xhci_hcd *xhci,
1617		struct xhci_container_ctx *in_ctx,
1618		struct xhci_container_ctx *out_ctx)
1619{
1620	struct xhci_slot_ctx *in_slot_ctx;
1621	struct xhci_slot_ctx *out_slot_ctx;
1622
1623	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1625
1626	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630}
1631
1632/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634{
1635	int i;
1636	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638
1639	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640			"Allocating %d scratchpad buffers", num_sp);
1641
1642	if (!num_sp)
1643		return 0;
1644
1645	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1646	if (!xhci->scratchpad)
1647		goto fail_sp;
1648
1649	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1650				     num_sp * sizeof(u64),
1651				     &xhci->scratchpad->sp_dma, flags);
1652	if (!xhci->scratchpad->sp_array)
1653		goto fail_sp2;
1654
1655	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1656	if (!xhci->scratchpad->sp_buffers)
1657		goto fail_sp3;
1658
 
 
 
 
 
 
1659	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1660	for (i = 0; i < num_sp; i++) {
1661		dma_addr_t dma;
1662		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1663				flags);
1664		if (!buf)
1665			goto fail_sp4;
1666
1667		xhci->scratchpad->sp_array[i] = dma;
1668		xhci->scratchpad->sp_buffers[i] = buf;
 
1669	}
1670
1671	return 0;
1672
1673 fail_sp4:
1674	for (i = i - 1; i >= 0; i--) {
1675		dma_free_coherent(dev, xhci->page_size,
1676				    xhci->scratchpad->sp_buffers[i],
1677				    xhci->scratchpad->sp_array[i]);
1678	}
 
1679
 
1680	kfree(xhci->scratchpad->sp_buffers);
1681
1682 fail_sp3:
1683	dma_free_coherent(dev, num_sp * sizeof(u64),
1684			    xhci->scratchpad->sp_array,
1685			    xhci->scratchpad->sp_dma);
1686
1687 fail_sp2:
1688	kfree(xhci->scratchpad);
1689	xhci->scratchpad = NULL;
1690
1691 fail_sp:
1692	return -ENOMEM;
1693}
1694
1695static void scratchpad_free(struct xhci_hcd *xhci)
1696{
1697	int num_sp;
1698	int i;
1699	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1700
1701	if (!xhci->scratchpad)
1702		return;
1703
1704	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1705
1706	for (i = 0; i < num_sp; i++) {
1707		dma_free_coherent(dev, xhci->page_size,
1708				    xhci->scratchpad->sp_buffers[i],
1709				    xhci->scratchpad->sp_array[i]);
1710	}
 
1711	kfree(xhci->scratchpad->sp_buffers);
1712	dma_free_coherent(dev, num_sp * sizeof(u64),
1713			    xhci->scratchpad->sp_array,
1714			    xhci->scratchpad->sp_dma);
1715	kfree(xhci->scratchpad);
1716	xhci->scratchpad = NULL;
1717}
1718
1719struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1720		bool allocate_completion, gfp_t mem_flags)
 
1721{
1722	struct xhci_command *command;
1723
1724	command = kzalloc(sizeof(*command), mem_flags);
1725	if (!command)
1726		return NULL;
1727
 
 
 
 
 
 
 
 
 
 
1728	if (allocate_completion) {
1729		command->completion =
1730			kzalloc(sizeof(struct completion), mem_flags);
1731		if (!command->completion) {
 
1732			kfree(command);
1733			return NULL;
1734		}
1735		init_completion(command->completion);
1736	}
1737
1738	command->status = 0;
1739	INIT_LIST_HEAD(&command->cmd_list);
1740	return command;
1741}
1742
1743struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1744		bool allocate_completion, gfp_t mem_flags)
1745{
1746	struct xhci_command *command;
1747
1748	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1749	if (!command)
1750		return NULL;
1751
1752	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753						   mem_flags);
1754	if (!command->in_ctx) {
1755		kfree(command->completion);
1756		kfree(command);
1757		return NULL;
1758	}
1759	return command;
1760}
1761
1762void xhci_urb_free_priv(struct urb_priv *urb_priv)
1763{
1764	kfree(urb_priv);
1765}
1766
1767void xhci_free_command(struct xhci_hcd *xhci,
1768		struct xhci_command *command)
1769{
1770	xhci_free_container_ctx(xhci,
1771			command->in_ctx);
1772	kfree(command->completion);
1773	kfree(command);
1774}
1775
1776int xhci_alloc_erst(struct xhci_hcd *xhci,
1777		    struct xhci_ring *evt_ring,
1778		    struct xhci_erst *erst,
1779		    gfp_t flags)
1780{
1781	size_t size;
1782	unsigned int val;
1783	struct xhci_segment *seg;
1784	struct xhci_erst_entry *entry;
1785
1786	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1787	erst->entries = dma_zalloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1788					    size, &erst->erst_dma_addr, flags);
1789	if (!erst->entries)
1790		return -ENOMEM;
1791
1792	erst->num_entries = evt_ring->num_segs;
1793
1794	seg = evt_ring->first_seg;
1795	for (val = 0; val < evt_ring->num_segs; val++) {
1796		entry = &erst->entries[val];
1797		entry->seg_addr = cpu_to_le64(seg->dma);
1798		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1799		entry->rsvd = 0;
1800		seg = seg->next;
1801	}
1802
1803	return 0;
1804}
1805
1806void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1807{
1808	size_t size;
1809	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1810
1811	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1812	if (erst->entries)
1813		dma_free_coherent(dev, size,
1814				erst->entries,
1815				erst->erst_dma_addr);
1816	erst->entries = NULL;
1817}
1818
1819void xhci_mem_cleanup(struct xhci_hcd *xhci)
1820{
1821	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
 
1822	int i, j, num_ports;
1823
1824	cancel_delayed_work_sync(&xhci->cmd_timer);
1825
1826	xhci_free_erst(xhci, &xhci->erst);
1827
 
 
 
 
 
 
 
1828	if (xhci->event_ring)
1829		xhci_ring_free(xhci, xhci->event_ring);
1830	xhci->event_ring = NULL;
1831	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1832
1833	if (xhci->lpm_command)
1834		xhci_free_command(xhci, xhci->lpm_command);
1835	xhci->lpm_command = NULL;
1836	if (xhci->cmd_ring)
1837		xhci_ring_free(xhci, xhci->cmd_ring);
1838	xhci->cmd_ring = NULL;
1839	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1840	xhci_cleanup_command_queue(xhci);
1841
1842	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1844		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847			while (!list_empty(ep))
1848				list_del_init(ep->next);
1849		}
1850	}
1851
1852	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1853		xhci_free_virt_devices_depth_first(xhci, i);
1854
1855	dma_pool_destroy(xhci->segment_pool);
1856	xhci->segment_pool = NULL;
1857	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1858
1859	dma_pool_destroy(xhci->device_pool);
1860	xhci->device_pool = NULL;
1861	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1862
1863	dma_pool_destroy(xhci->small_streams_pool);
1864	xhci->small_streams_pool = NULL;
1865	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1866			"Freed small stream array pool");
1867
1868	dma_pool_destroy(xhci->medium_streams_pool);
1869	xhci->medium_streams_pool = NULL;
1870	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1871			"Freed medium stream array pool");
1872
1873	if (xhci->dcbaa)
1874		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1875				xhci->dcbaa, xhci->dcbaa->dma);
1876	xhci->dcbaa = NULL;
1877
1878	scratchpad_free(xhci);
1879
1880	if (!xhci->rh_bw)
1881		goto no_bw;
1882
1883	for (i = 0; i < num_ports; i++) {
1884		struct xhci_tt_bw_info *tt, *n;
1885		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1886			list_del(&tt->tt_list);
1887			kfree(tt);
1888		}
1889	}
1890
1891no_bw:
1892	xhci->cmd_ring_reserved_trbs = 0;
1893	xhci->num_usb2_ports = 0;
1894	xhci->num_usb3_ports = 0;
1895	xhci->num_active_eps = 0;
1896	kfree(xhci->usb2_ports);
1897	kfree(xhci->usb3_ports);
1898	kfree(xhci->port_array);
1899	kfree(xhci->rh_bw);
1900	kfree(xhci->ext_caps);
1901
1902	xhci->usb2_ports = NULL;
1903	xhci->usb3_ports = NULL;
1904	xhci->port_array = NULL;
1905	xhci->rh_bw = NULL;
1906	xhci->ext_caps = NULL;
1907
1908	xhci->page_size = 0;
1909	xhci->page_shift = 0;
1910	xhci->bus_state[0].bus_suspended = 0;
1911	xhci->bus_state[1].bus_suspended = 0;
1912}
1913
1914static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1915		struct xhci_segment *input_seg,
1916		union xhci_trb *start_trb,
1917		union xhci_trb *end_trb,
1918		dma_addr_t input_dma,
1919		struct xhci_segment *result_seg,
1920		char *test_name, int test_number)
1921{
1922	unsigned long long start_dma;
1923	unsigned long long end_dma;
1924	struct xhci_segment *seg;
1925
1926	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1927	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1928
1929	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1930	if (seg != result_seg) {
1931		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1932				test_name, test_number);
1933		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1934				"input DMA 0x%llx\n",
1935				input_seg,
1936				(unsigned long long) input_dma);
1937		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1938				"ending TRB %p (0x%llx DMA)\n",
1939				start_trb, start_dma,
1940				end_trb, end_dma);
1941		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1942				result_seg, seg);
1943		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1944			  true);
1945		return -1;
1946	}
1947	return 0;
1948}
1949
1950/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1951static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1952{
1953	struct {
1954		dma_addr_t		input_dma;
1955		struct xhci_segment	*result_seg;
1956	} simple_test_vector [] = {
1957		/* A zeroed DMA field should fail */
1958		{ 0, NULL },
1959		/* One TRB before the ring start should fail */
1960		{ xhci->event_ring->first_seg->dma - 16, NULL },
1961		/* One byte before the ring start should fail */
1962		{ xhci->event_ring->first_seg->dma - 1, NULL },
1963		/* Starting TRB should succeed */
1964		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1965		/* Ending TRB should succeed */
1966		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1967			xhci->event_ring->first_seg },
1968		/* One byte after the ring end should fail */
1969		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1970		/* One TRB after the ring end should fail */
1971		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1972		/* An address of all ones should fail */
1973		{ (dma_addr_t) (~0), NULL },
1974	};
1975	struct {
1976		struct xhci_segment	*input_seg;
1977		union xhci_trb		*start_trb;
1978		union xhci_trb		*end_trb;
1979		dma_addr_t		input_dma;
1980		struct xhci_segment	*result_seg;
1981	} complex_test_vector [] = {
1982		/* Test feeding a valid DMA address from a different ring */
1983		{	.input_seg = xhci->event_ring->first_seg,
1984			.start_trb = xhci->event_ring->first_seg->trbs,
1985			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1986			.input_dma = xhci->cmd_ring->first_seg->dma,
1987			.result_seg = NULL,
1988		},
1989		/* Test feeding a valid end TRB from a different ring */
1990		{	.input_seg = xhci->event_ring->first_seg,
1991			.start_trb = xhci->event_ring->first_seg->trbs,
1992			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1993			.input_dma = xhci->cmd_ring->first_seg->dma,
1994			.result_seg = NULL,
1995		},
1996		/* Test feeding a valid start and end TRB from a different ring */
1997		{	.input_seg = xhci->event_ring->first_seg,
1998			.start_trb = xhci->cmd_ring->first_seg->trbs,
1999			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2000			.input_dma = xhci->cmd_ring->first_seg->dma,
2001			.result_seg = NULL,
2002		},
2003		/* TRB in this ring, but after this TD */
2004		{	.input_seg = xhci->event_ring->first_seg,
2005			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2006			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2007			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2008			.result_seg = NULL,
2009		},
2010		/* TRB in this ring, but before this TD */
2011		{	.input_seg = xhci->event_ring->first_seg,
2012			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2013			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2014			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2015			.result_seg = NULL,
2016		},
2017		/* TRB in this ring, but after this wrapped TD */
2018		{	.input_seg = xhci->event_ring->first_seg,
2019			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2020			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2021			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2022			.result_seg = NULL,
2023		},
2024		/* TRB in this ring, but before this wrapped TD */
2025		{	.input_seg = xhci->event_ring->first_seg,
2026			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2027			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2028			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2029			.result_seg = NULL,
2030		},
2031		/* TRB not in this ring, and we have a wrapped TD */
2032		{	.input_seg = xhci->event_ring->first_seg,
2033			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2034			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2035			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2036			.result_seg = NULL,
2037		},
2038	};
2039
2040	unsigned int num_tests;
2041	int i, ret;
2042
2043	num_tests = ARRAY_SIZE(simple_test_vector);
2044	for (i = 0; i < num_tests; i++) {
2045		ret = xhci_test_trb_in_td(xhci,
2046				xhci->event_ring->first_seg,
2047				xhci->event_ring->first_seg->trbs,
2048				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2049				simple_test_vector[i].input_dma,
2050				simple_test_vector[i].result_seg,
2051				"Simple", i);
2052		if (ret < 0)
2053			return ret;
2054	}
2055
2056	num_tests = ARRAY_SIZE(complex_test_vector);
2057	for (i = 0; i < num_tests; i++) {
2058		ret = xhci_test_trb_in_td(xhci,
2059				complex_test_vector[i].input_seg,
2060				complex_test_vector[i].start_trb,
2061				complex_test_vector[i].end_trb,
2062				complex_test_vector[i].input_dma,
2063				complex_test_vector[i].result_seg,
2064				"Complex", i);
2065		if (ret < 0)
2066			return ret;
2067	}
2068	xhci_dbg(xhci, "TRB math tests passed.\n");
2069	return 0;
2070}
2071
2072static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2073{
2074	u64 temp;
2075	dma_addr_t deq;
2076
2077	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2078			xhci->event_ring->dequeue);
2079	if (deq == 0 && !in_interrupt())
2080		xhci_warn(xhci, "WARN something wrong with SW event ring "
2081				"dequeue ptr.\n");
2082	/* Update HC event ring dequeue pointer */
2083	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2084	temp &= ERST_PTR_MASK;
2085	/* Don't clear the EHB bit (which is RW1C) because
2086	 * there might be more events to service.
2087	 */
2088	temp &= ~ERST_EHB;
2089	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2090			"// Write event ring dequeue pointer, "
2091			"preserving EHB bit");
2092	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2093			&xhci->ir_set->erst_dequeue);
2094}
2095
2096static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2097		__le32 __iomem *addr, int max_caps)
2098{
2099	u32 temp, port_offset, port_count;
2100	int i;
2101	u8 major_revision, minor_revision;
2102	struct xhci_hub *rhub;
2103
2104	temp = readl(addr);
2105	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2106	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2107
2108	if (major_revision == 0x03) {
2109		rhub = &xhci->usb3_rhub;
2110	} else if (major_revision <= 0x02) {
2111		rhub = &xhci->usb2_rhub;
2112	} else {
2113		xhci_warn(xhci, "Ignoring unknown port speed, "
2114				"Ext Cap %p, revision = 0x%x\n",
2115				addr, major_revision);
2116		/* Ignoring port protocol we can't understand. FIXME */
2117		return;
2118	}
2119	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2120
2121	if (rhub->min_rev < minor_revision)
2122		rhub->min_rev = minor_revision;
2123
2124	/* Port offset and count in the third dword, see section 7.2 */
2125	temp = readl(addr + 2);
2126	port_offset = XHCI_EXT_PORT_OFF(temp);
2127	port_count = XHCI_EXT_PORT_COUNT(temp);
2128	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2129			"Ext Cap %p, port offset = %u, "
2130			"count = %u, revision = 0x%x",
2131			addr, port_offset, port_count, major_revision);
2132	/* Port count includes the current port offset */
2133	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2134		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2135		return;
2136
2137	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2138	if (rhub->psi_count) {
2139		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2140				    GFP_KERNEL);
2141		if (!rhub->psi)
2142			rhub->psi_count = 0;
2143
2144		rhub->psi_uid_count++;
2145		for (i = 0; i < rhub->psi_count; i++) {
2146			rhub->psi[i] = readl(addr + 4 + i);
2147
2148			/* count unique ID values, two consecutive entries can
2149			 * have the same ID if link is assymetric
2150			 */
2151			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2152				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2153				rhub->psi_uid_count++;
2154
2155			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2156				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2157				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2158				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2159				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2160				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2161				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2162		}
2163	}
2164	/* cache usb2 port capabilities */
2165	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2166		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2167
2168	/* Check the host's USB2 LPM capability */
2169	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2170			(temp & XHCI_L1C)) {
2171		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2172				"xHCI 0.96: support USB2 software lpm");
2173		xhci->sw_lpm_support = 1;
2174	}
2175
2176	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2177		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2178				"xHCI 1.0: support USB2 software lpm");
2179		xhci->sw_lpm_support = 1;
2180		if (temp & XHCI_HLC) {
2181			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182					"xHCI 1.0: support USB2 hardware lpm");
2183			xhci->hw_lpm_support = 1;
2184		}
2185	}
2186
2187	port_offset--;
2188	for (i = port_offset; i < (port_offset + port_count); i++) {
2189		/* Duplicate entry.  Ignore the port if the revisions differ. */
2190		if (xhci->port_array[i] != 0) {
2191			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2192					" port %u\n", addr, i);
2193			xhci_warn(xhci, "Port was marked as USB %u, "
2194					"duplicated as USB %u\n",
2195					xhci->port_array[i], major_revision);
2196			/* Only adjust the roothub port counts if we haven't
2197			 * found a similar duplicate.
2198			 */
2199			if (xhci->port_array[i] != major_revision &&
2200				xhci->port_array[i] != DUPLICATE_ENTRY) {
2201				if (xhci->port_array[i] == 0x03)
2202					xhci->num_usb3_ports--;
2203				else
2204					xhci->num_usb2_ports--;
2205				xhci->port_array[i] = DUPLICATE_ENTRY;
2206			}
2207			/* FIXME: Should we disable the port? */
2208			continue;
2209		}
2210		xhci->port_array[i] = major_revision;
2211		if (major_revision == 0x03)
2212			xhci->num_usb3_ports++;
2213		else
2214			xhci->num_usb2_ports++;
2215	}
2216	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2217}
2218
2219/*
2220 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2221 * specify what speeds each port is supposed to be.  We can't count on the port
2222 * speed bits in the PORTSC register being correct until a device is connected,
2223 * but we need to set up the two fake roothubs with the correct number of USB
2224 * 3.0 and USB 2.0 ports at host controller initialization time.
2225 */
2226static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2227{
2228	void __iomem *base;
2229	u32 offset;
2230	unsigned int num_ports;
2231	int i, j, port_index;
2232	int cap_count = 0;
2233	u32 cap_start;
2234
2235	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2236	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2237	if (!xhci->port_array)
2238		return -ENOMEM;
2239
2240	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2241	if (!xhci->rh_bw)
2242		return -ENOMEM;
2243	for (i = 0; i < num_ports; i++) {
2244		struct xhci_interval_bw_table *bw_table;
2245
2246		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2247		bw_table = &xhci->rh_bw[i].bw_table;
2248		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2249			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2250	}
2251	base = &xhci->cap_regs->hc_capbase;
2252
2253	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2254	if (!cap_start) {
2255		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2256		return -ENODEV;
2257	}
2258
2259	offset = cap_start;
2260	/* count extended protocol capability entries for later caching */
2261	while (offset) {
2262		cap_count++;
2263		offset = xhci_find_next_ext_cap(base, offset,
2264						      XHCI_EXT_CAPS_PROTOCOL);
2265	}
2266
2267	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2268	if (!xhci->ext_caps)
2269		return -ENOMEM;
2270
2271	offset = cap_start;
2272
2273	while (offset) {
2274		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2275		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2276			break;
2277		offset = xhci_find_next_ext_cap(base, offset,
2278						XHCI_EXT_CAPS_PROTOCOL);
2279	}
2280
2281	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2282		xhci_warn(xhci, "No ports on the roothubs?\n");
2283		return -ENODEV;
2284	}
2285	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2286			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2287			xhci->num_usb2_ports, xhci->num_usb3_ports);
2288
2289	/* Place limits on the number of roothub ports so that the hub
2290	 * descriptors aren't longer than the USB core will allocate.
2291	 */
2292	if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2293		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2294				"Limiting USB 3.0 roothub ports to %u.",
2295				USB_SS_MAXPORTS);
2296		xhci->num_usb3_ports = USB_SS_MAXPORTS;
2297	}
2298	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2299		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2300				"Limiting USB 2.0 roothub ports to %u.",
2301				USB_MAXCHILDREN);
2302		xhci->num_usb2_ports = USB_MAXCHILDREN;
2303	}
2304
2305	/*
2306	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2307	 * Not sure how the USB core will handle a hub with no ports...
2308	 */
2309	if (xhci->num_usb2_ports) {
2310		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2311				xhci->num_usb2_ports, flags);
2312		if (!xhci->usb2_ports)
2313			return -ENOMEM;
2314
2315		port_index = 0;
2316		for (i = 0; i < num_ports; i++) {
2317			if (xhci->port_array[i] == 0x03 ||
2318					xhci->port_array[i] == 0 ||
2319					xhci->port_array[i] == DUPLICATE_ENTRY)
2320				continue;
2321
2322			xhci->usb2_ports[port_index] =
2323				&xhci->op_regs->port_status_base +
2324				NUM_PORT_REGS*i;
2325			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2326					"USB 2.0 port at index %u, "
2327					"addr = %p", i,
2328					xhci->usb2_ports[port_index]);
2329			port_index++;
2330			if (port_index == xhci->num_usb2_ports)
2331				break;
2332		}
2333	}
2334	if (xhci->num_usb3_ports) {
2335		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2336				xhci->num_usb3_ports, flags);
2337		if (!xhci->usb3_ports)
2338			return -ENOMEM;
2339
2340		port_index = 0;
2341		for (i = 0; i < num_ports; i++)
2342			if (xhci->port_array[i] == 0x03) {
2343				xhci->usb3_ports[port_index] =
2344					&xhci->op_regs->port_status_base +
2345					NUM_PORT_REGS*i;
2346				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347						"USB 3.0 port at index %u, "
2348						"addr = %p", i,
2349						xhci->usb3_ports[port_index]);
2350				port_index++;
2351				if (port_index == xhci->num_usb3_ports)
2352					break;
2353			}
2354	}
2355	return 0;
2356}
2357
2358int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2359{
2360	dma_addr_t	dma;
2361	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2362	unsigned int	val, val2;
2363	u64		val_64;
2364	u32		page_size, temp;
2365	int		i, ret;
 
2366
2367	INIT_LIST_HEAD(&xhci->cmd_list);
2368
2369	/* init command timeout work */
2370	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2371	init_completion(&xhci->cmd_ring_stop_completion);
2372
2373	page_size = readl(&xhci->op_regs->page_size);
2374	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375			"Supported page size register = 0x%x", page_size);
2376	for (i = 0; i < 16; i++) {
2377		if ((0x1 & page_size) != 0)
2378			break;
2379		page_size = page_size >> 1;
2380	}
2381	if (i < 16)
2382		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2383			"Supported page size of %iK", (1 << (i+12)) / 1024);
2384	else
2385		xhci_warn(xhci, "WARN: no supported page size\n");
2386	/* Use 4K pages, since that's common and the minimum the HC supports */
2387	xhci->page_shift = 12;
2388	xhci->page_size = 1 << xhci->page_shift;
2389	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390			"HCD page size set to %iK", xhci->page_size / 1024);
2391
2392	/*
2393	 * Program the Number of Device Slots Enabled field in the CONFIG
2394	 * register with the max value of slots the HC can handle.
2395	 */
2396	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2397	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398			"// xHC can handle at most %d device slots.", val);
2399	val2 = readl(&xhci->op_regs->config_reg);
2400	val |= (val2 & ~HCS_SLOTS_MASK);
2401	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402			"// Setting Max device slots reg = 0x%x.", val);
2403	writel(val, &xhci->op_regs->config_reg);
2404
2405	/*
2406	 * xHCI section 5.4.6 - doorbell array must be
2407	 * "physically contiguous and 64-byte (cache line) aligned".
2408	 */
2409	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2410			flags);
2411	if (!xhci->dcbaa)
2412		goto fail;
2413	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2414	xhci->dcbaa->dma = dma;
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2417			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2418	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2419
2420	/*
2421	 * Initialize the ring segment pool.  The ring must be a contiguous
2422	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2423	 * however, the command ring segment needs 64-byte aligned segments
2424	 * and our use of dma addresses in the trb_address_map radix tree needs
2425	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2426	 */
2427	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2428			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2429
2430	/* See Table 46 and Note on Figure 55 */
2431	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2432			2112, 64, xhci->page_size);
2433	if (!xhci->segment_pool || !xhci->device_pool)
2434		goto fail;
2435
2436	/* Linear stream context arrays don't have any boundary restrictions,
2437	 * and only need to be 16-byte aligned.
2438	 */
2439	xhci->small_streams_pool =
2440		dma_pool_create("xHCI 256 byte stream ctx arrays",
2441			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2442	xhci->medium_streams_pool =
2443		dma_pool_create("xHCI 1KB stream ctx arrays",
2444			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2445	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2446	 * will be allocated with dma_alloc_coherent()
2447	 */
2448
2449	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2450		goto fail;
2451
2452	/* Set up the command ring to have one segments for now. */
2453	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2454	if (!xhci->cmd_ring)
2455		goto fail;
2456	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2457			"Allocated command ring at %p", xhci->cmd_ring);
2458	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2459			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2460
2461	/* Set the address in the Command Ring Control register */
2462	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2463	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2464		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2465		xhci->cmd_ring->cycle_state;
2466	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467			"// Setting command ring address to 0x%016llx", val_64);
2468	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 
2469
2470	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2471	if (!xhci->lpm_command)
2472		goto fail;
2473
2474	/* Reserve one command ring TRB for disabling LPM.
2475	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2476	 * disabling LPM, we only need to reserve one TRB for all devices.
2477	 */
2478	xhci->cmd_ring_reserved_trbs++;
2479
2480	val = readl(&xhci->cap_regs->db_off);
2481	val &= DBOFF_MASK;
2482	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2483			"// Doorbell array is located at offset 0x%x"
2484			" from cap regs base addr", val);
2485	xhci->dba = (void __iomem *) xhci->cap_regs + val;
 
 
2486	/* Set ir_set to interrupt register set 0 */
2487	xhci->ir_set = &xhci->run_regs->ir_set[0];
2488
2489	/*
2490	 * Event ring setup: Allocate a normal ring, but also setup
2491	 * the event ring segment table (ERST).  Section 4.9.3.
2492	 */
2493	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2494	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2495					0, flags);
2496	if (!xhci->event_ring)
2497		goto fail;
2498	if (xhci_check_trb_in_td_math(xhci) < 0)
2499		goto fail;
2500
2501	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2502	if (ret)
 
 
2503		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2504
2505	/* set ERST count with the number of entries in the segment table */
2506	val = readl(&xhci->ir_set->erst_size);
2507	val &= ERST_SIZE_MASK;
2508	val |= ERST_NUM_SEGS;
2509	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2510			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2511			val);
2512	writel(val, &xhci->ir_set->erst_size);
2513
2514	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515			"// Set ERST entries to point to event ring.");
2516	/* set the segment table base address */
2517	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518			"// Set ERST base address for ir_set 0 = 0x%llx",
2519			(unsigned long long)xhci->erst.erst_dma_addr);
2520	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2521	val_64 &= ERST_PTR_MASK;
2522	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2523	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2524
2525	/* Set the event ring dequeue address */
2526	xhci_set_hc_event_deq(xhci);
2527	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528			"Wrote ERST address to ir_set 0.");
 
2529
2530	/*
2531	 * XXX: Might need to set the Interrupter Moderation Register to
2532	 * something other than the default (~1ms minimum between interrupts).
2533	 * See section 5.5.1.2.
2534	 */
2535	for (i = 0; i < MAX_HC_SLOTS; i++)
 
2536		xhci->devs[i] = NULL;
2537	for (i = 0; i < USB_MAXCHILDREN; i++) {
2538		xhci->bus_state[0].resume_done[i] = 0;
2539		xhci->bus_state[1].resume_done[i] = 0;
2540		/* Only the USB 2.0 completions will ever be used. */
2541		init_completion(&xhci->bus_state[1].rexit_done[i]);
2542	}
2543
2544	if (scratchpad_alloc(xhci, flags))
2545		goto fail;
2546	if (xhci_setup_port_arrays(xhci, flags))
2547		goto fail;
2548
2549	/* Enable USB 3.0 device notifications for function remote wake, which
2550	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2551	 * U3 (device suspend).
2552	 */
2553	temp = readl(&xhci->op_regs->dev_notification);
2554	temp &= ~DEV_NOTE_MASK;
2555	temp |= DEV_NOTE_FWAKE;
2556	writel(temp, &xhci->op_regs->dev_notification);
2557
2558	return 0;
2559
2560fail:
 
2561	xhci_halt(xhci);
2562	xhci_reset(xhci);
2563	xhci_mem_cleanup(xhci);
2564	return -ENOMEM;
2565}