Linux Audio

Check our new training course

Linux kernel drivers training

May 6-19, 2025
Register
Loading...
v4.6
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					unsigned int cycle_state, gfp_t flags)
 
 
  41{
  42	struct xhci_segment *seg;
  43	dma_addr_t	dma;
  44	int		i;
  45
  46	seg = kzalloc(sizeof *seg, flags);
  47	if (!seg)
  48		return NULL;
  49
  50	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  51	if (!seg->trbs) {
  52		kfree(seg);
  53		return NULL;
  54	}
  55
 
 
 
 
 
 
 
 
  56	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  57	if (cycle_state == 0) {
  58		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  59			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  60	}
  61	seg->dma = dma;
  62	seg->next = NULL;
  63
  64	return seg;
  65}
  66
  67static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  68{
  69	if (seg->trbs) {
  70		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  71		seg->trbs = NULL;
  72	}
 
  73	kfree(seg);
  74}
  75
  76static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  77				struct xhci_segment *first)
  78{
  79	struct xhci_segment *seg;
  80
  81	seg = first->next;
  82	while (seg != first) {
  83		struct xhci_segment *next = seg->next;
  84		xhci_segment_free(xhci, seg);
  85		seg = next;
  86	}
  87	xhci_segment_free(xhci, first);
  88}
  89
  90/*
  91 * Make the prev segment point to the next segment.
  92 *
  93 * Change the last TRB in the prev segment to be a Link TRB which points to the
  94 * DMA address of the next segment.  The caller needs to set any Link TRB
  95 * related flags, such as End TRB, Toggle Cycle, and no snoop.
  96 */
  97static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
  98		struct xhci_segment *next, enum xhci_ring_type type)
  99{
 100	u32 val;
 101
 102	if (!prev || !next)
 103		return;
 104	prev->next = next;
 105	if (type != TYPE_EVENT) {
 106		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 107			cpu_to_le64(next->dma);
 108
 109		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 110		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 111		val &= ~TRB_TYPE_BITMASK;
 112		val |= TRB_TYPE(TRB_LINK);
 113		/* Always set the chain bit with 0.95 hardware */
 114		/* Set chain bit for isoc rings on AMD 0.96 host */
 115		if (xhci_link_trb_quirk(xhci) ||
 116				(type == TYPE_ISOC &&
 117				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 118			val |= TRB_CHAIN;
 119		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 120	}
 121}
 122
 123/*
 124 * Link the ring to the new segments.
 125 * Set Toggle Cycle for the new ring if needed.
 126 */
 127static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 128		struct xhci_segment *first, struct xhci_segment *last,
 129		unsigned int num_segs)
 130{
 131	struct xhci_segment *next;
 132
 133	if (!ring || !first || !last)
 134		return;
 135
 136	next = ring->enq_seg->next;
 137	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 138	xhci_link_segments(xhci, last, next, ring->type);
 139	ring->num_segs += num_segs;
 140	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 141
 142	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 143		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 144			&= ~cpu_to_le32(LINK_TOGGLE);
 145		last->trbs[TRBS_PER_SEGMENT-1].link.control
 146			|= cpu_to_le32(LINK_TOGGLE);
 147		ring->last_seg = last;
 148	}
 149}
 150
 151/*
 152 * We need a radix tree for mapping physical addresses of TRBs to which stream
 153 * ID they belong to.  We need to do this because the host controller won't tell
 154 * us which stream ring the TRB came from.  We could store the stream ID in an
 155 * event data TRB, but that doesn't help us for the cancellation case, since the
 156 * endpoint may stop before it reaches that event data TRB.
 157 *
 158 * The radix tree maps the upper portion of the TRB DMA address to a ring
 159 * segment that has the same upper portion of DMA addresses.  For example, say I
 160 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 161 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 162 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 163 * pass the radix tree a key to get the right stream ID:
 164 *
 165 *	0x10c90fff >> 10 = 0x43243
 166 *	0x10c912c0 >> 10 = 0x43244
 167 *	0x10c91400 >> 10 = 0x43245
 168 *
 169 * Obviously, only those TRBs with DMA addresses that are within the segment
 170 * will make the radix tree return the stream ID for that ring.
 171 *
 172 * Caveats for the radix tree:
 173 *
 174 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 175 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 176 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 177 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 178 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 179 * extended systems (where the DMA address can be bigger than 32-bits),
 180 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 181 */
 182static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 183		struct xhci_ring *ring,
 184		struct xhci_segment *seg,
 185		gfp_t mem_flags)
 186{
 187	unsigned long key;
 188	int ret;
 189
 190	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 191	/* Skip any segments that were already added. */
 192	if (radix_tree_lookup(trb_address_map, key))
 193		return 0;
 194
 195	ret = radix_tree_maybe_preload(mem_flags);
 196	if (ret)
 197		return ret;
 198	ret = radix_tree_insert(trb_address_map,
 199			key, ring);
 200	radix_tree_preload_end();
 201	return ret;
 202}
 203
 204static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 205		struct xhci_segment *seg)
 206{
 207	unsigned long key;
 208
 209	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 210	if (radix_tree_lookup(trb_address_map, key))
 211		radix_tree_delete(trb_address_map, key);
 212}
 213
 214static int xhci_update_stream_segment_mapping(
 215		struct radix_tree_root *trb_address_map,
 216		struct xhci_ring *ring,
 217		struct xhci_segment *first_seg,
 218		struct xhci_segment *last_seg,
 219		gfp_t mem_flags)
 220{
 221	struct xhci_segment *seg;
 222	struct xhci_segment *failed_seg;
 223	int ret;
 224
 225	if (WARN_ON_ONCE(trb_address_map == NULL))
 226		return 0;
 227
 228	seg = first_seg;
 229	do {
 230		ret = xhci_insert_segment_mapping(trb_address_map,
 231				ring, seg, mem_flags);
 232		if (ret)
 233			goto remove_streams;
 234		if (seg == last_seg)
 235			return 0;
 236		seg = seg->next;
 237	} while (seg != first_seg);
 238
 239	return 0;
 240
 241remove_streams:
 242	failed_seg = seg;
 243	seg = first_seg;
 244	do {
 245		xhci_remove_segment_mapping(trb_address_map, seg);
 246		if (seg == failed_seg)
 247			return ret;
 248		seg = seg->next;
 249	} while (seg != first_seg);
 250
 251	return ret;
 252}
 253
 254static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 255{
 256	struct xhci_segment *seg;
 257
 258	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 259		return;
 260
 261	seg = ring->first_seg;
 262	do {
 263		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 264		seg = seg->next;
 265	} while (seg != ring->first_seg);
 266}
 267
 268static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 269{
 270	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 271			ring->first_seg, ring->last_seg, mem_flags);
 272}
 273
 274/* XXX: Do we need the hcd structure in all these functions? */
 275void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 276{
 277	if (!ring)
 278		return;
 279
 280	if (ring->first_seg) {
 281		if (ring->type == TYPE_STREAM)
 282			xhci_remove_stream_mapping(ring);
 283		xhci_free_segments_for_ring(xhci, ring->first_seg);
 284	}
 285
 286	kfree(ring);
 287}
 288
 289static void xhci_initialize_ring_info(struct xhci_ring *ring,
 290					unsigned int cycle_state)
 291{
 292	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 293	ring->enqueue = ring->first_seg->trbs;
 294	ring->enq_seg = ring->first_seg;
 295	ring->dequeue = ring->enqueue;
 296	ring->deq_seg = ring->first_seg;
 297	/* The ring is initialized to 0. The producer must write 1 to the cycle
 298	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 299	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 300	 *
 301	 * New rings are initialized with cycle state equal to 1; if we are
 302	 * handling ring expansion, set the cycle state equal to the old ring.
 303	 */
 304	ring->cycle_state = cycle_state;
 305	/* Not necessary for new rings, but needed for re-initialized rings */
 306	ring->enq_updates = 0;
 307	ring->deq_updates = 0;
 308
 309	/*
 310	 * Each segment has a link TRB, and leave an extra TRB for SW
 311	 * accounting purpose
 312	 */
 313	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 314}
 315
 316/* Allocate segments and link them for a ring */
 317static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 318		struct xhci_segment **first, struct xhci_segment **last,
 319		unsigned int num_segs, unsigned int cycle_state,
 320		enum xhci_ring_type type, gfp_t flags)
 321{
 322	struct xhci_segment *prev;
 323
 324	prev = xhci_segment_alloc(xhci, cycle_state, flags);
 325	if (!prev)
 326		return -ENOMEM;
 327	num_segs--;
 328
 329	*first = prev;
 330	while (num_segs > 0) {
 331		struct xhci_segment	*next;
 332
 333		next = xhci_segment_alloc(xhci, cycle_state, flags);
 334		if (!next) {
 335			prev = *first;
 336			while (prev) {
 337				next = prev->next;
 338				xhci_segment_free(xhci, prev);
 339				prev = next;
 340			}
 341			return -ENOMEM;
 342		}
 343		xhci_link_segments(xhci, prev, next, type);
 344
 345		prev = next;
 346		num_segs--;
 347	}
 348	xhci_link_segments(xhci, prev, *first, type);
 349	*last = prev;
 350
 351	return 0;
 352}
 353
 354/**
 355 * Create a new ring with zero or more segments.
 356 *
 357 * Link each segment together into a ring.
 358 * Set the end flag and the cycle toggle bit on the last segment.
 359 * See section 4.9.1 and figures 15 and 16.
 360 */
 361static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 362		unsigned int num_segs, unsigned int cycle_state,
 363		enum xhci_ring_type type, gfp_t flags)
 364{
 365	struct xhci_ring	*ring;
 366	int ret;
 367
 368	ring = kzalloc(sizeof *(ring), flags);
 369	if (!ring)
 370		return NULL;
 371
 372	ring->num_segs = num_segs;
 
 373	INIT_LIST_HEAD(&ring->td_list);
 374	ring->type = type;
 375	if (num_segs == 0)
 376		return ring;
 377
 378	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 379			&ring->last_seg, num_segs, cycle_state, type, flags);
 
 380	if (ret)
 381		goto fail;
 382
 383	/* Only event ring does not use link TRB */
 384	if (type != TYPE_EVENT) {
 385		/* See section 4.9.2.1 and 6.4.4.1 */
 386		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 387			cpu_to_le32(LINK_TOGGLE);
 388	}
 389	xhci_initialize_ring_info(ring, cycle_state);
 390	return ring;
 391
 392fail:
 393	kfree(ring);
 394	return NULL;
 395}
 396
 397void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 398		struct xhci_virt_device *virt_dev,
 399		unsigned int ep_index)
 400{
 401	int rings_cached;
 402
 403	rings_cached = virt_dev->num_rings_cached;
 404	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 405		virt_dev->ring_cache[rings_cached] =
 406			virt_dev->eps[ep_index].ring;
 407		virt_dev->num_rings_cached++;
 408		xhci_dbg(xhci, "Cached old ring, "
 409				"%d ring%s cached\n",
 410				virt_dev->num_rings_cached,
 411				(virt_dev->num_rings_cached > 1) ? "s" : "");
 412	} else {
 413		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 414		xhci_dbg(xhci, "Ring cache full (%d rings), "
 415				"freeing ring\n",
 416				virt_dev->num_rings_cached);
 417	}
 418	virt_dev->eps[ep_index].ring = NULL;
 419}
 420
 421/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 422 * pointers to the beginning of the ring.
 423 */
 424static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 425			struct xhci_ring *ring, unsigned int cycle_state,
 426			enum xhci_ring_type type)
 427{
 428	struct xhci_segment	*seg = ring->first_seg;
 429	int i;
 430
 431	do {
 432		memset(seg->trbs, 0,
 433				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 434		if (cycle_state == 0) {
 435			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 436				seg->trbs[i].link.control |=
 437					cpu_to_le32(TRB_CYCLE);
 438		}
 439		/* All endpoint rings have link TRBs */
 440		xhci_link_segments(xhci, seg, seg->next, type);
 441		seg = seg->next;
 442	} while (seg != ring->first_seg);
 443	ring->type = type;
 444	xhci_initialize_ring_info(ring, cycle_state);
 445	/* td list should be empty since all URBs have been cancelled,
 446	 * but just in case...
 447	 */
 448	INIT_LIST_HEAD(&ring->td_list);
 449}
 450
 451/*
 452 * Expand an existing ring.
 453 * Look for a cached ring or allocate a new ring which has same segment numbers
 454 * and link the two rings.
 455 */
 456int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 457				unsigned int num_trbs, gfp_t flags)
 458{
 459	struct xhci_segment	*first;
 460	struct xhci_segment	*last;
 461	unsigned int		num_segs;
 462	unsigned int		num_segs_needed;
 463	int			ret;
 464
 465	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 466				(TRBS_PER_SEGMENT - 1);
 467
 468	/* Allocate number of segments we needed, or double the ring size */
 469	num_segs = ring->num_segs > num_segs_needed ?
 470			ring->num_segs : num_segs_needed;
 471
 472	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 473			num_segs, ring->cycle_state, ring->type, flags);
 
 474	if (ret)
 475		return -ENOMEM;
 476
 477	if (ring->type == TYPE_STREAM)
 478		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 479						ring, first, last, flags);
 480	if (ret) {
 481		struct xhci_segment *next;
 482		do {
 483			next = first->next;
 484			xhci_segment_free(xhci, first);
 485			if (first == last)
 486				break;
 487			first = next;
 488		} while (true);
 489		return ret;
 490	}
 491
 492	xhci_link_rings(xhci, ring, first, last, num_segs);
 493	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 494			"ring expansion succeed, now has %d segments",
 495			ring->num_segs);
 496
 497	return 0;
 498}
 499
 500#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 501
 502static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 503						    int type, gfp_t flags)
 504{
 505	struct xhci_container_ctx *ctx;
 506
 507	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 508		return NULL;
 509
 510	ctx = kzalloc(sizeof(*ctx), flags);
 511	if (!ctx)
 512		return NULL;
 513
 514	ctx->type = type;
 515	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 516	if (type == XHCI_CTX_TYPE_INPUT)
 517		ctx->size += CTX_SIZE(xhci->hcc_params);
 518
 519	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 520	if (!ctx->bytes) {
 521		kfree(ctx);
 522		return NULL;
 523	}
 524	return ctx;
 525}
 526
 527static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 528			     struct xhci_container_ctx *ctx)
 529{
 530	if (!ctx)
 531		return;
 532	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 533	kfree(ctx);
 534}
 535
 536struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 537					      struct xhci_container_ctx *ctx)
 538{
 539	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 540		return NULL;
 541
 542	return (struct xhci_input_control_ctx *)ctx->bytes;
 543}
 544
 545struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 546					struct xhci_container_ctx *ctx)
 547{
 548	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 549		return (struct xhci_slot_ctx *)ctx->bytes;
 550
 551	return (struct xhci_slot_ctx *)
 552		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 553}
 554
 555struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 556				    struct xhci_container_ctx *ctx,
 557				    unsigned int ep_index)
 558{
 559	/* increment ep index by offset of start of ep ctx array */
 560	ep_index++;
 561	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 562		ep_index++;
 563
 564	return (struct xhci_ep_ctx *)
 565		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 566}
 567
 568
 569/***************** Streams structures manipulation *************************/
 570
 571static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 572		unsigned int num_stream_ctxs,
 573		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 574{
 575	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 576	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 577
 578	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 579		dma_free_coherent(dev, size,
 580				stream_ctx, dma);
 581	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 582		return dma_pool_free(xhci->small_streams_pool,
 583				stream_ctx, dma);
 584	else
 585		return dma_pool_free(xhci->medium_streams_pool,
 586				stream_ctx, dma);
 587}
 588
 589/*
 590 * The stream context array for each endpoint with bulk streams enabled can
 591 * vary in size, based on:
 592 *  - how many streams the endpoint supports,
 593 *  - the maximum primary stream array size the host controller supports,
 594 *  - and how many streams the device driver asks for.
 595 *
 596 * The stream context array must be a power of 2, and can be as small as
 597 * 64 bytes or as large as 1MB.
 598 */
 599static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 600		unsigned int num_stream_ctxs, dma_addr_t *dma,
 601		gfp_t mem_flags)
 602{
 603	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 604	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 605
 606	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 607		return dma_alloc_coherent(dev, size,
 608				dma, mem_flags);
 609	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 610		return dma_pool_alloc(xhci->small_streams_pool,
 611				mem_flags, dma);
 612	else
 613		return dma_pool_alloc(xhci->medium_streams_pool,
 614				mem_flags, dma);
 615}
 616
 617struct xhci_ring *xhci_dma_to_transfer_ring(
 618		struct xhci_virt_ep *ep,
 619		u64 address)
 620{
 621	if (ep->ep_state & EP_HAS_STREAMS)
 622		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 623				address >> TRB_SEGMENT_SHIFT);
 624	return ep->ring;
 625}
 626
 627struct xhci_ring *xhci_stream_id_to_ring(
 628		struct xhci_virt_device *dev,
 629		unsigned int ep_index,
 630		unsigned int stream_id)
 631{
 632	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 633
 634	if (stream_id == 0)
 635		return ep->ring;
 636	if (!ep->stream_info)
 637		return NULL;
 638
 639	if (stream_id > ep->stream_info->num_streams)
 640		return NULL;
 641	return ep->stream_info->stream_rings[stream_id];
 642}
 643
 644/*
 645 * Change an endpoint's internal structure so it supports stream IDs.  The
 646 * number of requested streams includes stream 0, which cannot be used by device
 647 * drivers.
 648 *
 649 * The number of stream contexts in the stream context array may be bigger than
 650 * the number of streams the driver wants to use.  This is because the number of
 651 * stream context array entries must be a power of two.
 652 */
 653struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 654		unsigned int num_stream_ctxs,
 655		unsigned int num_streams, gfp_t mem_flags)
 
 656{
 657	struct xhci_stream_info *stream_info;
 658	u32 cur_stream;
 659	struct xhci_ring *cur_ring;
 660	u64 addr;
 661	int ret;
 662
 663	xhci_dbg(xhci, "Allocating %u streams and %u "
 664			"stream context array entries.\n",
 665			num_streams, num_stream_ctxs);
 666	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 667		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 668		return NULL;
 669	}
 670	xhci->cmd_ring_reserved_trbs++;
 671
 672	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 673	if (!stream_info)
 674		goto cleanup_trbs;
 675
 676	stream_info->num_streams = num_streams;
 677	stream_info->num_stream_ctxs = num_stream_ctxs;
 678
 679	/* Initialize the array of virtual pointers to stream rings. */
 680	stream_info->stream_rings = kzalloc(
 681			sizeof(struct xhci_ring *)*num_streams,
 682			mem_flags);
 683	if (!stream_info->stream_rings)
 684		goto cleanup_info;
 685
 686	/* Initialize the array of DMA addresses for stream rings for the HW. */
 687	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 688			num_stream_ctxs, &stream_info->ctx_array_dma,
 689			mem_flags);
 690	if (!stream_info->stream_ctx_array)
 691		goto cleanup_ctx;
 692	memset(stream_info->stream_ctx_array, 0,
 693			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 694
 695	/* Allocate everything needed to free the stream rings later */
 696	stream_info->free_streams_command =
 697		xhci_alloc_command(xhci, true, true, mem_flags);
 698	if (!stream_info->free_streams_command)
 699		goto cleanup_ctx;
 700
 701	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 702
 703	/* Allocate rings for all the streams that the driver will use,
 704	 * and add their segment DMA addresses to the radix tree.
 705	 * Stream 0 is reserved.
 706	 */
 
 707	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 708		stream_info->stream_rings[cur_stream] =
 709			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
 
 710		cur_ring = stream_info->stream_rings[cur_stream];
 711		if (!cur_ring)
 712			goto cleanup_rings;
 713		cur_ring->stream_id = cur_stream;
 714		cur_ring->trb_address_map = &stream_info->trb_address_map;
 715		/* Set deq ptr, cycle bit, and stream context type */
 716		addr = cur_ring->first_seg->dma |
 717			SCT_FOR_CTX(SCT_PRI_TR) |
 718			cur_ring->cycle_state;
 719		stream_info->stream_ctx_array[cur_stream].stream_ring =
 720			cpu_to_le64(addr);
 721		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 722				cur_stream, (unsigned long long) addr);
 723
 724		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 725		if (ret) {
 726			xhci_ring_free(xhci, cur_ring);
 727			stream_info->stream_rings[cur_stream] = NULL;
 728			goto cleanup_rings;
 729		}
 730	}
 731	/* Leave the other unused stream ring pointers in the stream context
 732	 * array initialized to zero.  This will cause the xHC to give us an
 733	 * error if the device asks for a stream ID we don't have setup (if it
 734	 * was any other way, the host controller would assume the ring is
 735	 * "empty" and wait forever for data to be queued to that stream ID).
 736	 */
 737
 738	return stream_info;
 739
 740cleanup_rings:
 741	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 742		cur_ring = stream_info->stream_rings[cur_stream];
 743		if (cur_ring) {
 744			xhci_ring_free(xhci, cur_ring);
 745			stream_info->stream_rings[cur_stream] = NULL;
 746		}
 747	}
 748	xhci_free_command(xhci, stream_info->free_streams_command);
 749cleanup_ctx:
 750	kfree(stream_info->stream_rings);
 751cleanup_info:
 752	kfree(stream_info);
 753cleanup_trbs:
 754	xhci->cmd_ring_reserved_trbs--;
 755	return NULL;
 756}
 757/*
 758 * Sets the MaxPStreams field and the Linear Stream Array field.
 759 * Sets the dequeue pointer to the stream context array.
 760 */
 761void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 762		struct xhci_ep_ctx *ep_ctx,
 763		struct xhci_stream_info *stream_info)
 764{
 765	u32 max_primary_streams;
 766	/* MaxPStreams is the number of stream context array entries, not the
 767	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 768	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 769	 */
 770	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 771	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 772			"Setting number of stream ctx array entries to %u",
 773			1 << (max_primary_streams + 1));
 774	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 775	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 776				       | EP_HAS_LSA);
 777	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 778}
 779
 780/*
 781 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 782 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 783 * not at the beginning of the ring).
 784 */
 785void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 786		struct xhci_virt_ep *ep)
 787{
 788	dma_addr_t addr;
 789	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 790	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 791	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 792}
 793
 794/* Frees all stream contexts associated with the endpoint,
 795 *
 796 * Caller should fix the endpoint context streams fields.
 797 */
 798void xhci_free_stream_info(struct xhci_hcd *xhci,
 799		struct xhci_stream_info *stream_info)
 800{
 801	int cur_stream;
 802	struct xhci_ring *cur_ring;
 803
 804	if (!stream_info)
 805		return;
 806
 807	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 808			cur_stream++) {
 809		cur_ring = stream_info->stream_rings[cur_stream];
 810		if (cur_ring) {
 811			xhci_ring_free(xhci, cur_ring);
 812			stream_info->stream_rings[cur_stream] = NULL;
 813		}
 814	}
 815	xhci_free_command(xhci, stream_info->free_streams_command);
 816	xhci->cmd_ring_reserved_trbs--;
 817	if (stream_info->stream_ctx_array)
 818		xhci_free_stream_ctx(xhci,
 819				stream_info->num_stream_ctxs,
 820				stream_info->stream_ctx_array,
 821				stream_info->ctx_array_dma);
 822
 823	kfree(stream_info->stream_rings);
 824	kfree(stream_info);
 825}
 826
 827
 828/***************** Device context manipulation *************************/
 829
 830static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 831		struct xhci_virt_ep *ep)
 832{
 833	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 834		    (unsigned long)ep);
 835	ep->xhci = xhci;
 836}
 837
 838static void xhci_free_tt_info(struct xhci_hcd *xhci,
 839		struct xhci_virt_device *virt_dev,
 840		int slot_id)
 841{
 842	struct list_head *tt_list_head;
 843	struct xhci_tt_bw_info *tt_info, *next;
 844	bool slot_found = false;
 845
 846	/* If the device never made it past the Set Address stage,
 847	 * it may not have the real_port set correctly.
 848	 */
 849	if (virt_dev->real_port == 0 ||
 850			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 851		xhci_dbg(xhci, "Bad real port.\n");
 852		return;
 853	}
 854
 855	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 856	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 857		/* Multi-TT hubs will have more than one entry */
 858		if (tt_info->slot_id == slot_id) {
 859			slot_found = true;
 860			list_del(&tt_info->tt_list);
 861			kfree(tt_info);
 862		} else if (slot_found) {
 863			break;
 864		}
 865	}
 866}
 867
 868int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 869		struct xhci_virt_device *virt_dev,
 870		struct usb_device *hdev,
 871		struct usb_tt *tt, gfp_t mem_flags)
 872{
 873	struct xhci_tt_bw_info		*tt_info;
 874	unsigned int			num_ports;
 875	int				i, j;
 876
 877	if (!tt->multi)
 878		num_ports = 1;
 879	else
 880		num_ports = hdev->maxchild;
 881
 882	for (i = 0; i < num_ports; i++, tt_info++) {
 883		struct xhci_interval_bw_table *bw_table;
 884
 885		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 886		if (!tt_info)
 887			goto free_tts;
 888		INIT_LIST_HEAD(&tt_info->tt_list);
 889		list_add(&tt_info->tt_list,
 890				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 891		tt_info->slot_id = virt_dev->udev->slot_id;
 892		if (tt->multi)
 893			tt_info->ttport = i+1;
 894		bw_table = &tt_info->bw_table;
 895		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 896			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 897	}
 898	return 0;
 899
 900free_tts:
 901	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 902	return -ENOMEM;
 903}
 904
 905
 906/* All the xhci_tds in the ring's TD list should be freed at this point.
 907 * Should be called with xhci->lock held if there is any chance the TT lists
 908 * will be manipulated by the configure endpoint, allocate device, or update
 909 * hub functions while this function is removing the TT entries from the list.
 910 */
 911void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 912{
 913	struct xhci_virt_device *dev;
 914	int i;
 915	int old_active_eps = 0;
 916
 917	/* Slot ID 0 is reserved */
 918	if (slot_id == 0 || !xhci->devs[slot_id])
 919		return;
 920
 921	dev = xhci->devs[slot_id];
 922	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 923	if (!dev)
 924		return;
 925
 926	if (dev->tt_info)
 927		old_active_eps = dev->tt_info->active_eps;
 928
 929	for (i = 0; i < 31; ++i) {
 930		if (dev->eps[i].ring)
 931			xhci_ring_free(xhci, dev->eps[i].ring);
 932		if (dev->eps[i].stream_info)
 933			xhci_free_stream_info(xhci,
 934					dev->eps[i].stream_info);
 935		/* Endpoints on the TT/root port lists should have been removed
 936		 * when usb_disable_device() was called for the device.
 937		 * We can't drop them anyway, because the udev might have gone
 938		 * away by this point, and we can't tell what speed it was.
 939		 */
 940		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 941			xhci_warn(xhci, "Slot %u endpoint %u "
 942					"not removed from BW list!\n",
 943					slot_id, i);
 944	}
 945	/* If this is a hub, free the TT(s) from the TT list */
 946	xhci_free_tt_info(xhci, dev, slot_id);
 947	/* If necessary, update the number of active TTs on this root port */
 948	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 949
 950	if (dev->ring_cache) {
 951		for (i = 0; i < dev->num_rings_cached; i++)
 952			xhci_ring_free(xhci, dev->ring_cache[i]);
 953		kfree(dev->ring_cache);
 954	}
 955
 956	if (dev->in_ctx)
 957		xhci_free_container_ctx(xhci, dev->in_ctx);
 958	if (dev->out_ctx)
 959		xhci_free_container_ctx(xhci, dev->out_ctx);
 960
 961	kfree(xhci->devs[slot_id]);
 962	xhci->devs[slot_id] = NULL;
 963}
 964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 965int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
 966		struct usb_device *udev, gfp_t flags)
 967{
 968	struct xhci_virt_device *dev;
 969	int i;
 970
 971	/* Slot ID 0 is reserved */
 972	if (slot_id == 0 || xhci->devs[slot_id]) {
 973		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
 974		return 0;
 975	}
 976
 977	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
 978	if (!xhci->devs[slot_id])
 979		return 0;
 980	dev = xhci->devs[slot_id];
 981
 982	/* Allocate the (output) device context that will be used in the HC. */
 983	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
 984	if (!dev->out_ctx)
 985		goto fail;
 986
 987	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
 988			(unsigned long long)dev->out_ctx->dma);
 989
 990	/* Allocate the (input) device context for address device command */
 991	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
 992	if (!dev->in_ctx)
 993		goto fail;
 994
 995	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
 996			(unsigned long long)dev->in_ctx->dma);
 997
 998	/* Initialize the cancellation list and watchdog timers for each ep */
 999	for (i = 0; i < 31; i++) {
1000		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1001		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1002		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1003	}
1004
1005	/* Allocate endpoint 0 ring */
1006	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1007	if (!dev->eps[0].ring)
1008		goto fail;
1009
1010	/* Allocate pointers to the ring cache */
1011	dev->ring_cache = kzalloc(
1012			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1013			flags);
1014	if (!dev->ring_cache)
1015		goto fail;
1016	dev->num_rings_cached = 0;
1017
1018	init_completion(&dev->cmd_completion);
1019	dev->udev = udev;
1020
1021	/* Point to output device context in dcbaa. */
1022	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1023	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1024		 slot_id,
1025		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1026		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1027
1028	return 1;
1029fail:
1030	xhci_free_virt_device(xhci, slot_id);
1031	return 0;
1032}
1033
1034void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1035		struct usb_device *udev)
1036{
1037	struct xhci_virt_device *virt_dev;
1038	struct xhci_ep_ctx	*ep0_ctx;
1039	struct xhci_ring	*ep_ring;
1040
1041	virt_dev = xhci->devs[udev->slot_id];
1042	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1043	ep_ring = virt_dev->eps[0].ring;
1044	/*
1045	 * FIXME we don't keep track of the dequeue pointer very well after a
1046	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1047	 * host to our enqueue pointer.  This should only be called after a
1048	 * configured device has reset, so all control transfers should have
1049	 * been completed or cancelled before the reset.
1050	 */
1051	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1052							ep_ring->enqueue)
1053				   | ep_ring->cycle_state);
1054}
1055
1056/*
1057 * The xHCI roothub may have ports of differing speeds in any order in the port
1058 * status registers.  xhci->port_array provides an array of the port speed for
1059 * each offset into the port status registers.
1060 *
1061 * The xHCI hardware wants to know the roothub port number that the USB device
1062 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1063 * know is the index of that port under either the USB 2.0 or the USB 3.0
1064 * roothub, but that doesn't give us the real index into the HW port status
1065 * registers. Call xhci_find_raw_port_number() to get real index.
1066 */
1067static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1068		struct usb_device *udev)
1069{
1070	struct usb_device *top_dev;
1071	struct usb_hcd *hcd;
1072
1073	if (udev->speed >= USB_SPEED_SUPER)
1074		hcd = xhci->shared_hcd;
1075	else
1076		hcd = xhci->main_hcd;
1077
1078	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1079			top_dev = top_dev->parent)
1080		/* Found device below root hub */;
1081
1082	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1083}
1084
1085/* Setup an xHCI virtual device for a Set Address command */
1086int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1087{
1088	struct xhci_virt_device *dev;
1089	struct xhci_ep_ctx	*ep0_ctx;
1090	struct xhci_slot_ctx    *slot_ctx;
1091	u32			port_num;
1092	u32			max_packets;
1093	struct usb_device *top_dev;
1094
1095	dev = xhci->devs[udev->slot_id];
1096	/* Slot ID 0 is reserved */
1097	if (udev->slot_id == 0 || !dev) {
1098		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1099				udev->slot_id);
1100		return -EINVAL;
1101	}
1102	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1103	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1104
1105	/* 3) Only the control endpoint is valid - one endpoint context */
1106	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1107	switch (udev->speed) {
1108	case USB_SPEED_SUPER_PLUS:
1109		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1110		max_packets = MAX_PACKET(512);
1111		break;
1112	case USB_SPEED_SUPER:
1113		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1114		max_packets = MAX_PACKET(512);
1115		break;
1116	case USB_SPEED_HIGH:
1117		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1118		max_packets = MAX_PACKET(64);
1119		break;
1120	/* USB core guesses at a 64-byte max packet first for FS devices */
1121	case USB_SPEED_FULL:
1122		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1123		max_packets = MAX_PACKET(64);
1124		break;
1125	case USB_SPEED_LOW:
1126		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1127		max_packets = MAX_PACKET(8);
1128		break;
1129	case USB_SPEED_WIRELESS:
1130		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1131		return -EINVAL;
1132		break;
1133	default:
1134		/* Speed was set earlier, this shouldn't happen. */
1135		return -EINVAL;
1136	}
1137	/* Find the root hub port this device is under */
1138	port_num = xhci_find_real_port_number(xhci, udev);
1139	if (!port_num)
1140		return -EINVAL;
1141	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1142	/* Set the port number in the virtual_device to the faked port number */
1143	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1144			top_dev = top_dev->parent)
1145		/* Found device below root hub */;
1146	dev->fake_port = top_dev->portnum;
1147	dev->real_port = port_num;
1148	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1149	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1150
1151	/* Find the right bandwidth table that this device will be a part of.
1152	 * If this is a full speed device attached directly to a root port (or a
1153	 * decendent of one), it counts as a primary bandwidth domain, not a
1154	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1155	 * will never be created for the HS root hub.
1156	 */
1157	if (!udev->tt || !udev->tt->hub->parent) {
1158		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1159	} else {
1160		struct xhci_root_port_bw_info *rh_bw;
1161		struct xhci_tt_bw_info *tt_bw;
1162
1163		rh_bw = &xhci->rh_bw[port_num - 1];
1164		/* Find the right TT. */
1165		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1166			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1167				continue;
1168
1169			if (!dev->udev->tt->multi ||
1170					(udev->tt->multi &&
1171					 tt_bw->ttport == dev->udev->ttport)) {
1172				dev->bw_table = &tt_bw->bw_table;
1173				dev->tt_info = tt_bw;
1174				break;
1175			}
1176		}
1177		if (!dev->tt_info)
1178			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1179	}
1180
1181	/* Is this a LS/FS device under an external HS hub? */
1182	if (udev->tt && udev->tt->hub->parent) {
1183		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1184						(udev->ttport << 8));
1185		if (udev->tt->multi)
1186			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1187	}
1188	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1189	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1190
1191	/* Step 4 - ring already allocated */
1192	/* Step 5 */
1193	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1194
1195	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1196	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1197					 max_packets);
1198
1199	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1200				   dev->eps[0].ring->cycle_state);
1201
1202	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1203
1204	return 0;
1205}
1206
1207/*
1208 * Convert interval expressed as 2^(bInterval - 1) == interval into
1209 * straight exponent value 2^n == interval.
1210 *
1211 */
1212static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1213		struct usb_host_endpoint *ep)
1214{
1215	unsigned int interval;
1216
1217	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1218	if (interval != ep->desc.bInterval - 1)
1219		dev_warn(&udev->dev,
1220			 "ep %#x - rounding interval to %d %sframes\n",
1221			 ep->desc.bEndpointAddress,
1222			 1 << interval,
1223			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1224
1225	if (udev->speed == USB_SPEED_FULL) {
1226		/*
1227		 * Full speed isoc endpoints specify interval in frames,
1228		 * not microframes. We are using microframes everywhere,
1229		 * so adjust accordingly.
1230		 */
1231		interval += 3;	/* 1 frame = 2^3 uframes */
1232	}
1233
1234	return interval;
1235}
1236
1237/*
1238 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1239 * microframes, rounded down to nearest power of 2.
1240 */
1241static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1242		struct usb_host_endpoint *ep, unsigned int desc_interval,
1243		unsigned int min_exponent, unsigned int max_exponent)
1244{
1245	unsigned int interval;
1246
1247	interval = fls(desc_interval) - 1;
1248	interval = clamp_val(interval, min_exponent, max_exponent);
1249	if ((1 << interval) != desc_interval)
1250		dev_dbg(&udev->dev,
1251			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1252			 ep->desc.bEndpointAddress,
1253			 1 << interval,
1254			 desc_interval);
1255
1256	return interval;
1257}
1258
1259static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1260		struct usb_host_endpoint *ep)
1261{
1262	if (ep->desc.bInterval == 0)
1263		return 0;
1264	return xhci_microframes_to_exponent(udev, ep,
1265			ep->desc.bInterval, 0, 15);
1266}
1267
1268
1269static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1270		struct usb_host_endpoint *ep)
1271{
1272	return xhci_microframes_to_exponent(udev, ep,
1273			ep->desc.bInterval * 8, 3, 10);
1274}
1275
1276/* Return the polling or NAK interval.
1277 *
1278 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1279 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1280 *
1281 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1282 * is set to 0.
1283 */
1284static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1285		struct usb_host_endpoint *ep)
1286{
1287	unsigned int interval = 0;
1288
1289	switch (udev->speed) {
1290	case USB_SPEED_HIGH:
1291		/* Max NAK rate */
1292		if (usb_endpoint_xfer_control(&ep->desc) ||
1293		    usb_endpoint_xfer_bulk(&ep->desc)) {
1294			interval = xhci_parse_microframe_interval(udev, ep);
1295			break;
1296		}
1297		/* Fall through - SS and HS isoc/int have same decoding */
1298
1299	case USB_SPEED_SUPER_PLUS:
1300	case USB_SPEED_SUPER:
1301		if (usb_endpoint_xfer_int(&ep->desc) ||
1302		    usb_endpoint_xfer_isoc(&ep->desc)) {
1303			interval = xhci_parse_exponent_interval(udev, ep);
1304		}
1305		break;
1306
1307	case USB_SPEED_FULL:
1308		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1309			interval = xhci_parse_exponent_interval(udev, ep);
1310			break;
1311		}
1312		/*
1313		 * Fall through for interrupt endpoint interval decoding
1314		 * since it uses the same rules as low speed interrupt
1315		 * endpoints.
1316		 */
1317
1318	case USB_SPEED_LOW:
1319		if (usb_endpoint_xfer_int(&ep->desc) ||
1320		    usb_endpoint_xfer_isoc(&ep->desc)) {
1321
1322			interval = xhci_parse_frame_interval(udev, ep);
1323		}
1324		break;
1325
1326	default:
1327		BUG();
1328	}
1329	return interval;
1330}
1331
1332/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1333 * High speed endpoint descriptors can define "the number of additional
1334 * transaction opportunities per microframe", but that goes in the Max Burst
1335 * endpoint context field.
1336 */
1337static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1338		struct usb_host_endpoint *ep)
1339{
1340	if (udev->speed < USB_SPEED_SUPER ||
1341			!usb_endpoint_xfer_isoc(&ep->desc))
1342		return 0;
1343	return ep->ss_ep_comp.bmAttributes;
1344}
1345
1346static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1347				       struct usb_host_endpoint *ep)
1348{
1349	/* Super speed and Plus have max burst in ep companion desc */
1350	if (udev->speed >= USB_SPEED_SUPER)
1351		return ep->ss_ep_comp.bMaxBurst;
1352
1353	if (udev->speed == USB_SPEED_HIGH &&
1354	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1355	     usb_endpoint_xfer_int(&ep->desc)))
1356		return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1357
1358	return 0;
1359}
1360
1361static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1362{
1363	int in;
1364
1365	in = usb_endpoint_dir_in(&ep->desc);
1366
1367	if (usb_endpoint_xfer_control(&ep->desc))
1368		return CTRL_EP;
1369	if (usb_endpoint_xfer_bulk(&ep->desc))
1370		return in ? BULK_IN_EP : BULK_OUT_EP;
1371	if (usb_endpoint_xfer_isoc(&ep->desc))
1372		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1373	if (usb_endpoint_xfer_int(&ep->desc))
1374		return in ? INT_IN_EP : INT_OUT_EP;
1375	return 0;
1376}
1377
1378/* Return the maximum endpoint service interval time (ESIT) payload.
1379 * Basically, this is the maxpacket size, multiplied by the burst size
1380 * and mult size.
1381 */
1382static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1383		struct usb_host_endpoint *ep)
1384{
1385	int max_burst;
1386	int max_packet;
1387
1388	/* Only applies for interrupt or isochronous endpoints */
1389	if (usb_endpoint_xfer_control(&ep->desc) ||
1390			usb_endpoint_xfer_bulk(&ep->desc))
1391		return 0;
1392
1393	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1394	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1395	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1396		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1397	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1398	else if (udev->speed >= USB_SPEED_SUPER)
1399		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1400
1401	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1402	max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1403	/* A 0 in max burst means 1 transfer per ESIT */
1404	return max_packet * (max_burst + 1);
1405}
1406
1407/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1408 * Drivers will have to call usb_alloc_streams() to do that.
1409 */
1410int xhci_endpoint_init(struct xhci_hcd *xhci,
1411		struct xhci_virt_device *virt_dev,
1412		struct usb_device *udev,
1413		struct usb_host_endpoint *ep,
1414		gfp_t mem_flags)
1415{
1416	unsigned int ep_index;
1417	struct xhci_ep_ctx *ep_ctx;
1418	struct xhci_ring *ep_ring;
1419	unsigned int max_packet;
1420	enum xhci_ring_type ring_type;
1421	u32 max_esit_payload;
1422	u32 endpoint_type;
1423	unsigned int max_burst;
1424	unsigned int interval;
1425	unsigned int mult;
1426	unsigned int avg_trb_len;
1427	unsigned int err_count = 0;
1428
1429	ep_index = xhci_get_endpoint_index(&ep->desc);
1430	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1431
1432	endpoint_type = xhci_get_endpoint_type(ep);
1433	if (!endpoint_type)
1434		return -EINVAL;
1435
1436	ring_type = usb_endpoint_type(&ep->desc);
1437	/* Set up the endpoint ring */
1438	virt_dev->eps[ep_index].new_ring =
1439		xhci_ring_alloc(xhci, 2, 1, ring_type, mem_flags);
1440	if (!virt_dev->eps[ep_index].new_ring) {
1441		/* Attempt to use the ring cache */
1442		if (virt_dev->num_rings_cached == 0)
1443			return -ENOMEM;
1444		virt_dev->num_rings_cached--;
1445		virt_dev->eps[ep_index].new_ring =
1446			virt_dev->ring_cache[virt_dev->num_rings_cached];
1447		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1448		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1449					1, ring_type);
1450	}
1451	virt_dev->eps[ep_index].skip = false;
1452	ep_ring = virt_dev->eps[ep_index].new_ring;
1453
1454	/*
1455	 * Get values to fill the endpoint context, mostly from ep descriptor.
1456	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1457	 * have no clue on scatter gather list entry size. For Isoc and Int,
1458	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1459	 */
1460	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1461	interval = xhci_get_endpoint_interval(udev, ep);
1462	mult = xhci_get_endpoint_mult(udev, ep);
1463	max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1464	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1465	avg_trb_len = max_esit_payload;
1466
1467	/* FIXME dig Mult and streams info out of ep companion desc */
1468
1469	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1470	if (!usb_endpoint_xfer_isoc(&ep->desc))
1471		err_count = 3;
1472	/* Some devices get this wrong */
1473	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1474		max_packet = 512;
1475	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1476	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1477		avg_trb_len = 8;
1478	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1479	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1480		mult = 0;
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482	/* Fill the endpoint context */
1483	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1484				      EP_INTERVAL(interval) |
1485				      EP_MULT(mult));
1486	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1487				       MAX_PACKET(max_packet) |
1488				       MAX_BURST(max_burst) |
1489				       ERROR_COUNT(err_count));
1490	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1491				  ep_ring->cycle_state);
1492
1493	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1494				      EP_AVG_TRB_LENGTH(avg_trb_len));
1495
1496	/* FIXME Debug endpoint context */
1497	return 0;
1498}
1499
1500void xhci_endpoint_zero(struct xhci_hcd *xhci,
1501		struct xhci_virt_device *virt_dev,
1502		struct usb_host_endpoint *ep)
1503{
1504	unsigned int ep_index;
1505	struct xhci_ep_ctx *ep_ctx;
1506
1507	ep_index = xhci_get_endpoint_index(&ep->desc);
1508	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1509
1510	ep_ctx->ep_info = 0;
1511	ep_ctx->ep_info2 = 0;
1512	ep_ctx->deq = 0;
1513	ep_ctx->tx_info = 0;
1514	/* Don't free the endpoint ring until the set interface or configuration
1515	 * request succeeds.
1516	 */
1517}
1518
1519void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1520{
1521	bw_info->ep_interval = 0;
1522	bw_info->mult = 0;
1523	bw_info->num_packets = 0;
1524	bw_info->max_packet_size = 0;
1525	bw_info->type = 0;
1526	bw_info->max_esit_payload = 0;
1527}
1528
1529void xhci_update_bw_info(struct xhci_hcd *xhci,
1530		struct xhci_container_ctx *in_ctx,
1531		struct xhci_input_control_ctx *ctrl_ctx,
1532		struct xhci_virt_device *virt_dev)
1533{
1534	struct xhci_bw_info *bw_info;
1535	struct xhci_ep_ctx *ep_ctx;
1536	unsigned int ep_type;
1537	int i;
1538
1539	for (i = 1; i < 31; ++i) {
1540		bw_info = &virt_dev->eps[i].bw_info;
1541
1542		/* We can't tell what endpoint type is being dropped, but
1543		 * unconditionally clearing the bandwidth info for non-periodic
1544		 * endpoints should be harmless because the info will never be
1545		 * set in the first place.
1546		 */
1547		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1548			/* Dropped endpoint */
1549			xhci_clear_endpoint_bw_info(bw_info);
1550			continue;
1551		}
1552
1553		if (EP_IS_ADDED(ctrl_ctx, i)) {
1554			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1555			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1556
1557			/* Ignore non-periodic endpoints */
1558			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1559					ep_type != ISOC_IN_EP &&
1560					ep_type != INT_IN_EP)
1561				continue;
1562
1563			/* Added or changed endpoint */
1564			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1565					le32_to_cpu(ep_ctx->ep_info));
1566			/* Number of packets and mult are zero-based in the
1567			 * input context, but we want one-based for the
1568			 * interval table.
1569			 */
1570			bw_info->mult = CTX_TO_EP_MULT(
1571					le32_to_cpu(ep_ctx->ep_info)) + 1;
1572			bw_info->num_packets = CTX_TO_MAX_BURST(
1573					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1574			bw_info->max_packet_size = MAX_PACKET_DECODED(
1575					le32_to_cpu(ep_ctx->ep_info2));
1576			bw_info->type = ep_type;
1577			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1578					le32_to_cpu(ep_ctx->tx_info));
1579		}
1580	}
1581}
1582
1583/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1584 * Useful when you want to change one particular aspect of the endpoint and then
1585 * issue a configure endpoint command.
1586 */
1587void xhci_endpoint_copy(struct xhci_hcd *xhci,
1588		struct xhci_container_ctx *in_ctx,
1589		struct xhci_container_ctx *out_ctx,
1590		unsigned int ep_index)
1591{
1592	struct xhci_ep_ctx *out_ep_ctx;
1593	struct xhci_ep_ctx *in_ep_ctx;
1594
1595	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1596	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1597
1598	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1599	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1600	in_ep_ctx->deq = out_ep_ctx->deq;
1601	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1602}
1603
1604/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1605 * Useful when you want to change one particular aspect of the endpoint and then
1606 * issue a configure endpoint command.  Only the context entries field matters,
1607 * but we'll copy the whole thing anyway.
1608 */
1609void xhci_slot_copy(struct xhci_hcd *xhci,
1610		struct xhci_container_ctx *in_ctx,
1611		struct xhci_container_ctx *out_ctx)
1612{
1613	struct xhci_slot_ctx *in_slot_ctx;
1614	struct xhci_slot_ctx *out_slot_ctx;
1615
1616	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1617	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1618
1619	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1620	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1621	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1622	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1623}
1624
1625/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1626static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1627{
1628	int i;
1629	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1630	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1631
1632	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1633			"Allocating %d scratchpad buffers", num_sp);
1634
1635	if (!num_sp)
1636		return 0;
1637
1638	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1639	if (!xhci->scratchpad)
1640		goto fail_sp;
1641
1642	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1643				     num_sp * sizeof(u64),
1644				     &xhci->scratchpad->sp_dma, flags);
1645	if (!xhci->scratchpad->sp_array)
1646		goto fail_sp2;
1647
1648	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1649	if (!xhci->scratchpad->sp_buffers)
1650		goto fail_sp3;
1651
1652	xhci->scratchpad->sp_dma_buffers =
1653		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1654
1655	if (!xhci->scratchpad->sp_dma_buffers)
1656		goto fail_sp4;
1657
1658	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1659	for (i = 0; i < num_sp; i++) {
1660		dma_addr_t dma;
1661		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1662				flags);
1663		if (!buf)
1664			goto fail_sp5;
1665
1666		xhci->scratchpad->sp_array[i] = dma;
1667		xhci->scratchpad->sp_buffers[i] = buf;
1668		xhci->scratchpad->sp_dma_buffers[i] = dma;
1669	}
1670
1671	return 0;
1672
1673 fail_sp5:
1674	for (i = i - 1; i >= 0; i--) {
1675		dma_free_coherent(dev, xhci->page_size,
1676				    xhci->scratchpad->sp_buffers[i],
1677				    xhci->scratchpad->sp_dma_buffers[i]);
1678	}
1679	kfree(xhci->scratchpad->sp_dma_buffers);
1680
1681 fail_sp4:
1682	kfree(xhci->scratchpad->sp_buffers);
1683
1684 fail_sp3:
1685	dma_free_coherent(dev, num_sp * sizeof(u64),
1686			    xhci->scratchpad->sp_array,
1687			    xhci->scratchpad->sp_dma);
1688
1689 fail_sp2:
1690	kfree(xhci->scratchpad);
1691	xhci->scratchpad = NULL;
1692
1693 fail_sp:
1694	return -ENOMEM;
1695}
1696
1697static void scratchpad_free(struct xhci_hcd *xhci)
1698{
1699	int num_sp;
1700	int i;
1701	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1702
1703	if (!xhci->scratchpad)
1704		return;
1705
1706	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1707
1708	for (i = 0; i < num_sp; i++) {
1709		dma_free_coherent(dev, xhci->page_size,
1710				    xhci->scratchpad->sp_buffers[i],
1711				    xhci->scratchpad->sp_dma_buffers[i]);
1712	}
1713	kfree(xhci->scratchpad->sp_dma_buffers);
1714	kfree(xhci->scratchpad->sp_buffers);
1715	dma_free_coherent(dev, num_sp * sizeof(u64),
1716			    xhci->scratchpad->sp_array,
1717			    xhci->scratchpad->sp_dma);
1718	kfree(xhci->scratchpad);
1719	xhci->scratchpad = NULL;
1720}
1721
1722struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1723		bool allocate_in_ctx, bool allocate_completion,
1724		gfp_t mem_flags)
1725{
1726	struct xhci_command *command;
1727
1728	command = kzalloc(sizeof(*command), mem_flags);
1729	if (!command)
1730		return NULL;
1731
1732	if (allocate_in_ctx) {
1733		command->in_ctx =
1734			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1735					mem_flags);
1736		if (!command->in_ctx) {
1737			kfree(command);
1738			return NULL;
1739		}
1740	}
1741
1742	if (allocate_completion) {
1743		command->completion =
1744			kzalloc(sizeof(struct completion), mem_flags);
1745		if (!command->completion) {
1746			xhci_free_container_ctx(xhci, command->in_ctx);
1747			kfree(command);
1748			return NULL;
1749		}
1750		init_completion(command->completion);
1751	}
1752
1753	command->status = 0;
1754	INIT_LIST_HEAD(&command->cmd_list);
1755	return command;
1756}
1757
1758void xhci_urb_free_priv(struct urb_priv *urb_priv)
1759{
1760	if (urb_priv) {
1761		kfree(urb_priv->td[0]);
1762		kfree(urb_priv);
1763	}
1764}
1765
1766void xhci_free_command(struct xhci_hcd *xhci,
1767		struct xhci_command *command)
1768{
1769	xhci_free_container_ctx(xhci,
1770			command->in_ctx);
1771	kfree(command->completion);
1772	kfree(command);
1773}
1774
1775void xhci_mem_cleanup(struct xhci_hcd *xhci)
1776{
1777	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1778	int size;
1779	int i, j, num_ports;
1780
1781	del_timer_sync(&xhci->cmd_timer);
1782
1783	/* Free the Event Ring Segment Table and the actual Event Ring */
1784	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1785	if (xhci->erst.entries)
1786		dma_free_coherent(dev, size,
1787				xhci->erst.entries, xhci->erst.erst_dma_addr);
1788	xhci->erst.entries = NULL;
1789	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1790	if (xhci->event_ring)
1791		xhci_ring_free(xhci, xhci->event_ring);
1792	xhci->event_ring = NULL;
1793	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1794
1795	if (xhci->lpm_command)
1796		xhci_free_command(xhci, xhci->lpm_command);
1797	xhci->lpm_command = NULL;
1798	if (xhci->cmd_ring)
1799		xhci_ring_free(xhci, xhci->cmd_ring);
1800	xhci->cmd_ring = NULL;
1801	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1802	xhci_cleanup_command_queue(xhci);
1803
1804	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1805	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1806		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1807		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1808			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1809			while (!list_empty(ep))
1810				list_del_init(ep->next);
1811		}
1812	}
1813
1814	for (i = 1; i < MAX_HC_SLOTS; ++i)
1815		xhci_free_virt_device(xhci, i);
1816
1817	dma_pool_destroy(xhci->segment_pool);
1818	xhci->segment_pool = NULL;
1819	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1820
1821	dma_pool_destroy(xhci->device_pool);
1822	xhci->device_pool = NULL;
1823	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1824
1825	dma_pool_destroy(xhci->small_streams_pool);
1826	xhci->small_streams_pool = NULL;
1827	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1828			"Freed small stream array pool");
1829
1830	dma_pool_destroy(xhci->medium_streams_pool);
1831	xhci->medium_streams_pool = NULL;
1832	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1833			"Freed medium stream array pool");
1834
1835	if (xhci->dcbaa)
1836		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1837				xhci->dcbaa, xhci->dcbaa->dma);
1838	xhci->dcbaa = NULL;
1839
1840	scratchpad_free(xhci);
1841
1842	if (!xhci->rh_bw)
1843		goto no_bw;
1844
1845	for (i = 0; i < num_ports; i++) {
1846		struct xhci_tt_bw_info *tt, *n;
1847		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1848			list_del(&tt->tt_list);
1849			kfree(tt);
1850		}
1851	}
1852
1853no_bw:
1854	xhci->cmd_ring_reserved_trbs = 0;
1855	xhci->num_usb2_ports = 0;
1856	xhci->num_usb3_ports = 0;
1857	xhci->num_active_eps = 0;
1858	kfree(xhci->usb2_ports);
1859	kfree(xhci->usb3_ports);
1860	kfree(xhci->port_array);
1861	kfree(xhci->rh_bw);
1862	kfree(xhci->ext_caps);
1863
1864	xhci->usb2_ports = NULL;
1865	xhci->usb3_ports = NULL;
1866	xhci->port_array = NULL;
1867	xhci->rh_bw = NULL;
1868	xhci->ext_caps = NULL;
1869
1870	xhci->page_size = 0;
1871	xhci->page_shift = 0;
1872	xhci->bus_state[0].bus_suspended = 0;
1873	xhci->bus_state[1].bus_suspended = 0;
1874}
1875
1876static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1877		struct xhci_segment *input_seg,
1878		union xhci_trb *start_trb,
1879		union xhci_trb *end_trb,
1880		dma_addr_t input_dma,
1881		struct xhci_segment *result_seg,
1882		char *test_name, int test_number)
1883{
1884	unsigned long long start_dma;
1885	unsigned long long end_dma;
1886	struct xhci_segment *seg;
1887
1888	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1889	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1890
1891	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1892	if (seg != result_seg) {
1893		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1894				test_name, test_number);
1895		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1896				"input DMA 0x%llx\n",
1897				input_seg,
1898				(unsigned long long) input_dma);
1899		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1900				"ending TRB %p (0x%llx DMA)\n",
1901				start_trb, start_dma,
1902				end_trb, end_dma);
1903		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1904				result_seg, seg);
1905		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1906			  true);
1907		return -1;
1908	}
1909	return 0;
1910}
1911
1912/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1913static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1914{
1915	struct {
1916		dma_addr_t		input_dma;
1917		struct xhci_segment	*result_seg;
1918	} simple_test_vector [] = {
1919		/* A zeroed DMA field should fail */
1920		{ 0, NULL },
1921		/* One TRB before the ring start should fail */
1922		{ xhci->event_ring->first_seg->dma - 16, NULL },
1923		/* One byte before the ring start should fail */
1924		{ xhci->event_ring->first_seg->dma - 1, NULL },
1925		/* Starting TRB should succeed */
1926		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1927		/* Ending TRB should succeed */
1928		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1929			xhci->event_ring->first_seg },
1930		/* One byte after the ring end should fail */
1931		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1932		/* One TRB after the ring end should fail */
1933		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1934		/* An address of all ones should fail */
1935		{ (dma_addr_t) (~0), NULL },
1936	};
1937	struct {
1938		struct xhci_segment	*input_seg;
1939		union xhci_trb		*start_trb;
1940		union xhci_trb		*end_trb;
1941		dma_addr_t		input_dma;
1942		struct xhci_segment	*result_seg;
1943	} complex_test_vector [] = {
1944		/* Test feeding a valid DMA address from a different ring */
1945		{	.input_seg = xhci->event_ring->first_seg,
1946			.start_trb = xhci->event_ring->first_seg->trbs,
1947			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1948			.input_dma = xhci->cmd_ring->first_seg->dma,
1949			.result_seg = NULL,
1950		},
1951		/* Test feeding a valid end TRB from a different ring */
1952		{	.input_seg = xhci->event_ring->first_seg,
1953			.start_trb = xhci->event_ring->first_seg->trbs,
1954			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1955			.input_dma = xhci->cmd_ring->first_seg->dma,
1956			.result_seg = NULL,
1957		},
1958		/* Test feeding a valid start and end TRB from a different ring */
1959		{	.input_seg = xhci->event_ring->first_seg,
1960			.start_trb = xhci->cmd_ring->first_seg->trbs,
1961			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1962			.input_dma = xhci->cmd_ring->first_seg->dma,
1963			.result_seg = NULL,
1964		},
1965		/* TRB in this ring, but after this TD */
1966		{	.input_seg = xhci->event_ring->first_seg,
1967			.start_trb = &xhci->event_ring->first_seg->trbs[0],
1968			.end_trb = &xhci->event_ring->first_seg->trbs[3],
1969			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
1970			.result_seg = NULL,
1971		},
1972		/* TRB in this ring, but before this TD */
1973		{	.input_seg = xhci->event_ring->first_seg,
1974			.start_trb = &xhci->event_ring->first_seg->trbs[3],
1975			.end_trb = &xhci->event_ring->first_seg->trbs[6],
1976			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1977			.result_seg = NULL,
1978		},
1979		/* TRB in this ring, but after this wrapped TD */
1980		{	.input_seg = xhci->event_ring->first_seg,
1981			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1982			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1983			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
1984			.result_seg = NULL,
1985		},
1986		/* TRB in this ring, but before this wrapped TD */
1987		{	.input_seg = xhci->event_ring->first_seg,
1988			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1989			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1990			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1991			.result_seg = NULL,
1992		},
1993		/* TRB not in this ring, and we have a wrapped TD */
1994		{	.input_seg = xhci->event_ring->first_seg,
1995			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1996			.end_trb = &xhci->event_ring->first_seg->trbs[1],
1997			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1998			.result_seg = NULL,
1999		},
2000	};
2001
2002	unsigned int num_tests;
2003	int i, ret;
2004
2005	num_tests = ARRAY_SIZE(simple_test_vector);
2006	for (i = 0; i < num_tests; i++) {
2007		ret = xhci_test_trb_in_td(xhci,
2008				xhci->event_ring->first_seg,
2009				xhci->event_ring->first_seg->trbs,
2010				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2011				simple_test_vector[i].input_dma,
2012				simple_test_vector[i].result_seg,
2013				"Simple", i);
2014		if (ret < 0)
2015			return ret;
2016	}
2017
2018	num_tests = ARRAY_SIZE(complex_test_vector);
2019	for (i = 0; i < num_tests; i++) {
2020		ret = xhci_test_trb_in_td(xhci,
2021				complex_test_vector[i].input_seg,
2022				complex_test_vector[i].start_trb,
2023				complex_test_vector[i].end_trb,
2024				complex_test_vector[i].input_dma,
2025				complex_test_vector[i].result_seg,
2026				"Complex", i);
2027		if (ret < 0)
2028			return ret;
2029	}
2030	xhci_dbg(xhci, "TRB math tests passed.\n");
2031	return 0;
2032}
2033
2034static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2035{
2036	u64 temp;
2037	dma_addr_t deq;
2038
2039	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2040			xhci->event_ring->dequeue);
2041	if (deq == 0 && !in_interrupt())
2042		xhci_warn(xhci, "WARN something wrong with SW event ring "
2043				"dequeue ptr.\n");
2044	/* Update HC event ring dequeue pointer */
2045	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2046	temp &= ERST_PTR_MASK;
2047	/* Don't clear the EHB bit (which is RW1C) because
2048	 * there might be more events to service.
2049	 */
2050	temp &= ~ERST_EHB;
2051	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2052			"// Write event ring dequeue pointer, "
2053			"preserving EHB bit");
2054	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2055			&xhci->ir_set->erst_dequeue);
2056}
2057
2058static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2059		__le32 __iomem *addr, int max_caps)
2060{
2061	u32 temp, port_offset, port_count;
2062	int i;
2063	u8 major_revision;
2064	struct xhci_hub *rhub;
2065
2066	temp = readl(addr);
2067	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2068
2069	if (major_revision == 0x03) {
2070		rhub = &xhci->usb3_rhub;
2071	} else if (major_revision <= 0x02) {
2072		rhub = &xhci->usb2_rhub;
2073	} else {
2074		xhci_warn(xhci, "Ignoring unknown port speed, "
2075				"Ext Cap %p, revision = 0x%x\n",
2076				addr, major_revision);
2077		/* Ignoring port protocol we can't understand. FIXME */
2078		return;
2079	}
2080	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2081	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2082
2083	/* Port offset and count in the third dword, see section 7.2 */
2084	temp = readl(addr + 2);
2085	port_offset = XHCI_EXT_PORT_OFF(temp);
2086	port_count = XHCI_EXT_PORT_COUNT(temp);
2087	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2088			"Ext Cap %p, port offset = %u, "
2089			"count = %u, revision = 0x%x",
2090			addr, port_offset, port_count, major_revision);
2091	/* Port count includes the current port offset */
2092	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2093		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2094		return;
2095
2096	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2097	if (rhub->psi_count) {
2098		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2099				    GFP_KERNEL);
2100		if (!rhub->psi)
2101			rhub->psi_count = 0;
2102
2103		rhub->psi_uid_count++;
2104		for (i = 0; i < rhub->psi_count; i++) {
2105			rhub->psi[i] = readl(addr + 4 + i);
2106
2107			/* count unique ID values, two consecutive entries can
2108			 * have the same ID if link is assymetric
2109			 */
2110			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2111				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2112				rhub->psi_uid_count++;
2113
2114			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2115				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2116				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2117				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2118				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2119				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2120				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2121		}
2122	}
2123	/* cache usb2 port capabilities */
2124	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2125		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2126
2127	/* Check the host's USB2 LPM capability */
2128	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2129			(temp & XHCI_L1C)) {
2130		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2131				"xHCI 0.96: support USB2 software lpm");
2132		xhci->sw_lpm_support = 1;
2133	}
2134
2135	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2136		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2137				"xHCI 1.0: support USB2 software lpm");
2138		xhci->sw_lpm_support = 1;
2139		if (temp & XHCI_HLC) {
2140			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2141					"xHCI 1.0: support USB2 hardware lpm");
2142			xhci->hw_lpm_support = 1;
2143		}
2144	}
2145
2146	port_offset--;
2147	for (i = port_offset; i < (port_offset + port_count); i++) {
2148		/* Duplicate entry.  Ignore the port if the revisions differ. */
2149		if (xhci->port_array[i] != 0) {
2150			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2151					" port %u\n", addr, i);
2152			xhci_warn(xhci, "Port was marked as USB %u, "
2153					"duplicated as USB %u\n",
2154					xhci->port_array[i], major_revision);
2155			/* Only adjust the roothub port counts if we haven't
2156			 * found a similar duplicate.
2157			 */
2158			if (xhci->port_array[i] != major_revision &&
2159				xhci->port_array[i] != DUPLICATE_ENTRY) {
2160				if (xhci->port_array[i] == 0x03)
2161					xhci->num_usb3_ports--;
2162				else
2163					xhci->num_usb2_ports--;
2164				xhci->port_array[i] = DUPLICATE_ENTRY;
2165			}
2166			/* FIXME: Should we disable the port? */
2167			continue;
2168		}
2169		xhci->port_array[i] = major_revision;
2170		if (major_revision == 0x03)
2171			xhci->num_usb3_ports++;
2172		else
2173			xhci->num_usb2_ports++;
2174	}
2175	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2176}
2177
2178/*
2179 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2180 * specify what speeds each port is supposed to be.  We can't count on the port
2181 * speed bits in the PORTSC register being correct until a device is connected,
2182 * but we need to set up the two fake roothubs with the correct number of USB
2183 * 3.0 and USB 2.0 ports at host controller initialization time.
2184 */
2185static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2186{
2187	void __iomem *base;
2188	u32 offset;
2189	unsigned int num_ports;
2190	int i, j, port_index;
2191	int cap_count = 0;
2192	u32 cap_start;
2193
2194	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2195	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2196	if (!xhci->port_array)
2197		return -ENOMEM;
2198
2199	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2200	if (!xhci->rh_bw)
2201		return -ENOMEM;
2202	for (i = 0; i < num_ports; i++) {
2203		struct xhci_interval_bw_table *bw_table;
2204
2205		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2206		bw_table = &xhci->rh_bw[i].bw_table;
2207		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2208			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2209	}
2210	base = &xhci->cap_regs->hc_capbase;
2211
2212	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2213	if (!cap_start) {
2214		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2215		return -ENODEV;
2216	}
2217
2218	offset = cap_start;
2219	/* count extended protocol capability entries for later caching */
2220	while (offset) {
2221		cap_count++;
2222		offset = xhci_find_next_ext_cap(base, offset,
2223						      XHCI_EXT_CAPS_PROTOCOL);
2224	}
2225
2226	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2227	if (!xhci->ext_caps)
2228		return -ENOMEM;
2229
2230	offset = cap_start;
2231
2232	while (offset) {
2233		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2234		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2235			break;
2236		offset = xhci_find_next_ext_cap(base, offset,
2237						XHCI_EXT_CAPS_PROTOCOL);
2238	}
2239
2240	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2241		xhci_warn(xhci, "No ports on the roothubs?\n");
2242		return -ENODEV;
2243	}
2244	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2245			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2246			xhci->num_usb2_ports, xhci->num_usb3_ports);
2247
2248	/* Place limits on the number of roothub ports so that the hub
2249	 * descriptors aren't longer than the USB core will allocate.
2250	 */
2251	if (xhci->num_usb3_ports > 15) {
2252		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2253				"Limiting USB 3.0 roothub ports to 15.");
2254		xhci->num_usb3_ports = 15;
2255	}
2256	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2257		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2258				"Limiting USB 2.0 roothub ports to %u.",
2259				USB_MAXCHILDREN);
2260		xhci->num_usb2_ports = USB_MAXCHILDREN;
2261	}
2262
2263	/*
2264	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2265	 * Not sure how the USB core will handle a hub with no ports...
2266	 */
2267	if (xhci->num_usb2_ports) {
2268		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2269				xhci->num_usb2_ports, flags);
2270		if (!xhci->usb2_ports)
2271			return -ENOMEM;
2272
2273		port_index = 0;
2274		for (i = 0; i < num_ports; i++) {
2275			if (xhci->port_array[i] == 0x03 ||
2276					xhci->port_array[i] == 0 ||
2277					xhci->port_array[i] == DUPLICATE_ENTRY)
2278				continue;
2279
2280			xhci->usb2_ports[port_index] =
2281				&xhci->op_regs->port_status_base +
2282				NUM_PORT_REGS*i;
2283			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2284					"USB 2.0 port at index %u, "
2285					"addr = %p", i,
2286					xhci->usb2_ports[port_index]);
2287			port_index++;
2288			if (port_index == xhci->num_usb2_ports)
2289				break;
2290		}
2291	}
2292	if (xhci->num_usb3_ports) {
2293		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2294				xhci->num_usb3_ports, flags);
2295		if (!xhci->usb3_ports)
2296			return -ENOMEM;
2297
2298		port_index = 0;
2299		for (i = 0; i < num_ports; i++)
2300			if (xhci->port_array[i] == 0x03) {
2301				xhci->usb3_ports[port_index] =
2302					&xhci->op_regs->port_status_base +
2303					NUM_PORT_REGS*i;
2304				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2305						"USB 3.0 port at index %u, "
2306						"addr = %p", i,
2307						xhci->usb3_ports[port_index]);
2308				port_index++;
2309				if (port_index == xhci->num_usb3_ports)
2310					break;
2311			}
2312	}
2313	return 0;
2314}
2315
2316int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2317{
2318	dma_addr_t	dma;
2319	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2320	unsigned int	val, val2;
2321	u64		val_64;
2322	struct xhci_segment	*seg;
2323	u32 page_size, temp;
2324	int i;
2325
2326	INIT_LIST_HEAD(&xhci->cmd_list);
2327
2328	/* init command timeout timer */
2329	setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2330		    (unsigned long)xhci);
2331
2332	page_size = readl(&xhci->op_regs->page_size);
2333	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2334			"Supported page size register = 0x%x", page_size);
2335	for (i = 0; i < 16; i++) {
2336		if ((0x1 & page_size) != 0)
2337			break;
2338		page_size = page_size >> 1;
2339	}
2340	if (i < 16)
2341		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2342			"Supported page size of %iK", (1 << (i+12)) / 1024);
2343	else
2344		xhci_warn(xhci, "WARN: no supported page size\n");
2345	/* Use 4K pages, since that's common and the minimum the HC supports */
2346	xhci->page_shift = 12;
2347	xhci->page_size = 1 << xhci->page_shift;
2348	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2349			"HCD page size set to %iK", xhci->page_size / 1024);
2350
2351	/*
2352	 * Program the Number of Device Slots Enabled field in the CONFIG
2353	 * register with the max value of slots the HC can handle.
2354	 */
2355	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2356	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2357			"// xHC can handle at most %d device slots.", val);
2358	val2 = readl(&xhci->op_regs->config_reg);
2359	val |= (val2 & ~HCS_SLOTS_MASK);
2360	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2361			"// Setting Max device slots reg = 0x%x.", val);
2362	writel(val, &xhci->op_regs->config_reg);
2363
2364	/*
2365	 * Section 5.4.8 - doorbell array must be
2366	 * "physically contiguous and 64-byte (cache line) aligned".
2367	 */
2368	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2369			GFP_KERNEL);
2370	if (!xhci->dcbaa)
2371		goto fail;
2372	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2373	xhci->dcbaa->dma = dma;
2374	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2376			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2377	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2378
2379	/*
2380	 * Initialize the ring segment pool.  The ring must be a contiguous
2381	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2382	 * however, the command ring segment needs 64-byte aligned segments
2383	 * and our use of dma addresses in the trb_address_map radix tree needs
2384	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2385	 */
2386	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2387			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2388
2389	/* See Table 46 and Note on Figure 55 */
2390	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2391			2112, 64, xhci->page_size);
2392	if (!xhci->segment_pool || !xhci->device_pool)
2393		goto fail;
2394
2395	/* Linear stream context arrays don't have any boundary restrictions,
2396	 * and only need to be 16-byte aligned.
2397	 */
2398	xhci->small_streams_pool =
2399		dma_pool_create("xHCI 256 byte stream ctx arrays",
2400			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2401	xhci->medium_streams_pool =
2402		dma_pool_create("xHCI 1KB stream ctx arrays",
2403			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2404	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2405	 * will be allocated with dma_alloc_coherent()
2406	 */
2407
2408	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2409		goto fail;
2410
2411	/* Set up the command ring to have one segments for now. */
2412	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2413	if (!xhci->cmd_ring)
2414		goto fail;
2415	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416			"Allocated command ring at %p", xhci->cmd_ring);
2417	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2418			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2419
2420	/* Set the address in the Command Ring Control register */
2421	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2422	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2423		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2424		xhci->cmd_ring->cycle_state;
2425	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426			"// Setting command ring address to 0x%x", val);
2427	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2428	xhci_dbg_cmd_ptrs(xhci);
2429
2430	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2431	if (!xhci->lpm_command)
2432		goto fail;
2433
2434	/* Reserve one command ring TRB for disabling LPM.
2435	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2436	 * disabling LPM, we only need to reserve one TRB for all devices.
2437	 */
2438	xhci->cmd_ring_reserved_trbs++;
2439
2440	val = readl(&xhci->cap_regs->db_off);
2441	val &= DBOFF_MASK;
2442	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2443			"// Doorbell array is located at offset 0x%x"
2444			" from cap regs base addr", val);
2445	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2446	xhci_dbg_regs(xhci);
2447	xhci_print_run_regs(xhci);
2448	/* Set ir_set to interrupt register set 0 */
2449	xhci->ir_set = &xhci->run_regs->ir_set[0];
2450
2451	/*
2452	 * Event ring setup: Allocate a normal ring, but also setup
2453	 * the event ring segment table (ERST).  Section 4.9.3.
2454	 */
2455	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2456	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2457						flags);
2458	if (!xhci->event_ring)
2459		goto fail;
2460	if (xhci_check_trb_in_td_math(xhci) < 0)
2461		goto fail;
2462
2463	xhci->erst.entries = dma_alloc_coherent(dev,
2464			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2465			GFP_KERNEL);
2466	if (!xhci->erst.entries)
2467		goto fail;
2468	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2469			"// Allocated event ring segment table at 0x%llx",
2470			(unsigned long long)dma);
2471
2472	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2473	xhci->erst.num_entries = ERST_NUM_SEGS;
2474	xhci->erst.erst_dma_addr = dma;
2475	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2476			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2477			xhci->erst.num_entries,
2478			xhci->erst.entries,
2479			(unsigned long long)xhci->erst.erst_dma_addr);
2480
2481	/* set ring base address and size for each segment table entry */
2482	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2483		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2484		entry->seg_addr = cpu_to_le64(seg->dma);
2485		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2486		entry->rsvd = 0;
2487		seg = seg->next;
2488	}
2489
2490	/* set ERST count with the number of entries in the segment table */
2491	val = readl(&xhci->ir_set->erst_size);
2492	val &= ERST_SIZE_MASK;
2493	val |= ERST_NUM_SEGS;
2494	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2495			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2496			val);
2497	writel(val, &xhci->ir_set->erst_size);
2498
2499	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2500			"// Set ERST entries to point to event ring.");
2501	/* set the segment table base address */
2502	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2503			"// Set ERST base address for ir_set 0 = 0x%llx",
2504			(unsigned long long)xhci->erst.erst_dma_addr);
2505	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2506	val_64 &= ERST_PTR_MASK;
2507	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2508	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2509
2510	/* Set the event ring dequeue address */
2511	xhci_set_hc_event_deq(xhci);
2512	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2513			"Wrote ERST address to ir_set 0.");
2514	xhci_print_ir_set(xhci, 0);
2515
2516	/*
2517	 * XXX: Might need to set the Interrupter Moderation Register to
2518	 * something other than the default (~1ms minimum between interrupts).
2519	 * See section 5.5.1.2.
2520	 */
2521	init_completion(&xhci->addr_dev);
2522	for (i = 0; i < MAX_HC_SLOTS; ++i)
2523		xhci->devs[i] = NULL;
2524	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2525		xhci->bus_state[0].resume_done[i] = 0;
2526		xhci->bus_state[1].resume_done[i] = 0;
2527		/* Only the USB 2.0 completions will ever be used. */
2528		init_completion(&xhci->bus_state[1].rexit_done[i]);
2529	}
2530
2531	if (scratchpad_alloc(xhci, flags))
2532		goto fail;
2533	if (xhci_setup_port_arrays(xhci, flags))
2534		goto fail;
2535
2536	/* Enable USB 3.0 device notifications for function remote wake, which
2537	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2538	 * U3 (device suspend).
2539	 */
2540	temp = readl(&xhci->op_regs->dev_notification);
2541	temp &= ~DEV_NOTE_MASK;
2542	temp |= DEV_NOTE_FWAKE;
2543	writel(temp, &xhci->op_regs->dev_notification);
2544
2545	return 0;
2546
2547fail:
2548	xhci_warn(xhci, "Couldn't initialize memory\n");
2549	xhci_halt(xhci);
2550	xhci_reset(xhci);
2551	xhci_mem_cleanup(xhci);
2552	return -ENOMEM;
2553}
v4.10.11
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/usb.h>
  24#include <linux/pci.h>
  25#include <linux/slab.h>
  26#include <linux/dmapool.h>
  27#include <linux/dma-mapping.h>
  28
  29#include "xhci.h"
  30#include "xhci-trace.h"
  31
  32/*
  33 * Allocates a generic ring segment from the ring pool, sets the dma address,
  34 * initializes the segment to zero, and sets the private next pointer to NULL.
  35 *
  36 * Section 4.11.1.1:
  37 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
  38 */
  39static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
  40					       unsigned int cycle_state,
  41					       unsigned int max_packet,
  42					       gfp_t flags)
  43{
  44	struct xhci_segment *seg;
  45	dma_addr_t	dma;
  46	int		i;
  47
  48	seg = kzalloc(sizeof *seg, flags);
  49	if (!seg)
  50		return NULL;
  51
  52	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
  53	if (!seg->trbs) {
  54		kfree(seg);
  55		return NULL;
  56	}
  57
  58	if (max_packet) {
  59		seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
  60		if (!seg->bounce_buf) {
  61			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
  62			kfree(seg);
  63			return NULL;
  64		}
  65	}
  66	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
  67	if (cycle_state == 0) {
  68		for (i = 0; i < TRBS_PER_SEGMENT; i++)
  69			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
  70	}
  71	seg->dma = dma;
  72	seg->next = NULL;
  73
  74	return seg;
  75}
  76
  77static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
  78{
  79	if (seg->trbs) {
  80		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
  81		seg->trbs = NULL;
  82	}
  83	kfree(seg->bounce_buf);
  84	kfree(seg);
  85}
  86
  87static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
  88				struct xhci_segment *first)
  89{
  90	struct xhci_segment *seg;
  91
  92	seg = first->next;
  93	while (seg != first) {
  94		struct xhci_segment *next = seg->next;
  95		xhci_segment_free(xhci, seg);
  96		seg = next;
  97	}
  98	xhci_segment_free(xhci, first);
  99}
 100
 101/*
 102 * Make the prev segment point to the next segment.
 103 *
 104 * Change the last TRB in the prev segment to be a Link TRB which points to the
 105 * DMA address of the next segment.  The caller needs to set any Link TRB
 106 * related flags, such as End TRB, Toggle Cycle, and no snoop.
 107 */
 108static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
 109		struct xhci_segment *next, enum xhci_ring_type type)
 110{
 111	u32 val;
 112
 113	if (!prev || !next)
 114		return;
 115	prev->next = next;
 116	if (type != TYPE_EVENT) {
 117		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
 118			cpu_to_le64(next->dma);
 119
 120		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
 121		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
 122		val &= ~TRB_TYPE_BITMASK;
 123		val |= TRB_TYPE(TRB_LINK);
 124		/* Always set the chain bit with 0.95 hardware */
 125		/* Set chain bit for isoc rings on AMD 0.96 host */
 126		if (xhci_link_trb_quirk(xhci) ||
 127				(type == TYPE_ISOC &&
 128				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
 129			val |= TRB_CHAIN;
 130		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
 131	}
 132}
 133
 134/*
 135 * Link the ring to the new segments.
 136 * Set Toggle Cycle for the new ring if needed.
 137 */
 138static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
 139		struct xhci_segment *first, struct xhci_segment *last,
 140		unsigned int num_segs)
 141{
 142	struct xhci_segment *next;
 143
 144	if (!ring || !first || !last)
 145		return;
 146
 147	next = ring->enq_seg->next;
 148	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
 149	xhci_link_segments(xhci, last, next, ring->type);
 150	ring->num_segs += num_segs;
 151	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
 152
 153	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
 154		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
 155			&= ~cpu_to_le32(LINK_TOGGLE);
 156		last->trbs[TRBS_PER_SEGMENT-1].link.control
 157			|= cpu_to_le32(LINK_TOGGLE);
 158		ring->last_seg = last;
 159	}
 160}
 161
 162/*
 163 * We need a radix tree for mapping physical addresses of TRBs to which stream
 164 * ID they belong to.  We need to do this because the host controller won't tell
 165 * us which stream ring the TRB came from.  We could store the stream ID in an
 166 * event data TRB, but that doesn't help us for the cancellation case, since the
 167 * endpoint may stop before it reaches that event data TRB.
 168 *
 169 * The radix tree maps the upper portion of the TRB DMA address to a ring
 170 * segment that has the same upper portion of DMA addresses.  For example, say I
 171 * have segments of size 1KB, that are always 1KB aligned.  A segment may
 172 * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
 173 * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
 174 * pass the radix tree a key to get the right stream ID:
 175 *
 176 *	0x10c90fff >> 10 = 0x43243
 177 *	0x10c912c0 >> 10 = 0x43244
 178 *	0x10c91400 >> 10 = 0x43245
 179 *
 180 * Obviously, only those TRBs with DMA addresses that are within the segment
 181 * will make the radix tree return the stream ID for that ring.
 182 *
 183 * Caveats for the radix tree:
 184 *
 185 * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
 186 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
 187 * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
 188 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
 189 * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
 190 * extended systems (where the DMA address can be bigger than 32-bits),
 191 * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
 192 */
 193static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
 194		struct xhci_ring *ring,
 195		struct xhci_segment *seg,
 196		gfp_t mem_flags)
 197{
 198	unsigned long key;
 199	int ret;
 200
 201	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 202	/* Skip any segments that were already added. */
 203	if (radix_tree_lookup(trb_address_map, key))
 204		return 0;
 205
 206	ret = radix_tree_maybe_preload(mem_flags);
 207	if (ret)
 208		return ret;
 209	ret = radix_tree_insert(trb_address_map,
 210			key, ring);
 211	radix_tree_preload_end();
 212	return ret;
 213}
 214
 215static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
 216		struct xhci_segment *seg)
 217{
 218	unsigned long key;
 219
 220	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
 221	if (radix_tree_lookup(trb_address_map, key))
 222		radix_tree_delete(trb_address_map, key);
 223}
 224
 225static int xhci_update_stream_segment_mapping(
 226		struct radix_tree_root *trb_address_map,
 227		struct xhci_ring *ring,
 228		struct xhci_segment *first_seg,
 229		struct xhci_segment *last_seg,
 230		gfp_t mem_flags)
 231{
 232	struct xhci_segment *seg;
 233	struct xhci_segment *failed_seg;
 234	int ret;
 235
 236	if (WARN_ON_ONCE(trb_address_map == NULL))
 237		return 0;
 238
 239	seg = first_seg;
 240	do {
 241		ret = xhci_insert_segment_mapping(trb_address_map,
 242				ring, seg, mem_flags);
 243		if (ret)
 244			goto remove_streams;
 245		if (seg == last_seg)
 246			return 0;
 247		seg = seg->next;
 248	} while (seg != first_seg);
 249
 250	return 0;
 251
 252remove_streams:
 253	failed_seg = seg;
 254	seg = first_seg;
 255	do {
 256		xhci_remove_segment_mapping(trb_address_map, seg);
 257		if (seg == failed_seg)
 258			return ret;
 259		seg = seg->next;
 260	} while (seg != first_seg);
 261
 262	return ret;
 263}
 264
 265static void xhci_remove_stream_mapping(struct xhci_ring *ring)
 266{
 267	struct xhci_segment *seg;
 268
 269	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
 270		return;
 271
 272	seg = ring->first_seg;
 273	do {
 274		xhci_remove_segment_mapping(ring->trb_address_map, seg);
 275		seg = seg->next;
 276	} while (seg != ring->first_seg);
 277}
 278
 279static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
 280{
 281	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
 282			ring->first_seg, ring->last_seg, mem_flags);
 283}
 284
 285/* XXX: Do we need the hcd structure in all these functions? */
 286void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
 287{
 288	if (!ring)
 289		return;
 290
 291	if (ring->first_seg) {
 292		if (ring->type == TYPE_STREAM)
 293			xhci_remove_stream_mapping(ring);
 294		xhci_free_segments_for_ring(xhci, ring->first_seg);
 295	}
 296
 297	kfree(ring);
 298}
 299
 300static void xhci_initialize_ring_info(struct xhci_ring *ring,
 301					unsigned int cycle_state)
 302{
 303	/* The ring is empty, so the enqueue pointer == dequeue pointer */
 304	ring->enqueue = ring->first_seg->trbs;
 305	ring->enq_seg = ring->first_seg;
 306	ring->dequeue = ring->enqueue;
 307	ring->deq_seg = ring->first_seg;
 308	/* The ring is initialized to 0. The producer must write 1 to the cycle
 309	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
 310	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
 311	 *
 312	 * New rings are initialized with cycle state equal to 1; if we are
 313	 * handling ring expansion, set the cycle state equal to the old ring.
 314	 */
 315	ring->cycle_state = cycle_state;
 316	/* Not necessary for new rings, but needed for re-initialized rings */
 317	ring->enq_updates = 0;
 318	ring->deq_updates = 0;
 319
 320	/*
 321	 * Each segment has a link TRB, and leave an extra TRB for SW
 322	 * accounting purpose
 323	 */
 324	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 325}
 326
 327/* Allocate segments and link them for a ring */
 328static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
 329		struct xhci_segment **first, struct xhci_segment **last,
 330		unsigned int num_segs, unsigned int cycle_state,
 331		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 332{
 333	struct xhci_segment *prev;
 334
 335	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 336	if (!prev)
 337		return -ENOMEM;
 338	num_segs--;
 339
 340	*first = prev;
 341	while (num_segs > 0) {
 342		struct xhci_segment	*next;
 343
 344		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
 345		if (!next) {
 346			prev = *first;
 347			while (prev) {
 348				next = prev->next;
 349				xhci_segment_free(xhci, prev);
 350				prev = next;
 351			}
 352			return -ENOMEM;
 353		}
 354		xhci_link_segments(xhci, prev, next, type);
 355
 356		prev = next;
 357		num_segs--;
 358	}
 359	xhci_link_segments(xhci, prev, *first, type);
 360	*last = prev;
 361
 362	return 0;
 363}
 364
 365/**
 366 * Create a new ring with zero or more segments.
 367 *
 368 * Link each segment together into a ring.
 369 * Set the end flag and the cycle toggle bit on the last segment.
 370 * See section 4.9.1 and figures 15 and 16.
 371 */
 372static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
 373		unsigned int num_segs, unsigned int cycle_state,
 374		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
 375{
 376	struct xhci_ring	*ring;
 377	int ret;
 378
 379	ring = kzalloc(sizeof *(ring), flags);
 380	if (!ring)
 381		return NULL;
 382
 383	ring->num_segs = num_segs;
 384	ring->bounce_buf_len = max_packet;
 385	INIT_LIST_HEAD(&ring->td_list);
 386	ring->type = type;
 387	if (num_segs == 0)
 388		return ring;
 389
 390	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
 391			&ring->last_seg, num_segs, cycle_state, type,
 392			max_packet, flags);
 393	if (ret)
 394		goto fail;
 395
 396	/* Only event ring does not use link TRB */
 397	if (type != TYPE_EVENT) {
 398		/* See section 4.9.2.1 and 6.4.4.1 */
 399		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
 400			cpu_to_le32(LINK_TOGGLE);
 401	}
 402	xhci_initialize_ring_info(ring, cycle_state);
 403	return ring;
 404
 405fail:
 406	kfree(ring);
 407	return NULL;
 408}
 409
 410void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
 411		struct xhci_virt_device *virt_dev,
 412		unsigned int ep_index)
 413{
 414	int rings_cached;
 415
 416	rings_cached = virt_dev->num_rings_cached;
 417	if (rings_cached < XHCI_MAX_RINGS_CACHED) {
 418		virt_dev->ring_cache[rings_cached] =
 419			virt_dev->eps[ep_index].ring;
 420		virt_dev->num_rings_cached++;
 421		xhci_dbg(xhci, "Cached old ring, "
 422				"%d ring%s cached\n",
 423				virt_dev->num_rings_cached,
 424				(virt_dev->num_rings_cached > 1) ? "s" : "");
 425	} else {
 426		xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
 427		xhci_dbg(xhci, "Ring cache full (%d rings), "
 428				"freeing ring\n",
 429				virt_dev->num_rings_cached);
 430	}
 431	virt_dev->eps[ep_index].ring = NULL;
 432}
 433
 434/* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
 435 * pointers to the beginning of the ring.
 436 */
 437static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
 438			struct xhci_ring *ring, unsigned int cycle_state,
 439			enum xhci_ring_type type)
 440{
 441	struct xhci_segment	*seg = ring->first_seg;
 442	int i;
 443
 444	do {
 445		memset(seg->trbs, 0,
 446				sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
 447		if (cycle_state == 0) {
 448			for (i = 0; i < TRBS_PER_SEGMENT; i++)
 449				seg->trbs[i].link.control |=
 450					cpu_to_le32(TRB_CYCLE);
 451		}
 452		/* All endpoint rings have link TRBs */
 453		xhci_link_segments(xhci, seg, seg->next, type);
 454		seg = seg->next;
 455	} while (seg != ring->first_seg);
 456	ring->type = type;
 457	xhci_initialize_ring_info(ring, cycle_state);
 458	/* td list should be empty since all URBs have been cancelled,
 459	 * but just in case...
 460	 */
 461	INIT_LIST_HEAD(&ring->td_list);
 462}
 463
 464/*
 465 * Expand an existing ring.
 466 * Look for a cached ring or allocate a new ring which has same segment numbers
 467 * and link the two rings.
 468 */
 469int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
 470				unsigned int num_trbs, gfp_t flags)
 471{
 472	struct xhci_segment	*first;
 473	struct xhci_segment	*last;
 474	unsigned int		num_segs;
 475	unsigned int		num_segs_needed;
 476	int			ret;
 477
 478	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
 479				(TRBS_PER_SEGMENT - 1);
 480
 481	/* Allocate number of segments we needed, or double the ring size */
 482	num_segs = ring->num_segs > num_segs_needed ?
 483			ring->num_segs : num_segs_needed;
 484
 485	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
 486			num_segs, ring->cycle_state, ring->type,
 487			ring->bounce_buf_len, flags);
 488	if (ret)
 489		return -ENOMEM;
 490
 491	if (ring->type == TYPE_STREAM)
 492		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
 493						ring, first, last, flags);
 494	if (ret) {
 495		struct xhci_segment *next;
 496		do {
 497			next = first->next;
 498			xhci_segment_free(xhci, first);
 499			if (first == last)
 500				break;
 501			first = next;
 502		} while (true);
 503		return ret;
 504	}
 505
 506	xhci_link_rings(xhci, ring, first, last, num_segs);
 507	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
 508			"ring expansion succeed, now has %d segments",
 509			ring->num_segs);
 510
 511	return 0;
 512}
 513
 514#define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
 515
 516static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
 517						    int type, gfp_t flags)
 518{
 519	struct xhci_container_ctx *ctx;
 520
 521	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
 522		return NULL;
 523
 524	ctx = kzalloc(sizeof(*ctx), flags);
 525	if (!ctx)
 526		return NULL;
 527
 528	ctx->type = type;
 529	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
 530	if (type == XHCI_CTX_TYPE_INPUT)
 531		ctx->size += CTX_SIZE(xhci->hcc_params);
 532
 533	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
 534	if (!ctx->bytes) {
 535		kfree(ctx);
 536		return NULL;
 537	}
 538	return ctx;
 539}
 540
 541static void xhci_free_container_ctx(struct xhci_hcd *xhci,
 542			     struct xhci_container_ctx *ctx)
 543{
 544	if (!ctx)
 545		return;
 546	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
 547	kfree(ctx);
 548}
 549
 550struct xhci_input_control_ctx *xhci_get_input_control_ctx(
 551					      struct xhci_container_ctx *ctx)
 552{
 553	if (ctx->type != XHCI_CTX_TYPE_INPUT)
 554		return NULL;
 555
 556	return (struct xhci_input_control_ctx *)ctx->bytes;
 557}
 558
 559struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
 560					struct xhci_container_ctx *ctx)
 561{
 562	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
 563		return (struct xhci_slot_ctx *)ctx->bytes;
 564
 565	return (struct xhci_slot_ctx *)
 566		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
 567}
 568
 569struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
 570				    struct xhci_container_ctx *ctx,
 571				    unsigned int ep_index)
 572{
 573	/* increment ep index by offset of start of ep ctx array */
 574	ep_index++;
 575	if (ctx->type == XHCI_CTX_TYPE_INPUT)
 576		ep_index++;
 577
 578	return (struct xhci_ep_ctx *)
 579		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
 580}
 581
 582
 583/***************** Streams structures manipulation *************************/
 584
 585static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
 586		unsigned int num_stream_ctxs,
 587		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
 588{
 589	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 590	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 591
 592	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 593		dma_free_coherent(dev, size,
 594				stream_ctx, dma);
 595	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 596		return dma_pool_free(xhci->small_streams_pool,
 597				stream_ctx, dma);
 598	else
 599		return dma_pool_free(xhci->medium_streams_pool,
 600				stream_ctx, dma);
 601}
 602
 603/*
 604 * The stream context array for each endpoint with bulk streams enabled can
 605 * vary in size, based on:
 606 *  - how many streams the endpoint supports,
 607 *  - the maximum primary stream array size the host controller supports,
 608 *  - and how many streams the device driver asks for.
 609 *
 610 * The stream context array must be a power of 2, and can be as small as
 611 * 64 bytes or as large as 1MB.
 612 */
 613static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
 614		unsigned int num_stream_ctxs, dma_addr_t *dma,
 615		gfp_t mem_flags)
 616{
 617	struct device *dev = xhci_to_hcd(xhci)->self.controller;
 618	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
 619
 620	if (size > MEDIUM_STREAM_ARRAY_SIZE)
 621		return dma_alloc_coherent(dev, size,
 622				dma, mem_flags);
 623	else if (size <= SMALL_STREAM_ARRAY_SIZE)
 624		return dma_pool_alloc(xhci->small_streams_pool,
 625				mem_flags, dma);
 626	else
 627		return dma_pool_alloc(xhci->medium_streams_pool,
 628				mem_flags, dma);
 629}
 630
 631struct xhci_ring *xhci_dma_to_transfer_ring(
 632		struct xhci_virt_ep *ep,
 633		u64 address)
 634{
 635	if (ep->ep_state & EP_HAS_STREAMS)
 636		return radix_tree_lookup(&ep->stream_info->trb_address_map,
 637				address >> TRB_SEGMENT_SHIFT);
 638	return ep->ring;
 639}
 640
 641struct xhci_ring *xhci_stream_id_to_ring(
 642		struct xhci_virt_device *dev,
 643		unsigned int ep_index,
 644		unsigned int stream_id)
 645{
 646	struct xhci_virt_ep *ep = &dev->eps[ep_index];
 647
 648	if (stream_id == 0)
 649		return ep->ring;
 650	if (!ep->stream_info)
 651		return NULL;
 652
 653	if (stream_id > ep->stream_info->num_streams)
 654		return NULL;
 655	return ep->stream_info->stream_rings[stream_id];
 656}
 657
 658/*
 659 * Change an endpoint's internal structure so it supports stream IDs.  The
 660 * number of requested streams includes stream 0, which cannot be used by device
 661 * drivers.
 662 *
 663 * The number of stream contexts in the stream context array may be bigger than
 664 * the number of streams the driver wants to use.  This is because the number of
 665 * stream context array entries must be a power of two.
 666 */
 667struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
 668		unsigned int num_stream_ctxs,
 669		unsigned int num_streams,
 670		unsigned int max_packet, gfp_t mem_flags)
 671{
 672	struct xhci_stream_info *stream_info;
 673	u32 cur_stream;
 674	struct xhci_ring *cur_ring;
 675	u64 addr;
 676	int ret;
 677
 678	xhci_dbg(xhci, "Allocating %u streams and %u "
 679			"stream context array entries.\n",
 680			num_streams, num_stream_ctxs);
 681	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
 682		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
 683		return NULL;
 684	}
 685	xhci->cmd_ring_reserved_trbs++;
 686
 687	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
 688	if (!stream_info)
 689		goto cleanup_trbs;
 690
 691	stream_info->num_streams = num_streams;
 692	stream_info->num_stream_ctxs = num_stream_ctxs;
 693
 694	/* Initialize the array of virtual pointers to stream rings. */
 695	stream_info->stream_rings = kzalloc(
 696			sizeof(struct xhci_ring *)*num_streams,
 697			mem_flags);
 698	if (!stream_info->stream_rings)
 699		goto cleanup_info;
 700
 701	/* Initialize the array of DMA addresses for stream rings for the HW. */
 702	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
 703			num_stream_ctxs, &stream_info->ctx_array_dma,
 704			mem_flags);
 705	if (!stream_info->stream_ctx_array)
 706		goto cleanup_ctx;
 707	memset(stream_info->stream_ctx_array, 0,
 708			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
 709
 710	/* Allocate everything needed to free the stream rings later */
 711	stream_info->free_streams_command =
 712		xhci_alloc_command(xhci, true, true, mem_flags);
 713	if (!stream_info->free_streams_command)
 714		goto cleanup_ctx;
 715
 716	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
 717
 718	/* Allocate rings for all the streams that the driver will use,
 719	 * and add their segment DMA addresses to the radix tree.
 720	 * Stream 0 is reserved.
 721	 */
 722
 723	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 724		stream_info->stream_rings[cur_stream] =
 725			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
 726					mem_flags);
 727		cur_ring = stream_info->stream_rings[cur_stream];
 728		if (!cur_ring)
 729			goto cleanup_rings;
 730		cur_ring->stream_id = cur_stream;
 731		cur_ring->trb_address_map = &stream_info->trb_address_map;
 732		/* Set deq ptr, cycle bit, and stream context type */
 733		addr = cur_ring->first_seg->dma |
 734			SCT_FOR_CTX(SCT_PRI_TR) |
 735			cur_ring->cycle_state;
 736		stream_info->stream_ctx_array[cur_stream].stream_ring =
 737			cpu_to_le64(addr);
 738		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
 739				cur_stream, (unsigned long long) addr);
 740
 741		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
 742		if (ret) {
 743			xhci_ring_free(xhci, cur_ring);
 744			stream_info->stream_rings[cur_stream] = NULL;
 745			goto cleanup_rings;
 746		}
 747	}
 748	/* Leave the other unused stream ring pointers in the stream context
 749	 * array initialized to zero.  This will cause the xHC to give us an
 750	 * error if the device asks for a stream ID we don't have setup (if it
 751	 * was any other way, the host controller would assume the ring is
 752	 * "empty" and wait forever for data to be queued to that stream ID).
 753	 */
 754
 755	return stream_info;
 756
 757cleanup_rings:
 758	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
 759		cur_ring = stream_info->stream_rings[cur_stream];
 760		if (cur_ring) {
 761			xhci_ring_free(xhci, cur_ring);
 762			stream_info->stream_rings[cur_stream] = NULL;
 763		}
 764	}
 765	xhci_free_command(xhci, stream_info->free_streams_command);
 766cleanup_ctx:
 767	kfree(stream_info->stream_rings);
 768cleanup_info:
 769	kfree(stream_info);
 770cleanup_trbs:
 771	xhci->cmd_ring_reserved_trbs--;
 772	return NULL;
 773}
 774/*
 775 * Sets the MaxPStreams field and the Linear Stream Array field.
 776 * Sets the dequeue pointer to the stream context array.
 777 */
 778void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
 779		struct xhci_ep_ctx *ep_ctx,
 780		struct xhci_stream_info *stream_info)
 781{
 782	u32 max_primary_streams;
 783	/* MaxPStreams is the number of stream context array entries, not the
 784	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
 785	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
 786	 */
 787	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
 788	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
 789			"Setting number of stream ctx array entries to %u",
 790			1 << (max_primary_streams + 1));
 791	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
 792	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
 793				       | EP_HAS_LSA);
 794	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
 795}
 796
 797/*
 798 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
 799 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
 800 * not at the beginning of the ring).
 801 */
 802void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
 803		struct xhci_virt_ep *ep)
 804{
 805	dma_addr_t addr;
 806	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
 807	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
 808	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
 809}
 810
 811/* Frees all stream contexts associated with the endpoint,
 812 *
 813 * Caller should fix the endpoint context streams fields.
 814 */
 815void xhci_free_stream_info(struct xhci_hcd *xhci,
 816		struct xhci_stream_info *stream_info)
 817{
 818	int cur_stream;
 819	struct xhci_ring *cur_ring;
 820
 821	if (!stream_info)
 822		return;
 823
 824	for (cur_stream = 1; cur_stream < stream_info->num_streams;
 825			cur_stream++) {
 826		cur_ring = stream_info->stream_rings[cur_stream];
 827		if (cur_ring) {
 828			xhci_ring_free(xhci, cur_ring);
 829			stream_info->stream_rings[cur_stream] = NULL;
 830		}
 831	}
 832	xhci_free_command(xhci, stream_info->free_streams_command);
 833	xhci->cmd_ring_reserved_trbs--;
 834	if (stream_info->stream_ctx_array)
 835		xhci_free_stream_ctx(xhci,
 836				stream_info->num_stream_ctxs,
 837				stream_info->stream_ctx_array,
 838				stream_info->ctx_array_dma);
 839
 840	kfree(stream_info->stream_rings);
 841	kfree(stream_info);
 842}
 843
 844
 845/***************** Device context manipulation *************************/
 846
 847static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
 848		struct xhci_virt_ep *ep)
 849{
 850	setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
 851		    (unsigned long)ep);
 852	ep->xhci = xhci;
 853}
 854
 855static void xhci_free_tt_info(struct xhci_hcd *xhci,
 856		struct xhci_virt_device *virt_dev,
 857		int slot_id)
 858{
 859	struct list_head *tt_list_head;
 860	struct xhci_tt_bw_info *tt_info, *next;
 861	bool slot_found = false;
 862
 863	/* If the device never made it past the Set Address stage,
 864	 * it may not have the real_port set correctly.
 865	 */
 866	if (virt_dev->real_port == 0 ||
 867			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
 868		xhci_dbg(xhci, "Bad real port.\n");
 869		return;
 870	}
 871
 872	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
 873	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
 874		/* Multi-TT hubs will have more than one entry */
 875		if (tt_info->slot_id == slot_id) {
 876			slot_found = true;
 877			list_del(&tt_info->tt_list);
 878			kfree(tt_info);
 879		} else if (slot_found) {
 880			break;
 881		}
 882	}
 883}
 884
 885int xhci_alloc_tt_info(struct xhci_hcd *xhci,
 886		struct xhci_virt_device *virt_dev,
 887		struct usb_device *hdev,
 888		struct usb_tt *tt, gfp_t mem_flags)
 889{
 890	struct xhci_tt_bw_info		*tt_info;
 891	unsigned int			num_ports;
 892	int				i, j;
 893
 894	if (!tt->multi)
 895		num_ports = 1;
 896	else
 897		num_ports = hdev->maxchild;
 898
 899	for (i = 0; i < num_ports; i++, tt_info++) {
 900		struct xhci_interval_bw_table *bw_table;
 901
 902		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
 903		if (!tt_info)
 904			goto free_tts;
 905		INIT_LIST_HEAD(&tt_info->tt_list);
 906		list_add(&tt_info->tt_list,
 907				&xhci->rh_bw[virt_dev->real_port - 1].tts);
 908		tt_info->slot_id = virt_dev->udev->slot_id;
 909		if (tt->multi)
 910			tt_info->ttport = i+1;
 911		bw_table = &tt_info->bw_table;
 912		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
 913			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
 914	}
 915	return 0;
 916
 917free_tts:
 918	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
 919	return -ENOMEM;
 920}
 921
 922
 923/* All the xhci_tds in the ring's TD list should be freed at this point.
 924 * Should be called with xhci->lock held if there is any chance the TT lists
 925 * will be manipulated by the configure endpoint, allocate device, or update
 926 * hub functions while this function is removing the TT entries from the list.
 927 */
 928void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
 929{
 930	struct xhci_virt_device *dev;
 931	int i;
 932	int old_active_eps = 0;
 933
 934	/* Slot ID 0 is reserved */
 935	if (slot_id == 0 || !xhci->devs[slot_id])
 936		return;
 937
 938	dev = xhci->devs[slot_id];
 939	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
 940	if (!dev)
 941		return;
 942
 943	if (dev->tt_info)
 944		old_active_eps = dev->tt_info->active_eps;
 945
 946	for (i = 0; i < 31; ++i) {
 947		if (dev->eps[i].ring)
 948			xhci_ring_free(xhci, dev->eps[i].ring);
 949		if (dev->eps[i].stream_info)
 950			xhci_free_stream_info(xhci,
 951					dev->eps[i].stream_info);
 952		/* Endpoints on the TT/root port lists should have been removed
 953		 * when usb_disable_device() was called for the device.
 954		 * We can't drop them anyway, because the udev might have gone
 955		 * away by this point, and we can't tell what speed it was.
 956		 */
 957		if (!list_empty(&dev->eps[i].bw_endpoint_list))
 958			xhci_warn(xhci, "Slot %u endpoint %u "
 959					"not removed from BW list!\n",
 960					slot_id, i);
 961	}
 962	/* If this is a hub, free the TT(s) from the TT list */
 963	xhci_free_tt_info(xhci, dev, slot_id);
 964	/* If necessary, update the number of active TTs on this root port */
 965	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
 966
 967	if (dev->ring_cache) {
 968		for (i = 0; i < dev->num_rings_cached; i++)
 969			xhci_ring_free(xhci, dev->ring_cache[i]);
 970		kfree(dev->ring_cache);
 971	}
 972
 973	if (dev->in_ctx)
 974		xhci_free_container_ctx(xhci, dev->in_ctx);
 975	if (dev->out_ctx)
 976		xhci_free_container_ctx(xhci, dev->out_ctx);
 977
 978	kfree(xhci->devs[slot_id]);
 979	xhci->devs[slot_id] = NULL;
 980}
 981
 982/*
 983 * Free a virt_device structure.
 984 * If the virt_device added a tt_info (a hub) and has children pointing to
 985 * that tt_info, then free the child first. Recursive.
 986 * We can't rely on udev at this point to find child-parent relationships.
 987 */
 988void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
 989{
 990	struct xhci_virt_device *vdev;
 991	struct list_head *tt_list_head;
 992	struct xhci_tt_bw_info *tt_info, *next;
 993	int i;
 994
 995	vdev = xhci->devs[slot_id];
 996	if (!vdev)
 997		return;
 998
 999	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
1000	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
1001		/* is this a hub device that added a tt_info to the tts list */
1002		if (tt_info->slot_id == slot_id) {
1003			/* are any devices using this tt_info? */
1004			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
1005				vdev = xhci->devs[i];
1006				if (vdev && (vdev->tt_info == tt_info))
1007					xhci_free_virt_devices_depth_first(
1008						xhci, i);
1009			}
1010		}
1011	}
1012	/* we are now at a leaf device */
1013	xhci_free_virt_device(xhci, slot_id);
1014}
1015
1016int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1017		struct usb_device *udev, gfp_t flags)
1018{
1019	struct xhci_virt_device *dev;
1020	int i;
1021
1022	/* Slot ID 0 is reserved */
1023	if (slot_id == 0 || xhci->devs[slot_id]) {
1024		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1025		return 0;
1026	}
1027
1028	xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
1029	if (!xhci->devs[slot_id])
1030		return 0;
1031	dev = xhci->devs[slot_id];
1032
1033	/* Allocate the (output) device context that will be used in the HC. */
1034	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1035	if (!dev->out_ctx)
1036		goto fail;
1037
1038	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1039			(unsigned long long)dev->out_ctx->dma);
1040
1041	/* Allocate the (input) device context for address device command */
1042	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1043	if (!dev->in_ctx)
1044		goto fail;
1045
1046	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1047			(unsigned long long)dev->in_ctx->dma);
1048
1049	/* Initialize the cancellation list and watchdog timers for each ep */
1050	for (i = 0; i < 31; i++) {
1051		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1052		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1053		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1054	}
1055
1056	/* Allocate endpoint 0 ring */
1057	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1058	if (!dev->eps[0].ring)
1059		goto fail;
1060
1061	/* Allocate pointers to the ring cache */
1062	dev->ring_cache = kzalloc(
1063			sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1064			flags);
1065	if (!dev->ring_cache)
1066		goto fail;
1067	dev->num_rings_cached = 0;
1068
 
1069	dev->udev = udev;
1070
1071	/* Point to output device context in dcbaa. */
1072	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1073	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1074		 slot_id,
1075		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1076		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1077
1078	return 1;
1079fail:
1080	xhci_free_virt_device(xhci, slot_id);
1081	return 0;
1082}
1083
1084void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1085		struct usb_device *udev)
1086{
1087	struct xhci_virt_device *virt_dev;
1088	struct xhci_ep_ctx	*ep0_ctx;
1089	struct xhci_ring	*ep_ring;
1090
1091	virt_dev = xhci->devs[udev->slot_id];
1092	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1093	ep_ring = virt_dev->eps[0].ring;
1094	/*
1095	 * FIXME we don't keep track of the dequeue pointer very well after a
1096	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1097	 * host to our enqueue pointer.  This should only be called after a
1098	 * configured device has reset, so all control transfers should have
1099	 * been completed or cancelled before the reset.
1100	 */
1101	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1102							ep_ring->enqueue)
1103				   | ep_ring->cycle_state);
1104}
1105
1106/*
1107 * The xHCI roothub may have ports of differing speeds in any order in the port
1108 * status registers.  xhci->port_array provides an array of the port speed for
1109 * each offset into the port status registers.
1110 *
1111 * The xHCI hardware wants to know the roothub port number that the USB device
1112 * is attached to (or the roothub port its ancestor hub is attached to).  All we
1113 * know is the index of that port under either the USB 2.0 or the USB 3.0
1114 * roothub, but that doesn't give us the real index into the HW port status
1115 * registers. Call xhci_find_raw_port_number() to get real index.
1116 */
1117static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1118		struct usb_device *udev)
1119{
1120	struct usb_device *top_dev;
1121	struct usb_hcd *hcd;
1122
1123	if (udev->speed >= USB_SPEED_SUPER)
1124		hcd = xhci->shared_hcd;
1125	else
1126		hcd = xhci->main_hcd;
1127
1128	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1129			top_dev = top_dev->parent)
1130		/* Found device below root hub */;
1131
1132	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1133}
1134
1135/* Setup an xHCI virtual device for a Set Address command */
1136int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1137{
1138	struct xhci_virt_device *dev;
1139	struct xhci_ep_ctx	*ep0_ctx;
1140	struct xhci_slot_ctx    *slot_ctx;
1141	u32			port_num;
1142	u32			max_packets;
1143	struct usb_device *top_dev;
1144
1145	dev = xhci->devs[udev->slot_id];
1146	/* Slot ID 0 is reserved */
1147	if (udev->slot_id == 0 || !dev) {
1148		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1149				udev->slot_id);
1150		return -EINVAL;
1151	}
1152	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1153	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1154
1155	/* 3) Only the control endpoint is valid - one endpoint context */
1156	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1157	switch (udev->speed) {
1158	case USB_SPEED_SUPER_PLUS:
1159		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1160		max_packets = MAX_PACKET(512);
1161		break;
1162	case USB_SPEED_SUPER:
1163		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164		max_packets = MAX_PACKET(512);
1165		break;
1166	case USB_SPEED_HIGH:
1167		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168		max_packets = MAX_PACKET(64);
1169		break;
1170	/* USB core guesses at a 64-byte max packet first for FS devices */
1171	case USB_SPEED_FULL:
1172		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173		max_packets = MAX_PACKET(64);
1174		break;
1175	case USB_SPEED_LOW:
1176		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177		max_packets = MAX_PACKET(8);
1178		break;
1179	case USB_SPEED_WIRELESS:
1180		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181		return -EINVAL;
1182		break;
1183	default:
1184		/* Speed was set earlier, this shouldn't happen. */
1185		return -EINVAL;
1186	}
1187	/* Find the root hub port this device is under */
1188	port_num = xhci_find_real_port_number(xhci, udev);
1189	if (!port_num)
1190		return -EINVAL;
1191	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192	/* Set the port number in the virtual_device to the faked port number */
1193	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1194			top_dev = top_dev->parent)
1195		/* Found device below root hub */;
1196	dev->fake_port = top_dev->portnum;
1197	dev->real_port = port_num;
1198	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200
1201	/* Find the right bandwidth table that this device will be a part of.
1202	 * If this is a full speed device attached directly to a root port (or a
1203	 * decendent of one), it counts as a primary bandwidth domain, not a
1204	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1205	 * will never be created for the HS root hub.
1206	 */
1207	if (!udev->tt || !udev->tt->hub->parent) {
1208		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1209	} else {
1210		struct xhci_root_port_bw_info *rh_bw;
1211		struct xhci_tt_bw_info *tt_bw;
1212
1213		rh_bw = &xhci->rh_bw[port_num - 1];
1214		/* Find the right TT. */
1215		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1216			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1217				continue;
1218
1219			if (!dev->udev->tt->multi ||
1220					(udev->tt->multi &&
1221					 tt_bw->ttport == dev->udev->ttport)) {
1222				dev->bw_table = &tt_bw->bw_table;
1223				dev->tt_info = tt_bw;
1224				break;
1225			}
1226		}
1227		if (!dev->tt_info)
1228			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1229	}
1230
1231	/* Is this a LS/FS device under an external HS hub? */
1232	if (udev->tt && udev->tt->hub->parent) {
1233		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1234						(udev->ttport << 8));
1235		if (udev->tt->multi)
1236			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237	}
1238	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1240
1241	/* Step 4 - ring already allocated */
1242	/* Step 5 */
1243	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244
1245	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1247					 max_packets);
1248
1249	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1250				   dev->eps[0].ring->cycle_state);
1251
1252	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1253
1254	return 0;
1255}
1256
1257/*
1258 * Convert interval expressed as 2^(bInterval - 1) == interval into
1259 * straight exponent value 2^n == interval.
1260 *
1261 */
1262static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1263		struct usb_host_endpoint *ep)
1264{
1265	unsigned int interval;
1266
1267	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1268	if (interval != ep->desc.bInterval - 1)
1269		dev_warn(&udev->dev,
1270			 "ep %#x - rounding interval to %d %sframes\n",
1271			 ep->desc.bEndpointAddress,
1272			 1 << interval,
1273			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1274
1275	if (udev->speed == USB_SPEED_FULL) {
1276		/*
1277		 * Full speed isoc endpoints specify interval in frames,
1278		 * not microframes. We are using microframes everywhere,
1279		 * so adjust accordingly.
1280		 */
1281		interval += 3;	/* 1 frame = 2^3 uframes */
1282	}
1283
1284	return interval;
1285}
1286
1287/*
1288 * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289 * microframes, rounded down to nearest power of 2.
1290 */
1291static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1292		struct usb_host_endpoint *ep, unsigned int desc_interval,
1293		unsigned int min_exponent, unsigned int max_exponent)
1294{
1295	unsigned int interval;
1296
1297	interval = fls(desc_interval) - 1;
1298	interval = clamp_val(interval, min_exponent, max_exponent);
1299	if ((1 << interval) != desc_interval)
1300		dev_dbg(&udev->dev,
1301			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1302			 ep->desc.bEndpointAddress,
1303			 1 << interval,
1304			 desc_interval);
1305
1306	return interval;
1307}
1308
1309static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1310		struct usb_host_endpoint *ep)
1311{
1312	if (ep->desc.bInterval == 0)
1313		return 0;
1314	return xhci_microframes_to_exponent(udev, ep,
1315			ep->desc.bInterval, 0, 15);
1316}
1317
1318
1319static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1320		struct usb_host_endpoint *ep)
1321{
1322	return xhci_microframes_to_exponent(udev, ep,
1323			ep->desc.bInterval * 8, 3, 10);
1324}
1325
1326/* Return the polling or NAK interval.
1327 *
1328 * The polling interval is expressed in "microframes".  If xHCI's Interval field
1329 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1330 *
1331 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1332 * is set to 0.
1333 */
1334static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335		struct usb_host_endpoint *ep)
1336{
1337	unsigned int interval = 0;
1338
1339	switch (udev->speed) {
1340	case USB_SPEED_HIGH:
1341		/* Max NAK rate */
1342		if (usb_endpoint_xfer_control(&ep->desc) ||
1343		    usb_endpoint_xfer_bulk(&ep->desc)) {
1344			interval = xhci_parse_microframe_interval(udev, ep);
1345			break;
1346		}
1347		/* Fall through - SS and HS isoc/int have same decoding */
1348
1349	case USB_SPEED_SUPER_PLUS:
1350	case USB_SPEED_SUPER:
1351		if (usb_endpoint_xfer_int(&ep->desc) ||
1352		    usb_endpoint_xfer_isoc(&ep->desc)) {
1353			interval = xhci_parse_exponent_interval(udev, ep);
1354		}
1355		break;
1356
1357	case USB_SPEED_FULL:
1358		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359			interval = xhci_parse_exponent_interval(udev, ep);
1360			break;
1361		}
1362		/*
1363		 * Fall through for interrupt endpoint interval decoding
1364		 * since it uses the same rules as low speed interrupt
1365		 * endpoints.
1366		 */
1367
1368	case USB_SPEED_LOW:
1369		if (usb_endpoint_xfer_int(&ep->desc) ||
1370		    usb_endpoint_xfer_isoc(&ep->desc)) {
1371
1372			interval = xhci_parse_frame_interval(udev, ep);
1373		}
1374		break;
1375
1376	default:
1377		BUG();
1378	}
1379	return interval;
1380}
1381
1382/* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383 * High speed endpoint descriptors can define "the number of additional
1384 * transaction opportunities per microframe", but that goes in the Max Burst
1385 * endpoint context field.
1386 */
1387static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388		struct usb_host_endpoint *ep)
1389{
1390	if (udev->speed < USB_SPEED_SUPER ||
1391			!usb_endpoint_xfer_isoc(&ep->desc))
1392		return 0;
1393	return ep->ss_ep_comp.bmAttributes;
1394}
1395
1396static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1397				       struct usb_host_endpoint *ep)
1398{
1399	/* Super speed and Plus have max burst in ep companion desc */
1400	if (udev->speed >= USB_SPEED_SUPER)
1401		return ep->ss_ep_comp.bMaxBurst;
1402
1403	if (udev->speed == USB_SPEED_HIGH &&
1404	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1405	     usb_endpoint_xfer_int(&ep->desc)))
1406		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1407
1408	return 0;
1409}
1410
1411static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1412{
1413	int in;
1414
1415	in = usb_endpoint_dir_in(&ep->desc);
1416
1417	if (usb_endpoint_xfer_control(&ep->desc))
1418		return CTRL_EP;
1419	if (usb_endpoint_xfer_bulk(&ep->desc))
1420		return in ? BULK_IN_EP : BULK_OUT_EP;
1421	if (usb_endpoint_xfer_isoc(&ep->desc))
1422		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1423	if (usb_endpoint_xfer_int(&ep->desc))
1424		return in ? INT_IN_EP : INT_OUT_EP;
1425	return 0;
1426}
1427
1428/* Return the maximum endpoint service interval time (ESIT) payload.
1429 * Basically, this is the maxpacket size, multiplied by the burst size
1430 * and mult size.
1431 */
1432static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1433		struct usb_host_endpoint *ep)
1434{
1435	int max_burst;
1436	int max_packet;
1437
1438	/* Only applies for interrupt or isochronous endpoints */
1439	if (usb_endpoint_xfer_control(&ep->desc) ||
1440			usb_endpoint_xfer_bulk(&ep->desc))
1441		return 0;
1442
1443	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1444	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1445	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1446		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1447	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1448	else if (udev->speed >= USB_SPEED_SUPER)
1449		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1450
1451	max_packet = usb_endpoint_maxp(&ep->desc);
1452	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1453	/* A 0 in max burst means 1 transfer per ESIT */
1454	return max_packet * max_burst;
1455}
1456
1457/* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1458 * Drivers will have to call usb_alloc_streams() to do that.
1459 */
1460int xhci_endpoint_init(struct xhci_hcd *xhci,
1461		struct xhci_virt_device *virt_dev,
1462		struct usb_device *udev,
1463		struct usb_host_endpoint *ep,
1464		gfp_t mem_flags)
1465{
1466	unsigned int ep_index;
1467	struct xhci_ep_ctx *ep_ctx;
1468	struct xhci_ring *ep_ring;
1469	unsigned int max_packet;
1470	enum xhci_ring_type ring_type;
1471	u32 max_esit_payload;
1472	u32 endpoint_type;
1473	unsigned int max_burst;
1474	unsigned int interval;
1475	unsigned int mult;
1476	unsigned int avg_trb_len;
1477	unsigned int err_count = 0;
1478
1479	ep_index = xhci_get_endpoint_index(&ep->desc);
1480	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1481
1482	endpoint_type = xhci_get_endpoint_type(ep);
1483	if (!endpoint_type)
1484		return -EINVAL;
1485
1486	ring_type = usb_endpoint_type(&ep->desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1487
1488	/*
1489	 * Get values to fill the endpoint context, mostly from ep descriptor.
1490	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1491	 * have no clue on scatter gather list entry size. For Isoc and Int,
1492	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1493	 */
1494	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1495	interval = xhci_get_endpoint_interval(udev, ep);
1496	mult = xhci_get_endpoint_mult(udev, ep);
1497	max_packet = usb_endpoint_maxp(&ep->desc);
1498	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1499	avg_trb_len = max_esit_payload;
1500
1501	/* FIXME dig Mult and streams info out of ep companion desc */
1502
1503	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1504	if (!usb_endpoint_xfer_isoc(&ep->desc))
1505		err_count = 3;
1506	/* Some devices get this wrong */
1507	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1508		max_packet = 512;
1509	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1510	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1511		avg_trb_len = 8;
1512	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1513	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1514		mult = 0;
1515
1516	/* Set up the endpoint ring */
1517	virt_dev->eps[ep_index].new_ring =
1518		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1519	if (!virt_dev->eps[ep_index].new_ring) {
1520		/* Attempt to use the ring cache */
1521		if (virt_dev->num_rings_cached == 0)
1522			return -ENOMEM;
1523		virt_dev->num_rings_cached--;
1524		virt_dev->eps[ep_index].new_ring =
1525			virt_dev->ring_cache[virt_dev->num_rings_cached];
1526		virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1527		xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1528					1, ring_type);
1529	}
1530	virt_dev->eps[ep_index].skip = false;
1531	ep_ring = virt_dev->eps[ep_index].new_ring;
1532
1533	/* Fill the endpoint context */
1534	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1535				      EP_INTERVAL(interval) |
1536				      EP_MULT(mult));
1537	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1538				       MAX_PACKET(max_packet) |
1539				       MAX_BURST(max_burst) |
1540				       ERROR_COUNT(err_count));
1541	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1542				  ep_ring->cycle_state);
1543
1544	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1545				      EP_AVG_TRB_LENGTH(avg_trb_len));
1546
1547	/* FIXME Debug endpoint context */
1548	return 0;
1549}
1550
1551void xhci_endpoint_zero(struct xhci_hcd *xhci,
1552		struct xhci_virt_device *virt_dev,
1553		struct usb_host_endpoint *ep)
1554{
1555	unsigned int ep_index;
1556	struct xhci_ep_ctx *ep_ctx;
1557
1558	ep_index = xhci_get_endpoint_index(&ep->desc);
1559	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1560
1561	ep_ctx->ep_info = 0;
1562	ep_ctx->ep_info2 = 0;
1563	ep_ctx->deq = 0;
1564	ep_ctx->tx_info = 0;
1565	/* Don't free the endpoint ring until the set interface or configuration
1566	 * request succeeds.
1567	 */
1568}
1569
1570void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1571{
1572	bw_info->ep_interval = 0;
1573	bw_info->mult = 0;
1574	bw_info->num_packets = 0;
1575	bw_info->max_packet_size = 0;
1576	bw_info->type = 0;
1577	bw_info->max_esit_payload = 0;
1578}
1579
1580void xhci_update_bw_info(struct xhci_hcd *xhci,
1581		struct xhci_container_ctx *in_ctx,
1582		struct xhci_input_control_ctx *ctrl_ctx,
1583		struct xhci_virt_device *virt_dev)
1584{
1585	struct xhci_bw_info *bw_info;
1586	struct xhci_ep_ctx *ep_ctx;
1587	unsigned int ep_type;
1588	int i;
1589
1590	for (i = 1; i < 31; ++i) {
1591		bw_info = &virt_dev->eps[i].bw_info;
1592
1593		/* We can't tell what endpoint type is being dropped, but
1594		 * unconditionally clearing the bandwidth info for non-periodic
1595		 * endpoints should be harmless because the info will never be
1596		 * set in the first place.
1597		 */
1598		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1599			/* Dropped endpoint */
1600			xhci_clear_endpoint_bw_info(bw_info);
1601			continue;
1602		}
1603
1604		if (EP_IS_ADDED(ctrl_ctx, i)) {
1605			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1606			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1607
1608			/* Ignore non-periodic endpoints */
1609			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1610					ep_type != ISOC_IN_EP &&
1611					ep_type != INT_IN_EP)
1612				continue;
1613
1614			/* Added or changed endpoint */
1615			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1616					le32_to_cpu(ep_ctx->ep_info));
1617			/* Number of packets and mult are zero-based in the
1618			 * input context, but we want one-based for the
1619			 * interval table.
1620			 */
1621			bw_info->mult = CTX_TO_EP_MULT(
1622					le32_to_cpu(ep_ctx->ep_info)) + 1;
1623			bw_info->num_packets = CTX_TO_MAX_BURST(
1624					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1625			bw_info->max_packet_size = MAX_PACKET_DECODED(
1626					le32_to_cpu(ep_ctx->ep_info2));
1627			bw_info->type = ep_type;
1628			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1629					le32_to_cpu(ep_ctx->tx_info));
1630		}
1631	}
1632}
1633
1634/* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1635 * Useful when you want to change one particular aspect of the endpoint and then
1636 * issue a configure endpoint command.
1637 */
1638void xhci_endpoint_copy(struct xhci_hcd *xhci,
1639		struct xhci_container_ctx *in_ctx,
1640		struct xhci_container_ctx *out_ctx,
1641		unsigned int ep_index)
1642{
1643	struct xhci_ep_ctx *out_ep_ctx;
1644	struct xhci_ep_ctx *in_ep_ctx;
1645
1646	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1647	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1648
1649	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1650	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1651	in_ep_ctx->deq = out_ep_ctx->deq;
1652	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1653}
1654
1655/* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1656 * Useful when you want to change one particular aspect of the endpoint and then
1657 * issue a configure endpoint command.  Only the context entries field matters,
1658 * but we'll copy the whole thing anyway.
1659 */
1660void xhci_slot_copy(struct xhci_hcd *xhci,
1661		struct xhci_container_ctx *in_ctx,
1662		struct xhci_container_ctx *out_ctx)
1663{
1664	struct xhci_slot_ctx *in_slot_ctx;
1665	struct xhci_slot_ctx *out_slot_ctx;
1666
1667	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1668	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1669
1670	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1671	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1672	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1673	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1674}
1675
1676/* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1677static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1678{
1679	int i;
1680	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1681	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1682
1683	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1684			"Allocating %d scratchpad buffers", num_sp);
1685
1686	if (!num_sp)
1687		return 0;
1688
1689	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1690	if (!xhci->scratchpad)
1691		goto fail_sp;
1692
1693	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1694				     num_sp * sizeof(u64),
1695				     &xhci->scratchpad->sp_dma, flags);
1696	if (!xhci->scratchpad->sp_array)
1697		goto fail_sp2;
1698
1699	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1700	if (!xhci->scratchpad->sp_buffers)
1701		goto fail_sp3;
1702
1703	xhci->scratchpad->sp_dma_buffers =
1704		kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1705
1706	if (!xhci->scratchpad->sp_dma_buffers)
1707		goto fail_sp4;
1708
1709	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1710	for (i = 0; i < num_sp; i++) {
1711		dma_addr_t dma;
1712		void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1713				flags);
1714		if (!buf)
1715			goto fail_sp5;
1716
1717		xhci->scratchpad->sp_array[i] = dma;
1718		xhci->scratchpad->sp_buffers[i] = buf;
1719		xhci->scratchpad->sp_dma_buffers[i] = dma;
1720	}
1721
1722	return 0;
1723
1724 fail_sp5:
1725	for (i = i - 1; i >= 0; i--) {
1726		dma_free_coherent(dev, xhci->page_size,
1727				    xhci->scratchpad->sp_buffers[i],
1728				    xhci->scratchpad->sp_dma_buffers[i]);
1729	}
1730	kfree(xhci->scratchpad->sp_dma_buffers);
1731
1732 fail_sp4:
1733	kfree(xhci->scratchpad->sp_buffers);
1734
1735 fail_sp3:
1736	dma_free_coherent(dev, num_sp * sizeof(u64),
1737			    xhci->scratchpad->sp_array,
1738			    xhci->scratchpad->sp_dma);
1739
1740 fail_sp2:
1741	kfree(xhci->scratchpad);
1742	xhci->scratchpad = NULL;
1743
1744 fail_sp:
1745	return -ENOMEM;
1746}
1747
1748static void scratchpad_free(struct xhci_hcd *xhci)
1749{
1750	int num_sp;
1751	int i;
1752	struct device *dev = xhci_to_hcd(xhci)->self.controller;
1753
1754	if (!xhci->scratchpad)
1755		return;
1756
1757	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1758
1759	for (i = 0; i < num_sp; i++) {
1760		dma_free_coherent(dev, xhci->page_size,
1761				    xhci->scratchpad->sp_buffers[i],
1762				    xhci->scratchpad->sp_dma_buffers[i]);
1763	}
1764	kfree(xhci->scratchpad->sp_dma_buffers);
1765	kfree(xhci->scratchpad->sp_buffers);
1766	dma_free_coherent(dev, num_sp * sizeof(u64),
1767			    xhci->scratchpad->sp_array,
1768			    xhci->scratchpad->sp_dma);
1769	kfree(xhci->scratchpad);
1770	xhci->scratchpad = NULL;
1771}
1772
1773struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1774		bool allocate_in_ctx, bool allocate_completion,
1775		gfp_t mem_flags)
1776{
1777	struct xhci_command *command;
1778
1779	command = kzalloc(sizeof(*command), mem_flags);
1780	if (!command)
1781		return NULL;
1782
1783	if (allocate_in_ctx) {
1784		command->in_ctx =
1785			xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1786					mem_flags);
1787		if (!command->in_ctx) {
1788			kfree(command);
1789			return NULL;
1790		}
1791	}
1792
1793	if (allocate_completion) {
1794		command->completion =
1795			kzalloc(sizeof(struct completion), mem_flags);
1796		if (!command->completion) {
1797			xhci_free_container_ctx(xhci, command->in_ctx);
1798			kfree(command);
1799			return NULL;
1800		}
1801		init_completion(command->completion);
1802	}
1803
1804	command->status = 0;
1805	INIT_LIST_HEAD(&command->cmd_list);
1806	return command;
1807}
1808
1809void xhci_urb_free_priv(struct urb_priv *urb_priv)
1810{
1811	if (urb_priv) {
1812		kfree(urb_priv->td[0]);
1813		kfree(urb_priv);
1814	}
1815}
1816
1817void xhci_free_command(struct xhci_hcd *xhci,
1818		struct xhci_command *command)
1819{
1820	xhci_free_container_ctx(xhci,
1821			command->in_ctx);
1822	kfree(command->completion);
1823	kfree(command);
1824}
1825
1826void xhci_mem_cleanup(struct xhci_hcd *xhci)
1827{
1828	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
1829	int size;
1830	int i, j, num_ports;
1831
1832	cancel_delayed_work_sync(&xhci->cmd_timer);
1833
1834	/* Free the Event Ring Segment Table and the actual Event Ring */
1835	size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1836	if (xhci->erst.entries)
1837		dma_free_coherent(dev, size,
1838				xhci->erst.entries, xhci->erst.erst_dma_addr);
1839	xhci->erst.entries = NULL;
1840	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1841	if (xhci->event_ring)
1842		xhci_ring_free(xhci, xhci->event_ring);
1843	xhci->event_ring = NULL;
1844	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1845
1846	if (xhci->lpm_command)
1847		xhci_free_command(xhci, xhci->lpm_command);
1848	xhci->lpm_command = NULL;
1849	if (xhci->cmd_ring)
1850		xhci_ring_free(xhci, xhci->cmd_ring);
1851	xhci->cmd_ring = NULL;
1852	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1853	xhci_cleanup_command_queue(xhci);
1854
1855	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1856	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1857		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1858		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1859			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1860			while (!list_empty(ep))
1861				list_del_init(ep->next);
1862		}
1863	}
1864
1865	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1866		xhci_free_virt_devices_depth_first(xhci, i);
1867
1868	dma_pool_destroy(xhci->segment_pool);
1869	xhci->segment_pool = NULL;
1870	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1871
1872	dma_pool_destroy(xhci->device_pool);
1873	xhci->device_pool = NULL;
1874	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1875
1876	dma_pool_destroy(xhci->small_streams_pool);
1877	xhci->small_streams_pool = NULL;
1878	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1879			"Freed small stream array pool");
1880
1881	dma_pool_destroy(xhci->medium_streams_pool);
1882	xhci->medium_streams_pool = NULL;
1883	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1884			"Freed medium stream array pool");
1885
1886	if (xhci->dcbaa)
1887		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1888				xhci->dcbaa, xhci->dcbaa->dma);
1889	xhci->dcbaa = NULL;
1890
1891	scratchpad_free(xhci);
1892
1893	if (!xhci->rh_bw)
1894		goto no_bw;
1895
1896	for (i = 0; i < num_ports; i++) {
1897		struct xhci_tt_bw_info *tt, *n;
1898		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1899			list_del(&tt->tt_list);
1900			kfree(tt);
1901		}
1902	}
1903
1904no_bw:
1905	xhci->cmd_ring_reserved_trbs = 0;
1906	xhci->num_usb2_ports = 0;
1907	xhci->num_usb3_ports = 0;
1908	xhci->num_active_eps = 0;
1909	kfree(xhci->usb2_ports);
1910	kfree(xhci->usb3_ports);
1911	kfree(xhci->port_array);
1912	kfree(xhci->rh_bw);
1913	kfree(xhci->ext_caps);
1914
1915	xhci->usb2_ports = NULL;
1916	xhci->usb3_ports = NULL;
1917	xhci->port_array = NULL;
1918	xhci->rh_bw = NULL;
1919	xhci->ext_caps = NULL;
1920
1921	xhci->page_size = 0;
1922	xhci->page_shift = 0;
1923	xhci->bus_state[0].bus_suspended = 0;
1924	xhci->bus_state[1].bus_suspended = 0;
1925}
1926
1927static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1928		struct xhci_segment *input_seg,
1929		union xhci_trb *start_trb,
1930		union xhci_trb *end_trb,
1931		dma_addr_t input_dma,
1932		struct xhci_segment *result_seg,
1933		char *test_name, int test_number)
1934{
1935	unsigned long long start_dma;
1936	unsigned long long end_dma;
1937	struct xhci_segment *seg;
1938
1939	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1940	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1941
1942	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1943	if (seg != result_seg) {
1944		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1945				test_name, test_number);
1946		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1947				"input DMA 0x%llx\n",
1948				input_seg,
1949				(unsigned long long) input_dma);
1950		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1951				"ending TRB %p (0x%llx DMA)\n",
1952				start_trb, start_dma,
1953				end_trb, end_dma);
1954		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1955				result_seg, seg);
1956		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1957			  true);
1958		return -1;
1959	}
1960	return 0;
1961}
1962
1963/* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1964static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1965{
1966	struct {
1967		dma_addr_t		input_dma;
1968		struct xhci_segment	*result_seg;
1969	} simple_test_vector [] = {
1970		/* A zeroed DMA field should fail */
1971		{ 0, NULL },
1972		/* One TRB before the ring start should fail */
1973		{ xhci->event_ring->first_seg->dma - 16, NULL },
1974		/* One byte before the ring start should fail */
1975		{ xhci->event_ring->first_seg->dma - 1, NULL },
1976		/* Starting TRB should succeed */
1977		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1978		/* Ending TRB should succeed */
1979		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1980			xhci->event_ring->first_seg },
1981		/* One byte after the ring end should fail */
1982		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1983		/* One TRB after the ring end should fail */
1984		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1985		/* An address of all ones should fail */
1986		{ (dma_addr_t) (~0), NULL },
1987	};
1988	struct {
1989		struct xhci_segment	*input_seg;
1990		union xhci_trb		*start_trb;
1991		union xhci_trb		*end_trb;
1992		dma_addr_t		input_dma;
1993		struct xhci_segment	*result_seg;
1994	} complex_test_vector [] = {
1995		/* Test feeding a valid DMA address from a different ring */
1996		{	.input_seg = xhci->event_ring->first_seg,
1997			.start_trb = xhci->event_ring->first_seg->trbs,
1998			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1999			.input_dma = xhci->cmd_ring->first_seg->dma,
2000			.result_seg = NULL,
2001		},
2002		/* Test feeding a valid end TRB from a different ring */
2003		{	.input_seg = xhci->event_ring->first_seg,
2004			.start_trb = xhci->event_ring->first_seg->trbs,
2005			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2006			.input_dma = xhci->cmd_ring->first_seg->dma,
2007			.result_seg = NULL,
2008		},
2009		/* Test feeding a valid start and end TRB from a different ring */
2010		{	.input_seg = xhci->event_ring->first_seg,
2011			.start_trb = xhci->cmd_ring->first_seg->trbs,
2012			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2013			.input_dma = xhci->cmd_ring->first_seg->dma,
2014			.result_seg = NULL,
2015		},
2016		/* TRB in this ring, but after this TD */
2017		{	.input_seg = xhci->event_ring->first_seg,
2018			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2019			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2020			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2021			.result_seg = NULL,
2022		},
2023		/* TRB in this ring, but before this TD */
2024		{	.input_seg = xhci->event_ring->first_seg,
2025			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2026			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2027			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2028			.result_seg = NULL,
2029		},
2030		/* TRB in this ring, but after this wrapped TD */
2031		{	.input_seg = xhci->event_ring->first_seg,
2032			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2033			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2034			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2035			.result_seg = NULL,
2036		},
2037		/* TRB in this ring, but before this wrapped TD */
2038		{	.input_seg = xhci->event_ring->first_seg,
2039			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2040			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2041			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2042			.result_seg = NULL,
2043		},
2044		/* TRB not in this ring, and we have a wrapped TD */
2045		{	.input_seg = xhci->event_ring->first_seg,
2046			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2047			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2048			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2049			.result_seg = NULL,
2050		},
2051	};
2052
2053	unsigned int num_tests;
2054	int i, ret;
2055
2056	num_tests = ARRAY_SIZE(simple_test_vector);
2057	for (i = 0; i < num_tests; i++) {
2058		ret = xhci_test_trb_in_td(xhci,
2059				xhci->event_ring->first_seg,
2060				xhci->event_ring->first_seg->trbs,
2061				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2062				simple_test_vector[i].input_dma,
2063				simple_test_vector[i].result_seg,
2064				"Simple", i);
2065		if (ret < 0)
2066			return ret;
2067	}
2068
2069	num_tests = ARRAY_SIZE(complex_test_vector);
2070	for (i = 0; i < num_tests; i++) {
2071		ret = xhci_test_trb_in_td(xhci,
2072				complex_test_vector[i].input_seg,
2073				complex_test_vector[i].start_trb,
2074				complex_test_vector[i].end_trb,
2075				complex_test_vector[i].input_dma,
2076				complex_test_vector[i].result_seg,
2077				"Complex", i);
2078		if (ret < 0)
2079			return ret;
2080	}
2081	xhci_dbg(xhci, "TRB math tests passed.\n");
2082	return 0;
2083}
2084
2085static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2086{
2087	u64 temp;
2088	dma_addr_t deq;
2089
2090	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2091			xhci->event_ring->dequeue);
2092	if (deq == 0 && !in_interrupt())
2093		xhci_warn(xhci, "WARN something wrong with SW event ring "
2094				"dequeue ptr.\n");
2095	/* Update HC event ring dequeue pointer */
2096	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2097	temp &= ERST_PTR_MASK;
2098	/* Don't clear the EHB bit (which is RW1C) because
2099	 * there might be more events to service.
2100	 */
2101	temp &= ~ERST_EHB;
2102	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2103			"// Write event ring dequeue pointer, "
2104			"preserving EHB bit");
2105	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2106			&xhci->ir_set->erst_dequeue);
2107}
2108
2109static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2110		__le32 __iomem *addr, int max_caps)
2111{
2112	u32 temp, port_offset, port_count;
2113	int i;
2114	u8 major_revision;
2115	struct xhci_hub *rhub;
2116
2117	temp = readl(addr);
2118	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2119
2120	if (major_revision == 0x03) {
2121		rhub = &xhci->usb3_rhub;
2122	} else if (major_revision <= 0x02) {
2123		rhub = &xhci->usb2_rhub;
2124	} else {
2125		xhci_warn(xhci, "Ignoring unknown port speed, "
2126				"Ext Cap %p, revision = 0x%x\n",
2127				addr, major_revision);
2128		/* Ignoring port protocol we can't understand. FIXME */
2129		return;
2130	}
2131	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2132	rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2133
2134	/* Port offset and count in the third dword, see section 7.2 */
2135	temp = readl(addr + 2);
2136	port_offset = XHCI_EXT_PORT_OFF(temp);
2137	port_count = XHCI_EXT_PORT_COUNT(temp);
2138	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2139			"Ext Cap %p, port offset = %u, "
2140			"count = %u, revision = 0x%x",
2141			addr, port_offset, port_count, major_revision);
2142	/* Port count includes the current port offset */
2143	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2144		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2145		return;
2146
2147	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2148	if (rhub->psi_count) {
2149		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2150				    GFP_KERNEL);
2151		if (!rhub->psi)
2152			rhub->psi_count = 0;
2153
2154		rhub->psi_uid_count++;
2155		for (i = 0; i < rhub->psi_count; i++) {
2156			rhub->psi[i] = readl(addr + 4 + i);
2157
2158			/* count unique ID values, two consecutive entries can
2159			 * have the same ID if link is assymetric
2160			 */
2161			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2162				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2163				rhub->psi_uid_count++;
2164
2165			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2166				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2167				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2168				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2169				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2170				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2171				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2172		}
2173	}
2174	/* cache usb2 port capabilities */
2175	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2176		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2177
2178	/* Check the host's USB2 LPM capability */
2179	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2180			(temp & XHCI_L1C)) {
2181		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182				"xHCI 0.96: support USB2 software lpm");
2183		xhci->sw_lpm_support = 1;
2184	}
2185
2186	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2187		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2188				"xHCI 1.0: support USB2 software lpm");
2189		xhci->sw_lpm_support = 1;
2190		if (temp & XHCI_HLC) {
2191			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2192					"xHCI 1.0: support USB2 hardware lpm");
2193			xhci->hw_lpm_support = 1;
2194		}
2195	}
2196
2197	port_offset--;
2198	for (i = port_offset; i < (port_offset + port_count); i++) {
2199		/* Duplicate entry.  Ignore the port if the revisions differ. */
2200		if (xhci->port_array[i] != 0) {
2201			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2202					" port %u\n", addr, i);
2203			xhci_warn(xhci, "Port was marked as USB %u, "
2204					"duplicated as USB %u\n",
2205					xhci->port_array[i], major_revision);
2206			/* Only adjust the roothub port counts if we haven't
2207			 * found a similar duplicate.
2208			 */
2209			if (xhci->port_array[i] != major_revision &&
2210				xhci->port_array[i] != DUPLICATE_ENTRY) {
2211				if (xhci->port_array[i] == 0x03)
2212					xhci->num_usb3_ports--;
2213				else
2214					xhci->num_usb2_ports--;
2215				xhci->port_array[i] = DUPLICATE_ENTRY;
2216			}
2217			/* FIXME: Should we disable the port? */
2218			continue;
2219		}
2220		xhci->port_array[i] = major_revision;
2221		if (major_revision == 0x03)
2222			xhci->num_usb3_ports++;
2223		else
2224			xhci->num_usb2_ports++;
2225	}
2226	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2227}
2228
2229/*
2230 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2231 * specify what speeds each port is supposed to be.  We can't count on the port
2232 * speed bits in the PORTSC register being correct until a device is connected,
2233 * but we need to set up the two fake roothubs with the correct number of USB
2234 * 3.0 and USB 2.0 ports at host controller initialization time.
2235 */
2236static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2237{
2238	void __iomem *base;
2239	u32 offset;
2240	unsigned int num_ports;
2241	int i, j, port_index;
2242	int cap_count = 0;
2243	u32 cap_start;
2244
2245	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2246	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2247	if (!xhci->port_array)
2248		return -ENOMEM;
2249
2250	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2251	if (!xhci->rh_bw)
2252		return -ENOMEM;
2253	for (i = 0; i < num_ports; i++) {
2254		struct xhci_interval_bw_table *bw_table;
2255
2256		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2257		bw_table = &xhci->rh_bw[i].bw_table;
2258		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2259			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2260	}
2261	base = &xhci->cap_regs->hc_capbase;
2262
2263	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2264	if (!cap_start) {
2265		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2266		return -ENODEV;
2267	}
2268
2269	offset = cap_start;
2270	/* count extended protocol capability entries for later caching */
2271	while (offset) {
2272		cap_count++;
2273		offset = xhci_find_next_ext_cap(base, offset,
2274						      XHCI_EXT_CAPS_PROTOCOL);
2275	}
2276
2277	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2278	if (!xhci->ext_caps)
2279		return -ENOMEM;
2280
2281	offset = cap_start;
2282
2283	while (offset) {
2284		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2285		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2286			break;
2287		offset = xhci_find_next_ext_cap(base, offset,
2288						XHCI_EXT_CAPS_PROTOCOL);
2289	}
2290
2291	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2292		xhci_warn(xhci, "No ports on the roothubs?\n");
2293		return -ENODEV;
2294	}
2295	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2296			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2297			xhci->num_usb2_ports, xhci->num_usb3_ports);
2298
2299	/* Place limits on the number of roothub ports so that the hub
2300	 * descriptors aren't longer than the USB core will allocate.
2301	 */
2302	if (xhci->num_usb3_ports > 15) {
2303		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2304				"Limiting USB 3.0 roothub ports to 15.");
2305		xhci->num_usb3_ports = 15;
2306	}
2307	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2308		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2309				"Limiting USB 2.0 roothub ports to %u.",
2310				USB_MAXCHILDREN);
2311		xhci->num_usb2_ports = USB_MAXCHILDREN;
2312	}
2313
2314	/*
2315	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2316	 * Not sure how the USB core will handle a hub with no ports...
2317	 */
2318	if (xhci->num_usb2_ports) {
2319		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2320				xhci->num_usb2_ports, flags);
2321		if (!xhci->usb2_ports)
2322			return -ENOMEM;
2323
2324		port_index = 0;
2325		for (i = 0; i < num_ports; i++) {
2326			if (xhci->port_array[i] == 0x03 ||
2327					xhci->port_array[i] == 0 ||
2328					xhci->port_array[i] == DUPLICATE_ENTRY)
2329				continue;
2330
2331			xhci->usb2_ports[port_index] =
2332				&xhci->op_regs->port_status_base +
2333				NUM_PORT_REGS*i;
2334			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2335					"USB 2.0 port at index %u, "
2336					"addr = %p", i,
2337					xhci->usb2_ports[port_index]);
2338			port_index++;
2339			if (port_index == xhci->num_usb2_ports)
2340				break;
2341		}
2342	}
2343	if (xhci->num_usb3_ports) {
2344		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2345				xhci->num_usb3_ports, flags);
2346		if (!xhci->usb3_ports)
2347			return -ENOMEM;
2348
2349		port_index = 0;
2350		for (i = 0; i < num_ports; i++)
2351			if (xhci->port_array[i] == 0x03) {
2352				xhci->usb3_ports[port_index] =
2353					&xhci->op_regs->port_status_base +
2354					NUM_PORT_REGS*i;
2355				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2356						"USB 3.0 port at index %u, "
2357						"addr = %p", i,
2358						xhci->usb3_ports[port_index]);
2359				port_index++;
2360				if (port_index == xhci->num_usb3_ports)
2361					break;
2362			}
2363	}
2364	return 0;
2365}
2366
2367int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2368{
2369	dma_addr_t	dma;
2370	struct device	*dev = xhci_to_hcd(xhci)->self.controller;
2371	unsigned int	val, val2;
2372	u64		val_64;
2373	struct xhci_segment	*seg;
2374	u32 page_size, temp;
2375	int i;
2376
2377	INIT_LIST_HEAD(&xhci->cmd_list);
2378
2379	/* init command timeout work */
2380	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2381	init_completion(&xhci->cmd_ring_stop_completion);
2382
2383	page_size = readl(&xhci->op_regs->page_size);
2384	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2385			"Supported page size register = 0x%x", page_size);
2386	for (i = 0; i < 16; i++) {
2387		if ((0x1 & page_size) != 0)
2388			break;
2389		page_size = page_size >> 1;
2390	}
2391	if (i < 16)
2392		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393			"Supported page size of %iK", (1 << (i+12)) / 1024);
2394	else
2395		xhci_warn(xhci, "WARN: no supported page size\n");
2396	/* Use 4K pages, since that's common and the minimum the HC supports */
2397	xhci->page_shift = 12;
2398	xhci->page_size = 1 << xhci->page_shift;
2399	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2400			"HCD page size set to %iK", xhci->page_size / 1024);
2401
2402	/*
2403	 * Program the Number of Device Slots Enabled field in the CONFIG
2404	 * register with the max value of slots the HC can handle.
2405	 */
2406	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2407	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2408			"// xHC can handle at most %d device slots.", val);
2409	val2 = readl(&xhci->op_regs->config_reg);
2410	val |= (val2 & ~HCS_SLOTS_MASK);
2411	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2412			"// Setting Max device slots reg = 0x%x.", val);
2413	writel(val, &xhci->op_regs->config_reg);
2414
2415	/*
2416	 * Section 5.4.8 - doorbell array must be
2417	 * "physically contiguous and 64-byte (cache line) aligned".
2418	 */
2419	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2420			flags);
2421	if (!xhci->dcbaa)
2422		goto fail;
2423	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2424	xhci->dcbaa->dma = dma;
2425	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2426			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2427			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2428	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2429
2430	/*
2431	 * Initialize the ring segment pool.  The ring must be a contiguous
2432	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2433	 * however, the command ring segment needs 64-byte aligned segments
2434	 * and our use of dma addresses in the trb_address_map radix tree needs
2435	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2436	 */
2437	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2438			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2439
2440	/* See Table 46 and Note on Figure 55 */
2441	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2442			2112, 64, xhci->page_size);
2443	if (!xhci->segment_pool || !xhci->device_pool)
2444		goto fail;
2445
2446	/* Linear stream context arrays don't have any boundary restrictions,
2447	 * and only need to be 16-byte aligned.
2448	 */
2449	xhci->small_streams_pool =
2450		dma_pool_create("xHCI 256 byte stream ctx arrays",
2451			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2452	xhci->medium_streams_pool =
2453		dma_pool_create("xHCI 1KB stream ctx arrays",
2454			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2455	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2456	 * will be allocated with dma_alloc_coherent()
2457	 */
2458
2459	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2460		goto fail;
2461
2462	/* Set up the command ring to have one segments for now. */
2463	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2464	if (!xhci->cmd_ring)
2465		goto fail;
2466	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467			"Allocated command ring at %p", xhci->cmd_ring);
2468	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2469			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2470
2471	/* Set the address in the Command Ring Control register */
2472	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2473	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2474		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2475		xhci->cmd_ring->cycle_state;
2476	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2477			"// Setting command ring address to 0x%x", val);
2478	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2479	xhci_dbg_cmd_ptrs(xhci);
2480
2481	xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2482	if (!xhci->lpm_command)
2483		goto fail;
2484
2485	/* Reserve one command ring TRB for disabling LPM.
2486	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2487	 * disabling LPM, we only need to reserve one TRB for all devices.
2488	 */
2489	xhci->cmd_ring_reserved_trbs++;
2490
2491	val = readl(&xhci->cap_regs->db_off);
2492	val &= DBOFF_MASK;
2493	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494			"// Doorbell array is located at offset 0x%x"
2495			" from cap regs base addr", val);
2496	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2497	xhci_dbg_regs(xhci);
2498	xhci_print_run_regs(xhci);
2499	/* Set ir_set to interrupt register set 0 */
2500	xhci->ir_set = &xhci->run_regs->ir_set[0];
2501
2502	/*
2503	 * Event ring setup: Allocate a normal ring, but also setup
2504	 * the event ring segment table (ERST).  Section 4.9.3.
2505	 */
2506	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2507	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2508					0, flags);
2509	if (!xhci->event_ring)
2510		goto fail;
2511	if (xhci_check_trb_in_td_math(xhci) < 0)
2512		goto fail;
2513
2514	xhci->erst.entries = dma_alloc_coherent(dev,
2515			sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2516			flags);
2517	if (!xhci->erst.entries)
2518		goto fail;
2519	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2520			"// Allocated event ring segment table at 0x%llx",
2521			(unsigned long long)dma);
2522
2523	memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2524	xhci->erst.num_entries = ERST_NUM_SEGS;
2525	xhci->erst.erst_dma_addr = dma;
2526	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2527			"Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2528			xhci->erst.num_entries,
2529			xhci->erst.entries,
2530			(unsigned long long)xhci->erst.erst_dma_addr);
2531
2532	/* set ring base address and size for each segment table entry */
2533	for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2534		struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2535		entry->seg_addr = cpu_to_le64(seg->dma);
2536		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2537		entry->rsvd = 0;
2538		seg = seg->next;
2539	}
2540
2541	/* set ERST count with the number of entries in the segment table */
2542	val = readl(&xhci->ir_set->erst_size);
2543	val &= ERST_SIZE_MASK;
2544	val |= ERST_NUM_SEGS;
2545	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2546			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2547			val);
2548	writel(val, &xhci->ir_set->erst_size);
2549
2550	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2551			"// Set ERST entries to point to event ring.");
2552	/* set the segment table base address */
2553	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2554			"// Set ERST base address for ir_set 0 = 0x%llx",
2555			(unsigned long long)xhci->erst.erst_dma_addr);
2556	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2557	val_64 &= ERST_PTR_MASK;
2558	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2559	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2560
2561	/* Set the event ring dequeue address */
2562	xhci_set_hc_event_deq(xhci);
2563	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2564			"Wrote ERST address to ir_set 0.");
2565	xhci_print_ir_set(xhci, 0);
2566
2567	/*
2568	 * XXX: Might need to set the Interrupter Moderation Register to
2569	 * something other than the default (~1ms minimum between interrupts).
2570	 * See section 5.5.1.2.
2571	 */
 
2572	for (i = 0; i < MAX_HC_SLOTS; ++i)
2573		xhci->devs[i] = NULL;
2574	for (i = 0; i < USB_MAXCHILDREN; ++i) {
2575		xhci->bus_state[0].resume_done[i] = 0;
2576		xhci->bus_state[1].resume_done[i] = 0;
2577		/* Only the USB 2.0 completions will ever be used. */
2578		init_completion(&xhci->bus_state[1].rexit_done[i]);
2579	}
2580
2581	if (scratchpad_alloc(xhci, flags))
2582		goto fail;
2583	if (xhci_setup_port_arrays(xhci, flags))
2584		goto fail;
2585
2586	/* Enable USB 3.0 device notifications for function remote wake, which
2587	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2588	 * U3 (device suspend).
2589	 */
2590	temp = readl(&xhci->op_regs->dev_notification);
2591	temp &= ~DEV_NOTE_MASK;
2592	temp |= DEV_NOTE_FWAKE;
2593	writel(temp, &xhci->op_regs->dev_notification);
2594
2595	return 0;
2596
2597fail:
2598	xhci_warn(xhci, "Couldn't initialize memory\n");
2599	xhci_halt(xhci);
2600	xhci_reset(xhci);
2601	xhci_mem_cleanup(xhci);
2602	return -ENOMEM;
2603}