Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v4.6
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125struct wb_domain global_wb_domain;
 126
 127/* consolidated parameters for balance_dirty_pages() and its subroutines */
 128struct dirty_throttle_control {
 129#ifdef CONFIG_CGROUP_WRITEBACK
 130	struct wb_domain	*dom;
 131	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
 132#endif
 133	struct bdi_writeback	*wb;
 134	struct fprop_local_percpu *wb_completions;
 135
 136	unsigned long		avail;		/* dirtyable */
 137	unsigned long		dirty;		/* file_dirty + write + nfs */
 138	unsigned long		thresh;		/* dirty threshold */
 139	unsigned long		bg_thresh;	/* dirty background threshold */
 140
 141	unsigned long		wb_dirty;	/* per-wb counterparts */
 142	unsigned long		wb_thresh;
 143	unsigned long		wb_bg_thresh;
 144
 145	unsigned long		pos_ratio;
 146};
 
 
 
 147
 148/*
 149 * Length of period for aging writeout fractions of bdis. This is an
 150 * arbitrarily chosen number. The longer the period, the slower fractions will
 151 * reflect changes in current writeout rate.
 152 */
 153#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 154
 155#ifdef CONFIG_CGROUP_WRITEBACK
 156
 157#define GDTC_INIT(__wb)		.wb = (__wb),				\
 158				.dom = &global_wb_domain,		\
 159				.wb_completions = &(__wb)->completions
 160
 161#define GDTC_INIT_NO_WB		.dom = &global_wb_domain
 162
 163#define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
 164				.dom = mem_cgroup_wb_domain(__wb),	\
 165				.wb_completions = &(__wb)->memcg_completions, \
 166				.gdtc = __gdtc
 167
 168static bool mdtc_valid(struct dirty_throttle_control *dtc)
 169{
 170	return dtc->dom;
 171}
 172
 173static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 174{
 175	return dtc->dom;
 176}
 177
 178static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 179{
 180	return mdtc->gdtc;
 181}
 182
 183static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 184{
 185	return &wb->memcg_completions;
 186}
 187
 188static void wb_min_max_ratio(struct bdi_writeback *wb,
 189			     unsigned long *minp, unsigned long *maxp)
 190{
 191	unsigned long this_bw = wb->avg_write_bandwidth;
 192	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
 193	unsigned long long min = wb->bdi->min_ratio;
 194	unsigned long long max = wb->bdi->max_ratio;
 195
 196	/*
 197	 * @wb may already be clean by the time control reaches here and
 198	 * the total may not include its bw.
 199	 */
 200	if (this_bw < tot_bw) {
 201		if (min) {
 202			min *= this_bw;
 203			do_div(min, tot_bw);
 204		}
 205		if (max < 100) {
 206			max *= this_bw;
 207			do_div(max, tot_bw);
 208		}
 209	}
 210
 211	*minp = min;
 212	*maxp = max;
 213}
 214
 215#else	/* CONFIG_CGROUP_WRITEBACK */
 216
 217#define GDTC_INIT(__wb)		.wb = (__wb),                           \
 218				.wb_completions = &(__wb)->completions
 219#define GDTC_INIT_NO_WB
 220#define MDTC_INIT(__wb, __gdtc)
 221
 222static bool mdtc_valid(struct dirty_throttle_control *dtc)
 223{
 224	return false;
 225}
 226
 227static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
 228{
 229	return &global_wb_domain;
 230}
 231
 232static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
 233{
 234	return NULL;
 235}
 236
 237static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
 238{
 239	return NULL;
 240}
 241
 242static void wb_min_max_ratio(struct bdi_writeback *wb,
 243			     unsigned long *minp, unsigned long *maxp)
 244{
 245	*minp = wb->bdi->min_ratio;
 246	*maxp = wb->bdi->max_ratio;
 247}
 248
 249#endif	/* CONFIG_CGROUP_WRITEBACK */
 250
 251/*
 252 * In a memory zone, there is a certain amount of pages we consider
 253 * available for the page cache, which is essentially the number of
 254 * free and reclaimable pages, minus some zone reserves to protect
 255 * lowmem and the ability to uphold the zone's watermarks without
 256 * requiring writeback.
 257 *
 258 * This number of dirtyable pages is the base value of which the
 259 * user-configurable dirty ratio is the effictive number of pages that
 260 * are allowed to be actually dirtied.  Per individual zone, or
 261 * globally by using the sum of dirtyable pages over all zones.
 262 *
 263 * Because the user is allowed to specify the dirty limit globally as
 264 * absolute number of bytes, calculating the per-zone dirty limit can
 265 * require translating the configured limit into a percentage of
 266 * global dirtyable memory first.
 267 */
 268
 269/**
 270 * zone_dirtyable_memory - number of dirtyable pages in a zone
 271 * @zone: the zone
 272 *
 273 * Returns the zone's number of pages potentially available for dirty
 274 * page cache.  This is the base value for the per-zone dirty limits.
 275 */
 276static unsigned long zone_dirtyable_memory(struct zone *zone)
 277{
 278	unsigned long nr_pages;
 279
 280	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 281	/*
 282	 * Pages reserved for the kernel should not be considered
 283	 * dirtyable, to prevent a situation where reclaim has to
 284	 * clean pages in order to balance the zones.
 285	 */
 286	nr_pages -= min(nr_pages, zone->totalreserve_pages);
 287
 288	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 289	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 290
 291	return nr_pages;
 292}
 293
 294static unsigned long highmem_dirtyable_memory(unsigned long total)
 295{
 296#ifdef CONFIG_HIGHMEM
 297	int node;
 298	unsigned long x = 0;
 299
 300	for_each_node_state(node, N_HIGH_MEMORY) {
 301		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 302
 303		x += zone_dirtyable_memory(z);
 304	}
 305	/*
 306	 * Unreclaimable memory (kernel memory or anonymous memory
 307	 * without swap) can bring down the dirtyable pages below
 308	 * the zone's dirty balance reserve and the above calculation
 309	 * will underflow.  However we still want to add in nodes
 310	 * which are below threshold (negative values) to get a more
 311	 * accurate calculation but make sure that the total never
 312	 * underflows.
 313	 */
 314	if ((long)x < 0)
 315		x = 0;
 316
 317	/*
 318	 * Make sure that the number of highmem pages is never larger
 319	 * than the number of the total dirtyable memory. This can only
 320	 * occur in very strange VM situations but we want to make sure
 321	 * that this does not occur.
 322	 */
 323	return min(x, total);
 324#else
 325	return 0;
 326#endif
 327}
 328
 329/**
 330 * global_dirtyable_memory - number of globally dirtyable pages
 331 *
 332 * Returns the global number of pages potentially available for dirty
 333 * page cache.  This is the base value for the global dirty limits.
 334 */
 335static unsigned long global_dirtyable_memory(void)
 336{
 337	unsigned long x;
 338
 339	x = global_page_state(NR_FREE_PAGES);
 340	/*
 341	 * Pages reserved for the kernel should not be considered
 342	 * dirtyable, to prevent a situation where reclaim has to
 343	 * clean pages in order to balance the zones.
 344	 */
 345	x -= min(x, totalreserve_pages);
 346
 347	x += global_page_state(NR_INACTIVE_FILE);
 348	x += global_page_state(NR_ACTIVE_FILE);
 349
 350	if (!vm_highmem_is_dirtyable)
 351		x -= highmem_dirtyable_memory(x);
 352
 353	return x + 1;	/* Ensure that we never return 0 */
 354}
 355
 356/**
 357 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
 358 * @dtc: dirty_throttle_control of interest
 359 *
 360 * Calculate @dtc->thresh and ->bg_thresh considering
 361 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
 362 * must ensure that @dtc->avail is set before calling this function.  The
 363 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 364 * real-time tasks.
 365 */
 366static void domain_dirty_limits(struct dirty_throttle_control *dtc)
 367{
 368	const unsigned long available_memory = dtc->avail;
 369	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
 370	unsigned long bytes = vm_dirty_bytes;
 371	unsigned long bg_bytes = dirty_background_bytes;
 372	unsigned long ratio = vm_dirty_ratio;
 373	unsigned long bg_ratio = dirty_background_ratio;
 374	unsigned long thresh;
 375	unsigned long bg_thresh;
 376	struct task_struct *tsk;
 377
 378	/* gdtc is !NULL iff @dtc is for memcg domain */
 379	if (gdtc) {
 380		unsigned long global_avail = gdtc->avail;
 381
 382		/*
 383		 * The byte settings can't be applied directly to memcg
 384		 * domains.  Convert them to ratios by scaling against
 385		 * globally available memory.
 386		 */
 387		if (bytes)
 388			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
 389				    global_avail, 100UL);
 390		if (bg_bytes)
 391			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
 392				       global_avail, 100UL);
 393		bytes = bg_bytes = 0;
 394	}
 395
 396	if (bytes)
 397		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
 398	else
 399		thresh = (ratio * available_memory) / 100;
 400
 401	if (bg_bytes)
 402		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
 403	else
 404		bg_thresh = (bg_ratio * available_memory) / 100;
 405
 406	if (bg_thresh >= thresh)
 407		bg_thresh = thresh / 2;
 408	tsk = current;
 409	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 410		bg_thresh += bg_thresh / 4;
 411		thresh += thresh / 4;
 412	}
 413	dtc->thresh = thresh;
 414	dtc->bg_thresh = bg_thresh;
 415
 416	/* we should eventually report the domain in the TP */
 417	if (!gdtc)
 418		trace_global_dirty_state(bg_thresh, thresh);
 419}
 420
 421/**
 422 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 423 * @pbackground: out parameter for bg_thresh
 424 * @pdirty: out parameter for thresh
 425 *
 426 * Calculate bg_thresh and thresh for global_wb_domain.  See
 427 * domain_dirty_limits() for details.
 428 */
 429void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 430{
 431	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
 432
 433	gdtc.avail = global_dirtyable_memory();
 434	domain_dirty_limits(&gdtc);
 435
 436	*pbackground = gdtc.bg_thresh;
 437	*pdirty = gdtc.thresh;
 438}
 439
 440/**
 441 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 442 * @zone: the zone
 443 *
 444 * Returns the maximum number of dirty pages allowed in a zone, based
 445 * on the zone's dirtyable memory.
 446 */
 447static unsigned long zone_dirty_limit(struct zone *zone)
 448{
 449	unsigned long zone_memory = zone_dirtyable_memory(zone);
 450	struct task_struct *tsk = current;
 451	unsigned long dirty;
 452
 453	if (vm_dirty_bytes)
 454		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 455			zone_memory / global_dirtyable_memory();
 456	else
 457		dirty = vm_dirty_ratio * zone_memory / 100;
 458
 459	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 460		dirty += dirty / 4;
 461
 462	return dirty;
 463}
 464
 465/**
 466 * zone_dirty_ok - tells whether a zone is within its dirty limits
 467 * @zone: the zone to check
 468 *
 469 * Returns %true when the dirty pages in @zone are within the zone's
 470 * dirty limit, %false if the limit is exceeded.
 471 */
 472bool zone_dirty_ok(struct zone *zone)
 473{
 474	unsigned long limit = zone_dirty_limit(zone);
 475
 476	return zone_page_state(zone, NR_FILE_DIRTY) +
 477	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 478	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 479}
 480
 481int dirty_background_ratio_handler(struct ctl_table *table, int write,
 482		void __user *buffer, size_t *lenp,
 483		loff_t *ppos)
 484{
 485	int ret;
 486
 487	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 488	if (ret == 0 && write)
 489		dirty_background_bytes = 0;
 490	return ret;
 491}
 492
 493int dirty_background_bytes_handler(struct ctl_table *table, int write,
 494		void __user *buffer, size_t *lenp,
 495		loff_t *ppos)
 496{
 497	int ret;
 498
 499	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 500	if (ret == 0 && write)
 501		dirty_background_ratio = 0;
 502	return ret;
 503}
 504
 505int dirty_ratio_handler(struct ctl_table *table, int write,
 506		void __user *buffer, size_t *lenp,
 507		loff_t *ppos)
 508{
 509	int old_ratio = vm_dirty_ratio;
 510	int ret;
 511
 512	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 513	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 514		writeback_set_ratelimit();
 515		vm_dirty_bytes = 0;
 516	}
 517	return ret;
 518}
 519
 520int dirty_bytes_handler(struct ctl_table *table, int write,
 521		void __user *buffer, size_t *lenp,
 522		loff_t *ppos)
 523{
 524	unsigned long old_bytes = vm_dirty_bytes;
 525	int ret;
 526
 527	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 528	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 529		writeback_set_ratelimit();
 530		vm_dirty_ratio = 0;
 531	}
 532	return ret;
 533}
 534
 535static unsigned long wp_next_time(unsigned long cur_time)
 536{
 537	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 538	/* 0 has a special meaning... */
 539	if (!cur_time)
 540		return 1;
 541	return cur_time;
 542}
 543
 544static void wb_domain_writeout_inc(struct wb_domain *dom,
 545				   struct fprop_local_percpu *completions,
 546				   unsigned int max_prop_frac)
 
 
 547{
 548	__fprop_inc_percpu_max(&dom->completions, completions,
 549			       max_prop_frac);
 
 550	/* First event after period switching was turned off? */
 551	if (!unlikely(dom->period_time)) {
 552		/*
 553		 * We can race with other __bdi_writeout_inc calls here but
 554		 * it does not cause any harm since the resulting time when
 555		 * timer will fire and what is in writeout_period_time will be
 556		 * roughly the same.
 557		 */
 558		dom->period_time = wp_next_time(jiffies);
 559		mod_timer(&dom->period_timer, dom->period_time);
 560	}
 561}
 562
 563/*
 564 * Increment @wb's writeout completion count and the global writeout
 565 * completion count. Called from test_clear_page_writeback().
 566 */
 567static inline void __wb_writeout_inc(struct bdi_writeback *wb)
 568{
 569	struct wb_domain *cgdom;
 570
 571	__inc_wb_stat(wb, WB_WRITTEN);
 572	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
 573			       wb->bdi->max_prop_frac);
 574
 575	cgdom = mem_cgroup_wb_domain(wb);
 576	if (cgdom)
 577		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
 578				       wb->bdi->max_prop_frac);
 579}
 580
 581void wb_writeout_inc(struct bdi_writeback *wb)
 582{
 583	unsigned long flags;
 584
 585	local_irq_save(flags);
 586	__wb_writeout_inc(wb);
 587	local_irq_restore(flags);
 588}
 589EXPORT_SYMBOL_GPL(wb_writeout_inc);
 
 
 
 
 
 
 
 
 
 
 590
 591/*
 592 * On idle system, we can be called long after we scheduled because we use
 593 * deferred timers so count with missed periods.
 594 */
 595static void writeout_period(unsigned long t)
 596{
 597	struct wb_domain *dom = (void *)t;
 598	int miss_periods = (jiffies - dom->period_time) /
 599						 VM_COMPLETIONS_PERIOD_LEN;
 600
 601	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
 602		dom->period_time = wp_next_time(dom->period_time +
 603				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 604		mod_timer(&dom->period_timer, dom->period_time);
 605	} else {
 606		/*
 607		 * Aging has zeroed all fractions. Stop wasting CPU on period
 608		 * updates.
 609		 */
 610		dom->period_time = 0;
 611	}
 612}
 613
 614int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
 615{
 616	memset(dom, 0, sizeof(*dom));
 617
 618	spin_lock_init(&dom->lock);
 619
 620	init_timer_deferrable(&dom->period_timer);
 621	dom->period_timer.function = writeout_period;
 622	dom->period_timer.data = (unsigned long)dom;
 623
 624	dom->dirty_limit_tstamp = jiffies;
 625
 626	return fprop_global_init(&dom->completions, gfp);
 627}
 628
 629#ifdef CONFIG_CGROUP_WRITEBACK
 630void wb_domain_exit(struct wb_domain *dom)
 631{
 632	del_timer_sync(&dom->period_timer);
 633	fprop_global_destroy(&dom->completions);
 634}
 635#endif
 636
 637/*
 638 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 639 * registered backing devices, which, for obvious reasons, can not
 640 * exceed 100%.
 641 */
 642static unsigned int bdi_min_ratio;
 643
 644int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 645{
 646	int ret = 0;
 647
 648	spin_lock_bh(&bdi_lock);
 649	if (min_ratio > bdi->max_ratio) {
 650		ret = -EINVAL;
 651	} else {
 652		min_ratio -= bdi->min_ratio;
 653		if (bdi_min_ratio + min_ratio < 100) {
 654			bdi_min_ratio += min_ratio;
 655			bdi->min_ratio += min_ratio;
 656		} else {
 657			ret = -EINVAL;
 658		}
 659	}
 660	spin_unlock_bh(&bdi_lock);
 661
 662	return ret;
 663}
 664
 665int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 666{
 667	int ret = 0;
 668
 669	if (max_ratio > 100)
 670		return -EINVAL;
 671
 672	spin_lock_bh(&bdi_lock);
 673	if (bdi->min_ratio > max_ratio) {
 674		ret = -EINVAL;
 675	} else {
 676		bdi->max_ratio = max_ratio;
 677		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 678	}
 679	spin_unlock_bh(&bdi_lock);
 680
 681	return ret;
 682}
 683EXPORT_SYMBOL(bdi_set_max_ratio);
 684
 685static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 686					   unsigned long bg_thresh)
 687{
 688	return (thresh + bg_thresh) / 2;
 689}
 690
 691static unsigned long hard_dirty_limit(struct wb_domain *dom,
 692				      unsigned long thresh)
 693{
 694	return max(thresh, dom->dirty_limit);
 695}
 696
 697/*
 698 * Memory which can be further allocated to a memcg domain is capped by
 699 * system-wide clean memory excluding the amount being used in the domain.
 700 */
 701static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
 702			    unsigned long filepages, unsigned long headroom)
 703{
 704	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
 705	unsigned long clean = filepages - min(filepages, mdtc->dirty);
 706	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
 707	unsigned long other_clean = global_clean - min(global_clean, clean);
 708
 709	mdtc->avail = filepages + min(headroom, other_clean);
 710}
 711
 712/**
 713 * __wb_calc_thresh - @wb's share of dirty throttling threshold
 714 * @dtc: dirty_throttle_context of interest
 
 715 *
 716 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
 717 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 718 *
 719 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 720 * when sleeping max_pause per page is not enough to keep the dirty pages under
 721 * control. For example, when the device is completely stalled due to some error
 722 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 723 * In the other normal situations, it acts more gently by throttling the tasks
 724 * more (rather than completely block them) when the wb dirty pages go high.
 725 *
 726 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 727 * - starving fast devices
 728 * - piling up dirty pages (that will take long time to sync) on slow devices
 729 *
 730 * The wb's share of dirty limit will be adapting to its throughput and
 731 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 732 */
 733static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
 734{
 735	struct wb_domain *dom = dtc_dom(dtc);
 736	unsigned long thresh = dtc->thresh;
 737	u64 wb_thresh;
 738	long numerator, denominator;
 739	unsigned long wb_min_ratio, wb_max_ratio;
 740
 741	/*
 742	 * Calculate this BDI's share of the thresh ratio.
 743	 */
 744	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
 745			      &numerator, &denominator);
 746
 747	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
 748	wb_thresh *= numerator;
 749	do_div(wb_thresh, denominator);
 750
 751	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
 
 
 752
 753	wb_thresh += (thresh * wb_min_ratio) / 100;
 754	if (wb_thresh > (thresh * wb_max_ratio) / 100)
 755		wb_thresh = thresh * wb_max_ratio / 100;
 756
 757	return wb_thresh;
 758}
 759
 760unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
 761{
 762	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
 763					       .thresh = thresh };
 764	return __wb_calc_thresh(&gdtc);
 765}
 766
 767/*
 768 *                           setpoint - dirty 3
 769 *        f(dirty) := 1.0 + (----------------)
 770 *                           limit - setpoint
 771 *
 772 * it's a 3rd order polynomial that subjects to
 773 *
 774 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 775 * (2) f(setpoint) = 1.0 => the balance point
 776 * (3) f(limit)    = 0   => the hard limit
 777 * (4) df/dx      <= 0	 => negative feedback control
 778 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 779 *     => fast response on large errors; small oscillation near setpoint
 780 */
 781static long long pos_ratio_polynom(unsigned long setpoint,
 782					  unsigned long dirty,
 783					  unsigned long limit)
 784{
 785	long long pos_ratio;
 786	long x;
 787
 788	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 789		      (limit - setpoint) | 1);
 790	pos_ratio = x;
 791	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 792	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 793	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 794
 795	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 796}
 797
 798/*
 799 * Dirty position control.
 800 *
 801 * (o) global/bdi setpoints
 802 *
 803 * We want the dirty pages be balanced around the global/wb setpoints.
 804 * When the number of dirty pages is higher/lower than the setpoint, the
 805 * dirty position control ratio (and hence task dirty ratelimit) will be
 806 * decreased/increased to bring the dirty pages back to the setpoint.
 807 *
 808 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 809 *
 810 *     if (dirty < setpoint) scale up   pos_ratio
 811 *     if (dirty > setpoint) scale down pos_ratio
 812 *
 813 *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
 814 *     if (wb_dirty > wb_setpoint) scale down pos_ratio
 815 *
 816 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 817 *
 818 * (o) global control line
 819 *
 820 *     ^ pos_ratio
 821 *     |
 822 *     |            |<===== global dirty control scope ======>|
 823 * 2.0 .............*
 824 *     |            .*
 825 *     |            . *
 826 *     |            .   *
 827 *     |            .     *
 828 *     |            .        *
 829 *     |            .            *
 830 * 1.0 ................................*
 831 *     |            .                  .     *
 832 *     |            .                  .          *
 833 *     |            .                  .              *
 834 *     |            .                  .                 *
 835 *     |            .                  .                    *
 836 *   0 +------------.------------------.----------------------*------------->
 837 *           freerun^          setpoint^                 limit^   dirty pages
 838 *
 839 * (o) wb control line
 840 *
 841 *     ^ pos_ratio
 842 *     |
 843 *     |            *
 844 *     |              *
 845 *     |                *
 846 *     |                  *
 847 *     |                    * |<=========== span ============>|
 848 * 1.0 .......................*
 849 *     |                      . *
 850 *     |                      .   *
 851 *     |                      .     *
 852 *     |                      .       *
 853 *     |                      .         *
 854 *     |                      .           *
 855 *     |                      .             *
 856 *     |                      .               *
 857 *     |                      .                 *
 858 *     |                      .                   *
 859 *     |                      .                     *
 860 * 1/4 ...............................................* * * * * * * * * * * *
 861 *     |                      .                         .
 862 *     |                      .                           .
 863 *     |                      .                             .
 864 *   0 +----------------------.-------------------------------.------------->
 865 *                wb_setpoint^                    x_intercept^
 866 *
 867 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
 868 * be smoothly throttled down to normal if it starts high in situations like
 869 * - start writing to a slow SD card and a fast disk at the same time. The SD
 870 *   card's wb_dirty may rush to many times higher than wb_setpoint.
 871 * - the wb dirty thresh drops quickly due to change of JBOD workload
 872 */
 873static void wb_position_ratio(struct dirty_throttle_control *dtc)
 874{
 875	struct bdi_writeback *wb = dtc->wb;
 876	unsigned long write_bw = wb->avg_write_bandwidth;
 877	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
 878	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 879	unsigned long wb_thresh = dtc->wb_thresh;
 
 
 
 880	unsigned long x_intercept;
 881	unsigned long setpoint;		/* dirty pages' target balance point */
 882	unsigned long wb_setpoint;
 883	unsigned long span;
 884	long long pos_ratio;		/* for scaling up/down the rate limit */
 885	long x;
 886
 887	dtc->pos_ratio = 0;
 888
 889	if (unlikely(dtc->dirty >= limit))
 890		return;
 891
 892	/*
 893	 * global setpoint
 894	 *
 895	 * See comment for pos_ratio_polynom().
 896	 */
 897	setpoint = (freerun + limit) / 2;
 898	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
 899
 900	/*
 901	 * The strictlimit feature is a tool preventing mistrusted filesystems
 902	 * from growing a large number of dirty pages before throttling. For
 903	 * such filesystems balance_dirty_pages always checks wb counters
 904	 * against wb limits. Even if global "nr_dirty" is under "freerun".
 905	 * This is especially important for fuse which sets bdi->max_ratio to
 906	 * 1% by default. Without strictlimit feature, fuse writeback may
 907	 * consume arbitrary amount of RAM because it is accounted in
 908	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 909	 *
 910	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
 911	 * two values: wb_dirty and wb_thresh. Let's consider an example:
 912	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 913	 * limits are set by default to 10% and 20% (background and throttle).
 914	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 915	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
 916	 * about ~6K pages (as the average of background and throttle wb
 917	 * limits). The 3rd order polynomial will provide positive feedback if
 918	 * wb_dirty is under wb_setpoint and vice versa.
 919	 *
 920	 * Note, that we cannot use global counters in these calculations
 921	 * because we want to throttle process writing to a strictlimit wb
 922	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 923	 * in the example above).
 924	 */
 925	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 926		long long wb_pos_ratio;
 927
 928		if (dtc->wb_dirty < 8) {
 929			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
 930					   2 << RATELIMIT_CALC_SHIFT);
 931			return;
 932		}
 
 
 
 
 
 
 933
 934		if (dtc->wb_dirty >= wb_thresh)
 935			return;
 936
 937		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
 938						    dtc->wb_bg_thresh);
 939
 940		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
 941			return;
 942
 943		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
 944						 wb_thresh);
 945
 946		/*
 947		 * Typically, for strictlimit case, wb_setpoint << setpoint
 948		 * and pos_ratio >> wb_pos_ratio. In the other words global
 949		 * state ("dirty") is not limiting factor and we have to
 950		 * make decision based on wb counters. But there is an
 951		 * important case when global pos_ratio should get precedence:
 952		 * global limits are exceeded (e.g. due to activities on other
 953		 * wb's) while given strictlimit wb is below limit.
 954		 *
 955		 * "pos_ratio * wb_pos_ratio" would work for the case above,
 956		 * but it would look too non-natural for the case of all
 957		 * activity in the system coming from a single strictlimit wb
 958		 * with bdi->max_ratio == 100%.
 959		 *
 960		 * Note that min() below somewhat changes the dynamics of the
 961		 * control system. Normally, pos_ratio value can be well over 3
 962		 * (when globally we are at freerun and wb is well below wb
 963		 * setpoint). Now the maximum pos_ratio in the same situation
 964		 * is 2. We might want to tweak this if we observe the control
 965		 * system is too slow to adapt.
 966		 */
 967		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
 968		return;
 969	}
 970
 971	/*
 972	 * We have computed basic pos_ratio above based on global situation. If
 973	 * the wb is over/under its share of dirty pages, we want to scale
 974	 * pos_ratio further down/up. That is done by the following mechanism.
 975	 */
 976
 977	/*
 978	 * wb setpoint
 979	 *
 980	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
 981	 *
 982	 *                        x_intercept - wb_dirty
 983	 *                     := --------------------------
 984	 *                        x_intercept - wb_setpoint
 985	 *
 986	 * The main wb control line is a linear function that subjects to
 987	 *
 988	 * (1) f(wb_setpoint) = 1.0
 989	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
 990	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
 991	 *
 992	 * For single wb case, the dirty pages are observed to fluctuate
 993	 * regularly within range
 994	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
 995	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 996	 * fluctuation range for pos_ratio.
 997	 *
 998	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
 999	 * own size, so move the slope over accordingly and choose a slope that
1000	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1001	 */
1002	if (unlikely(wb_thresh > dtc->thresh))
1003		wb_thresh = dtc->thresh;
1004	/*
1005	 * It's very possible that wb_thresh is close to 0 not because the
1006	 * device is slow, but that it has remained inactive for long time.
1007	 * Honour such devices a reasonable good (hopefully IO efficient)
1008	 * threshold, so that the occasional writes won't be blocked and active
1009	 * writes can rampup the threshold quickly.
1010	 */
1011	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1012	/*
1013	 * scale global setpoint to wb's:
1014	 *	wb_setpoint = setpoint * wb_thresh / thresh
1015	 */
1016	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017	wb_setpoint = setpoint * (u64)x >> 16;
1018	/*
1019	 * Use span=(8*write_bw) in single wb case as indicated by
1020	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1021	 *
1022	 *        wb_thresh                    thresh - wb_thresh
1023	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1024	 *         thresh                           thresh
1025	 */
1026	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027	x_intercept = wb_setpoint + span;
1028
1029	if (dtc->wb_dirty < x_intercept - span / 4) {
1030		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031				      (x_intercept - wb_setpoint) | 1);
1032	} else
1033		pos_ratio /= 4;
1034
1035	/*
1036	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1037	 * It may push the desired control point of global dirty pages higher
1038	 * than setpoint.
1039	 */
1040	x_intercept = wb_thresh / 2;
1041	if (dtc->wb_dirty < x_intercept) {
1042		if (dtc->wb_dirty > x_intercept / 8)
1043			pos_ratio = div_u64(pos_ratio * x_intercept,
1044					    dtc->wb_dirty);
1045		else
1046			pos_ratio *= 8;
1047	}
1048
1049	dtc->pos_ratio = pos_ratio;
1050}
1051
1052static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1053				      unsigned long elapsed,
1054				      unsigned long written)
1055{
1056	const unsigned long period = roundup_pow_of_two(3 * HZ);
1057	unsigned long avg = wb->avg_write_bandwidth;
1058	unsigned long old = wb->write_bandwidth;
1059	u64 bw;
1060
1061	/*
1062	 * bw = written * HZ / elapsed
1063	 *
1064	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1065	 * write_bandwidth = ---------------------------------------------------
1066	 *                                          period
1067	 *
1068	 * @written may have decreased due to account_page_redirty().
1069	 * Avoid underflowing @bw calculation.
1070	 */
1071	bw = written - min(written, wb->written_stamp);
1072	bw *= HZ;
1073	if (unlikely(elapsed > period)) {
1074		do_div(bw, elapsed);
1075		avg = bw;
1076		goto out;
1077	}
1078	bw += (u64)wb->write_bandwidth * (period - elapsed);
1079	bw >>= ilog2(period);
1080
1081	/*
1082	 * one more level of smoothing, for filtering out sudden spikes
1083	 */
1084	if (avg > old && old >= (unsigned long)bw)
1085		avg -= (avg - old) >> 3;
1086
1087	if (avg < old && old <= (unsigned long)bw)
1088		avg += (old - avg) >> 3;
1089
1090out:
1091	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1092	avg = max(avg, 1LU);
1093	if (wb_has_dirty_io(wb)) {
1094		long delta = avg - wb->avg_write_bandwidth;
1095		WARN_ON_ONCE(atomic_long_add_return(delta,
1096					&wb->bdi->tot_write_bandwidth) <= 0);
1097	}
1098	wb->write_bandwidth = bw;
1099	wb->avg_write_bandwidth = avg;
1100}
1101
1102static void update_dirty_limit(struct dirty_throttle_control *dtc)
1103{
1104	struct wb_domain *dom = dtc_dom(dtc);
1105	unsigned long thresh = dtc->thresh;
1106	unsigned long limit = dom->dirty_limit;
1107
1108	/*
1109	 * Follow up in one step.
1110	 */
1111	if (limit < thresh) {
1112		limit = thresh;
1113		goto update;
1114	}
1115
1116	/*
1117	 * Follow down slowly. Use the higher one as the target, because thresh
1118	 * may drop below dirty. This is exactly the reason to introduce
1119	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1120	 */
1121	thresh = max(thresh, dtc->dirty);
1122	if (limit > thresh) {
1123		limit -= (limit - thresh) >> 5;
1124		goto update;
1125	}
1126	return;
1127update:
1128	dom->dirty_limit = limit;
1129}
1130
1131static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
 
1132				    unsigned long now)
1133{
1134	struct wb_domain *dom = dtc_dom(dtc);
 
1135
1136	/*
1137	 * check locklessly first to optimize away locking for the most time
1138	 */
1139	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140		return;
1141
1142	spin_lock(&dom->lock);
1143	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144		update_dirty_limit(dtc);
1145		dom->dirty_limit_tstamp = now;
1146	}
1147	spin_unlock(&dom->lock);
1148}
1149
1150/*
1151 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1152 *
1153 * Normal wb tasks will be curbed at or below it in long term.
1154 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1155 */
1156static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157				      unsigned long dirtied,
1158				      unsigned long elapsed)
1159{
1160	struct bdi_writeback *wb = dtc->wb;
1161	unsigned long dirty = dtc->dirty;
1162	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
 
 
 
1164	unsigned long setpoint = (freerun + limit) / 2;
1165	unsigned long write_bw = wb->avg_write_bandwidth;
1166	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1167	unsigned long dirty_rate;
1168	unsigned long task_ratelimit;
1169	unsigned long balanced_dirty_ratelimit;
 
1170	unsigned long step;
1171	unsigned long x;
1172	unsigned long shift;
1173
1174	/*
1175	 * The dirty rate will match the writeout rate in long term, except
1176	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1177	 */
1178	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1179
 
 
1180	/*
1181	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1182	 */
1183	task_ratelimit = (u64)dirty_ratelimit *
1184					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1185	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1186
1187	/*
1188	 * A linear estimation of the "balanced" throttle rate. The theory is,
1189	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1190	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1191	 * formula will yield the balanced rate limit (write_bw / N).
1192	 *
1193	 * Note that the expanded form is not a pure rate feedback:
1194	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1195	 * but also takes pos_ratio into account:
1196	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1197	 *
1198	 * (1) is not realistic because pos_ratio also takes part in balancing
1199	 * the dirty rate.  Consider the state
1200	 *	pos_ratio = 0.5						     (3)
1201	 *	rate = 2 * (write_bw / N)				     (4)
1202	 * If (1) is used, it will stuck in that state! Because each dd will
1203	 * be throttled at
1204	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1205	 * yielding
1206	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1207	 * put (6) into (1) we get
1208	 *	rate_(i+1) = rate_(i)					     (7)
1209	 *
1210	 * So we end up using (2) to always keep
1211	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1212	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1213	 * pos_ratio is able to drive itself to 1.0, which is not only where
1214	 * the dirty count meet the setpoint, but also where the slope of
1215	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1216	 */
1217	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1218					   dirty_rate | 1);
1219	/*
1220	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1221	 */
1222	if (unlikely(balanced_dirty_ratelimit > write_bw))
1223		balanced_dirty_ratelimit = write_bw;
1224
1225	/*
1226	 * We could safely do this and return immediately:
1227	 *
1228	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1229	 *
1230	 * However to get a more stable dirty_ratelimit, the below elaborated
1231	 * code makes use of task_ratelimit to filter out singular points and
1232	 * limit the step size.
1233	 *
1234	 * The below code essentially only uses the relative value of
1235	 *
1236	 *	task_ratelimit - dirty_ratelimit
1237	 *	= (pos_ratio - 1) * dirty_ratelimit
1238	 *
1239	 * which reflects the direction and size of dirty position error.
1240	 */
1241
1242	/*
1243	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1244	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1245	 * For example, when
1246	 * - dirty_ratelimit > balanced_dirty_ratelimit
1247	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1248	 * lowering dirty_ratelimit will help meet both the position and rate
1249	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1250	 * only help meet the rate target. After all, what the users ultimately
1251	 * feel and care are stable dirty rate and small position error.
1252	 *
1253	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1254	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1255	 * keeps jumping around randomly and can even leap far away at times
1256	 * due to the small 200ms estimation period of dirty_rate (we want to
1257	 * keep that period small to reduce time lags).
1258	 */
1259	step = 0;
1260
1261	/*
1262	 * For strictlimit case, calculations above were based on wb counters
1263	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1264	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1265	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1266	 * "dirty" and wb_setpoint as "setpoint".
1267	 *
1268	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1269	 * it's possible that wb_thresh is close to zero due to inactivity
1270	 * of backing device.
1271	 */
1272	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1273		dirty = dtc->wb_dirty;
1274		if (dtc->wb_dirty < 8)
1275			setpoint = dtc->wb_dirty + 1;
1276		else
1277			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
 
1278	}
1279
1280	if (dirty < setpoint) {
1281		x = min3(wb->balanced_dirty_ratelimit,
1282			 balanced_dirty_ratelimit, task_ratelimit);
1283		if (dirty_ratelimit < x)
1284			step = x - dirty_ratelimit;
1285	} else {
1286		x = max3(wb->balanced_dirty_ratelimit,
1287			 balanced_dirty_ratelimit, task_ratelimit);
1288		if (dirty_ratelimit > x)
1289			step = dirty_ratelimit - x;
1290	}
1291
1292	/*
1293	 * Don't pursue 100% rate matching. It's impossible since the balanced
1294	 * rate itself is constantly fluctuating. So decrease the track speed
1295	 * when it gets close to the target. Helps eliminate pointless tremors.
1296	 */
1297	shift = dirty_ratelimit / (2 * step + 1);
1298	if (shift < BITS_PER_LONG)
1299		step = DIV_ROUND_UP(step >> shift, 8);
1300	else
1301		step = 0;
1302
1303	if (dirty_ratelimit < balanced_dirty_ratelimit)
1304		dirty_ratelimit += step;
1305	else
1306		dirty_ratelimit -= step;
1307
1308	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1309	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1310
1311	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1312}
1313
1314static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1315				  struct dirty_throttle_control *mdtc,
1316				  unsigned long start_time,
1317				  bool update_ratelimit)
 
 
 
1318{
1319	struct bdi_writeback *wb = gdtc->wb;
1320	unsigned long now = jiffies;
1321	unsigned long elapsed = now - wb->bw_time_stamp;
1322	unsigned long dirtied;
1323	unsigned long written;
1324
1325	lockdep_assert_held(&wb->list_lock);
1326
1327	/*
1328	 * rate-limit, only update once every 200ms.
1329	 */
1330	if (elapsed < BANDWIDTH_INTERVAL)
1331		return;
1332
1333	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1334	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1335
1336	/*
1337	 * Skip quiet periods when disk bandwidth is under-utilized.
1338	 * (at least 1s idle time between two flusher runs)
1339	 */
1340	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1341		goto snapshot;
1342
1343	if (update_ratelimit) {
1344		domain_update_bandwidth(gdtc, now);
1345		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1346
1347		/*
1348		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1349		 * compiler has no way to figure that out.  Help it.
1350		 */
1351		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1352			domain_update_bandwidth(mdtc, now);
1353			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1354		}
1355	}
1356	wb_update_write_bandwidth(wb, elapsed, written);
1357
1358snapshot:
1359	wb->dirtied_stamp = dirtied;
1360	wb->written_stamp = written;
1361	wb->bw_time_stamp = now;
1362}
1363
1364void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
 
 
 
 
 
 
1365{
1366	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367
1368	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
 
 
 
1369}
1370
1371/*
1372 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1373 * will look to see if it needs to start dirty throttling.
1374 *
1375 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1376 * global_page_state() too often. So scale it near-sqrt to the safety margin
1377 * (the number of pages we may dirty without exceeding the dirty limits).
1378 */
1379static unsigned long dirty_poll_interval(unsigned long dirty,
1380					 unsigned long thresh)
1381{
1382	if (thresh > dirty)
1383		return 1UL << (ilog2(thresh - dirty) >> 1);
1384
1385	return 1;
1386}
1387
1388static unsigned long wb_max_pause(struct bdi_writeback *wb,
1389				  unsigned long wb_dirty)
1390{
1391	unsigned long bw = wb->avg_write_bandwidth;
1392	unsigned long t;
1393
1394	/*
1395	 * Limit pause time for small memory systems. If sleeping for too long
1396	 * time, a small pool of dirty/writeback pages may go empty and disk go
1397	 * idle.
1398	 *
1399	 * 8 serves as the safety ratio.
1400	 */
1401	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1402	t++;
1403
1404	return min_t(unsigned long, t, MAX_PAUSE);
1405}
1406
1407static long wb_min_pause(struct bdi_writeback *wb,
1408			 long max_pause,
1409			 unsigned long task_ratelimit,
1410			 unsigned long dirty_ratelimit,
1411			 int *nr_dirtied_pause)
1412{
1413	long hi = ilog2(wb->avg_write_bandwidth);
1414	long lo = ilog2(wb->dirty_ratelimit);
1415	long t;		/* target pause */
1416	long pause;	/* estimated next pause */
1417	int pages;	/* target nr_dirtied_pause */
1418
1419	/* target for 10ms pause on 1-dd case */
1420	t = max(1, HZ / 100);
1421
1422	/*
1423	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1424	 * overheads.
1425	 *
1426	 * (N * 10ms) on 2^N concurrent tasks.
1427	 */
1428	if (hi > lo)
1429		t += (hi - lo) * (10 * HZ) / 1024;
1430
1431	/*
1432	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1433	 * on the much more stable dirty_ratelimit. However the next pause time
1434	 * will be computed based on task_ratelimit and the two rate limits may
1435	 * depart considerably at some time. Especially if task_ratelimit goes
1436	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1437	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1438	 * result task_ratelimit won't be executed faithfully, which could
1439	 * eventually bring down dirty_ratelimit.
1440	 *
1441	 * We apply two rules to fix it up:
1442	 * 1) try to estimate the next pause time and if necessary, use a lower
1443	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1444	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1445	 * 2) limit the target pause time to max_pause/2, so that the normal
1446	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1447	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1448	 */
1449	t = min(t, 1 + max_pause / 2);
1450	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1451
1452	/*
1453	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1454	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1455	 * When the 16 consecutive reads are often interrupted by some dirty
1456	 * throttling pause during the async writes, cfq will go into idles
1457	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1458	 * until reaches DIRTY_POLL_THRESH=32 pages.
1459	 */
1460	if (pages < DIRTY_POLL_THRESH) {
1461		t = max_pause;
1462		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1463		if (pages > DIRTY_POLL_THRESH) {
1464			pages = DIRTY_POLL_THRESH;
1465			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1466		}
1467	}
1468
1469	pause = HZ * pages / (task_ratelimit + 1);
1470	if (pause > max_pause) {
1471		t = max_pause;
1472		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1473	}
1474
1475	*nr_dirtied_pause = pages;
1476	/*
1477	 * The minimal pause time will normally be half the target pause time.
1478	 */
1479	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1480}
1481
1482static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
 
 
 
 
 
1483{
1484	struct bdi_writeback *wb = dtc->wb;
1485	unsigned long wb_reclaimable;
1486
1487	/*
1488	 * wb_thresh is not treated as some limiting factor as
1489	 * dirty_thresh, due to reasons
1490	 * - in JBOD setup, wb_thresh can fluctuate a lot
1491	 * - in a system with HDD and USB key, the USB key may somehow
1492	 *   go into state (wb_dirty >> wb_thresh) either because
1493	 *   wb_dirty starts high, or because wb_thresh drops low.
1494	 *   In this case we don't want to hard throttle the USB key
1495	 *   dirtiers for 100 seconds until wb_dirty drops under
1496	 *   wb_thresh. Instead the auxiliary wb control line in
1497	 *   wb_position_ratio() will let the dirtier task progress
1498	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1499	 */
1500	dtc->wb_thresh = __wb_calc_thresh(dtc);
1501	dtc->wb_bg_thresh = dtc->thresh ?
1502		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
 
 
 
1503
1504	/*
1505	 * In order to avoid the stacked BDI deadlock we need
1506	 * to ensure we accurately count the 'dirty' pages when
1507	 * the threshold is low.
1508	 *
1509	 * Otherwise it would be possible to get thresh+n pages
1510	 * reported dirty, even though there are thresh-m pages
1511	 * actually dirty; with m+n sitting in the percpu
1512	 * deltas.
1513	 */
1514	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1515		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1516		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
 
1517	} else {
1518		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1519		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
 
1520	}
1521}
1522
1523/*
1524 * balance_dirty_pages() must be called by processes which are generating dirty
1525 * data.  It looks at the number of dirty pages in the machine and will force
1526 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1527 * If we're over `background_thresh' then the writeback threads are woken to
1528 * perform some writeout.
1529 */
1530static void balance_dirty_pages(struct address_space *mapping,
1531				struct bdi_writeback *wb,
1532				unsigned long pages_dirtied)
1533{
1534	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1535	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1536	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1537	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1538						     &mdtc_stor : NULL;
1539	struct dirty_throttle_control *sdtc;
1540	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
 
 
 
1541	long period;
1542	long pause;
1543	long max_pause;
1544	long min_pause;
1545	int nr_dirtied_pause;
1546	bool dirty_exceeded = false;
1547	unsigned long task_ratelimit;
1548	unsigned long dirty_ratelimit;
1549	struct backing_dev_info *bdi = wb->bdi;
 
1550	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1551	unsigned long start_time = jiffies;
1552
1553	for (;;) {
1554		unsigned long now = jiffies;
1555		unsigned long dirty, thresh, bg_thresh;
1556		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1557		unsigned long m_thresh = 0;
1558		unsigned long m_bg_thresh = 0;
 
1559
1560		/*
1561		 * Unstable writes are a feature of certain networked
1562		 * filesystems (i.e. NFS) in which data may have been
1563		 * written to the server's write cache, but has not yet
1564		 * been flushed to permanent storage.
1565		 */
1566		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1567					global_page_state(NR_UNSTABLE_NFS);
1568		gdtc->avail = global_dirtyable_memory();
1569		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1570
1571		domain_dirty_limits(gdtc);
1572
1573		if (unlikely(strictlimit)) {
1574			wb_dirty_limits(gdtc);
 
1575
1576			dirty = gdtc->wb_dirty;
1577			thresh = gdtc->wb_thresh;
1578			bg_thresh = gdtc->wb_bg_thresh;
1579		} else {
1580			dirty = gdtc->dirty;
1581			thresh = gdtc->thresh;
1582			bg_thresh = gdtc->bg_thresh;
1583		}
1584
1585		if (mdtc) {
1586			unsigned long filepages, headroom, writeback;
1587
1588			/*
1589			 * If @wb belongs to !root memcg, repeat the same
1590			 * basic calculations for the memcg domain.
1591			 */
1592			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1593					    &mdtc->dirty, &writeback);
1594			mdtc->dirty += writeback;
1595			mdtc_calc_avail(mdtc, filepages, headroom);
1596
1597			domain_dirty_limits(mdtc);
1598
1599			if (unlikely(strictlimit)) {
1600				wb_dirty_limits(mdtc);
1601				m_dirty = mdtc->wb_dirty;
1602				m_thresh = mdtc->wb_thresh;
1603				m_bg_thresh = mdtc->wb_bg_thresh;
1604			} else {
1605				m_dirty = mdtc->dirty;
1606				m_thresh = mdtc->thresh;
1607				m_bg_thresh = mdtc->bg_thresh;
1608			}
1609		}
1610
1611		/*
1612		 * Throttle it only when the background writeback cannot
1613		 * catch-up. This avoids (excessively) small writeouts
1614		 * when the wb limits are ramping up in case of !strictlimit.
1615		 *
1616		 * In strictlimit case make decision based on the wb counters
1617		 * and limits. Small writeouts when the wb limits are ramping
1618		 * up are the price we consciously pay for strictlimit-ing.
1619		 *
1620		 * If memcg domain is in effect, @dirty should be under
1621		 * both global and memcg freerun ceilings.
1622		 */
1623		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1624		    (!mdtc ||
1625		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1626			unsigned long intv = dirty_poll_interval(dirty, thresh);
1627			unsigned long m_intv = ULONG_MAX;
1628
1629			current->dirty_paused_when = now;
1630			current->nr_dirtied = 0;
1631			if (mdtc)
1632				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1633			current->nr_dirtied_pause = min(intv, m_intv);
1634			break;
1635		}
1636
1637		if (unlikely(!writeback_in_progress(wb)))
1638			wb_start_background_writeback(wb);
1639
1640		/*
1641		 * Calculate global domain's pos_ratio and select the
1642		 * global dtc by default.
1643		 */
1644		if (!strictlimit)
1645			wb_dirty_limits(gdtc);
1646
1647		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1648			((gdtc->dirty > gdtc->thresh) || strictlimit);
1649
1650		wb_position_ratio(gdtc);
1651		sdtc = gdtc;
1652
1653		if (mdtc) {
1654			/*
1655			 * If memcg domain is in effect, calculate its
1656			 * pos_ratio.  @wb should satisfy constraints from
1657			 * both global and memcg domains.  Choose the one
1658			 * w/ lower pos_ratio.
1659			 */
1660			if (!strictlimit)
1661				wb_dirty_limits(mdtc);
1662
1663			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1664				((mdtc->dirty > mdtc->thresh) || strictlimit);
1665
1666			wb_position_ratio(mdtc);
1667			if (mdtc->pos_ratio < gdtc->pos_ratio)
1668				sdtc = mdtc;
1669		}
1670
1671		if (dirty_exceeded && !wb->dirty_exceeded)
1672			wb->dirty_exceeded = 1;
1673
1674		if (time_is_before_jiffies(wb->bw_time_stamp +
1675					   BANDWIDTH_INTERVAL)) {
1676			spin_lock(&wb->list_lock);
1677			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1678			spin_unlock(&wb->list_lock);
1679		}
1680
1681		/* throttle according to the chosen dtc */
1682		dirty_ratelimit = wb->dirty_ratelimit;
1683		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1684							RATELIMIT_CALC_SHIFT;
1685		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1686		min_pause = wb_min_pause(wb, max_pause,
1687					 task_ratelimit, dirty_ratelimit,
1688					 &nr_dirtied_pause);
1689
1690		if (unlikely(task_ratelimit == 0)) {
1691			period = max_pause;
1692			pause = max_pause;
1693			goto pause;
1694		}
1695		period = HZ * pages_dirtied / task_ratelimit;
1696		pause = period;
1697		if (current->dirty_paused_when)
1698			pause -= now - current->dirty_paused_when;
1699		/*
1700		 * For less than 1s think time (ext3/4 may block the dirtier
1701		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1702		 * however at much less frequency), try to compensate it in
1703		 * future periods by updating the virtual time; otherwise just
1704		 * do a reset, as it may be a light dirtier.
1705		 */
1706		if (pause < min_pause) {
1707			trace_balance_dirty_pages(wb,
1708						  sdtc->thresh,
1709						  sdtc->bg_thresh,
1710						  sdtc->dirty,
1711						  sdtc->wb_thresh,
1712						  sdtc->wb_dirty,
1713						  dirty_ratelimit,
1714						  task_ratelimit,
1715						  pages_dirtied,
1716						  period,
1717						  min(pause, 0L),
1718						  start_time);
1719			if (pause < -HZ) {
1720				current->dirty_paused_when = now;
1721				current->nr_dirtied = 0;
1722			} else if (period) {
1723				current->dirty_paused_when += period;
1724				current->nr_dirtied = 0;
1725			} else if (current->nr_dirtied_pause <= pages_dirtied)
1726				current->nr_dirtied_pause += pages_dirtied;
1727			break;
1728		}
1729		if (unlikely(pause > max_pause)) {
1730			/* for occasional dropped task_ratelimit */
1731			now += min(pause - max_pause, max_pause);
1732			pause = max_pause;
1733		}
1734
1735pause:
1736		trace_balance_dirty_pages(wb,
1737					  sdtc->thresh,
1738					  sdtc->bg_thresh,
1739					  sdtc->dirty,
1740					  sdtc->wb_thresh,
1741					  sdtc->wb_dirty,
1742					  dirty_ratelimit,
1743					  task_ratelimit,
1744					  pages_dirtied,
1745					  period,
1746					  pause,
1747					  start_time);
1748		__set_current_state(TASK_KILLABLE);
1749		io_schedule_timeout(pause);
1750
1751		current->dirty_paused_when = now + pause;
1752		current->nr_dirtied = 0;
1753		current->nr_dirtied_pause = nr_dirtied_pause;
1754
1755		/*
1756		 * This is typically equal to (dirty < thresh) and can also
1757		 * keep "1000+ dd on a slow USB stick" under control.
1758		 */
1759		if (task_ratelimit)
1760			break;
1761
1762		/*
1763		 * In the case of an unresponding NFS server and the NFS dirty
1764		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1765		 * to go through, so that tasks on them still remain responsive.
1766		 *
1767		 * In theory 1 page is enough to keep the comsumer-producer
1768		 * pipe going: the flusher cleans 1 page => the task dirties 1
1769		 * more page. However wb_dirty has accounting errors.  So use
1770		 * the larger and more IO friendly wb_stat_error.
1771		 */
1772		if (sdtc->wb_dirty <= wb_stat_error(wb))
1773			break;
1774
1775		if (fatal_signal_pending(current))
1776			break;
1777	}
1778
1779	if (!dirty_exceeded && wb->dirty_exceeded)
1780		wb->dirty_exceeded = 0;
1781
1782	if (writeback_in_progress(wb))
1783		return;
1784
1785	/*
1786	 * In laptop mode, we wait until hitting the higher threshold before
1787	 * starting background writeout, and then write out all the way down
1788	 * to the lower threshold.  So slow writers cause minimal disk activity.
1789	 *
1790	 * In normal mode, we start background writeout at the lower
1791	 * background_thresh, to keep the amount of dirty memory low.
1792	 */
1793	if (laptop_mode)
1794		return;
1795
1796	if (nr_reclaimable > gdtc->bg_thresh)
1797		wb_start_background_writeback(wb);
 
 
 
 
 
 
 
 
 
 
1798}
1799
1800static DEFINE_PER_CPU(int, bdp_ratelimits);
1801
1802/*
1803 * Normal tasks are throttled by
1804 *	loop {
1805 *		dirty tsk->nr_dirtied_pause pages;
1806 *		take a snap in balance_dirty_pages();
1807 *	}
1808 * However there is a worst case. If every task exit immediately when dirtied
1809 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1810 * called to throttle the page dirties. The solution is to save the not yet
1811 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1812 * randomly into the running tasks. This works well for the above worst case,
1813 * as the new task will pick up and accumulate the old task's leaked dirty
1814 * count and eventually get throttled.
1815 */
1816DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1817
1818/**
1819 * balance_dirty_pages_ratelimited - balance dirty memory state
1820 * @mapping: address_space which was dirtied
1821 *
1822 * Processes which are dirtying memory should call in here once for each page
1823 * which was newly dirtied.  The function will periodically check the system's
1824 * dirty state and will initiate writeback if needed.
1825 *
1826 * On really big machines, get_writeback_state is expensive, so try to avoid
1827 * calling it too often (ratelimiting).  But once we're over the dirty memory
1828 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1829 * from overshooting the limit by (ratelimit_pages) each.
1830 */
1831void balance_dirty_pages_ratelimited(struct address_space *mapping)
1832{
1833	struct inode *inode = mapping->host;
1834	struct backing_dev_info *bdi = inode_to_bdi(inode);
1835	struct bdi_writeback *wb = NULL;
1836	int ratelimit;
1837	int *p;
1838
1839	if (!bdi_cap_account_dirty(bdi))
1840		return;
1841
1842	if (inode_cgwb_enabled(inode))
1843		wb = wb_get_create_current(bdi, GFP_KERNEL);
1844	if (!wb)
1845		wb = &bdi->wb;
1846
1847	ratelimit = current->nr_dirtied_pause;
1848	if (wb->dirty_exceeded)
1849		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1850
1851	preempt_disable();
1852	/*
1853	 * This prevents one CPU to accumulate too many dirtied pages without
1854	 * calling into balance_dirty_pages(), which can happen when there are
1855	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1856	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1857	 */
1858	p =  this_cpu_ptr(&bdp_ratelimits);
1859	if (unlikely(current->nr_dirtied >= ratelimit))
1860		*p = 0;
1861	else if (unlikely(*p >= ratelimit_pages)) {
1862		*p = 0;
1863		ratelimit = 0;
1864	}
1865	/*
1866	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1867	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1868	 * the dirty throttling and livelock other long-run dirtiers.
1869	 */
1870	p = this_cpu_ptr(&dirty_throttle_leaks);
1871	if (*p > 0 && current->nr_dirtied < ratelimit) {
1872		unsigned long nr_pages_dirtied;
1873		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1874		*p -= nr_pages_dirtied;
1875		current->nr_dirtied += nr_pages_dirtied;
1876	}
1877	preempt_enable();
1878
1879	if (unlikely(current->nr_dirtied >= ratelimit))
1880		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1881
1882	wb_put(wb);
1883}
1884EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1885
1886/**
1887 * wb_over_bg_thresh - does @wb need to be written back?
1888 * @wb: bdi_writeback of interest
1889 *
1890 * Determines whether background writeback should keep writing @wb or it's
1891 * clean enough.  Returns %true if writeback should continue.
1892 */
1893bool wb_over_bg_thresh(struct bdi_writeback *wb)
1894{
1895	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1896	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1897	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1898	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1899						     &mdtc_stor : NULL;
1900
1901	/*
1902	 * Similar to balance_dirty_pages() but ignores pages being written
1903	 * as we're trying to decide whether to put more under writeback.
1904	 */
1905	gdtc->avail = global_dirtyable_memory();
1906	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1907		      global_page_state(NR_UNSTABLE_NFS);
1908	domain_dirty_limits(gdtc);
1909
1910	if (gdtc->dirty > gdtc->bg_thresh)
1911		return true;
1912
1913	if (wb_stat(wb, WB_RECLAIMABLE) >
1914	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1915		return true;
1916
1917	if (mdtc) {
1918		unsigned long filepages, headroom, writeback;
1919
1920		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1921				    &writeback);
1922		mdtc_calc_avail(mdtc, filepages, headroom);
1923		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1924
1925		if (mdtc->dirty > mdtc->bg_thresh)
1926			return true;
1927
1928		if (wb_stat(wb, WB_RECLAIMABLE) >
1929		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1930			return true;
1931	}
1932
1933	return false;
1934}
1935
1936void throttle_vm_writeout(gfp_t gfp_mask)
1937{
1938	unsigned long background_thresh;
1939	unsigned long dirty_thresh;
1940
1941        for ( ; ; ) {
1942		global_dirty_limits(&background_thresh, &dirty_thresh);
1943		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1944
1945                /*
1946                 * Boost the allowable dirty threshold a bit for page
1947                 * allocators so they don't get DoS'ed by heavy writers
1948                 */
1949                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1950
1951                if (global_page_state(NR_UNSTABLE_NFS) +
1952			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1953                        	break;
1954                congestion_wait(BLK_RW_ASYNC, HZ/10);
1955
1956		/*
1957		 * The caller might hold locks which can prevent IO completion
1958		 * or progress in the filesystem.  So we cannot just sit here
1959		 * waiting for IO to complete.
1960		 */
1961		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1962			break;
1963        }
1964}
1965
1966/*
1967 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1968 */
1969int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1970	void __user *buffer, size_t *length, loff_t *ppos)
1971{
1972	proc_dointvec(table, write, buffer, length, ppos);
1973	return 0;
1974}
1975
1976#ifdef CONFIG_BLOCK
1977void laptop_mode_timer_fn(unsigned long data)
1978{
1979	struct request_queue *q = (struct request_queue *)data;
1980	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1981		global_page_state(NR_UNSTABLE_NFS);
1982	struct bdi_writeback *wb;
1983
1984	/*
1985	 * We want to write everything out, not just down to the dirty
1986	 * threshold
1987	 */
1988	if (!bdi_has_dirty_io(&q->backing_dev_info))
1989		return;
1990
1991	rcu_read_lock();
1992	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1993		if (wb_has_dirty_io(wb))
1994			wb_start_writeback(wb, nr_pages, true,
1995					   WB_REASON_LAPTOP_TIMER);
1996	rcu_read_unlock();
1997}
1998
1999/*
2000 * We've spun up the disk and we're in laptop mode: schedule writeback
2001 * of all dirty data a few seconds from now.  If the flush is already scheduled
2002 * then push it back - the user is still using the disk.
2003 */
2004void laptop_io_completion(struct backing_dev_info *info)
2005{
2006	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2007}
2008
2009/*
2010 * We're in laptop mode and we've just synced. The sync's writes will have
2011 * caused another writeback to be scheduled by laptop_io_completion.
2012 * Nothing needs to be written back anymore, so we unschedule the writeback.
2013 */
2014void laptop_sync_completion(void)
2015{
2016	struct backing_dev_info *bdi;
2017
2018	rcu_read_lock();
2019
2020	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2021		del_timer(&bdi->laptop_mode_wb_timer);
2022
2023	rcu_read_unlock();
2024}
2025#endif
2026
2027/*
2028 * If ratelimit_pages is too high then we can get into dirty-data overload
2029 * if a large number of processes all perform writes at the same time.
2030 * If it is too low then SMP machines will call the (expensive)
2031 * get_writeback_state too often.
2032 *
2033 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2034 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2035 * thresholds.
2036 */
2037
2038void writeback_set_ratelimit(void)
2039{
2040	struct wb_domain *dom = &global_wb_domain;
2041	unsigned long background_thresh;
2042	unsigned long dirty_thresh;
2043
2044	global_dirty_limits(&background_thresh, &dirty_thresh);
2045	dom->dirty_limit = dirty_thresh;
2046	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2047	if (ratelimit_pages < 16)
2048		ratelimit_pages = 16;
2049}
2050
2051static int
2052ratelimit_handler(struct notifier_block *self, unsigned long action,
2053		  void *hcpu)
2054{
2055
2056	switch (action & ~CPU_TASKS_FROZEN) {
2057	case CPU_ONLINE:
2058	case CPU_DEAD:
2059		writeback_set_ratelimit();
2060		return NOTIFY_OK;
2061	default:
2062		return NOTIFY_DONE;
2063	}
2064}
2065
2066static struct notifier_block ratelimit_nb = {
2067	.notifier_call	= ratelimit_handler,
2068	.next		= NULL,
2069};
2070
2071/*
2072 * Called early on to tune the page writeback dirty limits.
2073 *
2074 * We used to scale dirty pages according to how total memory
2075 * related to pages that could be allocated for buffers (by
2076 * comparing nr_free_buffer_pages() to vm_total_pages.
2077 *
2078 * However, that was when we used "dirty_ratio" to scale with
2079 * all memory, and we don't do that any more. "dirty_ratio"
2080 * is now applied to total non-HIGHPAGE memory (by subtracting
2081 * totalhigh_pages from vm_total_pages), and as such we can't
2082 * get into the old insane situation any more where we had
2083 * large amounts of dirty pages compared to a small amount of
2084 * non-HIGHMEM memory.
2085 *
2086 * But we might still want to scale the dirty_ratio by how
2087 * much memory the box has..
2088 */
2089void __init page_writeback_init(void)
2090{
2091	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2092
2093	writeback_set_ratelimit();
2094	register_cpu_notifier(&ratelimit_nb);
 
 
2095}
2096
2097/**
2098 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2099 * @mapping: address space structure to write
2100 * @start: starting page index
2101 * @end: ending page index (inclusive)
2102 *
2103 * This function scans the page range from @start to @end (inclusive) and tags
2104 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2105 * that write_cache_pages (or whoever calls this function) will then use
2106 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2107 * used to avoid livelocking of writeback by a process steadily creating new
2108 * dirty pages in the file (thus it is important for this function to be quick
2109 * so that it can tag pages faster than a dirtying process can create them).
2110 */
2111/*
2112 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2113 */
2114void tag_pages_for_writeback(struct address_space *mapping,
2115			     pgoff_t start, pgoff_t end)
2116{
2117#define WRITEBACK_TAG_BATCH 4096
2118	unsigned long tagged;
2119
2120	do {
2121		spin_lock_irq(&mapping->tree_lock);
2122		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2123				&start, end, WRITEBACK_TAG_BATCH,
2124				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2125		spin_unlock_irq(&mapping->tree_lock);
2126		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2127		cond_resched();
2128		/* We check 'start' to handle wrapping when end == ~0UL */
2129	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2130}
2131EXPORT_SYMBOL(tag_pages_for_writeback);
2132
2133/**
2134 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2135 * @mapping: address space structure to write
2136 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2137 * @writepage: function called for each page
2138 * @data: data passed to writepage function
2139 *
2140 * If a page is already under I/O, write_cache_pages() skips it, even
2141 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2142 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2143 * and msync() need to guarantee that all the data which was dirty at the time
2144 * the call was made get new I/O started against them.  If wbc->sync_mode is
2145 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2146 * existing IO to complete.
2147 *
2148 * To avoid livelocks (when other process dirties new pages), we first tag
2149 * pages which should be written back with TOWRITE tag and only then start
2150 * writing them. For data-integrity sync we have to be careful so that we do
2151 * not miss some pages (e.g., because some other process has cleared TOWRITE
2152 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2153 * by the process clearing the DIRTY tag (and submitting the page for IO).
2154 */
2155int write_cache_pages(struct address_space *mapping,
2156		      struct writeback_control *wbc, writepage_t writepage,
2157		      void *data)
2158{
2159	int ret = 0;
2160	int done = 0;
2161	struct pagevec pvec;
2162	int nr_pages;
2163	pgoff_t uninitialized_var(writeback_index);
2164	pgoff_t index;
2165	pgoff_t end;		/* Inclusive */
2166	pgoff_t done_index;
2167	int cycled;
2168	int range_whole = 0;
2169	int tag;
2170
2171	pagevec_init(&pvec, 0);
2172	if (wbc->range_cyclic) {
2173		writeback_index = mapping->writeback_index; /* prev offset */
2174		index = writeback_index;
2175		if (index == 0)
2176			cycled = 1;
2177		else
2178			cycled = 0;
2179		end = -1;
2180	} else {
2181		index = wbc->range_start >> PAGE_SHIFT;
2182		end = wbc->range_end >> PAGE_SHIFT;
2183		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2184			range_whole = 1;
2185		cycled = 1; /* ignore range_cyclic tests */
2186	}
2187	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2188		tag = PAGECACHE_TAG_TOWRITE;
2189	else
2190		tag = PAGECACHE_TAG_DIRTY;
2191retry:
2192	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2193		tag_pages_for_writeback(mapping, index, end);
2194	done_index = index;
2195	while (!done && (index <= end)) {
2196		int i;
2197
2198		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2199			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2200		if (nr_pages == 0)
2201			break;
2202
2203		for (i = 0; i < nr_pages; i++) {
2204			struct page *page = pvec.pages[i];
2205
2206			/*
2207			 * At this point, the page may be truncated or
2208			 * invalidated (changing page->mapping to NULL), or
2209			 * even swizzled back from swapper_space to tmpfs file
2210			 * mapping. However, page->index will not change
2211			 * because we have a reference on the page.
2212			 */
2213			if (page->index > end) {
2214				/*
2215				 * can't be range_cyclic (1st pass) because
2216				 * end == -1 in that case.
2217				 */
2218				done = 1;
2219				break;
2220			}
2221
2222			done_index = page->index;
2223
2224			lock_page(page);
2225
2226			/*
2227			 * Page truncated or invalidated. We can freely skip it
2228			 * then, even for data integrity operations: the page
2229			 * has disappeared concurrently, so there could be no
2230			 * real expectation of this data interity operation
2231			 * even if there is now a new, dirty page at the same
2232			 * pagecache address.
2233			 */
2234			if (unlikely(page->mapping != mapping)) {
2235continue_unlock:
2236				unlock_page(page);
2237				continue;
2238			}
2239
2240			if (!PageDirty(page)) {
2241				/* someone wrote it for us */
2242				goto continue_unlock;
2243			}
2244
2245			if (PageWriteback(page)) {
2246				if (wbc->sync_mode != WB_SYNC_NONE)
2247					wait_on_page_writeback(page);
2248				else
2249					goto continue_unlock;
2250			}
2251
2252			BUG_ON(PageWriteback(page));
2253			if (!clear_page_dirty_for_io(page))
2254				goto continue_unlock;
2255
2256			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2257			ret = (*writepage)(page, wbc, data);
2258			if (unlikely(ret)) {
2259				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2260					unlock_page(page);
2261					ret = 0;
2262				} else {
2263					/*
2264					 * done_index is set past this page,
2265					 * so media errors will not choke
2266					 * background writeout for the entire
2267					 * file. This has consequences for
2268					 * range_cyclic semantics (ie. it may
2269					 * not be suitable for data integrity
2270					 * writeout).
2271					 */
2272					done_index = page->index + 1;
2273					done = 1;
2274					break;
2275				}
2276			}
2277
2278			/*
2279			 * We stop writing back only if we are not doing
2280			 * integrity sync. In case of integrity sync we have to
2281			 * keep going until we have written all the pages
2282			 * we tagged for writeback prior to entering this loop.
2283			 */
2284			if (--wbc->nr_to_write <= 0 &&
2285			    wbc->sync_mode == WB_SYNC_NONE) {
2286				done = 1;
2287				break;
2288			}
2289		}
2290		pagevec_release(&pvec);
2291		cond_resched();
2292	}
2293	if (!cycled && !done) {
2294		/*
2295		 * range_cyclic:
2296		 * We hit the last page and there is more work to be done: wrap
2297		 * back to the start of the file
2298		 */
2299		cycled = 1;
2300		index = 0;
2301		end = writeback_index - 1;
2302		goto retry;
2303	}
2304	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305		mapping->writeback_index = done_index;
2306
2307	return ret;
2308}
2309EXPORT_SYMBOL(write_cache_pages);
2310
2311/*
2312 * Function used by generic_writepages to call the real writepage
2313 * function and set the mapping flags on error
2314 */
2315static int __writepage(struct page *page, struct writeback_control *wbc,
2316		       void *data)
2317{
2318	struct address_space *mapping = data;
2319	int ret = mapping->a_ops->writepage(page, wbc);
2320	mapping_set_error(mapping, ret);
2321	return ret;
2322}
2323
2324/**
2325 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326 * @mapping: address space structure to write
2327 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328 *
2329 * This is a library function, which implements the writepages()
2330 * address_space_operation.
2331 */
2332int generic_writepages(struct address_space *mapping,
2333		       struct writeback_control *wbc)
2334{
2335	struct blk_plug plug;
2336	int ret;
2337
2338	/* deal with chardevs and other special file */
2339	if (!mapping->a_ops->writepage)
2340		return 0;
2341
2342	blk_start_plug(&plug);
2343	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2344	blk_finish_plug(&plug);
2345	return ret;
2346}
2347
2348EXPORT_SYMBOL(generic_writepages);
2349
2350int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2351{
2352	int ret;
2353
2354	if (wbc->nr_to_write <= 0)
2355		return 0;
2356	if (mapping->a_ops->writepages)
2357		ret = mapping->a_ops->writepages(mapping, wbc);
2358	else
2359		ret = generic_writepages(mapping, wbc);
2360	return ret;
2361}
2362
2363/**
2364 * write_one_page - write out a single page and optionally wait on I/O
2365 * @page: the page to write
2366 * @wait: if true, wait on writeout
2367 *
2368 * The page must be locked by the caller and will be unlocked upon return.
2369 *
2370 * write_one_page() returns a negative error code if I/O failed.
2371 */
2372int write_one_page(struct page *page, int wait)
2373{
2374	struct address_space *mapping = page->mapping;
2375	int ret = 0;
2376	struct writeback_control wbc = {
2377		.sync_mode = WB_SYNC_ALL,
2378		.nr_to_write = 1,
2379	};
2380
2381	BUG_ON(!PageLocked(page));
2382
2383	if (wait)
2384		wait_on_page_writeback(page);
2385
2386	if (clear_page_dirty_for_io(page)) {
2387		get_page(page);
2388		ret = mapping->a_ops->writepage(page, &wbc);
2389		if (ret == 0 && wait) {
2390			wait_on_page_writeback(page);
2391			if (PageError(page))
2392				ret = -EIO;
2393		}
2394		put_page(page);
2395	} else {
2396		unlock_page(page);
2397	}
2398	return ret;
2399}
2400EXPORT_SYMBOL(write_one_page);
2401
2402/*
2403 * For address_spaces which do not use buffers nor write back.
2404 */
2405int __set_page_dirty_no_writeback(struct page *page)
2406{
2407	if (!PageDirty(page))
2408		return !TestSetPageDirty(page);
2409	return 0;
2410}
2411
2412/*
2413 * Helper function for set_page_dirty family.
2414 *
2415 * Caller must hold lock_page_memcg().
2416 *
2417 * NOTE: This relies on being atomic wrt interrupts.
2418 */
2419void account_page_dirtied(struct page *page, struct address_space *mapping)
2420{
2421	struct inode *inode = mapping->host;
2422
2423	trace_writeback_dirty_page(page, mapping);
2424
2425	if (mapping_cap_account_dirty(mapping)) {
2426		struct bdi_writeback *wb;
2427
2428		inode_attach_wb(inode, page);
2429		wb = inode_to_wb(inode);
2430
2431		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2432		__inc_zone_page_state(page, NR_FILE_DIRTY);
2433		__inc_zone_page_state(page, NR_DIRTIED);
2434		__inc_wb_stat(wb, WB_RECLAIMABLE);
2435		__inc_wb_stat(wb, WB_DIRTIED);
2436		task_io_account_write(PAGE_SIZE);
2437		current->nr_dirtied++;
2438		this_cpu_inc(bdp_ratelimits);
2439	}
2440}
2441EXPORT_SYMBOL(account_page_dirtied);
2442
2443/*
2444 * Helper function for deaccounting dirty page without writeback.
 
 
 
 
2445 *
2446 * Caller must hold lock_page_memcg().
 
2447 */
2448void account_page_cleaned(struct page *page, struct address_space *mapping,
2449			  struct bdi_writeback *wb)
2450{
2451	if (mapping_cap_account_dirty(mapping)) {
2452		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2453		dec_zone_page_state(page, NR_FILE_DIRTY);
2454		dec_wb_stat(wb, WB_RECLAIMABLE);
2455		task_io_account_cancelled_write(PAGE_SIZE);
2456	}
2457}
 
2458
2459/*
2460 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2461 * its radix tree.
2462 *
2463 * This is also used when a single buffer is being dirtied: we want to set the
2464 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2465 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2466 *
2467 * The caller must ensure this doesn't race with truncation.  Most will simply
2468 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2469 * the pte lock held, which also locks out truncation.
 
 
 
2470 */
2471int __set_page_dirty_nobuffers(struct page *page)
2472{
2473	lock_page_memcg(page);
2474	if (!TestSetPageDirty(page)) {
2475		struct address_space *mapping = page_mapping(page);
 
2476		unsigned long flags;
2477
2478		if (!mapping) {
2479			unlock_page_memcg(page);
2480			return 1;
2481		}
2482
2483		spin_lock_irqsave(&mapping->tree_lock, flags);
2484		BUG_ON(page_mapping(page) != mapping);
2485		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2486		account_page_dirtied(page, mapping);
2487		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2488				   PAGECACHE_TAG_DIRTY);
 
 
 
2489		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2490		unlock_page_memcg(page);
2491
2492		if (mapping->host) {
2493			/* !PageAnon && !swapper_space */
2494			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2495		}
2496		return 1;
2497	}
2498	unlock_page_memcg(page);
2499	return 0;
2500}
2501EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2502
2503/*
2504 * Call this whenever redirtying a page, to de-account the dirty counters
2505 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2506 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2507 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2508 * control.
2509 */
2510void account_page_redirty(struct page *page)
2511{
2512	struct address_space *mapping = page->mapping;
2513
2514	if (mapping && mapping_cap_account_dirty(mapping)) {
2515		struct inode *inode = mapping->host;
2516		struct bdi_writeback *wb;
2517		bool locked;
2518
2519		wb = unlocked_inode_to_wb_begin(inode, &locked);
2520		current->nr_dirtied--;
2521		dec_zone_page_state(page, NR_DIRTIED);
2522		dec_wb_stat(wb, WB_DIRTIED);
2523		unlocked_inode_to_wb_end(inode, locked);
2524	}
2525}
2526EXPORT_SYMBOL(account_page_redirty);
2527
2528/*
2529 * When a writepage implementation decides that it doesn't want to write this
2530 * page for some reason, it should redirty the locked page via
2531 * redirty_page_for_writepage() and it should then unlock the page and return 0
2532 */
2533int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2534{
2535	int ret;
2536
2537	wbc->pages_skipped++;
2538	ret = __set_page_dirty_nobuffers(page);
2539	account_page_redirty(page);
2540	return ret;
2541}
2542EXPORT_SYMBOL(redirty_page_for_writepage);
2543
2544/*
2545 * Dirty a page.
2546 *
2547 * For pages with a mapping this should be done under the page lock
2548 * for the benefit of asynchronous memory errors who prefer a consistent
2549 * dirty state. This rule can be broken in some special cases,
2550 * but should be better not to.
2551 *
2552 * If the mapping doesn't provide a set_page_dirty a_op, then
2553 * just fall through and assume that it wants buffer_heads.
2554 */
2555int set_page_dirty(struct page *page)
2556{
2557	struct address_space *mapping = page_mapping(page);
2558
2559	if (likely(mapping)) {
2560		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2561		/*
2562		 * readahead/lru_deactivate_page could remain
2563		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2564		 * About readahead, if the page is written, the flags would be
2565		 * reset. So no problem.
2566		 * About lru_deactivate_page, if the page is redirty, the flag
2567		 * will be reset. So no problem. but if the page is used by readahead
2568		 * it will confuse readahead and make it restart the size rampup
2569		 * process. But it's a trivial problem.
2570		 */
2571		if (PageReclaim(page))
2572			ClearPageReclaim(page);
2573#ifdef CONFIG_BLOCK
2574		if (!spd)
2575			spd = __set_page_dirty_buffers;
2576#endif
2577		return (*spd)(page);
2578	}
2579	if (!PageDirty(page)) {
2580		if (!TestSetPageDirty(page))
2581			return 1;
2582	}
2583	return 0;
2584}
2585EXPORT_SYMBOL(set_page_dirty);
2586
2587/*
2588 * set_page_dirty() is racy if the caller has no reference against
2589 * page->mapping->host, and if the page is unlocked.  This is because another
2590 * CPU could truncate the page off the mapping and then free the mapping.
2591 *
2592 * Usually, the page _is_ locked, or the caller is a user-space process which
2593 * holds a reference on the inode by having an open file.
2594 *
2595 * In other cases, the page should be locked before running set_page_dirty().
2596 */
2597int set_page_dirty_lock(struct page *page)
2598{
2599	int ret;
2600
2601	lock_page(page);
2602	ret = set_page_dirty(page);
2603	unlock_page(page);
2604	return ret;
2605}
2606EXPORT_SYMBOL(set_page_dirty_lock);
2607
2608/*
2609 * This cancels just the dirty bit on the kernel page itself, it does NOT
2610 * actually remove dirty bits on any mmap's that may be around. It also
2611 * leaves the page tagged dirty, so any sync activity will still find it on
2612 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2613 * look at the dirty bits in the VM.
2614 *
2615 * Doing this should *normally* only ever be done when a page is truncated,
2616 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2617 * this when it notices that somebody has cleaned out all the buffers on a
2618 * page without actually doing it through the VM. Can you say "ext3 is
2619 * horribly ugly"? Thought you could.
2620 */
2621void cancel_dirty_page(struct page *page)
2622{
2623	struct address_space *mapping = page_mapping(page);
2624
2625	if (mapping_cap_account_dirty(mapping)) {
2626		struct inode *inode = mapping->host;
2627		struct bdi_writeback *wb;
2628		bool locked;
2629
2630		lock_page_memcg(page);
2631		wb = unlocked_inode_to_wb_begin(inode, &locked);
2632
2633		if (TestClearPageDirty(page))
2634			account_page_cleaned(page, mapping, wb);
2635
2636		unlocked_inode_to_wb_end(inode, locked);
2637		unlock_page_memcg(page);
2638	} else {
2639		ClearPageDirty(page);
2640	}
2641}
2642EXPORT_SYMBOL(cancel_dirty_page);
2643
2644/*
2645 * Clear a page's dirty flag, while caring for dirty memory accounting.
2646 * Returns true if the page was previously dirty.
2647 *
2648 * This is for preparing to put the page under writeout.  We leave the page
2649 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2650 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2651 * implementation will run either set_page_writeback() or set_page_dirty(),
2652 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2653 * back into sync.
2654 *
2655 * This incoherency between the page's dirty flag and radix-tree tag is
2656 * unfortunate, but it only exists while the page is locked.
2657 */
2658int clear_page_dirty_for_io(struct page *page)
2659{
2660	struct address_space *mapping = page_mapping(page);
2661	int ret = 0;
2662
2663	BUG_ON(!PageLocked(page));
2664
2665	if (mapping && mapping_cap_account_dirty(mapping)) {
2666		struct inode *inode = mapping->host;
2667		struct bdi_writeback *wb;
2668		bool locked;
2669
2670		/*
2671		 * Yes, Virginia, this is indeed insane.
2672		 *
2673		 * We use this sequence to make sure that
2674		 *  (a) we account for dirty stats properly
2675		 *  (b) we tell the low-level filesystem to
2676		 *      mark the whole page dirty if it was
2677		 *      dirty in a pagetable. Only to then
2678		 *  (c) clean the page again and return 1 to
2679		 *      cause the writeback.
2680		 *
2681		 * This way we avoid all nasty races with the
2682		 * dirty bit in multiple places and clearing
2683		 * them concurrently from different threads.
2684		 *
2685		 * Note! Normally the "set_page_dirty(page)"
2686		 * has no effect on the actual dirty bit - since
2687		 * that will already usually be set. But we
2688		 * need the side effects, and it can help us
2689		 * avoid races.
2690		 *
2691		 * We basically use the page "master dirty bit"
2692		 * as a serialization point for all the different
2693		 * threads doing their things.
2694		 */
2695		if (page_mkclean(page))
2696			set_page_dirty(page);
2697		/*
2698		 * We carefully synchronise fault handlers against
2699		 * installing a dirty pte and marking the page dirty
2700		 * at this point.  We do this by having them hold the
2701		 * page lock while dirtying the page, and pages are
2702		 * always locked coming in here, so we get the desired
2703		 * exclusion.
 
 
2704		 */
2705		wb = unlocked_inode_to_wb_begin(inode, &locked);
2706		if (TestClearPageDirty(page)) {
2707			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2708			dec_zone_page_state(page, NR_FILE_DIRTY);
2709			dec_wb_stat(wb, WB_RECLAIMABLE);
2710			ret = 1;
 
2711		}
2712		unlocked_inode_to_wb_end(inode, locked);
2713		return ret;
2714	}
2715	return TestClearPageDirty(page);
2716}
2717EXPORT_SYMBOL(clear_page_dirty_for_io);
2718
2719int test_clear_page_writeback(struct page *page)
2720{
2721	struct address_space *mapping = page_mapping(page);
2722	int ret;
 
 
2723
2724	lock_page_memcg(page);
2725	if (mapping) {
2726		struct inode *inode = mapping->host;
2727		struct backing_dev_info *bdi = inode_to_bdi(inode);
2728		unsigned long flags;
2729
2730		spin_lock_irqsave(&mapping->tree_lock, flags);
2731		ret = TestClearPageWriteback(page);
2732		if (ret) {
2733			radix_tree_tag_clear(&mapping->page_tree,
2734						page_index(page),
2735						PAGECACHE_TAG_WRITEBACK);
2736			if (bdi_cap_account_writeback(bdi)) {
2737				struct bdi_writeback *wb = inode_to_wb(inode);
2738
2739				__dec_wb_stat(wb, WB_WRITEBACK);
2740				__wb_writeout_inc(wb);
2741			}
2742		}
2743		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2744	} else {
2745		ret = TestClearPageWriteback(page);
2746	}
2747	if (ret) {
2748		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2749		dec_zone_page_state(page, NR_WRITEBACK);
2750		inc_zone_page_state(page, NR_WRITTEN);
2751	}
2752	unlock_page_memcg(page);
2753	return ret;
2754}
2755
2756int __test_set_page_writeback(struct page *page, bool keep_write)
2757{
2758	struct address_space *mapping = page_mapping(page);
2759	int ret;
 
 
2760
2761	lock_page_memcg(page);
2762	if (mapping) {
2763		struct inode *inode = mapping->host;
2764		struct backing_dev_info *bdi = inode_to_bdi(inode);
2765		unsigned long flags;
2766
2767		spin_lock_irqsave(&mapping->tree_lock, flags);
2768		ret = TestSetPageWriteback(page);
2769		if (!ret) {
2770			radix_tree_tag_set(&mapping->page_tree,
2771						page_index(page),
2772						PAGECACHE_TAG_WRITEBACK);
2773			if (bdi_cap_account_writeback(bdi))
2774				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2775		}
2776		if (!PageDirty(page))
2777			radix_tree_tag_clear(&mapping->page_tree,
2778						page_index(page),
2779						PAGECACHE_TAG_DIRTY);
2780		if (!keep_write)
2781			radix_tree_tag_clear(&mapping->page_tree,
2782						page_index(page),
2783						PAGECACHE_TAG_TOWRITE);
2784		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2785	} else {
2786		ret = TestSetPageWriteback(page);
2787	}
2788	if (!ret) {
2789		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2790		inc_zone_page_state(page, NR_WRITEBACK);
2791	}
2792	unlock_page_memcg(page);
2793	return ret;
2794
2795}
2796EXPORT_SYMBOL(__test_set_page_writeback);
2797
2798/*
2799 * Return true if any of the pages in the mapping are marked with the
2800 * passed tag.
2801 */
2802int mapping_tagged(struct address_space *mapping, int tag)
2803{
2804	return radix_tree_tagged(&mapping->page_tree, tag);
2805}
2806EXPORT_SYMBOL(mapping_tagged);
2807
2808/**
2809 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2810 * @page:	The page to wait on.
2811 *
2812 * This function determines if the given page is related to a backing device
2813 * that requires page contents to be held stable during writeback.  If so, then
2814 * it will wait for any pending writeback to complete.
2815 */
2816void wait_for_stable_page(struct page *page)
2817{
2818	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2819		wait_on_page_writeback(page);
 
 
 
 
 
2820}
2821EXPORT_SYMBOL_GPL(wait_for_stable_page);
v3.15
   1/*
   2 * mm/page-writeback.c
   3 *
   4 * Copyright (C) 2002, Linus Torvalds.
   5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
   6 *
   7 * Contains functions related to writing back dirty pages at the
   8 * address_space level.
   9 *
  10 * 10Apr2002	Andrew Morton
  11 *		Initial version
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/export.h>
  16#include <linux/spinlock.h>
  17#include <linux/fs.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/slab.h>
  21#include <linux/pagemap.h>
  22#include <linux/writeback.h>
  23#include <linux/init.h>
  24#include <linux/backing-dev.h>
  25#include <linux/task_io_accounting_ops.h>
  26#include <linux/blkdev.h>
  27#include <linux/mpage.h>
  28#include <linux/rmap.h>
  29#include <linux/percpu.h>
  30#include <linux/notifier.h>
  31#include <linux/smp.h>
  32#include <linux/sysctl.h>
  33#include <linux/cpu.h>
  34#include <linux/syscalls.h>
  35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
  36#include <linux/pagevec.h>
  37#include <linux/timer.h>
  38#include <linux/sched/rt.h>
  39#include <linux/mm_inline.h>
  40#include <trace/events/writeback.h>
  41
  42#include "internal.h"
  43
  44/*
  45 * Sleep at most 200ms at a time in balance_dirty_pages().
  46 */
  47#define MAX_PAUSE		max(HZ/5, 1)
  48
  49/*
  50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
  51 * by raising pause time to max_pause when falls below it.
  52 */
  53#define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
  54
  55/*
  56 * Estimate write bandwidth at 200ms intervals.
  57 */
  58#define BANDWIDTH_INTERVAL	max(HZ/5, 1)
  59
  60#define RATELIMIT_CALC_SHIFT	10
  61
  62/*
  63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
  64 * will look to see if it needs to force writeback or throttling.
  65 */
  66static long ratelimit_pages = 32;
  67
  68/* The following parameters are exported via /proc/sys/vm */
  69
  70/*
  71 * Start background writeback (via writeback threads) at this percentage
  72 */
  73int dirty_background_ratio = 10;
  74
  75/*
  76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
  77 * dirty_background_ratio * the amount of dirtyable memory
  78 */
  79unsigned long dirty_background_bytes;
  80
  81/*
  82 * free highmem will not be subtracted from the total free memory
  83 * for calculating free ratios if vm_highmem_is_dirtyable is true
  84 */
  85int vm_highmem_is_dirtyable;
  86
  87/*
  88 * The generator of dirty data starts writeback at this percentage
  89 */
  90int vm_dirty_ratio = 20;
  91
  92/*
  93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
  94 * vm_dirty_ratio * the amount of dirtyable memory
  95 */
  96unsigned long vm_dirty_bytes;
  97
  98/*
  99 * The interval between `kupdate'-style writebacks
 100 */
 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
 102
 103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
 104
 105/*
 106 * The longest time for which data is allowed to remain dirty
 107 */
 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
 109
 110/*
 111 * Flag that makes the machine dump writes/reads and block dirtyings.
 112 */
 113int block_dump;
 114
 115/*
 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
 117 * a full sync is triggered after this time elapses without any disk activity.
 118 */
 119int laptop_mode;
 120
 121EXPORT_SYMBOL(laptop_mode);
 122
 123/* End of sysctl-exported parameters */
 124
 125unsigned long global_dirty_limit;
 126
 127/*
 128 * Scale the writeback cache size proportional to the relative writeout speeds.
 129 *
 130 * We do this by keeping a floating proportion between BDIs, based on page
 131 * writeback completions [end_page_writeback()]. Those devices that write out
 132 * pages fastest will get the larger share, while the slower will get a smaller
 133 * share.
 134 *
 135 * We use page writeout completions because we are interested in getting rid of
 136 * dirty pages. Having them written out is the primary goal.
 137 *
 138 * We introduce a concept of time, a period over which we measure these events,
 139 * because demand can/will vary over time. The length of this period itself is
 140 * measured in page writeback completions.
 141 *
 142 */
 143static struct fprop_global writeout_completions;
 144
 145static void writeout_period(unsigned long t);
 146/* Timer for aging of writeout_completions */
 147static struct timer_list writeout_period_timer =
 148		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
 149static unsigned long writeout_period_time = 0;
 150
 151/*
 152 * Length of period for aging writeout fractions of bdis. This is an
 153 * arbitrarily chosen number. The longer the period, the slower fractions will
 154 * reflect changes in current writeout rate.
 155 */
 156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
 157
 158/*
 159 * Work out the current dirty-memory clamping and background writeout
 160 * thresholds.
 161 *
 162 * The main aim here is to lower them aggressively if there is a lot of mapped
 163 * memory around.  To avoid stressing page reclaim with lots of unreclaimable
 164 * pages.  It is better to clamp down on writers than to start swapping, and
 165 * performing lots of scanning.
 166 *
 167 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
 168 *
 169 * We don't permit the clamping level to fall below 5% - that is getting rather
 170 * excessive.
 171 *
 172 * We make sure that the background writeout level is below the adjusted
 173 * clamping level.
 174 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175
 176/*
 177 * In a memory zone, there is a certain amount of pages we consider
 178 * available for the page cache, which is essentially the number of
 179 * free and reclaimable pages, minus some zone reserves to protect
 180 * lowmem and the ability to uphold the zone's watermarks without
 181 * requiring writeback.
 182 *
 183 * This number of dirtyable pages is the base value of which the
 184 * user-configurable dirty ratio is the effictive number of pages that
 185 * are allowed to be actually dirtied.  Per individual zone, or
 186 * globally by using the sum of dirtyable pages over all zones.
 187 *
 188 * Because the user is allowed to specify the dirty limit globally as
 189 * absolute number of bytes, calculating the per-zone dirty limit can
 190 * require translating the configured limit into a percentage of
 191 * global dirtyable memory first.
 192 */
 193
 194/**
 195 * zone_dirtyable_memory - number of dirtyable pages in a zone
 196 * @zone: the zone
 197 *
 198 * Returns the zone's number of pages potentially available for dirty
 199 * page cache.  This is the base value for the per-zone dirty limits.
 200 */
 201static unsigned long zone_dirtyable_memory(struct zone *zone)
 202{
 203	unsigned long nr_pages;
 204
 205	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
 206	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
 
 
 
 
 
 207
 208	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
 209	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
 210
 211	return nr_pages;
 212}
 213
 214static unsigned long highmem_dirtyable_memory(unsigned long total)
 215{
 216#ifdef CONFIG_HIGHMEM
 217	int node;
 218	unsigned long x = 0;
 219
 220	for_each_node_state(node, N_HIGH_MEMORY) {
 221		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
 222
 223		x += zone_dirtyable_memory(z);
 224	}
 225	/*
 226	 * Unreclaimable memory (kernel memory or anonymous memory
 227	 * without swap) can bring down the dirtyable pages below
 228	 * the zone's dirty balance reserve and the above calculation
 229	 * will underflow.  However we still want to add in nodes
 230	 * which are below threshold (negative values) to get a more
 231	 * accurate calculation but make sure that the total never
 232	 * underflows.
 233	 */
 234	if ((long)x < 0)
 235		x = 0;
 236
 237	/*
 238	 * Make sure that the number of highmem pages is never larger
 239	 * than the number of the total dirtyable memory. This can only
 240	 * occur in very strange VM situations but we want to make sure
 241	 * that this does not occur.
 242	 */
 243	return min(x, total);
 244#else
 245	return 0;
 246#endif
 247}
 248
 249/**
 250 * global_dirtyable_memory - number of globally dirtyable pages
 251 *
 252 * Returns the global number of pages potentially available for dirty
 253 * page cache.  This is the base value for the global dirty limits.
 254 */
 255static unsigned long global_dirtyable_memory(void)
 256{
 257	unsigned long x;
 258
 259	x = global_page_state(NR_FREE_PAGES);
 260	x -= min(x, dirty_balance_reserve);
 
 
 
 
 
 261
 262	x += global_page_state(NR_INACTIVE_FILE);
 263	x += global_page_state(NR_ACTIVE_FILE);
 264
 265	if (!vm_highmem_is_dirtyable)
 266		x -= highmem_dirtyable_memory(x);
 267
 268	return x + 1;	/* Ensure that we never return 0 */
 269}
 270
 271/*
 272 * global_dirty_limits - background-writeback and dirty-throttling thresholds
 
 273 *
 274 * Calculate the dirty thresholds based on sysctl parameters
 275 * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
 276 * - vm.dirty_ratio             or  vm.dirty_bytes
 277 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
 278 * real-time tasks.
 279 */
 280void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
 281{
 282	unsigned long background;
 283	unsigned long dirty;
 284	unsigned long uninitialized_var(available_memory);
 
 
 
 
 
 285	struct task_struct *tsk;
 286
 287	if (!vm_dirty_bytes || !dirty_background_bytes)
 288		available_memory = global_dirtyable_memory();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290	if (vm_dirty_bytes)
 291		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
 292	else
 293		dirty = (vm_dirty_ratio * available_memory) / 100;
 294
 295	if (dirty_background_bytes)
 296		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
 297	else
 298		background = (dirty_background_ratio * available_memory) / 100;
 299
 300	if (background >= dirty)
 301		background = dirty / 2;
 302	tsk = current;
 303	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
 304		background += background / 4;
 305		dirty += dirty / 4;
 306	}
 307	*pbackground = background;
 308	*pdirty = dirty;
 309	trace_global_dirty_state(background, dirty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310}
 311
 312/**
 313 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
 314 * @zone: the zone
 315 *
 316 * Returns the maximum number of dirty pages allowed in a zone, based
 317 * on the zone's dirtyable memory.
 318 */
 319static unsigned long zone_dirty_limit(struct zone *zone)
 320{
 321	unsigned long zone_memory = zone_dirtyable_memory(zone);
 322	struct task_struct *tsk = current;
 323	unsigned long dirty;
 324
 325	if (vm_dirty_bytes)
 326		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
 327			zone_memory / global_dirtyable_memory();
 328	else
 329		dirty = vm_dirty_ratio * zone_memory / 100;
 330
 331	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
 332		dirty += dirty / 4;
 333
 334	return dirty;
 335}
 336
 337/**
 338 * zone_dirty_ok - tells whether a zone is within its dirty limits
 339 * @zone: the zone to check
 340 *
 341 * Returns %true when the dirty pages in @zone are within the zone's
 342 * dirty limit, %false if the limit is exceeded.
 343 */
 344bool zone_dirty_ok(struct zone *zone)
 345{
 346	unsigned long limit = zone_dirty_limit(zone);
 347
 348	return zone_page_state(zone, NR_FILE_DIRTY) +
 349	       zone_page_state(zone, NR_UNSTABLE_NFS) +
 350	       zone_page_state(zone, NR_WRITEBACK) <= limit;
 351}
 352
 353int dirty_background_ratio_handler(struct ctl_table *table, int write,
 354		void __user *buffer, size_t *lenp,
 355		loff_t *ppos)
 356{
 357	int ret;
 358
 359	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 360	if (ret == 0 && write)
 361		dirty_background_bytes = 0;
 362	return ret;
 363}
 364
 365int dirty_background_bytes_handler(struct ctl_table *table, int write,
 366		void __user *buffer, size_t *lenp,
 367		loff_t *ppos)
 368{
 369	int ret;
 370
 371	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 372	if (ret == 0 && write)
 373		dirty_background_ratio = 0;
 374	return ret;
 375}
 376
 377int dirty_ratio_handler(struct ctl_table *table, int write,
 378		void __user *buffer, size_t *lenp,
 379		loff_t *ppos)
 380{
 381	int old_ratio = vm_dirty_ratio;
 382	int ret;
 383
 384	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 385	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
 386		writeback_set_ratelimit();
 387		vm_dirty_bytes = 0;
 388	}
 389	return ret;
 390}
 391
 392int dirty_bytes_handler(struct ctl_table *table, int write,
 393		void __user *buffer, size_t *lenp,
 394		loff_t *ppos)
 395{
 396	unsigned long old_bytes = vm_dirty_bytes;
 397	int ret;
 398
 399	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
 400	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
 401		writeback_set_ratelimit();
 402		vm_dirty_ratio = 0;
 403	}
 404	return ret;
 405}
 406
 407static unsigned long wp_next_time(unsigned long cur_time)
 408{
 409	cur_time += VM_COMPLETIONS_PERIOD_LEN;
 410	/* 0 has a special meaning... */
 411	if (!cur_time)
 412		return 1;
 413	return cur_time;
 414}
 415
 416/*
 417 * Increment the BDI's writeout completion count and the global writeout
 418 * completion count. Called from test_clear_page_writeback().
 419 */
 420static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
 421{
 422	__inc_bdi_stat(bdi, BDI_WRITTEN);
 423	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
 424			       bdi->max_prop_frac);
 425	/* First event after period switching was turned off? */
 426	if (!unlikely(writeout_period_time)) {
 427		/*
 428		 * We can race with other __bdi_writeout_inc calls here but
 429		 * it does not cause any harm since the resulting time when
 430		 * timer will fire and what is in writeout_period_time will be
 431		 * roughly the same.
 432		 */
 433		writeout_period_time = wp_next_time(jiffies);
 434		mod_timer(&writeout_period_timer, writeout_period_time);
 435	}
 436}
 437
 438void bdi_writeout_inc(struct backing_dev_info *bdi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 439{
 440	unsigned long flags;
 441
 442	local_irq_save(flags);
 443	__bdi_writeout_inc(bdi);
 444	local_irq_restore(flags);
 445}
 446EXPORT_SYMBOL_GPL(bdi_writeout_inc);
 447
 448/*
 449 * Obtain an accurate fraction of the BDI's portion.
 450 */
 451static void bdi_writeout_fraction(struct backing_dev_info *bdi,
 452		long *numerator, long *denominator)
 453{
 454	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
 455				numerator, denominator);
 456}
 457
 458/*
 459 * On idle system, we can be called long after we scheduled because we use
 460 * deferred timers so count with missed periods.
 461 */
 462static void writeout_period(unsigned long t)
 463{
 464	int miss_periods = (jiffies - writeout_period_time) /
 
 465						 VM_COMPLETIONS_PERIOD_LEN;
 466
 467	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
 468		writeout_period_time = wp_next_time(writeout_period_time +
 469				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
 470		mod_timer(&writeout_period_timer, writeout_period_time);
 471	} else {
 472		/*
 473		 * Aging has zeroed all fractions. Stop wasting CPU on period
 474		 * updates.
 475		 */
 476		writeout_period_time = 0;
 477	}
 478}
 479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480/*
 481 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
 482 * registered backing devices, which, for obvious reasons, can not
 483 * exceed 100%.
 484 */
 485static unsigned int bdi_min_ratio;
 486
 487int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
 488{
 489	int ret = 0;
 490
 491	spin_lock_bh(&bdi_lock);
 492	if (min_ratio > bdi->max_ratio) {
 493		ret = -EINVAL;
 494	} else {
 495		min_ratio -= bdi->min_ratio;
 496		if (bdi_min_ratio + min_ratio < 100) {
 497			bdi_min_ratio += min_ratio;
 498			bdi->min_ratio += min_ratio;
 499		} else {
 500			ret = -EINVAL;
 501		}
 502	}
 503	spin_unlock_bh(&bdi_lock);
 504
 505	return ret;
 506}
 507
 508int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
 509{
 510	int ret = 0;
 511
 512	if (max_ratio > 100)
 513		return -EINVAL;
 514
 515	spin_lock_bh(&bdi_lock);
 516	if (bdi->min_ratio > max_ratio) {
 517		ret = -EINVAL;
 518	} else {
 519		bdi->max_ratio = max_ratio;
 520		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
 521	}
 522	spin_unlock_bh(&bdi_lock);
 523
 524	return ret;
 525}
 526EXPORT_SYMBOL(bdi_set_max_ratio);
 527
 528static unsigned long dirty_freerun_ceiling(unsigned long thresh,
 529					   unsigned long bg_thresh)
 530{
 531	return (thresh + bg_thresh) / 2;
 532}
 533
 534static unsigned long hard_dirty_limit(unsigned long thresh)
 
 535{
 536	return max(thresh, global_dirty_limit);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 537}
 538
 539/**
 540 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
 541 * @bdi: the backing_dev_info to query
 542 * @dirty: global dirty limit in pages
 543 *
 544 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
 545 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
 546 *
 547 * Note that balance_dirty_pages() will only seriously take it as a hard limit
 548 * when sleeping max_pause per page is not enough to keep the dirty pages under
 549 * control. For example, when the device is completely stalled due to some error
 550 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
 551 * In the other normal situations, it acts more gently by throttling the tasks
 552 * more (rather than completely block them) when the bdi dirty pages go high.
 553 *
 554 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
 555 * - starving fast devices
 556 * - piling up dirty pages (that will take long time to sync) on slow devices
 557 *
 558 * The bdi's share of dirty limit will be adapting to its throughput and
 559 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
 560 */
 561unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
 562{
 563	u64 bdi_dirty;
 
 
 564	long numerator, denominator;
 
 565
 566	/*
 567	 * Calculate this BDI's share of the dirty ratio.
 568	 */
 569	bdi_writeout_fraction(bdi, &numerator, &denominator);
 
 
 
 
 
 570
 571	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
 572	bdi_dirty *= numerator;
 573	do_div(bdi_dirty, denominator);
 574
 575	bdi_dirty += (dirty * bdi->min_ratio) / 100;
 576	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
 577		bdi_dirty = dirty * bdi->max_ratio / 100;
 578
 579	return bdi_dirty;
 
 
 
 
 
 
 
 580}
 581
 582/*
 583 *                           setpoint - dirty 3
 584 *        f(dirty) := 1.0 + (----------------)
 585 *                           limit - setpoint
 586 *
 587 * it's a 3rd order polynomial that subjects to
 588 *
 589 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
 590 * (2) f(setpoint) = 1.0 => the balance point
 591 * (3) f(limit)    = 0   => the hard limit
 592 * (4) df/dx      <= 0	 => negative feedback control
 593 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
 594 *     => fast response on large errors; small oscillation near setpoint
 595 */
 596static long long pos_ratio_polynom(unsigned long setpoint,
 597					  unsigned long dirty,
 598					  unsigned long limit)
 599{
 600	long long pos_ratio;
 601	long x;
 602
 603	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
 604		    limit - setpoint + 1);
 605	pos_ratio = x;
 606	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 607	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
 608	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
 609
 610	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
 611}
 612
 613/*
 614 * Dirty position control.
 615 *
 616 * (o) global/bdi setpoints
 617 *
 618 * We want the dirty pages be balanced around the global/bdi setpoints.
 619 * When the number of dirty pages is higher/lower than the setpoint, the
 620 * dirty position control ratio (and hence task dirty ratelimit) will be
 621 * decreased/increased to bring the dirty pages back to the setpoint.
 622 *
 623 *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
 624 *
 625 *     if (dirty < setpoint) scale up   pos_ratio
 626 *     if (dirty > setpoint) scale down pos_ratio
 627 *
 628 *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
 629 *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
 630 *
 631 *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
 632 *
 633 * (o) global control line
 634 *
 635 *     ^ pos_ratio
 636 *     |
 637 *     |            |<===== global dirty control scope ======>|
 638 * 2.0 .............*
 639 *     |            .*
 640 *     |            . *
 641 *     |            .   *
 642 *     |            .     *
 643 *     |            .        *
 644 *     |            .            *
 645 * 1.0 ................................*
 646 *     |            .                  .     *
 647 *     |            .                  .          *
 648 *     |            .                  .              *
 649 *     |            .                  .                 *
 650 *     |            .                  .                    *
 651 *   0 +------------.------------------.----------------------*------------->
 652 *           freerun^          setpoint^                 limit^   dirty pages
 653 *
 654 * (o) bdi control line
 655 *
 656 *     ^ pos_ratio
 657 *     |
 658 *     |            *
 659 *     |              *
 660 *     |                *
 661 *     |                  *
 662 *     |                    * |<=========== span ============>|
 663 * 1.0 .......................*
 664 *     |                      . *
 665 *     |                      .   *
 666 *     |                      .     *
 667 *     |                      .       *
 668 *     |                      .         *
 669 *     |                      .           *
 670 *     |                      .             *
 671 *     |                      .               *
 672 *     |                      .                 *
 673 *     |                      .                   *
 674 *     |                      .                     *
 675 * 1/4 ...............................................* * * * * * * * * * * *
 676 *     |                      .                         .
 677 *     |                      .                           .
 678 *     |                      .                             .
 679 *   0 +----------------------.-------------------------------.------------->
 680 *                bdi_setpoint^                    x_intercept^
 681 *
 682 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
 683 * be smoothly throttled down to normal if it starts high in situations like
 684 * - start writing to a slow SD card and a fast disk at the same time. The SD
 685 *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
 686 * - the bdi dirty thresh drops quickly due to change of JBOD workload
 687 */
 688static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
 689					unsigned long thresh,
 690					unsigned long bg_thresh,
 691					unsigned long dirty,
 692					unsigned long bdi_thresh,
 693					unsigned long bdi_dirty)
 694{
 695	unsigned long write_bw = bdi->avg_write_bandwidth;
 696	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 697	unsigned long limit = hard_dirty_limit(thresh);
 698	unsigned long x_intercept;
 699	unsigned long setpoint;		/* dirty pages' target balance point */
 700	unsigned long bdi_setpoint;
 701	unsigned long span;
 702	long long pos_ratio;		/* for scaling up/down the rate limit */
 703	long x;
 704
 705	if (unlikely(dirty >= limit))
 706		return 0;
 
 
 707
 708	/*
 709	 * global setpoint
 710	 *
 711	 * See comment for pos_ratio_polynom().
 712	 */
 713	setpoint = (freerun + limit) / 2;
 714	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
 715
 716	/*
 717	 * The strictlimit feature is a tool preventing mistrusted filesystems
 718	 * from growing a large number of dirty pages before throttling. For
 719	 * such filesystems balance_dirty_pages always checks bdi counters
 720	 * against bdi limits. Even if global "nr_dirty" is under "freerun".
 721	 * This is especially important for fuse which sets bdi->max_ratio to
 722	 * 1% by default. Without strictlimit feature, fuse writeback may
 723	 * consume arbitrary amount of RAM because it is accounted in
 724	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
 725	 *
 726	 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
 727	 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
 728	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
 729	 * limits are set by default to 10% and 20% (background and throttle).
 730	 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
 731	 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
 732	 * about ~6K pages (as the average of background and throttle bdi
 733	 * limits). The 3rd order polynomial will provide positive feedback if
 734	 * bdi_dirty is under bdi_setpoint and vice versa.
 735	 *
 736	 * Note, that we cannot use global counters in these calculations
 737	 * because we want to throttle process writing to a strictlimit BDI
 738	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
 739	 * in the example above).
 740	 */
 741	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
 742		long long bdi_pos_ratio;
 743		unsigned long bdi_bg_thresh;
 744
 745		if (bdi_dirty < 8)
 746			return min_t(long long, pos_ratio * 2,
 747				     2 << RATELIMIT_CALC_SHIFT);
 748
 749		if (bdi_dirty >= bdi_thresh)
 750			return 0;
 751
 752		bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
 753		bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
 754						     bdi_bg_thresh);
 755
 756		if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
 757			return 0;
 758
 759		bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
 760						  bdi_thresh);
 
 
 
 
 
 
 761
 762		/*
 763		 * Typically, for strictlimit case, bdi_setpoint << setpoint
 764		 * and pos_ratio >> bdi_pos_ratio. In the other words global
 765		 * state ("dirty") is not limiting factor and we have to
 766		 * make decision based on bdi counters. But there is an
 767		 * important case when global pos_ratio should get precedence:
 768		 * global limits are exceeded (e.g. due to activities on other
 769		 * BDIs) while given strictlimit BDI is below limit.
 770		 *
 771		 * "pos_ratio * bdi_pos_ratio" would work for the case above,
 772		 * but it would look too non-natural for the case of all
 773		 * activity in the system coming from a single strictlimit BDI
 774		 * with bdi->max_ratio == 100%.
 775		 *
 776		 * Note that min() below somewhat changes the dynamics of the
 777		 * control system. Normally, pos_ratio value can be well over 3
 778		 * (when globally we are at freerun and bdi is well below bdi
 779		 * setpoint). Now the maximum pos_ratio in the same situation
 780		 * is 2. We might want to tweak this if we observe the control
 781		 * system is too slow to adapt.
 782		 */
 783		return min(pos_ratio, bdi_pos_ratio);
 
 784	}
 785
 786	/*
 787	 * We have computed basic pos_ratio above based on global situation. If
 788	 * the bdi is over/under its share of dirty pages, we want to scale
 789	 * pos_ratio further down/up. That is done by the following mechanism.
 790	 */
 791
 792	/*
 793	 * bdi setpoint
 794	 *
 795	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
 796	 *
 797	 *                        x_intercept - bdi_dirty
 798	 *                     := --------------------------
 799	 *                        x_intercept - bdi_setpoint
 800	 *
 801	 * The main bdi control line is a linear function that subjects to
 802	 *
 803	 * (1) f(bdi_setpoint) = 1.0
 804	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
 805	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
 806	 *
 807	 * For single bdi case, the dirty pages are observed to fluctuate
 808	 * regularly within range
 809	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
 810	 * for various filesystems, where (2) can yield in a reasonable 12.5%
 811	 * fluctuation range for pos_ratio.
 812	 *
 813	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
 814	 * own size, so move the slope over accordingly and choose a slope that
 815	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
 816	 */
 817	if (unlikely(bdi_thresh > thresh))
 818		bdi_thresh = thresh;
 819	/*
 820	 * It's very possible that bdi_thresh is close to 0 not because the
 821	 * device is slow, but that it has remained inactive for long time.
 822	 * Honour such devices a reasonable good (hopefully IO efficient)
 823	 * threshold, so that the occasional writes won't be blocked and active
 824	 * writes can rampup the threshold quickly.
 825	 */
 826	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
 827	/*
 828	 * scale global setpoint to bdi's:
 829	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
 830	 */
 831	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
 832	bdi_setpoint = setpoint * (u64)x >> 16;
 833	/*
 834	 * Use span=(8*write_bw) in single bdi case as indicated by
 835	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
 836	 *
 837	 *        bdi_thresh                    thresh - bdi_thresh
 838	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
 839	 *          thresh                            thresh
 840	 */
 841	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
 842	x_intercept = bdi_setpoint + span;
 843
 844	if (bdi_dirty < x_intercept - span / 4) {
 845		pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
 846				    x_intercept - bdi_setpoint + 1);
 847	} else
 848		pos_ratio /= 4;
 849
 850	/*
 851	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
 852	 * It may push the desired control point of global dirty pages higher
 853	 * than setpoint.
 854	 */
 855	x_intercept = bdi_thresh / 2;
 856	if (bdi_dirty < x_intercept) {
 857		if (bdi_dirty > x_intercept / 8)
 858			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
 
 859		else
 860			pos_ratio *= 8;
 861	}
 862
 863	return pos_ratio;
 864}
 865
 866static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
 867				       unsigned long elapsed,
 868				       unsigned long written)
 869{
 870	const unsigned long period = roundup_pow_of_two(3 * HZ);
 871	unsigned long avg = bdi->avg_write_bandwidth;
 872	unsigned long old = bdi->write_bandwidth;
 873	u64 bw;
 874
 875	/*
 876	 * bw = written * HZ / elapsed
 877	 *
 878	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
 879	 * write_bandwidth = ---------------------------------------------------
 880	 *                                          period
 
 
 
 881	 */
 882	bw = written - bdi->written_stamp;
 883	bw *= HZ;
 884	if (unlikely(elapsed > period)) {
 885		do_div(bw, elapsed);
 886		avg = bw;
 887		goto out;
 888	}
 889	bw += (u64)bdi->write_bandwidth * (period - elapsed);
 890	bw >>= ilog2(period);
 891
 892	/*
 893	 * one more level of smoothing, for filtering out sudden spikes
 894	 */
 895	if (avg > old && old >= (unsigned long)bw)
 896		avg -= (avg - old) >> 3;
 897
 898	if (avg < old && old <= (unsigned long)bw)
 899		avg += (old - avg) >> 3;
 900
 901out:
 902	bdi->write_bandwidth = bw;
 903	bdi->avg_write_bandwidth = avg;
 904}
 905
 906/*
 907 * The global dirtyable memory and dirty threshold could be suddenly knocked
 908 * down by a large amount (eg. on the startup of KVM in a swapless system).
 909 * This may throw the system into deep dirty exceeded state and throttle
 910 * heavy/light dirtiers alike. To retain good responsiveness, maintain
 911 * global_dirty_limit for tracking slowly down to the knocked down dirty
 912 * threshold.
 913 */
 914static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
 915{
 916	unsigned long limit = global_dirty_limit;
 
 917
 918	/*
 919	 * Follow up in one step.
 920	 */
 921	if (limit < thresh) {
 922		limit = thresh;
 923		goto update;
 924	}
 925
 926	/*
 927	 * Follow down slowly. Use the higher one as the target, because thresh
 928	 * may drop below dirty. This is exactly the reason to introduce
 929	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
 930	 */
 931	thresh = max(thresh, dirty);
 932	if (limit > thresh) {
 933		limit -= (limit - thresh) >> 5;
 934		goto update;
 935	}
 936	return;
 937update:
 938	global_dirty_limit = limit;
 939}
 940
 941static void global_update_bandwidth(unsigned long thresh,
 942				    unsigned long dirty,
 943				    unsigned long now)
 944{
 945	static DEFINE_SPINLOCK(dirty_lock);
 946	static unsigned long update_time;
 947
 948	/*
 949	 * check locklessly first to optimize away locking for the most time
 950	 */
 951	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
 952		return;
 953
 954	spin_lock(&dirty_lock);
 955	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
 956		update_dirty_limit(thresh, dirty);
 957		update_time = now;
 958	}
 959	spin_unlock(&dirty_lock);
 960}
 961
 962/*
 963 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
 964 *
 965 * Normal bdi tasks will be curbed at or below it in long term.
 966 * Obviously it should be around (write_bw / N) when there are N dd tasks.
 967 */
 968static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
 969				       unsigned long thresh,
 970				       unsigned long bg_thresh,
 971				       unsigned long dirty,
 972				       unsigned long bdi_thresh,
 973				       unsigned long bdi_dirty,
 974				       unsigned long dirtied,
 975				       unsigned long elapsed)
 976{
 977	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
 978	unsigned long limit = hard_dirty_limit(thresh);
 979	unsigned long setpoint = (freerun + limit) / 2;
 980	unsigned long write_bw = bdi->avg_write_bandwidth;
 981	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
 982	unsigned long dirty_rate;
 983	unsigned long task_ratelimit;
 984	unsigned long balanced_dirty_ratelimit;
 985	unsigned long pos_ratio;
 986	unsigned long step;
 987	unsigned long x;
 
 988
 989	/*
 990	 * The dirty rate will match the writeout rate in long term, except
 991	 * when dirty pages are truncated by userspace or re-dirtied by FS.
 992	 */
 993	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
 994
 995	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
 996				       bdi_thresh, bdi_dirty);
 997	/*
 998	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
 999	 */
1000	task_ratelimit = (u64)dirty_ratelimit *
1001					pos_ratio >> RATELIMIT_CALC_SHIFT;
1002	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1003
1004	/*
1005	 * A linear estimation of the "balanced" throttle rate. The theory is,
1006	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
1007	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1008	 * formula will yield the balanced rate limit (write_bw / N).
1009	 *
1010	 * Note that the expanded form is not a pure rate feedback:
1011	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1012	 * but also takes pos_ratio into account:
1013	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1014	 *
1015	 * (1) is not realistic because pos_ratio also takes part in balancing
1016	 * the dirty rate.  Consider the state
1017	 *	pos_ratio = 0.5						     (3)
1018	 *	rate = 2 * (write_bw / N)				     (4)
1019	 * If (1) is used, it will stuck in that state! Because each dd will
1020	 * be throttled at
1021	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1022	 * yielding
1023	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1024	 * put (6) into (1) we get
1025	 *	rate_(i+1) = rate_(i)					     (7)
1026	 *
1027	 * So we end up using (2) to always keep
1028	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1029	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1030	 * pos_ratio is able to drive itself to 1.0, which is not only where
1031	 * the dirty count meet the setpoint, but also where the slope of
1032	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1033	 */
1034	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1035					   dirty_rate | 1);
1036	/*
1037	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1038	 */
1039	if (unlikely(balanced_dirty_ratelimit > write_bw))
1040		balanced_dirty_ratelimit = write_bw;
1041
1042	/*
1043	 * We could safely do this and return immediately:
1044	 *
1045	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1046	 *
1047	 * However to get a more stable dirty_ratelimit, the below elaborated
1048	 * code makes use of task_ratelimit to filter out singular points and
1049	 * limit the step size.
1050	 *
1051	 * The below code essentially only uses the relative value of
1052	 *
1053	 *	task_ratelimit - dirty_ratelimit
1054	 *	= (pos_ratio - 1) * dirty_ratelimit
1055	 *
1056	 * which reflects the direction and size of dirty position error.
1057	 */
1058
1059	/*
1060	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1061	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1062	 * For example, when
1063	 * - dirty_ratelimit > balanced_dirty_ratelimit
1064	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1065	 * lowering dirty_ratelimit will help meet both the position and rate
1066	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1067	 * only help meet the rate target. After all, what the users ultimately
1068	 * feel and care are stable dirty rate and small position error.
1069	 *
1070	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1071	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1072	 * keeps jumping around randomly and can even leap far away at times
1073	 * due to the small 200ms estimation period of dirty_rate (we want to
1074	 * keep that period small to reduce time lags).
1075	 */
1076	step = 0;
1077
1078	/*
1079	 * For strictlimit case, calculations above were based on bdi counters
1080	 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1081	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1082	 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1083	 * "dirty" and bdi_setpoint as "setpoint".
1084	 *
1085	 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1086	 * it's possible that bdi_thresh is close to zero due to inactivity
1087	 * of backing device (see the implementation of bdi_dirty_limit()).
1088	 */
1089	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1090		dirty = bdi_dirty;
1091		if (bdi_dirty < 8)
1092			setpoint = bdi_dirty + 1;
1093		else
1094			setpoint = (bdi_thresh +
1095				    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1096	}
1097
1098	if (dirty < setpoint) {
1099		x = min(bdi->balanced_dirty_ratelimit,
1100			 min(balanced_dirty_ratelimit, task_ratelimit));
1101		if (dirty_ratelimit < x)
1102			step = x - dirty_ratelimit;
1103	} else {
1104		x = max(bdi->balanced_dirty_ratelimit,
1105			 max(balanced_dirty_ratelimit, task_ratelimit));
1106		if (dirty_ratelimit > x)
1107			step = dirty_ratelimit - x;
1108	}
1109
1110	/*
1111	 * Don't pursue 100% rate matching. It's impossible since the balanced
1112	 * rate itself is constantly fluctuating. So decrease the track speed
1113	 * when it gets close to the target. Helps eliminate pointless tremors.
1114	 */
1115	step >>= dirty_ratelimit / (2 * step + 1);
1116	/*
1117	 * Limit the tracking speed to avoid overshooting.
1118	 */
1119	step = (step + 7) / 8;
1120
1121	if (dirty_ratelimit < balanced_dirty_ratelimit)
1122		dirty_ratelimit += step;
1123	else
1124		dirty_ratelimit -= step;
1125
1126	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1127	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1128
1129	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1130}
1131
1132void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1133			    unsigned long thresh,
1134			    unsigned long bg_thresh,
1135			    unsigned long dirty,
1136			    unsigned long bdi_thresh,
1137			    unsigned long bdi_dirty,
1138			    unsigned long start_time)
1139{
 
1140	unsigned long now = jiffies;
1141	unsigned long elapsed = now - bdi->bw_time_stamp;
1142	unsigned long dirtied;
1143	unsigned long written;
1144
 
 
1145	/*
1146	 * rate-limit, only update once every 200ms.
1147	 */
1148	if (elapsed < BANDWIDTH_INTERVAL)
1149		return;
1150
1151	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1152	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1153
1154	/*
1155	 * Skip quiet periods when disk bandwidth is under-utilized.
1156	 * (at least 1s idle time between two flusher runs)
1157	 */
1158	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1159		goto snapshot;
1160
1161	if (thresh) {
1162		global_update_bandwidth(thresh, dirty, now);
1163		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1164					   bdi_thresh, bdi_dirty,
1165					   dirtied, elapsed);
 
 
 
 
 
 
 
1166	}
1167	bdi_update_write_bandwidth(bdi, elapsed, written);
1168
1169snapshot:
1170	bdi->dirtied_stamp = dirtied;
1171	bdi->written_stamp = written;
1172	bdi->bw_time_stamp = now;
1173}
1174
1175static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1176				 unsigned long thresh,
1177				 unsigned long bg_thresh,
1178				 unsigned long dirty,
1179				 unsigned long bdi_thresh,
1180				 unsigned long bdi_dirty,
1181				 unsigned long start_time)
1182{
1183	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1184		return;
1185	spin_lock(&bdi->wb.list_lock);
1186	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1187			       bdi_thresh, bdi_dirty, start_time);
1188	spin_unlock(&bdi->wb.list_lock);
1189}
1190
1191/*
1192 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1193 * will look to see if it needs to start dirty throttling.
1194 *
1195 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1196 * global_page_state() too often. So scale it near-sqrt to the safety margin
1197 * (the number of pages we may dirty without exceeding the dirty limits).
1198 */
1199static unsigned long dirty_poll_interval(unsigned long dirty,
1200					 unsigned long thresh)
1201{
1202	if (thresh > dirty)
1203		return 1UL << (ilog2(thresh - dirty) >> 1);
1204
1205	return 1;
1206}
1207
1208static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1209				   unsigned long bdi_dirty)
1210{
1211	unsigned long bw = bdi->avg_write_bandwidth;
1212	unsigned long t;
1213
1214	/*
1215	 * Limit pause time for small memory systems. If sleeping for too long
1216	 * time, a small pool of dirty/writeback pages may go empty and disk go
1217	 * idle.
1218	 *
1219	 * 8 serves as the safety ratio.
1220	 */
1221	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1222	t++;
1223
1224	return min_t(unsigned long, t, MAX_PAUSE);
1225}
1226
1227static long bdi_min_pause(struct backing_dev_info *bdi,
1228			  long max_pause,
1229			  unsigned long task_ratelimit,
1230			  unsigned long dirty_ratelimit,
1231			  int *nr_dirtied_pause)
1232{
1233	long hi = ilog2(bdi->avg_write_bandwidth);
1234	long lo = ilog2(bdi->dirty_ratelimit);
1235	long t;		/* target pause */
1236	long pause;	/* estimated next pause */
1237	int pages;	/* target nr_dirtied_pause */
1238
1239	/* target for 10ms pause on 1-dd case */
1240	t = max(1, HZ / 100);
1241
1242	/*
1243	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1244	 * overheads.
1245	 *
1246	 * (N * 10ms) on 2^N concurrent tasks.
1247	 */
1248	if (hi > lo)
1249		t += (hi - lo) * (10 * HZ) / 1024;
1250
1251	/*
1252	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1253	 * on the much more stable dirty_ratelimit. However the next pause time
1254	 * will be computed based on task_ratelimit and the two rate limits may
1255	 * depart considerably at some time. Especially if task_ratelimit goes
1256	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1257	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1258	 * result task_ratelimit won't be executed faithfully, which could
1259	 * eventually bring down dirty_ratelimit.
1260	 *
1261	 * We apply two rules to fix it up:
1262	 * 1) try to estimate the next pause time and if necessary, use a lower
1263	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1264	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1265	 * 2) limit the target pause time to max_pause/2, so that the normal
1266	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1267	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1268	 */
1269	t = min(t, 1 + max_pause / 2);
1270	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1271
1272	/*
1273	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1274	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1275	 * When the 16 consecutive reads are often interrupted by some dirty
1276	 * throttling pause during the async writes, cfq will go into idles
1277	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1278	 * until reaches DIRTY_POLL_THRESH=32 pages.
1279	 */
1280	if (pages < DIRTY_POLL_THRESH) {
1281		t = max_pause;
1282		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1283		if (pages > DIRTY_POLL_THRESH) {
1284			pages = DIRTY_POLL_THRESH;
1285			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1286		}
1287	}
1288
1289	pause = HZ * pages / (task_ratelimit + 1);
1290	if (pause > max_pause) {
1291		t = max_pause;
1292		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1293	}
1294
1295	*nr_dirtied_pause = pages;
1296	/*
1297	 * The minimal pause time will normally be half the target pause time.
1298	 */
1299	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1300}
1301
1302static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1303				    unsigned long dirty_thresh,
1304				    unsigned long background_thresh,
1305				    unsigned long *bdi_dirty,
1306				    unsigned long *bdi_thresh,
1307				    unsigned long *bdi_bg_thresh)
1308{
1309	unsigned long bdi_reclaimable;
 
1310
1311	/*
1312	 * bdi_thresh is not treated as some limiting factor as
1313	 * dirty_thresh, due to reasons
1314	 * - in JBOD setup, bdi_thresh can fluctuate a lot
1315	 * - in a system with HDD and USB key, the USB key may somehow
1316	 *   go into state (bdi_dirty >> bdi_thresh) either because
1317	 *   bdi_dirty starts high, or because bdi_thresh drops low.
1318	 *   In this case we don't want to hard throttle the USB key
1319	 *   dirtiers for 100 seconds until bdi_dirty drops under
1320	 *   bdi_thresh. Instead the auxiliary bdi control line in
1321	 *   bdi_position_ratio() will let the dirtier task progress
1322	 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1323	 */
1324	*bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1325
1326	if (bdi_bg_thresh)
1327		*bdi_bg_thresh = div_u64((u64)*bdi_thresh *
1328					 background_thresh,
1329					 dirty_thresh);
1330
1331	/*
1332	 * In order to avoid the stacked BDI deadlock we need
1333	 * to ensure we accurately count the 'dirty' pages when
1334	 * the threshold is low.
1335	 *
1336	 * Otherwise it would be possible to get thresh+n pages
1337	 * reported dirty, even though there are thresh-m pages
1338	 * actually dirty; with m+n sitting in the percpu
1339	 * deltas.
1340	 */
1341	if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1342		bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1343		*bdi_dirty = bdi_reclaimable +
1344			bdi_stat_sum(bdi, BDI_WRITEBACK);
1345	} else {
1346		bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1347		*bdi_dirty = bdi_reclaimable +
1348			bdi_stat(bdi, BDI_WRITEBACK);
1349	}
1350}
1351
1352/*
1353 * balance_dirty_pages() must be called by processes which are generating dirty
1354 * data.  It looks at the number of dirty pages in the machine and will force
1355 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1356 * If we're over `background_thresh' then the writeback threads are woken to
1357 * perform some writeout.
1358 */
1359static void balance_dirty_pages(struct address_space *mapping,
 
1360				unsigned long pages_dirtied)
1361{
 
 
 
 
 
 
1362	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1363	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1364	unsigned long background_thresh;
1365	unsigned long dirty_thresh;
1366	long period;
1367	long pause;
1368	long max_pause;
1369	long min_pause;
1370	int nr_dirtied_pause;
1371	bool dirty_exceeded = false;
1372	unsigned long task_ratelimit;
1373	unsigned long dirty_ratelimit;
1374	unsigned long pos_ratio;
1375	struct backing_dev_info *bdi = mapping->backing_dev_info;
1376	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1377	unsigned long start_time = jiffies;
1378
1379	for (;;) {
1380		unsigned long now = jiffies;
1381		unsigned long uninitialized_var(bdi_thresh);
1382		unsigned long thresh;
1383		unsigned long uninitialized_var(bdi_dirty);
1384		unsigned long dirty;
1385		unsigned long bg_thresh;
1386
1387		/*
1388		 * Unstable writes are a feature of certain networked
1389		 * filesystems (i.e. NFS) in which data may have been
1390		 * written to the server's write cache, but has not yet
1391		 * been flushed to permanent storage.
1392		 */
1393		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1394					global_page_state(NR_UNSTABLE_NFS);
1395		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
 
1396
1397		global_dirty_limits(&background_thresh, &dirty_thresh);
1398
1399		if (unlikely(strictlimit)) {
1400			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1401					 &bdi_dirty, &bdi_thresh, &bg_thresh);
1402
1403			dirty = bdi_dirty;
1404			thresh = bdi_thresh;
 
1405		} else {
1406			dirty = nr_dirty;
1407			thresh = dirty_thresh;
1408			bg_thresh = background_thresh;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409		}
1410
1411		/*
1412		 * Throttle it only when the background writeback cannot
1413		 * catch-up. This avoids (excessively) small writeouts
1414		 * when the bdi limits are ramping up in case of !strictlimit.
1415		 *
1416		 * In strictlimit case make decision based on the bdi counters
1417		 * and limits. Small writeouts when the bdi limits are ramping
1418		 * up are the price we consciously pay for strictlimit-ing.
 
 
 
1419		 */
1420		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
 
 
 
 
 
1421			current->dirty_paused_when = now;
1422			current->nr_dirtied = 0;
1423			current->nr_dirtied_pause =
1424				dirty_poll_interval(dirty, thresh);
 
1425			break;
1426		}
1427
1428		if (unlikely(!writeback_in_progress(bdi)))
1429			bdi_start_background_writeback(bdi);
1430
 
 
 
 
1431		if (!strictlimit)
1432			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1433					 &bdi_dirty, &bdi_thresh, NULL);
 
 
 
 
 
1434
1435		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1436				 ((nr_dirty > dirty_thresh) || strictlimit);
1437		if (dirty_exceeded && !bdi->dirty_exceeded)
1438			bdi->dirty_exceeded = 1;
1439
1440		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1441				     nr_dirty, bdi_thresh, bdi_dirty,
1442				     start_time);
1443
1444		dirty_ratelimit = bdi->dirty_ratelimit;
1445		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1446					       background_thresh, nr_dirty,
1447					       bdi_thresh, bdi_dirty);
1448		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449							RATELIMIT_CALC_SHIFT;
1450		max_pause = bdi_max_pause(bdi, bdi_dirty);
1451		min_pause = bdi_min_pause(bdi, max_pause,
1452					  task_ratelimit, dirty_ratelimit,
1453					  &nr_dirtied_pause);
1454
1455		if (unlikely(task_ratelimit == 0)) {
1456			period = max_pause;
1457			pause = max_pause;
1458			goto pause;
1459		}
1460		period = HZ * pages_dirtied / task_ratelimit;
1461		pause = period;
1462		if (current->dirty_paused_when)
1463			pause -= now - current->dirty_paused_when;
1464		/*
1465		 * For less than 1s think time (ext3/4 may block the dirtier
1466		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1467		 * however at much less frequency), try to compensate it in
1468		 * future periods by updating the virtual time; otherwise just
1469		 * do a reset, as it may be a light dirtier.
1470		 */
1471		if (pause < min_pause) {
1472			trace_balance_dirty_pages(bdi,
1473						  dirty_thresh,
1474						  background_thresh,
1475						  nr_dirty,
1476						  bdi_thresh,
1477						  bdi_dirty,
1478						  dirty_ratelimit,
1479						  task_ratelimit,
1480						  pages_dirtied,
1481						  period,
1482						  min(pause, 0L),
1483						  start_time);
1484			if (pause < -HZ) {
1485				current->dirty_paused_when = now;
1486				current->nr_dirtied = 0;
1487			} else if (period) {
1488				current->dirty_paused_when += period;
1489				current->nr_dirtied = 0;
1490			} else if (current->nr_dirtied_pause <= pages_dirtied)
1491				current->nr_dirtied_pause += pages_dirtied;
1492			break;
1493		}
1494		if (unlikely(pause > max_pause)) {
1495			/* for occasional dropped task_ratelimit */
1496			now += min(pause - max_pause, max_pause);
1497			pause = max_pause;
1498		}
1499
1500pause:
1501		trace_balance_dirty_pages(bdi,
1502					  dirty_thresh,
1503					  background_thresh,
1504					  nr_dirty,
1505					  bdi_thresh,
1506					  bdi_dirty,
1507					  dirty_ratelimit,
1508					  task_ratelimit,
1509					  pages_dirtied,
1510					  period,
1511					  pause,
1512					  start_time);
1513		__set_current_state(TASK_KILLABLE);
1514		io_schedule_timeout(pause);
1515
1516		current->dirty_paused_when = now + pause;
1517		current->nr_dirtied = 0;
1518		current->nr_dirtied_pause = nr_dirtied_pause;
1519
1520		/*
1521		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1522		 * also keep "1000+ dd on a slow USB stick" under control.
1523		 */
1524		if (task_ratelimit)
1525			break;
1526
1527		/*
1528		 * In the case of an unresponding NFS server and the NFS dirty
1529		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1530		 * to go through, so that tasks on them still remain responsive.
1531		 *
1532		 * In theory 1 page is enough to keep the comsumer-producer
1533		 * pipe going: the flusher cleans 1 page => the task dirties 1
1534		 * more page. However bdi_dirty has accounting errors.  So use
1535		 * the larger and more IO friendly bdi_stat_error.
1536		 */
1537		if (bdi_dirty <= bdi_stat_error(bdi))
1538			break;
1539
1540		if (fatal_signal_pending(current))
1541			break;
1542	}
1543
1544	if (!dirty_exceeded && bdi->dirty_exceeded)
1545		bdi->dirty_exceeded = 0;
1546
1547	if (writeback_in_progress(bdi))
1548		return;
1549
1550	/*
1551	 * In laptop mode, we wait until hitting the higher threshold before
1552	 * starting background writeout, and then write out all the way down
1553	 * to the lower threshold.  So slow writers cause minimal disk activity.
1554	 *
1555	 * In normal mode, we start background writeout at the lower
1556	 * background_thresh, to keep the amount of dirty memory low.
1557	 */
1558	if (laptop_mode)
1559		return;
1560
1561	if (nr_reclaimable > background_thresh)
1562		bdi_start_background_writeback(bdi);
1563}
1564
1565void set_page_dirty_balance(struct page *page)
1566{
1567	if (set_page_dirty(page)) {
1568		struct address_space *mapping = page_mapping(page);
1569
1570		if (mapping)
1571			balance_dirty_pages_ratelimited(mapping);
1572	}
1573}
1574
1575static DEFINE_PER_CPU(int, bdp_ratelimits);
1576
1577/*
1578 * Normal tasks are throttled by
1579 *	loop {
1580 *		dirty tsk->nr_dirtied_pause pages;
1581 *		take a snap in balance_dirty_pages();
1582 *	}
1583 * However there is a worst case. If every task exit immediately when dirtied
1584 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1585 * called to throttle the page dirties. The solution is to save the not yet
1586 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1587 * randomly into the running tasks. This works well for the above worst case,
1588 * as the new task will pick up and accumulate the old task's leaked dirty
1589 * count and eventually get throttled.
1590 */
1591DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1592
1593/**
1594 * balance_dirty_pages_ratelimited - balance dirty memory state
1595 * @mapping: address_space which was dirtied
1596 *
1597 * Processes which are dirtying memory should call in here once for each page
1598 * which was newly dirtied.  The function will periodically check the system's
1599 * dirty state and will initiate writeback if needed.
1600 *
1601 * On really big machines, get_writeback_state is expensive, so try to avoid
1602 * calling it too often (ratelimiting).  But once we're over the dirty memory
1603 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1604 * from overshooting the limit by (ratelimit_pages) each.
1605 */
1606void balance_dirty_pages_ratelimited(struct address_space *mapping)
1607{
1608	struct backing_dev_info *bdi = mapping->backing_dev_info;
 
 
1609	int ratelimit;
1610	int *p;
1611
1612	if (!bdi_cap_account_dirty(bdi))
1613		return;
1614
 
 
 
 
 
1615	ratelimit = current->nr_dirtied_pause;
1616	if (bdi->dirty_exceeded)
1617		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1618
1619	preempt_disable();
1620	/*
1621	 * This prevents one CPU to accumulate too many dirtied pages without
1622	 * calling into balance_dirty_pages(), which can happen when there are
1623	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1624	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1625	 */
1626	p =  &__get_cpu_var(bdp_ratelimits);
1627	if (unlikely(current->nr_dirtied >= ratelimit))
1628		*p = 0;
1629	else if (unlikely(*p >= ratelimit_pages)) {
1630		*p = 0;
1631		ratelimit = 0;
1632	}
1633	/*
1634	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1635	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1636	 * the dirty throttling and livelock other long-run dirtiers.
1637	 */
1638	p = &__get_cpu_var(dirty_throttle_leaks);
1639	if (*p > 0 && current->nr_dirtied < ratelimit) {
1640		unsigned long nr_pages_dirtied;
1641		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1642		*p -= nr_pages_dirtied;
1643		current->nr_dirtied += nr_pages_dirtied;
1644	}
1645	preempt_enable();
1646
1647	if (unlikely(current->nr_dirtied >= ratelimit))
1648		balance_dirty_pages(mapping, current->nr_dirtied);
 
 
1649}
1650EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1652void throttle_vm_writeout(gfp_t gfp_mask)
1653{
1654	unsigned long background_thresh;
1655	unsigned long dirty_thresh;
1656
1657        for ( ; ; ) {
1658		global_dirty_limits(&background_thresh, &dirty_thresh);
1659		dirty_thresh = hard_dirty_limit(dirty_thresh);
1660
1661                /*
1662                 * Boost the allowable dirty threshold a bit for page
1663                 * allocators so they don't get DoS'ed by heavy writers
1664                 */
1665                dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1666
1667                if (global_page_state(NR_UNSTABLE_NFS) +
1668			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1669                        	break;
1670                congestion_wait(BLK_RW_ASYNC, HZ/10);
1671
1672		/*
1673		 * The caller might hold locks which can prevent IO completion
1674		 * or progress in the filesystem.  So we cannot just sit here
1675		 * waiting for IO to complete.
1676		 */
1677		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1678			break;
1679        }
1680}
1681
1682/*
1683 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1684 */
1685int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1686	void __user *buffer, size_t *length, loff_t *ppos)
1687{
1688	proc_dointvec(table, write, buffer, length, ppos);
1689	return 0;
1690}
1691
1692#ifdef CONFIG_BLOCK
1693void laptop_mode_timer_fn(unsigned long data)
1694{
1695	struct request_queue *q = (struct request_queue *)data;
1696	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1697		global_page_state(NR_UNSTABLE_NFS);
 
1698
1699	/*
1700	 * We want to write everything out, not just down to the dirty
1701	 * threshold
1702	 */
1703	if (bdi_has_dirty_io(&q->backing_dev_info))
1704		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1705					WB_REASON_LAPTOP_TIMER);
 
 
 
 
 
 
1706}
1707
1708/*
1709 * We've spun up the disk and we're in laptop mode: schedule writeback
1710 * of all dirty data a few seconds from now.  If the flush is already scheduled
1711 * then push it back - the user is still using the disk.
1712 */
1713void laptop_io_completion(struct backing_dev_info *info)
1714{
1715	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1716}
1717
1718/*
1719 * We're in laptop mode and we've just synced. The sync's writes will have
1720 * caused another writeback to be scheduled by laptop_io_completion.
1721 * Nothing needs to be written back anymore, so we unschedule the writeback.
1722 */
1723void laptop_sync_completion(void)
1724{
1725	struct backing_dev_info *bdi;
1726
1727	rcu_read_lock();
1728
1729	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1730		del_timer(&bdi->laptop_mode_wb_timer);
1731
1732	rcu_read_unlock();
1733}
1734#endif
1735
1736/*
1737 * If ratelimit_pages is too high then we can get into dirty-data overload
1738 * if a large number of processes all perform writes at the same time.
1739 * If it is too low then SMP machines will call the (expensive)
1740 * get_writeback_state too often.
1741 *
1742 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1743 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1744 * thresholds.
1745 */
1746
1747void writeback_set_ratelimit(void)
1748{
 
1749	unsigned long background_thresh;
1750	unsigned long dirty_thresh;
 
1751	global_dirty_limits(&background_thresh, &dirty_thresh);
1752	global_dirty_limit = dirty_thresh;
1753	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1754	if (ratelimit_pages < 16)
1755		ratelimit_pages = 16;
1756}
1757
1758static int
1759ratelimit_handler(struct notifier_block *self, unsigned long action,
1760		  void *hcpu)
1761{
1762
1763	switch (action & ~CPU_TASKS_FROZEN) {
1764	case CPU_ONLINE:
1765	case CPU_DEAD:
1766		writeback_set_ratelimit();
1767		return NOTIFY_OK;
1768	default:
1769		return NOTIFY_DONE;
1770	}
1771}
1772
1773static struct notifier_block ratelimit_nb = {
1774	.notifier_call	= ratelimit_handler,
1775	.next		= NULL,
1776};
1777
1778/*
1779 * Called early on to tune the page writeback dirty limits.
1780 *
1781 * We used to scale dirty pages according to how total memory
1782 * related to pages that could be allocated for buffers (by
1783 * comparing nr_free_buffer_pages() to vm_total_pages.
1784 *
1785 * However, that was when we used "dirty_ratio" to scale with
1786 * all memory, and we don't do that any more. "dirty_ratio"
1787 * is now applied to total non-HIGHPAGE memory (by subtracting
1788 * totalhigh_pages from vm_total_pages), and as such we can't
1789 * get into the old insane situation any more where we had
1790 * large amounts of dirty pages compared to a small amount of
1791 * non-HIGHMEM memory.
1792 *
1793 * But we might still want to scale the dirty_ratio by how
1794 * much memory the box has..
1795 */
1796void __init page_writeback_init(void)
1797{
 
 
1798	writeback_set_ratelimit();
1799	register_cpu_notifier(&ratelimit_nb);
1800
1801	fprop_global_init(&writeout_completions);
1802}
1803
1804/**
1805 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1806 * @mapping: address space structure to write
1807 * @start: starting page index
1808 * @end: ending page index (inclusive)
1809 *
1810 * This function scans the page range from @start to @end (inclusive) and tags
1811 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1812 * that write_cache_pages (or whoever calls this function) will then use
1813 * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1814 * used to avoid livelocking of writeback by a process steadily creating new
1815 * dirty pages in the file (thus it is important for this function to be quick
1816 * so that it can tag pages faster than a dirtying process can create them).
1817 */
1818/*
1819 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1820 */
1821void tag_pages_for_writeback(struct address_space *mapping,
1822			     pgoff_t start, pgoff_t end)
1823{
1824#define WRITEBACK_TAG_BATCH 4096
1825	unsigned long tagged;
1826
1827	do {
1828		spin_lock_irq(&mapping->tree_lock);
1829		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1830				&start, end, WRITEBACK_TAG_BATCH,
1831				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1832		spin_unlock_irq(&mapping->tree_lock);
1833		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1834		cond_resched();
1835		/* We check 'start' to handle wrapping when end == ~0UL */
1836	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1837}
1838EXPORT_SYMBOL(tag_pages_for_writeback);
1839
1840/**
1841 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1842 * @mapping: address space structure to write
1843 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1844 * @writepage: function called for each page
1845 * @data: data passed to writepage function
1846 *
1847 * If a page is already under I/O, write_cache_pages() skips it, even
1848 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1849 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1850 * and msync() need to guarantee that all the data which was dirty at the time
1851 * the call was made get new I/O started against them.  If wbc->sync_mode is
1852 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1853 * existing IO to complete.
1854 *
1855 * To avoid livelocks (when other process dirties new pages), we first tag
1856 * pages which should be written back with TOWRITE tag and only then start
1857 * writing them. For data-integrity sync we have to be careful so that we do
1858 * not miss some pages (e.g., because some other process has cleared TOWRITE
1859 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1860 * by the process clearing the DIRTY tag (and submitting the page for IO).
1861 */
1862int write_cache_pages(struct address_space *mapping,
1863		      struct writeback_control *wbc, writepage_t writepage,
1864		      void *data)
1865{
1866	int ret = 0;
1867	int done = 0;
1868	struct pagevec pvec;
1869	int nr_pages;
1870	pgoff_t uninitialized_var(writeback_index);
1871	pgoff_t index;
1872	pgoff_t end;		/* Inclusive */
1873	pgoff_t done_index;
1874	int cycled;
1875	int range_whole = 0;
1876	int tag;
1877
1878	pagevec_init(&pvec, 0);
1879	if (wbc->range_cyclic) {
1880		writeback_index = mapping->writeback_index; /* prev offset */
1881		index = writeback_index;
1882		if (index == 0)
1883			cycled = 1;
1884		else
1885			cycled = 0;
1886		end = -1;
1887	} else {
1888		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1889		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1890		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1891			range_whole = 1;
1892		cycled = 1; /* ignore range_cyclic tests */
1893	}
1894	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1895		tag = PAGECACHE_TAG_TOWRITE;
1896	else
1897		tag = PAGECACHE_TAG_DIRTY;
1898retry:
1899	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1900		tag_pages_for_writeback(mapping, index, end);
1901	done_index = index;
1902	while (!done && (index <= end)) {
1903		int i;
1904
1905		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1906			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1907		if (nr_pages == 0)
1908			break;
1909
1910		for (i = 0; i < nr_pages; i++) {
1911			struct page *page = pvec.pages[i];
1912
1913			/*
1914			 * At this point, the page may be truncated or
1915			 * invalidated (changing page->mapping to NULL), or
1916			 * even swizzled back from swapper_space to tmpfs file
1917			 * mapping. However, page->index will not change
1918			 * because we have a reference on the page.
1919			 */
1920			if (page->index > end) {
1921				/*
1922				 * can't be range_cyclic (1st pass) because
1923				 * end == -1 in that case.
1924				 */
1925				done = 1;
1926				break;
1927			}
1928
1929			done_index = page->index;
1930
1931			lock_page(page);
1932
1933			/*
1934			 * Page truncated or invalidated. We can freely skip it
1935			 * then, even for data integrity operations: the page
1936			 * has disappeared concurrently, so there could be no
1937			 * real expectation of this data interity operation
1938			 * even if there is now a new, dirty page at the same
1939			 * pagecache address.
1940			 */
1941			if (unlikely(page->mapping != mapping)) {
1942continue_unlock:
1943				unlock_page(page);
1944				continue;
1945			}
1946
1947			if (!PageDirty(page)) {
1948				/* someone wrote it for us */
1949				goto continue_unlock;
1950			}
1951
1952			if (PageWriteback(page)) {
1953				if (wbc->sync_mode != WB_SYNC_NONE)
1954					wait_on_page_writeback(page);
1955				else
1956					goto continue_unlock;
1957			}
1958
1959			BUG_ON(PageWriteback(page));
1960			if (!clear_page_dirty_for_io(page))
1961				goto continue_unlock;
1962
1963			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1964			ret = (*writepage)(page, wbc, data);
1965			if (unlikely(ret)) {
1966				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1967					unlock_page(page);
1968					ret = 0;
1969				} else {
1970					/*
1971					 * done_index is set past this page,
1972					 * so media errors will not choke
1973					 * background writeout for the entire
1974					 * file. This has consequences for
1975					 * range_cyclic semantics (ie. it may
1976					 * not be suitable for data integrity
1977					 * writeout).
1978					 */
1979					done_index = page->index + 1;
1980					done = 1;
1981					break;
1982				}
1983			}
1984
1985			/*
1986			 * We stop writing back only if we are not doing
1987			 * integrity sync. In case of integrity sync we have to
1988			 * keep going until we have written all the pages
1989			 * we tagged for writeback prior to entering this loop.
1990			 */
1991			if (--wbc->nr_to_write <= 0 &&
1992			    wbc->sync_mode == WB_SYNC_NONE) {
1993				done = 1;
1994				break;
1995			}
1996		}
1997		pagevec_release(&pvec);
1998		cond_resched();
1999	}
2000	if (!cycled && !done) {
2001		/*
2002		 * range_cyclic:
2003		 * We hit the last page and there is more work to be done: wrap
2004		 * back to the start of the file
2005		 */
2006		cycled = 1;
2007		index = 0;
2008		end = writeback_index - 1;
2009		goto retry;
2010	}
2011	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2012		mapping->writeback_index = done_index;
2013
2014	return ret;
2015}
2016EXPORT_SYMBOL(write_cache_pages);
2017
2018/*
2019 * Function used by generic_writepages to call the real writepage
2020 * function and set the mapping flags on error
2021 */
2022static int __writepage(struct page *page, struct writeback_control *wbc,
2023		       void *data)
2024{
2025	struct address_space *mapping = data;
2026	int ret = mapping->a_ops->writepage(page, wbc);
2027	mapping_set_error(mapping, ret);
2028	return ret;
2029}
2030
2031/**
2032 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2033 * @mapping: address space structure to write
2034 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2035 *
2036 * This is a library function, which implements the writepages()
2037 * address_space_operation.
2038 */
2039int generic_writepages(struct address_space *mapping,
2040		       struct writeback_control *wbc)
2041{
2042	struct blk_plug plug;
2043	int ret;
2044
2045	/* deal with chardevs and other special file */
2046	if (!mapping->a_ops->writepage)
2047		return 0;
2048
2049	blk_start_plug(&plug);
2050	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2051	blk_finish_plug(&plug);
2052	return ret;
2053}
2054
2055EXPORT_SYMBOL(generic_writepages);
2056
2057int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2058{
2059	int ret;
2060
2061	if (wbc->nr_to_write <= 0)
2062		return 0;
2063	if (mapping->a_ops->writepages)
2064		ret = mapping->a_ops->writepages(mapping, wbc);
2065	else
2066		ret = generic_writepages(mapping, wbc);
2067	return ret;
2068}
2069
2070/**
2071 * write_one_page - write out a single page and optionally wait on I/O
2072 * @page: the page to write
2073 * @wait: if true, wait on writeout
2074 *
2075 * The page must be locked by the caller and will be unlocked upon return.
2076 *
2077 * write_one_page() returns a negative error code if I/O failed.
2078 */
2079int write_one_page(struct page *page, int wait)
2080{
2081	struct address_space *mapping = page->mapping;
2082	int ret = 0;
2083	struct writeback_control wbc = {
2084		.sync_mode = WB_SYNC_ALL,
2085		.nr_to_write = 1,
2086	};
2087
2088	BUG_ON(!PageLocked(page));
2089
2090	if (wait)
2091		wait_on_page_writeback(page);
2092
2093	if (clear_page_dirty_for_io(page)) {
2094		page_cache_get(page);
2095		ret = mapping->a_ops->writepage(page, &wbc);
2096		if (ret == 0 && wait) {
2097			wait_on_page_writeback(page);
2098			if (PageError(page))
2099				ret = -EIO;
2100		}
2101		page_cache_release(page);
2102	} else {
2103		unlock_page(page);
2104	}
2105	return ret;
2106}
2107EXPORT_SYMBOL(write_one_page);
2108
2109/*
2110 * For address_spaces which do not use buffers nor write back.
2111 */
2112int __set_page_dirty_no_writeback(struct page *page)
2113{
2114	if (!PageDirty(page))
2115		return !TestSetPageDirty(page);
2116	return 0;
2117}
2118
2119/*
2120 * Helper function for set_page_dirty family.
 
 
 
2121 * NOTE: This relies on being atomic wrt interrupts.
2122 */
2123void account_page_dirtied(struct page *page, struct address_space *mapping)
2124{
 
 
2125	trace_writeback_dirty_page(page, mapping);
2126
2127	if (mapping_cap_account_dirty(mapping)) {
 
 
 
 
 
 
2128		__inc_zone_page_state(page, NR_FILE_DIRTY);
2129		__inc_zone_page_state(page, NR_DIRTIED);
2130		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2131		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2132		task_io_account_write(PAGE_CACHE_SIZE);
2133		current->nr_dirtied++;
2134		this_cpu_inc(bdp_ratelimits);
2135	}
2136}
2137EXPORT_SYMBOL(account_page_dirtied);
2138
2139/*
2140 * Helper function for set_page_writeback family.
2141 *
2142 * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2143 * while calling this function.
2144 * See test_set_page_writeback for example.
2145 *
2146 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2147 * wrt interrupts.
2148 */
2149void account_page_writeback(struct page *page)
 
2150{
2151	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2152	inc_zone_page_state(page, NR_WRITEBACK);
 
 
 
 
2153}
2154EXPORT_SYMBOL(account_page_writeback);
2155
2156/*
2157 * For address_spaces which do not use buffers.  Just tag the page as dirty in
2158 * its radix tree.
2159 *
2160 * This is also used when a single buffer is being dirtied: we want to set the
2161 * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2162 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2163 *
2164 * Most callers have locked the page, which pins the address_space in memory.
2165 * But zap_pte_range() does not lock the page, however in that case the
2166 * mapping is pinned by the vma's ->vm_file reference.
2167 *
2168 * We take care to handle the case where the page was truncated from the
2169 * mapping by re-checking page_mapping() inside tree_lock.
2170 */
2171int __set_page_dirty_nobuffers(struct page *page)
2172{
 
2173	if (!TestSetPageDirty(page)) {
2174		struct address_space *mapping = page_mapping(page);
2175		struct address_space *mapping2;
2176		unsigned long flags;
2177
2178		if (!mapping)
 
2179			return 1;
 
2180
2181		spin_lock_irqsave(&mapping->tree_lock, flags);
2182		mapping2 = page_mapping(page);
2183		if (mapping2) { /* Race with truncate? */
2184			BUG_ON(mapping2 != mapping);
2185			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2186			account_page_dirtied(page, mapping);
2187			radix_tree_tag_set(&mapping->page_tree,
2188				page_index(page), PAGECACHE_TAG_DIRTY);
2189		}
2190		spin_unlock_irqrestore(&mapping->tree_lock, flags);
 
 
2191		if (mapping->host) {
2192			/* !PageAnon && !swapper_space */
2193			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2194		}
2195		return 1;
2196	}
 
2197	return 0;
2198}
2199EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2200
2201/*
2202 * Call this whenever redirtying a page, to de-account the dirty counters
2203 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2204 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2205 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2206 * control.
2207 */
2208void account_page_redirty(struct page *page)
2209{
2210	struct address_space *mapping = page->mapping;
 
2211	if (mapping && mapping_cap_account_dirty(mapping)) {
 
 
 
 
 
2212		current->nr_dirtied--;
2213		dec_zone_page_state(page, NR_DIRTIED);
2214		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
 
2215	}
2216}
2217EXPORT_SYMBOL(account_page_redirty);
2218
2219/*
2220 * When a writepage implementation decides that it doesn't want to write this
2221 * page for some reason, it should redirty the locked page via
2222 * redirty_page_for_writepage() and it should then unlock the page and return 0
2223 */
2224int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2225{
 
 
2226	wbc->pages_skipped++;
 
2227	account_page_redirty(page);
2228	return __set_page_dirty_nobuffers(page);
2229}
2230EXPORT_SYMBOL(redirty_page_for_writepage);
2231
2232/*
2233 * Dirty a page.
2234 *
2235 * For pages with a mapping this should be done under the page lock
2236 * for the benefit of asynchronous memory errors who prefer a consistent
2237 * dirty state. This rule can be broken in some special cases,
2238 * but should be better not to.
2239 *
2240 * If the mapping doesn't provide a set_page_dirty a_op, then
2241 * just fall through and assume that it wants buffer_heads.
2242 */
2243int set_page_dirty(struct page *page)
2244{
2245	struct address_space *mapping = page_mapping(page);
2246
2247	if (likely(mapping)) {
2248		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2249		/*
2250		 * readahead/lru_deactivate_page could remain
2251		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2252		 * About readahead, if the page is written, the flags would be
2253		 * reset. So no problem.
2254		 * About lru_deactivate_page, if the page is redirty, the flag
2255		 * will be reset. So no problem. but if the page is used by readahead
2256		 * it will confuse readahead and make it restart the size rampup
2257		 * process. But it's a trivial problem.
2258		 */
2259		ClearPageReclaim(page);
 
2260#ifdef CONFIG_BLOCK
2261		if (!spd)
2262			spd = __set_page_dirty_buffers;
2263#endif
2264		return (*spd)(page);
2265	}
2266	if (!PageDirty(page)) {
2267		if (!TestSetPageDirty(page))
2268			return 1;
2269	}
2270	return 0;
2271}
2272EXPORT_SYMBOL(set_page_dirty);
2273
2274/*
2275 * set_page_dirty() is racy if the caller has no reference against
2276 * page->mapping->host, and if the page is unlocked.  This is because another
2277 * CPU could truncate the page off the mapping and then free the mapping.
2278 *
2279 * Usually, the page _is_ locked, or the caller is a user-space process which
2280 * holds a reference on the inode by having an open file.
2281 *
2282 * In other cases, the page should be locked before running set_page_dirty().
2283 */
2284int set_page_dirty_lock(struct page *page)
2285{
2286	int ret;
2287
2288	lock_page(page);
2289	ret = set_page_dirty(page);
2290	unlock_page(page);
2291	return ret;
2292}
2293EXPORT_SYMBOL(set_page_dirty_lock);
2294
2295/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2296 * Clear a page's dirty flag, while caring for dirty memory accounting.
2297 * Returns true if the page was previously dirty.
2298 *
2299 * This is for preparing to put the page under writeout.  We leave the page
2300 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2301 * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2302 * implementation will run either set_page_writeback() or set_page_dirty(),
2303 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2304 * back into sync.
2305 *
2306 * This incoherency between the page's dirty flag and radix-tree tag is
2307 * unfortunate, but it only exists while the page is locked.
2308 */
2309int clear_page_dirty_for_io(struct page *page)
2310{
2311	struct address_space *mapping = page_mapping(page);
 
2312
2313	BUG_ON(!PageLocked(page));
2314
2315	if (mapping && mapping_cap_account_dirty(mapping)) {
 
 
 
 
2316		/*
2317		 * Yes, Virginia, this is indeed insane.
2318		 *
2319		 * We use this sequence to make sure that
2320		 *  (a) we account for dirty stats properly
2321		 *  (b) we tell the low-level filesystem to
2322		 *      mark the whole page dirty if it was
2323		 *      dirty in a pagetable. Only to then
2324		 *  (c) clean the page again and return 1 to
2325		 *      cause the writeback.
2326		 *
2327		 * This way we avoid all nasty races with the
2328		 * dirty bit in multiple places and clearing
2329		 * them concurrently from different threads.
2330		 *
2331		 * Note! Normally the "set_page_dirty(page)"
2332		 * has no effect on the actual dirty bit - since
2333		 * that will already usually be set. But we
2334		 * need the side effects, and it can help us
2335		 * avoid races.
2336		 *
2337		 * We basically use the page "master dirty bit"
2338		 * as a serialization point for all the different
2339		 * threads doing their things.
2340		 */
2341		if (page_mkclean(page))
2342			set_page_dirty(page);
2343		/*
2344		 * We carefully synchronise fault handlers against
2345		 * installing a dirty pte and marking the page dirty
2346		 * at this point. We do this by having them hold the
2347		 * page lock at some point after installing their
2348		 * pte, but before marking the page dirty.
2349		 * Pages are always locked coming in here, so we get
2350		 * the desired exclusion. See mm/memory.c:do_wp_page()
2351		 * for more comments.
2352		 */
 
2353		if (TestClearPageDirty(page)) {
 
2354			dec_zone_page_state(page, NR_FILE_DIRTY);
2355			dec_bdi_stat(mapping->backing_dev_info,
2356					BDI_RECLAIMABLE);
2357			return 1;
2358		}
2359		return 0;
 
2360	}
2361	return TestClearPageDirty(page);
2362}
2363EXPORT_SYMBOL(clear_page_dirty_for_io);
2364
2365int test_clear_page_writeback(struct page *page)
2366{
2367	struct address_space *mapping = page_mapping(page);
2368	int ret;
2369	bool locked;
2370	unsigned long memcg_flags;
2371
2372	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2373	if (mapping) {
2374		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
2375		unsigned long flags;
2376
2377		spin_lock_irqsave(&mapping->tree_lock, flags);
2378		ret = TestClearPageWriteback(page);
2379		if (ret) {
2380			radix_tree_tag_clear(&mapping->page_tree,
2381						page_index(page),
2382						PAGECACHE_TAG_WRITEBACK);
2383			if (bdi_cap_account_writeback(bdi)) {
2384				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2385				__bdi_writeout_inc(bdi);
 
 
2386			}
2387		}
2388		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2389	} else {
2390		ret = TestClearPageWriteback(page);
2391	}
2392	if (ret) {
2393		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2394		dec_zone_page_state(page, NR_WRITEBACK);
2395		inc_zone_page_state(page, NR_WRITTEN);
2396	}
2397	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2398	return ret;
2399}
2400
2401int test_set_page_writeback(struct page *page)
2402{
2403	struct address_space *mapping = page_mapping(page);
2404	int ret;
2405	bool locked;
2406	unsigned long memcg_flags;
2407
2408	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2409	if (mapping) {
2410		struct backing_dev_info *bdi = mapping->backing_dev_info;
 
2411		unsigned long flags;
2412
2413		spin_lock_irqsave(&mapping->tree_lock, flags);
2414		ret = TestSetPageWriteback(page);
2415		if (!ret) {
2416			radix_tree_tag_set(&mapping->page_tree,
2417						page_index(page),
2418						PAGECACHE_TAG_WRITEBACK);
2419			if (bdi_cap_account_writeback(bdi))
2420				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2421		}
2422		if (!PageDirty(page))
2423			radix_tree_tag_clear(&mapping->page_tree,
2424						page_index(page),
2425						PAGECACHE_TAG_DIRTY);
2426		radix_tree_tag_clear(&mapping->page_tree,
2427				     page_index(page),
2428				     PAGECACHE_TAG_TOWRITE);
 
2429		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2430	} else {
2431		ret = TestSetPageWriteback(page);
2432	}
2433	if (!ret)
2434		account_page_writeback(page);
2435	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
 
 
2436	return ret;
2437
2438}
2439EXPORT_SYMBOL(test_set_page_writeback);
2440
2441/*
2442 * Return true if any of the pages in the mapping are marked with the
2443 * passed tag.
2444 */
2445int mapping_tagged(struct address_space *mapping, int tag)
2446{
2447	return radix_tree_tagged(&mapping->page_tree, tag);
2448}
2449EXPORT_SYMBOL(mapping_tagged);
2450
2451/**
2452 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2453 * @page:	The page to wait on.
2454 *
2455 * This function determines if the given page is related to a backing device
2456 * that requires page contents to be held stable during writeback.  If so, then
2457 * it will wait for any pending writeback to complete.
2458 */
2459void wait_for_stable_page(struct page *page)
2460{
2461	struct address_space *mapping = page_mapping(page);
2462	struct backing_dev_info *bdi = mapping->backing_dev_info;
2463
2464	if (!bdi_cap_stable_pages_required(bdi))
2465		return;
2466
2467	wait_on_page_writeback(page);
2468}
2469EXPORT_SYMBOL_GPL(wait_for_stable_page);