Linux Audio

Check our new training course

Loading...
v4.6
   1/**
 
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
 
 
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->g_using_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99/**
 100 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 101 * @hsotg: The device state
 102 * @ints: A bitmask of the interrupts to enable
 103 */
 104static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 105{
 106	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 107	u32 new_gsintmsk;
 108
 109	new_gsintmsk = gsintmsk | ints;
 110
 111	if (new_gsintmsk != gsintmsk) {
 112		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 113		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 114	}
 115}
 116
 117/**
 118 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 119 * @hsotg: The device state
 120 * @ints: A bitmask of the interrupts to enable
 121 */
 122static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 123{
 124	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 125	u32 new_gsintmsk;
 126
 127	new_gsintmsk = gsintmsk & ~ints;
 128
 129	if (new_gsintmsk != gsintmsk)
 130		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 131}
 132
 133/**
 134 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 135 * @hsotg: The device state
 136 * @ep: The endpoint index
 137 * @dir_in: True if direction is in.
 138 * @en: The enable value, true to enable
 139 *
 140 * Set or clear the mask for an individual endpoint's interrupt
 141 * request.
 142 */
 143static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 144				 unsigned int ep, unsigned int dir_in,
 145				 unsigned int en)
 146{
 147	unsigned long flags;
 148	u32 bit = 1 << ep;
 149	u32 daint;
 150
 151	if (!dir_in)
 152		bit <<= 16;
 153
 154	local_irq_save(flags);
 155	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 156	if (en)
 157		daint |= bit;
 158	else
 159		daint &= ~bit;
 160	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 161	local_irq_restore(flags);
 162}
 163
 164/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 166 * @hsotg: The device instance.
 167 */
 168static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 169{
 170	unsigned int ep;
 171	unsigned int addr;
 172	int timeout;
 
 173	u32 val;
 
 174
 175	/* Reset fifo map if not correctly cleared during previous session */
 176	WARN_ON(hsotg->fifo_map);
 177	hsotg->fifo_map = 0;
 178
 179	/* set RX/NPTX FIFO sizes */
 180	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
 181	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
 182		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
 183		hsotg->regs + GNPTXFSIZ);
 
 184
 185	/*
 186	 * arange all the rest of the TX FIFOs, as some versions of this
 187	 * block have overlapping default addresses. This also ensures
 188	 * that if the settings have been changed, then they are set to
 189	 * known values.
 190	 */
 191
 192	/* start at the end of the GNPTXFSIZ, rounded up */
 193	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
 194
 195	/*
 196	 * Configure fifos sizes from provided configuration and assign
 197	 * them to endpoints dynamically according to maxpacket size value of
 198	 * given endpoint.
 199	 */
 200	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 201		if (!hsotg->g_tx_fifo_sz[ep])
 202			continue;
 203		val = addr;
 204		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
 205		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
 206			  "insufficient fifo memory");
 207		addr += hsotg->g_tx_fifo_sz[ep];
 208
 209		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 
 210	}
 211
 
 
 
 212	/*
 213	 * according to p428 of the design guide, we need to ensure that
 214	 * all fifos are flushed before continuing
 215	 */
 216
 217	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 218	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 219
 220	/* wait until the fifos are both flushed */
 221	timeout = 100;
 222	while (1) {
 223		val = dwc2_readl(hsotg->regs + GRSTCTL);
 224
 225		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 226			break;
 227
 228		if (--timeout == 0) {
 229			dev_err(hsotg->dev,
 230				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 231				__func__, val);
 232			break;
 233		}
 234
 235		udelay(1);
 236	}
 237
 238	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 239}
 240
 241/**
 
 242 * @ep: USB endpoint to allocate request for.
 243 * @flags: Allocation flags
 244 *
 245 * Allocate a new USB request structure appropriate for the specified endpoint
 246 */
 247static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 248						      gfp_t flags)
 249{
 250	struct dwc2_hsotg_req *req;
 251
 252	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 253	if (!req)
 254		return NULL;
 255
 256	INIT_LIST_HEAD(&req->queue);
 257
 258	return &req->req;
 259}
 260
 261/**
 262 * is_ep_periodic - return true if the endpoint is in periodic mode.
 263 * @hs_ep: The endpoint to query.
 264 *
 265 * Returns true if the endpoint is in periodic mode, meaning it is being
 266 * used for an Interrupt or ISO transfer.
 267 */
 268static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 269{
 270	return hs_ep->periodic;
 271}
 272
 273/**
 274 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 275 * @hsotg: The device state.
 276 * @hs_ep: The endpoint for the request
 277 * @hs_req: The request being processed.
 278 *
 279 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 280 * of a request to ensure the buffer is ready for access by the caller.
 281 */
 282static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 283				struct dwc2_hsotg_ep *hs_ep,
 284				struct dwc2_hsotg_req *hs_req)
 285{
 286	struct usb_request *req = &hs_req->req;
 287
 288	/* ignore this if we're not moving any data */
 289	if (hs_req->req.length == 0)
 290		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 
 
 
 293}
 294
 295/**
 296 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 297 * @hsotg: The controller state.
 298 * @hs_ep: The endpoint we're going to write for.
 299 * @hs_req: The request to write data for.
 300 *
 301 * This is called when the TxFIFO has some space in it to hold a new
 302 * transmission and we have something to give it. The actual setup of
 303 * the data size is done elsewhere, so all we have to do is to actually
 304 * write the data.
 305 *
 306 * The return value is zero if there is more space (or nothing was done)
 307 * otherwise -ENOSPC is returned if the FIFO space was used up.
 308 *
 309 * This routine is only needed for PIO
 310 */
 311static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 312				struct dwc2_hsotg_ep *hs_ep,
 313				struct dwc2_hsotg_req *hs_req)
 314{
 315	bool periodic = is_ep_periodic(hs_ep);
 316	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 317	int buf_pos = hs_req->req.actual;
 318	int to_write = hs_ep->size_loaded;
 319	void *data;
 320	int can_write;
 321	int pkt_round;
 322	int max_transfer;
 323
 324	to_write -= (buf_pos - hs_ep->last_load);
 325
 326	/* if there's nothing to write, get out early */
 327	if (to_write == 0)
 328		return 0;
 329
 330	if (periodic && !hsotg->dedicated_fifos) {
 331		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 332		int size_left;
 333		int size_done;
 334
 335		/*
 336		 * work out how much data was loaded so we can calculate
 337		 * how much data is left in the fifo.
 338		 */
 339
 340		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 341
 342		/*
 343		 * if shared fifo, we cannot write anything until the
 344		 * previous data has been completely sent.
 345		 */
 346		if (hs_ep->fifo_load != 0) {
 347			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 348			return -ENOSPC;
 349		}
 350
 351		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 352			__func__, size_left,
 353			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 354
 355		/* how much of the data has moved */
 356		size_done = hs_ep->size_loaded - size_left;
 357
 358		/* how much data is left in the fifo */
 359		can_write = hs_ep->fifo_load - size_done;
 360		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 361			__func__, can_write);
 362
 363		can_write = hs_ep->fifo_size - can_write;
 364		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 365			__func__, can_write);
 366
 367		if (can_write <= 0) {
 368			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 369			return -ENOSPC;
 370		}
 371	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 372		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
 
 373
 374		can_write &= 0xffff;
 375		can_write *= 4;
 376	} else {
 377		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 378			dev_dbg(hsotg->dev,
 379				"%s: no queue slots available (0x%08x)\n",
 380				__func__, gnptxsts);
 381
 382			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 383			return -ENOSPC;
 384		}
 385
 386		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 387		can_write *= 4;	/* fifo size is in 32bit quantities. */
 388	}
 389
 390	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 391
 392	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 393		 __func__, gnptxsts, can_write, to_write, max_transfer);
 394
 395	/*
 396	 * limit to 512 bytes of data, it seems at least on the non-periodic
 397	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 398	 * fragment of the end of the transfer in it.
 399	 */
 400	if (can_write > 512 && !periodic)
 401		can_write = 512;
 402
 403	/*
 404	 * limit the write to one max-packet size worth of data, but allow
 405	 * the transfer to return that it did not run out of fifo space
 406	 * doing it.
 407	 */
 408	if (to_write > max_transfer) {
 409		to_write = max_transfer;
 410
 411		/* it's needed only when we do not use dedicated fifos */
 412		if (!hsotg->dedicated_fifos)
 413			dwc2_hsotg_en_gsint(hsotg,
 414					   periodic ? GINTSTS_PTXFEMP :
 415					   GINTSTS_NPTXFEMP);
 416	}
 417
 418	/* see if we can write data */
 419
 420	if (to_write > can_write) {
 421		to_write = can_write;
 422		pkt_round = to_write % max_transfer;
 423
 424		/*
 425		 * Round the write down to an
 426		 * exact number of packets.
 427		 *
 428		 * Note, we do not currently check to see if we can ever
 429		 * write a full packet or not to the FIFO.
 430		 */
 431
 432		if (pkt_round)
 433			to_write -= pkt_round;
 434
 435		/*
 436		 * enable correct FIFO interrupt to alert us when there
 437		 * is more room left.
 438		 */
 439
 440		/* it's needed only when we do not use dedicated fifos */
 441		if (!hsotg->dedicated_fifos)
 442			dwc2_hsotg_en_gsint(hsotg,
 443					   periodic ? GINTSTS_PTXFEMP :
 444					   GINTSTS_NPTXFEMP);
 445	}
 446
 447	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 448		 to_write, hs_req->req.length, can_write, buf_pos);
 449
 450	if (to_write <= 0)
 451		return -ENOSPC;
 452
 453	hs_req->req.actual = buf_pos + to_write;
 454	hs_ep->total_data += to_write;
 455
 456	if (periodic)
 457		hs_ep->fifo_load += to_write;
 458
 459	to_write = DIV_ROUND_UP(to_write, 4);
 460	data = hs_req->req.buf + buf_pos;
 461
 462	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 463
 464	return (to_write >= can_write) ? -ENOSPC : 0;
 465}
 466
 467/**
 468 * get_ep_limit - get the maximum data legnth for this endpoint
 469 * @hs_ep: The endpoint
 470 *
 471 * Return the maximum data that can be queued in one go on a given endpoint
 472 * so that transfers that are too long can be split.
 473 */
 474static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 475{
 476	int index = hs_ep->index;
 477	unsigned maxsize;
 478	unsigned maxpkt;
 479
 480	if (index != 0) {
 481		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 482		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 483	} else {
 484		maxsize = 64+64;
 485		if (hs_ep->dir_in)
 486			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 487		else
 488			maxpkt = 2;
 489	}
 490
 491	/* we made the constant loading easier above by using +1 */
 492	maxpkt--;
 493	maxsize--;
 494
 495	/*
 496	 * constrain by packet count if maxpkts*pktsize is greater
 497	 * than the length register size.
 498	 */
 499
 500	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 501		maxsize = maxpkt * hs_ep->ep.maxpacket;
 502
 503	return maxsize;
 504}
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 508 * @hsotg: The controller state.
 509 * @hs_ep: The endpoint to process a request for
 510 * @hs_req: The request to start.
 511 * @continuing: True if we are doing more for the current request.
 512 *
 513 * Start the given request running by setting the endpoint registers
 514 * appropriately, and writing any data to the FIFOs.
 515 */
 516static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 517				struct dwc2_hsotg_ep *hs_ep,
 518				struct dwc2_hsotg_req *hs_req,
 519				bool continuing)
 520{
 521	struct usb_request *ureq = &hs_req->req;
 522	int index = hs_ep->index;
 523	int dir_in = hs_ep->dir_in;
 524	u32 epctrl_reg;
 525	u32 epsize_reg;
 526	u32 epsize;
 527	u32 ctrl;
 528	unsigned length;
 529	unsigned packets;
 530	unsigned maxreq;
 
 531
 532	if (index != 0) {
 533		if (hs_ep->req && !continuing) {
 534			dev_err(hsotg->dev, "%s: active request\n", __func__);
 535			WARN_ON(1);
 536			return;
 537		} else if (hs_ep->req != hs_req && continuing) {
 538			dev_err(hsotg->dev,
 539				"%s: continue different req\n", __func__);
 540			WARN_ON(1);
 541			return;
 542		}
 543	}
 544
 
 545	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 546	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 547
 548	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 549		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 550		hs_ep->dir_in ? "in" : "out");
 551
 552	/* If endpoint is stalled, we will restart request later */
 553	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 554
 555	if (index && ctrl & DXEPCTL_STALL) {
 556		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 557		return;
 558	}
 559
 560	length = ureq->length - ureq->actual;
 561	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 562		ureq->length, ureq->actual);
 563
 564	maxreq = get_ep_limit(hs_ep);
 
 
 
 
 565	if (length > maxreq) {
 566		int round = maxreq % hs_ep->ep.maxpacket;
 567
 568		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 569			__func__, length, maxreq, round);
 570
 571		/* round down to multiple of packets */
 572		if (round)
 573			maxreq -= round;
 574
 575		length = maxreq;
 576	}
 577
 578	if (length)
 579		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 580	else
 581		packets = 1;	/* send one packet if length is zero. */
 582
 583	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 584		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 585		return;
 586	}
 587
 588	if (dir_in && index != 0)
 589		if (hs_ep->isochronous)
 590			epsize = DXEPTSIZ_MC(packets);
 591		else
 592			epsize = DXEPTSIZ_MC(1);
 593	else
 594		epsize = 0;
 595
 596	/*
 597	 * zero length packet should be programmed on its own and should not
 598	 * be counted in DIEPTSIZ.PktCnt with other packets.
 599	 */
 600	if (dir_in && ureq->zero && !continuing) {
 601		/* Test if zlp is actually required. */
 602		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 603					!(ureq->length % hs_ep->ep.maxpacket))
 604			hs_ep->send_zlp = 1;
 605	}
 606
 607	epsize |= DXEPTSIZ_PKTCNT(packets);
 608	epsize |= DXEPTSIZ_XFERSIZE(length);
 609
 610	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 611		__func__, packets, length, ureq->length, epsize, epsize_reg);
 612
 613	/* store the request as the current one we're doing */
 614	hs_ep->req = hs_req;
 615
 616	/* write size / packets */
 617	dwc2_writel(epsize, hsotg->regs + epsize_reg);
 
 
 
 
 
 
 
 
 
 618
 619	if (using_dma(hsotg) && !continuing) {
 620		unsigned int dma_reg;
 621
 622		/*
 623		 * write DMA address to control register, buffer already
 624		 * synced by dwc2_hsotg_ep_queue().
 625		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626
 627		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 628		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
 
 
 629
 630		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
 631			__func__, &ureq->dma, dma_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 632	}
 633
 634	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 635	ctrl |= DXEPCTL_USBACTEP;
 636
 637	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
 638
 639	/* For Setup request do not clear NAK */
 640	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
 641		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
 642
 643	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 644	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
 645
 646	/*
 647	 * set these, it seems that DMA support increments past the end
 648	 * of the packet buffer so we need to calculate the length from
 649	 * this information.
 650	 */
 651	hs_ep->size_loaded = length;
 652	hs_ep->last_load = ureq->actual;
 653
 654	if (dir_in && !using_dma(hsotg)) {
 655		/* set these anyway, we may need them for non-periodic in */
 656		hs_ep->fifo_load = 0;
 657
 658		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 659	}
 660
 661	/*
 662	 * clear the INTknTXFEmpMsk when we start request, more as a aide
 663	 * to debugging to see what is going on.
 664	 */
 665	if (dir_in)
 666		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
 667		       hsotg->regs + DIEPINT(index));
 668
 669	/*
 670	 * Note, trying to clear the NAK here causes problems with transmit
 671	 * on the S3C6400 ending up with the TXFIFO becoming full.
 672	 */
 673
 674	/* check ep is enabled */
 675	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
 676		dev_dbg(hsotg->dev,
 677			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
 678			 index, dwc2_readl(hsotg->regs + epctrl_reg));
 679
 680	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
 681		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
 682
 683	/* enable ep interrupts */
 684	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
 685}
 686
 687/**
 688 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
 689 * @hsotg: The device state.
 690 * @hs_ep: The endpoint the request is on.
 691 * @req: The request being processed.
 692 *
 693 * We've been asked to queue a request, so ensure that the memory buffer
 694 * is correctly setup for DMA. If we've been passed an extant DMA address
 695 * then ensure the buffer has been synced to memory. If our buffer has no
 696 * DMA memory, then we map the memory and mark our request to allow us to
 697 * cleanup on completion.
 698 */
 699static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
 700			     struct dwc2_hsotg_ep *hs_ep,
 701			     struct usb_request *req)
 702{
 703	struct dwc2_hsotg_req *hs_req = our_req(req);
 704	int ret;
 705
 706	/* if the length is zero, ignore the DMA data */
 707	if (hs_req->req.length == 0)
 708		return 0;
 709
 710	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 711	if (ret)
 712		goto dma_error;
 713
 714	return 0;
 715
 716dma_error:
 717	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 718		__func__, req->buf, req->length);
 719
 720	return -EIO;
 721}
 722
 723static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
 724	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 725{
 726	void *req_buf = hs_req->req.buf;
 727
 728	/* If dma is not being used or buffer is aligned */
 729	if (!using_dma(hsotg) || !((long)req_buf & 3))
 730		return 0;
 731
 732	WARN_ON(hs_req->saved_req_buf);
 733
 734	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
 735			hs_ep->ep.name, req_buf, hs_req->req.length);
 736
 737	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
 738	if (!hs_req->req.buf) {
 739		hs_req->req.buf = req_buf;
 740		dev_err(hsotg->dev,
 741			"%s: unable to allocate memory for bounce buffer\n",
 742			__func__);
 743		return -ENOMEM;
 744	}
 745
 746	/* Save actual buffer */
 747	hs_req->saved_req_buf = req_buf;
 748
 749	if (hs_ep->dir_in)
 750		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
 751	return 0;
 752}
 753
 754static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
 755	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 
 756{
 757	/* If dma is not being used or buffer was aligned */
 758	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
 759		return;
 760
 761	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
 762		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
 763
 764	/* Copy data from bounce buffer on successful out transfer */
 765	if (!hs_ep->dir_in && !hs_req->req.status)
 766		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
 767							hs_req->req.actual);
 768
 769	/* Free bounce buffer */
 770	kfree(hs_req->req.buf);
 771
 772	hs_req->req.buf = hs_req->saved_req_buf;
 773	hs_req->saved_req_buf = NULL;
 774}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 777			      gfp_t gfp_flags)
 778{
 779	struct dwc2_hsotg_req *hs_req = our_req(req);
 780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 781	struct dwc2_hsotg *hs = hs_ep->parent;
 782	bool first;
 783	int ret;
 
 
 
 784
 785	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 786		ep->name, req, req->length, req->buf, req->no_interrupt,
 787		req->zero, req->short_not_ok);
 788
 
 
 
 
 789	/* Prevent new request submission when controller is suspended */
 790	if (hs->lx_state == DWC2_L2) {
 791		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
 792				__func__);
 793		return -EAGAIN;
 794	}
 795
 796	/* initialise status of the request */
 797	INIT_LIST_HEAD(&hs_req->queue);
 798	req->actual = 0;
 799	req->status = -EINPROGRESS;
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
 802	if (ret)
 803		return ret;
 804
 805	/* if we're using DMA, sync the buffers as necessary */
 806	if (using_dma(hs)) {
 807		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
 808		if (ret)
 809			return ret;
 810	}
 
 
 
 
 
 
 811
 812	first = list_empty(&hs_ep->queue);
 813	list_add_tail(&hs_req->queue, &hs_ep->queue);
 814
 815	if (first)
 816		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817
 
 
 
 818	return 0;
 819}
 820
 821static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 822			      gfp_t gfp_flags)
 823{
 824	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 825	struct dwc2_hsotg *hs = hs_ep->parent;
 826	unsigned long flags = 0;
 827	int ret = 0;
 828
 829	spin_lock_irqsave(&hs->lock, flags);
 830	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
 831	spin_unlock_irqrestore(&hs->lock, flags);
 832
 833	return ret;
 834}
 835
 836static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
 837				      struct usb_request *req)
 838{
 839	struct dwc2_hsotg_req *hs_req = our_req(req);
 840
 841	kfree(hs_req);
 842}
 843
 844/**
 845 * dwc2_hsotg_complete_oursetup - setup completion callback
 846 * @ep: The endpoint the request was on.
 847 * @req: The request completed.
 848 *
 849 * Called on completion of any requests the driver itself
 850 * submitted that need cleaning up.
 851 */
 852static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
 853					struct usb_request *req)
 854{
 855	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 856	struct dwc2_hsotg *hsotg = hs_ep->parent;
 857
 858	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 859
 860	dwc2_hsotg_ep_free_request(ep, req);
 861}
 862
 863/**
 864 * ep_from_windex - convert control wIndex value to endpoint
 865 * @hsotg: The driver state.
 866 * @windex: The control request wIndex field (in host order).
 867 *
 868 * Convert the given wIndex into a pointer to an driver endpoint
 869 * structure, or return NULL if it is not a valid endpoint.
 870 */
 871static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
 872					   u32 windex)
 873{
 874	struct dwc2_hsotg_ep *ep;
 875	int dir = (windex & USB_DIR_IN) ? 1 : 0;
 876	int idx = windex & 0x7F;
 877
 878	if (windex >= 0x100)
 879		return NULL;
 880
 881	if (idx > hsotg->num_of_eps)
 882		return NULL;
 883
 884	ep = index_to_ep(hsotg, idx, dir);
 885
 886	if (idx && ep->dir_in != dir)
 887		return NULL;
 888
 889	return ep;
 890}
 891
 892/**
 893 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
 894 * @hsotg: The driver state.
 895 * @testmode: requested usb test mode
 896 * Enable usb Test Mode requested by the Host.
 897 */
 898int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
 899{
 900	int dctl = dwc2_readl(hsotg->regs + DCTL);
 901
 902	dctl &= ~DCTL_TSTCTL_MASK;
 903	switch (testmode) {
 904	case TEST_J:
 905	case TEST_K:
 906	case TEST_SE0_NAK:
 907	case TEST_PACKET:
 908	case TEST_FORCE_EN:
 909		dctl |= testmode << DCTL_TSTCTL_SHIFT;
 910		break;
 911	default:
 912		return -EINVAL;
 913	}
 914	dwc2_writel(dctl, hsotg->regs + DCTL);
 915	return 0;
 916}
 917
 918/**
 919 * dwc2_hsotg_send_reply - send reply to control request
 920 * @hsotg: The device state
 921 * @ep: Endpoint 0
 922 * @buff: Buffer for request
 923 * @length: Length of reply.
 924 *
 925 * Create a request and queue it on the given endpoint. This is useful as
 926 * an internal method of sending replies to certain control requests, etc.
 927 */
 928static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
 929				struct dwc2_hsotg_ep *ep,
 930				void *buff,
 931				int length)
 932{
 933	struct usb_request *req;
 934	int ret;
 935
 936	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 937
 938	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 939	hsotg->ep0_reply = req;
 940	if (!req) {
 941		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 942		return -ENOMEM;
 943	}
 944
 945	req->buf = hsotg->ep0_buff;
 946	req->length = length;
 947	/*
 948	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
 949	 * STATUS stage.
 950	 */
 951	req->zero = 0;
 952	req->complete = dwc2_hsotg_complete_oursetup;
 953
 954	if (length)
 955		memcpy(req->buf, buff, length);
 956
 957	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
 958	if (ret) {
 959		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
 960		return ret;
 961	}
 962
 963	return 0;
 964}
 965
 966/**
 967 * dwc2_hsotg_process_req_status - process request GET_STATUS
 968 * @hsotg: The device state
 969 * @ctrl: USB control request
 970 */
 971static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
 972					struct usb_ctrlrequest *ctrl)
 973{
 974	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
 975	struct dwc2_hsotg_ep *ep;
 976	__le16 reply;
 
 977	int ret;
 978
 979	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
 980
 981	if (!ep0->dir_in) {
 982		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
 983		return -EINVAL;
 984	}
 985
 986	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 987	case USB_RECIP_DEVICE:
 988		reply = cpu_to_le16(0); /* bit 0 => self powered,
 989					 * bit 1 => remote wakeup */
 
 
 
 990		break;
 991
 992	case USB_RECIP_INTERFACE:
 993		/* currently, the data result should be zero */
 994		reply = cpu_to_le16(0);
 995		break;
 996
 997	case USB_RECIP_ENDPOINT:
 998		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
 999		if (!ep)
1000			return -ENOENT;
1001
1002		reply = cpu_to_le16(ep->halted ? 1 : 0);
1003		break;
1004
1005	default:
1006		return 0;
1007	}
1008
1009	if (le16_to_cpu(ctrl->wLength) != 2)
1010		return -EINVAL;
1011
1012	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013	if (ret) {
1014		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1015		return ret;
1016	}
1017
1018	return 1;
1019}
1020
1021static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022
1023/**
1024 * get_ep_head - return the first request on the endpoint
1025 * @hs_ep: The controller endpoint to get
1026 *
1027 * Get the first request on the endpoint.
1028 */
1029static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030{
1031	if (list_empty(&hs_ep->queue))
1032		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033
1034	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
 
 
 
 
 
 
1035}
1036
1037/**
1038 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039 * @hsotg: The device state
1040 * @ctrl: USB control request
1041 */
1042static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043					 struct usb_ctrlrequest *ctrl)
1044{
1045	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046	struct dwc2_hsotg_req *hs_req;
1047	bool restart;
1048	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049	struct dwc2_hsotg_ep *ep;
1050	int ret;
1051	bool halted;
1052	u32 recip;
1053	u32 wValue;
1054	u32 wIndex;
1055
1056	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1057		__func__, set ? "SET" : "CLEAR");
1058
1059	wValue = le16_to_cpu(ctrl->wValue);
1060	wIndex = le16_to_cpu(ctrl->wIndex);
1061	recip = ctrl->bRequestType & USB_RECIP_MASK;
1062
1063	switch (recip) {
1064	case USB_RECIP_DEVICE:
1065		switch (wValue) {
 
 
 
 
 
 
 
1066		case USB_DEVICE_TEST_MODE:
1067			if ((wIndex & 0xff) != 0)
1068				return -EINVAL;
1069			if (!set)
1070				return -EINVAL;
1071
1072			hsotg->test_mode = wIndex >> 8;
1073			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074			if (ret) {
1075				dev_err(hsotg->dev,
1076					"%s: failed to send reply\n", __func__);
1077				return ret;
1078			}
1079			break;
1080		default:
1081			return -ENOENT;
1082		}
 
 
 
 
 
 
 
1083		break;
1084
1085	case USB_RECIP_ENDPOINT:
1086		ep = ep_from_windex(hsotg, wIndex);
1087		if (!ep) {
1088			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089				__func__, wIndex);
1090			return -ENOENT;
1091		}
1092
1093		switch (wValue) {
1094		case USB_ENDPOINT_HALT:
1095			halted = ep->halted;
1096
1097			dwc2_hsotg_ep_sethalt(&ep->ep, set);
 
1098
1099			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100			if (ret) {
1101				dev_err(hsotg->dev,
1102					"%s: failed to send reply\n", __func__);
1103				return ret;
1104			}
1105
1106			/*
1107			 * we have to complete all requests for ep if it was
1108			 * halted, and the halt was cleared by CLEAR_FEATURE
1109			 */
1110
1111			if (!set && halted) {
1112				/*
1113				 * If we have request in progress,
1114				 * then complete it
1115				 */
1116				if (ep->req) {
1117					hs_req = ep->req;
1118					ep->req = NULL;
1119					list_del_init(&hs_req->queue);
1120					if (hs_req->req.complete) {
1121						spin_unlock(&hsotg->lock);
1122						usb_gadget_giveback_request(
1123							&ep->ep, &hs_req->req);
1124						spin_lock(&hsotg->lock);
1125					}
1126				}
1127
1128				/* If we have pending request, then start it */
1129				if (!ep->req) {
1130					restart = !list_empty(&ep->queue);
1131					if (restart) {
1132						hs_req = get_ep_head(ep);
1133						dwc2_hsotg_start_req(hsotg, ep,
1134								hs_req, false);
1135					}
1136				}
1137			}
1138
1139			break;
1140
1141		default:
1142			return -ENOENT;
1143		}
1144		break;
1145	default:
1146		return -ENOENT;
1147	}
1148	return 1;
1149}
1150
1151static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152
1153/**
1154 * dwc2_hsotg_stall_ep0 - stall ep0
1155 * @hsotg: The device state
1156 *
1157 * Set stall for ep0 as response for setup request.
1158 */
1159static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160{
1161	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162	u32 reg;
1163	u32 ctrl;
1164
1165	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1166	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1167
1168	/*
1169	 * DxEPCTL_Stall will be cleared by EP once it has
1170	 * taken effect, so no need to clear later.
1171	 */
1172
1173	ctrl = dwc2_readl(hsotg->regs + reg);
1174	ctrl |= DXEPCTL_STALL;
1175	ctrl |= DXEPCTL_CNAK;
1176	dwc2_writel(ctrl, hsotg->regs + reg);
1177
1178	dev_dbg(hsotg->dev,
1179		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181
1182	 /*
1183	  * complete won't be called, so we enqueue
1184	  * setup request here
1185	  */
1186	 dwc2_hsotg_enqueue_setup(hsotg);
1187}
1188
1189/**
1190 * dwc2_hsotg_process_control - process a control request
1191 * @hsotg: The device state
1192 * @ctrl: The control request received
1193 *
1194 * The controller has received the SETUP phase of a control request, and
1195 * needs to work out what to do next (and whether to pass it on to the
1196 * gadget driver).
1197 */
1198static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199				      struct usb_ctrlrequest *ctrl)
1200{
1201	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202	int ret = 0;
1203	u32 dcfg;
1204
1205	dev_dbg(hsotg->dev,
1206		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1207		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1208		ctrl->wIndex, ctrl->wLength);
1209
1210	if (ctrl->wLength == 0) {
1211		ep0->dir_in = 1;
1212		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1213	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214		ep0->dir_in = 1;
1215		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1216	} else {
1217		ep0->dir_in = 0;
1218		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1219	}
1220
1221	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222		switch (ctrl->bRequest) {
1223		case USB_REQ_SET_ADDRESS:
1224			hsotg->connected = 1;
1225			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226			dcfg &= ~DCFG_DEVADDR_MASK;
1227			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1228				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230
1231			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1232
1233			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234			return;
1235
1236		case USB_REQ_GET_STATUS:
1237			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238			break;
1239
1240		case USB_REQ_CLEAR_FEATURE:
1241		case USB_REQ_SET_FEATURE:
1242			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243			break;
1244		}
1245	}
1246
1247	/* as a fallback, try delivering it to the driver to deal with */
1248
1249	if (ret == 0 && hsotg->driver) {
1250		spin_unlock(&hsotg->lock);
1251		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252		spin_lock(&hsotg->lock);
1253		if (ret < 0)
1254			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1255	}
1256
 
 
 
 
1257	/*
1258	 * the request is either unhandlable, or is not formatted correctly
1259	 * so respond with a STALL for the status stage to indicate failure.
1260	 */
1261
1262	if (ret < 0)
1263		dwc2_hsotg_stall_ep0(hsotg);
1264}
1265
1266/**
1267 * dwc2_hsotg_complete_setup - completion of a setup transfer
1268 * @ep: The endpoint the request was on.
1269 * @req: The request completed.
1270 *
1271 * Called on completion of any requests the driver itself submitted for
1272 * EP0 setup packets
1273 */
1274static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275				     struct usb_request *req)
1276{
1277	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279
1280	if (req->status < 0) {
1281		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1282		return;
1283	}
1284
1285	spin_lock(&hsotg->lock);
1286	if (req->actual == 0)
1287		dwc2_hsotg_enqueue_setup(hsotg);
1288	else
1289		dwc2_hsotg_process_control(hsotg, req->buf);
1290	spin_unlock(&hsotg->lock);
1291}
1292
1293/**
1294 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295 * @hsotg: The device state.
1296 *
1297 * Enqueue a request on EP0 if necessary to received any SETUP packets
1298 * received from the host.
1299 */
1300static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301{
1302	struct usb_request *req = hsotg->ctrl_req;
1303	struct dwc2_hsotg_req *hs_req = our_req(req);
1304	int ret;
1305
1306	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1307
1308	req->zero = 0;
1309	req->length = 8;
1310	req->buf = hsotg->ctrl_buff;
1311	req->complete = dwc2_hsotg_complete_setup;
1312
1313	if (!list_empty(&hs_req->queue)) {
1314		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1315		return;
1316	}
1317
1318	hsotg->eps_out[0]->dir_in = 0;
1319	hsotg->eps_out[0]->send_zlp = 0;
1320	hsotg->ep0_state = DWC2_EP0_SETUP;
1321
1322	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323	if (ret < 0) {
1324		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325		/*
1326		 * Don't think there's much we can do other than watch the
1327		 * driver fail.
1328		 */
1329	}
1330}
1331
1332static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1333					struct dwc2_hsotg_ep *hs_ep)
1334{
1335	u32 ctrl;
1336	u8 index = hs_ep->index;
1337	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1338	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1339
1340	if (hs_ep->dir_in)
1341		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1342									index);
1343	else
1344		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1345									index);
 
 
 
1346
1347	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1348		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1349		    epsiz_reg);
1350
1351	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
 
 
 
 
 
 
 
1352	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1353	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1354	ctrl |= DXEPCTL_USBACTEP;
1355	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356}
1357
1358/**
1359 * dwc2_hsotg_complete_request - complete a request given to us
1360 * @hsotg: The device state.
1361 * @hs_ep: The endpoint the request was on.
1362 * @hs_req: The request to complete.
1363 * @result: The result code (0 => Ok, otherwise errno)
1364 *
1365 * The given request has finished, so call the necessary completion
1366 * if it has one and then look to see if we can start a new request
1367 * on the endpoint.
1368 *
1369 * Note, expects the ep to already be locked as appropriate.
1370 */
1371static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1372				       struct dwc2_hsotg_ep *hs_ep,
1373				       struct dwc2_hsotg_req *hs_req,
1374				       int result)
1375{
1376	bool restart;
1377
1378	if (!hs_req) {
1379		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1380		return;
1381	}
1382
1383	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1384		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1385
1386	/*
1387	 * only replace the status if we've not already set an error
1388	 * from a previous transaction
1389	 */
1390
1391	if (hs_req->req.status == -EINPROGRESS)
1392		hs_req->req.status = result;
1393
1394	if (using_dma(hsotg))
1395		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1396
1397	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399	hs_ep->req = NULL;
1400	list_del_init(&hs_req->queue);
1401
1402	/*
1403	 * call the complete request with the locks off, just in case the
1404	 * request tries to queue more work for this endpoint.
1405	 */
1406
1407	if (hs_req->req.complete) {
1408		spin_unlock(&hsotg->lock);
1409		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410		spin_lock(&hsotg->lock);
1411	}
1412
 
 
 
 
1413	/*
1414	 * Look to see if there is anything else to do. Note, the completion
1415	 * of the previous request may have caused a new request to be started
1416	 * so be careful when doing this.
1417	 */
1418
1419	if (!hs_ep->req && result >= 0) {
1420		restart = !list_empty(&hs_ep->queue);
1421		if (restart) {
1422			hs_req = get_ep_head(hs_ep);
1423			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424		}
 
 
 
 
 
 
 
1425	}
1426}
1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428/**
1429 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430 * @hsotg: The device state.
1431 * @ep_idx: The endpoint index for the data
1432 * @size: The size of data in the fifo, in bytes
1433 *
1434 * The FIFO status shows there is data to read from the FIFO for a given
1435 * endpoint, so sort out whether we need to read the data into a request
1436 * that has been made for that endpoint.
1437 */
1438static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439{
1440	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1441	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443	int to_read;
1444	int max_req;
1445	int read_ptr;
1446
1447
1448	if (!hs_req) {
1449		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450		int ptr;
1451
1452		dev_dbg(hsotg->dev,
1453			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454			 __func__, size, ep_idx, epctl);
1455
1456		/* dump the data from the FIFO, we've nothing we can do */
1457		for (ptr = 0; ptr < size; ptr += 4)
1458			(void)dwc2_readl(fifo);
1459
1460		return;
1461	}
1462
1463	to_read = size;
1464	read_ptr = hs_req->req.actual;
1465	max_req = hs_req->req.length - read_ptr;
1466
1467	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1468		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1469
1470	if (to_read > max_req) {
1471		/*
1472		 * more data appeared than we where willing
1473		 * to deal with in this request.
1474		 */
1475
1476		/* currently we don't deal this */
1477		WARN_ON_ONCE(1);
1478	}
1479
1480	hs_ep->total_data += to_read;
1481	hs_req->req.actual += to_read;
1482	to_read = DIV_ROUND_UP(to_read, 4);
1483
1484	/*
1485	 * note, we might over-write the buffer end by 3 bytes depending on
1486	 * alignment of the data.
1487	 */
1488	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
 
1489}
1490
1491/**
1492 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493 * @hsotg: The device instance
1494 * @dir_in: If IN zlp
1495 *
1496 * Generate a zero-length IN packet request for terminating a SETUP
1497 * transaction.
1498 *
1499 * Note, since we don't write any data to the TxFIFO, then it is
1500 * currently believed that we do not need to wait for any space in
1501 * the TxFIFO.
1502 */
1503static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504{
1505	/* eps_out[0] is used in both directions */
1506	hsotg->eps_out[0]->dir_in = dir_in;
1507	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508
1509	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510}
1511
1512static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1513			u32 epctl_reg)
 
 
 
 
 
 
1514{
1515	u32 ctrl;
 
 
 
 
 
 
 
 
1516
1517	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1518	if (ctrl & DXEPCTL_EOFRNUM)
1519		ctrl |= DXEPCTL_SETEVENFR;
1520	else
1521		ctrl |= DXEPCTL_SETODDFR;
1522	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523}
1524
1525/**
1526 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527 * @hsotg: The device instance
1528 * @epnum: The endpoint received from
1529 *
1530 * The RXFIFO has delivered an OutDone event, which means that the data
1531 * transfer for an OUT endpoint has been completed, either by a short
1532 * packet or by the finish of a transfer.
1533 */
1534static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535{
1536	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1538	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539	struct usb_request *req = &hs_req->req;
1540	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541	int result = 0;
1542
1543	if (!hs_req) {
1544		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1545		return;
1546	}
1547
1548	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1549		dev_dbg(hsotg->dev, "zlp packet received\n");
1550		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1551		dwc2_hsotg_enqueue_setup(hsotg);
1552		return;
1553	}
1554
 
 
 
1555	if (using_dma(hsotg)) {
1556		unsigned size_done;
1557
1558		/*
1559		 * Calculate the size of the transfer by checking how much
1560		 * is left in the endpoint size register and then working it
1561		 * out from the amount we loaded for the transfer.
1562		 *
1563		 * We need to do this as DMA pointers are always 32bit aligned
1564		 * so may overshoot/undershoot the transfer.
1565		 */
1566
1567		size_done = hs_ep->size_loaded - size_left;
1568		size_done += hs_ep->last_load;
1569
1570		req->actual = size_done;
1571	}
1572
1573	/* if there is more request to do, schedule new transfer */
1574	if (req->actual < req->length && size_left == 0) {
1575		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576		return;
1577	}
1578
1579	if (req->actual < req->length && req->short_not_ok) {
1580		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1581			__func__, req->actual, req->length);
1582
1583		/*
1584		 * todo - what should we return here? there's no one else
1585		 * even bothering to check the status.
1586		 */
1587	}
1588
1589	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
 
 
1590		/* Move to STATUS IN */
1591		dwc2_hsotg_ep0_zlp(hsotg, true);
1592		return;
1593	}
1594
1595	/*
1596	 * Slave mode OUT transfers do not go through XferComplete so
1597	 * adjust the ISOC parity here.
1598	 */
1599	if (!using_dma(hsotg)) {
1600		hs_ep->has_correct_parity = 1;
1601		if (hs_ep->isochronous && hs_ep->interval == 1)
1602			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
1603	}
1604
1605	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606}
1607
1608/**
1609 * dwc2_hsotg_read_frameno - read current frame number
1610 * @hsotg: The device instance
1611 *
1612 * Return the current frame number
1613 */
1614static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615{
1616	u32 dsts;
1617
1618	dsts = dwc2_readl(hsotg->regs + DSTS);
1619	dsts &= DSTS_SOFFN_MASK;
1620	dsts >>= DSTS_SOFFN_SHIFT;
1621
1622	return dsts;
1623}
1624
1625/**
1626 * dwc2_hsotg_handle_rx - RX FIFO has data
1627 * @hsotg: The device instance
1628 *
1629 * The IRQ handler has detected that the RX FIFO has some data in it
1630 * that requires processing, so find out what is in there and do the
1631 * appropriate read.
1632 *
1633 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634 * chunks, so if you have x packets received on an endpoint you'll get x
1635 * FIFO events delivered, each with a packet's worth of data in it.
1636 *
1637 * When using DMA, we should not be processing events from the RXFIFO
1638 * as the actual data should be sent to the memory directly and we turn
1639 * on the completion interrupts to get notifications of transfer completion.
1640 */
1641static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642{
1643	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644	u32 epnum, status, size;
1645
1646	WARN_ON(using_dma(hsotg));
1647
1648	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1649	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650
1651	size = grxstsr & GRXSTS_BYTECNT_MASK;
1652	size >>= GRXSTS_BYTECNT_SHIFT;
1653
1654	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655			__func__, grxstsr, size, epnum);
1656
1657	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1658	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1659		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660		break;
1661
1662	case GRXSTS_PKTSTS_OUTDONE:
1663		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664			dwc2_hsotg_read_frameno(hsotg));
1665
1666		if (!using_dma(hsotg))
1667			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668		break;
1669
1670	case GRXSTS_PKTSTS_SETUPDONE:
1671		dev_dbg(hsotg->dev,
1672			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673			dwc2_hsotg_read_frameno(hsotg),
1674			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675		/*
1676		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1678		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1679		 */
1680		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682		break;
1683
1684	case GRXSTS_PKTSTS_OUTRX:
1685		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686		break;
1687
1688	case GRXSTS_PKTSTS_SETUPRX:
1689		dev_dbg(hsotg->dev,
1690			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691			dwc2_hsotg_read_frameno(hsotg),
1692			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693
1694		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1695
1696		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697		break;
1698
1699	default:
1700		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1701			 __func__, grxstsr);
1702
1703		dwc2_hsotg_dump(hsotg);
1704		break;
1705	}
1706}
1707
1708/**
1709 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710 * @mps: The maximum packet size in bytes.
1711 */
1712static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713{
1714	switch (mps) {
1715	case 64:
1716		return D0EPCTL_MPS_64;
1717	case 32:
1718		return D0EPCTL_MPS_32;
1719	case 16:
1720		return D0EPCTL_MPS_16;
1721	case 8:
1722		return D0EPCTL_MPS_8;
1723	}
1724
1725	/* bad max packet size, warn and return invalid result */
1726	WARN_ON(1);
1727	return (u32)-1;
1728}
1729
1730/**
1731 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732 * @hsotg: The driver state.
1733 * @ep: The index number of the endpoint
1734 * @mps: The maximum packet size in bytes
 
 
1735 *
1736 * Configure the maximum packet size for the given endpoint, updating
1737 * the hardware control registers to reflect this.
1738 */
1739static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740			unsigned int ep, unsigned int mps, unsigned int dir_in)
 
1741{
1742	struct dwc2_hsotg_ep *hs_ep;
1743	void __iomem *regs = hsotg->regs;
1744	u32 mpsval;
1745	u32 mcval;
1746	u32 reg;
1747
1748	hs_ep = index_to_ep(hsotg, ep, dir_in);
1749	if (!hs_ep)
1750		return;
1751
1752	if (ep == 0) {
 
 
1753		/* EP0 is a special case */
1754		mpsval = dwc2_hsotg_ep0_mps(mps);
1755		if (mpsval > 3)
1756			goto bad_mps;
1757		hs_ep->ep.maxpacket = mps;
1758		hs_ep->mc = 1;
1759	} else {
1760		mpsval = mps & DXEPCTL_MPS_MASK;
1761		if (mpsval > 1024)
1762			goto bad_mps;
1763		mcval = ((mps >> 11) & 0x3) + 1;
1764		hs_ep->mc = mcval;
1765		if (mcval > 3)
1766			goto bad_mps;
1767		hs_ep->ep.maxpacket = mpsval;
1768	}
1769
1770	if (dir_in) {
1771		reg = dwc2_readl(regs + DIEPCTL(ep));
1772		reg &= ~DXEPCTL_MPS_MASK;
1773		reg |= mpsval;
1774		dwc2_writel(reg, regs + DIEPCTL(ep));
1775	} else {
1776		reg = dwc2_readl(regs + DOEPCTL(ep));
1777		reg &= ~DXEPCTL_MPS_MASK;
1778		reg |= mpsval;
1779		dwc2_writel(reg, regs + DOEPCTL(ep));
1780	}
1781
1782	return;
1783
1784bad_mps:
1785	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1786}
1787
1788/**
1789 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790 * @hsotg: The driver state
1791 * @idx: The index for the endpoint (0..15)
1792 */
1793static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794{
1795	int timeout;
1796	int val;
1797
1798	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1799		    hsotg->regs + GRSTCTL);
1800
1801	/* wait until the fifo is flushed */
1802	timeout = 100;
1803
1804	while (1) {
1805		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806
1807		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808			break;
1809
1810		if (--timeout == 0) {
1811			dev_err(hsotg->dev,
1812				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1813				__func__, val);
1814			break;
1815		}
1816
1817		udelay(1);
1818	}
1819}
1820
1821/**
1822 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823 * @hsotg: The driver state
1824 * @hs_ep: The driver endpoint to check.
1825 *
1826 * Check to see if there is a request that has data to send, and if so
1827 * make an attempt to write data into the FIFO.
1828 */
1829static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1830			   struct dwc2_hsotg_ep *hs_ep)
1831{
1832	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833
1834	if (!hs_ep->dir_in || !hs_req) {
1835		/**
1836		 * if request is not enqueued, we disable interrupts
1837		 * for endpoints, excepting ep0
1838		 */
1839		if (hs_ep->index != 0)
1840			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841					     hs_ep->dir_in, 0);
1842		return 0;
1843	}
1844
1845	if (hs_req->req.actual < hs_req->req.length) {
1846		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1847			hs_ep->index);
1848		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849	}
1850
1851	return 0;
1852}
1853
1854/**
1855 * dwc2_hsotg_complete_in - complete IN transfer
1856 * @hsotg: The device state.
1857 * @hs_ep: The endpoint that has just completed.
1858 *
1859 * An IN transfer has been completed, update the transfer's state and then
1860 * call the relevant completion routines.
1861 */
1862static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1863				  struct dwc2_hsotg_ep *hs_ep)
1864{
1865	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867	int size_left, size_done;
1868
1869	if (!hs_req) {
1870		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1871		return;
1872	}
1873
1874	/* Finish ZLP handling for IN EP0 transactions */
1875	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1876		dev_dbg(hsotg->dev, "zlp packet sent\n");
 
 
 
 
 
 
 
1877		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878		if (hsotg->test_mode) {
1879			int ret;
1880
1881			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882			if (ret < 0) {
1883				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1884						hsotg->test_mode);
1885				dwc2_hsotg_stall_ep0(hsotg);
1886				return;
1887			}
1888		}
1889		dwc2_hsotg_enqueue_setup(hsotg);
1890		return;
1891	}
1892
1893	/*
1894	 * Calculate the size of the transfer by checking how much is left
1895	 * in the endpoint size register and then working it out from
1896	 * the amount we loaded for the transfer.
1897	 *
1898	 * We do this even for DMA, as the transfer may have incremented
1899	 * past the end of the buffer (DMA transfers are always 32bit
1900	 * aligned).
1901	 */
1902
1903	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 
 
 
 
 
 
1904
1905	size_done = hs_ep->size_loaded - size_left;
1906	size_done += hs_ep->last_load;
1907
1908	if (hs_req->req.actual != size_done)
1909		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1910			__func__, hs_req->req.actual, size_done);
1911
1912	hs_req->req.actual = size_done;
1913	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1914		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1915
1916	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1917		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919		return;
1920	}
1921
1922	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923	if (hs_ep->send_zlp) {
1924		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925		hs_ep->send_zlp = 0;
1926		/* transfer will be completed on next complete interrupt */
1927		return;
 
 
 
1928	}
1929
1930	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1931		/* Move to STATUS OUT */
1932		dwc2_hsotg_ep0_zlp(hsotg, false);
1933		return;
1934	}
1935
 
 
 
 
 
 
1936	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937}
1938
1939/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941 * @hsotg: The driver state
1942 * @idx: The index for the endpoint (0..15)
1943 * @dir_in: Set if this is an IN endpoint
1944 *
1945 * Process and clear any interrupt pending for an individual endpoint
1946 */
1947static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948			    int dir_in)
1949{
1950	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954	u32 ints;
1955	u32 ctrl;
1956
1957	ints = dwc2_readl(hsotg->regs + epint_reg);
1958	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959
1960	/* Clear endpoint interrupts */
1961	dwc2_writel(ints, hsotg->regs + epint_reg);
1962
1963	if (!hs_ep) {
1964		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1965					__func__, idx, dir_in ? "in" : "out");
1966		return;
1967	}
1968
1969	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1970		__func__, idx, dir_in ? "in" : "out", ints);
1971
1972	/* Don't process XferCompl interrupt if it is a setup packet */
1973	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1974		ints &= ~DXEPINT_XFERCOMPL;
1975
1976	if (ints & DXEPINT_XFERCOMPL) {
1977		hs_ep->has_correct_parity = 1;
1978		if (hs_ep->isochronous && hs_ep->interval == 1)
1979			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
1980
 
1981		dev_dbg(hsotg->dev,
1982			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983			__func__, dwc2_readl(hsotg->regs + epctl_reg),
1984			dwc2_readl(hsotg->regs + epsiz_reg));
1985
1986		/*
1987		 * we get OutDone from the FIFO, so we only need to look
1988		 * at completing IN requests here
1989		 */
1990		if (dir_in) {
1991			dwc2_hsotg_complete_in(hsotg, hs_ep);
 
 
 
 
 
1992
1993			if (idx == 0 && !hs_ep->req)
1994				dwc2_hsotg_enqueue_setup(hsotg);
1995		} else if (using_dma(hsotg)) {
1996			/*
1997			 * We're using DMA, we need to fire an OutDone here
1998			 * as we ignore the RXFIFO.
1999			 */
2000
2001			dwc2_hsotg_handle_outdone(hsotg, idx);
2002		}
2003	}
2004
2005	if (ints & DXEPINT_EPDISBLD) {
2006		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2007
2008		if (dir_in) {
2009			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010
2011			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
 
2012
2013			if ((epctl & DXEPCTL_STALL) &&
2014				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016
2017				dctl |= DCTL_CGNPINNAK;
2018				dwc2_writel(dctl, hsotg->regs + DCTL);
2019			}
2020		}
2021	}
2022
2023	if (ints & DXEPINT_AHBERR)
2024		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2025
2026	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2028
2029		if (using_dma(hsotg) && idx == 0) {
2030			/*
2031			 * this is the notification we've received a
2032			 * setup packet. In non-DMA mode we'd get this
2033			 * from the RXFIFO, instead we need to process
2034			 * the setup here.
2035			 */
2036
2037			if (dir_in)
2038				WARN_ON_ONCE(1);
2039			else
2040				dwc2_hsotg_handle_outdone(hsotg, 0);
2041		}
2042	}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	if (ints & DXEPINT_BACK2BACKSETUP)
2045		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2046
 
 
 
 
 
 
2047	if (dir_in && !hs_ep->isochronous) {
2048		/* not sure if this is important, but we'll clear it anyway */
2049		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2051				__func__, idx);
2052		}
2053
2054		/* this probably means something bad is happening */
2055		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2057				 __func__, idx);
2058		}
2059
2060		/* FIFO has space or is empty (see GAHBCFG) */
2061		if (hsotg->dedicated_fifos &&
2062		    ints & DIEPMSK_TXFIFOEMPTY) {
2063			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2064				__func__, idx);
2065			if (!using_dma(hsotg))
2066				dwc2_hsotg_trytx(hsotg, hs_ep);
2067		}
2068	}
2069}
2070
2071/**
2072 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073 * @hsotg: The device state.
2074 *
2075 * Handle updating the device settings after the enumeration phase has
2076 * been completed.
2077 */
2078static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079{
2080	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081	int ep0_mps = 0, ep_mps = 8;
2082
2083	/*
2084	 * This should signal the finish of the enumeration phase
2085	 * of the USB handshaking, so we should now know what rate
2086	 * we connected at.
2087	 */
2088
2089	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2090
2091	/*
2092	 * note, since we're limited by the size of transfer on EP0, and
2093	 * it seems IN transfers must be a even number of packets we do
2094	 * not advertise a 64byte MPS on EP0.
2095	 */
2096
2097	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2099	case DSTS_ENUMSPD_FS:
2100	case DSTS_ENUMSPD_FS48:
2101		hsotg->gadget.speed = USB_SPEED_FULL;
2102		ep0_mps = EP0_MPS_LIMIT;
2103		ep_mps = 1023;
2104		break;
2105
2106	case DSTS_ENUMSPD_HS:
2107		hsotg->gadget.speed = USB_SPEED_HIGH;
2108		ep0_mps = EP0_MPS_LIMIT;
2109		ep_mps = 1024;
2110		break;
2111
2112	case DSTS_ENUMSPD_LS:
2113		hsotg->gadget.speed = USB_SPEED_LOW;
 
 
2114		/*
2115		 * note, we don't actually support LS in this driver at the
2116		 * moment, and the documentation seems to imply that it isn't
2117		 * supported by the PHYs on some of the devices.
2118		 */
2119		break;
2120	}
2121	dev_info(hsotg->dev, "new device is %s\n",
2122		 usb_speed_string(hsotg->gadget.speed));
2123
2124	/*
2125	 * we should now know the maximum packet size for an
2126	 * endpoint, so set the endpoints to a default value.
2127	 */
2128
2129	if (ep0_mps) {
2130		int i;
2131		/* Initialize ep0 for both in and out directions */
2132		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2133		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134		for (i = 1; i < hsotg->num_of_eps; i++) {
2135			if (hsotg->eps_in[i])
2136				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
 
2137			if (hsotg->eps_out[i])
2138				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
 
2139		}
2140	}
2141
2142	/* ensure after enumeration our EP0 is active */
2143
2144	dwc2_hsotg_enqueue_setup(hsotg);
2145
2146	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147		dwc2_readl(hsotg->regs + DIEPCTL0),
2148		dwc2_readl(hsotg->regs + DOEPCTL0));
2149}
2150
2151/**
2152 * kill_all_requests - remove all requests from the endpoint's queue
2153 * @hsotg: The device state.
2154 * @ep: The endpoint the requests may be on.
2155 * @result: The result code to use.
2156 *
2157 * Go through the requests on the given endpoint and mark them
2158 * completed with the given result code.
2159 */
2160static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161			      struct dwc2_hsotg_ep *ep,
2162			      int result)
2163{
2164	struct dwc2_hsotg_req *req, *treq;
2165	unsigned size;
2166
2167	ep->req = NULL;
2168
2169	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170		dwc2_hsotg_complete_request(hsotg, ep, req,
2171					   result);
 
 
2172
2173	if (!hsotg->dedicated_fifos)
2174		return;
2175	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176	if (size < ep->fifo_size)
2177		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178}
2179
2180/**
2181 * dwc2_hsotg_disconnect - disconnect service
2182 * @hsotg: The device state.
2183 *
2184 * The device has been disconnected. Remove all current
2185 * transactions and signal the gadget driver that this
2186 * has happened.
2187 */
2188void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189{
2190	unsigned ep;
2191
2192	if (!hsotg->connected)
2193		return;
2194
2195	hsotg->connected = 0;
2196	hsotg->test_mode = 0;
2197
 
2198	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2199		if (hsotg->eps_in[ep])
2200			kill_all_requests(hsotg, hsotg->eps_in[ep],
2201								-ESHUTDOWN);
2202		if (hsotg->eps_out[ep])
2203			kill_all_requests(hsotg, hsotg->eps_out[ep],
2204								-ESHUTDOWN);
2205	}
2206
2207	call_gadget(hsotg, disconnect);
2208	hsotg->lx_state = DWC2_L3;
 
 
2209}
2210
2211/**
2212 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213 * @hsotg: The device state:
2214 * @periodic: True if this is a periodic FIFO interrupt
2215 */
2216static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217{
2218	struct dwc2_hsotg_ep *ep;
2219	int epno, ret;
2220
2221	/* look through for any more data to transmit */
2222	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223		ep = index_to_ep(hsotg, epno, 1);
2224
2225		if (!ep)
2226			continue;
2227
2228		if (!ep->dir_in)
2229			continue;
2230
2231		if ((periodic && !ep->periodic) ||
2232		    (!periodic && ep->periodic))
2233			continue;
2234
2235		ret = dwc2_hsotg_trytx(hsotg, ep);
2236		if (ret < 0)
2237			break;
2238	}
2239}
2240
2241/* IRQ flags which will trigger a retry around the IRQ loop */
2242#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2243			GINTSTS_PTXFEMP |  \
2244			GINTSTS_RXFLVL)
2245
 
2246/**
2247 * dwc2_hsotg_core_init - issue softreset to the core
2248 * @hsotg: The device state
 
2249 *
2250 * Issue a soft reset to the core, and await the core finishing it.
2251 */
2252void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2253						bool is_usb_reset)
2254{
2255	u32 intmsk;
2256	u32 val;
2257	u32 usbcfg;
 
 
2258
2259	/* Kill any ep0 requests as controller will be reinitialized */
2260	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2261
2262	if (!is_usb_reset)
2263		if (dwc2_core_reset(hsotg))
2264			return;
 
 
 
 
 
 
 
 
 
2265
2266	/*
2267	 * we must now enable ep0 ready for host detection and then
2268	 * set configuration.
2269	 */
2270
2271	/* keep other bits untouched (so e.g. forced modes are not lost) */
2272	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2273	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
2274		GUSBCFG_HNPCAP);
2275
2276	/* set the PLL on, remove the HNP/SRP and set the PHY */
2277	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2278	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2279		(val << GUSBCFG_USBTRDTIM_SHIFT);
2280	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2281
2282	dwc2_hsotg_init_fifo(hsotg);
2283
2284	if (!is_usb_reset)
2285		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286
2287	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2288
2289	/* Clear any pending OTG interrupts */
2290	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2291
2292	/* Clear any pending interrupts */
2293	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2294	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2295		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2296		GINTSTS_USBRST | GINTSTS_RESETDET |
2297		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2298		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2299		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2300
2301	if (hsotg->core_params->external_id_pin_ctl <= 0)
 
 
 
2302		intmsk |= GINTSTS_CONIDSTSCHNG;
2303
2304	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2305
2306	if (using_dma(hsotg))
2307		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2308			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2309			    hsotg->regs + GAHBCFG);
2310	else
2311		dwc2_writel(((hsotg->dedicated_fifos) ?
 
 
 
 
 
2312						(GAHBCFG_NP_TXF_EMP_LVL |
2313						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2314			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
 
2315
2316	/*
2317	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2318	 * when we have no data to transfer. Otherwise we get being flooded by
2319	 * interrupts.
2320	 */
2321
2322	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2323		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2324		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2325		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2326		DIEPMSK_INTKNEPMISMSK,
2327		hsotg->regs + DIEPMSK);
2328
2329	/*
2330	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2331	 * DMA mode we may need this.
2332	 */
2333	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2334				    DIEPMSK_TIMEOUTMSK) : 0) |
2335		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2336		DOEPMSK_SETUPMSK,
2337		hsotg->regs + DOEPMSK);
 
 
 
 
 
 
2338
2339	dwc2_writel(0, hsotg->regs + DAINTMSK);
 
 
 
 
2340
2341	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2342		dwc2_readl(hsotg->regs + DIEPCTL0),
2343		dwc2_readl(hsotg->regs + DOEPCTL0));
2344
2345	/* enable in and out endpoint interrupts */
2346	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2347
2348	/*
2349	 * Enable the RXFIFO when in slave mode, as this is how we collect
2350	 * the data. In DMA mode, we get events from the FIFO but also
2351	 * things we cannot process, so do not use it.
2352	 */
2353	if (!using_dma(hsotg))
2354		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2355
2356	/* Enable interrupts for EP0 in and out */
2357	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2358	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2359
2360	if (!is_usb_reset) {
2361		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2362		udelay(10);  /* see openiboot */
2363		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2364	}
2365
2366	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2367
2368	/*
2369	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2370	 * writing to the EPCTL register..
2371	 */
2372
2373	/* set to read 1 8byte packet */
2374	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2375	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2376
2377	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2378	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2379	       DXEPCTL_USBACTEP,
2380	       hsotg->regs + DOEPCTL0);
2381
2382	/* enable, but don't activate EP0in */
2383	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2384	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2385
2386	dwc2_hsotg_enqueue_setup(hsotg);
2387
2388	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2389		dwc2_readl(hsotg->regs + DIEPCTL0),
2390		dwc2_readl(hsotg->regs + DOEPCTL0));
2391
2392	/* clear global NAKs */
2393	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2394	if (!is_usb_reset)
2395		val |= DCTL_SFTDISCON;
2396	__orr32(hsotg->regs + DCTL, val);
 
 
 
 
 
 
 
2397
2398	/* must be at-least 3ms to allow bus to see disconnect */
2399	mdelay(3);
2400
2401	hsotg->lx_state = DWC2_L0;
 
 
 
 
 
 
2402}
2403
2404static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2405{
2406	/* set the soft-disconnect bit */
2407	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2408}
2409
2410void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2411{
2412	/* remove the soft-disconnect and let's go */
2413	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414}
2415
2416/**
2417 * dwc2_hsotg_irq - handle device interrupt
2418 * @irq: The IRQ number triggered
2419 * @pw: The pw value when registered the handler.
2420 */
2421static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2422{
2423	struct dwc2_hsotg *hsotg = pw;
2424	int retry_count = 8;
2425	u32 gintsts;
2426	u32 gintmsk;
2427
 
 
 
2428	spin_lock(&hsotg->lock);
2429irq_retry:
2430	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2431	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2432
2433	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2434		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2435
2436	gintsts &= gintmsk;
2437
2438	if (gintsts & GINTSTS_RESETDET) {
2439		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2440
2441		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2442
2443		/* This event must be used only if controller is suspended */
2444		if (hsotg->lx_state == DWC2_L2) {
2445			dwc2_exit_hibernation(hsotg, true);
2446			hsotg->lx_state = DWC2_L0;
2447		}
 
 
 
 
 
 
2448	}
2449
2450	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2451
2452		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2453		u32 connected = hsotg->connected;
2454
2455		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2456		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2457			dwc2_readl(hsotg->regs + GNPTXSTS));
2458
2459		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2460
2461		/* Report disconnection if it is not already done. */
2462		dwc2_hsotg_disconnect(hsotg);
2463
 
 
 
2464		if (usb_status & GOTGCTL_BSESVLD && connected)
2465			dwc2_hsotg_core_init_disconnected(hsotg, true);
2466	}
2467
2468	if (gintsts & GINTSTS_ENUMDONE) {
2469		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2470
2471		dwc2_hsotg_irq_enumdone(hsotg);
2472	}
2473
2474	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2475		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2476		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2477		u32 daint_out, daint_in;
2478		int ep;
2479
2480		daint &= daintmsk;
2481		daint_out = daint >> DAINT_OUTEP_SHIFT;
2482		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2483
2484		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2485
2486		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2487						ep++, daint_out >>= 1) {
2488			if (daint_out & 1)
2489				dwc2_hsotg_epint(hsotg, ep, 0);
2490		}
2491
2492		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2493						ep++, daint_in >>= 1) {
2494			if (daint_in & 1)
2495				dwc2_hsotg_epint(hsotg, ep, 1);
2496		}
2497	}
2498
2499	/* check both FIFOs */
2500
2501	if (gintsts & GINTSTS_NPTXFEMP) {
2502		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2503
2504		/*
2505		 * Disable the interrupt to stop it happening again
2506		 * unless one of these endpoint routines decides that
2507		 * it needs re-enabling
2508		 */
2509
2510		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2511		dwc2_hsotg_irq_fifoempty(hsotg, false);
2512	}
2513
2514	if (gintsts & GINTSTS_PTXFEMP) {
2515		dev_dbg(hsotg->dev, "PTxFEmp\n");
2516
2517		/* See note in GINTSTS_NPTxFEmp */
2518
2519		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2520		dwc2_hsotg_irq_fifoempty(hsotg, true);
2521	}
2522
2523	if (gintsts & GINTSTS_RXFLVL) {
2524		/*
2525		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2526		 * we need to retry dwc2_hsotg_handle_rx if this is still
2527		 * set.
2528		 */
2529
2530		dwc2_hsotg_handle_rx(hsotg);
2531	}
2532
2533	if (gintsts & GINTSTS_ERLYSUSP) {
2534		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2535		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2536	}
2537
2538	/*
2539	 * these next two seem to crop-up occasionally causing the core
2540	 * to shutdown the USB transfer, so try clearing them and logging
2541	 * the occurrence.
2542	 */
2543
2544	if (gintsts & GINTSTS_GOUTNAKEFF) {
2545		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
 
 
 
 
2546
2547		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
 
 
 
 
 
2548
2549		dwc2_hsotg_dump(hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	}
2551
2552	if (gintsts & GINTSTS_GINNAKEFF) {
2553		dev_info(hsotg->dev, "GINNakEff triggered\n");
2554
2555		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2556
2557		dwc2_hsotg_dump(hsotg);
2558	}
2559
2560	if (gintsts & GINTSTS_INCOMPL_SOIN) {
2561		u32 idx, epctl_reg;
2562		struct dwc2_hsotg_ep *hs_ep;
2563
2564		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2565		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2566			hs_ep = hsotg->eps_in[idx];
2567
2568			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2569				continue;
 
 
2570
2571			epctl_reg = DIEPCTL(idx);
2572			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2573		}
2574		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2575	}
2576
2577	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2578		u32 idx, epctl_reg;
2579		struct dwc2_hsotg_ep *hs_ep;
2580
2581		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2582		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2583			hs_ep = hsotg->eps_out[idx];
2584
2585			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2586				continue;
2587
2588			epctl_reg = DOEPCTL(idx);
2589			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590		}
2591		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2592	}
2593
2594	/*
2595	 * if we've had fifo events, we should try and go around the
2596	 * loop again to see if there's any point in returning yet.
2597	 */
2598
2599	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2600			goto irq_retry;
 
 
2601
2602	spin_unlock(&hsotg->lock);
 
2603
2604	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605}
2606
2607/**
2608 * dwc2_hsotg_ep_enable - enable the given endpoint
2609 * @ep: The USB endpint to configure
2610 * @desc: The USB endpoint descriptor to configure with.
2611 *
2612 * This is called from the USB gadget code's usb_ep_enable().
2613 */
2614static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2615			       const struct usb_endpoint_descriptor *desc)
2616{
2617	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2618	struct dwc2_hsotg *hsotg = hs_ep->parent;
2619	unsigned long flags;
2620	unsigned int index = hs_ep->index;
2621	u32 epctrl_reg;
2622	u32 epctrl;
2623	u32 mps;
 
 
2624	unsigned int dir_in;
2625	unsigned int i, val, size;
2626	int ret = 0;
 
 
2627
2628	dev_dbg(hsotg->dev,
2629		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2630		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2631		desc->wMaxPacketSize, desc->bInterval);
2632
2633	/* not to be called for EP0 */
2634	WARN_ON(index == 0);
 
 
 
2635
2636	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2637	if (dir_in != hs_ep->dir_in) {
2638		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2639		return -EINVAL;
2640	}
2641
 
2642	mps = usb_endpoint_maxp(desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2645
2646	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2647	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2648
2649	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2650		__func__, epctrl, epctrl_reg);
2651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652	spin_lock_irqsave(&hsotg->lock, flags);
2653
2654	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2655	epctrl |= DXEPCTL_MPS(mps);
2656
2657	/*
2658	 * mark the endpoint as active, otherwise the core may ignore
2659	 * transactions entirely for this endpoint
2660	 */
2661	epctrl |= DXEPCTL_USBACTEP;
2662
2663	/*
2664	 * set the NAK status on the endpoint, otherwise we might try and
2665	 * do something with data that we've yet got a request to process
2666	 * since the RXFIFO will take data for an endpoint even if the
2667	 * size register hasn't been set.
2668	 */
2669
2670	epctrl |= DXEPCTL_SNAK;
2671
2672	/* update the endpoint state */
2673	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2674
2675	/* default, set to non-periodic */
2676	hs_ep->isochronous = 0;
2677	hs_ep->periodic = 0;
2678	hs_ep->halted = 0;
 
2679	hs_ep->interval = desc->bInterval;
2680	hs_ep->has_correct_parity = 0;
2681
2682	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2683		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2684
2685	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2686	case USB_ENDPOINT_XFER_ISOC:
2687		epctrl |= DXEPCTL_EPTYPE_ISO;
2688		epctrl |= DXEPCTL_SETEVENFR;
2689		hs_ep->isochronous = 1;
2690		if (dir_in)
 
 
 
 
2691			hs_ep->periodic = 1;
 
 
 
 
 
 
 
 
 
2692		break;
2693
2694	case USB_ENDPOINT_XFER_BULK:
2695		epctrl |= DXEPCTL_EPTYPE_BULK;
2696		break;
2697
2698	case USB_ENDPOINT_XFER_INT:
2699		if (dir_in)
2700			hs_ep->periodic = 1;
2701
 
 
 
2702		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2703		break;
2704
2705	case USB_ENDPOINT_XFER_CONTROL:
2706		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2707		break;
2708	}
2709
2710	/* If fifo is already allocated for this ep */
2711	if (hs_ep->fifo_index) {
2712		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2713		/* If bigger fifo is required deallocate current one */
2714		if (size > hs_ep->fifo_size) {
2715			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2716			hs_ep->fifo_index = 0;
2717			hs_ep->fifo_size = 0;
2718		}
2719	}
2720
2721	/*
2722	 * if the hardware has dedicated fifos, we must give each IN EP
2723	 * a unique tx-fifo even if it is non-periodic.
2724	 */
2725	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
 
2726		u32 fifo_index = 0;
2727		u32 fifo_size = UINT_MAX;
2728		size = hs_ep->ep.maxpacket*hs_ep->mc;
2729		for (i = 1; i < hsotg->num_of_eps; ++i) {
2730			if (hsotg->fifo_map & (1<<i))
 
2731				continue;
2732			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2733			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2734			if (val < size)
2735				continue;
2736			/* Search for smallest acceptable fifo */
2737			if (val < fifo_size) {
2738				fifo_size = val;
2739				fifo_index = i;
2740			}
2741		}
2742		if (!fifo_index) {
2743			dev_err(hsotg->dev,
2744				"%s: No suitable fifo found\n", __func__);
2745			ret = -ENOMEM;
2746			goto error;
2747		}
 
2748		hsotg->fifo_map |= 1 << fifo_index;
2749		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2750		hs_ep->fifo_index = fifo_index;
2751		hs_ep->fifo_size = fifo_size;
2752	}
2753
2754	/* for non control endpoints, set PID to D0 */
2755	if (index)
2756		epctrl |= DXEPCTL_SETD0PID;
2757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2759		__func__, epctrl);
2760
2761	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2762	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2763		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2764
2765	/* enable the endpoint interrupt */
2766	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2767
2768error:
2769	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
 
 
 
 
 
 
2770	return ret;
2771}
2772
2773/**
2774 * dwc2_hsotg_ep_disable - disable given endpoint
2775 * @ep: The endpoint to disable.
2776 */
2777static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2778{
2779	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2780	struct dwc2_hsotg *hsotg = hs_ep->parent;
2781	int dir_in = hs_ep->dir_in;
2782	int index = hs_ep->index;
2783	unsigned long flags;
2784	u32 epctrl_reg;
2785	u32 ctrl;
2786
2787	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2788
2789	if (ep == &hsotg->eps_out[0]->ep) {
2790		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2791		return -EINVAL;
2792	}
2793
 
 
 
 
 
2794	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2795
2796	spin_lock_irqsave(&hsotg->lock, flags);
2797
2798	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2799	hs_ep->fifo_index = 0;
2800	hs_ep->fifo_size = 0;
2801
2802	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2803	ctrl &= ~DXEPCTL_EPENA;
2804	ctrl &= ~DXEPCTL_USBACTEP;
2805	ctrl |= DXEPCTL_SNAK;
2806
2807	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2808	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2809
2810	/* disable endpoint interrupts */
2811	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2812
2813	/* terminate all requests with shutdown */
2814	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2815
2816	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
2817	return 0;
2818}
2819
 
 
 
 
 
 
 
 
 
 
 
 
 
2820/**
2821 * on_list - check request is on the given endpoint
2822 * @ep: The endpoint to check.
2823 * @test: The request to test if it is on the endpoint.
2824 */
2825static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2826{
2827	struct dwc2_hsotg_req *req, *treq;
2828
2829	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2830		if (req == test)
2831			return true;
2832	}
2833
2834	return false;
2835}
2836
2837static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2838							u32 bit, u32 timeout)
2839{
2840	u32 i;
2841
2842	for (i = 0; i < timeout; i++) {
2843		if (dwc2_readl(hs_otg->regs + reg) & bit)
2844			return 0;
2845		udelay(1);
2846	}
2847
2848	return -ETIMEDOUT;
2849}
2850
2851static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2852						struct dwc2_hsotg_ep *hs_ep)
2853{
2854	u32 epctrl_reg;
2855	u32 epint_reg;
2856
2857	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2858		DOEPCTL(hs_ep->index);
2859	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2860		DOEPINT(hs_ep->index);
2861
2862	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2863			hs_ep->name);
2864	if (hs_ep->dir_in) {
2865		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2866		/* Wait for Nak effect */
2867		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2868						DXEPINT_INEPNAKEFF, 100))
2869			dev_warn(hsotg->dev,
2870				"%s: timeout DIEPINT.NAKEFF\n", __func__);
2871	} else {
2872		/* Clear any pending nak effect interrupt */
2873		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2874
2875		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2876
2877		/* Wait for global nak to take effect */
2878		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2879						GINTSTS_GOUTNAKEFF, 100))
2880			dev_warn(hsotg->dev,
2881				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2882	}
2883
2884	/* Disable ep */
2885	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2886
2887	/* Wait for ep to be disabled */
2888	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2889		dev_warn(hsotg->dev,
2890			"%s: timeout DOEPCTL.EPDisable\n", __func__);
2891
2892	if (hs_ep->dir_in) {
2893		if (hsotg->dedicated_fifos) {
2894			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2895				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2896			/* Wait for fifo flush */
2897			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2898							GRSTCTL_TXFFLSH, 100))
2899				dev_warn(hsotg->dev,
2900					"%s: timeout flushing fifos\n",
2901					__func__);
2902		}
2903		/* TODO: Flush shared tx fifo */
2904	} else {
2905		/* Remove global NAKs */
2906		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2907	}
2908}
2909
2910/**
2911 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2912 * @ep: The endpoint to dequeue.
2913 * @req: The request to be removed from a queue.
2914 */
2915static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2916{
2917	struct dwc2_hsotg_req *hs_req = our_req(req);
2918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2919	struct dwc2_hsotg *hs = hs_ep->parent;
2920	unsigned long flags;
2921
2922	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2923
2924	spin_lock_irqsave(&hs->lock, flags);
2925
2926	if (!on_list(hs_ep, hs_req)) {
2927		spin_unlock_irqrestore(&hs->lock, flags);
2928		return -EINVAL;
2929	}
2930
2931	/* Dequeue already started request */
2932	if (req == &hs_ep->req->req)
2933		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2934
2935	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2936	spin_unlock_irqrestore(&hs->lock, flags);
2937
2938	return 0;
2939}
2940
2941/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2943 * @ep: The endpoint to set halt.
2944 * @value: Set or unset the halt.
 
 
 
 
 
2945 */
2946static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2947{
2948	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2949	struct dwc2_hsotg *hs = hs_ep->parent;
2950	int index = hs_ep->index;
2951	u32 epreg;
2952	u32 epctl;
2953	u32 xfertype;
2954
2955	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2956
2957	if (index == 0) {
2958		if (value)
2959			dwc2_hsotg_stall_ep0(hs);
2960		else
2961			dev_warn(hs->dev,
2962				 "%s: can't clear halt on ep0\n", __func__);
2963		return 0;
2964	}
2965
 
 
 
 
 
 
 
 
 
 
 
2966	if (hs_ep->dir_in) {
2967		epreg = DIEPCTL(index);
2968		epctl = dwc2_readl(hs->regs + epreg);
2969
2970		if (value) {
2971			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2972			if (epctl & DXEPCTL_EPENA)
2973				epctl |= DXEPCTL_EPDIS;
2974		} else {
2975			epctl &= ~DXEPCTL_STALL;
 
2976			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2977			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2978				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2979					epctl |= DXEPCTL_SETD0PID;
2980		}
2981		dwc2_writel(epctl, hs->regs + epreg);
2982	} else {
2983
2984		epreg = DOEPCTL(index);
2985		epctl = dwc2_readl(hs->regs + epreg);
2986
2987		if (value)
2988			epctl |= DXEPCTL_STALL;
2989		else {
 
 
 
 
 
2990			epctl &= ~DXEPCTL_STALL;
 
2991			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2992			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2993				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2994					epctl |= DXEPCTL_SETD0PID;
 
2995		}
2996		dwc2_writel(epctl, hs->regs + epreg);
2997	}
2998
2999	hs_ep->halted = value;
3000
3001	return 0;
3002}
3003
3004/**
3005 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3006 * @ep: The endpoint to set halt.
3007 * @value: Set or unset the halt.
3008 */
3009static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3010{
3011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3012	struct dwc2_hsotg *hs = hs_ep->parent;
3013	unsigned long flags = 0;
3014	int ret = 0;
3015
3016	spin_lock_irqsave(&hs->lock, flags);
3017	ret = dwc2_hsotg_ep_sethalt(ep, value);
3018	spin_unlock_irqrestore(&hs->lock, flags);
3019
3020	return ret;
3021}
3022
3023static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3024	.enable		= dwc2_hsotg_ep_enable,
3025	.disable	= dwc2_hsotg_ep_disable,
3026	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3027	.free_request	= dwc2_hsotg_ep_free_request,
3028	.queue		= dwc2_hsotg_ep_queue_lock,
3029	.dequeue	= dwc2_hsotg_ep_dequeue,
3030	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
 
3031	/* note, don't believe we have any call for the fifo routines */
3032};
3033
3034/**
3035 * dwc2_hsotg_init - initalize the usb core
3036 * @hsotg: The driver state
3037 */
3038static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3039{
3040	u32 trdtim;
3041	u32 usbcfg;
3042	/* unmask subset of endpoint interrupts */
3043
3044	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3045		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3046		    hsotg->regs + DIEPMSK);
3047
3048	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3049		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3050		    hsotg->regs + DOEPMSK);
3051
3052	dwc2_writel(0, hsotg->regs + DAINTMSK);
3053
3054	/* Be in disconnected state until gadget is registered */
3055	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3056
3057	/* setup fifos */
3058
3059	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3060		dwc2_readl(hsotg->regs + GRXFSIZ),
3061		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3062
3063	dwc2_hsotg_init_fifo(hsotg);
3064
3065	/* keep other bits untouched (so e.g. forced modes are not lost) */
3066	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3067	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3068		GUSBCFG_HNPCAP);
3069
3070	/* set the PLL on, remove the HNP/SRP and set the PHY */
3071	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3072	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3073		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
3074	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3075
3076	if (using_dma(hsotg))
3077		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3078}
3079
3080/**
3081 * dwc2_hsotg_udc_start - prepare the udc for work
3082 * @gadget: The usb gadget state
3083 * @driver: The usb gadget driver
3084 *
3085 * Perform initialization to prepare udc device and driver
3086 * to work.
3087 */
3088static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3089			   struct usb_gadget_driver *driver)
3090{
3091	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3092	unsigned long flags;
3093	int ret;
3094
3095	if (!hsotg) {
3096		pr_err("%s: called with no device\n", __func__);
3097		return -ENODEV;
3098	}
3099
3100	if (!driver) {
3101		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3102		return -EINVAL;
3103	}
3104
3105	if (driver->max_speed < USB_SPEED_FULL)
3106		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3107
3108	if (!driver->setup) {
3109		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3110		return -EINVAL;
3111	}
3112
3113	WARN_ON(hsotg->driver);
3114
3115	driver->driver.bus = NULL;
3116	hsotg->driver = driver;
3117	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3118	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3119
3120	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3121		ret = dwc2_lowlevel_hw_enable(hsotg);
3122		if (ret)
3123			goto err;
3124	}
3125
3126	if (!IS_ERR_OR_NULL(hsotg->uphy))
3127		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3128
3129	spin_lock_irqsave(&hsotg->lock, flags);
3130	dwc2_hsotg_init(hsotg);
3131	dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
 
3132	hsotg->enabled = 0;
3133	spin_unlock_irqrestore(&hsotg->lock, flags);
3134
 
3135	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3136
3137	return 0;
3138
3139err:
3140	hsotg->driver = NULL;
3141	return ret;
3142}
3143
3144/**
3145 * dwc2_hsotg_udc_stop - stop the udc
3146 * @gadget: The usb gadget state
3147 * @driver: The usb gadget driver
3148 *
3149 * Stop udc hw block and stay tunned for future transmissions
3150 */
3151static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3152{
3153	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3154	unsigned long flags = 0;
3155	int ep;
3156
3157	if (!hsotg)
3158		return -ENODEV;
3159
3160	/* all endpoints should be shutdown */
3161	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3162		if (hsotg->eps_in[ep])
3163			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3164		if (hsotg->eps_out[ep])
3165			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3166	}
3167
3168	spin_lock_irqsave(&hsotg->lock, flags);
3169
3170	hsotg->driver = NULL;
 
3171	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3172	hsotg->enabled = 0;
3173
3174	spin_unlock_irqrestore(&hsotg->lock, flags);
3175
3176	if (!IS_ERR_OR_NULL(hsotg->uphy))
3177		otg_set_peripheral(hsotg->uphy->otg, NULL);
3178
3179	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3180		dwc2_lowlevel_hw_disable(hsotg);
3181
3182	return 0;
3183}
3184
3185/**
3186 * dwc2_hsotg_gadget_getframe - read the frame number
3187 * @gadget: The usb gadget state
3188 *
3189 * Read the {micro} frame number
3190 */
3191static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3192{
3193	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3194}
3195
3196/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3198 * @gadget: The usb gadget state
3199 * @is_on: Current state of the USB PHY
3200 *
3201 * Connect/Disconnect the USB PHY pullup
3202 */
3203static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3204{
3205	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3206	unsigned long flags = 0;
3207
3208	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3209			hsotg->op_state);
3210
3211	/* Don't modify pullup state while in host mode */
3212	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3213		hsotg->enabled = is_on;
3214		return 0;
3215	}
3216
3217	spin_lock_irqsave(&hsotg->lock, flags);
3218	if (is_on) {
3219		hsotg->enabled = 1;
3220		dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
3221		dwc2_hsotg_core_connect(hsotg);
3222	} else {
3223		dwc2_hsotg_core_disconnect(hsotg);
3224		dwc2_hsotg_disconnect(hsotg);
3225		hsotg->enabled = 0;
3226	}
3227
3228	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3229	spin_unlock_irqrestore(&hsotg->lock, flags);
3230
3231	return 0;
3232}
3233
3234static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3235{
3236	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3237	unsigned long flags;
3238
3239	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3240	spin_lock_irqsave(&hsotg->lock, flags);
3241
3242	/*
3243	 * If controller is hibernated, it must exit from hibernation
3244	 * before being initialized / de-initialized
3245	 */
3246	if (hsotg->lx_state == DWC2_L2)
3247		dwc2_exit_hibernation(hsotg, false);
 
 
 
 
3248
3249	if (is_active) {
3250		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251
3252		dwc2_hsotg_core_init_disconnected(hsotg, false);
3253		if (hsotg->enabled)
 
 
3254			dwc2_hsotg_core_connect(hsotg);
 
3255	} else {
3256		dwc2_hsotg_core_disconnect(hsotg);
3257		dwc2_hsotg_disconnect(hsotg);
3258	}
3259
3260	spin_unlock_irqrestore(&hsotg->lock, flags);
3261	return 0;
3262}
3263
3264/**
3265 * dwc2_hsotg_vbus_draw - report bMaxPower field
3266 * @gadget: The usb gadget state
3267 * @mA: Amount of current
3268 *
3269 * Report how much power the device may consume to the phy.
3270 */
3271static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3272{
3273	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3274
3275	if (IS_ERR_OR_NULL(hsotg->uphy))
3276		return -ENOTSUPP;
3277	return usb_phy_set_power(hsotg->uphy, mA);
3278}
3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3280static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3281	.get_frame	= dwc2_hsotg_gadget_getframe,
 
3282	.udc_start		= dwc2_hsotg_udc_start,
3283	.udc_stop		= dwc2_hsotg_udc_stop,
3284	.pullup                 = dwc2_hsotg_pullup,
 
3285	.vbus_session		= dwc2_hsotg_vbus_session,
3286	.vbus_draw		= dwc2_hsotg_vbus_draw,
3287};
3288
3289/**
3290 * dwc2_hsotg_initep - initialise a single endpoint
3291 * @hsotg: The device state.
3292 * @hs_ep: The endpoint to be initialised.
3293 * @epnum: The endpoint number
 
3294 *
3295 * Initialise the given endpoint (as part of the probe and device state
3296 * creation) to give to the gadget driver. Setup the endpoint name, any
3297 * direction information and other state that may be required.
3298 */
3299static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3300				       struct dwc2_hsotg_ep *hs_ep,
3301				       int epnum,
3302				       bool dir_in)
3303{
3304	char *dir;
3305
3306	if (epnum == 0)
3307		dir = "";
3308	else if (dir_in)
3309		dir = "in";
3310	else
3311		dir = "out";
3312
3313	hs_ep->dir_in = dir_in;
3314	hs_ep->index = epnum;
3315
3316	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3317
3318	INIT_LIST_HEAD(&hs_ep->queue);
3319	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3320
3321	/* add to the list of endpoints known by the gadget driver */
3322	if (epnum)
3323		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3324
3325	hs_ep->parent = hsotg;
3326	hs_ep->ep.name = hs_ep->name;
3327	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
 
 
 
 
 
3328	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3329
3330	if (epnum == 0) {
3331		hs_ep->ep.caps.type_control = true;
3332	} else {
3333		hs_ep->ep.caps.type_iso = true;
3334		hs_ep->ep.caps.type_bulk = true;
 
 
3335		hs_ep->ep.caps.type_int = true;
3336	}
3337
3338	if (dir_in)
3339		hs_ep->ep.caps.dir_in = true;
3340	else
3341		hs_ep->ep.caps.dir_out = true;
3342
3343	/*
3344	 * if we're using dma, we need to set the next-endpoint pointer
3345	 * to be something valid.
3346	 */
3347
3348	if (using_dma(hsotg)) {
3349		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
 
3350		if (dir_in)
3351			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3352		else
3353			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3354	}
3355}
3356
3357/**
3358 * dwc2_hsotg_hw_cfg - read HW configuration registers
3359 * @param: The device state
3360 *
3361 * Read the USB core HW configuration registers
3362 */
3363static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3364{
3365	u32 cfg;
3366	u32 ep_type;
3367	u32 i;
3368
3369	/* check hardware configuration */
3370
3371	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
3372
3373	/* Add ep0 */
3374	hsotg->num_of_eps++;
3375
3376	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3377								GFP_KERNEL);
 
3378	if (!hsotg->eps_in[0])
3379		return -ENOMEM;
3380	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3381	hsotg->eps_out[0] = hsotg->eps_in[0];
3382
3383	cfg = hsotg->hw_params.dev_ep_dirs;
3384	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3385		ep_type = cfg & 3;
3386		/* Direction in or both */
3387		if (!(ep_type & 2)) {
3388			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3389				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3390			if (!hsotg->eps_in[i])
3391				return -ENOMEM;
3392		}
3393		/* Direction out or both */
3394		if (!(ep_type & 1)) {
3395			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3396				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3397			if (!hsotg->eps_out[i])
3398				return -ENOMEM;
3399		}
3400	}
3401
3402	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
3403	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3404
3405	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3406		 hsotg->num_of_eps,
3407		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3408		 hsotg->fifo_mem);
3409	return 0;
3410}
3411
3412/**
3413 * dwc2_hsotg_dump - dump state of the udc
3414 * @param: The device state
 
3415 */
3416static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3417{
3418#ifdef DEBUG
3419	struct device *dev = hsotg->dev;
3420	void __iomem *regs = hsotg->regs;
3421	u32 val;
3422	int idx;
3423
3424	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3425		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3426		 dwc2_readl(regs + DIEPMSK));
3427
3428	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3429		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3430
3431	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3432		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3433
3434	/* show periodic fifo settings */
3435
3436	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3437		val = dwc2_readl(regs + DPTXFSIZN(idx));
3438		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3439			 val >> FIFOSIZE_DEPTH_SHIFT,
3440			 val & FIFOSIZE_STARTADDR_MASK);
3441	}
3442
3443	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3444		dev_info(dev,
3445			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3446			 dwc2_readl(regs + DIEPCTL(idx)),
3447			 dwc2_readl(regs + DIEPTSIZ(idx)),
3448			 dwc2_readl(regs + DIEPDMA(idx)));
3449
3450		val = dwc2_readl(regs + DOEPCTL(idx));
3451		dev_info(dev,
3452			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3453			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3454			 dwc2_readl(regs + DOEPTSIZ(idx)),
3455			 dwc2_readl(regs + DOEPDMA(idx)));
3456
3457	}
3458
3459	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3460		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3461#endif
3462}
3463
3464#ifdef CONFIG_OF
3465static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3466{
3467	struct device_node *np = hsotg->dev->of_node;
3468	u32 len = 0;
3469	u32 i = 0;
3470
3471	/* Enable dma if requested in device tree */
3472	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3473
3474	/*
3475	* Register TX periodic fifo size per endpoint.
3476	* EP0 is excluded since it has no fifo configuration.
3477	*/
3478	if (!of_find_property(np, "g-tx-fifo-size", &len))
3479		goto rx_fifo;
3480
3481	len /= sizeof(u32);
3482
3483	/* Read tx fifo sizes other than ep0 */
3484	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3485						&hsotg->g_tx_fifo_sz[1], len))
3486		goto rx_fifo;
3487
3488	/* Add ep0 */
3489	len++;
3490
3491	/* Make remaining TX fifos unavailable */
3492	if (len < MAX_EPS_CHANNELS) {
3493		for (i = len; i < MAX_EPS_CHANNELS; i++)
3494			hsotg->g_tx_fifo_sz[i] = 0;
3495	}
3496
3497rx_fifo:
3498	/* Register RX fifo size */
3499	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3500
3501	/* Register NPTX fifo size */
3502	of_property_read_u32(np, "g-np-tx-fifo-size",
3503						&hsotg->g_np_g_tx_fifo_sz);
3504}
3505#else
3506static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3507#endif
3508
3509/**
3510 * dwc2_gadget_init - init function for gadget
3511 * @dwc2: The data structure for the DWC2 driver.
3512 * @irq: The IRQ number for the controller.
3513 */
3514int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3515{
3516	struct device *dev = hsotg->dev;
3517	int epnum;
3518	int ret;
3519	int i;
3520	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3521
3522	/* Initialize to legacy fifo configuration values */
3523	hsotg->g_rx_fifo_sz = 2048;
3524	hsotg->g_np_g_tx_fifo_sz = 1024;
3525	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3526	/* Device tree specific probe */
3527	dwc2_hsotg_of_probe(hsotg);
3528
3529	/* Check against largest possible value. */
3530	if (hsotg->g_np_g_tx_fifo_sz >
3531	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
3532		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
3533			 hsotg->g_np_g_tx_fifo_sz,
3534			 hsotg->hw_params.dev_nperio_tx_fifo_size);
3535		hsotg->g_np_g_tx_fifo_sz =
3536			hsotg->hw_params.dev_nperio_tx_fifo_size;
3537	}
3538
3539	/* Dump fifo information */
3540	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3541						hsotg->g_np_g_tx_fifo_sz);
3542	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3543	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3544		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3545						hsotg->g_tx_fifo_sz[i]);
 
 
 
 
 
 
 
 
 
3546
3547	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3548	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3549	hsotg->gadget.name = dev_name(dev);
 
 
 
 
 
 
3550	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3551		hsotg->gadget.is_otg = 1;
3552	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3553		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3554
3555	ret = dwc2_hsotg_hw_cfg(hsotg);
3556	if (ret) {
3557		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3558		return ret;
3559	}
3560
3561	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3562			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3563	if (!hsotg->ctrl_buff) {
3564		dev_err(dev, "failed to allocate ctrl request buff\n");
3565		return -ENOMEM;
3566	}
3567
3568	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3569			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3570	if (!hsotg->ep0_buff) {
3571		dev_err(dev, "failed to allocate ctrl reply buff\n");
3572		return -ENOMEM;
 
 
 
 
 
3573	}
3574
3575	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3576				dev_name(hsotg->dev), hsotg);
3577	if (ret < 0) {
3578		dev_err(dev, "cannot claim IRQ for gadget\n");
3579		return ret;
3580	}
3581
3582	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3583
3584	if (hsotg->num_of_eps == 0) {
3585		dev_err(dev, "wrong number of EPs (zero)\n");
3586		return -EINVAL;
3587	}
3588
3589	/* setup endpoint information */
3590
3591	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3592	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3593
3594	/* allocate EP0 request */
3595
3596	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3597						     GFP_KERNEL);
3598	if (!hsotg->ctrl_req) {
3599		dev_err(dev, "failed to allocate ctrl req\n");
3600		return -ENOMEM;
3601	}
3602
3603	/* initialise the endpoints now the core has been initialised */
3604	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3605		if (hsotg->eps_in[epnum])
3606			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3607								epnum, 1);
3608		if (hsotg->eps_out[epnum])
3609			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3610								epnum, 0);
3611	}
3612
3613	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3614	if (ret)
3615		return ret;
3616
3617	dwc2_hsotg_dump(hsotg);
3618
3619	return 0;
3620}
3621
3622/**
3623 * dwc2_hsotg_remove - remove function for hsotg driver
3624 * @pdev: The platform information for the driver
 
3625 */
3626int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3627{
3628	usb_del_gadget_udc(&hsotg->gadget);
 
3629
3630	return 0;
3631}
3632
3633int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3634{
3635	unsigned long flags;
3636
3637	if (hsotg->lx_state != DWC2_L0)
3638		return 0;
3639
3640	if (hsotg->driver) {
3641		int ep;
3642
3643		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3644			 hsotg->driver->driver.name);
3645
3646		spin_lock_irqsave(&hsotg->lock, flags);
3647		if (hsotg->enabled)
3648			dwc2_hsotg_core_disconnect(hsotg);
3649		dwc2_hsotg_disconnect(hsotg);
3650		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3651		spin_unlock_irqrestore(&hsotg->lock, flags);
3652
3653		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3654			if (hsotg->eps_in[ep])
3655				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3656			if (hsotg->eps_out[ep])
3657				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3658		}
3659	}
3660
3661	return 0;
3662}
3663
3664int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3665{
3666	unsigned long flags;
3667
3668	if (hsotg->lx_state == DWC2_L2)
3669		return 0;
3670
3671	if (hsotg->driver) {
3672		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3673			 hsotg->driver->driver.name);
3674
3675		spin_lock_irqsave(&hsotg->lock, flags);
3676		dwc2_hsotg_core_init_disconnected(hsotg, false);
3677		if (hsotg->enabled)
 
 
3678			dwc2_hsotg_core_connect(hsotg);
 
3679		spin_unlock_irqrestore(&hsotg->lock, flags);
3680	}
3681
3682	return 0;
3683}
3684
3685/**
3686 * dwc2_backup_device_registers() - Backup controller device registers.
3687 * When suspending usb bus, registers needs to be backuped
3688 * if controller power is disabled once suspended.
3689 *
3690 * @hsotg: Programming view of the DWC_otg controller
3691 */
3692int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
3693{
3694	struct dwc2_dregs_backup *dr;
3695	int i;
3696
3697	dev_dbg(hsotg->dev, "%s\n", __func__);
3698
3699	/* Backup dev regs */
3700	dr = &hsotg->dr_backup;
3701
3702	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
3703	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
3704	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3705	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
3706	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
3707
3708	for (i = 0; i < hsotg->num_of_eps; i++) {
3709		/* Backup IN EPs */
3710		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
3711
3712		/* Ensure DATA PID is correctly configured */
3713		if (dr->diepctl[i] & DXEPCTL_DPID)
3714			dr->diepctl[i] |= DXEPCTL_SETD1PID;
3715		else
3716			dr->diepctl[i] |= DXEPCTL_SETD0PID;
3717
3718		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
3719		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
3720
3721		/* Backup OUT EPs */
3722		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
3723
3724		/* Ensure DATA PID is correctly configured */
3725		if (dr->doepctl[i] & DXEPCTL_DPID)
3726			dr->doepctl[i] |= DXEPCTL_SETD1PID;
3727		else
3728			dr->doepctl[i] |= DXEPCTL_SETD0PID;
3729
3730		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
3731		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
 
3732	}
3733	dr->valid = true;
3734	return 0;
3735}
3736
3737/**
3738 * dwc2_restore_device_registers() - Restore controller device registers.
3739 * When resuming usb bus, device registers needs to be restored
3740 * if controller power were disabled.
3741 *
3742 * @hsotg: Programming view of the DWC_otg controller
 
 
 
3743 */
3744int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
3745{
3746	struct dwc2_dregs_backup *dr;
3747	u32 dctl;
3748	int i;
3749
3750	dev_dbg(hsotg->dev, "%s\n", __func__);
3751
3752	/* Restore dev regs */
3753	dr = &hsotg->dr_backup;
3754	if (!dr->valid) {
3755		dev_err(hsotg->dev, "%s: no device registers to restore\n",
3756			__func__);
3757		return -EINVAL;
3758	}
3759	dr->valid = false;
3760
3761	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
3762	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
3763	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
3764	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
3765	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
 
3766
3767	for (i = 0; i < hsotg->num_of_eps; i++) {
3768		/* Restore IN EPs */
3769		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
3770		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
3771		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
3772
 
 
 
 
 
 
 
 
 
3773		/* Restore OUT EPs */
3774		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
3775		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
3776		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3777	}
3778
3779	/* Set the Power-On Programming done bit */
3780	dctl = dwc2_readl(hsotg->regs + DCTL);
3781	dctl |= DCTL_PWRONPRGDONE;
3782	dwc2_writel(dctl, hsotg->regs + DCTL);
3783
3784	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
 
 
 
 
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
 
  25
  26#include <linux/usb/ch9.h>
  27#include <linux/usb/gadget.h>
  28#include <linux/usb/phy.h>
  29#include <linux/usb/composite.h>
  30
  31
  32#include "core.h"
  33#include "hw.h"
  34
  35/* conversion functions */
  36static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  37{
  38	return container_of(req, struct dwc2_hsotg_req, req);
  39}
  40
  41static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  42{
  43	return container_of(ep, struct dwc2_hsotg_ep, ep);
  44}
  45
  46static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  47{
  48	return container_of(gadget, struct dwc2_hsotg, gadget);
  49}
  50
  51static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  52{
  53	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  54}
  55
  56static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  57{
  58	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  59}
  60
  61static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  62						u32 ep_index, u32 dir_in)
  63{
  64	if (dir_in)
  65		return hsotg->eps_in[ep_index];
  66	else
  67		return hsotg->eps_out[ep_index];
  68}
  69
  70/* forward declaration of functions */
  71static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  72
  73/**
  74 * using_dma - return the DMA status of the driver.
  75 * @hsotg: The driver state.
  76 *
  77 * Return true if we're using DMA.
  78 *
  79 * Currently, we have the DMA support code worked into everywhere
  80 * that needs it, but the AMBA DMA implementation in the hardware can
  81 * only DMA from 32bit aligned addresses. This means that gadgets such
  82 * as the CDC Ethernet cannot work as they often pass packets which are
  83 * not 32bit aligned.
  84 *
  85 * Unfortunately the choice to use DMA or not is global to the controller
  86 * and seems to be only settable when the controller is being put through
  87 * a core reset. This means we either need to fix the gadgets to take
  88 * account of DMA alignment, or add bounce buffers (yuerk).
  89 *
  90 * g_using_dma is set depending on dts flag.
  91 */
  92static inline bool using_dma(struct dwc2_hsotg *hsotg)
  93{
  94	return hsotg->params.g_dma;
  95}
  96
  97/*
  98 * using_desc_dma - return the descriptor DMA status of the driver.
  99 * @hsotg: The driver state.
 100 *
 101 * Return true if we're using descriptor DMA.
 102 */
 103static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 104{
 105	return hsotg->params.g_dma_desc;
 106}
 107
 108/**
 109 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 110 * @hs_ep: The endpoint
 111 *
 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 114 */
 115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 116{
 117	struct dwc2_hsotg *hsotg = hs_ep->parent;
 118	u16 limit = DSTS_SOFFN_LIMIT;
 119
 120	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 121		limit >>= 3;
 122
 123	hs_ep->target_frame += hs_ep->interval;
 124	if (hs_ep->target_frame > limit) {
 125		hs_ep->frame_overrun = true;
 126		hs_ep->target_frame &= limit;
 127	} else {
 128		hs_ep->frame_overrun = false;
 129	}
 130}
 131
 132/**
 133 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 134 *                                    by one.
 135 * @hs_ep: The endpoint.
 136 *
 137 * This function used in service interval based scheduling flow to calculate
 138 * descriptor frame number filed value. For service interval mode frame
 139 * number in descriptor should point to last (u)frame in the interval.
 140 *
 141 */
 142static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 143{
 144	struct dwc2_hsotg *hsotg = hs_ep->parent;
 145	u16 limit = DSTS_SOFFN_LIMIT;
 146
 147	if (hsotg->gadget.speed != USB_SPEED_HIGH)
 148		limit >>= 3;
 149
 150	if (hs_ep->target_frame)
 151		hs_ep->target_frame -= 1;
 152	else
 153		hs_ep->target_frame = limit;
 154}
 155
 156/**
 157 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 158 * @hsotg: The device state
 159 * @ints: A bitmask of the interrupts to enable
 160 */
 161static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 162{
 163	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 164	u32 new_gsintmsk;
 165
 166	new_gsintmsk = gsintmsk | ints;
 167
 168	if (new_gsintmsk != gsintmsk) {
 169		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 170		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 171	}
 172}
 173
 174/**
 175 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 176 * @hsotg: The device state
 177 * @ints: A bitmask of the interrupts to enable
 178 */
 179static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 180{
 181	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 182	u32 new_gsintmsk;
 183
 184	new_gsintmsk = gsintmsk & ~ints;
 185
 186	if (new_gsintmsk != gsintmsk)
 187		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 188}
 189
 190/**
 191 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 192 * @hsotg: The device state
 193 * @ep: The endpoint index
 194 * @dir_in: True if direction is in.
 195 * @en: The enable value, true to enable
 196 *
 197 * Set or clear the mask for an individual endpoint's interrupt
 198 * request.
 199 */
 200static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 201				  unsigned int ep, unsigned int dir_in,
 202				 unsigned int en)
 203{
 204	unsigned long flags;
 205	u32 bit = 1 << ep;
 206	u32 daint;
 207
 208	if (!dir_in)
 209		bit <<= 16;
 210
 211	local_irq_save(flags);
 212	daint = dwc2_readl(hsotg, DAINTMSK);
 213	if (en)
 214		daint |= bit;
 215	else
 216		daint &= ~bit;
 217	dwc2_writel(hsotg, daint, DAINTMSK);
 218	local_irq_restore(flags);
 219}
 220
 221/**
 222 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 223 *
 224 * @hsotg: Programming view of the DWC_otg controller
 225 */
 226int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 227{
 228	if (hsotg->hw_params.en_multiple_tx_fifo)
 229		/* In dedicated FIFO mode we need count of IN EPs */
 230		return hsotg->hw_params.num_dev_in_eps;
 231	else
 232		/* In shared FIFO mode we need count of Periodic IN EPs */
 233		return hsotg->hw_params.num_dev_perio_in_ep;
 234}
 235
 236/**
 237 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 238 * device mode TX FIFOs
 239 *
 240 * @hsotg: Programming view of the DWC_otg controller
 241 */
 242int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 243{
 244	int addr;
 245	int tx_addr_max;
 246	u32 np_tx_fifo_size;
 247
 248	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 249				hsotg->params.g_np_tx_fifo_size);
 250
 251	/* Get Endpoint Info Control block size in DWORDs. */
 252	tx_addr_max = hsotg->hw_params.total_fifo_size;
 253
 254	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 255	if (tx_addr_max <= addr)
 256		return 0;
 257
 258	return tx_addr_max - addr;
 259}
 260
 261/**
 262 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 263 *
 264 * @hsotg: Programming view of the DWC_otg controller
 265 *
 266 */
 267static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 268{
 269	u32 gintsts2;
 270	u32 gintmsk2;
 271
 272	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 273	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 274	gintsts2 &= gintmsk2;
 275
 276	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 277		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 278		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 279		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 280	}
 281}
 282
 283/**
 284 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 285 * TX FIFOs
 286 *
 287 * @hsotg: Programming view of the DWC_otg controller
 288 */
 289int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 290{
 291	int tx_fifo_count;
 292	int tx_fifo_depth;
 293
 294	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 295
 296	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 297
 298	if (!tx_fifo_count)
 299		return tx_fifo_depth;
 300	else
 301		return tx_fifo_depth / tx_fifo_count;
 302}
 303
 304/**
 305 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 306 * @hsotg: The device instance.
 307 */
 308static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 309{
 310	unsigned int ep;
 311	unsigned int addr;
 312	int timeout;
 313
 314	u32 val;
 315	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 316
 317	/* Reset fifo map if not correctly cleared during previous session */
 318	WARN_ON(hsotg->fifo_map);
 319	hsotg->fifo_map = 0;
 320
 321	/* set RX/NPTX FIFO sizes */
 322	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 323	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 324		    FIFOSIZE_STARTADDR_SHIFT) |
 325		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 326		    GNPTXFSIZ);
 327
 328	/*
 329	 * arange all the rest of the TX FIFOs, as some versions of this
 330	 * block have overlapping default addresses. This also ensures
 331	 * that if the settings have been changed, then they are set to
 332	 * known values.
 333	 */
 334
 335	/* start at the end of the GNPTXFSIZ, rounded up */
 336	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 337
 338	/*
 339	 * Configure fifos sizes from provided configuration and assign
 340	 * them to endpoints dynamically according to maxpacket size value of
 341	 * given endpoint.
 342	 */
 343	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 344		if (!txfsz[ep])
 345			continue;
 346		val = addr;
 347		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 348		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 349			  "insufficient fifo memory");
 350		addr += txfsz[ep];
 351
 352		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 353		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 354	}
 355
 356	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 357		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 358		    GDFIFOCFG);
 359	/*
 360	 * according to p428 of the design guide, we need to ensure that
 361	 * all fifos are flushed before continuing
 362	 */
 363
 364	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 365	       GRSTCTL_RXFFLSH, GRSTCTL);
 366
 367	/* wait until the fifos are both flushed */
 368	timeout = 100;
 369	while (1) {
 370		val = dwc2_readl(hsotg, GRSTCTL);
 371
 372		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 373			break;
 374
 375		if (--timeout == 0) {
 376			dev_err(hsotg->dev,
 377				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 378				__func__, val);
 379			break;
 380		}
 381
 382		udelay(1);
 383	}
 384
 385	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 386}
 387
 388/**
 389 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 390 * @ep: USB endpoint to allocate request for.
 391 * @flags: Allocation flags
 392 *
 393 * Allocate a new USB request structure appropriate for the specified endpoint
 394 */
 395static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 396						       gfp_t flags)
 397{
 398	struct dwc2_hsotg_req *req;
 399
 400	req = kzalloc(sizeof(*req), flags);
 401	if (!req)
 402		return NULL;
 403
 404	INIT_LIST_HEAD(&req->queue);
 405
 406	return &req->req;
 407}
 408
 409/**
 410 * is_ep_periodic - return true if the endpoint is in periodic mode.
 411 * @hs_ep: The endpoint to query.
 412 *
 413 * Returns true if the endpoint is in periodic mode, meaning it is being
 414 * used for an Interrupt or ISO transfer.
 415 */
 416static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 417{
 418	return hs_ep->periodic;
 419}
 420
 421/**
 422 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 423 * @hsotg: The device state.
 424 * @hs_ep: The endpoint for the request
 425 * @hs_req: The request being processed.
 426 *
 427 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 428 * of a request to ensure the buffer is ready for access by the caller.
 429 */
 430static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 431				 struct dwc2_hsotg_ep *hs_ep,
 432				struct dwc2_hsotg_req *hs_req)
 433{
 434	struct usb_request *req = &hs_req->req;
 435
 436	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir);
 437}
 438
 439/*
 440 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 441 * for Control endpoint
 442 * @hsotg: The device state.
 443 *
 444 * This function will allocate 4 descriptor chains for EP 0: 2 for
 445 * Setup stage, per one for IN and OUT data/status transactions.
 446 */
 447static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 448{
 449	hsotg->setup_desc[0] =
 450		dmam_alloc_coherent(hsotg->dev,
 451				    sizeof(struct dwc2_dma_desc),
 452				    &hsotg->setup_desc_dma[0],
 453				    GFP_KERNEL);
 454	if (!hsotg->setup_desc[0])
 455		goto fail;
 456
 457	hsotg->setup_desc[1] =
 458		dmam_alloc_coherent(hsotg->dev,
 459				    sizeof(struct dwc2_dma_desc),
 460				    &hsotg->setup_desc_dma[1],
 461				    GFP_KERNEL);
 462	if (!hsotg->setup_desc[1])
 463		goto fail;
 464
 465	hsotg->ctrl_in_desc =
 466		dmam_alloc_coherent(hsotg->dev,
 467				    sizeof(struct dwc2_dma_desc),
 468				    &hsotg->ctrl_in_desc_dma,
 469				    GFP_KERNEL);
 470	if (!hsotg->ctrl_in_desc)
 471		goto fail;
 472
 473	hsotg->ctrl_out_desc =
 474		dmam_alloc_coherent(hsotg->dev,
 475				    sizeof(struct dwc2_dma_desc),
 476				    &hsotg->ctrl_out_desc_dma,
 477				    GFP_KERNEL);
 478	if (!hsotg->ctrl_out_desc)
 479		goto fail;
 480
 481	return 0;
 482
 483fail:
 484	return -ENOMEM;
 485}
 486
 487/**
 488 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 489 * @hsotg: The controller state.
 490 * @hs_ep: The endpoint we're going to write for.
 491 * @hs_req: The request to write data for.
 492 *
 493 * This is called when the TxFIFO has some space in it to hold a new
 494 * transmission and we have something to give it. The actual setup of
 495 * the data size is done elsewhere, so all we have to do is to actually
 496 * write the data.
 497 *
 498 * The return value is zero if there is more space (or nothing was done)
 499 * otherwise -ENOSPC is returned if the FIFO space was used up.
 500 *
 501 * This routine is only needed for PIO
 502 */
 503static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 504				 struct dwc2_hsotg_ep *hs_ep,
 505				struct dwc2_hsotg_req *hs_req)
 506{
 507	bool periodic = is_ep_periodic(hs_ep);
 508	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 509	int buf_pos = hs_req->req.actual;
 510	int to_write = hs_ep->size_loaded;
 511	void *data;
 512	int can_write;
 513	int pkt_round;
 514	int max_transfer;
 515
 516	to_write -= (buf_pos - hs_ep->last_load);
 517
 518	/* if there's nothing to write, get out early */
 519	if (to_write == 0)
 520		return 0;
 521
 522	if (periodic && !hsotg->dedicated_fifos) {
 523		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 524		int size_left;
 525		int size_done;
 526
 527		/*
 528		 * work out how much data was loaded so we can calculate
 529		 * how much data is left in the fifo.
 530		 */
 531
 532		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 533
 534		/*
 535		 * if shared fifo, we cannot write anything until the
 536		 * previous data has been completely sent.
 537		 */
 538		if (hs_ep->fifo_load != 0) {
 539			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 540			return -ENOSPC;
 541		}
 542
 543		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 544			__func__, size_left,
 545			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 546
 547		/* how much of the data has moved */
 548		size_done = hs_ep->size_loaded - size_left;
 549
 550		/* how much data is left in the fifo */
 551		can_write = hs_ep->fifo_load - size_done;
 552		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 553			__func__, can_write);
 554
 555		can_write = hs_ep->fifo_size - can_write;
 556		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 557			__func__, can_write);
 558
 559		if (can_write <= 0) {
 560			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 561			return -ENOSPC;
 562		}
 563	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 564		can_write = dwc2_readl(hsotg,
 565				       DTXFSTS(hs_ep->fifo_index));
 566
 567		can_write &= 0xffff;
 568		can_write *= 4;
 569	} else {
 570		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 571			dev_dbg(hsotg->dev,
 572				"%s: no queue slots available (0x%08x)\n",
 573				__func__, gnptxsts);
 574
 575			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 576			return -ENOSPC;
 577		}
 578
 579		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 580		can_write *= 4;	/* fifo size is in 32bit quantities. */
 581	}
 582
 583	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 584
 585	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 586		__func__, gnptxsts, can_write, to_write, max_transfer);
 587
 588	/*
 589	 * limit to 512 bytes of data, it seems at least on the non-periodic
 590	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 591	 * fragment of the end of the transfer in it.
 592	 */
 593	if (can_write > 512 && !periodic)
 594		can_write = 512;
 595
 596	/*
 597	 * limit the write to one max-packet size worth of data, but allow
 598	 * the transfer to return that it did not run out of fifo space
 599	 * doing it.
 600	 */
 601	if (to_write > max_transfer) {
 602		to_write = max_transfer;
 603
 604		/* it's needed only when we do not use dedicated fifos */
 605		if (!hsotg->dedicated_fifos)
 606			dwc2_hsotg_en_gsint(hsotg,
 607					    periodic ? GINTSTS_PTXFEMP :
 608					   GINTSTS_NPTXFEMP);
 609	}
 610
 611	/* see if we can write data */
 612
 613	if (to_write > can_write) {
 614		to_write = can_write;
 615		pkt_round = to_write % max_transfer;
 616
 617		/*
 618		 * Round the write down to an
 619		 * exact number of packets.
 620		 *
 621		 * Note, we do not currently check to see if we can ever
 622		 * write a full packet or not to the FIFO.
 623		 */
 624
 625		if (pkt_round)
 626			to_write -= pkt_round;
 627
 628		/*
 629		 * enable correct FIFO interrupt to alert us when there
 630		 * is more room left.
 631		 */
 632
 633		/* it's needed only when we do not use dedicated fifos */
 634		if (!hsotg->dedicated_fifos)
 635			dwc2_hsotg_en_gsint(hsotg,
 636					    periodic ? GINTSTS_PTXFEMP :
 637					   GINTSTS_NPTXFEMP);
 638	}
 639
 640	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 641		to_write, hs_req->req.length, can_write, buf_pos);
 642
 643	if (to_write <= 0)
 644		return -ENOSPC;
 645
 646	hs_req->req.actual = buf_pos + to_write;
 647	hs_ep->total_data += to_write;
 648
 649	if (periodic)
 650		hs_ep->fifo_load += to_write;
 651
 652	to_write = DIV_ROUND_UP(to_write, 4);
 653	data = hs_req->req.buf + buf_pos;
 654
 655	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 656
 657	return (to_write >= can_write) ? -ENOSPC : 0;
 658}
 659
 660/**
 661 * get_ep_limit - get the maximum data legnth for this endpoint
 662 * @hs_ep: The endpoint
 663 *
 664 * Return the maximum data that can be queued in one go on a given endpoint
 665 * so that transfers that are too long can be split.
 666 */
 667static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 668{
 669	int index = hs_ep->index;
 670	unsigned int maxsize;
 671	unsigned int maxpkt;
 672
 673	if (index != 0) {
 674		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 675		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 676	} else {
 677		maxsize = 64 + 64;
 678		if (hs_ep->dir_in)
 679			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 680		else
 681			maxpkt = 2;
 682	}
 683
 684	/* we made the constant loading easier above by using +1 */
 685	maxpkt--;
 686	maxsize--;
 687
 688	/*
 689	 * constrain by packet count if maxpkts*pktsize is greater
 690	 * than the length register size.
 691	 */
 692
 693	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 694		maxsize = maxpkt * hs_ep->ep.maxpacket;
 695
 696	return maxsize;
 697}
 698
 699/**
 700 * dwc2_hsotg_read_frameno - read current frame number
 701 * @hsotg: The device instance
 702 *
 703 * Return the current frame number
 704 */
 705static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 706{
 707	u32 dsts;
 708
 709	dsts = dwc2_readl(hsotg, DSTS);
 710	dsts &= DSTS_SOFFN_MASK;
 711	dsts >>= DSTS_SOFFN_SHIFT;
 712
 713	return dsts;
 714}
 715
 716/**
 717 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 718 * DMA descriptor chain prepared for specific endpoint
 719 * @hs_ep: The endpoint
 720 *
 721 * Return the maximum data that can be queued in one go on a given endpoint
 722 * depending on its descriptor chain capacity so that transfers that
 723 * are too long can be split.
 724 */
 725static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 726{
 727	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 728	int is_isoc = hs_ep->isochronous;
 729	unsigned int maxsize;
 730	u32 mps = hs_ep->ep.maxpacket;
 731	int dir_in = hs_ep->dir_in;
 732
 733	if (is_isoc)
 734		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 735					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 736					   MAX_DMA_DESC_NUM_HS_ISOC;
 737	else
 738		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 739
 740	/* Interrupt OUT EP with mps not multiple of 4 */
 741	if (hs_ep->index)
 742		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
 743			maxsize = mps * MAX_DMA_DESC_NUM_GENERIC;
 744
 745	return maxsize;
 746}
 747
 748/*
 749 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 750 * @hs_ep: The endpoint
 751 * @mask: RX/TX bytes mask to be defined
 752 *
 753 * Returns maximum data payload for one descriptor after analyzing endpoint
 754 * characteristics.
 755 * DMA descriptor transfer bytes limit depends on EP type:
 756 * Control out - MPS,
 757 * Isochronous - descriptor rx/tx bytes bitfield limit,
 758 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 759 * have concatenations from various descriptors within one packet.
 760 * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds
 761 * to a single descriptor.
 762 *
 763 * Selects corresponding mask for RX/TX bytes as well.
 764 */
 765static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 766{
 767	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
 768	u32 mps = hs_ep->ep.maxpacket;
 769	int dir_in = hs_ep->dir_in;
 770	u32 desc_size = 0;
 771
 772	if (!hs_ep->index && !dir_in) {
 773		desc_size = mps;
 774		*mask = DEV_DMA_NBYTES_MASK;
 775	} else if (hs_ep->isochronous) {
 776		if (dir_in) {
 777			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 778			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 779		} else {
 780			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 781			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 782		}
 783	} else {
 784		desc_size = DEV_DMA_NBYTES_LIMIT;
 785		*mask = DEV_DMA_NBYTES_MASK;
 786
 787		/* Round down desc_size to be mps multiple */
 788		desc_size -= desc_size % mps;
 789	}
 790
 791	/* Interrupt OUT EP with mps not multiple of 4 */
 792	if (hs_ep->index)
 793		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) {
 794			desc_size = mps;
 795			*mask = DEV_DMA_NBYTES_MASK;
 796		}
 797
 798	return desc_size;
 799}
 800
 801static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 802						 struct dwc2_dma_desc **desc,
 803						 dma_addr_t dma_buff,
 804						 unsigned int len,
 805						 bool true_last)
 806{
 807	int dir_in = hs_ep->dir_in;
 808	u32 mps = hs_ep->ep.maxpacket;
 809	u32 maxsize = 0;
 810	u32 offset = 0;
 811	u32 mask = 0;
 812	int i;
 813
 814	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 815
 816	hs_ep->desc_count = (len / maxsize) +
 817				((len % maxsize) ? 1 : 0);
 818	if (len == 0)
 819		hs_ep->desc_count = 1;
 820
 821	for (i = 0; i < hs_ep->desc_count; ++i) {
 822		(*desc)->status = 0;
 823		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 824				 << DEV_DMA_BUFF_STS_SHIFT);
 825
 826		if (len > maxsize) {
 827			if (!hs_ep->index && !dir_in)
 828				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 829
 830			(*desc)->status |=
 831				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 832			(*desc)->buf = dma_buff + offset;
 833
 834			len -= maxsize;
 835			offset += maxsize;
 836		} else {
 837			if (true_last)
 838				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 839
 840			if (dir_in)
 841				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 842					((hs_ep->send_zlp && true_last) ?
 843					DEV_DMA_SHORT : 0);
 844
 845			(*desc)->status |=
 846				len << DEV_DMA_NBYTES_SHIFT & mask;
 847			(*desc)->buf = dma_buff + offset;
 848		}
 849
 850		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 851		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 852				 << DEV_DMA_BUFF_STS_SHIFT);
 853		(*desc)++;
 854	}
 855}
 856
 857/*
 858 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 859 * @hs_ep: The endpoint
 860 * @ureq: Request to transfer
 861 * @offset: offset in bytes
 862 * @len: Length of the transfer
 863 *
 864 * This function will iterate over descriptor chain and fill its entries
 865 * with corresponding information based on transfer data.
 866 */
 867static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 868						 dma_addr_t dma_buff,
 869						 unsigned int len)
 870{
 871	struct usb_request *ureq = NULL;
 872	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 873	struct scatterlist *sg;
 874	int i;
 875	u8 desc_count = 0;
 876
 877	if (hs_ep->req)
 878		ureq = &hs_ep->req->req;
 879
 880	/* non-DMA sg buffer */
 881	if (!ureq || !ureq->num_sgs) {
 882		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 883			dma_buff, len, true);
 884		return;
 885	}
 886
 887	/* DMA sg buffer */
 888	for_each_sg(ureq->sg, sg, ureq->num_mapped_sgs, i) {
 889		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 890			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 891			(i == (ureq->num_mapped_sgs - 1)));
 892		desc_count += hs_ep->desc_count;
 893	}
 894
 895	hs_ep->desc_count = desc_count;
 896}
 897
 898/*
 899 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 900 * @hs_ep: The isochronous endpoint.
 901 * @dma_buff: usb requests dma buffer.
 902 * @len: usb request transfer length.
 903 *
 904 * Fills next free descriptor with the data of the arrived usb request,
 905 * frame info, sets Last and IOC bits increments next_desc. If filled
 906 * descriptor is not the first one, removes L bit from the previous descriptor
 907 * status.
 908 */
 909static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 910				      dma_addr_t dma_buff, unsigned int len)
 911{
 912	struct dwc2_dma_desc *desc;
 913	struct dwc2_hsotg *hsotg = hs_ep->parent;
 914	u32 index;
 915	u32 mask = 0;
 916	u8 pid = 0;
 917
 918	dwc2_gadget_get_desc_params(hs_ep, &mask);
 919
 920	index = hs_ep->next_desc;
 921	desc = &hs_ep->desc_list[index];
 922
 923	/* Check if descriptor chain full */
 924	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 925	    DEV_DMA_BUFF_STS_HREADY) {
 926		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 927		return 1;
 928	}
 929
 930	/* Clear L bit of previous desc if more than one entries in the chain */
 931	if (hs_ep->next_desc)
 932		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 933
 934	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 935		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 936
 937	desc->status = 0;
 938	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 939
 940	desc->buf = dma_buff;
 941	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 942			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 943
 944	if (hs_ep->dir_in) {
 945		if (len)
 946			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 947		else
 948			pid = 1;
 949		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 950				 DEV_DMA_ISOC_PID_MASK) |
 951				((len % hs_ep->ep.maxpacket) ?
 952				 DEV_DMA_SHORT : 0) |
 953				((hs_ep->target_frame <<
 954				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 955				 DEV_DMA_ISOC_FRNUM_MASK);
 956	}
 957
 958	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 959	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 960
 961	/* Increment frame number by interval for IN */
 962	if (hs_ep->dir_in)
 963		dwc2_gadget_incr_frame_num(hs_ep);
 964
 965	/* Update index of last configured entry in the chain */
 966	hs_ep->next_desc++;
 967	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 968		hs_ep->next_desc = 0;
 969
 970	return 0;
 971}
 972
 973/*
 974 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 975 * @hs_ep: The isochronous endpoint.
 976 *
 977 * Prepare descriptor chain for isochronous endpoints. Afterwards
 978 * write DMA address to HW and enable the endpoint.
 979 */
 980static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 981{
 982	struct dwc2_hsotg *hsotg = hs_ep->parent;
 983	struct dwc2_hsotg_req *hs_req, *treq;
 984	int index = hs_ep->index;
 985	int ret;
 986	int i;
 987	u32 dma_reg;
 988	u32 depctl;
 989	u32 ctrl;
 990	struct dwc2_dma_desc *desc;
 991
 992	if (list_empty(&hs_ep->queue)) {
 993		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 994		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 995		return;
 996	}
 997
 998	/* Initialize descriptor chain by Host Busy status */
 999	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
1000		desc = &hs_ep->desc_list[i];
1001		desc->status = 0;
1002		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
1003				    << DEV_DMA_BUFF_STS_SHIFT);
1004	}
1005
1006	hs_ep->next_desc = 0;
1007	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
1008		dma_addr_t dma_addr = hs_req->req.dma;
1009
1010		if (hs_req->req.num_sgs) {
1011			WARN_ON(hs_req->req.num_sgs > 1);
1012			dma_addr = sg_dma_address(hs_req->req.sg);
1013		}
1014		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1015						 hs_req->req.length);
1016		if (ret)
1017			break;
1018	}
1019
1020	hs_ep->compl_desc = 0;
1021	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1022	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
1023
1024	/* write descriptor chain address to control register */
1025	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1026
1027	ctrl = dwc2_readl(hsotg, depctl);
1028	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1029	dwc2_writel(hsotg, ctrl, depctl);
1030}
1031
1032static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep);
1033static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1034					struct dwc2_hsotg_ep *hs_ep,
1035				       struct dwc2_hsotg_req *hs_req,
1036				       int result);
1037
1038/**
1039 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1040 * @hsotg: The controller state.
1041 * @hs_ep: The endpoint to process a request for
1042 * @hs_req: The request to start.
1043 * @continuing: True if we are doing more for the current request.
1044 *
1045 * Start the given request running by setting the endpoint registers
1046 * appropriately, and writing any data to the FIFOs.
1047 */
1048static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1049				 struct dwc2_hsotg_ep *hs_ep,
1050				struct dwc2_hsotg_req *hs_req,
1051				bool continuing)
1052{
1053	struct usb_request *ureq = &hs_req->req;
1054	int index = hs_ep->index;
1055	int dir_in = hs_ep->dir_in;
1056	u32 epctrl_reg;
1057	u32 epsize_reg;
1058	u32 epsize;
1059	u32 ctrl;
1060	unsigned int length;
1061	unsigned int packets;
1062	unsigned int maxreq;
1063	unsigned int dma_reg;
1064
1065	if (index != 0) {
1066		if (hs_ep->req && !continuing) {
1067			dev_err(hsotg->dev, "%s: active request\n", __func__);
1068			WARN_ON(1);
1069			return;
1070		} else if (hs_ep->req != hs_req && continuing) {
1071			dev_err(hsotg->dev,
1072				"%s: continue different req\n", __func__);
1073			WARN_ON(1);
1074			return;
1075		}
1076	}
1077
1078	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1079	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1080	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1081
1082	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1083		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1084		hs_ep->dir_in ? "in" : "out");
1085
1086	/* If endpoint is stalled, we will restart request later */
1087	ctrl = dwc2_readl(hsotg, epctrl_reg);
1088
1089	if (index && ctrl & DXEPCTL_STALL) {
1090		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1091		return;
1092	}
1093
1094	length = ureq->length - ureq->actual;
1095	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1096		ureq->length, ureq->actual);
1097
1098	if (!using_desc_dma(hsotg))
1099		maxreq = get_ep_limit(hs_ep);
1100	else
1101		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1102
1103	if (length > maxreq) {
1104		int round = maxreq % hs_ep->ep.maxpacket;
1105
1106		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1107			__func__, length, maxreq, round);
1108
1109		/* round down to multiple of packets */
1110		if (round)
1111			maxreq -= round;
1112
1113		length = maxreq;
1114	}
1115
1116	if (length)
1117		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1118	else
1119		packets = 1;	/* send one packet if length is zero. */
1120
 
 
 
 
 
1121	if (dir_in && index != 0)
1122		if (hs_ep->isochronous)
1123			epsize = DXEPTSIZ_MC(packets);
1124		else
1125			epsize = DXEPTSIZ_MC(1);
1126	else
1127		epsize = 0;
1128
1129	/*
1130	 * zero length packet should be programmed on its own and should not
1131	 * be counted in DIEPTSIZ.PktCnt with other packets.
1132	 */
1133	if (dir_in && ureq->zero && !continuing) {
1134		/* Test if zlp is actually required. */
1135		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1136		    !(ureq->length % hs_ep->ep.maxpacket))
1137			hs_ep->send_zlp = 1;
1138	}
1139
1140	epsize |= DXEPTSIZ_PKTCNT(packets);
1141	epsize |= DXEPTSIZ_XFERSIZE(length);
1142
1143	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1144		__func__, packets, length, ureq->length, epsize, epsize_reg);
1145
1146	/* store the request as the current one we're doing */
1147	hs_ep->req = hs_req;
1148
1149	if (using_desc_dma(hsotg)) {
1150		u32 offset = 0;
1151		u32 mps = hs_ep->ep.maxpacket;
1152
1153		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1154		if (!dir_in) {
1155			if (!index)
1156				length = mps;
1157			else if (length % mps)
1158				length += (mps - (length % mps));
1159		}
1160
1161		if (continuing)
1162			offset = ureq->actual;
1163
1164		/* Fill DDMA chain entries */
1165		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1166						     length);
1167
1168		/* write descriptor chain address to control register */
1169		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1170
1171		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1172			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1173	} else {
1174		/* write size / packets */
1175		dwc2_writel(hsotg, epsize, epsize_reg);
1176
1177		if (using_dma(hsotg) && !continuing && (length != 0)) {
1178			/*
1179			 * write DMA address to control register, buffer
1180			 * already synced by dwc2_hsotg_ep_queue().
1181			 */
1182
1183			dwc2_writel(hsotg, ureq->dma, dma_reg);
1184
1185			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1186				__func__, &ureq->dma, dma_reg);
1187		}
1188	}
1189
1190	if (hs_ep->isochronous) {
1191		if (!dwc2_gadget_target_frame_elapsed(hs_ep)) {
1192			if (hs_ep->interval == 1) {
1193				if (hs_ep->target_frame & 0x1)
1194					ctrl |= DXEPCTL_SETODDFR;
1195				else
1196					ctrl |= DXEPCTL_SETEVENFR;
1197			}
1198			ctrl |= DXEPCTL_CNAK;
1199		} else {
1200			hs_req->req.frame_number = hs_ep->target_frame;
1201			hs_req->req.actual = 0;
1202			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
1203			return;
1204		}
1205	}
1206
1207	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 
1208
1209	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1210
1211	/* For Setup request do not clear NAK */
1212	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1213		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1214
1215	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1216	dwc2_writel(hsotg, ctrl, epctrl_reg);
1217
1218	/*
1219	 * set these, it seems that DMA support increments past the end
1220	 * of the packet buffer so we need to calculate the length from
1221	 * this information.
1222	 */
1223	hs_ep->size_loaded = length;
1224	hs_ep->last_load = ureq->actual;
1225
1226	if (dir_in && !using_dma(hsotg)) {
1227		/* set these anyway, we may need them for non-periodic in */
1228		hs_ep->fifo_load = 0;
1229
1230		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1231	}
1232
1233	/*
 
 
 
 
 
 
 
 
1234	 * Note, trying to clear the NAK here causes problems with transmit
1235	 * on the S3C6400 ending up with the TXFIFO becoming full.
1236	 */
1237
1238	/* check ep is enabled */
1239	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1240		dev_dbg(hsotg->dev,
1241			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1242			 index, dwc2_readl(hsotg, epctrl_reg));
1243
1244	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1245		__func__, dwc2_readl(hsotg, epctrl_reg));
1246
1247	/* enable ep interrupts */
1248	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1249}
1250
1251/**
1252 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1253 * @hsotg: The device state.
1254 * @hs_ep: The endpoint the request is on.
1255 * @req: The request being processed.
1256 *
1257 * We've been asked to queue a request, so ensure that the memory buffer
1258 * is correctly setup for DMA. If we've been passed an extant DMA address
1259 * then ensure the buffer has been synced to memory. If our buffer has no
1260 * DMA memory, then we map the memory and mark our request to allow us to
1261 * cleanup on completion.
1262 */
1263static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1264			      struct dwc2_hsotg_ep *hs_ep,
1265			     struct usb_request *req)
1266{
 
1267	int ret;
1268
1269	hs_ep->map_dir = hs_ep->dir_in;
 
 
 
1270	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1271	if (ret)
1272		goto dma_error;
1273
1274	return 0;
1275
1276dma_error:
1277	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1278		__func__, req->buf, req->length);
1279
1280	return -EIO;
1281}
1282
1283static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1284						 struct dwc2_hsotg_ep *hs_ep,
1285						 struct dwc2_hsotg_req *hs_req)
1286{
1287	void *req_buf = hs_req->req.buf;
1288
1289	/* If dma is not being used or buffer is aligned */
1290	if (!using_dma(hsotg) || !((long)req_buf & 3))
1291		return 0;
1292
1293	WARN_ON(hs_req->saved_req_buf);
1294
1295	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1296		hs_ep->ep.name, req_buf, hs_req->req.length);
1297
1298	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1299	if (!hs_req->req.buf) {
1300		hs_req->req.buf = req_buf;
1301		dev_err(hsotg->dev,
1302			"%s: unable to allocate memory for bounce buffer\n",
1303			__func__);
1304		return -ENOMEM;
1305	}
1306
1307	/* Save actual buffer */
1308	hs_req->saved_req_buf = req_buf;
1309
1310	if (hs_ep->dir_in)
1311		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1312	return 0;
1313}
1314
1315static void
1316dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1317					 struct dwc2_hsotg_ep *hs_ep,
1318					 struct dwc2_hsotg_req *hs_req)
1319{
1320	/* If dma is not being used or buffer was aligned */
1321	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1322		return;
1323
1324	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1325		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1326
1327	/* Copy data from bounce buffer on successful out transfer */
1328	if (!hs_ep->dir_in && !hs_req->req.status)
1329		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1330		       hs_req->req.actual);
1331
1332	/* Free bounce buffer */
1333	kfree(hs_req->req.buf);
1334
1335	hs_req->req.buf = hs_req->saved_req_buf;
1336	hs_req->saved_req_buf = NULL;
1337}
1338
1339/**
1340 * dwc2_gadget_target_frame_elapsed - Checks target frame
1341 * @hs_ep: The driver endpoint to check
1342 *
1343 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1344 * corresponding transfer.
1345 */
1346static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1347{
1348	struct dwc2_hsotg *hsotg = hs_ep->parent;
1349	u32 target_frame = hs_ep->target_frame;
1350	u32 current_frame = hsotg->frame_number;
1351	bool frame_overrun = hs_ep->frame_overrun;
1352	u16 limit = DSTS_SOFFN_LIMIT;
1353
1354	if (hsotg->gadget.speed != USB_SPEED_HIGH)
1355		limit >>= 3;
1356
1357	if (!frame_overrun && current_frame >= target_frame)
1358		return true;
1359
1360	if (frame_overrun && current_frame >= target_frame &&
1361	    ((current_frame - target_frame) < limit / 2))
1362		return true;
1363
1364	return false;
1365}
1366
1367/*
1368 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1369 * @hsotg: The driver state
1370 * @hs_ep: the ep descriptor chain is for
1371 *
1372 * Called to update EP0 structure's pointers depend on stage of
1373 * control transfer.
1374 */
1375static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1376					  struct dwc2_hsotg_ep *hs_ep)
1377{
1378	switch (hsotg->ep0_state) {
1379	case DWC2_EP0_SETUP:
1380	case DWC2_EP0_STATUS_OUT:
1381		hs_ep->desc_list = hsotg->setup_desc[0];
1382		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1383		break;
1384	case DWC2_EP0_DATA_IN:
1385	case DWC2_EP0_STATUS_IN:
1386		hs_ep->desc_list = hsotg->ctrl_in_desc;
1387		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1388		break;
1389	case DWC2_EP0_DATA_OUT:
1390		hs_ep->desc_list = hsotg->ctrl_out_desc;
1391		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1392		break;
1393	default:
1394		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1395			hsotg->ep0_state);
1396		return -EINVAL;
1397	}
1398
1399	return 0;
1400}
1401
1402static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1403			       gfp_t gfp_flags)
1404{
1405	struct dwc2_hsotg_req *hs_req = our_req(req);
1406	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1407	struct dwc2_hsotg *hs = hs_ep->parent;
1408	bool first;
1409	int ret;
1410	u32 maxsize = 0;
1411	u32 mask = 0;
1412
1413
1414	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1415		ep->name, req, req->length, req->buf, req->no_interrupt,
1416		req->zero, req->short_not_ok);
1417
1418	if (hs->lx_state == DWC2_L1) {
1419		dwc2_wakeup_from_lpm_l1(hs, true);
1420	}
1421
1422	/* Prevent new request submission when controller is suspended */
1423	if (hs->lx_state != DWC2_L0) {
1424		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1425			__func__);
1426		return -EAGAIN;
1427	}
1428
1429	/* initialise status of the request */
1430	INIT_LIST_HEAD(&hs_req->queue);
1431	req->actual = 0;
1432	req->status = -EINPROGRESS;
1433
1434	/* Don't queue ISOC request if length greater than mps*mc */
1435	if (hs_ep->isochronous &&
1436	    req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1437		dev_err(hs->dev, "req length > maxpacket*mc\n");
1438		return -EINVAL;
1439	}
1440
1441	/* In DDMA mode for ISOC's don't queue request if length greater
1442	 * than descriptor limits.
1443	 */
1444	if (using_desc_dma(hs) && hs_ep->isochronous) {
1445		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1446		if (hs_ep->dir_in && req->length > maxsize) {
1447			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1448				req->length, maxsize);
1449			return -EINVAL;
1450		}
1451
1452		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1453			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1454				req->length, hs_ep->ep.maxpacket);
1455			return -EINVAL;
1456		}
1457	}
1458
1459	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1460	if (ret)
1461		return ret;
1462
1463	/* if we're using DMA, sync the buffers as necessary */
1464	if (using_dma(hs)) {
1465		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1466		if (ret)
1467			return ret;
1468	}
1469	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1470	if (using_desc_dma(hs) && !hs_ep->index) {
1471		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1472		if (ret)
1473			return ret;
1474	}
1475
1476	first = list_empty(&hs_ep->queue);
1477	list_add_tail(&hs_req->queue, &hs_ep->queue);
1478
1479	/*
1480	 * Handle DDMA isochronous transfers separately - just add new entry
1481	 * to the descriptor chain.
1482	 * Transfer will be started once SW gets either one of NAK or
1483	 * OutTknEpDis interrupts.
1484	 */
1485	if (using_desc_dma(hs) && hs_ep->isochronous) {
1486		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1487			dma_addr_t dma_addr = hs_req->req.dma;
1488
1489			if (hs_req->req.num_sgs) {
1490				WARN_ON(hs_req->req.num_sgs > 1);
1491				dma_addr = sg_dma_address(hs_req->req.sg);
1492			}
1493			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1494						   hs_req->req.length);
1495		}
1496		return 0;
1497	}
1498
1499	/* Change EP direction if status phase request is after data out */
1500	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1501	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1502		hs_ep->dir_in = 1;
1503
1504	if (first) {
1505		if (!hs_ep->isochronous) {
1506			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1507			return 0;
1508		}
1509
1510		/* Update current frame number value. */
1511		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1512		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1513			dwc2_gadget_incr_frame_num(hs_ep);
1514			/* Update current frame number value once more as it
1515			 * changes here.
1516			 */
1517			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1518		}
1519
1520		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1521			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1522	}
1523	return 0;
1524}
1525
1526static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1527				    gfp_t gfp_flags)
1528{
1529	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1530	struct dwc2_hsotg *hs = hs_ep->parent;
1531	unsigned long flags;
1532	int ret;
1533
1534	spin_lock_irqsave(&hs->lock, flags);
1535	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1536	spin_unlock_irqrestore(&hs->lock, flags);
1537
1538	return ret;
1539}
1540
1541static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1542				       struct usb_request *req)
1543{
1544	struct dwc2_hsotg_req *hs_req = our_req(req);
1545
1546	kfree(hs_req);
1547}
1548
1549/**
1550 * dwc2_hsotg_complete_oursetup - setup completion callback
1551 * @ep: The endpoint the request was on.
1552 * @req: The request completed.
1553 *
1554 * Called on completion of any requests the driver itself
1555 * submitted that need cleaning up.
1556 */
1557static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1558					 struct usb_request *req)
1559{
1560	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1561	struct dwc2_hsotg *hsotg = hs_ep->parent;
1562
1563	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1564
1565	dwc2_hsotg_ep_free_request(ep, req);
1566}
1567
1568/**
1569 * ep_from_windex - convert control wIndex value to endpoint
1570 * @hsotg: The driver state.
1571 * @windex: The control request wIndex field (in host order).
1572 *
1573 * Convert the given wIndex into a pointer to an driver endpoint
1574 * structure, or return NULL if it is not a valid endpoint.
1575 */
1576static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1577					    u32 windex)
1578{
 
1579	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1580	int idx = windex & 0x7F;
1581
1582	if (windex >= 0x100)
1583		return NULL;
1584
1585	if (idx > hsotg->num_of_eps)
1586		return NULL;
1587
1588	return index_to_ep(hsotg, idx, dir);
 
 
 
 
 
1589}
1590
1591/**
1592 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1593 * @hsotg: The driver state.
1594 * @testmode: requested usb test mode
1595 * Enable usb Test Mode requested by the Host.
1596 */
1597int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1598{
1599	int dctl = dwc2_readl(hsotg, DCTL);
1600
1601	dctl &= ~DCTL_TSTCTL_MASK;
1602	switch (testmode) {
1603	case USB_TEST_J:
1604	case USB_TEST_K:
1605	case USB_TEST_SE0_NAK:
1606	case USB_TEST_PACKET:
1607	case USB_TEST_FORCE_ENABLE:
1608		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1609		break;
1610	default:
1611		return -EINVAL;
1612	}
1613	dwc2_writel(hsotg, dctl, DCTL);
1614	return 0;
1615}
1616
1617/**
1618 * dwc2_hsotg_send_reply - send reply to control request
1619 * @hsotg: The device state
1620 * @ep: Endpoint 0
1621 * @buff: Buffer for request
1622 * @length: Length of reply.
1623 *
1624 * Create a request and queue it on the given endpoint. This is useful as
1625 * an internal method of sending replies to certain control requests, etc.
1626 */
1627static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1628				 struct dwc2_hsotg_ep *ep,
1629				void *buff,
1630				int length)
1631{
1632	struct usb_request *req;
1633	int ret;
1634
1635	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1636
1637	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1638	hsotg->ep0_reply = req;
1639	if (!req) {
1640		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1641		return -ENOMEM;
1642	}
1643
1644	req->buf = hsotg->ep0_buff;
1645	req->length = length;
1646	/*
1647	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1648	 * STATUS stage.
1649	 */
1650	req->zero = 0;
1651	req->complete = dwc2_hsotg_complete_oursetup;
1652
1653	if (length)
1654		memcpy(req->buf, buff, length);
1655
1656	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1657	if (ret) {
1658		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1659		return ret;
1660	}
1661
1662	return 0;
1663}
1664
1665/**
1666 * dwc2_hsotg_process_req_status - process request GET_STATUS
1667 * @hsotg: The device state
1668 * @ctrl: USB control request
1669 */
1670static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1671					 struct usb_ctrlrequest *ctrl)
1672{
1673	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1674	struct dwc2_hsotg_ep *ep;
1675	__le16 reply;
1676	u16 status;
1677	int ret;
1678
1679	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1680
1681	if (!ep0->dir_in) {
1682		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1683		return -EINVAL;
1684	}
1685
1686	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1687	case USB_RECIP_DEVICE:
1688		status = hsotg->gadget.is_selfpowered <<
1689			 USB_DEVICE_SELF_POWERED;
1690		status |= hsotg->remote_wakeup_allowed <<
1691			  USB_DEVICE_REMOTE_WAKEUP;
1692		reply = cpu_to_le16(status);
1693		break;
1694
1695	case USB_RECIP_INTERFACE:
1696		/* currently, the data result should be zero */
1697		reply = cpu_to_le16(0);
1698		break;
1699
1700	case USB_RECIP_ENDPOINT:
1701		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1702		if (!ep)
1703			return -ENOENT;
1704
1705		reply = cpu_to_le16(ep->halted ? 1 : 0);
1706		break;
1707
1708	default:
1709		return 0;
1710	}
1711
1712	if (le16_to_cpu(ctrl->wLength) != 2)
1713		return -EINVAL;
1714
1715	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1716	if (ret) {
1717		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1718		return ret;
1719	}
1720
1721	return 1;
1722}
1723
1724static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1725
1726/**
1727 * get_ep_head - return the first request on the endpoint
1728 * @hs_ep: The controller endpoint to get
1729 *
1730 * Get the first request on the endpoint.
1731 */
1732static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1733{
1734	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1735					queue);
1736}
1737
1738/**
1739 * dwc2_gadget_start_next_request - Starts next request from ep queue
1740 * @hs_ep: Endpoint structure
1741 *
1742 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1743 * in its handler. Hence we need to unmask it here to be able to do
1744 * resynchronization.
1745 */
1746static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1747{
1748	struct dwc2_hsotg *hsotg = hs_ep->parent;
1749	int dir_in = hs_ep->dir_in;
1750	struct dwc2_hsotg_req *hs_req;
1751
1752	if (!list_empty(&hs_ep->queue)) {
1753		hs_req = get_ep_head(hs_ep);
1754		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1755		return;
1756	}
1757	if (!hs_ep->isochronous)
1758		return;
1759
1760	if (dir_in) {
1761		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1762			__func__);
1763	} else {
1764		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1765			__func__);
1766	}
1767}
1768
1769/**
1770 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1771 * @hsotg: The device state
1772 * @ctrl: USB control request
1773 */
1774static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1775					  struct usb_ctrlrequest *ctrl)
1776{
1777	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1778	struct dwc2_hsotg_req *hs_req;
 
1779	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1780	struct dwc2_hsotg_ep *ep;
1781	int ret;
1782	bool halted;
1783	u32 recip;
1784	u32 wValue;
1785	u32 wIndex;
1786
1787	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1788		__func__, set ? "SET" : "CLEAR");
1789
1790	wValue = le16_to_cpu(ctrl->wValue);
1791	wIndex = le16_to_cpu(ctrl->wIndex);
1792	recip = ctrl->bRequestType & USB_RECIP_MASK;
1793
1794	switch (recip) {
1795	case USB_RECIP_DEVICE:
1796		switch (wValue) {
1797		case USB_DEVICE_REMOTE_WAKEUP:
1798			if (set)
1799				hsotg->remote_wakeup_allowed = 1;
1800			else
1801				hsotg->remote_wakeup_allowed = 0;
1802			break;
1803
1804		case USB_DEVICE_TEST_MODE:
1805			if ((wIndex & 0xff) != 0)
1806				return -EINVAL;
1807			if (!set)
1808				return -EINVAL;
1809
1810			hsotg->test_mode = wIndex >> 8;
 
 
 
 
 
 
1811			break;
1812		default:
1813			return -ENOENT;
1814		}
1815
1816		ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1817		if (ret) {
1818			dev_err(hsotg->dev,
1819				"%s: failed to send reply\n", __func__);
1820			return ret;
1821		}
1822		break;
1823
1824	case USB_RECIP_ENDPOINT:
1825		ep = ep_from_windex(hsotg, wIndex);
1826		if (!ep) {
1827			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1828				__func__, wIndex);
1829			return -ENOENT;
1830		}
1831
1832		switch (wValue) {
1833		case USB_ENDPOINT_HALT:
1834			halted = ep->halted;
1835
1836			if (!ep->wedged)
1837				dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1838
1839			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1840			if (ret) {
1841				dev_err(hsotg->dev,
1842					"%s: failed to send reply\n", __func__);
1843				return ret;
1844			}
1845
1846			/*
1847			 * we have to complete all requests for ep if it was
1848			 * halted, and the halt was cleared by CLEAR_FEATURE
1849			 */
1850
1851			if (!set && halted) {
1852				/*
1853				 * If we have request in progress,
1854				 * then complete it
1855				 */
1856				if (ep->req) {
1857					hs_req = ep->req;
1858					ep->req = NULL;
1859					list_del_init(&hs_req->queue);
1860					if (hs_req->req.complete) {
1861						spin_unlock(&hsotg->lock);
1862						usb_gadget_giveback_request(
1863							&ep->ep, &hs_req->req);
1864						spin_lock(&hsotg->lock);
1865					}
1866				}
1867
1868				/* If we have pending request, then start it */
1869				if (!ep->req)
1870					dwc2_gadget_start_next_request(ep);
 
 
 
 
 
 
1871			}
1872
1873			break;
1874
1875		default:
1876			return -ENOENT;
1877		}
1878		break;
1879	default:
1880		return -ENOENT;
1881	}
1882	return 1;
1883}
1884
1885static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1886
1887/**
1888 * dwc2_hsotg_stall_ep0 - stall ep0
1889 * @hsotg: The device state
1890 *
1891 * Set stall for ep0 as response for setup request.
1892 */
1893static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1894{
1895	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1896	u32 reg;
1897	u32 ctrl;
1898
1899	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1900	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1901
1902	/*
1903	 * DxEPCTL_Stall will be cleared by EP once it has
1904	 * taken effect, so no need to clear later.
1905	 */
1906
1907	ctrl = dwc2_readl(hsotg, reg);
1908	ctrl |= DXEPCTL_STALL;
1909	ctrl |= DXEPCTL_CNAK;
1910	dwc2_writel(hsotg, ctrl, reg);
1911
1912	dev_dbg(hsotg->dev,
1913		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1914		ctrl, reg, dwc2_readl(hsotg, reg));
1915
1916	 /*
1917	  * complete won't be called, so we enqueue
1918	  * setup request here
1919	  */
1920	 dwc2_hsotg_enqueue_setup(hsotg);
1921}
1922
1923/**
1924 * dwc2_hsotg_process_control - process a control request
1925 * @hsotg: The device state
1926 * @ctrl: The control request received
1927 *
1928 * The controller has received the SETUP phase of a control request, and
1929 * needs to work out what to do next (and whether to pass it on to the
1930 * gadget driver).
1931 */
1932static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1933				       struct usb_ctrlrequest *ctrl)
1934{
1935	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1936	int ret = 0;
1937	u32 dcfg;
1938
1939	dev_dbg(hsotg->dev,
1940		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1941		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1942		ctrl->wIndex, ctrl->wLength);
1943
1944	if (ctrl->wLength == 0) {
1945		ep0->dir_in = 1;
1946		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1947	} else if (ctrl->bRequestType & USB_DIR_IN) {
1948		ep0->dir_in = 1;
1949		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1950	} else {
1951		ep0->dir_in = 0;
1952		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1953	}
1954
1955	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1956		switch (ctrl->bRequest) {
1957		case USB_REQ_SET_ADDRESS:
1958			hsotg->connected = 1;
1959			dcfg = dwc2_readl(hsotg, DCFG);
1960			dcfg &= ~DCFG_DEVADDR_MASK;
1961			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1962				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1963			dwc2_writel(hsotg, dcfg, DCFG);
1964
1965			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1966
1967			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1968			return;
1969
1970		case USB_REQ_GET_STATUS:
1971			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1972			break;
1973
1974		case USB_REQ_CLEAR_FEATURE:
1975		case USB_REQ_SET_FEATURE:
1976			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1977			break;
1978		}
1979	}
1980
1981	/* as a fallback, try delivering it to the driver to deal with */
1982
1983	if (ret == 0 && hsotg->driver) {
1984		spin_unlock(&hsotg->lock);
1985		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1986		spin_lock(&hsotg->lock);
1987		if (ret < 0)
1988			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1989	}
1990
1991	hsotg->delayed_status = false;
1992	if (ret == USB_GADGET_DELAYED_STATUS)
1993		hsotg->delayed_status = true;
1994
1995	/*
1996	 * the request is either unhandlable, or is not formatted correctly
1997	 * so respond with a STALL for the status stage to indicate failure.
1998	 */
1999
2000	if (ret < 0)
2001		dwc2_hsotg_stall_ep0(hsotg);
2002}
2003
2004/**
2005 * dwc2_hsotg_complete_setup - completion of a setup transfer
2006 * @ep: The endpoint the request was on.
2007 * @req: The request completed.
2008 *
2009 * Called on completion of any requests the driver itself submitted for
2010 * EP0 setup packets
2011 */
2012static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
2013				      struct usb_request *req)
2014{
2015	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2016	struct dwc2_hsotg *hsotg = hs_ep->parent;
2017
2018	if (req->status < 0) {
2019		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
2020		return;
2021	}
2022
2023	spin_lock(&hsotg->lock);
2024	if (req->actual == 0)
2025		dwc2_hsotg_enqueue_setup(hsotg);
2026	else
2027		dwc2_hsotg_process_control(hsotg, req->buf);
2028	spin_unlock(&hsotg->lock);
2029}
2030
2031/**
2032 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
2033 * @hsotg: The device state.
2034 *
2035 * Enqueue a request on EP0 if necessary to received any SETUP packets
2036 * received from the host.
2037 */
2038static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
2039{
2040	struct usb_request *req = hsotg->ctrl_req;
2041	struct dwc2_hsotg_req *hs_req = our_req(req);
2042	int ret;
2043
2044	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2045
2046	req->zero = 0;
2047	req->length = 8;
2048	req->buf = hsotg->ctrl_buff;
2049	req->complete = dwc2_hsotg_complete_setup;
2050
2051	if (!list_empty(&hs_req->queue)) {
2052		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2053		return;
2054	}
2055
2056	hsotg->eps_out[0]->dir_in = 0;
2057	hsotg->eps_out[0]->send_zlp = 0;
2058	hsotg->ep0_state = DWC2_EP0_SETUP;
2059
2060	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2061	if (ret < 0) {
2062		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2063		/*
2064		 * Don't think there's much we can do other than watch the
2065		 * driver fail.
2066		 */
2067	}
2068}
2069
2070static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2071				   struct dwc2_hsotg_ep *hs_ep)
2072{
2073	u32 ctrl;
2074	u8 index = hs_ep->index;
2075	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2076	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2077
2078	if (hs_ep->dir_in)
2079		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2080			index);
2081	else
2082		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2083			index);
2084	if (using_desc_dma(hsotg)) {
2085		/* Not specific buffer needed for ep0 ZLP */
2086		dma_addr_t dma = hs_ep->desc_list_dma;
2087
2088		if (!index)
2089			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
 
2090
2091		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2092	} else {
2093		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2094			    DXEPTSIZ_XFERSIZE(0),
2095			    epsiz_reg);
2096	}
2097
2098	ctrl = dwc2_readl(hsotg, epctl_reg);
2099	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2100	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2101	ctrl |= DXEPCTL_USBACTEP;
2102	dwc2_writel(hsotg, ctrl, epctl_reg);
2103}
2104
2105/**
2106 * dwc2_hsotg_complete_request - complete a request given to us
2107 * @hsotg: The device state.
2108 * @hs_ep: The endpoint the request was on.
2109 * @hs_req: The request to complete.
2110 * @result: The result code (0 => Ok, otherwise errno)
2111 *
2112 * The given request has finished, so call the necessary completion
2113 * if it has one and then look to see if we can start a new request
2114 * on the endpoint.
2115 *
2116 * Note, expects the ep to already be locked as appropriate.
2117 */
2118static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2119					struct dwc2_hsotg_ep *hs_ep,
2120				       struct dwc2_hsotg_req *hs_req,
2121				       int result)
2122{
 
 
2123	if (!hs_req) {
2124		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2125		return;
2126	}
2127
2128	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2129		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2130
2131	/*
2132	 * only replace the status if we've not already set an error
2133	 * from a previous transaction
2134	 */
2135
2136	if (hs_req->req.status == -EINPROGRESS)
2137		hs_req->req.status = result;
2138
2139	if (using_dma(hsotg))
2140		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2141
2142	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2143
2144	hs_ep->req = NULL;
2145	list_del_init(&hs_req->queue);
2146
2147	/*
2148	 * call the complete request with the locks off, just in case the
2149	 * request tries to queue more work for this endpoint.
2150	 */
2151
2152	if (hs_req->req.complete) {
2153		spin_unlock(&hsotg->lock);
2154		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2155		spin_lock(&hsotg->lock);
2156	}
2157
2158	/* In DDMA don't need to proceed to starting of next ISOC request */
2159	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2160		return;
2161
2162	/*
2163	 * Look to see if there is anything else to do. Note, the completion
2164	 * of the previous request may have caused a new request to be started
2165	 * so be careful when doing this.
2166	 */
2167
2168	if (!hs_ep->req && result >= 0)
2169		dwc2_gadget_start_next_request(hs_ep);
2170}
2171
2172/*
2173 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2174 * @hs_ep: The endpoint the request was on.
2175 *
2176 * Get first request from the ep queue, determine descriptor on which complete
2177 * happened. SW discovers which descriptor currently in use by HW, adjusts
2178 * dma_address and calculates index of completed descriptor based on the value
2179 * of DEPDMA register. Update actual length of request, giveback to gadget.
2180 */
2181static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2182{
2183	struct dwc2_hsotg *hsotg = hs_ep->parent;
2184	struct dwc2_hsotg_req *hs_req;
2185	struct usb_request *ureq;
2186	u32 desc_sts;
2187	u32 mask;
2188
2189	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2190
2191	/* Process only descriptors with buffer status set to DMA done */
2192	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2193		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2194
2195		hs_req = get_ep_head(hs_ep);
2196		if (!hs_req) {
2197			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2198			return;
2199		}
2200		ureq = &hs_req->req;
2201
2202		/* Check completion status */
2203		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2204			DEV_DMA_STS_SUCC) {
2205			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2206				DEV_DMA_ISOC_RX_NBYTES_MASK;
2207			ureq->actual = ureq->length - ((desc_sts & mask) >>
2208				DEV_DMA_ISOC_NBYTES_SHIFT);
2209
2210			/* Adjust actual len for ISOC Out if len is
2211			 * not align of 4
2212			 */
2213			if (!hs_ep->dir_in && ureq->length & 0x3)
2214				ureq->actual += 4 - (ureq->length & 0x3);
2215
2216			/* Set actual frame number for completed transfers */
2217			ureq->frame_number =
2218				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2219				DEV_DMA_ISOC_FRNUM_SHIFT;
2220		}
2221
2222		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2223
2224		hs_ep->compl_desc++;
2225		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2226			hs_ep->compl_desc = 0;
2227		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2228	}
2229}
2230
2231/*
2232 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2233 * @hs_ep: The isochronous endpoint.
2234 *
2235 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2236 * interrupt. Reset target frame and next_desc to allow to start
2237 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2238 * interrupt for OUT direction.
2239 */
2240static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2241{
2242	struct dwc2_hsotg *hsotg = hs_ep->parent;
2243
2244	if (!hs_ep->dir_in)
2245		dwc2_flush_rx_fifo(hsotg);
2246	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2247
2248	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2249	hs_ep->next_desc = 0;
2250	hs_ep->compl_desc = 0;
2251}
2252
2253/**
2254 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2255 * @hsotg: The device state.
2256 * @ep_idx: The endpoint index for the data
2257 * @size: The size of data in the fifo, in bytes
2258 *
2259 * The FIFO status shows there is data to read from the FIFO for a given
2260 * endpoint, so sort out whether we need to read the data into a request
2261 * that has been made for that endpoint.
2262 */
2263static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2264{
2265	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2266	struct dwc2_hsotg_req *hs_req = hs_ep->req;
 
2267	int to_read;
2268	int max_req;
2269	int read_ptr;
2270
 
2271	if (!hs_req) {
2272		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2273		int ptr;
2274
2275		dev_dbg(hsotg->dev,
2276			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2277			 __func__, size, ep_idx, epctl);
2278
2279		/* dump the data from the FIFO, we've nothing we can do */
2280		for (ptr = 0; ptr < size; ptr += 4)
2281			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2282
2283		return;
2284	}
2285
2286	to_read = size;
2287	read_ptr = hs_req->req.actual;
2288	max_req = hs_req->req.length - read_ptr;
2289
2290	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2291		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2292
2293	if (to_read > max_req) {
2294		/*
2295		 * more data appeared than we where willing
2296		 * to deal with in this request.
2297		 */
2298
2299		/* currently we don't deal this */
2300		WARN_ON_ONCE(1);
2301	}
2302
2303	hs_ep->total_data += to_read;
2304	hs_req->req.actual += to_read;
2305	to_read = DIV_ROUND_UP(to_read, 4);
2306
2307	/*
2308	 * note, we might over-write the buffer end by 3 bytes depending on
2309	 * alignment of the data.
2310	 */
2311	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2312		       hs_req->req.buf + read_ptr, to_read);
2313}
2314
2315/**
2316 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2317 * @hsotg: The device instance
2318 * @dir_in: If IN zlp
2319 *
2320 * Generate a zero-length IN packet request for terminating a SETUP
2321 * transaction.
2322 *
2323 * Note, since we don't write any data to the TxFIFO, then it is
2324 * currently believed that we do not need to wait for any space in
2325 * the TxFIFO.
2326 */
2327static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2328{
2329	/* eps_out[0] is used in both directions */
2330	hsotg->eps_out[0]->dir_in = dir_in;
2331	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2332
2333	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2334}
2335
2336/*
2337 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2338 * @hs_ep - The endpoint on which transfer went
2339 *
2340 * Iterate over endpoints descriptor chain and get info on bytes remained
2341 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2342 */
2343static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2344{
2345	const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc;
2346	struct dwc2_hsotg *hsotg = hs_ep->parent;
2347	unsigned int bytes_rem = 0;
2348	unsigned int bytes_rem_correction = 0;
2349	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2350	int i;
2351	u32 status;
2352	u32 mps = hs_ep->ep.maxpacket;
2353	int dir_in = hs_ep->dir_in;
2354
2355	if (!desc)
2356		return -EINVAL;
2357
2358	/* Interrupt OUT EP with mps not multiple of 4 */
2359	if (hs_ep->index)
2360		if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4))
2361			bytes_rem_correction = 4 - (mps % 4);
2362
2363	for (i = 0; i < hs_ep->desc_count; ++i) {
2364		status = desc->status;
2365		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2366		bytes_rem -= bytes_rem_correction;
2367
2368		if (status & DEV_DMA_STS_MASK)
2369			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2370				i, status & DEV_DMA_STS_MASK);
2371
2372		if (status & DEV_DMA_L)
2373			break;
2374
2375		desc++;
2376	}
2377
2378	return bytes_rem;
2379}
2380
2381/**
2382 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2383 * @hsotg: The device instance
2384 * @epnum: The endpoint received from
2385 *
2386 * The RXFIFO has delivered an OutDone event, which means that the data
2387 * transfer for an OUT endpoint has been completed, either by a short
2388 * packet or by the finish of a transfer.
2389 */
2390static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2391{
2392	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2393	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2394	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2395	struct usb_request *req = &hs_req->req;
2396	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2397	int result = 0;
2398
2399	if (!hs_req) {
2400		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2401		return;
2402	}
2403
2404	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2405		dev_dbg(hsotg->dev, "zlp packet received\n");
2406		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2407		dwc2_hsotg_enqueue_setup(hsotg);
2408		return;
2409	}
2410
2411	if (using_desc_dma(hsotg))
2412		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2413
2414	if (using_dma(hsotg)) {
2415		unsigned int size_done;
2416
2417		/*
2418		 * Calculate the size of the transfer by checking how much
2419		 * is left in the endpoint size register and then working it
2420		 * out from the amount we loaded for the transfer.
2421		 *
2422		 * We need to do this as DMA pointers are always 32bit aligned
2423		 * so may overshoot/undershoot the transfer.
2424		 */
2425
2426		size_done = hs_ep->size_loaded - size_left;
2427		size_done += hs_ep->last_load;
2428
2429		req->actual = size_done;
2430	}
2431
2432	/* if there is more request to do, schedule new transfer */
2433	if (req->actual < req->length && size_left == 0) {
2434		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2435		return;
2436	}
2437
2438	if (req->actual < req->length && req->short_not_ok) {
2439		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2440			__func__, req->actual, req->length);
2441
2442		/*
2443		 * todo - what should we return here? there's no one else
2444		 * even bothering to check the status.
2445		 */
2446	}
2447
2448	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2449	if (!using_desc_dma(hsotg) && epnum == 0 &&
2450	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2451		/* Move to STATUS IN */
2452		if (!hsotg->delayed_status)
2453			dwc2_hsotg_ep0_zlp(hsotg, true);
2454	}
2455
2456	/* Set actual frame number for completed transfers */
2457	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2458		req->frame_number = hs_ep->target_frame;
2459		dwc2_gadget_incr_frame_num(hs_ep);
 
 
 
 
2460	}
2461
2462	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2463}
2464
2465/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2466 * dwc2_hsotg_handle_rx - RX FIFO has data
2467 * @hsotg: The device instance
2468 *
2469 * The IRQ handler has detected that the RX FIFO has some data in it
2470 * that requires processing, so find out what is in there and do the
2471 * appropriate read.
2472 *
2473 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2474 * chunks, so if you have x packets received on an endpoint you'll get x
2475 * FIFO events delivered, each with a packet's worth of data in it.
2476 *
2477 * When using DMA, we should not be processing events from the RXFIFO
2478 * as the actual data should be sent to the memory directly and we turn
2479 * on the completion interrupts to get notifications of transfer completion.
2480 */
2481static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2482{
2483	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2484	u32 epnum, status, size;
2485
2486	WARN_ON(using_dma(hsotg));
2487
2488	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2489	status = grxstsr & GRXSTS_PKTSTS_MASK;
2490
2491	size = grxstsr & GRXSTS_BYTECNT_MASK;
2492	size >>= GRXSTS_BYTECNT_SHIFT;
2493
2494	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2495		__func__, grxstsr, size, epnum);
2496
2497	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2498	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2499		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2500		break;
2501
2502	case GRXSTS_PKTSTS_OUTDONE:
2503		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2504			dwc2_hsotg_read_frameno(hsotg));
2505
2506		if (!using_dma(hsotg))
2507			dwc2_hsotg_handle_outdone(hsotg, epnum);
2508		break;
2509
2510	case GRXSTS_PKTSTS_SETUPDONE:
2511		dev_dbg(hsotg->dev,
2512			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2513			dwc2_hsotg_read_frameno(hsotg),
2514			dwc2_readl(hsotg, DOEPCTL(0)));
2515		/*
2516		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2517		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2518		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2519		 */
2520		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2521			dwc2_hsotg_handle_outdone(hsotg, epnum);
2522		break;
2523
2524	case GRXSTS_PKTSTS_OUTRX:
2525		dwc2_hsotg_rx_data(hsotg, epnum, size);
2526		break;
2527
2528	case GRXSTS_PKTSTS_SETUPRX:
2529		dev_dbg(hsotg->dev,
2530			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2531			dwc2_hsotg_read_frameno(hsotg),
2532			dwc2_readl(hsotg, DOEPCTL(0)));
2533
2534		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2535
2536		dwc2_hsotg_rx_data(hsotg, epnum, size);
2537		break;
2538
2539	default:
2540		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2541			 __func__, grxstsr);
2542
2543		dwc2_hsotg_dump(hsotg);
2544		break;
2545	}
2546}
2547
2548/**
2549 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2550 * @mps: The maximum packet size in bytes.
2551 */
2552static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2553{
2554	switch (mps) {
2555	case 64:
2556		return D0EPCTL_MPS_64;
2557	case 32:
2558		return D0EPCTL_MPS_32;
2559	case 16:
2560		return D0EPCTL_MPS_16;
2561	case 8:
2562		return D0EPCTL_MPS_8;
2563	}
2564
2565	/* bad max packet size, warn and return invalid result */
2566	WARN_ON(1);
2567	return (u32)-1;
2568}
2569
2570/**
2571 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2572 * @hsotg: The driver state.
2573 * @ep: The index number of the endpoint
2574 * @mps: The maximum packet size in bytes
2575 * @mc: The multicount value
2576 * @dir_in: True if direction is in.
2577 *
2578 * Configure the maximum packet size for the given endpoint, updating
2579 * the hardware control registers to reflect this.
2580 */
2581static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2582					unsigned int ep, unsigned int mps,
2583					unsigned int mc, unsigned int dir_in)
2584{
2585	struct dwc2_hsotg_ep *hs_ep;
 
 
 
2586	u32 reg;
2587
2588	hs_ep = index_to_ep(hsotg, ep, dir_in);
2589	if (!hs_ep)
2590		return;
2591
2592	if (ep == 0) {
2593		u32 mps_bytes = mps;
2594
2595		/* EP0 is a special case */
2596		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2597		if (mps > 3)
2598			goto bad_mps;
2599		hs_ep->ep.maxpacket = mps_bytes;
2600		hs_ep->mc = 1;
2601	} else {
2602		if (mps > 1024)
 
2603			goto bad_mps;
2604		hs_ep->mc = mc;
2605		if (mc > 3)
 
2606			goto bad_mps;
2607		hs_ep->ep.maxpacket = mps;
2608	}
2609
2610	if (dir_in) {
2611		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2612		reg &= ~DXEPCTL_MPS_MASK;
2613		reg |= mps;
2614		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2615	} else {
2616		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2617		reg &= ~DXEPCTL_MPS_MASK;
2618		reg |= mps;
2619		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2620	}
2621
2622	return;
2623
2624bad_mps:
2625	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2626}
2627
2628/**
2629 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2630 * @hsotg: The driver state
2631 * @idx: The index for the endpoint (0..15)
2632 */
2633static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2634{
2635	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2636		    GRSTCTL);
 
 
 
2637
2638	/* wait until the fifo is flushed */
2639	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2640		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2641			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2642}
2643
2644/**
2645 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2646 * @hsotg: The driver state
2647 * @hs_ep: The driver endpoint to check.
2648 *
2649 * Check to see if there is a request that has data to send, and if so
2650 * make an attempt to write data into the FIFO.
2651 */
2652static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2653			    struct dwc2_hsotg_ep *hs_ep)
2654{
2655	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2656
2657	if (!hs_ep->dir_in || !hs_req) {
2658		/**
2659		 * if request is not enqueued, we disable interrupts
2660		 * for endpoints, excepting ep0
2661		 */
2662		if (hs_ep->index != 0)
2663			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2664					      hs_ep->dir_in, 0);
2665		return 0;
2666	}
2667
2668	if (hs_req->req.actual < hs_req->req.length) {
2669		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2670			hs_ep->index);
2671		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2672	}
2673
2674	return 0;
2675}
2676
2677/**
2678 * dwc2_hsotg_complete_in - complete IN transfer
2679 * @hsotg: The device state.
2680 * @hs_ep: The endpoint that has just completed.
2681 *
2682 * An IN transfer has been completed, update the transfer's state and then
2683 * call the relevant completion routines.
2684 */
2685static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2686				   struct dwc2_hsotg_ep *hs_ep)
2687{
2688	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2689	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2690	int size_left, size_done;
2691
2692	if (!hs_req) {
2693		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2694		return;
2695	}
2696
2697	/* Finish ZLP handling for IN EP0 transactions */
2698	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2699		dev_dbg(hsotg->dev, "zlp packet sent\n");
2700
2701		/*
2702		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2703		 * changed to IN. Change back to complete OUT transfer request
2704		 */
2705		hs_ep->dir_in = 0;
2706
2707		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2708		if (hsotg->test_mode) {
2709			int ret;
2710
2711			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2712			if (ret < 0) {
2713				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2714					hsotg->test_mode);
2715				dwc2_hsotg_stall_ep0(hsotg);
2716				return;
2717			}
2718		}
2719		dwc2_hsotg_enqueue_setup(hsotg);
2720		return;
2721	}
2722
2723	/*
2724	 * Calculate the size of the transfer by checking how much is left
2725	 * in the endpoint size register and then working it out from
2726	 * the amount we loaded for the transfer.
2727	 *
2728	 * We do this even for DMA, as the transfer may have incremented
2729	 * past the end of the buffer (DMA transfers are always 32bit
2730	 * aligned).
2731	 */
2732	if (using_desc_dma(hsotg)) {
2733		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2734		if (size_left < 0)
2735			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2736				size_left);
2737	} else {
2738		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2739	}
2740
2741	size_done = hs_ep->size_loaded - size_left;
2742	size_done += hs_ep->last_load;
2743
2744	if (hs_req->req.actual != size_done)
2745		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2746			__func__, hs_req->req.actual, size_done);
2747
2748	hs_req->req.actual = size_done;
2749	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2750		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2751
2752	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2753		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2754		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2755		return;
2756	}
2757
2758	/* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */
2759	if (hs_ep->send_zlp) {
 
2760		hs_ep->send_zlp = 0;
2761		if (!using_desc_dma(hsotg)) {
2762			dwc2_hsotg_program_zlp(hsotg, hs_ep);
2763			/* transfer will be completed on next complete interrupt */
2764			return;
2765		}
2766	}
2767
2768	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2769		/* Move to STATUS OUT */
2770		dwc2_hsotg_ep0_zlp(hsotg, false);
2771		return;
2772	}
2773
2774	/* Set actual frame number for completed transfers */
2775	if (!using_desc_dma(hsotg) && hs_ep->isochronous) {
2776		hs_req->req.frame_number = hs_ep->target_frame;
2777		dwc2_gadget_incr_frame_num(hs_ep);
2778	}
2779
2780	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2781}
2782
2783/**
2784 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2785 * @hsotg: The device state.
2786 * @idx: Index of ep.
2787 * @dir_in: Endpoint direction 1-in 0-out.
2788 *
2789 * Reads for endpoint with given index and direction, by masking
2790 * epint_reg with coresponding mask.
2791 */
2792static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2793					  unsigned int idx, int dir_in)
2794{
2795	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2796	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2797	u32 ints;
2798	u32 mask;
2799	u32 diepempmsk;
2800
2801	mask = dwc2_readl(hsotg, epmsk_reg);
2802	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2803	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2804	mask |= DXEPINT_SETUP_RCVD;
2805
2806	ints = dwc2_readl(hsotg, epint_reg);
2807	ints &= mask;
2808	return ints;
2809}
2810
2811/**
2812 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2813 * @hs_ep: The endpoint on which interrupt is asserted.
2814 *
2815 * This interrupt indicates that the endpoint has been disabled per the
2816 * application's request.
2817 *
2818 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2819 * in case of ISOC completes current request.
2820 *
2821 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2822 * request starts it.
2823 */
2824static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2825{
2826	struct dwc2_hsotg *hsotg = hs_ep->parent;
2827	struct dwc2_hsotg_req *hs_req;
2828	unsigned char idx = hs_ep->index;
2829	int dir_in = hs_ep->dir_in;
2830	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2831	int dctl = dwc2_readl(hsotg, DCTL);
2832
2833	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2834
2835	if (dir_in) {
2836		int epctl = dwc2_readl(hsotg, epctl_reg);
2837
2838		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2839
2840		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2841			int dctl = dwc2_readl(hsotg, DCTL);
2842
2843			dctl |= DCTL_CGNPINNAK;
2844			dwc2_writel(hsotg, dctl, DCTL);
2845		}
2846	} else {
2847
2848		if (dctl & DCTL_GOUTNAKSTS) {
2849			dctl |= DCTL_CGOUTNAK;
2850			dwc2_writel(hsotg, dctl, DCTL);
2851		}
2852	}
2853
2854	if (!hs_ep->isochronous)
2855		return;
2856
2857	if (list_empty(&hs_ep->queue)) {
2858		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2859			__func__, hs_ep);
2860		return;
2861	}
2862
2863	do {
2864		hs_req = get_ep_head(hs_ep);
2865		if (hs_req) {
2866			hs_req->req.frame_number = hs_ep->target_frame;
2867			hs_req->req.actual = 0;
2868			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2869						    -ENODATA);
2870		}
2871		dwc2_gadget_incr_frame_num(hs_ep);
2872		/* Update current frame number value. */
2873		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2874	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2875}
2876
2877/**
2878 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2879 * @ep: The endpoint on which interrupt is asserted.
2880 *
2881 * This is starting point for ISOC-OUT transfer, synchronization done with
2882 * first out token received from host while corresponding EP is disabled.
2883 *
2884 * Device does not know initial frame in which out token will come. For this
2885 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2886 * getting this interrupt SW starts calculation for next transfer frame.
2887 */
2888static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2889{
2890	struct dwc2_hsotg *hsotg = ep->parent;
2891	struct dwc2_hsotg_req *hs_req;
2892	int dir_in = ep->dir_in;
2893
2894	if (dir_in || !ep->isochronous)
2895		return;
2896
2897	if (using_desc_dma(hsotg)) {
2898		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2899			/* Start first ISO Out */
2900			ep->target_frame = hsotg->frame_number;
2901			dwc2_gadget_start_isoc_ddma(ep);
2902		}
2903		return;
2904	}
2905
2906	if (ep->target_frame == TARGET_FRAME_INITIAL) {
2907		u32 ctrl;
2908
2909		ep->target_frame = hsotg->frame_number;
2910		if (ep->interval > 1) {
2911			ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2912			if (ep->target_frame & 0x1)
2913				ctrl |= DXEPCTL_SETODDFR;
2914			else
2915				ctrl |= DXEPCTL_SETEVENFR;
2916
2917			dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2918		}
2919	}
2920
2921	while (dwc2_gadget_target_frame_elapsed(ep)) {
2922		hs_req = get_ep_head(ep);
2923		if (hs_req) {
2924			hs_req->req.frame_number = ep->target_frame;
2925			hs_req->req.actual = 0;
2926			dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA);
2927		}
2928
2929		dwc2_gadget_incr_frame_num(ep);
2930		/* Update current frame number value. */
2931		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2932	}
2933
2934	if (!ep->req)
2935		dwc2_gadget_start_next_request(ep);
2936
2937}
2938
2939static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2940				   struct dwc2_hsotg_ep *hs_ep);
2941
2942/**
2943 * dwc2_gadget_handle_nak - handle NAK interrupt
2944 * @hs_ep: The endpoint on which interrupt is asserted.
2945 *
2946 * This is starting point for ISOC-IN transfer, synchronization done with
2947 * first IN token received from host while corresponding EP is disabled.
2948 *
2949 * Device does not know when first one token will arrive from host. On first
2950 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2951 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2952 * sent in response to that as there was no data in FIFO. SW is basing on this
2953 * interrupt to obtain frame in which token has come and then based on the
2954 * interval calculates next frame for transfer.
2955 */
2956static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2957{
2958	struct dwc2_hsotg *hsotg = hs_ep->parent;
2959	struct dwc2_hsotg_req *hs_req;
2960	int dir_in = hs_ep->dir_in;
2961	u32 ctrl;
2962
2963	if (!dir_in || !hs_ep->isochronous)
2964		return;
2965
2966	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2967
2968		if (using_desc_dma(hsotg)) {
2969			hs_ep->target_frame = hsotg->frame_number;
2970			dwc2_gadget_incr_frame_num(hs_ep);
2971
2972			/* In service interval mode target_frame must
2973			 * be set to last (u)frame of the service interval.
2974			 */
2975			if (hsotg->params.service_interval) {
2976				/* Set target_frame to the first (u)frame of
2977				 * the service interval
2978				 */
2979				hs_ep->target_frame &= ~hs_ep->interval + 1;
2980
2981				/* Set target_frame to the last (u)frame of
2982				 * the service interval
2983				 */
2984				dwc2_gadget_incr_frame_num(hs_ep);
2985				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2986			}
2987
2988			dwc2_gadget_start_isoc_ddma(hs_ep);
2989			return;
2990		}
2991
2992		hs_ep->target_frame = hsotg->frame_number;
2993		if (hs_ep->interval > 1) {
2994			u32 ctrl = dwc2_readl(hsotg,
2995					      DIEPCTL(hs_ep->index));
2996			if (hs_ep->target_frame & 0x1)
2997				ctrl |= DXEPCTL_SETODDFR;
2998			else
2999				ctrl |= DXEPCTL_SETEVENFR;
3000
3001			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
3002		}
3003	}
3004
3005	if (using_desc_dma(hsotg))
3006		return;
3007
3008	ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index));
3009	if (ctrl & DXEPCTL_EPENA)
3010		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
3011	else
3012		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
3013
3014	while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
3015		hs_req = get_ep_head(hs_ep);
3016		if (hs_req) {
3017			hs_req->req.frame_number = hs_ep->target_frame;
3018			hs_req->req.actual = 0;
3019			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA);
3020		}
3021
3022		dwc2_gadget_incr_frame_num(hs_ep);
3023		/* Update current frame number value. */
3024		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
3025	}
3026
3027	if (!hs_ep->req)
3028		dwc2_gadget_start_next_request(hs_ep);
3029}
3030
3031/**
3032 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
3033 * @hsotg: The driver state
3034 * @idx: The index for the endpoint (0..15)
3035 * @dir_in: Set if this is an IN endpoint
3036 *
3037 * Process and clear any interrupt pending for an individual endpoint
3038 */
3039static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
3040			     int dir_in)
3041{
3042	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
3043	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
3044	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
3045	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
3046	u32 ints;
 
3047
3048	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
 
3049
3050	/* Clear endpoint interrupts */
3051	dwc2_writel(hsotg, ints, epint_reg);
3052
3053	if (!hs_ep) {
3054		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
3055			__func__, idx, dir_in ? "in" : "out");
3056		return;
3057	}
3058
3059	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
3060		__func__, idx, dir_in ? "in" : "out", ints);
3061
3062	/* Don't process XferCompl interrupt if it is a setup packet */
3063	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
3064		ints &= ~DXEPINT_XFERCOMPL;
3065
3066	/*
3067	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
3068	 * stage and xfercomplete was generated without SETUP phase done
3069	 * interrupt. SW should parse received setup packet only after host's
3070	 * exit from setup phase of control transfer.
3071	 */
3072	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3073	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3074		ints &= ~DXEPINT_XFERCOMPL;
3075
3076	if (ints & DXEPINT_XFERCOMPL) {
3077		dev_dbg(hsotg->dev,
3078			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3079			__func__, dwc2_readl(hsotg, epctl_reg),
3080			dwc2_readl(hsotg, epsiz_reg));
3081
3082		/* In DDMA handle isochronous requests separately */
3083		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3084			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3085		} else if (dir_in) {
3086			/*
3087			 * We get OutDone from the FIFO, so we only
3088			 * need to look at completing IN requests here
3089			 * if operating slave mode
3090			 */
3091			if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT))
3092				dwc2_hsotg_complete_in(hsotg, hs_ep);
3093
3094			if (idx == 0 && !hs_ep->req)
3095				dwc2_hsotg_enqueue_setup(hsotg);
3096		} else if (using_dma(hsotg)) {
3097			/*
3098			 * We're using DMA, we need to fire an OutDone here
3099			 * as we ignore the RXFIFO.
3100			 */
3101			if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS))
3102				dwc2_hsotg_handle_outdone(hsotg, idx);
3103		}
3104	}
3105
3106	if (ints & DXEPINT_EPDISBLD)
3107		dwc2_gadget_handle_ep_disabled(hs_ep);
 
 
 
3108
3109	if (ints & DXEPINT_OUTTKNEPDIS)
3110		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3111
3112	if (ints & DXEPINT_NAKINTRPT)
3113		dwc2_gadget_handle_nak(hs_ep);
 
 
 
 
 
 
 
3114
3115	if (ints & DXEPINT_AHBERR)
3116		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3117
3118	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3119		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3120
3121		if (using_dma(hsotg) && idx == 0) {
3122			/*
3123			 * this is the notification we've received a
3124			 * setup packet. In non-DMA mode we'd get this
3125			 * from the RXFIFO, instead we need to process
3126			 * the setup here.
3127			 */
3128
3129			if (dir_in)
3130				WARN_ON_ONCE(1);
3131			else
3132				dwc2_hsotg_handle_outdone(hsotg, 0);
3133		}
3134	}
3135
3136	if (ints & DXEPINT_STSPHSERCVD) {
3137		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3138
3139		/* Safety check EP0 state when STSPHSERCVD asserted */
3140		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3141			/* Move to STATUS IN for DDMA */
3142			if (using_desc_dma(hsotg)) {
3143				if (!hsotg->delayed_status)
3144					dwc2_hsotg_ep0_zlp(hsotg, true);
3145				else
3146				/* In case of 3 stage Control Write with delayed
3147				 * status, when Status IN transfer started
3148				 * before STSPHSERCVD asserted, NAKSTS bit not
3149				 * cleared by CNAK in dwc2_hsotg_start_req()
3150				 * function. Clear now NAKSTS to allow complete
3151				 * transfer.
3152				 */
3153					dwc2_set_bit(hsotg, DIEPCTL(0),
3154						     DXEPCTL_CNAK);
3155			}
3156		}
3157
3158	}
3159
3160	if (ints & DXEPINT_BACK2BACKSETUP)
3161		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3162
3163	if (ints & DXEPINT_BNAINTR) {
3164		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3165		if (hs_ep->isochronous)
3166			dwc2_gadget_handle_isoc_bna(hs_ep);
3167	}
3168
3169	if (dir_in && !hs_ep->isochronous) {
3170		/* not sure if this is important, but we'll clear it anyway */
3171		if (ints & DXEPINT_INTKNTXFEMP) {
3172			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3173				__func__, idx);
3174		}
3175
3176		/* this probably means something bad is happening */
3177		if (ints & DXEPINT_INTKNEPMIS) {
3178			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3179				 __func__, idx);
3180		}
3181
3182		/* FIFO has space or is empty (see GAHBCFG) */
3183		if (hsotg->dedicated_fifos &&
3184		    ints & DXEPINT_TXFEMP) {
3185			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3186				__func__, idx);
3187			if (!using_dma(hsotg))
3188				dwc2_hsotg_trytx(hsotg, hs_ep);
3189		}
3190	}
3191}
3192
3193/**
3194 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3195 * @hsotg: The device state.
3196 *
3197 * Handle updating the device settings after the enumeration phase has
3198 * been completed.
3199 */
3200static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3201{
3202	u32 dsts = dwc2_readl(hsotg, DSTS);
3203	int ep0_mps = 0, ep_mps = 8;
3204
3205	/*
3206	 * This should signal the finish of the enumeration phase
3207	 * of the USB handshaking, so we should now know what rate
3208	 * we connected at.
3209	 */
3210
3211	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3212
3213	/*
3214	 * note, since we're limited by the size of transfer on EP0, and
3215	 * it seems IN transfers must be a even number of packets we do
3216	 * not advertise a 64byte MPS on EP0.
3217	 */
3218
3219	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3220	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3221	case DSTS_ENUMSPD_FS:
3222	case DSTS_ENUMSPD_FS48:
3223		hsotg->gadget.speed = USB_SPEED_FULL;
3224		ep0_mps = EP0_MPS_LIMIT;
3225		ep_mps = 1023;
3226		break;
3227
3228	case DSTS_ENUMSPD_HS:
3229		hsotg->gadget.speed = USB_SPEED_HIGH;
3230		ep0_mps = EP0_MPS_LIMIT;
3231		ep_mps = 1024;
3232		break;
3233
3234	case DSTS_ENUMSPD_LS:
3235		hsotg->gadget.speed = USB_SPEED_LOW;
3236		ep0_mps = 8;
3237		ep_mps = 8;
3238		/*
3239		 * note, we don't actually support LS in this driver at the
3240		 * moment, and the documentation seems to imply that it isn't
3241		 * supported by the PHYs on some of the devices.
3242		 */
3243		break;
3244	}
3245	dev_info(hsotg->dev, "new device is %s\n",
3246		 usb_speed_string(hsotg->gadget.speed));
3247
3248	/*
3249	 * we should now know the maximum packet size for an
3250	 * endpoint, so set the endpoints to a default value.
3251	 */
3252
3253	if (ep0_mps) {
3254		int i;
3255		/* Initialize ep0 for both in and out directions */
3256		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3257		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3258		for (i = 1; i < hsotg->num_of_eps; i++) {
3259			if (hsotg->eps_in[i])
3260				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3261							    0, 1);
3262			if (hsotg->eps_out[i])
3263				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3264							    0, 0);
3265		}
3266	}
3267
3268	/* ensure after enumeration our EP0 is active */
3269
3270	dwc2_hsotg_enqueue_setup(hsotg);
3271
3272	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3273		dwc2_readl(hsotg, DIEPCTL0),
3274		dwc2_readl(hsotg, DOEPCTL0));
3275}
3276
3277/**
3278 * kill_all_requests - remove all requests from the endpoint's queue
3279 * @hsotg: The device state.
3280 * @ep: The endpoint the requests may be on.
3281 * @result: The result code to use.
3282 *
3283 * Go through the requests on the given endpoint and mark them
3284 * completed with the given result code.
3285 */
3286static void kill_all_requests(struct dwc2_hsotg *hsotg,
3287			      struct dwc2_hsotg_ep *ep,
3288			      int result)
3289{
3290	unsigned int size;
 
3291
3292	ep->req = NULL;
3293
3294	while (!list_empty(&ep->queue)) {
3295		struct dwc2_hsotg_req *req = get_ep_head(ep);
3296
3297		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3298	}
3299
3300	if (!hsotg->dedicated_fifos)
3301		return;
3302	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3303	if (size < ep->fifo_size)
3304		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3305}
3306
3307/**
3308 * dwc2_hsotg_disconnect - disconnect service
3309 * @hsotg: The device state.
3310 *
3311 * The device has been disconnected. Remove all current
3312 * transactions and signal the gadget driver that this
3313 * has happened.
3314 */
3315void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3316{
3317	unsigned int ep;
3318
3319	if (!hsotg->connected)
3320		return;
3321
3322	hsotg->connected = 0;
3323	hsotg->test_mode = 0;
3324
3325	/* all endpoints should be shutdown */
3326	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3327		if (hsotg->eps_in[ep])
3328			kill_all_requests(hsotg, hsotg->eps_in[ep],
3329					  -ESHUTDOWN);
3330		if (hsotg->eps_out[ep])
3331			kill_all_requests(hsotg, hsotg->eps_out[ep],
3332					  -ESHUTDOWN);
3333	}
3334
3335	call_gadget(hsotg, disconnect);
3336	hsotg->lx_state = DWC2_L3;
3337
3338	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3339}
3340
3341/**
3342 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3343 * @hsotg: The device state:
3344 * @periodic: True if this is a periodic FIFO interrupt
3345 */
3346static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3347{
3348	struct dwc2_hsotg_ep *ep;
3349	int epno, ret;
3350
3351	/* look through for any more data to transmit */
3352	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3353		ep = index_to_ep(hsotg, epno, 1);
3354
3355		if (!ep)
3356			continue;
3357
3358		if (!ep->dir_in)
3359			continue;
3360
3361		if ((periodic && !ep->periodic) ||
3362		    (!periodic && ep->periodic))
3363			continue;
3364
3365		ret = dwc2_hsotg_trytx(hsotg, ep);
3366		if (ret < 0)
3367			break;
3368	}
3369}
3370
3371/* IRQ flags which will trigger a retry around the IRQ loop */
3372#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3373			GINTSTS_PTXFEMP |  \
3374			GINTSTS_RXFLVL)
3375
3376static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3377/**
3378 * dwc2_hsotg_core_init_disconnected - issue softreset to the core
3379 * @hsotg: The device state
3380 * @is_usb_reset: Usb resetting flag
3381 *
3382 * Issue a soft reset to the core, and await the core finishing it.
3383 */
3384void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3385				       bool is_usb_reset)
3386{
3387	u32 intmsk;
3388	u32 val;
3389	u32 usbcfg;
3390	u32 dcfg = 0;
3391	int ep;
3392
3393	/* Kill any ep0 requests as controller will be reinitialized */
3394	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3395
3396	if (!is_usb_reset) {
3397		if (dwc2_core_reset(hsotg, true))
3398			return;
3399	} else {
3400		/* all endpoints should be shutdown */
3401		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3402			if (hsotg->eps_in[ep])
3403				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3404			if (hsotg->eps_out[ep])
3405				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3406		}
3407	}
3408
3409	/*
3410	 * we must now enable ep0 ready for host detection and then
3411	 * set configuration.
3412	 */
3413
3414	/* keep other bits untouched (so e.g. forced modes are not lost) */
3415	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3416	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3417	usbcfg |= GUSBCFG_TOUTCAL(7);
3418
3419	/* remove the HNP/SRP and set the PHY */
3420	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3421        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3422
3423	dwc2_phy_init(hsotg, true);
3424
3425	dwc2_hsotg_init_fifo(hsotg);
3426
3427	if (!is_usb_reset) {
3428		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3429		if (hsotg->params.eusb2_disc)
3430			dwc2_set_bit(hsotg, GOTGCTL, GOTGCTL_EUSB2_DISC_SUPP);
3431	}
3432
3433	dcfg |= DCFG_EPMISCNT(1);
3434
3435	switch (hsotg->params.speed) {
3436	case DWC2_SPEED_PARAM_LOW:
3437		dcfg |= DCFG_DEVSPD_LS;
3438		break;
3439	case DWC2_SPEED_PARAM_FULL:
3440		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3441			dcfg |= DCFG_DEVSPD_FS48;
3442		else
3443			dcfg |= DCFG_DEVSPD_FS;
3444		break;
3445	default:
3446		dcfg |= DCFG_DEVSPD_HS;
3447	}
3448
3449	if (hsotg->params.ipg_isoc_en)
3450		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3451
3452	dwc2_writel(hsotg, dcfg,  DCFG);
3453
3454	/* Clear any pending OTG interrupts */
3455	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3456
3457	/* Clear any pending interrupts */
3458	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3459	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3460		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3461		GINTSTS_USBRST | GINTSTS_RESETDET |
3462		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3463		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3464		GINTSTS_LPMTRANRCVD;
3465
3466	if (!using_desc_dma(hsotg))
3467		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3468
3469	if (!hsotg->params.external_id_pin_ctl)
3470		intmsk |= GINTSTS_CONIDSTSCHNG;
3471
3472	dwc2_writel(hsotg, intmsk, GINTMSK);
3473
3474	if (using_dma(hsotg)) {
3475		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3476			    hsotg->params.ahbcfg,
3477			    GAHBCFG);
3478
3479		/* Set DDMA mode support in the core if needed */
3480		if (using_desc_dma(hsotg))
3481			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3482
3483	} else {
3484		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3485						(GAHBCFG_NP_TXF_EMP_LVL |
3486						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3487			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3488	}
3489
3490	/*
3491	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3492	 * when we have no data to transfer. Otherwise we get being flooded by
3493	 * interrupts.
3494	 */
3495
3496	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3497		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3498		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3499		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3500		DIEPMSK);
 
3501
3502	/*
3503	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3504	 * DMA mode we may need this and StsPhseRcvd.
3505	 */
3506	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3507		DOEPMSK_STSPHSERCVDMSK) : 0) |
3508		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3509		DOEPMSK_SETUPMSK,
3510		DOEPMSK);
3511
3512	/* Enable BNA interrupt for DDMA */
3513	if (using_desc_dma(hsotg)) {
3514		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3515		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3516	}
3517
3518	/* Enable Service Interval mode if supported */
3519	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3520		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3521
3522	dwc2_writel(hsotg, 0, DAINTMSK);
3523
3524	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3525		dwc2_readl(hsotg, DIEPCTL0),
3526		dwc2_readl(hsotg, DOEPCTL0));
3527
3528	/* enable in and out endpoint interrupts */
3529	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3530
3531	/*
3532	 * Enable the RXFIFO when in slave mode, as this is how we collect
3533	 * the data. In DMA mode, we get events from the FIFO but also
3534	 * things we cannot process, so do not use it.
3535	 */
3536	if (!using_dma(hsotg))
3537		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3538
3539	/* Enable interrupts for EP0 in and out */
3540	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3541	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3542
3543	if (!is_usb_reset) {
3544		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3545		udelay(10);  /* see openiboot */
3546		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3547	}
3548
3549	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3550
3551	/*
3552	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3553	 * writing to the EPCTL register..
3554	 */
3555
3556	/* set to read 1 8byte packet */
3557	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3558	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3559
3560	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3561	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3562	       DXEPCTL_USBACTEP,
3563	       DOEPCTL0);
3564
3565	/* enable, but don't activate EP0in */
3566	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3567	       DXEPCTL_USBACTEP, DIEPCTL0);
 
 
 
 
 
 
3568
3569	/* clear global NAKs */
3570	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3571	if (!is_usb_reset)
3572		val |= DCTL_SFTDISCON;
3573	dwc2_set_bit(hsotg, DCTL, val);
3574
3575	/* configure the core to support LPM */
3576	dwc2_gadget_init_lpm(hsotg);
3577
3578	/* program GREFCLK register if needed */
3579	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3580		dwc2_gadget_program_ref_clk(hsotg);
3581
3582	/* must be at-least 3ms to allow bus to see disconnect */
3583	mdelay(3);
3584
3585	hsotg->lx_state = DWC2_L0;
3586
3587	dwc2_hsotg_enqueue_setup(hsotg);
3588
3589	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3590		dwc2_readl(hsotg, DIEPCTL0),
3591		dwc2_readl(hsotg, DOEPCTL0));
3592}
3593
3594void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3595{
3596	/* set the soft-disconnect bit */
3597	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3598}
3599
3600void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3601{
3602	/* remove the soft-disconnect and let's go */
3603	if (!hsotg->role_sw || (dwc2_readl(hsotg, GOTGCTL) & GOTGCTL_BSESVLD))
3604		dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3605}
3606
3607/**
3608 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3609 * @hsotg: The device state:
3610 *
3611 * This interrupt indicates one of the following conditions occurred while
3612 * transmitting an ISOC transaction.
3613 * - Corrupted IN Token for ISOC EP.
3614 * - Packet not complete in FIFO.
3615 *
3616 * The following actions will be taken:
3617 * - Determine the EP
3618 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3619 */
3620static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3621{
3622	struct dwc2_hsotg_ep *hs_ep;
3623	u32 epctrl;
3624	u32 daintmsk;
3625	u32 idx;
3626
3627	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3628
3629	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3630
3631	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3632		hs_ep = hsotg->eps_in[idx];
3633		/* Proceed only unmasked ISOC EPs */
3634		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3635			continue;
3636
3637		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3638		if ((epctrl & DXEPCTL_EPENA) &&
3639		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3640			epctrl |= DXEPCTL_SNAK;
3641			epctrl |= DXEPCTL_EPDIS;
3642			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3643		}
3644	}
3645
3646	/* Clear interrupt */
3647	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3648}
3649
3650/**
3651 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3652 * @hsotg: The device state:
3653 *
3654 * This interrupt indicates one of the following conditions occurred while
3655 * transmitting an ISOC transaction.
3656 * - Corrupted OUT Token for ISOC EP.
3657 * - Packet not complete in FIFO.
3658 *
3659 * The following actions will be taken:
3660 * - Determine the EP
3661 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3662 */
3663static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3664{
3665	u32 gintsts;
3666	u32 gintmsk;
3667	u32 daintmsk;
3668	u32 epctrl;
3669	struct dwc2_hsotg_ep *hs_ep;
3670	int idx;
3671
3672	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3673
3674	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3675	daintmsk >>= DAINT_OUTEP_SHIFT;
3676
3677	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3678		hs_ep = hsotg->eps_out[idx];
3679		/* Proceed only unmasked ISOC EPs */
3680		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3681			continue;
3682
3683		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3684		if ((epctrl & DXEPCTL_EPENA) &&
3685		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3686			/* Unmask GOUTNAKEFF interrupt */
3687			gintmsk = dwc2_readl(hsotg, GINTMSK);
3688			gintmsk |= GINTSTS_GOUTNAKEFF;
3689			dwc2_writel(hsotg, gintmsk, GINTMSK);
3690
3691			gintsts = dwc2_readl(hsotg, GINTSTS);
3692			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3693				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3694				break;
3695			}
3696		}
3697	}
3698
3699	/* Clear interrupt */
3700	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3701}
3702
3703/**
3704 * dwc2_hsotg_irq - handle device interrupt
3705 * @irq: The IRQ number triggered
3706 * @pw: The pw value when registered the handler.
3707 */
3708static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3709{
3710	struct dwc2_hsotg *hsotg = pw;
3711	int retry_count = 8;
3712	u32 gintsts;
3713	u32 gintmsk;
3714
3715	if (!dwc2_is_device_mode(hsotg))
3716		return IRQ_NONE;
3717
3718	spin_lock(&hsotg->lock);
3719irq_retry:
3720	gintsts = dwc2_readl(hsotg, GINTSTS);
3721	gintmsk = dwc2_readl(hsotg, GINTMSK);
3722
3723	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3724		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3725
3726	gintsts &= gintmsk;
3727
3728	if (gintsts & GINTSTS_RESETDET) {
3729		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3730
3731		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3732
3733		/* This event must be used only if controller is suspended */
3734		if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2)
3735			dwc2_exit_partial_power_down(hsotg, 0, true);
3736
3737		/* Exit gadget mode clock gating. */
3738		if (hsotg->params.power_down ==
3739		    DWC2_POWER_DOWN_PARAM_NONE && hsotg->bus_suspended &&
3740		    !hsotg->params.no_clock_gating)
3741			dwc2_gadget_exit_clock_gating(hsotg, 0);
3742
3743		hsotg->lx_state = DWC2_L0;
3744	}
3745
3746	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3747		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
 
3748		u32 connected = hsotg->connected;
3749
3750		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3751		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3752			dwc2_readl(hsotg, GNPTXSTS));
3753
3754		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3755
3756		/* Report disconnection if it is not already done. */
3757		dwc2_hsotg_disconnect(hsotg);
3758
3759		/* Reset device address to zero */
3760		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3761
3762		if (usb_status & GOTGCTL_BSESVLD && connected)
3763			dwc2_hsotg_core_init_disconnected(hsotg, true);
3764	}
3765
3766	if (gintsts & GINTSTS_ENUMDONE) {
3767		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3768
3769		dwc2_hsotg_irq_enumdone(hsotg);
3770	}
3771
3772	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3773		u32 daint = dwc2_readl(hsotg, DAINT);
3774		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3775		u32 daint_out, daint_in;
3776		int ep;
3777
3778		daint &= daintmsk;
3779		daint_out = daint >> DAINT_OUTEP_SHIFT;
3780		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3781
3782		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3783
3784		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3785						ep++, daint_out >>= 1) {
3786			if (daint_out & 1)
3787				dwc2_hsotg_epint(hsotg, ep, 0);
3788		}
3789
3790		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3791						ep++, daint_in >>= 1) {
3792			if (daint_in & 1)
3793				dwc2_hsotg_epint(hsotg, ep, 1);
3794		}
3795	}
3796
3797	/* check both FIFOs */
3798
3799	if (gintsts & GINTSTS_NPTXFEMP) {
3800		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3801
3802		/*
3803		 * Disable the interrupt to stop it happening again
3804		 * unless one of these endpoint routines decides that
3805		 * it needs re-enabling
3806		 */
3807
3808		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3809		dwc2_hsotg_irq_fifoempty(hsotg, false);
3810	}
3811
3812	if (gintsts & GINTSTS_PTXFEMP) {
3813		dev_dbg(hsotg->dev, "PTxFEmp\n");
3814
3815		/* See note in GINTSTS_NPTxFEmp */
3816
3817		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3818		dwc2_hsotg_irq_fifoempty(hsotg, true);
3819	}
3820
3821	if (gintsts & GINTSTS_RXFLVL) {
3822		/*
3823		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3824		 * we need to retry dwc2_hsotg_handle_rx if this is still
3825		 * set.
3826		 */
3827
3828		dwc2_hsotg_handle_rx(hsotg);
3829	}
3830
3831	if (gintsts & GINTSTS_ERLYSUSP) {
3832		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3833		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3834	}
3835
3836	/*
3837	 * these next two seem to crop-up occasionally causing the core
3838	 * to shutdown the USB transfer, so try clearing them and logging
3839	 * the occurrence.
3840	 */
3841
3842	if (gintsts & GINTSTS_GOUTNAKEFF) {
3843		u8 idx;
3844		u32 epctrl;
3845		u32 gintmsk;
3846		u32 daintmsk;
3847		struct dwc2_hsotg_ep *hs_ep;
3848
3849		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3850		daintmsk >>= DAINT_OUTEP_SHIFT;
3851		/* Mask this interrupt */
3852		gintmsk = dwc2_readl(hsotg, GINTMSK);
3853		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3854		dwc2_writel(hsotg, gintmsk, GINTMSK);
3855
3856		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3857		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3858			hs_ep = hsotg->eps_out[idx];
3859			/* Proceed only unmasked ISOC EPs */
3860			if (BIT(idx) & ~daintmsk)
3861				continue;
3862
3863			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3864
3865			//ISOC Ep's only
3866			if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) {
3867				epctrl |= DXEPCTL_SNAK;
3868				epctrl |= DXEPCTL_EPDIS;
3869				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3870				continue;
3871			}
3872
3873			//Non-ISOC EP's
3874			if (hs_ep->halted) {
3875				if (!(epctrl & DXEPCTL_EPENA))
3876					epctrl |= DXEPCTL_EPENA;
3877				epctrl |= DXEPCTL_EPDIS;
3878				epctrl |= DXEPCTL_STALL;
3879				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3880			}
3881		}
3882
3883		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3884	}
3885
3886	if (gintsts & GINTSTS_GINNAKEFF) {
3887		dev_info(hsotg->dev, "GINNakEff triggered\n");
3888
3889		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3890
3891		dwc2_hsotg_dump(hsotg);
3892	}
3893
3894	if (gintsts & GINTSTS_INCOMPL_SOIN)
3895		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
 
3896
3897	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3898		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
 
3899
3900	/*
3901	 * if we've had fifo events, we should try and go around the
3902	 * loop again to see if there's any point in returning yet.
3903	 */
3904
3905	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3906		goto irq_retry;
 
 
 
3907
3908	/* Check WKUP_ALERT interrupt*/
3909	if (hsotg->params.service_interval)
3910		dwc2_gadget_wkup_alert_handler(hsotg);
3911
3912	spin_unlock(&hsotg->lock);
 
 
3913
3914	return IRQ_HANDLED;
3915}
3916
3917static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3918				   struct dwc2_hsotg_ep *hs_ep)
3919{
3920	u32 epctrl_reg;
3921	u32 epint_reg;
3922
3923	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3924		DOEPCTL(hs_ep->index);
3925	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3926		DOEPINT(hs_ep->index);
3927
3928	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3929		hs_ep->name);
3930
3931	if (hs_ep->dir_in) {
3932		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3933			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3934			/* Wait for Nak effect */
3935			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3936						    DXEPINT_INEPNAKEFF, 100))
3937				dev_warn(hsotg->dev,
3938					 "%s: timeout DIEPINT.NAKEFF\n",
3939					 __func__);
3940		} else {
3941			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3942			/* Wait for Nak effect */
3943			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3944						    GINTSTS_GINNAKEFF, 100))
3945				dev_warn(hsotg->dev,
3946					 "%s: timeout GINTSTS.GINNAKEFF\n",
3947					 __func__);
3948		}
3949	} else {
3950		/* Mask GINTSTS_GOUTNAKEFF interrupt */
3951		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF);
3952
3953		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3954			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3955
3956		if (!using_dma(hsotg)) {
3957			/* Wait for GINTSTS_RXFLVL interrupt */
3958			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3959						    GINTSTS_RXFLVL, 100)) {
3960				dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n",
3961					 __func__);
3962			} else {
3963				/*
3964				 * Pop GLOBAL OUT NAK status packet from RxFIFO
3965				 * to assert GOUTNAKEFF interrupt
3966				 */
3967				dwc2_readl(hsotg, GRXSTSP);
3968			}
3969		}
3970
3971		/* Wait for global nak to take effect */
3972		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3973					    GINTSTS_GOUTNAKEFF, 100))
3974			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3975				 __func__);
3976	}
3977
3978	/* Disable ep */
3979	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
 
 
3980
3981	/* Wait for ep to be disabled */
3982	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3983		dev_warn(hsotg->dev,
3984			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3985
3986	/* Clear EPDISBLD interrupt */
3987	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3988
3989	if (hs_ep->dir_in) {
3990		unsigned short fifo_index;
3991
3992		if (hsotg->dedicated_fifos || hs_ep->periodic)
3993			fifo_index = hs_ep->fifo_index;
3994		else
3995			fifo_index = 0;
3996
3997		/* Flush TX FIFO */
3998		dwc2_flush_tx_fifo(hsotg, fifo_index);
3999
4000		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
4001		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
4002			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
4003
4004	} else {
4005		/* Remove global NAKs */
4006		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
4007	}
4008}
4009
4010/**
4011 * dwc2_hsotg_ep_enable - enable the given endpoint
4012 * @ep: The USB endpint to configure
4013 * @desc: The USB endpoint descriptor to configure with.
4014 *
4015 * This is called from the USB gadget code's usb_ep_enable().
4016 */
4017static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
4018				const struct usb_endpoint_descriptor *desc)
4019{
4020	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4021	struct dwc2_hsotg *hsotg = hs_ep->parent;
4022	unsigned long flags;
4023	unsigned int index = hs_ep->index;
4024	u32 epctrl_reg;
4025	u32 epctrl;
4026	u32 mps;
4027	u32 mc;
4028	u32 mask;
4029	unsigned int dir_in;
4030	unsigned int i, val, size;
4031	int ret = 0;
4032	unsigned char ep_type;
4033	int desc_num;
4034
4035	dev_dbg(hsotg->dev,
4036		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
4037		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
4038		desc->wMaxPacketSize, desc->bInterval);
4039
4040	/* not to be called for EP0 */
4041	if (index == 0) {
4042		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
4043		return -EINVAL;
4044	}
4045
4046	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
4047	if (dir_in != hs_ep->dir_in) {
4048		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
4049		return -EINVAL;
4050	}
4051
4052	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
4053	mps = usb_endpoint_maxp(desc);
4054	mc = usb_endpoint_maxp_mult(desc);
4055
4056	/* ISOC IN in DDMA supported bInterval up to 10 */
4057	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4058	    dir_in && desc->bInterval > 10) {
4059		dev_err(hsotg->dev,
4060			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
4061		return -EINVAL;
4062	}
4063
4064	/* High bandwidth ISOC OUT in DDMA not supported */
4065	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
4066	    !dir_in && mc > 1) {
4067		dev_err(hsotg->dev,
4068			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
4069		return -EINVAL;
4070	}
4071
4072	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
4073
4074	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4075	epctrl = dwc2_readl(hsotg, epctrl_reg);
4076
4077	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
4078		__func__, epctrl, epctrl_reg);
4079
4080	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
4081		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
4082	else
4083		desc_num = MAX_DMA_DESC_NUM_GENERIC;
4084
4085	/* Allocate DMA descriptor chain for non-ctrl endpoints */
4086	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
4087		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
4088			desc_num * sizeof(struct dwc2_dma_desc),
4089			&hs_ep->desc_list_dma, GFP_ATOMIC);
4090		if (!hs_ep->desc_list) {
4091			ret = -ENOMEM;
4092			goto error2;
4093		}
4094	}
4095
4096	spin_lock_irqsave(&hsotg->lock, flags);
4097
4098	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
4099	epctrl |= DXEPCTL_MPS(mps);
4100
4101	/*
4102	 * mark the endpoint as active, otherwise the core may ignore
4103	 * transactions entirely for this endpoint
4104	 */
4105	epctrl |= DXEPCTL_USBACTEP;
4106
 
 
 
 
 
 
 
 
 
4107	/* update the endpoint state */
4108	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4109
4110	/* default, set to non-periodic */
4111	hs_ep->isochronous = 0;
4112	hs_ep->periodic = 0;
4113	hs_ep->halted = 0;
4114	hs_ep->wedged = 0;
4115	hs_ep->interval = desc->bInterval;
 
 
 
 
4116
4117	switch (ep_type) {
4118	case USB_ENDPOINT_XFER_ISOC:
4119		epctrl |= DXEPCTL_EPTYPE_ISO;
4120		epctrl |= DXEPCTL_SETEVENFR;
4121		hs_ep->isochronous = 1;
4122		hs_ep->interval = 1 << (desc->bInterval - 1);
4123		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4124		hs_ep->next_desc = 0;
4125		hs_ep->compl_desc = 0;
4126		if (dir_in) {
4127			hs_ep->periodic = 1;
4128			mask = dwc2_readl(hsotg, DIEPMSK);
4129			mask |= DIEPMSK_NAKMSK;
4130			dwc2_writel(hsotg, mask, DIEPMSK);
4131		} else {
4132			epctrl |= DXEPCTL_SNAK;
4133			mask = dwc2_readl(hsotg, DOEPMSK);
4134			mask |= DOEPMSK_OUTTKNEPDISMSK;
4135			dwc2_writel(hsotg, mask, DOEPMSK);
4136		}
4137		break;
4138
4139	case USB_ENDPOINT_XFER_BULK:
4140		epctrl |= DXEPCTL_EPTYPE_BULK;
4141		break;
4142
4143	case USB_ENDPOINT_XFER_INT:
4144		if (dir_in)
4145			hs_ep->periodic = 1;
4146
4147		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4148			hs_ep->interval = 1 << (desc->bInterval - 1);
4149
4150		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4151		break;
4152
4153	case USB_ENDPOINT_XFER_CONTROL:
4154		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4155		break;
4156	}
4157
 
 
 
 
 
 
 
 
 
 
 
4158	/*
4159	 * if the hardware has dedicated fifos, we must give each IN EP
4160	 * a unique tx-fifo even if it is non-periodic.
4161	 */
4162	if (dir_in && hsotg->dedicated_fifos) {
4163		unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
4164		u32 fifo_index = 0;
4165		u32 fifo_size = UINT_MAX;
4166
4167		size = hs_ep->ep.maxpacket * hs_ep->mc;
4168		for (i = 1; i <= fifo_count; ++i) {
4169			if (hsotg->fifo_map & (1 << i))
4170				continue;
4171			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4172			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4173			if (val < size)
4174				continue;
4175			/* Search for smallest acceptable fifo */
4176			if (val < fifo_size) {
4177				fifo_size = val;
4178				fifo_index = i;
4179			}
4180		}
4181		if (!fifo_index) {
4182			dev_err(hsotg->dev,
4183				"%s: No suitable fifo found\n", __func__);
4184			ret = -ENOMEM;
4185			goto error1;
4186		}
4187		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4188		hsotg->fifo_map |= 1 << fifo_index;
4189		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4190		hs_ep->fifo_index = fifo_index;
4191		hs_ep->fifo_size = fifo_size;
4192	}
4193
4194	/* for non control endpoints, set PID to D0 */
4195	if (index && !hs_ep->isochronous)
4196		epctrl |= DXEPCTL_SETD0PID;
4197
4198	/* WA for Full speed ISOC IN in DDMA mode.
4199	 * By Clear NAK status of EP, core will send ZLP
4200	 * to IN token and assert NAK interrupt relying
4201	 * on TxFIFO status only
4202	 */
4203
4204	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4205	    hs_ep->isochronous && dir_in) {
4206		/* The WA applies only to core versions from 2.72a
4207		 * to 4.00a (including both). Also for FS_IOT_1.00a
4208		 * and HS_IOT_1.00a.
4209		 */
4210		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4211
4212		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4213		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4214		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4215		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4216			epctrl |= DXEPCTL_CNAK;
4217	}
4218
4219	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4220		__func__, epctrl);
4221
4222	dwc2_writel(hsotg, epctrl, epctrl_reg);
4223	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4224		__func__, dwc2_readl(hsotg, epctrl_reg));
4225
4226	/* enable the endpoint interrupt */
4227	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4228
4229error1:
4230	spin_unlock_irqrestore(&hsotg->lock, flags);
4231
4232error2:
4233	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4234		dmam_free_coherent(hsotg->dev, desc_num *
4235			sizeof(struct dwc2_dma_desc),
4236			hs_ep->desc_list, hs_ep->desc_list_dma);
4237		hs_ep->desc_list = NULL;
4238	}
4239
4240	return ret;
4241}
4242
4243/**
4244 * dwc2_hsotg_ep_disable - disable given endpoint
4245 * @ep: The endpoint to disable.
4246 */
4247static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4248{
4249	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4250	struct dwc2_hsotg *hsotg = hs_ep->parent;
4251	int dir_in = hs_ep->dir_in;
4252	int index = hs_ep->index;
 
4253	u32 epctrl_reg;
4254	u32 ctrl;
4255
4256	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4257
4258	if (ep == &hsotg->eps_out[0]->ep) {
4259		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4260		return -EINVAL;
4261	}
4262
4263	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4264		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4265		return -EINVAL;
4266	}
4267
4268	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4269
4270	ctrl = dwc2_readl(hsotg, epctrl_reg);
4271
4272	if (ctrl & DXEPCTL_EPENA)
4273		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
 
4274
 
4275	ctrl &= ~DXEPCTL_EPENA;
4276	ctrl &= ~DXEPCTL_USBACTEP;
4277	ctrl |= DXEPCTL_SNAK;
4278
4279	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4280	dwc2_writel(hsotg, ctrl, epctrl_reg);
4281
4282	/* disable endpoint interrupts */
4283	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4284
4285	/* terminate all requests with shutdown */
4286	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4287
4288	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4289	hs_ep->fifo_index = 0;
4290	hs_ep->fifo_size = 0;
4291
4292	return 0;
4293}
4294
4295static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4296{
4297	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4298	struct dwc2_hsotg *hsotg = hs_ep->parent;
4299	unsigned long flags;
4300	int ret;
4301
4302	spin_lock_irqsave(&hsotg->lock, flags);
4303	ret = dwc2_hsotg_ep_disable(ep);
4304	spin_unlock_irqrestore(&hsotg->lock, flags);
4305	return ret;
4306}
4307
4308/**
4309 * on_list - check request is on the given endpoint
4310 * @ep: The endpoint to check.
4311 * @test: The request to test if it is on the endpoint.
4312 */
4313static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4314{
4315	struct dwc2_hsotg_req *req, *treq;
4316
4317	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4318		if (req == test)
4319			return true;
4320	}
4321
4322	return false;
4323}
4324
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4325/**
4326 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4327 * @ep: The endpoint to dequeue.
4328 * @req: The request to be removed from a queue.
4329 */
4330static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4331{
4332	struct dwc2_hsotg_req *hs_req = our_req(req);
4333	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4334	struct dwc2_hsotg *hs = hs_ep->parent;
4335	unsigned long flags;
4336
4337	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4338
4339	spin_lock_irqsave(&hs->lock, flags);
4340
4341	if (!on_list(hs_ep, hs_req)) {
4342		spin_unlock_irqrestore(&hs->lock, flags);
4343		return -EINVAL;
4344	}
4345
4346	/* Dequeue already started request */
4347	if (req == &hs_ep->req->req)
4348		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4349
4350	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4351	spin_unlock_irqrestore(&hs->lock, flags);
4352
4353	return 0;
4354}
4355
4356/**
4357 * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint
4358 * @ep: The endpoint to be wedged.
4359 *
4360 */
4361static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep)
4362{
4363	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4364	struct dwc2_hsotg *hs = hs_ep->parent;
4365
4366	unsigned long	flags;
4367	int		ret;
4368
4369	spin_lock_irqsave(&hs->lock, flags);
4370	hs_ep->wedged = 1;
4371	ret = dwc2_hsotg_ep_sethalt(ep, 1, false);
4372	spin_unlock_irqrestore(&hs->lock, flags);
4373
4374	return ret;
4375}
4376
4377/**
4378 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4379 * @ep: The endpoint to set halt.
4380 * @value: Set or unset the halt.
4381 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4382 *       the endpoint is busy processing requests.
4383 *
4384 * We need to stall the endpoint immediately if request comes from set_feature
4385 * protocol command handler.
4386 */
4387static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4388{
4389	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4390	struct dwc2_hsotg *hs = hs_ep->parent;
4391	int index = hs_ep->index;
4392	u32 epreg;
4393	u32 epctl;
4394	u32 xfertype;
4395
4396	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4397
4398	if (index == 0) {
4399		if (value)
4400			dwc2_hsotg_stall_ep0(hs);
4401		else
4402			dev_warn(hs->dev,
4403				 "%s: can't clear halt on ep0\n", __func__);
4404		return 0;
4405	}
4406
4407	if (hs_ep->isochronous) {
4408		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4409		return -EINVAL;
4410	}
4411
4412	if (!now && value && !list_empty(&hs_ep->queue)) {
4413		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4414			ep->name);
4415		return -EAGAIN;
4416	}
4417
4418	if (hs_ep->dir_in) {
4419		epreg = DIEPCTL(index);
4420		epctl = dwc2_readl(hs, epreg);
4421
4422		if (value) {
4423			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4424			if (epctl & DXEPCTL_EPENA)
4425				epctl |= DXEPCTL_EPDIS;
4426		} else {
4427			epctl &= ~DXEPCTL_STALL;
4428			hs_ep->wedged = 0;
4429			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4430			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4431			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4432				epctl |= DXEPCTL_SETD0PID;
4433		}
4434		dwc2_writel(hs, epctl, epreg);
4435	} else {
 
4436		epreg = DOEPCTL(index);
4437		epctl = dwc2_readl(hs, epreg);
4438
4439		if (value) {
4440			/* Unmask GOUTNAKEFF interrupt */
4441			dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF);
4442
4443			if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF))
4444				dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK);
4445			// STALL bit will be set in GOUTNAKEFF interrupt handler
4446		} else {
4447			epctl &= ~DXEPCTL_STALL;
4448			hs_ep->wedged = 0;
4449			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4450			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4451			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4452				epctl |= DXEPCTL_SETD0PID;
4453			dwc2_writel(hs, epctl, epreg);
4454		}
 
4455	}
4456
4457	hs_ep->halted = value;
 
4458	return 0;
4459}
4460
4461/**
4462 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4463 * @ep: The endpoint to set halt.
4464 * @value: Set or unset the halt.
4465 */
4466static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4467{
4468	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4469	struct dwc2_hsotg *hs = hs_ep->parent;
4470	unsigned long flags;
4471	int ret;
4472
4473	spin_lock_irqsave(&hs->lock, flags);
4474	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4475	spin_unlock_irqrestore(&hs->lock, flags);
4476
4477	return ret;
4478}
4479
4480static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4481	.enable		= dwc2_hsotg_ep_enable,
4482	.disable	= dwc2_hsotg_ep_disable_lock,
4483	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4484	.free_request	= dwc2_hsotg_ep_free_request,
4485	.queue		= dwc2_hsotg_ep_queue_lock,
4486	.dequeue	= dwc2_hsotg_ep_dequeue,
4487	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4488	.set_wedge	= dwc2_gadget_ep_set_wedge,
4489	/* note, don't believe we have any call for the fifo routines */
4490};
4491
4492/**
4493 * dwc2_hsotg_init - initialize the usb core
4494 * @hsotg: The driver state
4495 */
4496static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4497{
 
 
4498	/* unmask subset of endpoint interrupts */
4499
4500	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4501		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4502		    DIEPMSK);
4503
4504	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4505		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4506		    DOEPMSK);
4507
4508	dwc2_writel(hsotg, 0, DAINTMSK);
4509
4510	/* Be in disconnected state until gadget is registered */
4511	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4512
4513	/* setup fifos */
4514
4515	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4516		dwc2_readl(hsotg, GRXFSIZ),
4517		dwc2_readl(hsotg, GNPTXFSIZ));
4518
4519	dwc2_hsotg_init_fifo(hsotg);
4520
 
 
 
 
 
 
 
 
 
 
 
4521	if (using_dma(hsotg))
4522		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4523}
4524
4525/**
4526 * dwc2_hsotg_udc_start - prepare the udc for work
4527 * @gadget: The usb gadget state
4528 * @driver: The usb gadget driver
4529 *
4530 * Perform initialization to prepare udc device and driver
4531 * to work.
4532 */
4533static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4534				struct usb_gadget_driver *driver)
4535{
4536	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4537	unsigned long flags;
4538	int ret;
4539
4540	if (!hsotg) {
4541		pr_err("%s: called with no device\n", __func__);
4542		return -ENODEV;
4543	}
4544
4545	if (!driver) {
4546		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4547		return -EINVAL;
4548	}
4549
4550	if (driver->max_speed < USB_SPEED_FULL)
4551		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4552
4553	if (!driver->setup) {
4554		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4555		return -EINVAL;
4556	}
4557
4558	WARN_ON(hsotg->driver);
4559
 
4560	hsotg->driver = driver;
4561	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4562	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4563
4564	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4565		ret = dwc2_lowlevel_hw_enable(hsotg);
4566		if (ret)
4567			goto err;
4568	}
4569
4570	if (!IS_ERR_OR_NULL(hsotg->uphy))
4571		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4572
4573	spin_lock_irqsave(&hsotg->lock, flags);
4574	if (dwc2_hw_is_device(hsotg)) {
4575		dwc2_hsotg_init(hsotg);
4576		dwc2_hsotg_core_init_disconnected(hsotg, false);
4577	}
4578
4579	hsotg->enabled = 0;
4580	spin_unlock_irqrestore(&hsotg->lock, flags);
4581
4582	gadget->sg_supported = using_desc_dma(hsotg);
4583	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4584
4585	return 0;
4586
4587err:
4588	hsotg->driver = NULL;
4589	return ret;
4590}
4591
4592/**
4593 * dwc2_hsotg_udc_stop - stop the udc
4594 * @gadget: The usb gadget state
 
4595 *
4596 * Stop udc hw block and stay tunned for future transmissions
4597 */
4598static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4599{
4600	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4601	unsigned long flags;
4602	int ep;
4603
4604	if (!hsotg)
4605		return -ENODEV;
4606
4607	/* all endpoints should be shutdown */
4608	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4609		if (hsotg->eps_in[ep])
4610			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4611		if (hsotg->eps_out[ep])
4612			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4613	}
4614
4615	spin_lock_irqsave(&hsotg->lock, flags);
4616
4617	hsotg->driver = NULL;
4618	hsotg->gadget.dev.of_node = NULL;
4619	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4620	hsotg->enabled = 0;
4621
4622	spin_unlock_irqrestore(&hsotg->lock, flags);
4623
4624	if (!IS_ERR_OR_NULL(hsotg->uphy))
4625		otg_set_peripheral(hsotg->uphy->otg, NULL);
4626
4627	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4628		dwc2_lowlevel_hw_disable(hsotg);
4629
4630	return 0;
4631}
4632
4633/**
4634 * dwc2_hsotg_gadget_getframe - read the frame number
4635 * @gadget: The usb gadget state
4636 *
4637 * Read the {micro} frame number
4638 */
4639static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4640{
4641	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4642}
4643
4644/**
4645 * dwc2_hsotg_set_selfpowered - set if device is self/bus powered
4646 * @gadget: The usb gadget state
4647 * @is_selfpowered: Whether the device is self-powered
4648 *
4649 * Set if the device is self or bus powered.
4650 */
4651static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget,
4652				      int is_selfpowered)
4653{
4654	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4655	unsigned long flags;
4656
4657	spin_lock_irqsave(&hsotg->lock, flags);
4658	gadget->is_selfpowered = !!is_selfpowered;
4659	spin_unlock_irqrestore(&hsotg->lock, flags);
4660
4661	return 0;
4662}
4663
4664/**
4665 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4666 * @gadget: The usb gadget state
4667 * @is_on: Current state of the USB PHY
4668 *
4669 * Connect/Disconnect the USB PHY pullup
4670 */
4671static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4672{
4673	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4674	unsigned long flags;
4675
4676	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4677		hsotg->op_state);
4678
4679	/* Don't modify pullup state while in host mode */
4680	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4681		hsotg->enabled = is_on;
4682		return 0;
4683	}
4684
4685	spin_lock_irqsave(&hsotg->lock, flags);
4686	if (is_on) {
4687		hsotg->enabled = 1;
4688		dwc2_hsotg_core_init_disconnected(hsotg, false);
4689		/* Enable ACG feature in device mode,if supported */
4690		dwc2_enable_acg(hsotg);
4691		dwc2_hsotg_core_connect(hsotg);
4692	} else {
4693		dwc2_hsotg_core_disconnect(hsotg);
4694		dwc2_hsotg_disconnect(hsotg);
4695		hsotg->enabled = 0;
4696	}
4697
4698	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4699	spin_unlock_irqrestore(&hsotg->lock, flags);
4700
4701	return 0;
4702}
4703
4704static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4705{
4706	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4707	unsigned long flags;
4708
4709	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4710	spin_lock_irqsave(&hsotg->lock, flags);
4711
4712	/*
4713	 * If controller is in partial power down state, it must exit from
4714	 * that state before being initialized / de-initialized
4715	 */
4716	if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd)
4717		/*
4718		 * No need to check the return value as
4719		 * registers are not being restored.
4720		 */
4721		dwc2_exit_partial_power_down(hsotg, 0, false);
4722
4723	if (is_active) {
4724		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4725
4726		dwc2_hsotg_core_init_disconnected(hsotg, false);
4727		if (hsotg->enabled) {
4728			/* Enable ACG feature in device mode,if supported */
4729			dwc2_enable_acg(hsotg);
4730			dwc2_hsotg_core_connect(hsotg);
4731		}
4732	} else {
4733		dwc2_hsotg_core_disconnect(hsotg);
4734		dwc2_hsotg_disconnect(hsotg);
4735	}
4736
4737	spin_unlock_irqrestore(&hsotg->lock, flags);
4738	return 0;
4739}
4740
4741/**
4742 * dwc2_hsotg_vbus_draw - report bMaxPower field
4743 * @gadget: The usb gadget state
4744 * @mA: Amount of current
4745 *
4746 * Report how much power the device may consume to the phy.
4747 */
4748static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4749{
4750	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4751
4752	if (IS_ERR_OR_NULL(hsotg->uphy))
4753		return -ENOTSUPP;
4754	return usb_phy_set_power(hsotg->uphy, mA);
4755}
4756
4757static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed)
4758{
4759	struct dwc2_hsotg *hsotg = to_hsotg(g);
4760	unsigned long		flags;
4761
4762	spin_lock_irqsave(&hsotg->lock, flags);
4763	switch (speed) {
4764	case USB_SPEED_HIGH:
4765		hsotg->params.speed = DWC2_SPEED_PARAM_HIGH;
4766		break;
4767	case USB_SPEED_FULL:
4768		hsotg->params.speed = DWC2_SPEED_PARAM_FULL;
4769		break;
4770	case USB_SPEED_LOW:
4771		hsotg->params.speed = DWC2_SPEED_PARAM_LOW;
4772		break;
4773	default:
4774		dev_err(hsotg->dev, "invalid speed (%d)\n", speed);
4775	}
4776	spin_unlock_irqrestore(&hsotg->lock, flags);
4777}
4778
4779static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4780	.get_frame	= dwc2_hsotg_gadget_getframe,
4781	.set_selfpowered	= dwc2_hsotg_set_selfpowered,
4782	.udc_start		= dwc2_hsotg_udc_start,
4783	.udc_stop		= dwc2_hsotg_udc_stop,
4784	.pullup                 = dwc2_hsotg_pullup,
4785	.udc_set_speed		= dwc2_gadget_set_speed,
4786	.vbus_session		= dwc2_hsotg_vbus_session,
4787	.vbus_draw		= dwc2_hsotg_vbus_draw,
4788};
4789
4790/**
4791 * dwc2_hsotg_initep - initialise a single endpoint
4792 * @hsotg: The device state.
4793 * @hs_ep: The endpoint to be initialised.
4794 * @epnum: The endpoint number
4795 * @dir_in: True if direction is in.
4796 *
4797 * Initialise the given endpoint (as part of the probe and device state
4798 * creation) to give to the gadget driver. Setup the endpoint name, any
4799 * direction information and other state that may be required.
4800 */
4801static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4802			      struct dwc2_hsotg_ep *hs_ep,
4803				       int epnum,
4804				       bool dir_in)
4805{
4806	char *dir;
4807
4808	if (epnum == 0)
4809		dir = "";
4810	else if (dir_in)
4811		dir = "in";
4812	else
4813		dir = "out";
4814
4815	hs_ep->dir_in = dir_in;
4816	hs_ep->index = epnum;
4817
4818	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4819
4820	INIT_LIST_HEAD(&hs_ep->queue);
4821	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4822
4823	/* add to the list of endpoints known by the gadget driver */
4824	if (epnum)
4825		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4826
4827	hs_ep->parent = hsotg;
4828	hs_ep->ep.name = hs_ep->name;
4829
4830	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4831		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4832	else
4833		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4834					   epnum ? 1024 : EP0_MPS_LIMIT);
4835	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4836
4837	if (epnum == 0) {
4838		hs_ep->ep.caps.type_control = true;
4839	} else {
4840		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4841			hs_ep->ep.caps.type_iso = true;
4842			hs_ep->ep.caps.type_bulk = true;
4843		}
4844		hs_ep->ep.caps.type_int = true;
4845	}
4846
4847	if (dir_in)
4848		hs_ep->ep.caps.dir_in = true;
4849	else
4850		hs_ep->ep.caps.dir_out = true;
4851
4852	/*
4853	 * if we're using dma, we need to set the next-endpoint pointer
4854	 * to be something valid.
4855	 */
4856
4857	if (using_dma(hsotg)) {
4858		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4859
4860		if (dir_in)
4861			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4862		else
4863			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4864	}
4865}
4866
4867/**
4868 * dwc2_hsotg_hw_cfg - read HW configuration registers
4869 * @hsotg: Programming view of the DWC_otg controller
4870 *
4871 * Read the USB core HW configuration registers
4872 */
4873static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4874{
4875	u32 cfg;
4876	u32 ep_type;
4877	u32 i;
4878
4879	/* check hardware configuration */
4880
4881	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4882
4883	/* Add ep0 */
4884	hsotg->num_of_eps++;
4885
4886	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4887					sizeof(struct dwc2_hsotg_ep),
4888					GFP_KERNEL);
4889	if (!hsotg->eps_in[0])
4890		return -ENOMEM;
4891	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4892	hsotg->eps_out[0] = hsotg->eps_in[0];
4893
4894	cfg = hsotg->hw_params.dev_ep_dirs;
4895	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4896		ep_type = cfg & 3;
4897		/* Direction in or both */
4898		if (!(ep_type & 2)) {
4899			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4900				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4901			if (!hsotg->eps_in[i])
4902				return -ENOMEM;
4903		}
4904		/* Direction out or both */
4905		if (!(ep_type & 1)) {
4906			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4907				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4908			if (!hsotg->eps_out[i])
4909				return -ENOMEM;
4910		}
4911	}
4912
4913	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4914	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4915
4916	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4917		 hsotg->num_of_eps,
4918		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4919		 hsotg->fifo_mem);
4920	return 0;
4921}
4922
4923/**
4924 * dwc2_hsotg_dump - dump state of the udc
4925 * @hsotg: Programming view of the DWC_otg controller
4926 *
4927 */
4928static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4929{
4930#ifdef DEBUG
4931	struct device *dev = hsotg->dev;
 
4932	u32 val;
4933	int idx;
4934
4935	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4936		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4937		 dwc2_readl(hsotg, DIEPMSK));
4938
4939	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4940		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4941
4942	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4943		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4944
4945	/* show periodic fifo settings */
4946
4947	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4948		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4949		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4950			 val >> FIFOSIZE_DEPTH_SHIFT,
4951			 val & FIFOSIZE_STARTADDR_MASK);
4952	}
4953
4954	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4955		dev_info(dev,
4956			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4957			 dwc2_readl(hsotg, DIEPCTL(idx)),
4958			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4959			 dwc2_readl(hsotg, DIEPDMA(idx)));
4960
4961		val = dwc2_readl(hsotg, DOEPCTL(idx));
4962		dev_info(dev,
4963			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4964			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4965			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4966			 dwc2_readl(hsotg, DOEPDMA(idx)));
 
4967	}
4968
4969	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4970		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4971#endif
4972}
4973
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4974/**
4975 * dwc2_gadget_init - init function for gadget
4976 * @hsotg: Programming view of the DWC_otg controller
4977 *
4978 */
4979int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4980{
4981	struct device *dev = hsotg->dev;
4982	int epnum;
4983	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4984
4985	/* Dump fifo information */
4986	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4987		hsotg->params.g_np_tx_fifo_size);
4988	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
4989
4990	switch (hsotg->params.speed) {
4991	case DWC2_SPEED_PARAM_LOW:
4992		hsotg->gadget.max_speed = USB_SPEED_LOW;
4993		break;
4994	case DWC2_SPEED_PARAM_FULL:
4995		hsotg->gadget.max_speed = USB_SPEED_FULL;
4996		break;
4997	default:
4998		hsotg->gadget.max_speed = USB_SPEED_HIGH;
4999		break;
5000	}
5001
 
5002	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
5003	hsotg->gadget.name = dev_name(dev);
5004	hsotg->gadget.otg_caps = &hsotg->params.otg_caps;
5005	hsotg->remote_wakeup_allowed = 0;
5006
5007	if (hsotg->params.lpm)
5008		hsotg->gadget.lpm_capable = true;
5009
5010	if (hsotg->dr_mode == USB_DR_MODE_OTG)
5011		hsotg->gadget.is_otg = 1;
5012	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
5013		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
5014
5015	ret = dwc2_hsotg_hw_cfg(hsotg);
5016	if (ret) {
5017		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
5018		return ret;
5019	}
5020
5021	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
5022			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5023	if (!hsotg->ctrl_buff)
 
5024		return -ENOMEM;
 
5025
5026	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
5027			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
5028	if (!hsotg->ep0_buff)
 
5029		return -ENOMEM;
5030
5031	if (using_desc_dma(hsotg)) {
5032		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
5033		if (ret < 0)
5034			return ret;
5035	}
5036
5037	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
5038			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
5039	if (ret < 0) {
5040		dev_err(dev, "cannot claim IRQ for gadget\n");
5041		return ret;
5042	}
5043
5044	/* hsotg->num_of_eps holds number of EPs other than ep0 */
5045
5046	if (hsotg->num_of_eps == 0) {
5047		dev_err(dev, "wrong number of EPs (zero)\n");
5048		return -EINVAL;
5049	}
5050
5051	/* setup endpoint information */
5052
5053	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
5054	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
5055
5056	/* allocate EP0 request */
5057
5058	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
5059						     GFP_KERNEL);
5060	if (!hsotg->ctrl_req) {
5061		dev_err(dev, "failed to allocate ctrl req\n");
5062		return -ENOMEM;
5063	}
5064
5065	/* initialise the endpoints now the core has been initialised */
5066	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
5067		if (hsotg->eps_in[epnum])
5068			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
5069					  epnum, 1);
5070		if (hsotg->eps_out[epnum])
5071			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
5072					  epnum, 0);
5073	}
5074
 
 
 
 
5075	dwc2_hsotg_dump(hsotg);
5076
5077	return 0;
5078}
5079
5080/**
5081 * dwc2_hsotg_remove - remove function for hsotg driver
5082 * @hsotg: Programming view of the DWC_otg controller
5083 *
5084 */
5085int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
5086{
5087	usb_del_gadget_udc(&hsotg->gadget);
5088	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
5089
5090	return 0;
5091}
5092
5093int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
5094{
5095	unsigned long flags;
5096
5097	if (hsotg->lx_state != DWC2_L0)
5098		return 0;
5099
5100	if (hsotg->driver) {
5101		int ep;
5102
5103		dev_info(hsotg->dev, "suspending usb gadget %s\n",
5104			 hsotg->driver->driver.name);
5105
5106		spin_lock_irqsave(&hsotg->lock, flags);
5107		if (hsotg->enabled)
5108			dwc2_hsotg_core_disconnect(hsotg);
5109		dwc2_hsotg_disconnect(hsotg);
5110		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
5111		spin_unlock_irqrestore(&hsotg->lock, flags);
5112
5113		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
5114			if (hsotg->eps_in[ep])
5115				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
5116			if (hsotg->eps_out[ep])
5117				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
5118		}
5119	}
5120
5121	return 0;
5122}
5123
5124int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
5125{
5126	unsigned long flags;
5127
5128	if (hsotg->lx_state == DWC2_L2)
5129		return 0;
5130
5131	if (hsotg->driver) {
5132		dev_info(hsotg->dev, "resuming usb gadget %s\n",
5133			 hsotg->driver->driver.name);
5134
5135		spin_lock_irqsave(&hsotg->lock, flags);
5136		dwc2_hsotg_core_init_disconnected(hsotg, false);
5137		if (hsotg->enabled) {
5138			/* Enable ACG feature in device mode,if supported */
5139			dwc2_enable_acg(hsotg);
5140			dwc2_hsotg_core_connect(hsotg);
5141		}
5142		spin_unlock_irqrestore(&hsotg->lock, flags);
5143	}
5144
5145	return 0;
5146}
5147
5148/**
5149 * dwc2_backup_device_registers() - Backup controller device registers.
5150 * When suspending usb bus, registers needs to be backuped
5151 * if controller power is disabled once suspended.
5152 *
5153 * @hsotg: Programming view of the DWC_otg controller
5154 */
5155int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
5156{
5157	struct dwc2_dregs_backup *dr;
5158	int i;
5159
5160	dev_dbg(hsotg->dev, "%s\n", __func__);
5161
5162	/* Backup dev regs */
5163	dr = &hsotg->dr_backup;
5164
5165	dr->dcfg = dwc2_readl(hsotg, DCFG);
5166	dr->dctl = dwc2_readl(hsotg, DCTL);
5167	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
5168	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
5169	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
5170
5171	for (i = 0; i < hsotg->num_of_eps; i++) {
5172		/* Backup IN EPs */
5173		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
5174
5175		/* Ensure DATA PID is correctly configured */
5176		if (dr->diepctl[i] & DXEPCTL_DPID)
5177			dr->diepctl[i] |= DXEPCTL_SETD1PID;
5178		else
5179			dr->diepctl[i] |= DXEPCTL_SETD0PID;
5180
5181		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
5182		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
5183
5184		/* Backup OUT EPs */
5185		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
5186
5187		/* Ensure DATA PID is correctly configured */
5188		if (dr->doepctl[i] & DXEPCTL_DPID)
5189			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5190		else
5191			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5192
5193		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5194		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5195		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5196	}
5197	dr->valid = true;
5198	return 0;
5199}
5200
5201/**
5202 * dwc2_restore_device_registers() - Restore controller device registers.
5203 * When resuming usb bus, device registers needs to be restored
5204 * if controller power were disabled.
5205 *
5206 * @hsotg: Programming view of the DWC_otg controller
5207 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5208 *
5209 * Return: 0 if successful, negative error code otherwise
5210 */
5211int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5212{
5213	struct dwc2_dregs_backup *dr;
 
5214	int i;
5215
5216	dev_dbg(hsotg->dev, "%s\n", __func__);
5217
5218	/* Restore dev regs */
5219	dr = &hsotg->dr_backup;
5220	if (!dr->valid) {
5221		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5222			__func__);
5223		return -EINVAL;
5224	}
5225	dr->valid = false;
5226
5227	if (!remote_wakeup)
5228		dwc2_writel(hsotg, dr->dctl, DCTL);
5229
5230	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5231	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5232	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5233
5234	for (i = 0; i < hsotg->num_of_eps; i++) {
5235		/* Restore IN EPs */
5236		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5237		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5238		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5239		/** WA for enabled EPx's IN in DDMA mode. On entering to
5240		 * hibernation wrong value read and saved from DIEPDMAx,
5241		 * as result BNA interrupt asserted on hibernation exit
5242		 * by restoring from saved area.
5243		 */
5244		if (using_desc_dma(hsotg) &&
5245		    (dr->diepctl[i] & DXEPCTL_EPENA))
5246			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5247		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5248		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5249		/* Restore OUT EPs */
5250		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5251		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5252		 * hibernation wrong value read and saved from DOEPDMAx,
5253		 * as result BNA interrupt asserted on hibernation exit
5254		 * by restoring from saved area.
5255		 */
5256		if (using_desc_dma(hsotg) &&
5257		    (dr->doepctl[i] & DXEPCTL_EPENA))
5258			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5259		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5260		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5261	}
5262
5263	return 0;
5264}
5265
5266/**
5267 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5268 *
5269 * @hsotg: Programming view of DWC_otg controller
5270 *
5271 */
5272void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5273{
5274	u32 val;
5275
5276	if (!hsotg->params.lpm)
5277		return;
5278
5279	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5280	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5281	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5282	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5283	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5284	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5285	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5286	dwc2_writel(hsotg, val, GLPMCFG);
5287	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5288
5289	/* Unmask WKUP_ALERT Interrupt */
5290	if (hsotg->params.service_interval)
5291		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5292}
5293
5294/**
5295 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5296 *
5297 * @hsotg: Programming view of DWC_otg controller
5298 *
5299 */
5300void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5301{
5302	u32 val = 0;
5303
5304	val |= GREFCLK_REF_CLK_MODE;
5305	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5306	val |= hsotg->params.sof_cnt_wkup_alert <<
5307	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5308
5309	dwc2_writel(hsotg, val, GREFCLK);
5310	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5311}
5312
5313/**
5314 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5315 *
5316 * @hsotg: Programming view of the DWC_otg controller
5317 *
5318 * Return non-zero if failed to enter to hibernation.
5319 */
5320int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5321{
5322	u32 gpwrdn;
5323	u32 gusbcfg;
5324	u32 pcgcctl;
5325	int ret = 0;
5326
5327	/* Change to L2(suspend) state */
5328	hsotg->lx_state = DWC2_L2;
5329	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5330	ret = dwc2_backup_global_registers(hsotg);
5331	if (ret) {
5332		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5333			__func__);
5334		return ret;
5335	}
5336	ret = dwc2_backup_device_registers(hsotg);
5337	if (ret) {
5338		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5339			__func__);
5340		return ret;
5341	}
5342
5343	gpwrdn = GPWRDN_PWRDNRSTN;
5344	udelay(10);
5345	gusbcfg = dwc2_readl(hsotg, GUSBCFG);
5346	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5347		/* ULPI interface */
5348		gpwrdn |= GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5349	}
5350	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5351	udelay(10);
5352
5353	/* Suspend the Phy Clock */
5354	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5355	pcgcctl |= PCGCTL_STOPPCLK;
5356	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5357	udelay(10);
5358
5359	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5360	gpwrdn |= GPWRDN_PMUACTV;
5361	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5362	udelay(10);
5363
5364	/* Set flag to indicate that we are in hibernation */
5365	hsotg->hibernated = 1;
5366
5367	/* Enable interrupts from wake up logic */
5368	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5369	gpwrdn |= GPWRDN_PMUINTSEL;
5370	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5371	udelay(10);
5372
5373	/* Unmask device mode interrupts in GPWRDN */
5374	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5375	gpwrdn |= GPWRDN_RST_DET_MSK;
5376	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5377	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5378	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5379	udelay(10);
5380
5381	/* Enable Power Down Clamp */
5382	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5383	gpwrdn |= GPWRDN_PWRDNCLMP;
5384	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5385	udelay(10);
5386
5387	/* Switch off VDD */
5388	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5389	gpwrdn |= GPWRDN_PWRDNSWTCH;
5390	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5391	udelay(10);
5392
5393	/* Save gpwrdn register for further usage if stschng interrupt */
5394	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5395	dev_dbg(hsotg->dev, "Hibernation completed\n");
5396
5397	return ret;
5398}
5399
5400/**
5401 * dwc2_gadget_exit_hibernation()
5402 * This function is for exiting from Device mode hibernation by host initiated
5403 * resume/reset and device initiated remote-wakeup.
5404 *
5405 * @hsotg: Programming view of the DWC_otg controller
5406 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5407 * @reset: indicates whether resume is initiated by Reset.
5408 *
5409 * Return non-zero if failed to exit from hibernation.
5410 */
5411int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5412				 int rem_wakeup, int reset)
5413{
5414	u32 pcgcctl;
5415	u32 gpwrdn;
5416	u32 dctl;
5417	int ret = 0;
5418	struct dwc2_gregs_backup *gr;
5419	struct dwc2_dregs_backup *dr;
5420
5421	gr = &hsotg->gr_backup;
5422	dr = &hsotg->dr_backup;
5423
5424	if (!hsotg->hibernated) {
5425		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5426		return 1;
5427	}
5428	dev_dbg(hsotg->dev,
5429		"%s: called with rem_wakeup = %d reset = %d\n",
5430		__func__, rem_wakeup, reset);
5431
5432	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5433
5434	if (!reset) {
5435		/* Clear all pending interupts */
5436		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5437	}
5438
5439	/* De-assert Restore */
5440	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5441	gpwrdn &= ~GPWRDN_RESTORE;
5442	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5443	udelay(10);
5444
5445	if (!rem_wakeup) {
5446		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5447		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5448		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5449	}
5450
5451	/* Restore GUSBCFG, DCFG and DCTL */
5452	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5453	dwc2_writel(hsotg, dr->dcfg, DCFG);
5454	dwc2_writel(hsotg, dr->dctl, DCTL);
5455
5456	/* On USB Reset, reset device address to zero */
5457	if (reset)
5458		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
5459
5460	/* Reset ULPI latch */
5461	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5462	gpwrdn &= ~GPWRDN_ULPI_LATCH_EN_DURING_HIB_ENTRY;
5463	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5464
5465	/* De-assert Wakeup Logic */
5466	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5467	gpwrdn &= ~GPWRDN_PMUACTV;
5468	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5469
5470	if (rem_wakeup) {
5471		udelay(10);
5472		/* Start Remote Wakeup Signaling */
5473		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5474	} else {
5475		udelay(50);
5476		/* Set Device programming done bit */
5477		dctl = dwc2_readl(hsotg, DCTL);
5478		dctl |= DCTL_PWRONPRGDONE;
5479		dwc2_writel(hsotg, dctl, DCTL);
5480	}
5481	/* Wait for interrupts which must be cleared */
5482	mdelay(2);
5483	/* Clear all pending interupts */
5484	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5485
5486	/* Restore global registers */
5487	ret = dwc2_restore_global_registers(hsotg);
5488	if (ret) {
5489		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5490			__func__);
5491		return ret;
5492	}
5493
5494	/* Restore device registers */
5495	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5496	if (ret) {
5497		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5498			__func__);
5499		return ret;
5500	}
5501
5502	if (rem_wakeup) {
5503		mdelay(10);
5504		dctl = dwc2_readl(hsotg, DCTL);
5505		dctl &= ~DCTL_RMTWKUPSIG;
5506		dwc2_writel(hsotg, dctl, DCTL);
5507	}
5508
5509	hsotg->hibernated = 0;
5510	hsotg->lx_state = DWC2_L0;
5511	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5512
5513	return ret;
5514}
5515
5516/**
5517 * dwc2_gadget_enter_partial_power_down() - Put controller in partial
5518 * power down.
5519 *
5520 * @hsotg: Programming view of the DWC_otg controller
5521 *
5522 * Return: non-zero if failed to enter device partial power down.
5523 *
5524 * This function is for entering device mode partial power down.
5525 */
5526int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg)
5527{
5528	u32 pcgcctl;
5529	int ret = 0;
5530
5531	dev_dbg(hsotg->dev, "Entering device partial power down started.\n");
5532
5533	/* Backup all registers */
5534	ret = dwc2_backup_global_registers(hsotg);
5535	if (ret) {
5536		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5537			__func__);
5538		return ret;
5539	}
5540
5541	ret = dwc2_backup_device_registers(hsotg);
5542	if (ret) {
5543		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5544			__func__);
5545		return ret;
5546	}
5547
5548	/*
5549	 * Clear any pending interrupts since dwc2 will not be able to
5550	 * clear them after entering partial_power_down.
5551	 */
5552	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5553
5554	/* Put the controller in low power state */
5555	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5556
5557	pcgcctl |= PCGCTL_PWRCLMP;
5558	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5559	udelay(5);
5560
5561	pcgcctl |= PCGCTL_RSTPDWNMODULE;
5562	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5563	udelay(5);
5564
5565	pcgcctl |= PCGCTL_STOPPCLK;
5566	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5567
5568	/* Set in_ppd flag to 1 as here core enters suspend. */
5569	hsotg->in_ppd = 1;
5570	hsotg->lx_state = DWC2_L2;
5571
5572	dev_dbg(hsotg->dev, "Entering device partial power down completed.\n");
5573
5574	return ret;
5575}
5576
5577/*
5578 * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial
5579 * power down.
5580 *
5581 * @hsotg: Programming view of the DWC_otg controller
5582 * @restore: indicates whether need to restore the registers or not.
5583 *
5584 * Return: non-zero if failed to exit device partial power down.
5585 *
5586 * This function is for exiting from device mode partial power down.
5587 */
5588int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg,
5589					bool restore)
5590{
5591	u32 pcgcctl;
5592	u32 dctl;
5593	struct dwc2_dregs_backup *dr;
5594	int ret = 0;
5595
5596	dr = &hsotg->dr_backup;
5597
5598	dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n");
5599
5600	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5601	pcgcctl &= ~PCGCTL_STOPPCLK;
5602	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5603
5604	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5605	pcgcctl &= ~PCGCTL_PWRCLMP;
5606	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5607
5608	pcgcctl = dwc2_readl(hsotg, PCGCTL);
5609	pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5610	dwc2_writel(hsotg, pcgcctl, PCGCTL);
5611
5612	udelay(100);
5613	if (restore) {
5614		ret = dwc2_restore_global_registers(hsotg);
5615		if (ret) {
5616			dev_err(hsotg->dev, "%s: failed to restore registers\n",
5617				__func__);
5618			return ret;
5619		}
5620		/* Restore DCFG */
5621		dwc2_writel(hsotg, dr->dcfg, DCFG);
5622
5623		ret = dwc2_restore_device_registers(hsotg, 0);
5624		if (ret) {
5625			dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5626				__func__);
5627			return ret;
5628		}
5629	}
5630
5631	/* Set the Power-On Programming done bit */
5632	dctl = dwc2_readl(hsotg, DCTL);
5633	dctl |= DCTL_PWRONPRGDONE;
5634	dwc2_writel(hsotg, dctl, DCTL);
5635
5636	/* Set in_ppd flag to 0 as here core exits from suspend. */
5637	hsotg->in_ppd = 0;
5638	hsotg->lx_state = DWC2_L0;
5639
5640	dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n");
5641	return ret;
5642}
5643
5644/**
5645 * dwc2_gadget_enter_clock_gating() - Put controller in clock gating.
5646 *
5647 * @hsotg: Programming view of the DWC_otg controller
5648 *
5649 * Return: non-zero if failed to enter device partial power down.
5650 *
5651 * This function is for entering device mode clock gating.
5652 */
5653void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg)
5654{
5655	u32 pcgctl;
5656
5657	dev_dbg(hsotg->dev, "Entering device clock gating.\n");
5658
5659	/* Set the Phy Clock bit as suspend is received. */
5660	pcgctl = dwc2_readl(hsotg, PCGCTL);
5661	pcgctl |= PCGCTL_STOPPCLK;
5662	dwc2_writel(hsotg, pcgctl, PCGCTL);
5663	udelay(5);
5664
5665	/* Set the Gate hclk as suspend is received. */
5666	pcgctl = dwc2_readl(hsotg, PCGCTL);
5667	pcgctl |= PCGCTL_GATEHCLK;
5668	dwc2_writel(hsotg, pcgctl, PCGCTL);
5669	udelay(5);
5670
5671	hsotg->lx_state = DWC2_L2;
5672	hsotg->bus_suspended = true;
5673}
5674
5675/*
5676 * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating.
5677 *
5678 * @hsotg: Programming view of the DWC_otg controller
5679 * @rem_wakeup: indicates whether remote wake up is enabled.
5680 *
5681 * This function is for exiting from device mode clock gating.
5682 */
5683void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup)
5684{
5685	u32 pcgctl;
5686	u32 dctl;
5687
5688	dev_dbg(hsotg->dev, "Exiting device clock gating.\n");
5689
5690	/* Clear the Gate hclk. */
5691	pcgctl = dwc2_readl(hsotg, PCGCTL);
5692	pcgctl &= ~PCGCTL_GATEHCLK;
5693	dwc2_writel(hsotg, pcgctl, PCGCTL);
5694	udelay(5);
5695
5696	/* Phy Clock bit. */
5697	pcgctl = dwc2_readl(hsotg, PCGCTL);
5698	pcgctl &= ~PCGCTL_STOPPCLK;
5699	dwc2_writel(hsotg, pcgctl, PCGCTL);
5700	udelay(5);
5701
5702	if (rem_wakeup) {
5703		/* Set Remote Wakeup Signaling */
5704		dctl = dwc2_readl(hsotg, DCTL);
5705		dctl |= DCTL_RMTWKUPSIG;
5706		dwc2_writel(hsotg, dctl, DCTL);
5707	}
5708
5709	/* Change to L0 state */
5710	call_gadget(hsotg, resume);
5711	hsotg->lx_state = DWC2_L0;
5712	hsotg->bus_suspended = false;
5713}