Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
 
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
 
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130	struct wb_domain	*dom;
 131	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 132#endif
 133	struct bdi_writeback	*wb;
 134	struct fprop_local_percpu *wb_completions;
 135
 136	unsigned long		avail;		/* dirtyable */
 137	unsigned long		dirty;		/* file_dirty + write + nfs */
 138	unsigned long		thresh;		/* dirty threshold */
 139	unsigned long		bg_thresh;	/* dirty background threshold */
 140
 141	unsigned long		wb_dirty;	/* per-wb counterparts */
 142	unsigned long		wb_thresh;
 143	unsigned long		wb_bg_thresh;
 144
 145	unsigned long		pos_ratio;
 
 
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)		.wb = (__wb),				\
 158				.dom = &global_wb_domain,		\
 159				.wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 164				.dom = mem_cgroup_wb_domain(__wb),	\
 165				.wb_completions = &(__wb)->memcg_completions, \
 166				.gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175	return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180	return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185	return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189			     unsigned long *minp, unsigned long *maxp)
 190{
 191	unsigned long this_bw = wb->avg_write_bandwidth;
 192	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193	unsigned long long min = wb->bdi->min_ratio;
 194	unsigned long long max = wb->bdi->max_ratio;
 195
 196	/*
 197	 * @wb may already be clean by the time control reaches here and
 198	 * the total may not include its bw.
 199	 */
 200	if (this_bw < tot_bw) {
 201		if (min) {
 202			min *= this_bw;
 203			do_div(min, tot_bw);
 204		}
 205		if (max < 100) {
 206			max *= this_bw;
 207			do_div(max, tot_bw);
 208		}
 209	}
 210
 211	*minp = min;
 212	*maxp = max;
 213}
 214
 215#else	/* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 218				.wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224	return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229	return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234	return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239	return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243			     unsigned long *minp, unsigned long *maxp)
 244{
 245	*minp = wb->bdi->min_ratio;
 246	*maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif	/* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * zone_dirtyable_memory - number of dirtyable pages in a zone
 271 * @zone: the zone
 272 *
 273 * Returns the zone's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-zone dirty limits.
 275 */
 276static unsigned long zone_dirtyable_memory(struct zone *zone)
 277{
 278	unsigned long nr_pages;
 
 
 
 
 
 
 
 
 
 
 279
 280	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 281	/*
 282	 * Pages reserved for the kernel should not be considered
 283	 * dirtyable, to prevent a situation where reclaim has to
 284	 * clean pages in order to balance the zones.
 285	 */
 286	nr_pages -= min(nr_pages, zone->totalreserve_pages);
 287
 288	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 289	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 290
 291	return nr_pages;
 292}
 293
 294static unsigned long highmem_dirtyable_memory(unsigned long total)
 295{
 296#ifdef CONFIG_HIGHMEM
 297	int node;
 298	unsigned long x = 0;
 
 299
 300	for_each_node_state(node, N_HIGH_MEMORY) {
 301		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 
 
 
 
 
 
 
 
 
 302
 303		x += zone_dirtyable_memory(z);
 
 
 
 
 
 
 304	}
 305	/*
 306	 * Unreclaimable memory (kernel memory or anonymous memory
 307	 * without swap) can bring down the dirtyable pages below
 308	 * the zone's dirty balance reserve and the above calculation
 309	 * will underflow.  However we still want to add in nodes
 310	 * which are below threshold (negative values) to get a more
 311	 * accurate calculation but make sure that the total never
 312	 * underflows.
 313	 */
 314	if ((long)x < 0)
 315		x = 0;
 316
 317	/*
 318	 * Make sure that the number of highmem pages is never larger
 319	 * than the number of the total dirtyable memory. This can only
 320	 * occur in very strange VM situations but we want to make sure
 321	 * that this does not occur.
 322	 */
 323	return min(x, total);
 324#else
 325	return 0;
 326#endif
 327}
 328
 329/**
 330 * global_dirtyable_memory - number of globally dirtyable pages
 331 *
 332 * Returns the global number of pages potentially available for dirty
 333 * page cache.  This is the base value for the global dirty limits.
 334 */
 335static unsigned long global_dirtyable_memory(void)
 336{
 337	unsigned long x;
 338
 339	x = global_page_state(NR_FREE_PAGES);
 340	/*
 341	 * Pages reserved for the kernel should not be considered
 342	 * dirtyable, to prevent a situation where reclaim has to
 343	 * clean pages in order to balance the zones.
 344	 */
 345	x -= min(x, totalreserve_pages);
 346
 347	x += global_page_state(NR_INACTIVE_FILE);
 348	x += global_page_state(NR_ACTIVE_FILE);
 349
 350	if (!vm_highmem_is_dirtyable)
 351		x -= highmem_dirtyable_memory(x);
 352
 353	return x + 1;	/* Ensure that we never return 0 */
 354}
 355
 356/**
 357 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 358 * @dtc: dirty_throttle_control of interest
 359 *
 360 * Calculate @dtc->thresh and ->bg_thresh considering
 361 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 362 * must ensure that @dtc->avail is set before calling this function.  The
 363 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 364 * real-time tasks.
 365 */
 366static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 367{
 368	const unsigned long available_memory = dtc->avail;
 369	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 370	unsigned long bytes = vm_dirty_bytes;
 371	unsigned long bg_bytes = dirty_background_bytes;
 372	unsigned long ratio = vm_dirty_ratio;
 373	unsigned long bg_ratio = dirty_background_ratio;
 
 374	unsigned long thresh;
 375	unsigned long bg_thresh;
 376	struct task_struct *tsk;
 377
 378	/* gdtc is !NULL iff @dtc is for memcg domain */
 379	if (gdtc) {
 380		unsigned long global_avail = gdtc->avail;
 381
 382		/*
 383		 * The byte settings can't be applied directly to memcg
 384		 * domains.  Convert them to ratios by scaling against
 385		 * globally available memory.
 
 
 386		 */
 387		if (bytes)
 388			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
 389				    global_avail, 100UL);
 390		if (bg_bytes)
 391			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
 392				       global_avail, 100UL);
 393		bytes = bg_bytes = 0;
 394	}
 395
 396	if (bytes)
 397		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 398	else
 399		thresh = (ratio * available_memory) / 100;
 400
 401	if (bg_bytes)
 402		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 403	else
 404		bg_thresh = (bg_ratio * available_memory) / 100;
 405
 406	if (bg_thresh >= thresh)
 407		bg_thresh = thresh / 2;
 408	tsk = current;
 409	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 410		bg_thresh += bg_thresh / 4;
 411		thresh += thresh / 4;
 412	}
 
 
 
 
 
 
 
 
 
 413	dtc->thresh = thresh;
 414	dtc->bg_thresh = bg_thresh;
 415
 416	/* we should eventually report the domain in the TP */
 417	if (!gdtc)
 418		trace_global_dirty_state(bg_thresh, thresh);
 419}
 420
 421/**
 422 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 423 * @pbackground: out parameter for bg_thresh
 424 * @pdirty: out parameter for thresh
 425 *
 426 * Calculate bg_thresh and thresh for global_wb_domain.  See
 427 * domain_dirty_limits() for details.
 428 */
 429void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 430{
 431	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 432
 433	gdtc.avail = global_dirtyable_memory();
 434	domain_dirty_limits(&gdtc);
 435
 436	*pbackground = gdtc.bg_thresh;
 437	*pdirty = gdtc.thresh;
 438}
 439
 440/**
 441 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 442 * @zone: the zone
 443 *
 444 * Returns the maximum number of dirty pages allowed in a zone, based
 445 * on the zone's dirtyable memory.
 446 */
 447static unsigned long zone_dirty_limit(struct zone *zone)
 448{
 449	unsigned long zone_memory = zone_dirtyable_memory(zone);
 450	struct task_struct *tsk = current;
 451	unsigned long dirty;
 452
 453	if (vm_dirty_bytes)
 454		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 455			zone_memory / global_dirtyable_memory();
 456	else
 457		dirty = vm_dirty_ratio * zone_memory / 100;
 458
 459	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 460		dirty += dirty / 4;
 461
 462	return dirty;
 
 
 
 
 463}
 464
 465/**
 466 * zone_dirty_ok - tells whether a zone is within its dirty limits
 467 * @zone: the zone to check
 468 *
 469 * Returns %true when the dirty pages in @zone are within the zone's
 470 * dirty limit, %false if the limit is exceeded.
 471 */
 472bool zone_dirty_ok(struct zone *zone)
 473{
 474	unsigned long limit = zone_dirty_limit(zone);
 
 475
 476	return zone_page_state(zone, NR_FILE_DIRTY) +
 477	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 478	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 
 479}
 480
 481int dirty_background_ratio_handler(struct ctl_table *table, int write,
 482		void __user *buffer, size_t *lenp,
 483		loff_t *ppos)
 484{
 485	int ret;
 486
 487	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 488	if (ret == 0 && write)
 489		dirty_background_bytes = 0;
 490	return ret;
 491}
 492
 493int dirty_background_bytes_handler(struct ctl_table *table, int write,
 494		void __user *buffer, size_t *lenp,
 495		loff_t *ppos)
 496{
 497	int ret;
 
 498
 499	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 500	if (ret == 0 && write)
 
 
 
 
 
 501		dirty_background_ratio = 0;
 
 502	return ret;
 503}
 504
 505int dirty_ratio_handler(struct ctl_table *table, int write,
 506		void __user *buffer, size_t *lenp,
 507		loff_t *ppos)
 508{
 509	int old_ratio = vm_dirty_ratio;
 510	int ret;
 511
 512	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 513	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 514		writeback_set_ratelimit();
 515		vm_dirty_bytes = 0;
 516	}
 517	return ret;
 518}
 519
 520int dirty_bytes_handler(struct ctl_table *table, int write,
 521		void __user *buffer, size_t *lenp,
 522		loff_t *ppos)
 523{
 524	unsigned long old_bytes = vm_dirty_bytes;
 525	int ret;
 526
 527	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 528	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 
 
 
 
 529		writeback_set_ratelimit();
 530		vm_dirty_ratio = 0;
 531	}
 532	return ret;
 533}
 
 534
 535static unsigned long wp_next_time(unsigned long cur_time)
 536{
 537	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 538	/* 0 has a special meaning... */
 539	if (!cur_time)
 540		return 1;
 541	return cur_time;
 542}
 543
 544static void wb_domain_writeout_inc(struct wb_domain *dom,
 545				   struct fprop_local_percpu *completions,
 546				   unsigned int max_prop_frac)
 547{
 548	__fprop_inc_percpu_max(&dom->completions, completions,
 549			       max_prop_frac);
 550	/* First event after period switching was turned off? */
 551	if (!unlikely(dom->period_time)) {
 552		/*
 553		 * We can race with other __bdi_writeout_inc calls here but
 554		 * it does not cause any harm since the resulting time when
 555		 * timer will fire and what is in writeout_period_time will be
 556		 * roughly the same.
 557		 */
 558		dom->period_time = wp_next_time(jiffies);
 559		mod_timer(&dom->period_timer, dom->period_time);
 560	}
 561}
 562
 563/*
 564 * Increment @wb's writeout completion count and the global writeout
 565 * completion count. Called from test_clear_page_writeback().
 566 */
 567static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 568{
 569	struct wb_domain *cgdom;
 570
 571	__inc_wb_stat(wb, WB_WRITTEN);
 572	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 573			       wb->bdi->max_prop_frac);
 574
 575	cgdom = mem_cgroup_wb_domain(wb);
 576	if (cgdom)
 577		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 578				       wb->bdi->max_prop_frac);
 579}
 580
 581void wb_writeout_inc(struct bdi_writeback *wb)
 582{
 583	unsigned long flags;
 584
 585	local_irq_save(flags);
 586	__wb_writeout_inc(wb);
 587	local_irq_restore(flags);
 588}
 589EXPORT_SYMBOL_GPL(wb_writeout_inc);
 590
 591/*
 592 * On idle system, we can be called long after we scheduled because we use
 593 * deferred timers so count with missed periods.
 594 */
 595static void writeout_period(unsigned long t)
 596{
 597	struct wb_domain *dom = (void *)t;
 598	int miss_periods = (jiffies - dom->period_time) /
 599						 VM_COMPLETIONS_PERIOD_LEN;
 600
 601	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 602		dom->period_time = wp_next_time(dom->period_time +
 603				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 604		mod_timer(&dom->period_timer, dom->period_time);
 605	} else {
 606		/*
 607		 * Aging has zeroed all fractions. Stop wasting CPU on period
 608		 * updates.
 609		 */
 610		dom->period_time = 0;
 611	}
 612}
 613
 614int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 615{
 616	memset(dom, 0, sizeof(*dom));
 617
 618	spin_lock_init(&dom->lock);
 619
 620	init_timer_deferrable(&dom->period_timer);
 621	dom->period_timer.function = writeout_period;
 622	dom->period_timer.data = (unsigned long)dom;
 623
 624	dom->dirty_limit_tstamp = jiffies;
 625
 626	return fprop_global_init(&dom->completions, gfp);
 627}
 628
 629#ifdef CONFIG_CGROUP_WRITEBACK
 630void wb_domain_exit(struct wb_domain *dom)
 631{
 632	del_timer_sync(&dom->period_timer);
 633	fprop_global_destroy(&dom->completions);
 634}
 635#endif
 636
 637/*
 638 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 639 * registered backing devices, which, for obvious reasons, can not
 640 * exceed 100%.
 641 */
 642static unsigned int bdi_min_ratio;
 643
 644int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 645{
 
 646	int ret = 0;
 647
 
 
 
 648	spin_lock_bh(&bdi_lock);
 649	if (min_ratio > bdi->max_ratio) {
 650		ret = -EINVAL;
 651	} else {
 652		min_ratio -= bdi->min_ratio;
 653		if (bdi_min_ratio + min_ratio < 100) {
 654			bdi_min_ratio += min_ratio;
 655			bdi->min_ratio += min_ratio;
 656		} else {
 657			ret = -EINVAL;
 
 
 
 
 
 
 658		}
 659	}
 660	spin_unlock_bh(&bdi_lock);
 661
 662	return ret;
 663}
 664
 665int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 666{
 667	int ret = 0;
 668
 669	if (max_ratio > 100)
 670		return -EINVAL;
 671
 672	spin_lock_bh(&bdi_lock);
 673	if (bdi->min_ratio > max_ratio) {
 674		ret = -EINVAL;
 675	} else {
 676		bdi->max_ratio = max_ratio;
 677		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 
 678	}
 679	spin_unlock_bh(&bdi_lock);
 680
 681	return ret;
 682}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 683EXPORT_SYMBOL(bdi_set_max_ratio);
 684
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 685static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 686					   unsigned long bg_thresh)
 687{
 688	return (thresh + bg_thresh) / 2;
 689}
 690
 691static unsigned long hard_dirty_limit(struct wb_domain *dom,
 692				      unsigned long thresh)
 693{
 694	return max(thresh, dom->dirty_limit);
 695}
 696
 697/*
 698 * Memory which can be further allocated to a memcg domain is capped by
 699 * system-wide clean memory excluding the amount being used in the domain.
 700 */
 701static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 702			    unsigned long filepages, unsigned long headroom)
 703{
 704	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 705	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 706	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 707	unsigned long other_clean = global_clean - min(global_clean, clean);
 708
 709	mdtc->avail = filepages + min(headroom, other_clean);
 710}
 711
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 712/**
 713 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 714 * @dtc: dirty_throttle_context of interest
 
 715 *
 716 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 717 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 718 *
 719 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 720 * when sleeping max_pause per page is not enough to keep the dirty pages under
 721 * control. For example, when the device is completely stalled due to some error
 722 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 723 * In the other normal situations, it acts more gently by throttling the tasks
 724 * more (rather than completely block them) when the wb dirty pages go high.
 725 *
 726 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 727 * - starving fast devices
 728 * - piling up dirty pages (that will take long time to sync) on slow devices
 729 *
 730 * The wb's share of dirty limit will be adapting to its throughput and
 731 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 
 
 
 
 732 */
 733static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 
 734{
 735	struct wb_domain *dom = dtc_dom(dtc);
 736	unsigned long thresh = dtc->thresh;
 737	u64 wb_thresh;
 738	long numerator, denominator;
 
 739	unsigned long wb_min_ratio, wb_max_ratio;
 740
 741	/*
 742	 * Calculate this BDI's share of the thresh ratio.
 743	 */
 744	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 745			      &numerator, &denominator);
 746
 747	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 748	wb_thresh *= numerator;
 749	do_div(wb_thresh, denominator);
 
 
 750
 751	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	wb_thresh += (thresh * wb_min_ratio) / 100;
 754	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 755		wb_thresh = thresh * wb_max_ratio / 100;
 
 756
 757	return wb_thresh;
 758}
 759
 760unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 761{
 762	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 763					       .thresh = thresh };
 764	return __wb_calc_thresh(&gdtc);
 
 
 
 
 
 
 
 
 
 
 
 
 765}
 766
 767/*
 768 *                           setpoint - dirty 3
 769 *        f(dirty) := 1.0 + (----------------)
 770 *                           limit - setpoint
 771 *
 772 * it's a 3rd order polynomial that subjects to
 773 *
 774 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 775 * (2) f(setpoint) = 1.0 => the balance point
 776 * (3) f(limit)    = 0   => the hard limit
 777 * (4) df/dx      <= 0	 => negative feedback control
 778 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 779 *     => fast response on large errors; small oscillation near setpoint
 780 */
 781static long long pos_ratio_polynom(unsigned long setpoint,
 782					  unsigned long dirty,
 783					  unsigned long limit)
 784{
 785	long long pos_ratio;
 786	long x;
 787
 788	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 789		      (limit - setpoint) | 1);
 790	pos_ratio = x;
 791	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 792	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 793	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 794
 795	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 796}
 797
 798/*
 799 * Dirty position control.
 800 *
 801 * (o) global/bdi setpoints
 802 *
 803 * We want the dirty pages be balanced around the global/wb setpoints.
 804 * When the number of dirty pages is higher/lower than the setpoint, the
 805 * dirty position control ratio (and hence task dirty ratelimit) will be
 806 * decreased/increased to bring the dirty pages back to the setpoint.
 807 *
 808 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 809 *
 810 *     if (dirty < setpoint) scale up   pos_ratio
 811 *     if (dirty > setpoint) scale down pos_ratio
 812 *
 813 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 814 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 815 *
 816 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 817 *
 818 * (o) global control line
 819 *
 820 *     ^ pos_ratio
 821 *     |
 822 *     |            |<===== global dirty control scope ======>|
 823 * 2.0 .............*
 824 *     |            .*
 825 *     |            . *
 826 *     |            .   *
 827 *     |            .     *
 828 *     |            .        *
 829 *     |            .            *
 830 * 1.0 ................................*
 831 *     |            .                  .     *
 832 *     |            .                  .          *
 833 *     |            .                  .              *
 834 *     |            .                  .                 *
 835 *     |            .                  .                    *
 836 *   0 +------------.------------------.----------------------*------------->
 837 *           freerun^          setpoint^                 limit^   dirty pages
 838 *
 839 * (o) wb control line
 840 *
 841 *     ^ pos_ratio
 842 *     |
 843 *     |            *
 844 *     |              *
 845 *     |                *
 846 *     |                  *
 847 *     |                    * |<=========== span ============>|
 848 * 1.0 .......................*
 849 *     |                      . *
 850 *     |                      .   *
 851 *     |                      .     *
 852 *     |                      .       *
 853 *     |                      .         *
 854 *     |                      .           *
 855 *     |                      .             *
 856 *     |                      .               *
 857 *     |                      .                 *
 858 *     |                      .                   *
 859 *     |                      .                     *
 860 * 1/4 ...............................................* * * * * * * * * * * *
 861 *     |                      .                         .
 862 *     |                      .                           .
 863 *     |                      .                             .
 864 *   0 +----------------------.-------------------------------.------------->
 865 *                wb_setpoint^                    x_intercept^
 866 *
 867 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 868 * be smoothly throttled down to normal if it starts high in situations like
 869 * - start writing to a slow SD card and a fast disk at the same time. The SD
 870 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 871 * - the wb dirty thresh drops quickly due to change of JBOD workload
 872 */
 873static void wb_position_ratio(struct dirty_throttle_control *dtc)
 874{
 875	struct bdi_writeback *wb = dtc->wb;
 876	unsigned long write_bw = wb->avg_write_bandwidth;
 877	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 878	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 879	unsigned long wb_thresh = dtc->wb_thresh;
 880	unsigned long x_intercept;
 881	unsigned long setpoint;		/* dirty pages' target balance point */
 882	unsigned long wb_setpoint;
 883	unsigned long span;
 884	long long pos_ratio;		/* for scaling up/down the rate limit */
 885	long x;
 886
 887	dtc->pos_ratio = 0;
 888
 889	if (unlikely(dtc->dirty >= limit))
 890		return;
 891
 892	/*
 893	 * global setpoint
 894	 *
 895	 * See comment for pos_ratio_polynom().
 896	 */
 897	setpoint = (freerun + limit) / 2;
 898	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 899
 900	/*
 901	 * The strictlimit feature is a tool preventing mistrusted filesystems
 902	 * from growing a large number of dirty pages before throttling. For
 903	 * such filesystems balance_dirty_pages always checks wb counters
 904	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 905	 * This is especially important for fuse which sets bdi->max_ratio to
 906	 * 1% by default. Without strictlimit feature, fuse writeback may
 907	 * consume arbitrary amount of RAM because it is accounted in
 908	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 909	 *
 910	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 911	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 912	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 913	 * limits are set by default to 10% and 20% (background and throttle).
 914	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 915	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 916	 * about ~6K pages (as the average of background and throttle wb
 917	 * limits). The 3rd order polynomial will provide positive feedback if
 918	 * wb_dirty is under wb_setpoint and vice versa.
 919	 *
 920	 * Note, that we cannot use global counters in these calculations
 921	 * because we want to throttle process writing to a strictlimit wb
 922	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 923	 * in the example above).
 924	 */
 925	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 926		long long wb_pos_ratio;
 927
 928		if (dtc->wb_dirty < 8) {
 929			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 930					   2 << RATELIMIT_CALC_SHIFT);
 931			return;
 932		}
 933
 934		if (dtc->wb_dirty >= wb_thresh)
 935			return;
 936
 937		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 938						    dtc->wb_bg_thresh);
 939
 940		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 941			return;
 942
 943		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 944						 wb_thresh);
 945
 946		/*
 947		 * Typically, for strictlimit case, wb_setpoint << setpoint
 948		 * and pos_ratio >> wb_pos_ratio. In the other words global
 949		 * state ("dirty") is not limiting factor and we have to
 950		 * make decision based on wb counters. But there is an
 951		 * important case when global pos_ratio should get precedence:
 952		 * global limits are exceeded (e.g. due to activities on other
 953		 * wb's) while given strictlimit wb is below limit.
 954		 *
 955		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 956		 * but it would look too non-natural for the case of all
 957		 * activity in the system coming from a single strictlimit wb
 958		 * with bdi->max_ratio == 100%.
 959		 *
 960		 * Note that min() below somewhat changes the dynamics of the
 961		 * control system. Normally, pos_ratio value can be well over 3
 962		 * (when globally we are at freerun and wb is well below wb
 963		 * setpoint). Now the maximum pos_ratio in the same situation
 964		 * is 2. We might want to tweak this if we observe the control
 965		 * system is too slow to adapt.
 966		 */
 967		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 968		return;
 969	}
 970
 971	/*
 972	 * We have computed basic pos_ratio above based on global situation. If
 973	 * the wb is over/under its share of dirty pages, we want to scale
 974	 * pos_ratio further down/up. That is done by the following mechanism.
 975	 */
 976
 977	/*
 978	 * wb setpoint
 979	 *
 980	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 981	 *
 982	 *                        x_intercept - wb_dirty
 983	 *                     := --------------------------
 984	 *                        x_intercept - wb_setpoint
 985	 *
 986	 * The main wb control line is a linear function that subjects to
 987	 *
 988	 * (1) f(wb_setpoint) = 1.0
 989	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 990	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 991	 *
 992	 * For single wb case, the dirty pages are observed to fluctuate
 993	 * regularly within range
 994	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
 995	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 996	 * fluctuation range for pos_ratio.
 997	 *
 998	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
 999	 * own size, so move the slope over accordingly and choose a slope that
1000	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1001	 */
1002	if (unlikely(wb_thresh > dtc->thresh))
1003		wb_thresh = dtc->thresh;
1004	/*
1005	 * It's very possible that wb_thresh is close to 0 not because the
1006	 * device is slow, but that it has remained inactive for long time.
1007	 * Honour such devices a reasonable good (hopefully IO efficient)
1008	 * threshold, so that the occasional writes won't be blocked and active
1009	 * writes can rampup the threshold quickly.
1010	 */
1011	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1012	/*
1013	 * scale global setpoint to wb's:
1014	 *	wb_setpoint = setpoint * wb_thresh / thresh
1015	 */
1016	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017	wb_setpoint = setpoint * (u64)x >> 16;
1018	/*
1019	 * Use span=(8*write_bw) in single wb case as indicated by
1020	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1021	 *
1022	 *        wb_thresh                    thresh - wb_thresh
1023	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1024	 *         thresh                           thresh
1025	 */
1026	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027	x_intercept = wb_setpoint + span;
1028
1029	if (dtc->wb_dirty < x_intercept - span / 4) {
1030		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031				      (x_intercept - wb_setpoint) | 1);
1032	} else
1033		pos_ratio /= 4;
1034
1035	/*
1036	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1037	 * It may push the desired control point of global dirty pages higher
1038	 * than setpoint.
1039	 */
1040	x_intercept = wb_thresh / 2;
1041	if (dtc->wb_dirty < x_intercept) {
1042		if (dtc->wb_dirty > x_intercept / 8)
1043			pos_ratio = div_u64(pos_ratio * x_intercept,
1044					    dtc->wb_dirty);
1045		else
1046			pos_ratio *= 8;
1047	}
1048
1049	dtc->pos_ratio = pos_ratio;
1050}
1051
1052static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1053				      unsigned long elapsed,
1054				      unsigned long written)
1055{
1056	const unsigned long period = roundup_pow_of_two(3 * HZ);
1057	unsigned long avg = wb->avg_write_bandwidth;
1058	unsigned long old = wb->write_bandwidth;
1059	u64 bw;
1060
1061	/*
1062	 * bw = written * HZ / elapsed
1063	 *
1064	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1065	 * write_bandwidth = ---------------------------------------------------
1066	 *                                          period
1067	 *
1068	 * @written may have decreased due to account_page_redirty().
1069	 * Avoid underflowing @bw calculation.
1070	 */
1071	bw = written - min(written, wb->written_stamp);
1072	bw *= HZ;
1073	if (unlikely(elapsed > period)) {
1074		do_div(bw, elapsed);
1075		avg = bw;
1076		goto out;
1077	}
1078	bw += (u64)wb->write_bandwidth * (period - elapsed);
1079	bw >>= ilog2(period);
1080
1081	/*
1082	 * one more level of smoothing, for filtering out sudden spikes
1083	 */
1084	if (avg > old && old >= (unsigned long)bw)
1085		avg -= (avg - old) >> 3;
1086
1087	if (avg < old && old <= (unsigned long)bw)
1088		avg += (old - avg) >> 3;
1089
1090out:
1091	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1092	avg = max(avg, 1LU);
1093	if (wb_has_dirty_io(wb)) {
1094		long delta = avg - wb->avg_write_bandwidth;
1095		WARN_ON_ONCE(atomic_long_add_return(delta,
1096					&wb->bdi->tot_write_bandwidth) <= 0);
1097	}
1098	wb->write_bandwidth = bw;
1099	wb->avg_write_bandwidth = avg;
1100}
1101
1102static void update_dirty_limit(struct dirty_throttle_control *dtc)
1103{
1104	struct wb_domain *dom = dtc_dom(dtc);
1105	unsigned long thresh = dtc->thresh;
1106	unsigned long limit = dom->dirty_limit;
1107
1108	/*
1109	 * Follow up in one step.
1110	 */
1111	if (limit < thresh) {
1112		limit = thresh;
1113		goto update;
1114	}
1115
1116	/*
1117	 * Follow down slowly. Use the higher one as the target, because thresh
1118	 * may drop below dirty. This is exactly the reason to introduce
1119	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1120	 */
1121	thresh = max(thresh, dtc->dirty);
1122	if (limit > thresh) {
1123		limit -= (limit - thresh) >> 5;
1124		goto update;
1125	}
1126	return;
1127update:
1128	dom->dirty_limit = limit;
1129}
1130
1131static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1132				    unsigned long now)
1133{
1134	struct wb_domain *dom = dtc_dom(dtc);
1135
1136	/*
1137	 * check locklessly first to optimize away locking for the most time
1138	 */
1139	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140		return;
1141
1142	spin_lock(&dom->lock);
1143	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144		update_dirty_limit(dtc);
1145		dom->dirty_limit_tstamp = now;
1146	}
1147	spin_unlock(&dom->lock);
1148}
1149
1150/*
1151 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1152 *
1153 * Normal wb tasks will be curbed at or below it in long term.
1154 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1155 */
1156static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157				      unsigned long dirtied,
1158				      unsigned long elapsed)
1159{
1160	struct bdi_writeback *wb = dtc->wb;
1161	unsigned long dirty = dtc->dirty;
1162	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1164	unsigned long setpoint = (freerun + limit) / 2;
1165	unsigned long write_bw = wb->avg_write_bandwidth;
1166	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1167	unsigned long dirty_rate;
1168	unsigned long task_ratelimit;
1169	unsigned long balanced_dirty_ratelimit;
1170	unsigned long step;
1171	unsigned long x;
1172	unsigned long shift;
1173
1174	/*
1175	 * The dirty rate will match the writeout rate in long term, except
1176	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1177	 */
1178	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1179
1180	/*
1181	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1182	 */
1183	task_ratelimit = (u64)dirty_ratelimit *
1184					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1185	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1186
1187	/*
1188	 * A linear estimation of the "balanced" throttle rate. The theory is,
1189	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1190	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1191	 * formula will yield the balanced rate limit (write_bw / N).
1192	 *
1193	 * Note that the expanded form is not a pure rate feedback:
1194	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1195	 * but also takes pos_ratio into account:
1196	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1197	 *
1198	 * (1) is not realistic because pos_ratio also takes part in balancing
1199	 * the dirty rate.  Consider the state
1200	 *	pos_ratio = 0.5						     (3)
1201	 *	rate = 2 * (write_bw / N)				     (4)
1202	 * If (1) is used, it will stuck in that state! Because each dd will
1203	 * be throttled at
1204	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1205	 * yielding
1206	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1207	 * put (6) into (1) we get
1208	 *	rate_(i+1) = rate_(i)					     (7)
1209	 *
1210	 * So we end up using (2) to always keep
1211	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1212	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1213	 * pos_ratio is able to drive itself to 1.0, which is not only where
1214	 * the dirty count meet the setpoint, but also where the slope of
1215	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1216	 */
1217	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1218					   dirty_rate | 1);
1219	/*
1220	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1221	 */
1222	if (unlikely(balanced_dirty_ratelimit > write_bw))
1223		balanced_dirty_ratelimit = write_bw;
1224
1225	/*
1226	 * We could safely do this and return immediately:
1227	 *
1228	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1229	 *
1230	 * However to get a more stable dirty_ratelimit, the below elaborated
1231	 * code makes use of task_ratelimit to filter out singular points and
1232	 * limit the step size.
1233	 *
1234	 * The below code essentially only uses the relative value of
1235	 *
1236	 *	task_ratelimit - dirty_ratelimit
1237	 *	= (pos_ratio - 1) * dirty_ratelimit
1238	 *
1239	 * which reflects the direction and size of dirty position error.
1240	 */
1241
1242	/*
1243	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1244	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1245	 * For example, when
1246	 * - dirty_ratelimit > balanced_dirty_ratelimit
1247	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1248	 * lowering dirty_ratelimit will help meet both the position and rate
1249	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1250	 * only help meet the rate target. After all, what the users ultimately
1251	 * feel and care are stable dirty rate and small position error.
1252	 *
1253	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1254	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1255	 * keeps jumping around randomly and can even leap far away at times
1256	 * due to the small 200ms estimation period of dirty_rate (we want to
1257	 * keep that period small to reduce time lags).
1258	 */
1259	step = 0;
1260
1261	/*
1262	 * For strictlimit case, calculations above were based on wb counters
1263	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1264	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1265	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1266	 * "dirty" and wb_setpoint as "setpoint".
1267	 *
1268	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1269	 * it's possible that wb_thresh is close to zero due to inactivity
1270	 * of backing device.
1271	 */
1272	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1273		dirty = dtc->wb_dirty;
1274		if (dtc->wb_dirty < 8)
1275			setpoint = dtc->wb_dirty + 1;
1276		else
1277			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1278	}
1279
1280	if (dirty < setpoint) {
1281		x = min3(wb->balanced_dirty_ratelimit,
1282			 balanced_dirty_ratelimit, task_ratelimit);
1283		if (dirty_ratelimit < x)
1284			step = x - dirty_ratelimit;
1285	} else {
1286		x = max3(wb->balanced_dirty_ratelimit,
1287			 balanced_dirty_ratelimit, task_ratelimit);
1288		if (dirty_ratelimit > x)
1289			step = dirty_ratelimit - x;
1290	}
1291
1292	/*
1293	 * Don't pursue 100% rate matching. It's impossible since the balanced
1294	 * rate itself is constantly fluctuating. So decrease the track speed
1295	 * when it gets close to the target. Helps eliminate pointless tremors.
1296	 */
1297	shift = dirty_ratelimit / (2 * step + 1);
1298	if (shift < BITS_PER_LONG)
1299		step = DIV_ROUND_UP(step >> shift, 8);
1300	else
1301		step = 0;
1302
1303	if (dirty_ratelimit < balanced_dirty_ratelimit)
1304		dirty_ratelimit += step;
1305	else
1306		dirty_ratelimit -= step;
1307
1308	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1309	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1310
1311	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1312}
1313
1314static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1315				  struct dirty_throttle_control *mdtc,
1316				  unsigned long start_time,
1317				  bool update_ratelimit)
1318{
1319	struct bdi_writeback *wb = gdtc->wb;
1320	unsigned long now = jiffies;
1321	unsigned long elapsed = now - wb->bw_time_stamp;
1322	unsigned long dirtied;
1323	unsigned long written;
1324
1325	lockdep_assert_held(&wb->list_lock);
1326
1327	/*
1328	 * rate-limit, only update once every 200ms.
 
 
 
1329	 */
1330	if (elapsed < BANDWIDTH_INTERVAL)
1331		return;
1332
1333	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1334	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1335
1336	/*
1337	 * Skip quiet periods when disk bandwidth is under-utilized.
1338	 * (at least 1s idle time between two flusher runs)
1339	 */
1340	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1341		goto snapshot;
1342
1343	if (update_ratelimit) {
1344		domain_update_bandwidth(gdtc, now);
1345		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1346
1347		/*
1348		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1349		 * compiler has no way to figure that out.  Help it.
1350		 */
1351		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1352			domain_update_bandwidth(mdtc, now);
1353			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1354		}
1355	}
1356	wb_update_write_bandwidth(wb, elapsed, written);
1357
1358snapshot:
1359	wb->dirtied_stamp = dirtied;
1360	wb->written_stamp = written;
1361	wb->bw_time_stamp = now;
 
1362}
1363
1364void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1365{
1366	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367
1368	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369}
1370
1371/*
1372 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1373 * will look to see if it needs to start dirty throttling.
1374 *
1375 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1376 * global_page_state() too often. So scale it near-sqrt to the safety margin
1377 * (the number of pages we may dirty without exceeding the dirty limits).
1378 */
1379static unsigned long dirty_poll_interval(unsigned long dirty,
1380					 unsigned long thresh)
1381{
1382	if (thresh > dirty)
1383		return 1UL << (ilog2(thresh - dirty) >> 1);
1384
1385	return 1;
1386}
1387
1388static unsigned long wb_max_pause(struct bdi_writeback *wb,
1389				  unsigned long wb_dirty)
1390{
1391	unsigned long bw = wb->avg_write_bandwidth;
1392	unsigned long t;
1393
1394	/*
1395	 * Limit pause time for small memory systems. If sleeping for too long
1396	 * time, a small pool of dirty/writeback pages may go empty and disk go
1397	 * idle.
1398	 *
1399	 * 8 serves as the safety ratio.
1400	 */
1401	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1402	t++;
1403
1404	return min_t(unsigned long, t, MAX_PAUSE);
1405}
1406
1407static long wb_min_pause(struct bdi_writeback *wb,
1408			 long max_pause,
1409			 unsigned long task_ratelimit,
1410			 unsigned long dirty_ratelimit,
1411			 int *nr_dirtied_pause)
1412{
1413	long hi = ilog2(wb->avg_write_bandwidth);
1414	long lo = ilog2(wb->dirty_ratelimit);
1415	long t;		/* target pause */
1416	long pause;	/* estimated next pause */
1417	int pages;	/* target nr_dirtied_pause */
1418
1419	/* target for 10ms pause on 1-dd case */
1420	t = max(1, HZ / 100);
1421
1422	/*
1423	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1424	 * overheads.
1425	 *
1426	 * (N * 10ms) on 2^N concurrent tasks.
1427	 */
1428	if (hi > lo)
1429		t += (hi - lo) * (10 * HZ) / 1024;
1430
1431	/*
1432	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1433	 * on the much more stable dirty_ratelimit. However the next pause time
1434	 * will be computed based on task_ratelimit and the two rate limits may
1435	 * depart considerably at some time. Especially if task_ratelimit goes
1436	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1437	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1438	 * result task_ratelimit won't be executed faithfully, which could
1439	 * eventually bring down dirty_ratelimit.
1440	 *
1441	 * We apply two rules to fix it up:
1442	 * 1) try to estimate the next pause time and if necessary, use a lower
1443	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1444	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1445	 * 2) limit the target pause time to max_pause/2, so that the normal
1446	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1447	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1448	 */
1449	t = min(t, 1 + max_pause / 2);
1450	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1451
1452	/*
1453	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1454	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1455	 * When the 16 consecutive reads are often interrupted by some dirty
1456	 * throttling pause during the async writes, cfq will go into idles
1457	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1458	 * until reaches DIRTY_POLL_THRESH=32 pages.
1459	 */
1460	if (pages < DIRTY_POLL_THRESH) {
1461		t = max_pause;
1462		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1463		if (pages > DIRTY_POLL_THRESH) {
1464			pages = DIRTY_POLL_THRESH;
1465			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1466		}
1467	}
1468
1469	pause = HZ * pages / (task_ratelimit + 1);
1470	if (pause > max_pause) {
1471		t = max_pause;
1472		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1473	}
1474
1475	*nr_dirtied_pause = pages;
1476	/*
1477	 * The minimal pause time will normally be half the target pause time.
1478	 */
1479	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1480}
1481
1482static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1483{
1484	struct bdi_writeback *wb = dtc->wb;
1485	unsigned long wb_reclaimable;
1486
1487	/*
1488	 * wb_thresh is not treated as some limiting factor as
1489	 * dirty_thresh, due to reasons
1490	 * - in JBOD setup, wb_thresh can fluctuate a lot
1491	 * - in a system with HDD and USB key, the USB key may somehow
1492	 *   go into state (wb_dirty >> wb_thresh) either because
1493	 *   wb_dirty starts high, or because wb_thresh drops low.
1494	 *   In this case we don't want to hard throttle the USB key
1495	 *   dirtiers for 100 seconds until wb_dirty drops under
1496	 *   wb_thresh. Instead the auxiliary wb control line in
1497	 *   wb_position_ratio() will let the dirtier task progress
1498	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1499	 */
1500	dtc->wb_thresh = __wb_calc_thresh(dtc);
1501	dtc->wb_bg_thresh = dtc->thresh ?
1502		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1503
1504	/*
1505	 * In order to avoid the stacked BDI deadlock we need
1506	 * to ensure we accurately count the 'dirty' pages when
1507	 * the threshold is low.
1508	 *
1509	 * Otherwise it would be possible to get thresh+n pages
1510	 * reported dirty, even though there are thresh-m pages
1511	 * actually dirty; with m+n sitting in the percpu
1512	 * deltas.
1513	 */
1514	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1515		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1516		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1517	} else {
1518		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1519		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1520	}
1521}
1522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523/*
1524 * balance_dirty_pages() must be called by processes which are generating dirty
1525 * data.  It looks at the number of dirty pages in the machine and will force
1526 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1527 * If we're over `background_thresh' then the writeback threads are woken to
1528 * perform some writeout.
1529 */
1530static void balance_dirty_pages(struct address_space *mapping,
1531				struct bdi_writeback *wb,
1532				unsigned long pages_dirtied)
1533{
1534	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1535	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1536	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1537	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1538						     &mdtc_stor : NULL;
1539	struct dirty_throttle_control *sdtc;
1540	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1541	long period;
1542	long pause;
1543	long max_pause;
1544	long min_pause;
1545	int nr_dirtied_pause;
1546	bool dirty_exceeded = false;
1547	unsigned long task_ratelimit;
1548	unsigned long dirty_ratelimit;
1549	struct backing_dev_info *bdi = wb->bdi;
1550	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1551	unsigned long start_time = jiffies;
 
1552
1553	for (;;) {
1554		unsigned long now = jiffies;
1555		unsigned long dirty, thresh, bg_thresh;
1556		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1557		unsigned long m_thresh = 0;
1558		unsigned long m_bg_thresh = 0;
1559
1560		/*
1561		 * Unstable writes are a feature of certain networked
1562		 * filesystems (i.e. NFS) in which data may have been
1563		 * written to the server's write cache, but has not yet
1564		 * been flushed to permanent storage.
1565		 */
1566		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1567					global_page_state(NR_UNSTABLE_NFS);
1568		gdtc->avail = global_dirtyable_memory();
1569		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1570
1571		domain_dirty_limits(gdtc);
1572
1573		if (unlikely(strictlimit)) {
1574			wb_dirty_limits(gdtc);
1575
1576			dirty = gdtc->wb_dirty;
1577			thresh = gdtc->wb_thresh;
1578			bg_thresh = gdtc->wb_bg_thresh;
1579		} else {
1580			dirty = gdtc->dirty;
1581			thresh = gdtc->thresh;
1582			bg_thresh = gdtc->bg_thresh;
1583		}
1584
1585		if (mdtc) {
1586			unsigned long filepages, headroom, writeback;
1587
 
 
1588			/*
1589			 * If @wb belongs to !root memcg, repeat the same
1590			 * basic calculations for the memcg domain.
1591			 */
1592			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1593					    &mdtc->dirty, &writeback);
1594			mdtc->dirty += writeback;
1595			mdtc_calc_avail(mdtc, filepages, headroom);
1596
1597			domain_dirty_limits(mdtc);
1598
1599			if (unlikely(strictlimit)) {
1600				wb_dirty_limits(mdtc);
1601				m_dirty = mdtc->wb_dirty;
1602				m_thresh = mdtc->wb_thresh;
1603				m_bg_thresh = mdtc->wb_bg_thresh;
1604			} else {
1605				m_dirty = mdtc->dirty;
1606				m_thresh = mdtc->thresh;
1607				m_bg_thresh = mdtc->bg_thresh;
1608			}
1609		}
1610
1611		/*
1612		 * Throttle it only when the background writeback cannot
1613		 * catch-up. This avoids (excessively) small writeouts
1614		 * when the wb limits are ramping up in case of !strictlimit.
1615		 *
1616		 * In strictlimit case make decision based on the wb counters
1617		 * and limits. Small writeouts when the wb limits are ramping
1618		 * up are the price we consciously pay for strictlimit-ing.
1619		 *
 
 
 
 
 
 
 
 
1620		 * If memcg domain is in effect, @dirty should be under
1621		 * both global and memcg freerun ceilings.
1622		 */
1623		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1624		    (!mdtc ||
1625		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1626			unsigned long intv = dirty_poll_interval(dirty, thresh);
1627			unsigned long m_intv = ULONG_MAX;
 
 
1628
1629			current->dirty_paused_when = now;
1630			current->nr_dirtied = 0;
1631			if (mdtc)
1632				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1633			current->nr_dirtied_pause = min(intv, m_intv);
1634			break;
1635		}
1636
 
1637		if (unlikely(!writeback_in_progress(wb)))
1638			wb_start_background_writeback(wb);
1639
 
 
1640		/*
1641		 * Calculate global domain's pos_ratio and select the
1642		 * global dtc by default.
1643		 */
1644		if (!strictlimit)
1645			wb_dirty_limits(gdtc);
1646
1647		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1648			((gdtc->dirty > gdtc->thresh) || strictlimit);
1649
1650		wb_position_ratio(gdtc);
1651		sdtc = gdtc;
1652
1653		if (mdtc) {
1654			/*
1655			 * If memcg domain is in effect, calculate its
1656			 * pos_ratio.  @wb should satisfy constraints from
1657			 * both global and memcg domains.  Choose the one
1658			 * w/ lower pos_ratio.
1659			 */
1660			if (!strictlimit)
1661				wb_dirty_limits(mdtc);
1662
1663			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1664				((mdtc->dirty > mdtc->thresh) || strictlimit);
1665
1666			wb_position_ratio(mdtc);
1667			if (mdtc->pos_ratio < gdtc->pos_ratio)
1668				sdtc = mdtc;
1669		}
1670
1671		if (dirty_exceeded && !wb->dirty_exceeded)
1672			wb->dirty_exceeded = 1;
1673
1674		if (time_is_before_jiffies(wb->bw_time_stamp +
1675					   BANDWIDTH_INTERVAL)) {
1676			spin_lock(&wb->list_lock);
1677			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1678			spin_unlock(&wb->list_lock);
1679		}
1680
1681		/* throttle according to the chosen dtc */
1682		dirty_ratelimit = wb->dirty_ratelimit;
1683		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1684							RATELIMIT_CALC_SHIFT;
1685		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1686		min_pause = wb_min_pause(wb, max_pause,
1687					 task_ratelimit, dirty_ratelimit,
1688					 &nr_dirtied_pause);
1689
1690		if (unlikely(task_ratelimit == 0)) {
1691			period = max_pause;
1692			pause = max_pause;
1693			goto pause;
1694		}
1695		period = HZ * pages_dirtied / task_ratelimit;
1696		pause = period;
1697		if (current->dirty_paused_when)
1698			pause -= now - current->dirty_paused_when;
1699		/*
1700		 * For less than 1s think time (ext3/4 may block the dirtier
1701		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1702		 * however at much less frequency), try to compensate it in
1703		 * future periods by updating the virtual time; otherwise just
1704		 * do a reset, as it may be a light dirtier.
1705		 */
1706		if (pause < min_pause) {
1707			trace_balance_dirty_pages(wb,
1708						  sdtc->thresh,
1709						  sdtc->bg_thresh,
1710						  sdtc->dirty,
1711						  sdtc->wb_thresh,
1712						  sdtc->wb_dirty,
1713						  dirty_ratelimit,
1714						  task_ratelimit,
1715						  pages_dirtied,
1716						  period,
1717						  min(pause, 0L),
1718						  start_time);
1719			if (pause < -HZ) {
1720				current->dirty_paused_when = now;
1721				current->nr_dirtied = 0;
1722			} else if (period) {
1723				current->dirty_paused_when += period;
1724				current->nr_dirtied = 0;
1725			} else if (current->nr_dirtied_pause <= pages_dirtied)
1726				current->nr_dirtied_pause += pages_dirtied;
1727			break;
1728		}
1729		if (unlikely(pause > max_pause)) {
1730			/* for occasional dropped task_ratelimit */
1731			now += min(pause - max_pause, max_pause);
1732			pause = max_pause;
1733		}
1734
1735pause:
1736		trace_balance_dirty_pages(wb,
1737					  sdtc->thresh,
1738					  sdtc->bg_thresh,
1739					  sdtc->dirty,
1740					  sdtc->wb_thresh,
1741					  sdtc->wb_dirty,
1742					  dirty_ratelimit,
1743					  task_ratelimit,
1744					  pages_dirtied,
1745					  period,
1746					  pause,
1747					  start_time);
 
 
 
 
1748		__set_current_state(TASK_KILLABLE);
 
1749		io_schedule_timeout(pause);
1750
1751		current->dirty_paused_when = now + pause;
1752		current->nr_dirtied = 0;
1753		current->nr_dirtied_pause = nr_dirtied_pause;
1754
1755		/*
1756		 * This is typically equal to (dirty < thresh) and can also
1757		 * keep "1000+ dd on a slow USB stick" under control.
1758		 */
1759		if (task_ratelimit)
1760			break;
1761
1762		/*
1763		 * In the case of an unresponding NFS server and the NFS dirty
1764		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1765		 * to go through, so that tasks on them still remain responsive.
1766		 *
1767		 * In theory 1 page is enough to keep the comsumer-producer
1768		 * pipe going: the flusher cleans 1 page => the task dirties 1
1769		 * more page. However wb_dirty has accounting errors.  So use
1770		 * the larger and more IO friendly wb_stat_error.
1771		 */
1772		if (sdtc->wb_dirty <= wb_stat_error(wb))
1773			break;
1774
1775		if (fatal_signal_pending(current))
1776			break;
1777	}
1778
1779	if (!dirty_exceeded && wb->dirty_exceeded)
1780		wb->dirty_exceeded = 0;
1781
1782	if (writeback_in_progress(wb))
1783		return;
1784
1785	/*
1786	 * In laptop mode, we wait until hitting the higher threshold before
1787	 * starting background writeout, and then write out all the way down
1788	 * to the lower threshold.  So slow writers cause minimal disk activity.
1789	 *
1790	 * In normal mode, we start background writeout at the lower
1791	 * background_thresh, to keep the amount of dirty memory low.
1792	 */
1793	if (laptop_mode)
1794		return;
1795
1796	if (nr_reclaimable > gdtc->bg_thresh)
1797		wb_start_background_writeback(wb);
1798}
1799
1800static DEFINE_PER_CPU(int, bdp_ratelimits);
1801
1802/*
1803 * Normal tasks are throttled by
1804 *	loop {
1805 *		dirty tsk->nr_dirtied_pause pages;
1806 *		take a snap in balance_dirty_pages();
1807 *	}
1808 * However there is a worst case. If every task exit immediately when dirtied
1809 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1810 * called to throttle the page dirties. The solution is to save the not yet
1811 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1812 * randomly into the running tasks. This works well for the above worst case,
1813 * as the new task will pick up and accumulate the old task's leaked dirty
1814 * count and eventually get throttled.
1815 */
1816DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1817
1818/**
1819 * balance_dirty_pages_ratelimited - balance dirty memory state
1820 * @mapping: address_space which was dirtied
 
1821 *
1822 * Processes which are dirtying memory should call in here once for each page
1823 * which was newly dirtied.  The function will periodically check the system's
1824 * dirty state and will initiate writeback if needed.
1825 *
1826 * On really big machines, get_writeback_state is expensive, so try to avoid
1827 * calling it too often (ratelimiting).  But once we're over the dirty memory
1828 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1829 * from overshooting the limit by (ratelimit_pages) each.
 
 
 
1830 */
1831void balance_dirty_pages_ratelimited(struct address_space *mapping)
 
1832{
1833	struct inode *inode = mapping->host;
1834	struct backing_dev_info *bdi = inode_to_bdi(inode);
1835	struct bdi_writeback *wb = NULL;
1836	int ratelimit;
 
1837	int *p;
1838
1839	if (!bdi_cap_account_dirty(bdi))
1840		return;
1841
1842	if (inode_cgwb_enabled(inode))
1843		wb = wb_get_create_current(bdi, GFP_KERNEL);
1844	if (!wb)
1845		wb = &bdi->wb;
1846
1847	ratelimit = current->nr_dirtied_pause;
1848	if (wb->dirty_exceeded)
1849		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1850
1851	preempt_disable();
1852	/*
1853	 * This prevents one CPU to accumulate too many dirtied pages without
1854	 * calling into balance_dirty_pages(), which can happen when there are
1855	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1856	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1857	 */
1858	p =  this_cpu_ptr(&bdp_ratelimits);
1859	if (unlikely(current->nr_dirtied >= ratelimit))
1860		*p = 0;
1861	else if (unlikely(*p >= ratelimit_pages)) {
1862		*p = 0;
1863		ratelimit = 0;
1864	}
1865	/*
1866	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1867	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1868	 * the dirty throttling and livelock other long-run dirtiers.
1869	 */
1870	p = this_cpu_ptr(&dirty_throttle_leaks);
1871	if (*p > 0 && current->nr_dirtied < ratelimit) {
1872		unsigned long nr_pages_dirtied;
1873		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1874		*p -= nr_pages_dirtied;
1875		current->nr_dirtied += nr_pages_dirtied;
1876	}
1877	preempt_enable();
1878
1879	if (unlikely(current->nr_dirtied >= ratelimit))
1880		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1881
1882	wb_put(wb);
 
1883}
1884EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1885
1886/**
1887 * wb_over_bg_thresh - does @wb need to be written back?
1888 * @wb: bdi_writeback of interest
1889 *
1890 * Determines whether background writeback should keep writing @wb or it's
1891 * clean enough.  Returns %true if writeback should continue.
 
 
 
 
 
1892 */
1893bool wb_over_bg_thresh(struct bdi_writeback *wb)
1894{
1895	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1896	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1897	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1898	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1899						     &mdtc_stor : NULL;
1900
1901	/*
1902	 * Similar to balance_dirty_pages() but ignores pages being written
1903	 * as we're trying to decide whether to put more under writeback.
1904	 */
1905	gdtc->avail = global_dirtyable_memory();
1906	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1907		      global_page_state(NR_UNSTABLE_NFS);
1908	domain_dirty_limits(gdtc);
1909
1910	if (gdtc->dirty > gdtc->bg_thresh)
1911		return true;
 
 
 
 
1912
1913	if (wb_stat(wb, WB_RECLAIMABLE) >
1914	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
 
 
 
1915		return true;
1916
1917	if (mdtc) {
1918		unsigned long filepages, headroom, writeback;
1919
1920		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1921				    &writeback);
1922		mdtc_calc_avail(mdtc, filepages, headroom);
1923		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1924
1925		if (mdtc->dirty > mdtc->bg_thresh)
1926			return true;
1927
1928		if (wb_stat(wb, WB_RECLAIMABLE) >
1929		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1930			return true;
1931	}
1932
1933	return false;
1934}
1935
1936void throttle_vm_writeout(gfp_t gfp_mask)
 
 
 
 
 
 
 
 
 
1937{
1938	unsigned long background_thresh;
1939	unsigned long dirty_thresh;
1940
1941        for ( ; ; ) {
1942		global_dirty_limits(&background_thresh, &dirty_thresh);
1943		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1944
1945                /*
1946                 * Boost the allowable dirty threshold a bit for page
1947                 * allocators so they don't get DoS'ed by heavy writers
1948                 */
1949                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1950
1951                if (global_page_state(NR_UNSTABLE_NFS) +
1952			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1953                        	break;
1954                congestion_wait(BLK_RW_ASYNC, HZ/10);
1955
1956		/*
1957		 * The caller might hold locks which can prevent IO completion
1958		 * or progress in the filesystem.  So we cannot just sit here
1959		 * waiting for IO to complete.
1960		 */
1961		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1962			break;
1963        }
1964}
1965
 
1966/*
1967 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1968 */
1969int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1970	void __user *buffer, size_t *length, loff_t *ppos)
1971{
1972	proc_dointvec(table, write, buffer, length, ppos);
1973	return 0;
1974}
1975
1976#ifdef CONFIG_BLOCK
1977void laptop_mode_timer_fn(unsigned long data)
1978{
1979	struct request_queue *q = (struct request_queue *)data;
1980	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1981		global_page_state(NR_UNSTABLE_NFS);
1982	struct bdi_writeback *wb;
1983
1984	/*
1985	 * We want to write everything out, not just down to the dirty
1986	 * threshold
1987	 */
1988	if (!bdi_has_dirty_io(&q->backing_dev_info))
1989		return;
 
 
 
 
1990
1991	rcu_read_lock();
1992	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1993		if (wb_has_dirty_io(wb))
1994			wb_start_writeback(wb, nr_pages, true,
1995					   WB_REASON_LAPTOP_TIMER);
1996	rcu_read_unlock();
 
 
 
 
1997}
1998
1999/*
2000 * We've spun up the disk and we're in laptop mode: schedule writeback
2001 * of all dirty data a few seconds from now.  If the flush is already scheduled
2002 * then push it back - the user is still using the disk.
2003 */
2004void laptop_io_completion(struct backing_dev_info *info)
2005{
2006	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2007}
2008
2009/*
2010 * We're in laptop mode and we've just synced. The sync's writes will have
2011 * caused another writeback to be scheduled by laptop_io_completion.
2012 * Nothing needs to be written back anymore, so we unschedule the writeback.
2013 */
2014void laptop_sync_completion(void)
2015{
2016	struct backing_dev_info *bdi;
2017
2018	rcu_read_lock();
2019
2020	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2021		del_timer(&bdi->laptop_mode_wb_timer);
2022
2023	rcu_read_unlock();
2024}
2025#endif
2026
2027/*
2028 * If ratelimit_pages is too high then we can get into dirty-data overload
2029 * if a large number of processes all perform writes at the same time.
2030 * If it is too low then SMP machines will call the (expensive)
2031 * get_writeback_state too often.
2032 *
2033 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2034 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2035 * thresholds.
2036 */
2037
2038void writeback_set_ratelimit(void)
2039{
2040	struct wb_domain *dom = &global_wb_domain;
2041	unsigned long background_thresh;
2042	unsigned long dirty_thresh;
2043
2044	global_dirty_limits(&background_thresh, &dirty_thresh);
2045	dom->dirty_limit = dirty_thresh;
2046	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2047	if (ratelimit_pages < 16)
2048		ratelimit_pages = 16;
2049}
2050
2051static int
2052ratelimit_handler(struct notifier_block *self, unsigned long action,
2053		  void *hcpu)
2054{
2055
2056	switch (action & ~CPU_TASKS_FROZEN) {
2057	case CPU_ONLINE:
2058	case CPU_DEAD:
2059		writeback_set_ratelimit();
2060		return NOTIFY_OK;
2061	default:
2062		return NOTIFY_DONE;
2063	}
2064}
2065
2066static struct notifier_block ratelimit_nb = {
2067	.notifier_call	= ratelimit_handler,
2068	.next		= NULL,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2069};
 
2070
2071/*
2072 * Called early on to tune the page writeback dirty limits.
2073 *
2074 * We used to scale dirty pages according to how total memory
2075 * related to pages that could be allocated for buffers (by
2076 * comparing nr_free_buffer_pages() to vm_total_pages.
2077 *
2078 * However, that was when we used "dirty_ratio" to scale with
2079 * all memory, and we don't do that any more. "dirty_ratio"
2080 * is now applied to total non-HIGHPAGE memory (by subtracting
2081 * totalhigh_pages from vm_total_pages), and as such we can't
2082 * get into the old insane situation any more where we had
2083 * large amounts of dirty pages compared to a small amount of
2084 * non-HIGHMEM memory.
2085 *
2086 * But we might still want to scale the dirty_ratio by how
2087 * much memory the box has..
2088 */
2089void __init page_writeback_init(void)
2090{
2091	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2092
2093	writeback_set_ratelimit();
2094	register_cpu_notifier(&ratelimit_nb);
 
 
 
 
 
2095}
2096
2097/**
2098 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2099 * @mapping: address space structure to write
2100 * @start: starting page index
2101 * @end: ending page index (inclusive)
2102 *
2103 * This function scans the page range from @start to @end (inclusive) and tags
2104 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2105 * that write_cache_pages (or whoever calls this function) will then use
2106 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2107 * used to avoid livelocking of writeback by a process steadily creating new
2108 * dirty pages in the file (thus it is important for this function to be quick
2109 * so that it can tag pages faster than a dirtying process can create them).
2110 */
2111/*
2112 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2113 */
2114void tag_pages_for_writeback(struct address_space *mapping,
2115			     pgoff_t start, pgoff_t end)
2116{
2117#define WRITEBACK_TAG_BATCH 4096
2118	unsigned long tagged;
 
 
 
 
 
 
 
2119
2120	do {
2121		spin_lock_irq(&mapping->tree_lock);
2122		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2123				&start, end, WRITEBACK_TAG_BATCH,
2124				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2125		spin_unlock_irq(&mapping->tree_lock);
2126		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2127		cond_resched();
2128		/* We check 'start' to handle wrapping when end == ~0UL */
2129	} while (tagged >= WRITEBACK_TAG_BATCH && start);
 
2130}
2131EXPORT_SYMBOL(tag_pages_for_writeback);
2132
2133/**
2134 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135 * @mapping: address space structure to write
2136 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137 * @writepage: function called for each page
2138 * @data: data passed to writepage function
2139 *
2140 * If a page is already under I/O, write_cache_pages() skips it, even
2141 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2142 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2143 * and msync() need to guarantee that all the data which was dirty at the time
2144 * the call was made get new I/O started against them.  If wbc->sync_mode is
2145 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146 * existing IO to complete.
2147 *
2148 * To avoid livelocks (when other process dirties new pages), we first tag
2149 * pages which should be written back with TOWRITE tag and only then start
2150 * writing them. For data-integrity sync we have to be careful so that we do
2151 * not miss some pages (e.g., because some other process has cleared TOWRITE
2152 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153 * by the process clearing the DIRTY tag (and submitting the page for IO).
2154 */
2155int write_cache_pages(struct address_space *mapping,
2156		      struct writeback_control *wbc, writepage_t writepage,
2157		      void *data)
2158{
2159	int ret = 0;
2160	int done = 0;
2161	struct pagevec pvec;
2162	int nr_pages;
2163	pgoff_t uninitialized_var(writeback_index);
2164	pgoff_t index;
2165	pgoff_t end;		/* Inclusive */
2166	pgoff_t done_index;
2167	int cycled;
2168	int range_whole = 0;
2169	int tag;
2170
2171	pagevec_init(&pvec, 0);
2172	if (wbc->range_cyclic) {
2173		writeback_index = mapping->writeback_index; /* prev offset */
2174		index = writeback_index;
2175		if (index == 0)
2176			cycled = 1;
2177		else
2178			cycled = 0;
2179		end = -1;
2180	} else {
2181		index = wbc->range_start >> PAGE_SHIFT;
2182		end = wbc->range_end >> PAGE_SHIFT;
2183		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184			range_whole = 1;
2185		cycled = 1; /* ignore range_cyclic tests */
2186	}
2187	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188		tag = PAGECACHE_TAG_TOWRITE;
2189	else
2190		tag = PAGECACHE_TAG_DIRTY;
2191retry:
2192	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193		tag_pages_for_writeback(mapping, index, end);
2194	done_index = index;
2195	while (!done && (index <= end)) {
2196		int i;
2197
2198		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200		if (nr_pages == 0)
2201			break;
2202
2203		for (i = 0; i < nr_pages; i++) {
2204			struct page *page = pvec.pages[i];
2205
2206			/*
2207			 * At this point, the page may be truncated or
2208			 * invalidated (changing page->mapping to NULL), or
2209			 * even swizzled back from swapper_space to tmpfs file
2210			 * mapping. However, page->index will not change
2211			 * because we have a reference on the page.
2212			 */
2213			if (page->index > end) {
2214				/*
2215				 * can't be range_cyclic (1st pass) because
2216				 * end == -1 in that case.
2217				 */
2218				done = 1;
2219				break;
2220			}
2221
2222			done_index = page->index;
 
 
 
 
 
2223
2224			lock_page(page);
 
2225
2226			/*
2227			 * Page truncated or invalidated. We can freely skip it
2228			 * then, even for data integrity operations: the page
2229			 * has disappeared concurrently, so there could be no
2230			 * real expectation of this data interity operation
2231			 * even if there is now a new, dirty page at the same
2232			 * pagecache address.
2233			 */
2234			if (unlikely(page->mapping != mapping)) {
2235continue_unlock:
2236				unlock_page(page);
2237				continue;
2238			}
2239
2240			if (!PageDirty(page)) {
2241				/* someone wrote it for us */
2242				goto continue_unlock;
2243			}
 
 
2244
2245			if (PageWriteback(page)) {
2246				if (wbc->sync_mode != WB_SYNC_NONE)
2247					wait_on_page_writeback(page);
2248				else
2249					goto continue_unlock;
2250			}
2251
2252			BUG_ON(PageWriteback(page));
2253			if (!clear_page_dirty_for_io(page))
2254				goto continue_unlock;
2255
2256			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257			ret = (*writepage)(page, wbc, data);
2258			if (unlikely(ret)) {
2259				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2260					unlock_page(page);
2261					ret = 0;
2262				} else {
2263					/*
2264					 * done_index is set past this page,
2265					 * so media errors will not choke
2266					 * background writeout for the entire
2267					 * file. This has consequences for
2268					 * range_cyclic semantics (ie. it may
2269					 * not be suitable for data integrity
2270					 * writeout).
2271					 */
2272					done_index = page->index + 1;
2273					done = 1;
2274					break;
2275				}
2276			}
2277
2278			/*
2279			 * We stop writing back only if we are not doing
2280			 * integrity sync. In case of integrity sync we have to
2281			 * keep going until we have written all the pages
2282			 * we tagged for writeback prior to entering this loop.
2283			 */
2284			if (--wbc->nr_to_write <= 0 &&
2285			    wbc->sync_mode == WB_SYNC_NONE) {
2286				done = 1;
2287				break;
2288			}
2289		}
2290		pagevec_release(&pvec);
2291		cond_resched();
 
 
 
 
 
2292	}
2293	if (!cycled && !done) {
2294		/*
2295		 * range_cyclic:
2296		 * We hit the last page and there is more work to be done: wrap
2297		 * back to the start of the file
2298		 */
2299		cycled = 1;
2300		index = 0;
2301		end = writeback_index - 1;
2302		goto retry;
2303	}
2304	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305		mapping->writeback_index = done_index;
2306
2307	return ret;
 
2308}
2309EXPORT_SYMBOL(write_cache_pages);
2310
2311/*
2312 * Function used by generic_writepages to call the real writepage
2313 * function and set the mapping flags on error
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2314 */
2315static int __writepage(struct page *page, struct writeback_control *wbc,
2316		       void *data)
2317{
2318	struct address_space *mapping = data;
2319	int ret = mapping->a_ops->writepage(page, wbc);
2320	mapping_set_error(mapping, ret);
2321	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322}
 
2323
2324/**
2325 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326 * @mapping: address space structure to write
2327 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
 
 
 
 
2328 *
2329 * This is a library function, which implements the writepages()
2330 * address_space_operation.
2331 */
2332int generic_writepages(struct address_space *mapping,
2333		       struct writeback_control *wbc)
 
2334{
2335	struct blk_plug plug;
2336	int ret;
2337
2338	/* deal with chardevs and other special file */
2339	if (!mapping->a_ops->writepage)
2340		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341
2342	blk_start_plug(&plug);
2343	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
 
 
 
 
 
 
 
2344	blk_finish_plug(&plug);
2345	return ret;
2346}
2347
2348EXPORT_SYMBOL(generic_writepages);
 
2349
2350int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351{
2352	int ret;
 
2353
2354	if (wbc->nr_to_write <= 0)
2355		return 0;
2356	if (mapping->a_ops->writepages)
2357		ret = mapping->a_ops->writepages(mapping, wbc);
2358	else
2359		ret = generic_writepages(mapping, wbc);
2360	return ret;
2361}
2362
2363/**
2364 * write_one_page - write out a single page and optionally wait on I/O
2365 * @page: the page to write
2366 * @wait: if true, wait on writeout
2367 *
2368 * The page must be locked by the caller and will be unlocked upon return.
2369 *
2370 * write_one_page() returns a negative error code if I/O failed.
2371 */
2372int write_one_page(struct page *page, int wait)
2373{
2374	struct address_space *mapping = page->mapping;
2375	int ret = 0;
2376	struct writeback_control wbc = {
2377		.sync_mode = WB_SYNC_ALL,
2378		.nr_to_write = 1,
2379	};
2380
2381	BUG_ON(!PageLocked(page));
2382
2383	if (wait)
2384		wait_on_page_writeback(page);
2385
2386	if (clear_page_dirty_for_io(page)) {
2387		get_page(page);
2388		ret = mapping->a_ops->writepage(page, &wbc);
2389		if (ret == 0 && wait) {
2390			wait_on_page_writeback(page);
2391			if (PageError(page))
2392				ret = -EIO;
2393		}
2394		put_page(page);
2395	} else {
2396		unlock_page(page);
 
 
 
 
 
 
 
 
2397	}
 
 
 
 
 
 
 
 
2398	return ret;
2399}
2400EXPORT_SYMBOL(write_one_page);
2401
2402/*
2403 * For address_spaces which do not use buffers nor write back.
2404 */
2405int __set_page_dirty_no_writeback(struct page *page)
2406{
2407	if (!PageDirty(page))
2408		return !TestSetPageDirty(page);
2409	return 0;
2410}
 
2411
2412/*
2413 * Helper function for set_page_dirty family.
2414 *
2415 * Caller must hold lock_page_memcg().
2416 *
2417 * NOTE: This relies on being atomic wrt interrupts.
2418 */
2419void account_page_dirtied(struct page *page, struct address_space *mapping)
 
2420{
2421	struct inode *inode = mapping->host;
2422
2423	trace_writeback_dirty_page(page, mapping);
2424
2425	if (mapping_cap_account_dirty(mapping)) {
2426		struct bdi_writeback *wb;
 
2427
2428		inode_attach_wb(inode, page);
2429		wb = inode_to_wb(inode);
2430
2431		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432		__inc_zone_page_state(page, NR_FILE_DIRTY);
2433		__inc_zone_page_state(page, NR_DIRTIED);
2434		__inc_wb_stat(wb, WB_RECLAIMABLE);
2435		__inc_wb_stat(wb, WB_DIRTIED);
2436		task_io_account_write(PAGE_SIZE);
2437		current->nr_dirtied++;
2438		this_cpu_inc(bdp_ratelimits);
 
 
2439	}
2440}
2441EXPORT_SYMBOL(account_page_dirtied);
2442
2443/*
2444 * Helper function for deaccounting dirty page without writeback.
2445 *
2446 * Caller must hold lock_page_memcg().
2447 */
2448void account_page_cleaned(struct page *page, struct address_space *mapping,
2449			  struct bdi_writeback *wb)
2450{
2451	if (mapping_cap_account_dirty(mapping)) {
2452		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453		dec_zone_page_state(page, NR_FILE_DIRTY);
2454		dec_wb_stat(wb, WB_RECLAIMABLE);
2455		task_io_account_cancelled_write(PAGE_SIZE);
2456	}
2457}
2458
2459/*
2460 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2461 * its radix tree.
2462 *
2463 * This is also used when a single buffer is being dirtied: we want to set the
2464 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2465 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2466 *
2467 * The caller must ensure this doesn't race with truncation.  Most will simply
2468 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2469 * the pte lock held, which also locks out truncation.
 
 
 
 
 
2470 */
2471int __set_page_dirty_nobuffers(struct page *page)
 
2472{
2473	lock_page_memcg(page);
2474	if (!TestSetPageDirty(page)) {
2475		struct address_space *mapping = page_mapping(page);
2476		unsigned long flags;
2477
2478		if (!mapping) {
2479			unlock_page_memcg(page);
2480			return 1;
2481		}
2482
2483		spin_lock_irqsave(&mapping->tree_lock, flags);
2484		BUG_ON(page_mapping(page) != mapping);
2485		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486		account_page_dirtied(page, mapping);
2487		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488				   PAGECACHE_TAG_DIRTY);
2489		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490		unlock_page_memcg(page);
2491
2492		if (mapping->host) {
2493			/* !PageAnon && !swapper_space */
2494			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2495		}
2496		return 1;
2497	}
2498	unlock_page_memcg(page);
2499	return 0;
2500}
2501EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2502
2503/*
2504 * Call this whenever redirtying a page, to de-account the dirty counters
2505 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508 * control.
 
 
 
 
 
 
 
 
 
 
 
 
2509 */
2510void account_page_redirty(struct page *page)
2511{
2512	struct address_space *mapping = page->mapping;
 
2513
2514	if (mapping && mapping_cap_account_dirty(mapping)) {
2515		struct inode *inode = mapping->host;
2516		struct bdi_writeback *wb;
2517		bool locked;
2518
2519		wb = unlocked_inode_to_wb_begin(inode, &locked);
2520		current->nr_dirtied--;
2521		dec_zone_page_state(page, NR_DIRTIED);
2522		dec_wb_stat(wb, WB_DIRTIED);
2523		unlocked_inode_to_wb_end(inode, locked);
2524	}
 
2525}
2526EXPORT_SYMBOL(account_page_redirty);
2527
2528/*
2529 * When a writepage implementation decides that it doesn't want to write this
2530 * page for some reason, it should redirty the locked page via
2531 * redirty_page_for_writepage() and it should then unlock the page and return 0
2532 */
2533int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2534{
2535	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536
2537	wbc->pages_skipped++;
2538	ret = __set_page_dirty_nobuffers(page);
2539	account_page_redirty(page);
 
 
 
2540	return ret;
2541}
2542EXPORT_SYMBOL(redirty_page_for_writepage);
2543
2544/*
2545 * Dirty a page.
 
2546 *
2547 * For pages with a mapping this should be done under the page lock
2548 * for the benefit of asynchronous memory errors who prefer a consistent
2549 * dirty state. This rule can be broken in some special cases,
2550 * but should be better not to.
 
 
2551 *
2552 * If the mapping doesn't provide a set_page_dirty a_op, then
2553 * just fall through and assume that it wants buffer_heads.
2554 */
2555int set_page_dirty(struct page *page)
2556{
2557	struct address_space *mapping = page_mapping(page);
2558
2559	if (likely(mapping)) {
2560		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2561		/*
2562		 * readahead/lru_deactivate_page could remain
2563		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2564		 * About readahead, if the page is written, the flags would be
2565		 * reset. So no problem.
2566		 * About lru_deactivate_page, if the page is redirty, the flag
2567		 * will be reset. So no problem. but if the page is used by readahead
2568		 * it will confuse readahead and make it restart the size rampup
2569		 * process. But it's a trivial problem.
2570		 */
2571		if (PageReclaim(page))
2572			ClearPageReclaim(page);
2573#ifdef CONFIG_BLOCK
2574		if (!spd)
2575			spd = __set_page_dirty_buffers;
2576#endif
2577		return (*spd)(page);
2578	}
2579	if (!PageDirty(page)) {
2580		if (!TestSetPageDirty(page))
2581			return 1;
2582	}
2583	return 0;
 
2584}
2585EXPORT_SYMBOL(set_page_dirty);
2586
2587/*
2588 * set_page_dirty() is racy if the caller has no reference against
2589 * page->mapping->host, and if the page is unlocked.  This is because another
2590 * CPU could truncate the page off the mapping and then free the mapping.
2591 *
2592 * Usually, the page _is_ locked, or the caller is a user-space process which
2593 * holds a reference on the inode by having an open file.
2594 *
2595 * In other cases, the page should be locked before running set_page_dirty().
2596 */
2597int set_page_dirty_lock(struct page *page)
2598{
2599	int ret;
2600
2601	lock_page(page);
2602	ret = set_page_dirty(page);
2603	unlock_page(page);
2604	return ret;
2605}
2606EXPORT_SYMBOL(set_page_dirty_lock);
2607
2608/*
2609 * This cancels just the dirty bit on the kernel page itself, it does NOT
2610 * actually remove dirty bits on any mmap's that may be around. It also
2611 * leaves the page tagged dirty, so any sync activity will still find it on
2612 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613 * look at the dirty bits in the VM.
2614 *
2615 * Doing this should *normally* only ever be done when a page is truncated,
2616 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617 * this when it notices that somebody has cleaned out all the buffers on a
2618 * page without actually doing it through the VM. Can you say "ext3 is
2619 * horribly ugly"? Thought you could.
2620 */
2621void cancel_dirty_page(struct page *page)
2622{
2623	struct address_space *mapping = page_mapping(page);
2624
2625	if (mapping_cap_account_dirty(mapping)) {
2626		struct inode *inode = mapping->host;
2627		struct bdi_writeback *wb;
2628		bool locked;
2629
2630		lock_page_memcg(page);
2631		wb = unlocked_inode_to_wb_begin(inode, &locked);
2632
2633		if (TestClearPageDirty(page))
2634			account_page_cleaned(page, mapping, wb);
2635
2636		unlocked_inode_to_wb_end(inode, locked);
2637		unlock_page_memcg(page);
2638	} else {
2639		ClearPageDirty(page);
2640	}
2641}
2642EXPORT_SYMBOL(cancel_dirty_page);
2643
2644/*
2645 * Clear a page's dirty flag, while caring for dirty memory accounting.
2646 * Returns true if the page was previously dirty.
2647 *
2648 * This is for preparing to put the page under writeout.  We leave the page
2649 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2650 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2651 * implementation will run either set_page_writeback() or set_page_dirty(),
2652 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2653 * back into sync.
2654 *
2655 * This incoherency between the page's dirty flag and radix-tree tag is
2656 * unfortunate, but it only exists while the page is locked.
2657 */
2658int clear_page_dirty_for_io(struct page *page)
2659{
2660	struct address_space *mapping = page_mapping(page);
2661	int ret = 0;
2662
2663	BUG_ON(!PageLocked(page));
2664
2665	if (mapping && mapping_cap_account_dirty(mapping)) {
2666		struct inode *inode = mapping->host;
2667		struct bdi_writeback *wb;
2668		bool locked;
2669
2670		/*
2671		 * Yes, Virginia, this is indeed insane.
2672		 *
2673		 * We use this sequence to make sure that
2674		 *  (a) we account for dirty stats properly
2675		 *  (b) we tell the low-level filesystem to
2676		 *      mark the whole page dirty if it was
2677		 *      dirty in a pagetable. Only to then
2678		 *  (c) clean the page again and return 1 to
2679		 *      cause the writeback.
2680		 *
2681		 * This way we avoid all nasty races with the
2682		 * dirty bit in multiple places and clearing
2683		 * them concurrently from different threads.
2684		 *
2685		 * Note! Normally the "set_page_dirty(page)"
2686		 * has no effect on the actual dirty bit - since
2687		 * that will already usually be set. But we
2688		 * need the side effects, and it can help us
2689		 * avoid races.
2690		 *
2691		 * We basically use the page "master dirty bit"
2692		 * as a serialization point for all the different
2693		 * threads doing their things.
2694		 */
2695		if (page_mkclean(page))
2696			set_page_dirty(page);
2697		/*
2698		 * We carefully synchronise fault handlers against
2699		 * installing a dirty pte and marking the page dirty
2700		 * at this point.  We do this by having them hold the
2701		 * page lock while dirtying the page, and pages are
2702		 * always locked coming in here, so we get the desired
2703		 * exclusion.
2704		 */
2705		wb = unlocked_inode_to_wb_begin(inode, &locked);
2706		if (TestClearPageDirty(page)) {
2707			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2708			dec_zone_page_state(page, NR_FILE_DIRTY);
2709			dec_wb_stat(wb, WB_RECLAIMABLE);
2710			ret = 1;
 
2711		}
2712		unlocked_inode_to_wb_end(inode, locked);
2713		return ret;
2714	}
2715	return TestClearPageDirty(page);
2716}
2717EXPORT_SYMBOL(clear_page_dirty_for_io);
2718
2719int test_clear_page_writeback(struct page *page)
2720{
2721	struct address_space *mapping = page_mapping(page);
2722	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2723
2724	lock_page_memcg(page);
2725	if (mapping) {
2726		struct inode *inode = mapping->host;
2727		struct backing_dev_info *bdi = inode_to_bdi(inode);
2728		unsigned long flags;
2729
2730		spin_lock_irqsave(&mapping->tree_lock, flags);
2731		ret = TestClearPageWriteback(page);
2732		if (ret) {
2733			radix_tree_tag_clear(&mapping->page_tree,
2734						page_index(page),
2735						PAGECACHE_TAG_WRITEBACK);
2736			if (bdi_cap_account_writeback(bdi)) {
2737				struct bdi_writeback *wb = inode_to_wb(inode);
 
 
 
 
 
 
 
 
2738
2739				__dec_wb_stat(wb, WB_WRITEBACK);
2740				__wb_writeout_inc(wb);
2741			}
2742		}
2743		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2744	} else {
2745		ret = TestClearPageWriteback(page);
2746	}
2747	if (ret) {
2748		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2749		dec_zone_page_state(page, NR_WRITEBACK);
2750		inc_zone_page_state(page, NR_WRITTEN);
2751	}
2752	unlock_page_memcg(page);
 
 
 
 
2753	return ret;
2754}
2755
2756int __test_set_page_writeback(struct page *page, bool keep_write)
2757{
2758	struct address_space *mapping = page_mapping(page);
2759	int ret;
 
 
 
2760
2761	lock_page_memcg(page);
2762	if (mapping) {
2763		struct inode *inode = mapping->host;
2764		struct backing_dev_info *bdi = inode_to_bdi(inode);
2765		unsigned long flags;
 
 
 
 
 
 
 
2766
2767		spin_lock_irqsave(&mapping->tree_lock, flags);
2768		ret = TestSetPageWriteback(page);
2769		if (!ret) {
2770			radix_tree_tag_set(&mapping->page_tree,
2771						page_index(page),
2772						PAGECACHE_TAG_WRITEBACK);
2773			if (bdi_cap_account_writeback(bdi))
2774				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2775		}
2776		if (!PageDirty(page))
2777			radix_tree_tag_clear(&mapping->page_tree,
2778						page_index(page),
2779						PAGECACHE_TAG_DIRTY);
 
 
 
 
 
2780		if (!keep_write)
2781			radix_tree_tag_clear(&mapping->page_tree,
2782						page_index(page),
2783						PAGECACHE_TAG_TOWRITE);
2784		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2785	} else {
2786		ret = TestSetPageWriteback(page);
2787	}
2788	if (!ret) {
2789		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2790		inc_zone_page_state(page, NR_WRITEBACK);
2791	}
2792	unlock_page_memcg(page);
2793	return ret;
2794
 
 
 
 
 
 
 
 
 
2795}
2796EXPORT_SYMBOL(__test_set_page_writeback);
2797
2798/*
2799 * Return true if any of the pages in the mapping are marked with the
2800 * passed tag.
 
 
 
 
 
 
 
 
2801 */
2802int mapping_tagged(struct address_space *mapping, int tag)
2803{
2804	return radix_tree_tagged(&mapping->page_tree, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805}
2806EXPORT_SYMBOL(mapping_tagged);
2807
2808/**
2809 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2810 * @page:	The page to wait on.
 
 
 
 
2811 *
2812 * This function determines if the given page is related to a backing device
2813 * that requires page contents to be held stable during writeback.  If so, then
2814 * it will wait for any pending writeback to complete.
 
2815 */
2816void wait_for_stable_page(struct page *page)
2817{
2818	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2819		wait_on_page_writeback(page);
2820}
2821EXPORT_SYMBOL_GPL(wait_for_stable_page);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/page-writeback.c
   4 *
   5 * Copyright (C) 2002, Linus Torvalds.
   6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   7 *
   8 * Contains functions related to writing back dirty pages at the
   9 * address_space level.
  10 *
  11 * 10Apr2002	Andrew Morton
  12 *		Initial version
  13 */
  14
  15#include <linux/kernel.h>
  16#include <linux/math64.h>
  17#include <linux/export.h>
  18#include <linux/spinlock.h>
  19#include <linux/fs.h>
  20#include <linux/mm.h>
  21#include <linux/swap.h>
  22#include <linux/slab.h>
  23#include <linux/pagemap.h>
  24#include <linux/writeback.h>
  25#include <linux/init.h>
  26#include <linux/backing-dev.h>
  27#include <linux/task_io_accounting_ops.h>
  28#include <linux/blkdev.h>
  29#include <linux/mpage.h>
  30#include <linux/rmap.h>
  31#include <linux/percpu.h>
 
  32#include <linux/smp.h>
  33#include <linux/sysctl.h>
  34#include <linux/cpu.h>
  35#include <linux/syscalls.h>
 
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/sched/signal.h>
  40#include <linux/mm_inline.h>
  41#include <trace/events/writeback.h>
  42
  43#include "internal.h"
  44
  45/*
  46 * Sleep at most 200ms at a time in balance_dirty_pages().
  47 */
  48#define MAX_PAUSE		max(HZ/5, 1)
  49
  50/*
  51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  52 * by raising pause time to max_pause when falls below it.
  53 */
  54#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  55
  56/*
  57 * Estimate write bandwidth or update dirty limit at 200ms intervals.
  58 */
  59#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  60
  61#define RATELIMIT_CALC_SHIFT	10
  62
  63/*
  64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  65 * will look to see if it needs to force writeback or throttling.
  66 */
  67static long ratelimit_pages = 32;
  68
  69/* The following parameters are exported via /proc/sys/vm */
  70
  71/*
  72 * Start background writeback (via writeback threads) at this percentage
  73 */
  74static int dirty_background_ratio = 10;
  75
  76/*
  77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  78 * dirty_background_ratio * the amount of dirtyable memory
  79 */
  80static unsigned long dirty_background_bytes;
  81
  82/*
  83 * free highmem will not be subtracted from the total free memory
  84 * for calculating free ratios if vm_highmem_is_dirtyable is true
  85 */
  86static int vm_highmem_is_dirtyable;
  87
  88/*
  89 * The generator of dirty data starts writeback at this percentage
  90 */
  91static int vm_dirty_ratio = 20;
  92
  93/*
  94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  95 * vm_dirty_ratio * the amount of dirtyable memory
  96 */
  97static unsigned long vm_dirty_bytes;
  98
  99/*
 100 * The interval between `kupdate'-style writebacks
 101 */
 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 103
 104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 105
 106/*
 107 * The longest time for which data is allowed to remain dirty
 108 */
 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 110
 111/*
 
 
 
 
 
 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 113 * a full sync is triggered after this time elapses without any disk activity.
 114 */
 115int laptop_mode;
 116
 117EXPORT_SYMBOL(laptop_mode);
 118
 119/* End of sysctl-exported parameters */
 120
 121struct wb_domain global_wb_domain;
 122
 123/* consolidated parameters for balance_dirty_pages() and its subroutines */
 124struct dirty_throttle_control {
 125#ifdef CONFIG_CGROUP_WRITEBACK
 126	struct wb_domain	*dom;
 127	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 128#endif
 129	struct bdi_writeback	*wb;
 130	struct fprop_local_percpu *wb_completions;
 131
 132	unsigned long		avail;		/* dirtyable */
 133	unsigned long		dirty;		/* file_dirty + write + nfs */
 134	unsigned long		thresh;		/* dirty threshold */
 135	unsigned long		bg_thresh;	/* dirty background threshold */
 136
 137	unsigned long		wb_dirty;	/* per-wb counterparts */
 138	unsigned long		wb_thresh;
 139	unsigned long		wb_bg_thresh;
 140
 141	unsigned long		pos_ratio;
 142	bool			freerun;
 143	bool			dirty_exceeded;
 144};
 145
 146/*
 147 * Length of period for aging writeout fractions of bdis. This is an
 148 * arbitrarily chosen number. The longer the period, the slower fractions will
 149 * reflect changes in current writeout rate.
 150 */
 151#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 152
 153#ifdef CONFIG_CGROUP_WRITEBACK
 154
 155#define GDTC_INIT(__wb)		.wb = (__wb),				\
 156				.dom = &global_wb_domain,		\
 157				.wb_completions = &(__wb)->completions
 158
 159#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 160
 161#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 162				.dom = mem_cgroup_wb_domain(__wb),	\
 163				.wb_completions = &(__wb)->memcg_completions, \
 164				.gdtc = __gdtc
 165
 166static bool mdtc_valid(struct dirty_throttle_control *dtc)
 167{
 168	return dtc->dom;
 169}
 170
 171static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 172{
 173	return dtc->dom;
 174}
 175
 176static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 177{
 178	return mdtc->gdtc;
 179}
 180
 181static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 182{
 183	return &wb->memcg_completions;
 184}
 185
 186static void wb_min_max_ratio(struct bdi_writeback *wb,
 187			     unsigned long *minp, unsigned long *maxp)
 188{
 189	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
 190	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 191	unsigned long long min = wb->bdi->min_ratio;
 192	unsigned long long max = wb->bdi->max_ratio;
 193
 194	/*
 195	 * @wb may already be clean by the time control reaches here and
 196	 * the total may not include its bw.
 197	 */
 198	if (this_bw < tot_bw) {
 199		if (min) {
 200			min *= this_bw;
 201			min = div64_ul(min, tot_bw);
 202		}
 203		if (max < 100 * BDI_RATIO_SCALE) {
 204			max *= this_bw;
 205			max = div64_ul(max, tot_bw);
 206		}
 207	}
 208
 209	*minp = min;
 210	*maxp = max;
 211}
 212
 213#else	/* CONFIG_CGROUP_WRITEBACK */
 214
 215#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 216				.wb_completions = &(__wb)->completions
 217#define GDTC_INIT_NO_WB
 218#define MDTC_INIT(__wb, __gdtc)
 219
 220static bool mdtc_valid(struct dirty_throttle_control *dtc)
 221{
 222	return false;
 223}
 224
 225static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 226{
 227	return &global_wb_domain;
 228}
 229
 230static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 231{
 232	return NULL;
 233}
 234
 235static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 236{
 237	return NULL;
 238}
 239
 240static void wb_min_max_ratio(struct bdi_writeback *wb,
 241			     unsigned long *minp, unsigned long *maxp)
 242{
 243	*minp = wb->bdi->min_ratio;
 244	*maxp = wb->bdi->max_ratio;
 245}
 246
 247#endif	/* CONFIG_CGROUP_WRITEBACK */
 248
 249/*
 250 * In a memory zone, there is a certain amount of pages we consider
 251 * available for the page cache, which is essentially the number of
 252 * free and reclaimable pages, minus some zone reserves to protect
 253 * lowmem and the ability to uphold the zone's watermarks without
 254 * requiring writeback.
 255 *
 256 * This number of dirtyable pages is the base value of which the
 257 * user-configurable dirty ratio is the effective number of pages that
 258 * are allowed to be actually dirtied.  Per individual zone, or
 259 * globally by using the sum of dirtyable pages over all zones.
 260 *
 261 * Because the user is allowed to specify the dirty limit globally as
 262 * absolute number of bytes, calculating the per-zone dirty limit can
 263 * require translating the configured limit into a percentage of
 264 * global dirtyable memory first.
 265 */
 266
 267/**
 268 * node_dirtyable_memory - number of dirtyable pages in a node
 269 * @pgdat: the node
 270 *
 271 * Return: the node's number of pages potentially available for dirty
 272 * page cache.  This is the base value for the per-node dirty limits.
 273 */
 274static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 275{
 276	unsigned long nr_pages = 0;
 277	int z;
 278
 279	for (z = 0; z < MAX_NR_ZONES; z++) {
 280		struct zone *zone = pgdat->node_zones + z;
 281
 282		if (!populated_zone(zone))
 283			continue;
 284
 285		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 286	}
 287
 
 288	/*
 289	 * Pages reserved for the kernel should not be considered
 290	 * dirtyable, to prevent a situation where reclaim has to
 291	 * clean pages in order to balance the zones.
 292	 */
 293	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 294
 295	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 296	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 297
 298	return nr_pages;
 299}
 300
 301static unsigned long highmem_dirtyable_memory(unsigned long total)
 302{
 303#ifdef CONFIG_HIGHMEM
 304	int node;
 305	unsigned long x = 0;
 306	int i;
 307
 308	for_each_node_state(node, N_HIGH_MEMORY) {
 309		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 310			struct zone *z;
 311			unsigned long nr_pages;
 312
 313			if (!is_highmem_idx(i))
 314				continue;
 315
 316			z = &NODE_DATA(node)->node_zones[i];
 317			if (!populated_zone(z))
 318				continue;
 319
 320			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 321			/* watch for underflows */
 322			nr_pages -= min(nr_pages, high_wmark_pages(z));
 323			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 324			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 325			x += nr_pages;
 326		}
 327	}
 
 
 
 
 
 
 
 
 
 
 
 328
 329	/*
 330	 * Make sure that the number of highmem pages is never larger
 331	 * than the number of the total dirtyable memory. This can only
 332	 * occur in very strange VM situations but we want to make sure
 333	 * that this does not occur.
 334	 */
 335	return min(x, total);
 336#else
 337	return 0;
 338#endif
 339}
 340
 341/**
 342 * global_dirtyable_memory - number of globally dirtyable pages
 343 *
 344 * Return: the global number of pages potentially available for dirty
 345 * page cache.  This is the base value for the global dirty limits.
 346 */
 347static unsigned long global_dirtyable_memory(void)
 348{
 349	unsigned long x;
 350
 351	x = global_zone_page_state(NR_FREE_PAGES);
 352	/*
 353	 * Pages reserved for the kernel should not be considered
 354	 * dirtyable, to prevent a situation where reclaim has to
 355	 * clean pages in order to balance the zones.
 356	 */
 357	x -= min(x, totalreserve_pages);
 358
 359	x += global_node_page_state(NR_INACTIVE_FILE);
 360	x += global_node_page_state(NR_ACTIVE_FILE);
 361
 362	if (!vm_highmem_is_dirtyable)
 363		x -= highmem_dirtyable_memory(x);
 364
 365	return x + 1;	/* Ensure that we never return 0 */
 366}
 367
 368/**
 369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 370 * @dtc: dirty_throttle_control of interest
 371 *
 372 * Calculate @dtc->thresh and ->bg_thresh considering
 373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 374 * must ensure that @dtc->avail is set before calling this function.  The
 375 * dirty limits will be lifted by 1/4 for real-time tasks.
 
 376 */
 377static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 378{
 379	const unsigned long available_memory = dtc->avail;
 380	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 381	unsigned long bytes = vm_dirty_bytes;
 382	unsigned long bg_bytes = dirty_background_bytes;
 383	/* convert ratios to per-PAGE_SIZE for higher precision */
 384	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 385	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 386	unsigned long thresh;
 387	unsigned long bg_thresh;
 388	struct task_struct *tsk;
 389
 390	/* gdtc is !NULL iff @dtc is for memcg domain */
 391	if (gdtc) {
 392		unsigned long global_avail = gdtc->avail;
 393
 394		/*
 395		 * The byte settings can't be applied directly to memcg
 396		 * domains.  Convert them to ratios by scaling against
 397		 * globally available memory.  As the ratios are in
 398		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 399		 * number of pages.
 400		 */
 401		if (bytes)
 402			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 403				    PAGE_SIZE);
 404		if (bg_bytes)
 405			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 406				       PAGE_SIZE);
 407		bytes = bg_bytes = 0;
 408	}
 409
 410	if (bytes)
 411		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 412	else
 413		thresh = (ratio * available_memory) / PAGE_SIZE;
 414
 415	if (bg_bytes)
 416		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 417	else
 418		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 419
 
 
 420	tsk = current;
 421	if (rt_or_dl_task(tsk)) {
 422		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 423		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 424	}
 425	/*
 426	 * Dirty throttling logic assumes the limits in page units fit into
 427	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
 428	 */
 429	if (thresh > UINT_MAX)
 430		thresh = UINT_MAX;
 431	/* This makes sure bg_thresh is within 32-bits as well */
 432	if (bg_thresh >= thresh)
 433		bg_thresh = thresh / 2;
 434	dtc->thresh = thresh;
 435	dtc->bg_thresh = bg_thresh;
 436
 437	/* we should eventually report the domain in the TP */
 438	if (!gdtc)
 439		trace_global_dirty_state(bg_thresh, thresh);
 440}
 441
 442/**
 443 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 444 * @pbackground: out parameter for bg_thresh
 445 * @pdirty: out parameter for thresh
 446 *
 447 * Calculate bg_thresh and thresh for global_wb_domain.  See
 448 * domain_dirty_limits() for details.
 449 */
 450void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 451{
 452	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 453
 454	gdtc.avail = global_dirtyable_memory();
 455	domain_dirty_limits(&gdtc);
 456
 457	*pbackground = gdtc.bg_thresh;
 458	*pdirty = gdtc.thresh;
 459}
 460
 461/**
 462 * node_dirty_limit - maximum number of dirty pages allowed in a node
 463 * @pgdat: the node
 464 *
 465 * Return: the maximum number of dirty pages allowed in a node, based
 466 * on the node's dirtyable memory.
 467 */
 468static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 469{
 470	unsigned long node_memory = node_dirtyable_memory(pgdat);
 471	struct task_struct *tsk = current;
 472	unsigned long dirty;
 473
 474	if (vm_dirty_bytes)
 475		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 476			node_memory / global_dirtyable_memory();
 477	else
 478		dirty = vm_dirty_ratio * node_memory / 100;
 479
 480	if (rt_or_dl_task(tsk))
 481		dirty += dirty / 4;
 482
 483	/*
 484	 * Dirty throttling logic assumes the limits in page units fit into
 485	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
 486	 */
 487	return min_t(unsigned long, dirty, UINT_MAX);
 488}
 489
 490/**
 491 * node_dirty_ok - tells whether a node is within its dirty limits
 492 * @pgdat: the node to check
 493 *
 494 * Return: %true when the dirty pages in @pgdat are within the node's
 495 * dirty limit, %false if the limit is exceeded.
 496 */
 497bool node_dirty_ok(struct pglist_data *pgdat)
 498{
 499	unsigned long limit = node_dirty_limit(pgdat);
 500	unsigned long nr_pages = 0;
 501
 502	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 503	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 504
 505	return nr_pages <= limit;
 506}
 507
 508#ifdef CONFIG_SYSCTL
 509static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
 510		void *buffer, size_t *lenp, loff_t *ppos)
 511{
 512	int ret;
 513
 514	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 515	if (ret == 0 && write)
 516		dirty_background_bytes = 0;
 517	return ret;
 518}
 519
 520static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
 521		void *buffer, size_t *lenp, loff_t *ppos)
 
 522{
 523	int ret;
 524	unsigned long old_bytes = dirty_background_bytes;
 525
 526	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 527	if (ret == 0 && write) {
 528		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
 529								UINT_MAX) {
 530			dirty_background_bytes = old_bytes;
 531			return -ERANGE;
 532		}
 533		dirty_background_ratio = 0;
 534	}
 535	return ret;
 536}
 537
 538static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
 539		size_t *lenp, loff_t *ppos)
 
 540{
 541	int old_ratio = vm_dirty_ratio;
 542	int ret;
 543
 544	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 545	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 546		writeback_set_ratelimit();
 547		vm_dirty_bytes = 0;
 548	}
 549	return ret;
 550}
 551
 552static int dirty_bytes_handler(const struct ctl_table *table, int write,
 553		void *buffer, size_t *lenp, loff_t *ppos)
 
 554{
 555	unsigned long old_bytes = vm_dirty_bytes;
 556	int ret;
 557
 558	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 559	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 560		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
 561			vm_dirty_bytes = old_bytes;
 562			return -ERANGE;
 563		}
 564		writeback_set_ratelimit();
 565		vm_dirty_ratio = 0;
 566	}
 567	return ret;
 568}
 569#endif
 570
 571static unsigned long wp_next_time(unsigned long cur_time)
 572{
 573	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 574	/* 0 has a special meaning... */
 575	if (!cur_time)
 576		return 1;
 577	return cur_time;
 578}
 579
 580static void wb_domain_writeout_add(struct wb_domain *dom,
 581				   struct fprop_local_percpu *completions,
 582				   unsigned int max_prop_frac, long nr)
 583{
 584	__fprop_add_percpu_max(&dom->completions, completions,
 585			       max_prop_frac, nr);
 586	/* First event after period switching was turned off? */
 587	if (unlikely(!dom->period_time)) {
 588		/*
 589		 * We can race with other wb_domain_writeout_add calls here but
 590		 * it does not cause any harm since the resulting time when
 591		 * timer will fire and what is in writeout_period_time will be
 592		 * roughly the same.
 593		 */
 594		dom->period_time = wp_next_time(jiffies);
 595		mod_timer(&dom->period_timer, dom->period_time);
 596	}
 597}
 598
 599/*
 600 * Increment @wb's writeout completion count and the global writeout
 601 * completion count. Called from __folio_end_writeback().
 602 */
 603static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
 604{
 605	struct wb_domain *cgdom;
 606
 607	wb_stat_mod(wb, WB_WRITTEN, nr);
 608	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
 609			       wb->bdi->max_prop_frac, nr);
 610
 611	cgdom = mem_cgroup_wb_domain(wb);
 612	if (cgdom)
 613		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
 614				       wb->bdi->max_prop_frac, nr);
 615}
 616
 617void wb_writeout_inc(struct bdi_writeback *wb)
 618{
 619	unsigned long flags;
 620
 621	local_irq_save(flags);
 622	__wb_writeout_add(wb, 1);
 623	local_irq_restore(flags);
 624}
 625EXPORT_SYMBOL_GPL(wb_writeout_inc);
 626
 627/*
 628 * On idle system, we can be called long after we scheduled because we use
 629 * deferred timers so count with missed periods.
 630 */
 631static void writeout_period(struct timer_list *t)
 632{
 633	struct wb_domain *dom = from_timer(dom, t, period_timer);
 634	int miss_periods = (jiffies - dom->period_time) /
 635						 VM_COMPLETIONS_PERIOD_LEN;
 636
 637	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 638		dom->period_time = wp_next_time(dom->period_time +
 639				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 640		mod_timer(&dom->period_timer, dom->period_time);
 641	} else {
 642		/*
 643		 * Aging has zeroed all fractions. Stop wasting CPU on period
 644		 * updates.
 645		 */
 646		dom->period_time = 0;
 647	}
 648}
 649
 650int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 651{
 652	memset(dom, 0, sizeof(*dom));
 653
 654	spin_lock_init(&dom->lock);
 655
 656	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
 
 
 657
 658	dom->dirty_limit_tstamp = jiffies;
 659
 660	return fprop_global_init(&dom->completions, gfp);
 661}
 662
 663#ifdef CONFIG_CGROUP_WRITEBACK
 664void wb_domain_exit(struct wb_domain *dom)
 665{
 666	del_timer_sync(&dom->period_timer);
 667	fprop_global_destroy(&dom->completions);
 668}
 669#endif
 670
 671/*
 672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 673 * registered backing devices, which, for obvious reasons, can not
 674 * exceed 100%.
 675 */
 676static unsigned int bdi_min_ratio;
 677
 678static int bdi_check_pages_limit(unsigned long pages)
 679{
 680	unsigned long max_dirty_pages = global_dirtyable_memory();
 681
 682	if (pages > max_dirty_pages)
 683		return -EINVAL;
 684
 685	return 0;
 686}
 687
 688static unsigned long bdi_ratio_from_pages(unsigned long pages)
 689{
 690	unsigned long background_thresh;
 691	unsigned long dirty_thresh;
 692	unsigned long ratio;
 693
 694	global_dirty_limits(&background_thresh, &dirty_thresh);
 695	if (!dirty_thresh)
 696		return -EINVAL;
 697	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
 698
 699	return ratio;
 700}
 701
 702static u64 bdi_get_bytes(unsigned int ratio)
 703{
 704	unsigned long background_thresh;
 705	unsigned long dirty_thresh;
 706	u64 bytes;
 707
 708	global_dirty_limits(&background_thresh, &dirty_thresh);
 709	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
 710
 711	return bytes;
 712}
 713
 714static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 715{
 716	unsigned int delta;
 717	int ret = 0;
 718
 719	if (min_ratio > 100 * BDI_RATIO_SCALE)
 720		return -EINVAL;
 721
 722	spin_lock_bh(&bdi_lock);
 723	if (min_ratio > bdi->max_ratio) {
 724		ret = -EINVAL;
 725	} else {
 726		if (min_ratio < bdi->min_ratio) {
 727			delta = bdi->min_ratio - min_ratio;
 728			bdi_min_ratio -= delta;
 729			bdi->min_ratio = min_ratio;
 730		} else {
 731			delta = min_ratio - bdi->min_ratio;
 732			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
 733				bdi_min_ratio += delta;
 734				bdi->min_ratio = min_ratio;
 735			} else {
 736				ret = -EINVAL;
 737			}
 738		}
 739	}
 740	spin_unlock_bh(&bdi_lock);
 741
 742	return ret;
 743}
 744
 745static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
 746{
 747	int ret = 0;
 748
 749	if (max_ratio > 100 * BDI_RATIO_SCALE)
 750		return -EINVAL;
 751
 752	spin_lock_bh(&bdi_lock);
 753	if (bdi->min_ratio > max_ratio) {
 754		ret = -EINVAL;
 755	} else {
 756		bdi->max_ratio = max_ratio;
 757		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
 758						(100 * BDI_RATIO_SCALE);
 759	}
 760	spin_unlock_bh(&bdi_lock);
 761
 762	return ret;
 763}
 764
 765int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
 766{
 767	return __bdi_set_min_ratio(bdi, min_ratio);
 768}
 769
 770int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
 771{
 772	return __bdi_set_max_ratio(bdi, max_ratio);
 773}
 774
 775int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 776{
 777	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
 778}
 779
 780int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
 781{
 782	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
 783}
 784EXPORT_SYMBOL(bdi_set_max_ratio);
 785
 786u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
 787{
 788	return bdi_get_bytes(bdi->min_ratio);
 789}
 790
 791int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
 792{
 793	int ret;
 794	unsigned long pages = min_bytes >> PAGE_SHIFT;
 795	long min_ratio;
 796
 797	ret = bdi_check_pages_limit(pages);
 798	if (ret)
 799		return ret;
 800
 801	min_ratio = bdi_ratio_from_pages(pages);
 802	if (min_ratio < 0)
 803		return min_ratio;
 804	return __bdi_set_min_ratio(bdi, min_ratio);
 805}
 806
 807u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
 808{
 809	return bdi_get_bytes(bdi->max_ratio);
 810}
 811
 812int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
 813{
 814	int ret;
 815	unsigned long pages = max_bytes >> PAGE_SHIFT;
 816	long max_ratio;
 817
 818	ret = bdi_check_pages_limit(pages);
 819	if (ret)
 820		return ret;
 821
 822	max_ratio = bdi_ratio_from_pages(pages);
 823	if (max_ratio < 0)
 824		return max_ratio;
 825	return __bdi_set_max_ratio(bdi, max_ratio);
 826}
 827
 828int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
 829{
 830	if (strict_limit > 1)
 831		return -EINVAL;
 832
 833	spin_lock_bh(&bdi_lock);
 834	if (strict_limit)
 835		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
 836	else
 837		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
 838	spin_unlock_bh(&bdi_lock);
 839
 840	return 0;
 841}
 842
 843static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 844					   unsigned long bg_thresh)
 845{
 846	return (thresh + bg_thresh) / 2;
 847}
 848
 849static unsigned long hard_dirty_limit(struct wb_domain *dom,
 850				      unsigned long thresh)
 851{
 852	return max(thresh, dom->dirty_limit);
 853}
 854
 855/*
 856 * Memory which can be further allocated to a memcg domain is capped by
 857 * system-wide clean memory excluding the amount being used in the domain.
 858 */
 859static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 860			    unsigned long filepages, unsigned long headroom)
 861{
 862	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 863	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 864	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 865	unsigned long other_clean = global_clean - min(global_clean, clean);
 866
 867	mdtc->avail = filepages + min(headroom, other_clean);
 868}
 869
 870static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
 871{
 872	return mdtc_gdtc(dtc) == NULL;
 873}
 874
 875/*
 876 * Dirty background will ignore pages being written as we're trying to
 877 * decide whether to put more under writeback.
 878 */
 879static void domain_dirty_avail(struct dirty_throttle_control *dtc,
 880			       bool include_writeback)
 881{
 882	if (dtc_is_global(dtc)) {
 883		dtc->avail = global_dirtyable_memory();
 884		dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
 885		if (include_writeback)
 886			dtc->dirty += global_node_page_state(NR_WRITEBACK);
 887	} else {
 888		unsigned long filepages = 0, headroom = 0, writeback = 0;
 889
 890		mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
 891				    &writeback);
 892		if (include_writeback)
 893			dtc->dirty += writeback;
 894		mdtc_calc_avail(dtc, filepages, headroom);
 895	}
 896}
 897
 898/**
 899 * __wb_calc_thresh - @wb's share of dirty threshold
 900 * @dtc: dirty_throttle_context of interest
 901 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
 902 *
 903 * Note that balance_dirty_pages() will only seriously take dirty throttling
 904 * threshold as a hard limit when sleeping max_pause per page is not enough
 905 * to keep the dirty pages under control. For example, when the device is
 906 * completely stalled due to some error conditions, or when there are 1000
 907 * dd tasks writing to a slow 10MB/s USB key.
 
 
 908 * In the other normal situations, it acts more gently by throttling the tasks
 909 * more (rather than completely block them) when the wb dirty pages go high.
 910 *
 911 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 912 * - starving fast devices
 913 * - piling up dirty pages (that will take long time to sync) on slow devices
 914 *
 915 * The wb's share of dirty limit will be adapting to its throughput and
 916 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 917 *
 918 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
 919 * "dirty" in the context of dirty balancing includes all PG_dirty and
 920 * PG_writeback pages.
 921 */
 922static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
 923				      unsigned long thresh)
 924{
 925	struct wb_domain *dom = dtc_dom(dtc);
 926	struct bdi_writeback *wb = dtc->wb;
 927	u64 wb_thresh;
 928	u64 wb_max_thresh;
 929	unsigned long numerator, denominator;
 930	unsigned long wb_min_ratio, wb_max_ratio;
 931
 932	/*
 933	 * Calculate this wb's share of the thresh ratio.
 934	 */
 935	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 936			      &numerator, &denominator);
 937
 938	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
 939	wb_thresh *= numerator;
 940	wb_thresh = div64_ul(wb_thresh, denominator);
 941
 942	wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
 943
 944	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
 945	wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
 946	if (wb_thresh > wb_max_thresh)
 947		wb_thresh = wb_max_thresh;
 948
 949	/*
 950	 * With strictlimit flag, the wb_thresh is treated as
 951	 * a hard limit in balance_dirty_pages() and wb_position_ratio().
 952	 * It's possible that wb_thresh is close to zero, not because
 953	 * the device is slow, but because it has been inactive.
 954	 * To prevent occasional writes from being blocked, we raise wb_thresh.
 955	 */
 956	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 957		unsigned long limit = hard_dirty_limit(dom, dtc->thresh);
 958		u64 wb_scale_thresh = 0;
 959
 960		if (limit > dtc->dirty)
 961			wb_scale_thresh = (limit - dtc->dirty) / 100;
 962		wb_thresh = max(wb_thresh, min(wb_scale_thresh, wb_max_thresh / 4));
 963	}
 964
 965	return wb_thresh;
 966}
 967
 968unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 969{
 970	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
 971
 972	return __wb_calc_thresh(&gdtc, thresh);
 973}
 974
 975unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
 976{
 977	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 978	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
 979
 980	domain_dirty_avail(&gdtc, true);
 981	domain_dirty_avail(&mdtc, true);
 982	domain_dirty_limits(&mdtc);
 983
 984	return __wb_calc_thresh(&mdtc, mdtc.thresh);
 985}
 986
 987/*
 988 *                           setpoint - dirty 3
 989 *        f(dirty) := 1.0 + (----------------)
 990 *                           limit - setpoint
 991 *
 992 * it's a 3rd order polynomial that subjects to
 993 *
 994 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 995 * (2) f(setpoint) = 1.0 => the balance point
 996 * (3) f(limit)    = 0   => the hard limit
 997 * (4) df/dx      <= 0	 => negative feedback control
 998 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 999 *     => fast response on large errors; small oscillation near setpoint
1000 */
1001static long long pos_ratio_polynom(unsigned long setpoint,
1002					  unsigned long dirty,
1003					  unsigned long limit)
1004{
1005	long long pos_ratio;
1006	long x;
1007
1008	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
1009		      (limit - setpoint) | 1);
1010	pos_ratio = x;
1011	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
1012	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
1013	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
1014
1015	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
1016}
1017
1018/*
1019 * Dirty position control.
1020 *
1021 * (o) global/bdi setpoints
1022 *
1023 * We want the dirty pages be balanced around the global/wb setpoints.
1024 * When the number of dirty pages is higher/lower than the setpoint, the
1025 * dirty position control ratio (and hence task dirty ratelimit) will be
1026 * decreased/increased to bring the dirty pages back to the setpoint.
1027 *
1028 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1029 *
1030 *     if (dirty < setpoint) scale up   pos_ratio
1031 *     if (dirty > setpoint) scale down pos_ratio
1032 *
1033 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
1034 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
1035 *
1036 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1037 *
1038 * (o) global control line
1039 *
1040 *     ^ pos_ratio
1041 *     |
1042 *     |            |<===== global dirty control scope ======>|
1043 * 2.0  * * * * * * *
1044 *     |            .*
1045 *     |            . *
1046 *     |            .   *
1047 *     |            .     *
1048 *     |            .        *
1049 *     |            .            *
1050 * 1.0 ................................*
1051 *     |            .                  .     *
1052 *     |            .                  .          *
1053 *     |            .                  .              *
1054 *     |            .                  .                 *
1055 *     |            .                  .                    *
1056 *   0 +------------.------------------.----------------------*------------->
1057 *           freerun^          setpoint^                 limit^   dirty pages
1058 *
1059 * (o) wb control line
1060 *
1061 *     ^ pos_ratio
1062 *     |
1063 *     |            *
1064 *     |              *
1065 *     |                *
1066 *     |                  *
1067 *     |                    * |<=========== span ============>|
1068 * 1.0 .......................*
1069 *     |                      . *
1070 *     |                      .   *
1071 *     |                      .     *
1072 *     |                      .       *
1073 *     |                      .         *
1074 *     |                      .           *
1075 *     |                      .             *
1076 *     |                      .               *
1077 *     |                      .                 *
1078 *     |                      .                   *
1079 *     |                      .                     *
1080 * 1/4 ...............................................* * * * * * * * * * * *
1081 *     |                      .                         .
1082 *     |                      .                           .
1083 *     |                      .                             .
1084 *   0 +----------------------.-------------------------------.------------->
1085 *                wb_setpoint^                    x_intercept^
1086 *
1087 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1088 * be smoothly throttled down to normal if it starts high in situations like
1089 * - start writing to a slow SD card and a fast disk at the same time. The SD
1090 *   card's wb_dirty may rush to many times higher than wb_setpoint.
1091 * - the wb dirty thresh drops quickly due to change of JBOD workload
1092 */
1093static void wb_position_ratio(struct dirty_throttle_control *dtc)
1094{
1095	struct bdi_writeback *wb = dtc->wb;
1096	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1097	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1098	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1099	unsigned long wb_thresh = dtc->wb_thresh;
1100	unsigned long x_intercept;
1101	unsigned long setpoint;		/* dirty pages' target balance point */
1102	unsigned long wb_setpoint;
1103	unsigned long span;
1104	long long pos_ratio;		/* for scaling up/down the rate limit */
1105	long x;
1106
1107	dtc->pos_ratio = 0;
1108
1109	if (unlikely(dtc->dirty >= limit))
1110		return;
1111
1112	/*
1113	 * global setpoint
1114	 *
1115	 * See comment for pos_ratio_polynom().
1116	 */
1117	setpoint = (freerun + limit) / 2;
1118	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1119
1120	/*
1121	 * The strictlimit feature is a tool preventing mistrusted filesystems
1122	 * from growing a large number of dirty pages before throttling. For
1123	 * such filesystems balance_dirty_pages always checks wb counters
1124	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1125	 * This is especially important for fuse which sets bdi->max_ratio to
1126	 * 1% by default. Without strictlimit feature, fuse writeback may
1127	 * consume arbitrary amount of RAM because it is accounted in
1128	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1129	 *
1130	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1131	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1132	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1133	 * limits are set by default to 10% and 20% (background and throttle).
1134	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1135	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1136	 * about ~6K pages (as the average of background and throttle wb
1137	 * limits). The 3rd order polynomial will provide positive feedback if
1138	 * wb_dirty is under wb_setpoint and vice versa.
1139	 *
1140	 * Note, that we cannot use global counters in these calculations
1141	 * because we want to throttle process writing to a strictlimit wb
1142	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1143	 * in the example above).
1144	 */
1145	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1146		long long wb_pos_ratio;
1147
1148		if (dtc->wb_dirty < 8) {
1149			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1150					   2 << RATELIMIT_CALC_SHIFT);
1151			return;
1152		}
1153
1154		if (dtc->wb_dirty >= wb_thresh)
1155			return;
1156
1157		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1158						    dtc->wb_bg_thresh);
1159
1160		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1161			return;
1162
1163		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1164						 wb_thresh);
1165
1166		/*
1167		 * Typically, for strictlimit case, wb_setpoint << setpoint
1168		 * and pos_ratio >> wb_pos_ratio. In the other words global
1169		 * state ("dirty") is not limiting factor and we have to
1170		 * make decision based on wb counters. But there is an
1171		 * important case when global pos_ratio should get precedence:
1172		 * global limits are exceeded (e.g. due to activities on other
1173		 * wb's) while given strictlimit wb is below limit.
1174		 *
1175		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1176		 * but it would look too non-natural for the case of all
1177		 * activity in the system coming from a single strictlimit wb
1178		 * with bdi->max_ratio == 100%.
1179		 *
1180		 * Note that min() below somewhat changes the dynamics of the
1181		 * control system. Normally, pos_ratio value can be well over 3
1182		 * (when globally we are at freerun and wb is well below wb
1183		 * setpoint). Now the maximum pos_ratio in the same situation
1184		 * is 2. We might want to tweak this if we observe the control
1185		 * system is too slow to adapt.
1186		 */
1187		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1188		return;
1189	}
1190
1191	/*
1192	 * We have computed basic pos_ratio above based on global situation. If
1193	 * the wb is over/under its share of dirty pages, we want to scale
1194	 * pos_ratio further down/up. That is done by the following mechanism.
1195	 */
1196
1197	/*
1198	 * wb setpoint
1199	 *
1200	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1201	 *
1202	 *                        x_intercept - wb_dirty
1203	 *                     := --------------------------
1204	 *                        x_intercept - wb_setpoint
1205	 *
1206	 * The main wb control line is a linear function that subjects to
1207	 *
1208	 * (1) f(wb_setpoint) = 1.0
1209	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1210	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1211	 *
1212	 * For single wb case, the dirty pages are observed to fluctuate
1213	 * regularly within range
1214	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1215	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1216	 * fluctuation range for pos_ratio.
1217	 *
1218	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1219	 * own size, so move the slope over accordingly and choose a slope that
1220	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1221	 */
1222	if (unlikely(wb_thresh > dtc->thresh))
1223		wb_thresh = dtc->thresh;
1224	/*
1225	 * It's very possible that wb_thresh is close to 0 not because the
1226	 * device is slow, but that it has remained inactive for long time.
1227	 * Honour such devices a reasonable good (hopefully IO efficient)
1228	 * threshold, so that the occasional writes won't be blocked and active
1229	 * writes can rampup the threshold quickly.
1230	 */
1231	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1232	/*
1233	 * scale global setpoint to wb's:
1234	 *	wb_setpoint = setpoint * wb_thresh / thresh
1235	 */
1236	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1237	wb_setpoint = setpoint * (u64)x >> 16;
1238	/*
1239	 * Use span=(8*write_bw) in single wb case as indicated by
1240	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1241	 *
1242	 *        wb_thresh                    thresh - wb_thresh
1243	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1244	 *         thresh                           thresh
1245	 */
1246	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1247	x_intercept = wb_setpoint + span;
1248
1249	if (dtc->wb_dirty < x_intercept - span / 4) {
1250		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1251				      (x_intercept - wb_setpoint) | 1);
1252	} else
1253		pos_ratio /= 4;
1254
1255	/*
1256	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1257	 * It may push the desired control point of global dirty pages higher
1258	 * than setpoint.
1259	 */
1260	x_intercept = wb_thresh / 2;
1261	if (dtc->wb_dirty < x_intercept) {
1262		if (dtc->wb_dirty > x_intercept / 8)
1263			pos_ratio = div_u64(pos_ratio * x_intercept,
1264					    dtc->wb_dirty);
1265		else
1266			pos_ratio *= 8;
1267	}
1268
1269	dtc->pos_ratio = pos_ratio;
1270}
1271
1272static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1273				      unsigned long elapsed,
1274				      unsigned long written)
1275{
1276	const unsigned long period = roundup_pow_of_two(3 * HZ);
1277	unsigned long avg = wb->avg_write_bandwidth;
1278	unsigned long old = wb->write_bandwidth;
1279	u64 bw;
1280
1281	/*
1282	 * bw = written * HZ / elapsed
1283	 *
1284	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1285	 * write_bandwidth = ---------------------------------------------------
1286	 *                                          period
1287	 *
1288	 * @written may have decreased due to folio_redirty_for_writepage().
1289	 * Avoid underflowing @bw calculation.
1290	 */
1291	bw = written - min(written, wb->written_stamp);
1292	bw *= HZ;
1293	if (unlikely(elapsed > period)) {
1294		bw = div64_ul(bw, elapsed);
1295		avg = bw;
1296		goto out;
1297	}
1298	bw += (u64)wb->write_bandwidth * (period - elapsed);
1299	bw >>= ilog2(period);
1300
1301	/*
1302	 * one more level of smoothing, for filtering out sudden spikes
1303	 */
1304	if (avg > old && old >= (unsigned long)bw)
1305		avg -= (avg - old) >> 3;
1306
1307	if (avg < old && old <= (unsigned long)bw)
1308		avg += (old - avg) >> 3;
1309
1310out:
1311	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1312	avg = max(avg, 1LU);
1313	if (wb_has_dirty_io(wb)) {
1314		long delta = avg - wb->avg_write_bandwidth;
1315		WARN_ON_ONCE(atomic_long_add_return(delta,
1316					&wb->bdi->tot_write_bandwidth) <= 0);
1317	}
1318	wb->write_bandwidth = bw;
1319	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1320}
1321
1322static void update_dirty_limit(struct dirty_throttle_control *dtc)
1323{
1324	struct wb_domain *dom = dtc_dom(dtc);
1325	unsigned long thresh = dtc->thresh;
1326	unsigned long limit = dom->dirty_limit;
1327
1328	/*
1329	 * Follow up in one step.
1330	 */
1331	if (limit < thresh) {
1332		limit = thresh;
1333		goto update;
1334	}
1335
1336	/*
1337	 * Follow down slowly. Use the higher one as the target, because thresh
1338	 * may drop below dirty. This is exactly the reason to introduce
1339	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1340	 */
1341	thresh = max(thresh, dtc->dirty);
1342	if (limit > thresh) {
1343		limit -= (limit - thresh) >> 5;
1344		goto update;
1345	}
1346	return;
1347update:
1348	dom->dirty_limit = limit;
1349}
1350
1351static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1352				      unsigned long now)
1353{
1354	struct wb_domain *dom = dtc_dom(dtc);
1355
1356	/*
1357	 * check locklessly first to optimize away locking for the most time
1358	 */
1359	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1360		return;
1361
1362	spin_lock(&dom->lock);
1363	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1364		update_dirty_limit(dtc);
1365		dom->dirty_limit_tstamp = now;
1366	}
1367	spin_unlock(&dom->lock);
1368}
1369
1370/*
1371 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1372 *
1373 * Normal wb tasks will be curbed at or below it in long term.
1374 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1375 */
1376static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1377				      unsigned long dirtied,
1378				      unsigned long elapsed)
1379{
1380	struct bdi_writeback *wb = dtc->wb;
1381	unsigned long dirty = dtc->dirty;
1382	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1383	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1384	unsigned long setpoint = (freerun + limit) / 2;
1385	unsigned long write_bw = wb->avg_write_bandwidth;
1386	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1387	unsigned long dirty_rate;
1388	unsigned long task_ratelimit;
1389	unsigned long balanced_dirty_ratelimit;
1390	unsigned long step;
1391	unsigned long x;
1392	unsigned long shift;
1393
1394	/*
1395	 * The dirty rate will match the writeout rate in long term, except
1396	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1397	 */
1398	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1399
1400	/*
1401	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1402	 */
1403	task_ratelimit = (u64)dirty_ratelimit *
1404					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1405	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1406
1407	/*
1408	 * A linear estimation of the "balanced" throttle rate. The theory is,
1409	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1410	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1411	 * formula will yield the balanced rate limit (write_bw / N).
1412	 *
1413	 * Note that the expanded form is not a pure rate feedback:
1414	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1415	 * but also takes pos_ratio into account:
1416	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1417	 *
1418	 * (1) is not realistic because pos_ratio also takes part in balancing
1419	 * the dirty rate.  Consider the state
1420	 *	pos_ratio = 0.5						     (3)
1421	 *	rate = 2 * (write_bw / N)				     (4)
1422	 * If (1) is used, it will stuck in that state! Because each dd will
1423	 * be throttled at
1424	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1425	 * yielding
1426	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1427	 * put (6) into (1) we get
1428	 *	rate_(i+1) = rate_(i)					     (7)
1429	 *
1430	 * So we end up using (2) to always keep
1431	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1432	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1433	 * pos_ratio is able to drive itself to 1.0, which is not only where
1434	 * the dirty count meet the setpoint, but also where the slope of
1435	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1436	 */
1437	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1438					   dirty_rate | 1);
1439	/*
1440	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1441	 */
1442	if (unlikely(balanced_dirty_ratelimit > write_bw))
1443		balanced_dirty_ratelimit = write_bw;
1444
1445	/*
1446	 * We could safely do this and return immediately:
1447	 *
1448	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1449	 *
1450	 * However to get a more stable dirty_ratelimit, the below elaborated
1451	 * code makes use of task_ratelimit to filter out singular points and
1452	 * limit the step size.
1453	 *
1454	 * The below code essentially only uses the relative value of
1455	 *
1456	 *	task_ratelimit - dirty_ratelimit
1457	 *	= (pos_ratio - 1) * dirty_ratelimit
1458	 *
1459	 * which reflects the direction and size of dirty position error.
1460	 */
1461
1462	/*
1463	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1464	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1465	 * For example, when
1466	 * - dirty_ratelimit > balanced_dirty_ratelimit
1467	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1468	 * lowering dirty_ratelimit will help meet both the position and rate
1469	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1470	 * only help meet the rate target. After all, what the users ultimately
1471	 * feel and care are stable dirty rate and small position error.
1472	 *
1473	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1474	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1475	 * keeps jumping around randomly and can even leap far away at times
1476	 * due to the small 200ms estimation period of dirty_rate (we want to
1477	 * keep that period small to reduce time lags).
1478	 */
1479	step = 0;
1480
1481	/*
1482	 * For strictlimit case, calculations above were based on wb counters
1483	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1484	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1485	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1486	 * "dirty" and wb_setpoint as "setpoint".
1487	 *
1488	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1489	 * it's possible that wb_thresh is close to zero due to inactivity
1490	 * of backing device.
1491	 */
1492	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1493		dirty = dtc->wb_dirty;
1494		if (dtc->wb_dirty < 8)
1495			setpoint = dtc->wb_dirty + 1;
1496		else
1497			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1498	}
1499
1500	if (dirty < setpoint) {
1501		x = min3(wb->balanced_dirty_ratelimit,
1502			 balanced_dirty_ratelimit, task_ratelimit);
1503		if (dirty_ratelimit < x)
1504			step = x - dirty_ratelimit;
1505	} else {
1506		x = max3(wb->balanced_dirty_ratelimit,
1507			 balanced_dirty_ratelimit, task_ratelimit);
1508		if (dirty_ratelimit > x)
1509			step = dirty_ratelimit - x;
1510	}
1511
1512	/*
1513	 * Don't pursue 100% rate matching. It's impossible since the balanced
1514	 * rate itself is constantly fluctuating. So decrease the track speed
1515	 * when it gets close to the target. Helps eliminate pointless tremors.
1516	 */
1517	shift = dirty_ratelimit / (2 * step + 1);
1518	if (shift < BITS_PER_LONG)
1519		step = DIV_ROUND_UP(step >> shift, 8);
1520	else
1521		step = 0;
1522
1523	if (dirty_ratelimit < balanced_dirty_ratelimit)
1524		dirty_ratelimit += step;
1525	else
1526		dirty_ratelimit -= step;
1527
1528	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1529	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1530
1531	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1532}
1533
1534static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1535				  struct dirty_throttle_control *mdtc,
 
1536				  bool update_ratelimit)
1537{
1538	struct bdi_writeback *wb = gdtc->wb;
1539	unsigned long now = jiffies;
1540	unsigned long elapsed;
1541	unsigned long dirtied;
1542	unsigned long written;
1543
1544	spin_lock(&wb->list_lock);
1545
1546	/*
1547	 * Lockless checks for elapsed time are racy and delayed update after
1548	 * IO completion doesn't do it at all (to make sure written pages are
1549	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1550	 * division errors.
1551	 */
1552	elapsed = max(now - wb->bw_time_stamp, 1UL);
 
 
1553	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1554	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1555
 
 
 
 
 
 
 
1556	if (update_ratelimit) {
1557		domain_update_dirty_limit(gdtc, now);
1558		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1559
1560		/*
1561		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1562		 * compiler has no way to figure that out.  Help it.
1563		 */
1564		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1565			domain_update_dirty_limit(mdtc, now);
1566			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1567		}
1568	}
1569	wb_update_write_bandwidth(wb, elapsed, written);
1570
 
1571	wb->dirtied_stamp = dirtied;
1572	wb->written_stamp = written;
1573	WRITE_ONCE(wb->bw_time_stamp, now);
1574	spin_unlock(&wb->list_lock);
1575}
1576
1577void wb_update_bandwidth(struct bdi_writeback *wb)
1578{
1579	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1580
1581	__wb_update_bandwidth(&gdtc, NULL, false);
1582}
1583
1584/* Interval after which we consider wb idle and don't estimate bandwidth */
1585#define WB_BANDWIDTH_IDLE_JIF (HZ)
1586
1587static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1588{
1589	unsigned long now = jiffies;
1590	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1591
1592	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1593	    !atomic_read(&wb->writeback_inodes)) {
1594		spin_lock(&wb->list_lock);
1595		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1596		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1597		WRITE_ONCE(wb->bw_time_stamp, now);
1598		spin_unlock(&wb->list_lock);
1599	}
1600}
1601
1602/*
1603 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1604 * will look to see if it needs to start dirty throttling.
1605 *
1606 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1607 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1608 * (the number of pages we may dirty without exceeding the dirty limits).
1609 */
1610static unsigned long dirty_poll_interval(unsigned long dirty,
1611					 unsigned long thresh)
1612{
1613	if (thresh > dirty)
1614		return 1UL << (ilog2(thresh - dirty) >> 1);
1615
1616	return 1;
1617}
1618
1619static unsigned long wb_max_pause(struct bdi_writeback *wb,
1620				  unsigned long wb_dirty)
1621{
1622	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1623	unsigned long t;
1624
1625	/*
1626	 * Limit pause time for small memory systems. If sleeping for too long
1627	 * time, a small pool of dirty/writeback pages may go empty and disk go
1628	 * idle.
1629	 *
1630	 * 8 serves as the safety ratio.
1631	 */
1632	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1633	t++;
1634
1635	return min_t(unsigned long, t, MAX_PAUSE);
1636}
1637
1638static long wb_min_pause(struct bdi_writeback *wb,
1639			 long max_pause,
1640			 unsigned long task_ratelimit,
1641			 unsigned long dirty_ratelimit,
1642			 int *nr_dirtied_pause)
1643{
1644	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1645	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1646	long t;		/* target pause */
1647	long pause;	/* estimated next pause */
1648	int pages;	/* target nr_dirtied_pause */
1649
1650	/* target for 10ms pause on 1-dd case */
1651	t = max(1, HZ / 100);
1652
1653	/*
1654	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1655	 * overheads.
1656	 *
1657	 * (N * 10ms) on 2^N concurrent tasks.
1658	 */
1659	if (hi > lo)
1660		t += (hi - lo) * (10 * HZ) / 1024;
1661
1662	/*
1663	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1664	 * on the much more stable dirty_ratelimit. However the next pause time
1665	 * will be computed based on task_ratelimit and the two rate limits may
1666	 * depart considerably at some time. Especially if task_ratelimit goes
1667	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1668	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1669	 * result task_ratelimit won't be executed faithfully, which could
1670	 * eventually bring down dirty_ratelimit.
1671	 *
1672	 * We apply two rules to fix it up:
1673	 * 1) try to estimate the next pause time and if necessary, use a lower
1674	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1675	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1676	 * 2) limit the target pause time to max_pause/2, so that the normal
1677	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1678	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1679	 */
1680	t = min(t, 1 + max_pause / 2);
1681	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1682
1683	/*
1684	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1685	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1686	 * When the 16 consecutive reads are often interrupted by some dirty
1687	 * throttling pause during the async writes, cfq will go into idles
1688	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1689	 * until reaches DIRTY_POLL_THRESH=32 pages.
1690	 */
1691	if (pages < DIRTY_POLL_THRESH) {
1692		t = max_pause;
1693		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1694		if (pages > DIRTY_POLL_THRESH) {
1695			pages = DIRTY_POLL_THRESH;
1696			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1697		}
1698	}
1699
1700	pause = HZ * pages / (task_ratelimit + 1);
1701	if (pause > max_pause) {
1702		t = max_pause;
1703		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1704	}
1705
1706	*nr_dirtied_pause = pages;
1707	/*
1708	 * The minimal pause time will normally be half the target pause time.
1709	 */
1710	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1711}
1712
1713static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1714{
1715	struct bdi_writeback *wb = dtc->wb;
1716	unsigned long wb_reclaimable;
1717
1718	/*
1719	 * wb_thresh is not treated as some limiting factor as
1720	 * dirty_thresh, due to reasons
1721	 * - in JBOD setup, wb_thresh can fluctuate a lot
1722	 * - in a system with HDD and USB key, the USB key may somehow
1723	 *   go into state (wb_dirty >> wb_thresh) either because
1724	 *   wb_dirty starts high, or because wb_thresh drops low.
1725	 *   In this case we don't want to hard throttle the USB key
1726	 *   dirtiers for 100 seconds until wb_dirty drops under
1727	 *   wb_thresh. Instead the auxiliary wb control line in
1728	 *   wb_position_ratio() will let the dirtier task progress
1729	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1730	 */
1731	dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1732	dtc->wb_bg_thresh = dtc->thresh ?
1733		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1734
1735	/*
1736	 * In order to avoid the stacked BDI deadlock we need
1737	 * to ensure we accurately count the 'dirty' pages when
1738	 * the threshold is low.
1739	 *
1740	 * Otherwise it would be possible to get thresh+n pages
1741	 * reported dirty, even though there are thresh-m pages
1742	 * actually dirty; with m+n sitting in the percpu
1743	 * deltas.
1744	 */
1745	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1746		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1747		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1748	} else {
1749		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1750		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1751	}
1752}
1753
1754static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1755				      bool strictlimit)
1756{
1757	unsigned long dirty, thresh;
1758
1759	if (strictlimit) {
1760		dirty = dtc->wb_dirty;
1761		thresh = dtc->wb_thresh;
1762	} else {
1763		dirty = dtc->dirty;
1764		thresh = dtc->thresh;
1765	}
1766
1767	return dirty_poll_interval(dirty, thresh);
1768}
1769
1770/*
1771 * Throttle it only when the background writeback cannot catch-up. This avoids
1772 * (excessively) small writeouts when the wb limits are ramping up in case of
1773 * !strictlimit.
1774 *
1775 * In strictlimit case make decision based on the wb counters and limits. Small
1776 * writeouts when the wb limits are ramping up are the price we consciously pay
1777 * for strictlimit-ing.
1778 */
1779static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1780				 bool strictlimit)
1781{
1782	unsigned long dirty, thresh, bg_thresh;
1783
1784	if (unlikely(strictlimit)) {
1785		wb_dirty_limits(dtc);
1786		dirty = dtc->wb_dirty;
1787		thresh = dtc->wb_thresh;
1788		bg_thresh = dtc->wb_bg_thresh;
1789	} else {
1790		dirty = dtc->dirty;
1791		thresh = dtc->thresh;
1792		bg_thresh = dtc->bg_thresh;
1793	}
1794	dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1795}
1796
1797static void balance_domain_limits(struct dirty_throttle_control *dtc,
1798				  bool strictlimit)
1799{
1800	domain_dirty_avail(dtc, true);
1801	domain_dirty_limits(dtc);
1802	domain_dirty_freerun(dtc, strictlimit);
1803}
1804
1805static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1806			     bool strictlimit)
1807{
1808	dtc->freerun = false;
1809
1810	/* was already handled in domain_dirty_freerun */
1811	if (strictlimit)
1812		return;
1813
1814	wb_dirty_limits(dtc);
1815	/*
1816	 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1817	 * freerun ceiling.
1818	 */
1819	if (!(current->flags & PF_LOCAL_THROTTLE))
1820		return;
1821
1822	dtc->freerun = dtc->wb_dirty <
1823		       dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1824}
1825
1826static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1827				     bool strictlimit)
1828{
1829	dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1830		((dtc->dirty > dtc->thresh) || strictlimit);
1831}
1832
1833/*
1834 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1835 * in freerun state. Please don't use these invalid fields in freerun case.
1836 */
1837static void balance_wb_limits(struct dirty_throttle_control *dtc,
1838			      bool strictlimit)
1839{
1840	wb_dirty_freerun(dtc, strictlimit);
1841	if (dtc->freerun)
1842		return;
1843
1844	wb_dirty_exceeded(dtc, strictlimit);
1845	wb_position_ratio(dtc);
1846}
1847
1848/*
1849 * balance_dirty_pages() must be called by processes which are generating dirty
1850 * data.  It looks at the number of dirty pages in the machine and will force
1851 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1852 * If we're over `background_thresh' then the writeback threads are woken to
1853 * perform some writeout.
1854 */
1855static int balance_dirty_pages(struct bdi_writeback *wb,
1856			       unsigned long pages_dirtied, unsigned int flags)
 
1857{
1858	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1859	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1860	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1861	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1862						     &mdtc_stor : NULL;
1863	struct dirty_throttle_control *sdtc;
1864	unsigned long nr_dirty;
1865	long period;
1866	long pause;
1867	long max_pause;
1868	long min_pause;
1869	int nr_dirtied_pause;
 
1870	unsigned long task_ratelimit;
1871	unsigned long dirty_ratelimit;
1872	struct backing_dev_info *bdi = wb->bdi;
1873	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1874	unsigned long start_time = jiffies;
1875	int ret = 0;
1876
1877	for (;;) {
1878		unsigned long now = jiffies;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1879
1880		nr_dirty = global_node_page_state(NR_FILE_DIRTY);
 
1881
1882		balance_domain_limits(gdtc, strictlimit);
1883		if (mdtc) {
1884			/*
1885			 * If @wb belongs to !root memcg, repeat the same
1886			 * basic calculations for the memcg domain.
1887			 */
1888			balance_domain_limits(mdtc, strictlimit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889		}
1890
1891		/*
1892		 * In laptop mode, we wait until hitting the higher threshold
1893		 * before starting background writeout, and then write out all
1894		 * the way down to the lower threshold.  So slow writers cause
1895		 * minimal disk activity.
 
 
 
1896		 *
1897		 * In normal mode, we start background writeout at the lower
1898		 * background_thresh, to keep the amount of dirty memory low.
1899		 */
1900		if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1901		    !writeback_in_progress(wb))
1902			wb_start_background_writeback(wb);
1903
1904		/*
1905		 * If memcg domain is in effect, @dirty should be under
1906		 * both global and memcg freerun ceilings.
1907		 */
1908		if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1909			unsigned long intv;
1910			unsigned long m_intv;
1911
1912free_running:
1913			intv = domain_poll_intv(gdtc, strictlimit);
1914			m_intv = ULONG_MAX;
1915
1916			current->dirty_paused_when = now;
1917			current->nr_dirtied = 0;
1918			if (mdtc)
1919				m_intv = domain_poll_intv(mdtc, strictlimit);
1920			current->nr_dirtied_pause = min(intv, m_intv);
1921			break;
1922		}
1923
1924		/* Start writeback even when in laptop mode */
1925		if (unlikely(!writeback_in_progress(wb)))
1926			wb_start_background_writeback(wb);
1927
1928		mem_cgroup_flush_foreign(wb);
1929
1930		/*
1931		 * Calculate global domain's pos_ratio and select the
1932		 * global dtc by default.
1933		 */
1934		balance_wb_limits(gdtc, strictlimit);
1935		if (gdtc->freerun)
1936			goto free_running;
 
 
 
 
1937		sdtc = gdtc;
1938
1939		if (mdtc) {
1940			/*
1941			 * If memcg domain is in effect, calculate its
1942			 * pos_ratio.  @wb should satisfy constraints from
1943			 * both global and memcg domains.  Choose the one
1944			 * w/ lower pos_ratio.
1945			 */
1946			balance_wb_limits(mdtc, strictlimit);
1947			if (mdtc->freerun)
1948				goto free_running;
 
 
 
 
1949			if (mdtc->pos_ratio < gdtc->pos_ratio)
1950				sdtc = mdtc;
1951		}
1952
1953		wb->dirty_exceeded = gdtc->dirty_exceeded ||
1954				     (mdtc && mdtc->dirty_exceeded);
1955		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1956					   BANDWIDTH_INTERVAL))
1957			__wb_update_bandwidth(gdtc, mdtc, true);
 
 
 
 
1958
1959		/* throttle according to the chosen dtc */
1960		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1961		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1962							RATELIMIT_CALC_SHIFT;
1963		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1964		min_pause = wb_min_pause(wb, max_pause,
1965					 task_ratelimit, dirty_ratelimit,
1966					 &nr_dirtied_pause);
1967
1968		if (unlikely(task_ratelimit == 0)) {
1969			period = max_pause;
1970			pause = max_pause;
1971			goto pause;
1972		}
1973		period = HZ * pages_dirtied / task_ratelimit;
1974		pause = period;
1975		if (current->dirty_paused_when)
1976			pause -= now - current->dirty_paused_when;
1977		/*
1978		 * For less than 1s think time (ext3/4 may block the dirtier
1979		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1980		 * however at much less frequency), try to compensate it in
1981		 * future periods by updating the virtual time; otherwise just
1982		 * do a reset, as it may be a light dirtier.
1983		 */
1984		if (pause < min_pause) {
1985			trace_balance_dirty_pages(wb,
1986						  sdtc->thresh,
1987						  sdtc->bg_thresh,
1988						  sdtc->dirty,
1989						  sdtc->wb_thresh,
1990						  sdtc->wb_dirty,
1991						  dirty_ratelimit,
1992						  task_ratelimit,
1993						  pages_dirtied,
1994						  period,
1995						  min(pause, 0L),
1996						  start_time);
1997			if (pause < -HZ) {
1998				current->dirty_paused_when = now;
1999				current->nr_dirtied = 0;
2000			} else if (period) {
2001				current->dirty_paused_when += period;
2002				current->nr_dirtied = 0;
2003			} else if (current->nr_dirtied_pause <= pages_dirtied)
2004				current->nr_dirtied_pause += pages_dirtied;
2005			break;
2006		}
2007		if (unlikely(pause > max_pause)) {
2008			/* for occasional dropped task_ratelimit */
2009			now += min(pause - max_pause, max_pause);
2010			pause = max_pause;
2011		}
2012
2013pause:
2014		trace_balance_dirty_pages(wb,
2015					  sdtc->thresh,
2016					  sdtc->bg_thresh,
2017					  sdtc->dirty,
2018					  sdtc->wb_thresh,
2019					  sdtc->wb_dirty,
2020					  dirty_ratelimit,
2021					  task_ratelimit,
2022					  pages_dirtied,
2023					  period,
2024					  pause,
2025					  start_time);
2026		if (flags & BDP_ASYNC) {
2027			ret = -EAGAIN;
2028			break;
2029		}
2030		__set_current_state(TASK_KILLABLE);
2031		bdi->last_bdp_sleep = jiffies;
2032		io_schedule_timeout(pause);
2033
2034		current->dirty_paused_when = now + pause;
2035		current->nr_dirtied = 0;
2036		current->nr_dirtied_pause = nr_dirtied_pause;
2037
2038		/*
2039		 * This is typically equal to (dirty < thresh) and can also
2040		 * keep "1000+ dd on a slow USB stick" under control.
2041		 */
2042		if (task_ratelimit)
2043			break;
2044
2045		/*
2046		 * In the case of an unresponsive NFS server and the NFS dirty
2047		 * pages exceeds dirty_thresh, give the other good wb's a pipe
2048		 * to go through, so that tasks on them still remain responsive.
2049		 *
2050		 * In theory 1 page is enough to keep the consumer-producer
2051		 * pipe going: the flusher cleans 1 page => the task dirties 1
2052		 * more page. However wb_dirty has accounting errors.  So use
2053		 * the larger and more IO friendly wb_stat_error.
2054		 */
2055		if (sdtc->wb_dirty <= wb_stat_error())
2056			break;
2057
2058		if (fatal_signal_pending(current))
2059			break;
2060	}
2061	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2062}
2063
2064static DEFINE_PER_CPU(int, bdp_ratelimits);
2065
2066/*
2067 * Normal tasks are throttled by
2068 *	loop {
2069 *		dirty tsk->nr_dirtied_pause pages;
2070 *		take a snap in balance_dirty_pages();
2071 *	}
2072 * However there is a worst case. If every task exit immediately when dirtied
2073 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2074 * called to throttle the page dirties. The solution is to save the not yet
2075 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2076 * randomly into the running tasks. This works well for the above worst case,
2077 * as the new task will pick up and accumulate the old task's leaked dirty
2078 * count and eventually get throttled.
2079 */
2080DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2081
2082/**
2083 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2084 * @mapping: address_space which was dirtied.
2085 * @flags: BDP flags.
2086 *
2087 * Processes which are dirtying memory should call in here once for each page
2088 * which was newly dirtied.  The function will periodically check the system's
2089 * dirty state and will initiate writeback if needed.
2090 *
2091 * See balance_dirty_pages_ratelimited() for details.
2092 *
2093 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2094 * indicate that memory is out of balance and the caller must wait
2095 * for I/O to complete.  Otherwise, it will return 0 to indicate
2096 * that either memory was already in balance, or it was able to sleep
2097 * until the amount of dirty memory returned to balance.
2098 */
2099int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2100					unsigned int flags)
2101{
2102	struct inode *inode = mapping->host;
2103	struct backing_dev_info *bdi = inode_to_bdi(inode);
2104	struct bdi_writeback *wb = NULL;
2105	int ratelimit;
2106	int ret = 0;
2107	int *p;
2108
2109	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2110		return ret;
2111
2112	if (inode_cgwb_enabled(inode))
2113		wb = wb_get_create_current(bdi, GFP_KERNEL);
2114	if (!wb)
2115		wb = &bdi->wb;
2116
2117	ratelimit = current->nr_dirtied_pause;
2118	if (wb->dirty_exceeded)
2119		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2120
2121	preempt_disable();
2122	/*
2123	 * This prevents one CPU to accumulate too many dirtied pages without
2124	 * calling into balance_dirty_pages(), which can happen when there are
2125	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2126	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2127	 */
2128	p =  this_cpu_ptr(&bdp_ratelimits);
2129	if (unlikely(current->nr_dirtied >= ratelimit))
2130		*p = 0;
2131	else if (unlikely(*p >= ratelimit_pages)) {
2132		*p = 0;
2133		ratelimit = 0;
2134	}
2135	/*
2136	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2137	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2138	 * the dirty throttling and livelock other long-run dirtiers.
2139	 */
2140	p = this_cpu_ptr(&dirty_throttle_leaks);
2141	if (*p > 0 && current->nr_dirtied < ratelimit) {
2142		unsigned long nr_pages_dirtied;
2143		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2144		*p -= nr_pages_dirtied;
2145		current->nr_dirtied += nr_pages_dirtied;
2146	}
2147	preempt_enable();
2148
2149	if (unlikely(current->nr_dirtied >= ratelimit))
2150		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2151
2152	wb_put(wb);
2153	return ret;
2154}
2155EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2156
2157/**
2158 * balance_dirty_pages_ratelimited - balance dirty memory state.
2159 * @mapping: address_space which was dirtied.
2160 *
2161 * Processes which are dirtying memory should call in here once for each page
2162 * which was newly dirtied.  The function will periodically check the system's
2163 * dirty state and will initiate writeback if needed.
2164 *
2165 * Once we're over the dirty memory limit we decrease the ratelimiting
2166 * by a lot, to prevent individual processes from overshooting the limit
2167 * by (ratelimit_pages) each.
2168 */
2169void balance_dirty_pages_ratelimited(struct address_space *mapping)
2170{
2171	balance_dirty_pages_ratelimited_flags(mapping, 0);
2172}
2173EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
 
 
2174
2175/*
2176 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2177 * and thresh, but it's for background writeback.
2178 */
2179static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2180{
2181	struct bdi_writeback *wb = dtc->wb;
 
2182
2183	dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2184	if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2185		dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2186	else
2187		dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2188}
2189
2190static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2191{
2192	domain_dirty_avail(dtc, false);
2193	domain_dirty_limits(dtc);
2194	if (dtc->dirty > dtc->bg_thresh)
2195		return true;
2196
2197	wb_bg_dirty_limits(dtc);
2198	if (dtc->wb_dirty > dtc->wb_bg_thresh)
2199		return true;
 
 
 
 
 
 
 
 
 
 
 
 
2200
2201	return false;
2202}
2203
2204/**
2205 * wb_over_bg_thresh - does @wb need to be written back?
2206 * @wb: bdi_writeback of interest
2207 *
2208 * Determines whether background writeback should keep writing @wb or it's
2209 * clean enough.
2210 *
2211 * Return: %true if writeback should continue.
2212 */
2213bool wb_over_bg_thresh(struct bdi_writeback *wb)
2214{
2215	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2216	struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2217
2218	if (domain_over_bg_thresh(&gdtc))
2219		return true;
2220
2221	if (mdtc_valid(&mdtc))
2222		return domain_over_bg_thresh(&mdtc);
2223
2224	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2225}
2226
2227#ifdef CONFIG_SYSCTL
2228/*
2229 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2230 */
2231static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2232		void *buffer, size_t *length, loff_t *ppos)
2233{
2234	unsigned int old_interval = dirty_writeback_interval;
2235	int ret;
 
2236
2237	ret = proc_dointvec(table, write, buffer, length, ppos);
 
 
 
 
 
 
2238
2239	/*
2240	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2241	 * and a different non-zero value will wakeup the writeback threads.
2242	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2243	 * iterate over all bdis and wbs.
2244	 * The reason we do this is to make the change take effect immediately.
2245	 */
2246	if (!ret && write && dirty_writeback_interval &&
2247		dirty_writeback_interval != old_interval)
2248		wakeup_flusher_threads(WB_REASON_PERIODIC);
2249
2250	return ret;
2251}
2252#endif
2253
2254void laptop_mode_timer_fn(struct timer_list *t)
2255{
2256	struct backing_dev_info *backing_dev_info =
2257		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2258
2259	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2260}
2261
2262/*
2263 * We've spun up the disk and we're in laptop mode: schedule writeback
2264 * of all dirty data a few seconds from now.  If the flush is already scheduled
2265 * then push it back - the user is still using the disk.
2266 */
2267void laptop_io_completion(struct backing_dev_info *info)
2268{
2269	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2270}
2271
2272/*
2273 * We're in laptop mode and we've just synced. The sync's writes will have
2274 * caused another writeback to be scheduled by laptop_io_completion.
2275 * Nothing needs to be written back anymore, so we unschedule the writeback.
2276 */
2277void laptop_sync_completion(void)
2278{
2279	struct backing_dev_info *bdi;
2280
2281	rcu_read_lock();
2282
2283	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2284		del_timer(&bdi->laptop_mode_wb_timer);
2285
2286	rcu_read_unlock();
2287}
 
2288
2289/*
2290 * If ratelimit_pages is too high then we can get into dirty-data overload
2291 * if a large number of processes all perform writes at the same time.
 
 
2292 *
2293 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2294 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2295 * thresholds.
2296 */
2297
2298void writeback_set_ratelimit(void)
2299{
2300	struct wb_domain *dom = &global_wb_domain;
2301	unsigned long background_thresh;
2302	unsigned long dirty_thresh;
2303
2304	global_dirty_limits(&background_thresh, &dirty_thresh);
2305	dom->dirty_limit = dirty_thresh;
2306	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2307	if (ratelimit_pages < 16)
2308		ratelimit_pages = 16;
2309}
2310
2311static int page_writeback_cpu_online(unsigned int cpu)
 
 
2312{
2313	writeback_set_ratelimit();
2314	return 0;
 
 
 
 
 
 
 
2315}
2316
2317#ifdef CONFIG_SYSCTL
2318
2319/* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2320static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2321
2322static struct ctl_table vm_page_writeback_sysctls[] = {
2323	{
2324		.procname   = "dirty_background_ratio",
2325		.data       = &dirty_background_ratio,
2326		.maxlen     = sizeof(dirty_background_ratio),
2327		.mode       = 0644,
2328		.proc_handler   = dirty_background_ratio_handler,
2329		.extra1     = SYSCTL_ZERO,
2330		.extra2     = SYSCTL_ONE_HUNDRED,
2331	},
2332	{
2333		.procname   = "dirty_background_bytes",
2334		.data       = &dirty_background_bytes,
2335		.maxlen     = sizeof(dirty_background_bytes),
2336		.mode       = 0644,
2337		.proc_handler   = dirty_background_bytes_handler,
2338		.extra1     = SYSCTL_LONG_ONE,
2339	},
2340	{
2341		.procname   = "dirty_ratio",
2342		.data       = &vm_dirty_ratio,
2343		.maxlen     = sizeof(vm_dirty_ratio),
2344		.mode       = 0644,
2345		.proc_handler   = dirty_ratio_handler,
2346		.extra1     = SYSCTL_ZERO,
2347		.extra2     = SYSCTL_ONE_HUNDRED,
2348	},
2349	{
2350		.procname   = "dirty_bytes",
2351		.data       = &vm_dirty_bytes,
2352		.maxlen     = sizeof(vm_dirty_bytes),
2353		.mode       = 0644,
2354		.proc_handler   = dirty_bytes_handler,
2355		.extra1     = (void *)&dirty_bytes_min,
2356	},
2357	{
2358		.procname   = "dirty_writeback_centisecs",
2359		.data       = &dirty_writeback_interval,
2360		.maxlen     = sizeof(dirty_writeback_interval),
2361		.mode       = 0644,
2362		.proc_handler   = dirty_writeback_centisecs_handler,
2363	},
2364	{
2365		.procname   = "dirty_expire_centisecs",
2366		.data       = &dirty_expire_interval,
2367		.maxlen     = sizeof(dirty_expire_interval),
2368		.mode       = 0644,
2369		.proc_handler   = proc_dointvec_minmax,
2370		.extra1     = SYSCTL_ZERO,
2371	},
2372#ifdef CONFIG_HIGHMEM
2373	{
2374		.procname	= "highmem_is_dirtyable",
2375		.data		= &vm_highmem_is_dirtyable,
2376		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2377		.mode		= 0644,
2378		.proc_handler	= proc_dointvec_minmax,
2379		.extra1		= SYSCTL_ZERO,
2380		.extra2		= SYSCTL_ONE,
2381	},
2382#endif
2383	{
2384		.procname	= "laptop_mode",
2385		.data		= &laptop_mode,
2386		.maxlen		= sizeof(laptop_mode),
2387		.mode		= 0644,
2388		.proc_handler	= proc_dointvec_jiffies,
2389	},
2390};
2391#endif
2392
2393/*
2394 * Called early on to tune the page writeback dirty limits.
2395 *
2396 * We used to scale dirty pages according to how total memory
2397 * related to pages that could be allocated for buffers.
 
2398 *
2399 * However, that was when we used "dirty_ratio" to scale with
2400 * all memory, and we don't do that any more. "dirty_ratio"
2401 * is now applied to total non-HIGHPAGE memory, and as such we can't
 
2402 * get into the old insane situation any more where we had
2403 * large amounts of dirty pages compared to a small amount of
2404 * non-HIGHMEM memory.
2405 *
2406 * But we might still want to scale the dirty_ratio by how
2407 * much memory the box has..
2408 */
2409void __init page_writeback_init(void)
2410{
2411	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2412
2413	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2414			  page_writeback_cpu_online, NULL);
2415	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2416			  page_writeback_cpu_online);
2417#ifdef CONFIG_SYSCTL
2418	register_sysctl_init("vm", vm_page_writeback_sysctls);
2419#endif
2420}
2421
2422/**
2423 * tag_pages_for_writeback - tag pages to be written by writeback
2424 * @mapping: address space structure to write
2425 * @start: starting page index
2426 * @end: ending page index (inclusive)
2427 *
2428 * This function scans the page range from @start to @end (inclusive) and tags
2429 * all pages that have DIRTY tag set with a special TOWRITE tag.  The caller
2430 * can then use the TOWRITE tag to identify pages eligible for writeback.
2431 * This mechanism is used to avoid livelocking of writeback by a process
2432 * steadily creating new dirty pages in the file (thus it is important for this
2433 * function to be quick so that it can tag pages faster than a dirtying process
2434 * can create them).
 
 
 
2435 */
2436void tag_pages_for_writeback(struct address_space *mapping,
2437			     pgoff_t start, pgoff_t end)
2438{
2439	XA_STATE(xas, &mapping->i_pages, start);
2440	unsigned int tagged = 0;
2441	void *page;
2442
2443	xas_lock_irq(&xas);
2444	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2445		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2446		if (++tagged % XA_CHECK_SCHED)
2447			continue;
2448
2449		xas_pause(&xas);
2450		xas_unlock_irq(&xas);
 
 
 
 
 
2451		cond_resched();
2452		xas_lock_irq(&xas);
2453	}
2454	xas_unlock_irq(&xas);
2455}
2456EXPORT_SYMBOL(tag_pages_for_writeback);
2457
2458static bool folio_prepare_writeback(struct address_space *mapping,
2459		struct writeback_control *wbc, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2460{
2461	/*
2462	 * Folio truncated or invalidated. We can freely skip it then,
2463	 * even for data integrity operations: the folio has disappeared
2464	 * concurrently, so there could be no real expectation of this
2465	 * data integrity operation even if there is now a new, dirty
2466	 * folio at the same pagecache index.
2467	 */
2468	if (unlikely(folio->mapping != mapping))
2469		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2470
2471	/*
2472	 * Did somebody else write it for us?
2473	 */
2474	if (!folio_test_dirty(folio))
2475		return false;
 
 
 
 
 
 
 
 
 
 
2476
2477	if (folio_test_writeback(folio)) {
2478		if (wbc->sync_mode == WB_SYNC_NONE)
2479			return false;
2480		folio_wait_writeback(folio);
2481	}
2482	BUG_ON(folio_test_writeback(folio));
2483
2484	if (!folio_clear_dirty_for_io(folio))
2485		return false;
2486
2487	return true;
2488}
 
 
 
 
 
 
 
 
 
 
 
2489
2490static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2491{
2492	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2493		return PAGECACHE_TAG_TOWRITE;
2494	return PAGECACHE_TAG_DIRTY;
2495}
2496
2497static pgoff_t wbc_end(struct writeback_control *wbc)
2498{
2499	if (wbc->range_cyclic)
2500		return -1;
2501	return wbc->range_end >> PAGE_SHIFT;
2502}
2503
2504static struct folio *writeback_get_folio(struct address_space *mapping,
2505		struct writeback_control *wbc)
2506{
2507	struct folio *folio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508
2509retry:
2510	folio = folio_batch_next(&wbc->fbatch);
2511	if (!folio) {
2512		folio_batch_release(&wbc->fbatch);
 
 
 
 
 
 
 
 
 
2513		cond_resched();
2514		filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2515				wbc_to_tag(wbc), &wbc->fbatch);
2516		folio = folio_batch_next(&wbc->fbatch);
2517		if (!folio)
2518			return NULL;
2519	}
2520
2521	folio_lock(folio);
2522	if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2523		folio_unlock(folio);
 
 
 
 
 
2524		goto retry;
2525	}
 
 
2526
2527	trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2528	return folio;
2529}
 
2530
2531/**
2532 * writeback_iter - iterate folio of a mapping for writeback
2533 * @mapping: address space structure to write
2534 * @wbc: writeback context
2535 * @folio: previously iterated folio (%NULL to start)
2536 * @error: in-out pointer for writeback errors (see below)
2537 *
2538 * This function returns the next folio for the writeback operation described by
2539 * @wbc on @mapping and  should be called in a while loop in the ->writepages
2540 * implementation.
2541 *
2542 * To start the writeback operation, %NULL is passed in the @folio argument, and
2543 * for every subsequent iteration the folio returned previously should be passed
2544 * back in.
2545 *
2546 * If there was an error in the per-folio writeback inside the writeback_iter()
2547 * loop, @error should be set to the error value.
2548 *
2549 * Once the writeback described in @wbc has finished, this function will return
2550 * %NULL and if there was an error in any iteration restore it to @error.
2551 *
2552 * Note: callers should not manually break out of the loop using break or goto
2553 * but must keep calling writeback_iter() until it returns %NULL.
2554 *
2555 * Return: the folio to write or %NULL if the loop is done.
2556 */
2557struct folio *writeback_iter(struct address_space *mapping,
2558		struct writeback_control *wbc, struct folio *folio, int *error)
2559{
2560	if (!folio) {
2561		folio_batch_init(&wbc->fbatch);
2562		wbc->saved_err = *error = 0;
2563
2564		/*
2565		 * For range cyclic writeback we remember where we stopped so
2566		 * that we can continue where we stopped.
2567		 *
2568		 * For non-cyclic writeback we always start at the beginning of
2569		 * the passed in range.
2570		 */
2571		if (wbc->range_cyclic)
2572			wbc->index = mapping->writeback_index;
2573		else
2574			wbc->index = wbc->range_start >> PAGE_SHIFT;
2575
2576		/*
2577		 * To avoid livelocks when other processes dirty new pages, we
2578		 * first tag pages which should be written back and only then
2579		 * start writing them.
2580		 *
2581		 * For data-integrity writeback we have to be careful so that we
2582		 * do not miss some pages (e.g., because some other process has
2583		 * cleared the TOWRITE tag we set).  The rule we follow is that
2584		 * TOWRITE tag can be cleared only by the process clearing the
2585		 * DIRTY tag (and submitting the page for I/O).
2586		 */
2587		if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2588			tag_pages_for_writeback(mapping, wbc->index,
2589					wbc_end(wbc));
2590	} else {
2591		wbc->nr_to_write -= folio_nr_pages(folio);
2592
2593		WARN_ON_ONCE(*error > 0);
2594
2595		/*
2596		 * For integrity writeback we have to keep going until we have
2597		 * written all the folios we tagged for writeback above, even if
2598		 * we run past wbc->nr_to_write or encounter errors.
2599		 * We stash away the first error we encounter in wbc->saved_err
2600		 * so that it can be retrieved when we're done.  This is because
2601		 * the file system may still have state to clear for each folio.
2602		 *
2603		 * For background writeback we exit as soon as we run past
2604		 * wbc->nr_to_write or encounter the first error.
2605		 */
2606		if (wbc->sync_mode == WB_SYNC_ALL) {
2607			if (*error && !wbc->saved_err)
2608				wbc->saved_err = *error;
2609		} else {
2610			if (*error || wbc->nr_to_write <= 0)
2611				goto done;
2612		}
2613	}
2614
2615	folio = writeback_get_folio(mapping, wbc);
2616	if (!folio) {
2617		/*
2618		 * To avoid deadlocks between range_cyclic writeback and callers
2619		 * that hold pages in PageWriteback to aggregate I/O until
2620		 * the writeback iteration finishes, we do not loop back to the
2621		 * start of the file.  Doing so causes a page lock/page
2622		 * writeback access order inversion - we should only ever lock
2623		 * multiple pages in ascending page->index order, and looping
2624		 * back to the start of the file violates that rule and causes
2625		 * deadlocks.
2626		 */
2627		if (wbc->range_cyclic)
2628			mapping->writeback_index = 0;
2629
2630		/*
2631		 * Return the first error we encountered (if there was any) to
2632		 * the caller.
2633		 */
2634		*error = wbc->saved_err;
2635	}
2636	return folio;
2637
2638done:
2639	if (wbc->range_cyclic)
2640		mapping->writeback_index = folio_next_index(folio);
2641	folio_batch_release(&wbc->fbatch);
2642	return NULL;
2643}
2644EXPORT_SYMBOL_GPL(writeback_iter);
2645
2646/**
2647 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2648 * @mapping: address space structure to write
2649 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2650 * @writepage: function called for each page
2651 * @data: data passed to writepage function
2652 *
2653 * Return: %0 on success, negative error code otherwise
2654 *
2655 * Note: please use writeback_iter() instead.
 
2656 */
2657int write_cache_pages(struct address_space *mapping,
2658		      struct writeback_control *wbc, writepage_t writepage,
2659		      void *data)
2660{
2661	struct folio *folio = NULL;
2662	int error;
2663
2664	while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2665		error = writepage(folio, wbc, data);
2666		if (error == AOP_WRITEPAGE_ACTIVATE) {
2667			folio_unlock(folio);
2668			error = 0;
2669		}
2670	}
2671
2672	return error;
2673}
2674EXPORT_SYMBOL(write_cache_pages);
2675
2676static int writeback_use_writepage(struct address_space *mapping,
2677		struct writeback_control *wbc)
2678{
2679	struct folio *folio = NULL;
2680	struct blk_plug plug;
2681	int err;
2682
2683	blk_start_plug(&plug);
2684	while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2685		err = mapping->a_ops->writepage(&folio->page, wbc);
2686		if (err == AOP_WRITEPAGE_ACTIVATE) {
2687			folio_unlock(folio);
2688			err = 0;
2689		}
2690		mapping_set_error(mapping, err);
2691	}
2692	blk_finish_plug(&plug);
 
 
2693
2694	return err;
2695}
2696
2697int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2698{
2699	int ret;
2700	struct bdi_writeback *wb;
2701
2702	if (wbc->nr_to_write <= 0)
2703		return 0;
2704	wb = inode_to_wb_wbc(mapping->host, wbc);
2705	wb_bandwidth_estimate_start(wb);
2706	while (1) {
2707		if (mapping->a_ops->writepages) {
2708			ret = mapping->a_ops->writepages(mapping, wbc);
2709		} else if (mapping->a_ops->writepage) {
2710			ret = writeback_use_writepage(mapping, wbc);
2711		} else {
2712			/* deal with chardevs and other special files */
2713			ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714		}
2715		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2716			break;
2717
2718		/*
2719		 * Lacking an allocation context or the locality or writeback
2720		 * state of any of the inode's pages, throttle based on
2721		 * writeback activity on the local node. It's as good a
2722		 * guess as any.
2723		 */
2724		reclaim_throttle(NODE_DATA(numa_node_id()),
2725			VMSCAN_THROTTLE_WRITEBACK);
2726	}
2727	/*
2728	 * Usually few pages are written by now from those we've just submitted
2729	 * but if there's constant writeback being submitted, this makes sure
2730	 * writeback bandwidth is updated once in a while.
2731	 */
2732	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2733				   BANDWIDTH_INTERVAL))
2734		wb_update_bandwidth(wb);
2735	return ret;
2736}
 
2737
2738/*
2739 * For address_spaces which do not use buffers nor write back.
2740 */
2741bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2742{
2743	if (!folio_test_dirty(folio))
2744		return !folio_test_set_dirty(folio);
2745	return false;
2746}
2747EXPORT_SYMBOL(noop_dirty_folio);
2748
2749/*
2750 * Helper function for set_page_dirty family.
2751 *
 
 
2752 * NOTE: This relies on being atomic wrt interrupts.
2753 */
2754static void folio_account_dirtied(struct folio *folio,
2755		struct address_space *mapping)
2756{
2757	struct inode *inode = mapping->host;
2758
2759	trace_writeback_dirty_folio(folio, mapping);
2760
2761	if (mapping_can_writeback(mapping)) {
2762		struct bdi_writeback *wb;
2763		long nr = folio_nr_pages(folio);
2764
2765		inode_attach_wb(inode, folio);
2766		wb = inode_to_wb(inode);
2767
2768		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2769		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2770		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2771		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2772		wb_stat_mod(wb, WB_DIRTIED, nr);
2773		task_io_account_write(nr * PAGE_SIZE);
2774		current->nr_dirtied += nr;
2775		__this_cpu_add(bdp_ratelimits, nr);
2776
2777		mem_cgroup_track_foreign_dirty(folio, wb);
2778	}
2779}
 
2780
2781/*
2782 * Helper function for deaccounting dirty page without writeback.
2783 *
 
2784 */
2785void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
 
2786{
2787	long nr = folio_nr_pages(folio);
2788
2789	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2790	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2791	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2792	task_io_account_cancelled_write(nr * PAGE_SIZE);
2793}
2794
2795/*
2796 * Mark the folio dirty, and set it dirty in the page cache.
 
2797 *
2798 * If warn is true, then emit a warning if the folio is not uptodate and has
2799 * not been truncated.
 
2800 *
2801 * It is the caller's responsibility to prevent the folio from being truncated
2802 * while this function is in progress, although it may have been truncated
2803 * before this function is called.  Most callers have the folio locked.
2804 * A few have the folio blocked from truncation through other means (e.g.
2805 * zap_vma_pages() has it mapped and is holding the page table lock).
2806 * When called from mark_buffer_dirty(), the filesystem should hold a
2807 * reference to the buffer_head that is being marked dirty, which causes
2808 * try_to_free_buffers() to fail.
2809 */
2810void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2811			     int warn)
2812{
2813	unsigned long flags;
 
 
 
2814
2815	xa_lock_irqsave(&mapping->i_pages, flags);
2816	if (folio->mapping) {	/* Race with truncate? */
2817		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2818		folio_account_dirtied(folio, mapping);
2819		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2820				PAGECACHE_TAG_DIRTY);
 
 
 
 
 
 
 
 
 
 
 
 
 
2821	}
2822	xa_unlock_irqrestore(&mapping->i_pages, flags);
 
2823}
 
2824
2825/**
2826 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2827 * @mapping: Address space this folio belongs to.
2828 * @folio: Folio to be marked as dirty.
2829 *
2830 * Filesystems which do not use buffer heads should call this function
2831 * from their dirty_folio address space operation.  It ignores the
2832 * contents of folio_get_private(), so if the filesystem marks individual
2833 * blocks as dirty, the filesystem should handle that itself.
2834 *
2835 * This is also sometimes used by filesystems which use buffer_heads when
2836 * a single buffer is being dirtied: we want to set the folio dirty in
2837 * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2838 * whereas block_dirty_folio() is a "top-down" dirtying.
2839 *
2840 * The caller must ensure this doesn't race with truncation.  Most will
2841 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2842 * folio mapped and the pte lock held, which also locks out truncation.
2843 */
2844bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2845{
2846	if (folio_test_set_dirty(folio))
2847		return false;
2848
2849	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
 
 
 
2850
2851	if (mapping->host) {
2852		/* !PageAnon && !swapper_space */
2853		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 
 
2854	}
2855	return true;
2856}
2857EXPORT_SYMBOL(filemap_dirty_folio);
2858
2859/**
2860 * folio_redirty_for_writepage - Decline to write a dirty folio.
2861 * @wbc: The writeback control.
2862 * @folio: The folio.
2863 *
2864 * When a writepage implementation decides that it doesn't want to write
2865 * @folio for some reason, it should call this function, unlock @folio and
2866 * return 0.
2867 *
2868 * Return: True if we redirtied the folio.  False if someone else dirtied
2869 * it first.
2870 */
2871bool folio_redirty_for_writepage(struct writeback_control *wbc,
2872		struct folio *folio)
2873{
2874	struct address_space *mapping = folio->mapping;
2875	long nr = folio_nr_pages(folio);
2876	bool ret;
2877
2878	wbc->pages_skipped += nr;
2879	ret = filemap_dirty_folio(mapping, folio);
2880	if (mapping && mapping_can_writeback(mapping)) {
2881		struct inode *inode = mapping->host;
2882		struct bdi_writeback *wb;
2883		struct wb_lock_cookie cookie = {};
2884
2885		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2886		current->nr_dirtied -= nr;
2887		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2888		wb_stat_mod(wb, WB_DIRTIED, -nr);
2889		unlocked_inode_to_wb_end(inode, &cookie);
2890	}
2891	return ret;
2892}
2893EXPORT_SYMBOL(folio_redirty_for_writepage);
2894
2895/**
2896 * folio_mark_dirty - Mark a folio as being modified.
2897 * @folio: The folio.
2898 *
2899 * The folio may not be truncated while this function is running.
2900 * Holding the folio lock is sufficient to prevent truncation, but some
2901 * callers cannot acquire a sleeping lock.  These callers instead hold
2902 * the page table lock for a page table which contains at least one page
2903 * in this folio.  Truncation will block on the page table lock as it
2904 * unmaps pages before removing the folio from its mapping.
2905 *
2906 * Return: True if the folio was newly dirtied, false if it was already dirty.
 
2907 */
2908bool folio_mark_dirty(struct folio *folio)
2909{
2910	struct address_space *mapping = folio_mapping(folio);
2911
2912	if (likely(mapping)) {
 
2913		/*
2914		 * readahead/folio_deactivate could remain
2915		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2916		 * About readahead, if the folio is written, the flags would be
2917		 * reset. So no problem.
2918		 * About folio_deactivate, if the folio is redirtied,
2919		 * the flag will be reset. So no problem. but if the
2920		 * folio is used by readahead it will confuse readahead
2921		 * and make it restart the size rampup process. But it's
2922		 * a trivial problem.
2923		 */
2924		if (folio_test_reclaim(folio))
2925			folio_clear_reclaim(folio);
2926		return mapping->a_ops->dirty_folio(mapping, folio);
 
 
 
 
 
 
 
2927	}
2928
2929	return noop_dirty_folio(mapping, folio);
2930}
2931EXPORT_SYMBOL(folio_mark_dirty);
2932
2933/*
2934 * folio_mark_dirty() is racy if the caller has no reference against
2935 * folio->mapping->host, and if the folio is unlocked.  This is because another
2936 * CPU could truncate the folio off the mapping and then free the mapping.
2937 *
2938 * Usually, the folio _is_ locked, or the caller is a user-space process which
2939 * holds a reference on the inode by having an open file.
2940 *
2941 * In other cases, the folio should be locked before running folio_mark_dirty().
2942 */
2943bool folio_mark_dirty_lock(struct folio *folio)
2944{
2945	bool ret;
2946
2947	folio_lock(folio);
2948	ret = folio_mark_dirty(folio);
2949	folio_unlock(folio);
2950	return ret;
2951}
2952EXPORT_SYMBOL(folio_mark_dirty_lock);
2953
2954/*
2955 * This cancels just the dirty bit on the kernel page itself, it does NOT
2956 * actually remove dirty bits on any mmap's that may be around. It also
2957 * leaves the page tagged dirty, so any sync activity will still find it on
2958 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2959 * look at the dirty bits in the VM.
2960 *
2961 * Doing this should *normally* only ever be done when a page is truncated,
2962 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2963 * this when it notices that somebody has cleaned out all the buffers on a
2964 * page without actually doing it through the VM. Can you say "ext3 is
2965 * horribly ugly"? Thought you could.
2966 */
2967void __folio_cancel_dirty(struct folio *folio)
2968{
2969	struct address_space *mapping = folio_mapping(folio);
2970
2971	if (mapping_can_writeback(mapping)) {
2972		struct inode *inode = mapping->host;
2973		struct bdi_writeback *wb;
2974		struct wb_lock_cookie cookie = {};
2975
2976		wb = unlocked_inode_to_wb_begin(inode, &cookie);
 
2977
2978		if (folio_test_clear_dirty(folio))
2979			folio_account_cleaned(folio, wb);
2980
2981		unlocked_inode_to_wb_end(inode, &cookie);
 
2982	} else {
2983		folio_clear_dirty(folio);
2984	}
2985}
2986EXPORT_SYMBOL(__folio_cancel_dirty);
2987
2988/*
2989 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2990 * Returns true if the folio was previously dirty.
2991 *
2992 * This is for preparing to put the folio under writeout.  We leave
2993 * the folio tagged as dirty in the xarray so that a concurrent
2994 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2995 * The ->writepage implementation will run either folio_start_writeback()
2996 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2997 * and xarray dirty tag back into sync.
2998 *
2999 * This incoherency between the folio's dirty flag and xarray tag is
3000 * unfortunate, but it only exists while the folio is locked.
3001 */
3002bool folio_clear_dirty_for_io(struct folio *folio)
3003{
3004	struct address_space *mapping = folio_mapping(folio);
3005	bool ret = false;
3006
3007	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3008
3009	if (mapping && mapping_can_writeback(mapping)) {
3010		struct inode *inode = mapping->host;
3011		struct bdi_writeback *wb;
3012		struct wb_lock_cookie cookie = {};
3013
3014		/*
3015		 * Yes, Virginia, this is indeed insane.
3016		 *
3017		 * We use this sequence to make sure that
3018		 *  (a) we account for dirty stats properly
3019		 *  (b) we tell the low-level filesystem to
3020		 *      mark the whole folio dirty if it was
3021		 *      dirty in a pagetable. Only to then
3022		 *  (c) clean the folio again and return 1 to
3023		 *      cause the writeback.
3024		 *
3025		 * This way we avoid all nasty races with the
3026		 * dirty bit in multiple places and clearing
3027		 * them concurrently from different threads.
3028		 *
3029		 * Note! Normally the "folio_mark_dirty(folio)"
3030		 * has no effect on the actual dirty bit - since
3031		 * that will already usually be set. But we
3032		 * need the side effects, and it can help us
3033		 * avoid races.
3034		 *
3035		 * We basically use the folio "master dirty bit"
3036		 * as a serialization point for all the different
3037		 * threads doing their things.
3038		 */
3039		if (folio_mkclean(folio))
3040			folio_mark_dirty(folio);
3041		/*
3042		 * We carefully synchronise fault handlers against
3043		 * installing a dirty pte and marking the folio dirty
3044		 * at this point.  We do this by having them hold the
3045		 * page lock while dirtying the folio, and folios are
3046		 * always locked coming in here, so we get the desired
3047		 * exclusion.
3048		 */
3049		wb = unlocked_inode_to_wb_begin(inode, &cookie);
3050		if (folio_test_clear_dirty(folio)) {
3051			long nr = folio_nr_pages(folio);
3052			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3053			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3054			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3055			ret = true;
3056		}
3057		unlocked_inode_to_wb_end(inode, &cookie);
3058		return ret;
3059	}
3060	return folio_test_clear_dirty(folio);
3061}
3062EXPORT_SYMBOL(folio_clear_dirty_for_io);
3063
3064static void wb_inode_writeback_start(struct bdi_writeback *wb)
3065{
3066	atomic_inc(&wb->writeback_inodes);
3067}
3068
3069static void wb_inode_writeback_end(struct bdi_writeback *wb)
3070{
3071	unsigned long flags;
3072	atomic_dec(&wb->writeback_inodes);
3073	/*
3074	 * Make sure estimate of writeback throughput gets updated after
3075	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3076	 * (which is the interval other bandwidth updates use for batching) so
3077	 * that if multiple inodes end writeback at a similar time, they get
3078	 * batched into one bandwidth update.
3079	 */
3080	spin_lock_irqsave(&wb->work_lock, flags);
3081	if (test_bit(WB_registered, &wb->state))
3082		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3083	spin_unlock_irqrestore(&wb->work_lock, flags);
3084}
3085
3086bool __folio_end_writeback(struct folio *folio)
3087{
3088	long nr = folio_nr_pages(folio);
3089	struct address_space *mapping = folio_mapping(folio);
3090	bool ret;
3091
3092	if (mapping && mapping_use_writeback_tags(mapping)) {
 
3093		struct inode *inode = mapping->host;
3094		struct backing_dev_info *bdi = inode_to_bdi(inode);
3095		unsigned long flags;
3096
3097		xa_lock_irqsave(&mapping->i_pages, flags);
3098		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3099		__xa_clear_mark(&mapping->i_pages, folio_index(folio),
3100					PAGECACHE_TAG_WRITEBACK);
3101		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3102			struct bdi_writeback *wb = inode_to_wb(inode);
3103
3104			wb_stat_mod(wb, WB_WRITEBACK, -nr);
3105			__wb_writeout_add(wb, nr);
3106			if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3107				wb_inode_writeback_end(wb);
3108		}
3109
3110		if (mapping->host && !mapping_tagged(mapping,
3111						     PAGECACHE_TAG_WRITEBACK))
3112			sb_clear_inode_writeback(mapping->host);
3113
3114		xa_unlock_irqrestore(&mapping->i_pages, flags);
 
 
 
 
3115	} else {
3116		ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
 
 
 
 
 
3117	}
3118
3119	lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3120	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3121	node_stat_mod_folio(folio, NR_WRITTEN, nr);
3122
3123	return ret;
3124}
3125
3126void __folio_start_writeback(struct folio *folio, bool keep_write)
3127{
3128	long nr = folio_nr_pages(folio);
3129	struct address_space *mapping = folio_mapping(folio);
3130	int access_ret;
3131
3132	VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3133
3134	if (mapping && mapping_use_writeback_tags(mapping)) {
3135		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3136		struct inode *inode = mapping->host;
3137		struct backing_dev_info *bdi = inode_to_bdi(inode);
3138		unsigned long flags;
3139		bool on_wblist;
3140
3141		xas_lock_irqsave(&xas, flags);
3142		xas_load(&xas);
3143		folio_test_set_writeback(folio);
3144
3145		on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3146
3147		xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3148		if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3149			struct bdi_writeback *wb = inode_to_wb(inode);
3150
3151			wb_stat_mod(wb, WB_WRITEBACK, nr);
3152			if (!on_wblist)
3153				wb_inode_writeback_start(wb);
3154		}
3155
3156		/*
3157		 * We can come through here when swapping anonymous
3158		 * folios, so we don't necessarily have an inode to
3159		 * track for sync.
3160		 */
3161		if (mapping->host && !on_wblist)
3162			sb_mark_inode_writeback(mapping->host);
3163		if (!folio_test_dirty(folio))
3164			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3165		if (!keep_write)
3166			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3167		xas_unlock_irqrestore(&xas, flags);
 
 
3168	} else {
3169		folio_test_set_writeback(folio);
 
 
 
 
3170	}
 
 
3171
3172	lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3173	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3174
3175	access_ret = arch_make_folio_accessible(folio);
3176	/*
3177	 * If writeback has been triggered on a page that cannot be made
3178	 * accessible, it is too late to recover here.
3179	 */
3180	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3181}
3182EXPORT_SYMBOL(__folio_start_writeback);
3183
3184/**
3185 * folio_wait_writeback - Wait for a folio to finish writeback.
3186 * @folio: The folio to wait for.
3187 *
3188 * If the folio is currently being written back to storage, wait for the
3189 * I/O to complete.
3190 *
3191 * Context: Sleeps.  Must be called in process context and with
3192 * no spinlocks held.  Caller should hold a reference on the folio.
3193 * If the folio is not locked, writeback may start again after writeback
3194 * has finished.
3195 */
3196void folio_wait_writeback(struct folio *folio)
3197{
3198	while (folio_test_writeback(folio)) {
3199		trace_folio_wait_writeback(folio, folio_mapping(folio));
3200		folio_wait_bit(folio, PG_writeback);
3201	}
3202}
3203EXPORT_SYMBOL_GPL(folio_wait_writeback);
3204
3205/**
3206 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3207 * @folio: The folio to wait for.
3208 *
3209 * If the folio is currently being written back to storage, wait for the
3210 * I/O to complete or a fatal signal to arrive.
3211 *
3212 * Context: Sleeps.  Must be called in process context and with
3213 * no spinlocks held.  Caller should hold a reference on the folio.
3214 * If the folio is not locked, writeback may start again after writeback
3215 * has finished.
3216 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3217 */
3218int folio_wait_writeback_killable(struct folio *folio)
3219{
3220	while (folio_test_writeback(folio)) {
3221		trace_folio_wait_writeback(folio, folio_mapping(folio));
3222		if (folio_wait_bit_killable(folio, PG_writeback))
3223			return -EINTR;
3224	}
3225
3226	return 0;
3227}
3228EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3229
3230/**
3231 * folio_wait_stable() - wait for writeback to finish, if necessary.
3232 * @folio: The folio to wait on.
3233 *
3234 * This function determines if the given folio is related to a backing
3235 * device that requires folio contents to be held stable during writeback.
3236 * If so, then it will wait for any pending writeback to complete.
3237 *
3238 * Context: Sleeps.  Must be called in process context and with
3239 * no spinlocks held.  Caller should hold a reference on the folio.
3240 * If the folio is not locked, writeback may start again after writeback
3241 * has finished.
3242 */
3243void folio_wait_stable(struct folio *folio)
3244{
3245	if (mapping_stable_writes(folio_mapping(folio)))
3246		folio_wait_writeback(folio);
3247}
3248EXPORT_SYMBOL_GPL(folio_wait_stable);