Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
 
  23#include <linux/pci.h>
 
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34#include "xhci-mtk.h"
 
  35
  36#define DRIVER_AUTHOR "Sarah Sharp"
  37#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  38
  39#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  40
  41/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  42static int link_quirk;
  43module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  44MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  45
  46static unsigned int quirks;
  47module_param(quirks, uint, S_IRUGO);
  48MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  49
  50/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51/*
  52 * xhci_handshake - spin reading hc until handshake completes or fails
  53 * @ptr: address of hc register to be read
  54 * @mask: bits to look at in result of read
  55 * @done: value of those bits when handshake succeeds
  56 * @usec: timeout in microseconds
  57 *
  58 * Returns negative errno, or zero on success
  59 *
  60 * Success happens when the "mask" bits have the specified value (hardware
  61 * handshake done).  There are two failure modes:  "usec" have passed (major
  62 * hardware flakeout), or the register reads as all-ones (hardware removed).
  63 */
  64int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  65{
  66	u32	result;
 
  67
  68	do {
  69		result = readl(ptr);
  70		if (result == ~(u32)0)		/* card removed */
  71			return -ENODEV;
  72		result &= mask;
  73		if (result == done)
  74			return 0;
  75		udelay(1);
  76		usec--;
  77	} while (usec > 0);
  78	return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81/*
  82 * Disable interrupts and begin the xHCI halting process.
  83 */
  84void xhci_quiesce(struct xhci_hcd *xhci)
  85{
  86	u32 halted;
  87	u32 cmd;
  88	u32 mask;
  89
  90	mask = ~(XHCI_IRQS);
  91	halted = readl(&xhci->op_regs->status) & STS_HALT;
  92	if (!halted)
  93		mask &= ~CMD_RUN;
  94
  95	cmd = readl(&xhci->op_regs->command);
  96	cmd &= mask;
  97	writel(cmd, &xhci->op_regs->command);
  98}
  99
 100/*
 101 * Force HC into halt state.
 102 *
 103 * Disable any IRQs and clear the run/stop bit.
 104 * HC will complete any current and actively pipelined transactions, and
 105 * should halt within 16 ms of the run/stop bit being cleared.
 106 * Read HC Halted bit in the status register to see when the HC is finished.
 107 */
 108int xhci_halt(struct xhci_hcd *xhci)
 109{
 110	int ret;
 
 111	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 112	xhci_quiesce(xhci);
 113
 114	ret = xhci_handshake(&xhci->op_regs->status,
 115			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 116	if (!ret) {
 117		xhci->xhc_state |= XHCI_STATE_HALTED;
 118		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 119	} else
 120		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 121				XHCI_MAX_HALT_USEC);
 
 
 122	return ret;
 123}
 124
 125/*
 126 * Set the run bit and wait for the host to be running.
 127 */
 128static int xhci_start(struct xhci_hcd *xhci)
 129{
 130	u32 temp;
 131	int ret;
 132
 133	temp = readl(&xhci->op_regs->command);
 134	temp |= (CMD_RUN);
 135	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 136			temp);
 137	writel(temp, &xhci->op_regs->command);
 138
 139	/*
 140	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 141	 * running.
 142	 */
 143	ret = xhci_handshake(&xhci->op_regs->status,
 144			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 145	if (ret == -ETIMEDOUT)
 146		xhci_err(xhci, "Host took too long to start, "
 147				"waited %u microseconds.\n",
 148				XHCI_MAX_HALT_USEC);
 149	if (!ret)
 150		/* clear state flags. Including dying, halted or removing */
 151		xhci->xhc_state = 0;
 
 
 152
 153	return ret;
 154}
 155
 156/*
 157 * Reset a halted HC.
 158 *
 159 * This resets pipelines, timers, counters, state machines, etc.
 160 * Transactions will be terminated immediately, and operational registers
 161 * will be set to their defaults.
 162 */
 163int xhci_reset(struct xhci_hcd *xhci)
 164{
 165	u32 command;
 166	u32 state;
 167	int ret, i;
 168
 169	state = readl(&xhci->op_regs->status);
 
 
 
 
 
 
 170	if ((state & STS_HALT) == 0) {
 171		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 172		return 0;
 173	}
 174
 175	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 176	command = readl(&xhci->op_regs->command);
 177	command |= CMD_RESET;
 178	writel(command, &xhci->op_regs->command);
 179
 180	/* Existing Intel xHCI controllers require a delay of 1 mS,
 181	 * after setting the CMD_RESET bit, and before accessing any
 182	 * HC registers. This allows the HC to complete the
 183	 * reset operation and be ready for HC register access.
 184	 * Without this delay, the subsequent HC register access,
 185	 * may result in a system hang very rarely.
 186	 */
 187	if (xhci->quirks & XHCI_INTEL_HOST)
 188		udelay(1000);
 189
 190	ret = xhci_handshake(&xhci->op_regs->command,
 191			CMD_RESET, 0, 10 * 1000 * 1000);
 192	if (ret)
 193		return ret;
 194
 
 
 
 195	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 196			 "Wait for controller to be ready for doorbell rings");
 197	/*
 198	 * xHCI cannot write to any doorbells or operational registers other
 199	 * than status until the "Controller Not Ready" flag is cleared.
 200	 */
 201	ret = xhci_handshake(&xhci->op_regs->status,
 202			STS_CNR, 0, 10 * 1000 * 1000);
 203
 204	for (i = 0; i < 2; ++i) {
 205		xhci->bus_state[i].port_c_suspend = 0;
 206		xhci->bus_state[i].suspended_ports = 0;
 207		xhci->bus_state[i].resuming_ports = 0;
 208	}
 209
 210	return ret;
 211}
 212
 213#ifdef CONFIG_PCI
 214static int xhci_free_msi(struct xhci_hcd *xhci)
 215{
 216	int i;
 217
 218	if (!xhci->msix_entries)
 219		return -EINVAL;
 220
 221	for (i = 0; i < xhci->msix_count; i++)
 222		if (xhci->msix_entries[i].vector)
 223			free_irq(xhci->msix_entries[i].vector,
 224					xhci_to_hcd(xhci));
 225	return 0;
 226}
 227
 228/*
 229 * Set up MSI
 230 */
 231static int xhci_setup_msi(struct xhci_hcd *xhci)
 232{
 233	int ret;
 234	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 235
 236	ret = pci_enable_msi(pdev);
 237	if (ret) {
 238		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 239				"failed to allocate MSI entry");
 240		return ret;
 241	}
 242
 243	ret = request_irq(pdev->irq, xhci_msi_irq,
 244				0, "xhci_hcd", xhci_to_hcd(xhci));
 245	if (ret) {
 246		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 247				"disable MSI interrupt");
 248		pci_disable_msi(pdev);
 249	}
 250
 251	return ret;
 252}
 253
 254/*
 255 * Free IRQs
 256 * free all IRQs request
 257 */
 258static void xhci_free_irq(struct xhci_hcd *xhci)
 259{
 260	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 261	int ret;
 
 
 
 262
 263	/* return if using legacy interrupt */
 264	if (xhci_to_hcd(xhci)->irq > 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 265		return;
 266
 267	ret = xhci_free_msi(xhci);
 268	if (!ret)
 269		return;
 270	if (pdev->irq > 0)
 271		free_irq(pdev->irq, xhci_to_hcd(xhci));
 272
 273	return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 274}
 275
 276/*
 277 * Set up MSI-X
 278 */
 279static int xhci_setup_msix(struct xhci_hcd *xhci)
 280{
 281	int i, ret = 0;
 282	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 283	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 284
 285	/*
 286	 * calculate number of msi-x vectors supported.
 287	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 288	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 289	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 290	 *   Add additional 1 vector to ensure always available interrupt.
 291	 */
 292	xhci->msix_count = min(num_online_cpus() + 1,
 293				HCS_MAX_INTRS(xhci->hcs_params1));
 294
 295	xhci->msix_entries =
 296		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 297				GFP_KERNEL);
 298	if (!xhci->msix_entries) {
 299		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 300		return -ENOMEM;
 301	}
 302
 303	for (i = 0; i < xhci->msix_count; i++) {
 304		xhci->msix_entries[i].entry = i;
 305		xhci->msix_entries[i].vector = 0;
 306	}
 307
 308	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
 309	if (ret) {
 310		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 311				"Failed to enable MSI-X");
 312		goto free_entries;
 313	}
 314
 315	for (i = 0; i < xhci->msix_count; i++) {
 316		ret = request_irq(xhci->msix_entries[i].vector,
 317				xhci_msi_irq,
 318				0, "xhci_hcd", xhci_to_hcd(xhci));
 319		if (ret)
 320			goto disable_msix;
 321	}
 322
 323	hcd->msix_enabled = 1;
 324	return ret;
 325
 326disable_msix:
 327	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 328	xhci_free_irq(xhci);
 329	pci_disable_msix(pdev);
 330free_entries:
 331	kfree(xhci->msix_entries);
 332	xhci->msix_entries = NULL;
 333	return ret;
 334}
 335
 336/* Free any IRQs and disable MSI-X */
 337static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 338{
 339	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 340	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 341
 342	if (xhci->quirks & XHCI_PLAT)
 343		return;
 344
 345	xhci_free_irq(xhci);
 
 346
 347	if (xhci->msix_entries) {
 348		pci_disable_msix(pdev);
 349		kfree(xhci->msix_entries);
 350		xhci->msix_entries = NULL;
 351	} else {
 352		pci_disable_msi(pdev);
 353	}
 354
 355	hcd->msix_enabled = 0;
 356	return;
 357}
 358
 359static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 360{
 361	int i;
 362
 363	if (xhci->msix_entries) {
 364		for (i = 0; i < xhci->msix_count; i++)
 365			synchronize_irq(xhci->msix_entries[i].vector);
 366	}
 367}
 368
 369static int xhci_try_enable_msi(struct usb_hcd *hcd)
 
 
 370{
 371	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 372	struct pci_dev  *pdev;
 373	int ret;
 374
 375	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 376	if (xhci->quirks & XHCI_PLAT)
 377		return 0;
 378
 379	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 380	/*
 381	 * Some Fresco Logic host controllers advertise MSI, but fail to
 382	 * generate interrupts.  Don't even try to enable MSI.
 383	 */
 384	if (xhci->quirks & XHCI_BROKEN_MSI)
 385		goto legacy_irq;
 386
 387	/* unregister the legacy interrupt */
 388	if (hcd->irq)
 389		free_irq(hcd->irq, hcd);
 390	hcd->irq = 0;
 391
 392	ret = xhci_setup_msix(xhci);
 393	if (ret)
 394		/* fall back to msi*/
 395		ret = xhci_setup_msi(xhci);
 396
 397	if (!ret)
 398		/* hcd->irq is 0, we have MSI */
 399		return 0;
 400
 401	if (!pdev->irq) {
 402		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 403		return -EINVAL;
 404	}
 405
 406 legacy_irq:
 407	if (!strlen(hcd->irq_descr))
 408		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 409			 hcd->driver->description, hcd->self.busnum);
 410
 411	/* fall back to legacy interrupt*/
 412	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 413			hcd->irq_descr, hcd);
 414	if (ret) {
 415		xhci_err(xhci, "request interrupt %d failed\n",
 416				pdev->irq);
 417		return ret;
 418	}
 419	hcd->irq = pdev->irq;
 420	return 0;
 421}
 422
 423#else
 424
 425static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 426{
 427	return 0;
 428}
 429
 430static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 431{
 432}
 433
 434static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 435{
 436}
 437
 438#endif
 439
 440static void compliance_mode_recovery(unsigned long arg)
 441{
 442	struct xhci_hcd *xhci;
 443	struct usb_hcd *hcd;
 
 444	u32 temp;
 445	int i;
 446
 447	xhci = (struct xhci_hcd *)arg;
 
 
 448
 449	for (i = 0; i < xhci->num_usb3_ports; i++) {
 450		temp = readl(xhci->usb3_ports[i]);
 
 
 
 451		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 452			/*
 453			 * Compliance Mode Detected. Letting USB Core
 454			 * handle the Warm Reset
 455			 */
 456			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 457					"Compliance mode detected->port %d",
 458					i + 1);
 459			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 460					"Attempting compliance mode recovery");
 461			hcd = xhci->shared_hcd;
 462
 463			if (hcd->state == HC_STATE_SUSPENDED)
 464				usb_hcd_resume_root_hub(hcd);
 465
 466			usb_hcd_poll_rh_status(hcd);
 467		}
 468	}
 469
 470	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 471		mod_timer(&xhci->comp_mode_recovery_timer,
 472			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 473}
 474
 475/*
 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 477 * that causes ports behind that hardware to enter compliance mode sometimes.
 478 * The quirk creates a timer that polls every 2 seconds the link state of
 479 * each host controller's port and recovers it by issuing a Warm reset
 480 * if Compliance mode is detected, otherwise the port will become "dead" (no
 481 * device connections or disconnections will be detected anymore). Becasue no
 482 * status event is generated when entering compliance mode (per xhci spec),
 483 * this quirk is needed on systems that have the failing hardware installed.
 484 */
 485static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 486{
 487	xhci->port_status_u0 = 0;
 488	setup_timer(&xhci->comp_mode_recovery_timer,
 489		    compliance_mode_recovery, (unsigned long)xhci);
 490	xhci->comp_mode_recovery_timer.expires = jiffies +
 491			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 492
 493	set_timer_slack(&xhci->comp_mode_recovery_timer,
 494			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 495	add_timer(&xhci->comp_mode_recovery_timer);
 496	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497			"Compliance mode recovery timer initialized");
 498}
 499
 500/*
 501 * This function identifies the systems that have installed the SN65LVPE502CP
 502 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 503 * Systems:
 504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 505 */
 506static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 507{
 508	const char *dmi_product_name, *dmi_sys_vendor;
 509
 510	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 511	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 512	if (!dmi_product_name || !dmi_sys_vendor)
 513		return false;
 514
 515	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 516		return false;
 517
 518	if (strstr(dmi_product_name, "Z420") ||
 519			strstr(dmi_product_name, "Z620") ||
 520			strstr(dmi_product_name, "Z820") ||
 521			strstr(dmi_product_name, "Z1 Workstation"))
 522		return true;
 523
 524	return false;
 525}
 526
 527static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 528{
 529	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 530}
 531
 532
 533/*
 534 * Initialize memory for HCD and xHC (one-time init).
 535 *
 536 * Program the PAGESIZE register, initialize the device context array, create
 537 * device contexts (?), set up a command ring segment (or two?), create event
 538 * ring (one for now).
 539 */
 540int xhci_init(struct usb_hcd *hcd)
 541{
 542	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 543	int retval = 0;
 544
 545	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 546	spin_lock_init(&xhci->lock);
 547	if (xhci->hci_version == 0x95 && link_quirk) {
 548		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 549				"QUIRK: Not clearing Link TRB chain bits.");
 550		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 551	} else {
 552		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 553				"xHCI doesn't need link TRB QUIRK");
 554	}
 555	retval = xhci_mem_init(xhci, GFP_KERNEL);
 556	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 557
 558	/* Initializing Compliance Mode Recovery Data If Needed */
 559	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 560		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 561		compliance_mode_recovery_timer_init(xhci);
 562	}
 563
 564	return retval;
 565}
 566
 567/*-------------------------------------------------------------------------*/
 568
 569
 570static int xhci_run_finished(struct xhci_hcd *xhci)
 571{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 572	if (xhci_start(xhci)) {
 573		xhci_halt(xhci);
 
 574		return -ENODEV;
 575	}
 576	xhci->shared_hcd->state = HC_STATE_RUNNING;
 577	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 578
 579	if (xhci->quirks & XHCI_NEC_HOST)
 580		xhci_ring_cmd_db(xhci);
 581
 582	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 583			"Finished xhci_run for USB3 roothub");
 584	return 0;
 585}
 586
 587/*
 588 * Start the HC after it was halted.
 589 *
 590 * This function is called by the USB core when the HC driver is added.
 591 * Its opposite is xhci_stop().
 592 *
 593 * xhci_init() must be called once before this function can be called.
 594 * Reset the HC, enable device slot contexts, program DCBAAP, and
 595 * set command ring pointer and event ring pointer.
 596 *
 597 * Setup MSI-X vectors and enable interrupts.
 598 */
 599int xhci_run(struct usb_hcd *hcd)
 600{
 601	u32 temp;
 602	u64 temp_64;
 603	int ret;
 604	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 605
 606	/* Start the xHCI host controller running only after the USB 2.0 roothub
 607	 * is setup.
 608	 */
 609
 610	hcd->uses_new_polling = 1;
 
 
 
 611	if (!usb_hcd_is_primary_hcd(hcd))
 612		return xhci_run_finished(xhci);
 613
 614	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 615
 616	ret = xhci_try_enable_msi(hcd);
 617	if (ret)
 618		return ret;
 619
 620	xhci_dbg(xhci, "Command ring memory map follows:\n");
 621	xhci_debug_ring(xhci, xhci->cmd_ring);
 622	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 623	xhci_dbg_cmd_ptrs(xhci);
 624
 625	xhci_dbg(xhci, "ERST memory map follows:\n");
 626	xhci_dbg_erst(xhci, &xhci->erst);
 627	xhci_dbg(xhci, "Event ring:\n");
 628	xhci_debug_ring(xhci, xhci->event_ring);
 629	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 630	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 631	temp_64 &= ~ERST_PTR_MASK;
 632	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 633			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 634
 635	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 636			"// Set the interrupt modulation register");
 637	temp = readl(&xhci->ir_set->irq_control);
 638	temp &= ~ER_IRQ_INTERVAL_MASK;
 639	/*
 640	 * the increment interval is 8 times as much as that defined
 641	 * in xHCI spec on MTK's controller
 642	 */
 643	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
 644	writel(temp, &xhci->ir_set->irq_control);
 645
 646	/* Set the HCD state before we enable the irqs */
 647	temp = readl(&xhci->op_regs->command);
 648	temp |= (CMD_EIE);
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 650			"// Enable interrupts, cmd = 0x%x.", temp);
 651	writel(temp, &xhci->op_regs->command);
 652
 653	temp = readl(&xhci->ir_set->irq_pending);
 654	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 655			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 656			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 657	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 658	xhci_print_ir_set(xhci, 0);
 659
 660	if (xhci->quirks & XHCI_NEC_HOST) {
 661		struct xhci_command *command;
 662		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
 
 663		if (!command)
 664			return -ENOMEM;
 665		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 666				TRB_TYPE(TRB_NEC_GET_FW));
 
 
 667	}
 668	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 669			"Finished xhci_run for USB2 roothub");
 
 
 
 
 
 
 
 
 
 
 670	return 0;
 671}
 672EXPORT_SYMBOL_GPL(xhci_run);
 673
 674/*
 675 * Stop xHCI driver.
 676 *
 677 * This function is called by the USB core when the HC driver is removed.
 678 * Its opposite is xhci_run().
 679 *
 680 * Disable device contexts, disable IRQs, and quiesce the HC.
 681 * Reset the HC, finish any completed transactions, and cleanup memory.
 682 */
 683void xhci_stop(struct usb_hcd *hcd)
 684{
 685	u32 temp;
 686	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 687
 688	if (xhci->xhc_state & XHCI_STATE_HALTED)
 
 
 
 
 689		return;
 
 
 
 690
 691	mutex_lock(&xhci->mutex);
 692	spin_lock_irq(&xhci->lock);
 693	xhci->xhc_state |= XHCI_STATE_HALTED;
 694	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 695
 696	/* Make sure the xHC is halted for a USB3 roothub
 697	 * (xhci_stop() could be called as part of failed init).
 698	 */
 699	xhci_halt(xhci);
 700	xhci_reset(xhci);
 701	spin_unlock_irq(&xhci->lock);
 702
 703	xhci_cleanup_msix(xhci);
 704
 705	/* Deleting Compliance Mode Recovery Timer */
 706	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 707			(!(xhci_all_ports_seen_u0(xhci)))) {
 708		del_timer_sync(&xhci->comp_mode_recovery_timer);
 709		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 710				"%s: compliance mode recovery timer deleted",
 711				__func__);
 712	}
 713
 714	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 715		usb_amd_dev_put();
 716
 717	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 718			"// Disabling event ring interrupts");
 719	temp = readl(&xhci->op_regs->status);
 720	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 721	temp = readl(&xhci->ir_set->irq_pending);
 722	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 723	xhci_print_ir_set(xhci, 0);
 724
 725	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 726	xhci_mem_cleanup(xhci);
 
 727	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 728			"xhci_stop completed - status = %x",
 729			readl(&xhci->op_regs->status));
 730	mutex_unlock(&xhci->mutex);
 731}
 
 732
 733/*
 734 * Shutdown HC (not bus-specific)
 735 *
 736 * This is called when the machine is rebooting or halting.  We assume that the
 737 * machine will be powered off, and the HC's internal state will be reset.
 738 * Don't bother to free memory.
 739 *
 740 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 741 */
 742void xhci_shutdown(struct usb_hcd *hcd)
 743{
 744	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 745
 746	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 747		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 
 
 
 
 
 
 
 
 
 
 
 748
 749	spin_lock_irq(&xhci->lock);
 750	xhci_halt(xhci);
 751	/* Workaround for spurious wakeups at shutdown with HSW */
 752	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 753		xhci_reset(xhci);
 754	spin_unlock_irq(&xhci->lock);
 755
 756	xhci_cleanup_msix(xhci);
 
 
 
 
 
 
 
 
 757
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_shutdown completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761
 762	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 763	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 764		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 765}
 
 766
 767#ifdef CONFIG_PM
 768static void xhci_save_registers(struct xhci_hcd *xhci)
 769{
 
 
 
 770	xhci->s3.command = readl(&xhci->op_regs->command);
 771	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 772	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 773	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 774	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 775	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 776	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 777	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 778	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 779}
 780
 781static void xhci_restore_registers(struct xhci_hcd *xhci)
 782{
 
 
 
 783	writel(xhci->s3.command, &xhci->op_regs->command);
 784	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 785	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 786	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 787	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 788	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 789	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 790	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 791	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 
 
 
 
 
 
 
 
 792}
 793
 794static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 795{
 796	u64	val_64;
 797
 798	/* step 2: initialize command ring buffer */
 799	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 800	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 801		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 802				      xhci->cmd_ring->dequeue) &
 803		 (u64) ~CMD_RING_RSVD_BITS) |
 804		xhci->cmd_ring->cycle_state;
 805	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 806			"// Setting command ring address to 0x%llx",
 807			(long unsigned long) val_64);
 808	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 809}
 810
 811/*
 812 * The whole command ring must be cleared to zero when we suspend the host.
 813 *
 814 * The host doesn't save the command ring pointer in the suspend well, so we
 815 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 816 * aligned, because of the reserved bits in the command ring dequeue pointer
 817 * register.  Therefore, we can't just set the dequeue pointer back in the
 818 * middle of the ring (TRBs are 16-byte aligned).
 819 */
 820static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 821{
 822	struct xhci_ring *ring;
 823	struct xhci_segment *seg;
 824
 825	ring = xhci->cmd_ring;
 826	seg = ring->deq_seg;
 827	do {
 828		memset(seg->trbs, 0,
 829			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 830		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 831			cpu_to_le32(~TRB_CYCLE);
 832		seg = seg->next;
 833	} while (seg != ring->deq_seg);
 834
 835	/* Reset the software enqueue and dequeue pointers */
 836	ring->deq_seg = ring->first_seg;
 837	ring->dequeue = ring->first_seg->trbs;
 838	ring->enq_seg = ring->deq_seg;
 839	ring->enqueue = ring->dequeue;
 840
 841	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 842	/*
 843	 * Ring is now zeroed, so the HW should look for change of ownership
 844	 * when the cycle bit is set to 1.
 845	 */
 846	ring->cycle_state = 1;
 847
 
 848	/*
 849	 * Reset the hardware dequeue pointer.
 850	 * Yes, this will need to be re-written after resume, but we're paranoid
 851	 * and want to make sure the hardware doesn't access bogus memory
 852	 * because, say, the BIOS or an SMI started the host without changing
 853	 * the command ring pointers.
 854	 */
 855	xhci_set_cmd_ring_deq(xhci);
 856}
 857
 858static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 
 
 
 
 
 
 
 
 
 
 
 859{
 860	int port_index;
 861	__le32 __iomem **port_array;
 862	unsigned long flags;
 863	u32 t1, t2;
 
 864
 865	spin_lock_irqsave(&xhci->lock, flags);
 866
 867	/* disble usb3 ports Wake bits*/
 868	port_index = xhci->num_usb3_ports;
 869	port_array = xhci->usb3_ports;
 870	while (port_index--) {
 871		t1 = readl(port_array[port_index]);
 872		t1 = xhci_port_state_to_neutral(t1);
 873		t2 = t1 & ~PORT_WAKE_BITS;
 874		if (t1 != t2)
 875			writel(t2, port_array[port_index]);
 
 
 
 
 
 
 
 
 
 876	}
 
 
 
 
 
 
 
 
 
 877
 878	/* disble usb2 ports Wake bits*/
 879	port_index = xhci->num_usb2_ports;
 880	port_array = xhci->usb2_ports;
 
 
 
 
 
 
 
 
 881	while (port_index--) {
 882		t1 = readl(port_array[port_index]);
 883		t1 = xhci_port_state_to_neutral(t1);
 884		t2 = t1 & ~PORT_WAKE_BITS;
 885		if (t1 != t2)
 886			writel(t2, port_array[port_index]);
 887	}
 888
 889	spin_unlock_irqrestore(&xhci->lock, flags);
 
 
 
 
 
 
 
 890}
 891
 892/*
 893 * Stop HC (not bus-specific)
 894 *
 895 * This is called when the machine transition into S3/S4 mode.
 896 *
 897 */
 898int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 899{
 900	int			rc = 0;
 901	unsigned int		delay = XHCI_MAX_HALT_USEC;
 902	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 903	u32			command;
 
 904
 905	if (!hcd->state)
 906		return 0;
 907
 908	if (hcd->state != HC_STATE_SUSPENDED ||
 909			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 910		return -EINVAL;
 911
 912	/* Clear root port wake on bits if wakeup not allowed. */
 913	if (!do_wakeup)
 914		xhci_disable_port_wake_on_bits(xhci);
 
 
 
 
 
 915
 916	/* Don't poll the roothubs on bus suspend. */
 917	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 
 918	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 919	del_timer_sync(&hcd->rh_timer);
 920	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 921	del_timer_sync(&xhci->shared_hcd->rh_timer);
 
 
 
 
 
 922
 923	spin_lock_irq(&xhci->lock);
 924	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 925	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
 926	/* step 1: stop endpoint */
 927	/* skipped assuming that port suspend has done */
 928
 929	/* step 2: clear Run/Stop bit */
 930	command = readl(&xhci->op_regs->command);
 931	command &= ~CMD_RUN;
 932	writel(command, &xhci->op_regs->command);
 933
 934	/* Some chips from Fresco Logic need an extraordinary delay */
 935	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 936
 937	if (xhci_handshake(&xhci->op_regs->status,
 938		      STS_HALT, STS_HALT, delay)) {
 939		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 940		spin_unlock_irq(&xhci->lock);
 941		return -ETIMEDOUT;
 942	}
 943	xhci_clear_command_ring(xhci);
 944
 945	/* step 3: save registers */
 946	xhci_save_registers(xhci);
 947
 948	/* step 4: set CSS flag */
 949	command = readl(&xhci->op_regs->command);
 950	command |= CMD_CSS;
 951	writel(command, &xhci->op_regs->command);
 
 952	if (xhci_handshake(&xhci->op_regs->status,
 953				STS_SAVE, 0, 10 * 1000)) {
 954		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 955		spin_unlock_irq(&xhci->lock);
 956		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957	}
 958	spin_unlock_irq(&xhci->lock);
 959
 960	/*
 961	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 962	 * is about to be suspended.
 963	 */
 964	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 965			(!(xhci_all_ports_seen_u0(xhci)))) {
 966		del_timer_sync(&xhci->comp_mode_recovery_timer);
 967		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 968				"%s: compliance mode recovery timer deleted",
 969				__func__);
 970	}
 971
 972	/* step 5: remove core well power */
 973	/* synchronize irq when using MSI-X */
 974	xhci_msix_sync_irqs(xhci);
 975
 976	return rc;
 977}
 978EXPORT_SYMBOL_GPL(xhci_suspend);
 979
 980/*
 981 * start xHC (not bus-specific)
 982 *
 983 * This is called when the machine transition from S3/S4 mode.
 984 *
 985 */
 986int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 987{
 988	u32			command, temp = 0, status;
 
 989	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 990	struct usb_hcd		*secondary_hcd;
 991	int			retval = 0;
 992	bool			comp_timer_running = false;
 
 
 
 993
 994	if (!hcd->state)
 995		return 0;
 996
 997	/* Wait a bit if either of the roothubs need to settle from the
 998	 * transition into bus suspend.
 999	 */
1000	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001			time_before(jiffies,
1002				xhci->bus_state[1].next_statechange))
1003		msleep(100);
1004
1005	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 
1007
1008	spin_lock_irq(&xhci->lock);
1009	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010		hibernated = true;
1011
1012	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013		/* step 1: restore register */
1014		xhci_restore_registers(xhci);
1015		/* step 2: initialize command ring buffer */
1016		xhci_set_cmd_ring_deq(xhci);
1017		/* step 3: restore state and start state*/
1018		/* step 3: set CRS flag */
1019		command = readl(&xhci->op_regs->command);
1020		command |= CMD_CRS;
1021		writel(command, &xhci->op_regs->command);
 
 
 
 
 
1022		if (xhci_handshake(&xhci->op_regs->status,
1023			      STS_RESTORE, 0, 10 * 1000)) {
1024			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025			spin_unlock_irq(&xhci->lock);
1026			return -ETIMEDOUT;
1027		}
1028		temp = readl(&xhci->op_regs->status);
1029	}
1030
1031	/* If restore operation fails, re-initialize the HC during resume */
1032	if ((temp & STS_SRE) || hibernated) {
1033
 
 
 
 
 
 
 
 
 
1034		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035				!(xhci_all_ports_seen_u0(xhci))) {
1036			del_timer_sync(&xhci->comp_mode_recovery_timer);
1037			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038				"Compliance Mode Recovery Timer deleted!");
1039		}
1040
1041		/* Let the USB core know _both_ roothubs lost power. */
1042		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
 
1044
1045		xhci_dbg(xhci, "Stop HCD\n");
1046		xhci_halt(xhci);
1047		xhci_reset(xhci);
 
1048		spin_unlock_irq(&xhci->lock);
1049		xhci_cleanup_msix(xhci);
 
1050
1051		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052		temp = readl(&xhci->op_regs->status);
1053		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054		temp = readl(&xhci->ir_set->irq_pending);
1055		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056		xhci_print_ir_set(xhci, 0);
1057
1058		xhci_dbg(xhci, "cleaning up memory\n");
1059		xhci_mem_cleanup(xhci);
 
1060		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061			    readl(&xhci->op_regs->status));
1062
1063		/* USB core calls the PCI reinit and start functions twice:
1064		 * first with the primary HCD, and then with the secondary HCD.
1065		 * If we don't do the same, the host will never be started.
1066		 */
1067		if (!usb_hcd_is_primary_hcd(hcd))
1068			secondary_hcd = hcd;
1069		else
1070			secondary_hcd = xhci->shared_hcd;
1071
1072		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073		retval = xhci_init(hcd->primary_hcd);
1074		if (retval)
1075			return retval;
1076		comp_timer_running = true;
1077
1078		xhci_dbg(xhci, "Start the primary HCD\n");
1079		retval = xhci_run(hcd->primary_hcd);
1080		if (!retval) {
1081			xhci_dbg(xhci, "Start the secondary HCD\n");
1082			retval = xhci_run(secondary_hcd);
1083		}
 
 
 
 
 
 
1084		hcd->state = HC_STATE_SUSPENDED;
1085		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
 
 
 
 
 
 
1086		goto done;
1087	}
1088
1089	/* step 4: set Run/Stop bit */
1090	command = readl(&xhci->op_regs->command);
1091	command |= CMD_RUN;
1092	writel(command, &xhci->op_regs->command);
1093	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094		  0, 250 * 1000);
1095
1096	/* step 5: walk topology and initialize portsc,
1097	 * portpmsc and portli
1098	 */
1099	/* this is done in bus_resume */
1100
1101	/* step 6: restart each of the previously
1102	 * Running endpoints by ringing their doorbells
1103	 */
1104
1105	spin_unlock_irq(&xhci->lock);
1106
1107 done:
 
1108	if (retval == 0) {
1109		/* Resume root hubs only when have pending events. */
1110		status = readl(&xhci->op_regs->status);
1111		if (status & STS_EINT) {
1112			usb_hcd_resume_root_hub(xhci->shared_hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113			usb_hcd_resume_root_hub(hcd);
1114		}
1115	}
1116
1117	/*
1118	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1119	 * be re-initialized Always after a system resume. Ports are subject
1120	 * to suffer the Compliance Mode issue again. It doesn't matter if
1121	 * ports have entered previously to U0 before system's suspension.
1122	 */
1123	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124		compliance_mode_recovery_timer_init(xhci);
1125
 
 
 
1126	/* Re-enable port polling. */
1127	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129	usb_hcd_poll_rh_status(xhci->shared_hcd);
 
 
 
1130	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131	usb_hcd_poll_rh_status(hcd);
1132
1133	return retval;
1134}
1135EXPORT_SYMBOL_GPL(xhci_resume);
1136#endif	/* CONFIG_PM */
1137
1138/*-------------------------------------------------------------------------*/
1139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140/**
1141 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143 * value to right shift 1 for the bitmask.
1144 *
1145 * Index  = (epnum * 2) + direction - 1,
1146 * where direction = 0 for OUT, 1 for IN.
1147 * For control endpoints, the IN index is used (OUT index is unused), so
1148 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149 */
1150unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151{
1152	unsigned int index;
1153	if (usb_endpoint_xfer_control(desc))
1154		index = (unsigned int) (usb_endpoint_num(desc)*2);
1155	else
1156		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158	return index;
1159}
 
1160
1161/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162 * address from the XHCI endpoint index.
1163 */
1164unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165{
1166	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168	return direction | number;
1169}
1170
1171/* Find the flag for this endpoint (for use in the control context).  Use the
1172 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173 * bit 1, etc.
1174 */
1175unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176{
1177	return 1 << (xhci_get_endpoint_index(desc) + 1);
1178}
1179
1180/* Find the flag for this endpoint (for use in the control context).  Use the
1181 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182 * bit 1, etc.
1183 */
1184unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185{
1186	return 1 << (ep_index + 1);
1187}
1188
1189/* Compute the last valid endpoint context index.  Basically, this is the
1190 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191 * we find the most significant bit set in the added contexts flags.
1192 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194 */
1195unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196{
1197	return fls(added_ctxs) - 1;
1198}
1199
1200/* Returns 1 if the arguments are OK;
1201 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202 */
1203static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205		const char *func) {
1206	struct xhci_hcd	*xhci;
1207	struct xhci_virt_device	*virt_dev;
1208
1209	if (!hcd || (check_ep && !ep) || !udev) {
1210		pr_debug("xHCI %s called with invalid args\n", func);
1211		return -EINVAL;
1212	}
1213	if (!udev->parent) {
1214		pr_debug("xHCI %s called for root hub\n", func);
1215		return 0;
1216	}
1217
1218	xhci = hcd_to_xhci(hcd);
1219	if (check_virt_dev) {
1220		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222					func);
1223			return -EINVAL;
1224		}
1225
1226		virt_dev = xhci->devs[udev->slot_id];
1227		if (virt_dev->udev != udev) {
1228			xhci_dbg(xhci, "xHCI %s called with udev and "
1229					  "virt_dev does not match\n", func);
1230			return -EINVAL;
1231		}
1232	}
1233
1234	if (xhci->xhc_state & XHCI_STATE_HALTED)
1235		return -ENODEV;
1236
1237	return 1;
1238}
1239
1240static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241		struct usb_device *udev, struct xhci_command *command,
1242		bool ctx_change, bool must_succeed);
1243
1244/*
1245 * Full speed devices may have a max packet size greater than 8 bytes, but the
1246 * USB core doesn't know that until it reads the first 8 bytes of the
1247 * descriptor.  If the usb_device's max packet size changes after that point,
1248 * we need to issue an evaluate context command and wait on it.
1249 */
1250static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251		unsigned int ep_index, struct urb *urb)
1252{
1253	struct xhci_container_ctx *out_ctx;
1254	struct xhci_input_control_ctx *ctrl_ctx;
1255	struct xhci_ep_ctx *ep_ctx;
1256	struct xhci_command *command;
1257	int max_packet_size;
1258	int hw_max_packet_size;
1259	int ret = 0;
1260
1261	out_ctx = xhci->devs[slot_id]->out_ctx;
1262	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265	if (hw_max_packet_size != max_packet_size) {
 
 
 
 
 
1266		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267				"Max Packet Size for ep 0 changed.");
1268		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269				"Max packet size in usb_device = %d",
1270				max_packet_size);
1271		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272				"Max packet size in xHCI HW = %d",
1273				hw_max_packet_size);
1274		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275				"Issuing evaluate context command.");
1276
1277		/* Set up the input context flags for the command */
1278		/* FIXME: This won't work if a non-default control endpoint
1279		 * changes max packet sizes.
1280		 */
1281
1282		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283		if (!command)
1284			return -ENOMEM;
1285
1286		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288		if (!ctrl_ctx) {
1289			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290					__func__);
1291			ret = -ENOMEM;
1292			goto command_cleanup;
1293		}
1294		/* Set up the modified control endpoint 0 */
1295		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296				xhci->devs[slot_id]->out_ctx, ep_index);
1297
1298		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
 
1299		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301
1302		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303		ctrl_ctx->drop_flags = 0;
1304
1305		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309
1310		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311				true, false);
1312
1313		/* Clean up the input context for later use by bandwidth
1314		 * functions.
1315		 */
1316		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317command_cleanup:
1318		kfree(command->completion);
1319		kfree(command);
 
 
1320	}
 
 
 
 
1321	return ret;
1322}
1323
1324/*
1325 * non-error returns are a promise to giveback() the urb later
1326 * we drop ownership so next owner (or urb unlink) can get it
1327 */
1328int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329{
1330	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331	struct xhci_td *buffer;
1332	unsigned long flags;
1333	int ret = 0;
1334	unsigned int slot_id, ep_index;
 
1335	struct urb_priv	*urb_priv;
1336	int size, i;
1337
1338	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339					true, true, __func__) <= 0)
1340		return -EINVAL;
1341
1342	slot_id = urb->dev->slot_id;
1343	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1344
1345	if (!HCD_HW_ACCESSIBLE(hcd)) {
1346		if (!in_interrupt())
1347			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348		ret = -ESHUTDOWN;
1349		goto exit;
1350	}
1351
1352	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353		size = urb->number_of_packets;
1354	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355	    urb->transfer_buffer_length > 0 &&
1356	    urb->transfer_flags & URB_ZERO_PACKET &&
1357	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358		size = 2;
1359	else
1360		size = 1;
1361
1362	urb_priv = kzalloc(sizeof(struct urb_priv) +
1363				  size * sizeof(struct xhci_td *), mem_flags);
1364	if (!urb_priv)
1365		return -ENOMEM;
1366
1367	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368	if (!buffer) {
1369		kfree(urb_priv);
1370		return -ENOMEM;
 
 
 
 
 
 
 
 
 
1371	}
1372
1373	for (i = 0; i < size; i++) {
1374		urb_priv->td[i] = buffer;
1375		buffer++;
 
 
1376	}
1377
1378	urb_priv->length = size;
1379	urb_priv->td_cnt = 0;
1380	urb->hcpriv = urb_priv;
 
 
1381
1382	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383		/* Check to see if the max packet size for the default control
1384		 * endpoint changed during FS device enumeration
1385		 */
1386		if (urb->dev->speed == USB_SPEED_FULL) {
1387			ret = xhci_check_maxpacket(xhci, slot_id,
1388					ep_index, urb);
1389			if (ret < 0) {
1390				xhci_urb_free_priv(urb_priv);
1391				urb->hcpriv = NULL;
1392				return ret;
1393			}
1394		}
1395
1396		/* We have a spinlock and interrupts disabled, so we must pass
1397		 * atomic context to this function, which may allocate memory.
1398		 */
1399		spin_lock_irqsave(&xhci->lock, flags);
1400		if (xhci->xhc_state & XHCI_STATE_DYING)
1401			goto dying;
 
 
 
 
 
 
 
 
 
 
 
1402		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403				slot_id, ep_index);
1404		if (ret)
1405			goto free_priv;
1406		spin_unlock_irqrestore(&xhci->lock, flags);
1407	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408		spin_lock_irqsave(&xhci->lock, flags);
1409		if (xhci->xhc_state & XHCI_STATE_DYING)
1410			goto dying;
1411		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412				EP_GETTING_STREAMS) {
1413			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414					"is transitioning to using streams.\n");
1415			ret = -EINVAL;
1416		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417				EP_GETTING_NO_STREAMS) {
1418			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419					"is transitioning to "
1420					"not having streams.\n");
1421			ret = -EINVAL;
1422		} else {
1423			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424					slot_id, ep_index);
1425		}
1426		if (ret)
1427			goto free_priv;
1428		spin_unlock_irqrestore(&xhci->lock, flags);
1429	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430		spin_lock_irqsave(&xhci->lock, flags);
1431		if (xhci->xhc_state & XHCI_STATE_DYING)
1432			goto dying;
1433		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434				slot_id, ep_index);
1435		if (ret)
1436			goto free_priv;
1437		spin_unlock_irqrestore(&xhci->lock, flags);
1438	} else {
1439		spin_lock_irqsave(&xhci->lock, flags);
1440		if (xhci->xhc_state & XHCI_STATE_DYING)
1441			goto dying;
1442		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443				slot_id, ep_index);
1444		if (ret)
1445			goto free_priv;
1446		spin_unlock_irqrestore(&xhci->lock, flags);
1447	}
1448exit:
1449	return ret;
1450dying:
1451	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452			"non-responsive xHCI host.\n",
1453			urb->ep->desc.bEndpointAddress, urb);
1454	ret = -ESHUTDOWN;
1455free_priv:
1456	xhci_urb_free_priv(urb_priv);
1457	urb->hcpriv = NULL;
 
1458	spin_unlock_irqrestore(&xhci->lock, flags);
1459	return ret;
1460}
1461
1462/* Get the right ring for the given URB.
1463 * If the endpoint supports streams, boundary check the URB's stream ID.
1464 * If the endpoint doesn't support streams, return the singular endpoint ring.
1465 */
1466static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1467		struct urb *urb)
1468{
1469	unsigned int slot_id;
1470	unsigned int ep_index;
1471	unsigned int stream_id;
1472	struct xhci_virt_ep *ep;
1473
1474	slot_id = urb->dev->slot_id;
1475	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1476	stream_id = urb->stream_id;
1477	ep = &xhci->devs[slot_id]->eps[ep_index];
1478	/* Common case: no streams */
1479	if (!(ep->ep_state & EP_HAS_STREAMS))
1480		return ep->ring;
1481
1482	if (stream_id == 0) {
1483		xhci_warn(xhci,
1484				"WARN: Slot ID %u, ep index %u has streams, "
1485				"but URB has no stream ID.\n",
1486				slot_id, ep_index);
1487		return NULL;
1488	}
1489
1490	if (stream_id < ep->stream_info->num_streams)
1491		return ep->stream_info->stream_rings[stream_id];
1492
1493	xhci_warn(xhci,
1494			"WARN: Slot ID %u, ep index %u has "
1495			"stream IDs 1 to %u allocated, "
1496			"but stream ID %u is requested.\n",
1497			slot_id, ep_index,
1498			ep->stream_info->num_streams - 1,
1499			stream_id);
1500	return NULL;
1501}
1502
1503/*
1504 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1505 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1506 * should pick up where it left off in the TD, unless a Set Transfer Ring
1507 * Dequeue Pointer is issued.
1508 *
1509 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1510 * the ring.  Since the ring is a contiguous structure, they can't be physically
1511 * removed.  Instead, there are two options:
1512 *
1513 *  1) If the HC is in the middle of processing the URB to be canceled, we
1514 *     simply move the ring's dequeue pointer past those TRBs using the Set
1515 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1516 *     when drivers timeout on the last submitted URB and attempt to cancel.
1517 *
1518 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1519 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1520 *     HC will need to invalidate the any TRBs it has cached after the stop
1521 *     endpoint command, as noted in the xHCI 0.95 errata.
1522 *
1523 *  3) The TD may have completed by the time the Stop Endpoint Command
1524 *     completes, so software needs to handle that case too.
1525 *
1526 * This function should protect against the TD enqueueing code ringing the
1527 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1528 * It also needs to account for multiple cancellations on happening at the same
1529 * time for the same endpoint.
1530 *
1531 * Note that this function can be called in any context, or so says
1532 * usb_hcd_unlink_urb()
1533 */
1534int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1535{
1536	unsigned long flags;
1537	int ret, i;
1538	u32 temp;
1539	struct xhci_hcd *xhci;
1540	struct urb_priv	*urb_priv;
1541	struct xhci_td *td;
1542	unsigned int ep_index;
1543	struct xhci_ring *ep_ring;
1544	struct xhci_virt_ep *ep;
1545	struct xhci_command *command;
 
1546
1547	xhci = hcd_to_xhci(hcd);
1548	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1549	/* Make sure the URB hasn't completed or been unlinked already */
1550	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1551	if (ret || !urb->hcpriv)
1552		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553	temp = readl(&xhci->op_regs->status);
1554	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1556				"HW died, freeing TD.");
1557		urb_priv = urb->hcpriv;
1558		for (i = urb_priv->td_cnt;
1559		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1560		     i++) {
1561			td = urb_priv->td[i];
1562			if (!list_empty(&td->td_list))
1563				list_del_init(&td->td_list);
1564			if (!list_empty(&td->cancelled_td_list))
1565				list_del_init(&td->cancelled_td_list);
1566		}
1567
1568		usb_hcd_unlink_urb_from_ep(hcd, urb);
1569		spin_unlock_irqrestore(&xhci->lock, flags);
1570		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1571		xhci_urb_free_priv(urb_priv);
1572		return ret;
1573	}
1574	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1575			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1576		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1577				"Ep 0x%x: URB %p to be canceled on "
1578				"non-responsive xHCI host.",
1579				urb->ep->desc.bEndpointAddress, urb);
1580		/* Let the stop endpoint command watchdog timer (which set this
1581		 * state) finish cleaning up the endpoint TD lists.  We must
1582		 * have caught it in the middle of dropping a lock and giving
1583		 * back an URB.
1584		 */
1585		goto done;
1586	}
1587
1588	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1589	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1590	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1591	if (!ep_ring) {
1592		ret = -EINVAL;
1593		goto done;
1594	}
1595
1596	urb_priv = urb->hcpriv;
1597	i = urb_priv->td_cnt;
1598	if (i < urb_priv->length)
1599		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1600				"Cancel URB %p, dev %s, ep 0x%x, "
1601				"starting at offset 0x%llx",
1602				urb, urb->dev->devpath,
1603				urb->ep->desc.bEndpointAddress,
1604				(unsigned long long) xhci_trb_virt_to_dma(
1605					urb_priv->td[i]->start_seg,
1606					urb_priv->td[i]->first_trb));
1607
1608	for (; i < urb_priv->length; i++) {
1609		td = urb_priv->td[i];
1610		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1611	}
1612
1613	/* Queue a stop endpoint command, but only if this is
1614	 * the first cancellation to be handled.
1615	 */
1616	if (!(ep->ep_state & EP_HALT_PENDING)) {
1617		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
 
 
 
 
 
 
 
 
 
 
 
1618		if (!command) {
1619			ret = -ENOMEM;
1620			goto done;
1621		}
1622		ep->ep_state |= EP_HALT_PENDING;
1623		ep->stop_cmds_pending++;
1624		ep->stop_cmd_timer.expires = jiffies +
1625			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1626		add_timer(&ep->stop_cmd_timer);
1627		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1628					 ep_index, 0);
1629		xhci_ring_cmd_db(xhci);
1630	}
1631done:
1632	spin_unlock_irqrestore(&xhci->lock, flags);
1633	return ret;
 
 
 
 
 
 
 
 
1634}
1635
1636/* Drop an endpoint from a new bandwidth configuration for this device.
1637 * Only one call to this function is allowed per endpoint before
1638 * check_bandwidth() or reset_bandwidth() must be called.
1639 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640 * add the endpoint to the schedule with possibly new parameters denoted by a
1641 * different endpoint descriptor in usb_host_endpoint.
1642 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1643 * not allowed.
1644 *
1645 * The USB core will not allow URBs to be queued to an endpoint that is being
1646 * disabled, so there's no need for mutual exclusion to protect
1647 * the xhci->devs[slot_id] structure.
1648 */
1649int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1650		struct usb_host_endpoint *ep)
1651{
1652	struct xhci_hcd *xhci;
1653	struct xhci_container_ctx *in_ctx, *out_ctx;
1654	struct xhci_input_control_ctx *ctrl_ctx;
1655	unsigned int ep_index;
1656	struct xhci_ep_ctx *ep_ctx;
1657	u32 drop_flag;
1658	u32 new_add_flags, new_drop_flags;
1659	int ret;
1660
1661	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662	if (ret <= 0)
1663		return ret;
1664	xhci = hcd_to_xhci(hcd);
1665	if (xhci->xhc_state & XHCI_STATE_DYING)
1666		return -ENODEV;
1667
1668	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1670	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1671		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1672				__func__, drop_flag);
1673		return 0;
1674	}
1675
1676	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1677	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1678	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1679	if (!ctrl_ctx) {
1680		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1681				__func__);
1682		return 0;
1683	}
1684
1685	ep_index = xhci_get_endpoint_index(&ep->desc);
1686	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1687	/* If the HC already knows the endpoint is disabled,
1688	 * or the HCD has noted it is disabled, ignore this request
1689	 */
1690	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1691	     cpu_to_le32(EP_STATE_DISABLED)) ||
1692	    le32_to_cpu(ctrl_ctx->drop_flags) &
1693	    xhci_get_endpoint_flag(&ep->desc)) {
1694		/* Do not warn when called after a usb_device_reset */
1695		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1696			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1697				  __func__, ep);
1698		return 0;
1699	}
1700
1701	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1702	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1703
1704	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1705	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
1707	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708
1709	if (xhci->quirks & XHCI_MTK_HOST)
1710		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711
1712	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713			(unsigned int) ep->desc.bEndpointAddress,
1714			udev->slot_id,
1715			(unsigned int) new_drop_flags,
1716			(unsigned int) new_add_flags);
1717	return 0;
1718}
 
1719
1720/* Add an endpoint to a new possible bandwidth configuration for this device.
1721 * Only one call to this function is allowed per endpoint before
1722 * check_bandwidth() or reset_bandwidth() must be called.
1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724 * add the endpoint to the schedule with possibly new parameters denoted by a
1725 * different endpoint descriptor in usb_host_endpoint.
1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727 * not allowed.
1728 *
1729 * The USB core will not allow URBs to be queued to an endpoint until the
1730 * configuration or alt setting is installed in the device, so there's no need
1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732 */
1733int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734		struct usb_host_endpoint *ep)
1735{
1736	struct xhci_hcd *xhci;
1737	struct xhci_container_ctx *in_ctx;
1738	unsigned int ep_index;
1739	struct xhci_input_control_ctx *ctrl_ctx;
 
1740	u32 added_ctxs;
1741	u32 new_add_flags, new_drop_flags;
1742	struct xhci_virt_device *virt_dev;
1743	int ret = 0;
1744
1745	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746	if (ret <= 0) {
1747		/* So we won't queue a reset ep command for a root hub */
1748		ep->hcpriv = NULL;
1749		return ret;
1750	}
1751	xhci = hcd_to_xhci(hcd);
1752	if (xhci->xhc_state & XHCI_STATE_DYING)
1753		return -ENODEV;
1754
1755	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757		/* FIXME when we have to issue an evaluate endpoint command to
1758		 * deal with ep0 max packet size changing once we get the
1759		 * descriptors
1760		 */
1761		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762				__func__, added_ctxs);
1763		return 0;
1764	}
1765
1766	virt_dev = xhci->devs[udev->slot_id];
1767	in_ctx = virt_dev->in_ctx;
1768	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769	if (!ctrl_ctx) {
1770		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771				__func__);
1772		return 0;
1773	}
1774
1775	ep_index = xhci_get_endpoint_index(&ep->desc);
1776	/* If this endpoint is already in use, and the upper layers are trying
1777	 * to add it again without dropping it, reject the addition.
1778	 */
1779	if (virt_dev->eps[ep_index].ring &&
1780			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782				"without dropping it.\n",
1783				(unsigned int) ep->desc.bEndpointAddress);
1784		return -EINVAL;
1785	}
1786
1787	/* If the HCD has already noted the endpoint is enabled,
1788	 * ignore this request.
1789	 */
1790	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792				__func__, ep);
1793		return 0;
1794	}
1795
1796	/*
1797	 * Configuration and alternate setting changes must be done in
1798	 * process context, not interrupt context (or so documenation
1799	 * for usb_set_interface() and usb_set_configuration() claim).
1800	 */
1801	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803				__func__, ep->desc.bEndpointAddress);
1804		return -ENOMEM;
1805	}
1806
1807	if (xhci->quirks & XHCI_MTK_HOST) {
1808		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809		if (ret < 0) {
1810			xhci_free_or_cache_endpoint_ring(xhci,
1811				virt_dev, ep_index);
1812			return ret;
1813		}
1814	}
1815
1816	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818
1819	/* If xhci_endpoint_disable() was called for this endpoint, but the
1820	 * xHC hasn't been notified yet through the check_bandwidth() call,
1821	 * this re-adds a new state for the endpoint from the new endpoint
1822	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1823	 * drop flags alone.
1824	 */
1825	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826
1827	/* Store the usb_device pointer for later use */
1828	ep->hcpriv = udev;
1829
 
 
 
1830	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1831			(unsigned int) ep->desc.bEndpointAddress,
1832			udev->slot_id,
1833			(unsigned int) new_drop_flags,
1834			(unsigned int) new_add_flags);
1835	return 0;
1836}
 
1837
1838static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1839{
1840	struct xhci_input_control_ctx *ctrl_ctx;
1841	struct xhci_ep_ctx *ep_ctx;
1842	struct xhci_slot_ctx *slot_ctx;
1843	int i;
1844
1845	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1846	if (!ctrl_ctx) {
1847		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848				__func__);
1849		return;
1850	}
1851
1852	/* When a device's add flag and drop flag are zero, any subsequent
1853	 * configure endpoint command will leave that endpoint's state
1854	 * untouched.  Make sure we don't leave any old state in the input
1855	 * endpoint contexts.
1856	 */
1857	ctrl_ctx->drop_flags = 0;
1858	ctrl_ctx->add_flags = 0;
1859	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1860	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1861	/* Endpoint 0 is always valid */
1862	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1863	for (i = 1; i < 31; ++i) {
1864		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1865		ep_ctx->ep_info = 0;
1866		ep_ctx->ep_info2 = 0;
1867		ep_ctx->deq = 0;
1868		ep_ctx->tx_info = 0;
1869	}
1870}
1871
1872static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1873		struct usb_device *udev, u32 *cmd_status)
1874{
1875	int ret;
1876
1877	switch (*cmd_status) {
1878	case COMP_CMD_ABORT:
1879	case COMP_CMD_STOP:
1880		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1881		ret = -ETIME;
1882		break;
1883	case COMP_ENOMEM:
1884		dev_warn(&udev->dev,
1885			 "Not enough host controller resources for new device state.\n");
1886		ret = -ENOMEM;
1887		/* FIXME: can we allocate more resources for the HC? */
1888		break;
1889	case COMP_BW_ERR:
1890	case COMP_2ND_BW_ERR:
1891		dev_warn(&udev->dev,
1892			 "Not enough bandwidth for new device state.\n");
1893		ret = -ENOSPC;
1894		/* FIXME: can we go back to the old state? */
1895		break;
1896	case COMP_TRB_ERR:
1897		/* the HCD set up something wrong */
1898		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1899				"add flag = 1, "
1900				"and endpoint is not disabled.\n");
1901		ret = -EINVAL;
1902		break;
1903	case COMP_DEV_ERR:
1904		dev_warn(&udev->dev,
1905			 "ERROR: Incompatible device for endpoint configure command.\n");
1906		ret = -ENODEV;
1907		break;
1908	case COMP_SUCCESS:
1909		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1910				"Successful Endpoint Configure command");
1911		ret = 0;
1912		break;
1913	default:
1914		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1915				*cmd_status);
1916		ret = -EINVAL;
1917		break;
1918	}
1919	return ret;
1920}
1921
1922static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1923		struct usb_device *udev, u32 *cmd_status)
1924{
1925	int ret;
1926	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1927
1928	switch (*cmd_status) {
1929	case COMP_CMD_ABORT:
1930	case COMP_CMD_STOP:
1931		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1932		ret = -ETIME;
1933		break;
1934	case COMP_EINVAL:
1935		dev_warn(&udev->dev,
1936			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1937		ret = -EINVAL;
1938		break;
1939	case COMP_EBADSLT:
1940		dev_warn(&udev->dev,
1941			"WARN: slot not enabled for evaluate context command.\n");
1942		ret = -EINVAL;
1943		break;
1944	case COMP_CTX_STATE:
1945		dev_warn(&udev->dev,
1946			"WARN: invalid context state for evaluate context command.\n");
1947		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1948		ret = -EINVAL;
1949		break;
1950	case COMP_DEV_ERR:
1951		dev_warn(&udev->dev,
1952			"ERROR: Incompatible device for evaluate context command.\n");
1953		ret = -ENODEV;
1954		break;
1955	case COMP_MEL_ERR:
1956		/* Max Exit Latency too large error */
1957		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958		ret = -EINVAL;
1959		break;
1960	case COMP_SUCCESS:
1961		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962				"Successful evaluate context command");
1963		ret = 0;
1964		break;
1965	default:
1966		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967			*cmd_status);
1968		ret = -EINVAL;
1969		break;
1970	}
1971	return ret;
1972}
1973
1974static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975		struct xhci_input_control_ctx *ctrl_ctx)
1976{
1977	u32 valid_add_flags;
1978	u32 valid_drop_flags;
1979
1980	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1981	 * (bit 1).  The default control endpoint is added during the Address
1982	 * Device command and is never removed until the slot is disabled.
1983	 */
1984	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987	/* Use hweight32 to count the number of ones in the add flags, or
1988	 * number of endpoints added.  Don't count endpoints that are changed
1989	 * (both added and dropped).
1990	 */
1991	return hweight32(valid_add_flags) -
1992		hweight32(valid_add_flags & valid_drop_flags);
1993}
1994
1995static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996		struct xhci_input_control_ctx *ctrl_ctx)
1997{
1998	u32 valid_add_flags;
1999	u32 valid_drop_flags;
2000
2001	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003
2004	return hweight32(valid_drop_flags) -
2005		hweight32(valid_add_flags & valid_drop_flags);
2006}
2007
2008/*
2009 * We need to reserve the new number of endpoints before the configure endpoint
2010 * command completes.  We can't subtract the dropped endpoints from the number
2011 * of active endpoints until the command completes because we can oversubscribe
2012 * the host in this case:
2013 *
2014 *  - the first configure endpoint command drops more endpoints than it adds
2015 *  - a second configure endpoint command that adds more endpoints is queued
2016 *  - the first configure endpoint command fails, so the config is unchanged
2017 *  - the second command may succeed, even though there isn't enough resources
2018 *
2019 * Must be called with xhci->lock held.
2020 */
2021static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022		struct xhci_input_control_ctx *ctrl_ctx)
2023{
2024	u32 added_eps;
2025
2026	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029				"Not enough ep ctxs: "
2030				"%u active, need to add %u, limit is %u.",
2031				xhci->num_active_eps, added_eps,
2032				xhci->limit_active_eps);
2033		return -ENOMEM;
2034	}
2035	xhci->num_active_eps += added_eps;
2036	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037			"Adding %u ep ctxs, %u now active.", added_eps,
2038			xhci->num_active_eps);
2039	return 0;
2040}
2041
2042/*
2043 * The configure endpoint was failed by the xHC for some other reason, so we
2044 * need to revert the resources that failed configuration would have used.
2045 *
2046 * Must be called with xhci->lock held.
2047 */
2048static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049		struct xhci_input_control_ctx *ctrl_ctx)
2050{
2051	u32 num_failed_eps;
2052
2053	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054	xhci->num_active_eps -= num_failed_eps;
2055	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056			"Removing %u failed ep ctxs, %u now active.",
2057			num_failed_eps,
2058			xhci->num_active_eps);
2059}
2060
2061/*
2062 * Now that the command has completed, clean up the active endpoint count by
2063 * subtracting out the endpoints that were dropped (but not changed).
2064 *
2065 * Must be called with xhci->lock held.
2066 */
2067static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068		struct xhci_input_control_ctx *ctrl_ctx)
2069{
2070	u32 num_dropped_eps;
2071
2072	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073	xhci->num_active_eps -= num_dropped_eps;
2074	if (num_dropped_eps)
2075		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076				"Removing %u dropped ep ctxs, %u now active.",
2077				num_dropped_eps,
2078				xhci->num_active_eps);
2079}
2080
2081static unsigned int xhci_get_block_size(struct usb_device *udev)
2082{
2083	switch (udev->speed) {
2084	case USB_SPEED_LOW:
2085	case USB_SPEED_FULL:
2086		return FS_BLOCK;
2087	case USB_SPEED_HIGH:
2088		return HS_BLOCK;
2089	case USB_SPEED_SUPER:
2090	case USB_SPEED_SUPER_PLUS:
2091		return SS_BLOCK;
2092	case USB_SPEED_UNKNOWN:
2093	case USB_SPEED_WIRELESS:
2094	default:
2095		/* Should never happen */
2096		return 1;
2097	}
2098}
2099
2100static unsigned int
2101xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102{
2103	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104		return LS_OVERHEAD;
2105	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106		return FS_OVERHEAD;
2107	return HS_OVERHEAD;
2108}
2109
2110/* If we are changing a LS/FS device under a HS hub,
2111 * make sure (if we are activating a new TT) that the HS bus has enough
2112 * bandwidth for this new TT.
2113 */
2114static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115		struct xhci_virt_device *virt_dev,
2116		int old_active_eps)
2117{
2118	struct xhci_interval_bw_table *bw_table;
2119	struct xhci_tt_bw_info *tt_info;
2120
2121	/* Find the bandwidth table for the root port this TT is attached to. */
2122	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123	tt_info = virt_dev->tt_info;
2124	/* If this TT already had active endpoints, the bandwidth for this TT
2125	 * has already been added.  Removing all periodic endpoints (and thus
2126	 * making the TT enactive) will only decrease the bandwidth used.
2127	 */
2128	if (old_active_eps)
2129		return 0;
2130	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132			return -ENOMEM;
2133		return 0;
2134	}
2135	/* Not sure why we would have no new active endpoints...
2136	 *
2137	 * Maybe because of an Evaluate Context change for a hub update or a
2138	 * control endpoint 0 max packet size change?
2139	 * FIXME: skip the bandwidth calculation in that case.
2140	 */
2141	return 0;
2142}
2143
2144static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145		struct xhci_virt_device *virt_dev)
2146{
2147	unsigned int bw_reserved;
2148
2149	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151		return -ENOMEM;
2152
2153	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155		return -ENOMEM;
2156
2157	return 0;
2158}
2159
2160/*
2161 * This algorithm is a very conservative estimate of the worst-case scheduling
2162 * scenario for any one interval.  The hardware dynamically schedules the
2163 * packets, so we can't tell which microframe could be the limiting factor in
2164 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165 *
2166 * Obviously, we can't solve an NP complete problem to find the minimum worst
2167 * case scenario.  Instead, we come up with an estimate that is no less than
2168 * the worst case bandwidth used for any one microframe, but may be an
2169 * over-estimate.
2170 *
2171 * We walk the requirements for each endpoint by interval, starting with the
2172 * smallest interval, and place packets in the schedule where there is only one
2173 * possible way to schedule packets for that interval.  In order to simplify
2174 * this algorithm, we record the largest max packet size for each interval, and
2175 * assume all packets will be that size.
2176 *
2177 * For interval 0, we obviously must schedule all packets for each interval.
2178 * The bandwidth for interval 0 is just the amount of data to be transmitted
2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180 * the number of packets).
2181 *
2182 * For interval 1, we have two possible microframes to schedule those packets
2183 * in.  For this algorithm, if we can schedule the same number of packets for
2184 * each possible scheduling opportunity (each microframe), we will do so.  The
2185 * remaining number of packets will be saved to be transmitted in the gaps in
2186 * the next interval's scheduling sequence.
2187 *
2188 * As we move those remaining packets to be scheduled with interval 2 packets,
2189 * we have to double the number of remaining packets to transmit.  This is
2190 * because the intervals are actually powers of 2, and we would be transmitting
2191 * the previous interval's packets twice in this interval.  We also have to be
2192 * sure that when we look at the largest max packet size for this interval, we
2193 * also look at the largest max packet size for the remaining packets and take
2194 * the greater of the two.
2195 *
2196 * The algorithm continues to evenly distribute packets in each scheduling
2197 * opportunity, and push the remaining packets out, until we get to the last
2198 * interval.  Then those packets and their associated overhead are just added
2199 * to the bandwidth used.
2200 */
2201static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202		struct xhci_virt_device *virt_dev,
2203		int old_active_eps)
2204{
2205	unsigned int bw_reserved;
2206	unsigned int max_bandwidth;
2207	unsigned int bw_used;
2208	unsigned int block_size;
2209	struct xhci_interval_bw_table *bw_table;
2210	unsigned int packet_size = 0;
2211	unsigned int overhead = 0;
2212	unsigned int packets_transmitted = 0;
2213	unsigned int packets_remaining = 0;
2214	unsigned int i;
2215
2216	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217		return xhci_check_ss_bw(xhci, virt_dev);
2218
2219	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220		max_bandwidth = HS_BW_LIMIT;
2221		/* Convert percent of bus BW reserved to blocks reserved */
2222		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223	} else {
2224		max_bandwidth = FS_BW_LIMIT;
2225		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226	}
2227
2228	bw_table = virt_dev->bw_table;
2229	/* We need to translate the max packet size and max ESIT payloads into
2230	 * the units the hardware uses.
2231	 */
2232	block_size = xhci_get_block_size(virt_dev->udev);
2233
2234	/* If we are manipulating a LS/FS device under a HS hub, double check
2235	 * that the HS bus has enough bandwidth if we are activing a new TT.
2236	 */
2237	if (virt_dev->tt_info) {
2238		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239				"Recalculating BW for rootport %u",
2240				virt_dev->real_port);
2241		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243					"newly activated TT.\n");
2244			return -ENOMEM;
2245		}
2246		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247				"Recalculating BW for TT slot %u port %u",
2248				virt_dev->tt_info->slot_id,
2249				virt_dev->tt_info->ttport);
2250	} else {
2251		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252				"Recalculating BW for rootport %u",
2253				virt_dev->real_port);
2254	}
2255
2256	/* Add in how much bandwidth will be used for interval zero, or the
2257	 * rounded max ESIT payload + number of packets * largest overhead.
2258	 */
2259	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260		bw_table->interval_bw[0].num_packets *
2261		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262
2263	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264		unsigned int bw_added;
2265		unsigned int largest_mps;
2266		unsigned int interval_overhead;
2267
2268		/*
2269		 * How many packets could we transmit in this interval?
2270		 * If packets didn't fit in the previous interval, we will need
2271		 * to transmit that many packets twice within this interval.
2272		 */
2273		packets_remaining = 2 * packets_remaining +
2274			bw_table->interval_bw[i].num_packets;
2275
2276		/* Find the largest max packet size of this or the previous
2277		 * interval.
2278		 */
2279		if (list_empty(&bw_table->interval_bw[i].endpoints))
2280			largest_mps = 0;
2281		else {
2282			struct xhci_virt_ep *virt_ep;
2283			struct list_head *ep_entry;
2284
2285			ep_entry = bw_table->interval_bw[i].endpoints.next;
2286			virt_ep = list_entry(ep_entry,
2287					struct xhci_virt_ep, bw_endpoint_list);
2288			/* Convert to blocks, rounding up */
2289			largest_mps = DIV_ROUND_UP(
2290					virt_ep->bw_info.max_packet_size,
2291					block_size);
2292		}
2293		if (largest_mps > packet_size)
2294			packet_size = largest_mps;
2295
2296		/* Use the larger overhead of this or the previous interval. */
2297		interval_overhead = xhci_get_largest_overhead(
2298				&bw_table->interval_bw[i]);
2299		if (interval_overhead > overhead)
2300			overhead = interval_overhead;
2301
2302		/* How many packets can we evenly distribute across
2303		 * (1 << (i + 1)) possible scheduling opportunities?
2304		 */
2305		packets_transmitted = packets_remaining >> (i + 1);
2306
2307		/* Add in the bandwidth used for those scheduled packets */
2308		bw_added = packets_transmitted * (overhead + packet_size);
2309
2310		/* How many packets do we have remaining to transmit? */
2311		packets_remaining = packets_remaining % (1 << (i + 1));
2312
2313		/* What largest max packet size should those packets have? */
2314		/* If we've transmitted all packets, don't carry over the
2315		 * largest packet size.
2316		 */
2317		if (packets_remaining == 0) {
2318			packet_size = 0;
2319			overhead = 0;
2320		} else if (packets_transmitted > 0) {
2321			/* Otherwise if we do have remaining packets, and we've
2322			 * scheduled some packets in this interval, take the
2323			 * largest max packet size from endpoints with this
2324			 * interval.
2325			 */
2326			packet_size = largest_mps;
2327			overhead = interval_overhead;
2328		}
2329		/* Otherwise carry over packet_size and overhead from the last
2330		 * time we had a remainder.
2331		 */
2332		bw_used += bw_added;
2333		if (bw_used > max_bandwidth) {
2334			xhci_warn(xhci, "Not enough bandwidth. "
2335					"Proposed: %u, Max: %u\n",
2336				bw_used, max_bandwidth);
2337			return -ENOMEM;
2338		}
2339	}
2340	/*
2341	 * Ok, we know we have some packets left over after even-handedly
2342	 * scheduling interval 15.  We don't know which microframes they will
2343	 * fit into, so we over-schedule and say they will be scheduled every
2344	 * microframe.
2345	 */
2346	if (packets_remaining > 0)
2347		bw_used += overhead + packet_size;
2348
2349	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350		unsigned int port_index = virt_dev->real_port - 1;
2351
2352		/* OK, we're manipulating a HS device attached to a
2353		 * root port bandwidth domain.  Include the number of active TTs
2354		 * in the bandwidth used.
2355		 */
2356		bw_used += TT_HS_OVERHEAD *
2357			xhci->rh_bw[port_index].num_active_tts;
2358	}
2359
2360	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362		"Available: %u " "percent",
2363		bw_used, max_bandwidth, bw_reserved,
2364		(max_bandwidth - bw_used - bw_reserved) * 100 /
2365		max_bandwidth);
2366
2367	bw_used += bw_reserved;
2368	if (bw_used > max_bandwidth) {
2369		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370				bw_used, max_bandwidth);
2371		return -ENOMEM;
2372	}
2373
2374	bw_table->bw_used = bw_used;
2375	return 0;
2376}
2377
2378static bool xhci_is_async_ep(unsigned int ep_type)
2379{
2380	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381					ep_type != ISOC_IN_EP &&
2382					ep_type != INT_IN_EP);
2383}
2384
2385static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386{
2387	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388}
2389
2390static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391{
2392	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393
2394	if (ep_bw->ep_interval == 0)
2395		return SS_OVERHEAD_BURST +
2396			(ep_bw->mult * ep_bw->num_packets *
2397					(SS_OVERHEAD + mps));
2398	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400				1 << ep_bw->ep_interval);
2401
2402}
2403
2404void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405		struct xhci_bw_info *ep_bw,
2406		struct xhci_interval_bw_table *bw_table,
2407		struct usb_device *udev,
2408		struct xhci_virt_ep *virt_ep,
2409		struct xhci_tt_bw_info *tt_info)
2410{
2411	struct xhci_interval_bw	*interval_bw;
2412	int normalized_interval;
2413
2414	if (xhci_is_async_ep(ep_bw->type))
2415		return;
2416
2417	if (udev->speed >= USB_SPEED_SUPER) {
2418		if (xhci_is_sync_in_ep(ep_bw->type))
2419			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420				xhci_get_ss_bw_consumed(ep_bw);
2421		else
2422			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423				xhci_get_ss_bw_consumed(ep_bw);
2424		return;
2425	}
2426
2427	/* SuperSpeed endpoints never get added to intervals in the table, so
2428	 * this check is only valid for HS/FS/LS devices.
2429	 */
2430	if (list_empty(&virt_ep->bw_endpoint_list))
2431		return;
2432	/* For LS/FS devices, we need to translate the interval expressed in
2433	 * microframes to frames.
2434	 */
2435	if (udev->speed == USB_SPEED_HIGH)
2436		normalized_interval = ep_bw->ep_interval;
2437	else
2438		normalized_interval = ep_bw->ep_interval - 3;
2439
2440	if (normalized_interval == 0)
2441		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442	interval_bw = &bw_table->interval_bw[normalized_interval];
2443	interval_bw->num_packets -= ep_bw->num_packets;
2444	switch (udev->speed) {
2445	case USB_SPEED_LOW:
2446		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447		break;
2448	case USB_SPEED_FULL:
2449		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450		break;
2451	case USB_SPEED_HIGH:
2452		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453		break;
2454	case USB_SPEED_SUPER:
2455	case USB_SPEED_SUPER_PLUS:
2456	case USB_SPEED_UNKNOWN:
2457	case USB_SPEED_WIRELESS:
2458		/* Should never happen because only LS/FS/HS endpoints will get
2459		 * added to the endpoint list.
2460		 */
2461		return;
2462	}
2463	if (tt_info)
2464		tt_info->active_eps -= 1;
2465	list_del_init(&virt_ep->bw_endpoint_list);
2466}
2467
2468static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469		struct xhci_bw_info *ep_bw,
2470		struct xhci_interval_bw_table *bw_table,
2471		struct usb_device *udev,
2472		struct xhci_virt_ep *virt_ep,
2473		struct xhci_tt_bw_info *tt_info)
2474{
2475	struct xhci_interval_bw	*interval_bw;
2476	struct xhci_virt_ep *smaller_ep;
2477	int normalized_interval;
2478
2479	if (xhci_is_async_ep(ep_bw->type))
2480		return;
2481
2482	if (udev->speed == USB_SPEED_SUPER) {
2483		if (xhci_is_sync_in_ep(ep_bw->type))
2484			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485				xhci_get_ss_bw_consumed(ep_bw);
2486		else
2487			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488				xhci_get_ss_bw_consumed(ep_bw);
2489		return;
2490	}
2491
2492	/* For LS/FS devices, we need to translate the interval expressed in
2493	 * microframes to frames.
2494	 */
2495	if (udev->speed == USB_SPEED_HIGH)
2496		normalized_interval = ep_bw->ep_interval;
2497	else
2498		normalized_interval = ep_bw->ep_interval - 3;
2499
2500	if (normalized_interval == 0)
2501		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502	interval_bw = &bw_table->interval_bw[normalized_interval];
2503	interval_bw->num_packets += ep_bw->num_packets;
2504	switch (udev->speed) {
2505	case USB_SPEED_LOW:
2506		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507		break;
2508	case USB_SPEED_FULL:
2509		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510		break;
2511	case USB_SPEED_HIGH:
2512		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513		break;
2514	case USB_SPEED_SUPER:
2515	case USB_SPEED_SUPER_PLUS:
2516	case USB_SPEED_UNKNOWN:
2517	case USB_SPEED_WIRELESS:
2518		/* Should never happen because only LS/FS/HS endpoints will get
2519		 * added to the endpoint list.
2520		 */
2521		return;
2522	}
2523
2524	if (tt_info)
2525		tt_info->active_eps += 1;
2526	/* Insert the endpoint into the list, largest max packet size first. */
2527	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528			bw_endpoint_list) {
2529		if (ep_bw->max_packet_size >=
2530				smaller_ep->bw_info.max_packet_size) {
2531			/* Add the new ep before the smaller endpoint */
2532			list_add_tail(&virt_ep->bw_endpoint_list,
2533					&smaller_ep->bw_endpoint_list);
2534			return;
2535		}
2536	}
2537	/* Add the new endpoint at the end of the list. */
2538	list_add_tail(&virt_ep->bw_endpoint_list,
2539			&interval_bw->endpoints);
2540}
2541
2542void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543		struct xhci_virt_device *virt_dev,
2544		int old_active_eps)
2545{
2546	struct xhci_root_port_bw_info *rh_bw_info;
2547	if (!virt_dev->tt_info)
2548		return;
2549
2550	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551	if (old_active_eps == 0 &&
2552				virt_dev->tt_info->active_eps != 0) {
2553		rh_bw_info->num_active_tts += 1;
2554		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555	} else if (old_active_eps != 0 &&
2556				virt_dev->tt_info->active_eps == 0) {
2557		rh_bw_info->num_active_tts -= 1;
2558		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559	}
2560}
2561
2562static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563		struct xhci_virt_device *virt_dev,
2564		struct xhci_container_ctx *in_ctx)
2565{
2566	struct xhci_bw_info ep_bw_info[31];
2567	int i;
2568	struct xhci_input_control_ctx *ctrl_ctx;
2569	int old_active_eps = 0;
2570
2571	if (virt_dev->tt_info)
2572		old_active_eps = virt_dev->tt_info->active_eps;
2573
2574	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575	if (!ctrl_ctx) {
2576		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577				__func__);
2578		return -ENOMEM;
2579	}
2580
2581	for (i = 0; i < 31; i++) {
2582		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583			continue;
2584
2585		/* Make a copy of the BW info in case we need to revert this */
2586		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587				sizeof(ep_bw_info[i]));
2588		/* Drop the endpoint from the interval table if the endpoint is
2589		 * being dropped or changed.
2590		 */
2591		if (EP_IS_DROPPED(ctrl_ctx, i))
2592			xhci_drop_ep_from_interval_table(xhci,
2593					&virt_dev->eps[i].bw_info,
2594					virt_dev->bw_table,
2595					virt_dev->udev,
2596					&virt_dev->eps[i],
2597					virt_dev->tt_info);
2598	}
2599	/* Overwrite the information stored in the endpoints' bw_info */
2600	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601	for (i = 0; i < 31; i++) {
2602		/* Add any changed or added endpoints to the interval table */
2603		if (EP_IS_ADDED(ctrl_ctx, i))
2604			xhci_add_ep_to_interval_table(xhci,
2605					&virt_dev->eps[i].bw_info,
2606					virt_dev->bw_table,
2607					virt_dev->udev,
2608					&virt_dev->eps[i],
2609					virt_dev->tt_info);
2610	}
2611
2612	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613		/* Ok, this fits in the bandwidth we have.
2614		 * Update the number of active TTs.
2615		 */
2616		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617		return 0;
2618	}
2619
2620	/* We don't have enough bandwidth for this, revert the stored info. */
2621	for (i = 0; i < 31; i++) {
2622		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623			continue;
2624
2625		/* Drop the new copies of any added or changed endpoints from
2626		 * the interval table.
2627		 */
2628		if (EP_IS_ADDED(ctrl_ctx, i)) {
2629			xhci_drop_ep_from_interval_table(xhci,
2630					&virt_dev->eps[i].bw_info,
2631					virt_dev->bw_table,
2632					virt_dev->udev,
2633					&virt_dev->eps[i],
2634					virt_dev->tt_info);
2635		}
2636		/* Revert the endpoint back to its old information */
2637		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638				sizeof(ep_bw_info[i]));
2639		/* Add any changed or dropped endpoints back into the table */
2640		if (EP_IS_DROPPED(ctrl_ctx, i))
2641			xhci_add_ep_to_interval_table(xhci,
2642					&virt_dev->eps[i].bw_info,
2643					virt_dev->bw_table,
2644					virt_dev->udev,
2645					&virt_dev->eps[i],
2646					virt_dev->tt_info);
2647	}
2648	return -ENOMEM;
2649}
2650
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2651
2652/* Issue a configure endpoint command or evaluate context command
2653 * and wait for it to finish.
2654 */
2655static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656		struct usb_device *udev,
2657		struct xhci_command *command,
2658		bool ctx_change, bool must_succeed)
2659{
2660	int ret;
2661	unsigned long flags;
2662	struct xhci_input_control_ctx *ctrl_ctx;
2663	struct xhci_virt_device *virt_dev;
 
2664
2665	if (!command)
2666		return -EINVAL;
2667
2668	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2669	virt_dev = xhci->devs[udev->slot_id];
2670
2671	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2672	if (!ctrl_ctx) {
2673		spin_unlock_irqrestore(&xhci->lock, flags);
2674		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2675				__func__);
2676		return -ENOMEM;
2677	}
2678
2679	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2680			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2681		spin_unlock_irqrestore(&xhci->lock, flags);
2682		xhci_warn(xhci, "Not enough host resources, "
2683				"active endpoint contexts = %u\n",
2684				xhci->num_active_eps);
2685		return -ENOMEM;
2686	}
2687	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2688	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2689		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2690			xhci_free_host_resources(xhci, ctrl_ctx);
2691		spin_unlock_irqrestore(&xhci->lock, flags);
2692		xhci_warn(xhci, "Not enough bandwidth\n");
2693		return -ENOMEM;
2694	}
2695
 
 
 
 
 
2696	if (!ctx_change)
2697		ret = xhci_queue_configure_endpoint(xhci, command,
2698				command->in_ctx->dma,
2699				udev->slot_id, must_succeed);
2700	else
2701		ret = xhci_queue_evaluate_context(xhci, command,
2702				command->in_ctx->dma,
2703				udev->slot_id, must_succeed);
2704	if (ret < 0) {
2705		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2706			xhci_free_host_resources(xhci, ctrl_ctx);
2707		spin_unlock_irqrestore(&xhci->lock, flags);
2708		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2709				"FIXME allocate a new ring segment");
2710		return -ENOMEM;
2711	}
2712	xhci_ring_cmd_db(xhci);
2713	spin_unlock_irqrestore(&xhci->lock, flags);
2714
2715	/* Wait for the configure endpoint command to complete */
2716	wait_for_completion(command->completion);
2717
2718	if (!ctx_change)
2719		ret = xhci_configure_endpoint_result(xhci, udev,
2720						     &command->status);
2721	else
2722		ret = xhci_evaluate_context_result(xhci, udev,
2723						   &command->status);
2724
2725	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2726		spin_lock_irqsave(&xhci->lock, flags);
2727		/* If the command failed, remove the reserved resources.
2728		 * Otherwise, clean up the estimate to include dropped eps.
2729		 */
2730		if (ret)
2731			xhci_free_host_resources(xhci, ctrl_ctx);
2732		else
2733			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2734		spin_unlock_irqrestore(&xhci->lock, flags);
2735	}
2736	return ret;
2737}
2738
2739static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2740	struct xhci_virt_device *vdev, int i)
2741{
2742	struct xhci_virt_ep *ep = &vdev->eps[i];
2743
2744	if (ep->ep_state & EP_HAS_STREAMS) {
2745		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2746				xhci_get_endpoint_address(i));
2747		xhci_free_stream_info(xhci, ep->stream_info);
2748		ep->stream_info = NULL;
2749		ep->ep_state &= ~EP_HAS_STREAMS;
2750	}
2751}
2752
2753/* Called after one or more calls to xhci_add_endpoint() or
2754 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2755 * to call xhci_reset_bandwidth().
2756 *
2757 * Since we are in the middle of changing either configuration or
2758 * installing a new alt setting, the USB core won't allow URBs to be
2759 * enqueued for any endpoint on the old config or interface.  Nothing
2760 * else should be touching the xhci->devs[slot_id] structure, so we
2761 * don't need to take the xhci->lock for manipulating that.
2762 */
2763int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764{
2765	int i;
2766	int ret = 0;
2767	struct xhci_hcd *xhci;
2768	struct xhci_virt_device	*virt_dev;
2769	struct xhci_input_control_ctx *ctrl_ctx;
2770	struct xhci_slot_ctx *slot_ctx;
2771	struct xhci_command *command;
2772
2773	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2774	if (ret <= 0)
2775		return ret;
2776	xhci = hcd_to_xhci(hcd);
2777	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2778		(xhci->xhc_state & XHCI_STATE_REMOVING))
2779		return -ENODEV;
2780
2781	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2782	virt_dev = xhci->devs[udev->slot_id];
2783
2784	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2785	if (!command)
2786		return -ENOMEM;
2787
2788	command->in_ctx = virt_dev->in_ctx;
2789
2790	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2791	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2792	if (!ctrl_ctx) {
2793		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794				__func__);
2795		ret = -ENOMEM;
2796		goto command_cleanup;
2797	}
2798	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2799	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2800	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2801
2802	/* Don't issue the command if there's no endpoints to update. */
2803	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2804	    ctrl_ctx->drop_flags == 0) {
2805		ret = 0;
2806		goto command_cleanup;
2807	}
2808	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2809	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2810	for (i = 31; i >= 1; i--) {
2811		__le32 le32 = cpu_to_le32(BIT(i));
2812
2813		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2814		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2815			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2816			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2817			break;
2818		}
2819	}
2820	xhci_dbg(xhci, "New Input Control Context:\n");
2821	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2822		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823
2824	ret = xhci_configure_endpoint(xhci, udev, command,
2825			false, false);
2826	if (ret)
2827		/* Callee should call reset_bandwidth() */
2828		goto command_cleanup;
2829
2830	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2831	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2832		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2833
2834	/* Free any rings that were dropped, but not changed. */
2835	for (i = 1; i < 31; ++i) {
2836		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2837		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2838			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2839			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2840		}
2841	}
2842	xhci_zero_in_ctx(xhci, virt_dev);
2843	/*
2844	 * Install any rings for completely new endpoints or changed endpoints,
2845	 * and free or cache any old rings from changed endpoints.
2846	 */
2847	for (i = 1; i < 31; ++i) {
2848		if (!virt_dev->eps[i].new_ring)
2849			continue;
2850		/* Only cache or free the old ring if it exists.
2851		 * It may not if this is the first add of an endpoint.
2852		 */
2853		if (virt_dev->eps[i].ring) {
2854			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2855		}
2856		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2857		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2858		virt_dev->eps[i].new_ring = NULL;
 
2859	}
2860command_cleanup:
2861	kfree(command->completion);
2862	kfree(command);
2863
2864	return ret;
2865}
 
2866
2867void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2868{
2869	struct xhci_hcd *xhci;
2870	struct xhci_virt_device	*virt_dev;
2871	int i, ret;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return;
2876	xhci = hcd_to_xhci(hcd);
2877
2878	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879	virt_dev = xhci->devs[udev->slot_id];
2880	/* Free any rings allocated for added endpoints */
2881	for (i = 0; i < 31; ++i) {
2882		if (virt_dev->eps[i].new_ring) {
 
2883			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2884			virt_dev->eps[i].new_ring = NULL;
2885		}
2886	}
2887	xhci_zero_in_ctx(xhci, virt_dev);
2888}
 
2889
2890static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2891		struct xhci_container_ctx *in_ctx,
2892		struct xhci_container_ctx *out_ctx,
2893		struct xhci_input_control_ctx *ctrl_ctx,
2894		u32 add_flags, u32 drop_flags)
2895{
2896	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2897	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2898	xhci_slot_copy(xhci, in_ctx, out_ctx);
2899	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900
2901	xhci_dbg(xhci, "Input Context:\n");
2902	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2903}
2904
2905static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2906		unsigned int slot_id, unsigned int ep_index,
2907		struct xhci_dequeue_state *deq_state)
2908{
2909	struct xhci_input_control_ctx *ctrl_ctx;
2910	struct xhci_container_ctx *in_ctx;
2911	struct xhci_ep_ctx *ep_ctx;
2912	u32 added_ctxs;
2913	dma_addr_t addr;
 
2914
2915	in_ctx = xhci->devs[slot_id]->in_ctx;
2916	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2917	if (!ctrl_ctx) {
2918		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2919				__func__);
2920		return;
2921	}
2922
2923	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2924			xhci->devs[slot_id]->out_ctx, ep_index);
2925	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2926	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2927			deq_state->new_deq_ptr);
2928	if (addr == 0) {
2929		xhci_warn(xhci, "WARN Cannot submit config ep after "
2930				"reset ep command\n");
2931		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2932				deq_state->new_deq_seg,
2933				deq_state->new_deq_ptr);
2934		return;
 
 
 
 
2935	}
2936	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2937
2938	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2939	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2940			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2941			added_ctxs, added_ctxs);
 
 
2942}
2943
2944void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2945			unsigned int ep_index, struct xhci_td *td)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946{
2947	struct xhci_dequeue_state deq_state;
 
 
2948	struct xhci_virt_ep *ep;
2949	struct usb_device *udev = td->urb->dev;
 
 
 
 
 
2950
2951	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952			"Cleaning up stalled endpoint ring");
2953	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2954	/* We need to move the HW's dequeue pointer past this TD,
2955	 * or it will attempt to resend it on the next doorbell ring.
 
 
2956	 */
2957	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2958			ep_index, ep->stopped_stream, td, &deq_state);
2959
2960	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
 
 
 
 
 
 
 
 
 
 
2961		return;
 
2962
2963	/* HW with the reset endpoint quirk will use the saved dequeue state to
2964	 * issue a configure endpoint command later.
2965	 */
2966	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2967		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2968				"Queueing new dequeue state");
2969		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2970				ep_index, ep->stopped_stream, &deq_state);
2971	} else {
2972		/* Better hope no one uses the input context between now and the
2973		 * reset endpoint completion!
2974		 * XXX: No idea how this hardware will react when stream rings
2975		 * are enabled.
2976		 */
2977		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2978				"Setting up input context for "
2979				"configure endpoint command");
2980		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2981				ep_index, &deq_state);
2982	}
2983}
 
 
 
 
2984
2985/* Called when clearing halted device. The core should have sent the control
2986 * message to clear the device halt condition. The host side of the halt should
2987 * already be cleared with a reset endpoint command issued when the STALL tx
2988 * event was received.
2989 *
2990 * Context: in_interrupt
2991 */
2992
2993void xhci_endpoint_reset(struct usb_hcd *hcd,
2994		struct usb_host_endpoint *ep)
2995{
2996	struct xhci_hcd *xhci;
2997
2998	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
2999
3000	/*
3001	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3002	 * The Reset Endpoint Command may only be issued to endpoints in the
3003	 * Halted state. If software wishes reset the Data Toggle or Sequence
3004	 * Number of an endpoint that isn't in the Halted state, then software
3005	 * may issue a Configure Endpoint Command with the Drop and Add bits set
3006	 * for the target endpoint. that is in the Stopped state.
3007	 */
3008
3009	/* For now just print debug to follow the situation */
3010	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3011		 ep->desc.bEndpointAddress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3012}
3013
3014static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3015		struct usb_device *udev, struct usb_host_endpoint *ep,
3016		unsigned int slot_id)
3017{
3018	int ret;
3019	unsigned int ep_index;
3020	unsigned int ep_state;
3021
3022	if (!ep)
3023		return -EINVAL;
3024	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3025	if (ret <= 0)
3026		return -EINVAL;
3027	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3028		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3029				" descriptor for ep 0x%x does not support streams\n",
3030				ep->desc.bEndpointAddress);
3031		return -EINVAL;
3032	}
3033
3034	ep_index = xhci_get_endpoint_index(&ep->desc);
3035	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3036	if (ep_state & EP_HAS_STREAMS ||
3037			ep_state & EP_GETTING_STREAMS) {
3038		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3039				"already has streams set up.\n",
3040				ep->desc.bEndpointAddress);
3041		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3042				"dynamic stream context array reallocation.\n");
3043		return -EINVAL;
3044	}
3045	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3046		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3047				"endpoint 0x%x; URBs are pending.\n",
3048				ep->desc.bEndpointAddress);
3049		return -EINVAL;
3050	}
3051	return 0;
3052}
3053
3054static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3055		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3056{
3057	unsigned int max_streams;
3058
3059	/* The stream context array size must be a power of two */
3060	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3061	/*
3062	 * Find out how many primary stream array entries the host controller
3063	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3064	 * level page entries), but that's an optional feature for xHCI host
3065	 * controllers. xHCs must support at least 4 stream IDs.
3066	 */
3067	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3068	if (*num_stream_ctxs > max_streams) {
3069		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3070				max_streams);
3071		*num_stream_ctxs = max_streams;
3072		*num_streams = max_streams;
3073	}
3074}
3075
3076/* Returns an error code if one of the endpoint already has streams.
3077 * This does not change any data structures, it only checks and gathers
3078 * information.
3079 */
3080static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3081		struct usb_device *udev,
3082		struct usb_host_endpoint **eps, unsigned int num_eps,
3083		unsigned int *num_streams, u32 *changed_ep_bitmask)
3084{
3085	unsigned int max_streams;
3086	unsigned int endpoint_flag;
3087	int i;
3088	int ret;
3089
3090	for (i = 0; i < num_eps; i++) {
3091		ret = xhci_check_streams_endpoint(xhci, udev,
3092				eps[i], udev->slot_id);
3093		if (ret < 0)
3094			return ret;
3095
3096		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3097		if (max_streams < (*num_streams - 1)) {
3098			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3099					eps[i]->desc.bEndpointAddress,
3100					max_streams);
3101			*num_streams = max_streams+1;
3102		}
3103
3104		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3105		if (*changed_ep_bitmask & endpoint_flag)
3106			return -EINVAL;
3107		*changed_ep_bitmask |= endpoint_flag;
3108	}
3109	return 0;
3110}
3111
3112static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3113		struct usb_device *udev,
3114		struct usb_host_endpoint **eps, unsigned int num_eps)
3115{
3116	u32 changed_ep_bitmask = 0;
3117	unsigned int slot_id;
3118	unsigned int ep_index;
3119	unsigned int ep_state;
3120	int i;
3121
3122	slot_id = udev->slot_id;
3123	if (!xhci->devs[slot_id])
3124		return 0;
3125
3126	for (i = 0; i < num_eps; i++) {
3127		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3129		/* Are streams already being freed for the endpoint? */
3130		if (ep_state & EP_GETTING_NO_STREAMS) {
3131			xhci_warn(xhci, "WARN Can't disable streams for "
3132					"endpoint 0x%x, "
3133					"streams are being disabled already\n",
3134					eps[i]->desc.bEndpointAddress);
3135			return 0;
3136		}
3137		/* Are there actually any streams to free? */
3138		if (!(ep_state & EP_HAS_STREAMS) &&
3139				!(ep_state & EP_GETTING_STREAMS)) {
3140			xhci_warn(xhci, "WARN Can't disable streams for "
3141					"endpoint 0x%x, "
3142					"streams are already disabled!\n",
3143					eps[i]->desc.bEndpointAddress);
3144			xhci_warn(xhci, "WARN xhci_free_streams() called "
3145					"with non-streams endpoint\n");
3146			return 0;
3147		}
3148		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3149	}
3150	return changed_ep_bitmask;
3151}
3152
3153/*
3154 * The USB device drivers use this function (through the HCD interface in USB
3155 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3156 * coordinate mass storage command queueing across multiple endpoints (basically
3157 * a stream ID == a task ID).
3158 *
3159 * Setting up streams involves allocating the same size stream context array
3160 * for each endpoint and issuing a configure endpoint command for all endpoints.
3161 *
3162 * Don't allow the call to succeed if one endpoint only supports one stream
3163 * (which means it doesn't support streams at all).
3164 *
3165 * Drivers may get less stream IDs than they asked for, if the host controller
3166 * hardware or endpoints claim they can't support the number of requested
3167 * stream IDs.
3168 */
3169int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3170		struct usb_host_endpoint **eps, unsigned int num_eps,
3171		unsigned int num_streams, gfp_t mem_flags)
3172{
3173	int i, ret;
3174	struct xhci_hcd *xhci;
3175	struct xhci_virt_device *vdev;
3176	struct xhci_command *config_cmd;
3177	struct xhci_input_control_ctx *ctrl_ctx;
3178	unsigned int ep_index;
3179	unsigned int num_stream_ctxs;
 
3180	unsigned long flags;
3181	u32 changed_ep_bitmask = 0;
3182
3183	if (!eps)
3184		return -EINVAL;
3185
3186	/* Add one to the number of streams requested to account for
3187	 * stream 0 that is reserved for xHCI usage.
3188	 */
3189	num_streams += 1;
3190	xhci = hcd_to_xhci(hcd);
3191	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3192			num_streams);
3193
3194	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3195	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3196			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3197		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3198		return -ENOSYS;
3199	}
3200
3201	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3202	if (!config_cmd) {
3203		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3204		return -ENOMEM;
3205	}
3206	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3207	if (!ctrl_ctx) {
3208		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3209				__func__);
3210		xhci_free_command(xhci, config_cmd);
3211		return -ENOMEM;
3212	}
3213
3214	/* Check to make sure all endpoints are not already configured for
3215	 * streams.  While we're at it, find the maximum number of streams that
3216	 * all the endpoints will support and check for duplicate endpoints.
3217	 */
3218	spin_lock_irqsave(&xhci->lock, flags);
3219	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3220			num_eps, &num_streams, &changed_ep_bitmask);
3221	if (ret < 0) {
3222		xhci_free_command(xhci, config_cmd);
3223		spin_unlock_irqrestore(&xhci->lock, flags);
3224		return ret;
3225	}
3226	if (num_streams <= 1) {
3227		xhci_warn(xhci, "WARN: endpoints can't handle "
3228				"more than one stream.\n");
3229		xhci_free_command(xhci, config_cmd);
3230		spin_unlock_irqrestore(&xhci->lock, flags);
3231		return -EINVAL;
3232	}
3233	vdev = xhci->devs[udev->slot_id];
3234	/* Mark each endpoint as being in transition, so
3235	 * xhci_urb_enqueue() will reject all URBs.
3236	 */
3237	for (i = 0; i < num_eps; i++) {
3238		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3240	}
3241	spin_unlock_irqrestore(&xhci->lock, flags);
3242
3243	/* Setup internal data structures and allocate HW data structures for
3244	 * streams (but don't install the HW structures in the input context
3245	 * until we're sure all memory allocation succeeded).
3246	 */
3247	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3248	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3249			num_stream_ctxs, num_streams);
3250
3251	for (i = 0; i < num_eps; i++) {
3252		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3253		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3254				num_stream_ctxs,
3255				num_streams, mem_flags);
 
3256		if (!vdev->eps[ep_index].stream_info)
3257			goto cleanup;
3258		/* Set maxPstreams in endpoint context and update deq ptr to
3259		 * point to stream context array. FIXME
3260		 */
3261	}
3262
3263	/* Set up the input context for a configure endpoint command. */
3264	for (i = 0; i < num_eps; i++) {
3265		struct xhci_ep_ctx *ep_ctx;
3266
3267		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3269
3270		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3271				vdev->out_ctx, ep_index);
3272		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3273				vdev->eps[ep_index].stream_info);
3274	}
3275	/* Tell the HW to drop its old copy of the endpoint context info
3276	 * and add the updated copy from the input context.
3277	 */
3278	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3279			vdev->out_ctx, ctrl_ctx,
3280			changed_ep_bitmask, changed_ep_bitmask);
3281
3282	/* Issue and wait for the configure endpoint command */
3283	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3284			false, false);
3285
3286	/* xHC rejected the configure endpoint command for some reason, so we
3287	 * leave the old ring intact and free our internal streams data
3288	 * structure.
3289	 */
3290	if (ret < 0)
3291		goto cleanup;
3292
3293	spin_lock_irqsave(&xhci->lock, flags);
3294	for (i = 0; i < num_eps; i++) {
3295		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3298			 udev->slot_id, ep_index);
3299		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3300	}
3301	xhci_free_command(xhci, config_cmd);
3302	spin_unlock_irqrestore(&xhci->lock, flags);
3303
 
 
 
 
3304	/* Subtract 1 for stream 0, which drivers can't use */
3305	return num_streams - 1;
3306
3307cleanup:
3308	/* If it didn't work, free the streams! */
3309	for (i = 0; i < num_eps; i++) {
3310		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3312		vdev->eps[ep_index].stream_info = NULL;
3313		/* FIXME Unset maxPstreams in endpoint context and
3314		 * update deq ptr to point to normal string ring.
3315		 */
3316		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3317		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3318		xhci_endpoint_zero(xhci, vdev, eps[i]);
3319	}
3320	xhci_free_command(xhci, config_cmd);
3321	return -ENOMEM;
3322}
3323
3324/* Transition the endpoint from using streams to being a "normal" endpoint
3325 * without streams.
3326 *
3327 * Modify the endpoint context state, submit a configure endpoint command,
3328 * and free all endpoint rings for streams if that completes successfully.
3329 */
3330int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3331		struct usb_host_endpoint **eps, unsigned int num_eps,
3332		gfp_t mem_flags)
3333{
3334	int i, ret;
3335	struct xhci_hcd *xhci;
3336	struct xhci_virt_device *vdev;
3337	struct xhci_command *command;
3338	struct xhci_input_control_ctx *ctrl_ctx;
3339	unsigned int ep_index;
3340	unsigned long flags;
3341	u32 changed_ep_bitmask;
3342
3343	xhci = hcd_to_xhci(hcd);
3344	vdev = xhci->devs[udev->slot_id];
3345
3346	/* Set up a configure endpoint command to remove the streams rings */
3347	spin_lock_irqsave(&xhci->lock, flags);
3348	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3349			udev, eps, num_eps);
3350	if (changed_ep_bitmask == 0) {
3351		spin_unlock_irqrestore(&xhci->lock, flags);
3352		return -EINVAL;
3353	}
3354
3355	/* Use the xhci_command structure from the first endpoint.  We may have
3356	 * allocated too many, but the driver may call xhci_free_streams() for
3357	 * each endpoint it grouped into one call to xhci_alloc_streams().
3358	 */
3359	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3360	command = vdev->eps[ep_index].stream_info->free_streams_command;
3361	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3362	if (!ctrl_ctx) {
3363		spin_unlock_irqrestore(&xhci->lock, flags);
3364		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3365				__func__);
3366		return -EINVAL;
3367	}
3368
3369	for (i = 0; i < num_eps; i++) {
3370		struct xhci_ep_ctx *ep_ctx;
3371
3372		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3374		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3375			EP_GETTING_NO_STREAMS;
3376
3377		xhci_endpoint_copy(xhci, command->in_ctx,
3378				vdev->out_ctx, ep_index);
3379		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3380				&vdev->eps[ep_index]);
3381	}
3382	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3383			vdev->out_ctx, ctrl_ctx,
3384			changed_ep_bitmask, changed_ep_bitmask);
3385	spin_unlock_irqrestore(&xhci->lock, flags);
3386
3387	/* Issue and wait for the configure endpoint command,
3388	 * which must succeed.
3389	 */
3390	ret = xhci_configure_endpoint(xhci, udev, command,
3391			false, true);
3392
3393	/* xHC rejected the configure endpoint command for some reason, so we
3394	 * leave the streams rings intact.
3395	 */
3396	if (ret < 0)
3397		return ret;
3398
3399	spin_lock_irqsave(&xhci->lock, flags);
3400	for (i = 0; i < num_eps; i++) {
3401		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3402		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3403		vdev->eps[ep_index].stream_info = NULL;
3404		/* FIXME Unset maxPstreams in endpoint context and
3405		 * update deq ptr to point to normal string ring.
3406		 */
3407		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3408		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3409	}
3410	spin_unlock_irqrestore(&xhci->lock, flags);
3411
3412	return 0;
3413}
3414
3415/*
3416 * Deletes endpoint resources for endpoints that were active before a Reset
3417 * Device command, or a Disable Slot command.  The Reset Device command leaves
3418 * the control endpoint intact, whereas the Disable Slot command deletes it.
3419 *
3420 * Must be called with xhci->lock held.
3421 */
3422void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3423	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3424{
3425	int i;
3426	unsigned int num_dropped_eps = 0;
3427	unsigned int drop_flags = 0;
3428
3429	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3430		if (virt_dev->eps[i].ring) {
3431			drop_flags |= 1 << i;
3432			num_dropped_eps++;
3433		}
3434	}
3435	xhci->num_active_eps -= num_dropped_eps;
3436	if (num_dropped_eps)
3437		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3438				"Dropped %u ep ctxs, flags = 0x%x, "
3439				"%u now active.",
3440				num_dropped_eps, drop_flags,
3441				xhci->num_active_eps);
3442}
3443
 
 
3444/*
3445 * This submits a Reset Device Command, which will set the device state to 0,
3446 * set the device address to 0, and disable all the endpoints except the default
3447 * control endpoint.  The USB core should come back and call
3448 * xhci_address_device(), and then re-set up the configuration.  If this is
3449 * called because of a usb_reset_and_verify_device(), then the old alternate
3450 * settings will be re-installed through the normal bandwidth allocation
3451 * functions.
3452 *
3453 * Wait for the Reset Device command to finish.  Remove all structures
3454 * associated with the endpoints that were disabled.  Clear the input device
3455 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3456 *
3457 * If the virt_dev to be reset does not exist or does not match the udev,
3458 * it means the device is lost, possibly due to the xHC restore error and
3459 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3460 * re-allocate the device.
3461 */
3462int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3463{
3464	int ret, i;
3465	unsigned long flags;
3466	struct xhci_hcd *xhci;
3467	unsigned int slot_id;
3468	struct xhci_virt_device *virt_dev;
3469	struct xhci_command *reset_device_cmd;
3470	int last_freed_endpoint;
3471	struct xhci_slot_ctx *slot_ctx;
3472	int old_active_eps = 0;
3473
3474	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3475	if (ret <= 0)
3476		return ret;
3477	xhci = hcd_to_xhci(hcd);
3478	slot_id = udev->slot_id;
3479	virt_dev = xhci->devs[slot_id];
3480	if (!virt_dev) {
3481		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3482				"not exist. Re-allocate the device\n", slot_id);
3483		ret = xhci_alloc_dev(hcd, udev);
3484		if (ret == 1)
3485			return 0;
3486		else
3487			return -EINVAL;
3488	}
3489
3490	if (virt_dev->tt_info)
3491		old_active_eps = virt_dev->tt_info->active_eps;
3492
3493	if (virt_dev->udev != udev) {
3494		/* If the virt_dev and the udev does not match, this virt_dev
3495		 * may belong to another udev.
3496		 * Re-allocate the device.
3497		 */
3498		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3499				"not match the udev. Re-allocate the device\n",
3500				slot_id);
3501		ret = xhci_alloc_dev(hcd, udev);
3502		if (ret == 1)
3503			return 0;
3504		else
3505			return -EINVAL;
3506	}
3507
3508	/* If device is not setup, there is no point in resetting it */
3509	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3510	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3511						SLOT_STATE_DISABLED)
3512		return 0;
3513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3514	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3515	/* Allocate the command structure that holds the struct completion.
3516	 * Assume we're in process context, since the normal device reset
3517	 * process has to wait for the device anyway.  Storage devices are
3518	 * reset as part of error handling, so use GFP_NOIO instead of
3519	 * GFP_KERNEL.
3520	 */
3521	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3522	if (!reset_device_cmd) {
3523		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3524		return -ENOMEM;
3525	}
3526
3527	/* Attempt to submit the Reset Device command to the command ring */
3528	spin_lock_irqsave(&xhci->lock, flags);
3529
3530	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3531	if (ret) {
3532		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3533		spin_unlock_irqrestore(&xhci->lock, flags);
3534		goto command_cleanup;
3535	}
3536	xhci_ring_cmd_db(xhci);
3537	spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539	/* Wait for the Reset Device command to finish */
3540	wait_for_completion(reset_device_cmd->completion);
3541
3542	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3543	 * unless we tried to reset a slot ID that wasn't enabled,
3544	 * or the device wasn't in the addressed or configured state.
3545	 */
3546	ret = reset_device_cmd->status;
3547	switch (ret) {
3548	case COMP_CMD_ABORT:
3549	case COMP_CMD_STOP:
3550		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3551		ret = -ETIME;
3552		goto command_cleanup;
3553	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3554	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3555		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3556				slot_id,
3557				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3558		xhci_dbg(xhci, "Not freeing device rings.\n");
3559		/* Don't treat this as an error.  May change my mind later. */
3560		ret = 0;
3561		goto command_cleanup;
3562	case COMP_SUCCESS:
3563		xhci_dbg(xhci, "Successful reset device command.\n");
3564		break;
3565	default:
3566		if (xhci_is_vendor_info_code(xhci, ret))
3567			break;
3568		xhci_warn(xhci, "Unknown completion code %u for "
3569				"reset device command.\n", ret);
3570		ret = -EINVAL;
3571		goto command_cleanup;
3572	}
3573
3574	/* Free up host controller endpoint resources */
3575	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3576		spin_lock_irqsave(&xhci->lock, flags);
3577		/* Don't delete the default control endpoint resources */
3578		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3579		spin_unlock_irqrestore(&xhci->lock, flags);
3580	}
3581
3582	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3583	last_freed_endpoint = 1;
3584	for (i = 1; i < 31; ++i) {
3585		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3586
3587		if (ep->ep_state & EP_HAS_STREAMS) {
3588			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3589					xhci_get_endpoint_address(i));
3590			xhci_free_stream_info(xhci, ep->stream_info);
3591			ep->stream_info = NULL;
3592			ep->ep_state &= ~EP_HAS_STREAMS;
3593		}
3594
3595		if (ep->ring) {
3596			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3597			last_freed_endpoint = i;
3598		}
3599		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3600			xhci_drop_ep_from_interval_table(xhci,
3601					&virt_dev->eps[i].bw_info,
3602					virt_dev->bw_table,
3603					udev,
3604					&virt_dev->eps[i],
3605					virt_dev->tt_info);
3606		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3607	}
3608	/* If necessary, update the number of active TTs on this root port */
3609	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3610
3611	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3612	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3613	ret = 0;
3614
3615command_cleanup:
3616	xhci_free_command(xhci, reset_device_cmd);
3617	return ret;
3618}
3619
3620/*
3621 * At this point, the struct usb_device is about to go away, the device has
3622 * disconnected, and all traffic has been stopped and the endpoints have been
3623 * disabled.  Free any HC data structures associated with that device.
3624 */
3625void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3626{
3627	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3628	struct xhci_virt_device *virt_dev;
 
3629	unsigned long flags;
3630	u32 state;
3631	int i, ret;
3632	struct xhci_command *command;
3633
3634	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3635	if (!command)
3636		return;
3637
3638#ifndef CONFIG_USB_DEFAULT_PERSIST
3639	/*
3640	 * We called pm_runtime_get_noresume when the device was attached.
3641	 * Decrement the counter here to allow controller to runtime suspend
3642	 * if no devices remain.
3643	 */
3644	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3645		pm_runtime_put_noidle(hcd->self.controller);
3646#endif
3647
3648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3649	/* If the host is halted due to driver unload, we still need to free the
3650	 * device.
3651	 */
3652	if (ret <= 0 && ret != -ENODEV) {
3653		kfree(command);
3654		return;
3655	}
3656
3657	virt_dev = xhci->devs[udev->slot_id];
 
 
3658
3659	/* Stop any wayward timer functions (which may grab the lock) */
3660	for (i = 0; i < 31; ++i) {
3661		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3662		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3663	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664
3665	spin_lock_irqsave(&xhci->lock, flags);
3666	/* Don't disable the slot if the host controller is dead. */
3667	state = readl(&xhci->op_regs->status);
3668	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3669			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3670		xhci_free_virt_device(xhci, udev->slot_id);
3671		spin_unlock_irqrestore(&xhci->lock, flags);
3672		kfree(command);
3673		return;
3674	}
3675
3676	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3677				    udev->slot_id)) {
 
3678		spin_unlock_irqrestore(&xhci->lock, flags);
3679		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3680		return;
3681	}
3682	xhci_ring_cmd_db(xhci);
3683	spin_unlock_irqrestore(&xhci->lock, flags);
3684
3685	/*
3686	 * Event command completion handler will free any data structures
3687	 * associated with the slot.  XXX Can free sleep?
3688	 */
 
 
 
 
 
3689}
3690
3691/*
3692 * Checks if we have enough host controller resources for the default control
3693 * endpoint.
3694 *
3695 * Must be called with xhci->lock held.
3696 */
3697static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3698{
3699	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3700		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701				"Not enough ep ctxs: "
3702				"%u active, need to add 1, limit is %u.",
3703				xhci->num_active_eps, xhci->limit_active_eps);
3704		return -ENOMEM;
3705	}
3706	xhci->num_active_eps += 1;
3707	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3708			"Adding 1 ep ctx, %u now active.",
3709			xhci->num_active_eps);
3710	return 0;
3711}
3712
3713
3714/*
3715 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3716 * timed out, or allocating memory failed.  Returns 1 on success.
3717 */
3718int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3719{
3720	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3721	unsigned long flags;
3722	int ret, slot_id;
3723	struct xhci_command *command;
3724
3725	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3726	if (!command)
3727		return 0;
3728
3729	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3730	mutex_lock(&xhci->mutex);
3731	spin_lock_irqsave(&xhci->lock, flags);
3732	command->completion = &xhci->addr_dev;
3733	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3734	if (ret) {
3735		spin_unlock_irqrestore(&xhci->lock, flags);
3736		mutex_unlock(&xhci->mutex);
3737		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3738		kfree(command);
3739		return 0;
3740	}
3741	xhci_ring_cmd_db(xhci);
3742	spin_unlock_irqrestore(&xhci->lock, flags);
3743
3744	wait_for_completion(command->completion);
3745	slot_id = xhci->slot_id;
3746	mutex_unlock(&xhci->mutex);
3747
3748	if (!slot_id || command->status != COMP_SUCCESS) {
3749		xhci_err(xhci, "Error while assigning device slot ID\n");
 
3750		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3751				HCS_MAX_SLOTS(
3752					readl(&xhci->cap_regs->hcs_params1)));
3753		kfree(command);
3754		return 0;
3755	}
3756
 
 
3757	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3758		spin_lock_irqsave(&xhci->lock, flags);
3759		ret = xhci_reserve_host_control_ep_resources(xhci);
3760		if (ret) {
3761			spin_unlock_irqrestore(&xhci->lock, flags);
3762			xhci_warn(xhci, "Not enough host resources, "
3763					"active endpoint contexts = %u\n",
3764					xhci->num_active_eps);
3765			goto disable_slot;
3766		}
3767		spin_unlock_irqrestore(&xhci->lock, flags);
3768	}
3769	/* Use GFP_NOIO, since this function can be called from
3770	 * xhci_discover_or_reset_device(), which may be called as part of
3771	 * mass storage driver error handling.
3772	 */
3773	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3774		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3775		goto disable_slot;
3776	}
 
 
 
 
3777	udev->slot_id = slot_id;
3778
3779#ifndef CONFIG_USB_DEFAULT_PERSIST
 
3780	/*
3781	 * If resetting upon resume, we can't put the controller into runtime
3782	 * suspend if there is a device attached.
3783	 */
3784	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785		pm_runtime_get_noresume(hcd->self.controller);
3786#endif
3787
3788
3789	kfree(command);
3790	/* Is this a LS or FS device under a HS hub? */
3791	/* Hub or peripherial? */
3792	return 1;
3793
3794disable_slot:
3795	/* Disable slot, if we can do it without mem alloc */
3796	spin_lock_irqsave(&xhci->lock, flags);
3797	command->completion = NULL;
3798	command->status = 0;
3799	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3800				     udev->slot_id))
3801		xhci_ring_cmd_db(xhci);
3802	spin_unlock_irqrestore(&xhci->lock, flags);
3803	return 0;
3804}
3805
3806/*
3807 * Issue an Address Device command and optionally send a corresponding
3808 * SetAddress request to the device.
 
 
 
 
 
 
3809 */
3810static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3811			     enum xhci_setup_dev setup)
3812{
3813	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3814	unsigned long flags;
3815	struct xhci_virt_device *virt_dev;
3816	int ret = 0;
3817	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3818	struct xhci_slot_ctx *slot_ctx;
3819	struct xhci_input_control_ctx *ctrl_ctx;
3820	u64 temp_64;
3821	struct xhci_command *command = NULL;
3822
3823	mutex_lock(&xhci->mutex);
3824
3825	if (xhci->xhc_state)	/* dying, removing or halted */
 
3826		goto out;
 
3827
3828	if (!udev->slot_id) {
3829		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830				"Bad Slot ID %d", udev->slot_id);
3831		ret = -EINVAL;
3832		goto out;
3833	}
3834
3835	virt_dev = xhci->devs[udev->slot_id];
3836
3837	if (WARN_ON(!virt_dev)) {
3838		/*
3839		 * In plug/unplug torture test with an NEC controller,
3840		 * a zero-dereference was observed once due to virt_dev = 0.
3841		 * Print useful debug rather than crash if it is observed again!
3842		 */
3843		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3844			udev->slot_id);
3845		ret = -EINVAL;
3846		goto out;
3847	}
 
 
3848
3849	if (setup == SETUP_CONTEXT_ONLY) {
3850		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852		    SLOT_STATE_DEFAULT) {
3853			xhci_dbg(xhci, "Slot already in default state\n");
3854			goto out;
3855		}
3856	}
3857
3858	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3859	if (!command) {
3860		ret = -ENOMEM;
3861		goto out;
3862	}
3863
3864	command->in_ctx = virt_dev->in_ctx;
3865	command->completion = &xhci->addr_dev;
3866
3867	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3868	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3869	if (!ctrl_ctx) {
3870		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3871				__func__);
3872		ret = -EINVAL;
3873		goto out;
3874	}
3875	/*
3876	 * If this is the first Set Address since device plug-in or
3877	 * virt_device realloaction after a resume with an xHCI power loss,
3878	 * then set up the slot context.
3879	 */
3880	if (!slot_ctx->dev_info)
3881		xhci_setup_addressable_virt_dev(xhci, udev);
3882	/* Otherwise, update the control endpoint ring enqueue pointer. */
3883	else
3884		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3885	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3886	ctrl_ctx->drop_flags = 0;
3887
3888	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3889	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3890	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3891				le32_to_cpu(slot_ctx->dev_info) >> 27);
3892
 
3893	spin_lock_irqsave(&xhci->lock, flags);
 
3894	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3895					udev->slot_id, setup);
3896	if (ret) {
3897		spin_unlock_irqrestore(&xhci->lock, flags);
3898		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899				"FIXME: allocate a command ring segment");
3900		goto out;
3901	}
3902	xhci_ring_cmd_db(xhci);
3903	spin_unlock_irqrestore(&xhci->lock, flags);
3904
3905	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3906	wait_for_completion(command->completion);
3907
3908	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3909	 * the SetAddress() "recovery interval" required by USB and aborting the
3910	 * command on a timeout.
3911	 */
3912	switch (command->status) {
3913	case COMP_CMD_ABORT:
3914	case COMP_CMD_STOP:
3915		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3916		ret = -ETIME;
3917		break;
3918	case COMP_CTX_STATE:
3919	case COMP_EBADSLT:
3920		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3921			 act, udev->slot_id);
3922		ret = -EINVAL;
3923		break;
3924	case COMP_TX_ERR:
3925		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3926		ret = -EPROTO;
3927		break;
3928	case COMP_DEV_ERR:
 
 
 
 
 
 
 
 
 
3929		dev_warn(&udev->dev,
3930			 "ERROR: Incompatible device for setup %s command\n", act);
3931		ret = -ENODEV;
3932		break;
3933	case COMP_SUCCESS:
3934		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935			       "Successful setup %s command", act);
3936		break;
3937	default:
3938		xhci_err(xhci,
3939			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3940			 act, command->status);
3941		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3944		ret = -EINVAL;
3945		break;
3946	}
3947	if (ret)
3948		goto out;
3949	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3950	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951			"Op regs DCBAA ptr = %#016llx", temp_64);
3952	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3953		"Slot ID %d dcbaa entry @%p = %#016llx",
3954		udev->slot_id,
3955		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3956		(unsigned long long)
3957		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3958	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959			"Output Context DMA address = %#08llx",
3960			(unsigned long long)virt_dev->out_ctx->dma);
3961	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3962	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3963	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3964				le32_to_cpu(slot_ctx->dev_info) >> 27);
3965	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3966	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3967	/*
3968	 * USB core uses address 1 for the roothubs, so we add one to the
3969	 * address given back to us by the HC.
3970	 */
3971	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3972	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3973				le32_to_cpu(slot_ctx->dev_info) >> 27);
3974	/* Zero the input context control for later use */
3975	ctrl_ctx->add_flags = 0;
3976	ctrl_ctx->drop_flags = 0;
 
 
3977
3978	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3979		       "Internal device address = %d",
3980		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3981out:
3982	mutex_unlock(&xhci->mutex);
3983	kfree(command);
 
 
 
3984	return ret;
3985}
3986
3987int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3988{
3989	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3990}
3991
3992int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3993{
3994	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
 
3995}
3996
3997/*
3998 * Transfer the port index into real index in the HW port status
3999 * registers. Caculate offset between the port's PORTSC register
4000 * and port status base. Divide the number of per port register
4001 * to get the real index. The raw port number bases 1.
4002 */
4003int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4004{
4005	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4006	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4007	__le32 __iomem *addr;
4008	int raw_port;
4009
4010	if (hcd->speed < HCD_USB3)
4011		addr = xhci->usb2_ports[port1 - 1];
4012	else
4013		addr = xhci->usb3_ports[port1 - 1];
4014
4015	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4016	return raw_port;
4017}
4018
4019/*
4020 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4021 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4022 */
4023static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4024			struct usb_device *udev, u16 max_exit_latency)
4025{
4026	struct xhci_virt_device *virt_dev;
4027	struct xhci_command *command;
4028	struct xhci_input_control_ctx *ctrl_ctx;
4029	struct xhci_slot_ctx *slot_ctx;
4030	unsigned long flags;
4031	int ret;
4032
 
 
 
 
4033	spin_lock_irqsave(&xhci->lock, flags);
4034
4035	virt_dev = xhci->devs[udev->slot_id];
4036
4037	/*
4038	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4039	 * xHC was re-initialized. Exit latency will be set later after
4040	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4041	 */
4042
4043	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4044		spin_unlock_irqrestore(&xhci->lock, flags);
 
4045		return 0;
4046	}
4047
4048	/* Attempt to issue an Evaluate Context command to change the MEL. */
4049	command = xhci->lpm_command;
4050	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4051	if (!ctrl_ctx) {
4052		spin_unlock_irqrestore(&xhci->lock, flags);
 
4053		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4054				__func__);
4055		return -ENOMEM;
4056	}
4057
4058	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4059	spin_unlock_irqrestore(&xhci->lock, flags);
4060
4061	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4062	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4063	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4064	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4065	slot_ctx->dev_state = 0;
4066
4067	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4068			"Set up evaluate context for LPM MEL change.");
4069	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4070	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4071
4072	/* Issue and wait for the evaluate context command. */
4073	ret = xhci_configure_endpoint(xhci, udev, command,
4074			true, true);
4075	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4076	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4077
4078	if (!ret) {
4079		spin_lock_irqsave(&xhci->lock, flags);
4080		virt_dev->current_mel = max_exit_latency;
4081		spin_unlock_irqrestore(&xhci->lock, flags);
4082	}
 
 
 
4083	return ret;
4084}
4085
4086#ifdef CONFIG_PM
4087
4088/* BESL to HIRD Encoding array for USB2 LPM */
4089static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4090	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4091
4092/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4093static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4094					struct usb_device *udev)
4095{
4096	int u2del, besl, besl_host;
4097	int besl_device = 0;
4098	u32 field;
4099
4100	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4101	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102
4103	if (field & USB_BESL_SUPPORT) {
4104		for (besl_host = 0; besl_host < 16; besl_host++) {
4105			if (xhci_besl_encoding[besl_host] >= u2del)
4106				break;
4107		}
4108		/* Use baseline BESL value as default */
4109		if (field & USB_BESL_BASELINE_VALID)
4110			besl_device = USB_GET_BESL_BASELINE(field);
4111		else if (field & USB_BESL_DEEP_VALID)
4112			besl_device = USB_GET_BESL_DEEP(field);
4113	} else {
4114		if (u2del <= 50)
4115			besl_host = 0;
4116		else
4117			besl_host = (u2del - 51) / 75 + 1;
4118	}
4119
4120	besl = besl_host + besl_device;
4121	if (besl > 15)
4122		besl = 15;
4123
4124	return besl;
4125}
4126
4127/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4128static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4129{
4130	u32 field;
4131	int l1;
4132	int besld = 0;
4133	int hirdm = 0;
4134
4135	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4138	l1 = udev->l1_params.timeout / 256;
4139
4140	/* device has preferred BESLD */
4141	if (field & USB_BESL_DEEP_VALID) {
4142		besld = USB_GET_BESL_DEEP(field);
4143		hirdm = 1;
4144	}
4145
4146	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4147}
4148
4149int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4150			struct usb_device *udev, int enable)
4151{
4152	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4153	__le32 __iomem	**port_array;
4154	__le32 __iomem	*pm_addr, *hlpm_addr;
4155	u32		pm_val, hlpm_val, field;
4156	unsigned int	port_num;
4157	unsigned long	flags;
4158	int		hird, exit_latency;
4159	int		ret;
4160
 
 
 
4161	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4162			!udev->lpm_capable)
4163		return -EPERM;
4164
4165	if (!udev->parent || udev->parent->parent ||
4166			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4167		return -EPERM;
4168
4169	if (udev->usb2_hw_lpm_capable != 1)
4170		return -EPERM;
4171
4172	spin_lock_irqsave(&xhci->lock, flags);
4173
4174	port_array = xhci->usb2_ports;
4175	port_num = udev->portnum - 1;
4176	pm_addr = port_array[port_num] + PORTPMSC;
4177	pm_val = readl(pm_addr);
4178	hlpm_addr = port_array[port_num] + PORTHLPMC;
4179	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4180
4181	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4182			enable ? "enable" : "disable", port_num + 1);
4183
4184	if (enable) {
4185		/* Host supports BESL timeout instead of HIRD */
4186		if (udev->usb2_hw_lpm_besl_capable) {
4187			/* if device doesn't have a preferred BESL value use a
4188			 * default one which works with mixed HIRD and BESL
4189			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4190			 */
 
4191			if ((field & USB_BESL_SUPPORT) &&
4192			    (field & USB_BESL_BASELINE_VALID))
4193				hird = USB_GET_BESL_BASELINE(field);
4194			else
4195				hird = udev->l1_params.besl;
4196
4197			exit_latency = xhci_besl_encoding[hird];
4198			spin_unlock_irqrestore(&xhci->lock, flags);
4199
4200			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4201			 * input context for link powermanagement evaluate
4202			 * context commands. It is protected by hcd->bandwidth
4203			 * mutex and is shared by all devices. We need to set
4204			 * the max ext latency in USB 2 BESL LPM as well, so
4205			 * use the same mutex and xhci_change_max_exit_latency()
4206			 */
4207			mutex_lock(hcd->bandwidth_mutex);
4208			ret = xhci_change_max_exit_latency(xhci, udev,
4209							   exit_latency);
4210			mutex_unlock(hcd->bandwidth_mutex);
4211
4212			if (ret < 0)
4213				return ret;
4214			spin_lock_irqsave(&xhci->lock, flags);
4215
4216			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4217			writel(hlpm_val, hlpm_addr);
4218			/* flush write */
4219			readl(hlpm_addr);
4220		} else {
4221			hird = xhci_calculate_hird_besl(xhci, udev);
4222		}
4223
4224		pm_val &= ~PORT_HIRD_MASK;
4225		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4226		writel(pm_val, pm_addr);
4227		pm_val = readl(pm_addr);
4228		pm_val |= PORT_HLE;
4229		writel(pm_val, pm_addr);
4230		/* flush write */
4231		readl(pm_addr);
4232	} else {
4233		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4234		writel(pm_val, pm_addr);
4235		/* flush write */
4236		readl(pm_addr);
4237		if (udev->usb2_hw_lpm_besl_capable) {
4238			spin_unlock_irqrestore(&xhci->lock, flags);
4239			mutex_lock(hcd->bandwidth_mutex);
4240			xhci_change_max_exit_latency(xhci, udev, 0);
4241			mutex_unlock(hcd->bandwidth_mutex);
 
 
4242			return 0;
4243		}
4244	}
4245
4246	spin_unlock_irqrestore(&xhci->lock, flags);
4247	return 0;
4248}
4249
4250/* check if a usb2 port supports a given extened capability protocol
4251 * only USB2 ports extended protocol capability values are cached.
4252 * Return 1 if capability is supported
4253 */
4254static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4255					   unsigned capability)
4256{
4257	u32 port_offset, port_count;
4258	int i;
 
4259
4260	for (i = 0; i < xhci->num_ext_caps; i++) {
4261		if (xhci->ext_caps[i] & capability) {
4262			/* port offsets starts at 1 */
4263			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4264			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4265			if (port >= port_offset &&
4266			    port < port_offset + port_count)
4267				return 1;
4268		}
 
 
 
4269	}
4270	return 0;
4271}
4272
4273int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4274{
4275	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4276	int		portnum = udev->portnum - 1;
4277
4278	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4279			!udev->lpm_capable)
4280		return 0;
4281
4282	/* we only support lpm for non-hub device connected to root hub yet */
4283	if (!udev->parent || udev->parent->parent ||
4284			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4285		return 0;
4286
4287	if (xhci->hw_lpm_support == 1 &&
4288			xhci_check_usb2_port_capability(
4289				xhci, portnum, XHCI_HLC)) {
 
4290		udev->usb2_hw_lpm_capable = 1;
4291		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293		if (xhci_check_usb2_port_capability(xhci, portnum,
4294					XHCI_BLC))
4295			udev->usb2_hw_lpm_besl_capable = 1;
4296	}
4297
4298	return 0;
4299}
4300
4301/*---------------------- USB 3.0 Link PM functions ------------------------*/
4302
4303/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304static unsigned long long xhci_service_interval_to_ns(
4305		struct usb_endpoint_descriptor *desc)
4306{
4307	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4308}
4309
4310static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4311		enum usb3_link_state state)
4312{
4313	unsigned long long sel;
4314	unsigned long long pel;
4315	unsigned int max_sel_pel;
4316	char *state_name;
4317
4318	switch (state) {
4319	case USB3_LPM_U1:
4320		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4321		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4322		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4323		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4324		state_name = "U1";
4325		break;
4326	case USB3_LPM_U2:
4327		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4328		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4329		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4330		state_name = "U2";
4331		break;
4332	default:
4333		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4334				__func__);
4335		return USB3_LPM_DISABLED;
4336	}
4337
4338	if (sel <= max_sel_pel && pel <= max_sel_pel)
4339		return USB3_LPM_DEVICE_INITIATED;
4340
4341	if (sel > max_sel_pel)
4342		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4343				"due to long SEL %llu ms\n",
4344				state_name, sel);
4345	else
4346		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4347				"due to long PEL %llu ms\n",
4348				state_name, pel);
4349	return USB3_LPM_DISABLED;
4350}
4351
4352/* The U1 timeout should be the maximum of the following values:
4353 *  - For control endpoints, U1 system exit latency (SEL) * 3
4354 *  - For bulk endpoints, U1 SEL * 5
4355 *  - For interrupt endpoints:
4356 *    - Notification EPs, U1 SEL * 3
4357 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4359 */
4360static unsigned long long xhci_calculate_intel_u1_timeout(
4361		struct usb_device *udev,
4362		struct usb_endpoint_descriptor *desc)
4363{
4364	unsigned long long timeout_ns;
4365	int ep_type;
4366	int intr_type;
4367
4368	ep_type = usb_endpoint_type(desc);
4369	switch (ep_type) {
4370	case USB_ENDPOINT_XFER_CONTROL:
4371		timeout_ns = udev->u1_params.sel * 3;
4372		break;
4373	case USB_ENDPOINT_XFER_BULK:
4374		timeout_ns = udev->u1_params.sel * 5;
4375		break;
4376	case USB_ENDPOINT_XFER_INT:
4377		intr_type = usb_endpoint_interrupt_type(desc);
4378		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4379			timeout_ns = udev->u1_params.sel * 3;
4380			break;
4381		}
4382		/* Otherwise the calculation is the same as isoc eps */
 
4383	case USB_ENDPOINT_XFER_ISOC:
4384		timeout_ns = xhci_service_interval_to_ns(desc);
4385		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4386		if (timeout_ns < udev->u1_params.sel * 2)
4387			timeout_ns = udev->u1_params.sel * 2;
4388		break;
4389	default:
4390		return 0;
4391	}
4392
4393	return timeout_ns;
4394}
4395
4396/* Returns the hub-encoded U1 timeout value. */
4397static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4398		struct usb_device *udev,
4399		struct usb_endpoint_descriptor *desc)
4400{
4401	unsigned long long timeout_ns;
4402
4403	if (xhci->quirks & XHCI_INTEL_HOST)
 
 
 
 
 
 
 
 
4404		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4405	else
4406		timeout_ns = udev->u1_params.sel;
4407
4408	/* The U1 timeout is encoded in 1us intervals.
4409	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4410	 */
4411	if (timeout_ns == USB3_LPM_DISABLED)
4412		timeout_ns = 1;
4413	else
4414		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4415
4416	/* If the necessary timeout value is bigger than what we can set in the
4417	 * USB 3.0 hub, we have to disable hub-initiated U1.
4418	 */
4419	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4420		return timeout_ns;
4421	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4422			"due to long timeout %llu ms\n", timeout_ns);
4423	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4424}
4425
4426/* The U2 timeout should be the maximum of:
4427 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4428 *  - largest bInterval of any active periodic endpoint (to avoid going
4429 *    into lower power link states between intervals).
4430 *  - the U2 Exit Latency of the device
4431 */
4432static unsigned long long xhci_calculate_intel_u2_timeout(
4433		struct usb_device *udev,
4434		struct usb_endpoint_descriptor *desc)
4435{
4436	unsigned long long timeout_ns;
4437	unsigned long long u2_del_ns;
4438
4439	timeout_ns = 10 * 1000 * 1000;
4440
4441	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4442			(xhci_service_interval_to_ns(desc) > timeout_ns))
4443		timeout_ns = xhci_service_interval_to_ns(desc);
4444
4445	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4446	if (u2_del_ns > timeout_ns)
4447		timeout_ns = u2_del_ns;
4448
4449	return timeout_ns;
4450}
4451
4452/* Returns the hub-encoded U2 timeout value. */
4453static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4454		struct usb_device *udev,
4455		struct usb_endpoint_descriptor *desc)
4456{
4457	unsigned long long timeout_ns;
4458
4459	if (xhci->quirks & XHCI_INTEL_HOST)
 
 
 
 
 
 
 
 
4460		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4461	else
4462		timeout_ns = udev->u2_params.sel;
4463
4464	/* The U2 timeout is encoded in 256us intervals */
4465	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4466	/* If the necessary timeout value is bigger than what we can set in the
4467	 * USB 3.0 hub, we have to disable hub-initiated U2.
4468	 */
4469	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4470		return timeout_ns;
4471	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4472			"due to long timeout %llu ms\n", timeout_ns);
4473	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4474}
4475
4476static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4477		struct usb_device *udev,
4478		struct usb_endpoint_descriptor *desc,
4479		enum usb3_link_state state,
4480		u16 *timeout)
4481{
4482	if (state == USB3_LPM_U1)
4483		return xhci_calculate_u1_timeout(xhci, udev, desc);
4484	else if (state == USB3_LPM_U2)
4485		return xhci_calculate_u2_timeout(xhci, udev, desc);
4486
4487	return USB3_LPM_DISABLED;
4488}
4489
4490static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4491		struct usb_device *udev,
4492		struct usb_endpoint_descriptor *desc,
4493		enum usb3_link_state state,
4494		u16 *timeout)
4495{
4496	u16 alt_timeout;
4497
4498	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4499		desc, state, timeout);
4500
4501	/* If we found we can't enable hub-initiated LPM, or
4502	 * the U1 or U2 exit latency was too high to allow
4503	 * device-initiated LPM as well, just stop searching.
 
4504	 */
4505	if (alt_timeout == USB3_LPM_DISABLED ||
4506			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4507		*timeout = alt_timeout;
4508		return -E2BIG;
4509	}
4510	if (alt_timeout > *timeout)
4511		*timeout = alt_timeout;
4512	return 0;
4513}
4514
4515static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4516		struct usb_device *udev,
4517		struct usb_host_interface *alt,
4518		enum usb3_link_state state,
4519		u16 *timeout)
4520{
4521	int j;
4522
4523	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4524		if (xhci_update_timeout_for_endpoint(xhci, udev,
4525					&alt->endpoint[j].desc, state, timeout))
4526			return -E2BIG;
4527		continue;
4528	}
4529	return 0;
4530}
4531
4532static int xhci_check_intel_tier_policy(struct usb_device *udev,
 
4533		enum usb3_link_state state)
4534{
4535	struct usb_device *parent;
4536	unsigned int num_hubs;
4537
4538	if (state == USB3_LPM_U2)
4539		return 0;
4540
4541	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4542	for (parent = udev->parent, num_hubs = 0; parent->parent;
4543			parent = parent->parent)
4544		num_hubs++;
4545
4546	if (num_hubs < 2)
4547		return 0;
 
 
4548
4549	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4550			" below second-tier hub.\n");
4551	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4552			"to decrease power consumption.\n");
4553	return -E2BIG;
4554}
4555
4556static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4557		struct usb_device *udev,
4558		enum usb3_link_state state)
4559{
4560	if (xhci->quirks & XHCI_INTEL_HOST)
4561		return xhci_check_intel_tier_policy(udev, state);
4562	else
4563		return 0;
4564}
4565
4566/* Returns the U1 or U2 timeout that should be enabled.
4567 * If the tier check or timeout setting functions return with a non-zero exit
4568 * code, that means the timeout value has been finalized and we shouldn't look
4569 * at any more endpoints.
4570 */
4571static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4572			struct usb_device *udev, enum usb3_link_state state)
4573{
4574	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4575	struct usb_host_config *config;
4576	char *state_name;
4577	int i;
4578	u16 timeout = USB3_LPM_DISABLED;
4579
4580	if (state == USB3_LPM_U1)
4581		state_name = "U1";
4582	else if (state == USB3_LPM_U2)
4583		state_name = "U2";
4584	else {
4585		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4586				state);
4587		return timeout;
4588	}
4589
4590	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4591		return timeout;
4592
4593	/* Gather some information about the currently installed configuration
4594	 * and alternate interface settings.
4595	 */
4596	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4597			state, &timeout))
4598		return timeout;
4599
4600	config = udev->actconfig;
4601	if (!config)
4602		return timeout;
4603
4604	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4605		struct usb_driver *driver;
4606		struct usb_interface *intf = config->interface[i];
4607
4608		if (!intf)
4609			continue;
4610
4611		/* Check if any currently bound drivers want hub-initiated LPM
4612		 * disabled.
4613		 */
4614		if (intf->dev.driver) {
4615			driver = to_usb_driver(intf->dev.driver);
4616			if (driver && driver->disable_hub_initiated_lpm) {
4617				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4618						"at request of driver %s\n",
4619						state_name, driver->name);
4620				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4621			}
4622		}
4623
4624		/* Not sure how this could happen... */
4625		if (!intf->cur_altsetting)
4626			continue;
4627
4628		if (xhci_update_timeout_for_interface(xhci, udev,
4629					intf->cur_altsetting,
4630					state, &timeout))
4631			return timeout;
4632	}
4633	return timeout;
4634}
4635
4636static int calculate_max_exit_latency(struct usb_device *udev,
4637		enum usb3_link_state state_changed,
4638		u16 hub_encoded_timeout)
4639{
4640	unsigned long long u1_mel_us = 0;
4641	unsigned long long u2_mel_us = 0;
4642	unsigned long long mel_us = 0;
4643	bool disabling_u1;
4644	bool disabling_u2;
4645	bool enabling_u1;
4646	bool enabling_u2;
4647
4648	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4649			hub_encoded_timeout == USB3_LPM_DISABLED);
4650	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4651			hub_encoded_timeout == USB3_LPM_DISABLED);
4652
4653	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4654			hub_encoded_timeout != USB3_LPM_DISABLED);
4655	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4656			hub_encoded_timeout != USB3_LPM_DISABLED);
4657
4658	/* If U1 was already enabled and we're not disabling it,
4659	 * or we're going to enable U1, account for the U1 max exit latency.
4660	 */
4661	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4662			enabling_u1)
4663		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4664	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4665			enabling_u2)
4666		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4667
4668	if (u1_mel_us > u2_mel_us)
4669		mel_us = u1_mel_us;
4670	else
4671		mel_us = u2_mel_us;
4672	/* xHCI host controller max exit latency field is only 16 bits wide. */
4673	if (mel_us > MAX_EXIT) {
4674		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4675				"is too big.\n", mel_us);
4676		return -E2BIG;
4677	}
4678	return mel_us;
4679}
4680
4681/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4682int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4683			struct usb_device *udev, enum usb3_link_state state)
4684{
4685	struct xhci_hcd	*xhci;
 
4686	u16 hub_encoded_timeout;
4687	int mel;
4688	int ret;
4689
4690	xhci = hcd_to_xhci(hcd);
4691	/* The LPM timeout values are pretty host-controller specific, so don't
4692	 * enable hub-initiated timeouts unless the vendor has provided
4693	 * information about their timeout algorithm.
4694	 */
4695	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4696			!xhci->devs[udev->slot_id])
4697		return USB3_LPM_DISABLED;
4698
 
 
 
 
 
 
 
 
 
 
4699	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4700	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4701	if (mel < 0) {
4702		/* Max Exit Latency is too big, disable LPM. */
4703		hub_encoded_timeout = USB3_LPM_DISABLED;
4704		mel = 0;
4705	}
4706
4707	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4708	if (ret)
4709		return ret;
4710	return hub_encoded_timeout;
4711}
4712
4713int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714			struct usb_device *udev, enum usb3_link_state state)
4715{
4716	struct xhci_hcd	*xhci;
4717	u16 mel;
4718
4719	xhci = hcd_to_xhci(hcd);
4720	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4721			!xhci->devs[udev->slot_id])
4722		return 0;
4723
4724	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4725	return xhci_change_max_exit_latency(xhci, udev, mel);
4726}
4727#else /* CONFIG_PM */
4728
4729int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4730				struct usb_device *udev, int enable)
4731{
4732	return 0;
4733}
4734
4735int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4736{
4737	return 0;
4738}
4739
4740int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4741			struct usb_device *udev, enum usb3_link_state state)
4742{
4743	return USB3_LPM_DISABLED;
4744}
4745
4746int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4747			struct usb_device *udev, enum usb3_link_state state)
4748{
4749	return 0;
4750}
4751#endif	/* CONFIG_PM */
4752
4753/*-------------------------------------------------------------------------*/
4754
4755/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4756 * internal data structures for the device.
4757 */
4758int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4759			struct usb_tt *tt, gfp_t mem_flags)
4760{
4761	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4762	struct xhci_virt_device *vdev;
4763	struct xhci_command *config_cmd;
4764	struct xhci_input_control_ctx *ctrl_ctx;
4765	struct xhci_slot_ctx *slot_ctx;
4766	unsigned long flags;
4767	unsigned think_time;
4768	int ret;
4769
4770	/* Ignore root hubs */
4771	if (!hdev->parent)
4772		return 0;
4773
4774	vdev = xhci->devs[hdev->slot_id];
4775	if (!vdev) {
4776		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4777		return -EINVAL;
4778	}
4779	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4780	if (!config_cmd) {
4781		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4782		return -ENOMEM;
4783	}
4784	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4785	if (!ctrl_ctx) {
4786		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4787				__func__);
4788		xhci_free_command(xhci, config_cmd);
4789		return -ENOMEM;
4790	}
4791
4792	spin_lock_irqsave(&xhci->lock, flags);
4793	if (hdev->speed == USB_SPEED_HIGH &&
4794			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4795		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4796		xhci_free_command(xhci, config_cmd);
4797		spin_unlock_irqrestore(&xhci->lock, flags);
4798		return -ENOMEM;
4799	}
4800
4801	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4802	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4803	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4804	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4805	/*
4806	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4807	 * but it may be already set to 1 when setup an xHCI virtual
4808	 * device, so clear it anyway.
4809	 */
4810	if (tt->multi)
4811		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4812	else if (hdev->speed == USB_SPEED_FULL)
4813		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4814
4815	if (xhci->hci_version > 0x95) {
4816		xhci_dbg(xhci, "xHCI version %x needs hub "
4817				"TT think time and number of ports\n",
4818				(unsigned int) xhci->hci_version);
4819		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4820		/* Set TT think time - convert from ns to FS bit times.
4821		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4822		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4823		 *
4824		 * xHCI 1.0: this field shall be 0 if the device is not a
4825		 * High-spped hub.
4826		 */
4827		think_time = tt->think_time;
4828		if (think_time != 0)
4829			think_time = (think_time / 666) - 1;
4830		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4831			slot_ctx->tt_info |=
4832				cpu_to_le32(TT_THINK_TIME(think_time));
4833	} else {
4834		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4835				"TT think time or number of ports\n",
4836				(unsigned int) xhci->hci_version);
4837	}
4838	slot_ctx->dev_state = 0;
4839	spin_unlock_irqrestore(&xhci->lock, flags);
4840
4841	xhci_dbg(xhci, "Set up %s for hub device.\n",
4842			(xhci->hci_version > 0x95) ?
4843			"configure endpoint" : "evaluate context");
4844	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4845	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4846
4847	/* Issue and wait for the configure endpoint or
4848	 * evaluate context command.
4849	 */
4850	if (xhci->hci_version > 0x95)
4851		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4852				false, false);
4853	else
4854		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4855				true, false);
4856
4857	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4858	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4859
4860	xhci_free_command(xhci, config_cmd);
4861	return ret;
4862}
 
4863
4864int xhci_get_frame(struct usb_hcd *hcd)
4865{
4866	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4867	/* EHCI mods by the periodic size.  Why? */
4868	return readl(&xhci->run_regs->microframe_index) >> 3;
4869}
4870
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4871int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4872{
4873	struct xhci_hcd		*xhci;
4874	struct device		*dev = hcd->self.controller;
 
 
 
 
4875	int			retval;
4876
4877	/* Accept arbitrarily long scatter-gather lists */
4878	hcd->self.sg_tablesize = ~0;
4879
4880	/* support to build packet from discontinuous buffers */
4881	hcd->self.no_sg_constraint = 1;
4882
4883	/* XHCI controllers don't stop the ep queue on short packets :| */
4884	hcd->self.no_stop_on_short = 1;
4885
4886	xhci = hcd_to_xhci(hcd);
4887
4888	if (usb_hcd_is_primary_hcd(hcd)) {
4889		xhci->main_hcd = hcd;
4890		/* Mark the first roothub as being USB 2.0.
4891		 * The xHCI driver will register the USB 3.0 roothub.
4892		 */
4893		hcd->speed = HCD_USB2;
4894		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4895		/*
4896		 * USB 2.0 roothub under xHCI has an integrated TT,
4897		 * (rate matching hub) as opposed to having an OHCI/UHCI
4898		 * companion controller.
4899		 */
4900		hcd->has_tt = 1;
4901	} else {
4902		if (xhci->sbrn == 0x31) {
4903			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4904			hcd->speed = HCD_USB31;
4905			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4906		}
4907		/* xHCI private pointer was set in xhci_pci_probe for the second
4908		 * registered roothub.
4909		 */
4910		return 0;
4911	}
4912
4913	mutex_init(&xhci->mutex);
 
4914	xhci->cap_regs = hcd->regs;
4915	xhci->op_regs = hcd->regs +
4916		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4917	xhci->run_regs = hcd->regs +
4918		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4919	/* Cache read-only capability registers */
4920	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4921	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4922	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4923	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4924	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4925	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4926	if (xhci->hci_version > 0x100)
4927		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4928	xhci_print_registers(xhci);
4929
4930	xhci->quirks = quirks;
 
 
 
 
 
4931
4932	get_quirks(dev, xhci);
 
4933
4934	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4935	 * success event after a short transfer. This quirk will ignore such
4936	 * spurious event.
4937	 */
4938	if (xhci->hci_version > 0x96)
4939		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4940
 
 
 
 
 
4941	/* Make sure the HC is halted. */
4942	retval = xhci_halt(xhci);
4943	if (retval)
4944		return retval;
4945
 
 
4946	xhci_dbg(xhci, "Resetting HCD\n");
4947	/* Reset the internal HC memory state and registers. */
4948	retval = xhci_reset(xhci);
4949	if (retval)
4950		return retval;
4951	xhci_dbg(xhci, "Reset complete\n");
4952
4953	/*
4954	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4955	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4956	 * address memory pointers actually. So, this driver clears the AC64
4957	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4958	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4959	 */
4960	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4961		xhci->hcc_params &= ~BIT(0);
4962
4963	/* Set dma_mask and coherent_dma_mask to 64-bits,
4964	 * if xHC supports 64-bit addressing */
4965	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4966			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4967		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4968		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4969	} else {
4970		/*
4971		 * This is to avoid error in cases where a 32-bit USB
4972		 * controller is used on a 64-bit capable system.
4973		 */
4974		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4975		if (retval)
4976			return retval;
4977		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4978		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4979	}
4980
4981	xhci_dbg(xhci, "Calling HCD init\n");
4982	/* Initialize HCD and host controller data structures. */
4983	retval = xhci_init(hcd);
4984	if (retval)
4985		return retval;
4986	xhci_dbg(xhci, "Called HCD init\n");
4987
4988	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
 
 
 
 
 
4989		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4990
4991	return 0;
4992}
4993EXPORT_SYMBOL_GPL(xhci_gen_setup);
4994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4995static const struct hc_driver xhci_hc_driver = {
4996	.description =		"xhci-hcd",
4997	.product_desc =		"xHCI Host Controller",
4998	.hcd_priv_size =	sizeof(struct xhci_hcd),
4999
5000	/*
5001	 * generic hardware linkage
5002	 */
5003	.irq =			xhci_irq,
5004	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
 
5005
5006	/*
5007	 * basic lifecycle operations
5008	 */
5009	.reset =		NULL, /* set in xhci_init_driver() */
5010	.start =		xhci_run,
5011	.stop =			xhci_stop,
5012	.shutdown =		xhci_shutdown,
5013
5014	/*
5015	 * managing i/o requests and associated device resources
5016	 */
 
 
5017	.urb_enqueue =		xhci_urb_enqueue,
5018	.urb_dequeue =		xhci_urb_dequeue,
5019	.alloc_dev =		xhci_alloc_dev,
5020	.free_dev =		xhci_free_dev,
5021	.alloc_streams =	xhci_alloc_streams,
5022	.free_streams =		xhci_free_streams,
5023	.add_endpoint =		xhci_add_endpoint,
5024	.drop_endpoint =	xhci_drop_endpoint,
 
5025	.endpoint_reset =	xhci_endpoint_reset,
5026	.check_bandwidth =	xhci_check_bandwidth,
5027	.reset_bandwidth =	xhci_reset_bandwidth,
5028	.address_device =	xhci_address_device,
5029	.enable_device =	xhci_enable_device,
5030	.update_hub_device =	xhci_update_hub_device,
5031	.reset_device =		xhci_discover_or_reset_device,
5032
5033	/*
5034	 * scheduling support
5035	 */
5036	.get_frame_number =	xhci_get_frame,
5037
5038	/*
5039	 * root hub support
5040	 */
5041	.hub_control =		xhci_hub_control,
5042	.hub_status_data =	xhci_hub_status_data,
5043	.bus_suspend =		xhci_bus_suspend,
5044	.bus_resume =		xhci_bus_resume,
 
5045
5046	/*
5047	 * call back when device connected and addressed
5048	 */
5049	.update_device =        xhci_update_device,
5050	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5051	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5052	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5053	.find_raw_port_number =	xhci_find_raw_port_number,
 
5054};
5055
5056void xhci_init_driver(struct hc_driver *drv,
5057		      const struct xhci_driver_overrides *over)
5058{
5059	BUG_ON(!over);
5060
5061	/* Copy the generic table to drv then apply the overrides */
5062	*drv = xhci_hc_driver;
5063
5064	if (over) {
5065		drv->hcd_priv_size += over->extra_priv_size;
5066		if (over->reset)
5067			drv->reset = over->reset;
5068		if (over->start)
5069			drv->start = over->start;
 
 
 
 
 
 
 
 
 
 
 
 
5070	}
5071}
5072EXPORT_SYMBOL_GPL(xhci_init_driver);
5073
5074MODULE_DESCRIPTION(DRIVER_DESC);
5075MODULE_AUTHOR(DRIVER_AUTHOR);
5076MODULE_LICENSE("GPL");
5077
5078static int __init xhci_hcd_init(void)
5079{
5080	/*
5081	 * Check the compiler generated sizes of structures that must be laid
5082	 * out in specific ways for hardware access.
5083	 */
5084	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5085	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5086	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5087	/* xhci_device_control has eight fields, and also
5088	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5089	 */
5090	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5091	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5092	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5093	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5094	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5095	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5096	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5097
5098	if (usb_disabled())
5099		return -ENODEV;
5100
 
 
 
5101	return 0;
5102}
5103
5104/*
5105 * If an init function is provided, an exit function must also be provided
5106 * to allow module unload.
5107 */
5108static void __exit xhci_hcd_fini(void) { }
 
 
 
 
5109
5110module_init(xhci_hcd_init);
5111module_exit(xhci_hcd_fini);
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/jiffies.h>
  12#include <linux/pci.h>
  13#include <linux/iommu.h>
  14#include <linux/iopoll.h>
  15#include <linux/irq.h>
  16#include <linux/log2.h>
  17#include <linux/module.h>
  18#include <linux/moduleparam.h>
  19#include <linux/slab.h>
  20#include <linux/dmi.h>
  21#include <linux/dma-mapping.h>
  22
  23#include "xhci.h"
  24#include "xhci-trace.h"
  25#include "xhci-debugfs.h"
  26#include "xhci-dbgcap.h"
  27
  28#define DRIVER_AUTHOR "Sarah Sharp"
  29#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  30
  31#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  32
  33/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  34static int link_quirk;
  35module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  36MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  37
  38static unsigned long long quirks;
  39module_param(quirks, ullong, S_IRUGO);
  40MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  41
  42static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  43{
  44	struct xhci_segment *seg;
  45
  46	if (!td || !td->start_seg)
  47		return false;
  48
  49	xhci_for_each_ring_seg(ring->first_seg, seg) {
  50		if (seg == td->start_seg)
  51			return true;
  52	}
  53
  54	return false;
  55}
  56
  57/*
  58 * xhci_handshake - spin reading hc until handshake completes or fails
  59 * @ptr: address of hc register to be read
  60 * @mask: bits to look at in result of read
  61 * @done: value of those bits when handshake succeeds
  62 * @usec: timeout in microseconds
  63 *
  64 * Returns negative errno, or zero on success
  65 *
  66 * Success happens when the "mask" bits have the specified value (hardware
  67 * handshake done).  There are two failure modes:  "usec" have passed (major
  68 * hardware flakeout), or the register reads as all-ones (hardware removed).
  69 */
  70int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
  71{
  72	u32	result;
  73	int	ret;
  74
  75	ret = readl_poll_timeout_atomic(ptr, result,
  76					(result & mask) == done ||
  77					result == U32_MAX,
  78					1, timeout_us);
  79	if (result == U32_MAX)		/* card removed */
  80		return -ENODEV;
  81
  82	return ret;
  83}
  84
  85/*
  86 * xhci_handshake_check_state - same as xhci_handshake but takes an additional
  87 * exit_state parameter, and bails out with an error immediately when xhc_state
  88 * has exit_state flag set.
  89 */
  90int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
  91		u32 mask, u32 done, int usec, unsigned int exit_state)
  92{
  93	u32	result;
  94	int	ret;
  95
  96	ret = readl_poll_timeout_atomic(ptr, result,
  97				(result & mask) == done ||
  98				result == U32_MAX ||
  99				xhci->xhc_state & exit_state,
 100				1, usec);
 101
 102	if (result == U32_MAX || xhci->xhc_state & exit_state)
 103		return -ENODEV;
 104
 105	return ret;
 106}
 107
 108/*
 109 * Disable interrupts and begin the xHCI halting process.
 110 */
 111void xhci_quiesce(struct xhci_hcd *xhci)
 112{
 113	u32 halted;
 114	u32 cmd;
 115	u32 mask;
 116
 117	mask = ~(XHCI_IRQS);
 118	halted = readl(&xhci->op_regs->status) & STS_HALT;
 119	if (!halted)
 120		mask &= ~CMD_RUN;
 121
 122	cmd = readl(&xhci->op_regs->command);
 123	cmd &= mask;
 124	writel(cmd, &xhci->op_regs->command);
 125}
 126
 127/*
 128 * Force HC into halt state.
 129 *
 130 * Disable any IRQs and clear the run/stop bit.
 131 * HC will complete any current and actively pipelined transactions, and
 132 * should halt within 16 ms of the run/stop bit being cleared.
 133 * Read HC Halted bit in the status register to see when the HC is finished.
 134 */
 135int xhci_halt(struct xhci_hcd *xhci)
 136{
 137	int ret;
 138
 139	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 140	xhci_quiesce(xhci);
 141
 142	ret = xhci_handshake(&xhci->op_regs->status,
 143			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 144	if (ret) {
 145		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 146		return ret;
 147	}
 148
 149	xhci->xhc_state |= XHCI_STATE_HALTED;
 150	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 151
 152	return ret;
 153}
 154
 155/*
 156 * Set the run bit and wait for the host to be running.
 157 */
 158int xhci_start(struct xhci_hcd *xhci)
 159{
 160	u32 temp;
 161	int ret;
 162
 163	temp = readl(&xhci->op_regs->command);
 164	temp |= (CMD_RUN);
 165	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 166			temp);
 167	writel(temp, &xhci->op_regs->command);
 168
 169	/*
 170	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 171	 * running.
 172	 */
 173	ret = xhci_handshake(&xhci->op_regs->status,
 174			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 175	if (ret == -ETIMEDOUT)
 176		xhci_err(xhci, "Host took too long to start, "
 177				"waited %u microseconds.\n",
 178				XHCI_MAX_HALT_USEC);
 179	if (!ret) {
 180		/* clear state flags. Including dying, halted or removing */
 181		xhci->xhc_state = 0;
 182		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
 183	}
 184
 185	return ret;
 186}
 187
 188/*
 189 * Reset a halted HC.
 190 *
 191 * This resets pipelines, timers, counters, state machines, etc.
 192 * Transactions will be terminated immediately, and operational registers
 193 * will be set to their defaults.
 194 */
 195int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
 196{
 197	u32 command;
 198	u32 state;
 199	int ret;
 200
 201	state = readl(&xhci->op_regs->status);
 202
 203	if (state == ~(u32)0) {
 204		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 205		return -ENODEV;
 206	}
 207
 208	if ((state & STS_HALT) == 0) {
 209		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 210		return 0;
 211	}
 212
 213	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 214	command = readl(&xhci->op_regs->command);
 215	command |= CMD_RESET;
 216	writel(command, &xhci->op_regs->command);
 217
 218	/* Existing Intel xHCI controllers require a delay of 1 mS,
 219	 * after setting the CMD_RESET bit, and before accessing any
 220	 * HC registers. This allows the HC to complete the
 221	 * reset operation and be ready for HC register access.
 222	 * Without this delay, the subsequent HC register access,
 223	 * may result in a system hang very rarely.
 224	 */
 225	if (xhci->quirks & XHCI_INTEL_HOST)
 226		udelay(1000);
 227
 228	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
 229				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
 230	if (ret)
 231		return ret;
 232
 233	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 234		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 235
 236	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 237			 "Wait for controller to be ready for doorbell rings");
 238	/*
 239	 * xHCI cannot write to any doorbells or operational registers other
 240	 * than status until the "Controller Not Ready" flag is cleared.
 241	 */
 242	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243
 244	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 245	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 246	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 247	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 248	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 249	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250
 251	return ret;
 252}
 253
 254static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 
 
 
 255{
 256	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 257	struct iommu_domain *domain;
 258	int err, i;
 259	u64 val;
 260	u32 intrs;
 261
 262	/*
 263	 * Some Renesas controllers get into a weird state if they are
 264	 * reset while programmed with 64bit addresses (they will preserve
 265	 * the top half of the address in internal, non visible
 266	 * registers). You end up with half the address coming from the
 267	 * kernel, and the other half coming from the firmware. Also,
 268	 * changing the programming leads to extra accesses even if the
 269	 * controller is supposed to be halted. The controller ends up with
 270	 * a fatal fault, and is then ripe for being properly reset.
 271	 *
 272	 * Special care is taken to only apply this if the device is behind
 273	 * an iommu. Doing anything when there is no iommu is definitely
 274	 * unsafe...
 275	 */
 276	domain = iommu_get_domain_for_dev(dev);
 277	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
 278	    domain->type == IOMMU_DOMAIN_IDENTITY)
 279		return;
 280
 281	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 
 
 
 
 282
 283	/* Clear HSEIE so that faults do not get signaled */
 284	val = readl(&xhci->op_regs->command);
 285	val &= ~CMD_HSEIE;
 286	writel(val, &xhci->op_regs->command);
 287
 288	/* Clear HSE (aka FATAL) */
 289	val = readl(&xhci->op_regs->status);
 290	val |= STS_FATAL;
 291	writel(val, &xhci->op_regs->status);
 292
 293	/* Now zero the registers, and brace for impact */
 294	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 295	if (upper_32_bits(val))
 296		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 297	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 298	if (upper_32_bits(val))
 299		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 300
 301	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 302		      ARRAY_SIZE(xhci->run_regs->ir_set));
 303
 304	for (i = 0; i < intrs; i++) {
 305		struct xhci_intr_reg __iomem *ir;
 306
 307		ir = &xhci->run_regs->ir_set[i];
 308		val = xhci_read_64(xhci, &ir->erst_base);
 309		if (upper_32_bits(val))
 310			xhci_write_64(xhci, 0, &ir->erst_base);
 311		val= xhci_read_64(xhci, &ir->erst_dequeue);
 312		if (upper_32_bits(val))
 313			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 314	}
 315
 316	/* Wait for the fault to appear. It will be cleared on reset */
 317	err = xhci_handshake(&xhci->op_regs->status,
 318			     STS_FATAL, STS_FATAL,
 319			     XHCI_MAX_HALT_USEC);
 320	if (!err)
 321		xhci_info(xhci, "Fault detected\n");
 322}
 323
 324static int xhci_enable_interrupter(struct xhci_interrupter *ir)
 
 
 
 325{
 326	u32 iman;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327
 328	if (!ir || !ir->ir_set)
 329		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 330
 331	iman = readl(&ir->ir_set->irq_pending);
 332	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
 333
 334	return 0;
 
 
 
 
 
 
 
 335}
 336
 337static int xhci_disable_interrupter(struct xhci_interrupter *ir)
 
 338{
 339	u32 iman;
 
 
 
 
 340
 341	if (!ir || !ir->ir_set)
 342		return -EINVAL;
 343
 344	iman = readl(&ir->ir_set->irq_pending);
 345	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
 
 
 
 
 
 346
 347	return 0;
 
 
 
 
 
 
 
 
 
 
 
 348}
 349
 350/* interrupt moderation interval imod_interval in nanoseconds */
 351int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
 352				    u32 imod_interval)
 353{
 354	u32 imod;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 355
 356	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
 
 
 
 
 
 357		return -EINVAL;
 
 358
 359	imod = readl(&ir->ir_set->irq_control);
 360	imod &= ~ER_IRQ_INTERVAL_MASK;
 361	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 362	writel(imod, &ir->ir_set->irq_control);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 363
 
 
 364	return 0;
 365}
 366
 367static void compliance_mode_recovery(struct timer_list *t)
 
 
 
 
 
 
 
 
 
 
 368{
 369	struct xhci_hcd *xhci;
 370	struct usb_hcd *hcd;
 371	struct xhci_hub *rhub;
 372	u32 temp;
 373	int i;
 374
 375	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 376	rhub = &xhci->usb3_rhub;
 377	hcd = rhub->hcd;
 378
 379	if (!hcd)
 380		return;
 381
 382	for (i = 0; i < rhub->num_ports; i++) {
 383		temp = readl(rhub->ports[i]->addr);
 384		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 385			/*
 386			 * Compliance Mode Detected. Letting USB Core
 387			 * handle the Warm Reset
 388			 */
 389			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 390					"Compliance mode detected->port %d",
 391					i + 1);
 392			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 393					"Attempting compliance mode recovery");
 
 394
 395			if (hcd->state == HC_STATE_SUSPENDED)
 396				usb_hcd_resume_root_hub(hcd);
 397
 398			usb_hcd_poll_rh_status(hcd);
 399		}
 400	}
 401
 402	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 403		mod_timer(&xhci->comp_mode_recovery_timer,
 404			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 405}
 406
 407/*
 408 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 409 * that causes ports behind that hardware to enter compliance mode sometimes.
 410 * The quirk creates a timer that polls every 2 seconds the link state of
 411 * each host controller's port and recovers it by issuing a Warm reset
 412 * if Compliance mode is detected, otherwise the port will become "dead" (no
 413 * device connections or disconnections will be detected anymore). Becasue no
 414 * status event is generated when entering compliance mode (per xhci spec),
 415 * this quirk is needed on systems that have the failing hardware installed.
 416 */
 417static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 418{
 419	xhci->port_status_u0 = 0;
 420	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 421		    0);
 422	xhci->comp_mode_recovery_timer.expires = jiffies +
 423			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 424
 
 
 425	add_timer(&xhci->comp_mode_recovery_timer);
 426	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 427			"Compliance mode recovery timer initialized");
 428}
 429
 430/*
 431 * This function identifies the systems that have installed the SN65LVPE502CP
 432 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 433 * Systems:
 434 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 435 */
 436static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 437{
 438	const char *dmi_product_name, *dmi_sys_vendor;
 439
 440	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 441	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 442	if (!dmi_product_name || !dmi_sys_vendor)
 443		return false;
 444
 445	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 446		return false;
 447
 448	if (strstr(dmi_product_name, "Z420") ||
 449			strstr(dmi_product_name, "Z620") ||
 450			strstr(dmi_product_name, "Z820") ||
 451			strstr(dmi_product_name, "Z1 Workstation"))
 452		return true;
 453
 454	return false;
 455}
 456
 457static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 458{
 459	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 460}
 461
 462
 463/*
 464 * Initialize memory for HCD and xHC (one-time init).
 465 *
 466 * Program the PAGESIZE register, initialize the device context array, create
 467 * device contexts (?), set up a command ring segment (or two?), create event
 468 * ring (one for now).
 469 */
 470static int xhci_init(struct usb_hcd *hcd)
 471{
 472	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 473	int retval;
 474
 475	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 476	spin_lock_init(&xhci->lock);
 477
 
 
 
 
 
 
 
 478	retval = xhci_mem_init(xhci, GFP_KERNEL);
 479	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 480
 481	/* Initializing Compliance Mode Recovery Data If Needed */
 482	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 483		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 484		compliance_mode_recovery_timer_init(xhci);
 485	}
 486
 487	return retval;
 488}
 489
 490/*-------------------------------------------------------------------------*/
 491
 
 492static int xhci_run_finished(struct xhci_hcd *xhci)
 493{
 494	struct xhci_interrupter *ir = xhci->interrupters[0];
 495	unsigned long	flags;
 496	u32		temp;
 497
 498	/*
 499	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
 500	 * Protect the short window before host is running with a lock
 501	 */
 502	spin_lock_irqsave(&xhci->lock, flags);
 503
 504	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
 505	temp = readl(&xhci->op_regs->command);
 506	temp |= (CMD_EIE);
 507	writel(temp, &xhci->op_regs->command);
 508
 509	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
 510	xhci_enable_interrupter(ir);
 511
 512	if (xhci_start(xhci)) {
 513		xhci_halt(xhci);
 514		spin_unlock_irqrestore(&xhci->lock, flags);
 515		return -ENODEV;
 516	}
 517
 518	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 519
 520	if (xhci->quirks & XHCI_NEC_HOST)
 521		xhci_ring_cmd_db(xhci);
 522
 523	spin_unlock_irqrestore(&xhci->lock, flags);
 524
 525	return 0;
 526}
 527
 528/*
 529 * Start the HC after it was halted.
 530 *
 531 * This function is called by the USB core when the HC driver is added.
 532 * Its opposite is xhci_stop().
 533 *
 534 * xhci_init() must be called once before this function can be called.
 535 * Reset the HC, enable device slot contexts, program DCBAAP, and
 536 * set command ring pointer and event ring pointer.
 537 *
 538 * Setup MSI-X vectors and enable interrupts.
 539 */
 540int xhci_run(struct usb_hcd *hcd)
 541{
 
 542	u64 temp_64;
 543	int ret;
 544	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 545	struct xhci_interrupter *ir = xhci->interrupters[0];
 546	/* Start the xHCI host controller running only after the USB 2.0 roothub
 547	 * is setup.
 548	 */
 549
 550	hcd->uses_new_polling = 1;
 551	if (hcd->msi_enabled)
 552		ir->ip_autoclear = true;
 553
 554	if (!usb_hcd_is_primary_hcd(hcd))
 555		return xhci_run_finished(xhci);
 556
 557	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 558
 559	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 560	temp_64 &= ERST_PTR_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 561	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 562			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 563
 564	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566	if (xhci->quirks & XHCI_NEC_HOST) {
 567		struct xhci_command *command;
 568
 569		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 570		if (!command)
 571			return -ENOMEM;
 572
 573		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 574				TRB_TYPE(TRB_NEC_GET_FW));
 575		if (ret)
 576			xhci_free_command(xhci, command);
 577	}
 578	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 579			"Finished %s for main hcd", __func__);
 580
 581	xhci_create_dbc_dev(xhci);
 582
 583	xhci_debugfs_init(xhci);
 584
 585	if (xhci_has_one_roothub(xhci))
 586		return xhci_run_finished(xhci);
 587
 588	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 589
 590	return 0;
 591}
 592EXPORT_SYMBOL_GPL(xhci_run);
 593
 594/*
 595 * Stop xHCI driver.
 596 *
 597 * This function is called by the USB core when the HC driver is removed.
 598 * Its opposite is xhci_run().
 599 *
 600 * Disable device contexts, disable IRQs, and quiesce the HC.
 601 * Reset the HC, finish any completed transactions, and cleanup memory.
 602 */
 603void xhci_stop(struct usb_hcd *hcd)
 604{
 605	u32 temp;
 606	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 607	struct xhci_interrupter *ir = xhci->interrupters[0];
 608
 609	mutex_lock(&xhci->mutex);
 610
 611	/* Only halt host and free memory after both hcds are removed */
 612	if (!usb_hcd_is_primary_hcd(hcd)) {
 613		mutex_unlock(&xhci->mutex);
 614		return;
 615	}
 616
 617	xhci_remove_dbc_dev(xhci);
 618
 
 619	spin_lock_irq(&xhci->lock);
 620	xhci->xhc_state |= XHCI_STATE_HALTED;
 621	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 
 
 
 622	xhci_halt(xhci);
 623	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 624	spin_unlock_irq(&xhci->lock);
 625
 
 
 626	/* Deleting Compliance Mode Recovery Timer */
 627	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 628			(!(xhci_all_ports_seen_u0(xhci)))) {
 629		del_timer_sync(&xhci->comp_mode_recovery_timer);
 630		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 631				"%s: compliance mode recovery timer deleted",
 632				__func__);
 633	}
 634
 635	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 636		usb_amd_dev_put();
 637
 638	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 639			"// Disabling event ring interrupts");
 640	temp = readl(&xhci->op_regs->status);
 641	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 642	xhci_disable_interrupter(ir);
 
 
 643
 644	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 645	xhci_mem_cleanup(xhci);
 646	xhci_debugfs_exit(xhci);
 647	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 648			"xhci_stop completed - status = %x",
 649			readl(&xhci->op_regs->status));
 650	mutex_unlock(&xhci->mutex);
 651}
 652EXPORT_SYMBOL_GPL(xhci_stop);
 653
 654/*
 655 * Shutdown HC (not bus-specific)
 656 *
 657 * This is called when the machine is rebooting or halting.  We assume that the
 658 * machine will be powered off, and the HC's internal state will be reset.
 659 * Don't bother to free memory.
 660 *
 661 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 662 */
 663void xhci_shutdown(struct usb_hcd *hcd)
 664{
 665	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 666
 667	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 668		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 669
 670	/* Don't poll the roothubs after shutdown. */
 671	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 672			__func__, hcd->self.busnum);
 673	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 674	del_timer_sync(&hcd->rh_timer);
 675
 676	if (xhci->shared_hcd) {
 677		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 678		del_timer_sync(&xhci->shared_hcd->rh_timer);
 679	}
 680
 681	spin_lock_irq(&xhci->lock);
 682	xhci_halt(xhci);
 
 
 
 
 683
 684	/*
 685	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
 686	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
 687	 */
 688	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
 689	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
 690		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
 691
 692	spin_unlock_irq(&xhci->lock);
 693
 694	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 695			"xhci_shutdown completed - status = %x",
 696			readl(&xhci->op_regs->status));
 
 
 
 
 697}
 698EXPORT_SYMBOL_GPL(xhci_shutdown);
 699
 700#ifdef CONFIG_PM
 701static void xhci_save_registers(struct xhci_hcd *xhci)
 702{
 703	struct xhci_interrupter *ir;
 704	unsigned int i;
 705
 706	xhci->s3.command = readl(&xhci->op_regs->command);
 707	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 708	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 709	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 710
 711	/* save both primary and all secondary interrupters */
 712	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
 713	for (i = 0; i < xhci->max_interrupters; i++) {
 714		ir = xhci->interrupters[i];
 715		if (!ir)
 716			continue;
 717
 718		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
 719		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
 720		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
 721		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
 722		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
 723	}
 724}
 725
 726static void xhci_restore_registers(struct xhci_hcd *xhci)
 727{
 728	struct xhci_interrupter *ir;
 729	unsigned int i;
 730
 731	writel(xhci->s3.command, &xhci->op_regs->command);
 732	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 733	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 734	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 735
 736	/* FIXME should we lock to protect against freeing of interrupters */
 737	for (i = 0; i < xhci->max_interrupters; i++) {
 738		ir = xhci->interrupters[i];
 739		if (!ir)
 740			continue;
 741
 742		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
 743		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
 744		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
 745		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
 746		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
 747	}
 748}
 749
 750static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 751{
 752	u64	val_64;
 753
 754	/* step 2: initialize command ring buffer */
 755	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 756	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 757		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 758				      xhci->cmd_ring->dequeue) &
 759		 (u64) ~CMD_RING_RSVD_BITS) |
 760		xhci->cmd_ring->cycle_state;
 761	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 762			"// Setting command ring address to 0x%llx",
 763			(long unsigned long) val_64);
 764	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 765}
 766
 767/*
 768 * The whole command ring must be cleared to zero when we suspend the host.
 769 *
 770 * The host doesn't save the command ring pointer in the suspend well, so we
 771 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 772 * aligned, because of the reserved bits in the command ring dequeue pointer
 773 * register.  Therefore, we can't just set the dequeue pointer back in the
 774 * middle of the ring (TRBs are 16-byte aligned).
 775 */
 776static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 777{
 778	struct xhci_ring *ring;
 779	struct xhci_segment *seg;
 780
 781	ring = xhci->cmd_ring;
 782	xhci_for_each_ring_seg(ring->first_seg, seg) {
 783		/* erase all TRBs before the link */
 784		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 785		/* clear link cycle bit */
 786		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
 787	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 788
 789	xhci_initialize_ring_info(ring);
 790	/*
 791	 * Reset the hardware dequeue pointer.
 792	 * Yes, this will need to be re-written after resume, but we're paranoid
 793	 * and want to make sure the hardware doesn't access bogus memory
 794	 * because, say, the BIOS or an SMI started the host without changing
 795	 * the command ring pointers.
 796	 */
 797	xhci_set_cmd_ring_deq(xhci);
 798}
 799
 800/*
 801 * Disable port wake bits if do_wakeup is not set.
 802 *
 803 * Also clear a possible internal port wake state left hanging for ports that
 804 * detected termination but never successfully enumerated (trained to 0U).
 805 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 806 * at enumeration clears this wake, force one here as well for unconnected ports
 807 */
 808
 809static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 810				       struct xhci_hub *rhub,
 811				       bool do_wakeup)
 812{
 
 
 813	unsigned long flags;
 814	u32 t1, t2, portsc;
 815	int i;
 816
 817	spin_lock_irqsave(&xhci->lock, flags);
 818
 819	for (i = 0; i < rhub->num_ports; i++) {
 820		portsc = readl(rhub->ports[i]->addr);
 821		t1 = xhci_port_state_to_neutral(portsc);
 822		t2 = t1;
 823
 824		/* clear wake bits if do_wake is not set */
 825		if (!do_wakeup)
 826			t2 &= ~PORT_WAKE_BITS;
 827
 828		/* Don't touch csc bit if connected or connect change is set */
 829		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 830			t2 |= PORT_CSC;
 831
 832		if (t1 != t2) {
 833			writel(t2, rhub->ports[i]->addr);
 834			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 835				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 836		}
 837	}
 838	spin_unlock_irqrestore(&xhci->lock, flags);
 839}
 840
 841static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 842{
 843	struct xhci_port	**ports;
 844	int			port_index;
 845	u32			status;
 846	u32			portsc;
 847
 848	status = readl(&xhci->op_regs->status);
 849	if (status & STS_EINT)
 850		return true;
 851	/*
 852	 * Checking STS_EINT is not enough as there is a lag between a change
 853	 * bit being set and the Port Status Change Event that it generated
 854	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 855	 */
 856
 857	port_index = xhci->usb2_rhub.num_ports;
 858	ports = xhci->usb2_rhub.ports;
 859	while (port_index--) {
 860		portsc = readl(ports[port_index]->addr);
 861		if (portsc & PORT_CHANGE_MASK ||
 862		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 863			return true;
 
 864	}
 865	port_index = xhci->usb3_rhub.num_ports;
 866	ports = xhci->usb3_rhub.ports;
 867	while (port_index--) {
 868		portsc = readl(ports[port_index]->addr);
 869		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
 870		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 871			return true;
 872	}
 873	return false;
 874}
 875
 876/*
 877 * Stop HC (not bus-specific)
 878 *
 879 * This is called when the machine transition into S3/S4 mode.
 880 *
 881 */
 882int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 883{
 884	int			rc = 0;
 885	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 886	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 887	u32			command;
 888	u32			res;
 889
 890	if (!hcd->state)
 891		return 0;
 892
 893	if (hcd->state != HC_STATE_SUSPENDED ||
 894	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
 895		return -EINVAL;
 896
 897	/* Clear root port wake on bits if wakeup not allowed. */
 898	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 899	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 900
 901	if (!HCD_HW_ACCESSIBLE(hcd))
 902		return 0;
 903
 904	xhci_dbc_suspend(xhci);
 905
 906	/* Don't poll the roothubs on bus suspend. */
 907	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
 908		 __func__, hcd->self.busnum);
 909	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 910	del_timer_sync(&hcd->rh_timer);
 911	if (xhci->shared_hcd) {
 912		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 913		del_timer_sync(&xhci->shared_hcd->rh_timer);
 914	}
 915
 916	if (xhci->quirks & XHCI_SUSPEND_DELAY)
 917		usleep_range(1000, 1500);
 918
 919	spin_lock_irq(&xhci->lock);
 920	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 921	if (xhci->shared_hcd)
 922		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 923	/* step 1: stop endpoint */
 924	/* skipped assuming that port suspend has done */
 925
 926	/* step 2: clear Run/Stop bit */
 927	command = readl(&xhci->op_regs->command);
 928	command &= ~CMD_RUN;
 929	writel(command, &xhci->op_regs->command);
 930
 931	/* Some chips from Fresco Logic need an extraordinary delay */
 932	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 933
 934	if (xhci_handshake(&xhci->op_regs->status,
 935		      STS_HALT, STS_HALT, delay)) {
 936		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 937		spin_unlock_irq(&xhci->lock);
 938		return -ETIMEDOUT;
 939	}
 940	xhci_clear_command_ring(xhci);
 941
 942	/* step 3: save registers */
 943	xhci_save_registers(xhci);
 944
 945	/* step 4: set CSS flag */
 946	command = readl(&xhci->op_regs->command);
 947	command |= CMD_CSS;
 948	writel(command, &xhci->op_regs->command);
 949	xhci->broken_suspend = 0;
 950	if (xhci_handshake(&xhci->op_regs->status,
 951				STS_SAVE, 0, 20 * 1000)) {
 952	/*
 953	 * AMD SNPS xHC 3.0 occasionally does not clear the
 954	 * SSS bit of USBSTS and when driver tries to poll
 955	 * to see if the xHC clears BIT(8) which never happens
 956	 * and driver assumes that controller is not responding
 957	 * and times out. To workaround this, its good to check
 958	 * if SRE and HCE bits are not set (as per xhci
 959	 * Section 5.4.2) and bypass the timeout.
 960	 */
 961		res = readl(&xhci->op_regs->status);
 962		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
 963		    (((res & STS_SRE) == 0) &&
 964				((res & STS_HCE) == 0))) {
 965			xhci->broken_suspend = 1;
 966		} else {
 967			xhci_warn(xhci, "WARN: xHC save state timeout\n");
 968			spin_unlock_irq(&xhci->lock);
 969			return -ETIMEDOUT;
 970		}
 971	}
 972	spin_unlock_irq(&xhci->lock);
 973
 974	/*
 975	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 976	 * is about to be suspended.
 977	 */
 978	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 979			(!(xhci_all_ports_seen_u0(xhci)))) {
 980		del_timer_sync(&xhci->comp_mode_recovery_timer);
 981		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 982				"%s: compliance mode recovery timer deleted",
 983				__func__);
 984	}
 985
 
 
 
 
 986	return rc;
 987}
 988EXPORT_SYMBOL_GPL(xhci_suspend);
 989
 990/*
 991 * start xHC (not bus-specific)
 992 *
 993 * This is called when the machine transition from S3/S4 mode.
 994 *
 995 */
 996int xhci_resume(struct xhci_hcd *xhci, pm_message_t msg)
 997{
 998	bool			hibernated = (msg.event == PM_EVENT_RESTORE);
 999	u32			command, temp = 0;
1000	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 
1001	int			retval = 0;
1002	bool			comp_timer_running = false;
1003	bool			pending_portevent = false;
1004	bool			suspended_usb3_devs = false;
1005	bool			reinit_xhc = false;
1006
1007	if (!hcd->state)
1008		return 0;
1009
1010	/* Wait a bit if either of the roothubs need to settle from the
1011	 * transition into bus suspend.
1012	 */
1013
1014	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1015	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1016		msleep(100);
1017
1018	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1019	if (xhci->shared_hcd)
1020		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1021
1022	spin_lock_irq(&xhci->lock);
 
 
1023
1024	if (hibernated || xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1025		reinit_xhc = true;
1026
1027	if (!reinit_xhc) {
1028		/*
1029		 * Some controllers might lose power during suspend, so wait
1030		 * for controller not ready bit to clear, just as in xHC init.
1031		 */
1032		retval = xhci_handshake(&xhci->op_regs->status,
1033					STS_CNR, 0, 10 * 1000 * 1000);
1034		if (retval) {
1035			xhci_warn(xhci, "Controller not ready at resume %d\n",
1036				  retval);
1037			spin_unlock_irq(&xhci->lock);
1038			return retval;
1039		}
1040		/* step 1: restore register */
1041		xhci_restore_registers(xhci);
1042		/* step 2: initialize command ring buffer */
1043		xhci_set_cmd_ring_deq(xhci);
1044		/* step 3: restore state and start state*/
1045		/* step 3: set CRS flag */
1046		command = readl(&xhci->op_regs->command);
1047		command |= CMD_CRS;
1048		writel(command, &xhci->op_regs->command);
1049		/*
1050		 * Some controllers take up to 55+ ms to complete the controller
1051		 * restore so setting the timeout to 100ms. Xhci specification
1052		 * doesn't mention any timeout value.
1053		 */
1054		if (xhci_handshake(&xhci->op_regs->status,
1055			      STS_RESTORE, 0, 100 * 1000)) {
1056			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1057			spin_unlock_irq(&xhci->lock);
1058			return -ETIMEDOUT;
1059		}
 
1060	}
1061
1062	temp = readl(&xhci->op_regs->status);
 
1063
1064	/* re-initialize the HC on Restore Error, or Host Controller Error */
1065	if ((temp & (STS_SRE | STS_HCE)) &&
1066	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1067		reinit_xhc = true;
1068		if (!xhci->broken_suspend)
1069			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1070	}
1071
1072	if (reinit_xhc) {
1073		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1074				!(xhci_all_ports_seen_u0(xhci))) {
1075			del_timer_sync(&xhci->comp_mode_recovery_timer);
1076			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1077				"Compliance Mode Recovery Timer deleted!");
1078		}
1079
1080		/* Let the USB core know _both_ roothubs lost power. */
1081		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1082		if (xhci->shared_hcd)
1083			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1084
1085		xhci_dbg(xhci, "Stop HCD\n");
1086		xhci_halt(xhci);
1087		xhci_zero_64b_regs(xhci);
1088		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1089		spin_unlock_irq(&xhci->lock);
1090		if (retval)
1091			return retval;
1092
1093		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1094		temp = readl(&xhci->op_regs->status);
1095		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1096		xhci_disable_interrupter(xhci->interrupters[0]);
 
 
1097
1098		xhci_dbg(xhci, "cleaning up memory\n");
1099		xhci_mem_cleanup(xhci);
1100		xhci_debugfs_exit(xhci);
1101		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1102			    readl(&xhci->op_regs->status));
1103
1104		/* USB core calls the PCI reinit and start functions twice:
1105		 * first with the primary HCD, and then with the secondary HCD.
1106		 * If we don't do the same, the host will never be started.
1107		 */
 
 
 
 
 
1108		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1109		retval = xhci_init(hcd);
1110		if (retval)
1111			return retval;
1112		comp_timer_running = true;
1113
1114		xhci_dbg(xhci, "Start the primary HCD\n");
1115		retval = xhci_run(hcd);
1116		if (!retval && xhci->shared_hcd) {
1117			xhci_dbg(xhci, "Start the secondary HCD\n");
1118			retval = xhci_run(xhci->shared_hcd);
1119		}
1120		if (retval)
1121			return retval;
1122		/*
1123		 * Resume roothubs unconditionally as PORTSC change bits are not
1124		 * immediately visible after xHC reset
1125		 */
1126		hcd->state = HC_STATE_SUSPENDED;
1127
1128		if (xhci->shared_hcd) {
1129			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1130			usb_hcd_resume_root_hub(xhci->shared_hcd);
1131		}
1132		usb_hcd_resume_root_hub(hcd);
1133
1134		goto done;
1135	}
1136
1137	/* step 4: set Run/Stop bit */
1138	command = readl(&xhci->op_regs->command);
1139	command |= CMD_RUN;
1140	writel(command, &xhci->op_regs->command);
1141	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1142		  0, 250 * 1000);
1143
1144	/* step 5: walk topology and initialize portsc,
1145	 * portpmsc and portli
1146	 */
1147	/* this is done in bus_resume */
1148
1149	/* step 6: restart each of the previously
1150	 * Running endpoints by ringing their doorbells
1151	 */
1152
1153	spin_unlock_irq(&xhci->lock);
1154
1155	xhci_dbc_resume(xhci);
1156
1157	if (retval == 0) {
1158		/*
1159		 * Resume roothubs only if there are pending events.
1160		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1161		 * the first wake signalling failed, give it that chance if
1162		 * there are suspended USB 3 devices.
1163		 */
1164		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1165		    xhci->usb3_rhub.bus_state.bus_suspended)
1166			suspended_usb3_devs = true;
1167
1168		pending_portevent = xhci_pending_portevent(xhci);
1169
1170		if (suspended_usb3_devs && !pending_portevent &&
1171		    msg.event == PM_EVENT_AUTO_RESUME) {
1172			msleep(120);
1173			pending_portevent = xhci_pending_portevent(xhci);
1174		}
1175
1176		if (pending_portevent) {
1177			if (xhci->shared_hcd)
1178				usb_hcd_resume_root_hub(xhci->shared_hcd);
1179			usb_hcd_resume_root_hub(hcd);
1180		}
1181	}
1182done:
1183	/*
1184	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1185	 * be re-initialized Always after a system resume. Ports are subject
1186	 * to suffer the Compliance Mode issue again. It doesn't matter if
1187	 * ports have entered previously to U0 before system's suspension.
1188	 */
1189	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1190		compliance_mode_recovery_timer_init(xhci);
1191
1192	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1193		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1194
1195	/* Re-enable port polling. */
1196	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1197		 __func__, hcd->self.busnum);
1198	if (xhci->shared_hcd) {
1199		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1200		usb_hcd_poll_rh_status(xhci->shared_hcd);
1201	}
1202	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1203	usb_hcd_poll_rh_status(hcd);
1204
1205	return retval;
1206}
1207EXPORT_SYMBOL_GPL(xhci_resume);
1208#endif	/* CONFIG_PM */
1209
1210/*-------------------------------------------------------------------------*/
1211
1212static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1213{
1214	void *temp;
1215	int ret = 0;
1216	unsigned int buf_len;
1217	enum dma_data_direction dir;
1218
1219	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1220	buf_len = urb->transfer_buffer_length;
1221
1222	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1223			    dev_to_node(hcd->self.sysdev));
1224	if (!temp)
1225		return -ENOMEM;
1226
1227	if (usb_urb_dir_out(urb))
1228		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1229				   temp, buf_len, 0);
1230
1231	urb->transfer_buffer = temp;
1232	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1233					   urb->transfer_buffer,
1234					   urb->transfer_buffer_length,
1235					   dir);
1236
1237	if (dma_mapping_error(hcd->self.sysdev,
1238			      urb->transfer_dma)) {
1239		ret = -EAGAIN;
1240		kfree(temp);
1241	} else {
1242		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1243	}
1244
1245	return ret;
1246}
1247
1248static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1249					  struct urb *urb)
1250{
1251	bool ret = false;
1252	unsigned int i;
1253	unsigned int len = 0;
1254	unsigned int trb_size;
1255	unsigned int max_pkt;
1256	struct scatterlist *sg;
1257	struct scatterlist *tail_sg;
1258
1259	tail_sg = urb->sg;
1260	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1261
1262	if (!urb->num_sgs)
1263		return ret;
1264
1265	if (urb->dev->speed >= USB_SPEED_SUPER)
1266		trb_size = TRB_CACHE_SIZE_SS;
1267	else
1268		trb_size = TRB_CACHE_SIZE_HS;
1269
1270	if (urb->transfer_buffer_length != 0 &&
1271	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1272		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1273			len = len + sg->length;
1274			if (i > trb_size - 2) {
1275				len = len - tail_sg->length;
1276				if (len < max_pkt) {
1277					ret = true;
1278					break;
1279				}
1280
1281				tail_sg = sg_next(tail_sg);
1282			}
1283		}
1284	}
1285	return ret;
1286}
1287
1288static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1289{
1290	unsigned int len;
1291	unsigned int buf_len;
1292	enum dma_data_direction dir;
1293
1294	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1295
1296	buf_len = urb->transfer_buffer_length;
1297
1298	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1299	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1300		dma_unmap_single(hcd->self.sysdev,
1301				 urb->transfer_dma,
1302				 urb->transfer_buffer_length,
1303				 dir);
1304
1305	if (usb_urb_dir_in(urb)) {
1306		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1307					   urb->transfer_buffer,
1308					   buf_len,
1309					   0);
1310		if (len != buf_len) {
1311			xhci_dbg(hcd_to_xhci(hcd),
1312				 "Copy from tmp buf to urb sg list failed\n");
1313			urb->actual_length = len;
1314		}
1315	}
1316	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1317	kfree(urb->transfer_buffer);
1318	urb->transfer_buffer = NULL;
1319}
1320
1321/*
1322 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1323 * we'll copy the actual data into the TRB address register. This is limited to
1324 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1325 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1326 */
1327static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1328				gfp_t mem_flags)
1329{
1330	struct xhci_hcd *xhci;
1331
1332	xhci = hcd_to_xhci(hcd);
1333
1334	if (xhci_urb_suitable_for_idt(urb))
1335		return 0;
1336
1337	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1338		if (xhci_urb_temp_buffer_required(hcd, urb))
1339			return xhci_map_temp_buffer(hcd, urb);
1340	}
1341	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1342}
1343
1344static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1345{
1346	struct xhci_hcd *xhci;
1347	bool unmap_temp_buf = false;
1348
1349	xhci = hcd_to_xhci(hcd);
1350
1351	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1352		unmap_temp_buf = true;
1353
1354	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1355		xhci_unmap_temp_buf(hcd, urb);
1356	else
1357		usb_hcd_unmap_urb_for_dma(hcd, urb);
1358}
1359
1360/**
1361 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1362 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1363 * value to right shift 1 for the bitmask.
1364 *
1365 * Index  = (epnum * 2) + direction - 1,
1366 * where direction = 0 for OUT, 1 for IN.
1367 * For control endpoints, the IN index is used (OUT index is unused), so
1368 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1369 */
1370unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1371{
1372	unsigned int index;
1373	if (usb_endpoint_xfer_control(desc))
1374		index = (unsigned int) (usb_endpoint_num(desc)*2);
1375	else
1376		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1377			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1378	return index;
1379}
1380EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1381
1382/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1383 * address from the XHCI endpoint index.
1384 */
1385static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1386{
1387	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1388	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1389	return direction | number;
1390}
1391
1392/* Find the flag for this endpoint (for use in the control context).  Use the
1393 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1394 * bit 1, etc.
1395 */
1396static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1397{
1398	return 1 << (xhci_get_endpoint_index(desc) + 1);
1399}
1400
 
 
 
 
 
 
 
 
 
1401/* Compute the last valid endpoint context index.  Basically, this is the
1402 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1403 * we find the most significant bit set in the added contexts flags.
1404 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1405 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1406 */
1407unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1408{
1409	return fls(added_ctxs) - 1;
1410}
1411
1412/* Returns 1 if the arguments are OK;
1413 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1414 */
1415static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1416		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1417		const char *func) {
1418	struct xhci_hcd	*xhci;
1419	struct xhci_virt_device	*virt_dev;
1420
1421	if (!hcd || (check_ep && !ep) || !udev) {
1422		pr_debug("xHCI %s called with invalid args\n", func);
1423		return -EINVAL;
1424	}
1425	if (!udev->parent) {
1426		pr_debug("xHCI %s called for root hub\n", func);
1427		return 0;
1428	}
1429
1430	xhci = hcd_to_xhci(hcd);
1431	if (check_virt_dev) {
1432		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1433			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1434					func);
1435			return -EINVAL;
1436		}
1437
1438		virt_dev = xhci->devs[udev->slot_id];
1439		if (virt_dev->udev != udev) {
1440			xhci_dbg(xhci, "xHCI %s called with udev and "
1441					  "virt_dev does not match\n", func);
1442			return -EINVAL;
1443		}
1444	}
1445
1446	if (xhci->xhc_state & XHCI_STATE_HALTED)
1447		return -ENODEV;
1448
1449	return 1;
1450}
1451
1452static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1453		struct usb_device *udev, struct xhci_command *command,
1454		bool ctx_change, bool must_succeed);
1455
1456/*
1457 * Full speed devices may have a max packet size greater than 8 bytes, but the
1458 * USB core doesn't know that until it reads the first 8 bytes of the
1459 * descriptor.  If the usb_device's max packet size changes after that point,
1460 * we need to issue an evaluate context command and wait on it.
1461 */
1462static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
 
1463{
 
1464	struct xhci_input_control_ctx *ctrl_ctx;
1465	struct xhci_ep_ctx *ep_ctx;
1466	struct xhci_command *command;
1467	int max_packet_size;
1468	int hw_max_packet_size;
1469	int ret = 0;
1470
1471	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
 
1472	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1473	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1474
1475	if (hw_max_packet_size == max_packet_size)
1476		return 0;
1477
1478	switch (max_packet_size) {
1479	case 8: case 16: case 32: case 64: case 9:
1480		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481				"Max Packet Size for ep 0 changed.");
1482		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1483				"Max packet size in usb_device = %d",
1484				max_packet_size);
1485		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1486				"Max packet size in xHCI HW = %d",
1487				hw_max_packet_size);
1488		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1489				"Issuing evaluate context command.");
1490
1491		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
 
 
 
 
 
1492		if (!command)
1493			return -ENOMEM;
1494
1495		command->in_ctx = vdev->in_ctx;
1496		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1497		if (!ctrl_ctx) {
1498			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1499					__func__);
1500			ret = -ENOMEM;
1501			break;
1502		}
1503		/* Set up the modified control endpoint 0 */
1504		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
 
1505
1506		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1507		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1508		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1509		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1510
1511		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1512		ctrl_ctx->drop_flags = 0;
1513
1514		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1515					      true, false);
1516		/* Clean up the input context for later use by bandwidth functions */
 
 
 
 
 
 
 
 
1517		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1518		break;
1519	default:
1520		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1521			max_packet_size);
1522		return -EINVAL;
1523	}
1524
1525	kfree(command->completion);
1526	kfree(command);
1527
1528	return ret;
1529}
1530
1531/*
1532 * non-error returns are a promise to giveback() the urb later
1533 * we drop ownership so next owner (or urb unlink) can get it
1534 */
1535static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1536{
1537	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1538	unsigned long flags;
1539	int ret = 0;
1540	unsigned int slot_id, ep_index;
1541	unsigned int *ep_state;
1542	struct urb_priv	*urb_priv;
1543	int num_tds;
 
 
 
 
1544
 
1545	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1546
 
 
 
 
 
 
 
1547	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1548		num_tds = urb->number_of_packets;
1549	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1550	    urb->transfer_buffer_length > 0 &&
1551	    urb->transfer_flags & URB_ZERO_PACKET &&
1552	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1553		num_tds = 2;
1554	else
1555		num_tds = 1;
1556
1557	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1558	if (!urb_priv)
1559		return -ENOMEM;
1560
1561	urb_priv->num_tds = num_tds;
1562	urb_priv->num_tds_done = 0;
1563	urb->hcpriv = urb_priv;
1564
1565	trace_xhci_urb_enqueue(urb);
1566
1567	spin_lock_irqsave(&xhci->lock, flags);
1568
1569	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1570			      true, true, __func__);
1571	if (ret <= 0) {
1572		ret = ret ? ret : -EINVAL;
1573		goto free_priv;
1574	}
1575
1576	slot_id = urb->dev->slot_id;
1577
1578	if (!HCD_HW_ACCESSIBLE(hcd)) {
1579		ret = -ESHUTDOWN;
1580		goto free_priv;
1581	}
1582
1583	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1584		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1585		ret = -ENODEV;
1586		goto free_priv;
1587	}
1588
1589	if (xhci->xhc_state & XHCI_STATE_DYING) {
1590		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1591			 urb->ep->desc.bEndpointAddress, urb);
1592		ret = -ESHUTDOWN;
1593		goto free_priv;
1594	}
 
 
 
 
 
 
 
1595
1596	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1597
1598	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1599		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1600			  *ep_state);
1601		ret = -EINVAL;
1602		goto free_priv;
1603	}
1604	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1605		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1606		ret = -EINVAL;
1607		goto free_priv;
1608	}
1609
1610	switch (usb_endpoint_type(&urb->ep->desc)) {
1611
1612	case USB_ENDPOINT_XFER_CONTROL:
1613		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1614					 slot_id, ep_index);
1615		break;
1616	case USB_ENDPOINT_XFER_BULK:
1617		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1618					 slot_id, ep_index);
1619		break;
1620	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1622				slot_id, ep_index);
1623		break;
1624	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1625		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1626				slot_id, ep_index);
 
 
 
1627	}
1628
1629	if (ret) {
 
 
 
 
 
1630free_priv:
1631		xhci_urb_free_priv(urb_priv);
1632		urb->hcpriv = NULL;
1633	}
1634	spin_unlock_irqrestore(&xhci->lock, flags);
1635	return ret;
1636}
1637
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1638/*
1639 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1640 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1641 * should pick up where it left off in the TD, unless a Set Transfer Ring
1642 * Dequeue Pointer is issued.
1643 *
1644 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1645 * the ring.  Since the ring is a contiguous structure, they can't be physically
1646 * removed.  Instead, there are two options:
1647 *
1648 *  1) If the HC is in the middle of processing the URB to be canceled, we
1649 *     simply move the ring's dequeue pointer past those TRBs using the Set
1650 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1651 *     when drivers timeout on the last submitted URB and attempt to cancel.
1652 *
1653 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1654 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1655 *     HC will need to invalidate the any TRBs it has cached after the stop
1656 *     endpoint command, as noted in the xHCI 0.95 errata.
1657 *
1658 *  3) The TD may have completed by the time the Stop Endpoint Command
1659 *     completes, so software needs to handle that case too.
1660 *
1661 * This function should protect against the TD enqueueing code ringing the
1662 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1663 * It also needs to account for multiple cancellations on happening at the same
1664 * time for the same endpoint.
1665 *
1666 * Note that this function can be called in any context, or so says
1667 * usb_hcd_unlink_urb()
1668 */
1669static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1670{
1671	unsigned long flags;
1672	int ret, i;
1673	u32 temp;
1674	struct xhci_hcd *xhci;
1675	struct urb_priv	*urb_priv;
1676	struct xhci_td *td;
1677	unsigned int ep_index;
1678	struct xhci_ring *ep_ring;
1679	struct xhci_virt_ep *ep;
1680	struct xhci_command *command;
1681	struct xhci_virt_device *vdev;
1682
1683	xhci = hcd_to_xhci(hcd);
1684	spin_lock_irqsave(&xhci->lock, flags);
1685
1686	trace_xhci_urb_dequeue(urb);
1687
1688	/* Make sure the URB hasn't completed or been unlinked already */
1689	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1690	if (ret)
1691		goto done;
1692
1693	/* give back URB now if we can't queue it for cancel */
1694	vdev = xhci->devs[urb->dev->slot_id];
1695	urb_priv = urb->hcpriv;
1696	if (!vdev || !urb_priv)
1697		goto err_giveback;
1698
1699	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1700	ep = &vdev->eps[ep_index];
1701	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1702	if (!ep || !ep_ring)
1703		goto err_giveback;
1704
1705	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1706	temp = readl(&xhci->op_regs->status);
1707	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1708		xhci_hc_died(xhci);
1709		goto done;
1710	}
1711
1712	/*
1713	 * check ring is not re-allocated since URB was enqueued. If it is, then
1714	 * make sure none of the ring related pointers in this URB private data
1715	 * are touched, such as td_list, otherwise we overwrite freed data
1716	 */
1717	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1718		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1719		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1720			td = &urb_priv->td[i];
1721			if (!list_empty(&td->cancelled_td_list))
1722				list_del_init(&td->cancelled_td_list);
1723		}
1724		goto err_giveback;
1725	}
1726
1727	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1728		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1729				"HC halted, freeing TD manually.");
1730		for (i = urb_priv->num_tds_done;
1731		     i < urb_priv->num_tds;
 
1732		     i++) {
1733			td = &urb_priv->td[i];
1734			if (!list_empty(&td->td_list))
1735				list_del_init(&td->td_list);
1736			if (!list_empty(&td->cancelled_td_list))
1737				list_del_init(&td->cancelled_td_list);
1738		}
1739		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1740	}
1741
1742	i = urb_priv->num_tds_done;
1743	if (i < urb_priv->num_tds)
 
 
 
 
 
 
 
 
 
1744		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1745				"Cancel URB %p, dev %s, ep 0x%x, "
1746				"starting at offset 0x%llx",
1747				urb, urb->dev->devpath,
1748				urb->ep->desc.bEndpointAddress,
1749				(unsigned long long) xhci_trb_virt_to_dma(
1750					urb_priv->td[i].start_seg,
1751					urb_priv->td[i].start_trb));
1752
1753	for (; i < urb_priv->num_tds; i++) {
1754		td = &urb_priv->td[i];
1755		/* TD can already be on cancelled list if ep halted on it */
1756		if (list_empty(&td->cancelled_td_list)) {
1757			td->cancel_status = TD_DIRTY;
1758			list_add_tail(&td->cancelled_td_list,
1759				      &ep->cancelled_td_list);
1760		}
1761	}
1762
1763	/* These completion handlers will sort out cancelled TDs for us */
1764	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1765		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1766				urb->dev->slot_id, ep_index, ep->ep_state);
1767		goto done;
1768	}
1769
1770	/* In this case no commands are pending but the endpoint is stopped */
1771	if (ep->ep_state & EP_CLEARING_TT) {
1772		/* and cancelled TDs can be given back right away */
1773		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1774				urb->dev->slot_id, ep_index, ep->ep_state);
1775		xhci_process_cancelled_tds(ep);
1776	} else {
1777		/* Otherwise, queue a new Stop Endpoint command */
1778		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1779		if (!command) {
1780			ret = -ENOMEM;
1781			goto done;
1782		}
1783		ep->stop_time = jiffies;
1784		ep->ep_state |= EP_STOP_CMD_PENDING;
 
 
 
1785		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1786					 ep_index, 0);
1787		xhci_ring_cmd_db(xhci);
1788	}
1789done:
1790	spin_unlock_irqrestore(&xhci->lock, flags);
1791	return ret;
1792
1793err_giveback:
1794	if (urb_priv)
1795		xhci_urb_free_priv(urb_priv);
1796	usb_hcd_unlink_urb_from_ep(hcd, urb);
1797	spin_unlock_irqrestore(&xhci->lock, flags);
1798	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1799	return ret;
1800}
1801
1802/* Drop an endpoint from a new bandwidth configuration for this device.
1803 * Only one call to this function is allowed per endpoint before
1804 * check_bandwidth() or reset_bandwidth() must be called.
1805 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1806 * add the endpoint to the schedule with possibly new parameters denoted by a
1807 * different endpoint descriptor in usb_host_endpoint.
1808 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1809 * not allowed.
1810 *
1811 * The USB core will not allow URBs to be queued to an endpoint that is being
1812 * disabled, so there's no need for mutual exclusion to protect
1813 * the xhci->devs[slot_id] structure.
1814 */
1815int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1816		       struct usb_host_endpoint *ep)
1817{
1818	struct xhci_hcd *xhci;
1819	struct xhci_container_ctx *in_ctx, *out_ctx;
1820	struct xhci_input_control_ctx *ctrl_ctx;
1821	unsigned int ep_index;
1822	struct xhci_ep_ctx *ep_ctx;
1823	u32 drop_flag;
1824	u32 new_add_flags, new_drop_flags;
1825	int ret;
1826
1827	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1828	if (ret <= 0)
1829		return ret;
1830	xhci = hcd_to_xhci(hcd);
1831	if (xhci->xhc_state & XHCI_STATE_DYING)
1832		return -ENODEV;
1833
1834	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1835	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1836	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1837		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1838				__func__, drop_flag);
1839		return 0;
1840	}
1841
1842	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1843	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1844	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1845	if (!ctrl_ctx) {
1846		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1847				__func__);
1848		return 0;
1849	}
1850
1851	ep_index = xhci_get_endpoint_index(&ep->desc);
1852	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1853	/* If the HC already knows the endpoint is disabled,
1854	 * or the HCD has noted it is disabled, ignore this request
1855	 */
1856	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1857	    le32_to_cpu(ctrl_ctx->drop_flags) &
1858	    xhci_get_endpoint_flag(&ep->desc)) {
1859		/* Do not warn when called after a usb_device_reset */
1860		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1861			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1862				  __func__, ep);
1863		return 0;
1864	}
1865
1866	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1867	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1868
1869	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1870	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1871
1872	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1873
1874	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
 
1875
1876	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1877			(unsigned int) ep->desc.bEndpointAddress,
1878			udev->slot_id,
1879			(unsigned int) new_drop_flags,
1880			(unsigned int) new_add_flags);
1881	return 0;
1882}
1883EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1884
1885/* Add an endpoint to a new possible bandwidth configuration for this device.
1886 * Only one call to this function is allowed per endpoint before
1887 * check_bandwidth() or reset_bandwidth() must be called.
1888 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1889 * add the endpoint to the schedule with possibly new parameters denoted by a
1890 * different endpoint descriptor in usb_host_endpoint.
1891 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1892 * not allowed.
1893 *
1894 * The USB core will not allow URBs to be queued to an endpoint until the
1895 * configuration or alt setting is installed in the device, so there's no need
1896 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1897 */
1898int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1899		      struct usb_host_endpoint *ep)
1900{
1901	struct xhci_hcd *xhci;
1902	struct xhci_container_ctx *in_ctx;
1903	unsigned int ep_index;
1904	struct xhci_input_control_ctx *ctrl_ctx;
1905	struct xhci_ep_ctx *ep_ctx;
1906	u32 added_ctxs;
1907	u32 new_add_flags, new_drop_flags;
1908	struct xhci_virt_device *virt_dev;
1909	int ret = 0;
1910
1911	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1912	if (ret <= 0) {
1913		/* So we won't queue a reset ep command for a root hub */
1914		ep->hcpriv = NULL;
1915		return ret;
1916	}
1917	xhci = hcd_to_xhci(hcd);
1918	if (xhci->xhc_state & XHCI_STATE_DYING)
1919		return -ENODEV;
1920
1921	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1922	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1923		/* FIXME when we have to issue an evaluate endpoint command to
1924		 * deal with ep0 max packet size changing once we get the
1925		 * descriptors
1926		 */
1927		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1928				__func__, added_ctxs);
1929		return 0;
1930	}
1931
1932	virt_dev = xhci->devs[udev->slot_id];
1933	in_ctx = virt_dev->in_ctx;
1934	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1935	if (!ctrl_ctx) {
1936		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1937				__func__);
1938		return 0;
1939	}
1940
1941	ep_index = xhci_get_endpoint_index(&ep->desc);
1942	/* If this endpoint is already in use, and the upper layers are trying
1943	 * to add it again without dropping it, reject the addition.
1944	 */
1945	if (virt_dev->eps[ep_index].ring &&
1946			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1947		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1948				"without dropping it.\n",
1949				(unsigned int) ep->desc.bEndpointAddress);
1950		return -EINVAL;
1951	}
1952
1953	/* If the HCD has already noted the endpoint is enabled,
1954	 * ignore this request.
1955	 */
1956	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1957		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1958				__func__, ep);
1959		return 0;
1960	}
1961
1962	/*
1963	 * Configuration and alternate setting changes must be done in
1964	 * process context, not interrupt context (or so documenation
1965	 * for usb_set_interface() and usb_set_configuration() claim).
1966	 */
1967	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1968		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1969				__func__, ep->desc.bEndpointAddress);
1970		return -ENOMEM;
1971	}
1972
 
 
 
 
 
 
 
 
 
1973	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1974	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1975
1976	/* If xhci_endpoint_disable() was called for this endpoint, but the
1977	 * xHC hasn't been notified yet through the check_bandwidth() call,
1978	 * this re-adds a new state for the endpoint from the new endpoint
1979	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1980	 * drop flags alone.
1981	 */
1982	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1983
1984	/* Store the usb_device pointer for later use */
1985	ep->hcpriv = udev;
1986
1987	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1988	trace_xhci_add_endpoint(ep_ctx);
1989
1990	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1991			(unsigned int) ep->desc.bEndpointAddress,
1992			udev->slot_id,
1993			(unsigned int) new_drop_flags,
1994			(unsigned int) new_add_flags);
1995	return 0;
1996}
1997EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1998
1999static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2000{
2001	struct xhci_input_control_ctx *ctrl_ctx;
2002	struct xhci_ep_ctx *ep_ctx;
2003	struct xhci_slot_ctx *slot_ctx;
2004	int i;
2005
2006	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2007	if (!ctrl_ctx) {
2008		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2009				__func__);
2010		return;
2011	}
2012
2013	/* When a device's add flag and drop flag are zero, any subsequent
2014	 * configure endpoint command will leave that endpoint's state
2015	 * untouched.  Make sure we don't leave any old state in the input
2016	 * endpoint contexts.
2017	 */
2018	ctrl_ctx->drop_flags = 0;
2019	ctrl_ctx->add_flags = 0;
2020	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2021	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2022	/* Endpoint 0 is always valid */
2023	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2024	for (i = 1; i < 31; i++) {
2025		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2026		ep_ctx->ep_info = 0;
2027		ep_ctx->ep_info2 = 0;
2028		ep_ctx->deq = 0;
2029		ep_ctx->tx_info = 0;
2030	}
2031}
2032
2033static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2034		struct usb_device *udev, u32 *cmd_status)
2035{
2036	int ret;
2037
2038	switch (*cmd_status) {
2039	case COMP_COMMAND_ABORTED:
2040	case COMP_COMMAND_RING_STOPPED:
2041		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2042		ret = -ETIME;
2043		break;
2044	case COMP_RESOURCE_ERROR:
2045		dev_warn(&udev->dev,
2046			 "Not enough host controller resources for new device state.\n");
2047		ret = -ENOMEM;
2048		/* FIXME: can we allocate more resources for the HC? */
2049		break;
2050	case COMP_BANDWIDTH_ERROR:
2051	case COMP_SECONDARY_BANDWIDTH_ERROR:
2052		dev_warn(&udev->dev,
2053			 "Not enough bandwidth for new device state.\n");
2054		ret = -ENOSPC;
2055		/* FIXME: can we go back to the old state? */
2056		break;
2057	case COMP_TRB_ERROR:
2058		/* the HCD set up something wrong */
2059		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2060				"add flag = 1, "
2061				"and endpoint is not disabled.\n");
2062		ret = -EINVAL;
2063		break;
2064	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2065		dev_warn(&udev->dev,
2066			 "ERROR: Incompatible device for endpoint configure command.\n");
2067		ret = -ENODEV;
2068		break;
2069	case COMP_SUCCESS:
2070		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2071				"Successful Endpoint Configure command");
2072		ret = 0;
2073		break;
2074	default:
2075		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2076				*cmd_status);
2077		ret = -EINVAL;
2078		break;
2079	}
2080	return ret;
2081}
2082
2083static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2084		struct usb_device *udev, u32 *cmd_status)
2085{
2086	int ret;
 
2087
2088	switch (*cmd_status) {
2089	case COMP_COMMAND_ABORTED:
2090	case COMP_COMMAND_RING_STOPPED:
2091		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2092		ret = -ETIME;
2093		break;
2094	case COMP_PARAMETER_ERROR:
2095		dev_warn(&udev->dev,
2096			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2097		ret = -EINVAL;
2098		break;
2099	case COMP_SLOT_NOT_ENABLED_ERROR:
2100		dev_warn(&udev->dev,
2101			"WARN: slot not enabled for evaluate context command.\n");
2102		ret = -EINVAL;
2103		break;
2104	case COMP_CONTEXT_STATE_ERROR:
2105		dev_warn(&udev->dev,
2106			"WARN: invalid context state for evaluate context command.\n");
 
2107		ret = -EINVAL;
2108		break;
2109	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2110		dev_warn(&udev->dev,
2111			"ERROR: Incompatible device for evaluate context command.\n");
2112		ret = -ENODEV;
2113		break;
2114	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2115		/* Max Exit Latency too large error */
2116		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2117		ret = -EINVAL;
2118		break;
2119	case COMP_SUCCESS:
2120		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2121				"Successful evaluate context command");
2122		ret = 0;
2123		break;
2124	default:
2125		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2126			*cmd_status);
2127		ret = -EINVAL;
2128		break;
2129	}
2130	return ret;
2131}
2132
2133static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2134		struct xhci_input_control_ctx *ctrl_ctx)
2135{
2136	u32 valid_add_flags;
2137	u32 valid_drop_flags;
2138
2139	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2140	 * (bit 1).  The default control endpoint is added during the Address
2141	 * Device command and is never removed until the slot is disabled.
2142	 */
2143	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2144	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2145
2146	/* Use hweight32 to count the number of ones in the add flags, or
2147	 * number of endpoints added.  Don't count endpoints that are changed
2148	 * (both added and dropped).
2149	 */
2150	return hweight32(valid_add_flags) -
2151		hweight32(valid_add_flags & valid_drop_flags);
2152}
2153
2154static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2155		struct xhci_input_control_ctx *ctrl_ctx)
2156{
2157	u32 valid_add_flags;
2158	u32 valid_drop_flags;
2159
2160	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2161	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2162
2163	return hweight32(valid_drop_flags) -
2164		hweight32(valid_add_flags & valid_drop_flags);
2165}
2166
2167/*
2168 * We need to reserve the new number of endpoints before the configure endpoint
2169 * command completes.  We can't subtract the dropped endpoints from the number
2170 * of active endpoints until the command completes because we can oversubscribe
2171 * the host in this case:
2172 *
2173 *  - the first configure endpoint command drops more endpoints than it adds
2174 *  - a second configure endpoint command that adds more endpoints is queued
2175 *  - the first configure endpoint command fails, so the config is unchanged
2176 *  - the second command may succeed, even though there isn't enough resources
2177 *
2178 * Must be called with xhci->lock held.
2179 */
2180static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2181		struct xhci_input_control_ctx *ctrl_ctx)
2182{
2183	u32 added_eps;
2184
2185	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2186	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2187		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2188				"Not enough ep ctxs: "
2189				"%u active, need to add %u, limit is %u.",
2190				xhci->num_active_eps, added_eps,
2191				xhci->limit_active_eps);
2192		return -ENOMEM;
2193	}
2194	xhci->num_active_eps += added_eps;
2195	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2196			"Adding %u ep ctxs, %u now active.", added_eps,
2197			xhci->num_active_eps);
2198	return 0;
2199}
2200
2201/*
2202 * The configure endpoint was failed by the xHC for some other reason, so we
2203 * need to revert the resources that failed configuration would have used.
2204 *
2205 * Must be called with xhci->lock held.
2206 */
2207static void xhci_free_host_resources(struct xhci_hcd *xhci,
2208		struct xhci_input_control_ctx *ctrl_ctx)
2209{
2210	u32 num_failed_eps;
2211
2212	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2213	xhci->num_active_eps -= num_failed_eps;
2214	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2215			"Removing %u failed ep ctxs, %u now active.",
2216			num_failed_eps,
2217			xhci->num_active_eps);
2218}
2219
2220/*
2221 * Now that the command has completed, clean up the active endpoint count by
2222 * subtracting out the endpoints that were dropped (but not changed).
2223 *
2224 * Must be called with xhci->lock held.
2225 */
2226static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2227		struct xhci_input_control_ctx *ctrl_ctx)
2228{
2229	u32 num_dropped_eps;
2230
2231	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2232	xhci->num_active_eps -= num_dropped_eps;
2233	if (num_dropped_eps)
2234		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2235				"Removing %u dropped ep ctxs, %u now active.",
2236				num_dropped_eps,
2237				xhci->num_active_eps);
2238}
2239
2240static unsigned int xhci_get_block_size(struct usb_device *udev)
2241{
2242	switch (udev->speed) {
2243	case USB_SPEED_LOW:
2244	case USB_SPEED_FULL:
2245		return FS_BLOCK;
2246	case USB_SPEED_HIGH:
2247		return HS_BLOCK;
2248	case USB_SPEED_SUPER:
2249	case USB_SPEED_SUPER_PLUS:
2250		return SS_BLOCK;
2251	case USB_SPEED_UNKNOWN:
 
2252	default:
2253		/* Should never happen */
2254		return 1;
2255	}
2256}
2257
2258static unsigned int
2259xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2260{
2261	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2262		return LS_OVERHEAD;
2263	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2264		return FS_OVERHEAD;
2265	return HS_OVERHEAD;
2266}
2267
2268/* If we are changing a LS/FS device under a HS hub,
2269 * make sure (if we are activating a new TT) that the HS bus has enough
2270 * bandwidth for this new TT.
2271 */
2272static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2273		struct xhci_virt_device *virt_dev,
2274		int old_active_eps)
2275{
2276	struct xhci_interval_bw_table *bw_table;
2277	struct xhci_tt_bw_info *tt_info;
2278
2279	/* Find the bandwidth table for the root port this TT is attached to. */
2280	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2281	tt_info = virt_dev->tt_info;
2282	/* If this TT already had active endpoints, the bandwidth for this TT
2283	 * has already been added.  Removing all periodic endpoints (and thus
2284	 * making the TT enactive) will only decrease the bandwidth used.
2285	 */
2286	if (old_active_eps)
2287		return 0;
2288	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2289		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2290			return -ENOMEM;
2291		return 0;
2292	}
2293	/* Not sure why we would have no new active endpoints...
2294	 *
2295	 * Maybe because of an Evaluate Context change for a hub update or a
2296	 * control endpoint 0 max packet size change?
2297	 * FIXME: skip the bandwidth calculation in that case.
2298	 */
2299	return 0;
2300}
2301
2302static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2303		struct xhci_virt_device *virt_dev)
2304{
2305	unsigned int bw_reserved;
2306
2307	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2308	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2309		return -ENOMEM;
2310
2311	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2312	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2313		return -ENOMEM;
2314
2315	return 0;
2316}
2317
2318/*
2319 * This algorithm is a very conservative estimate of the worst-case scheduling
2320 * scenario for any one interval.  The hardware dynamically schedules the
2321 * packets, so we can't tell which microframe could be the limiting factor in
2322 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2323 *
2324 * Obviously, we can't solve an NP complete problem to find the minimum worst
2325 * case scenario.  Instead, we come up with an estimate that is no less than
2326 * the worst case bandwidth used for any one microframe, but may be an
2327 * over-estimate.
2328 *
2329 * We walk the requirements for each endpoint by interval, starting with the
2330 * smallest interval, and place packets in the schedule where there is only one
2331 * possible way to schedule packets for that interval.  In order to simplify
2332 * this algorithm, we record the largest max packet size for each interval, and
2333 * assume all packets will be that size.
2334 *
2335 * For interval 0, we obviously must schedule all packets for each interval.
2336 * The bandwidth for interval 0 is just the amount of data to be transmitted
2337 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2338 * the number of packets).
2339 *
2340 * For interval 1, we have two possible microframes to schedule those packets
2341 * in.  For this algorithm, if we can schedule the same number of packets for
2342 * each possible scheduling opportunity (each microframe), we will do so.  The
2343 * remaining number of packets will be saved to be transmitted in the gaps in
2344 * the next interval's scheduling sequence.
2345 *
2346 * As we move those remaining packets to be scheduled with interval 2 packets,
2347 * we have to double the number of remaining packets to transmit.  This is
2348 * because the intervals are actually powers of 2, and we would be transmitting
2349 * the previous interval's packets twice in this interval.  We also have to be
2350 * sure that when we look at the largest max packet size for this interval, we
2351 * also look at the largest max packet size for the remaining packets and take
2352 * the greater of the two.
2353 *
2354 * The algorithm continues to evenly distribute packets in each scheduling
2355 * opportunity, and push the remaining packets out, until we get to the last
2356 * interval.  Then those packets and their associated overhead are just added
2357 * to the bandwidth used.
2358 */
2359static int xhci_check_bw_table(struct xhci_hcd *xhci,
2360		struct xhci_virt_device *virt_dev,
2361		int old_active_eps)
2362{
2363	unsigned int bw_reserved;
2364	unsigned int max_bandwidth;
2365	unsigned int bw_used;
2366	unsigned int block_size;
2367	struct xhci_interval_bw_table *bw_table;
2368	unsigned int packet_size = 0;
2369	unsigned int overhead = 0;
2370	unsigned int packets_transmitted = 0;
2371	unsigned int packets_remaining = 0;
2372	unsigned int i;
2373
2374	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2375		return xhci_check_ss_bw(xhci, virt_dev);
2376
2377	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2378		max_bandwidth = HS_BW_LIMIT;
2379		/* Convert percent of bus BW reserved to blocks reserved */
2380		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2381	} else {
2382		max_bandwidth = FS_BW_LIMIT;
2383		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2384	}
2385
2386	bw_table = virt_dev->bw_table;
2387	/* We need to translate the max packet size and max ESIT payloads into
2388	 * the units the hardware uses.
2389	 */
2390	block_size = xhci_get_block_size(virt_dev->udev);
2391
2392	/* If we are manipulating a LS/FS device under a HS hub, double check
2393	 * that the HS bus has enough bandwidth if we are activing a new TT.
2394	 */
2395	if (virt_dev->tt_info) {
2396		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2397				"Recalculating BW for rootport %u",
2398				virt_dev->rhub_port->hw_portnum + 1);
2399		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2400			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2401					"newly activated TT.\n");
2402			return -ENOMEM;
2403		}
2404		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2405				"Recalculating BW for TT slot %u port %u",
2406				virt_dev->tt_info->slot_id,
2407				virt_dev->tt_info->ttport);
2408	} else {
2409		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2410				"Recalculating BW for rootport %u",
2411				virt_dev->rhub_port->hw_portnum + 1);
2412	}
2413
2414	/* Add in how much bandwidth will be used for interval zero, or the
2415	 * rounded max ESIT payload + number of packets * largest overhead.
2416	 */
2417	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2418		bw_table->interval_bw[0].num_packets *
2419		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2420
2421	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2422		unsigned int bw_added;
2423		unsigned int largest_mps;
2424		unsigned int interval_overhead;
2425
2426		/*
2427		 * How many packets could we transmit in this interval?
2428		 * If packets didn't fit in the previous interval, we will need
2429		 * to transmit that many packets twice within this interval.
2430		 */
2431		packets_remaining = 2 * packets_remaining +
2432			bw_table->interval_bw[i].num_packets;
2433
2434		/* Find the largest max packet size of this or the previous
2435		 * interval.
2436		 */
2437		if (list_empty(&bw_table->interval_bw[i].endpoints))
2438			largest_mps = 0;
2439		else {
2440			struct xhci_virt_ep *virt_ep;
2441			struct list_head *ep_entry;
2442
2443			ep_entry = bw_table->interval_bw[i].endpoints.next;
2444			virt_ep = list_entry(ep_entry,
2445					struct xhci_virt_ep, bw_endpoint_list);
2446			/* Convert to blocks, rounding up */
2447			largest_mps = DIV_ROUND_UP(
2448					virt_ep->bw_info.max_packet_size,
2449					block_size);
2450		}
2451		if (largest_mps > packet_size)
2452			packet_size = largest_mps;
2453
2454		/* Use the larger overhead of this or the previous interval. */
2455		interval_overhead = xhci_get_largest_overhead(
2456				&bw_table->interval_bw[i]);
2457		if (interval_overhead > overhead)
2458			overhead = interval_overhead;
2459
2460		/* How many packets can we evenly distribute across
2461		 * (1 << (i + 1)) possible scheduling opportunities?
2462		 */
2463		packets_transmitted = packets_remaining >> (i + 1);
2464
2465		/* Add in the bandwidth used for those scheduled packets */
2466		bw_added = packets_transmitted * (overhead + packet_size);
2467
2468		/* How many packets do we have remaining to transmit? */
2469		packets_remaining = packets_remaining % (1 << (i + 1));
2470
2471		/* What largest max packet size should those packets have? */
2472		/* If we've transmitted all packets, don't carry over the
2473		 * largest packet size.
2474		 */
2475		if (packets_remaining == 0) {
2476			packet_size = 0;
2477			overhead = 0;
2478		} else if (packets_transmitted > 0) {
2479			/* Otherwise if we do have remaining packets, and we've
2480			 * scheduled some packets in this interval, take the
2481			 * largest max packet size from endpoints with this
2482			 * interval.
2483			 */
2484			packet_size = largest_mps;
2485			overhead = interval_overhead;
2486		}
2487		/* Otherwise carry over packet_size and overhead from the last
2488		 * time we had a remainder.
2489		 */
2490		bw_used += bw_added;
2491		if (bw_used > max_bandwidth) {
2492			xhci_warn(xhci, "Not enough bandwidth. "
2493					"Proposed: %u, Max: %u\n",
2494				bw_used, max_bandwidth);
2495			return -ENOMEM;
2496		}
2497	}
2498	/*
2499	 * Ok, we know we have some packets left over after even-handedly
2500	 * scheduling interval 15.  We don't know which microframes they will
2501	 * fit into, so we over-schedule and say they will be scheduled every
2502	 * microframe.
2503	 */
2504	if (packets_remaining > 0)
2505		bw_used += overhead + packet_size;
2506
2507	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
 
 
2508		/* OK, we're manipulating a HS device attached to a
2509		 * root port bandwidth domain.  Include the number of active TTs
2510		 * in the bandwidth used.
2511		 */
2512		bw_used += TT_HS_OVERHEAD *
2513			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2514	}
2515
2516	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2517		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2518		"Available: %u " "percent",
2519		bw_used, max_bandwidth, bw_reserved,
2520		(max_bandwidth - bw_used - bw_reserved) * 100 /
2521		max_bandwidth);
2522
2523	bw_used += bw_reserved;
2524	if (bw_used > max_bandwidth) {
2525		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2526				bw_used, max_bandwidth);
2527		return -ENOMEM;
2528	}
2529
2530	bw_table->bw_used = bw_used;
2531	return 0;
2532}
2533
2534static bool xhci_is_async_ep(unsigned int ep_type)
2535{
2536	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2537					ep_type != ISOC_IN_EP &&
2538					ep_type != INT_IN_EP);
2539}
2540
2541static bool xhci_is_sync_in_ep(unsigned int ep_type)
2542{
2543	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2544}
2545
2546static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2547{
2548	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2549
2550	if (ep_bw->ep_interval == 0)
2551		return SS_OVERHEAD_BURST +
2552			(ep_bw->mult * ep_bw->num_packets *
2553					(SS_OVERHEAD + mps));
2554	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2555				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2556				1 << ep_bw->ep_interval);
2557
2558}
2559
2560static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2561		struct xhci_bw_info *ep_bw,
2562		struct xhci_interval_bw_table *bw_table,
2563		struct usb_device *udev,
2564		struct xhci_virt_ep *virt_ep,
2565		struct xhci_tt_bw_info *tt_info)
2566{
2567	struct xhci_interval_bw	*interval_bw;
2568	int normalized_interval;
2569
2570	if (xhci_is_async_ep(ep_bw->type))
2571		return;
2572
2573	if (udev->speed >= USB_SPEED_SUPER) {
2574		if (xhci_is_sync_in_ep(ep_bw->type))
2575			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2576				xhci_get_ss_bw_consumed(ep_bw);
2577		else
2578			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2579				xhci_get_ss_bw_consumed(ep_bw);
2580		return;
2581	}
2582
2583	/* SuperSpeed endpoints never get added to intervals in the table, so
2584	 * this check is only valid for HS/FS/LS devices.
2585	 */
2586	if (list_empty(&virt_ep->bw_endpoint_list))
2587		return;
2588	/* For LS/FS devices, we need to translate the interval expressed in
2589	 * microframes to frames.
2590	 */
2591	if (udev->speed == USB_SPEED_HIGH)
2592		normalized_interval = ep_bw->ep_interval;
2593	else
2594		normalized_interval = ep_bw->ep_interval - 3;
2595
2596	if (normalized_interval == 0)
2597		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2598	interval_bw = &bw_table->interval_bw[normalized_interval];
2599	interval_bw->num_packets -= ep_bw->num_packets;
2600	switch (udev->speed) {
2601	case USB_SPEED_LOW:
2602		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2603		break;
2604	case USB_SPEED_FULL:
2605		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2606		break;
2607	case USB_SPEED_HIGH:
2608		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2609		break;
2610	default:
 
 
 
2611		/* Should never happen because only LS/FS/HS endpoints will get
2612		 * added to the endpoint list.
2613		 */
2614		return;
2615	}
2616	if (tt_info)
2617		tt_info->active_eps -= 1;
2618	list_del_init(&virt_ep->bw_endpoint_list);
2619}
2620
2621static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2622		struct xhci_bw_info *ep_bw,
2623		struct xhci_interval_bw_table *bw_table,
2624		struct usb_device *udev,
2625		struct xhci_virt_ep *virt_ep,
2626		struct xhci_tt_bw_info *tt_info)
2627{
2628	struct xhci_interval_bw	*interval_bw;
2629	struct xhci_virt_ep *smaller_ep;
2630	int normalized_interval;
2631
2632	if (xhci_is_async_ep(ep_bw->type))
2633		return;
2634
2635	if (udev->speed == USB_SPEED_SUPER) {
2636		if (xhci_is_sync_in_ep(ep_bw->type))
2637			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2638				xhci_get_ss_bw_consumed(ep_bw);
2639		else
2640			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2641				xhci_get_ss_bw_consumed(ep_bw);
2642		return;
2643	}
2644
2645	/* For LS/FS devices, we need to translate the interval expressed in
2646	 * microframes to frames.
2647	 */
2648	if (udev->speed == USB_SPEED_HIGH)
2649		normalized_interval = ep_bw->ep_interval;
2650	else
2651		normalized_interval = ep_bw->ep_interval - 3;
2652
2653	if (normalized_interval == 0)
2654		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2655	interval_bw = &bw_table->interval_bw[normalized_interval];
2656	interval_bw->num_packets += ep_bw->num_packets;
2657	switch (udev->speed) {
2658	case USB_SPEED_LOW:
2659		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2660		break;
2661	case USB_SPEED_FULL:
2662		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2663		break;
2664	case USB_SPEED_HIGH:
2665		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2666		break;
2667	default:
 
 
 
2668		/* Should never happen because only LS/FS/HS endpoints will get
2669		 * added to the endpoint list.
2670		 */
2671		return;
2672	}
2673
2674	if (tt_info)
2675		tt_info->active_eps += 1;
2676	/* Insert the endpoint into the list, largest max packet size first. */
2677	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2678			bw_endpoint_list) {
2679		if (ep_bw->max_packet_size >=
2680				smaller_ep->bw_info.max_packet_size) {
2681			/* Add the new ep before the smaller endpoint */
2682			list_add_tail(&virt_ep->bw_endpoint_list,
2683					&smaller_ep->bw_endpoint_list);
2684			return;
2685		}
2686	}
2687	/* Add the new endpoint at the end of the list. */
2688	list_add_tail(&virt_ep->bw_endpoint_list,
2689			&interval_bw->endpoints);
2690}
2691
2692void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2693		struct xhci_virt_device *virt_dev,
2694		int old_active_eps)
2695{
2696	struct xhci_root_port_bw_info *rh_bw_info;
2697	if (!virt_dev->tt_info)
2698		return;
2699
2700	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2701	if (old_active_eps == 0 &&
2702				virt_dev->tt_info->active_eps != 0) {
2703		rh_bw_info->num_active_tts += 1;
2704		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2705	} else if (old_active_eps != 0 &&
2706				virt_dev->tt_info->active_eps == 0) {
2707		rh_bw_info->num_active_tts -= 1;
2708		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2709	}
2710}
2711
2712static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2713		struct xhci_virt_device *virt_dev,
2714		struct xhci_container_ctx *in_ctx)
2715{
2716	struct xhci_bw_info ep_bw_info[31];
2717	int i;
2718	struct xhci_input_control_ctx *ctrl_ctx;
2719	int old_active_eps = 0;
2720
2721	if (virt_dev->tt_info)
2722		old_active_eps = virt_dev->tt_info->active_eps;
2723
2724	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2725	if (!ctrl_ctx) {
2726		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2727				__func__);
2728		return -ENOMEM;
2729	}
2730
2731	for (i = 0; i < 31; i++) {
2732		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2733			continue;
2734
2735		/* Make a copy of the BW info in case we need to revert this */
2736		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2737				sizeof(ep_bw_info[i]));
2738		/* Drop the endpoint from the interval table if the endpoint is
2739		 * being dropped or changed.
2740		 */
2741		if (EP_IS_DROPPED(ctrl_ctx, i))
2742			xhci_drop_ep_from_interval_table(xhci,
2743					&virt_dev->eps[i].bw_info,
2744					virt_dev->bw_table,
2745					virt_dev->udev,
2746					&virt_dev->eps[i],
2747					virt_dev->tt_info);
2748	}
2749	/* Overwrite the information stored in the endpoints' bw_info */
2750	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2751	for (i = 0; i < 31; i++) {
2752		/* Add any changed or added endpoints to the interval table */
2753		if (EP_IS_ADDED(ctrl_ctx, i))
2754			xhci_add_ep_to_interval_table(xhci,
2755					&virt_dev->eps[i].bw_info,
2756					virt_dev->bw_table,
2757					virt_dev->udev,
2758					&virt_dev->eps[i],
2759					virt_dev->tt_info);
2760	}
2761
2762	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2763		/* Ok, this fits in the bandwidth we have.
2764		 * Update the number of active TTs.
2765		 */
2766		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2767		return 0;
2768	}
2769
2770	/* We don't have enough bandwidth for this, revert the stored info. */
2771	for (i = 0; i < 31; i++) {
2772		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2773			continue;
2774
2775		/* Drop the new copies of any added or changed endpoints from
2776		 * the interval table.
2777		 */
2778		if (EP_IS_ADDED(ctrl_ctx, i)) {
2779			xhci_drop_ep_from_interval_table(xhci,
2780					&virt_dev->eps[i].bw_info,
2781					virt_dev->bw_table,
2782					virt_dev->udev,
2783					&virt_dev->eps[i],
2784					virt_dev->tt_info);
2785		}
2786		/* Revert the endpoint back to its old information */
2787		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2788				sizeof(ep_bw_info[i]));
2789		/* Add any changed or dropped endpoints back into the table */
2790		if (EP_IS_DROPPED(ctrl_ctx, i))
2791			xhci_add_ep_to_interval_table(xhci,
2792					&virt_dev->eps[i].bw_info,
2793					virt_dev->bw_table,
2794					virt_dev->udev,
2795					&virt_dev->eps[i],
2796					virt_dev->tt_info);
2797	}
2798	return -ENOMEM;
2799}
2800
2801/*
2802 * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2803 * waits for the command completion before returning.  This does not call
2804 * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2805 * cases, along with transfer ring cleanup.
2806 *
2807 * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2808 * their own transfer ring, such as offload situations.
2809 */
2810int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2811			    gfp_t gfp_flags)
2812{
2813	struct xhci_command *command;
2814	unsigned long flags;
2815	int ret;
2816
2817	command = xhci_alloc_command(xhci, true, gfp_flags);
2818	if (!command)
2819		return -ENOMEM;
2820
2821	spin_lock_irqsave(&xhci->lock, flags);
2822	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2823				       ep->ep_index, suspend);
2824	if (ret < 0) {
2825		spin_unlock_irqrestore(&xhci->lock, flags);
2826		goto out;
2827	}
2828
2829	xhci_ring_cmd_db(xhci);
2830	spin_unlock_irqrestore(&xhci->lock, flags);
2831
2832	wait_for_completion(command->completion);
2833
2834	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2835	if (command->status == COMP_COMMAND_ABORTED ||
2836	    command->status == COMP_COMMAND_RING_STOPPED) {
2837		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2838		ret = -ETIME;
2839	}
2840out:
2841	xhci_free_command(xhci, command);
2842
2843	return ret;
2844}
2845EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2846
2847/* Issue a configure endpoint command or evaluate context command
2848 * and wait for it to finish.
2849 */
2850static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2851		struct usb_device *udev,
2852		struct xhci_command *command,
2853		bool ctx_change, bool must_succeed)
2854{
2855	int ret;
2856	unsigned long flags;
2857	struct xhci_input_control_ctx *ctrl_ctx;
2858	struct xhci_virt_device *virt_dev;
2859	struct xhci_slot_ctx *slot_ctx;
2860
2861	if (!command)
2862		return -EINVAL;
2863
2864	spin_lock_irqsave(&xhci->lock, flags);
2865
2866	if (xhci->xhc_state & XHCI_STATE_DYING) {
2867		spin_unlock_irqrestore(&xhci->lock, flags);
2868		return -ESHUTDOWN;
2869	}
2870
2871	virt_dev = xhci->devs[udev->slot_id];
2872
2873	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2874	if (!ctrl_ctx) {
2875		spin_unlock_irqrestore(&xhci->lock, flags);
2876		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2877				__func__);
2878		return -ENOMEM;
2879	}
2880
2881	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2882			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2883		spin_unlock_irqrestore(&xhci->lock, flags);
2884		xhci_warn(xhci, "Not enough host resources, "
2885				"active endpoint contexts = %u\n",
2886				xhci->num_active_eps);
2887		return -ENOMEM;
2888	}
2889	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2890	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2891		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2892			xhci_free_host_resources(xhci, ctrl_ctx);
2893		spin_unlock_irqrestore(&xhci->lock, flags);
2894		xhci_warn(xhci, "Not enough bandwidth\n");
2895		return -ENOMEM;
2896	}
2897
2898	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2899
2900	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2901	trace_xhci_configure_endpoint(slot_ctx);
2902
2903	if (!ctx_change)
2904		ret = xhci_queue_configure_endpoint(xhci, command,
2905				command->in_ctx->dma,
2906				udev->slot_id, must_succeed);
2907	else
2908		ret = xhci_queue_evaluate_context(xhci, command,
2909				command->in_ctx->dma,
2910				udev->slot_id, must_succeed);
2911	if (ret < 0) {
2912		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2913			xhci_free_host_resources(xhci, ctrl_ctx);
2914		spin_unlock_irqrestore(&xhci->lock, flags);
2915		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2916				"FIXME allocate a new ring segment");
2917		return -ENOMEM;
2918	}
2919	xhci_ring_cmd_db(xhci);
2920	spin_unlock_irqrestore(&xhci->lock, flags);
2921
2922	/* Wait for the configure endpoint command to complete */
2923	wait_for_completion(command->completion);
2924
2925	if (!ctx_change)
2926		ret = xhci_configure_endpoint_result(xhci, udev,
2927						     &command->status);
2928	else
2929		ret = xhci_evaluate_context_result(xhci, udev,
2930						   &command->status);
2931
2932	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2933		spin_lock_irqsave(&xhci->lock, flags);
2934		/* If the command failed, remove the reserved resources.
2935		 * Otherwise, clean up the estimate to include dropped eps.
2936		 */
2937		if (ret)
2938			xhci_free_host_resources(xhci, ctrl_ctx);
2939		else
2940			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2941		spin_unlock_irqrestore(&xhci->lock, flags);
2942	}
2943	return ret;
2944}
2945
2946static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2947	struct xhci_virt_device *vdev, int i)
2948{
2949	struct xhci_virt_ep *ep = &vdev->eps[i];
2950
2951	if (ep->ep_state & EP_HAS_STREAMS) {
2952		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2953				xhci_get_endpoint_address(i));
2954		xhci_free_stream_info(xhci, ep->stream_info);
2955		ep->stream_info = NULL;
2956		ep->ep_state &= ~EP_HAS_STREAMS;
2957	}
2958}
2959
2960/* Called after one or more calls to xhci_add_endpoint() or
2961 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2962 * to call xhci_reset_bandwidth().
2963 *
2964 * Since we are in the middle of changing either configuration or
2965 * installing a new alt setting, the USB core won't allow URBs to be
2966 * enqueued for any endpoint on the old config or interface.  Nothing
2967 * else should be touching the xhci->devs[slot_id] structure, so we
2968 * don't need to take the xhci->lock for manipulating that.
2969 */
2970int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2971{
2972	int i;
2973	int ret = 0;
2974	struct xhci_hcd *xhci;
2975	struct xhci_virt_device	*virt_dev;
2976	struct xhci_input_control_ctx *ctrl_ctx;
2977	struct xhci_slot_ctx *slot_ctx;
2978	struct xhci_command *command;
2979
2980	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2981	if (ret <= 0)
2982		return ret;
2983	xhci = hcd_to_xhci(hcd);
2984	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2985		(xhci->xhc_state & XHCI_STATE_REMOVING))
2986		return -ENODEV;
2987
2988	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2989	virt_dev = xhci->devs[udev->slot_id];
2990
2991	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2992	if (!command)
2993		return -ENOMEM;
2994
2995	command->in_ctx = virt_dev->in_ctx;
2996
2997	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2998	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2999	if (!ctrl_ctx) {
3000		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3001				__func__);
3002		ret = -ENOMEM;
3003		goto command_cleanup;
3004	}
3005	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3006	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3007	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3008
3009	/* Don't issue the command if there's no endpoints to update. */
3010	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3011	    ctrl_ctx->drop_flags == 0) {
3012		ret = 0;
3013		goto command_cleanup;
3014	}
3015	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3016	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3017	for (i = 31; i >= 1; i--) {
3018		__le32 le32 = cpu_to_le32(BIT(i));
3019
3020		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3021		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3022			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3023			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3024			break;
3025		}
3026	}
 
 
 
3027
3028	ret = xhci_configure_endpoint(xhci, udev, command,
3029			false, false);
3030	if (ret)
3031		/* Callee should call reset_bandwidth() */
3032		goto command_cleanup;
3033
 
 
 
 
3034	/* Free any rings that were dropped, but not changed. */
3035	for (i = 1; i < 31; i++) {
3036		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3037		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3038			xhci_free_endpoint_ring(xhci, virt_dev, i);
3039			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3040		}
3041	}
3042	xhci_zero_in_ctx(xhci, virt_dev);
3043	/*
3044	 * Install any rings for completely new endpoints or changed endpoints,
3045	 * and free any old rings from changed endpoints.
3046	 */
3047	for (i = 1; i < 31; i++) {
3048		if (!virt_dev->eps[i].new_ring)
3049			continue;
3050		/* Only free the old ring if it exists.
3051		 * It may not if this is the first add of an endpoint.
3052		 */
3053		if (virt_dev->eps[i].ring) {
3054			xhci_free_endpoint_ring(xhci, virt_dev, i);
3055		}
3056		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3057		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3058		virt_dev->eps[i].new_ring = NULL;
3059		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3060	}
3061command_cleanup:
3062	kfree(command->completion);
3063	kfree(command);
3064
3065	return ret;
3066}
3067EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3068
3069void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3070{
3071	struct xhci_hcd *xhci;
3072	struct xhci_virt_device	*virt_dev;
3073	int i, ret;
3074
3075	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3076	if (ret <= 0)
3077		return;
3078	xhci = hcd_to_xhci(hcd);
3079
3080	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3081	virt_dev = xhci->devs[udev->slot_id];
3082	/* Free any rings allocated for added endpoints */
3083	for (i = 0; i < 31; i++) {
3084		if (virt_dev->eps[i].new_ring) {
3085			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3086			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3087			virt_dev->eps[i].new_ring = NULL;
3088		}
3089	}
3090	xhci_zero_in_ctx(xhci, virt_dev);
3091}
3092EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3093
3094static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3095		struct xhci_container_ctx *in_ctx,
3096		struct xhci_container_ctx *out_ctx,
3097		struct xhci_input_control_ctx *ctrl_ctx,
3098		u32 add_flags, u32 drop_flags)
3099{
3100	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3101	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3102	xhci_slot_copy(xhci, in_ctx, out_ctx);
3103	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
3104}
3105
3106static void xhci_endpoint_disable(struct usb_hcd *hcd,
3107				  struct usb_host_endpoint *host_ep)
 
3108{
3109	struct xhci_hcd		*xhci;
3110	struct xhci_virt_device	*vdev;
3111	struct xhci_virt_ep	*ep;
3112	struct usb_device	*udev;
3113	unsigned long		flags;
3114	unsigned int		ep_index;
3115
3116	xhci = hcd_to_xhci(hcd);
3117rescan:
3118	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
3119
3120	udev = (struct usb_device *)host_ep->hcpriv;
3121	if (!udev || !udev->slot_id)
3122		goto done;
3123
3124	vdev = xhci->devs[udev->slot_id];
3125	if (!vdev)
3126		goto done;
3127
3128	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3129	ep = &vdev->eps[ep_index];
3130
3131	/* wait for hub_tt_work to finish clearing hub TT */
3132	if (ep->ep_state & EP_CLEARING_TT) {
3133		spin_unlock_irqrestore(&xhci->lock, flags);
3134		schedule_timeout_uninterruptible(1);
3135		goto rescan;
3136	}
 
3137
3138	if (ep->ep_state)
3139		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3140			 ep->ep_state);
3141done:
3142	host_ep->hcpriv = NULL;
3143	spin_unlock_irqrestore(&xhci->lock, flags);
3144}
3145
3146/*
3147 * Called after usb core issues a clear halt control message.
3148 * The host side of the halt should already be cleared by a reset endpoint
3149 * command issued when the STALL event was received.
3150 *
3151 * The reset endpoint command may only be issued to endpoints in the halted
3152 * state. For software that wishes to reset the data toggle or sequence number
3153 * of an endpoint that isn't in the halted state this function will issue a
3154 * configure endpoint command with the Drop and Add bits set for the target
3155 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3156 *
3157 * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3158 * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3159 */
3160
3161static void xhci_endpoint_reset(struct usb_hcd *hcd,
3162		struct usb_host_endpoint *host_ep)
3163{
3164	struct xhci_hcd *xhci;
3165	struct usb_device *udev;
3166	struct xhci_virt_device *vdev;
3167	struct xhci_virt_ep *ep;
3168	struct xhci_input_control_ctx *ctrl_ctx;
3169	struct xhci_command *stop_cmd, *cfg_cmd;
3170	unsigned int ep_index;
3171	unsigned long flags;
3172	u32 ep_flag;
3173	int err;
3174
3175	xhci = hcd_to_xhci(hcd);
3176	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3177
3178	/*
3179	 * Usb core assumes a max packet value for ep0 on FS devices until the
3180	 * real value is read from the descriptor. Core resets Ep0 if values
3181	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3182	 */
3183	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
 
3184
3185		udev = container_of(host_ep, struct usb_device, ep0);
3186		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3187			return;
3188
3189		vdev = xhci->devs[udev->slot_id];
3190		if (!vdev || vdev->udev != udev)
3191			return;
3192
3193		xhci_check_ep0_maxpacket(xhci, vdev);
3194
3195		/* Nothing else should be done here for ep0 during ep reset */
3196		return;
3197	}
3198
3199	if (!host_ep->hcpriv)
3200		return;
3201	udev = (struct usb_device *) host_ep->hcpriv;
3202	vdev = xhci->devs[udev->slot_id];
3203
3204	if (!udev->slot_id || !vdev)
3205		return;
3206
3207	ep = &vdev->eps[ep_index];
3208
3209	/* Bail out if toggle is already being cleared by a endpoint reset */
3210	spin_lock_irqsave(&xhci->lock, flags);
3211	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3212		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3213		spin_unlock_irqrestore(&xhci->lock, flags);
3214		return;
 
 
 
3215	}
3216	spin_unlock_irqrestore(&xhci->lock, flags);
3217	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3218	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3219	    usb_endpoint_xfer_isoc(&host_ep->desc))
3220		return;
3221
3222	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
 
 
 
 
 
 
3223
3224	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3225		return;
 
 
3226
3227	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3228	if (!stop_cmd)
3229		return;
3230
3231	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3232	if (!cfg_cmd)
3233		goto cleanup;
3234
3235	spin_lock_irqsave(&xhci->lock, flags);
3236
3237	/* block queuing new trbs and ringing ep doorbell */
3238	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3239
3240	/*
3241	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3242	 * Driver is required to synchronously cancel all transfer request.
3243	 * Stop the endpoint to force xHC to update the output context
 
 
 
3244	 */
3245
3246	if (!list_empty(&ep->ring->td_list)) {
3247		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3248		spin_unlock_irqrestore(&xhci->lock, flags);
3249		xhci_free_command(xhci, cfg_cmd);
3250		goto cleanup;
3251	}
3252
3253	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3254					ep_index, 0);
3255	if (err < 0) {
3256		spin_unlock_irqrestore(&xhci->lock, flags);
3257		xhci_free_command(xhci, cfg_cmd);
3258		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3259				__func__, err);
3260		goto cleanup;
3261	}
3262
3263	xhci_ring_cmd_db(xhci);
3264	spin_unlock_irqrestore(&xhci->lock, flags);
3265
3266	wait_for_completion(stop_cmd->completion);
3267
3268	spin_lock_irqsave(&xhci->lock, flags);
3269
3270	/* config ep command clears toggle if add and drop ep flags are set */
3271	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3272	if (!ctrl_ctx) {
3273		spin_unlock_irqrestore(&xhci->lock, flags);
3274		xhci_free_command(xhci, cfg_cmd);
3275		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3276				__func__);
3277		goto cleanup;
3278	}
3279
3280	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3281					   ctrl_ctx, ep_flag, ep_flag);
3282	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3283
3284	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3285				      udev->slot_id, false);
3286	if (err < 0) {
3287		spin_unlock_irqrestore(&xhci->lock, flags);
3288		xhci_free_command(xhci, cfg_cmd);
3289		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3290				__func__, err);
3291		goto cleanup;
3292	}
3293
3294	xhci_ring_cmd_db(xhci);
3295	spin_unlock_irqrestore(&xhci->lock, flags);
3296
3297	wait_for_completion(cfg_cmd->completion);
3298
3299	xhci_free_command(xhci, cfg_cmd);
3300cleanup:
3301	xhci_free_command(xhci, stop_cmd);
3302	spin_lock_irqsave(&xhci->lock, flags);
3303	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3304		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3305	spin_unlock_irqrestore(&xhci->lock, flags);
3306}
3307
3308static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3309		struct usb_device *udev, struct usb_host_endpoint *ep,
3310		unsigned int slot_id)
3311{
3312	int ret;
3313	unsigned int ep_index;
3314	unsigned int ep_state;
3315
3316	if (!ep)
3317		return -EINVAL;
3318	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3319	if (ret <= 0)
3320		return ret ? ret : -EINVAL;
3321	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3322		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3323				" descriptor for ep 0x%x does not support streams\n",
3324				ep->desc.bEndpointAddress);
3325		return -EINVAL;
3326	}
3327
3328	ep_index = xhci_get_endpoint_index(&ep->desc);
3329	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3330	if (ep_state & EP_HAS_STREAMS ||
3331			ep_state & EP_GETTING_STREAMS) {
3332		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3333				"already has streams set up.\n",
3334				ep->desc.bEndpointAddress);
3335		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3336				"dynamic stream context array reallocation.\n");
3337		return -EINVAL;
3338	}
3339	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3340		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3341				"endpoint 0x%x; URBs are pending.\n",
3342				ep->desc.bEndpointAddress);
3343		return -EINVAL;
3344	}
3345	return 0;
3346}
3347
3348static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3349		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3350{
3351	unsigned int max_streams;
3352
3353	/* The stream context array size must be a power of two */
3354	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3355	/*
3356	 * Find out how many primary stream array entries the host controller
3357	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3358	 * level page entries), but that's an optional feature for xHCI host
3359	 * controllers. xHCs must support at least 4 stream IDs.
3360	 */
3361	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3362	if (*num_stream_ctxs > max_streams) {
3363		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3364				max_streams);
3365		*num_stream_ctxs = max_streams;
3366		*num_streams = max_streams;
3367	}
3368}
3369
3370/* Returns an error code if one of the endpoint already has streams.
3371 * This does not change any data structures, it only checks and gathers
3372 * information.
3373 */
3374static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3375		struct usb_device *udev,
3376		struct usb_host_endpoint **eps, unsigned int num_eps,
3377		unsigned int *num_streams, u32 *changed_ep_bitmask)
3378{
3379	unsigned int max_streams;
3380	unsigned int endpoint_flag;
3381	int i;
3382	int ret;
3383
3384	for (i = 0; i < num_eps; i++) {
3385		ret = xhci_check_streams_endpoint(xhci, udev,
3386				eps[i], udev->slot_id);
3387		if (ret < 0)
3388			return ret;
3389
3390		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3391		if (max_streams < (*num_streams - 1)) {
3392			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3393					eps[i]->desc.bEndpointAddress,
3394					max_streams);
3395			*num_streams = max_streams+1;
3396		}
3397
3398		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3399		if (*changed_ep_bitmask & endpoint_flag)
3400			return -EINVAL;
3401		*changed_ep_bitmask |= endpoint_flag;
3402	}
3403	return 0;
3404}
3405
3406static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3407		struct usb_device *udev,
3408		struct usb_host_endpoint **eps, unsigned int num_eps)
3409{
3410	u32 changed_ep_bitmask = 0;
3411	unsigned int slot_id;
3412	unsigned int ep_index;
3413	unsigned int ep_state;
3414	int i;
3415
3416	slot_id = udev->slot_id;
3417	if (!xhci->devs[slot_id])
3418		return 0;
3419
3420	for (i = 0; i < num_eps; i++) {
3421		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3422		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3423		/* Are streams already being freed for the endpoint? */
3424		if (ep_state & EP_GETTING_NO_STREAMS) {
3425			xhci_warn(xhci, "WARN Can't disable streams for "
3426					"endpoint 0x%x, "
3427					"streams are being disabled already\n",
3428					eps[i]->desc.bEndpointAddress);
3429			return 0;
3430		}
3431		/* Are there actually any streams to free? */
3432		if (!(ep_state & EP_HAS_STREAMS) &&
3433				!(ep_state & EP_GETTING_STREAMS)) {
3434			xhci_warn(xhci, "WARN Can't disable streams for "
3435					"endpoint 0x%x, "
3436					"streams are already disabled!\n",
3437					eps[i]->desc.bEndpointAddress);
3438			xhci_warn(xhci, "WARN xhci_free_streams() called "
3439					"with non-streams endpoint\n");
3440			return 0;
3441		}
3442		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3443	}
3444	return changed_ep_bitmask;
3445}
3446
3447/*
3448 * The USB device drivers use this function (through the HCD interface in USB
3449 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3450 * coordinate mass storage command queueing across multiple endpoints (basically
3451 * a stream ID == a task ID).
3452 *
3453 * Setting up streams involves allocating the same size stream context array
3454 * for each endpoint and issuing a configure endpoint command for all endpoints.
3455 *
3456 * Don't allow the call to succeed if one endpoint only supports one stream
3457 * (which means it doesn't support streams at all).
3458 *
3459 * Drivers may get less stream IDs than they asked for, if the host controller
3460 * hardware or endpoints claim they can't support the number of requested
3461 * stream IDs.
3462 */
3463static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3464		struct usb_host_endpoint **eps, unsigned int num_eps,
3465		unsigned int num_streams, gfp_t mem_flags)
3466{
3467	int i, ret;
3468	struct xhci_hcd *xhci;
3469	struct xhci_virt_device *vdev;
3470	struct xhci_command *config_cmd;
3471	struct xhci_input_control_ctx *ctrl_ctx;
3472	unsigned int ep_index;
3473	unsigned int num_stream_ctxs;
3474	unsigned int max_packet;
3475	unsigned long flags;
3476	u32 changed_ep_bitmask = 0;
3477
3478	if (!eps)
3479		return -EINVAL;
3480
3481	/* Add one to the number of streams requested to account for
3482	 * stream 0 that is reserved for xHCI usage.
3483	 */
3484	num_streams += 1;
3485	xhci = hcd_to_xhci(hcd);
3486	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3487			num_streams);
3488
3489	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3490	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3491			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3492		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3493		return -ENOSYS;
3494	}
3495
3496	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3497	if (!config_cmd)
 
3498		return -ENOMEM;
3499
3500	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3501	if (!ctrl_ctx) {
3502		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3503				__func__);
3504		xhci_free_command(xhci, config_cmd);
3505		return -ENOMEM;
3506	}
3507
3508	/* Check to make sure all endpoints are not already configured for
3509	 * streams.  While we're at it, find the maximum number of streams that
3510	 * all the endpoints will support and check for duplicate endpoints.
3511	 */
3512	spin_lock_irqsave(&xhci->lock, flags);
3513	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3514			num_eps, &num_streams, &changed_ep_bitmask);
3515	if (ret < 0) {
3516		xhci_free_command(xhci, config_cmd);
3517		spin_unlock_irqrestore(&xhci->lock, flags);
3518		return ret;
3519	}
3520	if (num_streams <= 1) {
3521		xhci_warn(xhci, "WARN: endpoints can't handle "
3522				"more than one stream.\n");
3523		xhci_free_command(xhci, config_cmd);
3524		spin_unlock_irqrestore(&xhci->lock, flags);
3525		return -EINVAL;
3526	}
3527	vdev = xhci->devs[udev->slot_id];
3528	/* Mark each endpoint as being in transition, so
3529	 * xhci_urb_enqueue() will reject all URBs.
3530	 */
3531	for (i = 0; i < num_eps; i++) {
3532		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3533		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3534	}
3535	spin_unlock_irqrestore(&xhci->lock, flags);
3536
3537	/* Setup internal data structures and allocate HW data structures for
3538	 * streams (but don't install the HW structures in the input context
3539	 * until we're sure all memory allocation succeeded).
3540	 */
3541	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3542	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3543			num_stream_ctxs, num_streams);
3544
3545	for (i = 0; i < num_eps; i++) {
3546		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3547		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3548		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3549				num_stream_ctxs,
3550				num_streams,
3551				max_packet, mem_flags);
3552		if (!vdev->eps[ep_index].stream_info)
3553			goto cleanup;
3554		/* Set maxPstreams in endpoint context and update deq ptr to
3555		 * point to stream context array. FIXME
3556		 */
3557	}
3558
3559	/* Set up the input context for a configure endpoint command. */
3560	for (i = 0; i < num_eps; i++) {
3561		struct xhci_ep_ctx *ep_ctx;
3562
3563		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3564		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3565
3566		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3567				vdev->out_ctx, ep_index);
3568		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3569				vdev->eps[ep_index].stream_info);
3570	}
3571	/* Tell the HW to drop its old copy of the endpoint context info
3572	 * and add the updated copy from the input context.
3573	 */
3574	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3575			vdev->out_ctx, ctrl_ctx,
3576			changed_ep_bitmask, changed_ep_bitmask);
3577
3578	/* Issue and wait for the configure endpoint command */
3579	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3580			false, false);
3581
3582	/* xHC rejected the configure endpoint command for some reason, so we
3583	 * leave the old ring intact and free our internal streams data
3584	 * structure.
3585	 */
3586	if (ret < 0)
3587		goto cleanup;
3588
3589	spin_lock_irqsave(&xhci->lock, flags);
3590	for (i = 0; i < num_eps; i++) {
3591		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3592		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3593		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3594			 udev->slot_id, ep_index);
3595		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3596	}
3597	xhci_free_command(xhci, config_cmd);
3598	spin_unlock_irqrestore(&xhci->lock, flags);
3599
3600	for (i = 0; i < num_eps; i++) {
3601		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3602		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3603	}
3604	/* Subtract 1 for stream 0, which drivers can't use */
3605	return num_streams - 1;
3606
3607cleanup:
3608	/* If it didn't work, free the streams! */
3609	for (i = 0; i < num_eps; i++) {
3610		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3611		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3612		vdev->eps[ep_index].stream_info = NULL;
3613		/* FIXME Unset maxPstreams in endpoint context and
3614		 * update deq ptr to point to normal string ring.
3615		 */
3616		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3617		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3618		xhci_endpoint_zero(xhci, vdev, eps[i]);
3619	}
3620	xhci_free_command(xhci, config_cmd);
3621	return -ENOMEM;
3622}
3623
3624/* Transition the endpoint from using streams to being a "normal" endpoint
3625 * without streams.
3626 *
3627 * Modify the endpoint context state, submit a configure endpoint command,
3628 * and free all endpoint rings for streams if that completes successfully.
3629 */
3630static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3631		struct usb_host_endpoint **eps, unsigned int num_eps,
3632		gfp_t mem_flags)
3633{
3634	int i, ret;
3635	struct xhci_hcd *xhci;
3636	struct xhci_virt_device *vdev;
3637	struct xhci_command *command;
3638	struct xhci_input_control_ctx *ctrl_ctx;
3639	unsigned int ep_index;
3640	unsigned long flags;
3641	u32 changed_ep_bitmask;
3642
3643	xhci = hcd_to_xhci(hcd);
3644	vdev = xhci->devs[udev->slot_id];
3645
3646	/* Set up a configure endpoint command to remove the streams rings */
3647	spin_lock_irqsave(&xhci->lock, flags);
3648	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3649			udev, eps, num_eps);
3650	if (changed_ep_bitmask == 0) {
3651		spin_unlock_irqrestore(&xhci->lock, flags);
3652		return -EINVAL;
3653	}
3654
3655	/* Use the xhci_command structure from the first endpoint.  We may have
3656	 * allocated too many, but the driver may call xhci_free_streams() for
3657	 * each endpoint it grouped into one call to xhci_alloc_streams().
3658	 */
3659	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3660	command = vdev->eps[ep_index].stream_info->free_streams_command;
3661	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3662	if (!ctrl_ctx) {
3663		spin_unlock_irqrestore(&xhci->lock, flags);
3664		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3665				__func__);
3666		return -EINVAL;
3667	}
3668
3669	for (i = 0; i < num_eps; i++) {
3670		struct xhci_ep_ctx *ep_ctx;
3671
3672		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3673		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3674		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3675			EP_GETTING_NO_STREAMS;
3676
3677		xhci_endpoint_copy(xhci, command->in_ctx,
3678				vdev->out_ctx, ep_index);
3679		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3680				&vdev->eps[ep_index]);
3681	}
3682	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3683			vdev->out_ctx, ctrl_ctx,
3684			changed_ep_bitmask, changed_ep_bitmask);
3685	spin_unlock_irqrestore(&xhci->lock, flags);
3686
3687	/* Issue and wait for the configure endpoint command,
3688	 * which must succeed.
3689	 */
3690	ret = xhci_configure_endpoint(xhci, udev, command,
3691			false, true);
3692
3693	/* xHC rejected the configure endpoint command for some reason, so we
3694	 * leave the streams rings intact.
3695	 */
3696	if (ret < 0)
3697		return ret;
3698
3699	spin_lock_irqsave(&xhci->lock, flags);
3700	for (i = 0; i < num_eps; i++) {
3701		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3702		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3703		vdev->eps[ep_index].stream_info = NULL;
3704		/* FIXME Unset maxPstreams in endpoint context and
3705		 * update deq ptr to point to normal string ring.
3706		 */
3707		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3708		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3709	}
3710	spin_unlock_irqrestore(&xhci->lock, flags);
3711
3712	return 0;
3713}
3714
3715/*
3716 * Deletes endpoint resources for endpoints that were active before a Reset
3717 * Device command, or a Disable Slot command.  The Reset Device command leaves
3718 * the control endpoint intact, whereas the Disable Slot command deletes it.
3719 *
3720 * Must be called with xhci->lock held.
3721 */
3722void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3723	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3724{
3725	int i;
3726	unsigned int num_dropped_eps = 0;
3727	unsigned int drop_flags = 0;
3728
3729	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3730		if (virt_dev->eps[i].ring) {
3731			drop_flags |= 1 << i;
3732			num_dropped_eps++;
3733		}
3734	}
3735	xhci->num_active_eps -= num_dropped_eps;
3736	if (num_dropped_eps)
3737		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3738				"Dropped %u ep ctxs, flags = 0x%x, "
3739				"%u now active.",
3740				num_dropped_eps, drop_flags,
3741				xhci->num_active_eps);
3742}
3743
3744static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3745
3746/*
3747 * This submits a Reset Device Command, which will set the device state to 0,
3748 * set the device address to 0, and disable all the endpoints except the default
3749 * control endpoint.  The USB core should come back and call
3750 * xhci_address_device(), and then re-set up the configuration.  If this is
3751 * called because of a usb_reset_and_verify_device(), then the old alternate
3752 * settings will be re-installed through the normal bandwidth allocation
3753 * functions.
3754 *
3755 * Wait for the Reset Device command to finish.  Remove all structures
3756 * associated with the endpoints that were disabled.  Clear the input device
3757 * structure? Reset the control endpoint 0 max packet size?
3758 *
3759 * If the virt_dev to be reset does not exist or does not match the udev,
3760 * it means the device is lost, possibly due to the xHC restore error and
3761 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3762 * re-allocate the device.
3763 */
3764static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3765		struct usb_device *udev)
3766{
3767	int ret, i;
3768	unsigned long flags;
3769	struct xhci_hcd *xhci;
3770	unsigned int slot_id;
3771	struct xhci_virt_device *virt_dev;
3772	struct xhci_command *reset_device_cmd;
 
3773	struct xhci_slot_ctx *slot_ctx;
3774	int old_active_eps = 0;
3775
3776	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3777	if (ret <= 0)
3778		return ret;
3779	xhci = hcd_to_xhci(hcd);
3780	slot_id = udev->slot_id;
3781	virt_dev = xhci->devs[slot_id];
3782	if (!virt_dev) {
3783		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3784				"not exist. Re-allocate the device\n", slot_id);
3785		ret = xhci_alloc_dev(hcd, udev);
3786		if (ret == 1)
3787			return 0;
3788		else
3789			return -EINVAL;
3790	}
3791
3792	if (virt_dev->tt_info)
3793		old_active_eps = virt_dev->tt_info->active_eps;
3794
3795	if (virt_dev->udev != udev) {
3796		/* If the virt_dev and the udev does not match, this virt_dev
3797		 * may belong to another udev.
3798		 * Re-allocate the device.
3799		 */
3800		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3801				"not match the udev. Re-allocate the device\n",
3802				slot_id);
3803		ret = xhci_alloc_dev(hcd, udev);
3804		if (ret == 1)
3805			return 0;
3806		else
3807			return -EINVAL;
3808	}
3809
3810	/* If device is not setup, there is no point in resetting it */
3811	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3812	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3813						SLOT_STATE_DISABLED)
3814		return 0;
3815
3816	if (xhci->quirks & XHCI_ETRON_HOST) {
3817		/*
3818		 * Obtaining a new device slot to inform the xHCI host that
3819		 * the USB device has been reset.
3820		 */
3821		ret = xhci_disable_slot(xhci, udev->slot_id);
3822		xhci_free_virt_device(xhci, udev->slot_id);
3823		if (!ret) {
3824			ret = xhci_alloc_dev(hcd, udev);
3825			if (ret == 1)
3826				ret = 0;
3827			else
3828				ret = -EINVAL;
3829		}
3830		return ret;
3831	}
3832
3833	trace_xhci_discover_or_reset_device(slot_ctx);
3834
3835	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3836	/* Allocate the command structure that holds the struct completion.
3837	 * Assume we're in process context, since the normal device reset
3838	 * process has to wait for the device anyway.  Storage devices are
3839	 * reset as part of error handling, so use GFP_NOIO instead of
3840	 * GFP_KERNEL.
3841	 */
3842	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3843	if (!reset_device_cmd) {
3844		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3845		return -ENOMEM;
3846	}
3847
3848	/* Attempt to submit the Reset Device command to the command ring */
3849	spin_lock_irqsave(&xhci->lock, flags);
3850
3851	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3852	if (ret) {
3853		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3854		spin_unlock_irqrestore(&xhci->lock, flags);
3855		goto command_cleanup;
3856	}
3857	xhci_ring_cmd_db(xhci);
3858	spin_unlock_irqrestore(&xhci->lock, flags);
3859
3860	/* Wait for the Reset Device command to finish */
3861	wait_for_completion(reset_device_cmd->completion);
3862
3863	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3864	 * unless we tried to reset a slot ID that wasn't enabled,
3865	 * or the device wasn't in the addressed or configured state.
3866	 */
3867	ret = reset_device_cmd->status;
3868	switch (ret) {
3869	case COMP_COMMAND_ABORTED:
3870	case COMP_COMMAND_RING_STOPPED:
3871		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3872		ret = -ETIME;
3873		goto command_cleanup;
3874	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3875	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3876		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3877				slot_id,
3878				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3879		xhci_dbg(xhci, "Not freeing device rings.\n");
3880		/* Don't treat this as an error.  May change my mind later. */
3881		ret = 0;
3882		goto command_cleanup;
3883	case COMP_SUCCESS:
3884		xhci_dbg(xhci, "Successful reset device command.\n");
3885		break;
3886	default:
3887		if (xhci_is_vendor_info_code(xhci, ret))
3888			break;
3889		xhci_warn(xhci, "Unknown completion code %u for "
3890				"reset device command.\n", ret);
3891		ret = -EINVAL;
3892		goto command_cleanup;
3893	}
3894
3895	/* Free up host controller endpoint resources */
3896	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3897		spin_lock_irqsave(&xhci->lock, flags);
3898		/* Don't delete the default control endpoint resources */
3899		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3900		spin_unlock_irqrestore(&xhci->lock, flags);
3901	}
3902
3903	/* Everything but endpoint 0 is disabled, so free the rings. */
3904	for (i = 1; i < 31; i++) {
 
3905		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3906
3907		if (ep->ep_state & EP_HAS_STREAMS) {
3908			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3909					xhci_get_endpoint_address(i));
3910			xhci_free_stream_info(xhci, ep->stream_info);
3911			ep->stream_info = NULL;
3912			ep->ep_state &= ~EP_HAS_STREAMS;
3913		}
3914
3915		if (ep->ring) {
3916			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3917			xhci_free_endpoint_ring(xhci, virt_dev, i);
3918		}
3919		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3920			xhci_drop_ep_from_interval_table(xhci,
3921					&virt_dev->eps[i].bw_info,
3922					virt_dev->bw_table,
3923					udev,
3924					&virt_dev->eps[i],
3925					virt_dev->tt_info);
3926		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3927	}
3928	/* If necessary, update the number of active TTs on this root port */
3929	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3930	virt_dev->flags = 0;
 
 
3931	ret = 0;
3932
3933command_cleanup:
3934	xhci_free_command(xhci, reset_device_cmd);
3935	return ret;
3936}
3937
3938/*
3939 * At this point, the struct usb_device is about to go away, the device has
3940 * disconnected, and all traffic has been stopped and the endpoints have been
3941 * disabled.  Free any HC data structures associated with that device.
3942 */
3943static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3944{
3945	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3946	struct xhci_virt_device *virt_dev;
3947	struct xhci_slot_ctx *slot_ctx;
3948	unsigned long flags;
 
3949	int i, ret;
 
 
 
 
 
3950
 
3951	/*
3952	 * We called pm_runtime_get_noresume when the device was attached.
3953	 * Decrement the counter here to allow controller to runtime suspend
3954	 * if no devices remain.
3955	 */
3956	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3957		pm_runtime_put_noidle(hcd->self.controller);
 
3958
3959	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3960	/* If the host is halted due to driver unload, we still need to free the
3961	 * device.
3962	 */
3963	if (ret <= 0 && ret != -ENODEV)
 
3964		return;
 
3965
3966	virt_dev = xhci->devs[udev->slot_id];
3967	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3968	trace_xhci_free_dev(slot_ctx);
3969
3970	/* Stop any wayward timer functions (which may grab the lock) */
3971	for (i = 0; i < 31; i++)
3972		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3973	virt_dev->udev = NULL;
3974	xhci_disable_slot(xhci, udev->slot_id);
3975
3976	spin_lock_irqsave(&xhci->lock, flags);
3977	xhci_free_virt_device(xhci, udev->slot_id);
3978	spin_unlock_irqrestore(&xhci->lock, flags);
3979
3980}
3981
3982int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3983{
3984	struct xhci_command *command;
3985	unsigned long flags;
3986	u32 state;
3987	int ret;
3988
3989	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3990	if (!command)
3991		return -ENOMEM;
3992
3993	xhci_debugfs_remove_slot(xhci, slot_id);
3994
3995	spin_lock_irqsave(&xhci->lock, flags);
3996	/* Don't disable the slot if the host controller is dead. */
3997	state = readl(&xhci->op_regs->status);
3998	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3999			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
4000		spin_unlock_irqrestore(&xhci->lock, flags);
4001		kfree(command);
4002		return -ENODEV;
4003	}
4004
4005	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4006				slot_id);
4007	if (ret) {
4008		spin_unlock_irqrestore(&xhci->lock, flags);
4009		kfree(command);
4010		return ret;
4011	}
4012	xhci_ring_cmd_db(xhci);
4013	spin_unlock_irqrestore(&xhci->lock, flags);
4014
4015	wait_for_completion(command->completion);
4016
4017	if (command->status != COMP_SUCCESS)
4018		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4019			  slot_id, command->status);
4020
4021	xhci_free_command(xhci, command);
4022
4023	return 0;
4024}
4025
4026/*
4027 * Checks if we have enough host controller resources for the default control
4028 * endpoint.
4029 *
4030 * Must be called with xhci->lock held.
4031 */
4032static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4033{
4034	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4035		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4036				"Not enough ep ctxs: "
4037				"%u active, need to add 1, limit is %u.",
4038				xhci->num_active_eps, xhci->limit_active_eps);
4039		return -ENOMEM;
4040	}
4041	xhci->num_active_eps += 1;
4042	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4043			"Adding 1 ep ctx, %u now active.",
4044			xhci->num_active_eps);
4045	return 0;
4046}
4047
4048
4049/*
4050 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4051 * timed out, or allocating memory failed.  Returns 1 on success.
4052 */
4053int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4054{
4055	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4056	struct xhci_virt_device *vdev;
4057	struct xhci_slot_ctx *slot_ctx;
4058	unsigned long flags;
4059	int ret, slot_id;
4060	struct xhci_command *command;
4061
4062	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4063	if (!command)
4064		return 0;
4065
 
 
4066	spin_lock_irqsave(&xhci->lock, flags);
 
4067	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4068	if (ret) {
4069		spin_unlock_irqrestore(&xhci->lock, flags);
 
4070		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4071		xhci_free_command(xhci, command);
4072		return 0;
4073	}
4074	xhci_ring_cmd_db(xhci);
4075	spin_unlock_irqrestore(&xhci->lock, flags);
4076
4077	wait_for_completion(command->completion);
4078	slot_id = command->slot_id;
 
4079
4080	if (!slot_id || command->status != COMP_SUCCESS) {
4081		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4082			 xhci_trb_comp_code_string(command->status));
4083		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4084				HCS_MAX_SLOTS(
4085					readl(&xhci->cap_regs->hcs_params1)));
4086		xhci_free_command(xhci, command);
4087		return 0;
4088	}
4089
4090	xhci_free_command(xhci, command);
4091
4092	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4093		spin_lock_irqsave(&xhci->lock, flags);
4094		ret = xhci_reserve_host_control_ep_resources(xhci);
4095		if (ret) {
4096			spin_unlock_irqrestore(&xhci->lock, flags);
4097			xhci_warn(xhci, "Not enough host resources, "
4098					"active endpoint contexts = %u\n",
4099					xhci->num_active_eps);
4100			goto disable_slot;
4101		}
4102		spin_unlock_irqrestore(&xhci->lock, flags);
4103	}
4104	/* Use GFP_NOIO, since this function can be called from
4105	 * xhci_discover_or_reset_device(), which may be called as part of
4106	 * mass storage driver error handling.
4107	 */
4108	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4109		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4110		goto disable_slot;
4111	}
4112	vdev = xhci->devs[slot_id];
4113	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4114	trace_xhci_alloc_dev(slot_ctx);
4115
4116	udev->slot_id = slot_id;
4117
4118	xhci_debugfs_create_slot(xhci, slot_id);
4119
4120	/*
4121	 * If resetting upon resume, we can't put the controller into runtime
4122	 * suspend if there is a device attached.
4123	 */
4124	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4125		pm_runtime_get_noresume(hcd->self.controller);
 
 
4126
 
4127	/* Is this a LS or FS device under a HS hub? */
4128	/* Hub or peripherial? */
4129	return 1;
4130
4131disable_slot:
4132	xhci_disable_slot(xhci, udev->slot_id);
4133	xhci_free_virt_device(xhci, udev->slot_id);
4134
 
 
 
 
 
4135	return 0;
4136}
4137
4138/**
4139 * xhci_setup_device - issues an Address Device command to assign a unique
4140 *			USB bus address.
4141 * @hcd: USB host controller data structure.
4142 * @udev: USB dev structure representing the connected device.
4143 * @setup: Enum specifying setup mode: address only or with context.
4144 * @timeout_ms: Max wait time (ms) for the command operation to complete.
4145 *
4146 * Return: 0 if successful; otherwise, negative error code.
4147 */
4148static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4149			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4150{
4151	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4152	unsigned long flags;
4153	struct xhci_virt_device *virt_dev;
4154	int ret = 0;
4155	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4156	struct xhci_slot_ctx *slot_ctx;
4157	struct xhci_input_control_ctx *ctrl_ctx;
4158	u64 temp_64;
4159	struct xhci_command *command = NULL;
4160
4161	mutex_lock(&xhci->mutex);
4162
4163	if (xhci->xhc_state) {	/* dying, removing or halted */
4164		ret = -ESHUTDOWN;
4165		goto out;
4166	}
4167
4168	if (!udev->slot_id) {
4169		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4170				"Bad Slot ID %d", udev->slot_id);
4171		ret = -EINVAL;
4172		goto out;
4173	}
4174
4175	virt_dev = xhci->devs[udev->slot_id];
4176
4177	if (WARN_ON(!virt_dev)) {
4178		/*
4179		 * In plug/unplug torture test with an NEC controller,
4180		 * a zero-dereference was observed once due to virt_dev = 0.
4181		 * Print useful debug rather than crash if it is observed again!
4182		 */
4183		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4184			udev->slot_id);
4185		ret = -EINVAL;
4186		goto out;
4187	}
4188	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4189	trace_xhci_setup_device_slot(slot_ctx);
4190
4191	if (setup == SETUP_CONTEXT_ONLY) {
 
4192		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4193		    SLOT_STATE_DEFAULT) {
4194			xhci_dbg(xhci, "Slot already in default state\n");
4195			goto out;
4196		}
4197	}
4198
4199	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4200	if (!command) {
4201		ret = -ENOMEM;
4202		goto out;
4203	}
4204
4205	command->in_ctx = virt_dev->in_ctx;
4206	command->timeout_ms = timeout_ms;
4207
4208	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4209	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4210	if (!ctrl_ctx) {
4211		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4212				__func__);
4213		ret = -EINVAL;
4214		goto out;
4215	}
4216	/*
4217	 * If this is the first Set Address since device plug-in or
4218	 * virt_device realloaction after a resume with an xHCI power loss,
4219	 * then set up the slot context.
4220	 */
4221	if (!slot_ctx->dev_info)
4222		xhci_setup_addressable_virt_dev(xhci, udev);
4223	/* Otherwise, update the control endpoint ring enqueue pointer. */
4224	else
4225		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4226	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4227	ctrl_ctx->drop_flags = 0;
4228
 
 
4229	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4230				le32_to_cpu(slot_ctx->dev_info) >> 27);
4231
4232	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4233	spin_lock_irqsave(&xhci->lock, flags);
4234	trace_xhci_setup_device(virt_dev);
4235	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4236					udev->slot_id, setup);
4237	if (ret) {
4238		spin_unlock_irqrestore(&xhci->lock, flags);
4239		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4240				"FIXME: allocate a command ring segment");
4241		goto out;
4242	}
4243	xhci_ring_cmd_db(xhci);
4244	spin_unlock_irqrestore(&xhci->lock, flags);
4245
4246	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4247	wait_for_completion(command->completion);
4248
4249	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4250	 * the SetAddress() "recovery interval" required by USB and aborting the
4251	 * command on a timeout.
4252	 */
4253	switch (command->status) {
4254	case COMP_COMMAND_ABORTED:
4255	case COMP_COMMAND_RING_STOPPED:
4256		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4257		ret = -ETIME;
4258		break;
4259	case COMP_CONTEXT_STATE_ERROR:
4260	case COMP_SLOT_NOT_ENABLED_ERROR:
4261		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4262			 act, udev->slot_id);
4263		ret = -EINVAL;
4264		break;
4265	case COMP_USB_TRANSACTION_ERROR:
4266		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4267
4268		mutex_unlock(&xhci->mutex);
4269		ret = xhci_disable_slot(xhci, udev->slot_id);
4270		xhci_free_virt_device(xhci, udev->slot_id);
4271		if (!ret) {
4272			if (xhci_alloc_dev(hcd, udev) == 1)
4273				xhci_setup_addressable_virt_dev(xhci, udev);
4274		}
4275		kfree(command->completion);
4276		kfree(command);
4277		return -EPROTO;
4278	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4279		dev_warn(&udev->dev,
4280			 "ERROR: Incompatible device for setup %s command\n", act);
4281		ret = -ENODEV;
4282		break;
4283	case COMP_SUCCESS:
4284		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4285			       "Successful setup %s command", act);
4286		break;
4287	default:
4288		xhci_err(xhci,
4289			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4290			 act, command->status);
 
 
4291		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4292		ret = -EINVAL;
4293		break;
4294	}
4295	if (ret)
4296		goto out;
4297	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4298	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4299			"Op regs DCBAA ptr = %#016llx", temp_64);
4300	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4301		"Slot ID %d dcbaa entry @%p = %#016llx",
4302		udev->slot_id,
4303		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4304		(unsigned long long)
4305		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4306	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4307			"Output Context DMA address = %#08llx",
4308			(unsigned long long)virt_dev->out_ctx->dma);
 
 
4309	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4310				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4311	/*
4312	 * USB core uses address 1 for the roothubs, so we add one to the
4313	 * address given back to us by the HC.
4314	 */
 
4315	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4316				le32_to_cpu(slot_ctx->dev_info) >> 27);
4317	/* Zero the input context control for later use */
4318	ctrl_ctx->add_flags = 0;
4319	ctrl_ctx->drop_flags = 0;
4320	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4321	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4322
4323	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4324		       "Internal device address = %d",
4325		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4326out:
4327	mutex_unlock(&xhci->mutex);
4328	if (command) {
4329		kfree(command->completion);
4330		kfree(command);
4331	}
4332	return ret;
4333}
4334
4335static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4336			       unsigned int timeout_ms)
4337{
4338	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4339}
4340
4341static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4342{
4343	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4344				 XHCI_CMD_DEFAULT_TIMEOUT);
4345}
4346
4347/*
4348 * Transfer the port index into real index in the HW port status
4349 * registers. Caculate offset between the port's PORTSC register
4350 * and port status base. Divide the number of per port register
4351 * to get the real index. The raw port number bases 1.
4352 */
4353int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4354{
4355	struct xhci_hub *rhub;
 
 
 
 
 
 
 
 
4356
4357	rhub = xhci_get_rhub(hcd);
4358	return rhub->ports[port1 - 1]->hw_portnum + 1;
4359}
4360
4361/*
4362 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4363 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4364 */
4365static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4366			struct usb_device *udev, u16 max_exit_latency)
4367{
4368	struct xhci_virt_device *virt_dev;
4369	struct xhci_command *command;
4370	struct xhci_input_control_ctx *ctrl_ctx;
4371	struct xhci_slot_ctx *slot_ctx;
4372	unsigned long flags;
4373	int ret;
4374
4375	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4376	if (!command)
4377		return -ENOMEM;
4378
4379	spin_lock_irqsave(&xhci->lock, flags);
4380
4381	virt_dev = xhci->devs[udev->slot_id];
4382
4383	/*
4384	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4385	 * xHC was re-initialized. Exit latency will be set later after
4386	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4387	 */
4388
4389	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4390		spin_unlock_irqrestore(&xhci->lock, flags);
4391		xhci_free_command(xhci, command);
4392		return 0;
4393	}
4394
4395	/* Attempt to issue an Evaluate Context command to change the MEL. */
 
4396	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4397	if (!ctrl_ctx) {
4398		spin_unlock_irqrestore(&xhci->lock, flags);
4399		xhci_free_command(xhci, command);
4400		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4401				__func__);
4402		return -ENOMEM;
4403	}
4404
4405	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4406	spin_unlock_irqrestore(&xhci->lock, flags);
4407
4408	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4409	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4410	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4411	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4412	slot_ctx->dev_state = 0;
4413
4414	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4415			"Set up evaluate context for LPM MEL change.");
 
 
4416
4417	/* Issue and wait for the evaluate context command. */
4418	ret = xhci_configure_endpoint(xhci, udev, command,
4419			true, true);
 
 
4420
4421	if (!ret) {
4422		spin_lock_irqsave(&xhci->lock, flags);
4423		virt_dev->current_mel = max_exit_latency;
4424		spin_unlock_irqrestore(&xhci->lock, flags);
4425	}
4426
4427	xhci_free_command(xhci, command);
4428
4429	return ret;
4430}
4431
4432#ifdef CONFIG_PM
4433
4434/* BESL to HIRD Encoding array for USB2 LPM */
4435static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4436	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4437
4438/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4439static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4440					struct usb_device *udev)
4441{
4442	int u2del, besl, besl_host;
4443	int besl_device = 0;
4444	u32 field;
4445
4446	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4447	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4448
4449	if (field & USB_BESL_SUPPORT) {
4450		for (besl_host = 0; besl_host < 16; besl_host++) {
4451			if (xhci_besl_encoding[besl_host] >= u2del)
4452				break;
4453		}
4454		/* Use baseline BESL value as default */
4455		if (field & USB_BESL_BASELINE_VALID)
4456			besl_device = USB_GET_BESL_BASELINE(field);
4457		else if (field & USB_BESL_DEEP_VALID)
4458			besl_device = USB_GET_BESL_DEEP(field);
4459	} else {
4460		if (u2del <= 50)
4461			besl_host = 0;
4462		else
4463			besl_host = (u2del - 51) / 75 + 1;
4464	}
4465
4466	besl = besl_host + besl_device;
4467	if (besl > 15)
4468		besl = 15;
4469
4470	return besl;
4471}
4472
4473/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4474static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4475{
4476	u32 field;
4477	int l1;
4478	int besld = 0;
4479	int hirdm = 0;
4480
4481	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4482
4483	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4484	l1 = udev->l1_params.timeout / 256;
4485
4486	/* device has preferred BESLD */
4487	if (field & USB_BESL_DEEP_VALID) {
4488		besld = USB_GET_BESL_DEEP(field);
4489		hirdm = 1;
4490	}
4491
4492	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4493}
4494
4495static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4496			struct usb_device *udev, int enable)
4497{
4498	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4499	struct xhci_port **ports;
4500	__le32 __iomem	*pm_addr, *hlpm_addr;
4501	u32		pm_val, hlpm_val, field;
4502	unsigned int	port_num;
4503	unsigned long	flags;
4504	int		hird, exit_latency;
4505	int		ret;
4506
4507	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4508		return -EPERM;
4509
4510	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4511			!udev->lpm_capable)
4512		return -EPERM;
4513
4514	if (!udev->parent || udev->parent->parent ||
4515			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4516		return -EPERM;
4517
4518	if (udev->usb2_hw_lpm_capable != 1)
4519		return -EPERM;
4520
4521	spin_lock_irqsave(&xhci->lock, flags);
4522
4523	ports = xhci->usb2_rhub.ports;
4524	port_num = udev->portnum - 1;
4525	pm_addr = ports[port_num]->addr + PORTPMSC;
4526	pm_val = readl(pm_addr);
4527	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
 
4528
4529	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4530			enable ? "enable" : "disable", port_num + 1);
4531
4532	if (enable) {
4533		/* Host supports BESL timeout instead of HIRD */
4534		if (udev->usb2_hw_lpm_besl_capable) {
4535			/* if device doesn't have a preferred BESL value use a
4536			 * default one which works with mixed HIRD and BESL
4537			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4538			 */
4539			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4540			if ((field & USB_BESL_SUPPORT) &&
4541			    (field & USB_BESL_BASELINE_VALID))
4542				hird = USB_GET_BESL_BASELINE(field);
4543			else
4544				hird = udev->l1_params.besl;
4545
4546			exit_latency = xhci_besl_encoding[hird];
4547			spin_unlock_irqrestore(&xhci->lock, flags);
4548
 
 
 
 
 
 
 
 
4549			ret = xhci_change_max_exit_latency(xhci, udev,
4550							   exit_latency);
 
 
4551			if (ret < 0)
4552				return ret;
4553			spin_lock_irqsave(&xhci->lock, flags);
4554
4555			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4556			writel(hlpm_val, hlpm_addr);
4557			/* flush write */
4558			readl(hlpm_addr);
4559		} else {
4560			hird = xhci_calculate_hird_besl(xhci, udev);
4561		}
4562
4563		pm_val &= ~PORT_HIRD_MASK;
4564		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4565		writel(pm_val, pm_addr);
4566		pm_val = readl(pm_addr);
4567		pm_val |= PORT_HLE;
4568		writel(pm_val, pm_addr);
4569		/* flush write */
4570		readl(pm_addr);
4571	} else {
4572		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4573		writel(pm_val, pm_addr);
4574		/* flush write */
4575		readl(pm_addr);
4576		if (udev->usb2_hw_lpm_besl_capable) {
4577			spin_unlock_irqrestore(&xhci->lock, flags);
 
4578			xhci_change_max_exit_latency(xhci, udev, 0);
4579			readl_poll_timeout(ports[port_num]->addr, pm_val,
4580					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4581					   100, 10000);
4582			return 0;
4583		}
4584	}
4585
4586	spin_unlock_irqrestore(&xhci->lock, flags);
4587	return 0;
4588}
4589
4590static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
 
 
 
 
 
4591{
4592	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4593	struct xhci_port *port;
4594	u32 capability;
4595
4596	/* Check if USB3 device at root port is tunneled over USB4 */
4597	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4598		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4599
4600		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4601		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4602			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4603		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4604			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4605		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4606			dev_dbg(&udev->dev, "native USB 3.x link\n");
4607		return 0;
4608	}
 
 
 
 
 
 
 
4609
4610	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
 
4611		return 0;
4612
4613	/* we only support lpm for non-hub device connected to root hub yet */
4614	if (!udev->parent || udev->parent->parent ||
4615			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4616		return 0;
4617
4618	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4619	capability = port->port_cap->protocol_caps;
4620
4621	if (capability & XHCI_HLC) {
4622		udev->usb2_hw_lpm_capable = 1;
4623		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4624		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4625		if (capability & XHCI_BLC)
 
4626			udev->usb2_hw_lpm_besl_capable = 1;
4627	}
4628
4629	return 0;
4630}
4631
4632/*---------------------- USB 3.0 Link PM functions ------------------------*/
4633
4634/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4635static unsigned long long xhci_service_interval_to_ns(
4636		struct usb_endpoint_descriptor *desc)
4637{
4638	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4639}
4640
4641static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4642		enum usb3_link_state state)
4643{
4644	unsigned long long sel;
4645	unsigned long long pel;
4646	unsigned int max_sel_pel;
4647	char *state_name;
4648
4649	switch (state) {
4650	case USB3_LPM_U1:
4651		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4652		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4653		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4654		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4655		state_name = "U1";
4656		break;
4657	case USB3_LPM_U2:
4658		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4659		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4660		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4661		state_name = "U2";
4662		break;
4663	default:
4664		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4665				__func__);
4666		return USB3_LPM_DISABLED;
4667	}
4668
4669	if (sel <= max_sel_pel && pel <= max_sel_pel)
4670		return USB3_LPM_DEVICE_INITIATED;
4671
4672	if (sel > max_sel_pel)
4673		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4674				"due to long SEL %llu ms\n",
4675				state_name, sel);
4676	else
4677		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4678				"due to long PEL %llu ms\n",
4679				state_name, pel);
4680	return USB3_LPM_DISABLED;
4681}
4682
4683/* The U1 timeout should be the maximum of the following values:
4684 *  - For control endpoints, U1 system exit latency (SEL) * 3
4685 *  - For bulk endpoints, U1 SEL * 5
4686 *  - For interrupt endpoints:
4687 *    - Notification EPs, U1 SEL * 3
4688 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4689 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4690 */
4691static unsigned long long xhci_calculate_intel_u1_timeout(
4692		struct usb_device *udev,
4693		struct usb_endpoint_descriptor *desc)
4694{
4695	unsigned long long timeout_ns;
4696	int ep_type;
4697	int intr_type;
4698
4699	ep_type = usb_endpoint_type(desc);
4700	switch (ep_type) {
4701	case USB_ENDPOINT_XFER_CONTROL:
4702		timeout_ns = udev->u1_params.sel * 3;
4703		break;
4704	case USB_ENDPOINT_XFER_BULK:
4705		timeout_ns = udev->u1_params.sel * 5;
4706		break;
4707	case USB_ENDPOINT_XFER_INT:
4708		intr_type = usb_endpoint_interrupt_type(desc);
4709		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4710			timeout_ns = udev->u1_params.sel * 3;
4711			break;
4712		}
4713		/* Otherwise the calculation is the same as isoc eps */
4714		fallthrough;
4715	case USB_ENDPOINT_XFER_ISOC:
4716		timeout_ns = xhci_service_interval_to_ns(desc);
4717		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4718		if (timeout_ns < udev->u1_params.sel * 2)
4719			timeout_ns = udev->u1_params.sel * 2;
4720		break;
4721	default:
4722		return 0;
4723	}
4724
4725	return timeout_ns;
4726}
4727
4728/* Returns the hub-encoded U1 timeout value. */
4729static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4730		struct usb_device *udev,
4731		struct usb_endpoint_descriptor *desc)
4732{
4733	unsigned long long timeout_ns;
4734
4735	/* Prevent U1 if service interval is shorter than U1 exit latency */
4736	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4737		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4738			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4739			return USB3_LPM_DISABLED;
4740		}
4741	}
4742
4743	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4744		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4745	else
4746		timeout_ns = udev->u1_params.sel;
4747
4748	/* The U1 timeout is encoded in 1us intervals.
4749	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4750	 */
4751	if (timeout_ns == USB3_LPM_DISABLED)
4752		timeout_ns = 1;
4753	else
4754		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4755
4756	/* If the necessary timeout value is bigger than what we can set in the
4757	 * USB 3.0 hub, we have to disable hub-initiated U1.
4758	 */
4759	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4760		return timeout_ns;
4761	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4762			"due to long timeout %llu ms\n", timeout_ns);
4763	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4764}
4765
4766/* The U2 timeout should be the maximum of:
4767 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4768 *  - largest bInterval of any active periodic endpoint (to avoid going
4769 *    into lower power link states between intervals).
4770 *  - the U2 Exit Latency of the device
4771 */
4772static unsigned long long xhci_calculate_intel_u2_timeout(
4773		struct usb_device *udev,
4774		struct usb_endpoint_descriptor *desc)
4775{
4776	unsigned long long timeout_ns;
4777	unsigned long long u2_del_ns;
4778
4779	timeout_ns = 10 * 1000 * 1000;
4780
4781	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4782			(xhci_service_interval_to_ns(desc) > timeout_ns))
4783		timeout_ns = xhci_service_interval_to_ns(desc);
4784
4785	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4786	if (u2_del_ns > timeout_ns)
4787		timeout_ns = u2_del_ns;
4788
4789	return timeout_ns;
4790}
4791
4792/* Returns the hub-encoded U2 timeout value. */
4793static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4794		struct usb_device *udev,
4795		struct usb_endpoint_descriptor *desc)
4796{
4797	unsigned long long timeout_ns;
4798
4799	/* Prevent U2 if service interval is shorter than U2 exit latency */
4800	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4801		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4802			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4803			return USB3_LPM_DISABLED;
4804		}
4805	}
4806
4807	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4808		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4809	else
4810		timeout_ns = udev->u2_params.sel;
4811
4812	/* The U2 timeout is encoded in 256us intervals */
4813	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4814	/* If the necessary timeout value is bigger than what we can set in the
4815	 * USB 3.0 hub, we have to disable hub-initiated U2.
4816	 */
4817	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4818		return timeout_ns;
4819	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4820			"due to long timeout %llu ms\n", timeout_ns);
4821	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4822}
4823
4824static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4825		struct usb_device *udev,
4826		struct usb_endpoint_descriptor *desc,
4827		enum usb3_link_state state,
4828		u16 *timeout)
4829{
4830	if (state == USB3_LPM_U1)
4831		return xhci_calculate_u1_timeout(xhci, udev, desc);
4832	else if (state == USB3_LPM_U2)
4833		return xhci_calculate_u2_timeout(xhci, udev, desc);
4834
4835	return USB3_LPM_DISABLED;
4836}
4837
4838static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4839		struct usb_device *udev,
4840		struct usb_endpoint_descriptor *desc,
4841		enum usb3_link_state state,
4842		u16 *timeout)
4843{
4844	u16 alt_timeout;
4845
4846	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4847		desc, state, timeout);
4848
4849	/* If we found we can't enable hub-initiated LPM, and
4850	 * the U1 or U2 exit latency was too high to allow
4851	 * device-initiated LPM as well, then we will disable LPM
4852	 * for this device, so stop searching any further.
4853	 */
4854	if (alt_timeout == USB3_LPM_DISABLED) {
 
4855		*timeout = alt_timeout;
4856		return -E2BIG;
4857	}
4858	if (alt_timeout > *timeout)
4859		*timeout = alt_timeout;
4860	return 0;
4861}
4862
4863static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4864		struct usb_device *udev,
4865		struct usb_host_interface *alt,
4866		enum usb3_link_state state,
4867		u16 *timeout)
4868{
4869	int j;
4870
4871	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4872		if (xhci_update_timeout_for_endpoint(xhci, udev,
4873					&alt->endpoint[j].desc, state, timeout))
4874			return -E2BIG;
 
4875	}
4876	return 0;
4877}
4878
4879static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4880		struct usb_device *udev,
4881		enum usb3_link_state state)
4882{
4883	struct usb_device *parent = udev->parent;
4884	int tier = 1; /* roothub is tier1 */
 
 
 
4885
4886	while (parent) {
4887		parent = parent->parent;
4888		tier++;
4889	}
4890
4891	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4892		goto fail;
4893	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4894		goto fail;
4895
4896	return 0;
4897fail:
4898	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4899			tier);
4900	return -E2BIG;
4901}
4902
 
 
 
 
 
 
 
 
 
 
4903/* Returns the U1 or U2 timeout that should be enabled.
4904 * If the tier check or timeout setting functions return with a non-zero exit
4905 * code, that means the timeout value has been finalized and we shouldn't look
4906 * at any more endpoints.
4907 */
4908static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4909			struct usb_device *udev, enum usb3_link_state state)
4910{
4911	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4912	struct usb_host_config *config;
4913	char *state_name;
4914	int i;
4915	u16 timeout = USB3_LPM_DISABLED;
4916
4917	if (state == USB3_LPM_U1)
4918		state_name = "U1";
4919	else if (state == USB3_LPM_U2)
4920		state_name = "U2";
4921	else {
4922		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4923				state);
4924		return timeout;
4925	}
4926
 
 
 
4927	/* Gather some information about the currently installed configuration
4928	 * and alternate interface settings.
4929	 */
4930	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4931			state, &timeout))
4932		return timeout;
4933
4934	config = udev->actconfig;
4935	if (!config)
4936		return timeout;
4937
4938	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4939		struct usb_driver *driver;
4940		struct usb_interface *intf = config->interface[i];
4941
4942		if (!intf)
4943			continue;
4944
4945		/* Check if any currently bound drivers want hub-initiated LPM
4946		 * disabled.
4947		 */
4948		if (intf->dev.driver) {
4949			driver = to_usb_driver(intf->dev.driver);
4950			if (driver && driver->disable_hub_initiated_lpm) {
4951				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4952					state_name, driver->name);
4953				timeout = xhci_get_timeout_no_hub_lpm(udev,
4954								      state);
4955				if (timeout == USB3_LPM_DISABLED)
4956					return timeout;
4957			}
4958		}
4959
4960		/* Not sure how this could happen... */
4961		if (!intf->cur_altsetting)
4962			continue;
4963
4964		if (xhci_update_timeout_for_interface(xhci, udev,
4965					intf->cur_altsetting,
4966					state, &timeout))
4967			return timeout;
4968	}
4969	return timeout;
4970}
4971
4972static int calculate_max_exit_latency(struct usb_device *udev,
4973		enum usb3_link_state state_changed,
4974		u16 hub_encoded_timeout)
4975{
4976	unsigned long long u1_mel_us = 0;
4977	unsigned long long u2_mel_us = 0;
4978	unsigned long long mel_us = 0;
4979	bool disabling_u1;
4980	bool disabling_u2;
4981	bool enabling_u1;
4982	bool enabling_u2;
4983
4984	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4985			hub_encoded_timeout == USB3_LPM_DISABLED);
4986	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4987			hub_encoded_timeout == USB3_LPM_DISABLED);
4988
4989	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4990			hub_encoded_timeout != USB3_LPM_DISABLED);
4991	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4992			hub_encoded_timeout != USB3_LPM_DISABLED);
4993
4994	/* If U1 was already enabled and we're not disabling it,
4995	 * or we're going to enable U1, account for the U1 max exit latency.
4996	 */
4997	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4998			enabling_u1)
4999		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
5000	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
5001			enabling_u2)
5002		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5003
5004	mel_us = max(u1_mel_us, u2_mel_us);
5005
 
 
5006	/* xHCI host controller max exit latency field is only 16 bits wide. */
5007	if (mel_us > MAX_EXIT) {
5008		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5009				"is too big.\n", mel_us);
5010		return -E2BIG;
5011	}
5012	return mel_us;
5013}
5014
5015/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5016static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5017			struct usb_device *udev, enum usb3_link_state state)
5018{
5019	struct xhci_hcd	*xhci;
5020	struct xhci_port *port;
5021	u16 hub_encoded_timeout;
5022	int mel;
5023	int ret;
5024
5025	xhci = hcd_to_xhci(hcd);
5026	/* The LPM timeout values are pretty host-controller specific, so don't
5027	 * enable hub-initiated timeouts unless the vendor has provided
5028	 * information about their timeout algorithm.
5029	 */
5030	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5031			!xhci->devs[udev->slot_id])
5032		return USB3_LPM_DISABLED;
5033
5034	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5035		return USB3_LPM_DISABLED;
5036
5037	/* If connected to root port then check port can handle lpm */
5038	if (udev->parent && !udev->parent->parent) {
5039		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5040		if (port->lpm_incapable)
5041			return USB3_LPM_DISABLED;
5042	}
5043
5044	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5045	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5046	if (mel < 0) {
5047		/* Max Exit Latency is too big, disable LPM. */
5048		hub_encoded_timeout = USB3_LPM_DISABLED;
5049		mel = 0;
5050	}
5051
5052	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5053	if (ret)
5054		return ret;
5055	return hub_encoded_timeout;
5056}
5057
5058static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5059			struct usb_device *udev, enum usb3_link_state state)
5060{
5061	struct xhci_hcd	*xhci;
5062	u16 mel;
5063
5064	xhci = hcd_to_xhci(hcd);
5065	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5066			!xhci->devs[udev->slot_id])
5067		return 0;
5068
5069	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5070	return xhci_change_max_exit_latency(xhci, udev, mel);
5071}
5072#else /* CONFIG_PM */
5073
5074static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5075				struct usb_device *udev, int enable)
5076{
5077	return 0;
5078}
5079
5080static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5081{
5082	return 0;
5083}
5084
5085static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5086			struct usb_device *udev, enum usb3_link_state state)
5087{
5088	return USB3_LPM_DISABLED;
5089}
5090
5091static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5092			struct usb_device *udev, enum usb3_link_state state)
5093{
5094	return 0;
5095}
5096#endif	/* CONFIG_PM */
5097
5098/*-------------------------------------------------------------------------*/
5099
5100/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5101 * internal data structures for the device.
5102 */
5103int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5104			struct usb_tt *tt, gfp_t mem_flags)
5105{
5106	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5107	struct xhci_virt_device *vdev;
5108	struct xhci_command *config_cmd;
5109	struct xhci_input_control_ctx *ctrl_ctx;
5110	struct xhci_slot_ctx *slot_ctx;
5111	unsigned long flags;
5112	unsigned think_time;
5113	int ret;
5114
5115	/* Ignore root hubs */
5116	if (!hdev->parent)
5117		return 0;
5118
5119	vdev = xhci->devs[hdev->slot_id];
5120	if (!vdev) {
5121		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5122		return -EINVAL;
5123	}
5124
5125	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5126	if (!config_cmd)
5127		return -ENOMEM;
5128
5129	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5130	if (!ctrl_ctx) {
5131		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5132				__func__);
5133		xhci_free_command(xhci, config_cmd);
5134		return -ENOMEM;
5135	}
5136
5137	spin_lock_irqsave(&xhci->lock, flags);
5138	if (hdev->speed == USB_SPEED_HIGH &&
5139			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5140		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5141		xhci_free_command(xhci, config_cmd);
5142		spin_unlock_irqrestore(&xhci->lock, flags);
5143		return -ENOMEM;
5144	}
5145
5146	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5147	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5148	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5149	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5150	/*
5151	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5152	 * but it may be already set to 1 when setup an xHCI virtual
5153	 * device, so clear it anyway.
5154	 */
5155	if (tt->multi)
5156		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5157	else if (hdev->speed == USB_SPEED_FULL)
5158		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5159
5160	if (xhci->hci_version > 0x95) {
5161		xhci_dbg(xhci, "xHCI version %x needs hub "
5162				"TT think time and number of ports\n",
5163				(unsigned int) xhci->hci_version);
5164		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5165		/* Set TT think time - convert from ns to FS bit times.
5166		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5167		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5168		 *
5169		 * xHCI 1.0: this field shall be 0 if the device is not a
5170		 * High-spped hub.
5171		 */
5172		think_time = tt->think_time;
5173		if (think_time != 0)
5174			think_time = (think_time / 666) - 1;
5175		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5176			slot_ctx->tt_info |=
5177				cpu_to_le32(TT_THINK_TIME(think_time));
5178	} else {
5179		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5180				"TT think time or number of ports\n",
5181				(unsigned int) xhci->hci_version);
5182	}
5183	slot_ctx->dev_state = 0;
5184	spin_unlock_irqrestore(&xhci->lock, flags);
5185
5186	xhci_dbg(xhci, "Set up %s for hub device.\n",
5187			(xhci->hci_version > 0x95) ?
5188			"configure endpoint" : "evaluate context");
 
 
5189
5190	/* Issue and wait for the configure endpoint or
5191	 * evaluate context command.
5192	 */
5193	if (xhci->hci_version > 0x95)
5194		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5195				false, false);
5196	else
5197		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5198				true, false);
5199
 
 
 
5200	xhci_free_command(xhci, config_cmd);
5201	return ret;
5202}
5203EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5204
5205static int xhci_get_frame(struct usb_hcd *hcd)
5206{
5207	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5208	/* EHCI mods by the periodic size.  Why? */
5209	return readl(&xhci->run_regs->microframe_index) >> 3;
5210}
5211
5212static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5213{
5214	xhci->usb2_rhub.hcd = hcd;
5215	hcd->speed = HCD_USB2;
5216	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5217	/*
5218	 * USB 2.0 roothub under xHCI has an integrated TT,
5219	 * (rate matching hub) as opposed to having an OHCI/UHCI
5220	 * companion controller.
5221	 */
5222	hcd->has_tt = 1;
5223}
5224
5225static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5226{
5227	unsigned int minor_rev;
5228
5229	/*
5230	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5231	 * should return 0x31 for sbrn, or that the minor revision
5232	 * is a two digit BCD containig minor and sub-minor numbers.
5233	 * This was later clarified in xHCI 1.2.
5234	 *
5235	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5236	 * minor revision set to 0x1 instead of 0x10.
5237	 */
5238	if (xhci->usb3_rhub.min_rev == 0x1)
5239		minor_rev = 1;
5240	else
5241		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5242
5243	switch (minor_rev) {
5244	case 2:
5245		hcd->speed = HCD_USB32;
5246		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5247		hcd->self.root_hub->rx_lanes = 2;
5248		hcd->self.root_hub->tx_lanes = 2;
5249		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5250		break;
5251	case 1:
5252		hcd->speed = HCD_USB31;
5253		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5254		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5255		break;
5256	}
5257	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5258		  minor_rev, minor_rev ? "Enhanced " : "");
5259
5260	xhci->usb3_rhub.hcd = hcd;
5261}
5262
5263int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5264{
5265	struct xhci_hcd		*xhci;
5266	/*
5267	 * TODO: Check with DWC3 clients for sysdev according to
5268	 * quirks
5269	 */
5270	struct device		*dev = hcd->self.sysdev;
5271	int			retval;
5272
5273	/* Accept arbitrarily long scatter-gather lists */
5274	hcd->self.sg_tablesize = ~0;
5275
5276	/* support to build packet from discontinuous buffers */
5277	hcd->self.no_sg_constraint = 1;
5278
5279	/* XHCI controllers don't stop the ep queue on short packets :| */
5280	hcd->self.no_stop_on_short = 1;
5281
5282	xhci = hcd_to_xhci(hcd);
5283
5284	if (!usb_hcd_is_primary_hcd(hcd)) {
5285		xhci_hcd_init_usb3_data(xhci, hcd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5286		return 0;
5287	}
5288
5289	mutex_init(&xhci->mutex);
5290	xhci->main_hcd = hcd;
5291	xhci->cap_regs = hcd->regs;
5292	xhci->op_regs = hcd->regs +
5293		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5294	xhci->run_regs = hcd->regs +
5295		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5296	/* Cache read-only capability registers */
5297	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5298	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5299	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5300	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
 
5301	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5302	if (xhci->hci_version > 0x100)
5303		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
 
5304
5305	/* xhci-plat or xhci-pci might have set max_interrupters already */
5306	if ((!xhci->max_interrupters) ||
5307	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5308		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5309
5310	xhci->quirks |= quirks;
5311
5312	if (get_quirks)
5313		get_quirks(dev, xhci);
5314
5315	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5316	 * success event after a short transfer. This quirk will ignore such
5317	 * spurious event.
5318	 */
5319	if (xhci->hci_version > 0x96)
5320		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5321
5322	if (xhci->hci_version == 0x95 && link_quirk) {
5323		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5324		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5325	}
5326
5327	/* Make sure the HC is halted. */
5328	retval = xhci_halt(xhci);
5329	if (retval)
5330		return retval;
5331
5332	xhci_zero_64b_regs(xhci);
5333
5334	xhci_dbg(xhci, "Resetting HCD\n");
5335	/* Reset the internal HC memory state and registers. */
5336	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5337	if (retval)
5338		return retval;
5339	xhci_dbg(xhci, "Reset complete\n");
5340
5341	/*
5342	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5343	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5344	 * address memory pointers actually. So, this driver clears the AC64
5345	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5346	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5347	 */
5348	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5349		xhci->hcc_params &= ~BIT(0);
5350
5351	/* Set dma_mask and coherent_dma_mask to 64-bits,
5352	 * if xHC supports 64-bit addressing */
5353	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5354			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5355		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5356		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5357	} else {
5358		/*
5359		 * This is to avoid error in cases where a 32-bit USB
5360		 * controller is used on a 64-bit capable system.
5361		 */
5362		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5363		if (retval)
5364			return retval;
5365		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5366		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5367	}
5368
5369	xhci_dbg(xhci, "Calling HCD init\n");
5370	/* Initialize HCD and host controller data structures. */
5371	retval = xhci_init(hcd);
5372	if (retval)
5373		return retval;
5374	xhci_dbg(xhci, "Called HCD init\n");
5375
5376	if (xhci_hcd_is_usb3(hcd))
5377		xhci_hcd_init_usb3_data(xhci, hcd);
5378	else
5379		xhci_hcd_init_usb2_data(xhci, hcd);
5380
5381	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5382		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5383
5384	return 0;
5385}
5386EXPORT_SYMBOL_GPL(xhci_gen_setup);
5387
5388static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5389		struct usb_host_endpoint *ep)
5390{
5391	struct xhci_hcd *xhci;
5392	struct usb_device *udev;
5393	unsigned int slot_id;
5394	unsigned int ep_index;
5395	unsigned long flags;
5396
5397	xhci = hcd_to_xhci(hcd);
5398
5399	spin_lock_irqsave(&xhci->lock, flags);
5400	udev = (struct usb_device *)ep->hcpriv;
5401	slot_id = udev->slot_id;
5402	ep_index = xhci_get_endpoint_index(&ep->desc);
5403
5404	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5405	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5406	spin_unlock_irqrestore(&xhci->lock, flags);
5407}
5408
5409static const struct hc_driver xhci_hc_driver = {
5410	.description =		"xhci-hcd",
5411	.product_desc =		"xHCI Host Controller",
5412	.hcd_priv_size =	sizeof(struct xhci_hcd),
5413
5414	/*
5415	 * generic hardware linkage
5416	 */
5417	.irq =			xhci_irq,
5418	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5419				HCD_BH,
5420
5421	/*
5422	 * basic lifecycle operations
5423	 */
5424	.reset =		NULL, /* set in xhci_init_driver() */
5425	.start =		xhci_run,
5426	.stop =			xhci_stop,
5427	.shutdown =		xhci_shutdown,
5428
5429	/*
5430	 * managing i/o requests and associated device resources
5431	 */
5432	.map_urb_for_dma =      xhci_map_urb_for_dma,
5433	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5434	.urb_enqueue =		xhci_urb_enqueue,
5435	.urb_dequeue =		xhci_urb_dequeue,
5436	.alloc_dev =		xhci_alloc_dev,
5437	.free_dev =		xhci_free_dev,
5438	.alloc_streams =	xhci_alloc_streams,
5439	.free_streams =		xhci_free_streams,
5440	.add_endpoint =		xhci_add_endpoint,
5441	.drop_endpoint =	xhci_drop_endpoint,
5442	.endpoint_disable =	xhci_endpoint_disable,
5443	.endpoint_reset =	xhci_endpoint_reset,
5444	.check_bandwidth =	xhci_check_bandwidth,
5445	.reset_bandwidth =	xhci_reset_bandwidth,
5446	.address_device =	xhci_address_device,
5447	.enable_device =	xhci_enable_device,
5448	.update_hub_device =	xhci_update_hub_device,
5449	.reset_device =		xhci_discover_or_reset_device,
5450
5451	/*
5452	 * scheduling support
5453	 */
5454	.get_frame_number =	xhci_get_frame,
5455
5456	/*
5457	 * root hub support
5458	 */
5459	.hub_control =		xhci_hub_control,
5460	.hub_status_data =	xhci_hub_status_data,
5461	.bus_suspend =		xhci_bus_suspend,
5462	.bus_resume =		xhci_bus_resume,
5463	.get_resuming_ports =	xhci_get_resuming_ports,
5464
5465	/*
5466	 * call back when device connected and addressed
5467	 */
5468	.update_device =        xhci_update_device,
5469	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5470	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5471	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5472	.find_raw_port_number =	xhci_find_raw_port_number,
5473	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5474};
5475
5476void xhci_init_driver(struct hc_driver *drv,
5477		      const struct xhci_driver_overrides *over)
5478{
5479	BUG_ON(!over);
5480
5481	/* Copy the generic table to drv then apply the overrides */
5482	*drv = xhci_hc_driver;
5483
5484	if (over) {
5485		drv->hcd_priv_size += over->extra_priv_size;
5486		if (over->reset)
5487			drv->reset = over->reset;
5488		if (over->start)
5489			drv->start = over->start;
5490		if (over->add_endpoint)
5491			drv->add_endpoint = over->add_endpoint;
5492		if (over->drop_endpoint)
5493			drv->drop_endpoint = over->drop_endpoint;
5494		if (over->check_bandwidth)
5495			drv->check_bandwidth = over->check_bandwidth;
5496		if (over->reset_bandwidth)
5497			drv->reset_bandwidth = over->reset_bandwidth;
5498		if (over->update_hub_device)
5499			drv->update_hub_device = over->update_hub_device;
5500		if (over->hub_control)
5501			drv->hub_control = over->hub_control;
5502	}
5503}
5504EXPORT_SYMBOL_GPL(xhci_init_driver);
5505
5506MODULE_DESCRIPTION(DRIVER_DESC);
5507MODULE_AUTHOR(DRIVER_AUTHOR);
5508MODULE_LICENSE("GPL");
5509
5510static int __init xhci_hcd_init(void)
5511{
5512	/*
5513	 * Check the compiler generated sizes of structures that must be laid
5514	 * out in specific ways for hardware access.
5515	 */
5516	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5517	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5518	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5519	/* xhci_device_control has eight fields, and also
5520	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5521	 */
5522	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5523	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5524	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5525	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5526	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5527	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5528	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5529
5530	if (usb_disabled())
5531		return -ENODEV;
5532
5533	xhci_debugfs_create_root();
5534	xhci_dbc_init();
5535
5536	return 0;
5537}
5538
5539/*
5540 * If an init function is provided, an exit function must also be provided
5541 * to allow module unload.
5542 */
5543static void __exit xhci_hcd_fini(void)
5544{
5545	xhci_debugfs_remove_root();
5546	xhci_dbc_exit();
5547}
5548
5549module_init(xhci_hcd_init);
5550module_exit(xhci_hcd_fini);