Linux Audio

Check our new training course

Loading...
v4.6
 
   1/**
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->g_using_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99/**
 100 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 101 * @hsotg: The device state
 102 * @ints: A bitmask of the interrupts to enable
 103 */
 104static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 105{
 106	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 107	u32 new_gsintmsk;
 108
 109	new_gsintmsk = gsintmsk | ints;
 110
 111	if (new_gsintmsk != gsintmsk) {
 112		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 113		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 114	}
 115}
 116
 117/**
 118 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 119 * @hsotg: The device state
 120 * @ints: A bitmask of the interrupts to enable
 121 */
 122static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 123{
 124	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 125	u32 new_gsintmsk;
 126
 127	new_gsintmsk = gsintmsk & ~ints;
 128
 129	if (new_gsintmsk != gsintmsk)
 130		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 131}
 132
 133/**
 134 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 135 * @hsotg: The device state
 136 * @ep: The endpoint index
 137 * @dir_in: True if direction is in.
 138 * @en: The enable value, true to enable
 139 *
 140 * Set or clear the mask for an individual endpoint's interrupt
 141 * request.
 142 */
 143static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 144				 unsigned int ep, unsigned int dir_in,
 145				 unsigned int en)
 146{
 147	unsigned long flags;
 148	u32 bit = 1 << ep;
 149	u32 daint;
 150
 151	if (!dir_in)
 152		bit <<= 16;
 153
 154	local_irq_save(flags);
 155	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 156	if (en)
 157		daint |= bit;
 158	else
 159		daint &= ~bit;
 160	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 161	local_irq_restore(flags);
 162}
 163
 164/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 166 * @hsotg: The device instance.
 167 */
 168static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 169{
 170	unsigned int ep;
 171	unsigned int addr;
 172	int timeout;
 
 173	u32 val;
 
 174
 175	/* Reset fifo map if not correctly cleared during previous session */
 176	WARN_ON(hsotg->fifo_map);
 177	hsotg->fifo_map = 0;
 178
 179	/* set RX/NPTX FIFO sizes */
 180	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
 181	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
 182		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
 183		hsotg->regs + GNPTXFSIZ);
 184
 185	/*
 186	 * arange all the rest of the TX FIFOs, as some versions of this
 187	 * block have overlapping default addresses. This also ensures
 188	 * that if the settings have been changed, then they are set to
 189	 * known values.
 190	 */
 191
 192	/* start at the end of the GNPTXFSIZ, rounded up */
 193	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
 194
 195	/*
 196	 * Configure fifos sizes from provided configuration and assign
 197	 * them to endpoints dynamically according to maxpacket size value of
 198	 * given endpoint.
 199	 */
 200	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 201		if (!hsotg->g_tx_fifo_sz[ep])
 202			continue;
 203		val = addr;
 204		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
 205		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
 206			  "insufficient fifo memory");
 207		addr += hsotg->g_tx_fifo_sz[ep];
 208
 209		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 
 210	}
 211
 
 
 
 212	/*
 213	 * according to p428 of the design guide, we need to ensure that
 214	 * all fifos are flushed before continuing
 215	 */
 216
 217	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 218	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 219
 220	/* wait until the fifos are both flushed */
 221	timeout = 100;
 222	while (1) {
 223		val = dwc2_readl(hsotg->regs + GRSTCTL);
 224
 225		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 226			break;
 227
 228		if (--timeout == 0) {
 229			dev_err(hsotg->dev,
 230				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 231				__func__, val);
 232			break;
 233		}
 234
 235		udelay(1);
 236	}
 237
 238	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 239}
 240
 241/**
 242 * @ep: USB endpoint to allocate request for.
 243 * @flags: Allocation flags
 244 *
 245 * Allocate a new USB request structure appropriate for the specified endpoint
 246 */
 247static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 248						      gfp_t flags)
 249{
 250	struct dwc2_hsotg_req *req;
 251
 252	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 253	if (!req)
 254		return NULL;
 255
 256	INIT_LIST_HEAD(&req->queue);
 257
 258	return &req->req;
 259}
 260
 261/**
 262 * is_ep_periodic - return true if the endpoint is in periodic mode.
 263 * @hs_ep: The endpoint to query.
 264 *
 265 * Returns true if the endpoint is in periodic mode, meaning it is being
 266 * used for an Interrupt or ISO transfer.
 267 */
 268static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 269{
 270	return hs_ep->periodic;
 271}
 272
 273/**
 274 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 275 * @hsotg: The device state.
 276 * @hs_ep: The endpoint for the request
 277 * @hs_req: The request being processed.
 278 *
 279 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 280 * of a request to ensure the buffer is ready for access by the caller.
 281 */
 282static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 283				struct dwc2_hsotg_ep *hs_ep,
 284				struct dwc2_hsotg_req *hs_req)
 285{
 286	struct usb_request *req = &hs_req->req;
 287
 288	/* ignore this if we're not moving any data */
 289	if (hs_req->req.length == 0)
 290		return;
 291
 292	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 293}
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/**
 296 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 297 * @hsotg: The controller state.
 298 * @hs_ep: The endpoint we're going to write for.
 299 * @hs_req: The request to write data for.
 300 *
 301 * This is called when the TxFIFO has some space in it to hold a new
 302 * transmission and we have something to give it. The actual setup of
 303 * the data size is done elsewhere, so all we have to do is to actually
 304 * write the data.
 305 *
 306 * The return value is zero if there is more space (or nothing was done)
 307 * otherwise -ENOSPC is returned if the FIFO space was used up.
 308 *
 309 * This routine is only needed for PIO
 310 */
 311static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 312				struct dwc2_hsotg_ep *hs_ep,
 313				struct dwc2_hsotg_req *hs_req)
 314{
 315	bool periodic = is_ep_periodic(hs_ep);
 316	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 317	int buf_pos = hs_req->req.actual;
 318	int to_write = hs_ep->size_loaded;
 319	void *data;
 320	int can_write;
 321	int pkt_round;
 322	int max_transfer;
 323
 324	to_write -= (buf_pos - hs_ep->last_load);
 325
 326	/* if there's nothing to write, get out early */
 327	if (to_write == 0)
 328		return 0;
 329
 330	if (periodic && !hsotg->dedicated_fifos) {
 331		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 332		int size_left;
 333		int size_done;
 334
 335		/*
 336		 * work out how much data was loaded so we can calculate
 337		 * how much data is left in the fifo.
 338		 */
 339
 340		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 341
 342		/*
 343		 * if shared fifo, we cannot write anything until the
 344		 * previous data has been completely sent.
 345		 */
 346		if (hs_ep->fifo_load != 0) {
 347			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 348			return -ENOSPC;
 349		}
 350
 351		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 352			__func__, size_left,
 353			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 354
 355		/* how much of the data has moved */
 356		size_done = hs_ep->size_loaded - size_left;
 357
 358		/* how much data is left in the fifo */
 359		can_write = hs_ep->fifo_load - size_done;
 360		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 361			__func__, can_write);
 362
 363		can_write = hs_ep->fifo_size - can_write;
 364		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 365			__func__, can_write);
 366
 367		if (can_write <= 0) {
 368			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 369			return -ENOSPC;
 370		}
 371	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 372		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
 
 373
 374		can_write &= 0xffff;
 375		can_write *= 4;
 376	} else {
 377		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 378			dev_dbg(hsotg->dev,
 379				"%s: no queue slots available (0x%08x)\n",
 380				__func__, gnptxsts);
 381
 382			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 383			return -ENOSPC;
 384		}
 385
 386		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 387		can_write *= 4;	/* fifo size is in 32bit quantities. */
 388	}
 389
 390	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 391
 392	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 393		 __func__, gnptxsts, can_write, to_write, max_transfer);
 394
 395	/*
 396	 * limit to 512 bytes of data, it seems at least on the non-periodic
 397	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 398	 * fragment of the end of the transfer in it.
 399	 */
 400	if (can_write > 512 && !periodic)
 401		can_write = 512;
 402
 403	/*
 404	 * limit the write to one max-packet size worth of data, but allow
 405	 * the transfer to return that it did not run out of fifo space
 406	 * doing it.
 407	 */
 408	if (to_write > max_transfer) {
 409		to_write = max_transfer;
 410
 411		/* it's needed only when we do not use dedicated fifos */
 412		if (!hsotg->dedicated_fifos)
 413			dwc2_hsotg_en_gsint(hsotg,
 414					   periodic ? GINTSTS_PTXFEMP :
 415					   GINTSTS_NPTXFEMP);
 416	}
 417
 418	/* see if we can write data */
 419
 420	if (to_write > can_write) {
 421		to_write = can_write;
 422		pkt_round = to_write % max_transfer;
 423
 424		/*
 425		 * Round the write down to an
 426		 * exact number of packets.
 427		 *
 428		 * Note, we do not currently check to see if we can ever
 429		 * write a full packet or not to the FIFO.
 430		 */
 431
 432		if (pkt_round)
 433			to_write -= pkt_round;
 434
 435		/*
 436		 * enable correct FIFO interrupt to alert us when there
 437		 * is more room left.
 438		 */
 439
 440		/* it's needed only when we do not use dedicated fifos */
 441		if (!hsotg->dedicated_fifos)
 442			dwc2_hsotg_en_gsint(hsotg,
 443					   periodic ? GINTSTS_PTXFEMP :
 444					   GINTSTS_NPTXFEMP);
 445	}
 446
 447	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 448		 to_write, hs_req->req.length, can_write, buf_pos);
 449
 450	if (to_write <= 0)
 451		return -ENOSPC;
 452
 453	hs_req->req.actual = buf_pos + to_write;
 454	hs_ep->total_data += to_write;
 455
 456	if (periodic)
 457		hs_ep->fifo_load += to_write;
 458
 459	to_write = DIV_ROUND_UP(to_write, 4);
 460	data = hs_req->req.buf + buf_pos;
 461
 462	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 463
 464	return (to_write >= can_write) ? -ENOSPC : 0;
 465}
 466
 467/**
 468 * get_ep_limit - get the maximum data legnth for this endpoint
 469 * @hs_ep: The endpoint
 470 *
 471 * Return the maximum data that can be queued in one go on a given endpoint
 472 * so that transfers that are too long can be split.
 473 */
 474static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 475{
 476	int index = hs_ep->index;
 477	unsigned maxsize;
 478	unsigned maxpkt;
 479
 480	if (index != 0) {
 481		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 482		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 483	} else {
 484		maxsize = 64+64;
 485		if (hs_ep->dir_in)
 486			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 487		else
 488			maxpkt = 2;
 489	}
 490
 491	/* we made the constant loading easier above by using +1 */
 492	maxpkt--;
 493	maxsize--;
 494
 495	/*
 496	 * constrain by packet count if maxpkts*pktsize is greater
 497	 * than the length register size.
 498	 */
 499
 500	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 501		maxsize = maxpkt * hs_ep->ep.maxpacket;
 502
 503	return maxsize;
 504}
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 508 * @hsotg: The controller state.
 509 * @hs_ep: The endpoint to process a request for
 510 * @hs_req: The request to start.
 511 * @continuing: True if we are doing more for the current request.
 512 *
 513 * Start the given request running by setting the endpoint registers
 514 * appropriately, and writing any data to the FIFOs.
 515 */
 516static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 517				struct dwc2_hsotg_ep *hs_ep,
 518				struct dwc2_hsotg_req *hs_req,
 519				bool continuing)
 520{
 521	struct usb_request *ureq = &hs_req->req;
 522	int index = hs_ep->index;
 523	int dir_in = hs_ep->dir_in;
 524	u32 epctrl_reg;
 525	u32 epsize_reg;
 526	u32 epsize;
 527	u32 ctrl;
 528	unsigned length;
 529	unsigned packets;
 530	unsigned maxreq;
 
 531
 532	if (index != 0) {
 533		if (hs_ep->req && !continuing) {
 534			dev_err(hsotg->dev, "%s: active request\n", __func__);
 535			WARN_ON(1);
 536			return;
 537		} else if (hs_ep->req != hs_req && continuing) {
 538			dev_err(hsotg->dev,
 539				"%s: continue different req\n", __func__);
 540			WARN_ON(1);
 541			return;
 542		}
 543	}
 544
 
 545	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 546	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 547
 548	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 549		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 550		hs_ep->dir_in ? "in" : "out");
 551
 552	/* If endpoint is stalled, we will restart request later */
 553	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 554
 555	if (index && ctrl & DXEPCTL_STALL) {
 556		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 557		return;
 558	}
 559
 560	length = ureq->length - ureq->actual;
 561	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 562		ureq->length, ureq->actual);
 563
 564	maxreq = get_ep_limit(hs_ep);
 
 
 
 
 565	if (length > maxreq) {
 566		int round = maxreq % hs_ep->ep.maxpacket;
 567
 568		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 569			__func__, length, maxreq, round);
 570
 571		/* round down to multiple of packets */
 572		if (round)
 573			maxreq -= round;
 574
 575		length = maxreq;
 576	}
 577
 578	if (length)
 579		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 580	else
 581		packets = 1;	/* send one packet if length is zero. */
 582
 583	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 584		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 585		return;
 586	}
 587
 588	if (dir_in && index != 0)
 589		if (hs_ep->isochronous)
 590			epsize = DXEPTSIZ_MC(packets);
 591		else
 592			epsize = DXEPTSIZ_MC(1);
 593	else
 594		epsize = 0;
 595
 596	/*
 597	 * zero length packet should be programmed on its own and should not
 598	 * be counted in DIEPTSIZ.PktCnt with other packets.
 599	 */
 600	if (dir_in && ureq->zero && !continuing) {
 601		/* Test if zlp is actually required. */
 602		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 603					!(ureq->length % hs_ep->ep.maxpacket))
 604			hs_ep->send_zlp = 1;
 605	}
 606
 607	epsize |= DXEPTSIZ_PKTCNT(packets);
 608	epsize |= DXEPTSIZ_XFERSIZE(length);
 609
 610	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 611		__func__, packets, length, ureq->length, epsize, epsize_reg);
 612
 613	/* store the request as the current one we're doing */
 614	hs_ep->req = hs_req;
 615
 616	/* write size / packets */
 617	dwc2_writel(epsize, hsotg->regs + epsize_reg);
 618
 619	if (using_dma(hsotg) && !continuing) {
 620		unsigned int dma_reg;
 
 
 
 
 
 
 621
 622		/*
 623		 * write DMA address to control register, buffer already
 624		 * synced by dwc2_hsotg_ep_queue().
 
 625		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 626
 627		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 628		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
 629
 630		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
 631			__func__, &ureq->dma, dma_reg);
 
 
 
 
 
 
 
 
 
 
 
 632	}
 633
 634	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 635	ctrl |= DXEPCTL_USBACTEP;
 636
 637	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
 638
 639	/* For Setup request do not clear NAK */
 640	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
 641		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
 642
 643	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 644	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
 645
 646	/*
 647	 * set these, it seems that DMA support increments past the end
 648	 * of the packet buffer so we need to calculate the length from
 649	 * this information.
 650	 */
 651	hs_ep->size_loaded = length;
 652	hs_ep->last_load = ureq->actual;
 653
 654	if (dir_in && !using_dma(hsotg)) {
 655		/* set these anyway, we may need them for non-periodic in */
 656		hs_ep->fifo_load = 0;
 657
 658		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 659	}
 660
 661	/*
 662	 * clear the INTknTXFEmpMsk when we start request, more as a aide
 663	 * to debugging to see what is going on.
 664	 */
 665	if (dir_in)
 666		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
 667		       hsotg->regs + DIEPINT(index));
 668
 669	/*
 670	 * Note, trying to clear the NAK here causes problems with transmit
 671	 * on the S3C6400 ending up with the TXFIFO becoming full.
 672	 */
 673
 674	/* check ep is enabled */
 675	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
 676		dev_dbg(hsotg->dev,
 677			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
 678			 index, dwc2_readl(hsotg->regs + epctrl_reg));
 679
 680	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
 681		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
 682
 683	/* enable ep interrupts */
 684	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
 685}
 686
 687/**
 688 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
 689 * @hsotg: The device state.
 690 * @hs_ep: The endpoint the request is on.
 691 * @req: The request being processed.
 692 *
 693 * We've been asked to queue a request, so ensure that the memory buffer
 694 * is correctly setup for DMA. If we've been passed an extant DMA address
 695 * then ensure the buffer has been synced to memory. If our buffer has no
 696 * DMA memory, then we map the memory and mark our request to allow us to
 697 * cleanup on completion.
 698 */
 699static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
 700			     struct dwc2_hsotg_ep *hs_ep,
 701			     struct usb_request *req)
 702{
 703	struct dwc2_hsotg_req *hs_req = our_req(req);
 704	int ret;
 705
 706	/* if the length is zero, ignore the DMA data */
 707	if (hs_req->req.length == 0)
 708		return 0;
 709
 710	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 711	if (ret)
 712		goto dma_error;
 713
 714	return 0;
 715
 716dma_error:
 717	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 718		__func__, req->buf, req->length);
 719
 720	return -EIO;
 721}
 722
 723static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
 724	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 725{
 726	void *req_buf = hs_req->req.buf;
 727
 728	/* If dma is not being used or buffer is aligned */
 729	if (!using_dma(hsotg) || !((long)req_buf & 3))
 730		return 0;
 731
 732	WARN_ON(hs_req->saved_req_buf);
 733
 734	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
 735			hs_ep->ep.name, req_buf, hs_req->req.length);
 736
 737	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
 738	if (!hs_req->req.buf) {
 739		hs_req->req.buf = req_buf;
 740		dev_err(hsotg->dev,
 741			"%s: unable to allocate memory for bounce buffer\n",
 742			__func__);
 743		return -ENOMEM;
 744	}
 745
 746	/* Save actual buffer */
 747	hs_req->saved_req_buf = req_buf;
 748
 749	if (hs_ep->dir_in)
 750		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
 751	return 0;
 752}
 753
 754static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
 755	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 
 756{
 757	/* If dma is not being used or buffer was aligned */
 758	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
 759		return;
 760
 761	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
 762		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
 763
 764	/* Copy data from bounce buffer on successful out transfer */
 765	if (!hs_ep->dir_in && !hs_req->req.status)
 766		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
 767							hs_req->req.actual);
 768
 769	/* Free bounce buffer */
 770	kfree(hs_req->req.buf);
 771
 772	hs_req->req.buf = hs_req->saved_req_buf;
 773	hs_req->saved_req_buf = NULL;
 774}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 777			      gfp_t gfp_flags)
 778{
 779	struct dwc2_hsotg_req *hs_req = our_req(req);
 780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 781	struct dwc2_hsotg *hs = hs_ep->parent;
 782	bool first;
 783	int ret;
 784
 785	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 786		ep->name, req, req->length, req->buf, req->no_interrupt,
 787		req->zero, req->short_not_ok);
 788
 789	/* Prevent new request submission when controller is suspended */
 790	if (hs->lx_state == DWC2_L2) {
 791		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
 792				__func__);
 793		return -EAGAIN;
 794	}
 795
 796	/* initialise status of the request */
 797	INIT_LIST_HEAD(&hs_req->queue);
 798	req->actual = 0;
 799	req->status = -EINPROGRESS;
 800
 801	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
 802	if (ret)
 803		return ret;
 804
 805	/* if we're using DMA, sync the buffers as necessary */
 806	if (using_dma(hs)) {
 807		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
 808		if (ret)
 809			return ret;
 810	}
 
 
 
 
 
 
 811
 812	first = list_empty(&hs_ep->queue);
 813	list_add_tail(&hs_req->queue, &hs_ep->queue);
 814
 815	if (first)
 816		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 817
 
 
 
 
 
 
 
 
 
 
 
 
 818	return 0;
 819}
 820
 821static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 822			      gfp_t gfp_flags)
 823{
 824	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 825	struct dwc2_hsotg *hs = hs_ep->parent;
 826	unsigned long flags = 0;
 827	int ret = 0;
 828
 829	spin_lock_irqsave(&hs->lock, flags);
 830	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
 831	spin_unlock_irqrestore(&hs->lock, flags);
 832
 833	return ret;
 834}
 835
 836static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
 837				      struct usb_request *req)
 838{
 839	struct dwc2_hsotg_req *hs_req = our_req(req);
 840
 841	kfree(hs_req);
 842}
 843
 844/**
 845 * dwc2_hsotg_complete_oursetup - setup completion callback
 846 * @ep: The endpoint the request was on.
 847 * @req: The request completed.
 848 *
 849 * Called on completion of any requests the driver itself
 850 * submitted that need cleaning up.
 851 */
 852static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
 853					struct usb_request *req)
 854{
 855	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 856	struct dwc2_hsotg *hsotg = hs_ep->parent;
 857
 858	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 859
 860	dwc2_hsotg_ep_free_request(ep, req);
 861}
 862
 863/**
 864 * ep_from_windex - convert control wIndex value to endpoint
 865 * @hsotg: The driver state.
 866 * @windex: The control request wIndex field (in host order).
 867 *
 868 * Convert the given wIndex into a pointer to an driver endpoint
 869 * structure, or return NULL if it is not a valid endpoint.
 870 */
 871static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
 872					   u32 windex)
 873{
 874	struct dwc2_hsotg_ep *ep;
 875	int dir = (windex & USB_DIR_IN) ? 1 : 0;
 876	int idx = windex & 0x7F;
 877
 878	if (windex >= 0x100)
 879		return NULL;
 880
 881	if (idx > hsotg->num_of_eps)
 882		return NULL;
 883
 884	ep = index_to_ep(hsotg, idx, dir);
 885
 886	if (idx && ep->dir_in != dir)
 887		return NULL;
 888
 889	return ep;
 890}
 891
 892/**
 893 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
 894 * @hsotg: The driver state.
 895 * @testmode: requested usb test mode
 896 * Enable usb Test Mode requested by the Host.
 897 */
 898int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
 899{
 900	int dctl = dwc2_readl(hsotg->regs + DCTL);
 901
 902	dctl &= ~DCTL_TSTCTL_MASK;
 903	switch (testmode) {
 904	case TEST_J:
 905	case TEST_K:
 906	case TEST_SE0_NAK:
 907	case TEST_PACKET:
 908	case TEST_FORCE_EN:
 909		dctl |= testmode << DCTL_TSTCTL_SHIFT;
 910		break;
 911	default:
 912		return -EINVAL;
 913	}
 914	dwc2_writel(dctl, hsotg->regs + DCTL);
 915	return 0;
 916}
 917
 918/**
 919 * dwc2_hsotg_send_reply - send reply to control request
 920 * @hsotg: The device state
 921 * @ep: Endpoint 0
 922 * @buff: Buffer for request
 923 * @length: Length of reply.
 924 *
 925 * Create a request and queue it on the given endpoint. This is useful as
 926 * an internal method of sending replies to certain control requests, etc.
 927 */
 928static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
 929				struct dwc2_hsotg_ep *ep,
 930				void *buff,
 931				int length)
 932{
 933	struct usb_request *req;
 934	int ret;
 935
 936	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 937
 938	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 939	hsotg->ep0_reply = req;
 940	if (!req) {
 941		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 942		return -ENOMEM;
 943	}
 944
 945	req->buf = hsotg->ep0_buff;
 946	req->length = length;
 947	/*
 948	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
 949	 * STATUS stage.
 950	 */
 951	req->zero = 0;
 952	req->complete = dwc2_hsotg_complete_oursetup;
 953
 954	if (length)
 955		memcpy(req->buf, buff, length);
 956
 957	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
 958	if (ret) {
 959		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
 960		return ret;
 961	}
 962
 963	return 0;
 964}
 965
 966/**
 967 * dwc2_hsotg_process_req_status - process request GET_STATUS
 968 * @hsotg: The device state
 969 * @ctrl: USB control request
 970 */
 971static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
 972					struct usb_ctrlrequest *ctrl)
 973{
 974	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
 975	struct dwc2_hsotg_ep *ep;
 976	__le16 reply;
 977	int ret;
 978
 979	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
 980
 981	if (!ep0->dir_in) {
 982		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
 983		return -EINVAL;
 984	}
 985
 986	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 987	case USB_RECIP_DEVICE:
 988		reply = cpu_to_le16(0); /* bit 0 => self powered,
 989					 * bit 1 => remote wakeup */
 
 
 
 990		break;
 991
 992	case USB_RECIP_INTERFACE:
 993		/* currently, the data result should be zero */
 994		reply = cpu_to_le16(0);
 995		break;
 996
 997	case USB_RECIP_ENDPOINT:
 998		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
 999		if (!ep)
1000			return -ENOENT;
1001
1002		reply = cpu_to_le16(ep->halted ? 1 : 0);
1003		break;
1004
1005	default:
1006		return 0;
1007	}
1008
1009	if (le16_to_cpu(ctrl->wLength) != 2)
1010		return -EINVAL;
1011
1012	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013	if (ret) {
1014		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1015		return ret;
1016	}
1017
1018	return 1;
1019}
1020
1021static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022
1023/**
1024 * get_ep_head - return the first request on the endpoint
1025 * @hs_ep: The controller endpoint to get
1026 *
1027 * Get the first request on the endpoint.
1028 */
1029static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030{
1031	if (list_empty(&hs_ep->queue))
1032		return NULL;
 
1033
1034	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039 * @hsotg: The device state
1040 * @ctrl: USB control request
1041 */
1042static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043					 struct usb_ctrlrequest *ctrl)
1044{
1045	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046	struct dwc2_hsotg_req *hs_req;
1047	bool restart;
1048	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049	struct dwc2_hsotg_ep *ep;
1050	int ret;
1051	bool halted;
1052	u32 recip;
1053	u32 wValue;
1054	u32 wIndex;
1055
1056	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1057		__func__, set ? "SET" : "CLEAR");
1058
1059	wValue = le16_to_cpu(ctrl->wValue);
1060	wIndex = le16_to_cpu(ctrl->wIndex);
1061	recip = ctrl->bRequestType & USB_RECIP_MASK;
1062
1063	switch (recip) {
1064	case USB_RECIP_DEVICE:
1065		switch (wValue) {
 
 
 
 
1066		case USB_DEVICE_TEST_MODE:
1067			if ((wIndex & 0xff) != 0)
1068				return -EINVAL;
1069			if (!set)
1070				return -EINVAL;
1071
1072			hsotg->test_mode = wIndex >> 8;
1073			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074			if (ret) {
1075				dev_err(hsotg->dev,
1076					"%s: failed to send reply\n", __func__);
1077				return ret;
1078			}
1079			break;
1080		default:
1081			return -ENOENT;
1082		}
1083		break;
1084
1085	case USB_RECIP_ENDPOINT:
1086		ep = ep_from_windex(hsotg, wIndex);
1087		if (!ep) {
1088			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089				__func__, wIndex);
1090			return -ENOENT;
1091		}
1092
1093		switch (wValue) {
1094		case USB_ENDPOINT_HALT:
1095			halted = ep->halted;
1096
1097			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1098
1099			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100			if (ret) {
1101				dev_err(hsotg->dev,
1102					"%s: failed to send reply\n", __func__);
1103				return ret;
1104			}
1105
1106			/*
1107			 * we have to complete all requests for ep if it was
1108			 * halted, and the halt was cleared by CLEAR_FEATURE
1109			 */
1110
1111			if (!set && halted) {
1112				/*
1113				 * If we have request in progress,
1114				 * then complete it
1115				 */
1116				if (ep->req) {
1117					hs_req = ep->req;
1118					ep->req = NULL;
1119					list_del_init(&hs_req->queue);
1120					if (hs_req->req.complete) {
1121						spin_unlock(&hsotg->lock);
1122						usb_gadget_giveback_request(
1123							&ep->ep, &hs_req->req);
1124						spin_lock(&hsotg->lock);
1125					}
1126				}
1127
1128				/* If we have pending request, then start it */
1129				if (!ep->req) {
1130					restart = !list_empty(&ep->queue);
1131					if (restart) {
1132						hs_req = get_ep_head(ep);
1133						dwc2_hsotg_start_req(hsotg, ep,
1134								hs_req, false);
1135					}
1136				}
1137			}
1138
1139			break;
1140
1141		default:
1142			return -ENOENT;
1143		}
1144		break;
1145	default:
1146		return -ENOENT;
1147	}
1148	return 1;
1149}
1150
1151static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152
1153/**
1154 * dwc2_hsotg_stall_ep0 - stall ep0
1155 * @hsotg: The device state
1156 *
1157 * Set stall for ep0 as response for setup request.
1158 */
1159static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160{
1161	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162	u32 reg;
1163	u32 ctrl;
1164
1165	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1166	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1167
1168	/*
1169	 * DxEPCTL_Stall will be cleared by EP once it has
1170	 * taken effect, so no need to clear later.
1171	 */
1172
1173	ctrl = dwc2_readl(hsotg->regs + reg);
1174	ctrl |= DXEPCTL_STALL;
1175	ctrl |= DXEPCTL_CNAK;
1176	dwc2_writel(ctrl, hsotg->regs + reg);
1177
1178	dev_dbg(hsotg->dev,
1179		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181
1182	 /*
1183	  * complete won't be called, so we enqueue
1184	  * setup request here
1185	  */
1186	 dwc2_hsotg_enqueue_setup(hsotg);
1187}
1188
1189/**
1190 * dwc2_hsotg_process_control - process a control request
1191 * @hsotg: The device state
1192 * @ctrl: The control request received
1193 *
1194 * The controller has received the SETUP phase of a control request, and
1195 * needs to work out what to do next (and whether to pass it on to the
1196 * gadget driver).
1197 */
1198static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199				      struct usb_ctrlrequest *ctrl)
1200{
1201	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202	int ret = 0;
1203	u32 dcfg;
1204
1205	dev_dbg(hsotg->dev,
1206		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1207		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1208		ctrl->wIndex, ctrl->wLength);
1209
1210	if (ctrl->wLength == 0) {
1211		ep0->dir_in = 1;
1212		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1213	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214		ep0->dir_in = 1;
1215		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1216	} else {
1217		ep0->dir_in = 0;
1218		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1219	}
1220
1221	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222		switch (ctrl->bRequest) {
1223		case USB_REQ_SET_ADDRESS:
1224			hsotg->connected = 1;
1225			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226			dcfg &= ~DCFG_DEVADDR_MASK;
1227			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1228				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230
1231			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1232
1233			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234			return;
1235
1236		case USB_REQ_GET_STATUS:
1237			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238			break;
1239
1240		case USB_REQ_CLEAR_FEATURE:
1241		case USB_REQ_SET_FEATURE:
1242			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243			break;
1244		}
1245	}
1246
1247	/* as a fallback, try delivering it to the driver to deal with */
1248
1249	if (ret == 0 && hsotg->driver) {
1250		spin_unlock(&hsotg->lock);
1251		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252		spin_lock(&hsotg->lock);
1253		if (ret < 0)
1254			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1255	}
1256
1257	/*
1258	 * the request is either unhandlable, or is not formatted correctly
1259	 * so respond with a STALL for the status stage to indicate failure.
1260	 */
1261
1262	if (ret < 0)
1263		dwc2_hsotg_stall_ep0(hsotg);
1264}
1265
1266/**
1267 * dwc2_hsotg_complete_setup - completion of a setup transfer
1268 * @ep: The endpoint the request was on.
1269 * @req: The request completed.
1270 *
1271 * Called on completion of any requests the driver itself submitted for
1272 * EP0 setup packets
1273 */
1274static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275				     struct usb_request *req)
1276{
1277	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279
1280	if (req->status < 0) {
1281		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1282		return;
1283	}
1284
1285	spin_lock(&hsotg->lock);
1286	if (req->actual == 0)
1287		dwc2_hsotg_enqueue_setup(hsotg);
1288	else
1289		dwc2_hsotg_process_control(hsotg, req->buf);
1290	spin_unlock(&hsotg->lock);
1291}
1292
1293/**
1294 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295 * @hsotg: The device state.
1296 *
1297 * Enqueue a request on EP0 if necessary to received any SETUP packets
1298 * received from the host.
1299 */
1300static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301{
1302	struct usb_request *req = hsotg->ctrl_req;
1303	struct dwc2_hsotg_req *hs_req = our_req(req);
1304	int ret;
1305
1306	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1307
1308	req->zero = 0;
1309	req->length = 8;
1310	req->buf = hsotg->ctrl_buff;
1311	req->complete = dwc2_hsotg_complete_setup;
1312
1313	if (!list_empty(&hs_req->queue)) {
1314		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1315		return;
1316	}
1317
1318	hsotg->eps_out[0]->dir_in = 0;
1319	hsotg->eps_out[0]->send_zlp = 0;
1320	hsotg->ep0_state = DWC2_EP0_SETUP;
1321
1322	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323	if (ret < 0) {
1324		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325		/*
1326		 * Don't think there's much we can do other than watch the
1327		 * driver fail.
1328		 */
1329	}
1330}
1331
1332static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1333					struct dwc2_hsotg_ep *hs_ep)
1334{
1335	u32 ctrl;
1336	u8 index = hs_ep->index;
1337	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1338	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1339
1340	if (hs_ep->dir_in)
1341		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1342									index);
1343	else
1344		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1345									index);
 
 
 
1346
1347	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1348		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1349		    epsiz_reg);
 
 
 
 
 
 
1350
1351	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1352	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1353	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1354	ctrl |= DXEPCTL_USBACTEP;
1355	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356}
1357
1358/**
1359 * dwc2_hsotg_complete_request - complete a request given to us
1360 * @hsotg: The device state.
1361 * @hs_ep: The endpoint the request was on.
1362 * @hs_req: The request to complete.
1363 * @result: The result code (0 => Ok, otherwise errno)
1364 *
1365 * The given request has finished, so call the necessary completion
1366 * if it has one and then look to see if we can start a new request
1367 * on the endpoint.
1368 *
1369 * Note, expects the ep to already be locked as appropriate.
1370 */
1371static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1372				       struct dwc2_hsotg_ep *hs_ep,
1373				       struct dwc2_hsotg_req *hs_req,
1374				       int result)
1375{
1376	bool restart;
1377
1378	if (!hs_req) {
1379		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1380		return;
1381	}
1382
1383	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1384		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1385
1386	/*
1387	 * only replace the status if we've not already set an error
1388	 * from a previous transaction
1389	 */
1390
1391	if (hs_req->req.status == -EINPROGRESS)
1392		hs_req->req.status = result;
1393
1394	if (using_dma(hsotg))
1395		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1396
1397	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399	hs_ep->req = NULL;
1400	list_del_init(&hs_req->queue);
1401
1402	/*
1403	 * call the complete request with the locks off, just in case the
1404	 * request tries to queue more work for this endpoint.
1405	 */
1406
1407	if (hs_req->req.complete) {
1408		spin_unlock(&hsotg->lock);
1409		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410		spin_lock(&hsotg->lock);
1411	}
1412
 
 
 
 
1413	/*
1414	 * Look to see if there is anything else to do. Note, the completion
1415	 * of the previous request may have caused a new request to be started
1416	 * so be careful when doing this.
1417	 */
1418
1419	if (!hs_ep->req && result >= 0) {
1420		restart = !list_empty(&hs_ep->queue);
1421		if (restart) {
1422			hs_req = get_ep_head(hs_ep);
1423			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425	}
1426}
1427
1428/**
1429 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430 * @hsotg: The device state.
1431 * @ep_idx: The endpoint index for the data
1432 * @size: The size of data in the fifo, in bytes
1433 *
1434 * The FIFO status shows there is data to read from the FIFO for a given
1435 * endpoint, so sort out whether we need to read the data into a request
1436 * that has been made for that endpoint.
1437 */
1438static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439{
1440	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1441	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443	int to_read;
1444	int max_req;
1445	int read_ptr;
1446
1447
1448	if (!hs_req) {
1449		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450		int ptr;
1451
1452		dev_dbg(hsotg->dev,
1453			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454			 __func__, size, ep_idx, epctl);
1455
1456		/* dump the data from the FIFO, we've nothing we can do */
1457		for (ptr = 0; ptr < size; ptr += 4)
1458			(void)dwc2_readl(fifo);
1459
1460		return;
1461	}
1462
1463	to_read = size;
1464	read_ptr = hs_req->req.actual;
1465	max_req = hs_req->req.length - read_ptr;
1466
1467	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1468		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1469
1470	if (to_read > max_req) {
1471		/*
1472		 * more data appeared than we where willing
1473		 * to deal with in this request.
1474		 */
1475
1476		/* currently we don't deal this */
1477		WARN_ON_ONCE(1);
1478	}
1479
1480	hs_ep->total_data += to_read;
1481	hs_req->req.actual += to_read;
1482	to_read = DIV_ROUND_UP(to_read, 4);
1483
1484	/*
1485	 * note, we might over-write the buffer end by 3 bytes depending on
1486	 * alignment of the data.
1487	 */
1488	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
1489}
1490
1491/**
1492 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493 * @hsotg: The device instance
1494 * @dir_in: If IN zlp
1495 *
1496 * Generate a zero-length IN packet request for terminating a SETUP
1497 * transaction.
1498 *
1499 * Note, since we don't write any data to the TxFIFO, then it is
1500 * currently believed that we do not need to wait for any space in
1501 * the TxFIFO.
1502 */
1503static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504{
1505	/* eps_out[0] is used in both directions */
1506	hsotg->eps_out[0]->dir_in = dir_in;
1507	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508
1509	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510}
1511
1512static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1513			u32 epctl_reg)
1514{
1515	u32 ctrl;
1516
1517	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1518	if (ctrl & DXEPCTL_EOFRNUM)
1519		ctrl |= DXEPCTL_SETEVENFR;
1520	else
1521		ctrl |= DXEPCTL_SETODDFR;
1522	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1523}
1524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525/**
1526 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527 * @hsotg: The device instance
1528 * @epnum: The endpoint received from
1529 *
1530 * The RXFIFO has delivered an OutDone event, which means that the data
1531 * transfer for an OUT endpoint has been completed, either by a short
1532 * packet or by the finish of a transfer.
1533 */
1534static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535{
1536	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1538	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539	struct usb_request *req = &hs_req->req;
1540	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541	int result = 0;
1542
1543	if (!hs_req) {
1544		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1545		return;
1546	}
1547
1548	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1549		dev_dbg(hsotg->dev, "zlp packet received\n");
1550		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1551		dwc2_hsotg_enqueue_setup(hsotg);
1552		return;
1553	}
1554
 
 
 
1555	if (using_dma(hsotg)) {
1556		unsigned size_done;
1557
1558		/*
1559		 * Calculate the size of the transfer by checking how much
1560		 * is left in the endpoint size register and then working it
1561		 * out from the amount we loaded for the transfer.
1562		 *
1563		 * We need to do this as DMA pointers are always 32bit aligned
1564		 * so may overshoot/undershoot the transfer.
1565		 */
1566
1567		size_done = hs_ep->size_loaded - size_left;
1568		size_done += hs_ep->last_load;
1569
1570		req->actual = size_done;
1571	}
1572
1573	/* if there is more request to do, schedule new transfer */
1574	if (req->actual < req->length && size_left == 0) {
1575		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576		return;
1577	}
1578
1579	if (req->actual < req->length && req->short_not_ok) {
1580		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1581			__func__, req->actual, req->length);
1582
1583		/*
1584		 * todo - what should we return here? there's no one else
1585		 * even bothering to check the status.
1586		 */
1587	}
1588
1589	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
 
 
1590		/* Move to STATUS IN */
1591		dwc2_hsotg_ep0_zlp(hsotg, true);
1592		return;
1593	}
1594
1595	/*
1596	 * Slave mode OUT transfers do not go through XferComplete so
1597	 * adjust the ISOC parity here.
1598	 */
1599	if (!using_dma(hsotg)) {
1600		hs_ep->has_correct_parity = 1;
1601		if (hs_ep->isochronous && hs_ep->interval == 1)
1602			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
 
 
1603	}
1604
1605	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606}
1607
1608/**
1609 * dwc2_hsotg_read_frameno - read current frame number
1610 * @hsotg: The device instance
1611 *
1612 * Return the current frame number
1613 */
1614static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615{
1616	u32 dsts;
1617
1618	dsts = dwc2_readl(hsotg->regs + DSTS);
1619	dsts &= DSTS_SOFFN_MASK;
1620	dsts >>= DSTS_SOFFN_SHIFT;
1621
1622	return dsts;
1623}
1624
1625/**
1626 * dwc2_hsotg_handle_rx - RX FIFO has data
1627 * @hsotg: The device instance
1628 *
1629 * The IRQ handler has detected that the RX FIFO has some data in it
1630 * that requires processing, so find out what is in there and do the
1631 * appropriate read.
1632 *
1633 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634 * chunks, so if you have x packets received on an endpoint you'll get x
1635 * FIFO events delivered, each with a packet's worth of data in it.
1636 *
1637 * When using DMA, we should not be processing events from the RXFIFO
1638 * as the actual data should be sent to the memory directly and we turn
1639 * on the completion interrupts to get notifications of transfer completion.
1640 */
1641static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642{
1643	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644	u32 epnum, status, size;
1645
1646	WARN_ON(using_dma(hsotg));
1647
1648	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1649	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650
1651	size = grxstsr & GRXSTS_BYTECNT_MASK;
1652	size >>= GRXSTS_BYTECNT_SHIFT;
1653
1654	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655			__func__, grxstsr, size, epnum);
1656
1657	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1658	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1659		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660		break;
1661
1662	case GRXSTS_PKTSTS_OUTDONE:
1663		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664			dwc2_hsotg_read_frameno(hsotg));
1665
1666		if (!using_dma(hsotg))
1667			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668		break;
1669
1670	case GRXSTS_PKTSTS_SETUPDONE:
1671		dev_dbg(hsotg->dev,
1672			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673			dwc2_hsotg_read_frameno(hsotg),
1674			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675		/*
1676		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1678		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1679		 */
1680		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682		break;
1683
1684	case GRXSTS_PKTSTS_OUTRX:
1685		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686		break;
1687
1688	case GRXSTS_PKTSTS_SETUPRX:
1689		dev_dbg(hsotg->dev,
1690			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691			dwc2_hsotg_read_frameno(hsotg),
1692			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693
1694		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1695
1696		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697		break;
1698
1699	default:
1700		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1701			 __func__, grxstsr);
1702
1703		dwc2_hsotg_dump(hsotg);
1704		break;
1705	}
1706}
1707
1708/**
1709 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710 * @mps: The maximum packet size in bytes.
1711 */
1712static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713{
1714	switch (mps) {
1715	case 64:
1716		return D0EPCTL_MPS_64;
1717	case 32:
1718		return D0EPCTL_MPS_32;
1719	case 16:
1720		return D0EPCTL_MPS_16;
1721	case 8:
1722		return D0EPCTL_MPS_8;
1723	}
1724
1725	/* bad max packet size, warn and return invalid result */
1726	WARN_ON(1);
1727	return (u32)-1;
1728}
1729
1730/**
1731 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732 * @hsotg: The driver state.
1733 * @ep: The index number of the endpoint
1734 * @mps: The maximum packet size in bytes
 
1735 *
1736 * Configure the maximum packet size for the given endpoint, updating
1737 * the hardware control registers to reflect this.
1738 */
1739static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740			unsigned int ep, unsigned int mps, unsigned int dir_in)
 
1741{
1742	struct dwc2_hsotg_ep *hs_ep;
1743	void __iomem *regs = hsotg->regs;
1744	u32 mpsval;
1745	u32 mcval;
1746	u32 reg;
1747
1748	hs_ep = index_to_ep(hsotg, ep, dir_in);
1749	if (!hs_ep)
1750		return;
1751
1752	if (ep == 0) {
 
 
1753		/* EP0 is a special case */
1754		mpsval = dwc2_hsotg_ep0_mps(mps);
1755		if (mpsval > 3)
1756			goto bad_mps;
1757		hs_ep->ep.maxpacket = mps;
1758		hs_ep->mc = 1;
1759	} else {
1760		mpsval = mps & DXEPCTL_MPS_MASK;
1761		if (mpsval > 1024)
1762			goto bad_mps;
1763		mcval = ((mps >> 11) & 0x3) + 1;
1764		hs_ep->mc = mcval;
1765		if (mcval > 3)
1766			goto bad_mps;
1767		hs_ep->ep.maxpacket = mpsval;
1768	}
1769
1770	if (dir_in) {
1771		reg = dwc2_readl(regs + DIEPCTL(ep));
1772		reg &= ~DXEPCTL_MPS_MASK;
1773		reg |= mpsval;
1774		dwc2_writel(reg, regs + DIEPCTL(ep));
1775	} else {
1776		reg = dwc2_readl(regs + DOEPCTL(ep));
1777		reg &= ~DXEPCTL_MPS_MASK;
1778		reg |= mpsval;
1779		dwc2_writel(reg, regs + DOEPCTL(ep));
1780	}
1781
1782	return;
1783
1784bad_mps:
1785	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1786}
1787
1788/**
1789 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790 * @hsotg: The driver state
1791 * @idx: The index for the endpoint (0..15)
1792 */
1793static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794{
1795	int timeout;
1796	int val;
1797
1798	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1799		    hsotg->regs + GRSTCTL);
1800
1801	/* wait until the fifo is flushed */
1802	timeout = 100;
1803
1804	while (1) {
1805		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806
1807		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808			break;
1809
1810		if (--timeout == 0) {
1811			dev_err(hsotg->dev,
1812				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1813				__func__, val);
1814			break;
1815		}
1816
1817		udelay(1);
1818	}
1819}
1820
1821/**
1822 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823 * @hsotg: The driver state
1824 * @hs_ep: The driver endpoint to check.
1825 *
1826 * Check to see if there is a request that has data to send, and if so
1827 * make an attempt to write data into the FIFO.
1828 */
1829static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1830			   struct dwc2_hsotg_ep *hs_ep)
1831{
1832	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833
1834	if (!hs_ep->dir_in || !hs_req) {
1835		/**
1836		 * if request is not enqueued, we disable interrupts
1837		 * for endpoints, excepting ep0
1838		 */
1839		if (hs_ep->index != 0)
1840			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841					     hs_ep->dir_in, 0);
1842		return 0;
1843	}
1844
1845	if (hs_req->req.actual < hs_req->req.length) {
1846		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1847			hs_ep->index);
1848		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849	}
1850
1851	return 0;
1852}
1853
1854/**
1855 * dwc2_hsotg_complete_in - complete IN transfer
1856 * @hsotg: The device state.
1857 * @hs_ep: The endpoint that has just completed.
1858 *
1859 * An IN transfer has been completed, update the transfer's state and then
1860 * call the relevant completion routines.
1861 */
1862static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1863				  struct dwc2_hsotg_ep *hs_ep)
1864{
1865	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867	int size_left, size_done;
1868
1869	if (!hs_req) {
1870		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1871		return;
1872	}
1873
1874	/* Finish ZLP handling for IN EP0 transactions */
1875	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1876		dev_dbg(hsotg->dev, "zlp packet sent\n");
 
 
 
 
 
 
 
1877		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878		if (hsotg->test_mode) {
1879			int ret;
1880
1881			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882			if (ret < 0) {
1883				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1884						hsotg->test_mode);
1885				dwc2_hsotg_stall_ep0(hsotg);
1886				return;
1887			}
1888		}
1889		dwc2_hsotg_enqueue_setup(hsotg);
1890		return;
1891	}
1892
1893	/*
1894	 * Calculate the size of the transfer by checking how much is left
1895	 * in the endpoint size register and then working it out from
1896	 * the amount we loaded for the transfer.
1897	 *
1898	 * We do this even for DMA, as the transfer may have incremented
1899	 * past the end of the buffer (DMA transfers are always 32bit
1900	 * aligned).
1901	 */
1902
1903	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 
 
 
 
 
 
1904
1905	size_done = hs_ep->size_loaded - size_left;
1906	size_done += hs_ep->last_load;
1907
1908	if (hs_req->req.actual != size_done)
1909		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1910			__func__, hs_req->req.actual, size_done);
1911
1912	hs_req->req.actual = size_done;
1913	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1914		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1915
1916	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1917		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919		return;
1920	}
1921
1922	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923	if (hs_ep->send_zlp) {
1924		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925		hs_ep->send_zlp = 0;
1926		/* transfer will be completed on next complete interrupt */
1927		return;
1928	}
1929
1930	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1931		/* Move to STATUS OUT */
1932		dwc2_hsotg_ep0_zlp(hsotg, false);
1933		return;
1934	}
1935
1936	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937}
1938
1939/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941 * @hsotg: The driver state
1942 * @idx: The index for the endpoint (0..15)
1943 * @dir_in: Set if this is an IN endpoint
1944 *
1945 * Process and clear any interrupt pending for an individual endpoint
1946 */
1947static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948			    int dir_in)
1949{
1950	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954	u32 ints;
1955	u32 ctrl;
1956
1957	ints = dwc2_readl(hsotg->regs + epint_reg);
1958	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959
1960	/* Clear endpoint interrupts */
1961	dwc2_writel(ints, hsotg->regs + epint_reg);
1962
1963	if (!hs_ep) {
1964		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1965					__func__, idx, dir_in ? "in" : "out");
1966		return;
1967	}
1968
1969	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1970		__func__, idx, dir_in ? "in" : "out", ints);
1971
1972	/* Don't process XferCompl interrupt if it is a setup packet */
1973	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1974		ints &= ~DXEPINT_XFERCOMPL;
1975
1976	if (ints & DXEPINT_XFERCOMPL) {
1977		hs_ep->has_correct_parity = 1;
1978		if (hs_ep->isochronous && hs_ep->interval == 1)
1979			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
1980
 
1981		dev_dbg(hsotg->dev,
1982			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983			__func__, dwc2_readl(hsotg->regs + epctl_reg),
1984			dwc2_readl(hsotg->regs + epsiz_reg));
1985
1986		/*
1987		 * we get OutDone from the FIFO, so we only need to look
1988		 * at completing IN requests here
1989		 */
1990		if (dir_in) {
 
 
 
 
 
 
 
 
 
1991			dwc2_hsotg_complete_in(hsotg, hs_ep);
 
 
1992
1993			if (idx == 0 && !hs_ep->req)
1994				dwc2_hsotg_enqueue_setup(hsotg);
1995		} else if (using_dma(hsotg)) {
1996			/*
1997			 * We're using DMA, we need to fire an OutDone here
1998			 * as we ignore the RXFIFO.
1999			 */
 
 
2000
2001			dwc2_hsotg_handle_outdone(hsotg, idx);
2002		}
2003	}
2004
2005	if (ints & DXEPINT_EPDISBLD) {
2006		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2007
2008		if (dir_in) {
2009			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010
2011			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
 
2012
2013			if ((epctl & DXEPCTL_STALL) &&
2014				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016
2017				dctl |= DCTL_CGNPINNAK;
2018				dwc2_writel(dctl, hsotg->regs + DCTL);
2019			}
2020		}
2021	}
2022
2023	if (ints & DXEPINT_AHBERR)
2024		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2025
2026	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2028
2029		if (using_dma(hsotg) && idx == 0) {
2030			/*
2031			 * this is the notification we've received a
2032			 * setup packet. In non-DMA mode we'd get this
2033			 * from the RXFIFO, instead we need to process
2034			 * the setup here.
2035			 */
2036
2037			if (dir_in)
2038				WARN_ON_ONCE(1);
2039			else
2040				dwc2_hsotg_handle_outdone(hsotg, 0);
2041		}
2042	}
2043
 
 
 
 
 
 
 
 
 
 
 
 
2044	if (ints & DXEPINT_BACK2BACKSETUP)
2045		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2046
 
 
 
 
 
 
 
 
 
 
 
 
 
2047	if (dir_in && !hs_ep->isochronous) {
2048		/* not sure if this is important, but we'll clear it anyway */
2049		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2051				__func__, idx);
2052		}
2053
2054		/* this probably means something bad is happening */
2055		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2057				 __func__, idx);
2058		}
2059
2060		/* FIFO has space or is empty (see GAHBCFG) */
2061		if (hsotg->dedicated_fifos &&
2062		    ints & DIEPMSK_TXFIFOEMPTY) {
2063			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2064				__func__, idx);
2065			if (!using_dma(hsotg))
2066				dwc2_hsotg_trytx(hsotg, hs_ep);
2067		}
2068	}
2069}
2070
2071/**
2072 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073 * @hsotg: The device state.
2074 *
2075 * Handle updating the device settings after the enumeration phase has
2076 * been completed.
2077 */
2078static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079{
2080	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081	int ep0_mps = 0, ep_mps = 8;
2082
2083	/*
2084	 * This should signal the finish of the enumeration phase
2085	 * of the USB handshaking, so we should now know what rate
2086	 * we connected at.
2087	 */
2088
2089	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2090
2091	/*
2092	 * note, since we're limited by the size of transfer on EP0, and
2093	 * it seems IN transfers must be a even number of packets we do
2094	 * not advertise a 64byte MPS on EP0.
2095	 */
2096
2097	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2099	case DSTS_ENUMSPD_FS:
2100	case DSTS_ENUMSPD_FS48:
2101		hsotg->gadget.speed = USB_SPEED_FULL;
2102		ep0_mps = EP0_MPS_LIMIT;
2103		ep_mps = 1023;
2104		break;
2105
2106	case DSTS_ENUMSPD_HS:
2107		hsotg->gadget.speed = USB_SPEED_HIGH;
2108		ep0_mps = EP0_MPS_LIMIT;
2109		ep_mps = 1024;
2110		break;
2111
2112	case DSTS_ENUMSPD_LS:
2113		hsotg->gadget.speed = USB_SPEED_LOW;
 
 
2114		/*
2115		 * note, we don't actually support LS in this driver at the
2116		 * moment, and the documentation seems to imply that it isn't
2117		 * supported by the PHYs on some of the devices.
2118		 */
2119		break;
2120	}
2121	dev_info(hsotg->dev, "new device is %s\n",
2122		 usb_speed_string(hsotg->gadget.speed));
2123
2124	/*
2125	 * we should now know the maximum packet size for an
2126	 * endpoint, so set the endpoints to a default value.
2127	 */
2128
2129	if (ep0_mps) {
2130		int i;
2131		/* Initialize ep0 for both in and out directions */
2132		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2133		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134		for (i = 1; i < hsotg->num_of_eps; i++) {
2135			if (hsotg->eps_in[i])
2136				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
 
2137			if (hsotg->eps_out[i])
2138				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
 
2139		}
2140	}
2141
2142	/* ensure after enumeration our EP0 is active */
2143
2144	dwc2_hsotg_enqueue_setup(hsotg);
2145
2146	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147		dwc2_readl(hsotg->regs + DIEPCTL0),
2148		dwc2_readl(hsotg->regs + DOEPCTL0));
2149}
2150
2151/**
2152 * kill_all_requests - remove all requests from the endpoint's queue
2153 * @hsotg: The device state.
2154 * @ep: The endpoint the requests may be on.
2155 * @result: The result code to use.
2156 *
2157 * Go through the requests on the given endpoint and mark them
2158 * completed with the given result code.
2159 */
2160static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161			      struct dwc2_hsotg_ep *ep,
2162			      int result)
2163{
2164	struct dwc2_hsotg_req *req, *treq;
2165	unsigned size;
2166
2167	ep->req = NULL;
2168
2169	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170		dwc2_hsotg_complete_request(hsotg, ep, req,
2171					   result);
2172
2173	if (!hsotg->dedicated_fifos)
2174		return;
2175	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176	if (size < ep->fifo_size)
2177		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178}
2179
2180/**
2181 * dwc2_hsotg_disconnect - disconnect service
2182 * @hsotg: The device state.
2183 *
2184 * The device has been disconnected. Remove all current
2185 * transactions and signal the gadget driver that this
2186 * has happened.
2187 */
2188void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189{
2190	unsigned ep;
2191
2192	if (!hsotg->connected)
2193		return;
2194
2195	hsotg->connected = 0;
2196	hsotg->test_mode = 0;
2197
2198	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2199		if (hsotg->eps_in[ep])
2200			kill_all_requests(hsotg, hsotg->eps_in[ep],
2201								-ESHUTDOWN);
2202		if (hsotg->eps_out[ep])
2203			kill_all_requests(hsotg, hsotg->eps_out[ep],
2204								-ESHUTDOWN);
2205	}
2206
2207	call_gadget(hsotg, disconnect);
2208	hsotg->lx_state = DWC2_L3;
 
 
2209}
2210
2211/**
2212 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213 * @hsotg: The device state:
2214 * @periodic: True if this is a periodic FIFO interrupt
2215 */
2216static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217{
2218	struct dwc2_hsotg_ep *ep;
2219	int epno, ret;
2220
2221	/* look through for any more data to transmit */
2222	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223		ep = index_to_ep(hsotg, epno, 1);
2224
2225		if (!ep)
2226			continue;
2227
2228		if (!ep->dir_in)
2229			continue;
2230
2231		if ((periodic && !ep->periodic) ||
2232		    (!periodic && ep->periodic))
2233			continue;
2234
2235		ret = dwc2_hsotg_trytx(hsotg, ep);
2236		if (ret < 0)
2237			break;
2238	}
2239}
2240
2241/* IRQ flags which will trigger a retry around the IRQ loop */
2242#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2243			GINTSTS_PTXFEMP |  \
2244			GINTSTS_RXFLVL)
2245
2246/**
2247 * dwc2_hsotg_core_init - issue softreset to the core
2248 * @hsotg: The device state
2249 *
2250 * Issue a soft reset to the core, and await the core finishing it.
2251 */
2252void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2253						bool is_usb_reset)
2254{
2255	u32 intmsk;
2256	u32 val;
2257	u32 usbcfg;
 
2258
2259	/* Kill any ep0 requests as controller will be reinitialized */
2260	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2261
2262	if (!is_usb_reset)
2263		if (dwc2_core_reset(hsotg))
2264			return;
2265
2266	/*
2267	 * we must now enable ep0 ready for host detection and then
2268	 * set configuration.
2269	 */
2270
2271	/* keep other bits untouched (so e.g. forced modes are not lost) */
2272	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2273	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
2274		GUSBCFG_HNPCAP);
2275
2276	/* set the PLL on, remove the HNP/SRP and set the PHY */
2277	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2278	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2279		(val << GUSBCFG_USBTRDTIM_SHIFT);
 
 
 
 
 
 
 
2280	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2281
2282	dwc2_hsotg_init_fifo(hsotg);
2283
2284	if (!is_usb_reset)
2285		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
2286
2287	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288
2289	/* Clear any pending OTG interrupts */
2290	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2291
2292	/* Clear any pending interrupts */
2293	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2294	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2295		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2296		GINTSTS_USBRST | GINTSTS_RESETDET |
2297		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2298		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2299		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
 
 
 
2300
2301	if (hsotg->core_params->external_id_pin_ctl <= 0)
2302		intmsk |= GINTSTS_CONIDSTSCHNG;
2303
2304	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2305
2306	if (using_dma(hsotg))
2307		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2308			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2309			    hsotg->regs + GAHBCFG);
2310	else
 
 
 
 
 
2311		dwc2_writel(((hsotg->dedicated_fifos) ?
2312						(GAHBCFG_NP_TXF_EMP_LVL |
2313						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2314			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
 
2315
2316	/*
2317	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2318	 * when we have no data to transfer. Otherwise we get being flooded by
2319	 * interrupts.
2320	 */
2321
2322	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2323		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2324		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2325		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2326		DIEPMSK_INTKNEPMISMSK,
2327		hsotg->regs + DIEPMSK);
2328
2329	/*
2330	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2331	 * DMA mode we may need this.
2332	 */
2333	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2334				    DIEPMSK_TIMEOUTMSK) : 0) |
2335		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2336		DOEPMSK_SETUPMSK,
2337		hsotg->regs + DOEPMSK);
2338
 
 
 
 
2339	dwc2_writel(0, hsotg->regs + DAINTMSK);
2340
2341	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2342		dwc2_readl(hsotg->regs + DIEPCTL0),
2343		dwc2_readl(hsotg->regs + DOEPCTL0));
2344
2345	/* enable in and out endpoint interrupts */
2346	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2347
2348	/*
2349	 * Enable the RXFIFO when in slave mode, as this is how we collect
2350	 * the data. In DMA mode, we get events from the FIFO but also
2351	 * things we cannot process, so do not use it.
2352	 */
2353	if (!using_dma(hsotg))
2354		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2355
2356	/* Enable interrupts for EP0 in and out */
2357	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2358	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2359
2360	if (!is_usb_reset) {
2361		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2362		udelay(10);  /* see openiboot */
2363		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2364	}
2365
2366	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2367
2368	/*
2369	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2370	 * writing to the EPCTL register..
2371	 */
2372
2373	/* set to read 1 8byte packet */
2374	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2375	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2376
2377	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2378	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2379	       DXEPCTL_USBACTEP,
2380	       hsotg->regs + DOEPCTL0);
2381
2382	/* enable, but don't activate EP0in */
2383	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2384	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2385
2386	dwc2_hsotg_enqueue_setup(hsotg);
2387
2388	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2389		dwc2_readl(hsotg->regs + DIEPCTL0),
2390		dwc2_readl(hsotg->regs + DOEPCTL0));
2391
2392	/* clear global NAKs */
2393	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2394	if (!is_usb_reset)
2395		val |= DCTL_SFTDISCON;
2396	__orr32(hsotg->regs + DCTL, val);
 
 
 
2397
2398	/* must be at-least 3ms to allow bus to see disconnect */
2399	mdelay(3);
2400
2401	hsotg->lx_state = DWC2_L0;
 
 
 
 
 
 
2402}
2403
2404static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2405{
2406	/* set the soft-disconnect bit */
2407	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2408}
2409
2410void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2411{
2412	/* remove the soft-disconnect and let's go */
2413	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414}
2415
2416/**
2417 * dwc2_hsotg_irq - handle device interrupt
2418 * @irq: The IRQ number triggered
2419 * @pw: The pw value when registered the handler.
2420 */
2421static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2422{
2423	struct dwc2_hsotg *hsotg = pw;
2424	int retry_count = 8;
2425	u32 gintsts;
2426	u32 gintmsk;
2427
 
 
 
2428	spin_lock(&hsotg->lock);
2429irq_retry:
2430	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2431	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2432
2433	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2434		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2435
2436	gintsts &= gintmsk;
2437
2438	if (gintsts & GINTSTS_RESETDET) {
2439		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2440
2441		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2442
2443		/* This event must be used only if controller is suspended */
2444		if (hsotg->lx_state == DWC2_L2) {
2445			dwc2_exit_hibernation(hsotg, true);
2446			hsotg->lx_state = DWC2_L0;
2447		}
2448	}
2449
2450	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2451
2452		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2453		u32 connected = hsotg->connected;
2454
2455		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2456		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2457			dwc2_readl(hsotg->regs + GNPTXSTS));
2458
2459		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2460
2461		/* Report disconnection if it is not already done. */
2462		dwc2_hsotg_disconnect(hsotg);
2463
 
 
 
2464		if (usb_status & GOTGCTL_BSESVLD && connected)
2465			dwc2_hsotg_core_init_disconnected(hsotg, true);
2466	}
2467
2468	if (gintsts & GINTSTS_ENUMDONE) {
2469		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2470
2471		dwc2_hsotg_irq_enumdone(hsotg);
2472	}
2473
2474	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2475		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2476		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2477		u32 daint_out, daint_in;
2478		int ep;
2479
2480		daint &= daintmsk;
2481		daint_out = daint >> DAINT_OUTEP_SHIFT;
2482		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2483
2484		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2485
2486		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2487						ep++, daint_out >>= 1) {
2488			if (daint_out & 1)
2489				dwc2_hsotg_epint(hsotg, ep, 0);
2490		}
2491
2492		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2493						ep++, daint_in >>= 1) {
2494			if (daint_in & 1)
2495				dwc2_hsotg_epint(hsotg, ep, 1);
2496		}
2497	}
2498
2499	/* check both FIFOs */
2500
2501	if (gintsts & GINTSTS_NPTXFEMP) {
2502		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2503
2504		/*
2505		 * Disable the interrupt to stop it happening again
2506		 * unless one of these endpoint routines decides that
2507		 * it needs re-enabling
2508		 */
2509
2510		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2511		dwc2_hsotg_irq_fifoempty(hsotg, false);
2512	}
2513
2514	if (gintsts & GINTSTS_PTXFEMP) {
2515		dev_dbg(hsotg->dev, "PTxFEmp\n");
2516
2517		/* See note in GINTSTS_NPTxFEmp */
2518
2519		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2520		dwc2_hsotg_irq_fifoempty(hsotg, true);
2521	}
2522
2523	if (gintsts & GINTSTS_RXFLVL) {
2524		/*
2525		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2526		 * we need to retry dwc2_hsotg_handle_rx if this is still
2527		 * set.
2528		 */
2529
2530		dwc2_hsotg_handle_rx(hsotg);
2531	}
2532
2533	if (gintsts & GINTSTS_ERLYSUSP) {
2534		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2535		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2536	}
2537
2538	/*
2539	 * these next two seem to crop-up occasionally causing the core
2540	 * to shutdown the USB transfer, so try clearing them and logging
2541	 * the occurrence.
2542	 */
2543
2544	if (gintsts & GINTSTS_GOUTNAKEFF) {
2545		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
 
 
 
 
2546
2547		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
 
 
 
 
 
2548
2549		dwc2_hsotg_dump(hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	}
2551
2552	if (gintsts & GINTSTS_GINNAKEFF) {
2553		dev_info(hsotg->dev, "GINNakEff triggered\n");
2554
2555		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2556
2557		dwc2_hsotg_dump(hsotg);
2558	}
2559
2560	if (gintsts & GINTSTS_INCOMPL_SOIN) {
2561		u32 idx, epctl_reg;
2562		struct dwc2_hsotg_ep *hs_ep;
2563
2564		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2565		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2566			hs_ep = hsotg->eps_in[idx];
2567
2568			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2569				continue;
 
 
2570
2571			epctl_reg = DIEPCTL(idx);
2572			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2573		}
2574		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2575	}
2576
2577	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2578		u32 idx, epctl_reg;
2579		struct dwc2_hsotg_ep *hs_ep;
2580
2581		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2582		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2583			hs_ep = hsotg->eps_out[idx];
2584
2585			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2586				continue;
 
 
 
2587
2588			epctl_reg = DOEPCTL(idx);
2589			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590		}
2591		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
 
 
 
 
 
 
 
 
2592	}
2593
2594	/*
2595	 * if we've had fifo events, we should try and go around the
2596	 * loop again to see if there's any point in returning yet.
2597	 */
2598
2599	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2600			goto irq_retry;
 
 
2601
2602	spin_unlock(&hsotg->lock);
 
2603
2604	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605}
2606
2607/**
2608 * dwc2_hsotg_ep_enable - enable the given endpoint
2609 * @ep: The USB endpint to configure
2610 * @desc: The USB endpoint descriptor to configure with.
2611 *
2612 * This is called from the USB gadget code's usb_ep_enable().
2613 */
2614static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2615			       const struct usb_endpoint_descriptor *desc)
2616{
2617	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2618	struct dwc2_hsotg *hsotg = hs_ep->parent;
2619	unsigned long flags;
2620	unsigned int index = hs_ep->index;
2621	u32 epctrl_reg;
2622	u32 epctrl;
2623	u32 mps;
 
 
2624	unsigned int dir_in;
2625	unsigned int i, val, size;
2626	int ret = 0;
2627
2628	dev_dbg(hsotg->dev,
2629		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2630		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2631		desc->wMaxPacketSize, desc->bInterval);
2632
2633	/* not to be called for EP0 */
2634	WARN_ON(index == 0);
 
 
 
2635
2636	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2637	if (dir_in != hs_ep->dir_in) {
2638		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2639		return -EINVAL;
2640	}
2641
2642	mps = usb_endpoint_maxp(desc);
 
2643
2644	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2645
2646	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2647	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2648
2649	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2650		__func__, epctrl, epctrl_reg);
2651
 
 
 
 
 
 
 
 
 
 
 
 
2652	spin_lock_irqsave(&hsotg->lock, flags);
2653
2654	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2655	epctrl |= DXEPCTL_MPS(mps);
2656
2657	/*
2658	 * mark the endpoint as active, otherwise the core may ignore
2659	 * transactions entirely for this endpoint
2660	 */
2661	epctrl |= DXEPCTL_USBACTEP;
2662
2663	/*
2664	 * set the NAK status on the endpoint, otherwise we might try and
2665	 * do something with data that we've yet got a request to process
2666	 * since the RXFIFO will take data for an endpoint even if the
2667	 * size register hasn't been set.
2668	 */
2669
2670	epctrl |= DXEPCTL_SNAK;
2671
2672	/* update the endpoint state */
2673	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2674
2675	/* default, set to non-periodic */
2676	hs_ep->isochronous = 0;
2677	hs_ep->periodic = 0;
2678	hs_ep->halted = 0;
2679	hs_ep->interval = desc->bInterval;
2680	hs_ep->has_correct_parity = 0;
2681
2682	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2683		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2684
2685	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2686	case USB_ENDPOINT_XFER_ISOC:
2687		epctrl |= DXEPCTL_EPTYPE_ISO;
2688		epctrl |= DXEPCTL_SETEVENFR;
2689		hs_ep->isochronous = 1;
2690		if (dir_in)
 
 
 
 
2691			hs_ep->periodic = 1;
 
 
 
 
 
 
 
 
2692		break;
2693
2694	case USB_ENDPOINT_XFER_BULK:
2695		epctrl |= DXEPCTL_EPTYPE_BULK;
2696		break;
2697
2698	case USB_ENDPOINT_XFER_INT:
2699		if (dir_in)
2700			hs_ep->periodic = 1;
2701
 
 
 
2702		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2703		break;
2704
2705	case USB_ENDPOINT_XFER_CONTROL:
2706		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2707		break;
2708	}
2709
2710	/* If fifo is already allocated for this ep */
2711	if (hs_ep->fifo_index) {
2712		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2713		/* If bigger fifo is required deallocate current one */
2714		if (size > hs_ep->fifo_size) {
2715			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2716			hs_ep->fifo_index = 0;
2717			hs_ep->fifo_size = 0;
2718		}
2719	}
2720
2721	/*
2722	 * if the hardware has dedicated fifos, we must give each IN EP
2723	 * a unique tx-fifo even if it is non-periodic.
2724	 */
2725	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2726		u32 fifo_index = 0;
2727		u32 fifo_size = UINT_MAX;
2728		size = hs_ep->ep.maxpacket*hs_ep->mc;
 
2729		for (i = 1; i < hsotg->num_of_eps; ++i) {
2730			if (hsotg->fifo_map & (1<<i))
2731				continue;
2732			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2733			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2734			if (val < size)
2735				continue;
2736			/* Search for smallest acceptable fifo */
2737			if (val < fifo_size) {
2738				fifo_size = val;
2739				fifo_index = i;
2740			}
2741		}
2742		if (!fifo_index) {
2743			dev_err(hsotg->dev,
2744				"%s: No suitable fifo found\n", __func__);
2745			ret = -ENOMEM;
2746			goto error;
2747		}
2748		hsotg->fifo_map |= 1 << fifo_index;
2749		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2750		hs_ep->fifo_index = fifo_index;
2751		hs_ep->fifo_size = fifo_size;
2752	}
2753
2754	/* for non control endpoints, set PID to D0 */
2755	if (index)
2756		epctrl |= DXEPCTL_SETD0PID;
2757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2759		__func__, epctrl);
2760
2761	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2762	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2763		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2764
2765	/* enable the endpoint interrupt */
2766	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2767
2768error:
2769	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
 
 
 
 
 
 
2770	return ret;
2771}
2772
2773/**
2774 * dwc2_hsotg_ep_disable - disable given endpoint
2775 * @ep: The endpoint to disable.
2776 */
2777static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2778{
2779	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2780	struct dwc2_hsotg *hsotg = hs_ep->parent;
2781	int dir_in = hs_ep->dir_in;
2782	int index = hs_ep->index;
2783	unsigned long flags;
2784	u32 epctrl_reg;
2785	u32 ctrl;
2786
2787	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2788
2789	if (ep == &hsotg->eps_out[0]->ep) {
2790		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2791		return -EINVAL;
2792	}
2793
 
 
 
 
 
2794	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2795
2796	spin_lock_irqsave(&hsotg->lock, flags);
2797
2798	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2799	hs_ep->fifo_index = 0;
2800	hs_ep->fifo_size = 0;
2801
2802	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 
 
 
 
2803	ctrl &= ~DXEPCTL_EPENA;
2804	ctrl &= ~DXEPCTL_USBACTEP;
2805	ctrl |= DXEPCTL_SNAK;
2806
2807	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2808	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2809
2810	/* disable endpoint interrupts */
2811	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2812
2813	/* terminate all requests with shutdown */
2814	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2815
 
 
 
 
2816	spin_unlock_irqrestore(&hsotg->lock, flags);
2817	return 0;
2818}
2819
2820/**
2821 * on_list - check request is on the given endpoint
2822 * @ep: The endpoint to check.
2823 * @test: The request to test if it is on the endpoint.
2824 */
2825static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2826{
2827	struct dwc2_hsotg_req *req, *treq;
2828
2829	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2830		if (req == test)
2831			return true;
2832	}
2833
2834	return false;
2835}
2836
2837static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2838							u32 bit, u32 timeout)
2839{
2840	u32 i;
2841
2842	for (i = 0; i < timeout; i++) {
2843		if (dwc2_readl(hs_otg->regs + reg) & bit)
2844			return 0;
2845		udelay(1);
2846	}
2847
2848	return -ETIMEDOUT;
2849}
2850
2851static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2852						struct dwc2_hsotg_ep *hs_ep)
2853{
2854	u32 epctrl_reg;
2855	u32 epint_reg;
2856
2857	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2858		DOEPCTL(hs_ep->index);
2859	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2860		DOEPINT(hs_ep->index);
2861
2862	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2863			hs_ep->name);
2864	if (hs_ep->dir_in) {
2865		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2866		/* Wait for Nak effect */
2867		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2868						DXEPINT_INEPNAKEFF, 100))
2869			dev_warn(hsotg->dev,
2870				"%s: timeout DIEPINT.NAKEFF\n", __func__);
2871	} else {
2872		/* Clear any pending nak effect interrupt */
2873		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2874
2875		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2876
2877		/* Wait for global nak to take effect */
2878		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2879						GINTSTS_GOUTNAKEFF, 100))
2880			dev_warn(hsotg->dev,
2881				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2882	}
2883
2884	/* Disable ep */
2885	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2886
2887	/* Wait for ep to be disabled */
2888	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2889		dev_warn(hsotg->dev,
2890			"%s: timeout DOEPCTL.EPDisable\n", __func__);
2891
2892	if (hs_ep->dir_in) {
2893		if (hsotg->dedicated_fifos) {
2894			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2895				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2896			/* Wait for fifo flush */
2897			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2898							GRSTCTL_TXFFLSH, 100))
2899				dev_warn(hsotg->dev,
2900					"%s: timeout flushing fifos\n",
2901					__func__);
2902		}
2903		/* TODO: Flush shared tx fifo */
2904	} else {
2905		/* Remove global NAKs */
2906		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2907	}
2908}
2909
2910/**
2911 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2912 * @ep: The endpoint to dequeue.
2913 * @req: The request to be removed from a queue.
2914 */
2915static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2916{
2917	struct dwc2_hsotg_req *hs_req = our_req(req);
2918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2919	struct dwc2_hsotg *hs = hs_ep->parent;
2920	unsigned long flags;
2921
2922	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2923
2924	spin_lock_irqsave(&hs->lock, flags);
2925
2926	if (!on_list(hs_ep, hs_req)) {
2927		spin_unlock_irqrestore(&hs->lock, flags);
2928		return -EINVAL;
2929	}
2930
2931	/* Dequeue already started request */
2932	if (req == &hs_ep->req->req)
2933		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2934
2935	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2936	spin_unlock_irqrestore(&hs->lock, flags);
2937
2938	return 0;
2939}
2940
2941/**
2942 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2943 * @ep: The endpoint to set halt.
2944 * @value: Set or unset the halt.
 
 
 
 
 
2945 */
2946static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2947{
2948	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2949	struct dwc2_hsotg *hs = hs_ep->parent;
2950	int index = hs_ep->index;
2951	u32 epreg;
2952	u32 epctl;
2953	u32 xfertype;
2954
2955	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2956
2957	if (index == 0) {
2958		if (value)
2959			dwc2_hsotg_stall_ep0(hs);
2960		else
2961			dev_warn(hs->dev,
2962				 "%s: can't clear halt on ep0\n", __func__);
2963		return 0;
2964	}
2965
 
 
 
 
 
 
 
 
 
 
 
2966	if (hs_ep->dir_in) {
2967		epreg = DIEPCTL(index);
2968		epctl = dwc2_readl(hs->regs + epreg);
2969
2970		if (value) {
2971			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2972			if (epctl & DXEPCTL_EPENA)
2973				epctl |= DXEPCTL_EPDIS;
2974		} else {
2975			epctl &= ~DXEPCTL_STALL;
2976			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2977			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2978				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2979					epctl |= DXEPCTL_SETD0PID;
2980		}
2981		dwc2_writel(epctl, hs->regs + epreg);
2982	} else {
2983
2984		epreg = DOEPCTL(index);
2985		epctl = dwc2_readl(hs->regs + epreg);
2986
2987		if (value)
2988			epctl |= DXEPCTL_STALL;
2989		else {
2990			epctl &= ~DXEPCTL_STALL;
2991			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2992			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2993				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2994					epctl |= DXEPCTL_SETD0PID;
2995		}
2996		dwc2_writel(epctl, hs->regs + epreg);
2997	}
2998
2999	hs_ep->halted = value;
3000
3001	return 0;
3002}
3003
3004/**
3005 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3006 * @ep: The endpoint to set halt.
3007 * @value: Set or unset the halt.
3008 */
3009static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3010{
3011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3012	struct dwc2_hsotg *hs = hs_ep->parent;
3013	unsigned long flags = 0;
3014	int ret = 0;
3015
3016	spin_lock_irqsave(&hs->lock, flags);
3017	ret = dwc2_hsotg_ep_sethalt(ep, value);
3018	spin_unlock_irqrestore(&hs->lock, flags);
3019
3020	return ret;
3021}
3022
3023static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3024	.enable		= dwc2_hsotg_ep_enable,
3025	.disable	= dwc2_hsotg_ep_disable,
3026	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3027	.free_request	= dwc2_hsotg_ep_free_request,
3028	.queue		= dwc2_hsotg_ep_queue_lock,
3029	.dequeue	= dwc2_hsotg_ep_dequeue,
3030	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
3031	/* note, don't believe we have any call for the fifo routines */
3032};
3033
3034/**
3035 * dwc2_hsotg_init - initalize the usb core
3036 * @hsotg: The driver state
3037 */
3038static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3039{
3040	u32 trdtim;
3041	u32 usbcfg;
3042	/* unmask subset of endpoint interrupts */
3043
3044	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3045		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3046		    hsotg->regs + DIEPMSK);
3047
3048	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3049		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3050		    hsotg->regs + DOEPMSK);
3051
3052	dwc2_writel(0, hsotg->regs + DAINTMSK);
3053
3054	/* Be in disconnected state until gadget is registered */
3055	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3056
3057	/* setup fifos */
3058
3059	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3060		dwc2_readl(hsotg->regs + GRXFSIZ),
3061		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3062
3063	dwc2_hsotg_init_fifo(hsotg);
3064
3065	/* keep other bits untouched (so e.g. forced modes are not lost) */
3066	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3067	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3068		GUSBCFG_HNPCAP);
3069
3070	/* set the PLL on, remove the HNP/SRP and set the PHY */
3071	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3072	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3073		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
3074	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3075
3076	if (using_dma(hsotg))
3077		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3078}
3079
3080/**
3081 * dwc2_hsotg_udc_start - prepare the udc for work
3082 * @gadget: The usb gadget state
3083 * @driver: The usb gadget driver
3084 *
3085 * Perform initialization to prepare udc device and driver
3086 * to work.
3087 */
3088static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3089			   struct usb_gadget_driver *driver)
3090{
3091	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3092	unsigned long flags;
3093	int ret;
3094
3095	if (!hsotg) {
3096		pr_err("%s: called with no device\n", __func__);
3097		return -ENODEV;
3098	}
3099
3100	if (!driver) {
3101		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3102		return -EINVAL;
3103	}
3104
3105	if (driver->max_speed < USB_SPEED_FULL)
3106		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3107
3108	if (!driver->setup) {
3109		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3110		return -EINVAL;
3111	}
3112
3113	WARN_ON(hsotg->driver);
3114
3115	driver->driver.bus = NULL;
3116	hsotg->driver = driver;
3117	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3118	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3119
3120	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3121		ret = dwc2_lowlevel_hw_enable(hsotg);
3122		if (ret)
3123			goto err;
3124	}
3125
3126	if (!IS_ERR_OR_NULL(hsotg->uphy))
3127		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3128
3129	spin_lock_irqsave(&hsotg->lock, flags);
3130	dwc2_hsotg_init(hsotg);
3131	dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
 
3132	hsotg->enabled = 0;
3133	spin_unlock_irqrestore(&hsotg->lock, flags);
3134
3135	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3136
3137	return 0;
3138
3139err:
3140	hsotg->driver = NULL;
3141	return ret;
3142}
3143
3144/**
3145 * dwc2_hsotg_udc_stop - stop the udc
3146 * @gadget: The usb gadget state
3147 * @driver: The usb gadget driver
3148 *
3149 * Stop udc hw block and stay tunned for future transmissions
3150 */
3151static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3152{
3153	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3154	unsigned long flags = 0;
3155	int ep;
3156
3157	if (!hsotg)
3158		return -ENODEV;
3159
3160	/* all endpoints should be shutdown */
3161	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3162		if (hsotg->eps_in[ep])
3163			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3164		if (hsotg->eps_out[ep])
3165			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3166	}
3167
3168	spin_lock_irqsave(&hsotg->lock, flags);
3169
3170	hsotg->driver = NULL;
3171	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3172	hsotg->enabled = 0;
3173
3174	spin_unlock_irqrestore(&hsotg->lock, flags);
3175
3176	if (!IS_ERR_OR_NULL(hsotg->uphy))
3177		otg_set_peripheral(hsotg->uphy->otg, NULL);
3178
3179	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3180		dwc2_lowlevel_hw_disable(hsotg);
3181
3182	return 0;
3183}
3184
3185/**
3186 * dwc2_hsotg_gadget_getframe - read the frame number
3187 * @gadget: The usb gadget state
3188 *
3189 * Read the {micro} frame number
3190 */
3191static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3192{
3193	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3194}
3195
3196/**
3197 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3198 * @gadget: The usb gadget state
3199 * @is_on: Current state of the USB PHY
3200 *
3201 * Connect/Disconnect the USB PHY pullup
3202 */
3203static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3204{
3205	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3206	unsigned long flags = 0;
3207
3208	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3209			hsotg->op_state);
3210
3211	/* Don't modify pullup state while in host mode */
3212	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3213		hsotg->enabled = is_on;
3214		return 0;
3215	}
3216
3217	spin_lock_irqsave(&hsotg->lock, flags);
3218	if (is_on) {
3219		hsotg->enabled = 1;
3220		dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
3221		dwc2_hsotg_core_connect(hsotg);
3222	} else {
3223		dwc2_hsotg_core_disconnect(hsotg);
3224		dwc2_hsotg_disconnect(hsotg);
3225		hsotg->enabled = 0;
3226	}
3227
3228	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3229	spin_unlock_irqrestore(&hsotg->lock, flags);
3230
3231	return 0;
3232}
3233
3234static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3235{
3236	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3237	unsigned long flags;
3238
3239	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3240	spin_lock_irqsave(&hsotg->lock, flags);
3241
3242	/*
3243	 * If controller is hibernated, it must exit from hibernation
3244	 * before being initialized / de-initialized
3245	 */
3246	if (hsotg->lx_state == DWC2_L2)
3247		dwc2_exit_hibernation(hsotg, false);
3248
3249	if (is_active) {
3250		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251
3252		dwc2_hsotg_core_init_disconnected(hsotg, false);
3253		if (hsotg->enabled)
 
 
3254			dwc2_hsotg_core_connect(hsotg);
 
3255	} else {
3256		dwc2_hsotg_core_disconnect(hsotg);
3257		dwc2_hsotg_disconnect(hsotg);
3258	}
3259
3260	spin_unlock_irqrestore(&hsotg->lock, flags);
3261	return 0;
3262}
3263
3264/**
3265 * dwc2_hsotg_vbus_draw - report bMaxPower field
3266 * @gadget: The usb gadget state
3267 * @mA: Amount of current
3268 *
3269 * Report how much power the device may consume to the phy.
3270 */
3271static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3272{
3273	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3274
3275	if (IS_ERR_OR_NULL(hsotg->uphy))
3276		return -ENOTSUPP;
3277	return usb_phy_set_power(hsotg->uphy, mA);
3278}
3279
3280static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3281	.get_frame	= dwc2_hsotg_gadget_getframe,
3282	.udc_start		= dwc2_hsotg_udc_start,
3283	.udc_stop		= dwc2_hsotg_udc_stop,
3284	.pullup                 = dwc2_hsotg_pullup,
3285	.vbus_session		= dwc2_hsotg_vbus_session,
3286	.vbus_draw		= dwc2_hsotg_vbus_draw,
3287};
3288
3289/**
3290 * dwc2_hsotg_initep - initialise a single endpoint
3291 * @hsotg: The device state.
3292 * @hs_ep: The endpoint to be initialised.
3293 * @epnum: The endpoint number
3294 *
3295 * Initialise the given endpoint (as part of the probe and device state
3296 * creation) to give to the gadget driver. Setup the endpoint name, any
3297 * direction information and other state that may be required.
3298 */
3299static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3300				       struct dwc2_hsotg_ep *hs_ep,
3301				       int epnum,
3302				       bool dir_in)
3303{
3304	char *dir;
3305
3306	if (epnum == 0)
3307		dir = "";
3308	else if (dir_in)
3309		dir = "in";
3310	else
3311		dir = "out";
3312
3313	hs_ep->dir_in = dir_in;
3314	hs_ep->index = epnum;
3315
3316	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3317
3318	INIT_LIST_HEAD(&hs_ep->queue);
3319	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3320
3321	/* add to the list of endpoints known by the gadget driver */
3322	if (epnum)
3323		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3324
3325	hs_ep->parent = hsotg;
3326	hs_ep->ep.name = hs_ep->name;
3327	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
 
 
 
 
 
3328	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3329
3330	if (epnum == 0) {
3331		hs_ep->ep.caps.type_control = true;
3332	} else {
3333		hs_ep->ep.caps.type_iso = true;
3334		hs_ep->ep.caps.type_bulk = true;
 
 
3335		hs_ep->ep.caps.type_int = true;
3336	}
3337
3338	if (dir_in)
3339		hs_ep->ep.caps.dir_in = true;
3340	else
3341		hs_ep->ep.caps.dir_out = true;
3342
3343	/*
3344	 * if we're using dma, we need to set the next-endpoint pointer
3345	 * to be something valid.
3346	 */
3347
3348	if (using_dma(hsotg)) {
3349		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
 
3350		if (dir_in)
3351			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3352		else
3353			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3354	}
3355}
3356
3357/**
3358 * dwc2_hsotg_hw_cfg - read HW configuration registers
3359 * @param: The device state
3360 *
3361 * Read the USB core HW configuration registers
3362 */
3363static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3364{
3365	u32 cfg;
3366	u32 ep_type;
3367	u32 i;
3368
3369	/* check hardware configuration */
3370
3371	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
3372
3373	/* Add ep0 */
3374	hsotg->num_of_eps++;
3375
3376	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3377								GFP_KERNEL);
 
3378	if (!hsotg->eps_in[0])
3379		return -ENOMEM;
3380	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3381	hsotg->eps_out[0] = hsotg->eps_in[0];
3382
3383	cfg = hsotg->hw_params.dev_ep_dirs;
3384	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3385		ep_type = cfg & 3;
3386		/* Direction in or both */
3387		if (!(ep_type & 2)) {
3388			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3389				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3390			if (!hsotg->eps_in[i])
3391				return -ENOMEM;
3392		}
3393		/* Direction out or both */
3394		if (!(ep_type & 1)) {
3395			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3396				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3397			if (!hsotg->eps_out[i])
3398				return -ENOMEM;
3399		}
3400	}
3401
3402	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
3403	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3404
3405	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3406		 hsotg->num_of_eps,
3407		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3408		 hsotg->fifo_mem);
3409	return 0;
3410}
3411
3412/**
3413 * dwc2_hsotg_dump - dump state of the udc
3414 * @param: The device state
3415 */
3416static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3417{
3418#ifdef DEBUG
3419	struct device *dev = hsotg->dev;
3420	void __iomem *regs = hsotg->regs;
3421	u32 val;
3422	int idx;
3423
3424	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3425		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3426		 dwc2_readl(regs + DIEPMSK));
3427
3428	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3429		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3430
3431	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3432		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3433
3434	/* show periodic fifo settings */
3435
3436	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3437		val = dwc2_readl(regs + DPTXFSIZN(idx));
3438		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3439			 val >> FIFOSIZE_DEPTH_SHIFT,
3440			 val & FIFOSIZE_STARTADDR_MASK);
3441	}
3442
3443	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3444		dev_info(dev,
3445			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3446			 dwc2_readl(regs + DIEPCTL(idx)),
3447			 dwc2_readl(regs + DIEPTSIZ(idx)),
3448			 dwc2_readl(regs + DIEPDMA(idx)));
3449
3450		val = dwc2_readl(regs + DOEPCTL(idx));
3451		dev_info(dev,
3452			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3453			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3454			 dwc2_readl(regs + DOEPTSIZ(idx)),
3455			 dwc2_readl(regs + DOEPDMA(idx)));
3456
3457	}
3458
3459	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3460		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3461#endif
3462}
3463
3464#ifdef CONFIG_OF
3465static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3466{
3467	struct device_node *np = hsotg->dev->of_node;
3468	u32 len = 0;
3469	u32 i = 0;
3470
3471	/* Enable dma if requested in device tree */
3472	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3473
3474	/*
3475	* Register TX periodic fifo size per endpoint.
3476	* EP0 is excluded since it has no fifo configuration.
3477	*/
3478	if (!of_find_property(np, "g-tx-fifo-size", &len))
3479		goto rx_fifo;
3480
3481	len /= sizeof(u32);
3482
3483	/* Read tx fifo sizes other than ep0 */
3484	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3485						&hsotg->g_tx_fifo_sz[1], len))
3486		goto rx_fifo;
3487
3488	/* Add ep0 */
3489	len++;
3490
3491	/* Make remaining TX fifos unavailable */
3492	if (len < MAX_EPS_CHANNELS) {
3493		for (i = len; i < MAX_EPS_CHANNELS; i++)
3494			hsotg->g_tx_fifo_sz[i] = 0;
3495	}
3496
3497rx_fifo:
3498	/* Register RX fifo size */
3499	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3500
3501	/* Register NPTX fifo size */
3502	of_property_read_u32(np, "g-np-tx-fifo-size",
3503						&hsotg->g_np_g_tx_fifo_sz);
3504}
3505#else
3506static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3507#endif
3508
3509/**
3510 * dwc2_gadget_init - init function for gadget
3511 * @dwc2: The data structure for the DWC2 driver.
3512 * @irq: The IRQ number for the controller.
3513 */
3514int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3515{
3516	struct device *dev = hsotg->dev;
3517	int epnum;
3518	int ret;
3519	int i;
3520	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3521
3522	/* Initialize to legacy fifo configuration values */
3523	hsotg->g_rx_fifo_sz = 2048;
3524	hsotg->g_np_g_tx_fifo_sz = 1024;
3525	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3526	/* Device tree specific probe */
3527	dwc2_hsotg_of_probe(hsotg);
3528
3529	/* Check against largest possible value. */
3530	if (hsotg->g_np_g_tx_fifo_sz >
3531	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
3532		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
3533			 hsotg->g_np_g_tx_fifo_sz,
3534			 hsotg->hw_params.dev_nperio_tx_fifo_size);
3535		hsotg->g_np_g_tx_fifo_sz =
3536			hsotg->hw_params.dev_nperio_tx_fifo_size;
3537	}
3538
3539	/* Dump fifo information */
3540	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3541						hsotg->g_np_g_tx_fifo_sz);
3542	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3543	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3544		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3545						hsotg->g_tx_fifo_sz[i]);
3546
3547	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3548	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3549	hsotg->gadget.name = dev_name(dev);
 
 
 
 
 
3550	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3551		hsotg->gadget.is_otg = 1;
3552	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3553		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3554
3555	ret = dwc2_hsotg_hw_cfg(hsotg);
3556	if (ret) {
3557		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3558		return ret;
3559	}
3560
3561	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3562			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3563	if (!hsotg->ctrl_buff) {
3564		dev_err(dev, "failed to allocate ctrl request buff\n");
3565		return -ENOMEM;
3566	}
3567
3568	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3569			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3570	if (!hsotg->ep0_buff) {
3571		dev_err(dev, "failed to allocate ctrl reply buff\n");
3572		return -ENOMEM;
 
 
 
 
 
3573	}
3574
3575	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3576				dev_name(hsotg->dev), hsotg);
3577	if (ret < 0) {
3578		dev_err(dev, "cannot claim IRQ for gadget\n");
3579		return ret;
3580	}
3581
3582	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3583
3584	if (hsotg->num_of_eps == 0) {
3585		dev_err(dev, "wrong number of EPs (zero)\n");
3586		return -EINVAL;
3587	}
3588
3589	/* setup endpoint information */
3590
3591	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3592	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3593
3594	/* allocate EP0 request */
3595
3596	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3597						     GFP_KERNEL);
3598	if (!hsotg->ctrl_req) {
3599		dev_err(dev, "failed to allocate ctrl req\n");
3600		return -ENOMEM;
3601	}
3602
3603	/* initialise the endpoints now the core has been initialised */
3604	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3605		if (hsotg->eps_in[epnum])
3606			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3607								epnum, 1);
3608		if (hsotg->eps_out[epnum])
3609			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3610								epnum, 0);
3611	}
3612
3613	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3614	if (ret)
3615		return ret;
3616
3617	dwc2_hsotg_dump(hsotg);
3618
3619	return 0;
3620}
3621
3622/**
3623 * dwc2_hsotg_remove - remove function for hsotg driver
3624 * @pdev: The platform information for the driver
3625 */
3626int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3627{
3628	usb_del_gadget_udc(&hsotg->gadget);
3629
3630	return 0;
3631}
3632
3633int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3634{
3635	unsigned long flags;
3636
3637	if (hsotg->lx_state != DWC2_L0)
3638		return 0;
3639
3640	if (hsotg->driver) {
3641		int ep;
3642
3643		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3644			 hsotg->driver->driver.name);
3645
3646		spin_lock_irqsave(&hsotg->lock, flags);
3647		if (hsotg->enabled)
3648			dwc2_hsotg_core_disconnect(hsotg);
3649		dwc2_hsotg_disconnect(hsotg);
3650		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3651		spin_unlock_irqrestore(&hsotg->lock, flags);
3652
3653		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3654			if (hsotg->eps_in[ep])
3655				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3656			if (hsotg->eps_out[ep])
3657				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3658		}
3659	}
3660
3661	return 0;
3662}
3663
3664int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3665{
3666	unsigned long flags;
3667
3668	if (hsotg->lx_state == DWC2_L2)
3669		return 0;
3670
3671	if (hsotg->driver) {
3672		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3673			 hsotg->driver->driver.name);
3674
3675		spin_lock_irqsave(&hsotg->lock, flags);
3676		dwc2_hsotg_core_init_disconnected(hsotg, false);
3677		if (hsotg->enabled)
 
 
3678			dwc2_hsotg_core_connect(hsotg);
 
3679		spin_unlock_irqrestore(&hsotg->lock, flags);
3680	}
3681
3682	return 0;
3683}
3684
3685/**
3686 * dwc2_backup_device_registers() - Backup controller device registers.
3687 * When suspending usb bus, registers needs to be backuped
3688 * if controller power is disabled once suspended.
3689 *
3690 * @hsotg: Programming view of the DWC_otg controller
3691 */
3692int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
3693{
3694	struct dwc2_dregs_backup *dr;
3695	int i;
3696
3697	dev_dbg(hsotg->dev, "%s\n", __func__);
3698
3699	/* Backup dev regs */
3700	dr = &hsotg->dr_backup;
3701
3702	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
3703	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
3704	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3705	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
3706	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
3707
3708	for (i = 0; i < hsotg->num_of_eps; i++) {
3709		/* Backup IN EPs */
3710		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
3711
3712		/* Ensure DATA PID is correctly configured */
3713		if (dr->diepctl[i] & DXEPCTL_DPID)
3714			dr->diepctl[i] |= DXEPCTL_SETD1PID;
3715		else
3716			dr->diepctl[i] |= DXEPCTL_SETD0PID;
3717
3718		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
3719		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
3720
3721		/* Backup OUT EPs */
3722		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
3723
3724		/* Ensure DATA PID is correctly configured */
3725		if (dr->doepctl[i] & DXEPCTL_DPID)
3726			dr->doepctl[i] |= DXEPCTL_SETD1PID;
3727		else
3728			dr->doepctl[i] |= DXEPCTL_SETD0PID;
3729
3730		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
3731		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
 
3732	}
3733	dr->valid = true;
3734	return 0;
3735}
3736
3737/**
3738 * dwc2_restore_device_registers() - Restore controller device registers.
3739 * When resuming usb bus, device registers needs to be restored
3740 * if controller power were disabled.
3741 *
3742 * @hsotg: Programming view of the DWC_otg controller
 
 
 
3743 */
3744int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
3745{
3746	struct dwc2_dregs_backup *dr;
3747	u32 dctl;
3748	int i;
3749
3750	dev_dbg(hsotg->dev, "%s\n", __func__);
3751
3752	/* Restore dev regs */
3753	dr = &hsotg->dr_backup;
3754	if (!dr->valid) {
3755		dev_err(hsotg->dev, "%s: no device registers to restore\n",
3756			__func__);
3757		return -EINVAL;
3758	}
3759	dr->valid = false;
3760
3761	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
3762	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
 
3763	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
3764	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
3765	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
3766
3767	for (i = 0; i < hsotg->num_of_eps; i++) {
3768		/* Restore IN EPs */
3769		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
3770		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
3771		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
3772
 
 
 
 
 
 
 
 
 
 
3773		/* Restore OUT EPs */
3774		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
3775		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
 
 
 
 
 
 
 
 
3776		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
 
3777	}
3778
3779	/* Set the Power-On Programming done bit */
3780	dctl = dwc2_readl(hsotg->regs + DCTL);
3781	dctl |= DCTL_PWRONPRGDONE;
3782	dwc2_writel(dctl, hsotg->regs + DCTL);
3783
3784	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/**
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
 
 
 
 
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
  30
  31#include "core.h"
  32#include "hw.h"
  33
  34/* conversion functions */
  35static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  36{
  37	return container_of(req, struct dwc2_hsotg_req, req);
  38}
  39
  40static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  41{
  42	return container_of(ep, struct dwc2_hsotg_ep, ep);
  43}
  44
  45static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  46{
  47	return container_of(gadget, struct dwc2_hsotg, gadget);
  48}
  49
  50static inline void dwc2_set_bit(void __iomem *ptr, u32 val)
  51{
  52	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  53}
  54
  55static inline void dwc2_clear_bit(void __iomem *ptr, u32 val)
  56{
  57	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  58}
  59
  60static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  61						u32 ep_index, u32 dir_in)
  62{
  63	if (dir_in)
  64		return hsotg->eps_in[ep_index];
  65	else
  66		return hsotg->eps_out[ep_index];
  67}
  68
  69/* forward declaration of functions */
  70static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  71
  72/**
  73 * using_dma - return the DMA status of the driver.
  74 * @hsotg: The driver state.
  75 *
  76 * Return true if we're using DMA.
  77 *
  78 * Currently, we have the DMA support code worked into everywhere
  79 * that needs it, but the AMBA DMA implementation in the hardware can
  80 * only DMA from 32bit aligned addresses. This means that gadgets such
  81 * as the CDC Ethernet cannot work as they often pass packets which are
  82 * not 32bit aligned.
  83 *
  84 * Unfortunately the choice to use DMA or not is global to the controller
  85 * and seems to be only settable when the controller is being put through
  86 * a core reset. This means we either need to fix the gadgets to take
  87 * account of DMA alignment, or add bounce buffers (yuerk).
  88 *
  89 * g_using_dma is set depending on dts flag.
  90 */
  91static inline bool using_dma(struct dwc2_hsotg *hsotg)
  92{
  93	return hsotg->params.g_dma;
  94}
  95
  96/*
  97 * using_desc_dma - return the descriptor DMA status of the driver.
  98 * @hsotg: The driver state.
  99 *
 100 * Return true if we're using descriptor DMA.
 101 */
 102static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 103{
 104	return hsotg->params.g_dma_desc;
 105}
 106
 107/**
 108 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 109 * @hs_ep: The endpoint
 110 * @increment: The value to increment by
 111 *
 112 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 113 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 114 */
 115static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 116{
 117	hs_ep->target_frame += hs_ep->interval;
 118	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
 119		hs_ep->frame_overrun = true;
 120		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
 121	} else {
 122		hs_ep->frame_overrun = false;
 123	}
 124}
 125
 126/**
 127 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 128 * @hsotg: The device state
 129 * @ints: A bitmask of the interrupts to enable
 130 */
 131static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 132{
 133	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 134	u32 new_gsintmsk;
 135
 136	new_gsintmsk = gsintmsk | ints;
 137
 138	if (new_gsintmsk != gsintmsk) {
 139		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 140		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 141	}
 142}
 143
 144/**
 145 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 146 * @hsotg: The device state
 147 * @ints: A bitmask of the interrupts to enable
 148 */
 149static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 150{
 151	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 152	u32 new_gsintmsk;
 153
 154	new_gsintmsk = gsintmsk & ~ints;
 155
 156	if (new_gsintmsk != gsintmsk)
 157		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 158}
 159
 160/**
 161 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 162 * @hsotg: The device state
 163 * @ep: The endpoint index
 164 * @dir_in: True if direction is in.
 165 * @en: The enable value, true to enable
 166 *
 167 * Set or clear the mask for an individual endpoint's interrupt
 168 * request.
 169 */
 170static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 171				  unsigned int ep, unsigned int dir_in,
 172				 unsigned int en)
 173{
 174	unsigned long flags;
 175	u32 bit = 1 << ep;
 176	u32 daint;
 177
 178	if (!dir_in)
 179		bit <<= 16;
 180
 181	local_irq_save(flags);
 182	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 183	if (en)
 184		daint |= bit;
 185	else
 186		daint &= ~bit;
 187	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 188	local_irq_restore(flags);
 189}
 190
 191/**
 192 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 193 */
 194int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 195{
 196	if (hsotg->hw_params.en_multiple_tx_fifo)
 197		/* In dedicated FIFO mode we need count of IN EPs */
 198		return hsotg->hw_params.num_dev_in_eps;
 199	else
 200		/* In shared FIFO mode we need count of Periodic IN EPs */
 201		return hsotg->hw_params.num_dev_perio_in_ep;
 202}
 203
 204/**
 205 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 206 * device mode TX FIFOs
 207 */
 208int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 209{
 210	int addr;
 211	int tx_addr_max;
 212	u32 np_tx_fifo_size;
 213
 214	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 215				hsotg->params.g_np_tx_fifo_size);
 216
 217	/* Get Endpoint Info Control block size in DWORDs. */
 218	tx_addr_max = hsotg->hw_params.total_fifo_size;
 219
 220	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 221	if (tx_addr_max <= addr)
 222		return 0;
 223
 224	return tx_addr_max - addr;
 225}
 226
 227/**
 228 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 229 * TX FIFOs
 230 */
 231int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 232{
 233	int tx_fifo_count;
 234	int tx_fifo_depth;
 235
 236	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 237
 238	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 239
 240	if (!tx_fifo_count)
 241		return tx_fifo_depth;
 242	else
 243		return tx_fifo_depth / tx_fifo_count;
 244}
 245
 246/**
 247 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 248 * @hsotg: The device instance.
 249 */
 250static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 251{
 252	unsigned int ep;
 253	unsigned int addr;
 254	int timeout;
 255
 256	u32 val;
 257	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 258
 259	/* Reset fifo map if not correctly cleared during previous session */
 260	WARN_ON(hsotg->fifo_map);
 261	hsotg->fifo_map = 0;
 262
 263	/* set RX/NPTX FIFO sizes */
 264	dwc2_writel(hsotg->params.g_rx_fifo_size, hsotg->regs + GRXFSIZ);
 265	dwc2_writel((hsotg->params.g_rx_fifo_size << FIFOSIZE_STARTADDR_SHIFT) |
 266		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 267		    hsotg->regs + GNPTXFSIZ);
 268
 269	/*
 270	 * arange all the rest of the TX FIFOs, as some versions of this
 271	 * block have overlapping default addresses. This also ensures
 272	 * that if the settings have been changed, then they are set to
 273	 * known values.
 274	 */
 275
 276	/* start at the end of the GNPTXFSIZ, rounded up */
 277	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 278
 279	/*
 280	 * Configure fifos sizes from provided configuration and assign
 281	 * them to endpoints dynamically according to maxpacket size value of
 282	 * given endpoint.
 283	 */
 284	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 285		if (!txfsz[ep])
 286			continue;
 287		val = addr;
 288		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 289		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 290			  "insufficient fifo memory");
 291		addr += txfsz[ep];
 292
 293		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 294		val = dwc2_readl(hsotg->regs + DPTXFSIZN(ep));
 295	}
 296
 297	dwc2_writel(hsotg->hw_params.total_fifo_size |
 298		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 299		    hsotg->regs + GDFIFOCFG);
 300	/*
 301	 * according to p428 of the design guide, we need to ensure that
 302	 * all fifos are flushed before continuing
 303	 */
 304
 305	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 306	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 307
 308	/* wait until the fifos are both flushed */
 309	timeout = 100;
 310	while (1) {
 311		val = dwc2_readl(hsotg->regs + GRSTCTL);
 312
 313		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 314			break;
 315
 316		if (--timeout == 0) {
 317			dev_err(hsotg->dev,
 318				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 319				__func__, val);
 320			break;
 321		}
 322
 323		udelay(1);
 324	}
 325
 326	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 327}
 328
 329/**
 330 * @ep: USB endpoint to allocate request for.
 331 * @flags: Allocation flags
 332 *
 333 * Allocate a new USB request structure appropriate for the specified endpoint
 334 */
 335static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 336						       gfp_t flags)
 337{
 338	struct dwc2_hsotg_req *req;
 339
 340	req = kzalloc(sizeof(*req), flags);
 341	if (!req)
 342		return NULL;
 343
 344	INIT_LIST_HEAD(&req->queue);
 345
 346	return &req->req;
 347}
 348
 349/**
 350 * is_ep_periodic - return true if the endpoint is in periodic mode.
 351 * @hs_ep: The endpoint to query.
 352 *
 353 * Returns true if the endpoint is in periodic mode, meaning it is being
 354 * used for an Interrupt or ISO transfer.
 355 */
 356static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 357{
 358	return hs_ep->periodic;
 359}
 360
 361/**
 362 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 363 * @hsotg: The device state.
 364 * @hs_ep: The endpoint for the request
 365 * @hs_req: The request being processed.
 366 *
 367 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 368 * of a request to ensure the buffer is ready for access by the caller.
 369 */
 370static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 371				 struct dwc2_hsotg_ep *hs_ep,
 372				struct dwc2_hsotg_req *hs_req)
 373{
 374	struct usb_request *req = &hs_req->req;
 375
 
 
 
 
 376	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 377}
 378
 379/*
 380 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 381 * for Control endpoint
 382 * @hsotg: The device state.
 383 *
 384 * This function will allocate 4 descriptor chains for EP 0: 2 for
 385 * Setup stage, per one for IN and OUT data/status transactions.
 386 */
 387static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 388{
 389	hsotg->setup_desc[0] =
 390		dmam_alloc_coherent(hsotg->dev,
 391				    sizeof(struct dwc2_dma_desc),
 392				    &hsotg->setup_desc_dma[0],
 393				    GFP_KERNEL);
 394	if (!hsotg->setup_desc[0])
 395		goto fail;
 396
 397	hsotg->setup_desc[1] =
 398		dmam_alloc_coherent(hsotg->dev,
 399				    sizeof(struct dwc2_dma_desc),
 400				    &hsotg->setup_desc_dma[1],
 401				    GFP_KERNEL);
 402	if (!hsotg->setup_desc[1])
 403		goto fail;
 404
 405	hsotg->ctrl_in_desc =
 406		dmam_alloc_coherent(hsotg->dev,
 407				    sizeof(struct dwc2_dma_desc),
 408				    &hsotg->ctrl_in_desc_dma,
 409				    GFP_KERNEL);
 410	if (!hsotg->ctrl_in_desc)
 411		goto fail;
 412
 413	hsotg->ctrl_out_desc =
 414		dmam_alloc_coherent(hsotg->dev,
 415				    sizeof(struct dwc2_dma_desc),
 416				    &hsotg->ctrl_out_desc_dma,
 417				    GFP_KERNEL);
 418	if (!hsotg->ctrl_out_desc)
 419		goto fail;
 420
 421	return 0;
 422
 423fail:
 424	return -ENOMEM;
 425}
 426
 427/**
 428 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 429 * @hsotg: The controller state.
 430 * @hs_ep: The endpoint we're going to write for.
 431 * @hs_req: The request to write data for.
 432 *
 433 * This is called when the TxFIFO has some space in it to hold a new
 434 * transmission and we have something to give it. The actual setup of
 435 * the data size is done elsewhere, so all we have to do is to actually
 436 * write the data.
 437 *
 438 * The return value is zero if there is more space (or nothing was done)
 439 * otherwise -ENOSPC is returned if the FIFO space was used up.
 440 *
 441 * This routine is only needed for PIO
 442 */
 443static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 444				 struct dwc2_hsotg_ep *hs_ep,
 445				struct dwc2_hsotg_req *hs_req)
 446{
 447	bool periodic = is_ep_periodic(hs_ep);
 448	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 449	int buf_pos = hs_req->req.actual;
 450	int to_write = hs_ep->size_loaded;
 451	void *data;
 452	int can_write;
 453	int pkt_round;
 454	int max_transfer;
 455
 456	to_write -= (buf_pos - hs_ep->last_load);
 457
 458	/* if there's nothing to write, get out early */
 459	if (to_write == 0)
 460		return 0;
 461
 462	if (periodic && !hsotg->dedicated_fifos) {
 463		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 464		int size_left;
 465		int size_done;
 466
 467		/*
 468		 * work out how much data was loaded so we can calculate
 469		 * how much data is left in the fifo.
 470		 */
 471
 472		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 473
 474		/*
 475		 * if shared fifo, we cannot write anything until the
 476		 * previous data has been completely sent.
 477		 */
 478		if (hs_ep->fifo_load != 0) {
 479			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 480			return -ENOSPC;
 481		}
 482
 483		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 484			__func__, size_left,
 485			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 486
 487		/* how much of the data has moved */
 488		size_done = hs_ep->size_loaded - size_left;
 489
 490		/* how much data is left in the fifo */
 491		can_write = hs_ep->fifo_load - size_done;
 492		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 493			__func__, can_write);
 494
 495		can_write = hs_ep->fifo_size - can_write;
 496		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 497			__func__, can_write);
 498
 499		if (can_write <= 0) {
 500			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 501			return -ENOSPC;
 502		}
 503	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 504		can_write = dwc2_readl(hsotg->regs +
 505				DTXFSTS(hs_ep->fifo_index));
 506
 507		can_write &= 0xffff;
 508		can_write *= 4;
 509	} else {
 510		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 511			dev_dbg(hsotg->dev,
 512				"%s: no queue slots available (0x%08x)\n",
 513				__func__, gnptxsts);
 514
 515			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 516			return -ENOSPC;
 517		}
 518
 519		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 520		can_write *= 4;	/* fifo size is in 32bit quantities. */
 521	}
 522
 523	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 524
 525	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 526		__func__, gnptxsts, can_write, to_write, max_transfer);
 527
 528	/*
 529	 * limit to 512 bytes of data, it seems at least on the non-periodic
 530	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 531	 * fragment of the end of the transfer in it.
 532	 */
 533	if (can_write > 512 && !periodic)
 534		can_write = 512;
 535
 536	/*
 537	 * limit the write to one max-packet size worth of data, but allow
 538	 * the transfer to return that it did not run out of fifo space
 539	 * doing it.
 540	 */
 541	if (to_write > max_transfer) {
 542		to_write = max_transfer;
 543
 544		/* it's needed only when we do not use dedicated fifos */
 545		if (!hsotg->dedicated_fifos)
 546			dwc2_hsotg_en_gsint(hsotg,
 547					    periodic ? GINTSTS_PTXFEMP :
 548					   GINTSTS_NPTXFEMP);
 549	}
 550
 551	/* see if we can write data */
 552
 553	if (to_write > can_write) {
 554		to_write = can_write;
 555		pkt_round = to_write % max_transfer;
 556
 557		/*
 558		 * Round the write down to an
 559		 * exact number of packets.
 560		 *
 561		 * Note, we do not currently check to see if we can ever
 562		 * write a full packet or not to the FIFO.
 563		 */
 564
 565		if (pkt_round)
 566			to_write -= pkt_round;
 567
 568		/*
 569		 * enable correct FIFO interrupt to alert us when there
 570		 * is more room left.
 571		 */
 572
 573		/* it's needed only when we do not use dedicated fifos */
 574		if (!hsotg->dedicated_fifos)
 575			dwc2_hsotg_en_gsint(hsotg,
 576					    periodic ? GINTSTS_PTXFEMP :
 577					   GINTSTS_NPTXFEMP);
 578	}
 579
 580	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 581		to_write, hs_req->req.length, can_write, buf_pos);
 582
 583	if (to_write <= 0)
 584		return -ENOSPC;
 585
 586	hs_req->req.actual = buf_pos + to_write;
 587	hs_ep->total_data += to_write;
 588
 589	if (periodic)
 590		hs_ep->fifo_load += to_write;
 591
 592	to_write = DIV_ROUND_UP(to_write, 4);
 593	data = hs_req->req.buf + buf_pos;
 594
 595	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 596
 597	return (to_write >= can_write) ? -ENOSPC : 0;
 598}
 599
 600/**
 601 * get_ep_limit - get the maximum data legnth for this endpoint
 602 * @hs_ep: The endpoint
 603 *
 604 * Return the maximum data that can be queued in one go on a given endpoint
 605 * so that transfers that are too long can be split.
 606 */
 607static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 608{
 609	int index = hs_ep->index;
 610	unsigned int maxsize;
 611	unsigned int maxpkt;
 612
 613	if (index != 0) {
 614		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 615		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 616	} else {
 617		maxsize = 64 + 64;
 618		if (hs_ep->dir_in)
 619			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 620		else
 621			maxpkt = 2;
 622	}
 623
 624	/* we made the constant loading easier above by using +1 */
 625	maxpkt--;
 626	maxsize--;
 627
 628	/*
 629	 * constrain by packet count if maxpkts*pktsize is greater
 630	 * than the length register size.
 631	 */
 632
 633	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 634		maxsize = maxpkt * hs_ep->ep.maxpacket;
 635
 636	return maxsize;
 637}
 638
 639/**
 640 * dwc2_hsotg_read_frameno - read current frame number
 641 * @hsotg: The device instance
 642 *
 643 * Return the current frame number
 644 */
 645static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 646{
 647	u32 dsts;
 648
 649	dsts = dwc2_readl(hsotg->regs + DSTS);
 650	dsts &= DSTS_SOFFN_MASK;
 651	dsts >>= DSTS_SOFFN_SHIFT;
 652
 653	return dsts;
 654}
 655
 656/**
 657 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 658 * DMA descriptor chain prepared for specific endpoint
 659 * @hs_ep: The endpoint
 660 *
 661 * Return the maximum data that can be queued in one go on a given endpoint
 662 * depending on its descriptor chain capacity so that transfers that
 663 * are too long can be split.
 664 */
 665static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 666{
 667	int is_isoc = hs_ep->isochronous;
 668	unsigned int maxsize;
 669
 670	if (is_isoc)
 671		maxsize = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 672					   DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 673	else
 674		maxsize = DEV_DMA_NBYTES_LIMIT;
 675
 676	/* Above size of one descriptor was chosen, multiple it */
 677	maxsize *= MAX_DMA_DESC_NUM_GENERIC;
 678
 679	return maxsize;
 680}
 681
 682/*
 683 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 684 * @hs_ep: The endpoint
 685 * @mask: RX/TX bytes mask to be defined
 686 *
 687 * Returns maximum data payload for one descriptor after analyzing endpoint
 688 * characteristics.
 689 * DMA descriptor transfer bytes limit depends on EP type:
 690 * Control out - MPS,
 691 * Isochronous - descriptor rx/tx bytes bitfield limit,
 692 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 693 * have concatenations from various descriptors within one packet.
 694 *
 695 * Selects corresponding mask for RX/TX bytes as well.
 696 */
 697static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 698{
 699	u32 mps = hs_ep->ep.maxpacket;
 700	int dir_in = hs_ep->dir_in;
 701	u32 desc_size = 0;
 702
 703	if (!hs_ep->index && !dir_in) {
 704		desc_size = mps;
 705		*mask = DEV_DMA_NBYTES_MASK;
 706	} else if (hs_ep->isochronous) {
 707		if (dir_in) {
 708			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 709			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 710		} else {
 711			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 712			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 713		}
 714	} else {
 715		desc_size = DEV_DMA_NBYTES_LIMIT;
 716		*mask = DEV_DMA_NBYTES_MASK;
 717
 718		/* Round down desc_size to be mps multiple */
 719		desc_size -= desc_size % mps;
 720	}
 721
 722	return desc_size;
 723}
 724
 725/*
 726 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 727 * @hs_ep: The endpoint
 728 * @dma_buff: DMA address to use
 729 * @len: Length of the transfer
 730 *
 731 * This function will iterate over descriptor chain and fill its entries
 732 * with corresponding information based on transfer data.
 733 */
 734static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 735						 dma_addr_t dma_buff,
 736						 unsigned int len)
 737{
 738	struct dwc2_hsotg *hsotg = hs_ep->parent;
 739	int dir_in = hs_ep->dir_in;
 740	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 741	u32 mps = hs_ep->ep.maxpacket;
 742	u32 maxsize = 0;
 743	u32 offset = 0;
 744	u32 mask = 0;
 745	int i;
 746
 747	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 748
 749	hs_ep->desc_count = (len / maxsize) +
 750				((len % maxsize) ? 1 : 0);
 751	if (len == 0)
 752		hs_ep->desc_count = 1;
 753
 754	for (i = 0; i < hs_ep->desc_count; ++i) {
 755		desc->status = 0;
 756		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
 757				 << DEV_DMA_BUFF_STS_SHIFT);
 758
 759		if (len > maxsize) {
 760			if (!hs_ep->index && !dir_in)
 761				desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 762
 763			desc->status |= (maxsize <<
 764						DEV_DMA_NBYTES_SHIFT & mask);
 765			desc->buf = dma_buff + offset;
 766
 767			len -= maxsize;
 768			offset += maxsize;
 769		} else {
 770			desc->status |= (DEV_DMA_L | DEV_DMA_IOC);
 771
 772			if (dir_in)
 773				desc->status |= (len % mps) ? DEV_DMA_SHORT :
 774					((hs_ep->send_zlp) ? DEV_DMA_SHORT : 0);
 775			if (len > maxsize)
 776				dev_err(hsotg->dev, "wrong len %d\n", len);
 777
 778			desc->status |=
 779				len << DEV_DMA_NBYTES_SHIFT & mask;
 780			desc->buf = dma_buff + offset;
 781		}
 782
 783		desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 784		desc->status |= (DEV_DMA_BUFF_STS_HREADY
 785				 << DEV_DMA_BUFF_STS_SHIFT);
 786		desc++;
 787	}
 788}
 789
 790/*
 791 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 792 * @hs_ep: The isochronous endpoint.
 793 * @dma_buff: usb requests dma buffer.
 794 * @len: usb request transfer length.
 795 *
 796 * Finds out index of first free entry either in the bottom or up half of
 797 * descriptor chain depend on which is under SW control and not processed
 798 * by HW. Then fills that descriptor with the data of the arrived usb request,
 799 * frame info, sets Last and IOC bits increments next_desc. If filled
 800 * descriptor is not the first one, removes L bit from the previous descriptor
 801 * status.
 802 */
 803static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 804				      dma_addr_t dma_buff, unsigned int len)
 805{
 806	struct dwc2_dma_desc *desc;
 807	struct dwc2_hsotg *hsotg = hs_ep->parent;
 808	u32 index;
 809	u32 maxsize = 0;
 810	u32 mask = 0;
 811
 812	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 813	if (len > maxsize) {
 814		dev_err(hsotg->dev, "wrong len %d\n", len);
 815		return -EINVAL;
 816	}
 817
 818	/*
 819	 * If SW has already filled half of chain, then return and wait for
 820	 * the other chain to be processed by HW.
 821	 */
 822	if (hs_ep->next_desc == MAX_DMA_DESC_NUM_GENERIC / 2)
 823		return -EBUSY;
 824
 825	/* Increment frame number by interval for IN */
 826	if (hs_ep->dir_in)
 827		dwc2_gadget_incr_frame_num(hs_ep);
 828
 829	index = (MAX_DMA_DESC_NUM_GENERIC / 2) * hs_ep->isoc_chain_num +
 830		 hs_ep->next_desc;
 831
 832	/* Sanity check of calculated index */
 833	if ((hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC) ||
 834	    (!hs_ep->isoc_chain_num && index > MAX_DMA_DESC_NUM_GENERIC / 2)) {
 835		dev_err(hsotg->dev, "wrong index %d for iso chain\n", index);
 836		return -EINVAL;
 837	}
 838
 839	desc = &hs_ep->desc_list[index];
 840
 841	/* Clear L bit of previous desc if more than one entries in the chain */
 842	if (hs_ep->next_desc)
 843		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 844
 845	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 846		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 847
 848	desc->status = 0;
 849	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 850
 851	desc->buf = dma_buff;
 852	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 853			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 854
 855	if (hs_ep->dir_in) {
 856		desc->status |= ((hs_ep->mc << DEV_DMA_ISOC_PID_SHIFT) &
 857				 DEV_DMA_ISOC_PID_MASK) |
 858				((len % hs_ep->ep.maxpacket) ?
 859				 DEV_DMA_SHORT : 0) |
 860				((hs_ep->target_frame <<
 861				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 862				 DEV_DMA_ISOC_FRNUM_MASK);
 863	}
 864
 865	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 866	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 867
 868	/* Update index of last configured entry in the chain */
 869	hs_ep->next_desc++;
 870
 871	return 0;
 872}
 873
 874/*
 875 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 876 * @hs_ep: The isochronous endpoint.
 877 *
 878 * Prepare first descriptor chain for isochronous endpoints. Afterwards
 879 * write DMA address to HW and enable the endpoint.
 880 *
 881 * Switch between descriptor chains via isoc_chain_num to give SW opportunity
 882 * to prepare second descriptor chain while first one is being processed by HW.
 883 */
 884static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 885{
 886	struct dwc2_hsotg *hsotg = hs_ep->parent;
 887	struct dwc2_hsotg_req *hs_req, *treq;
 888	int index = hs_ep->index;
 889	int ret;
 890	u32 dma_reg;
 891	u32 depctl;
 892	u32 ctrl;
 893
 894	if (list_empty(&hs_ep->queue)) {
 895		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 896		return;
 897	}
 898
 899	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
 900		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
 901						 hs_req->req.length);
 902		if (ret) {
 903			dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 904			break;
 905		}
 906	}
 907
 908	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 909	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
 910
 911	/* write descriptor chain address to control register */
 912	dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
 913
 914	ctrl = dwc2_readl(hsotg->regs + depctl);
 915	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
 916	dwc2_writel(ctrl, hsotg->regs + depctl);
 917
 918	/* Switch ISOC descriptor chain number being processed by SW*/
 919	hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
 920	hs_ep->next_desc = 0;
 921}
 922
 923/**
 924 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 925 * @hsotg: The controller state.
 926 * @hs_ep: The endpoint to process a request for
 927 * @hs_req: The request to start.
 928 * @continuing: True if we are doing more for the current request.
 929 *
 930 * Start the given request running by setting the endpoint registers
 931 * appropriately, and writing any data to the FIFOs.
 932 */
 933static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 934				 struct dwc2_hsotg_ep *hs_ep,
 935				struct dwc2_hsotg_req *hs_req,
 936				bool continuing)
 937{
 938	struct usb_request *ureq = &hs_req->req;
 939	int index = hs_ep->index;
 940	int dir_in = hs_ep->dir_in;
 941	u32 epctrl_reg;
 942	u32 epsize_reg;
 943	u32 epsize;
 944	u32 ctrl;
 945	unsigned int length;
 946	unsigned int packets;
 947	unsigned int maxreq;
 948	unsigned int dma_reg;
 949
 950	if (index != 0) {
 951		if (hs_ep->req && !continuing) {
 952			dev_err(hsotg->dev, "%s: active request\n", __func__);
 953			WARN_ON(1);
 954			return;
 955		} else if (hs_ep->req != hs_req && continuing) {
 956			dev_err(hsotg->dev,
 957				"%s: continue different req\n", __func__);
 958			WARN_ON(1);
 959			return;
 960		}
 961	}
 962
 963	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 964	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 965	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 966
 967	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 968		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 969		hs_ep->dir_in ? "in" : "out");
 970
 971	/* If endpoint is stalled, we will restart request later */
 972	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 973
 974	if (index && ctrl & DXEPCTL_STALL) {
 975		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 976		return;
 977	}
 978
 979	length = ureq->length - ureq->actual;
 980	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 981		ureq->length, ureq->actual);
 982
 983	if (!using_desc_dma(hsotg))
 984		maxreq = get_ep_limit(hs_ep);
 985	else
 986		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
 987
 988	if (length > maxreq) {
 989		int round = maxreq % hs_ep->ep.maxpacket;
 990
 991		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 992			__func__, length, maxreq, round);
 993
 994		/* round down to multiple of packets */
 995		if (round)
 996			maxreq -= round;
 997
 998		length = maxreq;
 999	}
1000
1001	if (length)
1002		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1003	else
1004		packets = 1;	/* send one packet if length is zero. */
1005
1006	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1007		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1008		return;
1009	}
1010
1011	if (dir_in && index != 0)
1012		if (hs_ep->isochronous)
1013			epsize = DXEPTSIZ_MC(packets);
1014		else
1015			epsize = DXEPTSIZ_MC(1);
1016	else
1017		epsize = 0;
1018
1019	/*
1020	 * zero length packet should be programmed on its own and should not
1021	 * be counted in DIEPTSIZ.PktCnt with other packets.
1022	 */
1023	if (dir_in && ureq->zero && !continuing) {
1024		/* Test if zlp is actually required. */
1025		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1026		    !(ureq->length % hs_ep->ep.maxpacket))
1027			hs_ep->send_zlp = 1;
1028	}
1029
1030	epsize |= DXEPTSIZ_PKTCNT(packets);
1031	epsize |= DXEPTSIZ_XFERSIZE(length);
1032
1033	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1034		__func__, packets, length, ureq->length, epsize, epsize_reg);
1035
1036	/* store the request as the current one we're doing */
1037	hs_ep->req = hs_req;
1038
1039	if (using_desc_dma(hsotg)) {
1040		u32 offset = 0;
1041		u32 mps = hs_ep->ep.maxpacket;
1042
1043		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1044		if (!dir_in) {
1045			if (!index)
1046				length = mps;
1047			else if (length % mps)
1048				length += (mps - (length % mps));
1049		}
1050
1051		/*
1052		 * If more data to send, adjust DMA for EP0 out data stage.
1053		 * ureq->dma stays unchanged, hence increment it by already
1054		 * passed passed data count before starting new transaction.
1055		 */
1056		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1057		    continuing)
1058			offset = ureq->actual;
1059
1060		/* Fill DDMA chain entries */
1061		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1062						     length);
1063
1064		/* write descriptor chain address to control register */
1065		dwc2_writel(hs_ep->desc_list_dma, hsotg->regs + dma_reg);
1066
1067		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1068			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1069	} else {
1070		/* write size / packets */
1071		dwc2_writel(epsize, hsotg->regs + epsize_reg);
1072
1073		if (using_dma(hsotg) && !continuing && (length != 0)) {
1074			/*
1075			 * write DMA address to control register, buffer
1076			 * already synced by dwc2_hsotg_ep_queue().
1077			 */
1078
1079			dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
 
1080
1081			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1082				__func__, &ureq->dma, dma_reg);
1083		}
1084	}
1085
1086	if (hs_ep->isochronous && hs_ep->interval == 1) {
1087		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1088		dwc2_gadget_incr_frame_num(hs_ep);
1089
1090		if (hs_ep->target_frame & 0x1)
1091			ctrl |= DXEPCTL_SETODDFR;
1092		else
1093			ctrl |= DXEPCTL_SETEVENFR;
1094	}
1095
1096	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 
1097
1098	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1099
1100	/* For Setup request do not clear NAK */
1101	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1102		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1103
1104	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1105	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
1106
1107	/*
1108	 * set these, it seems that DMA support increments past the end
1109	 * of the packet buffer so we need to calculate the length from
1110	 * this information.
1111	 */
1112	hs_ep->size_loaded = length;
1113	hs_ep->last_load = ureq->actual;
1114
1115	if (dir_in && !using_dma(hsotg)) {
1116		/* set these anyway, we may need them for non-periodic in */
1117		hs_ep->fifo_load = 0;
1118
1119		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1120	}
1121
1122	/*
 
 
 
 
 
 
 
 
1123	 * Note, trying to clear the NAK here causes problems with transmit
1124	 * on the S3C6400 ending up with the TXFIFO becoming full.
1125	 */
1126
1127	/* check ep is enabled */
1128	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
1129		dev_dbg(hsotg->dev,
1130			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1131			 index, dwc2_readl(hsotg->regs + epctrl_reg));
1132
1133	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1134		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
1135
1136	/* enable ep interrupts */
1137	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1138}
1139
1140/**
1141 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1142 * @hsotg: The device state.
1143 * @hs_ep: The endpoint the request is on.
1144 * @req: The request being processed.
1145 *
1146 * We've been asked to queue a request, so ensure that the memory buffer
1147 * is correctly setup for DMA. If we've been passed an extant DMA address
1148 * then ensure the buffer has been synced to memory. If our buffer has no
1149 * DMA memory, then we map the memory and mark our request to allow us to
1150 * cleanup on completion.
1151 */
1152static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1153			      struct dwc2_hsotg_ep *hs_ep,
1154			     struct usb_request *req)
1155{
 
1156	int ret;
1157
 
 
 
 
1158	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1159	if (ret)
1160		goto dma_error;
1161
1162	return 0;
1163
1164dma_error:
1165	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1166		__func__, req->buf, req->length);
1167
1168	return -EIO;
1169}
1170
1171static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1172						 struct dwc2_hsotg_ep *hs_ep,
1173						 struct dwc2_hsotg_req *hs_req)
1174{
1175	void *req_buf = hs_req->req.buf;
1176
1177	/* If dma is not being used or buffer is aligned */
1178	if (!using_dma(hsotg) || !((long)req_buf & 3))
1179		return 0;
1180
1181	WARN_ON(hs_req->saved_req_buf);
1182
1183	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1184		hs_ep->ep.name, req_buf, hs_req->req.length);
1185
1186	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1187	if (!hs_req->req.buf) {
1188		hs_req->req.buf = req_buf;
1189		dev_err(hsotg->dev,
1190			"%s: unable to allocate memory for bounce buffer\n",
1191			__func__);
1192		return -ENOMEM;
1193	}
1194
1195	/* Save actual buffer */
1196	hs_req->saved_req_buf = req_buf;
1197
1198	if (hs_ep->dir_in)
1199		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1200	return 0;
1201}
1202
1203static void
1204dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1205					 struct dwc2_hsotg_ep *hs_ep,
1206					 struct dwc2_hsotg_req *hs_req)
1207{
1208	/* If dma is not being used or buffer was aligned */
1209	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1210		return;
1211
1212	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1213		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1214
1215	/* Copy data from bounce buffer on successful out transfer */
1216	if (!hs_ep->dir_in && !hs_req->req.status)
1217		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1218		       hs_req->req.actual);
1219
1220	/* Free bounce buffer */
1221	kfree(hs_req->req.buf);
1222
1223	hs_req->req.buf = hs_req->saved_req_buf;
1224	hs_req->saved_req_buf = NULL;
1225}
1226
1227/**
1228 * dwc2_gadget_target_frame_elapsed - Checks target frame
1229 * @hs_ep: The driver endpoint to check
1230 *
1231 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1232 * corresponding transfer.
1233 */
1234static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1235{
1236	struct dwc2_hsotg *hsotg = hs_ep->parent;
1237	u32 target_frame = hs_ep->target_frame;
1238	u32 current_frame = dwc2_hsotg_read_frameno(hsotg);
1239	bool frame_overrun = hs_ep->frame_overrun;
1240
1241	if (!frame_overrun && current_frame >= target_frame)
1242		return true;
1243
1244	if (frame_overrun && current_frame >= target_frame &&
1245	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1246		return true;
1247
1248	return false;
1249}
1250
1251/*
1252 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1253 * @hsotg: The driver state
1254 * @hs_ep: the ep descriptor chain is for
1255 *
1256 * Called to update EP0 structure's pointers depend on stage of
1257 * control transfer.
1258 */
1259static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1260					  struct dwc2_hsotg_ep *hs_ep)
1261{
1262	switch (hsotg->ep0_state) {
1263	case DWC2_EP0_SETUP:
1264	case DWC2_EP0_STATUS_OUT:
1265		hs_ep->desc_list = hsotg->setup_desc[0];
1266		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1267		break;
1268	case DWC2_EP0_DATA_IN:
1269	case DWC2_EP0_STATUS_IN:
1270		hs_ep->desc_list = hsotg->ctrl_in_desc;
1271		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1272		break;
1273	case DWC2_EP0_DATA_OUT:
1274		hs_ep->desc_list = hsotg->ctrl_out_desc;
1275		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1276		break;
1277	default:
1278		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1279			hsotg->ep0_state);
1280		return -EINVAL;
1281	}
1282
1283	return 0;
1284}
1285
1286static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1287			       gfp_t gfp_flags)
1288{
1289	struct dwc2_hsotg_req *hs_req = our_req(req);
1290	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1291	struct dwc2_hsotg *hs = hs_ep->parent;
1292	bool first;
1293	int ret;
1294
1295	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1296		ep->name, req, req->length, req->buf, req->no_interrupt,
1297		req->zero, req->short_not_ok);
1298
1299	/* Prevent new request submission when controller is suspended */
1300	if (hs->lx_state != DWC2_L0) {
1301		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1302			__func__);
1303		return -EAGAIN;
1304	}
1305
1306	/* initialise status of the request */
1307	INIT_LIST_HEAD(&hs_req->queue);
1308	req->actual = 0;
1309	req->status = -EINPROGRESS;
1310
1311	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1312	if (ret)
1313		return ret;
1314
1315	/* if we're using DMA, sync the buffers as necessary */
1316	if (using_dma(hs)) {
1317		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1318		if (ret)
1319			return ret;
1320	}
1321	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1322	if (using_desc_dma(hs) && !hs_ep->index) {
1323		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1324		if (ret)
1325			return ret;
1326	}
1327
1328	first = list_empty(&hs_ep->queue);
1329	list_add_tail(&hs_req->queue, &hs_ep->queue);
1330
1331	/*
1332	 * Handle DDMA isochronous transfers separately - just add new entry
1333	 * to the half of descriptor chain that is not processed by HW.
1334	 * Transfer will be started once SW gets either one of NAK or
1335	 * OutTknEpDis interrupts.
1336	 */
1337	if (using_desc_dma(hs) && hs_ep->isochronous &&
1338	    hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1339		ret = dwc2_gadget_fill_isoc_desc(hs_ep, hs_req->req.dma,
1340						 hs_req->req.length);
1341		if (ret)
1342			dev_dbg(hs->dev, "%s: ISO desc chain full\n", __func__);
1343
1344		return 0;
1345	}
1346
1347	if (first) {
1348		if (!hs_ep->isochronous) {
1349			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1350			return 0;
1351		}
1352
1353		while (dwc2_gadget_target_frame_elapsed(hs_ep))
1354			dwc2_gadget_incr_frame_num(hs_ep);
1355
1356		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1357			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1358	}
1359	return 0;
1360}
1361
1362static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1363				    gfp_t gfp_flags)
1364{
1365	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1366	struct dwc2_hsotg *hs = hs_ep->parent;
1367	unsigned long flags = 0;
1368	int ret = 0;
1369
1370	spin_lock_irqsave(&hs->lock, flags);
1371	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1372	spin_unlock_irqrestore(&hs->lock, flags);
1373
1374	return ret;
1375}
1376
1377static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1378				       struct usb_request *req)
1379{
1380	struct dwc2_hsotg_req *hs_req = our_req(req);
1381
1382	kfree(hs_req);
1383}
1384
1385/**
1386 * dwc2_hsotg_complete_oursetup - setup completion callback
1387 * @ep: The endpoint the request was on.
1388 * @req: The request completed.
1389 *
1390 * Called on completion of any requests the driver itself
1391 * submitted that need cleaning up.
1392 */
1393static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1394					 struct usb_request *req)
1395{
1396	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1397	struct dwc2_hsotg *hsotg = hs_ep->parent;
1398
1399	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1400
1401	dwc2_hsotg_ep_free_request(ep, req);
1402}
1403
1404/**
1405 * ep_from_windex - convert control wIndex value to endpoint
1406 * @hsotg: The driver state.
1407 * @windex: The control request wIndex field (in host order).
1408 *
1409 * Convert the given wIndex into a pointer to an driver endpoint
1410 * structure, or return NULL if it is not a valid endpoint.
1411 */
1412static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1413					    u32 windex)
1414{
1415	struct dwc2_hsotg_ep *ep;
1416	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1417	int idx = windex & 0x7F;
1418
1419	if (windex >= 0x100)
1420		return NULL;
1421
1422	if (idx > hsotg->num_of_eps)
1423		return NULL;
1424
1425	ep = index_to_ep(hsotg, idx, dir);
1426
1427	if (idx && ep->dir_in != dir)
1428		return NULL;
1429
1430	return ep;
1431}
1432
1433/**
1434 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1435 * @hsotg: The driver state.
1436 * @testmode: requested usb test mode
1437 * Enable usb Test Mode requested by the Host.
1438 */
1439int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1440{
1441	int dctl = dwc2_readl(hsotg->regs + DCTL);
1442
1443	dctl &= ~DCTL_TSTCTL_MASK;
1444	switch (testmode) {
1445	case TEST_J:
1446	case TEST_K:
1447	case TEST_SE0_NAK:
1448	case TEST_PACKET:
1449	case TEST_FORCE_EN:
1450		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1451		break;
1452	default:
1453		return -EINVAL;
1454	}
1455	dwc2_writel(dctl, hsotg->regs + DCTL);
1456	return 0;
1457}
1458
1459/**
1460 * dwc2_hsotg_send_reply - send reply to control request
1461 * @hsotg: The device state
1462 * @ep: Endpoint 0
1463 * @buff: Buffer for request
1464 * @length: Length of reply.
1465 *
1466 * Create a request and queue it on the given endpoint. This is useful as
1467 * an internal method of sending replies to certain control requests, etc.
1468 */
1469static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1470				 struct dwc2_hsotg_ep *ep,
1471				void *buff,
1472				int length)
1473{
1474	struct usb_request *req;
1475	int ret;
1476
1477	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1478
1479	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1480	hsotg->ep0_reply = req;
1481	if (!req) {
1482		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1483		return -ENOMEM;
1484	}
1485
1486	req->buf = hsotg->ep0_buff;
1487	req->length = length;
1488	/*
1489	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1490	 * STATUS stage.
1491	 */
1492	req->zero = 0;
1493	req->complete = dwc2_hsotg_complete_oursetup;
1494
1495	if (length)
1496		memcpy(req->buf, buff, length);
1497
1498	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1499	if (ret) {
1500		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1501		return ret;
1502	}
1503
1504	return 0;
1505}
1506
1507/**
1508 * dwc2_hsotg_process_req_status - process request GET_STATUS
1509 * @hsotg: The device state
1510 * @ctrl: USB control request
1511 */
1512static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1513					 struct usb_ctrlrequest *ctrl)
1514{
1515	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1516	struct dwc2_hsotg_ep *ep;
1517	__le16 reply;
1518	int ret;
1519
1520	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1521
1522	if (!ep0->dir_in) {
1523		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1524		return -EINVAL;
1525	}
1526
1527	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1528	case USB_RECIP_DEVICE:
1529		/*
1530		 * bit 0 => self powered
1531		 * bit 1 => remote wakeup
1532		 */
1533		reply = cpu_to_le16(0);
1534		break;
1535
1536	case USB_RECIP_INTERFACE:
1537		/* currently, the data result should be zero */
1538		reply = cpu_to_le16(0);
1539		break;
1540
1541	case USB_RECIP_ENDPOINT:
1542		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1543		if (!ep)
1544			return -ENOENT;
1545
1546		reply = cpu_to_le16(ep->halted ? 1 : 0);
1547		break;
1548
1549	default:
1550		return 0;
1551	}
1552
1553	if (le16_to_cpu(ctrl->wLength) != 2)
1554		return -EINVAL;
1555
1556	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1557	if (ret) {
1558		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1559		return ret;
1560	}
1561
1562	return 1;
1563}
1564
1565static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1566
1567/**
1568 * get_ep_head - return the first request on the endpoint
1569 * @hs_ep: The controller endpoint to get
1570 *
1571 * Get the first request on the endpoint.
1572 */
1573static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1574{
1575	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1576					queue);
1577}
1578
1579/**
1580 * dwc2_gadget_start_next_request - Starts next request from ep queue
1581 * @hs_ep: Endpoint structure
1582 *
1583 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1584 * in its handler. Hence we need to unmask it here to be able to do
1585 * resynchronization.
1586 */
1587static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1588{
1589	u32 mask;
1590	struct dwc2_hsotg *hsotg = hs_ep->parent;
1591	int dir_in = hs_ep->dir_in;
1592	struct dwc2_hsotg_req *hs_req;
1593	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1594
1595	if (!list_empty(&hs_ep->queue)) {
1596		hs_req = get_ep_head(hs_ep);
1597		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1598		return;
1599	}
1600	if (!hs_ep->isochronous)
1601		return;
1602
1603	if (dir_in) {
1604		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1605			__func__);
1606	} else {
1607		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1608			__func__);
1609		mask = dwc2_readl(hsotg->regs + epmsk_reg);
1610		mask |= DOEPMSK_OUTTKNEPDISMSK;
1611		dwc2_writel(mask, hsotg->regs + epmsk_reg);
1612	}
1613}
1614
1615/**
1616 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1617 * @hsotg: The device state
1618 * @ctrl: USB control request
1619 */
1620static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1621					  struct usb_ctrlrequest *ctrl)
1622{
1623	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1624	struct dwc2_hsotg_req *hs_req;
 
1625	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1626	struct dwc2_hsotg_ep *ep;
1627	int ret;
1628	bool halted;
1629	u32 recip;
1630	u32 wValue;
1631	u32 wIndex;
1632
1633	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1634		__func__, set ? "SET" : "CLEAR");
1635
1636	wValue = le16_to_cpu(ctrl->wValue);
1637	wIndex = le16_to_cpu(ctrl->wIndex);
1638	recip = ctrl->bRequestType & USB_RECIP_MASK;
1639
1640	switch (recip) {
1641	case USB_RECIP_DEVICE:
1642		switch (wValue) {
1643		case USB_DEVICE_REMOTE_WAKEUP:
1644			hsotg->remote_wakeup_allowed = 1;
1645			break;
1646
1647		case USB_DEVICE_TEST_MODE:
1648			if ((wIndex & 0xff) != 0)
1649				return -EINVAL;
1650			if (!set)
1651				return -EINVAL;
1652
1653			hsotg->test_mode = wIndex >> 8;
1654			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1655			if (ret) {
1656				dev_err(hsotg->dev,
1657					"%s: failed to send reply\n", __func__);
1658				return ret;
1659			}
1660			break;
1661		default:
1662			return -ENOENT;
1663		}
1664		break;
1665
1666	case USB_RECIP_ENDPOINT:
1667		ep = ep_from_windex(hsotg, wIndex);
1668		if (!ep) {
1669			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1670				__func__, wIndex);
1671			return -ENOENT;
1672		}
1673
1674		switch (wValue) {
1675		case USB_ENDPOINT_HALT:
1676			halted = ep->halted;
1677
1678			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1679
1680			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1681			if (ret) {
1682				dev_err(hsotg->dev,
1683					"%s: failed to send reply\n", __func__);
1684				return ret;
1685			}
1686
1687			/*
1688			 * we have to complete all requests for ep if it was
1689			 * halted, and the halt was cleared by CLEAR_FEATURE
1690			 */
1691
1692			if (!set && halted) {
1693				/*
1694				 * If we have request in progress,
1695				 * then complete it
1696				 */
1697				if (ep->req) {
1698					hs_req = ep->req;
1699					ep->req = NULL;
1700					list_del_init(&hs_req->queue);
1701					if (hs_req->req.complete) {
1702						spin_unlock(&hsotg->lock);
1703						usb_gadget_giveback_request(
1704							&ep->ep, &hs_req->req);
1705						spin_lock(&hsotg->lock);
1706					}
1707				}
1708
1709				/* If we have pending request, then start it */
1710				if (!ep->req)
1711					dwc2_gadget_start_next_request(ep);
 
 
 
 
 
 
1712			}
1713
1714			break;
1715
1716		default:
1717			return -ENOENT;
1718		}
1719		break;
1720	default:
1721		return -ENOENT;
1722	}
1723	return 1;
1724}
1725
1726static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1727
1728/**
1729 * dwc2_hsotg_stall_ep0 - stall ep0
1730 * @hsotg: The device state
1731 *
1732 * Set stall for ep0 as response for setup request.
1733 */
1734static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1735{
1736	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1737	u32 reg;
1738	u32 ctrl;
1739
1740	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1741	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1742
1743	/*
1744	 * DxEPCTL_Stall will be cleared by EP once it has
1745	 * taken effect, so no need to clear later.
1746	 */
1747
1748	ctrl = dwc2_readl(hsotg->regs + reg);
1749	ctrl |= DXEPCTL_STALL;
1750	ctrl |= DXEPCTL_CNAK;
1751	dwc2_writel(ctrl, hsotg->regs + reg);
1752
1753	dev_dbg(hsotg->dev,
1754		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1755		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1756
1757	 /*
1758	  * complete won't be called, so we enqueue
1759	  * setup request here
1760	  */
1761	 dwc2_hsotg_enqueue_setup(hsotg);
1762}
1763
1764/**
1765 * dwc2_hsotg_process_control - process a control request
1766 * @hsotg: The device state
1767 * @ctrl: The control request received
1768 *
1769 * The controller has received the SETUP phase of a control request, and
1770 * needs to work out what to do next (and whether to pass it on to the
1771 * gadget driver).
1772 */
1773static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1774				       struct usb_ctrlrequest *ctrl)
1775{
1776	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1777	int ret = 0;
1778	u32 dcfg;
1779
1780	dev_dbg(hsotg->dev,
1781		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1782		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1783		ctrl->wIndex, ctrl->wLength);
1784
1785	if (ctrl->wLength == 0) {
1786		ep0->dir_in = 1;
1787		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1788	} else if (ctrl->bRequestType & USB_DIR_IN) {
1789		ep0->dir_in = 1;
1790		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1791	} else {
1792		ep0->dir_in = 0;
1793		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1794	}
1795
1796	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1797		switch (ctrl->bRequest) {
1798		case USB_REQ_SET_ADDRESS:
1799			hsotg->connected = 1;
1800			dcfg = dwc2_readl(hsotg->regs + DCFG);
1801			dcfg &= ~DCFG_DEVADDR_MASK;
1802			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1803				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1804			dwc2_writel(dcfg, hsotg->regs + DCFG);
1805
1806			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1807
1808			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1809			return;
1810
1811		case USB_REQ_GET_STATUS:
1812			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1813			break;
1814
1815		case USB_REQ_CLEAR_FEATURE:
1816		case USB_REQ_SET_FEATURE:
1817			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1818			break;
1819		}
1820	}
1821
1822	/* as a fallback, try delivering it to the driver to deal with */
1823
1824	if (ret == 0 && hsotg->driver) {
1825		spin_unlock(&hsotg->lock);
1826		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1827		spin_lock(&hsotg->lock);
1828		if (ret < 0)
1829			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1830	}
1831
1832	/*
1833	 * the request is either unhandlable, or is not formatted correctly
1834	 * so respond with a STALL for the status stage to indicate failure.
1835	 */
1836
1837	if (ret < 0)
1838		dwc2_hsotg_stall_ep0(hsotg);
1839}
1840
1841/**
1842 * dwc2_hsotg_complete_setup - completion of a setup transfer
1843 * @ep: The endpoint the request was on.
1844 * @req: The request completed.
1845 *
1846 * Called on completion of any requests the driver itself submitted for
1847 * EP0 setup packets
1848 */
1849static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1850				      struct usb_request *req)
1851{
1852	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1853	struct dwc2_hsotg *hsotg = hs_ep->parent;
1854
1855	if (req->status < 0) {
1856		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1857		return;
1858	}
1859
1860	spin_lock(&hsotg->lock);
1861	if (req->actual == 0)
1862		dwc2_hsotg_enqueue_setup(hsotg);
1863	else
1864		dwc2_hsotg_process_control(hsotg, req->buf);
1865	spin_unlock(&hsotg->lock);
1866}
1867
1868/**
1869 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1870 * @hsotg: The device state.
1871 *
1872 * Enqueue a request on EP0 if necessary to received any SETUP packets
1873 * received from the host.
1874 */
1875static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1876{
1877	struct usb_request *req = hsotg->ctrl_req;
1878	struct dwc2_hsotg_req *hs_req = our_req(req);
1879	int ret;
1880
1881	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1882
1883	req->zero = 0;
1884	req->length = 8;
1885	req->buf = hsotg->ctrl_buff;
1886	req->complete = dwc2_hsotg_complete_setup;
1887
1888	if (!list_empty(&hs_req->queue)) {
1889		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1890		return;
1891	}
1892
1893	hsotg->eps_out[0]->dir_in = 0;
1894	hsotg->eps_out[0]->send_zlp = 0;
1895	hsotg->ep0_state = DWC2_EP0_SETUP;
1896
1897	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1898	if (ret < 0) {
1899		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1900		/*
1901		 * Don't think there's much we can do other than watch the
1902		 * driver fail.
1903		 */
1904	}
1905}
1906
1907static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1908				   struct dwc2_hsotg_ep *hs_ep)
1909{
1910	u32 ctrl;
1911	u8 index = hs_ep->index;
1912	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1913	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1914
1915	if (hs_ep->dir_in)
1916		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1917			index);
1918	else
1919		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1920			index);
1921	if (using_desc_dma(hsotg)) {
1922		/* Not specific buffer needed for ep0 ZLP */
1923		dma_addr_t dma = hs_ep->desc_list_dma;
1924
1925		if (!index)
1926			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
1927
1928		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
1929	} else {
1930		dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1931			    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1932			    epsiz_reg);
1933	}
1934
1935	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1936	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1937	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1938	ctrl |= DXEPCTL_USBACTEP;
1939	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1940}
1941
1942/**
1943 * dwc2_hsotg_complete_request - complete a request given to us
1944 * @hsotg: The device state.
1945 * @hs_ep: The endpoint the request was on.
1946 * @hs_req: The request to complete.
1947 * @result: The result code (0 => Ok, otherwise errno)
1948 *
1949 * The given request has finished, so call the necessary completion
1950 * if it has one and then look to see if we can start a new request
1951 * on the endpoint.
1952 *
1953 * Note, expects the ep to already be locked as appropriate.
1954 */
1955static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1956					struct dwc2_hsotg_ep *hs_ep,
1957				       struct dwc2_hsotg_req *hs_req,
1958				       int result)
1959{
 
 
1960	if (!hs_req) {
1961		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1962		return;
1963	}
1964
1965	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1966		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1967
1968	/*
1969	 * only replace the status if we've not already set an error
1970	 * from a previous transaction
1971	 */
1972
1973	if (hs_req->req.status == -EINPROGRESS)
1974		hs_req->req.status = result;
1975
1976	if (using_dma(hsotg))
1977		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1978
1979	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1980
1981	hs_ep->req = NULL;
1982	list_del_init(&hs_req->queue);
1983
1984	/*
1985	 * call the complete request with the locks off, just in case the
1986	 * request tries to queue more work for this endpoint.
1987	 */
1988
1989	if (hs_req->req.complete) {
1990		spin_unlock(&hsotg->lock);
1991		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1992		spin_lock(&hsotg->lock);
1993	}
1994
1995	/* In DDMA don't need to proceed to starting of next ISOC request */
1996	if (using_desc_dma(hsotg) && hs_ep->isochronous)
1997		return;
1998
1999	/*
2000	 * Look to see if there is anything else to do. Note, the completion
2001	 * of the previous request may have caused a new request to be started
2002	 * so be careful when doing this.
2003	 */
2004
2005	if (!hs_ep->req && result >= 0)
2006		dwc2_gadget_start_next_request(hs_ep);
2007}
2008
2009/*
2010 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2011 * @hs_ep: The endpoint the request was on.
2012 *
2013 * Get first request from the ep queue, determine descriptor on which complete
2014 * happened. SW based on isoc_chain_num discovers which half of the descriptor
2015 * chain is currently in use by HW, adjusts dma_address and calculates index
2016 * of completed descriptor based on the value of DEPDMA register. Update actual
2017 * length of request, giveback to gadget.
2018 */
2019static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2020{
2021	struct dwc2_hsotg *hsotg = hs_ep->parent;
2022	struct dwc2_hsotg_req *hs_req;
2023	struct usb_request *ureq;
2024	int index;
2025	dma_addr_t dma_addr;
2026	u32 dma_reg;
2027	u32 depdma;
2028	u32 desc_sts;
2029	u32 mask;
2030
2031	hs_req = get_ep_head(hs_ep);
2032	if (!hs_req) {
2033		dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2034		return;
2035	}
2036	ureq = &hs_req->req;
2037
2038	dma_addr = hs_ep->desc_list_dma;
2039
2040	/*
2041	 * If lower half of  descriptor chain is currently use by SW,
2042	 * that means higher half is being processed by HW, so shift
2043	 * DMA address to higher half of descriptor chain.
2044	 */
2045	if (!hs_ep->isoc_chain_num)
2046		dma_addr += sizeof(struct dwc2_dma_desc) *
2047			    (MAX_DMA_DESC_NUM_GENERIC / 2);
2048
2049	dma_reg = hs_ep->dir_in ? DIEPDMA(hs_ep->index) : DOEPDMA(hs_ep->index);
2050	depdma = dwc2_readl(hsotg->regs + dma_reg);
2051
2052	index = (depdma - dma_addr) / sizeof(struct dwc2_dma_desc) - 1;
2053	desc_sts = hs_ep->desc_list[index].status;
2054
2055	mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2056	       DEV_DMA_ISOC_RX_NBYTES_MASK;
2057	ureq->actual = ureq->length -
2058		       ((desc_sts & mask) >> DEV_DMA_ISOC_NBYTES_SHIFT);
2059
2060	/* Adjust actual length for ISOC Out if length is not align of 4 */
2061	if (!hs_ep->dir_in && ureq->length & 0x3)
2062		ureq->actual += 4 - (ureq->length & 0x3);
2063
2064	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2065}
2066
2067/*
2068 * dwc2_gadget_start_next_isoc_ddma - start next isoc request, if any.
2069 * @hs_ep: The isochronous endpoint to be re-enabled.
2070 *
2071 * If ep has been disabled due to last descriptor servicing (IN endpoint) or
2072 * BNA (OUT endpoint) check the status of other half of descriptor chain that
2073 * was under SW control till HW was busy and restart the endpoint if needed.
2074 */
2075static void dwc2_gadget_start_next_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
2076{
2077	struct dwc2_hsotg *hsotg = hs_ep->parent;
2078	u32 depctl;
2079	u32 dma_reg;
2080	u32 ctrl;
2081	u32 dma_addr = hs_ep->desc_list_dma;
2082	unsigned char index = hs_ep->index;
2083
2084	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
2085	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2086
2087	ctrl = dwc2_readl(hsotg->regs + depctl);
2088
2089	/*
2090	 * EP was disabled if HW has processed last descriptor or BNA was set.
2091	 * So restart ep if SW has prepared new descriptor chain in ep_queue
2092	 * routine while HW was busy.
2093	 */
2094	if (!(ctrl & DXEPCTL_EPENA)) {
2095		if (!hs_ep->next_desc) {
2096			dev_dbg(hsotg->dev, "%s: No more ISOC requests\n",
2097				__func__);
2098			return;
2099		}
2100
2101		dma_addr += sizeof(struct dwc2_dma_desc) *
2102			    (MAX_DMA_DESC_NUM_GENERIC / 2) *
2103			    hs_ep->isoc_chain_num;
2104		dwc2_writel(dma_addr, hsotg->regs + dma_reg);
2105
2106		ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
2107		dwc2_writel(ctrl, hsotg->regs + depctl);
2108
2109		/* Switch ISOC descriptor chain number being processed by SW*/
2110		hs_ep->isoc_chain_num = (hs_ep->isoc_chain_num ^ 1) & 0x1;
2111		hs_ep->next_desc = 0;
2112
2113		dev_dbg(hsotg->dev, "%s: Restarted isochronous endpoint\n",
2114			__func__);
2115	}
2116}
2117
2118/**
2119 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2120 * @hsotg: The device state.
2121 * @ep_idx: The endpoint index for the data
2122 * @size: The size of data in the fifo, in bytes
2123 *
2124 * The FIFO status shows there is data to read from the FIFO for a given
2125 * endpoint, so sort out whether we need to read the data into a request
2126 * that has been made for that endpoint.
2127 */
2128static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2129{
2130	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2131	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2132	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
2133	int to_read;
2134	int max_req;
2135	int read_ptr;
2136
 
2137	if (!hs_req) {
2138		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
2139		int ptr;
2140
2141		dev_dbg(hsotg->dev,
2142			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2143			 __func__, size, ep_idx, epctl);
2144
2145		/* dump the data from the FIFO, we've nothing we can do */
2146		for (ptr = 0; ptr < size; ptr += 4)
2147			(void)dwc2_readl(fifo);
2148
2149		return;
2150	}
2151
2152	to_read = size;
2153	read_ptr = hs_req->req.actual;
2154	max_req = hs_req->req.length - read_ptr;
2155
2156	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2157		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2158
2159	if (to_read > max_req) {
2160		/*
2161		 * more data appeared than we where willing
2162		 * to deal with in this request.
2163		 */
2164
2165		/* currently we don't deal this */
2166		WARN_ON_ONCE(1);
2167	}
2168
2169	hs_ep->total_data += to_read;
2170	hs_req->req.actual += to_read;
2171	to_read = DIV_ROUND_UP(to_read, 4);
2172
2173	/*
2174	 * note, we might over-write the buffer end by 3 bytes depending on
2175	 * alignment of the data.
2176	 */
2177	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
2178}
2179
2180/**
2181 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2182 * @hsotg: The device instance
2183 * @dir_in: If IN zlp
2184 *
2185 * Generate a zero-length IN packet request for terminating a SETUP
2186 * transaction.
2187 *
2188 * Note, since we don't write any data to the TxFIFO, then it is
2189 * currently believed that we do not need to wait for any space in
2190 * the TxFIFO.
2191 */
2192static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2193{
2194	/* eps_out[0] is used in both directions */
2195	hsotg->eps_out[0]->dir_in = dir_in;
2196	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2197
2198	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2199}
2200
2201static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2202					    u32 epctl_reg)
2203{
2204	u32 ctrl;
2205
2206	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2207	if (ctrl & DXEPCTL_EOFRNUM)
2208		ctrl |= DXEPCTL_SETEVENFR;
2209	else
2210		ctrl |= DXEPCTL_SETODDFR;
2211	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
2212}
2213
2214/*
2215 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2216 * @hs_ep - The endpoint on which transfer went
2217 *
2218 * Iterate over endpoints descriptor chain and get info on bytes remained
2219 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2220 */
2221static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2222{
2223	struct dwc2_hsotg *hsotg = hs_ep->parent;
2224	unsigned int bytes_rem = 0;
2225	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2226	int i;
2227	u32 status;
2228
2229	if (!desc)
2230		return -EINVAL;
2231
2232	for (i = 0; i < hs_ep->desc_count; ++i) {
2233		status = desc->status;
2234		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2235
2236		if (status & DEV_DMA_STS_MASK)
2237			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2238				i, status & DEV_DMA_STS_MASK);
2239	}
2240
2241	return bytes_rem;
2242}
2243
2244/**
2245 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2246 * @hsotg: The device instance
2247 * @epnum: The endpoint received from
2248 *
2249 * The RXFIFO has delivered an OutDone event, which means that the data
2250 * transfer for an OUT endpoint has been completed, either by a short
2251 * packet or by the finish of a transfer.
2252 */
2253static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2254{
2255	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
2256	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2257	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2258	struct usb_request *req = &hs_req->req;
2259	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2260	int result = 0;
2261
2262	if (!hs_req) {
2263		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2264		return;
2265	}
2266
2267	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2268		dev_dbg(hsotg->dev, "zlp packet received\n");
2269		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2270		dwc2_hsotg_enqueue_setup(hsotg);
2271		return;
2272	}
2273
2274	if (using_desc_dma(hsotg))
2275		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2276
2277	if (using_dma(hsotg)) {
2278		unsigned int size_done;
2279
2280		/*
2281		 * Calculate the size of the transfer by checking how much
2282		 * is left in the endpoint size register and then working it
2283		 * out from the amount we loaded for the transfer.
2284		 *
2285		 * We need to do this as DMA pointers are always 32bit aligned
2286		 * so may overshoot/undershoot the transfer.
2287		 */
2288
2289		size_done = hs_ep->size_loaded - size_left;
2290		size_done += hs_ep->last_load;
2291
2292		req->actual = size_done;
2293	}
2294
2295	/* if there is more request to do, schedule new transfer */
2296	if (req->actual < req->length && size_left == 0) {
2297		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2298		return;
2299	}
2300
2301	if (req->actual < req->length && req->short_not_ok) {
2302		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2303			__func__, req->actual, req->length);
2304
2305		/*
2306		 * todo - what should we return here? there's no one else
2307		 * even bothering to check the status.
2308		 */
2309	}
2310
2311	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2312	if (!using_desc_dma(hsotg) && epnum == 0 &&
2313	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2314		/* Move to STATUS IN */
2315		dwc2_hsotg_ep0_zlp(hsotg, true);
2316		return;
2317	}
2318
2319	/*
2320	 * Slave mode OUT transfers do not go through XferComplete so
2321	 * adjust the ISOC parity here.
2322	 */
2323	if (!using_dma(hsotg)) {
 
2324		if (hs_ep->isochronous && hs_ep->interval == 1)
2325			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2326		else if (hs_ep->isochronous && hs_ep->interval > 1)
2327			dwc2_gadget_incr_frame_num(hs_ep);
2328	}
2329
2330	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
2331}
2332
2333/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2334 * dwc2_hsotg_handle_rx - RX FIFO has data
2335 * @hsotg: The device instance
2336 *
2337 * The IRQ handler has detected that the RX FIFO has some data in it
2338 * that requires processing, so find out what is in there and do the
2339 * appropriate read.
2340 *
2341 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2342 * chunks, so if you have x packets received on an endpoint you'll get x
2343 * FIFO events delivered, each with a packet's worth of data in it.
2344 *
2345 * When using DMA, we should not be processing events from the RXFIFO
2346 * as the actual data should be sent to the memory directly and we turn
2347 * on the completion interrupts to get notifications of transfer completion.
2348 */
2349static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2350{
2351	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
2352	u32 epnum, status, size;
2353
2354	WARN_ON(using_dma(hsotg));
2355
2356	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2357	status = grxstsr & GRXSTS_PKTSTS_MASK;
2358
2359	size = grxstsr & GRXSTS_BYTECNT_MASK;
2360	size >>= GRXSTS_BYTECNT_SHIFT;
2361
2362	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2363		__func__, grxstsr, size, epnum);
2364
2365	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2366	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2367		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2368		break;
2369
2370	case GRXSTS_PKTSTS_OUTDONE:
2371		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2372			dwc2_hsotg_read_frameno(hsotg));
2373
2374		if (!using_dma(hsotg))
2375			dwc2_hsotg_handle_outdone(hsotg, epnum);
2376		break;
2377
2378	case GRXSTS_PKTSTS_SETUPDONE:
2379		dev_dbg(hsotg->dev,
2380			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2381			dwc2_hsotg_read_frameno(hsotg),
2382			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2383		/*
2384		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2385		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2386		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2387		 */
2388		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2389			dwc2_hsotg_handle_outdone(hsotg, epnum);
2390		break;
2391
2392	case GRXSTS_PKTSTS_OUTRX:
2393		dwc2_hsotg_rx_data(hsotg, epnum, size);
2394		break;
2395
2396	case GRXSTS_PKTSTS_SETUPRX:
2397		dev_dbg(hsotg->dev,
2398			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2399			dwc2_hsotg_read_frameno(hsotg),
2400			dwc2_readl(hsotg->regs + DOEPCTL(0)));
2401
2402		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2403
2404		dwc2_hsotg_rx_data(hsotg, epnum, size);
2405		break;
2406
2407	default:
2408		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2409			 __func__, grxstsr);
2410
2411		dwc2_hsotg_dump(hsotg);
2412		break;
2413	}
2414}
2415
2416/**
2417 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2418 * @mps: The maximum packet size in bytes.
2419 */
2420static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2421{
2422	switch (mps) {
2423	case 64:
2424		return D0EPCTL_MPS_64;
2425	case 32:
2426		return D0EPCTL_MPS_32;
2427	case 16:
2428		return D0EPCTL_MPS_16;
2429	case 8:
2430		return D0EPCTL_MPS_8;
2431	}
2432
2433	/* bad max packet size, warn and return invalid result */
2434	WARN_ON(1);
2435	return (u32)-1;
2436}
2437
2438/**
2439 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2440 * @hsotg: The driver state.
2441 * @ep: The index number of the endpoint
2442 * @mps: The maximum packet size in bytes
2443 * @mc: The multicount value
2444 *
2445 * Configure the maximum packet size for the given endpoint, updating
2446 * the hardware control registers to reflect this.
2447 */
2448static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2449					unsigned int ep, unsigned int mps,
2450					unsigned int mc, unsigned int dir_in)
2451{
2452	struct dwc2_hsotg_ep *hs_ep;
2453	void __iomem *regs = hsotg->regs;
 
 
2454	u32 reg;
2455
2456	hs_ep = index_to_ep(hsotg, ep, dir_in);
2457	if (!hs_ep)
2458		return;
2459
2460	if (ep == 0) {
2461		u32 mps_bytes = mps;
2462
2463		/* EP0 is a special case */
2464		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2465		if (mps > 3)
2466			goto bad_mps;
2467		hs_ep->ep.maxpacket = mps_bytes;
2468		hs_ep->mc = 1;
2469	} else {
2470		if (mps > 1024)
 
2471			goto bad_mps;
2472		hs_ep->mc = mc;
2473		if (mc > 3)
 
2474			goto bad_mps;
2475		hs_ep->ep.maxpacket = mps;
2476	}
2477
2478	if (dir_in) {
2479		reg = dwc2_readl(regs + DIEPCTL(ep));
2480		reg &= ~DXEPCTL_MPS_MASK;
2481		reg |= mps;
2482		dwc2_writel(reg, regs + DIEPCTL(ep));
2483	} else {
2484		reg = dwc2_readl(regs + DOEPCTL(ep));
2485		reg &= ~DXEPCTL_MPS_MASK;
2486		reg |= mps;
2487		dwc2_writel(reg, regs + DOEPCTL(ep));
2488	}
2489
2490	return;
2491
2492bad_mps:
2493	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2494}
2495
2496/**
2497 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2498 * @hsotg: The driver state
2499 * @idx: The index for the endpoint (0..15)
2500 */
2501static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2502{
 
 
 
2503	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2504		    hsotg->regs + GRSTCTL);
2505
2506	/* wait until the fifo is flushed */
2507	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2508		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2509			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2510}
2511
2512/**
2513 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2514 * @hsotg: The driver state
2515 * @hs_ep: The driver endpoint to check.
2516 *
2517 * Check to see if there is a request that has data to send, and if so
2518 * make an attempt to write data into the FIFO.
2519 */
2520static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2521			    struct dwc2_hsotg_ep *hs_ep)
2522{
2523	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2524
2525	if (!hs_ep->dir_in || !hs_req) {
2526		/**
2527		 * if request is not enqueued, we disable interrupts
2528		 * for endpoints, excepting ep0
2529		 */
2530		if (hs_ep->index != 0)
2531			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2532					      hs_ep->dir_in, 0);
2533		return 0;
2534	}
2535
2536	if (hs_req->req.actual < hs_req->req.length) {
2537		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2538			hs_ep->index);
2539		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2540	}
2541
2542	return 0;
2543}
2544
2545/**
2546 * dwc2_hsotg_complete_in - complete IN transfer
2547 * @hsotg: The device state.
2548 * @hs_ep: The endpoint that has just completed.
2549 *
2550 * An IN transfer has been completed, update the transfer's state and then
2551 * call the relevant completion routines.
2552 */
2553static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2554				   struct dwc2_hsotg_ep *hs_ep)
2555{
2556	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2557	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
2558	int size_left, size_done;
2559
2560	if (!hs_req) {
2561		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2562		return;
2563	}
2564
2565	/* Finish ZLP handling for IN EP0 transactions */
2566	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2567		dev_dbg(hsotg->dev, "zlp packet sent\n");
2568
2569		/*
2570		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2571		 * changed to IN. Change back to complete OUT transfer request
2572		 */
2573		hs_ep->dir_in = 0;
2574
2575		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2576		if (hsotg->test_mode) {
2577			int ret;
2578
2579			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2580			if (ret < 0) {
2581				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2582					hsotg->test_mode);
2583				dwc2_hsotg_stall_ep0(hsotg);
2584				return;
2585			}
2586		}
2587		dwc2_hsotg_enqueue_setup(hsotg);
2588		return;
2589	}
2590
2591	/*
2592	 * Calculate the size of the transfer by checking how much is left
2593	 * in the endpoint size register and then working it out from
2594	 * the amount we loaded for the transfer.
2595	 *
2596	 * We do this even for DMA, as the transfer may have incremented
2597	 * past the end of the buffer (DMA transfers are always 32bit
2598	 * aligned).
2599	 */
2600	if (using_desc_dma(hsotg)) {
2601		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2602		if (size_left < 0)
2603			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2604				size_left);
2605	} else {
2606		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2607	}
2608
2609	size_done = hs_ep->size_loaded - size_left;
2610	size_done += hs_ep->last_load;
2611
2612	if (hs_req->req.actual != size_done)
2613		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2614			__func__, hs_req->req.actual, size_done);
2615
2616	hs_req->req.actual = size_done;
2617	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2618		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2619
2620	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2621		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2622		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2623		return;
2624	}
2625
2626	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2627	if (hs_ep->send_zlp) {
2628		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2629		hs_ep->send_zlp = 0;
2630		/* transfer will be completed on next complete interrupt */
2631		return;
2632	}
2633
2634	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2635		/* Move to STATUS OUT */
2636		dwc2_hsotg_ep0_zlp(hsotg, false);
2637		return;
2638	}
2639
2640	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2641}
2642
2643/**
2644 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2645 * @hsotg: The device state.
2646 * @idx: Index of ep.
2647 * @dir_in: Endpoint direction 1-in 0-out.
2648 *
2649 * Reads for endpoint with given index and direction, by masking
2650 * epint_reg with coresponding mask.
2651 */
2652static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2653					  unsigned int idx, int dir_in)
2654{
2655	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2656	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2657	u32 ints;
2658	u32 mask;
2659	u32 diepempmsk;
2660
2661	mask = dwc2_readl(hsotg->regs + epmsk_reg);
2662	diepempmsk = dwc2_readl(hsotg->regs + DIEPEMPMSK);
2663	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2664	mask |= DXEPINT_SETUP_RCVD;
2665
2666	ints = dwc2_readl(hsotg->regs + epint_reg);
2667	ints &= mask;
2668	return ints;
2669}
2670
2671/**
2672 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2673 * @hs_ep: The endpoint on which interrupt is asserted.
2674 *
2675 * This interrupt indicates that the endpoint has been disabled per the
2676 * application's request.
2677 *
2678 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2679 * in case of ISOC completes current request.
2680 *
2681 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2682 * request starts it.
2683 */
2684static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2685{
2686	struct dwc2_hsotg *hsotg = hs_ep->parent;
2687	struct dwc2_hsotg_req *hs_req;
2688	unsigned char idx = hs_ep->index;
2689	int dir_in = hs_ep->dir_in;
2690	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2691	int dctl = dwc2_readl(hsotg->regs + DCTL);
2692
2693	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2694
2695	if (dir_in) {
2696		int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2697
2698		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2699
2700		if (hs_ep->isochronous) {
2701			dwc2_hsotg_complete_in(hsotg, hs_ep);
2702			return;
2703		}
2704
2705		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2706			int dctl = dwc2_readl(hsotg->regs + DCTL);
2707
2708			dctl |= DCTL_CGNPINNAK;
2709			dwc2_writel(dctl, hsotg->regs + DCTL);
2710		}
2711		return;
2712	}
2713
2714	if (dctl & DCTL_GOUTNAKSTS) {
2715		dctl |= DCTL_CGOUTNAK;
2716		dwc2_writel(dctl, hsotg->regs + DCTL);
2717	}
2718
2719	if (!hs_ep->isochronous)
2720		return;
2721
2722	if (list_empty(&hs_ep->queue)) {
2723		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2724			__func__, hs_ep);
2725		return;
2726	}
2727
2728	do {
2729		hs_req = get_ep_head(hs_ep);
2730		if (hs_req)
2731			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2732						    -ENODATA);
2733		dwc2_gadget_incr_frame_num(hs_ep);
2734	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2735
2736	dwc2_gadget_start_next_request(hs_ep);
2737}
2738
2739/**
2740 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2741 * @hs_ep: The endpoint on which interrupt is asserted.
2742 *
2743 * This is starting point for ISOC-OUT transfer, synchronization done with
2744 * first out token received from host while corresponding EP is disabled.
2745 *
2746 * Device does not know initial frame in which out token will come. For this
2747 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2748 * getting this interrupt SW starts calculation for next transfer frame.
2749 */
2750static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2751{
2752	struct dwc2_hsotg *hsotg = ep->parent;
2753	int dir_in = ep->dir_in;
2754	u32 doepmsk;
2755	u32 tmp;
2756
2757	if (dir_in || !ep->isochronous)
2758		return;
2759
2760	/*
2761	 * Store frame in which irq was asserted here, as
2762	 * it can change while completing request below.
2763	 */
2764	tmp = dwc2_hsotg_read_frameno(hsotg);
2765
2766	dwc2_hsotg_complete_request(hsotg, ep, get_ep_head(ep), -ENODATA);
2767
2768	if (using_desc_dma(hsotg)) {
2769		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2770			/* Start first ISO Out */
2771			ep->target_frame = tmp;
2772			dwc2_gadget_start_isoc_ddma(ep);
2773		}
2774		return;
2775	}
2776
2777	if (ep->interval > 1 &&
2778	    ep->target_frame == TARGET_FRAME_INITIAL) {
2779		u32 dsts;
2780		u32 ctrl;
2781
2782		dsts = dwc2_readl(hsotg->regs + DSTS);
2783		ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2784		dwc2_gadget_incr_frame_num(ep);
2785
2786		ctrl = dwc2_readl(hsotg->regs + DOEPCTL(ep->index));
2787		if (ep->target_frame & 0x1)
2788			ctrl |= DXEPCTL_SETODDFR;
2789		else
2790			ctrl |= DXEPCTL_SETEVENFR;
2791
2792		dwc2_writel(ctrl, hsotg->regs + DOEPCTL(ep->index));
2793	}
2794
2795	dwc2_gadget_start_next_request(ep);
2796	doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
2797	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2798	dwc2_writel(doepmsk, hsotg->regs + DOEPMSK);
2799}
2800
2801/**
2802 * dwc2_gadget_handle_nak - handle NAK interrupt
2803 * @hs_ep: The endpoint on which interrupt is asserted.
2804 *
2805 * This is starting point for ISOC-IN transfer, synchronization done with
2806 * first IN token received from host while corresponding EP is disabled.
2807 *
2808 * Device does not know when first one token will arrive from host. On first
2809 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2810 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2811 * sent in response to that as there was no data in FIFO. SW is basing on this
2812 * interrupt to obtain frame in which token has come and then based on the
2813 * interval calculates next frame for transfer.
2814 */
2815static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2816{
2817	struct dwc2_hsotg *hsotg = hs_ep->parent;
2818	int dir_in = hs_ep->dir_in;
2819
2820	if (!dir_in || !hs_ep->isochronous)
2821		return;
2822
2823	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2824		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
2825
2826		if (using_desc_dma(hsotg)) {
2827			dwc2_gadget_start_isoc_ddma(hs_ep);
2828			return;
2829		}
2830
2831		if (hs_ep->interval > 1) {
2832			u32 ctrl = dwc2_readl(hsotg->regs +
2833					      DIEPCTL(hs_ep->index));
2834			if (hs_ep->target_frame & 0x1)
2835				ctrl |= DXEPCTL_SETODDFR;
2836			else
2837				ctrl |= DXEPCTL_SETEVENFR;
2838
2839			dwc2_writel(ctrl, hsotg->regs + DIEPCTL(hs_ep->index));
2840		}
2841
2842		dwc2_hsotg_complete_request(hsotg, hs_ep,
2843					    get_ep_head(hs_ep), 0);
2844	}
2845
2846	dwc2_gadget_incr_frame_num(hs_ep);
2847}
2848
2849/**
2850 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2851 * @hsotg: The driver state
2852 * @idx: The index for the endpoint (0..15)
2853 * @dir_in: Set if this is an IN endpoint
2854 *
2855 * Process and clear any interrupt pending for an individual endpoint
2856 */
2857static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2858			     int dir_in)
2859{
2860	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2861	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2862	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2863	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2864	u32 ints;
2865	u32 ctrl;
2866
2867	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2868	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
2869
2870	/* Clear endpoint interrupts */
2871	dwc2_writel(ints, hsotg->regs + epint_reg);
2872
2873	if (!hs_ep) {
2874		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2875			__func__, idx, dir_in ? "in" : "out");
2876		return;
2877	}
2878
2879	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2880		__func__, idx, dir_in ? "in" : "out", ints);
2881
2882	/* Don't process XferCompl interrupt if it is a setup packet */
2883	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2884		ints &= ~DXEPINT_XFERCOMPL;
2885
2886	/*
2887	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2888	 * stage and xfercomplete was generated without SETUP phase done
2889	 * interrupt. SW should parse received setup packet only after host's
2890	 * exit from setup phase of control transfer.
2891	 */
2892	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
2893	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
2894		ints &= ~DXEPINT_XFERCOMPL;
2895
2896	if (ints & DXEPINT_XFERCOMPL) {
2897		dev_dbg(hsotg->dev,
2898			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
2899			__func__, dwc2_readl(hsotg->regs + epctl_reg),
2900			dwc2_readl(hsotg->regs + epsiz_reg));
2901
2902		/* In DDMA handle isochronous requests separately */
2903		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
2904			dwc2_gadget_complete_isoc_request_ddma(hs_ep);
2905			/* Try to start next isoc request */
2906			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2907		} else if (dir_in) {
2908			/*
2909			 * We get OutDone from the FIFO, so we only
2910			 * need to look at completing IN requests here
2911			 * if operating slave mode
2912			 */
2913			if (hs_ep->isochronous && hs_ep->interval > 1)
2914				dwc2_gadget_incr_frame_num(hs_ep);
2915
2916			dwc2_hsotg_complete_in(hsotg, hs_ep);
2917			if (ints & DXEPINT_NAKINTRPT)
2918				ints &= ~DXEPINT_NAKINTRPT;
2919
2920			if (idx == 0 && !hs_ep->req)
2921				dwc2_hsotg_enqueue_setup(hsotg);
2922		} else if (using_dma(hsotg)) {
2923			/*
2924			 * We're using DMA, we need to fire an OutDone here
2925			 * as we ignore the RXFIFO.
2926			 */
2927			if (hs_ep->isochronous && hs_ep->interval > 1)
2928				dwc2_gadget_incr_frame_num(hs_ep);
2929
2930			dwc2_hsotg_handle_outdone(hsotg, idx);
2931		}
2932	}
2933
2934	if (ints & DXEPINT_EPDISBLD)
2935		dwc2_gadget_handle_ep_disabled(hs_ep);
 
 
 
2936
2937	if (ints & DXEPINT_OUTTKNEPDIS)
2938		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
2939
2940	if (ints & DXEPINT_NAKINTRPT)
2941		dwc2_gadget_handle_nak(hs_ep);
 
 
 
 
 
 
 
2942
2943	if (ints & DXEPINT_AHBERR)
2944		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2945
2946	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2947		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2948
2949		if (using_dma(hsotg) && idx == 0) {
2950			/*
2951			 * this is the notification we've received a
2952			 * setup packet. In non-DMA mode we'd get this
2953			 * from the RXFIFO, instead we need to process
2954			 * the setup here.
2955			 */
2956
2957			if (dir_in)
2958				WARN_ON_ONCE(1);
2959			else
2960				dwc2_hsotg_handle_outdone(hsotg, 0);
2961		}
2962	}
2963
2964	if (ints & DXEPINT_STSPHSERCVD) {
2965		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
2966
2967		/* Safety check EP0 state when STSPHSERCVD asserted */
2968		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2969			/* Move to STATUS IN for DDMA */
2970			if (using_desc_dma(hsotg))
2971				dwc2_hsotg_ep0_zlp(hsotg, true);
2972		}
2973
2974	}
2975
2976	if (ints & DXEPINT_BACK2BACKSETUP)
2977		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2978
2979	if (ints & DXEPINT_BNAINTR) {
2980		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
2981
2982		/*
2983		 * Try to start next isoc request, if any.
2984		 * Sometimes the endpoint remains enabled after BNA interrupt
2985		 * assertion, which is not expected, hence we can enter here
2986		 * couple of times.
2987		 */
2988		if (hs_ep->isochronous)
2989			dwc2_gadget_start_next_isoc_ddma(hs_ep);
2990	}
2991
2992	if (dir_in && !hs_ep->isochronous) {
2993		/* not sure if this is important, but we'll clear it anyway */
2994		if (ints & DXEPINT_INTKNTXFEMP) {
2995			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2996				__func__, idx);
2997		}
2998
2999		/* this probably means something bad is happening */
3000		if (ints & DXEPINT_INTKNEPMIS) {
3001			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3002				 __func__, idx);
3003		}
3004
3005		/* FIFO has space or is empty (see GAHBCFG) */
3006		if (hsotg->dedicated_fifos &&
3007		    ints & DXEPINT_TXFEMP) {
3008			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3009				__func__, idx);
3010			if (!using_dma(hsotg))
3011				dwc2_hsotg_trytx(hsotg, hs_ep);
3012		}
3013	}
3014}
3015
3016/**
3017 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3018 * @hsotg: The device state.
3019 *
3020 * Handle updating the device settings after the enumeration phase has
3021 * been completed.
3022 */
3023static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3024{
3025	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
3026	int ep0_mps = 0, ep_mps = 8;
3027
3028	/*
3029	 * This should signal the finish of the enumeration phase
3030	 * of the USB handshaking, so we should now know what rate
3031	 * we connected at.
3032	 */
3033
3034	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3035
3036	/*
3037	 * note, since we're limited by the size of transfer on EP0, and
3038	 * it seems IN transfers must be a even number of packets we do
3039	 * not advertise a 64byte MPS on EP0.
3040	 */
3041
3042	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3043	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3044	case DSTS_ENUMSPD_FS:
3045	case DSTS_ENUMSPD_FS48:
3046		hsotg->gadget.speed = USB_SPEED_FULL;
3047		ep0_mps = EP0_MPS_LIMIT;
3048		ep_mps = 1023;
3049		break;
3050
3051	case DSTS_ENUMSPD_HS:
3052		hsotg->gadget.speed = USB_SPEED_HIGH;
3053		ep0_mps = EP0_MPS_LIMIT;
3054		ep_mps = 1024;
3055		break;
3056
3057	case DSTS_ENUMSPD_LS:
3058		hsotg->gadget.speed = USB_SPEED_LOW;
3059		ep0_mps = 8;
3060		ep_mps = 8;
3061		/*
3062		 * note, we don't actually support LS in this driver at the
3063		 * moment, and the documentation seems to imply that it isn't
3064		 * supported by the PHYs on some of the devices.
3065		 */
3066		break;
3067	}
3068	dev_info(hsotg->dev, "new device is %s\n",
3069		 usb_speed_string(hsotg->gadget.speed));
3070
3071	/*
3072	 * we should now know the maximum packet size for an
3073	 * endpoint, so set the endpoints to a default value.
3074	 */
3075
3076	if (ep0_mps) {
3077		int i;
3078		/* Initialize ep0 for both in and out directions */
3079		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3080		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3081		for (i = 1; i < hsotg->num_of_eps; i++) {
3082			if (hsotg->eps_in[i])
3083				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3084							    0, 1);
3085			if (hsotg->eps_out[i])
3086				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3087							    0, 0);
3088		}
3089	}
3090
3091	/* ensure after enumeration our EP0 is active */
3092
3093	dwc2_hsotg_enqueue_setup(hsotg);
3094
3095	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3096		dwc2_readl(hsotg->regs + DIEPCTL0),
3097		dwc2_readl(hsotg->regs + DOEPCTL0));
3098}
3099
3100/**
3101 * kill_all_requests - remove all requests from the endpoint's queue
3102 * @hsotg: The device state.
3103 * @ep: The endpoint the requests may be on.
3104 * @result: The result code to use.
3105 *
3106 * Go through the requests on the given endpoint and mark them
3107 * completed with the given result code.
3108 */
3109static void kill_all_requests(struct dwc2_hsotg *hsotg,
3110			      struct dwc2_hsotg_ep *ep,
3111			      int result)
3112{
3113	struct dwc2_hsotg_req *req, *treq;
3114	unsigned int size;
3115
3116	ep->req = NULL;
3117
3118	list_for_each_entry_safe(req, treq, &ep->queue, queue)
3119		dwc2_hsotg_complete_request(hsotg, ep, req,
3120					    result);
3121
3122	if (!hsotg->dedicated_fifos)
3123		return;
3124	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3125	if (size < ep->fifo_size)
3126		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3127}
3128
3129/**
3130 * dwc2_hsotg_disconnect - disconnect service
3131 * @hsotg: The device state.
3132 *
3133 * The device has been disconnected. Remove all current
3134 * transactions and signal the gadget driver that this
3135 * has happened.
3136 */
3137void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3138{
3139	unsigned int ep;
3140
3141	if (!hsotg->connected)
3142		return;
3143
3144	hsotg->connected = 0;
3145	hsotg->test_mode = 0;
3146
3147	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3148		if (hsotg->eps_in[ep])
3149			kill_all_requests(hsotg, hsotg->eps_in[ep],
3150					  -ESHUTDOWN);
3151		if (hsotg->eps_out[ep])
3152			kill_all_requests(hsotg, hsotg->eps_out[ep],
3153					  -ESHUTDOWN);
3154	}
3155
3156	call_gadget(hsotg, disconnect);
3157	hsotg->lx_state = DWC2_L3;
3158
3159	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3160}
3161
3162/**
3163 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3164 * @hsotg: The device state:
3165 * @periodic: True if this is a periodic FIFO interrupt
3166 */
3167static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3168{
3169	struct dwc2_hsotg_ep *ep;
3170	int epno, ret;
3171
3172	/* look through for any more data to transmit */
3173	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3174		ep = index_to_ep(hsotg, epno, 1);
3175
3176		if (!ep)
3177			continue;
3178
3179		if (!ep->dir_in)
3180			continue;
3181
3182		if ((periodic && !ep->periodic) ||
3183		    (!periodic && ep->periodic))
3184			continue;
3185
3186		ret = dwc2_hsotg_trytx(hsotg, ep);
3187		if (ret < 0)
3188			break;
3189	}
3190}
3191
3192/* IRQ flags which will trigger a retry around the IRQ loop */
3193#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3194			GINTSTS_PTXFEMP |  \
3195			GINTSTS_RXFLVL)
3196
3197/**
3198 * dwc2_hsotg_core_init - issue softreset to the core
3199 * @hsotg: The device state
3200 *
3201 * Issue a soft reset to the core, and await the core finishing it.
3202 */
3203void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3204				       bool is_usb_reset)
3205{
3206	u32 intmsk;
3207	u32 val;
3208	u32 usbcfg;
3209	u32 dcfg = 0;
3210
3211	/* Kill any ep0 requests as controller will be reinitialized */
3212	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3213
3214	if (!is_usb_reset)
3215		if (dwc2_core_reset(hsotg, true))
3216			return;
3217
3218	/*
3219	 * we must now enable ep0 ready for host detection and then
3220	 * set configuration.
3221	 */
3222
3223	/* keep other bits untouched (so e.g. forced modes are not lost) */
3224	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3225	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3226		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
3227
3228	if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS &&
3229	    (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
3230	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW)) {
3231		/* FS/LS Dedicated Transceiver Interface */
3232		usbcfg |= GUSBCFG_PHYSEL;
3233	} else {
3234		/* set the PLL on, remove the HNP/SRP and set the PHY */
3235		val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3236		usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3237			(val << GUSBCFG_USBTRDTIM_SHIFT);
3238	}
3239	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3240
3241	dwc2_hsotg_init_fifo(hsotg);
3242
3243	if (!is_usb_reset)
3244		dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3245
3246	dcfg |= DCFG_EPMISCNT(1);
3247
3248	switch (hsotg->params.speed) {
3249	case DWC2_SPEED_PARAM_LOW:
3250		dcfg |= DCFG_DEVSPD_LS;
3251		break;
3252	case DWC2_SPEED_PARAM_FULL:
3253		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3254			dcfg |= DCFG_DEVSPD_FS48;
3255		else
3256			dcfg |= DCFG_DEVSPD_FS;
3257		break;
3258	default:
3259		dcfg |= DCFG_DEVSPD_HS;
3260	}
3261
3262	dwc2_writel(dcfg,  hsotg->regs + DCFG);
3263
3264	/* Clear any pending OTG interrupts */
3265	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
3266
3267	/* Clear any pending interrupts */
3268	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
3269	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3270		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3271		GINTSTS_USBRST | GINTSTS_RESETDET |
3272		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3273		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3274		GINTSTS_LPMTRANRCVD;
3275
3276	if (!using_desc_dma(hsotg))
3277		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3278
3279	if (!hsotg->params.external_id_pin_ctl)
3280		intmsk |= GINTSTS_CONIDSTSCHNG;
3281
3282	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
3283
3284	if (using_dma(hsotg)) {
3285		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3286			    hsotg->params.ahbcfg,
3287			    hsotg->regs + GAHBCFG);
3288
3289		/* Set DDMA mode support in the core if needed */
3290		if (using_desc_dma(hsotg))
3291			dwc2_set_bit(hsotg->regs + DCFG, DCFG_DESCDMA_EN);
3292
3293	} else {
3294		dwc2_writel(((hsotg->dedicated_fifos) ?
3295						(GAHBCFG_NP_TXF_EMP_LVL |
3296						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3297			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
3298	}
3299
3300	/*
3301	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3302	 * when we have no data to transfer. Otherwise we get being flooded by
3303	 * interrupts.
3304	 */
3305
3306	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3307		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3308		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3309		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
 
3310		hsotg->regs + DIEPMSK);
3311
3312	/*
3313	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3314	 * DMA mode we may need this and StsPhseRcvd.
3315	 */
3316	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3317		DOEPMSK_STSPHSERCVDMSK) : 0) |
3318		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3319		DOEPMSK_SETUPMSK,
3320		hsotg->regs + DOEPMSK);
3321
3322	/* Enable BNA interrupt for DDMA */
3323	if (using_desc_dma(hsotg))
3324		dwc2_set_bit(hsotg->regs + DOEPMSK, DOEPMSK_BNAMSK);
3325
3326	dwc2_writel(0, hsotg->regs + DAINTMSK);
3327
3328	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3329		dwc2_readl(hsotg->regs + DIEPCTL0),
3330		dwc2_readl(hsotg->regs + DOEPCTL0));
3331
3332	/* enable in and out endpoint interrupts */
3333	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3334
3335	/*
3336	 * Enable the RXFIFO when in slave mode, as this is how we collect
3337	 * the data. In DMA mode, we get events from the FIFO but also
3338	 * things we cannot process, so do not use it.
3339	 */
3340	if (!using_dma(hsotg))
3341		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3342
3343	/* Enable interrupts for EP0 in and out */
3344	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3345	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3346
3347	if (!is_usb_reset) {
3348		dwc2_set_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3349		udelay(10);  /* see openiboot */
3350		dwc2_clear_bit(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
3351	}
3352
3353	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
3354
3355	/*
3356	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3357	 * writing to the EPCTL register..
3358	 */
3359
3360	/* set to read 1 8byte packet */
3361	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3362	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
3363
3364	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3365	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3366	       DXEPCTL_USBACTEP,
3367	       hsotg->regs + DOEPCTL0);
3368
3369	/* enable, but don't activate EP0in */
3370	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3371	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
3372
 
 
 
 
 
 
3373	/* clear global NAKs */
3374	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3375	if (!is_usb_reset)
3376		val |= DCTL_SFTDISCON;
3377	dwc2_set_bit(hsotg->regs + DCTL, val);
3378
3379	/* configure the core to support LPM */
3380	dwc2_gadget_init_lpm(hsotg);
3381
3382	/* must be at-least 3ms to allow bus to see disconnect */
3383	mdelay(3);
3384
3385	hsotg->lx_state = DWC2_L0;
3386
3387	dwc2_hsotg_enqueue_setup(hsotg);
3388
3389	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3390		dwc2_readl(hsotg->regs + DIEPCTL0),
3391		dwc2_readl(hsotg->regs + DOEPCTL0));
3392}
3393
3394static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3395{
3396	/* set the soft-disconnect bit */
3397	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3398}
3399
3400void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3401{
3402	/* remove the soft-disconnect and let's go */
3403	dwc2_clear_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
3404}
3405
3406/**
3407 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3408 * @hsotg: The device state:
3409 *
3410 * This interrupt indicates one of the following conditions occurred while
3411 * transmitting an ISOC transaction.
3412 * - Corrupted IN Token for ISOC EP.
3413 * - Packet not complete in FIFO.
3414 *
3415 * The following actions will be taken:
3416 * - Determine the EP
3417 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3418 */
3419static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3420{
3421	struct dwc2_hsotg_ep *hs_ep;
3422	u32 epctrl;
3423	u32 daintmsk;
3424	u32 idx;
3425
3426	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3427
3428	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3429
3430	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3431		hs_ep = hsotg->eps_in[idx];
3432		/* Proceed only unmasked ISOC EPs */
3433		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3434			continue;
3435
3436		epctrl = dwc2_readl(hsotg->regs + DIEPCTL(idx));
3437		if ((epctrl & DXEPCTL_EPENA) &&
3438		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3439			epctrl |= DXEPCTL_SNAK;
3440			epctrl |= DXEPCTL_EPDIS;
3441			dwc2_writel(epctrl, hsotg->regs + DIEPCTL(idx));
3442		}
3443	}
3444
3445	/* Clear interrupt */
3446	dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
3447}
3448
3449/**
3450 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3451 * @hsotg: The device state:
3452 *
3453 * This interrupt indicates one of the following conditions occurred while
3454 * transmitting an ISOC transaction.
3455 * - Corrupted OUT Token for ISOC EP.
3456 * - Packet not complete in FIFO.
3457 *
3458 * The following actions will be taken:
3459 * - Determine the EP
3460 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3461 */
3462static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3463{
3464	u32 gintsts;
3465	u32 gintmsk;
3466	u32 daintmsk;
3467	u32 epctrl;
3468	struct dwc2_hsotg_ep *hs_ep;
3469	int idx;
3470
3471	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3472
3473	daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3474	daintmsk >>= DAINT_OUTEP_SHIFT;
3475
3476	for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3477		hs_ep = hsotg->eps_out[idx];
3478		/* Proceed only unmasked ISOC EPs */
3479		if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3480			continue;
3481
3482		epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3483		if ((epctrl & DXEPCTL_EPENA) &&
3484		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3485			/* Unmask GOUTNAKEFF interrupt */
3486			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3487			gintmsk |= GINTSTS_GOUTNAKEFF;
3488			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3489
3490			gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3491			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3492				dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3493				break;
3494			}
3495		}
3496	}
3497
3498	/* Clear interrupt */
3499	dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
3500}
3501
3502/**
3503 * dwc2_hsotg_irq - handle device interrupt
3504 * @irq: The IRQ number triggered
3505 * @pw: The pw value when registered the handler.
3506 */
3507static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3508{
3509	struct dwc2_hsotg *hsotg = pw;
3510	int retry_count = 8;
3511	u32 gintsts;
3512	u32 gintmsk;
3513
3514	if (!dwc2_is_device_mode(hsotg))
3515		return IRQ_NONE;
3516
3517	spin_lock(&hsotg->lock);
3518irq_retry:
3519	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
3520	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3521
3522	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3523		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3524
3525	gintsts &= gintmsk;
3526
3527	if (gintsts & GINTSTS_RESETDET) {
3528		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3529
3530		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
3531
3532		/* This event must be used only if controller is suspended */
3533		if (hsotg->lx_state == DWC2_L2) {
3534			dwc2_exit_partial_power_down(hsotg, true);
3535			hsotg->lx_state = DWC2_L0;
3536		}
3537	}
3538
3539	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
 
3540		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
3541		u32 connected = hsotg->connected;
3542
3543		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3544		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3545			dwc2_readl(hsotg->regs + GNPTXSTS));
3546
3547		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
3548
3549		/* Report disconnection if it is not already done. */
3550		dwc2_hsotg_disconnect(hsotg);
3551
3552		/* Reset device address to zero */
3553		dwc2_clear_bit(hsotg->regs + DCFG, DCFG_DEVADDR_MASK);
3554
3555		if (usb_status & GOTGCTL_BSESVLD && connected)
3556			dwc2_hsotg_core_init_disconnected(hsotg, true);
3557	}
3558
3559	if (gintsts & GINTSTS_ENUMDONE) {
3560		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
3561
3562		dwc2_hsotg_irq_enumdone(hsotg);
3563	}
3564
3565	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3566		u32 daint = dwc2_readl(hsotg->regs + DAINT);
3567		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3568		u32 daint_out, daint_in;
3569		int ep;
3570
3571		daint &= daintmsk;
3572		daint_out = daint >> DAINT_OUTEP_SHIFT;
3573		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3574
3575		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3576
3577		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3578						ep++, daint_out >>= 1) {
3579			if (daint_out & 1)
3580				dwc2_hsotg_epint(hsotg, ep, 0);
3581		}
3582
3583		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3584						ep++, daint_in >>= 1) {
3585			if (daint_in & 1)
3586				dwc2_hsotg_epint(hsotg, ep, 1);
3587		}
3588	}
3589
3590	/* check both FIFOs */
3591
3592	if (gintsts & GINTSTS_NPTXFEMP) {
3593		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3594
3595		/*
3596		 * Disable the interrupt to stop it happening again
3597		 * unless one of these endpoint routines decides that
3598		 * it needs re-enabling
3599		 */
3600
3601		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3602		dwc2_hsotg_irq_fifoempty(hsotg, false);
3603	}
3604
3605	if (gintsts & GINTSTS_PTXFEMP) {
3606		dev_dbg(hsotg->dev, "PTxFEmp\n");
3607
3608		/* See note in GINTSTS_NPTxFEmp */
3609
3610		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3611		dwc2_hsotg_irq_fifoempty(hsotg, true);
3612	}
3613
3614	if (gintsts & GINTSTS_RXFLVL) {
3615		/*
3616		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3617		 * we need to retry dwc2_hsotg_handle_rx if this is still
3618		 * set.
3619		 */
3620
3621		dwc2_hsotg_handle_rx(hsotg);
3622	}
3623
3624	if (gintsts & GINTSTS_ERLYSUSP) {
3625		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3626		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
3627	}
3628
3629	/*
3630	 * these next two seem to crop-up occasionally causing the core
3631	 * to shutdown the USB transfer, so try clearing them and logging
3632	 * the occurrence.
3633	 */
3634
3635	if (gintsts & GINTSTS_GOUTNAKEFF) {
3636		u8 idx;
3637		u32 epctrl;
3638		u32 gintmsk;
3639		u32 daintmsk;
3640		struct dwc2_hsotg_ep *hs_ep;
3641
3642		daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3643		daintmsk >>= DAINT_OUTEP_SHIFT;
3644		/* Mask this interrupt */
3645		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3646		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3647		dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3648
3649		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3650		for (idx = 1; idx <= hsotg->num_of_eps; idx++) {
3651			hs_ep = hsotg->eps_out[idx];
3652			/* Proceed only unmasked ISOC EPs */
3653			if (!hs_ep->isochronous || (BIT(idx) & ~daintmsk))
3654				continue;
3655
3656			epctrl = dwc2_readl(hsotg->regs + DOEPCTL(idx));
3657
3658			if (epctrl & DXEPCTL_EPENA) {
3659				epctrl |= DXEPCTL_SNAK;
3660				epctrl |= DXEPCTL_EPDIS;
3661				dwc2_writel(epctrl, hsotg->regs + DOEPCTL(idx));
3662			}
3663		}
3664
3665		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3666	}
3667
3668	if (gintsts & GINTSTS_GINNAKEFF) {
3669		dev_info(hsotg->dev, "GINNakEff triggered\n");
3670
3671		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3672
3673		dwc2_hsotg_dump(hsotg);
3674	}
3675
3676	if (gintsts & GINTSTS_INCOMPL_SOIN)
3677		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
 
3678
3679	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3680		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
 
3681
3682	/*
3683	 * if we've had fifo events, we should try and go around the
3684	 * loop again to see if there's any point in returning yet.
3685	 */
3686
3687	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3688		goto irq_retry;
 
 
 
3689
3690	spin_unlock(&hsotg->lock);
 
 
3691
3692	return IRQ_HANDLED;
3693}
 
3694
3695static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3696				   struct dwc2_hsotg_ep *hs_ep)
3697{
3698	u32 epctrl_reg;
3699	u32 epint_reg;
3700
3701	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3702		DOEPCTL(hs_ep->index);
3703	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3704		DOEPINT(hs_ep->index);
3705
3706	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3707		hs_ep->name);
3708
3709	if (hs_ep->dir_in) {
3710		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3711			dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
3712			/* Wait for Nak effect */
3713			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3714						    DXEPINT_INEPNAKEFF, 100))
3715				dev_warn(hsotg->dev,
3716					 "%s: timeout DIEPINT.NAKEFF\n",
3717					 __func__);
3718		} else {
3719			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGNPINNAK);
3720			/* Wait for Nak effect */
3721			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3722						    GINTSTS_GINNAKEFF, 100))
3723				dev_warn(hsotg->dev,
3724					 "%s: timeout GINTSTS.GINNAKEFF\n",
3725					 __func__);
3726		}
3727	} else {
3728		if (!(dwc2_readl(hsotg->regs + GINTSTS) & GINTSTS_GOUTNAKEFF))
3729			dwc2_set_bit(hsotg->regs + DCTL, DCTL_SGOUTNAK);
3730
3731		/* Wait for global nak to take effect */
3732		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3733					    GINTSTS_GOUTNAKEFF, 100))
3734			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3735				 __func__);
3736	}
3737
3738	/* Disable ep */
3739	dwc2_set_bit(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
 
 
3740
3741	/* Wait for ep to be disabled */
3742	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3743		dev_warn(hsotg->dev,
3744			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3745
3746	/* Clear EPDISBLD interrupt */
3747	dwc2_set_bit(hsotg->regs + epint_reg, DXEPINT_EPDISBLD);
3748
3749	if (hs_ep->dir_in) {
3750		unsigned short fifo_index;
3751
3752		if (hsotg->dedicated_fifos || hs_ep->periodic)
3753			fifo_index = hs_ep->fifo_index;
3754		else
3755			fifo_index = 0;
3756
3757		/* Flush TX FIFO */
3758		dwc2_flush_tx_fifo(hsotg, fifo_index);
3759
3760		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3761		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3762			dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGNPINNAK);
3763
3764	} else {
3765		/* Remove global NAKs */
3766		dwc2_set_bit(hsotg->regs + DCTL, DCTL_CGOUTNAK);
3767	}
3768}
3769
3770/**
3771 * dwc2_hsotg_ep_enable - enable the given endpoint
3772 * @ep: The USB endpint to configure
3773 * @desc: The USB endpoint descriptor to configure with.
3774 *
3775 * This is called from the USB gadget code's usb_ep_enable().
3776 */
3777static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3778				const struct usb_endpoint_descriptor *desc)
3779{
3780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3781	struct dwc2_hsotg *hsotg = hs_ep->parent;
3782	unsigned long flags;
3783	unsigned int index = hs_ep->index;
3784	u32 epctrl_reg;
3785	u32 epctrl;
3786	u32 mps;
3787	u32 mc;
3788	u32 mask;
3789	unsigned int dir_in;
3790	unsigned int i, val, size;
3791	int ret = 0;
3792
3793	dev_dbg(hsotg->dev,
3794		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3795		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3796		desc->wMaxPacketSize, desc->bInterval);
3797
3798	/* not to be called for EP0 */
3799	if (index == 0) {
3800		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3801		return -EINVAL;
3802	}
3803
3804	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3805	if (dir_in != hs_ep->dir_in) {
3806		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3807		return -EINVAL;
3808	}
3809
3810	mps = usb_endpoint_maxp(desc);
3811	mc = usb_endpoint_maxp_mult(desc);
3812
3813	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3814
3815	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3816	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
3817
3818	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3819		__func__, epctrl, epctrl_reg);
3820
3821	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3822	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3823		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3824			MAX_DMA_DESC_NUM_GENERIC *
3825			sizeof(struct dwc2_dma_desc),
3826			&hs_ep->desc_list_dma, GFP_ATOMIC);
3827		if (!hs_ep->desc_list) {
3828			ret = -ENOMEM;
3829			goto error2;
3830		}
3831	}
3832
3833	spin_lock_irqsave(&hsotg->lock, flags);
3834
3835	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3836	epctrl |= DXEPCTL_MPS(mps);
3837
3838	/*
3839	 * mark the endpoint as active, otherwise the core may ignore
3840	 * transactions entirely for this endpoint
3841	 */
3842	epctrl |= DXEPCTL_USBACTEP;
3843
 
 
 
 
 
 
 
 
 
3844	/* update the endpoint state */
3845	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
3846
3847	/* default, set to non-periodic */
3848	hs_ep->isochronous = 0;
3849	hs_ep->periodic = 0;
3850	hs_ep->halted = 0;
3851	hs_ep->interval = desc->bInterval;
 
 
 
 
3852
3853	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
3854	case USB_ENDPOINT_XFER_ISOC:
3855		epctrl |= DXEPCTL_EPTYPE_ISO;
3856		epctrl |= DXEPCTL_SETEVENFR;
3857		hs_ep->isochronous = 1;
3858		hs_ep->interval = 1 << (desc->bInterval - 1);
3859		hs_ep->target_frame = TARGET_FRAME_INITIAL;
3860		hs_ep->isoc_chain_num = 0;
3861		hs_ep->next_desc = 0;
3862		if (dir_in) {
3863			hs_ep->periodic = 1;
3864			mask = dwc2_readl(hsotg->regs + DIEPMSK);
3865			mask |= DIEPMSK_NAKMSK;
3866			dwc2_writel(mask, hsotg->regs + DIEPMSK);
3867		} else {
3868			mask = dwc2_readl(hsotg->regs + DOEPMSK);
3869			mask |= DOEPMSK_OUTTKNEPDISMSK;
3870			dwc2_writel(mask, hsotg->regs + DOEPMSK);
3871		}
3872		break;
3873
3874	case USB_ENDPOINT_XFER_BULK:
3875		epctrl |= DXEPCTL_EPTYPE_BULK;
3876		break;
3877
3878	case USB_ENDPOINT_XFER_INT:
3879		if (dir_in)
3880			hs_ep->periodic = 1;
3881
3882		if (hsotg->gadget.speed == USB_SPEED_HIGH)
3883			hs_ep->interval = 1 << (desc->bInterval - 1);
3884
3885		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
3886		break;
3887
3888	case USB_ENDPOINT_XFER_CONTROL:
3889		epctrl |= DXEPCTL_EPTYPE_CONTROL;
3890		break;
3891	}
3892
 
 
 
 
 
 
 
 
 
 
 
3893	/*
3894	 * if the hardware has dedicated fifos, we must give each IN EP
3895	 * a unique tx-fifo even if it is non-periodic.
3896	 */
3897	if (dir_in && hsotg->dedicated_fifos) {
3898		u32 fifo_index = 0;
3899		u32 fifo_size = UINT_MAX;
3900
3901		size = hs_ep->ep.maxpacket * hs_ep->mc;
3902		for (i = 1; i < hsotg->num_of_eps; ++i) {
3903			if (hsotg->fifo_map & (1 << i))
3904				continue;
3905			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
3906			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
3907			if (val < size)
3908				continue;
3909			/* Search for smallest acceptable fifo */
3910			if (val < fifo_size) {
3911				fifo_size = val;
3912				fifo_index = i;
3913			}
3914		}
3915		if (!fifo_index) {
3916			dev_err(hsotg->dev,
3917				"%s: No suitable fifo found\n", __func__);
3918			ret = -ENOMEM;
3919			goto error1;
3920		}
3921		hsotg->fifo_map |= 1 << fifo_index;
3922		epctrl |= DXEPCTL_TXFNUM(fifo_index);
3923		hs_ep->fifo_index = fifo_index;
3924		hs_ep->fifo_size = fifo_size;
3925	}
3926
3927	/* for non control endpoints, set PID to D0 */
3928	if (index && !hs_ep->isochronous)
3929		epctrl |= DXEPCTL_SETD0PID;
3930
3931	/* WA for Full speed ISOC IN in DDMA mode.
3932	 * By Clear NAK status of EP, core will send ZLP
3933	 * to IN token and assert NAK interrupt relying
3934	 * on TxFIFO status only
3935	 */
3936
3937	if (hsotg->gadget.speed == USB_SPEED_FULL &&
3938	    hs_ep->isochronous && dir_in) {
3939		/* The WA applies only to core versions from 2.72a
3940		 * to 4.00a (including both). Also for FS_IOT_1.00a
3941		 * and HS_IOT_1.00a.
3942		 */
3943		u32 gsnpsid = dwc2_readl(hsotg->regs + GSNPSID);
3944
3945		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
3946		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
3947		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
3948		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
3949			epctrl |= DXEPCTL_CNAK;
3950	}
3951
3952	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
3953		__func__, epctrl);
3954
3955	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
3956	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
3957		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
3958
3959	/* enable the endpoint interrupt */
3960	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
3961
3962error1:
3963	spin_unlock_irqrestore(&hsotg->lock, flags);
3964
3965error2:
3966	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
3967		dmam_free_coherent(hsotg->dev, MAX_DMA_DESC_NUM_GENERIC *
3968			sizeof(struct dwc2_dma_desc),
3969			hs_ep->desc_list, hs_ep->desc_list_dma);
3970		hs_ep->desc_list = NULL;
3971	}
3972
3973	return ret;
3974}
3975
3976/**
3977 * dwc2_hsotg_ep_disable - disable given endpoint
3978 * @ep: The endpoint to disable.
3979 */
3980static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
3981{
3982	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3983	struct dwc2_hsotg *hsotg = hs_ep->parent;
3984	int dir_in = hs_ep->dir_in;
3985	int index = hs_ep->index;
3986	unsigned long flags;
3987	u32 epctrl_reg;
3988	u32 ctrl;
3989
3990	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
3991
3992	if (ep == &hsotg->eps_out[0]->ep) {
3993		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
3994		return -EINVAL;
3995	}
3996
3997	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3998		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
3999		return -EINVAL;
4000	}
4001
4002	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4003
4004	spin_lock_irqsave(&hsotg->lock, flags);
4005
 
 
 
 
4006	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
4007
4008	if (ctrl & DXEPCTL_EPENA)
4009		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
4010
4011	ctrl &= ~DXEPCTL_EPENA;
4012	ctrl &= ~DXEPCTL_USBACTEP;
4013	ctrl |= DXEPCTL_SNAK;
4014
4015	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4016	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
4017
4018	/* disable endpoint interrupts */
4019	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4020
4021	/* terminate all requests with shutdown */
4022	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4023
4024	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4025	hs_ep->fifo_index = 0;
4026	hs_ep->fifo_size = 0;
4027
4028	spin_unlock_irqrestore(&hsotg->lock, flags);
4029	return 0;
4030}
4031
4032/**
4033 * on_list - check request is on the given endpoint
4034 * @ep: The endpoint to check.
4035 * @test: The request to test if it is on the endpoint.
4036 */
4037static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4038{
4039	struct dwc2_hsotg_req *req, *treq;
4040
4041	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4042		if (req == test)
4043			return true;
4044	}
4045
4046	return false;
4047}
4048
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4049/**
4050 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4051 * @ep: The endpoint to dequeue.
4052 * @req: The request to be removed from a queue.
4053 */
4054static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4055{
4056	struct dwc2_hsotg_req *hs_req = our_req(req);
4057	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4058	struct dwc2_hsotg *hs = hs_ep->parent;
4059	unsigned long flags;
4060
4061	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4062
4063	spin_lock_irqsave(&hs->lock, flags);
4064
4065	if (!on_list(hs_ep, hs_req)) {
4066		spin_unlock_irqrestore(&hs->lock, flags);
4067		return -EINVAL;
4068	}
4069
4070	/* Dequeue already started request */
4071	if (req == &hs_ep->req->req)
4072		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4073
4074	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4075	spin_unlock_irqrestore(&hs->lock, flags);
4076
4077	return 0;
4078}
4079
4080/**
4081 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4082 * @ep: The endpoint to set halt.
4083 * @value: Set or unset the halt.
4084 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4085 *       the endpoint is busy processing requests.
4086 *
4087 * We need to stall the endpoint immediately if request comes from set_feature
4088 * protocol command handler.
4089 */
4090static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4091{
4092	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4093	struct dwc2_hsotg *hs = hs_ep->parent;
4094	int index = hs_ep->index;
4095	u32 epreg;
4096	u32 epctl;
4097	u32 xfertype;
4098
4099	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4100
4101	if (index == 0) {
4102		if (value)
4103			dwc2_hsotg_stall_ep0(hs);
4104		else
4105			dev_warn(hs->dev,
4106				 "%s: can't clear halt on ep0\n", __func__);
4107		return 0;
4108	}
4109
4110	if (hs_ep->isochronous) {
4111		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4112		return -EINVAL;
4113	}
4114
4115	if (!now && value && !list_empty(&hs_ep->queue)) {
4116		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4117			ep->name);
4118		return -EAGAIN;
4119	}
4120
4121	if (hs_ep->dir_in) {
4122		epreg = DIEPCTL(index);
4123		epctl = dwc2_readl(hs->regs + epreg);
4124
4125		if (value) {
4126			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4127			if (epctl & DXEPCTL_EPENA)
4128				epctl |= DXEPCTL_EPDIS;
4129		} else {
4130			epctl &= ~DXEPCTL_STALL;
4131			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4132			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4133			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4134				epctl |= DXEPCTL_SETD0PID;
4135		}
4136		dwc2_writel(epctl, hs->regs + epreg);
4137	} else {
 
4138		epreg = DOEPCTL(index);
4139		epctl = dwc2_readl(hs->regs + epreg);
4140
4141		if (value) {
4142			epctl |= DXEPCTL_STALL;
4143		} else {
4144			epctl &= ~DXEPCTL_STALL;
4145			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4146			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4147			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4148				epctl |= DXEPCTL_SETD0PID;
4149		}
4150		dwc2_writel(epctl, hs->regs + epreg);
4151	}
4152
4153	hs_ep->halted = value;
4154
4155	return 0;
4156}
4157
4158/**
4159 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4160 * @ep: The endpoint to set halt.
4161 * @value: Set or unset the halt.
4162 */
4163static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4164{
4165	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4166	struct dwc2_hsotg *hs = hs_ep->parent;
4167	unsigned long flags = 0;
4168	int ret = 0;
4169
4170	spin_lock_irqsave(&hs->lock, flags);
4171	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4172	spin_unlock_irqrestore(&hs->lock, flags);
4173
4174	return ret;
4175}
4176
4177static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4178	.enable		= dwc2_hsotg_ep_enable,
4179	.disable	= dwc2_hsotg_ep_disable,
4180	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4181	.free_request	= dwc2_hsotg_ep_free_request,
4182	.queue		= dwc2_hsotg_ep_queue_lock,
4183	.dequeue	= dwc2_hsotg_ep_dequeue,
4184	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4185	/* note, don't believe we have any call for the fifo routines */
4186};
4187
4188/**
4189 * dwc2_hsotg_init - initialize the usb core
4190 * @hsotg: The driver state
4191 */
4192static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4193{
4194	u32 trdtim;
4195	u32 usbcfg;
4196	/* unmask subset of endpoint interrupts */
4197
4198	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4199		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4200		    hsotg->regs + DIEPMSK);
4201
4202	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4203		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4204		    hsotg->regs + DOEPMSK);
4205
4206	dwc2_writel(0, hsotg->regs + DAINTMSK);
4207
4208	/* Be in disconnected state until gadget is registered */
4209	dwc2_set_bit(hsotg->regs + DCTL, DCTL_SFTDISCON);
4210
4211	/* setup fifos */
4212
4213	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4214		dwc2_readl(hsotg->regs + GRXFSIZ),
4215		dwc2_readl(hsotg->regs + GNPTXFSIZ));
4216
4217	dwc2_hsotg_init_fifo(hsotg);
4218
4219	/* keep other bits untouched (so e.g. forced modes are not lost) */
4220	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
4221	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
4222		GUSBCFG_HNPCAP | GUSBCFG_USBTRDTIM_MASK);
4223
4224	/* set the PLL on, remove the HNP/SRP and set the PHY */
4225	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
4226	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
4227		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
4228	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
4229
4230	if (using_dma(hsotg))
4231		dwc2_set_bit(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
4232}
4233
4234/**
4235 * dwc2_hsotg_udc_start - prepare the udc for work
4236 * @gadget: The usb gadget state
4237 * @driver: The usb gadget driver
4238 *
4239 * Perform initialization to prepare udc device and driver
4240 * to work.
4241 */
4242static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4243				struct usb_gadget_driver *driver)
4244{
4245	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4246	unsigned long flags;
4247	int ret;
4248
4249	if (!hsotg) {
4250		pr_err("%s: called with no device\n", __func__);
4251		return -ENODEV;
4252	}
4253
4254	if (!driver) {
4255		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4256		return -EINVAL;
4257	}
4258
4259	if (driver->max_speed < USB_SPEED_FULL)
4260		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4261
4262	if (!driver->setup) {
4263		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4264		return -EINVAL;
4265	}
4266
4267	WARN_ON(hsotg->driver);
4268
4269	driver->driver.bus = NULL;
4270	hsotg->driver = driver;
4271	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4272	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4273
4274	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4275		ret = dwc2_lowlevel_hw_enable(hsotg);
4276		if (ret)
4277			goto err;
4278	}
4279
4280	if (!IS_ERR_OR_NULL(hsotg->uphy))
4281		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4282
4283	spin_lock_irqsave(&hsotg->lock, flags);
4284	if (dwc2_hw_is_device(hsotg)) {
4285		dwc2_hsotg_init(hsotg);
4286		dwc2_hsotg_core_init_disconnected(hsotg, false);
4287	}
4288
4289	hsotg->enabled = 0;
4290	spin_unlock_irqrestore(&hsotg->lock, flags);
4291
4292	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4293
4294	return 0;
4295
4296err:
4297	hsotg->driver = NULL;
4298	return ret;
4299}
4300
4301/**
4302 * dwc2_hsotg_udc_stop - stop the udc
4303 * @gadget: The usb gadget state
4304 * @driver: The usb gadget driver
4305 *
4306 * Stop udc hw block and stay tunned for future transmissions
4307 */
4308static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4309{
4310	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4311	unsigned long flags = 0;
4312	int ep;
4313
4314	if (!hsotg)
4315		return -ENODEV;
4316
4317	/* all endpoints should be shutdown */
4318	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4319		if (hsotg->eps_in[ep])
4320			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4321		if (hsotg->eps_out[ep])
4322			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4323	}
4324
4325	spin_lock_irqsave(&hsotg->lock, flags);
4326
4327	hsotg->driver = NULL;
4328	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4329	hsotg->enabled = 0;
4330
4331	spin_unlock_irqrestore(&hsotg->lock, flags);
4332
4333	if (!IS_ERR_OR_NULL(hsotg->uphy))
4334		otg_set_peripheral(hsotg->uphy->otg, NULL);
4335
4336	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4337		dwc2_lowlevel_hw_disable(hsotg);
4338
4339	return 0;
4340}
4341
4342/**
4343 * dwc2_hsotg_gadget_getframe - read the frame number
4344 * @gadget: The usb gadget state
4345 *
4346 * Read the {micro} frame number
4347 */
4348static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4349{
4350	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4351}
4352
4353/**
4354 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4355 * @gadget: The usb gadget state
4356 * @is_on: Current state of the USB PHY
4357 *
4358 * Connect/Disconnect the USB PHY pullup
4359 */
4360static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4361{
4362	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4363	unsigned long flags = 0;
4364
4365	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4366		hsotg->op_state);
4367
4368	/* Don't modify pullup state while in host mode */
4369	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4370		hsotg->enabled = is_on;
4371		return 0;
4372	}
4373
4374	spin_lock_irqsave(&hsotg->lock, flags);
4375	if (is_on) {
4376		hsotg->enabled = 1;
4377		dwc2_hsotg_core_init_disconnected(hsotg, false);
4378		/* Enable ACG feature in device mode,if supported */
4379		dwc2_enable_acg(hsotg);
4380		dwc2_hsotg_core_connect(hsotg);
4381	} else {
4382		dwc2_hsotg_core_disconnect(hsotg);
4383		dwc2_hsotg_disconnect(hsotg);
4384		hsotg->enabled = 0;
4385	}
4386
4387	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4388	spin_unlock_irqrestore(&hsotg->lock, flags);
4389
4390	return 0;
4391}
4392
4393static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4394{
4395	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4396	unsigned long flags;
4397
4398	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4399	spin_lock_irqsave(&hsotg->lock, flags);
4400
4401	/*
4402	 * If controller is hibernated, it must exit from power_down
4403	 * before being initialized / de-initialized
4404	 */
4405	if (hsotg->lx_state == DWC2_L2)
4406		dwc2_exit_partial_power_down(hsotg, false);
4407
4408	if (is_active) {
4409		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4410
4411		dwc2_hsotg_core_init_disconnected(hsotg, false);
4412		if (hsotg->enabled) {
4413			/* Enable ACG feature in device mode,if supported */
4414			dwc2_enable_acg(hsotg);
4415			dwc2_hsotg_core_connect(hsotg);
4416		}
4417	} else {
4418		dwc2_hsotg_core_disconnect(hsotg);
4419		dwc2_hsotg_disconnect(hsotg);
4420	}
4421
4422	spin_unlock_irqrestore(&hsotg->lock, flags);
4423	return 0;
4424}
4425
4426/**
4427 * dwc2_hsotg_vbus_draw - report bMaxPower field
4428 * @gadget: The usb gadget state
4429 * @mA: Amount of current
4430 *
4431 * Report how much power the device may consume to the phy.
4432 */
4433static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4434{
4435	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4436
4437	if (IS_ERR_OR_NULL(hsotg->uphy))
4438		return -ENOTSUPP;
4439	return usb_phy_set_power(hsotg->uphy, mA);
4440}
4441
4442static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4443	.get_frame	= dwc2_hsotg_gadget_getframe,
4444	.udc_start		= dwc2_hsotg_udc_start,
4445	.udc_stop		= dwc2_hsotg_udc_stop,
4446	.pullup                 = dwc2_hsotg_pullup,
4447	.vbus_session		= dwc2_hsotg_vbus_session,
4448	.vbus_draw		= dwc2_hsotg_vbus_draw,
4449};
4450
4451/**
4452 * dwc2_hsotg_initep - initialise a single endpoint
4453 * @hsotg: The device state.
4454 * @hs_ep: The endpoint to be initialised.
4455 * @epnum: The endpoint number
4456 *
4457 * Initialise the given endpoint (as part of the probe and device state
4458 * creation) to give to the gadget driver. Setup the endpoint name, any
4459 * direction information and other state that may be required.
4460 */
4461static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4462			      struct dwc2_hsotg_ep *hs_ep,
4463				       int epnum,
4464				       bool dir_in)
4465{
4466	char *dir;
4467
4468	if (epnum == 0)
4469		dir = "";
4470	else if (dir_in)
4471		dir = "in";
4472	else
4473		dir = "out";
4474
4475	hs_ep->dir_in = dir_in;
4476	hs_ep->index = epnum;
4477
4478	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4479
4480	INIT_LIST_HEAD(&hs_ep->queue);
4481	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4482
4483	/* add to the list of endpoints known by the gadget driver */
4484	if (epnum)
4485		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4486
4487	hs_ep->parent = hsotg;
4488	hs_ep->ep.name = hs_ep->name;
4489
4490	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4491		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4492	else
4493		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4494					   epnum ? 1024 : EP0_MPS_LIMIT);
4495	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4496
4497	if (epnum == 0) {
4498		hs_ep->ep.caps.type_control = true;
4499	} else {
4500		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4501			hs_ep->ep.caps.type_iso = true;
4502			hs_ep->ep.caps.type_bulk = true;
4503		}
4504		hs_ep->ep.caps.type_int = true;
4505	}
4506
4507	if (dir_in)
4508		hs_ep->ep.caps.dir_in = true;
4509	else
4510		hs_ep->ep.caps.dir_out = true;
4511
4512	/*
4513	 * if we're using dma, we need to set the next-endpoint pointer
4514	 * to be something valid.
4515	 */
4516
4517	if (using_dma(hsotg)) {
4518		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4519
4520		if (dir_in)
4521			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
4522		else
4523			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
4524	}
4525}
4526
4527/**
4528 * dwc2_hsotg_hw_cfg - read HW configuration registers
4529 * @param: The device state
4530 *
4531 * Read the USB core HW configuration registers
4532 */
4533static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4534{
4535	u32 cfg;
4536	u32 ep_type;
4537	u32 i;
4538
4539	/* check hardware configuration */
4540
4541	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4542
4543	/* Add ep0 */
4544	hsotg->num_of_eps++;
4545
4546	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4547					sizeof(struct dwc2_hsotg_ep),
4548					GFP_KERNEL);
4549	if (!hsotg->eps_in[0])
4550		return -ENOMEM;
4551	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4552	hsotg->eps_out[0] = hsotg->eps_in[0];
4553
4554	cfg = hsotg->hw_params.dev_ep_dirs;
4555	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4556		ep_type = cfg & 3;
4557		/* Direction in or both */
4558		if (!(ep_type & 2)) {
4559			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4560				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4561			if (!hsotg->eps_in[i])
4562				return -ENOMEM;
4563		}
4564		/* Direction out or both */
4565		if (!(ep_type & 1)) {
4566			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4567				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4568			if (!hsotg->eps_out[i])
4569				return -ENOMEM;
4570		}
4571	}
4572
4573	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4574	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4575
4576	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4577		 hsotg->num_of_eps,
4578		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4579		 hsotg->fifo_mem);
4580	return 0;
4581}
4582
4583/**
4584 * dwc2_hsotg_dump - dump state of the udc
4585 * @param: The device state
4586 */
4587static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4588{
4589#ifdef DEBUG
4590	struct device *dev = hsotg->dev;
4591	void __iomem *regs = hsotg->regs;
4592	u32 val;
4593	int idx;
4594
4595	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4596		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
4597		 dwc2_readl(regs + DIEPMSK));
4598
4599	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4600		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
4601
4602	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4603		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
4604
4605	/* show periodic fifo settings */
4606
4607	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4608		val = dwc2_readl(regs + DPTXFSIZN(idx));
4609		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4610			 val >> FIFOSIZE_DEPTH_SHIFT,
4611			 val & FIFOSIZE_STARTADDR_MASK);
4612	}
4613
4614	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4615		dev_info(dev,
4616			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4617			 dwc2_readl(regs + DIEPCTL(idx)),
4618			 dwc2_readl(regs + DIEPTSIZ(idx)),
4619			 dwc2_readl(regs + DIEPDMA(idx)));
4620
4621		val = dwc2_readl(regs + DOEPCTL(idx));
4622		dev_info(dev,
4623			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4624			 idx, dwc2_readl(regs + DOEPCTL(idx)),
4625			 dwc2_readl(regs + DOEPTSIZ(idx)),
4626			 dwc2_readl(regs + DOEPDMA(idx)));
 
4627	}
4628
4629	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4630		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
4631#endif
4632}
4633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4634/**
4635 * dwc2_gadget_init - init function for gadget
4636 * @dwc2: The data structure for the DWC2 driver.
 
4637 */
4638int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4639{
4640	struct device *dev = hsotg->dev;
4641	int epnum;
4642	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4643
4644	/* Dump fifo information */
4645	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4646		hsotg->params.g_np_tx_fifo_size);
4647	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
 
 
 
4648
4649	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4650	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4651	hsotg->gadget.name = dev_name(dev);
4652	hsotg->remote_wakeup_allowed = 0;
4653
4654	if (hsotg->params.lpm)
4655		hsotg->gadget.lpm_capable = true;
4656
4657	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4658		hsotg->gadget.is_otg = 1;
4659	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4660		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4661
4662	ret = dwc2_hsotg_hw_cfg(hsotg);
4663	if (ret) {
4664		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4665		return ret;
4666	}
4667
4668	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4669			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4670	if (!hsotg->ctrl_buff)
 
4671		return -ENOMEM;
 
4672
4673	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4674			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4675	if (!hsotg->ep0_buff)
 
4676		return -ENOMEM;
4677
4678	if (using_desc_dma(hsotg)) {
4679		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4680		if (ret < 0)
4681			return ret;
4682	}
4683
4684	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4685			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4686	if (ret < 0) {
4687		dev_err(dev, "cannot claim IRQ for gadget\n");
4688		return ret;
4689	}
4690
4691	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4692
4693	if (hsotg->num_of_eps == 0) {
4694		dev_err(dev, "wrong number of EPs (zero)\n");
4695		return -EINVAL;
4696	}
4697
4698	/* setup endpoint information */
4699
4700	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4701	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4702
4703	/* allocate EP0 request */
4704
4705	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4706						     GFP_KERNEL);
4707	if (!hsotg->ctrl_req) {
4708		dev_err(dev, "failed to allocate ctrl req\n");
4709		return -ENOMEM;
4710	}
4711
4712	/* initialise the endpoints now the core has been initialised */
4713	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4714		if (hsotg->eps_in[epnum])
4715			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4716					  epnum, 1);
4717		if (hsotg->eps_out[epnum])
4718			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4719					  epnum, 0);
4720	}
4721
4722	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4723	if (ret)
4724		return ret;
4725
4726	dwc2_hsotg_dump(hsotg);
4727
4728	return 0;
4729}
4730
4731/**
4732 * dwc2_hsotg_remove - remove function for hsotg driver
4733 * @pdev: The platform information for the driver
4734 */
4735int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4736{
4737	usb_del_gadget_udc(&hsotg->gadget);
4738
4739	return 0;
4740}
4741
4742int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4743{
4744	unsigned long flags;
4745
4746	if (hsotg->lx_state != DWC2_L0)
4747		return 0;
4748
4749	if (hsotg->driver) {
4750		int ep;
4751
4752		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4753			 hsotg->driver->driver.name);
4754
4755		spin_lock_irqsave(&hsotg->lock, flags);
4756		if (hsotg->enabled)
4757			dwc2_hsotg_core_disconnect(hsotg);
4758		dwc2_hsotg_disconnect(hsotg);
4759		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4760		spin_unlock_irqrestore(&hsotg->lock, flags);
4761
4762		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4763			if (hsotg->eps_in[ep])
4764				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
4765			if (hsotg->eps_out[ep])
4766				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
4767		}
4768	}
4769
4770	return 0;
4771}
4772
4773int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4774{
4775	unsigned long flags;
4776
4777	if (hsotg->lx_state == DWC2_L2)
4778		return 0;
4779
4780	if (hsotg->driver) {
4781		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4782			 hsotg->driver->driver.name);
4783
4784		spin_lock_irqsave(&hsotg->lock, flags);
4785		dwc2_hsotg_core_init_disconnected(hsotg, false);
4786		if (hsotg->enabled) {
4787			/* Enable ACG feature in device mode,if supported */
4788			dwc2_enable_acg(hsotg);
4789			dwc2_hsotg_core_connect(hsotg);
4790		}
4791		spin_unlock_irqrestore(&hsotg->lock, flags);
4792	}
4793
4794	return 0;
4795}
4796
4797/**
4798 * dwc2_backup_device_registers() - Backup controller device registers.
4799 * When suspending usb bus, registers needs to be backuped
4800 * if controller power is disabled once suspended.
4801 *
4802 * @hsotg: Programming view of the DWC_otg controller
4803 */
4804int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4805{
4806	struct dwc2_dregs_backup *dr;
4807	int i;
4808
4809	dev_dbg(hsotg->dev, "%s\n", __func__);
4810
4811	/* Backup dev regs */
4812	dr = &hsotg->dr_backup;
4813
4814	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
4815	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
4816	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
4817	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
4818	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
4819
4820	for (i = 0; i < hsotg->num_of_eps; i++) {
4821		/* Backup IN EPs */
4822		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
4823
4824		/* Ensure DATA PID is correctly configured */
4825		if (dr->diepctl[i] & DXEPCTL_DPID)
4826			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4827		else
4828			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4829
4830		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
4831		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
4832
4833		/* Backup OUT EPs */
4834		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
4835
4836		/* Ensure DATA PID is correctly configured */
4837		if (dr->doepctl[i] & DXEPCTL_DPID)
4838			dr->doepctl[i] |= DXEPCTL_SETD1PID;
4839		else
4840			dr->doepctl[i] |= DXEPCTL_SETD0PID;
4841
4842		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
4843		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
4844		dr->dtxfsiz[i] = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
4845	}
4846	dr->valid = true;
4847	return 0;
4848}
4849
4850/**
4851 * dwc2_restore_device_registers() - Restore controller device registers.
4852 * When resuming usb bus, device registers needs to be restored
4853 * if controller power were disabled.
4854 *
4855 * @hsotg: Programming view of the DWC_otg controller
4856 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
4857 *
4858 * Return: 0 if successful, negative error code otherwise
4859 */
4860int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
4861{
4862	struct dwc2_dregs_backup *dr;
 
4863	int i;
4864
4865	dev_dbg(hsotg->dev, "%s\n", __func__);
4866
4867	/* Restore dev regs */
4868	dr = &hsotg->dr_backup;
4869	if (!dr->valid) {
4870		dev_err(hsotg->dev, "%s: no device registers to restore\n",
4871			__func__);
4872		return -EINVAL;
4873	}
4874	dr->valid = false;
4875
4876	if (!remote_wakeup)
4877		dwc2_writel(dr->dctl, hsotg->regs + DCTL);
4878
4879	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
4880	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
4881	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
4882
4883	for (i = 0; i < hsotg->num_of_eps; i++) {
4884		/* Restore IN EPs */
 
4885		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
4886		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
4887		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4888		/** WA for enabled EPx's IN in DDMA mode. On entering to
4889		 * hibernation wrong value read and saved from DIEPDMAx,
4890		 * as result BNA interrupt asserted on hibernation exit
4891		 * by restoring from saved area.
4892		 */
4893		if (hsotg->params.g_dma_desc &&
4894		    (dr->diepctl[i] & DXEPCTL_EPENA))
4895			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
4896		dwc2_writel(dr->dtxfsiz[i], hsotg->regs + DPTXFSIZN(i));
4897		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
4898		/* Restore OUT EPs */
 
4899		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
4900		/* WA for enabled EPx's OUT in DDMA mode. On entering to
4901		 * hibernation wrong value read and saved from DOEPDMAx,
4902		 * as result BNA interrupt asserted on hibernation exit
4903		 * by restoring from saved area.
4904		 */
4905		if (hsotg->params.g_dma_desc &&
4906		    (dr->doepctl[i] & DXEPCTL_EPENA))
4907			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
4908		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
4909		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
4910	}
4911
 
 
 
 
 
4912	return 0;
4913}
4914
4915/**
4916 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
4917 *
4918 * @hsotg: Programming view of DWC_otg controller
4919 *
4920 */
4921void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
4922{
4923	u32 val;
4924
4925	if (!hsotg->params.lpm)
4926		return;
4927
4928	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
4929	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
4930	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
4931	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
4932	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
4933	dwc2_writel(val, hsotg->regs + GLPMCFG);
4934	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg->regs
4935		+ GLPMCFG));
4936}
4937
4938/**
4939 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
4940 *
4941 * @hsotg: Programming view of the DWC_otg controller
4942 *
4943 * Return non-zero if failed to enter to hibernation.
4944 */
4945int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
4946{
4947	u32 gpwrdn;
4948	int ret = 0;
4949
4950	/* Change to L2(suspend) state */
4951	hsotg->lx_state = DWC2_L2;
4952	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
4953	ret = dwc2_backup_global_registers(hsotg);
4954	if (ret) {
4955		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
4956			__func__);
4957		return ret;
4958	}
4959	ret = dwc2_backup_device_registers(hsotg);
4960	if (ret) {
4961		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
4962			__func__);
4963		return ret;
4964	}
4965
4966	gpwrdn = GPWRDN_PWRDNRSTN;
4967	gpwrdn |= GPWRDN_PMUACTV;
4968	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4969	udelay(10);
4970
4971	/* Set flag to indicate that we are in hibernation */
4972	hsotg->hibernated = 1;
4973
4974	/* Enable interrupts from wake up logic */
4975	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4976	gpwrdn |= GPWRDN_PMUINTSEL;
4977	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4978	udelay(10);
4979
4980	/* Unmask device mode interrupts in GPWRDN */
4981	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4982	gpwrdn |= GPWRDN_RST_DET_MSK;
4983	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
4984	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
4985	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4986	udelay(10);
4987
4988	/* Enable Power Down Clamp */
4989	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4990	gpwrdn |= GPWRDN_PWRDNCLMP;
4991	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4992	udelay(10);
4993
4994	/* Switch off VDD */
4995	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
4996	gpwrdn |= GPWRDN_PWRDNSWTCH;
4997	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
4998	udelay(10);
4999
5000	/* Save gpwrdn register for further usage if stschng interrupt */
5001	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5002	dev_dbg(hsotg->dev, "Hibernation completed\n");
5003
5004	return ret;
5005}
5006
5007/**
5008 * dwc2_gadget_exit_hibernation()
5009 * This function is for exiting from Device mode hibernation by host initiated
5010 * resume/reset and device initiated remote-wakeup.
5011 *
5012 * @hsotg: Programming view of the DWC_otg controller
5013 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5014 * @param reset: indicates whether resume is initiated by Reset.
5015 *
5016 * Return non-zero if failed to exit from hibernation.
5017 */
5018int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5019				 int rem_wakeup, int reset)
5020{
5021	u32 pcgcctl;
5022	u32 gpwrdn;
5023	u32 dctl;
5024	int ret = 0;
5025	struct dwc2_gregs_backup *gr;
5026	struct dwc2_dregs_backup *dr;
5027
5028	gr = &hsotg->gr_backup;
5029	dr = &hsotg->dr_backup;
5030
5031	if (!hsotg->hibernated) {
5032		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5033		return 1;
5034	}
5035	dev_dbg(hsotg->dev,
5036		"%s: called with rem_wakeup = %d reset = %d\n",
5037		__func__, rem_wakeup, reset);
5038
5039	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5040
5041	if (!reset) {
5042		/* Clear all pending interupts */
5043		dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5044	}
5045
5046	/* De-assert Restore */
5047	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5048	gpwrdn &= ~GPWRDN_RESTORE;
5049	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5050	udelay(10);
5051
5052	if (!rem_wakeup) {
5053		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5054		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5055		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5056	}
5057
5058	/* Restore GUSBCFG, DCFG and DCTL */
5059	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5060	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
5061	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
5062
5063	/* De-assert Wakeup Logic */
5064	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5065	gpwrdn &= ~GPWRDN_PMUACTV;
5066	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5067
5068	if (rem_wakeup) {
5069		udelay(10);
5070		/* Start Remote Wakeup Signaling */
5071		dwc2_writel(dr->dctl | DCTL_RMTWKUPSIG, hsotg->regs + DCTL);
5072	} else {
5073		udelay(50);
5074		/* Set Device programming done bit */
5075		dctl = dwc2_readl(hsotg->regs + DCTL);
5076		dctl |= DCTL_PWRONPRGDONE;
5077		dwc2_writel(dctl, hsotg->regs + DCTL);
5078	}
5079	/* Wait for interrupts which must be cleared */
5080	mdelay(2);
5081	/* Clear all pending interupts */
5082	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5083
5084	/* Restore global registers */
5085	ret = dwc2_restore_global_registers(hsotg);
5086	if (ret) {
5087		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5088			__func__);
5089		return ret;
5090	}
5091
5092	/* Restore device registers */
5093	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5094	if (ret) {
5095		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5096			__func__);
5097		return ret;
5098	}
5099
5100	if (rem_wakeup) {
5101		mdelay(10);
5102		dctl = dwc2_readl(hsotg->regs + DCTL);
5103		dctl &= ~DCTL_RMTWKUPSIG;
5104		dwc2_writel(dctl, hsotg->regs + DCTL);
5105	}
5106
5107	hsotg->hibernated = 0;
5108	hsotg->lx_state = DWC2_L0;
5109	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5110
5111	return ret;
5112}