Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130	struct wb_domain	*dom;
 131	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 132#endif
 133	struct bdi_writeback	*wb;
 134	struct fprop_local_percpu *wb_completions;
 135
 136	unsigned long		avail;		/* dirtyable */
 137	unsigned long		dirty;		/* file_dirty + write + nfs */
 138	unsigned long		thresh;		/* dirty threshold */
 139	unsigned long		bg_thresh;	/* dirty background threshold */
 140
 141	unsigned long		wb_dirty;	/* per-wb counterparts */
 142	unsigned long		wb_thresh;
 143	unsigned long		wb_bg_thresh;
 144
 145	unsigned long		pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)		.wb = (__wb),				\
 158				.dom = &global_wb_domain,		\
 159				.wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 164				.dom = mem_cgroup_wb_domain(__wb),	\
 165				.wb_completions = &(__wb)->memcg_completions, \
 166				.gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175	return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180	return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185	return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189			     unsigned long *minp, unsigned long *maxp)
 190{
 191	unsigned long this_bw = wb->avg_write_bandwidth;
 192	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193	unsigned long long min = wb->bdi->min_ratio;
 194	unsigned long long max = wb->bdi->max_ratio;
 195
 196	/*
 197	 * @wb may already be clean by the time control reaches here and
 198	 * the total may not include its bw.
 199	 */
 200	if (this_bw < tot_bw) {
 201		if (min) {
 202			min *= this_bw;
 203			do_div(min, tot_bw);
 204		}
 205		if (max < 100) {
 206			max *= this_bw;
 207			do_div(max, tot_bw);
 208		}
 209	}
 210
 211	*minp = min;
 212	*maxp = max;
 213}
 214
 215#else	/* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 218				.wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224	return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229	return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234	return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239	return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243			     unsigned long *minp, unsigned long *maxp)
 244{
 245	*minp = wb->bdi->min_ratio;
 246	*maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif	/* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * zone_dirtyable_memory - number of dirtyable pages in a zone
 271 * @zone: the zone
 272 *
 273 * Returns the zone's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-zone dirty limits.
 275 */
 276static unsigned long zone_dirtyable_memory(struct zone *zone)
 277{
 278	unsigned long nr_pages;
 
 
 
 
 
 
 
 
 
 
 279
 280	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 281	/*
 282	 * Pages reserved for the kernel should not be considered
 283	 * dirtyable, to prevent a situation where reclaim has to
 284	 * clean pages in order to balance the zones.
 285	 */
 286	nr_pages -= min(nr_pages, zone->totalreserve_pages);
 287
 288	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 289	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 290
 291	return nr_pages;
 292}
 293
 294static unsigned long highmem_dirtyable_memory(unsigned long total)
 295{
 296#ifdef CONFIG_HIGHMEM
 297	int node;
 298	unsigned long x = 0;
 
 299
 300	for_each_node_state(node, N_HIGH_MEMORY) {
 301		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 
 
 
 
 
 
 
 
 
 302
 303		x += zone_dirtyable_memory(z);
 
 
 
 
 
 
 304	}
 
 305	/*
 306	 * Unreclaimable memory (kernel memory or anonymous memory
 307	 * without swap) can bring down the dirtyable pages below
 308	 * the zone's dirty balance reserve and the above calculation
 309	 * will underflow.  However we still want to add in nodes
 310	 * which are below threshold (negative values) to get a more
 311	 * accurate calculation but make sure that the total never
 312	 * underflows.
 313	 */
 314	if ((long)x < 0)
 315		x = 0;
 316
 317	/*
 318	 * Make sure that the number of highmem pages is never larger
 319	 * than the number of the total dirtyable memory. This can only
 320	 * occur in very strange VM situations but we want to make sure
 321	 * that this does not occur.
 322	 */
 323	return min(x, total);
 324#else
 325	return 0;
 326#endif
 327}
 328
 329/**
 330 * global_dirtyable_memory - number of globally dirtyable pages
 331 *
 332 * Returns the global number of pages potentially available for dirty
 333 * page cache.  This is the base value for the global dirty limits.
 334 */
 335static unsigned long global_dirtyable_memory(void)
 336{
 337	unsigned long x;
 338
 339	x = global_page_state(NR_FREE_PAGES);
 340	/*
 341	 * Pages reserved for the kernel should not be considered
 342	 * dirtyable, to prevent a situation where reclaim has to
 343	 * clean pages in order to balance the zones.
 344	 */
 345	x -= min(x, totalreserve_pages);
 346
 347	x += global_page_state(NR_INACTIVE_FILE);
 348	x += global_page_state(NR_ACTIVE_FILE);
 349
 350	if (!vm_highmem_is_dirtyable)
 351		x -= highmem_dirtyable_memory(x);
 352
 353	return x + 1;	/* Ensure that we never return 0 */
 354}
 355
 356/**
 357 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 358 * @dtc: dirty_throttle_control of interest
 359 *
 360 * Calculate @dtc->thresh and ->bg_thresh considering
 361 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 362 * must ensure that @dtc->avail is set before calling this function.  The
 363 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 364 * real-time tasks.
 365 */
 366static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 367{
 368	const unsigned long available_memory = dtc->avail;
 369	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 370	unsigned long bytes = vm_dirty_bytes;
 371	unsigned long bg_bytes = dirty_background_bytes;
 372	unsigned long ratio = vm_dirty_ratio;
 373	unsigned long bg_ratio = dirty_background_ratio;
 
 374	unsigned long thresh;
 375	unsigned long bg_thresh;
 376	struct task_struct *tsk;
 377
 378	/* gdtc is !NULL iff @dtc is for memcg domain */
 379	if (gdtc) {
 380		unsigned long global_avail = gdtc->avail;
 381
 382		/*
 383		 * The byte settings can't be applied directly to memcg
 384		 * domains.  Convert them to ratios by scaling against
 385		 * globally available memory.
 
 
 386		 */
 387		if (bytes)
 388			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
 389				    global_avail, 100UL);
 390		if (bg_bytes)
 391			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
 392				       global_avail, 100UL);
 393		bytes = bg_bytes = 0;
 394	}
 395
 396	if (bytes)
 397		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 398	else
 399		thresh = (ratio * available_memory) / 100;
 400
 401	if (bg_bytes)
 402		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 403	else
 404		bg_thresh = (bg_ratio * available_memory) / 100;
 405
 406	if (bg_thresh >= thresh)
 407		bg_thresh = thresh / 2;
 408	tsk = current;
 409	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 410		bg_thresh += bg_thresh / 4;
 411		thresh += thresh / 4;
 412	}
 413	dtc->thresh = thresh;
 414	dtc->bg_thresh = bg_thresh;
 415
 416	/* we should eventually report the domain in the TP */
 417	if (!gdtc)
 418		trace_global_dirty_state(bg_thresh, thresh);
 419}
 420
 421/**
 422 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 423 * @pbackground: out parameter for bg_thresh
 424 * @pdirty: out parameter for thresh
 425 *
 426 * Calculate bg_thresh and thresh for global_wb_domain.  See
 427 * domain_dirty_limits() for details.
 428 */
 429void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 430{
 431	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 432
 433	gdtc.avail = global_dirtyable_memory();
 434	domain_dirty_limits(&gdtc);
 435
 436	*pbackground = gdtc.bg_thresh;
 437	*pdirty = gdtc.thresh;
 438}
 439
 440/**
 441 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 442 * @zone: the zone
 443 *
 444 * Returns the maximum number of dirty pages allowed in a zone, based
 445 * on the zone's dirtyable memory.
 446 */
 447static unsigned long zone_dirty_limit(struct zone *zone)
 448{
 449	unsigned long zone_memory = zone_dirtyable_memory(zone);
 450	struct task_struct *tsk = current;
 451	unsigned long dirty;
 452
 453	if (vm_dirty_bytes)
 454		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 455			zone_memory / global_dirtyable_memory();
 456	else
 457		dirty = vm_dirty_ratio * zone_memory / 100;
 458
 459	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 460		dirty += dirty / 4;
 461
 462	return dirty;
 463}
 464
 465/**
 466 * zone_dirty_ok - tells whether a zone is within its dirty limits
 467 * @zone: the zone to check
 468 *
 469 * Returns %true when the dirty pages in @zone are within the zone's
 470 * dirty limit, %false if the limit is exceeded.
 471 */
 472bool zone_dirty_ok(struct zone *zone)
 473{
 474	unsigned long limit = zone_dirty_limit(zone);
 
 475
 476	return zone_page_state(zone, NR_FILE_DIRTY) +
 477	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 478	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 
 
 479}
 480
 481int dirty_background_ratio_handler(struct ctl_table *table, int write,
 482		void __user *buffer, size_t *lenp,
 483		loff_t *ppos)
 484{
 485	int ret;
 486
 487	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 488	if (ret == 0 && write)
 489		dirty_background_bytes = 0;
 490	return ret;
 491}
 492
 493int dirty_background_bytes_handler(struct ctl_table *table, int write,
 494		void __user *buffer, size_t *lenp,
 495		loff_t *ppos)
 496{
 497	int ret;
 498
 499	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 500	if (ret == 0 && write)
 501		dirty_background_ratio = 0;
 502	return ret;
 503}
 504
 505int dirty_ratio_handler(struct ctl_table *table, int write,
 506		void __user *buffer, size_t *lenp,
 507		loff_t *ppos)
 508{
 509	int old_ratio = vm_dirty_ratio;
 510	int ret;
 511
 512	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 513	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 514		writeback_set_ratelimit();
 515		vm_dirty_bytes = 0;
 516	}
 517	return ret;
 518}
 519
 520int dirty_bytes_handler(struct ctl_table *table, int write,
 521		void __user *buffer, size_t *lenp,
 522		loff_t *ppos)
 523{
 524	unsigned long old_bytes = vm_dirty_bytes;
 525	int ret;
 526
 527	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 528	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 529		writeback_set_ratelimit();
 530		vm_dirty_ratio = 0;
 531	}
 532	return ret;
 533}
 534
 535static unsigned long wp_next_time(unsigned long cur_time)
 536{
 537	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 538	/* 0 has a special meaning... */
 539	if (!cur_time)
 540		return 1;
 541	return cur_time;
 542}
 543
 544static void wb_domain_writeout_inc(struct wb_domain *dom,
 545				   struct fprop_local_percpu *completions,
 546				   unsigned int max_prop_frac)
 547{
 548	__fprop_inc_percpu_max(&dom->completions, completions,
 549			       max_prop_frac);
 550	/* First event after period switching was turned off? */
 551	if (!unlikely(dom->period_time)) {
 552		/*
 553		 * We can race with other __bdi_writeout_inc calls here but
 554		 * it does not cause any harm since the resulting time when
 555		 * timer will fire and what is in writeout_period_time will be
 556		 * roughly the same.
 557		 */
 558		dom->period_time = wp_next_time(jiffies);
 559		mod_timer(&dom->period_timer, dom->period_time);
 560	}
 561}
 562
 563/*
 564 * Increment @wb's writeout completion count and the global writeout
 565 * completion count. Called from test_clear_page_writeback().
 566 */
 567static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 568{
 569	struct wb_domain *cgdom;
 570
 571	__inc_wb_stat(wb, WB_WRITTEN);
 572	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 573			       wb->bdi->max_prop_frac);
 574
 575	cgdom = mem_cgroup_wb_domain(wb);
 576	if (cgdom)
 577		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 578				       wb->bdi->max_prop_frac);
 579}
 580
 581void wb_writeout_inc(struct bdi_writeback *wb)
 582{
 583	unsigned long flags;
 584
 585	local_irq_save(flags);
 586	__wb_writeout_inc(wb);
 587	local_irq_restore(flags);
 588}
 589EXPORT_SYMBOL_GPL(wb_writeout_inc);
 590
 591/*
 592 * On idle system, we can be called long after we scheduled because we use
 593 * deferred timers so count with missed periods.
 594 */
 595static void writeout_period(unsigned long t)
 596{
 597	struct wb_domain *dom = (void *)t;
 598	int miss_periods = (jiffies - dom->period_time) /
 599						 VM_COMPLETIONS_PERIOD_LEN;
 600
 601	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 602		dom->period_time = wp_next_time(dom->period_time +
 603				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 604		mod_timer(&dom->period_timer, dom->period_time);
 605	} else {
 606		/*
 607		 * Aging has zeroed all fractions. Stop wasting CPU on period
 608		 * updates.
 609		 */
 610		dom->period_time = 0;
 611	}
 612}
 613
 614int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 615{
 616	memset(dom, 0, sizeof(*dom));
 617
 618	spin_lock_init(&dom->lock);
 619
 620	init_timer_deferrable(&dom->period_timer);
 621	dom->period_timer.function = writeout_period;
 622	dom->period_timer.data = (unsigned long)dom;
 623
 624	dom->dirty_limit_tstamp = jiffies;
 625
 626	return fprop_global_init(&dom->completions, gfp);
 627}
 628
 629#ifdef CONFIG_CGROUP_WRITEBACK
 630void wb_domain_exit(struct wb_domain *dom)
 631{
 632	del_timer_sync(&dom->period_timer);
 633	fprop_global_destroy(&dom->completions);
 634}
 635#endif
 636
 637/*
 638 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 639 * registered backing devices, which, for obvious reasons, can not
 640 * exceed 100%.
 641 */
 642static unsigned int bdi_min_ratio;
 643
 644int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 645{
 646	int ret = 0;
 647
 648	spin_lock_bh(&bdi_lock);
 649	if (min_ratio > bdi->max_ratio) {
 650		ret = -EINVAL;
 651	} else {
 652		min_ratio -= bdi->min_ratio;
 653		if (bdi_min_ratio + min_ratio < 100) {
 654			bdi_min_ratio += min_ratio;
 655			bdi->min_ratio += min_ratio;
 656		} else {
 657			ret = -EINVAL;
 658		}
 659	}
 660	spin_unlock_bh(&bdi_lock);
 661
 662	return ret;
 663}
 664
 665int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 666{
 667	int ret = 0;
 668
 669	if (max_ratio > 100)
 670		return -EINVAL;
 671
 672	spin_lock_bh(&bdi_lock);
 673	if (bdi->min_ratio > max_ratio) {
 674		ret = -EINVAL;
 675	} else {
 676		bdi->max_ratio = max_ratio;
 677		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 678	}
 679	spin_unlock_bh(&bdi_lock);
 680
 681	return ret;
 682}
 683EXPORT_SYMBOL(bdi_set_max_ratio);
 684
 685static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 686					   unsigned long bg_thresh)
 687{
 688	return (thresh + bg_thresh) / 2;
 689}
 690
 691static unsigned long hard_dirty_limit(struct wb_domain *dom,
 692				      unsigned long thresh)
 693{
 694	return max(thresh, dom->dirty_limit);
 695}
 696
 697/*
 698 * Memory which can be further allocated to a memcg domain is capped by
 699 * system-wide clean memory excluding the amount being used in the domain.
 700 */
 701static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 702			    unsigned long filepages, unsigned long headroom)
 703{
 704	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 705	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 706	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 707	unsigned long other_clean = global_clean - min(global_clean, clean);
 708
 709	mdtc->avail = filepages + min(headroom, other_clean);
 710}
 711
 712/**
 713 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 714 * @dtc: dirty_throttle_context of interest
 715 *
 716 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 717 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 718 *
 719 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 720 * when sleeping max_pause per page is not enough to keep the dirty pages under
 721 * control. For example, when the device is completely stalled due to some error
 722 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 723 * In the other normal situations, it acts more gently by throttling the tasks
 724 * more (rather than completely block them) when the wb dirty pages go high.
 725 *
 726 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 727 * - starving fast devices
 728 * - piling up dirty pages (that will take long time to sync) on slow devices
 729 *
 730 * The wb's share of dirty limit will be adapting to its throughput and
 731 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 732 */
 733static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 734{
 735	struct wb_domain *dom = dtc_dom(dtc);
 736	unsigned long thresh = dtc->thresh;
 737	u64 wb_thresh;
 738	long numerator, denominator;
 739	unsigned long wb_min_ratio, wb_max_ratio;
 740
 741	/*
 742	 * Calculate this BDI's share of the thresh ratio.
 743	 */
 744	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 745			      &numerator, &denominator);
 746
 747	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 748	wb_thresh *= numerator;
 749	do_div(wb_thresh, denominator);
 750
 751	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 752
 753	wb_thresh += (thresh * wb_min_ratio) / 100;
 754	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 755		wb_thresh = thresh * wb_max_ratio / 100;
 756
 757	return wb_thresh;
 758}
 759
 760unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 761{
 762	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 763					       .thresh = thresh };
 764	return __wb_calc_thresh(&gdtc);
 765}
 766
 767/*
 768 *                           setpoint - dirty 3
 769 *        f(dirty) := 1.0 + (----------------)
 770 *                           limit - setpoint
 771 *
 772 * it's a 3rd order polynomial that subjects to
 773 *
 774 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 775 * (2) f(setpoint) = 1.0 => the balance point
 776 * (3) f(limit)    = 0   => the hard limit
 777 * (4) df/dx      <= 0	 => negative feedback control
 778 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 779 *     => fast response on large errors; small oscillation near setpoint
 780 */
 781static long long pos_ratio_polynom(unsigned long setpoint,
 782					  unsigned long dirty,
 783					  unsigned long limit)
 784{
 785	long long pos_ratio;
 786	long x;
 787
 788	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 789		      (limit - setpoint) | 1);
 790	pos_ratio = x;
 791	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 792	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 793	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 794
 795	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 796}
 797
 798/*
 799 * Dirty position control.
 800 *
 801 * (o) global/bdi setpoints
 802 *
 803 * We want the dirty pages be balanced around the global/wb setpoints.
 804 * When the number of dirty pages is higher/lower than the setpoint, the
 805 * dirty position control ratio (and hence task dirty ratelimit) will be
 806 * decreased/increased to bring the dirty pages back to the setpoint.
 807 *
 808 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 809 *
 810 *     if (dirty < setpoint) scale up   pos_ratio
 811 *     if (dirty > setpoint) scale down pos_ratio
 812 *
 813 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 814 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 815 *
 816 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 817 *
 818 * (o) global control line
 819 *
 820 *     ^ pos_ratio
 821 *     |
 822 *     |            |<===== global dirty control scope ======>|
 823 * 2.0 .............*
 824 *     |            .*
 825 *     |            . *
 826 *     |            .   *
 827 *     |            .     *
 828 *     |            .        *
 829 *     |            .            *
 830 * 1.0 ................................*
 831 *     |            .                  .     *
 832 *     |            .                  .          *
 833 *     |            .                  .              *
 834 *     |            .                  .                 *
 835 *     |            .                  .                    *
 836 *   0 +------------.------------------.----------------------*------------->
 837 *           freerun^          setpoint^                 limit^   dirty pages
 838 *
 839 * (o) wb control line
 840 *
 841 *     ^ pos_ratio
 842 *     |
 843 *     |            *
 844 *     |              *
 845 *     |                *
 846 *     |                  *
 847 *     |                    * |<=========== span ============>|
 848 * 1.0 .......................*
 849 *     |                      . *
 850 *     |                      .   *
 851 *     |                      .     *
 852 *     |                      .       *
 853 *     |                      .         *
 854 *     |                      .           *
 855 *     |                      .             *
 856 *     |                      .               *
 857 *     |                      .                 *
 858 *     |                      .                   *
 859 *     |                      .                     *
 860 * 1/4 ...............................................* * * * * * * * * * * *
 861 *     |                      .                         .
 862 *     |                      .                           .
 863 *     |                      .                             .
 864 *   0 +----------------------.-------------------------------.------------->
 865 *                wb_setpoint^                    x_intercept^
 866 *
 867 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 868 * be smoothly throttled down to normal if it starts high in situations like
 869 * - start writing to a slow SD card and a fast disk at the same time. The SD
 870 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 871 * - the wb dirty thresh drops quickly due to change of JBOD workload
 872 */
 873static void wb_position_ratio(struct dirty_throttle_control *dtc)
 874{
 875	struct bdi_writeback *wb = dtc->wb;
 876	unsigned long write_bw = wb->avg_write_bandwidth;
 877	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 878	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 879	unsigned long wb_thresh = dtc->wb_thresh;
 880	unsigned long x_intercept;
 881	unsigned long setpoint;		/* dirty pages' target balance point */
 882	unsigned long wb_setpoint;
 883	unsigned long span;
 884	long long pos_ratio;		/* for scaling up/down the rate limit */
 885	long x;
 886
 887	dtc->pos_ratio = 0;
 888
 889	if (unlikely(dtc->dirty >= limit))
 890		return;
 891
 892	/*
 893	 * global setpoint
 894	 *
 895	 * See comment for pos_ratio_polynom().
 896	 */
 897	setpoint = (freerun + limit) / 2;
 898	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 899
 900	/*
 901	 * The strictlimit feature is a tool preventing mistrusted filesystems
 902	 * from growing a large number of dirty pages before throttling. For
 903	 * such filesystems balance_dirty_pages always checks wb counters
 904	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 905	 * This is especially important for fuse which sets bdi->max_ratio to
 906	 * 1% by default. Without strictlimit feature, fuse writeback may
 907	 * consume arbitrary amount of RAM because it is accounted in
 908	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 909	 *
 910	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 911	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 912	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 913	 * limits are set by default to 10% and 20% (background and throttle).
 914	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 915	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 916	 * about ~6K pages (as the average of background and throttle wb
 917	 * limits). The 3rd order polynomial will provide positive feedback if
 918	 * wb_dirty is under wb_setpoint and vice versa.
 919	 *
 920	 * Note, that we cannot use global counters in these calculations
 921	 * because we want to throttle process writing to a strictlimit wb
 922	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 923	 * in the example above).
 924	 */
 925	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 926		long long wb_pos_ratio;
 927
 928		if (dtc->wb_dirty < 8) {
 929			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 930					   2 << RATELIMIT_CALC_SHIFT);
 931			return;
 932		}
 933
 934		if (dtc->wb_dirty >= wb_thresh)
 935			return;
 936
 937		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 938						    dtc->wb_bg_thresh);
 939
 940		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 941			return;
 942
 943		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 944						 wb_thresh);
 945
 946		/*
 947		 * Typically, for strictlimit case, wb_setpoint << setpoint
 948		 * and pos_ratio >> wb_pos_ratio. In the other words global
 949		 * state ("dirty") is not limiting factor and we have to
 950		 * make decision based on wb counters. But there is an
 951		 * important case when global pos_ratio should get precedence:
 952		 * global limits are exceeded (e.g. due to activities on other
 953		 * wb's) while given strictlimit wb is below limit.
 954		 *
 955		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 956		 * but it would look too non-natural for the case of all
 957		 * activity in the system coming from a single strictlimit wb
 958		 * with bdi->max_ratio == 100%.
 959		 *
 960		 * Note that min() below somewhat changes the dynamics of the
 961		 * control system. Normally, pos_ratio value can be well over 3
 962		 * (when globally we are at freerun and wb is well below wb
 963		 * setpoint). Now the maximum pos_ratio in the same situation
 964		 * is 2. We might want to tweak this if we observe the control
 965		 * system is too slow to adapt.
 966		 */
 967		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 968		return;
 969	}
 970
 971	/*
 972	 * We have computed basic pos_ratio above based on global situation. If
 973	 * the wb is over/under its share of dirty pages, we want to scale
 974	 * pos_ratio further down/up. That is done by the following mechanism.
 975	 */
 976
 977	/*
 978	 * wb setpoint
 979	 *
 980	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 981	 *
 982	 *                        x_intercept - wb_dirty
 983	 *                     := --------------------------
 984	 *                        x_intercept - wb_setpoint
 985	 *
 986	 * The main wb control line is a linear function that subjects to
 987	 *
 988	 * (1) f(wb_setpoint) = 1.0
 989	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 990	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 991	 *
 992	 * For single wb case, the dirty pages are observed to fluctuate
 993	 * regularly within range
 994	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
 995	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 996	 * fluctuation range for pos_ratio.
 997	 *
 998	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
 999	 * own size, so move the slope over accordingly and choose a slope that
1000	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1001	 */
1002	if (unlikely(wb_thresh > dtc->thresh))
1003		wb_thresh = dtc->thresh;
1004	/*
1005	 * It's very possible that wb_thresh is close to 0 not because the
1006	 * device is slow, but that it has remained inactive for long time.
1007	 * Honour such devices a reasonable good (hopefully IO efficient)
1008	 * threshold, so that the occasional writes won't be blocked and active
1009	 * writes can rampup the threshold quickly.
1010	 */
1011	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1012	/*
1013	 * scale global setpoint to wb's:
1014	 *	wb_setpoint = setpoint * wb_thresh / thresh
1015	 */
1016	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017	wb_setpoint = setpoint * (u64)x >> 16;
1018	/*
1019	 * Use span=(8*write_bw) in single wb case as indicated by
1020	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1021	 *
1022	 *        wb_thresh                    thresh - wb_thresh
1023	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1024	 *         thresh                           thresh
1025	 */
1026	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027	x_intercept = wb_setpoint + span;
1028
1029	if (dtc->wb_dirty < x_intercept - span / 4) {
1030		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031				      (x_intercept - wb_setpoint) | 1);
1032	} else
1033		pos_ratio /= 4;
1034
1035	/*
1036	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1037	 * It may push the desired control point of global dirty pages higher
1038	 * than setpoint.
1039	 */
1040	x_intercept = wb_thresh / 2;
1041	if (dtc->wb_dirty < x_intercept) {
1042		if (dtc->wb_dirty > x_intercept / 8)
1043			pos_ratio = div_u64(pos_ratio * x_intercept,
1044					    dtc->wb_dirty);
1045		else
1046			pos_ratio *= 8;
1047	}
1048
1049	dtc->pos_ratio = pos_ratio;
1050}
1051
1052static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1053				      unsigned long elapsed,
1054				      unsigned long written)
1055{
1056	const unsigned long period = roundup_pow_of_two(3 * HZ);
1057	unsigned long avg = wb->avg_write_bandwidth;
1058	unsigned long old = wb->write_bandwidth;
1059	u64 bw;
1060
1061	/*
1062	 * bw = written * HZ / elapsed
1063	 *
1064	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1065	 * write_bandwidth = ---------------------------------------------------
1066	 *                                          period
1067	 *
1068	 * @written may have decreased due to account_page_redirty().
1069	 * Avoid underflowing @bw calculation.
1070	 */
1071	bw = written - min(written, wb->written_stamp);
1072	bw *= HZ;
1073	if (unlikely(elapsed > period)) {
1074		do_div(bw, elapsed);
1075		avg = bw;
1076		goto out;
1077	}
1078	bw += (u64)wb->write_bandwidth * (period - elapsed);
1079	bw >>= ilog2(period);
1080
1081	/*
1082	 * one more level of smoothing, for filtering out sudden spikes
1083	 */
1084	if (avg > old && old >= (unsigned long)bw)
1085		avg -= (avg - old) >> 3;
1086
1087	if (avg < old && old <= (unsigned long)bw)
1088		avg += (old - avg) >> 3;
1089
1090out:
1091	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1092	avg = max(avg, 1LU);
1093	if (wb_has_dirty_io(wb)) {
1094		long delta = avg - wb->avg_write_bandwidth;
1095		WARN_ON_ONCE(atomic_long_add_return(delta,
1096					&wb->bdi->tot_write_bandwidth) <= 0);
1097	}
1098	wb->write_bandwidth = bw;
1099	wb->avg_write_bandwidth = avg;
1100}
1101
1102static void update_dirty_limit(struct dirty_throttle_control *dtc)
1103{
1104	struct wb_domain *dom = dtc_dom(dtc);
1105	unsigned long thresh = dtc->thresh;
1106	unsigned long limit = dom->dirty_limit;
1107
1108	/*
1109	 * Follow up in one step.
1110	 */
1111	if (limit < thresh) {
1112		limit = thresh;
1113		goto update;
1114	}
1115
1116	/*
1117	 * Follow down slowly. Use the higher one as the target, because thresh
1118	 * may drop below dirty. This is exactly the reason to introduce
1119	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1120	 */
1121	thresh = max(thresh, dtc->dirty);
1122	if (limit > thresh) {
1123		limit -= (limit - thresh) >> 5;
1124		goto update;
1125	}
1126	return;
1127update:
1128	dom->dirty_limit = limit;
1129}
1130
1131static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1132				    unsigned long now)
1133{
1134	struct wb_domain *dom = dtc_dom(dtc);
1135
1136	/*
1137	 * check locklessly first to optimize away locking for the most time
1138	 */
1139	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140		return;
1141
1142	spin_lock(&dom->lock);
1143	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144		update_dirty_limit(dtc);
1145		dom->dirty_limit_tstamp = now;
1146	}
1147	spin_unlock(&dom->lock);
1148}
1149
1150/*
1151 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1152 *
1153 * Normal wb tasks will be curbed at or below it in long term.
1154 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1155 */
1156static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157				      unsigned long dirtied,
1158				      unsigned long elapsed)
1159{
1160	struct bdi_writeback *wb = dtc->wb;
1161	unsigned long dirty = dtc->dirty;
1162	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1164	unsigned long setpoint = (freerun + limit) / 2;
1165	unsigned long write_bw = wb->avg_write_bandwidth;
1166	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1167	unsigned long dirty_rate;
1168	unsigned long task_ratelimit;
1169	unsigned long balanced_dirty_ratelimit;
1170	unsigned long step;
1171	unsigned long x;
1172	unsigned long shift;
1173
1174	/*
1175	 * The dirty rate will match the writeout rate in long term, except
1176	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1177	 */
1178	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1179
1180	/*
1181	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1182	 */
1183	task_ratelimit = (u64)dirty_ratelimit *
1184					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1185	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1186
1187	/*
1188	 * A linear estimation of the "balanced" throttle rate. The theory is,
1189	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1190	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1191	 * formula will yield the balanced rate limit (write_bw / N).
1192	 *
1193	 * Note that the expanded form is not a pure rate feedback:
1194	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1195	 * but also takes pos_ratio into account:
1196	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1197	 *
1198	 * (1) is not realistic because pos_ratio also takes part in balancing
1199	 * the dirty rate.  Consider the state
1200	 *	pos_ratio = 0.5						     (3)
1201	 *	rate = 2 * (write_bw / N)				     (4)
1202	 * If (1) is used, it will stuck in that state! Because each dd will
1203	 * be throttled at
1204	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1205	 * yielding
1206	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1207	 * put (6) into (1) we get
1208	 *	rate_(i+1) = rate_(i)					     (7)
1209	 *
1210	 * So we end up using (2) to always keep
1211	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1212	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1213	 * pos_ratio is able to drive itself to 1.0, which is not only where
1214	 * the dirty count meet the setpoint, but also where the slope of
1215	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1216	 */
1217	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1218					   dirty_rate | 1);
1219	/*
1220	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1221	 */
1222	if (unlikely(balanced_dirty_ratelimit > write_bw))
1223		balanced_dirty_ratelimit = write_bw;
1224
1225	/*
1226	 * We could safely do this and return immediately:
1227	 *
1228	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1229	 *
1230	 * However to get a more stable dirty_ratelimit, the below elaborated
1231	 * code makes use of task_ratelimit to filter out singular points and
1232	 * limit the step size.
1233	 *
1234	 * The below code essentially only uses the relative value of
1235	 *
1236	 *	task_ratelimit - dirty_ratelimit
1237	 *	= (pos_ratio - 1) * dirty_ratelimit
1238	 *
1239	 * which reflects the direction and size of dirty position error.
1240	 */
1241
1242	/*
1243	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1244	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1245	 * For example, when
1246	 * - dirty_ratelimit > balanced_dirty_ratelimit
1247	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1248	 * lowering dirty_ratelimit will help meet both the position and rate
1249	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1250	 * only help meet the rate target. After all, what the users ultimately
1251	 * feel and care are stable dirty rate and small position error.
1252	 *
1253	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1254	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1255	 * keeps jumping around randomly and can even leap far away at times
1256	 * due to the small 200ms estimation period of dirty_rate (we want to
1257	 * keep that period small to reduce time lags).
1258	 */
1259	step = 0;
1260
1261	/*
1262	 * For strictlimit case, calculations above were based on wb counters
1263	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1264	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1265	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1266	 * "dirty" and wb_setpoint as "setpoint".
1267	 *
1268	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1269	 * it's possible that wb_thresh is close to zero due to inactivity
1270	 * of backing device.
1271	 */
1272	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1273		dirty = dtc->wb_dirty;
1274		if (dtc->wb_dirty < 8)
1275			setpoint = dtc->wb_dirty + 1;
1276		else
1277			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1278	}
1279
1280	if (dirty < setpoint) {
1281		x = min3(wb->balanced_dirty_ratelimit,
1282			 balanced_dirty_ratelimit, task_ratelimit);
1283		if (dirty_ratelimit < x)
1284			step = x - dirty_ratelimit;
1285	} else {
1286		x = max3(wb->balanced_dirty_ratelimit,
1287			 balanced_dirty_ratelimit, task_ratelimit);
1288		if (dirty_ratelimit > x)
1289			step = dirty_ratelimit - x;
1290	}
1291
1292	/*
1293	 * Don't pursue 100% rate matching. It's impossible since the balanced
1294	 * rate itself is constantly fluctuating. So decrease the track speed
1295	 * when it gets close to the target. Helps eliminate pointless tremors.
1296	 */
1297	shift = dirty_ratelimit / (2 * step + 1);
1298	if (shift < BITS_PER_LONG)
1299		step = DIV_ROUND_UP(step >> shift, 8);
1300	else
1301		step = 0;
1302
1303	if (dirty_ratelimit < balanced_dirty_ratelimit)
1304		dirty_ratelimit += step;
1305	else
1306		dirty_ratelimit -= step;
1307
1308	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1309	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1310
1311	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1312}
1313
1314static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1315				  struct dirty_throttle_control *mdtc,
1316				  unsigned long start_time,
1317				  bool update_ratelimit)
1318{
1319	struct bdi_writeback *wb = gdtc->wb;
1320	unsigned long now = jiffies;
1321	unsigned long elapsed = now - wb->bw_time_stamp;
1322	unsigned long dirtied;
1323	unsigned long written;
1324
1325	lockdep_assert_held(&wb->list_lock);
1326
1327	/*
1328	 * rate-limit, only update once every 200ms.
1329	 */
1330	if (elapsed < BANDWIDTH_INTERVAL)
1331		return;
1332
1333	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1334	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1335
1336	/*
1337	 * Skip quiet periods when disk bandwidth is under-utilized.
1338	 * (at least 1s idle time between two flusher runs)
1339	 */
1340	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1341		goto snapshot;
1342
1343	if (update_ratelimit) {
1344		domain_update_bandwidth(gdtc, now);
1345		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1346
1347		/*
1348		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1349		 * compiler has no way to figure that out.  Help it.
1350		 */
1351		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1352			domain_update_bandwidth(mdtc, now);
1353			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1354		}
1355	}
1356	wb_update_write_bandwidth(wb, elapsed, written);
1357
1358snapshot:
1359	wb->dirtied_stamp = dirtied;
1360	wb->written_stamp = written;
1361	wb->bw_time_stamp = now;
1362}
1363
1364void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1365{
1366	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367
1368	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1369}
1370
1371/*
1372 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1373 * will look to see if it needs to start dirty throttling.
1374 *
1375 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1376 * global_page_state() too often. So scale it near-sqrt to the safety margin
1377 * (the number of pages we may dirty without exceeding the dirty limits).
1378 */
1379static unsigned long dirty_poll_interval(unsigned long dirty,
1380					 unsigned long thresh)
1381{
1382	if (thresh > dirty)
1383		return 1UL << (ilog2(thresh - dirty) >> 1);
1384
1385	return 1;
1386}
1387
1388static unsigned long wb_max_pause(struct bdi_writeback *wb,
1389				  unsigned long wb_dirty)
1390{
1391	unsigned long bw = wb->avg_write_bandwidth;
1392	unsigned long t;
1393
1394	/*
1395	 * Limit pause time for small memory systems. If sleeping for too long
1396	 * time, a small pool of dirty/writeback pages may go empty and disk go
1397	 * idle.
1398	 *
1399	 * 8 serves as the safety ratio.
1400	 */
1401	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1402	t++;
1403
1404	return min_t(unsigned long, t, MAX_PAUSE);
1405}
1406
1407static long wb_min_pause(struct bdi_writeback *wb,
1408			 long max_pause,
1409			 unsigned long task_ratelimit,
1410			 unsigned long dirty_ratelimit,
1411			 int *nr_dirtied_pause)
1412{
1413	long hi = ilog2(wb->avg_write_bandwidth);
1414	long lo = ilog2(wb->dirty_ratelimit);
1415	long t;		/* target pause */
1416	long pause;	/* estimated next pause */
1417	int pages;	/* target nr_dirtied_pause */
1418
1419	/* target for 10ms pause on 1-dd case */
1420	t = max(1, HZ / 100);
1421
1422	/*
1423	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1424	 * overheads.
1425	 *
1426	 * (N * 10ms) on 2^N concurrent tasks.
1427	 */
1428	if (hi > lo)
1429		t += (hi - lo) * (10 * HZ) / 1024;
1430
1431	/*
1432	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1433	 * on the much more stable dirty_ratelimit. However the next pause time
1434	 * will be computed based on task_ratelimit and the two rate limits may
1435	 * depart considerably at some time. Especially if task_ratelimit goes
1436	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1437	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1438	 * result task_ratelimit won't be executed faithfully, which could
1439	 * eventually bring down dirty_ratelimit.
1440	 *
1441	 * We apply two rules to fix it up:
1442	 * 1) try to estimate the next pause time and if necessary, use a lower
1443	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1444	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1445	 * 2) limit the target pause time to max_pause/2, so that the normal
1446	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1447	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1448	 */
1449	t = min(t, 1 + max_pause / 2);
1450	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1451
1452	/*
1453	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1454	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1455	 * When the 16 consecutive reads are often interrupted by some dirty
1456	 * throttling pause during the async writes, cfq will go into idles
1457	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1458	 * until reaches DIRTY_POLL_THRESH=32 pages.
1459	 */
1460	if (pages < DIRTY_POLL_THRESH) {
1461		t = max_pause;
1462		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1463		if (pages > DIRTY_POLL_THRESH) {
1464			pages = DIRTY_POLL_THRESH;
1465			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1466		}
1467	}
1468
1469	pause = HZ * pages / (task_ratelimit + 1);
1470	if (pause > max_pause) {
1471		t = max_pause;
1472		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1473	}
1474
1475	*nr_dirtied_pause = pages;
1476	/*
1477	 * The minimal pause time will normally be half the target pause time.
1478	 */
1479	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1480}
1481
1482static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1483{
1484	struct bdi_writeback *wb = dtc->wb;
1485	unsigned long wb_reclaimable;
1486
1487	/*
1488	 * wb_thresh is not treated as some limiting factor as
1489	 * dirty_thresh, due to reasons
1490	 * - in JBOD setup, wb_thresh can fluctuate a lot
1491	 * - in a system with HDD and USB key, the USB key may somehow
1492	 *   go into state (wb_dirty >> wb_thresh) either because
1493	 *   wb_dirty starts high, or because wb_thresh drops low.
1494	 *   In this case we don't want to hard throttle the USB key
1495	 *   dirtiers for 100 seconds until wb_dirty drops under
1496	 *   wb_thresh. Instead the auxiliary wb control line in
1497	 *   wb_position_ratio() will let the dirtier task progress
1498	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1499	 */
1500	dtc->wb_thresh = __wb_calc_thresh(dtc);
1501	dtc->wb_bg_thresh = dtc->thresh ?
1502		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1503
1504	/*
1505	 * In order to avoid the stacked BDI deadlock we need
1506	 * to ensure we accurately count the 'dirty' pages when
1507	 * the threshold is low.
1508	 *
1509	 * Otherwise it would be possible to get thresh+n pages
1510	 * reported dirty, even though there are thresh-m pages
1511	 * actually dirty; with m+n sitting in the percpu
1512	 * deltas.
1513	 */
1514	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1515		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1516		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1517	} else {
1518		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1519		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1520	}
1521}
1522
1523/*
1524 * balance_dirty_pages() must be called by processes which are generating dirty
1525 * data.  It looks at the number of dirty pages in the machine and will force
1526 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1527 * If we're over `background_thresh' then the writeback threads are woken to
1528 * perform some writeout.
1529 */
1530static void balance_dirty_pages(struct address_space *mapping,
1531				struct bdi_writeback *wb,
1532				unsigned long pages_dirtied)
1533{
1534	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1535	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1536	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1537	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1538						     &mdtc_stor : NULL;
1539	struct dirty_throttle_control *sdtc;
1540	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1541	long period;
1542	long pause;
1543	long max_pause;
1544	long min_pause;
1545	int nr_dirtied_pause;
1546	bool dirty_exceeded = false;
1547	unsigned long task_ratelimit;
1548	unsigned long dirty_ratelimit;
1549	struct backing_dev_info *bdi = wb->bdi;
1550	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1551	unsigned long start_time = jiffies;
1552
1553	for (;;) {
1554		unsigned long now = jiffies;
1555		unsigned long dirty, thresh, bg_thresh;
1556		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1557		unsigned long m_thresh = 0;
1558		unsigned long m_bg_thresh = 0;
1559
1560		/*
1561		 * Unstable writes are a feature of certain networked
1562		 * filesystems (i.e. NFS) in which data may have been
1563		 * written to the server's write cache, but has not yet
1564		 * been flushed to permanent storage.
1565		 */
1566		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1567					global_page_state(NR_UNSTABLE_NFS);
1568		gdtc->avail = global_dirtyable_memory();
1569		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1570
1571		domain_dirty_limits(gdtc);
1572
1573		if (unlikely(strictlimit)) {
1574			wb_dirty_limits(gdtc);
1575
1576			dirty = gdtc->wb_dirty;
1577			thresh = gdtc->wb_thresh;
1578			bg_thresh = gdtc->wb_bg_thresh;
1579		} else {
1580			dirty = gdtc->dirty;
1581			thresh = gdtc->thresh;
1582			bg_thresh = gdtc->bg_thresh;
1583		}
1584
1585		if (mdtc) {
1586			unsigned long filepages, headroom, writeback;
1587
1588			/*
1589			 * If @wb belongs to !root memcg, repeat the same
1590			 * basic calculations for the memcg domain.
1591			 */
1592			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1593					    &mdtc->dirty, &writeback);
1594			mdtc->dirty += writeback;
1595			mdtc_calc_avail(mdtc, filepages, headroom);
1596
1597			domain_dirty_limits(mdtc);
1598
1599			if (unlikely(strictlimit)) {
1600				wb_dirty_limits(mdtc);
1601				m_dirty = mdtc->wb_dirty;
1602				m_thresh = mdtc->wb_thresh;
1603				m_bg_thresh = mdtc->wb_bg_thresh;
1604			} else {
1605				m_dirty = mdtc->dirty;
1606				m_thresh = mdtc->thresh;
1607				m_bg_thresh = mdtc->bg_thresh;
1608			}
1609		}
1610
1611		/*
1612		 * Throttle it only when the background writeback cannot
1613		 * catch-up. This avoids (excessively) small writeouts
1614		 * when the wb limits are ramping up in case of !strictlimit.
1615		 *
1616		 * In strictlimit case make decision based on the wb counters
1617		 * and limits. Small writeouts when the wb limits are ramping
1618		 * up are the price we consciously pay for strictlimit-ing.
1619		 *
1620		 * If memcg domain is in effect, @dirty should be under
1621		 * both global and memcg freerun ceilings.
1622		 */
1623		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1624		    (!mdtc ||
1625		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1626			unsigned long intv = dirty_poll_interval(dirty, thresh);
1627			unsigned long m_intv = ULONG_MAX;
1628
1629			current->dirty_paused_when = now;
1630			current->nr_dirtied = 0;
1631			if (mdtc)
1632				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1633			current->nr_dirtied_pause = min(intv, m_intv);
1634			break;
1635		}
1636
1637		if (unlikely(!writeback_in_progress(wb)))
1638			wb_start_background_writeback(wb);
1639
1640		/*
1641		 * Calculate global domain's pos_ratio and select the
1642		 * global dtc by default.
1643		 */
1644		if (!strictlimit)
1645			wb_dirty_limits(gdtc);
1646
1647		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1648			((gdtc->dirty > gdtc->thresh) || strictlimit);
1649
1650		wb_position_ratio(gdtc);
1651		sdtc = gdtc;
1652
1653		if (mdtc) {
1654			/*
1655			 * If memcg domain is in effect, calculate its
1656			 * pos_ratio.  @wb should satisfy constraints from
1657			 * both global and memcg domains.  Choose the one
1658			 * w/ lower pos_ratio.
1659			 */
1660			if (!strictlimit)
1661				wb_dirty_limits(mdtc);
1662
1663			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1664				((mdtc->dirty > mdtc->thresh) || strictlimit);
1665
1666			wb_position_ratio(mdtc);
1667			if (mdtc->pos_ratio < gdtc->pos_ratio)
1668				sdtc = mdtc;
1669		}
1670
1671		if (dirty_exceeded && !wb->dirty_exceeded)
1672			wb->dirty_exceeded = 1;
1673
1674		if (time_is_before_jiffies(wb->bw_time_stamp +
1675					   BANDWIDTH_INTERVAL)) {
1676			spin_lock(&wb->list_lock);
1677			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1678			spin_unlock(&wb->list_lock);
1679		}
1680
1681		/* throttle according to the chosen dtc */
1682		dirty_ratelimit = wb->dirty_ratelimit;
1683		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1684							RATELIMIT_CALC_SHIFT;
1685		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1686		min_pause = wb_min_pause(wb, max_pause,
1687					 task_ratelimit, dirty_ratelimit,
1688					 &nr_dirtied_pause);
1689
1690		if (unlikely(task_ratelimit == 0)) {
1691			period = max_pause;
1692			pause = max_pause;
1693			goto pause;
1694		}
1695		period = HZ * pages_dirtied / task_ratelimit;
1696		pause = period;
1697		if (current->dirty_paused_when)
1698			pause -= now - current->dirty_paused_when;
1699		/*
1700		 * For less than 1s think time (ext3/4 may block the dirtier
1701		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1702		 * however at much less frequency), try to compensate it in
1703		 * future periods by updating the virtual time; otherwise just
1704		 * do a reset, as it may be a light dirtier.
1705		 */
1706		if (pause < min_pause) {
1707			trace_balance_dirty_pages(wb,
1708						  sdtc->thresh,
1709						  sdtc->bg_thresh,
1710						  sdtc->dirty,
1711						  sdtc->wb_thresh,
1712						  sdtc->wb_dirty,
1713						  dirty_ratelimit,
1714						  task_ratelimit,
1715						  pages_dirtied,
1716						  period,
1717						  min(pause, 0L),
1718						  start_time);
1719			if (pause < -HZ) {
1720				current->dirty_paused_when = now;
1721				current->nr_dirtied = 0;
1722			} else if (period) {
1723				current->dirty_paused_when += period;
1724				current->nr_dirtied = 0;
1725			} else if (current->nr_dirtied_pause <= pages_dirtied)
1726				current->nr_dirtied_pause += pages_dirtied;
1727			break;
1728		}
1729		if (unlikely(pause > max_pause)) {
1730			/* for occasional dropped task_ratelimit */
1731			now += min(pause - max_pause, max_pause);
1732			pause = max_pause;
1733		}
1734
1735pause:
1736		trace_balance_dirty_pages(wb,
1737					  sdtc->thresh,
1738					  sdtc->bg_thresh,
1739					  sdtc->dirty,
1740					  sdtc->wb_thresh,
1741					  sdtc->wb_dirty,
1742					  dirty_ratelimit,
1743					  task_ratelimit,
1744					  pages_dirtied,
1745					  period,
1746					  pause,
1747					  start_time);
1748		__set_current_state(TASK_KILLABLE);
 
1749		io_schedule_timeout(pause);
1750
1751		current->dirty_paused_when = now + pause;
1752		current->nr_dirtied = 0;
1753		current->nr_dirtied_pause = nr_dirtied_pause;
1754
1755		/*
1756		 * This is typically equal to (dirty < thresh) and can also
1757		 * keep "1000+ dd on a slow USB stick" under control.
1758		 */
1759		if (task_ratelimit)
1760			break;
1761
1762		/*
1763		 * In the case of an unresponding NFS server and the NFS dirty
1764		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1765		 * to go through, so that tasks on them still remain responsive.
1766		 *
1767		 * In theory 1 page is enough to keep the comsumer-producer
1768		 * pipe going: the flusher cleans 1 page => the task dirties 1
1769		 * more page. However wb_dirty has accounting errors.  So use
1770		 * the larger and more IO friendly wb_stat_error.
1771		 */
1772		if (sdtc->wb_dirty <= wb_stat_error(wb))
1773			break;
1774
1775		if (fatal_signal_pending(current))
1776			break;
1777	}
1778
1779	if (!dirty_exceeded && wb->dirty_exceeded)
1780		wb->dirty_exceeded = 0;
1781
1782	if (writeback_in_progress(wb))
1783		return;
1784
1785	/*
1786	 * In laptop mode, we wait until hitting the higher threshold before
1787	 * starting background writeout, and then write out all the way down
1788	 * to the lower threshold.  So slow writers cause minimal disk activity.
1789	 *
1790	 * In normal mode, we start background writeout at the lower
1791	 * background_thresh, to keep the amount of dirty memory low.
1792	 */
1793	if (laptop_mode)
1794		return;
1795
1796	if (nr_reclaimable > gdtc->bg_thresh)
1797		wb_start_background_writeback(wb);
1798}
1799
1800static DEFINE_PER_CPU(int, bdp_ratelimits);
1801
1802/*
1803 * Normal tasks are throttled by
1804 *	loop {
1805 *		dirty tsk->nr_dirtied_pause pages;
1806 *		take a snap in balance_dirty_pages();
1807 *	}
1808 * However there is a worst case. If every task exit immediately when dirtied
1809 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1810 * called to throttle the page dirties. The solution is to save the not yet
1811 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1812 * randomly into the running tasks. This works well for the above worst case,
1813 * as the new task will pick up and accumulate the old task's leaked dirty
1814 * count and eventually get throttled.
1815 */
1816DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1817
1818/**
1819 * balance_dirty_pages_ratelimited - balance dirty memory state
1820 * @mapping: address_space which was dirtied
1821 *
1822 * Processes which are dirtying memory should call in here once for each page
1823 * which was newly dirtied.  The function will periodically check the system's
1824 * dirty state and will initiate writeback if needed.
1825 *
1826 * On really big machines, get_writeback_state is expensive, so try to avoid
1827 * calling it too often (ratelimiting).  But once we're over the dirty memory
1828 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1829 * from overshooting the limit by (ratelimit_pages) each.
1830 */
1831void balance_dirty_pages_ratelimited(struct address_space *mapping)
1832{
1833	struct inode *inode = mapping->host;
1834	struct backing_dev_info *bdi = inode_to_bdi(inode);
1835	struct bdi_writeback *wb = NULL;
1836	int ratelimit;
1837	int *p;
1838
1839	if (!bdi_cap_account_dirty(bdi))
1840		return;
1841
1842	if (inode_cgwb_enabled(inode))
1843		wb = wb_get_create_current(bdi, GFP_KERNEL);
1844	if (!wb)
1845		wb = &bdi->wb;
1846
1847	ratelimit = current->nr_dirtied_pause;
1848	if (wb->dirty_exceeded)
1849		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1850
1851	preempt_disable();
1852	/*
1853	 * This prevents one CPU to accumulate too many dirtied pages without
1854	 * calling into balance_dirty_pages(), which can happen when there are
1855	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1856	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1857	 */
1858	p =  this_cpu_ptr(&bdp_ratelimits);
1859	if (unlikely(current->nr_dirtied >= ratelimit))
1860		*p = 0;
1861	else if (unlikely(*p >= ratelimit_pages)) {
1862		*p = 0;
1863		ratelimit = 0;
1864	}
1865	/*
1866	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1867	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1868	 * the dirty throttling and livelock other long-run dirtiers.
1869	 */
1870	p = this_cpu_ptr(&dirty_throttle_leaks);
1871	if (*p > 0 && current->nr_dirtied < ratelimit) {
1872		unsigned long nr_pages_dirtied;
1873		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1874		*p -= nr_pages_dirtied;
1875		current->nr_dirtied += nr_pages_dirtied;
1876	}
1877	preempt_enable();
1878
1879	if (unlikely(current->nr_dirtied >= ratelimit))
1880		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1881
1882	wb_put(wb);
1883}
1884EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1885
1886/**
1887 * wb_over_bg_thresh - does @wb need to be written back?
1888 * @wb: bdi_writeback of interest
1889 *
1890 * Determines whether background writeback should keep writing @wb or it's
1891 * clean enough.  Returns %true if writeback should continue.
1892 */
1893bool wb_over_bg_thresh(struct bdi_writeback *wb)
1894{
1895	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1896	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1897	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1898	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1899						     &mdtc_stor : NULL;
1900
1901	/*
1902	 * Similar to balance_dirty_pages() but ignores pages being written
1903	 * as we're trying to decide whether to put more under writeback.
1904	 */
1905	gdtc->avail = global_dirtyable_memory();
1906	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1907		      global_page_state(NR_UNSTABLE_NFS);
1908	domain_dirty_limits(gdtc);
1909
1910	if (gdtc->dirty > gdtc->bg_thresh)
1911		return true;
1912
1913	if (wb_stat(wb, WB_RECLAIMABLE) >
1914	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1915		return true;
1916
1917	if (mdtc) {
1918		unsigned long filepages, headroom, writeback;
1919
1920		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1921				    &writeback);
1922		mdtc_calc_avail(mdtc, filepages, headroom);
1923		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1924
1925		if (mdtc->dirty > mdtc->bg_thresh)
1926			return true;
1927
1928		if (wb_stat(wb, WB_RECLAIMABLE) >
1929		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1930			return true;
1931	}
1932
1933	return false;
1934}
1935
1936void throttle_vm_writeout(gfp_t gfp_mask)
1937{
1938	unsigned long background_thresh;
1939	unsigned long dirty_thresh;
1940
1941        for ( ; ; ) {
1942		global_dirty_limits(&background_thresh, &dirty_thresh);
1943		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1944
1945                /*
1946                 * Boost the allowable dirty threshold a bit for page
1947                 * allocators so they don't get DoS'ed by heavy writers
1948                 */
1949                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1950
1951                if (global_page_state(NR_UNSTABLE_NFS) +
1952			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1953                        	break;
1954                congestion_wait(BLK_RW_ASYNC, HZ/10);
1955
1956		/*
1957		 * The caller might hold locks which can prevent IO completion
1958		 * or progress in the filesystem.  So we cannot just sit here
1959		 * waiting for IO to complete.
1960		 */
1961		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1962			break;
1963        }
1964}
1965
1966/*
1967 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1968 */
1969int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1970	void __user *buffer, size_t *length, loff_t *ppos)
1971{
1972	proc_dointvec(table, write, buffer, length, ppos);
1973	return 0;
1974}
1975
1976#ifdef CONFIG_BLOCK
1977void laptop_mode_timer_fn(unsigned long data)
1978{
1979	struct request_queue *q = (struct request_queue *)data;
1980	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1981		global_page_state(NR_UNSTABLE_NFS);
1982	struct bdi_writeback *wb;
1983
1984	/*
1985	 * We want to write everything out, not just down to the dirty
1986	 * threshold
1987	 */
1988	if (!bdi_has_dirty_io(&q->backing_dev_info))
1989		return;
1990
1991	rcu_read_lock();
1992	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1993		if (wb_has_dirty_io(wb))
1994			wb_start_writeback(wb, nr_pages, true,
1995					   WB_REASON_LAPTOP_TIMER);
1996	rcu_read_unlock();
1997}
1998
1999/*
2000 * We've spun up the disk and we're in laptop mode: schedule writeback
2001 * of all dirty data a few seconds from now.  If the flush is already scheduled
2002 * then push it back - the user is still using the disk.
2003 */
2004void laptop_io_completion(struct backing_dev_info *info)
2005{
2006	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2007}
2008
2009/*
2010 * We're in laptop mode and we've just synced. The sync's writes will have
2011 * caused another writeback to be scheduled by laptop_io_completion.
2012 * Nothing needs to be written back anymore, so we unschedule the writeback.
2013 */
2014void laptop_sync_completion(void)
2015{
2016	struct backing_dev_info *bdi;
2017
2018	rcu_read_lock();
2019
2020	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2021		del_timer(&bdi->laptop_mode_wb_timer);
2022
2023	rcu_read_unlock();
2024}
2025#endif
2026
2027/*
2028 * If ratelimit_pages is too high then we can get into dirty-data overload
2029 * if a large number of processes all perform writes at the same time.
2030 * If it is too low then SMP machines will call the (expensive)
2031 * get_writeback_state too often.
2032 *
2033 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2034 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2035 * thresholds.
2036 */
2037
2038void writeback_set_ratelimit(void)
2039{
2040	struct wb_domain *dom = &global_wb_domain;
2041	unsigned long background_thresh;
2042	unsigned long dirty_thresh;
2043
2044	global_dirty_limits(&background_thresh, &dirty_thresh);
2045	dom->dirty_limit = dirty_thresh;
2046	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2047	if (ratelimit_pages < 16)
2048		ratelimit_pages = 16;
2049}
2050
2051static int
2052ratelimit_handler(struct notifier_block *self, unsigned long action,
2053		  void *hcpu)
2054{
2055
2056	switch (action & ~CPU_TASKS_FROZEN) {
2057	case CPU_ONLINE:
2058	case CPU_DEAD:
2059		writeback_set_ratelimit();
2060		return NOTIFY_OK;
2061	default:
2062		return NOTIFY_DONE;
2063	}
2064}
2065
2066static struct notifier_block ratelimit_nb = {
2067	.notifier_call	= ratelimit_handler,
2068	.next		= NULL,
2069};
2070
2071/*
2072 * Called early on to tune the page writeback dirty limits.
2073 *
2074 * We used to scale dirty pages according to how total memory
2075 * related to pages that could be allocated for buffers (by
2076 * comparing nr_free_buffer_pages() to vm_total_pages.
2077 *
2078 * However, that was when we used "dirty_ratio" to scale with
2079 * all memory, and we don't do that any more. "dirty_ratio"
2080 * is now applied to total non-HIGHPAGE memory (by subtracting
2081 * totalhigh_pages from vm_total_pages), and as such we can't
2082 * get into the old insane situation any more where we had
2083 * large amounts of dirty pages compared to a small amount of
2084 * non-HIGHMEM memory.
2085 *
2086 * But we might still want to scale the dirty_ratio by how
2087 * much memory the box has..
2088 */
2089void __init page_writeback_init(void)
2090{
2091	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2092
2093	writeback_set_ratelimit();
2094	register_cpu_notifier(&ratelimit_nb);
 
 
2095}
2096
2097/**
2098 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2099 * @mapping: address space structure to write
2100 * @start: starting page index
2101 * @end: ending page index (inclusive)
2102 *
2103 * This function scans the page range from @start to @end (inclusive) and tags
2104 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2105 * that write_cache_pages (or whoever calls this function) will then use
2106 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2107 * used to avoid livelocking of writeback by a process steadily creating new
2108 * dirty pages in the file (thus it is important for this function to be quick
2109 * so that it can tag pages faster than a dirtying process can create them).
2110 */
2111/*
2112 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2113 */
2114void tag_pages_for_writeback(struct address_space *mapping,
2115			     pgoff_t start, pgoff_t end)
2116{
2117#define WRITEBACK_TAG_BATCH 4096
2118	unsigned long tagged;
2119
2120	do {
2121		spin_lock_irq(&mapping->tree_lock);
2122		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2123				&start, end, WRITEBACK_TAG_BATCH,
2124				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
 
 
 
 
 
 
 
 
2125		spin_unlock_irq(&mapping->tree_lock);
2126		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2127		cond_resched();
2128		/* We check 'start' to handle wrapping when end == ~0UL */
2129	} while (tagged >= WRITEBACK_TAG_BATCH && start);
 
2130}
2131EXPORT_SYMBOL(tag_pages_for_writeback);
2132
2133/**
2134 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135 * @mapping: address space structure to write
2136 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137 * @writepage: function called for each page
2138 * @data: data passed to writepage function
2139 *
2140 * If a page is already under I/O, write_cache_pages() skips it, even
2141 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2142 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2143 * and msync() need to guarantee that all the data which was dirty at the time
2144 * the call was made get new I/O started against them.  If wbc->sync_mode is
2145 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146 * existing IO to complete.
2147 *
2148 * To avoid livelocks (when other process dirties new pages), we first tag
2149 * pages which should be written back with TOWRITE tag and only then start
2150 * writing them. For data-integrity sync we have to be careful so that we do
2151 * not miss some pages (e.g., because some other process has cleared TOWRITE
2152 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153 * by the process clearing the DIRTY tag (and submitting the page for IO).
2154 */
2155int write_cache_pages(struct address_space *mapping,
2156		      struct writeback_control *wbc, writepage_t writepage,
2157		      void *data)
2158{
2159	int ret = 0;
2160	int done = 0;
2161	struct pagevec pvec;
2162	int nr_pages;
2163	pgoff_t uninitialized_var(writeback_index);
2164	pgoff_t index;
2165	pgoff_t end;		/* Inclusive */
2166	pgoff_t done_index;
2167	int cycled;
2168	int range_whole = 0;
2169	int tag;
2170
2171	pagevec_init(&pvec, 0);
2172	if (wbc->range_cyclic) {
2173		writeback_index = mapping->writeback_index; /* prev offset */
2174		index = writeback_index;
2175		if (index == 0)
2176			cycled = 1;
2177		else
2178			cycled = 0;
2179		end = -1;
2180	} else {
2181		index = wbc->range_start >> PAGE_SHIFT;
2182		end = wbc->range_end >> PAGE_SHIFT;
2183		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184			range_whole = 1;
2185		cycled = 1; /* ignore range_cyclic tests */
2186	}
2187	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188		tag = PAGECACHE_TAG_TOWRITE;
2189	else
2190		tag = PAGECACHE_TAG_DIRTY;
2191retry:
2192	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193		tag_pages_for_writeback(mapping, index, end);
2194	done_index = index;
2195	while (!done && (index <= end)) {
2196		int i;
2197
2198		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200		if (nr_pages == 0)
2201			break;
2202
2203		for (i = 0; i < nr_pages; i++) {
2204			struct page *page = pvec.pages[i];
2205
2206			/*
2207			 * At this point, the page may be truncated or
2208			 * invalidated (changing page->mapping to NULL), or
2209			 * even swizzled back from swapper_space to tmpfs file
2210			 * mapping. However, page->index will not change
2211			 * because we have a reference on the page.
2212			 */
2213			if (page->index > end) {
2214				/*
2215				 * can't be range_cyclic (1st pass) because
2216				 * end == -1 in that case.
2217				 */
2218				done = 1;
2219				break;
2220			}
2221
2222			done_index = page->index;
2223
2224			lock_page(page);
2225
2226			/*
2227			 * Page truncated or invalidated. We can freely skip it
2228			 * then, even for data integrity operations: the page
2229			 * has disappeared concurrently, so there could be no
2230			 * real expectation of this data interity operation
2231			 * even if there is now a new, dirty page at the same
2232			 * pagecache address.
2233			 */
2234			if (unlikely(page->mapping != mapping)) {
2235continue_unlock:
2236				unlock_page(page);
2237				continue;
2238			}
2239
2240			if (!PageDirty(page)) {
2241				/* someone wrote it for us */
2242				goto continue_unlock;
2243			}
2244
2245			if (PageWriteback(page)) {
2246				if (wbc->sync_mode != WB_SYNC_NONE)
2247					wait_on_page_writeback(page);
2248				else
2249					goto continue_unlock;
2250			}
2251
2252			BUG_ON(PageWriteback(page));
2253			if (!clear_page_dirty_for_io(page))
2254				goto continue_unlock;
2255
2256			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257			ret = (*writepage)(page, wbc, data);
2258			if (unlikely(ret)) {
2259				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2260					unlock_page(page);
2261					ret = 0;
2262				} else {
2263					/*
2264					 * done_index is set past this page,
2265					 * so media errors will not choke
2266					 * background writeout for the entire
2267					 * file. This has consequences for
2268					 * range_cyclic semantics (ie. it may
2269					 * not be suitable for data integrity
2270					 * writeout).
2271					 */
2272					done_index = page->index + 1;
2273					done = 1;
2274					break;
2275				}
2276			}
2277
2278			/*
2279			 * We stop writing back only if we are not doing
2280			 * integrity sync. In case of integrity sync we have to
2281			 * keep going until we have written all the pages
2282			 * we tagged for writeback prior to entering this loop.
2283			 */
2284			if (--wbc->nr_to_write <= 0 &&
2285			    wbc->sync_mode == WB_SYNC_NONE) {
2286				done = 1;
2287				break;
2288			}
2289		}
2290		pagevec_release(&pvec);
2291		cond_resched();
2292	}
2293	if (!cycled && !done) {
2294		/*
2295		 * range_cyclic:
2296		 * We hit the last page and there is more work to be done: wrap
2297		 * back to the start of the file
2298		 */
2299		cycled = 1;
2300		index = 0;
2301		end = writeback_index - 1;
2302		goto retry;
2303	}
2304	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305		mapping->writeback_index = done_index;
2306
2307	return ret;
2308}
2309EXPORT_SYMBOL(write_cache_pages);
2310
2311/*
2312 * Function used by generic_writepages to call the real writepage
2313 * function and set the mapping flags on error
2314 */
2315static int __writepage(struct page *page, struct writeback_control *wbc,
2316		       void *data)
2317{
2318	struct address_space *mapping = data;
2319	int ret = mapping->a_ops->writepage(page, wbc);
2320	mapping_set_error(mapping, ret);
2321	return ret;
2322}
2323
2324/**
2325 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326 * @mapping: address space structure to write
2327 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328 *
2329 * This is a library function, which implements the writepages()
2330 * address_space_operation.
2331 */
2332int generic_writepages(struct address_space *mapping,
2333		       struct writeback_control *wbc)
2334{
2335	struct blk_plug plug;
2336	int ret;
2337
2338	/* deal with chardevs and other special file */
2339	if (!mapping->a_ops->writepage)
2340		return 0;
2341
2342	blk_start_plug(&plug);
2343	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344	blk_finish_plug(&plug);
2345	return ret;
2346}
2347
2348EXPORT_SYMBOL(generic_writepages);
2349
2350int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351{
2352	int ret;
2353
2354	if (wbc->nr_to_write <= 0)
2355		return 0;
2356	if (mapping->a_ops->writepages)
2357		ret = mapping->a_ops->writepages(mapping, wbc);
2358	else
2359		ret = generic_writepages(mapping, wbc);
2360	return ret;
2361}
2362
2363/**
2364 * write_one_page - write out a single page and optionally wait on I/O
2365 * @page: the page to write
2366 * @wait: if true, wait on writeout
2367 *
2368 * The page must be locked by the caller and will be unlocked upon return.
2369 *
2370 * write_one_page() returns a negative error code if I/O failed.
2371 */
2372int write_one_page(struct page *page, int wait)
2373{
2374	struct address_space *mapping = page->mapping;
2375	int ret = 0;
2376	struct writeback_control wbc = {
2377		.sync_mode = WB_SYNC_ALL,
2378		.nr_to_write = 1,
2379	};
2380
2381	BUG_ON(!PageLocked(page));
2382
2383	if (wait)
2384		wait_on_page_writeback(page);
2385
2386	if (clear_page_dirty_for_io(page)) {
2387		get_page(page);
2388		ret = mapping->a_ops->writepage(page, &wbc);
2389		if (ret == 0 && wait) {
2390			wait_on_page_writeback(page);
2391			if (PageError(page))
2392				ret = -EIO;
2393		}
2394		put_page(page);
2395	} else {
2396		unlock_page(page);
2397	}
2398	return ret;
2399}
2400EXPORT_SYMBOL(write_one_page);
2401
2402/*
2403 * For address_spaces which do not use buffers nor write back.
2404 */
2405int __set_page_dirty_no_writeback(struct page *page)
2406{
2407	if (!PageDirty(page))
2408		return !TestSetPageDirty(page);
2409	return 0;
2410}
2411
2412/*
2413 * Helper function for set_page_dirty family.
2414 *
2415 * Caller must hold lock_page_memcg().
2416 *
2417 * NOTE: This relies on being atomic wrt interrupts.
2418 */
2419void account_page_dirtied(struct page *page, struct address_space *mapping)
2420{
2421	struct inode *inode = mapping->host;
2422
2423	trace_writeback_dirty_page(page, mapping);
2424
2425	if (mapping_cap_account_dirty(mapping)) {
2426		struct bdi_writeback *wb;
2427
2428		inode_attach_wb(inode, page);
2429		wb = inode_to_wb(inode);
2430
2431		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432		__inc_zone_page_state(page, NR_FILE_DIRTY);
2433		__inc_zone_page_state(page, NR_DIRTIED);
 
2434		__inc_wb_stat(wb, WB_RECLAIMABLE);
2435		__inc_wb_stat(wb, WB_DIRTIED);
2436		task_io_account_write(PAGE_SIZE);
2437		current->nr_dirtied++;
2438		this_cpu_inc(bdp_ratelimits);
2439	}
2440}
2441EXPORT_SYMBOL(account_page_dirtied);
2442
2443/*
2444 * Helper function for deaccounting dirty page without writeback.
2445 *
2446 * Caller must hold lock_page_memcg().
2447 */
2448void account_page_cleaned(struct page *page, struct address_space *mapping,
2449			  struct bdi_writeback *wb)
2450{
2451	if (mapping_cap_account_dirty(mapping)) {
2452		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453		dec_zone_page_state(page, NR_FILE_DIRTY);
 
2454		dec_wb_stat(wb, WB_RECLAIMABLE);
2455		task_io_account_cancelled_write(PAGE_SIZE);
2456	}
2457}
2458
2459/*
2460 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2461 * its radix tree.
2462 *
2463 * This is also used when a single buffer is being dirtied: we want to set the
2464 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2465 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2466 *
2467 * The caller must ensure this doesn't race with truncation.  Most will simply
2468 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2469 * the pte lock held, which also locks out truncation.
2470 */
2471int __set_page_dirty_nobuffers(struct page *page)
2472{
2473	lock_page_memcg(page);
2474	if (!TestSetPageDirty(page)) {
2475		struct address_space *mapping = page_mapping(page);
2476		unsigned long flags;
2477
2478		if (!mapping) {
2479			unlock_page_memcg(page);
2480			return 1;
2481		}
2482
2483		spin_lock_irqsave(&mapping->tree_lock, flags);
2484		BUG_ON(page_mapping(page) != mapping);
2485		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486		account_page_dirtied(page, mapping);
2487		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488				   PAGECACHE_TAG_DIRTY);
2489		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490		unlock_page_memcg(page);
2491
2492		if (mapping->host) {
2493			/* !PageAnon && !swapper_space */
2494			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2495		}
2496		return 1;
2497	}
2498	unlock_page_memcg(page);
2499	return 0;
2500}
2501EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2502
2503/*
2504 * Call this whenever redirtying a page, to de-account the dirty counters
2505 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508 * control.
2509 */
2510void account_page_redirty(struct page *page)
2511{
2512	struct address_space *mapping = page->mapping;
2513
2514	if (mapping && mapping_cap_account_dirty(mapping)) {
2515		struct inode *inode = mapping->host;
2516		struct bdi_writeback *wb;
2517		bool locked;
2518
2519		wb = unlocked_inode_to_wb_begin(inode, &locked);
2520		current->nr_dirtied--;
2521		dec_zone_page_state(page, NR_DIRTIED);
2522		dec_wb_stat(wb, WB_DIRTIED);
2523		unlocked_inode_to_wb_end(inode, locked);
2524	}
2525}
2526EXPORT_SYMBOL(account_page_redirty);
2527
2528/*
2529 * When a writepage implementation decides that it doesn't want to write this
2530 * page for some reason, it should redirty the locked page via
2531 * redirty_page_for_writepage() and it should then unlock the page and return 0
2532 */
2533int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2534{
2535	int ret;
2536
2537	wbc->pages_skipped++;
2538	ret = __set_page_dirty_nobuffers(page);
2539	account_page_redirty(page);
2540	return ret;
2541}
2542EXPORT_SYMBOL(redirty_page_for_writepage);
2543
2544/*
2545 * Dirty a page.
2546 *
2547 * For pages with a mapping this should be done under the page lock
2548 * for the benefit of asynchronous memory errors who prefer a consistent
2549 * dirty state. This rule can be broken in some special cases,
2550 * but should be better not to.
2551 *
2552 * If the mapping doesn't provide a set_page_dirty a_op, then
2553 * just fall through and assume that it wants buffer_heads.
2554 */
2555int set_page_dirty(struct page *page)
2556{
2557	struct address_space *mapping = page_mapping(page);
2558
 
2559	if (likely(mapping)) {
2560		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2561		/*
2562		 * readahead/lru_deactivate_page could remain
2563		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2564		 * About readahead, if the page is written, the flags would be
2565		 * reset. So no problem.
2566		 * About lru_deactivate_page, if the page is redirty, the flag
2567		 * will be reset. So no problem. but if the page is used by readahead
2568		 * it will confuse readahead and make it restart the size rampup
2569		 * process. But it's a trivial problem.
2570		 */
2571		if (PageReclaim(page))
2572			ClearPageReclaim(page);
2573#ifdef CONFIG_BLOCK
2574		if (!spd)
2575			spd = __set_page_dirty_buffers;
2576#endif
2577		return (*spd)(page);
2578	}
2579	if (!PageDirty(page)) {
2580		if (!TestSetPageDirty(page))
2581			return 1;
2582	}
2583	return 0;
2584}
2585EXPORT_SYMBOL(set_page_dirty);
2586
2587/*
2588 * set_page_dirty() is racy if the caller has no reference against
2589 * page->mapping->host, and if the page is unlocked.  This is because another
2590 * CPU could truncate the page off the mapping and then free the mapping.
2591 *
2592 * Usually, the page _is_ locked, or the caller is a user-space process which
2593 * holds a reference on the inode by having an open file.
2594 *
2595 * In other cases, the page should be locked before running set_page_dirty().
2596 */
2597int set_page_dirty_lock(struct page *page)
2598{
2599	int ret;
2600
2601	lock_page(page);
2602	ret = set_page_dirty(page);
2603	unlock_page(page);
2604	return ret;
2605}
2606EXPORT_SYMBOL(set_page_dirty_lock);
2607
2608/*
2609 * This cancels just the dirty bit on the kernel page itself, it does NOT
2610 * actually remove dirty bits on any mmap's that may be around. It also
2611 * leaves the page tagged dirty, so any sync activity will still find it on
2612 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613 * look at the dirty bits in the VM.
2614 *
2615 * Doing this should *normally* only ever be done when a page is truncated,
2616 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617 * this when it notices that somebody has cleaned out all the buffers on a
2618 * page without actually doing it through the VM. Can you say "ext3 is
2619 * horribly ugly"? Thought you could.
2620 */
2621void cancel_dirty_page(struct page *page)
2622{
2623	struct address_space *mapping = page_mapping(page);
2624
2625	if (mapping_cap_account_dirty(mapping)) {
2626		struct inode *inode = mapping->host;
2627		struct bdi_writeback *wb;
2628		bool locked;
2629
2630		lock_page_memcg(page);
2631		wb = unlocked_inode_to_wb_begin(inode, &locked);
2632
2633		if (TestClearPageDirty(page))
2634			account_page_cleaned(page, mapping, wb);
2635
2636		unlocked_inode_to_wb_end(inode, locked);
2637		unlock_page_memcg(page);
2638	} else {
2639		ClearPageDirty(page);
2640	}
2641}
2642EXPORT_SYMBOL(cancel_dirty_page);
2643
2644/*
2645 * Clear a page's dirty flag, while caring for dirty memory accounting.
2646 * Returns true if the page was previously dirty.
2647 *
2648 * This is for preparing to put the page under writeout.  We leave the page
2649 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2650 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2651 * implementation will run either set_page_writeback() or set_page_dirty(),
2652 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2653 * back into sync.
2654 *
2655 * This incoherency between the page's dirty flag and radix-tree tag is
2656 * unfortunate, but it only exists while the page is locked.
2657 */
2658int clear_page_dirty_for_io(struct page *page)
2659{
2660	struct address_space *mapping = page_mapping(page);
2661	int ret = 0;
2662
2663	BUG_ON(!PageLocked(page));
2664
2665	if (mapping && mapping_cap_account_dirty(mapping)) {
2666		struct inode *inode = mapping->host;
2667		struct bdi_writeback *wb;
2668		bool locked;
2669
2670		/*
2671		 * Yes, Virginia, this is indeed insane.
2672		 *
2673		 * We use this sequence to make sure that
2674		 *  (a) we account for dirty stats properly
2675		 *  (b) we tell the low-level filesystem to
2676		 *      mark the whole page dirty if it was
2677		 *      dirty in a pagetable. Only to then
2678		 *  (c) clean the page again and return 1 to
2679		 *      cause the writeback.
2680		 *
2681		 * This way we avoid all nasty races with the
2682		 * dirty bit in multiple places and clearing
2683		 * them concurrently from different threads.
2684		 *
2685		 * Note! Normally the "set_page_dirty(page)"
2686		 * has no effect on the actual dirty bit - since
2687		 * that will already usually be set. But we
2688		 * need the side effects, and it can help us
2689		 * avoid races.
2690		 *
2691		 * We basically use the page "master dirty bit"
2692		 * as a serialization point for all the different
2693		 * threads doing their things.
2694		 */
2695		if (page_mkclean(page))
2696			set_page_dirty(page);
2697		/*
2698		 * We carefully synchronise fault handlers against
2699		 * installing a dirty pte and marking the page dirty
2700		 * at this point.  We do this by having them hold the
2701		 * page lock while dirtying the page, and pages are
2702		 * always locked coming in here, so we get the desired
2703		 * exclusion.
2704		 */
2705		wb = unlocked_inode_to_wb_begin(inode, &locked);
2706		if (TestClearPageDirty(page)) {
2707			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2708			dec_zone_page_state(page, NR_FILE_DIRTY);
 
2709			dec_wb_stat(wb, WB_RECLAIMABLE);
2710			ret = 1;
2711		}
2712		unlocked_inode_to_wb_end(inode, locked);
2713		return ret;
2714	}
2715	return TestClearPageDirty(page);
2716}
2717EXPORT_SYMBOL(clear_page_dirty_for_io);
2718
2719int test_clear_page_writeback(struct page *page)
2720{
2721	struct address_space *mapping = page_mapping(page);
2722	int ret;
2723
2724	lock_page_memcg(page);
2725	if (mapping) {
2726		struct inode *inode = mapping->host;
2727		struct backing_dev_info *bdi = inode_to_bdi(inode);
2728		unsigned long flags;
2729
2730		spin_lock_irqsave(&mapping->tree_lock, flags);
2731		ret = TestClearPageWriteback(page);
2732		if (ret) {
2733			radix_tree_tag_clear(&mapping->page_tree,
2734						page_index(page),
2735						PAGECACHE_TAG_WRITEBACK);
2736			if (bdi_cap_account_writeback(bdi)) {
2737				struct bdi_writeback *wb = inode_to_wb(inode);
2738
2739				__dec_wb_stat(wb, WB_WRITEBACK);
2740				__wb_writeout_inc(wb);
2741			}
2742		}
 
 
 
 
 
2743		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2744	} else {
2745		ret = TestClearPageWriteback(page);
2746	}
2747	if (ret) {
2748		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2749		dec_zone_page_state(page, NR_WRITEBACK);
2750		inc_zone_page_state(page, NR_WRITTEN);
 
2751	}
2752	unlock_page_memcg(page);
2753	return ret;
2754}
2755
2756int __test_set_page_writeback(struct page *page, bool keep_write)
2757{
2758	struct address_space *mapping = page_mapping(page);
2759	int ret;
2760
2761	lock_page_memcg(page);
2762	if (mapping) {
2763		struct inode *inode = mapping->host;
2764		struct backing_dev_info *bdi = inode_to_bdi(inode);
2765		unsigned long flags;
2766
2767		spin_lock_irqsave(&mapping->tree_lock, flags);
2768		ret = TestSetPageWriteback(page);
2769		if (!ret) {
 
 
 
 
 
2770			radix_tree_tag_set(&mapping->page_tree,
2771						page_index(page),
2772						PAGECACHE_TAG_WRITEBACK);
2773			if (bdi_cap_account_writeback(bdi))
2774				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
 
 
 
 
 
 
 
 
2775		}
2776		if (!PageDirty(page))
2777			radix_tree_tag_clear(&mapping->page_tree,
2778						page_index(page),
2779						PAGECACHE_TAG_DIRTY);
2780		if (!keep_write)
2781			radix_tree_tag_clear(&mapping->page_tree,
2782						page_index(page),
2783						PAGECACHE_TAG_TOWRITE);
2784		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2785	} else {
2786		ret = TestSetPageWriteback(page);
2787	}
2788	if (!ret) {
2789		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2790		inc_zone_page_state(page, NR_WRITEBACK);
 
2791	}
2792	unlock_page_memcg(page);
2793	return ret;
2794
2795}
2796EXPORT_SYMBOL(__test_set_page_writeback);
2797
2798/*
2799 * Return true if any of the pages in the mapping are marked with the
2800 * passed tag.
2801 */
2802int mapping_tagged(struct address_space *mapping, int tag)
2803{
2804	return radix_tree_tagged(&mapping->page_tree, tag);
2805}
2806EXPORT_SYMBOL(mapping_tagged);
2807
2808/**
2809 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2810 * @page:	The page to wait on.
2811 *
2812 * This function determines if the given page is related to a backing device
2813 * that requires page contents to be held stable during writeback.  If so, then
2814 * it will wait for any pending writeback to complete.
2815 */
2816void wait_for_stable_page(struct page *page)
2817{
2818	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2819		wait_on_page_writeback(page);
2820}
2821EXPORT_SYMBOL_GPL(wait_for_stable_page);
v4.10.11
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130	struct wb_domain	*dom;
 131	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 132#endif
 133	struct bdi_writeback	*wb;
 134	struct fprop_local_percpu *wb_completions;
 135
 136	unsigned long		avail;		/* dirtyable */
 137	unsigned long		dirty;		/* file_dirty + write + nfs */
 138	unsigned long		thresh;		/* dirty threshold */
 139	unsigned long		bg_thresh;	/* dirty background threshold */
 140
 141	unsigned long		wb_dirty;	/* per-wb counterparts */
 142	unsigned long		wb_thresh;
 143	unsigned long		wb_bg_thresh;
 144
 145	unsigned long		pos_ratio;
 146};
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)		.wb = (__wb),				\
 158				.dom = &global_wb_domain,		\
 159				.wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 164				.dom = mem_cgroup_wb_domain(__wb),	\
 165				.wb_completions = &(__wb)->memcg_completions, \
 166				.gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175	return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180	return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185	return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189			     unsigned long *minp, unsigned long *maxp)
 190{
 191	unsigned long this_bw = wb->avg_write_bandwidth;
 192	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193	unsigned long long min = wb->bdi->min_ratio;
 194	unsigned long long max = wb->bdi->max_ratio;
 195
 196	/*
 197	 * @wb may already be clean by the time control reaches here and
 198	 * the total may not include its bw.
 199	 */
 200	if (this_bw < tot_bw) {
 201		if (min) {
 202			min *= this_bw;
 203			do_div(min, tot_bw);
 204		}
 205		if (max < 100) {
 206			max *= this_bw;
 207			do_div(max, tot_bw);
 208		}
 209	}
 210
 211	*minp = min;
 212	*maxp = max;
 213}
 214
 215#else	/* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 218				.wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224	return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229	return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234	return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239	return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243			     unsigned long *minp, unsigned long *maxp)
 244{
 245	*minp = wb->bdi->min_ratio;
 246	*maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif	/* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * node_dirtyable_memory - number of dirtyable pages in a node
 271 * @pgdat: the node
 272 *
 273 * Returns the node's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-node dirty limits.
 275 */
 276static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
 277{
 278	unsigned long nr_pages = 0;
 279	int z;
 280
 281	for (z = 0; z < MAX_NR_ZONES; z++) {
 282		struct zone *zone = pgdat->node_zones + z;
 283
 284		if (!populated_zone(zone))
 285			continue;
 286
 287		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
 288	}
 289
 
 290	/*
 291	 * Pages reserved for the kernel should not be considered
 292	 * dirtyable, to prevent a situation where reclaim has to
 293	 * clean pages in order to balance the zones.
 294	 */
 295	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
 296
 297	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
 298	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
 299
 300	return nr_pages;
 301}
 302
 303static unsigned long highmem_dirtyable_memory(unsigned long total)
 304{
 305#ifdef CONFIG_HIGHMEM
 306	int node;
 307	unsigned long x = 0;
 308	int i;
 309
 310	for_each_node_state(node, N_HIGH_MEMORY) {
 311		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
 312			struct zone *z;
 313			unsigned long nr_pages;
 314
 315			if (!is_highmem_idx(i))
 316				continue;
 317
 318			z = &NODE_DATA(node)->node_zones[i];
 319			if (!populated_zone(z))
 320				continue;
 321
 322			nr_pages = zone_page_state(z, NR_FREE_PAGES);
 323			/* watch for underflows */
 324			nr_pages -= min(nr_pages, high_wmark_pages(z));
 325			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
 326			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
 327			x += nr_pages;
 328		}
 329	}
 330
 331	/*
 332	 * Unreclaimable memory (kernel memory or anonymous memory
 333	 * without swap) can bring down the dirtyable pages below
 334	 * the zone's dirty balance reserve and the above calculation
 335	 * will underflow.  However we still want to add in nodes
 336	 * which are below threshold (negative values) to get a more
 337	 * accurate calculation but make sure that the total never
 338	 * underflows.
 339	 */
 340	if ((long)x < 0)
 341		x = 0;
 342
 343	/*
 344	 * Make sure that the number of highmem pages is never larger
 345	 * than the number of the total dirtyable memory. This can only
 346	 * occur in very strange VM situations but we want to make sure
 347	 * that this does not occur.
 348	 */
 349	return min(x, total);
 350#else
 351	return 0;
 352#endif
 353}
 354
 355/**
 356 * global_dirtyable_memory - number of globally dirtyable pages
 357 *
 358 * Returns the global number of pages potentially available for dirty
 359 * page cache.  This is the base value for the global dirty limits.
 360 */
 361static unsigned long global_dirtyable_memory(void)
 362{
 363	unsigned long x;
 364
 365	x = global_page_state(NR_FREE_PAGES);
 366	/*
 367	 * Pages reserved for the kernel should not be considered
 368	 * dirtyable, to prevent a situation where reclaim has to
 369	 * clean pages in order to balance the zones.
 370	 */
 371	x -= min(x, totalreserve_pages);
 372
 373	x += global_node_page_state(NR_INACTIVE_FILE);
 374	x += global_node_page_state(NR_ACTIVE_FILE);
 375
 376	if (!vm_highmem_is_dirtyable)
 377		x -= highmem_dirtyable_memory(x);
 378
 379	return x + 1;	/* Ensure that we never return 0 */
 380}
 381
 382/**
 383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 384 * @dtc: dirty_throttle_control of interest
 385 *
 386 * Calculate @dtc->thresh and ->bg_thresh considering
 387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 388 * must ensure that @dtc->avail is set before calling this function.  The
 389 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 390 * real-time tasks.
 391 */
 392static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 393{
 394	const unsigned long available_memory = dtc->avail;
 395	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 396	unsigned long bytes = vm_dirty_bytes;
 397	unsigned long bg_bytes = dirty_background_bytes;
 398	/* convert ratios to per-PAGE_SIZE for higher precision */
 399	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
 400	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
 401	unsigned long thresh;
 402	unsigned long bg_thresh;
 403	struct task_struct *tsk;
 404
 405	/* gdtc is !NULL iff @dtc is for memcg domain */
 406	if (gdtc) {
 407		unsigned long global_avail = gdtc->avail;
 408
 409		/*
 410		 * The byte settings can't be applied directly to memcg
 411		 * domains.  Convert them to ratios by scaling against
 412		 * globally available memory.  As the ratios are in
 413		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
 414		 * number of pages.
 415		 */
 416		if (bytes)
 417			ratio = min(DIV_ROUND_UP(bytes, global_avail),
 418				    PAGE_SIZE);
 419		if (bg_bytes)
 420			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
 421				       PAGE_SIZE);
 422		bytes = bg_bytes = 0;
 423	}
 424
 425	if (bytes)
 426		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 427	else
 428		thresh = (ratio * available_memory) / PAGE_SIZE;
 429
 430	if (bg_bytes)
 431		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 432	else
 433		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
 434
 435	if (bg_thresh >= thresh)
 436		bg_thresh = thresh / 2;
 437	tsk = current;
 438	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 439		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
 440		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
 441	}
 442	dtc->thresh = thresh;
 443	dtc->bg_thresh = bg_thresh;
 444
 445	/* we should eventually report the domain in the TP */
 446	if (!gdtc)
 447		trace_global_dirty_state(bg_thresh, thresh);
 448}
 449
 450/**
 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 452 * @pbackground: out parameter for bg_thresh
 453 * @pdirty: out parameter for thresh
 454 *
 455 * Calculate bg_thresh and thresh for global_wb_domain.  See
 456 * domain_dirty_limits() for details.
 457 */
 458void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 459{
 460	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 461
 462	gdtc.avail = global_dirtyable_memory();
 463	domain_dirty_limits(&gdtc);
 464
 465	*pbackground = gdtc.bg_thresh;
 466	*pdirty = gdtc.thresh;
 467}
 468
 469/**
 470 * node_dirty_limit - maximum number of dirty pages allowed in a node
 471 * @pgdat: the node
 472 *
 473 * Returns the maximum number of dirty pages allowed in a node, based
 474 * on the node's dirtyable memory.
 475 */
 476static unsigned long node_dirty_limit(struct pglist_data *pgdat)
 477{
 478	unsigned long node_memory = node_dirtyable_memory(pgdat);
 479	struct task_struct *tsk = current;
 480	unsigned long dirty;
 481
 482	if (vm_dirty_bytes)
 483		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 484			node_memory / global_dirtyable_memory();
 485	else
 486		dirty = vm_dirty_ratio * node_memory / 100;
 487
 488	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 489		dirty += dirty / 4;
 490
 491	return dirty;
 492}
 493
 494/**
 495 * node_dirty_ok - tells whether a node is within its dirty limits
 496 * @pgdat: the node to check
 497 *
 498 * Returns %true when the dirty pages in @pgdat are within the node's
 499 * dirty limit, %false if the limit is exceeded.
 500 */
 501bool node_dirty_ok(struct pglist_data *pgdat)
 502{
 503	unsigned long limit = node_dirty_limit(pgdat);
 504	unsigned long nr_pages = 0;
 505
 506	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
 507	nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
 508	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
 509
 510	return nr_pages <= limit;
 511}
 512
 513int dirty_background_ratio_handler(struct ctl_table *table, int write,
 514		void __user *buffer, size_t *lenp,
 515		loff_t *ppos)
 516{
 517	int ret;
 518
 519	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 520	if (ret == 0 && write)
 521		dirty_background_bytes = 0;
 522	return ret;
 523}
 524
 525int dirty_background_bytes_handler(struct ctl_table *table, int write,
 526		void __user *buffer, size_t *lenp,
 527		loff_t *ppos)
 528{
 529	int ret;
 530
 531	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 532	if (ret == 0 && write)
 533		dirty_background_ratio = 0;
 534	return ret;
 535}
 536
 537int dirty_ratio_handler(struct ctl_table *table, int write,
 538		void __user *buffer, size_t *lenp,
 539		loff_t *ppos)
 540{
 541	int old_ratio = vm_dirty_ratio;
 542	int ret;
 543
 544	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 545	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 546		writeback_set_ratelimit();
 547		vm_dirty_bytes = 0;
 548	}
 549	return ret;
 550}
 551
 552int dirty_bytes_handler(struct ctl_table *table, int write,
 553		void __user *buffer, size_t *lenp,
 554		loff_t *ppos)
 555{
 556	unsigned long old_bytes = vm_dirty_bytes;
 557	int ret;
 558
 559	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 560	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 561		writeback_set_ratelimit();
 562		vm_dirty_ratio = 0;
 563	}
 564	return ret;
 565}
 566
 567static unsigned long wp_next_time(unsigned long cur_time)
 568{
 569	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 570	/* 0 has a special meaning... */
 571	if (!cur_time)
 572		return 1;
 573	return cur_time;
 574}
 575
 576static void wb_domain_writeout_inc(struct wb_domain *dom,
 577				   struct fprop_local_percpu *completions,
 578				   unsigned int max_prop_frac)
 579{
 580	__fprop_inc_percpu_max(&dom->completions, completions,
 581			       max_prop_frac);
 582	/* First event after period switching was turned off? */
 583	if (!unlikely(dom->period_time)) {
 584		/*
 585		 * We can race with other __bdi_writeout_inc calls here but
 586		 * it does not cause any harm since the resulting time when
 587		 * timer will fire and what is in writeout_period_time will be
 588		 * roughly the same.
 589		 */
 590		dom->period_time = wp_next_time(jiffies);
 591		mod_timer(&dom->period_timer, dom->period_time);
 592	}
 593}
 594
 595/*
 596 * Increment @wb's writeout completion count and the global writeout
 597 * completion count. Called from test_clear_page_writeback().
 598 */
 599static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 600{
 601	struct wb_domain *cgdom;
 602
 603	__inc_wb_stat(wb, WB_WRITTEN);
 604	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 605			       wb->bdi->max_prop_frac);
 606
 607	cgdom = mem_cgroup_wb_domain(wb);
 608	if (cgdom)
 609		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 610				       wb->bdi->max_prop_frac);
 611}
 612
 613void wb_writeout_inc(struct bdi_writeback *wb)
 614{
 615	unsigned long flags;
 616
 617	local_irq_save(flags);
 618	__wb_writeout_inc(wb);
 619	local_irq_restore(flags);
 620}
 621EXPORT_SYMBOL_GPL(wb_writeout_inc);
 622
 623/*
 624 * On idle system, we can be called long after we scheduled because we use
 625 * deferred timers so count with missed periods.
 626 */
 627static void writeout_period(unsigned long t)
 628{
 629	struct wb_domain *dom = (void *)t;
 630	int miss_periods = (jiffies - dom->period_time) /
 631						 VM_COMPLETIONS_PERIOD_LEN;
 632
 633	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 634		dom->period_time = wp_next_time(dom->period_time +
 635				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 636		mod_timer(&dom->period_timer, dom->period_time);
 637	} else {
 638		/*
 639		 * Aging has zeroed all fractions. Stop wasting CPU on period
 640		 * updates.
 641		 */
 642		dom->period_time = 0;
 643	}
 644}
 645
 646int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 647{
 648	memset(dom, 0, sizeof(*dom));
 649
 650	spin_lock_init(&dom->lock);
 651
 652	init_timer_deferrable(&dom->period_timer);
 653	dom->period_timer.function = writeout_period;
 654	dom->period_timer.data = (unsigned long)dom;
 655
 656	dom->dirty_limit_tstamp = jiffies;
 657
 658	return fprop_global_init(&dom->completions, gfp);
 659}
 660
 661#ifdef CONFIG_CGROUP_WRITEBACK
 662void wb_domain_exit(struct wb_domain *dom)
 663{
 664	del_timer_sync(&dom->period_timer);
 665	fprop_global_destroy(&dom->completions);
 666}
 667#endif
 668
 669/*
 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 671 * registered backing devices, which, for obvious reasons, can not
 672 * exceed 100%.
 673 */
 674static unsigned int bdi_min_ratio;
 675
 676int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 677{
 678	int ret = 0;
 679
 680	spin_lock_bh(&bdi_lock);
 681	if (min_ratio > bdi->max_ratio) {
 682		ret = -EINVAL;
 683	} else {
 684		min_ratio -= bdi->min_ratio;
 685		if (bdi_min_ratio + min_ratio < 100) {
 686			bdi_min_ratio += min_ratio;
 687			bdi->min_ratio += min_ratio;
 688		} else {
 689			ret = -EINVAL;
 690		}
 691	}
 692	spin_unlock_bh(&bdi_lock);
 693
 694	return ret;
 695}
 696
 697int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 698{
 699	int ret = 0;
 700
 701	if (max_ratio > 100)
 702		return -EINVAL;
 703
 704	spin_lock_bh(&bdi_lock);
 705	if (bdi->min_ratio > max_ratio) {
 706		ret = -EINVAL;
 707	} else {
 708		bdi->max_ratio = max_ratio;
 709		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 710	}
 711	spin_unlock_bh(&bdi_lock);
 712
 713	return ret;
 714}
 715EXPORT_SYMBOL(bdi_set_max_ratio);
 716
 717static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 718					   unsigned long bg_thresh)
 719{
 720	return (thresh + bg_thresh) / 2;
 721}
 722
 723static unsigned long hard_dirty_limit(struct wb_domain *dom,
 724				      unsigned long thresh)
 725{
 726	return max(thresh, dom->dirty_limit);
 727}
 728
 729/*
 730 * Memory which can be further allocated to a memcg domain is capped by
 731 * system-wide clean memory excluding the amount being used in the domain.
 732 */
 733static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 734			    unsigned long filepages, unsigned long headroom)
 735{
 736	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 737	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 738	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 739	unsigned long other_clean = global_clean - min(global_clean, clean);
 740
 741	mdtc->avail = filepages + min(headroom, other_clean);
 742}
 743
 744/**
 745 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 746 * @dtc: dirty_throttle_context of interest
 747 *
 748 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 749 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 750 *
 751 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 752 * when sleeping max_pause per page is not enough to keep the dirty pages under
 753 * control. For example, when the device is completely stalled due to some error
 754 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 755 * In the other normal situations, it acts more gently by throttling the tasks
 756 * more (rather than completely block them) when the wb dirty pages go high.
 757 *
 758 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 759 * - starving fast devices
 760 * - piling up dirty pages (that will take long time to sync) on slow devices
 761 *
 762 * The wb's share of dirty limit will be adapting to its throughput and
 763 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 764 */
 765static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 766{
 767	struct wb_domain *dom = dtc_dom(dtc);
 768	unsigned long thresh = dtc->thresh;
 769	u64 wb_thresh;
 770	long numerator, denominator;
 771	unsigned long wb_min_ratio, wb_max_ratio;
 772
 773	/*
 774	 * Calculate this BDI's share of the thresh ratio.
 775	 */
 776	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 777			      &numerator, &denominator);
 778
 779	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 780	wb_thresh *= numerator;
 781	do_div(wb_thresh, denominator);
 782
 783	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 784
 785	wb_thresh += (thresh * wb_min_ratio) / 100;
 786	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 787		wb_thresh = thresh * wb_max_ratio / 100;
 788
 789	return wb_thresh;
 790}
 791
 792unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 793{
 794	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 795					       .thresh = thresh };
 796	return __wb_calc_thresh(&gdtc);
 797}
 798
 799/*
 800 *                           setpoint - dirty 3
 801 *        f(dirty) := 1.0 + (----------------)
 802 *                           limit - setpoint
 803 *
 804 * it's a 3rd order polynomial that subjects to
 805 *
 806 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 807 * (2) f(setpoint) = 1.0 => the balance point
 808 * (3) f(limit)    = 0   => the hard limit
 809 * (4) df/dx      <= 0	 => negative feedback control
 810 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 811 *     => fast response on large errors; small oscillation near setpoint
 812 */
 813static long long pos_ratio_polynom(unsigned long setpoint,
 814					  unsigned long dirty,
 815					  unsigned long limit)
 816{
 817	long long pos_ratio;
 818	long x;
 819
 820	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 821		      (limit - setpoint) | 1);
 822	pos_ratio = x;
 823	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 824	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 825	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 826
 827	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 828}
 829
 830/*
 831 * Dirty position control.
 832 *
 833 * (o) global/bdi setpoints
 834 *
 835 * We want the dirty pages be balanced around the global/wb setpoints.
 836 * When the number of dirty pages is higher/lower than the setpoint, the
 837 * dirty position control ratio (and hence task dirty ratelimit) will be
 838 * decreased/increased to bring the dirty pages back to the setpoint.
 839 *
 840 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 841 *
 842 *     if (dirty < setpoint) scale up   pos_ratio
 843 *     if (dirty > setpoint) scale down pos_ratio
 844 *
 845 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 846 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 847 *
 848 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 849 *
 850 * (o) global control line
 851 *
 852 *     ^ pos_ratio
 853 *     |
 854 *     |            |<===== global dirty control scope ======>|
 855 * 2.0 .............*
 856 *     |            .*
 857 *     |            . *
 858 *     |            .   *
 859 *     |            .     *
 860 *     |            .        *
 861 *     |            .            *
 862 * 1.0 ................................*
 863 *     |            .                  .     *
 864 *     |            .                  .          *
 865 *     |            .                  .              *
 866 *     |            .                  .                 *
 867 *     |            .                  .                    *
 868 *   0 +------------.------------------.----------------------*------------->
 869 *           freerun^          setpoint^                 limit^   dirty pages
 870 *
 871 * (o) wb control line
 872 *
 873 *     ^ pos_ratio
 874 *     |
 875 *     |            *
 876 *     |              *
 877 *     |                *
 878 *     |                  *
 879 *     |                    * |<=========== span ============>|
 880 * 1.0 .......................*
 881 *     |                      . *
 882 *     |                      .   *
 883 *     |                      .     *
 884 *     |                      .       *
 885 *     |                      .         *
 886 *     |                      .           *
 887 *     |                      .             *
 888 *     |                      .               *
 889 *     |                      .                 *
 890 *     |                      .                   *
 891 *     |                      .                     *
 892 * 1/4 ...............................................* * * * * * * * * * * *
 893 *     |                      .                         .
 894 *     |                      .                           .
 895 *     |                      .                             .
 896 *   0 +----------------------.-------------------------------.------------->
 897 *                wb_setpoint^                    x_intercept^
 898 *
 899 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 900 * be smoothly throttled down to normal if it starts high in situations like
 901 * - start writing to a slow SD card and a fast disk at the same time. The SD
 902 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 903 * - the wb dirty thresh drops quickly due to change of JBOD workload
 904 */
 905static void wb_position_ratio(struct dirty_throttle_control *dtc)
 906{
 907	struct bdi_writeback *wb = dtc->wb;
 908	unsigned long write_bw = wb->avg_write_bandwidth;
 909	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 910	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 911	unsigned long wb_thresh = dtc->wb_thresh;
 912	unsigned long x_intercept;
 913	unsigned long setpoint;		/* dirty pages' target balance point */
 914	unsigned long wb_setpoint;
 915	unsigned long span;
 916	long long pos_ratio;		/* for scaling up/down the rate limit */
 917	long x;
 918
 919	dtc->pos_ratio = 0;
 920
 921	if (unlikely(dtc->dirty >= limit))
 922		return;
 923
 924	/*
 925	 * global setpoint
 926	 *
 927	 * See comment for pos_ratio_polynom().
 928	 */
 929	setpoint = (freerun + limit) / 2;
 930	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 931
 932	/*
 933	 * The strictlimit feature is a tool preventing mistrusted filesystems
 934	 * from growing a large number of dirty pages before throttling. For
 935	 * such filesystems balance_dirty_pages always checks wb counters
 936	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 937	 * This is especially important for fuse which sets bdi->max_ratio to
 938	 * 1% by default. Without strictlimit feature, fuse writeback may
 939	 * consume arbitrary amount of RAM because it is accounted in
 940	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 941	 *
 942	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 943	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 944	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 945	 * limits are set by default to 10% and 20% (background and throttle).
 946	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 947	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 948	 * about ~6K pages (as the average of background and throttle wb
 949	 * limits). The 3rd order polynomial will provide positive feedback if
 950	 * wb_dirty is under wb_setpoint and vice versa.
 951	 *
 952	 * Note, that we cannot use global counters in these calculations
 953	 * because we want to throttle process writing to a strictlimit wb
 954	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 955	 * in the example above).
 956	 */
 957	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 958		long long wb_pos_ratio;
 959
 960		if (dtc->wb_dirty < 8) {
 961			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 962					   2 << RATELIMIT_CALC_SHIFT);
 963			return;
 964		}
 965
 966		if (dtc->wb_dirty >= wb_thresh)
 967			return;
 968
 969		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 970						    dtc->wb_bg_thresh);
 971
 972		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 973			return;
 974
 975		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 976						 wb_thresh);
 977
 978		/*
 979		 * Typically, for strictlimit case, wb_setpoint << setpoint
 980		 * and pos_ratio >> wb_pos_ratio. In the other words global
 981		 * state ("dirty") is not limiting factor and we have to
 982		 * make decision based on wb counters. But there is an
 983		 * important case when global pos_ratio should get precedence:
 984		 * global limits are exceeded (e.g. due to activities on other
 985		 * wb's) while given strictlimit wb is below limit.
 986		 *
 987		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 988		 * but it would look too non-natural for the case of all
 989		 * activity in the system coming from a single strictlimit wb
 990		 * with bdi->max_ratio == 100%.
 991		 *
 992		 * Note that min() below somewhat changes the dynamics of the
 993		 * control system. Normally, pos_ratio value can be well over 3
 994		 * (when globally we are at freerun and wb is well below wb
 995		 * setpoint). Now the maximum pos_ratio in the same situation
 996		 * is 2. We might want to tweak this if we observe the control
 997		 * system is too slow to adapt.
 998		 */
 999		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1000		return;
1001	}
1002
1003	/*
1004	 * We have computed basic pos_ratio above based on global situation. If
1005	 * the wb is over/under its share of dirty pages, we want to scale
1006	 * pos_ratio further down/up. That is done by the following mechanism.
1007	 */
1008
1009	/*
1010	 * wb setpoint
1011	 *
1012	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1013	 *
1014	 *                        x_intercept - wb_dirty
1015	 *                     := --------------------------
1016	 *                        x_intercept - wb_setpoint
1017	 *
1018	 * The main wb control line is a linear function that subjects to
1019	 *
1020	 * (1) f(wb_setpoint) = 1.0
1021	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1022	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1023	 *
1024	 * For single wb case, the dirty pages are observed to fluctuate
1025	 * regularly within range
1026	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1027	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1028	 * fluctuation range for pos_ratio.
1029	 *
1030	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1031	 * own size, so move the slope over accordingly and choose a slope that
1032	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1033	 */
1034	if (unlikely(wb_thresh > dtc->thresh))
1035		wb_thresh = dtc->thresh;
1036	/*
1037	 * It's very possible that wb_thresh is close to 0 not because the
1038	 * device is slow, but that it has remained inactive for long time.
1039	 * Honour such devices a reasonable good (hopefully IO efficient)
1040	 * threshold, so that the occasional writes won't be blocked and active
1041	 * writes can rampup the threshold quickly.
1042	 */
1043	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1044	/*
1045	 * scale global setpoint to wb's:
1046	 *	wb_setpoint = setpoint * wb_thresh / thresh
1047	 */
1048	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1049	wb_setpoint = setpoint * (u64)x >> 16;
1050	/*
1051	 * Use span=(8*write_bw) in single wb case as indicated by
1052	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1053	 *
1054	 *        wb_thresh                    thresh - wb_thresh
1055	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1056	 *         thresh                           thresh
1057	 */
1058	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1059	x_intercept = wb_setpoint + span;
1060
1061	if (dtc->wb_dirty < x_intercept - span / 4) {
1062		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1063				      (x_intercept - wb_setpoint) | 1);
1064	} else
1065		pos_ratio /= 4;
1066
1067	/*
1068	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1069	 * It may push the desired control point of global dirty pages higher
1070	 * than setpoint.
1071	 */
1072	x_intercept = wb_thresh / 2;
1073	if (dtc->wb_dirty < x_intercept) {
1074		if (dtc->wb_dirty > x_intercept / 8)
1075			pos_ratio = div_u64(pos_ratio * x_intercept,
1076					    dtc->wb_dirty);
1077		else
1078			pos_ratio *= 8;
1079	}
1080
1081	dtc->pos_ratio = pos_ratio;
1082}
1083
1084static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1085				      unsigned long elapsed,
1086				      unsigned long written)
1087{
1088	const unsigned long period = roundup_pow_of_two(3 * HZ);
1089	unsigned long avg = wb->avg_write_bandwidth;
1090	unsigned long old = wb->write_bandwidth;
1091	u64 bw;
1092
1093	/*
1094	 * bw = written * HZ / elapsed
1095	 *
1096	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1097	 * write_bandwidth = ---------------------------------------------------
1098	 *                                          period
1099	 *
1100	 * @written may have decreased due to account_page_redirty().
1101	 * Avoid underflowing @bw calculation.
1102	 */
1103	bw = written - min(written, wb->written_stamp);
1104	bw *= HZ;
1105	if (unlikely(elapsed > period)) {
1106		do_div(bw, elapsed);
1107		avg = bw;
1108		goto out;
1109	}
1110	bw += (u64)wb->write_bandwidth * (period - elapsed);
1111	bw >>= ilog2(period);
1112
1113	/*
1114	 * one more level of smoothing, for filtering out sudden spikes
1115	 */
1116	if (avg > old && old >= (unsigned long)bw)
1117		avg -= (avg - old) >> 3;
1118
1119	if (avg < old && old <= (unsigned long)bw)
1120		avg += (old - avg) >> 3;
1121
1122out:
1123	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1124	avg = max(avg, 1LU);
1125	if (wb_has_dirty_io(wb)) {
1126		long delta = avg - wb->avg_write_bandwidth;
1127		WARN_ON_ONCE(atomic_long_add_return(delta,
1128					&wb->bdi->tot_write_bandwidth) <= 0);
1129	}
1130	wb->write_bandwidth = bw;
1131	wb->avg_write_bandwidth = avg;
1132}
1133
1134static void update_dirty_limit(struct dirty_throttle_control *dtc)
1135{
1136	struct wb_domain *dom = dtc_dom(dtc);
1137	unsigned long thresh = dtc->thresh;
1138	unsigned long limit = dom->dirty_limit;
1139
1140	/*
1141	 * Follow up in one step.
1142	 */
1143	if (limit < thresh) {
1144		limit = thresh;
1145		goto update;
1146	}
1147
1148	/*
1149	 * Follow down slowly. Use the higher one as the target, because thresh
1150	 * may drop below dirty. This is exactly the reason to introduce
1151	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1152	 */
1153	thresh = max(thresh, dtc->dirty);
1154	if (limit > thresh) {
1155		limit -= (limit - thresh) >> 5;
1156		goto update;
1157	}
1158	return;
1159update:
1160	dom->dirty_limit = limit;
1161}
1162
1163static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1164				    unsigned long now)
1165{
1166	struct wb_domain *dom = dtc_dom(dtc);
1167
1168	/*
1169	 * check locklessly first to optimize away locking for the most time
1170	 */
1171	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1172		return;
1173
1174	spin_lock(&dom->lock);
1175	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1176		update_dirty_limit(dtc);
1177		dom->dirty_limit_tstamp = now;
1178	}
1179	spin_unlock(&dom->lock);
1180}
1181
1182/*
1183 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1184 *
1185 * Normal wb tasks will be curbed at or below it in long term.
1186 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1187 */
1188static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1189				      unsigned long dirtied,
1190				      unsigned long elapsed)
1191{
1192	struct bdi_writeback *wb = dtc->wb;
1193	unsigned long dirty = dtc->dirty;
1194	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1195	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1196	unsigned long setpoint = (freerun + limit) / 2;
1197	unsigned long write_bw = wb->avg_write_bandwidth;
1198	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1199	unsigned long dirty_rate;
1200	unsigned long task_ratelimit;
1201	unsigned long balanced_dirty_ratelimit;
1202	unsigned long step;
1203	unsigned long x;
1204	unsigned long shift;
1205
1206	/*
1207	 * The dirty rate will match the writeout rate in long term, except
1208	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1209	 */
1210	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1211
1212	/*
1213	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1214	 */
1215	task_ratelimit = (u64)dirty_ratelimit *
1216					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1217	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1218
1219	/*
1220	 * A linear estimation of the "balanced" throttle rate. The theory is,
1221	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1222	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1223	 * formula will yield the balanced rate limit (write_bw / N).
1224	 *
1225	 * Note that the expanded form is not a pure rate feedback:
1226	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1227	 * but also takes pos_ratio into account:
1228	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1229	 *
1230	 * (1) is not realistic because pos_ratio also takes part in balancing
1231	 * the dirty rate.  Consider the state
1232	 *	pos_ratio = 0.5						     (3)
1233	 *	rate = 2 * (write_bw / N)				     (4)
1234	 * If (1) is used, it will stuck in that state! Because each dd will
1235	 * be throttled at
1236	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1237	 * yielding
1238	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1239	 * put (6) into (1) we get
1240	 *	rate_(i+1) = rate_(i)					     (7)
1241	 *
1242	 * So we end up using (2) to always keep
1243	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1244	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1245	 * pos_ratio is able to drive itself to 1.0, which is not only where
1246	 * the dirty count meet the setpoint, but also where the slope of
1247	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1248	 */
1249	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1250					   dirty_rate | 1);
1251	/*
1252	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1253	 */
1254	if (unlikely(balanced_dirty_ratelimit > write_bw))
1255		balanced_dirty_ratelimit = write_bw;
1256
1257	/*
1258	 * We could safely do this and return immediately:
1259	 *
1260	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1261	 *
1262	 * However to get a more stable dirty_ratelimit, the below elaborated
1263	 * code makes use of task_ratelimit to filter out singular points and
1264	 * limit the step size.
1265	 *
1266	 * The below code essentially only uses the relative value of
1267	 *
1268	 *	task_ratelimit - dirty_ratelimit
1269	 *	= (pos_ratio - 1) * dirty_ratelimit
1270	 *
1271	 * which reflects the direction and size of dirty position error.
1272	 */
1273
1274	/*
1275	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1276	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1277	 * For example, when
1278	 * - dirty_ratelimit > balanced_dirty_ratelimit
1279	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1280	 * lowering dirty_ratelimit will help meet both the position and rate
1281	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1282	 * only help meet the rate target. After all, what the users ultimately
1283	 * feel and care are stable dirty rate and small position error.
1284	 *
1285	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1286	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1287	 * keeps jumping around randomly and can even leap far away at times
1288	 * due to the small 200ms estimation period of dirty_rate (we want to
1289	 * keep that period small to reduce time lags).
1290	 */
1291	step = 0;
1292
1293	/*
1294	 * For strictlimit case, calculations above were based on wb counters
1295	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1296	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1297	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1298	 * "dirty" and wb_setpoint as "setpoint".
1299	 *
1300	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1301	 * it's possible that wb_thresh is close to zero due to inactivity
1302	 * of backing device.
1303	 */
1304	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1305		dirty = dtc->wb_dirty;
1306		if (dtc->wb_dirty < 8)
1307			setpoint = dtc->wb_dirty + 1;
1308		else
1309			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1310	}
1311
1312	if (dirty < setpoint) {
1313		x = min3(wb->balanced_dirty_ratelimit,
1314			 balanced_dirty_ratelimit, task_ratelimit);
1315		if (dirty_ratelimit < x)
1316			step = x - dirty_ratelimit;
1317	} else {
1318		x = max3(wb->balanced_dirty_ratelimit,
1319			 balanced_dirty_ratelimit, task_ratelimit);
1320		if (dirty_ratelimit > x)
1321			step = dirty_ratelimit - x;
1322	}
1323
1324	/*
1325	 * Don't pursue 100% rate matching. It's impossible since the balanced
1326	 * rate itself is constantly fluctuating. So decrease the track speed
1327	 * when it gets close to the target. Helps eliminate pointless tremors.
1328	 */
1329	shift = dirty_ratelimit / (2 * step + 1);
1330	if (shift < BITS_PER_LONG)
1331		step = DIV_ROUND_UP(step >> shift, 8);
1332	else
1333		step = 0;
1334
1335	if (dirty_ratelimit < balanced_dirty_ratelimit)
1336		dirty_ratelimit += step;
1337	else
1338		dirty_ratelimit -= step;
1339
1340	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1341	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1342
1343	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1344}
1345
1346static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1347				  struct dirty_throttle_control *mdtc,
1348				  unsigned long start_time,
1349				  bool update_ratelimit)
1350{
1351	struct bdi_writeback *wb = gdtc->wb;
1352	unsigned long now = jiffies;
1353	unsigned long elapsed = now - wb->bw_time_stamp;
1354	unsigned long dirtied;
1355	unsigned long written;
1356
1357	lockdep_assert_held(&wb->list_lock);
1358
1359	/*
1360	 * rate-limit, only update once every 200ms.
1361	 */
1362	if (elapsed < BANDWIDTH_INTERVAL)
1363		return;
1364
1365	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1366	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1367
1368	/*
1369	 * Skip quiet periods when disk bandwidth is under-utilized.
1370	 * (at least 1s idle time between two flusher runs)
1371	 */
1372	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1373		goto snapshot;
1374
1375	if (update_ratelimit) {
1376		domain_update_bandwidth(gdtc, now);
1377		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1378
1379		/*
1380		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1381		 * compiler has no way to figure that out.  Help it.
1382		 */
1383		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1384			domain_update_bandwidth(mdtc, now);
1385			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1386		}
1387	}
1388	wb_update_write_bandwidth(wb, elapsed, written);
1389
1390snapshot:
1391	wb->dirtied_stamp = dirtied;
1392	wb->written_stamp = written;
1393	wb->bw_time_stamp = now;
1394}
1395
1396void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1397{
1398	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1399
1400	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1401}
1402
1403/*
1404 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1405 * will look to see if it needs to start dirty throttling.
1406 *
1407 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1408 * global_page_state() too often. So scale it near-sqrt to the safety margin
1409 * (the number of pages we may dirty without exceeding the dirty limits).
1410 */
1411static unsigned long dirty_poll_interval(unsigned long dirty,
1412					 unsigned long thresh)
1413{
1414	if (thresh > dirty)
1415		return 1UL << (ilog2(thresh - dirty) >> 1);
1416
1417	return 1;
1418}
1419
1420static unsigned long wb_max_pause(struct bdi_writeback *wb,
1421				  unsigned long wb_dirty)
1422{
1423	unsigned long bw = wb->avg_write_bandwidth;
1424	unsigned long t;
1425
1426	/*
1427	 * Limit pause time for small memory systems. If sleeping for too long
1428	 * time, a small pool of dirty/writeback pages may go empty and disk go
1429	 * idle.
1430	 *
1431	 * 8 serves as the safety ratio.
1432	 */
1433	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1434	t++;
1435
1436	return min_t(unsigned long, t, MAX_PAUSE);
1437}
1438
1439static long wb_min_pause(struct bdi_writeback *wb,
1440			 long max_pause,
1441			 unsigned long task_ratelimit,
1442			 unsigned long dirty_ratelimit,
1443			 int *nr_dirtied_pause)
1444{
1445	long hi = ilog2(wb->avg_write_bandwidth);
1446	long lo = ilog2(wb->dirty_ratelimit);
1447	long t;		/* target pause */
1448	long pause;	/* estimated next pause */
1449	int pages;	/* target nr_dirtied_pause */
1450
1451	/* target for 10ms pause on 1-dd case */
1452	t = max(1, HZ / 100);
1453
1454	/*
1455	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1456	 * overheads.
1457	 *
1458	 * (N * 10ms) on 2^N concurrent tasks.
1459	 */
1460	if (hi > lo)
1461		t += (hi - lo) * (10 * HZ) / 1024;
1462
1463	/*
1464	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1465	 * on the much more stable dirty_ratelimit. However the next pause time
1466	 * will be computed based on task_ratelimit and the two rate limits may
1467	 * depart considerably at some time. Especially if task_ratelimit goes
1468	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1469	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1470	 * result task_ratelimit won't be executed faithfully, which could
1471	 * eventually bring down dirty_ratelimit.
1472	 *
1473	 * We apply two rules to fix it up:
1474	 * 1) try to estimate the next pause time and if necessary, use a lower
1475	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1476	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1477	 * 2) limit the target pause time to max_pause/2, so that the normal
1478	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1479	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1480	 */
1481	t = min(t, 1 + max_pause / 2);
1482	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1483
1484	/*
1485	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1486	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1487	 * When the 16 consecutive reads are often interrupted by some dirty
1488	 * throttling pause during the async writes, cfq will go into idles
1489	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1490	 * until reaches DIRTY_POLL_THRESH=32 pages.
1491	 */
1492	if (pages < DIRTY_POLL_THRESH) {
1493		t = max_pause;
1494		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1495		if (pages > DIRTY_POLL_THRESH) {
1496			pages = DIRTY_POLL_THRESH;
1497			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1498		}
1499	}
1500
1501	pause = HZ * pages / (task_ratelimit + 1);
1502	if (pause > max_pause) {
1503		t = max_pause;
1504		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1505	}
1506
1507	*nr_dirtied_pause = pages;
1508	/*
1509	 * The minimal pause time will normally be half the target pause time.
1510	 */
1511	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1512}
1513
1514static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1515{
1516	struct bdi_writeback *wb = dtc->wb;
1517	unsigned long wb_reclaimable;
1518
1519	/*
1520	 * wb_thresh is not treated as some limiting factor as
1521	 * dirty_thresh, due to reasons
1522	 * - in JBOD setup, wb_thresh can fluctuate a lot
1523	 * - in a system with HDD and USB key, the USB key may somehow
1524	 *   go into state (wb_dirty >> wb_thresh) either because
1525	 *   wb_dirty starts high, or because wb_thresh drops low.
1526	 *   In this case we don't want to hard throttle the USB key
1527	 *   dirtiers for 100 seconds until wb_dirty drops under
1528	 *   wb_thresh. Instead the auxiliary wb control line in
1529	 *   wb_position_ratio() will let the dirtier task progress
1530	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1531	 */
1532	dtc->wb_thresh = __wb_calc_thresh(dtc);
1533	dtc->wb_bg_thresh = dtc->thresh ?
1534		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1535
1536	/*
1537	 * In order to avoid the stacked BDI deadlock we need
1538	 * to ensure we accurately count the 'dirty' pages when
1539	 * the threshold is low.
1540	 *
1541	 * Otherwise it would be possible to get thresh+n pages
1542	 * reported dirty, even though there are thresh-m pages
1543	 * actually dirty; with m+n sitting in the percpu
1544	 * deltas.
1545	 */
1546	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1547		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1548		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1549	} else {
1550		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1551		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1552	}
1553}
1554
1555/*
1556 * balance_dirty_pages() must be called by processes which are generating dirty
1557 * data.  It looks at the number of dirty pages in the machine and will force
1558 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1559 * If we're over `background_thresh' then the writeback threads are woken to
1560 * perform some writeout.
1561 */
1562static void balance_dirty_pages(struct address_space *mapping,
1563				struct bdi_writeback *wb,
1564				unsigned long pages_dirtied)
1565{
1566	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1567	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1568	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1569	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1570						     &mdtc_stor : NULL;
1571	struct dirty_throttle_control *sdtc;
1572	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1573	long period;
1574	long pause;
1575	long max_pause;
1576	long min_pause;
1577	int nr_dirtied_pause;
1578	bool dirty_exceeded = false;
1579	unsigned long task_ratelimit;
1580	unsigned long dirty_ratelimit;
1581	struct backing_dev_info *bdi = wb->bdi;
1582	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1583	unsigned long start_time = jiffies;
1584
1585	for (;;) {
1586		unsigned long now = jiffies;
1587		unsigned long dirty, thresh, bg_thresh;
1588		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1589		unsigned long m_thresh = 0;
1590		unsigned long m_bg_thresh = 0;
1591
1592		/*
1593		 * Unstable writes are a feature of certain networked
1594		 * filesystems (i.e. NFS) in which data may have been
1595		 * written to the server's write cache, but has not yet
1596		 * been flushed to permanent storage.
1597		 */
1598		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1599					global_node_page_state(NR_UNSTABLE_NFS);
1600		gdtc->avail = global_dirtyable_memory();
1601		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1602
1603		domain_dirty_limits(gdtc);
1604
1605		if (unlikely(strictlimit)) {
1606			wb_dirty_limits(gdtc);
1607
1608			dirty = gdtc->wb_dirty;
1609			thresh = gdtc->wb_thresh;
1610			bg_thresh = gdtc->wb_bg_thresh;
1611		} else {
1612			dirty = gdtc->dirty;
1613			thresh = gdtc->thresh;
1614			bg_thresh = gdtc->bg_thresh;
1615		}
1616
1617		if (mdtc) {
1618			unsigned long filepages, headroom, writeback;
1619
1620			/*
1621			 * If @wb belongs to !root memcg, repeat the same
1622			 * basic calculations for the memcg domain.
1623			 */
1624			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1625					    &mdtc->dirty, &writeback);
1626			mdtc->dirty += writeback;
1627			mdtc_calc_avail(mdtc, filepages, headroom);
1628
1629			domain_dirty_limits(mdtc);
1630
1631			if (unlikely(strictlimit)) {
1632				wb_dirty_limits(mdtc);
1633				m_dirty = mdtc->wb_dirty;
1634				m_thresh = mdtc->wb_thresh;
1635				m_bg_thresh = mdtc->wb_bg_thresh;
1636			} else {
1637				m_dirty = mdtc->dirty;
1638				m_thresh = mdtc->thresh;
1639				m_bg_thresh = mdtc->bg_thresh;
1640			}
1641		}
1642
1643		/*
1644		 * Throttle it only when the background writeback cannot
1645		 * catch-up. This avoids (excessively) small writeouts
1646		 * when the wb limits are ramping up in case of !strictlimit.
1647		 *
1648		 * In strictlimit case make decision based on the wb counters
1649		 * and limits. Small writeouts when the wb limits are ramping
1650		 * up are the price we consciously pay for strictlimit-ing.
1651		 *
1652		 * If memcg domain is in effect, @dirty should be under
1653		 * both global and memcg freerun ceilings.
1654		 */
1655		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1656		    (!mdtc ||
1657		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1658			unsigned long intv = dirty_poll_interval(dirty, thresh);
1659			unsigned long m_intv = ULONG_MAX;
1660
1661			current->dirty_paused_when = now;
1662			current->nr_dirtied = 0;
1663			if (mdtc)
1664				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1665			current->nr_dirtied_pause = min(intv, m_intv);
1666			break;
1667		}
1668
1669		if (unlikely(!writeback_in_progress(wb)))
1670			wb_start_background_writeback(wb);
1671
1672		/*
1673		 * Calculate global domain's pos_ratio and select the
1674		 * global dtc by default.
1675		 */
1676		if (!strictlimit)
1677			wb_dirty_limits(gdtc);
1678
1679		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1680			((gdtc->dirty > gdtc->thresh) || strictlimit);
1681
1682		wb_position_ratio(gdtc);
1683		sdtc = gdtc;
1684
1685		if (mdtc) {
1686			/*
1687			 * If memcg domain is in effect, calculate its
1688			 * pos_ratio.  @wb should satisfy constraints from
1689			 * both global and memcg domains.  Choose the one
1690			 * w/ lower pos_ratio.
1691			 */
1692			if (!strictlimit)
1693				wb_dirty_limits(mdtc);
1694
1695			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1696				((mdtc->dirty > mdtc->thresh) || strictlimit);
1697
1698			wb_position_ratio(mdtc);
1699			if (mdtc->pos_ratio < gdtc->pos_ratio)
1700				sdtc = mdtc;
1701		}
1702
1703		if (dirty_exceeded && !wb->dirty_exceeded)
1704			wb->dirty_exceeded = 1;
1705
1706		if (time_is_before_jiffies(wb->bw_time_stamp +
1707					   BANDWIDTH_INTERVAL)) {
1708			spin_lock(&wb->list_lock);
1709			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1710			spin_unlock(&wb->list_lock);
1711		}
1712
1713		/* throttle according to the chosen dtc */
1714		dirty_ratelimit = wb->dirty_ratelimit;
1715		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1716							RATELIMIT_CALC_SHIFT;
1717		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1718		min_pause = wb_min_pause(wb, max_pause,
1719					 task_ratelimit, dirty_ratelimit,
1720					 &nr_dirtied_pause);
1721
1722		if (unlikely(task_ratelimit == 0)) {
1723			period = max_pause;
1724			pause = max_pause;
1725			goto pause;
1726		}
1727		period = HZ * pages_dirtied / task_ratelimit;
1728		pause = period;
1729		if (current->dirty_paused_when)
1730			pause -= now - current->dirty_paused_when;
1731		/*
1732		 * For less than 1s think time (ext3/4 may block the dirtier
1733		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1734		 * however at much less frequency), try to compensate it in
1735		 * future periods by updating the virtual time; otherwise just
1736		 * do a reset, as it may be a light dirtier.
1737		 */
1738		if (pause < min_pause) {
1739			trace_balance_dirty_pages(wb,
1740						  sdtc->thresh,
1741						  sdtc->bg_thresh,
1742						  sdtc->dirty,
1743						  sdtc->wb_thresh,
1744						  sdtc->wb_dirty,
1745						  dirty_ratelimit,
1746						  task_ratelimit,
1747						  pages_dirtied,
1748						  period,
1749						  min(pause, 0L),
1750						  start_time);
1751			if (pause < -HZ) {
1752				current->dirty_paused_when = now;
1753				current->nr_dirtied = 0;
1754			} else if (period) {
1755				current->dirty_paused_when += period;
1756				current->nr_dirtied = 0;
1757			} else if (current->nr_dirtied_pause <= pages_dirtied)
1758				current->nr_dirtied_pause += pages_dirtied;
1759			break;
1760		}
1761		if (unlikely(pause > max_pause)) {
1762			/* for occasional dropped task_ratelimit */
1763			now += min(pause - max_pause, max_pause);
1764			pause = max_pause;
1765		}
1766
1767pause:
1768		trace_balance_dirty_pages(wb,
1769					  sdtc->thresh,
1770					  sdtc->bg_thresh,
1771					  sdtc->dirty,
1772					  sdtc->wb_thresh,
1773					  sdtc->wb_dirty,
1774					  dirty_ratelimit,
1775					  task_ratelimit,
1776					  pages_dirtied,
1777					  period,
1778					  pause,
1779					  start_time);
1780		__set_current_state(TASK_KILLABLE);
1781		wb->dirty_sleep = now;
1782		io_schedule_timeout(pause);
1783
1784		current->dirty_paused_when = now + pause;
1785		current->nr_dirtied = 0;
1786		current->nr_dirtied_pause = nr_dirtied_pause;
1787
1788		/*
1789		 * This is typically equal to (dirty < thresh) and can also
1790		 * keep "1000+ dd on a slow USB stick" under control.
1791		 */
1792		if (task_ratelimit)
1793			break;
1794
1795		/*
1796		 * In the case of an unresponding NFS server and the NFS dirty
1797		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1798		 * to go through, so that tasks on them still remain responsive.
1799		 *
1800		 * In theory 1 page is enough to keep the comsumer-producer
1801		 * pipe going: the flusher cleans 1 page => the task dirties 1
1802		 * more page. However wb_dirty has accounting errors.  So use
1803		 * the larger and more IO friendly wb_stat_error.
1804		 */
1805		if (sdtc->wb_dirty <= wb_stat_error(wb))
1806			break;
1807
1808		if (fatal_signal_pending(current))
1809			break;
1810	}
1811
1812	if (!dirty_exceeded && wb->dirty_exceeded)
1813		wb->dirty_exceeded = 0;
1814
1815	if (writeback_in_progress(wb))
1816		return;
1817
1818	/*
1819	 * In laptop mode, we wait until hitting the higher threshold before
1820	 * starting background writeout, and then write out all the way down
1821	 * to the lower threshold.  So slow writers cause minimal disk activity.
1822	 *
1823	 * In normal mode, we start background writeout at the lower
1824	 * background_thresh, to keep the amount of dirty memory low.
1825	 */
1826	if (laptop_mode)
1827		return;
1828
1829	if (nr_reclaimable > gdtc->bg_thresh)
1830		wb_start_background_writeback(wb);
1831}
1832
1833static DEFINE_PER_CPU(int, bdp_ratelimits);
1834
1835/*
1836 * Normal tasks are throttled by
1837 *	loop {
1838 *		dirty tsk->nr_dirtied_pause pages;
1839 *		take a snap in balance_dirty_pages();
1840 *	}
1841 * However there is a worst case. If every task exit immediately when dirtied
1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1843 * called to throttle the page dirties. The solution is to save the not yet
1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1845 * randomly into the running tasks. This works well for the above worst case,
1846 * as the new task will pick up and accumulate the old task's leaked dirty
1847 * count and eventually get throttled.
1848 */
1849DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1850
1851/**
1852 * balance_dirty_pages_ratelimited - balance dirty memory state
1853 * @mapping: address_space which was dirtied
1854 *
1855 * Processes which are dirtying memory should call in here once for each page
1856 * which was newly dirtied.  The function will periodically check the system's
1857 * dirty state and will initiate writeback if needed.
1858 *
1859 * On really big machines, get_writeback_state is expensive, so try to avoid
1860 * calling it too often (ratelimiting).  But once we're over the dirty memory
1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1862 * from overshooting the limit by (ratelimit_pages) each.
1863 */
1864void balance_dirty_pages_ratelimited(struct address_space *mapping)
1865{
1866	struct inode *inode = mapping->host;
1867	struct backing_dev_info *bdi = inode_to_bdi(inode);
1868	struct bdi_writeback *wb = NULL;
1869	int ratelimit;
1870	int *p;
1871
1872	if (!bdi_cap_account_dirty(bdi))
1873		return;
1874
1875	if (inode_cgwb_enabled(inode))
1876		wb = wb_get_create_current(bdi, GFP_KERNEL);
1877	if (!wb)
1878		wb = &bdi->wb;
1879
1880	ratelimit = current->nr_dirtied_pause;
1881	if (wb->dirty_exceeded)
1882		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1883
1884	preempt_disable();
1885	/*
1886	 * This prevents one CPU to accumulate too many dirtied pages without
1887	 * calling into balance_dirty_pages(), which can happen when there are
1888	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1889	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1890	 */
1891	p =  this_cpu_ptr(&bdp_ratelimits);
1892	if (unlikely(current->nr_dirtied >= ratelimit))
1893		*p = 0;
1894	else if (unlikely(*p >= ratelimit_pages)) {
1895		*p = 0;
1896		ratelimit = 0;
1897	}
1898	/*
1899	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1900	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1901	 * the dirty throttling and livelock other long-run dirtiers.
1902	 */
1903	p = this_cpu_ptr(&dirty_throttle_leaks);
1904	if (*p > 0 && current->nr_dirtied < ratelimit) {
1905		unsigned long nr_pages_dirtied;
1906		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1907		*p -= nr_pages_dirtied;
1908		current->nr_dirtied += nr_pages_dirtied;
1909	}
1910	preempt_enable();
1911
1912	if (unlikely(current->nr_dirtied >= ratelimit))
1913		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1914
1915	wb_put(wb);
1916}
1917EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1918
1919/**
1920 * wb_over_bg_thresh - does @wb need to be written back?
1921 * @wb: bdi_writeback of interest
1922 *
1923 * Determines whether background writeback should keep writing @wb or it's
1924 * clean enough.  Returns %true if writeback should continue.
1925 */
1926bool wb_over_bg_thresh(struct bdi_writeback *wb)
1927{
1928	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1929	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1930	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1931	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1932						     &mdtc_stor : NULL;
1933
1934	/*
1935	 * Similar to balance_dirty_pages() but ignores pages being written
1936	 * as we're trying to decide whether to put more under writeback.
1937	 */
1938	gdtc->avail = global_dirtyable_memory();
1939	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1940		      global_node_page_state(NR_UNSTABLE_NFS);
1941	domain_dirty_limits(gdtc);
1942
1943	if (gdtc->dirty > gdtc->bg_thresh)
1944		return true;
1945
1946	if (wb_stat(wb, WB_RECLAIMABLE) >
1947	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1948		return true;
1949
1950	if (mdtc) {
1951		unsigned long filepages, headroom, writeback;
1952
1953		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1954				    &writeback);
1955		mdtc_calc_avail(mdtc, filepages, headroom);
1956		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1957
1958		if (mdtc->dirty > mdtc->bg_thresh)
1959			return true;
1960
1961		if (wb_stat(wb, WB_RECLAIMABLE) >
1962		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1963			return true;
1964	}
1965
1966	return false;
1967}
1968
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1969/*
1970 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1971 */
1972int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1973	void __user *buffer, size_t *length, loff_t *ppos)
1974{
1975	proc_dointvec(table, write, buffer, length, ppos);
1976	return 0;
1977}
1978
1979#ifdef CONFIG_BLOCK
1980void laptop_mode_timer_fn(unsigned long data)
1981{
1982	struct request_queue *q = (struct request_queue *)data;
1983	int nr_pages = global_node_page_state(NR_FILE_DIRTY) +
1984		global_node_page_state(NR_UNSTABLE_NFS);
1985	struct bdi_writeback *wb;
1986
1987	/*
1988	 * We want to write everything out, not just down to the dirty
1989	 * threshold
1990	 */
1991	if (!bdi_has_dirty_io(&q->backing_dev_info))
1992		return;
1993
1994	rcu_read_lock();
1995	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1996		if (wb_has_dirty_io(wb))
1997			wb_start_writeback(wb, nr_pages, true,
1998					   WB_REASON_LAPTOP_TIMER);
1999	rcu_read_unlock();
2000}
2001
2002/*
2003 * We've spun up the disk and we're in laptop mode: schedule writeback
2004 * of all dirty data a few seconds from now.  If the flush is already scheduled
2005 * then push it back - the user is still using the disk.
2006 */
2007void laptop_io_completion(struct backing_dev_info *info)
2008{
2009	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2010}
2011
2012/*
2013 * We're in laptop mode and we've just synced. The sync's writes will have
2014 * caused another writeback to be scheduled by laptop_io_completion.
2015 * Nothing needs to be written back anymore, so we unschedule the writeback.
2016 */
2017void laptop_sync_completion(void)
2018{
2019	struct backing_dev_info *bdi;
2020
2021	rcu_read_lock();
2022
2023	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2024		del_timer(&bdi->laptop_mode_wb_timer);
2025
2026	rcu_read_unlock();
2027}
2028#endif
2029
2030/*
2031 * If ratelimit_pages is too high then we can get into dirty-data overload
2032 * if a large number of processes all perform writes at the same time.
2033 * If it is too low then SMP machines will call the (expensive)
2034 * get_writeback_state too often.
2035 *
2036 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2037 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2038 * thresholds.
2039 */
2040
2041void writeback_set_ratelimit(void)
2042{
2043	struct wb_domain *dom = &global_wb_domain;
2044	unsigned long background_thresh;
2045	unsigned long dirty_thresh;
2046
2047	global_dirty_limits(&background_thresh, &dirty_thresh);
2048	dom->dirty_limit = dirty_thresh;
2049	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2050	if (ratelimit_pages < 16)
2051		ratelimit_pages = 16;
2052}
2053
2054static int page_writeback_cpu_online(unsigned int cpu)
 
 
2055{
2056	writeback_set_ratelimit();
2057	return 0;
 
 
 
 
 
 
 
2058}
2059
 
 
 
 
 
2060/*
2061 * Called early on to tune the page writeback dirty limits.
2062 *
2063 * We used to scale dirty pages according to how total memory
2064 * related to pages that could be allocated for buffers (by
2065 * comparing nr_free_buffer_pages() to vm_total_pages.
2066 *
2067 * However, that was when we used "dirty_ratio" to scale with
2068 * all memory, and we don't do that any more. "dirty_ratio"
2069 * is now applied to total non-HIGHPAGE memory (by subtracting
2070 * totalhigh_pages from vm_total_pages), and as such we can't
2071 * get into the old insane situation any more where we had
2072 * large amounts of dirty pages compared to a small amount of
2073 * non-HIGHMEM memory.
2074 *
2075 * But we might still want to scale the dirty_ratio by how
2076 * much memory the box has..
2077 */
2078void __init page_writeback_init(void)
2079{
2080	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2081
2082	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2083			  page_writeback_cpu_online, NULL);
2084	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2085			  page_writeback_cpu_online);
2086}
2087
2088/**
2089 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2090 * @mapping: address space structure to write
2091 * @start: starting page index
2092 * @end: ending page index (inclusive)
2093 *
2094 * This function scans the page range from @start to @end (inclusive) and tags
2095 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2096 * that write_cache_pages (or whoever calls this function) will then use
2097 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2098 * used to avoid livelocking of writeback by a process steadily creating new
2099 * dirty pages in the file (thus it is important for this function to be quick
2100 * so that it can tag pages faster than a dirtying process can create them).
2101 */
2102/*
2103 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2104 */
2105void tag_pages_for_writeback(struct address_space *mapping,
2106			     pgoff_t start, pgoff_t end)
2107{
2108#define WRITEBACK_TAG_BATCH 4096
2109	unsigned long tagged = 0;
2110	struct radix_tree_iter iter;
2111	void **slot;
2112
2113	spin_lock_irq(&mapping->tree_lock);
2114	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2115							PAGECACHE_TAG_DIRTY) {
2116		if (iter.index > end)
2117			break;
2118		radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2119							PAGECACHE_TAG_TOWRITE);
2120		tagged++;
2121		if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2122			continue;
2123		slot = radix_tree_iter_resume(slot, &iter);
2124		spin_unlock_irq(&mapping->tree_lock);
 
2125		cond_resched();
2126		spin_lock_irq(&mapping->tree_lock);
2127	}
2128	spin_unlock_irq(&mapping->tree_lock);
2129}
2130EXPORT_SYMBOL(tag_pages_for_writeback);
2131
2132/**
2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2134 * @mapping: address space structure to write
2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2136 * @writepage: function called for each page
2137 * @data: data passed to writepage function
2138 *
2139 * If a page is already under I/O, write_cache_pages() skips it, even
2140 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2141 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2142 * and msync() need to guarantee that all the data which was dirty at the time
2143 * the call was made get new I/O started against them.  If wbc->sync_mode is
2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2145 * existing IO to complete.
2146 *
2147 * To avoid livelocks (when other process dirties new pages), we first tag
2148 * pages which should be written back with TOWRITE tag and only then start
2149 * writing them. For data-integrity sync we have to be careful so that we do
2150 * not miss some pages (e.g., because some other process has cleared TOWRITE
2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2152 * by the process clearing the DIRTY tag (and submitting the page for IO).
2153 */
2154int write_cache_pages(struct address_space *mapping,
2155		      struct writeback_control *wbc, writepage_t writepage,
2156		      void *data)
2157{
2158	int ret = 0;
2159	int done = 0;
2160	struct pagevec pvec;
2161	int nr_pages;
2162	pgoff_t uninitialized_var(writeback_index);
2163	pgoff_t index;
2164	pgoff_t end;		/* Inclusive */
2165	pgoff_t done_index;
2166	int cycled;
2167	int range_whole = 0;
2168	int tag;
2169
2170	pagevec_init(&pvec, 0);
2171	if (wbc->range_cyclic) {
2172		writeback_index = mapping->writeback_index; /* prev offset */
2173		index = writeback_index;
2174		if (index == 0)
2175			cycled = 1;
2176		else
2177			cycled = 0;
2178		end = -1;
2179	} else {
2180		index = wbc->range_start >> PAGE_SHIFT;
2181		end = wbc->range_end >> PAGE_SHIFT;
2182		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2183			range_whole = 1;
2184		cycled = 1; /* ignore range_cyclic tests */
2185	}
2186	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2187		tag = PAGECACHE_TAG_TOWRITE;
2188	else
2189		tag = PAGECACHE_TAG_DIRTY;
2190retry:
2191	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192		tag_pages_for_writeback(mapping, index, end);
2193	done_index = index;
2194	while (!done && (index <= end)) {
2195		int i;
2196
2197		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2198			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2199		if (nr_pages == 0)
2200			break;
2201
2202		for (i = 0; i < nr_pages; i++) {
2203			struct page *page = pvec.pages[i];
2204
2205			/*
2206			 * At this point, the page may be truncated or
2207			 * invalidated (changing page->mapping to NULL), or
2208			 * even swizzled back from swapper_space to tmpfs file
2209			 * mapping. However, page->index will not change
2210			 * because we have a reference on the page.
2211			 */
2212			if (page->index > end) {
2213				/*
2214				 * can't be range_cyclic (1st pass) because
2215				 * end == -1 in that case.
2216				 */
2217				done = 1;
2218				break;
2219			}
2220
2221			done_index = page->index;
2222
2223			lock_page(page);
2224
2225			/*
2226			 * Page truncated or invalidated. We can freely skip it
2227			 * then, even for data integrity operations: the page
2228			 * has disappeared concurrently, so there could be no
2229			 * real expectation of this data interity operation
2230			 * even if there is now a new, dirty page at the same
2231			 * pagecache address.
2232			 */
2233			if (unlikely(page->mapping != mapping)) {
2234continue_unlock:
2235				unlock_page(page);
2236				continue;
2237			}
2238
2239			if (!PageDirty(page)) {
2240				/* someone wrote it for us */
2241				goto continue_unlock;
2242			}
2243
2244			if (PageWriteback(page)) {
2245				if (wbc->sync_mode != WB_SYNC_NONE)
2246					wait_on_page_writeback(page);
2247				else
2248					goto continue_unlock;
2249			}
2250
2251			BUG_ON(PageWriteback(page));
2252			if (!clear_page_dirty_for_io(page))
2253				goto continue_unlock;
2254
2255			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2256			ret = (*writepage)(page, wbc, data);
2257			if (unlikely(ret)) {
2258				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2259					unlock_page(page);
2260					ret = 0;
2261				} else {
2262					/*
2263					 * done_index is set past this page,
2264					 * so media errors will not choke
2265					 * background writeout for the entire
2266					 * file. This has consequences for
2267					 * range_cyclic semantics (ie. it may
2268					 * not be suitable for data integrity
2269					 * writeout).
2270					 */
2271					done_index = page->index + 1;
2272					done = 1;
2273					break;
2274				}
2275			}
2276
2277			/*
2278			 * We stop writing back only if we are not doing
2279			 * integrity sync. In case of integrity sync we have to
2280			 * keep going until we have written all the pages
2281			 * we tagged for writeback prior to entering this loop.
2282			 */
2283			if (--wbc->nr_to_write <= 0 &&
2284			    wbc->sync_mode == WB_SYNC_NONE) {
2285				done = 1;
2286				break;
2287			}
2288		}
2289		pagevec_release(&pvec);
2290		cond_resched();
2291	}
2292	if (!cycled && !done) {
2293		/*
2294		 * range_cyclic:
2295		 * We hit the last page and there is more work to be done: wrap
2296		 * back to the start of the file
2297		 */
2298		cycled = 1;
2299		index = 0;
2300		end = writeback_index - 1;
2301		goto retry;
2302	}
2303	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2304		mapping->writeback_index = done_index;
2305
2306	return ret;
2307}
2308EXPORT_SYMBOL(write_cache_pages);
2309
2310/*
2311 * Function used by generic_writepages to call the real writepage
2312 * function and set the mapping flags on error
2313 */
2314static int __writepage(struct page *page, struct writeback_control *wbc,
2315		       void *data)
2316{
2317	struct address_space *mapping = data;
2318	int ret = mapping->a_ops->writepage(page, wbc);
2319	mapping_set_error(mapping, ret);
2320	return ret;
2321}
2322
2323/**
2324 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2325 * @mapping: address space structure to write
2326 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2327 *
2328 * This is a library function, which implements the writepages()
2329 * address_space_operation.
2330 */
2331int generic_writepages(struct address_space *mapping,
2332		       struct writeback_control *wbc)
2333{
2334	struct blk_plug plug;
2335	int ret;
2336
2337	/* deal with chardevs and other special file */
2338	if (!mapping->a_ops->writepage)
2339		return 0;
2340
2341	blk_start_plug(&plug);
2342	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2343	blk_finish_plug(&plug);
2344	return ret;
2345}
2346
2347EXPORT_SYMBOL(generic_writepages);
2348
2349int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2350{
2351	int ret;
2352
2353	if (wbc->nr_to_write <= 0)
2354		return 0;
2355	if (mapping->a_ops->writepages)
2356		ret = mapping->a_ops->writepages(mapping, wbc);
2357	else
2358		ret = generic_writepages(mapping, wbc);
2359	return ret;
2360}
2361
2362/**
2363 * write_one_page - write out a single page and optionally wait on I/O
2364 * @page: the page to write
2365 * @wait: if true, wait on writeout
2366 *
2367 * The page must be locked by the caller and will be unlocked upon return.
2368 *
2369 * write_one_page() returns a negative error code if I/O failed.
2370 */
2371int write_one_page(struct page *page, int wait)
2372{
2373	struct address_space *mapping = page->mapping;
2374	int ret = 0;
2375	struct writeback_control wbc = {
2376		.sync_mode = WB_SYNC_ALL,
2377		.nr_to_write = 1,
2378	};
2379
2380	BUG_ON(!PageLocked(page));
2381
2382	if (wait)
2383		wait_on_page_writeback(page);
2384
2385	if (clear_page_dirty_for_io(page)) {
2386		get_page(page);
2387		ret = mapping->a_ops->writepage(page, &wbc);
2388		if (ret == 0 && wait) {
2389			wait_on_page_writeback(page);
2390			if (PageError(page))
2391				ret = -EIO;
2392		}
2393		put_page(page);
2394	} else {
2395		unlock_page(page);
2396	}
2397	return ret;
2398}
2399EXPORT_SYMBOL(write_one_page);
2400
2401/*
2402 * For address_spaces which do not use buffers nor write back.
2403 */
2404int __set_page_dirty_no_writeback(struct page *page)
2405{
2406	if (!PageDirty(page))
2407		return !TestSetPageDirty(page);
2408	return 0;
2409}
2410
2411/*
2412 * Helper function for set_page_dirty family.
2413 *
2414 * Caller must hold lock_page_memcg().
2415 *
2416 * NOTE: This relies on being atomic wrt interrupts.
2417 */
2418void account_page_dirtied(struct page *page, struct address_space *mapping)
2419{
2420	struct inode *inode = mapping->host;
2421
2422	trace_writeback_dirty_page(page, mapping);
2423
2424	if (mapping_cap_account_dirty(mapping)) {
2425		struct bdi_writeback *wb;
2426
2427		inode_attach_wb(inode, page);
2428		wb = inode_to_wb(inode);
2429
2430		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2431		__inc_node_page_state(page, NR_FILE_DIRTY);
2432		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2433		__inc_node_page_state(page, NR_DIRTIED);
2434		__inc_wb_stat(wb, WB_RECLAIMABLE);
2435		__inc_wb_stat(wb, WB_DIRTIED);
2436		task_io_account_write(PAGE_SIZE);
2437		current->nr_dirtied++;
2438		this_cpu_inc(bdp_ratelimits);
2439	}
2440}
2441EXPORT_SYMBOL(account_page_dirtied);
2442
2443/*
2444 * Helper function for deaccounting dirty page without writeback.
2445 *
2446 * Caller must hold lock_page_memcg().
2447 */
2448void account_page_cleaned(struct page *page, struct address_space *mapping,
2449			  struct bdi_writeback *wb)
2450{
2451	if (mapping_cap_account_dirty(mapping)) {
2452		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453		dec_node_page_state(page, NR_FILE_DIRTY);
2454		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2455		dec_wb_stat(wb, WB_RECLAIMABLE);
2456		task_io_account_cancelled_write(PAGE_SIZE);
2457	}
2458}
2459
2460/*
2461 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2462 * its radix tree.
2463 *
2464 * This is also used when a single buffer is being dirtied: we want to set the
2465 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2466 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2467 *
2468 * The caller must ensure this doesn't race with truncation.  Most will simply
2469 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2470 * the pte lock held, which also locks out truncation.
2471 */
2472int __set_page_dirty_nobuffers(struct page *page)
2473{
2474	lock_page_memcg(page);
2475	if (!TestSetPageDirty(page)) {
2476		struct address_space *mapping = page_mapping(page);
2477		unsigned long flags;
2478
2479		if (!mapping) {
2480			unlock_page_memcg(page);
2481			return 1;
2482		}
2483
2484		spin_lock_irqsave(&mapping->tree_lock, flags);
2485		BUG_ON(page_mapping(page) != mapping);
2486		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2487		account_page_dirtied(page, mapping);
2488		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2489				   PAGECACHE_TAG_DIRTY);
2490		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2491		unlock_page_memcg(page);
2492
2493		if (mapping->host) {
2494			/* !PageAnon && !swapper_space */
2495			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2496		}
2497		return 1;
2498	}
2499	unlock_page_memcg(page);
2500	return 0;
2501}
2502EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2503
2504/*
2505 * Call this whenever redirtying a page, to de-account the dirty counters
2506 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2507 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2508 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2509 * control.
2510 */
2511void account_page_redirty(struct page *page)
2512{
2513	struct address_space *mapping = page->mapping;
2514
2515	if (mapping && mapping_cap_account_dirty(mapping)) {
2516		struct inode *inode = mapping->host;
2517		struct bdi_writeback *wb;
2518		bool locked;
2519
2520		wb = unlocked_inode_to_wb_begin(inode, &locked);
2521		current->nr_dirtied--;
2522		dec_node_page_state(page, NR_DIRTIED);
2523		dec_wb_stat(wb, WB_DIRTIED);
2524		unlocked_inode_to_wb_end(inode, locked);
2525	}
2526}
2527EXPORT_SYMBOL(account_page_redirty);
2528
2529/*
2530 * When a writepage implementation decides that it doesn't want to write this
2531 * page for some reason, it should redirty the locked page via
2532 * redirty_page_for_writepage() and it should then unlock the page and return 0
2533 */
2534int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2535{
2536	int ret;
2537
2538	wbc->pages_skipped++;
2539	ret = __set_page_dirty_nobuffers(page);
2540	account_page_redirty(page);
2541	return ret;
2542}
2543EXPORT_SYMBOL(redirty_page_for_writepage);
2544
2545/*
2546 * Dirty a page.
2547 *
2548 * For pages with a mapping this should be done under the page lock
2549 * for the benefit of asynchronous memory errors who prefer a consistent
2550 * dirty state. This rule can be broken in some special cases,
2551 * but should be better not to.
2552 *
2553 * If the mapping doesn't provide a set_page_dirty a_op, then
2554 * just fall through and assume that it wants buffer_heads.
2555 */
2556int set_page_dirty(struct page *page)
2557{
2558	struct address_space *mapping = page_mapping(page);
2559
2560	page = compound_head(page);
2561	if (likely(mapping)) {
2562		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2563		/*
2564		 * readahead/lru_deactivate_page could remain
2565		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2566		 * About readahead, if the page is written, the flags would be
2567		 * reset. So no problem.
2568		 * About lru_deactivate_page, if the page is redirty, the flag
2569		 * will be reset. So no problem. but if the page is used by readahead
2570		 * it will confuse readahead and make it restart the size rampup
2571		 * process. But it's a trivial problem.
2572		 */
2573		if (PageReclaim(page))
2574			ClearPageReclaim(page);
2575#ifdef CONFIG_BLOCK
2576		if (!spd)
2577			spd = __set_page_dirty_buffers;
2578#endif
2579		return (*spd)(page);
2580	}
2581	if (!PageDirty(page)) {
2582		if (!TestSetPageDirty(page))
2583			return 1;
2584	}
2585	return 0;
2586}
2587EXPORT_SYMBOL(set_page_dirty);
2588
2589/*
2590 * set_page_dirty() is racy if the caller has no reference against
2591 * page->mapping->host, and if the page is unlocked.  This is because another
2592 * CPU could truncate the page off the mapping and then free the mapping.
2593 *
2594 * Usually, the page _is_ locked, or the caller is a user-space process which
2595 * holds a reference on the inode by having an open file.
2596 *
2597 * In other cases, the page should be locked before running set_page_dirty().
2598 */
2599int set_page_dirty_lock(struct page *page)
2600{
2601	int ret;
2602
2603	lock_page(page);
2604	ret = set_page_dirty(page);
2605	unlock_page(page);
2606	return ret;
2607}
2608EXPORT_SYMBOL(set_page_dirty_lock);
2609
2610/*
2611 * This cancels just the dirty bit on the kernel page itself, it does NOT
2612 * actually remove dirty bits on any mmap's that may be around. It also
2613 * leaves the page tagged dirty, so any sync activity will still find it on
2614 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2615 * look at the dirty bits in the VM.
2616 *
2617 * Doing this should *normally* only ever be done when a page is truncated,
2618 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2619 * this when it notices that somebody has cleaned out all the buffers on a
2620 * page without actually doing it through the VM. Can you say "ext3 is
2621 * horribly ugly"? Thought you could.
2622 */
2623void cancel_dirty_page(struct page *page)
2624{
2625	struct address_space *mapping = page_mapping(page);
2626
2627	if (mapping_cap_account_dirty(mapping)) {
2628		struct inode *inode = mapping->host;
2629		struct bdi_writeback *wb;
2630		bool locked;
2631
2632		lock_page_memcg(page);
2633		wb = unlocked_inode_to_wb_begin(inode, &locked);
2634
2635		if (TestClearPageDirty(page))
2636			account_page_cleaned(page, mapping, wb);
2637
2638		unlocked_inode_to_wb_end(inode, locked);
2639		unlock_page_memcg(page);
2640	} else {
2641		ClearPageDirty(page);
2642	}
2643}
2644EXPORT_SYMBOL(cancel_dirty_page);
2645
2646/*
2647 * Clear a page's dirty flag, while caring for dirty memory accounting.
2648 * Returns true if the page was previously dirty.
2649 *
2650 * This is for preparing to put the page under writeout.  We leave the page
2651 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2652 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2653 * implementation will run either set_page_writeback() or set_page_dirty(),
2654 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2655 * back into sync.
2656 *
2657 * This incoherency between the page's dirty flag and radix-tree tag is
2658 * unfortunate, but it only exists while the page is locked.
2659 */
2660int clear_page_dirty_for_io(struct page *page)
2661{
2662	struct address_space *mapping = page_mapping(page);
2663	int ret = 0;
2664
2665	BUG_ON(!PageLocked(page));
2666
2667	if (mapping && mapping_cap_account_dirty(mapping)) {
2668		struct inode *inode = mapping->host;
2669		struct bdi_writeback *wb;
2670		bool locked;
2671
2672		/*
2673		 * Yes, Virginia, this is indeed insane.
2674		 *
2675		 * We use this sequence to make sure that
2676		 *  (a) we account for dirty stats properly
2677		 *  (b) we tell the low-level filesystem to
2678		 *      mark the whole page dirty if it was
2679		 *      dirty in a pagetable. Only to then
2680		 *  (c) clean the page again and return 1 to
2681		 *      cause the writeback.
2682		 *
2683		 * This way we avoid all nasty races with the
2684		 * dirty bit in multiple places and clearing
2685		 * them concurrently from different threads.
2686		 *
2687		 * Note! Normally the "set_page_dirty(page)"
2688		 * has no effect on the actual dirty bit - since
2689		 * that will already usually be set. But we
2690		 * need the side effects, and it can help us
2691		 * avoid races.
2692		 *
2693		 * We basically use the page "master dirty bit"
2694		 * as a serialization point for all the different
2695		 * threads doing their things.
2696		 */
2697		if (page_mkclean(page))
2698			set_page_dirty(page);
2699		/*
2700		 * We carefully synchronise fault handlers against
2701		 * installing a dirty pte and marking the page dirty
2702		 * at this point.  We do this by having them hold the
2703		 * page lock while dirtying the page, and pages are
2704		 * always locked coming in here, so we get the desired
2705		 * exclusion.
2706		 */
2707		wb = unlocked_inode_to_wb_begin(inode, &locked);
2708		if (TestClearPageDirty(page)) {
2709			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2710			dec_node_page_state(page, NR_FILE_DIRTY);
2711			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712			dec_wb_stat(wb, WB_RECLAIMABLE);
2713			ret = 1;
2714		}
2715		unlocked_inode_to_wb_end(inode, locked);
2716		return ret;
2717	}
2718	return TestClearPageDirty(page);
2719}
2720EXPORT_SYMBOL(clear_page_dirty_for_io);
2721
2722int test_clear_page_writeback(struct page *page)
2723{
2724	struct address_space *mapping = page_mapping(page);
2725	int ret;
2726
2727	lock_page_memcg(page);
2728	if (mapping && mapping_use_writeback_tags(mapping)) {
2729		struct inode *inode = mapping->host;
2730		struct backing_dev_info *bdi = inode_to_bdi(inode);
2731		unsigned long flags;
2732
2733		spin_lock_irqsave(&mapping->tree_lock, flags);
2734		ret = TestClearPageWriteback(page);
2735		if (ret) {
2736			radix_tree_tag_clear(&mapping->page_tree,
2737						page_index(page),
2738						PAGECACHE_TAG_WRITEBACK);
2739			if (bdi_cap_account_writeback(bdi)) {
2740				struct bdi_writeback *wb = inode_to_wb(inode);
2741
2742				__dec_wb_stat(wb, WB_WRITEBACK);
2743				__wb_writeout_inc(wb);
2744			}
2745		}
2746
2747		if (mapping->host && !mapping_tagged(mapping,
2748						     PAGECACHE_TAG_WRITEBACK))
2749			sb_clear_inode_writeback(mapping->host);
2750
2751		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2752	} else {
2753		ret = TestClearPageWriteback(page);
2754	}
2755	if (ret) {
2756		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2757		dec_node_page_state(page, NR_WRITEBACK);
2758		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2759		inc_node_page_state(page, NR_WRITTEN);
2760	}
2761	unlock_page_memcg(page);
2762	return ret;
2763}
2764
2765int __test_set_page_writeback(struct page *page, bool keep_write)
2766{
2767	struct address_space *mapping = page_mapping(page);
2768	int ret;
2769
2770	lock_page_memcg(page);
2771	if (mapping && mapping_use_writeback_tags(mapping)) {
2772		struct inode *inode = mapping->host;
2773		struct backing_dev_info *bdi = inode_to_bdi(inode);
2774		unsigned long flags;
2775
2776		spin_lock_irqsave(&mapping->tree_lock, flags);
2777		ret = TestSetPageWriteback(page);
2778		if (!ret) {
2779			bool on_wblist;
2780
2781			on_wblist = mapping_tagged(mapping,
2782						   PAGECACHE_TAG_WRITEBACK);
2783
2784			radix_tree_tag_set(&mapping->page_tree,
2785						page_index(page),
2786						PAGECACHE_TAG_WRITEBACK);
2787			if (bdi_cap_account_writeback(bdi))
2788				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2789
2790			/*
2791			 * We can come through here when swapping anonymous
2792			 * pages, so we don't necessarily have an inode to track
2793			 * for sync.
2794			 */
2795			if (mapping->host && !on_wblist)
2796				sb_mark_inode_writeback(mapping->host);
2797		}
2798		if (!PageDirty(page))
2799			radix_tree_tag_clear(&mapping->page_tree,
2800						page_index(page),
2801						PAGECACHE_TAG_DIRTY);
2802		if (!keep_write)
2803			radix_tree_tag_clear(&mapping->page_tree,
2804						page_index(page),
2805						PAGECACHE_TAG_TOWRITE);
2806		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2807	} else {
2808		ret = TestSetPageWriteback(page);
2809	}
2810	if (!ret) {
2811		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2812		inc_node_page_state(page, NR_WRITEBACK);
2813		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2814	}
2815	unlock_page_memcg(page);
2816	return ret;
2817
2818}
2819EXPORT_SYMBOL(__test_set_page_writeback);
2820
2821/*
2822 * Return true if any of the pages in the mapping are marked with the
2823 * passed tag.
2824 */
2825int mapping_tagged(struct address_space *mapping, int tag)
2826{
2827	return radix_tree_tagged(&mapping->page_tree, tag);
2828}
2829EXPORT_SYMBOL(mapping_tagged);
2830
2831/**
2832 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2833 * @page:	The page to wait on.
2834 *
2835 * This function determines if the given page is related to a backing device
2836 * that requires page contents to be held stable during writeback.  If so, then
2837 * it will wait for any pending writeback to complete.
2838 */
2839void wait_for_stable_page(struct page *page)
2840{
2841	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2842		wait_on_page_writeback(page);
2843}
2844EXPORT_SYMBOL_GPL(wait_for_stable_page);