Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * xHCI host controller driver
   3 *
   4 * Copyright (C) 2008 Intel Corp.
   5 *
   6 * Author: Sarah Sharp
   7 * Some code borrowed from the Linux EHCI driver.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  15 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  16 * for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software Foundation,
  20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23#include <linux/pci.h>
 
  24#include <linux/irq.h>
  25#include <linux/log2.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/slab.h>
  29#include <linux/dmi.h>
  30#include <linux/dma-mapping.h>
  31
  32#include "xhci.h"
  33#include "xhci-trace.h"
  34#include "xhci-mtk.h"
 
  35
  36#define DRIVER_AUTHOR "Sarah Sharp"
  37#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  38
  39#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  40
  41/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  42static int link_quirk;
  43module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  44MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  45
  46static unsigned int quirks;
  47module_param(quirks, uint, S_IRUGO);
  48MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  49
  50/* TODO: copied from ehci-hcd.c - can this be refactored? */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51/*
  52 * xhci_handshake - spin reading hc until handshake completes or fails
  53 * @ptr: address of hc register to be read
  54 * @mask: bits to look at in result of read
  55 * @done: value of those bits when handshake succeeds
  56 * @usec: timeout in microseconds
  57 *
  58 * Returns negative errno, or zero on success
  59 *
  60 * Success happens when the "mask" bits have the specified value (hardware
  61 * handshake done).  There are two failure modes:  "usec" have passed (major
  62 * hardware flakeout), or the register reads as all-ones (hardware removed).
  63 */
  64int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  65{
  66	u32	result;
 
  67
  68	do {
  69		result = readl(ptr);
  70		if (result == ~(u32)0)		/* card removed */
  71			return -ENODEV;
  72		result &= mask;
  73		if (result == done)
  74			return 0;
  75		udelay(1);
  76		usec--;
  77	} while (usec > 0);
  78	return -ETIMEDOUT;
  79}
  80
  81/*
  82 * Disable interrupts and begin the xHCI halting process.
  83 */
  84void xhci_quiesce(struct xhci_hcd *xhci)
  85{
  86	u32 halted;
  87	u32 cmd;
  88	u32 mask;
  89
  90	mask = ~(XHCI_IRQS);
  91	halted = readl(&xhci->op_regs->status) & STS_HALT;
  92	if (!halted)
  93		mask &= ~CMD_RUN;
  94
  95	cmd = readl(&xhci->op_regs->command);
  96	cmd &= mask;
  97	writel(cmd, &xhci->op_regs->command);
  98}
  99
 100/*
 101 * Force HC into halt state.
 102 *
 103 * Disable any IRQs and clear the run/stop bit.
 104 * HC will complete any current and actively pipelined transactions, and
 105 * should halt within 16 ms of the run/stop bit being cleared.
 106 * Read HC Halted bit in the status register to see when the HC is finished.
 107 */
 108int xhci_halt(struct xhci_hcd *xhci)
 109{
 110	int ret;
 111	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 112	xhci_quiesce(xhci);
 113
 114	ret = xhci_handshake(&xhci->op_regs->status,
 115			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 116	if (!ret) {
 117		xhci->xhc_state |= XHCI_STATE_HALTED;
 118		xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 119	} else
 120		xhci_warn(xhci, "Host not halted after %u microseconds.\n",
 121				XHCI_MAX_HALT_USEC);
 122	return ret;
 123}
 124
 125/*
 126 * Set the run bit and wait for the host to be running.
 127 */
 128static int xhci_start(struct xhci_hcd *xhci)
 129{
 130	u32 temp;
 131	int ret;
 132
 133	temp = readl(&xhci->op_regs->command);
 134	temp |= (CMD_RUN);
 135	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 136			temp);
 137	writel(temp, &xhci->op_regs->command);
 138
 139	/*
 140	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 141	 * running.
 142	 */
 143	ret = xhci_handshake(&xhci->op_regs->status,
 144			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 145	if (ret == -ETIMEDOUT)
 146		xhci_err(xhci, "Host took too long to start, "
 147				"waited %u microseconds.\n",
 148				XHCI_MAX_HALT_USEC);
 149	if (!ret)
 150		/* clear state flags. Including dying, halted or removing */
 151		xhci->xhc_state = 0;
 152
 153	return ret;
 154}
 155
 156/*
 157 * Reset a halted HC.
 158 *
 159 * This resets pipelines, timers, counters, state machines, etc.
 160 * Transactions will be terminated immediately, and operational registers
 161 * will be set to their defaults.
 162 */
 163int xhci_reset(struct xhci_hcd *xhci)
 164{
 165	u32 command;
 166	u32 state;
 167	int ret, i;
 168
 169	state = readl(&xhci->op_regs->status);
 
 
 
 
 
 
 170	if ((state & STS_HALT) == 0) {
 171		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 172		return 0;
 173	}
 174
 175	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 176	command = readl(&xhci->op_regs->command);
 177	command |= CMD_RESET;
 178	writel(command, &xhci->op_regs->command);
 179
 180	/* Existing Intel xHCI controllers require a delay of 1 mS,
 181	 * after setting the CMD_RESET bit, and before accessing any
 182	 * HC registers. This allows the HC to complete the
 183	 * reset operation and be ready for HC register access.
 184	 * Without this delay, the subsequent HC register access,
 185	 * may result in a system hang very rarely.
 186	 */
 187	if (xhci->quirks & XHCI_INTEL_HOST)
 188		udelay(1000);
 189
 190	ret = xhci_handshake(&xhci->op_regs->command,
 191			CMD_RESET, 0, 10 * 1000 * 1000);
 192	if (ret)
 193		return ret;
 194
 
 
 
 195	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 196			 "Wait for controller to be ready for doorbell rings");
 197	/*
 198	 * xHCI cannot write to any doorbells or operational registers other
 199	 * than status until the "Controller Not Ready" flag is cleared.
 200	 */
 201	ret = xhci_handshake(&xhci->op_regs->status,
 202			STS_CNR, 0, 10 * 1000 * 1000);
 203
 204	for (i = 0; i < 2; ++i) {
 205		xhci->bus_state[i].port_c_suspend = 0;
 206		xhci->bus_state[i].suspended_ports = 0;
 207		xhci->bus_state[i].resuming_ports = 0;
 208	}
 
 209
 210	return ret;
 211}
 212
 213#ifdef CONFIG_PCI
 214static int xhci_free_msi(struct xhci_hcd *xhci)
 215{
 216	int i;
 
 
 
 217
 218	if (!xhci->msix_entries)
 219		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220
 221	for (i = 0; i < xhci->msix_count; i++)
 222		if (xhci->msix_entries[i].vector)
 223			free_irq(xhci->msix_entries[i].vector,
 224					xhci_to_hcd(xhci));
 225	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 226}
 227
 
 228/*
 229 * Set up MSI
 230 */
 231static int xhci_setup_msi(struct xhci_hcd *xhci)
 232{
 233	int ret;
 
 
 
 234	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 235
 236	ret = pci_enable_msi(pdev);
 237	if (ret) {
 238		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 239				"failed to allocate MSI entry");
 240		return ret;
 241	}
 242
 243	ret = request_irq(pdev->irq, xhci_msi_irq,
 244				0, "xhci_hcd", xhci_to_hcd(xhci));
 245	if (ret) {
 246		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 247				"disable MSI interrupt");
 248		pci_disable_msi(pdev);
 249	}
 250
 251	return ret;
 252}
 253
 254/*
 255 * Free IRQs
 256 * free all IRQs request
 257 */
 258static void xhci_free_irq(struct xhci_hcd *xhci)
 259{
 260	struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 261	int ret;
 262
 263	/* return if using legacy interrupt */
 264	if (xhci_to_hcd(xhci)->irq > 0)
 265		return;
 266
 267	ret = xhci_free_msi(xhci);
 268	if (!ret)
 269		return;
 270	if (pdev->irq > 0)
 271		free_irq(pdev->irq, xhci_to_hcd(xhci));
 272
 273	return;
 274}
 275
 276/*
 277 * Set up MSI-X
 278 */
 279static int xhci_setup_msix(struct xhci_hcd *xhci)
 280{
 281	int i, ret = 0;
 282	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 283	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 284
 285	/*
 286	 * calculate number of msi-x vectors supported.
 287	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 288	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 289	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 290	 *   Add additional 1 vector to ensure always available interrupt.
 291	 */
 292	xhci->msix_count = min(num_online_cpus() + 1,
 293				HCS_MAX_INTRS(xhci->hcs_params1));
 294
 295	xhci->msix_entries =
 296		kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
 297				GFP_KERNEL);
 298	if (!xhci->msix_entries) {
 299		xhci_err(xhci, "Failed to allocate MSI-X entries\n");
 300		return -ENOMEM;
 301	}
 302
 303	for (i = 0; i < xhci->msix_count; i++) {
 304		xhci->msix_entries[i].entry = i;
 305		xhci->msix_entries[i].vector = 0;
 306	}
 307
 308	ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
 309	if (ret) {
 310		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 311				"Failed to enable MSI-X");
 312		goto free_entries;
 313	}
 314
 315	for (i = 0; i < xhci->msix_count; i++) {
 316		ret = request_irq(xhci->msix_entries[i].vector,
 317				xhci_msi_irq,
 318				0, "xhci_hcd", xhci_to_hcd(xhci));
 319		if (ret)
 320			goto disable_msix;
 321	}
 322
 323	hcd->msix_enabled = 1;
 324	return ret;
 325
 326disable_msix:
 327	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 328	xhci_free_irq(xhci);
 329	pci_disable_msix(pdev);
 330free_entries:
 331	kfree(xhci->msix_entries);
 332	xhci->msix_entries = NULL;
 333	return ret;
 334}
 335
 336/* Free any IRQs and disable MSI-X */
 337static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 338{
 339	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 340	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 341
 342	if (xhci->quirks & XHCI_PLAT)
 343		return;
 344
 345	xhci_free_irq(xhci);
 
 
 346
 347	if (xhci->msix_entries) {
 348		pci_disable_msix(pdev);
 349		kfree(xhci->msix_entries);
 350		xhci->msix_entries = NULL;
 
 351	} else {
 352		pci_disable_msi(pdev);
 353	}
 354
 
 355	hcd->msix_enabled = 0;
 356	return;
 357}
 358
 359static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 360{
 361	int i;
 
 
 
 
 362
 363	if (xhci->msix_entries) {
 364		for (i = 0; i < xhci->msix_count; i++)
 365			synchronize_irq(xhci->msix_entries[i].vector);
 366	}
 367}
 368
 369static int xhci_try_enable_msi(struct usb_hcd *hcd)
 370{
 371	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 372	struct pci_dev  *pdev;
 373	int ret;
 374
 375	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 376	if (xhci->quirks & XHCI_PLAT)
 377		return 0;
 378
 379	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 380	/*
 381	 * Some Fresco Logic host controllers advertise MSI, but fail to
 382	 * generate interrupts.  Don't even try to enable MSI.
 383	 */
 384	if (xhci->quirks & XHCI_BROKEN_MSI)
 385		goto legacy_irq;
 386
 387	/* unregister the legacy interrupt */
 388	if (hcd->irq)
 389		free_irq(hcd->irq, hcd);
 390	hcd->irq = 0;
 391
 392	ret = xhci_setup_msix(xhci);
 393	if (ret)
 394		/* fall back to msi*/
 395		ret = xhci_setup_msi(xhci);
 396
 397	if (!ret)
 398		/* hcd->irq is 0, we have MSI */
 399		return 0;
 
 400
 401	if (!pdev->irq) {
 402		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 403		return -EINVAL;
 404	}
 405
 406 legacy_irq:
 407	if (!strlen(hcd->irq_descr))
 408		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 409			 hcd->driver->description, hcd->self.busnum);
 410
 411	/* fall back to legacy interrupt*/
 412	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 413			hcd->irq_descr, hcd);
 414	if (ret) {
 415		xhci_err(xhci, "request interrupt %d failed\n",
 416				pdev->irq);
 417		return ret;
 418	}
 419	hcd->irq = pdev->irq;
 420	return 0;
 421}
 422
 423#else
 424
 425static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 426{
 427	return 0;
 428}
 429
 430static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 431{
 432}
 433
 434static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 435{
 436}
 437
 438#endif
 439
 440static void compliance_mode_recovery(unsigned long arg)
 441{
 442	struct xhci_hcd *xhci;
 443	struct usb_hcd *hcd;
 
 444	u32 temp;
 445	int i;
 446
 447	xhci = (struct xhci_hcd *)arg;
 
 448
 449	for (i = 0; i < xhci->num_usb3_ports; i++) {
 450		temp = readl(xhci->usb3_ports[i]);
 451		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 452			/*
 453			 * Compliance Mode Detected. Letting USB Core
 454			 * handle the Warm Reset
 455			 */
 456			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 457					"Compliance mode detected->port %d",
 458					i + 1);
 459			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 460					"Attempting compliance mode recovery");
 461			hcd = xhci->shared_hcd;
 462
 463			if (hcd->state == HC_STATE_SUSPENDED)
 464				usb_hcd_resume_root_hub(hcd);
 465
 466			usb_hcd_poll_rh_status(hcd);
 467		}
 468	}
 469
 470	if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
 471		mod_timer(&xhci->comp_mode_recovery_timer,
 472			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 473}
 474
 475/*
 476 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 477 * that causes ports behind that hardware to enter compliance mode sometimes.
 478 * The quirk creates a timer that polls every 2 seconds the link state of
 479 * each host controller's port and recovers it by issuing a Warm reset
 480 * if Compliance mode is detected, otherwise the port will become "dead" (no
 481 * device connections or disconnections will be detected anymore). Becasue no
 482 * status event is generated when entering compliance mode (per xhci spec),
 483 * this quirk is needed on systems that have the failing hardware installed.
 484 */
 485static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 486{
 487	xhci->port_status_u0 = 0;
 488	setup_timer(&xhci->comp_mode_recovery_timer,
 489		    compliance_mode_recovery, (unsigned long)xhci);
 490	xhci->comp_mode_recovery_timer.expires = jiffies +
 491			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 492
 493	set_timer_slack(&xhci->comp_mode_recovery_timer,
 494			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 495	add_timer(&xhci->comp_mode_recovery_timer);
 496	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497			"Compliance mode recovery timer initialized");
 498}
 499
 500/*
 501 * This function identifies the systems that have installed the SN65LVPE502CP
 502 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 503 * Systems:
 504 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 505 */
 506static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 507{
 508	const char *dmi_product_name, *dmi_sys_vendor;
 509
 510	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 511	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 512	if (!dmi_product_name || !dmi_sys_vendor)
 513		return false;
 514
 515	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 516		return false;
 517
 518	if (strstr(dmi_product_name, "Z420") ||
 519			strstr(dmi_product_name, "Z620") ||
 520			strstr(dmi_product_name, "Z820") ||
 521			strstr(dmi_product_name, "Z1 Workstation"))
 522		return true;
 523
 524	return false;
 525}
 526
 527static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 528{
 529	return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
 530}
 531
 532
 533/*
 534 * Initialize memory for HCD and xHC (one-time init).
 535 *
 536 * Program the PAGESIZE register, initialize the device context array, create
 537 * device contexts (?), set up a command ring segment (or two?), create event
 538 * ring (one for now).
 539 */
 540int xhci_init(struct usb_hcd *hcd)
 541{
 542	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 543	int retval = 0;
 544
 545	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 546	spin_lock_init(&xhci->lock);
 547	if (xhci->hci_version == 0x95 && link_quirk) {
 548		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 549				"QUIRK: Not clearing Link TRB chain bits.");
 550		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 551	} else {
 552		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 553				"xHCI doesn't need link TRB QUIRK");
 554	}
 555	retval = xhci_mem_init(xhci, GFP_KERNEL);
 556	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 557
 558	/* Initializing Compliance Mode Recovery Data If Needed */
 559	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 560		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 561		compliance_mode_recovery_timer_init(xhci);
 562	}
 563
 564	return retval;
 565}
 566
 567/*-------------------------------------------------------------------------*/
 568
 569
 570static int xhci_run_finished(struct xhci_hcd *xhci)
 571{
 572	if (xhci_start(xhci)) {
 573		xhci_halt(xhci);
 574		return -ENODEV;
 575	}
 576	xhci->shared_hcd->state = HC_STATE_RUNNING;
 577	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 578
 579	if (xhci->quirks & XHCI_NEC_HOST)
 580		xhci_ring_cmd_db(xhci);
 581
 582	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 583			"Finished xhci_run for USB3 roothub");
 584	return 0;
 585}
 586
 587/*
 588 * Start the HC after it was halted.
 589 *
 590 * This function is called by the USB core when the HC driver is added.
 591 * Its opposite is xhci_stop().
 592 *
 593 * xhci_init() must be called once before this function can be called.
 594 * Reset the HC, enable device slot contexts, program DCBAAP, and
 595 * set command ring pointer and event ring pointer.
 596 *
 597 * Setup MSI-X vectors and enable interrupts.
 598 */
 599int xhci_run(struct usb_hcd *hcd)
 600{
 601	u32 temp;
 602	u64 temp_64;
 603	int ret;
 604	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 605
 606	/* Start the xHCI host controller running only after the USB 2.0 roothub
 607	 * is setup.
 608	 */
 609
 610	hcd->uses_new_polling = 1;
 611	if (!usb_hcd_is_primary_hcd(hcd))
 612		return xhci_run_finished(xhci);
 613
 614	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 615
 616	ret = xhci_try_enable_msi(hcd);
 617	if (ret)
 618		return ret;
 619
 620	xhci_dbg(xhci, "Command ring memory map follows:\n");
 621	xhci_debug_ring(xhci, xhci->cmd_ring);
 622	xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
 623	xhci_dbg_cmd_ptrs(xhci);
 624
 625	xhci_dbg(xhci, "ERST memory map follows:\n");
 626	xhci_dbg_erst(xhci, &xhci->erst);
 627	xhci_dbg(xhci, "Event ring:\n");
 628	xhci_debug_ring(xhci, xhci->event_ring);
 629	xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
 630	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 631	temp_64 &= ~ERST_PTR_MASK;
 632	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 633			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 634
 635	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 636			"// Set the interrupt modulation register");
 637	temp = readl(&xhci->ir_set->irq_control);
 638	temp &= ~ER_IRQ_INTERVAL_MASK;
 639	/*
 640	 * the increment interval is 8 times as much as that defined
 641	 * in xHCI spec on MTK's controller
 642	 */
 643	temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
 644	writel(temp, &xhci->ir_set->irq_control);
 645
 646	/* Set the HCD state before we enable the irqs */
 647	temp = readl(&xhci->op_regs->command);
 648	temp |= (CMD_EIE);
 649	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 650			"// Enable interrupts, cmd = 0x%x.", temp);
 651	writel(temp, &xhci->op_regs->command);
 652
 653	temp = readl(&xhci->ir_set->irq_pending);
 654	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 655			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 656			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 657	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 658	xhci_print_ir_set(xhci, 0);
 659
 660	if (xhci->quirks & XHCI_NEC_HOST) {
 661		struct xhci_command *command;
 662		command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
 
 663		if (!command)
 664			return -ENOMEM;
 665		xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 
 666				TRB_TYPE(TRB_NEC_GET_FW));
 
 
 667	}
 
 668	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 669			"Finished xhci_run for USB2 roothub");
 
 
 
 
 
 670	return 0;
 671}
 672EXPORT_SYMBOL_GPL(xhci_run);
 673
 674/*
 675 * Stop xHCI driver.
 676 *
 677 * This function is called by the USB core when the HC driver is removed.
 678 * Its opposite is xhci_run().
 679 *
 680 * Disable device contexts, disable IRQs, and quiesce the HC.
 681 * Reset the HC, finish any completed transactions, and cleanup memory.
 682 */
 683void xhci_stop(struct usb_hcd *hcd)
 684{
 685	u32 temp;
 686	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 687
 688	if (xhci->xhc_state & XHCI_STATE_HALTED)
 
 
 
 
 689		return;
 
 
 
 690
 691	mutex_lock(&xhci->mutex);
 692	spin_lock_irq(&xhci->lock);
 693	xhci->xhc_state |= XHCI_STATE_HALTED;
 694	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 695
 696	/* Make sure the xHC is halted for a USB3 roothub
 697	 * (xhci_stop() could be called as part of failed init).
 698	 */
 699	xhci_halt(xhci);
 700	xhci_reset(xhci);
 701	spin_unlock_irq(&xhci->lock);
 702
 703	xhci_cleanup_msix(xhci);
 704
 705	/* Deleting Compliance Mode Recovery Timer */
 706	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 707			(!(xhci_all_ports_seen_u0(xhci)))) {
 708		del_timer_sync(&xhci->comp_mode_recovery_timer);
 709		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 710				"%s: compliance mode recovery timer deleted",
 711				__func__);
 712	}
 713
 714	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 715		usb_amd_dev_put();
 716
 717	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 718			"// Disabling event ring interrupts");
 719	temp = readl(&xhci->op_regs->status);
 720	writel(temp & ~STS_EINT, &xhci->op_regs->status);
 721	temp = readl(&xhci->ir_set->irq_pending);
 722	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 723	xhci_print_ir_set(xhci, 0);
 724
 725	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 726	xhci_mem_cleanup(xhci);
 
 727	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 728			"xhci_stop completed - status = %x",
 729			readl(&xhci->op_regs->status));
 730	mutex_unlock(&xhci->mutex);
 731}
 732
 733/*
 734 * Shutdown HC (not bus-specific)
 735 *
 736 * This is called when the machine is rebooting or halting.  We assume that the
 737 * machine will be powered off, and the HC's internal state will be reset.
 738 * Don't bother to free memory.
 739 *
 740 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 741 */
 742void xhci_shutdown(struct usb_hcd *hcd)
 743{
 744	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 745
 746	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 747		usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
 748
 749	spin_lock_irq(&xhci->lock);
 750	xhci_halt(xhci);
 751	/* Workaround for spurious wakeups at shutdown with HSW */
 752	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 753		xhci_reset(xhci);
 754	spin_unlock_irq(&xhci->lock);
 755
 756	xhci_cleanup_msix(xhci);
 757
 758	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 759			"xhci_shutdown completed - status = %x",
 760			readl(&xhci->op_regs->status));
 761
 762	/* Yet another workaround for spurious wakeups at shutdown with HSW */
 763	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 764		pci_set_power_state(to_pci_dev(hcd->self.controller), PCI_D3hot);
 765}
 
 766
 767#ifdef CONFIG_PM
 768static void xhci_save_registers(struct xhci_hcd *xhci)
 769{
 770	xhci->s3.command = readl(&xhci->op_regs->command);
 771	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 772	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 773	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 774	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 775	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 776	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 777	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 778	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 779}
 780
 781static void xhci_restore_registers(struct xhci_hcd *xhci)
 782{
 783	writel(xhci->s3.command, &xhci->op_regs->command);
 784	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 785	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 786	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 787	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 788	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 789	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 790	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 791	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 792}
 793
 794static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 795{
 796	u64	val_64;
 797
 798	/* step 2: initialize command ring buffer */
 799	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 800	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 801		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 802				      xhci->cmd_ring->dequeue) &
 803		 (u64) ~CMD_RING_RSVD_BITS) |
 804		xhci->cmd_ring->cycle_state;
 805	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 806			"// Setting command ring address to 0x%llx",
 807			(long unsigned long) val_64);
 808	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 809}
 810
 811/*
 812 * The whole command ring must be cleared to zero when we suspend the host.
 813 *
 814 * The host doesn't save the command ring pointer in the suspend well, so we
 815 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 816 * aligned, because of the reserved bits in the command ring dequeue pointer
 817 * register.  Therefore, we can't just set the dequeue pointer back in the
 818 * middle of the ring (TRBs are 16-byte aligned).
 819 */
 820static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 821{
 822	struct xhci_ring *ring;
 823	struct xhci_segment *seg;
 824
 825	ring = xhci->cmd_ring;
 826	seg = ring->deq_seg;
 827	do {
 828		memset(seg->trbs, 0,
 829			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 830		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 831			cpu_to_le32(~TRB_CYCLE);
 832		seg = seg->next;
 833	} while (seg != ring->deq_seg);
 834
 835	/* Reset the software enqueue and dequeue pointers */
 836	ring->deq_seg = ring->first_seg;
 837	ring->dequeue = ring->first_seg->trbs;
 838	ring->enq_seg = ring->deq_seg;
 839	ring->enqueue = ring->dequeue;
 840
 841	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 842	/*
 843	 * Ring is now zeroed, so the HW should look for change of ownership
 844	 * when the cycle bit is set to 1.
 845	 */
 846	ring->cycle_state = 1;
 847
 848	/*
 849	 * Reset the hardware dequeue pointer.
 850	 * Yes, this will need to be re-written after resume, but we're paranoid
 851	 * and want to make sure the hardware doesn't access bogus memory
 852	 * because, say, the BIOS or an SMI started the host without changing
 853	 * the command ring pointers.
 854	 */
 855	xhci_set_cmd_ring_deq(xhci);
 856}
 857
 858static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
 
 
 
 
 
 
 
 
 
 
 
 859{
 860	int port_index;
 861	__le32 __iomem **port_array;
 862	unsigned long flags;
 863	u32 t1, t2;
 
 864
 865	spin_lock_irqsave(&xhci->lock, flags);
 866
 867	/* disble usb3 ports Wake bits*/
 868	port_index = xhci->num_usb3_ports;
 869	port_array = xhci->usb3_ports;
 870	while (port_index--) {
 871		t1 = readl(port_array[port_index]);
 872		t1 = xhci_port_state_to_neutral(t1);
 873		t2 = t1 & ~PORT_WAKE_BITS;
 874		if (t1 != t2)
 875			writel(t2, port_array[port_index]);
 
 
 
 
 
 
 
 
 
 876	}
 
 
 877
 878	/* disble usb2 ports Wake bits*/
 879	port_index = xhci->num_usb2_ports;
 880	port_array = xhci->usb2_ports;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 881	while (port_index--) {
 882		t1 = readl(port_array[port_index]);
 883		t1 = xhci_port_state_to_neutral(t1);
 884		t2 = t1 & ~PORT_WAKE_BITS;
 885		if (t1 != t2)
 886			writel(t2, port_array[port_index]);
 887	}
 888
 889	spin_unlock_irqrestore(&xhci->lock, flags);
 
 
 
 
 
 
 
 890}
 891
 892/*
 893 * Stop HC (not bus-specific)
 894 *
 895 * This is called when the machine transition into S3/S4 mode.
 896 *
 897 */
 898int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 899{
 900	int			rc = 0;
 901	unsigned int		delay = XHCI_MAX_HALT_USEC;
 902	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 903	u32			command;
 
 904
 905	if (!hcd->state)
 906		return 0;
 907
 908	if (hcd->state != HC_STATE_SUSPENDED ||
 909			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 910		return -EINVAL;
 911
 912	/* Clear root port wake on bits if wakeup not allowed. */
 913	if (!do_wakeup)
 914		xhci_disable_port_wake_on_bits(xhci);
 
 
 
 
 
 915
 916	/* Don't poll the roothubs on bus suspend. */
 917	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 918	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 919	del_timer_sync(&hcd->rh_timer);
 920	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
 921	del_timer_sync(&xhci->shared_hcd->rh_timer);
 922
 
 
 
 923	spin_lock_irq(&xhci->lock);
 924	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
 925	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
 926	/* step 1: stop endpoint */
 927	/* skipped assuming that port suspend has done */
 928
 929	/* step 2: clear Run/Stop bit */
 930	command = readl(&xhci->op_regs->command);
 931	command &= ~CMD_RUN;
 932	writel(command, &xhci->op_regs->command);
 933
 934	/* Some chips from Fresco Logic need an extraordinary delay */
 935	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
 936
 937	if (xhci_handshake(&xhci->op_regs->status,
 938		      STS_HALT, STS_HALT, delay)) {
 939		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
 940		spin_unlock_irq(&xhci->lock);
 941		return -ETIMEDOUT;
 942	}
 943	xhci_clear_command_ring(xhci);
 944
 945	/* step 3: save registers */
 946	xhci_save_registers(xhci);
 947
 948	/* step 4: set CSS flag */
 949	command = readl(&xhci->op_regs->command);
 950	command |= CMD_CSS;
 951	writel(command, &xhci->op_regs->command);
 
 952	if (xhci_handshake(&xhci->op_regs->status,
 953				STS_SAVE, 0, 10 * 1000)) {
 954		xhci_warn(xhci, "WARN: xHC save state timeout\n");
 955		spin_unlock_irq(&xhci->lock);
 956		return -ETIMEDOUT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 957	}
 958	spin_unlock_irq(&xhci->lock);
 959
 960	/*
 961	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
 962	 * is about to be suspended.
 963	 */
 964	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 965			(!(xhci_all_ports_seen_u0(xhci)))) {
 966		del_timer_sync(&xhci->comp_mode_recovery_timer);
 967		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 968				"%s: compliance mode recovery timer deleted",
 969				__func__);
 970	}
 971
 972	/* step 5: remove core well power */
 973	/* synchronize irq when using MSI-X */
 974	xhci_msix_sync_irqs(xhci);
 975
 976	return rc;
 977}
 978EXPORT_SYMBOL_GPL(xhci_suspend);
 979
 980/*
 981 * start xHC (not bus-specific)
 982 *
 983 * This is called when the machine transition from S3/S4 mode.
 984 *
 985 */
 986int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
 987{
 988	u32			command, temp = 0, status;
 989	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 990	struct usb_hcd		*secondary_hcd;
 991	int			retval = 0;
 992	bool			comp_timer_running = false;
 
 993
 994	if (!hcd->state)
 995		return 0;
 996
 997	/* Wait a bit if either of the roothubs need to settle from the
 998	 * transition into bus suspend.
 999	 */
1000	if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1001			time_before(jiffies,
1002				xhci->bus_state[1].next_statechange))
1003		msleep(100);
1004
1005	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007
1008	spin_lock_irq(&xhci->lock);
1009	if (xhci->quirks & XHCI_RESET_ON_RESUME)
1010		hibernated = true;
1011
1012	if (!hibernated) {
 
 
 
 
 
 
 
 
 
 
 
 
1013		/* step 1: restore register */
1014		xhci_restore_registers(xhci);
1015		/* step 2: initialize command ring buffer */
1016		xhci_set_cmd_ring_deq(xhci);
1017		/* step 3: restore state and start state*/
1018		/* step 3: set CRS flag */
1019		command = readl(&xhci->op_regs->command);
1020		command |= CMD_CRS;
1021		writel(command, &xhci->op_regs->command);
 
 
 
 
 
1022		if (xhci_handshake(&xhci->op_regs->status,
1023			      STS_RESTORE, 0, 10 * 1000)) {
1024			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1025			spin_unlock_irq(&xhci->lock);
1026			return -ETIMEDOUT;
1027		}
1028		temp = readl(&xhci->op_regs->status);
1029	}
1030
1031	/* If restore operation fails, re-initialize the HC during resume */
1032	if ((temp & STS_SRE) || hibernated) {
1033
1034		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1035				!(xhci_all_ports_seen_u0(xhci))) {
1036			del_timer_sync(&xhci->comp_mode_recovery_timer);
1037			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1038				"Compliance Mode Recovery Timer deleted!");
1039		}
1040
1041		/* Let the USB core know _both_ roothubs lost power. */
1042		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1043		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1044
1045		xhci_dbg(xhci, "Stop HCD\n");
1046		xhci_halt(xhci);
1047		xhci_reset(xhci);
 
1048		spin_unlock_irq(&xhci->lock);
 
 
1049		xhci_cleanup_msix(xhci);
1050
1051		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1052		temp = readl(&xhci->op_regs->status);
1053		writel(temp & ~STS_EINT, &xhci->op_regs->status);
1054		temp = readl(&xhci->ir_set->irq_pending);
1055		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1056		xhci_print_ir_set(xhci, 0);
1057
1058		xhci_dbg(xhci, "cleaning up memory\n");
1059		xhci_mem_cleanup(xhci);
 
1060		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1061			    readl(&xhci->op_regs->status));
1062
1063		/* USB core calls the PCI reinit and start functions twice:
1064		 * first with the primary HCD, and then with the secondary HCD.
1065		 * If we don't do the same, the host will never be started.
1066		 */
1067		if (!usb_hcd_is_primary_hcd(hcd))
1068			secondary_hcd = hcd;
1069		else
1070			secondary_hcd = xhci->shared_hcd;
1071
1072		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1073		retval = xhci_init(hcd->primary_hcd);
1074		if (retval)
1075			return retval;
1076		comp_timer_running = true;
1077
1078		xhci_dbg(xhci, "Start the primary HCD\n");
1079		retval = xhci_run(hcd->primary_hcd);
1080		if (!retval) {
1081			xhci_dbg(xhci, "Start the secondary HCD\n");
1082			retval = xhci_run(secondary_hcd);
1083		}
1084		hcd->state = HC_STATE_SUSPENDED;
1085		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1086		goto done;
1087	}
1088
1089	/* step 4: set Run/Stop bit */
1090	command = readl(&xhci->op_regs->command);
1091	command |= CMD_RUN;
1092	writel(command, &xhci->op_regs->command);
1093	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1094		  0, 250 * 1000);
1095
1096	/* step 5: walk topology and initialize portsc,
1097	 * portpmsc and portli
1098	 */
1099	/* this is done in bus_resume */
1100
1101	/* step 6: restart each of the previously
1102	 * Running endpoints by ringing their doorbells
1103	 */
1104
1105	spin_unlock_irq(&xhci->lock);
1106
 
 
1107 done:
1108	if (retval == 0) {
1109		/* Resume root hubs only when have pending events. */
1110		status = readl(&xhci->op_regs->status);
1111		if (status & STS_EINT) {
 
 
 
 
 
 
 
 
 
1112			usb_hcd_resume_root_hub(xhci->shared_hcd);
1113			usb_hcd_resume_root_hub(hcd);
1114		}
1115	}
1116
1117	/*
1118	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1119	 * be re-initialized Always after a system resume. Ports are subject
1120	 * to suffer the Compliance Mode issue again. It doesn't matter if
1121	 * ports have entered previously to U0 before system's suspension.
1122	 */
1123	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1124		compliance_mode_recovery_timer_init(xhci);
1125
 
 
 
1126	/* Re-enable port polling. */
1127	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1128	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1129	usb_hcd_poll_rh_status(xhci->shared_hcd);
1130	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1131	usb_hcd_poll_rh_status(hcd);
1132
1133	return retval;
1134}
1135EXPORT_SYMBOL_GPL(xhci_resume);
1136#endif	/* CONFIG_PM */
1137
1138/*-------------------------------------------------------------------------*/
1139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1140/**
1141 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1142 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1143 * value to right shift 1 for the bitmask.
1144 *
1145 * Index  = (epnum * 2) + direction - 1,
1146 * where direction = 0 for OUT, 1 for IN.
1147 * For control endpoints, the IN index is used (OUT index is unused), so
1148 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1149 */
1150unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1151{
1152	unsigned int index;
1153	if (usb_endpoint_xfer_control(desc))
1154		index = (unsigned int) (usb_endpoint_num(desc)*2);
1155	else
1156		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1157			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1158	return index;
1159}
 
1160
1161/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1162 * address from the XHCI endpoint index.
1163 */
1164unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1165{
1166	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1167	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1168	return direction | number;
1169}
1170
1171/* Find the flag for this endpoint (for use in the control context).  Use the
1172 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1173 * bit 1, etc.
1174 */
1175unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1176{
1177	return 1 << (xhci_get_endpoint_index(desc) + 1);
1178}
1179
1180/* Find the flag for this endpoint (for use in the control context).  Use the
1181 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1182 * bit 1, etc.
1183 */
1184unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1185{
1186	return 1 << (ep_index + 1);
1187}
1188
1189/* Compute the last valid endpoint context index.  Basically, this is the
1190 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1191 * we find the most significant bit set in the added contexts flags.
1192 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1193 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1194 */
1195unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1196{
1197	return fls(added_ctxs) - 1;
1198}
1199
1200/* Returns 1 if the arguments are OK;
1201 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1202 */
1203static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1204		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1205		const char *func) {
1206	struct xhci_hcd	*xhci;
1207	struct xhci_virt_device	*virt_dev;
1208
1209	if (!hcd || (check_ep && !ep) || !udev) {
1210		pr_debug("xHCI %s called with invalid args\n", func);
1211		return -EINVAL;
1212	}
1213	if (!udev->parent) {
1214		pr_debug("xHCI %s called for root hub\n", func);
1215		return 0;
1216	}
1217
1218	xhci = hcd_to_xhci(hcd);
1219	if (check_virt_dev) {
1220		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1221			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1222					func);
1223			return -EINVAL;
1224		}
1225
1226		virt_dev = xhci->devs[udev->slot_id];
1227		if (virt_dev->udev != udev) {
1228			xhci_dbg(xhci, "xHCI %s called with udev and "
1229					  "virt_dev does not match\n", func);
1230			return -EINVAL;
1231		}
1232	}
1233
1234	if (xhci->xhc_state & XHCI_STATE_HALTED)
1235		return -ENODEV;
1236
1237	return 1;
1238}
1239
1240static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1241		struct usb_device *udev, struct xhci_command *command,
1242		bool ctx_change, bool must_succeed);
1243
1244/*
1245 * Full speed devices may have a max packet size greater than 8 bytes, but the
1246 * USB core doesn't know that until it reads the first 8 bytes of the
1247 * descriptor.  If the usb_device's max packet size changes after that point,
1248 * we need to issue an evaluate context command and wait on it.
1249 */
1250static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1251		unsigned int ep_index, struct urb *urb)
1252{
1253	struct xhci_container_ctx *out_ctx;
1254	struct xhci_input_control_ctx *ctrl_ctx;
1255	struct xhci_ep_ctx *ep_ctx;
1256	struct xhci_command *command;
1257	int max_packet_size;
1258	int hw_max_packet_size;
1259	int ret = 0;
1260
1261	out_ctx = xhci->devs[slot_id]->out_ctx;
1262	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1263	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1264	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1265	if (hw_max_packet_size != max_packet_size) {
1266		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1267				"Max Packet Size for ep 0 changed.");
1268		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1269				"Max packet size in usb_device = %d",
1270				max_packet_size);
1271		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1272				"Max packet size in xHCI HW = %d",
1273				hw_max_packet_size);
1274		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1275				"Issuing evaluate context command.");
1276
1277		/* Set up the input context flags for the command */
1278		/* FIXME: This won't work if a non-default control endpoint
1279		 * changes max packet sizes.
1280		 */
1281
1282		command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
1283		if (!command)
1284			return -ENOMEM;
1285
1286		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1287		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1288		if (!ctrl_ctx) {
1289			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1290					__func__);
1291			ret = -ENOMEM;
1292			goto command_cleanup;
1293		}
1294		/* Set up the modified control endpoint 0 */
1295		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1296				xhci->devs[slot_id]->out_ctx, ep_index);
1297
1298		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
 
1299		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1300		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1301
1302		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1303		ctrl_ctx->drop_flags = 0;
1304
1305		xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1306		xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1307		xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1308		xhci_dbg_ctx(xhci, out_ctx, ep_index);
1309
1310		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1311				true, false);
1312
1313		/* Clean up the input context for later use by bandwidth
1314		 * functions.
1315		 */
1316		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1317command_cleanup:
1318		kfree(command->completion);
1319		kfree(command);
1320	}
1321	return ret;
1322}
1323
1324/*
1325 * non-error returns are a promise to giveback() the urb later
1326 * we drop ownership so next owner (or urb unlink) can get it
1327 */
1328int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1329{
1330	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1331	struct xhci_td *buffer;
1332	unsigned long flags;
1333	int ret = 0;
1334	unsigned int slot_id, ep_index;
 
1335	struct urb_priv	*urb_priv;
1336	int size, i;
1337
1338	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1339					true, true, __func__) <= 0)
1340		return -EINVAL;
1341
1342	slot_id = urb->dev->slot_id;
1343	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
 
1344
1345	if (!HCD_HW_ACCESSIBLE(hcd)) {
1346		if (!in_interrupt())
1347			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1348		ret = -ESHUTDOWN;
1349		goto exit;
 
1350	}
1351
1352	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1353		size = urb->number_of_packets;
1354	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1355	    urb->transfer_buffer_length > 0 &&
1356	    urb->transfer_flags & URB_ZERO_PACKET &&
1357	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1358		size = 2;
1359	else
1360		size = 1;
1361
1362	urb_priv = kzalloc(sizeof(struct urb_priv) +
1363				  size * sizeof(struct xhci_td *), mem_flags);
1364	if (!urb_priv)
1365		return -ENOMEM;
1366
1367	buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1368	if (!buffer) {
1369		kfree(urb_priv);
1370		return -ENOMEM;
1371	}
1372
1373	for (i = 0; i < size; i++) {
1374		urb_priv->td[i] = buffer;
1375		buffer++;
1376	}
1377
1378	urb_priv->length = size;
1379	urb_priv->td_cnt = 0;
1380	urb->hcpriv = urb_priv;
1381
 
 
1382	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1383		/* Check to see if the max packet size for the default control
1384		 * endpoint changed during FS device enumeration
1385		 */
1386		if (urb->dev->speed == USB_SPEED_FULL) {
1387			ret = xhci_check_maxpacket(xhci, slot_id,
1388					ep_index, urb);
1389			if (ret < 0) {
1390				xhci_urb_free_priv(urb_priv);
1391				urb->hcpriv = NULL;
1392				return ret;
1393			}
1394		}
 
1395
1396		/* We have a spinlock and interrupts disabled, so we must pass
1397		 * atomic context to this function, which may allocate memory.
1398		 */
1399		spin_lock_irqsave(&xhci->lock, flags);
1400		if (xhci->xhc_state & XHCI_STATE_DYING)
1401			goto dying;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1402		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1403				slot_id, ep_index);
1404		if (ret)
1405			goto free_priv;
1406		spin_unlock_irqrestore(&xhci->lock, flags);
1407	} else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1408		spin_lock_irqsave(&xhci->lock, flags);
1409		if (xhci->xhc_state & XHCI_STATE_DYING)
1410			goto dying;
1411		if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1412				EP_GETTING_STREAMS) {
1413			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1414					"is transitioning to using streams.\n");
1415			ret = -EINVAL;
1416		} else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1417				EP_GETTING_NO_STREAMS) {
1418			xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1419					"is transitioning to "
1420					"not having streams.\n");
1421			ret = -EINVAL;
1422		} else {
1423			ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1424					slot_id, ep_index);
1425		}
1426		if (ret)
1427			goto free_priv;
1428		spin_unlock_irqrestore(&xhci->lock, flags);
1429	} else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1430		spin_lock_irqsave(&xhci->lock, flags);
1431		if (xhci->xhc_state & XHCI_STATE_DYING)
1432			goto dying;
1433		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1434				slot_id, ep_index);
1435		if (ret)
1436			goto free_priv;
1437		spin_unlock_irqrestore(&xhci->lock, flags);
1438	} else {
1439		spin_lock_irqsave(&xhci->lock, flags);
1440		if (xhci->xhc_state & XHCI_STATE_DYING)
1441			goto dying;
1442		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1443				slot_id, ep_index);
1444		if (ret)
1445			goto free_priv;
1446		spin_unlock_irqrestore(&xhci->lock, flags);
1447	}
1448exit:
1449	return ret;
1450dying:
1451	xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1452			"non-responsive xHCI host.\n",
1453			urb->ep->desc.bEndpointAddress, urb);
1454	ret = -ESHUTDOWN;
1455free_priv:
1456	xhci_urb_free_priv(urb_priv);
1457	urb->hcpriv = NULL;
 
1458	spin_unlock_irqrestore(&xhci->lock, flags);
1459	return ret;
1460}
1461
1462/* Get the right ring for the given URB.
1463 * If the endpoint supports streams, boundary check the URB's stream ID.
1464 * If the endpoint doesn't support streams, return the singular endpoint ring.
1465 */
1466static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
1467		struct urb *urb)
1468{
1469	unsigned int slot_id;
1470	unsigned int ep_index;
1471	unsigned int stream_id;
1472	struct xhci_virt_ep *ep;
1473
1474	slot_id = urb->dev->slot_id;
1475	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1476	stream_id = urb->stream_id;
1477	ep = &xhci->devs[slot_id]->eps[ep_index];
1478	/* Common case: no streams */
1479	if (!(ep->ep_state & EP_HAS_STREAMS))
1480		return ep->ring;
1481
1482	if (stream_id == 0) {
1483		xhci_warn(xhci,
1484				"WARN: Slot ID %u, ep index %u has streams, "
1485				"but URB has no stream ID.\n",
1486				slot_id, ep_index);
1487		return NULL;
1488	}
1489
1490	if (stream_id < ep->stream_info->num_streams)
1491		return ep->stream_info->stream_rings[stream_id];
1492
1493	xhci_warn(xhci,
1494			"WARN: Slot ID %u, ep index %u has "
1495			"stream IDs 1 to %u allocated, "
1496			"but stream ID %u is requested.\n",
1497			slot_id, ep_index,
1498			ep->stream_info->num_streams - 1,
1499			stream_id);
1500	return NULL;
1501}
1502
1503/*
1504 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1505 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1506 * should pick up where it left off in the TD, unless a Set Transfer Ring
1507 * Dequeue Pointer is issued.
1508 *
1509 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1510 * the ring.  Since the ring is a contiguous structure, they can't be physically
1511 * removed.  Instead, there are two options:
1512 *
1513 *  1) If the HC is in the middle of processing the URB to be canceled, we
1514 *     simply move the ring's dequeue pointer past those TRBs using the Set
1515 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1516 *     when drivers timeout on the last submitted URB and attempt to cancel.
1517 *
1518 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1519 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1520 *     HC will need to invalidate the any TRBs it has cached after the stop
1521 *     endpoint command, as noted in the xHCI 0.95 errata.
1522 *
1523 *  3) The TD may have completed by the time the Stop Endpoint Command
1524 *     completes, so software needs to handle that case too.
1525 *
1526 * This function should protect against the TD enqueueing code ringing the
1527 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1528 * It also needs to account for multiple cancellations on happening at the same
1529 * time for the same endpoint.
1530 *
1531 * Note that this function can be called in any context, or so says
1532 * usb_hcd_unlink_urb()
1533 */
1534int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1535{
1536	unsigned long flags;
1537	int ret, i;
1538	u32 temp;
1539	struct xhci_hcd *xhci;
1540	struct urb_priv	*urb_priv;
1541	struct xhci_td *td;
1542	unsigned int ep_index;
1543	struct xhci_ring *ep_ring;
1544	struct xhci_virt_ep *ep;
1545	struct xhci_command *command;
 
1546
1547	xhci = hcd_to_xhci(hcd);
1548	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
1549	/* Make sure the URB hasn't completed or been unlinked already */
1550	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1551	if (ret || !urb->hcpriv)
1552		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1553	temp = readl(&xhci->op_regs->status);
1554	if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1556				"HW died, freeing TD.");
1557		urb_priv = urb->hcpriv;
1558		for (i = urb_priv->td_cnt;
1559		     i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1560		     i++) {
1561			td = urb_priv->td[i];
1562			if (!list_empty(&td->td_list))
1563				list_del_init(&td->td_list);
1564			if (!list_empty(&td->cancelled_td_list))
1565				list_del_init(&td->cancelled_td_list);
1566		}
1567
1568		usb_hcd_unlink_urb_from_ep(hcd, urb);
1569		spin_unlock_irqrestore(&xhci->lock, flags);
1570		usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1571		xhci_urb_free_priv(urb_priv);
1572		return ret;
1573	}
1574	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
1575			(xhci->xhc_state & XHCI_STATE_HALTED)) {
1576		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1577				"Ep 0x%x: URB %p to be canceled on "
1578				"non-responsive xHCI host.",
1579				urb->ep->desc.bEndpointAddress, urb);
1580		/* Let the stop endpoint command watchdog timer (which set this
1581		 * state) finish cleaning up the endpoint TD lists.  We must
1582		 * have caught it in the middle of dropping a lock and giving
1583		 * back an URB.
1584		 */
1585		goto done;
1586	}
1587
1588	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1589	ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1590	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1591	if (!ep_ring) {
1592		ret = -EINVAL;
1593		goto done;
1594	}
1595
1596	urb_priv = urb->hcpriv;
1597	i = urb_priv->td_cnt;
1598	if (i < urb_priv->length)
1599		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1600				"Cancel URB %p, dev %s, ep 0x%x, "
1601				"starting at offset 0x%llx",
1602				urb, urb->dev->devpath,
1603				urb->ep->desc.bEndpointAddress,
1604				(unsigned long long) xhci_trb_virt_to_dma(
1605					urb_priv->td[i]->start_seg,
1606					urb_priv->td[i]->first_trb));
1607
1608	for (; i < urb_priv->length; i++) {
1609		td = urb_priv->td[i];
1610		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
 
 
 
 
 
1611	}
1612
1613	/* Queue a stop endpoint command, but only if this is
1614	 * the first cancellation to be handled.
1615	 */
1616	if (!(ep->ep_state & EP_HALT_PENDING)) {
1617		command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1618		if (!command) {
1619			ret = -ENOMEM;
1620			goto done;
1621		}
1622		ep->ep_state |= EP_HALT_PENDING;
1623		ep->stop_cmds_pending++;
1624		ep->stop_cmd_timer.expires = jiffies +
1625			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1626		add_timer(&ep->stop_cmd_timer);
1627		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1628					 ep_index, 0);
1629		xhci_ring_cmd_db(xhci);
1630	}
1631done:
1632	spin_unlock_irqrestore(&xhci->lock, flags);
1633	return ret;
 
 
 
 
 
 
 
 
1634}
1635
1636/* Drop an endpoint from a new bandwidth configuration for this device.
1637 * Only one call to this function is allowed per endpoint before
1638 * check_bandwidth() or reset_bandwidth() must be called.
1639 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1640 * add the endpoint to the schedule with possibly new parameters denoted by a
1641 * different endpoint descriptor in usb_host_endpoint.
1642 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1643 * not allowed.
1644 *
1645 * The USB core will not allow URBs to be queued to an endpoint that is being
1646 * disabled, so there's no need for mutual exclusion to protect
1647 * the xhci->devs[slot_id] structure.
1648 */
1649int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1650		struct usb_host_endpoint *ep)
1651{
1652	struct xhci_hcd *xhci;
1653	struct xhci_container_ctx *in_ctx, *out_ctx;
1654	struct xhci_input_control_ctx *ctrl_ctx;
1655	unsigned int ep_index;
1656	struct xhci_ep_ctx *ep_ctx;
1657	u32 drop_flag;
1658	u32 new_add_flags, new_drop_flags;
1659	int ret;
1660
1661	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1662	if (ret <= 0)
1663		return ret;
1664	xhci = hcd_to_xhci(hcd);
1665	if (xhci->xhc_state & XHCI_STATE_DYING)
1666		return -ENODEV;
1667
1668	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1669	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1670	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1671		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1672				__func__, drop_flag);
1673		return 0;
1674	}
1675
1676	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1677	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1678	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1679	if (!ctrl_ctx) {
1680		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1681				__func__);
1682		return 0;
1683	}
1684
1685	ep_index = xhci_get_endpoint_index(&ep->desc);
1686	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1687	/* If the HC already knows the endpoint is disabled,
1688	 * or the HCD has noted it is disabled, ignore this request
1689	 */
1690	if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1691	     cpu_to_le32(EP_STATE_DISABLED)) ||
1692	    le32_to_cpu(ctrl_ctx->drop_flags) &
1693	    xhci_get_endpoint_flag(&ep->desc)) {
1694		/* Do not warn when called after a usb_device_reset */
1695		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1696			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1697				  __func__, ep);
1698		return 0;
1699	}
1700
1701	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1702	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1703
1704	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1705	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1706
1707	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1708
1709	if (xhci->quirks & XHCI_MTK_HOST)
1710		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1711
1712	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1713			(unsigned int) ep->desc.bEndpointAddress,
1714			udev->slot_id,
1715			(unsigned int) new_drop_flags,
1716			(unsigned int) new_add_flags);
1717	return 0;
1718}
 
1719
1720/* Add an endpoint to a new possible bandwidth configuration for this device.
1721 * Only one call to this function is allowed per endpoint before
1722 * check_bandwidth() or reset_bandwidth() must be called.
1723 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1724 * add the endpoint to the schedule with possibly new parameters denoted by a
1725 * different endpoint descriptor in usb_host_endpoint.
1726 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1727 * not allowed.
1728 *
1729 * The USB core will not allow URBs to be queued to an endpoint until the
1730 * configuration or alt setting is installed in the device, so there's no need
1731 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1732 */
1733int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1734		struct usb_host_endpoint *ep)
1735{
1736	struct xhci_hcd *xhci;
1737	struct xhci_container_ctx *in_ctx;
1738	unsigned int ep_index;
1739	struct xhci_input_control_ctx *ctrl_ctx;
 
1740	u32 added_ctxs;
1741	u32 new_add_flags, new_drop_flags;
1742	struct xhci_virt_device *virt_dev;
1743	int ret = 0;
1744
1745	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1746	if (ret <= 0) {
1747		/* So we won't queue a reset ep command for a root hub */
1748		ep->hcpriv = NULL;
1749		return ret;
1750	}
1751	xhci = hcd_to_xhci(hcd);
1752	if (xhci->xhc_state & XHCI_STATE_DYING)
1753		return -ENODEV;
1754
1755	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1756	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1757		/* FIXME when we have to issue an evaluate endpoint command to
1758		 * deal with ep0 max packet size changing once we get the
1759		 * descriptors
1760		 */
1761		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1762				__func__, added_ctxs);
1763		return 0;
1764	}
1765
1766	virt_dev = xhci->devs[udev->slot_id];
1767	in_ctx = virt_dev->in_ctx;
1768	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1769	if (!ctrl_ctx) {
1770		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1771				__func__);
1772		return 0;
1773	}
1774
1775	ep_index = xhci_get_endpoint_index(&ep->desc);
1776	/* If this endpoint is already in use, and the upper layers are trying
1777	 * to add it again without dropping it, reject the addition.
1778	 */
1779	if (virt_dev->eps[ep_index].ring &&
1780			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1781		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1782				"without dropping it.\n",
1783				(unsigned int) ep->desc.bEndpointAddress);
1784		return -EINVAL;
1785	}
1786
1787	/* If the HCD has already noted the endpoint is enabled,
1788	 * ignore this request.
1789	 */
1790	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1791		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1792				__func__, ep);
1793		return 0;
1794	}
1795
1796	/*
1797	 * Configuration and alternate setting changes must be done in
1798	 * process context, not interrupt context (or so documenation
1799	 * for usb_set_interface() and usb_set_configuration() claim).
1800	 */
1801	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1802		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1803				__func__, ep->desc.bEndpointAddress);
1804		return -ENOMEM;
1805	}
1806
1807	if (xhci->quirks & XHCI_MTK_HOST) {
1808		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1809		if (ret < 0) {
1810			xhci_free_or_cache_endpoint_ring(xhci,
1811				virt_dev, ep_index);
1812			return ret;
1813		}
1814	}
1815
1816	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1817	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1818
1819	/* If xhci_endpoint_disable() was called for this endpoint, but the
1820	 * xHC hasn't been notified yet through the check_bandwidth() call,
1821	 * this re-adds a new state for the endpoint from the new endpoint
1822	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1823	 * drop flags alone.
1824	 */
1825	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1826
1827	/* Store the usb_device pointer for later use */
1828	ep->hcpriv = udev;
1829
 
 
 
1830	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1831			(unsigned int) ep->desc.bEndpointAddress,
1832			udev->slot_id,
1833			(unsigned int) new_drop_flags,
1834			(unsigned int) new_add_flags);
1835	return 0;
1836}
 
1837
1838static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1839{
1840	struct xhci_input_control_ctx *ctrl_ctx;
1841	struct xhci_ep_ctx *ep_ctx;
1842	struct xhci_slot_ctx *slot_ctx;
1843	int i;
1844
1845	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1846	if (!ctrl_ctx) {
1847		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1848				__func__);
1849		return;
1850	}
1851
1852	/* When a device's add flag and drop flag are zero, any subsequent
1853	 * configure endpoint command will leave that endpoint's state
1854	 * untouched.  Make sure we don't leave any old state in the input
1855	 * endpoint contexts.
1856	 */
1857	ctrl_ctx->drop_flags = 0;
1858	ctrl_ctx->add_flags = 0;
1859	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1860	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1861	/* Endpoint 0 is always valid */
1862	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1863	for (i = 1; i < 31; ++i) {
1864		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1865		ep_ctx->ep_info = 0;
1866		ep_ctx->ep_info2 = 0;
1867		ep_ctx->deq = 0;
1868		ep_ctx->tx_info = 0;
1869	}
1870}
1871
1872static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1873		struct usb_device *udev, u32 *cmd_status)
1874{
1875	int ret;
1876
1877	switch (*cmd_status) {
1878	case COMP_CMD_ABORT:
1879	case COMP_CMD_STOP:
1880		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1881		ret = -ETIME;
1882		break;
1883	case COMP_ENOMEM:
1884		dev_warn(&udev->dev,
1885			 "Not enough host controller resources for new device state.\n");
1886		ret = -ENOMEM;
1887		/* FIXME: can we allocate more resources for the HC? */
1888		break;
1889	case COMP_BW_ERR:
1890	case COMP_2ND_BW_ERR:
1891		dev_warn(&udev->dev,
1892			 "Not enough bandwidth for new device state.\n");
1893		ret = -ENOSPC;
1894		/* FIXME: can we go back to the old state? */
1895		break;
1896	case COMP_TRB_ERR:
1897		/* the HCD set up something wrong */
1898		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1899				"add flag = 1, "
1900				"and endpoint is not disabled.\n");
1901		ret = -EINVAL;
1902		break;
1903	case COMP_DEV_ERR:
1904		dev_warn(&udev->dev,
1905			 "ERROR: Incompatible device for endpoint configure command.\n");
1906		ret = -ENODEV;
1907		break;
1908	case COMP_SUCCESS:
1909		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1910				"Successful Endpoint Configure command");
1911		ret = 0;
1912		break;
1913	default:
1914		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1915				*cmd_status);
1916		ret = -EINVAL;
1917		break;
1918	}
1919	return ret;
1920}
1921
1922static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1923		struct usb_device *udev, u32 *cmd_status)
1924{
1925	int ret;
1926	struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1927
1928	switch (*cmd_status) {
1929	case COMP_CMD_ABORT:
1930	case COMP_CMD_STOP:
1931		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1932		ret = -ETIME;
1933		break;
1934	case COMP_EINVAL:
1935		dev_warn(&udev->dev,
1936			 "WARN: xHCI driver setup invalid evaluate context command.\n");
1937		ret = -EINVAL;
1938		break;
1939	case COMP_EBADSLT:
1940		dev_warn(&udev->dev,
1941			"WARN: slot not enabled for evaluate context command.\n");
1942		ret = -EINVAL;
1943		break;
1944	case COMP_CTX_STATE:
1945		dev_warn(&udev->dev,
1946			"WARN: invalid context state for evaluate context command.\n");
1947		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1948		ret = -EINVAL;
1949		break;
1950	case COMP_DEV_ERR:
1951		dev_warn(&udev->dev,
1952			"ERROR: Incompatible device for evaluate context command.\n");
1953		ret = -ENODEV;
1954		break;
1955	case COMP_MEL_ERR:
1956		/* Max Exit Latency too large error */
1957		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1958		ret = -EINVAL;
1959		break;
1960	case COMP_SUCCESS:
1961		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1962				"Successful evaluate context command");
1963		ret = 0;
1964		break;
1965	default:
1966		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1967			*cmd_status);
1968		ret = -EINVAL;
1969		break;
1970	}
1971	return ret;
1972}
1973
1974static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1975		struct xhci_input_control_ctx *ctrl_ctx)
1976{
1977	u32 valid_add_flags;
1978	u32 valid_drop_flags;
1979
1980	/* Ignore the slot flag (bit 0), and the default control endpoint flag
1981	 * (bit 1).  The default control endpoint is added during the Address
1982	 * Device command and is never removed until the slot is disabled.
1983	 */
1984	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1985	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1986
1987	/* Use hweight32 to count the number of ones in the add flags, or
1988	 * number of endpoints added.  Don't count endpoints that are changed
1989	 * (both added and dropped).
1990	 */
1991	return hweight32(valid_add_flags) -
1992		hweight32(valid_add_flags & valid_drop_flags);
1993}
1994
1995static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
1996		struct xhci_input_control_ctx *ctrl_ctx)
1997{
1998	u32 valid_add_flags;
1999	u32 valid_drop_flags;
2000
2001	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2002	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2003
2004	return hweight32(valid_drop_flags) -
2005		hweight32(valid_add_flags & valid_drop_flags);
2006}
2007
2008/*
2009 * We need to reserve the new number of endpoints before the configure endpoint
2010 * command completes.  We can't subtract the dropped endpoints from the number
2011 * of active endpoints until the command completes because we can oversubscribe
2012 * the host in this case:
2013 *
2014 *  - the first configure endpoint command drops more endpoints than it adds
2015 *  - a second configure endpoint command that adds more endpoints is queued
2016 *  - the first configure endpoint command fails, so the config is unchanged
2017 *  - the second command may succeed, even though there isn't enough resources
2018 *
2019 * Must be called with xhci->lock held.
2020 */
2021static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2022		struct xhci_input_control_ctx *ctrl_ctx)
2023{
2024	u32 added_eps;
2025
2026	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2027	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2028		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2029				"Not enough ep ctxs: "
2030				"%u active, need to add %u, limit is %u.",
2031				xhci->num_active_eps, added_eps,
2032				xhci->limit_active_eps);
2033		return -ENOMEM;
2034	}
2035	xhci->num_active_eps += added_eps;
2036	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2037			"Adding %u ep ctxs, %u now active.", added_eps,
2038			xhci->num_active_eps);
2039	return 0;
2040}
2041
2042/*
2043 * The configure endpoint was failed by the xHC for some other reason, so we
2044 * need to revert the resources that failed configuration would have used.
2045 *
2046 * Must be called with xhci->lock held.
2047 */
2048static void xhci_free_host_resources(struct xhci_hcd *xhci,
2049		struct xhci_input_control_ctx *ctrl_ctx)
2050{
2051	u32 num_failed_eps;
2052
2053	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2054	xhci->num_active_eps -= num_failed_eps;
2055	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2056			"Removing %u failed ep ctxs, %u now active.",
2057			num_failed_eps,
2058			xhci->num_active_eps);
2059}
2060
2061/*
2062 * Now that the command has completed, clean up the active endpoint count by
2063 * subtracting out the endpoints that were dropped (but not changed).
2064 *
2065 * Must be called with xhci->lock held.
2066 */
2067static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2068		struct xhci_input_control_ctx *ctrl_ctx)
2069{
2070	u32 num_dropped_eps;
2071
2072	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2073	xhci->num_active_eps -= num_dropped_eps;
2074	if (num_dropped_eps)
2075		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2076				"Removing %u dropped ep ctxs, %u now active.",
2077				num_dropped_eps,
2078				xhci->num_active_eps);
2079}
2080
2081static unsigned int xhci_get_block_size(struct usb_device *udev)
2082{
2083	switch (udev->speed) {
2084	case USB_SPEED_LOW:
2085	case USB_SPEED_FULL:
2086		return FS_BLOCK;
2087	case USB_SPEED_HIGH:
2088		return HS_BLOCK;
2089	case USB_SPEED_SUPER:
2090	case USB_SPEED_SUPER_PLUS:
2091		return SS_BLOCK;
2092	case USB_SPEED_UNKNOWN:
2093	case USB_SPEED_WIRELESS:
2094	default:
2095		/* Should never happen */
2096		return 1;
2097	}
2098}
2099
2100static unsigned int
2101xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2102{
2103	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2104		return LS_OVERHEAD;
2105	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2106		return FS_OVERHEAD;
2107	return HS_OVERHEAD;
2108}
2109
2110/* If we are changing a LS/FS device under a HS hub,
2111 * make sure (if we are activating a new TT) that the HS bus has enough
2112 * bandwidth for this new TT.
2113 */
2114static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2115		struct xhci_virt_device *virt_dev,
2116		int old_active_eps)
2117{
2118	struct xhci_interval_bw_table *bw_table;
2119	struct xhci_tt_bw_info *tt_info;
2120
2121	/* Find the bandwidth table for the root port this TT is attached to. */
2122	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2123	tt_info = virt_dev->tt_info;
2124	/* If this TT already had active endpoints, the bandwidth for this TT
2125	 * has already been added.  Removing all periodic endpoints (and thus
2126	 * making the TT enactive) will only decrease the bandwidth used.
2127	 */
2128	if (old_active_eps)
2129		return 0;
2130	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2131		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2132			return -ENOMEM;
2133		return 0;
2134	}
2135	/* Not sure why we would have no new active endpoints...
2136	 *
2137	 * Maybe because of an Evaluate Context change for a hub update or a
2138	 * control endpoint 0 max packet size change?
2139	 * FIXME: skip the bandwidth calculation in that case.
2140	 */
2141	return 0;
2142}
2143
2144static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2145		struct xhci_virt_device *virt_dev)
2146{
2147	unsigned int bw_reserved;
2148
2149	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2150	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2151		return -ENOMEM;
2152
2153	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2154	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2155		return -ENOMEM;
2156
2157	return 0;
2158}
2159
2160/*
2161 * This algorithm is a very conservative estimate of the worst-case scheduling
2162 * scenario for any one interval.  The hardware dynamically schedules the
2163 * packets, so we can't tell which microframe could be the limiting factor in
2164 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2165 *
2166 * Obviously, we can't solve an NP complete problem to find the minimum worst
2167 * case scenario.  Instead, we come up with an estimate that is no less than
2168 * the worst case bandwidth used for any one microframe, but may be an
2169 * over-estimate.
2170 *
2171 * We walk the requirements for each endpoint by interval, starting with the
2172 * smallest interval, and place packets in the schedule where there is only one
2173 * possible way to schedule packets for that interval.  In order to simplify
2174 * this algorithm, we record the largest max packet size for each interval, and
2175 * assume all packets will be that size.
2176 *
2177 * For interval 0, we obviously must schedule all packets for each interval.
2178 * The bandwidth for interval 0 is just the amount of data to be transmitted
2179 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2180 * the number of packets).
2181 *
2182 * For interval 1, we have two possible microframes to schedule those packets
2183 * in.  For this algorithm, if we can schedule the same number of packets for
2184 * each possible scheduling opportunity (each microframe), we will do so.  The
2185 * remaining number of packets will be saved to be transmitted in the gaps in
2186 * the next interval's scheduling sequence.
2187 *
2188 * As we move those remaining packets to be scheduled with interval 2 packets,
2189 * we have to double the number of remaining packets to transmit.  This is
2190 * because the intervals are actually powers of 2, and we would be transmitting
2191 * the previous interval's packets twice in this interval.  We also have to be
2192 * sure that when we look at the largest max packet size for this interval, we
2193 * also look at the largest max packet size for the remaining packets and take
2194 * the greater of the two.
2195 *
2196 * The algorithm continues to evenly distribute packets in each scheduling
2197 * opportunity, and push the remaining packets out, until we get to the last
2198 * interval.  Then those packets and their associated overhead are just added
2199 * to the bandwidth used.
2200 */
2201static int xhci_check_bw_table(struct xhci_hcd *xhci,
2202		struct xhci_virt_device *virt_dev,
2203		int old_active_eps)
2204{
2205	unsigned int bw_reserved;
2206	unsigned int max_bandwidth;
2207	unsigned int bw_used;
2208	unsigned int block_size;
2209	struct xhci_interval_bw_table *bw_table;
2210	unsigned int packet_size = 0;
2211	unsigned int overhead = 0;
2212	unsigned int packets_transmitted = 0;
2213	unsigned int packets_remaining = 0;
2214	unsigned int i;
2215
2216	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2217		return xhci_check_ss_bw(xhci, virt_dev);
2218
2219	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2220		max_bandwidth = HS_BW_LIMIT;
2221		/* Convert percent of bus BW reserved to blocks reserved */
2222		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2223	} else {
2224		max_bandwidth = FS_BW_LIMIT;
2225		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2226	}
2227
2228	bw_table = virt_dev->bw_table;
2229	/* We need to translate the max packet size and max ESIT payloads into
2230	 * the units the hardware uses.
2231	 */
2232	block_size = xhci_get_block_size(virt_dev->udev);
2233
2234	/* If we are manipulating a LS/FS device under a HS hub, double check
2235	 * that the HS bus has enough bandwidth if we are activing a new TT.
2236	 */
2237	if (virt_dev->tt_info) {
2238		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2239				"Recalculating BW for rootport %u",
2240				virt_dev->real_port);
2241		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2242			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2243					"newly activated TT.\n");
2244			return -ENOMEM;
2245		}
2246		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2247				"Recalculating BW for TT slot %u port %u",
2248				virt_dev->tt_info->slot_id,
2249				virt_dev->tt_info->ttport);
2250	} else {
2251		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2252				"Recalculating BW for rootport %u",
2253				virt_dev->real_port);
2254	}
2255
2256	/* Add in how much bandwidth will be used for interval zero, or the
2257	 * rounded max ESIT payload + number of packets * largest overhead.
2258	 */
2259	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2260		bw_table->interval_bw[0].num_packets *
2261		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2262
2263	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2264		unsigned int bw_added;
2265		unsigned int largest_mps;
2266		unsigned int interval_overhead;
2267
2268		/*
2269		 * How many packets could we transmit in this interval?
2270		 * If packets didn't fit in the previous interval, we will need
2271		 * to transmit that many packets twice within this interval.
2272		 */
2273		packets_remaining = 2 * packets_remaining +
2274			bw_table->interval_bw[i].num_packets;
2275
2276		/* Find the largest max packet size of this or the previous
2277		 * interval.
2278		 */
2279		if (list_empty(&bw_table->interval_bw[i].endpoints))
2280			largest_mps = 0;
2281		else {
2282			struct xhci_virt_ep *virt_ep;
2283			struct list_head *ep_entry;
2284
2285			ep_entry = bw_table->interval_bw[i].endpoints.next;
2286			virt_ep = list_entry(ep_entry,
2287					struct xhci_virt_ep, bw_endpoint_list);
2288			/* Convert to blocks, rounding up */
2289			largest_mps = DIV_ROUND_UP(
2290					virt_ep->bw_info.max_packet_size,
2291					block_size);
2292		}
2293		if (largest_mps > packet_size)
2294			packet_size = largest_mps;
2295
2296		/* Use the larger overhead of this or the previous interval. */
2297		interval_overhead = xhci_get_largest_overhead(
2298				&bw_table->interval_bw[i]);
2299		if (interval_overhead > overhead)
2300			overhead = interval_overhead;
2301
2302		/* How many packets can we evenly distribute across
2303		 * (1 << (i + 1)) possible scheduling opportunities?
2304		 */
2305		packets_transmitted = packets_remaining >> (i + 1);
2306
2307		/* Add in the bandwidth used for those scheduled packets */
2308		bw_added = packets_transmitted * (overhead + packet_size);
2309
2310		/* How many packets do we have remaining to transmit? */
2311		packets_remaining = packets_remaining % (1 << (i + 1));
2312
2313		/* What largest max packet size should those packets have? */
2314		/* If we've transmitted all packets, don't carry over the
2315		 * largest packet size.
2316		 */
2317		if (packets_remaining == 0) {
2318			packet_size = 0;
2319			overhead = 0;
2320		} else if (packets_transmitted > 0) {
2321			/* Otherwise if we do have remaining packets, and we've
2322			 * scheduled some packets in this interval, take the
2323			 * largest max packet size from endpoints with this
2324			 * interval.
2325			 */
2326			packet_size = largest_mps;
2327			overhead = interval_overhead;
2328		}
2329		/* Otherwise carry over packet_size and overhead from the last
2330		 * time we had a remainder.
2331		 */
2332		bw_used += bw_added;
2333		if (bw_used > max_bandwidth) {
2334			xhci_warn(xhci, "Not enough bandwidth. "
2335					"Proposed: %u, Max: %u\n",
2336				bw_used, max_bandwidth);
2337			return -ENOMEM;
2338		}
2339	}
2340	/*
2341	 * Ok, we know we have some packets left over after even-handedly
2342	 * scheduling interval 15.  We don't know which microframes they will
2343	 * fit into, so we over-schedule and say they will be scheduled every
2344	 * microframe.
2345	 */
2346	if (packets_remaining > 0)
2347		bw_used += overhead + packet_size;
2348
2349	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2350		unsigned int port_index = virt_dev->real_port - 1;
2351
2352		/* OK, we're manipulating a HS device attached to a
2353		 * root port bandwidth domain.  Include the number of active TTs
2354		 * in the bandwidth used.
2355		 */
2356		bw_used += TT_HS_OVERHEAD *
2357			xhci->rh_bw[port_index].num_active_tts;
2358	}
2359
2360	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2361		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2362		"Available: %u " "percent",
2363		bw_used, max_bandwidth, bw_reserved,
2364		(max_bandwidth - bw_used - bw_reserved) * 100 /
2365		max_bandwidth);
2366
2367	bw_used += bw_reserved;
2368	if (bw_used > max_bandwidth) {
2369		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2370				bw_used, max_bandwidth);
2371		return -ENOMEM;
2372	}
2373
2374	bw_table->bw_used = bw_used;
2375	return 0;
2376}
2377
2378static bool xhci_is_async_ep(unsigned int ep_type)
2379{
2380	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2381					ep_type != ISOC_IN_EP &&
2382					ep_type != INT_IN_EP);
2383}
2384
2385static bool xhci_is_sync_in_ep(unsigned int ep_type)
2386{
2387	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2388}
2389
2390static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2391{
2392	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2393
2394	if (ep_bw->ep_interval == 0)
2395		return SS_OVERHEAD_BURST +
2396			(ep_bw->mult * ep_bw->num_packets *
2397					(SS_OVERHEAD + mps));
2398	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2399				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2400				1 << ep_bw->ep_interval);
2401
2402}
2403
2404void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2405		struct xhci_bw_info *ep_bw,
2406		struct xhci_interval_bw_table *bw_table,
2407		struct usb_device *udev,
2408		struct xhci_virt_ep *virt_ep,
2409		struct xhci_tt_bw_info *tt_info)
2410{
2411	struct xhci_interval_bw	*interval_bw;
2412	int normalized_interval;
2413
2414	if (xhci_is_async_ep(ep_bw->type))
2415		return;
2416
2417	if (udev->speed >= USB_SPEED_SUPER) {
2418		if (xhci_is_sync_in_ep(ep_bw->type))
2419			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2420				xhci_get_ss_bw_consumed(ep_bw);
2421		else
2422			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2423				xhci_get_ss_bw_consumed(ep_bw);
2424		return;
2425	}
2426
2427	/* SuperSpeed endpoints never get added to intervals in the table, so
2428	 * this check is only valid for HS/FS/LS devices.
2429	 */
2430	if (list_empty(&virt_ep->bw_endpoint_list))
2431		return;
2432	/* For LS/FS devices, we need to translate the interval expressed in
2433	 * microframes to frames.
2434	 */
2435	if (udev->speed == USB_SPEED_HIGH)
2436		normalized_interval = ep_bw->ep_interval;
2437	else
2438		normalized_interval = ep_bw->ep_interval - 3;
2439
2440	if (normalized_interval == 0)
2441		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2442	interval_bw = &bw_table->interval_bw[normalized_interval];
2443	interval_bw->num_packets -= ep_bw->num_packets;
2444	switch (udev->speed) {
2445	case USB_SPEED_LOW:
2446		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2447		break;
2448	case USB_SPEED_FULL:
2449		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2450		break;
2451	case USB_SPEED_HIGH:
2452		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2453		break;
2454	case USB_SPEED_SUPER:
2455	case USB_SPEED_SUPER_PLUS:
2456	case USB_SPEED_UNKNOWN:
2457	case USB_SPEED_WIRELESS:
2458		/* Should never happen because only LS/FS/HS endpoints will get
2459		 * added to the endpoint list.
2460		 */
2461		return;
2462	}
2463	if (tt_info)
2464		tt_info->active_eps -= 1;
2465	list_del_init(&virt_ep->bw_endpoint_list);
2466}
2467
2468static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2469		struct xhci_bw_info *ep_bw,
2470		struct xhci_interval_bw_table *bw_table,
2471		struct usb_device *udev,
2472		struct xhci_virt_ep *virt_ep,
2473		struct xhci_tt_bw_info *tt_info)
2474{
2475	struct xhci_interval_bw	*interval_bw;
2476	struct xhci_virt_ep *smaller_ep;
2477	int normalized_interval;
2478
2479	if (xhci_is_async_ep(ep_bw->type))
2480		return;
2481
2482	if (udev->speed == USB_SPEED_SUPER) {
2483		if (xhci_is_sync_in_ep(ep_bw->type))
2484			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2485				xhci_get_ss_bw_consumed(ep_bw);
2486		else
2487			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2488				xhci_get_ss_bw_consumed(ep_bw);
2489		return;
2490	}
2491
2492	/* For LS/FS devices, we need to translate the interval expressed in
2493	 * microframes to frames.
2494	 */
2495	if (udev->speed == USB_SPEED_HIGH)
2496		normalized_interval = ep_bw->ep_interval;
2497	else
2498		normalized_interval = ep_bw->ep_interval - 3;
2499
2500	if (normalized_interval == 0)
2501		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2502	interval_bw = &bw_table->interval_bw[normalized_interval];
2503	interval_bw->num_packets += ep_bw->num_packets;
2504	switch (udev->speed) {
2505	case USB_SPEED_LOW:
2506		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2507		break;
2508	case USB_SPEED_FULL:
2509		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2510		break;
2511	case USB_SPEED_HIGH:
2512		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2513		break;
2514	case USB_SPEED_SUPER:
2515	case USB_SPEED_SUPER_PLUS:
2516	case USB_SPEED_UNKNOWN:
2517	case USB_SPEED_WIRELESS:
2518		/* Should never happen because only LS/FS/HS endpoints will get
2519		 * added to the endpoint list.
2520		 */
2521		return;
2522	}
2523
2524	if (tt_info)
2525		tt_info->active_eps += 1;
2526	/* Insert the endpoint into the list, largest max packet size first. */
2527	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2528			bw_endpoint_list) {
2529		if (ep_bw->max_packet_size >=
2530				smaller_ep->bw_info.max_packet_size) {
2531			/* Add the new ep before the smaller endpoint */
2532			list_add_tail(&virt_ep->bw_endpoint_list,
2533					&smaller_ep->bw_endpoint_list);
2534			return;
2535		}
2536	}
2537	/* Add the new endpoint at the end of the list. */
2538	list_add_tail(&virt_ep->bw_endpoint_list,
2539			&interval_bw->endpoints);
2540}
2541
2542void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2543		struct xhci_virt_device *virt_dev,
2544		int old_active_eps)
2545{
2546	struct xhci_root_port_bw_info *rh_bw_info;
2547	if (!virt_dev->tt_info)
2548		return;
2549
2550	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2551	if (old_active_eps == 0 &&
2552				virt_dev->tt_info->active_eps != 0) {
2553		rh_bw_info->num_active_tts += 1;
2554		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2555	} else if (old_active_eps != 0 &&
2556				virt_dev->tt_info->active_eps == 0) {
2557		rh_bw_info->num_active_tts -= 1;
2558		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2559	}
2560}
2561
2562static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2563		struct xhci_virt_device *virt_dev,
2564		struct xhci_container_ctx *in_ctx)
2565{
2566	struct xhci_bw_info ep_bw_info[31];
2567	int i;
2568	struct xhci_input_control_ctx *ctrl_ctx;
2569	int old_active_eps = 0;
2570
2571	if (virt_dev->tt_info)
2572		old_active_eps = virt_dev->tt_info->active_eps;
2573
2574	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2575	if (!ctrl_ctx) {
2576		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2577				__func__);
2578		return -ENOMEM;
2579	}
2580
2581	for (i = 0; i < 31; i++) {
2582		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2583			continue;
2584
2585		/* Make a copy of the BW info in case we need to revert this */
2586		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2587				sizeof(ep_bw_info[i]));
2588		/* Drop the endpoint from the interval table if the endpoint is
2589		 * being dropped or changed.
2590		 */
2591		if (EP_IS_DROPPED(ctrl_ctx, i))
2592			xhci_drop_ep_from_interval_table(xhci,
2593					&virt_dev->eps[i].bw_info,
2594					virt_dev->bw_table,
2595					virt_dev->udev,
2596					&virt_dev->eps[i],
2597					virt_dev->tt_info);
2598	}
2599	/* Overwrite the information stored in the endpoints' bw_info */
2600	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2601	for (i = 0; i < 31; i++) {
2602		/* Add any changed or added endpoints to the interval table */
2603		if (EP_IS_ADDED(ctrl_ctx, i))
2604			xhci_add_ep_to_interval_table(xhci,
2605					&virt_dev->eps[i].bw_info,
2606					virt_dev->bw_table,
2607					virt_dev->udev,
2608					&virt_dev->eps[i],
2609					virt_dev->tt_info);
2610	}
2611
2612	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2613		/* Ok, this fits in the bandwidth we have.
2614		 * Update the number of active TTs.
2615		 */
2616		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2617		return 0;
2618	}
2619
2620	/* We don't have enough bandwidth for this, revert the stored info. */
2621	for (i = 0; i < 31; i++) {
2622		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2623			continue;
2624
2625		/* Drop the new copies of any added or changed endpoints from
2626		 * the interval table.
2627		 */
2628		if (EP_IS_ADDED(ctrl_ctx, i)) {
2629			xhci_drop_ep_from_interval_table(xhci,
2630					&virt_dev->eps[i].bw_info,
2631					virt_dev->bw_table,
2632					virt_dev->udev,
2633					&virt_dev->eps[i],
2634					virt_dev->tt_info);
2635		}
2636		/* Revert the endpoint back to its old information */
2637		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2638				sizeof(ep_bw_info[i]));
2639		/* Add any changed or dropped endpoints back into the table */
2640		if (EP_IS_DROPPED(ctrl_ctx, i))
2641			xhci_add_ep_to_interval_table(xhci,
2642					&virt_dev->eps[i].bw_info,
2643					virt_dev->bw_table,
2644					virt_dev->udev,
2645					&virt_dev->eps[i],
2646					virt_dev->tt_info);
2647	}
2648	return -ENOMEM;
2649}
2650
2651
2652/* Issue a configure endpoint command or evaluate context command
2653 * and wait for it to finish.
2654 */
2655static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2656		struct usb_device *udev,
2657		struct xhci_command *command,
2658		bool ctx_change, bool must_succeed)
2659{
2660	int ret;
2661	unsigned long flags;
2662	struct xhci_input_control_ctx *ctrl_ctx;
2663	struct xhci_virt_device *virt_dev;
 
2664
2665	if (!command)
2666		return -EINVAL;
2667
2668	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
 
 
2669	virt_dev = xhci->devs[udev->slot_id];
2670
2671	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2672	if (!ctrl_ctx) {
2673		spin_unlock_irqrestore(&xhci->lock, flags);
2674		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2675				__func__);
2676		return -ENOMEM;
2677	}
2678
2679	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2680			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2681		spin_unlock_irqrestore(&xhci->lock, flags);
2682		xhci_warn(xhci, "Not enough host resources, "
2683				"active endpoint contexts = %u\n",
2684				xhci->num_active_eps);
2685		return -ENOMEM;
2686	}
2687	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2688	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2689		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2690			xhci_free_host_resources(xhci, ctrl_ctx);
2691		spin_unlock_irqrestore(&xhci->lock, flags);
2692		xhci_warn(xhci, "Not enough bandwidth\n");
2693		return -ENOMEM;
2694	}
2695
 
 
 
 
 
2696	if (!ctx_change)
2697		ret = xhci_queue_configure_endpoint(xhci, command,
2698				command->in_ctx->dma,
2699				udev->slot_id, must_succeed);
2700	else
2701		ret = xhci_queue_evaluate_context(xhci, command,
2702				command->in_ctx->dma,
2703				udev->slot_id, must_succeed);
2704	if (ret < 0) {
2705		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2706			xhci_free_host_resources(xhci, ctrl_ctx);
2707		spin_unlock_irqrestore(&xhci->lock, flags);
2708		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2709				"FIXME allocate a new ring segment");
2710		return -ENOMEM;
2711	}
2712	xhci_ring_cmd_db(xhci);
2713	spin_unlock_irqrestore(&xhci->lock, flags);
2714
2715	/* Wait for the configure endpoint command to complete */
2716	wait_for_completion(command->completion);
2717
2718	if (!ctx_change)
2719		ret = xhci_configure_endpoint_result(xhci, udev,
2720						     &command->status);
2721	else
2722		ret = xhci_evaluate_context_result(xhci, udev,
2723						   &command->status);
2724
2725	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2726		spin_lock_irqsave(&xhci->lock, flags);
2727		/* If the command failed, remove the reserved resources.
2728		 * Otherwise, clean up the estimate to include dropped eps.
2729		 */
2730		if (ret)
2731			xhci_free_host_resources(xhci, ctrl_ctx);
2732		else
2733			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2734		spin_unlock_irqrestore(&xhci->lock, flags);
2735	}
2736	return ret;
2737}
2738
2739static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2740	struct xhci_virt_device *vdev, int i)
2741{
2742	struct xhci_virt_ep *ep = &vdev->eps[i];
2743
2744	if (ep->ep_state & EP_HAS_STREAMS) {
2745		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2746				xhci_get_endpoint_address(i));
2747		xhci_free_stream_info(xhci, ep->stream_info);
2748		ep->stream_info = NULL;
2749		ep->ep_state &= ~EP_HAS_STREAMS;
2750	}
2751}
2752
2753/* Called after one or more calls to xhci_add_endpoint() or
2754 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2755 * to call xhci_reset_bandwidth().
2756 *
2757 * Since we are in the middle of changing either configuration or
2758 * installing a new alt setting, the USB core won't allow URBs to be
2759 * enqueued for any endpoint on the old config or interface.  Nothing
2760 * else should be touching the xhci->devs[slot_id] structure, so we
2761 * don't need to take the xhci->lock for manipulating that.
2762 */
2763int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2764{
2765	int i;
2766	int ret = 0;
2767	struct xhci_hcd *xhci;
2768	struct xhci_virt_device	*virt_dev;
2769	struct xhci_input_control_ctx *ctrl_ctx;
2770	struct xhci_slot_ctx *slot_ctx;
2771	struct xhci_command *command;
2772
2773	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2774	if (ret <= 0)
2775		return ret;
2776	xhci = hcd_to_xhci(hcd);
2777	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2778		(xhci->xhc_state & XHCI_STATE_REMOVING))
2779		return -ENODEV;
2780
2781	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2782	virt_dev = xhci->devs[udev->slot_id];
2783
2784	command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2785	if (!command)
2786		return -ENOMEM;
2787
2788	command->in_ctx = virt_dev->in_ctx;
2789
2790	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2791	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2792	if (!ctrl_ctx) {
2793		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794				__func__);
2795		ret = -ENOMEM;
2796		goto command_cleanup;
2797	}
2798	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2799	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2800	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2801
2802	/* Don't issue the command if there's no endpoints to update. */
2803	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2804	    ctrl_ctx->drop_flags == 0) {
2805		ret = 0;
2806		goto command_cleanup;
2807	}
2808	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2809	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2810	for (i = 31; i >= 1; i--) {
2811		__le32 le32 = cpu_to_le32(BIT(i));
2812
2813		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2814		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2815			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2816			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2817			break;
2818		}
2819	}
2820	xhci_dbg(xhci, "New Input Control Context:\n");
2821	xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2822		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2823
2824	ret = xhci_configure_endpoint(xhci, udev, command,
2825			false, false);
2826	if (ret)
2827		/* Callee should call reset_bandwidth() */
2828		goto command_cleanup;
2829
2830	xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2831	xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2832		     LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2833
2834	/* Free any rings that were dropped, but not changed. */
2835	for (i = 1; i < 31; ++i) {
2836		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2837		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2838			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2839			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2840		}
2841	}
2842	xhci_zero_in_ctx(xhci, virt_dev);
2843	/*
2844	 * Install any rings for completely new endpoints or changed endpoints,
2845	 * and free or cache any old rings from changed endpoints.
2846	 */
2847	for (i = 1; i < 31; ++i) {
2848		if (!virt_dev->eps[i].new_ring)
2849			continue;
2850		/* Only cache or free the old ring if it exists.
2851		 * It may not if this is the first add of an endpoint.
2852		 */
2853		if (virt_dev->eps[i].ring) {
2854			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2855		}
2856		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2857		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2858		virt_dev->eps[i].new_ring = NULL;
 
2859	}
2860command_cleanup:
2861	kfree(command->completion);
2862	kfree(command);
2863
2864	return ret;
2865}
 
2866
2867void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2868{
2869	struct xhci_hcd *xhci;
2870	struct xhci_virt_device	*virt_dev;
2871	int i, ret;
2872
2873	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2874	if (ret <= 0)
2875		return;
2876	xhci = hcd_to_xhci(hcd);
2877
2878	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2879	virt_dev = xhci->devs[udev->slot_id];
2880	/* Free any rings allocated for added endpoints */
2881	for (i = 0; i < 31; ++i) {
2882		if (virt_dev->eps[i].new_ring) {
 
2883			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2884			virt_dev->eps[i].new_ring = NULL;
2885		}
2886	}
2887	xhci_zero_in_ctx(xhci, virt_dev);
2888}
 
2889
2890static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2891		struct xhci_container_ctx *in_ctx,
2892		struct xhci_container_ctx *out_ctx,
2893		struct xhci_input_control_ctx *ctrl_ctx,
2894		u32 add_flags, u32 drop_flags)
2895{
2896	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2897	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2898	xhci_slot_copy(xhci, in_ctx, out_ctx);
2899	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2900
2901	xhci_dbg(xhci, "Input Context:\n");
2902	xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2903}
2904
2905static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2906		unsigned int slot_id, unsigned int ep_index,
2907		struct xhci_dequeue_state *deq_state)
2908{
2909	struct xhci_input_control_ctx *ctrl_ctx;
2910	struct xhci_container_ctx *in_ctx;
2911	struct xhci_ep_ctx *ep_ctx;
2912	u32 added_ctxs;
2913	dma_addr_t addr;
 
2914
2915	in_ctx = xhci->devs[slot_id]->in_ctx;
2916	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2917	if (!ctrl_ctx) {
2918		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2919				__func__);
2920		return;
2921	}
2922
2923	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2924			xhci->devs[slot_id]->out_ctx, ep_index);
2925	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2926	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2927			deq_state->new_deq_ptr);
2928	if (addr == 0) {
2929		xhci_warn(xhci, "WARN Cannot submit config ep after "
2930				"reset ep command\n");
2931		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2932				deq_state->new_deq_seg,
2933				deq_state->new_deq_ptr);
2934		return;
 
 
 
 
 
 
2935	}
2936	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2937
2938	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2939	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2940			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2941			added_ctxs, added_ctxs);
 
 
2942}
2943
2944void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2945			unsigned int ep_index, struct xhci_td *td)
 
 
 
 
 
 
 
 
 
 
 
 
2946{
2947	struct xhci_dequeue_state deq_state;
 
 
2948	struct xhci_virt_ep *ep;
2949	struct usb_device *udev = td->urb->dev;
2950
2951	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2952			"Cleaning up stalled endpoint ring");
2953	ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2954	/* We need to move the HW's dequeue pointer past this TD,
2955	 * or it will attempt to resend it on the next doorbell ring.
2956	 */
2957	xhci_find_new_dequeue_state(xhci, udev->slot_id,
2958			ep_index, ep->stopped_stream, td, &deq_state);
2959
2960	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
 
2961		return;
 
 
2962
2963	/* HW with the reset endpoint quirk will use the saved dequeue state to
2964	 * issue a configure endpoint command later.
 
 
2965	 */
2966	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2967		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2968				"Queueing new dequeue state");
2969		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2970				ep_index, ep->stopped_stream, &deq_state);
2971	} else {
2972		/* Better hope no one uses the input context between now and the
2973		 * reset endpoint completion!
2974		 * XXX: No idea how this hardware will react when stream rings
2975		 * are enabled.
2976		 */
2977		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2978				"Setting up input context for "
2979				"configure endpoint command");
2980		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2981				ep_index, &deq_state);
2982	}
2983}
 
 
 
 
2984
2985/* Called when clearing halted device. The core should have sent the control
2986 * message to clear the device halt condition. The host side of the halt should
2987 * already be cleared with a reset endpoint command issued when the STALL tx
2988 * event was received.
2989 *
2990 * Context: in_interrupt
2991 */
2992
2993void xhci_endpoint_reset(struct usb_hcd *hcd,
2994		struct usb_host_endpoint *ep)
2995{
2996	struct xhci_hcd *xhci;
2997
2998	xhci = hcd_to_xhci(hcd);
 
 
 
 
 
 
 
 
 
 
 
2999
3000	/*
3001	 * We might need to implement the config ep cmd in xhci 4.8.1 note:
3002	 * The Reset Endpoint Command may only be issued to endpoints in the
3003	 * Halted state. If software wishes reset the Data Toggle or Sequence
3004	 * Number of an endpoint that isn't in the Halted state, then software
3005	 * may issue a Configure Endpoint Command with the Drop and Add bits set
3006	 * for the target endpoint. that is in the Stopped state.
3007	 */
3008
3009	/* For now just print debug to follow the situation */
3010	xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3011		 ep->desc.bEndpointAddress);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3012}
3013
3014static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3015		struct usb_device *udev, struct usb_host_endpoint *ep,
3016		unsigned int slot_id)
3017{
3018	int ret;
3019	unsigned int ep_index;
3020	unsigned int ep_state;
3021
3022	if (!ep)
3023		return -EINVAL;
3024	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3025	if (ret <= 0)
3026		return -EINVAL;
3027	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3028		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3029				" descriptor for ep 0x%x does not support streams\n",
3030				ep->desc.bEndpointAddress);
3031		return -EINVAL;
3032	}
3033
3034	ep_index = xhci_get_endpoint_index(&ep->desc);
3035	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3036	if (ep_state & EP_HAS_STREAMS ||
3037			ep_state & EP_GETTING_STREAMS) {
3038		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3039				"already has streams set up.\n",
3040				ep->desc.bEndpointAddress);
3041		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3042				"dynamic stream context array reallocation.\n");
3043		return -EINVAL;
3044	}
3045	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3046		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3047				"endpoint 0x%x; URBs are pending.\n",
3048				ep->desc.bEndpointAddress);
3049		return -EINVAL;
3050	}
3051	return 0;
3052}
3053
3054static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3055		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3056{
3057	unsigned int max_streams;
3058
3059	/* The stream context array size must be a power of two */
3060	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3061	/*
3062	 * Find out how many primary stream array entries the host controller
3063	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3064	 * level page entries), but that's an optional feature for xHCI host
3065	 * controllers. xHCs must support at least 4 stream IDs.
3066	 */
3067	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3068	if (*num_stream_ctxs > max_streams) {
3069		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3070				max_streams);
3071		*num_stream_ctxs = max_streams;
3072		*num_streams = max_streams;
3073	}
3074}
3075
3076/* Returns an error code if one of the endpoint already has streams.
3077 * This does not change any data structures, it only checks and gathers
3078 * information.
3079 */
3080static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3081		struct usb_device *udev,
3082		struct usb_host_endpoint **eps, unsigned int num_eps,
3083		unsigned int *num_streams, u32 *changed_ep_bitmask)
3084{
3085	unsigned int max_streams;
3086	unsigned int endpoint_flag;
3087	int i;
3088	int ret;
3089
3090	for (i = 0; i < num_eps; i++) {
3091		ret = xhci_check_streams_endpoint(xhci, udev,
3092				eps[i], udev->slot_id);
3093		if (ret < 0)
3094			return ret;
3095
3096		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3097		if (max_streams < (*num_streams - 1)) {
3098			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3099					eps[i]->desc.bEndpointAddress,
3100					max_streams);
3101			*num_streams = max_streams+1;
3102		}
3103
3104		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3105		if (*changed_ep_bitmask & endpoint_flag)
3106			return -EINVAL;
3107		*changed_ep_bitmask |= endpoint_flag;
3108	}
3109	return 0;
3110}
3111
3112static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3113		struct usb_device *udev,
3114		struct usb_host_endpoint **eps, unsigned int num_eps)
3115{
3116	u32 changed_ep_bitmask = 0;
3117	unsigned int slot_id;
3118	unsigned int ep_index;
3119	unsigned int ep_state;
3120	int i;
3121
3122	slot_id = udev->slot_id;
3123	if (!xhci->devs[slot_id])
3124		return 0;
3125
3126	for (i = 0; i < num_eps; i++) {
3127		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3128		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3129		/* Are streams already being freed for the endpoint? */
3130		if (ep_state & EP_GETTING_NO_STREAMS) {
3131			xhci_warn(xhci, "WARN Can't disable streams for "
3132					"endpoint 0x%x, "
3133					"streams are being disabled already\n",
3134					eps[i]->desc.bEndpointAddress);
3135			return 0;
3136		}
3137		/* Are there actually any streams to free? */
3138		if (!(ep_state & EP_HAS_STREAMS) &&
3139				!(ep_state & EP_GETTING_STREAMS)) {
3140			xhci_warn(xhci, "WARN Can't disable streams for "
3141					"endpoint 0x%x, "
3142					"streams are already disabled!\n",
3143					eps[i]->desc.bEndpointAddress);
3144			xhci_warn(xhci, "WARN xhci_free_streams() called "
3145					"with non-streams endpoint\n");
3146			return 0;
3147		}
3148		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3149	}
3150	return changed_ep_bitmask;
3151}
3152
3153/*
3154 * The USB device drivers use this function (through the HCD interface in USB
3155 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3156 * coordinate mass storage command queueing across multiple endpoints (basically
3157 * a stream ID == a task ID).
3158 *
3159 * Setting up streams involves allocating the same size stream context array
3160 * for each endpoint and issuing a configure endpoint command for all endpoints.
3161 *
3162 * Don't allow the call to succeed if one endpoint only supports one stream
3163 * (which means it doesn't support streams at all).
3164 *
3165 * Drivers may get less stream IDs than they asked for, if the host controller
3166 * hardware or endpoints claim they can't support the number of requested
3167 * stream IDs.
3168 */
3169int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3170		struct usb_host_endpoint **eps, unsigned int num_eps,
3171		unsigned int num_streams, gfp_t mem_flags)
3172{
3173	int i, ret;
3174	struct xhci_hcd *xhci;
3175	struct xhci_virt_device *vdev;
3176	struct xhci_command *config_cmd;
3177	struct xhci_input_control_ctx *ctrl_ctx;
3178	unsigned int ep_index;
3179	unsigned int num_stream_ctxs;
 
3180	unsigned long flags;
3181	u32 changed_ep_bitmask = 0;
3182
3183	if (!eps)
3184		return -EINVAL;
3185
3186	/* Add one to the number of streams requested to account for
3187	 * stream 0 that is reserved for xHCI usage.
3188	 */
3189	num_streams += 1;
3190	xhci = hcd_to_xhci(hcd);
3191	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3192			num_streams);
3193
3194	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3195	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3196			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3197		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3198		return -ENOSYS;
3199	}
3200
3201	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3202	if (!config_cmd) {
3203		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3204		return -ENOMEM;
3205	}
3206	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3207	if (!ctrl_ctx) {
3208		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3209				__func__);
3210		xhci_free_command(xhci, config_cmd);
3211		return -ENOMEM;
3212	}
3213
3214	/* Check to make sure all endpoints are not already configured for
3215	 * streams.  While we're at it, find the maximum number of streams that
3216	 * all the endpoints will support and check for duplicate endpoints.
3217	 */
3218	spin_lock_irqsave(&xhci->lock, flags);
3219	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3220			num_eps, &num_streams, &changed_ep_bitmask);
3221	if (ret < 0) {
3222		xhci_free_command(xhci, config_cmd);
3223		spin_unlock_irqrestore(&xhci->lock, flags);
3224		return ret;
3225	}
3226	if (num_streams <= 1) {
3227		xhci_warn(xhci, "WARN: endpoints can't handle "
3228				"more than one stream.\n");
3229		xhci_free_command(xhci, config_cmd);
3230		spin_unlock_irqrestore(&xhci->lock, flags);
3231		return -EINVAL;
3232	}
3233	vdev = xhci->devs[udev->slot_id];
3234	/* Mark each endpoint as being in transition, so
3235	 * xhci_urb_enqueue() will reject all URBs.
3236	 */
3237	for (i = 0; i < num_eps; i++) {
3238		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3239		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3240	}
3241	spin_unlock_irqrestore(&xhci->lock, flags);
3242
3243	/* Setup internal data structures and allocate HW data structures for
3244	 * streams (but don't install the HW structures in the input context
3245	 * until we're sure all memory allocation succeeded).
3246	 */
3247	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3248	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3249			num_stream_ctxs, num_streams);
3250
3251	for (i = 0; i < num_eps; i++) {
3252		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
 
3253		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3254				num_stream_ctxs,
3255				num_streams, mem_flags);
 
3256		if (!vdev->eps[ep_index].stream_info)
3257			goto cleanup;
3258		/* Set maxPstreams in endpoint context and update deq ptr to
3259		 * point to stream context array. FIXME
3260		 */
3261	}
3262
3263	/* Set up the input context for a configure endpoint command. */
3264	for (i = 0; i < num_eps; i++) {
3265		struct xhci_ep_ctx *ep_ctx;
3266
3267		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3268		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3269
3270		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3271				vdev->out_ctx, ep_index);
3272		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3273				vdev->eps[ep_index].stream_info);
3274	}
3275	/* Tell the HW to drop its old copy of the endpoint context info
3276	 * and add the updated copy from the input context.
3277	 */
3278	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3279			vdev->out_ctx, ctrl_ctx,
3280			changed_ep_bitmask, changed_ep_bitmask);
3281
3282	/* Issue and wait for the configure endpoint command */
3283	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3284			false, false);
3285
3286	/* xHC rejected the configure endpoint command for some reason, so we
3287	 * leave the old ring intact and free our internal streams data
3288	 * structure.
3289	 */
3290	if (ret < 0)
3291		goto cleanup;
3292
3293	spin_lock_irqsave(&xhci->lock, flags);
3294	for (i = 0; i < num_eps; i++) {
3295		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3296		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3297		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3298			 udev->slot_id, ep_index);
3299		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3300	}
3301	xhci_free_command(xhci, config_cmd);
3302	spin_unlock_irqrestore(&xhci->lock, flags);
3303
 
 
 
 
3304	/* Subtract 1 for stream 0, which drivers can't use */
3305	return num_streams - 1;
3306
3307cleanup:
3308	/* If it didn't work, free the streams! */
3309	for (i = 0; i < num_eps; i++) {
3310		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3311		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3312		vdev->eps[ep_index].stream_info = NULL;
3313		/* FIXME Unset maxPstreams in endpoint context and
3314		 * update deq ptr to point to normal string ring.
3315		 */
3316		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3317		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3318		xhci_endpoint_zero(xhci, vdev, eps[i]);
3319	}
3320	xhci_free_command(xhci, config_cmd);
3321	return -ENOMEM;
3322}
3323
3324/* Transition the endpoint from using streams to being a "normal" endpoint
3325 * without streams.
3326 *
3327 * Modify the endpoint context state, submit a configure endpoint command,
3328 * and free all endpoint rings for streams if that completes successfully.
3329 */
3330int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3331		struct usb_host_endpoint **eps, unsigned int num_eps,
3332		gfp_t mem_flags)
3333{
3334	int i, ret;
3335	struct xhci_hcd *xhci;
3336	struct xhci_virt_device *vdev;
3337	struct xhci_command *command;
3338	struct xhci_input_control_ctx *ctrl_ctx;
3339	unsigned int ep_index;
3340	unsigned long flags;
3341	u32 changed_ep_bitmask;
3342
3343	xhci = hcd_to_xhci(hcd);
3344	vdev = xhci->devs[udev->slot_id];
3345
3346	/* Set up a configure endpoint command to remove the streams rings */
3347	spin_lock_irqsave(&xhci->lock, flags);
3348	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3349			udev, eps, num_eps);
3350	if (changed_ep_bitmask == 0) {
3351		spin_unlock_irqrestore(&xhci->lock, flags);
3352		return -EINVAL;
3353	}
3354
3355	/* Use the xhci_command structure from the first endpoint.  We may have
3356	 * allocated too many, but the driver may call xhci_free_streams() for
3357	 * each endpoint it grouped into one call to xhci_alloc_streams().
3358	 */
3359	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3360	command = vdev->eps[ep_index].stream_info->free_streams_command;
3361	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3362	if (!ctrl_ctx) {
3363		spin_unlock_irqrestore(&xhci->lock, flags);
3364		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3365				__func__);
3366		return -EINVAL;
3367	}
3368
3369	for (i = 0; i < num_eps; i++) {
3370		struct xhci_ep_ctx *ep_ctx;
3371
3372		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3373		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3374		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3375			EP_GETTING_NO_STREAMS;
3376
3377		xhci_endpoint_copy(xhci, command->in_ctx,
3378				vdev->out_ctx, ep_index);
3379		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3380				&vdev->eps[ep_index]);
3381	}
3382	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3383			vdev->out_ctx, ctrl_ctx,
3384			changed_ep_bitmask, changed_ep_bitmask);
3385	spin_unlock_irqrestore(&xhci->lock, flags);
3386
3387	/* Issue and wait for the configure endpoint command,
3388	 * which must succeed.
3389	 */
3390	ret = xhci_configure_endpoint(xhci, udev, command,
3391			false, true);
3392
3393	/* xHC rejected the configure endpoint command for some reason, so we
3394	 * leave the streams rings intact.
3395	 */
3396	if (ret < 0)
3397		return ret;
3398
3399	spin_lock_irqsave(&xhci->lock, flags);
3400	for (i = 0; i < num_eps; i++) {
3401		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3402		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3403		vdev->eps[ep_index].stream_info = NULL;
3404		/* FIXME Unset maxPstreams in endpoint context and
3405		 * update deq ptr to point to normal string ring.
3406		 */
3407		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3408		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3409	}
3410	spin_unlock_irqrestore(&xhci->lock, flags);
3411
3412	return 0;
3413}
3414
3415/*
3416 * Deletes endpoint resources for endpoints that were active before a Reset
3417 * Device command, or a Disable Slot command.  The Reset Device command leaves
3418 * the control endpoint intact, whereas the Disable Slot command deletes it.
3419 *
3420 * Must be called with xhci->lock held.
3421 */
3422void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3423	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3424{
3425	int i;
3426	unsigned int num_dropped_eps = 0;
3427	unsigned int drop_flags = 0;
3428
3429	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3430		if (virt_dev->eps[i].ring) {
3431			drop_flags |= 1 << i;
3432			num_dropped_eps++;
3433		}
3434	}
3435	xhci->num_active_eps -= num_dropped_eps;
3436	if (num_dropped_eps)
3437		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3438				"Dropped %u ep ctxs, flags = 0x%x, "
3439				"%u now active.",
3440				num_dropped_eps, drop_flags,
3441				xhci->num_active_eps);
3442}
3443
3444/*
3445 * This submits a Reset Device Command, which will set the device state to 0,
3446 * set the device address to 0, and disable all the endpoints except the default
3447 * control endpoint.  The USB core should come back and call
3448 * xhci_address_device(), and then re-set up the configuration.  If this is
3449 * called because of a usb_reset_and_verify_device(), then the old alternate
3450 * settings will be re-installed through the normal bandwidth allocation
3451 * functions.
3452 *
3453 * Wait for the Reset Device command to finish.  Remove all structures
3454 * associated with the endpoints that were disabled.  Clear the input device
3455 * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3456 *
3457 * If the virt_dev to be reset does not exist or does not match the udev,
3458 * it means the device is lost, possibly due to the xHC restore error and
3459 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3460 * re-allocate the device.
3461 */
3462int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
 
3463{
3464	int ret, i;
3465	unsigned long flags;
3466	struct xhci_hcd *xhci;
3467	unsigned int slot_id;
3468	struct xhci_virt_device *virt_dev;
3469	struct xhci_command *reset_device_cmd;
3470	int last_freed_endpoint;
3471	struct xhci_slot_ctx *slot_ctx;
3472	int old_active_eps = 0;
3473
3474	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3475	if (ret <= 0)
3476		return ret;
3477	xhci = hcd_to_xhci(hcd);
3478	slot_id = udev->slot_id;
3479	virt_dev = xhci->devs[slot_id];
3480	if (!virt_dev) {
3481		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3482				"not exist. Re-allocate the device\n", slot_id);
3483		ret = xhci_alloc_dev(hcd, udev);
3484		if (ret == 1)
3485			return 0;
3486		else
3487			return -EINVAL;
3488	}
3489
3490	if (virt_dev->tt_info)
3491		old_active_eps = virt_dev->tt_info->active_eps;
3492
3493	if (virt_dev->udev != udev) {
3494		/* If the virt_dev and the udev does not match, this virt_dev
3495		 * may belong to another udev.
3496		 * Re-allocate the device.
3497		 */
3498		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3499				"not match the udev. Re-allocate the device\n",
3500				slot_id);
3501		ret = xhci_alloc_dev(hcd, udev);
3502		if (ret == 1)
3503			return 0;
3504		else
3505			return -EINVAL;
3506	}
3507
3508	/* If device is not setup, there is no point in resetting it */
3509	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3510	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3511						SLOT_STATE_DISABLED)
3512		return 0;
3513
 
 
3514	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3515	/* Allocate the command structure that holds the struct completion.
3516	 * Assume we're in process context, since the normal device reset
3517	 * process has to wait for the device anyway.  Storage devices are
3518	 * reset as part of error handling, so use GFP_NOIO instead of
3519	 * GFP_KERNEL.
3520	 */
3521	reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3522	if (!reset_device_cmd) {
3523		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3524		return -ENOMEM;
3525	}
3526
3527	/* Attempt to submit the Reset Device command to the command ring */
3528	spin_lock_irqsave(&xhci->lock, flags);
3529
3530	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3531	if (ret) {
3532		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3533		spin_unlock_irqrestore(&xhci->lock, flags);
3534		goto command_cleanup;
3535	}
3536	xhci_ring_cmd_db(xhci);
3537	spin_unlock_irqrestore(&xhci->lock, flags);
3538
3539	/* Wait for the Reset Device command to finish */
3540	wait_for_completion(reset_device_cmd->completion);
3541
3542	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3543	 * unless we tried to reset a slot ID that wasn't enabled,
3544	 * or the device wasn't in the addressed or configured state.
3545	 */
3546	ret = reset_device_cmd->status;
3547	switch (ret) {
3548	case COMP_CMD_ABORT:
3549	case COMP_CMD_STOP:
3550		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3551		ret = -ETIME;
3552		goto command_cleanup;
3553	case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3554	case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3555		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3556				slot_id,
3557				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3558		xhci_dbg(xhci, "Not freeing device rings.\n");
3559		/* Don't treat this as an error.  May change my mind later. */
3560		ret = 0;
3561		goto command_cleanup;
3562	case COMP_SUCCESS:
3563		xhci_dbg(xhci, "Successful reset device command.\n");
3564		break;
3565	default:
3566		if (xhci_is_vendor_info_code(xhci, ret))
3567			break;
3568		xhci_warn(xhci, "Unknown completion code %u for "
3569				"reset device command.\n", ret);
3570		ret = -EINVAL;
3571		goto command_cleanup;
3572	}
3573
3574	/* Free up host controller endpoint resources */
3575	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3576		spin_lock_irqsave(&xhci->lock, flags);
3577		/* Don't delete the default control endpoint resources */
3578		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3579		spin_unlock_irqrestore(&xhci->lock, flags);
3580	}
3581
3582	/* Everything but endpoint 0 is disabled, so free or cache the rings. */
3583	last_freed_endpoint = 1;
3584	for (i = 1; i < 31; ++i) {
3585		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3586
3587		if (ep->ep_state & EP_HAS_STREAMS) {
3588			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3589					xhci_get_endpoint_address(i));
3590			xhci_free_stream_info(xhci, ep->stream_info);
3591			ep->stream_info = NULL;
3592			ep->ep_state &= ~EP_HAS_STREAMS;
3593		}
3594
3595		if (ep->ring) {
3596			xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3597			last_freed_endpoint = i;
3598		}
3599		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3600			xhci_drop_ep_from_interval_table(xhci,
3601					&virt_dev->eps[i].bw_info,
3602					virt_dev->bw_table,
3603					udev,
3604					&virt_dev->eps[i],
3605					virt_dev->tt_info);
3606		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3607	}
3608	/* If necessary, update the number of active TTs on this root port */
3609	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3610
3611	xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3612	xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3613	ret = 0;
3614
3615command_cleanup:
3616	xhci_free_command(xhci, reset_device_cmd);
3617	return ret;
3618}
3619
3620/*
3621 * At this point, the struct usb_device is about to go away, the device has
3622 * disconnected, and all traffic has been stopped and the endpoints have been
3623 * disabled.  Free any HC data structures associated with that device.
3624 */
3625void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3626{
3627	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3628	struct xhci_virt_device *virt_dev;
3629	unsigned long flags;
3630	u32 state;
3631	int i, ret;
3632	struct xhci_command *command;
3633
3634	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3635	if (!command)
3636		return;
3637
3638#ifndef CONFIG_USB_DEFAULT_PERSIST
3639	/*
3640	 * We called pm_runtime_get_noresume when the device was attached.
3641	 * Decrement the counter here to allow controller to runtime suspend
3642	 * if no devices remain.
3643	 */
3644	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3645		pm_runtime_put_noidle(hcd->self.controller);
3646#endif
3647
3648	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3649	/* If the host is halted due to driver unload, we still need to free the
3650	 * device.
3651	 */
3652	if (ret <= 0 && ret != -ENODEV) {
3653		kfree(command);
3654		return;
3655	}
3656
3657	virt_dev = xhci->devs[udev->slot_id];
 
 
3658
3659	/* Stop any wayward timer functions (which may grab the lock) */
3660	for (i = 0; i < 31; ++i) {
3661		virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3662		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3663	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3664
3665	spin_lock_irqsave(&xhci->lock, flags);
3666	/* Don't disable the slot if the host controller is dead. */
3667	state = readl(&xhci->op_regs->status);
3668	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3669			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3670		xhci_free_virt_device(xhci, udev->slot_id);
3671		spin_unlock_irqrestore(&xhci->lock, flags);
3672		kfree(command);
3673		return;
3674	}
3675
3676	if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3677				    udev->slot_id)) {
 
3678		spin_unlock_irqrestore(&xhci->lock, flags);
3679		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3680		return;
3681	}
3682	xhci_ring_cmd_db(xhci);
3683	spin_unlock_irqrestore(&xhci->lock, flags);
3684
3685	/*
3686	 * Event command completion handler will free any data structures
3687	 * associated with the slot.  XXX Can free sleep?
3688	 */
3689}
3690
3691/*
3692 * Checks if we have enough host controller resources for the default control
3693 * endpoint.
3694 *
3695 * Must be called with xhci->lock held.
3696 */
3697static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3698{
3699	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3700		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3701				"Not enough ep ctxs: "
3702				"%u active, need to add 1, limit is %u.",
3703				xhci->num_active_eps, xhci->limit_active_eps);
3704		return -ENOMEM;
3705	}
3706	xhci->num_active_eps += 1;
3707	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3708			"Adding 1 ep ctx, %u now active.",
3709			xhci->num_active_eps);
3710	return 0;
3711}
3712
3713
3714/*
3715 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3716 * timed out, or allocating memory failed.  Returns 1 on success.
3717 */
3718int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3719{
3720	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
 
3721	unsigned long flags;
3722	int ret, slot_id;
3723	struct xhci_command *command;
3724
3725	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3726	if (!command)
3727		return 0;
3728
3729	/* xhci->slot_id and xhci->addr_dev are not thread-safe */
3730	mutex_lock(&xhci->mutex);
3731	spin_lock_irqsave(&xhci->lock, flags);
3732	command->completion = &xhci->addr_dev;
3733	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3734	if (ret) {
3735		spin_unlock_irqrestore(&xhci->lock, flags);
3736		mutex_unlock(&xhci->mutex);
3737		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3738		kfree(command);
3739		return 0;
3740	}
3741	xhci_ring_cmd_db(xhci);
3742	spin_unlock_irqrestore(&xhci->lock, flags);
3743
3744	wait_for_completion(command->completion);
3745	slot_id = xhci->slot_id;
3746	mutex_unlock(&xhci->mutex);
3747
3748	if (!slot_id || command->status != COMP_SUCCESS) {
3749		xhci_err(xhci, "Error while assigning device slot ID\n");
3750		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3751				HCS_MAX_SLOTS(
3752					readl(&xhci->cap_regs->hcs_params1)));
3753		kfree(command);
3754		return 0;
3755	}
3756
 
 
3757	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3758		spin_lock_irqsave(&xhci->lock, flags);
3759		ret = xhci_reserve_host_control_ep_resources(xhci);
3760		if (ret) {
3761			spin_unlock_irqrestore(&xhci->lock, flags);
3762			xhci_warn(xhci, "Not enough host resources, "
3763					"active endpoint contexts = %u\n",
3764					xhci->num_active_eps);
3765			goto disable_slot;
3766		}
3767		spin_unlock_irqrestore(&xhci->lock, flags);
3768	}
3769	/* Use GFP_NOIO, since this function can be called from
3770	 * xhci_discover_or_reset_device(), which may be called as part of
3771	 * mass storage driver error handling.
3772	 */
3773	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3774		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3775		goto disable_slot;
3776	}
 
 
 
 
3777	udev->slot_id = slot_id;
3778
 
 
3779#ifndef CONFIG_USB_DEFAULT_PERSIST
3780	/*
3781	 * If resetting upon resume, we can't put the controller into runtime
3782	 * suspend if there is a device attached.
3783	 */
3784	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3785		pm_runtime_get_noresume(hcd->self.controller);
3786#endif
3787
3788
3789	kfree(command);
3790	/* Is this a LS or FS device under a HS hub? */
3791	/* Hub or peripherial? */
3792	return 1;
3793
3794disable_slot:
3795	/* Disable slot, if we can do it without mem alloc */
3796	spin_lock_irqsave(&xhci->lock, flags);
3797	command->completion = NULL;
3798	command->status = 0;
3799	if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3800				     udev->slot_id))
3801		xhci_ring_cmd_db(xhci);
3802	spin_unlock_irqrestore(&xhci->lock, flags);
3803	return 0;
3804}
3805
3806/*
3807 * Issue an Address Device command and optionally send a corresponding
3808 * SetAddress request to the device.
3809 */
3810static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3811			     enum xhci_setup_dev setup)
3812{
3813	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3814	unsigned long flags;
3815	struct xhci_virt_device *virt_dev;
3816	int ret = 0;
3817	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3818	struct xhci_slot_ctx *slot_ctx;
3819	struct xhci_input_control_ctx *ctrl_ctx;
3820	u64 temp_64;
3821	struct xhci_command *command = NULL;
3822
3823	mutex_lock(&xhci->mutex);
3824
3825	if (xhci->xhc_state)	/* dying, removing or halted */
 
3826		goto out;
 
3827
3828	if (!udev->slot_id) {
3829		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3830				"Bad Slot ID %d", udev->slot_id);
3831		ret = -EINVAL;
3832		goto out;
3833	}
3834
3835	virt_dev = xhci->devs[udev->slot_id];
3836
3837	if (WARN_ON(!virt_dev)) {
3838		/*
3839		 * In plug/unplug torture test with an NEC controller,
3840		 * a zero-dereference was observed once due to virt_dev = 0.
3841		 * Print useful debug rather than crash if it is observed again!
3842		 */
3843		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3844			udev->slot_id);
3845		ret = -EINVAL;
3846		goto out;
3847	}
 
 
3848
3849	if (setup == SETUP_CONTEXT_ONLY) {
3850		slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3851		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3852		    SLOT_STATE_DEFAULT) {
3853			xhci_dbg(xhci, "Slot already in default state\n");
3854			goto out;
3855		}
3856	}
3857
3858	command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3859	if (!command) {
3860		ret = -ENOMEM;
3861		goto out;
3862	}
3863
3864	command->in_ctx = virt_dev->in_ctx;
3865	command->completion = &xhci->addr_dev;
3866
3867	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3868	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3869	if (!ctrl_ctx) {
3870		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3871				__func__);
3872		ret = -EINVAL;
3873		goto out;
3874	}
3875	/*
3876	 * If this is the first Set Address since device plug-in or
3877	 * virt_device realloaction after a resume with an xHCI power loss,
3878	 * then set up the slot context.
3879	 */
3880	if (!slot_ctx->dev_info)
3881		xhci_setup_addressable_virt_dev(xhci, udev);
3882	/* Otherwise, update the control endpoint ring enqueue pointer. */
3883	else
3884		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3885	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3886	ctrl_ctx->drop_flags = 0;
3887
3888	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3889	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3890	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3891				le32_to_cpu(slot_ctx->dev_info) >> 27);
3892
 
3893	spin_lock_irqsave(&xhci->lock, flags);
 
3894	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3895					udev->slot_id, setup);
3896	if (ret) {
3897		spin_unlock_irqrestore(&xhci->lock, flags);
3898		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3899				"FIXME: allocate a command ring segment");
3900		goto out;
3901	}
3902	xhci_ring_cmd_db(xhci);
3903	spin_unlock_irqrestore(&xhci->lock, flags);
3904
3905	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3906	wait_for_completion(command->completion);
3907
3908	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
3909	 * the SetAddress() "recovery interval" required by USB and aborting the
3910	 * command on a timeout.
3911	 */
3912	switch (command->status) {
3913	case COMP_CMD_ABORT:
3914	case COMP_CMD_STOP:
3915		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3916		ret = -ETIME;
3917		break;
3918	case COMP_CTX_STATE:
3919	case COMP_EBADSLT:
3920		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3921			 act, udev->slot_id);
3922		ret = -EINVAL;
3923		break;
3924	case COMP_TX_ERR:
3925		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3926		ret = -EPROTO;
3927		break;
3928	case COMP_DEV_ERR:
 
 
 
 
 
 
3929		dev_warn(&udev->dev,
3930			 "ERROR: Incompatible device for setup %s command\n", act);
3931		ret = -ENODEV;
3932		break;
3933	case COMP_SUCCESS:
3934		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3935			       "Successful setup %s command", act);
3936		break;
3937	default:
3938		xhci_err(xhci,
3939			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
3940			 act, command->status);
3941		xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3942		xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3943		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3944		ret = -EINVAL;
3945		break;
3946	}
3947	if (ret)
3948		goto out;
3949	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3950	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3951			"Op regs DCBAA ptr = %#016llx", temp_64);
3952	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3953		"Slot ID %d dcbaa entry @%p = %#016llx",
3954		udev->slot_id,
3955		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3956		(unsigned long long)
3957		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3958	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3959			"Output Context DMA address = %#08llx",
3960			(unsigned long long)virt_dev->out_ctx->dma);
3961	xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3962	xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3963	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3964				le32_to_cpu(slot_ctx->dev_info) >> 27);
3965	xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3966	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3967	/*
3968	 * USB core uses address 1 for the roothubs, so we add one to the
3969	 * address given back to us by the HC.
3970	 */
3971	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3972	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3973				le32_to_cpu(slot_ctx->dev_info) >> 27);
3974	/* Zero the input context control for later use */
3975	ctrl_ctx->add_flags = 0;
3976	ctrl_ctx->drop_flags = 0;
 
 
3977
3978	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3979		       "Internal device address = %d",
3980		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
3981out:
3982	mutex_unlock(&xhci->mutex);
3983	kfree(command);
 
 
 
3984	return ret;
3985}
3986
3987int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
3988{
3989	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
3990}
3991
3992int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
3993{
3994	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
3995}
3996
3997/*
3998 * Transfer the port index into real index in the HW port status
3999 * registers. Caculate offset between the port's PORTSC register
4000 * and port status base. Divide the number of per port register
4001 * to get the real index. The raw port number bases 1.
4002 */
4003int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4004{
4005	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4006	__le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4007	__le32 __iomem *addr;
4008	int raw_port;
4009
4010	if (hcd->speed < HCD_USB3)
4011		addr = xhci->usb2_ports[port1 - 1];
4012	else
4013		addr = xhci->usb3_ports[port1 - 1];
4014
4015	raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4016	return raw_port;
4017}
4018
4019/*
4020 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4021 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4022 */
4023static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4024			struct usb_device *udev, u16 max_exit_latency)
4025{
4026	struct xhci_virt_device *virt_dev;
4027	struct xhci_command *command;
4028	struct xhci_input_control_ctx *ctrl_ctx;
4029	struct xhci_slot_ctx *slot_ctx;
4030	unsigned long flags;
4031	int ret;
4032
4033	spin_lock_irqsave(&xhci->lock, flags);
4034
4035	virt_dev = xhci->devs[udev->slot_id];
4036
4037	/*
4038	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4039	 * xHC was re-initialized. Exit latency will be set later after
4040	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4041	 */
4042
4043	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4044		spin_unlock_irqrestore(&xhci->lock, flags);
4045		return 0;
4046	}
4047
4048	/* Attempt to issue an Evaluate Context command to change the MEL. */
4049	command = xhci->lpm_command;
4050	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4051	if (!ctrl_ctx) {
4052		spin_unlock_irqrestore(&xhci->lock, flags);
4053		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4054				__func__);
4055		return -ENOMEM;
4056	}
4057
4058	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4059	spin_unlock_irqrestore(&xhci->lock, flags);
4060
4061	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4062	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4063	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4064	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4065	slot_ctx->dev_state = 0;
4066
4067	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4068			"Set up evaluate context for LPM MEL change.");
4069	xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4070	xhci_dbg_ctx(xhci, command->in_ctx, 0);
4071
4072	/* Issue and wait for the evaluate context command. */
4073	ret = xhci_configure_endpoint(xhci, udev, command,
4074			true, true);
4075	xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4076	xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4077
4078	if (!ret) {
4079		spin_lock_irqsave(&xhci->lock, flags);
4080		virt_dev->current_mel = max_exit_latency;
4081		spin_unlock_irqrestore(&xhci->lock, flags);
4082	}
4083	return ret;
4084}
4085
4086#ifdef CONFIG_PM
4087
4088/* BESL to HIRD Encoding array for USB2 LPM */
4089static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4090	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4091
4092/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4093static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4094					struct usb_device *udev)
4095{
4096	int u2del, besl, besl_host;
4097	int besl_device = 0;
4098	u32 field;
4099
4100	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4101	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4102
4103	if (field & USB_BESL_SUPPORT) {
4104		for (besl_host = 0; besl_host < 16; besl_host++) {
4105			if (xhci_besl_encoding[besl_host] >= u2del)
4106				break;
4107		}
4108		/* Use baseline BESL value as default */
4109		if (field & USB_BESL_BASELINE_VALID)
4110			besl_device = USB_GET_BESL_BASELINE(field);
4111		else if (field & USB_BESL_DEEP_VALID)
4112			besl_device = USB_GET_BESL_DEEP(field);
4113	} else {
4114		if (u2del <= 50)
4115			besl_host = 0;
4116		else
4117			besl_host = (u2del - 51) / 75 + 1;
4118	}
4119
4120	besl = besl_host + besl_device;
4121	if (besl > 15)
4122		besl = 15;
4123
4124	return besl;
4125}
4126
4127/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4128static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4129{
4130	u32 field;
4131	int l1;
4132	int besld = 0;
4133	int hirdm = 0;
4134
4135	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4136
4137	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4138	l1 = udev->l1_params.timeout / 256;
4139
4140	/* device has preferred BESLD */
4141	if (field & USB_BESL_DEEP_VALID) {
4142		besld = USB_GET_BESL_DEEP(field);
4143		hirdm = 1;
4144	}
4145
4146	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4147}
4148
4149int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4150			struct usb_device *udev, int enable)
4151{
4152	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4153	__le32 __iomem	**port_array;
4154	__le32 __iomem	*pm_addr, *hlpm_addr;
4155	u32		pm_val, hlpm_val, field;
4156	unsigned int	port_num;
4157	unsigned long	flags;
4158	int		hird, exit_latency;
4159	int		ret;
4160
 
 
 
4161	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4162			!udev->lpm_capable)
4163		return -EPERM;
4164
4165	if (!udev->parent || udev->parent->parent ||
4166			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4167		return -EPERM;
4168
4169	if (udev->usb2_hw_lpm_capable != 1)
4170		return -EPERM;
4171
4172	spin_lock_irqsave(&xhci->lock, flags);
4173
4174	port_array = xhci->usb2_ports;
4175	port_num = udev->portnum - 1;
4176	pm_addr = port_array[port_num] + PORTPMSC;
4177	pm_val = readl(pm_addr);
4178	hlpm_addr = port_array[port_num] + PORTHLPMC;
4179	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4180
4181	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4182			enable ? "enable" : "disable", port_num + 1);
4183
4184	if (enable) {
4185		/* Host supports BESL timeout instead of HIRD */
4186		if (udev->usb2_hw_lpm_besl_capable) {
4187			/* if device doesn't have a preferred BESL value use a
4188			 * default one which works with mixed HIRD and BESL
4189			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4190			 */
 
4191			if ((field & USB_BESL_SUPPORT) &&
4192			    (field & USB_BESL_BASELINE_VALID))
4193				hird = USB_GET_BESL_BASELINE(field);
4194			else
4195				hird = udev->l1_params.besl;
4196
4197			exit_latency = xhci_besl_encoding[hird];
4198			spin_unlock_irqrestore(&xhci->lock, flags);
4199
4200			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4201			 * input context for link powermanagement evaluate
4202			 * context commands. It is protected by hcd->bandwidth
4203			 * mutex and is shared by all devices. We need to set
4204			 * the max ext latency in USB 2 BESL LPM as well, so
4205			 * use the same mutex and xhci_change_max_exit_latency()
4206			 */
4207			mutex_lock(hcd->bandwidth_mutex);
4208			ret = xhci_change_max_exit_latency(xhci, udev,
4209							   exit_latency);
4210			mutex_unlock(hcd->bandwidth_mutex);
4211
4212			if (ret < 0)
4213				return ret;
4214			spin_lock_irqsave(&xhci->lock, flags);
4215
4216			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4217			writel(hlpm_val, hlpm_addr);
4218			/* flush write */
4219			readl(hlpm_addr);
4220		} else {
4221			hird = xhci_calculate_hird_besl(xhci, udev);
4222		}
4223
4224		pm_val &= ~PORT_HIRD_MASK;
4225		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4226		writel(pm_val, pm_addr);
4227		pm_val = readl(pm_addr);
4228		pm_val |= PORT_HLE;
4229		writel(pm_val, pm_addr);
4230		/* flush write */
4231		readl(pm_addr);
4232	} else {
4233		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4234		writel(pm_val, pm_addr);
4235		/* flush write */
4236		readl(pm_addr);
4237		if (udev->usb2_hw_lpm_besl_capable) {
4238			spin_unlock_irqrestore(&xhci->lock, flags);
4239			mutex_lock(hcd->bandwidth_mutex);
4240			xhci_change_max_exit_latency(xhci, udev, 0);
4241			mutex_unlock(hcd->bandwidth_mutex);
 
 
 
4242			return 0;
4243		}
4244	}
4245
4246	spin_unlock_irqrestore(&xhci->lock, flags);
4247	return 0;
4248}
4249
4250/* check if a usb2 port supports a given extened capability protocol
4251 * only USB2 ports extended protocol capability values are cached.
4252 * Return 1 if capability is supported
4253 */
4254static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4255					   unsigned capability)
4256{
4257	u32 port_offset, port_count;
4258	int i;
4259
4260	for (i = 0; i < xhci->num_ext_caps; i++) {
4261		if (xhci->ext_caps[i] & capability) {
4262			/* port offsets starts at 1 */
4263			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4264			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4265			if (port >= port_offset &&
4266			    port < port_offset + port_count)
4267				return 1;
4268		}
4269	}
4270	return 0;
4271}
4272
4273int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4274{
4275	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4276	int		portnum = udev->portnum - 1;
4277
4278	if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4279			!udev->lpm_capable)
4280		return 0;
4281
4282	/* we only support lpm for non-hub device connected to root hub yet */
4283	if (!udev->parent || udev->parent->parent ||
4284			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4285		return 0;
4286
4287	if (xhci->hw_lpm_support == 1 &&
4288			xhci_check_usb2_port_capability(
4289				xhci, portnum, XHCI_HLC)) {
4290		udev->usb2_hw_lpm_capable = 1;
4291		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4292		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4293		if (xhci_check_usb2_port_capability(xhci, portnum,
4294					XHCI_BLC))
4295			udev->usb2_hw_lpm_besl_capable = 1;
4296	}
4297
4298	return 0;
4299}
4300
4301/*---------------------- USB 3.0 Link PM functions ------------------------*/
4302
4303/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4304static unsigned long long xhci_service_interval_to_ns(
4305		struct usb_endpoint_descriptor *desc)
4306{
4307	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4308}
4309
4310static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4311		enum usb3_link_state state)
4312{
4313	unsigned long long sel;
4314	unsigned long long pel;
4315	unsigned int max_sel_pel;
4316	char *state_name;
4317
4318	switch (state) {
4319	case USB3_LPM_U1:
4320		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4321		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4322		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4323		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4324		state_name = "U1";
4325		break;
4326	case USB3_LPM_U2:
4327		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4328		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4329		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4330		state_name = "U2";
4331		break;
4332	default:
4333		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4334				__func__);
4335		return USB3_LPM_DISABLED;
4336	}
4337
4338	if (sel <= max_sel_pel && pel <= max_sel_pel)
4339		return USB3_LPM_DEVICE_INITIATED;
4340
4341	if (sel > max_sel_pel)
4342		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4343				"due to long SEL %llu ms\n",
4344				state_name, sel);
4345	else
4346		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4347				"due to long PEL %llu ms\n",
4348				state_name, pel);
4349	return USB3_LPM_DISABLED;
4350}
4351
4352/* The U1 timeout should be the maximum of the following values:
4353 *  - For control endpoints, U1 system exit latency (SEL) * 3
4354 *  - For bulk endpoints, U1 SEL * 5
4355 *  - For interrupt endpoints:
4356 *    - Notification EPs, U1 SEL * 3
4357 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4358 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4359 */
4360static unsigned long long xhci_calculate_intel_u1_timeout(
4361		struct usb_device *udev,
4362		struct usb_endpoint_descriptor *desc)
4363{
4364	unsigned long long timeout_ns;
4365	int ep_type;
4366	int intr_type;
4367
4368	ep_type = usb_endpoint_type(desc);
4369	switch (ep_type) {
4370	case USB_ENDPOINT_XFER_CONTROL:
4371		timeout_ns = udev->u1_params.sel * 3;
4372		break;
4373	case USB_ENDPOINT_XFER_BULK:
4374		timeout_ns = udev->u1_params.sel * 5;
4375		break;
4376	case USB_ENDPOINT_XFER_INT:
4377		intr_type = usb_endpoint_interrupt_type(desc);
4378		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4379			timeout_ns = udev->u1_params.sel * 3;
4380			break;
4381		}
4382		/* Otherwise the calculation is the same as isoc eps */
 
4383	case USB_ENDPOINT_XFER_ISOC:
4384		timeout_ns = xhci_service_interval_to_ns(desc);
4385		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4386		if (timeout_ns < udev->u1_params.sel * 2)
4387			timeout_ns = udev->u1_params.sel * 2;
4388		break;
4389	default:
4390		return 0;
4391	}
4392
4393	return timeout_ns;
4394}
4395
4396/* Returns the hub-encoded U1 timeout value. */
4397static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4398		struct usb_device *udev,
4399		struct usb_endpoint_descriptor *desc)
4400{
4401	unsigned long long timeout_ns;
4402
 
 
 
 
 
 
 
 
4403	if (xhci->quirks & XHCI_INTEL_HOST)
4404		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4405	else
4406		timeout_ns = udev->u1_params.sel;
4407
4408	/* The U1 timeout is encoded in 1us intervals.
4409	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4410	 */
4411	if (timeout_ns == USB3_LPM_DISABLED)
4412		timeout_ns = 1;
4413	else
4414		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4415
4416	/* If the necessary timeout value is bigger than what we can set in the
4417	 * USB 3.0 hub, we have to disable hub-initiated U1.
4418	 */
4419	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4420		return timeout_ns;
4421	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4422			"due to long timeout %llu ms\n", timeout_ns);
4423	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4424}
4425
4426/* The U2 timeout should be the maximum of:
4427 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4428 *  - largest bInterval of any active periodic endpoint (to avoid going
4429 *    into lower power link states between intervals).
4430 *  - the U2 Exit Latency of the device
4431 */
4432static unsigned long long xhci_calculate_intel_u2_timeout(
4433		struct usb_device *udev,
4434		struct usb_endpoint_descriptor *desc)
4435{
4436	unsigned long long timeout_ns;
4437	unsigned long long u2_del_ns;
4438
4439	timeout_ns = 10 * 1000 * 1000;
4440
4441	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4442			(xhci_service_interval_to_ns(desc) > timeout_ns))
4443		timeout_ns = xhci_service_interval_to_ns(desc);
4444
4445	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4446	if (u2_del_ns > timeout_ns)
4447		timeout_ns = u2_del_ns;
4448
4449	return timeout_ns;
4450}
4451
4452/* Returns the hub-encoded U2 timeout value. */
4453static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4454		struct usb_device *udev,
4455		struct usb_endpoint_descriptor *desc)
4456{
4457	unsigned long long timeout_ns;
4458
 
 
 
 
 
 
 
 
4459	if (xhci->quirks & XHCI_INTEL_HOST)
4460		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4461	else
4462		timeout_ns = udev->u2_params.sel;
4463
4464	/* The U2 timeout is encoded in 256us intervals */
4465	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4466	/* If the necessary timeout value is bigger than what we can set in the
4467	 * USB 3.0 hub, we have to disable hub-initiated U2.
4468	 */
4469	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4470		return timeout_ns;
4471	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4472			"due to long timeout %llu ms\n", timeout_ns);
4473	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4474}
4475
4476static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4477		struct usb_device *udev,
4478		struct usb_endpoint_descriptor *desc,
4479		enum usb3_link_state state,
4480		u16 *timeout)
4481{
4482	if (state == USB3_LPM_U1)
4483		return xhci_calculate_u1_timeout(xhci, udev, desc);
4484	else if (state == USB3_LPM_U2)
4485		return xhci_calculate_u2_timeout(xhci, udev, desc);
4486
4487	return USB3_LPM_DISABLED;
4488}
4489
4490static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4491		struct usb_device *udev,
4492		struct usb_endpoint_descriptor *desc,
4493		enum usb3_link_state state,
4494		u16 *timeout)
4495{
4496	u16 alt_timeout;
4497
4498	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4499		desc, state, timeout);
4500
4501	/* If we found we can't enable hub-initiated LPM, or
4502	 * the U1 or U2 exit latency was too high to allow
4503	 * device-initiated LPM as well, just stop searching.
 
4504	 */
4505	if (alt_timeout == USB3_LPM_DISABLED ||
4506			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4507		*timeout = alt_timeout;
4508		return -E2BIG;
4509	}
4510	if (alt_timeout > *timeout)
4511		*timeout = alt_timeout;
4512	return 0;
4513}
4514
4515static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4516		struct usb_device *udev,
4517		struct usb_host_interface *alt,
4518		enum usb3_link_state state,
4519		u16 *timeout)
4520{
4521	int j;
4522
4523	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4524		if (xhci_update_timeout_for_endpoint(xhci, udev,
4525					&alt->endpoint[j].desc, state, timeout))
4526			return -E2BIG;
4527		continue;
4528	}
4529	return 0;
4530}
4531
4532static int xhci_check_intel_tier_policy(struct usb_device *udev,
4533		enum usb3_link_state state)
4534{
4535	struct usb_device *parent;
4536	unsigned int num_hubs;
4537
4538	if (state == USB3_LPM_U2)
4539		return 0;
4540
4541	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4542	for (parent = udev->parent, num_hubs = 0; parent->parent;
4543			parent = parent->parent)
4544		num_hubs++;
4545
4546	if (num_hubs < 2)
4547		return 0;
4548
4549	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4550			" below second-tier hub.\n");
4551	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4552			"to decrease power consumption.\n");
4553	return -E2BIG;
4554}
4555
4556static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4557		struct usb_device *udev,
4558		enum usb3_link_state state)
4559{
4560	if (xhci->quirks & XHCI_INTEL_HOST)
4561		return xhci_check_intel_tier_policy(udev, state);
4562	else
4563		return 0;
4564}
4565
4566/* Returns the U1 or U2 timeout that should be enabled.
4567 * If the tier check or timeout setting functions return with a non-zero exit
4568 * code, that means the timeout value has been finalized and we shouldn't look
4569 * at any more endpoints.
4570 */
4571static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4572			struct usb_device *udev, enum usb3_link_state state)
4573{
4574	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4575	struct usb_host_config *config;
4576	char *state_name;
4577	int i;
4578	u16 timeout = USB3_LPM_DISABLED;
4579
4580	if (state == USB3_LPM_U1)
4581		state_name = "U1";
4582	else if (state == USB3_LPM_U2)
4583		state_name = "U2";
4584	else {
4585		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4586				state);
4587		return timeout;
4588	}
4589
4590	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4591		return timeout;
4592
4593	/* Gather some information about the currently installed configuration
4594	 * and alternate interface settings.
4595	 */
4596	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4597			state, &timeout))
4598		return timeout;
4599
4600	config = udev->actconfig;
4601	if (!config)
4602		return timeout;
4603
4604	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4605		struct usb_driver *driver;
4606		struct usb_interface *intf = config->interface[i];
4607
4608		if (!intf)
4609			continue;
4610
4611		/* Check if any currently bound drivers want hub-initiated LPM
4612		 * disabled.
4613		 */
4614		if (intf->dev.driver) {
4615			driver = to_usb_driver(intf->dev.driver);
4616			if (driver && driver->disable_hub_initiated_lpm) {
4617				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4618						"at request of driver %s\n",
4619						state_name, driver->name);
4620				return xhci_get_timeout_no_hub_lpm(udev, state);
 
 
4621			}
4622		}
4623
4624		/* Not sure how this could happen... */
4625		if (!intf->cur_altsetting)
4626			continue;
4627
4628		if (xhci_update_timeout_for_interface(xhci, udev,
4629					intf->cur_altsetting,
4630					state, &timeout))
4631			return timeout;
4632	}
4633	return timeout;
4634}
4635
4636static int calculate_max_exit_latency(struct usb_device *udev,
4637		enum usb3_link_state state_changed,
4638		u16 hub_encoded_timeout)
4639{
4640	unsigned long long u1_mel_us = 0;
4641	unsigned long long u2_mel_us = 0;
4642	unsigned long long mel_us = 0;
4643	bool disabling_u1;
4644	bool disabling_u2;
4645	bool enabling_u1;
4646	bool enabling_u2;
4647
4648	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4649			hub_encoded_timeout == USB3_LPM_DISABLED);
4650	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4651			hub_encoded_timeout == USB3_LPM_DISABLED);
4652
4653	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4654			hub_encoded_timeout != USB3_LPM_DISABLED);
4655	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4656			hub_encoded_timeout != USB3_LPM_DISABLED);
4657
4658	/* If U1 was already enabled and we're not disabling it,
4659	 * or we're going to enable U1, account for the U1 max exit latency.
4660	 */
4661	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4662			enabling_u1)
4663		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4664	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4665			enabling_u2)
4666		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4667
4668	if (u1_mel_us > u2_mel_us)
4669		mel_us = u1_mel_us;
4670	else
4671		mel_us = u2_mel_us;
4672	/* xHCI host controller max exit latency field is only 16 bits wide. */
4673	if (mel_us > MAX_EXIT) {
4674		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4675				"is too big.\n", mel_us);
4676		return -E2BIG;
4677	}
4678	return mel_us;
4679}
4680
4681/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4682int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4683			struct usb_device *udev, enum usb3_link_state state)
4684{
4685	struct xhci_hcd	*xhci;
4686	u16 hub_encoded_timeout;
4687	int mel;
4688	int ret;
4689
4690	xhci = hcd_to_xhci(hcd);
4691	/* The LPM timeout values are pretty host-controller specific, so don't
4692	 * enable hub-initiated timeouts unless the vendor has provided
4693	 * information about their timeout algorithm.
4694	 */
4695	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4696			!xhci->devs[udev->slot_id])
4697		return USB3_LPM_DISABLED;
4698
4699	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4700	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4701	if (mel < 0) {
4702		/* Max Exit Latency is too big, disable LPM. */
4703		hub_encoded_timeout = USB3_LPM_DISABLED;
4704		mel = 0;
4705	}
4706
4707	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4708	if (ret)
4709		return ret;
4710	return hub_encoded_timeout;
4711}
4712
4713int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4714			struct usb_device *udev, enum usb3_link_state state)
4715{
4716	struct xhci_hcd	*xhci;
4717	u16 mel;
4718
4719	xhci = hcd_to_xhci(hcd);
4720	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4721			!xhci->devs[udev->slot_id])
4722		return 0;
4723
4724	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4725	return xhci_change_max_exit_latency(xhci, udev, mel);
4726}
4727#else /* CONFIG_PM */
4728
4729int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4730				struct usb_device *udev, int enable)
4731{
4732	return 0;
4733}
4734
4735int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4736{
4737	return 0;
4738}
4739
4740int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4741			struct usb_device *udev, enum usb3_link_state state)
4742{
4743	return USB3_LPM_DISABLED;
4744}
4745
4746int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4747			struct usb_device *udev, enum usb3_link_state state)
4748{
4749	return 0;
4750}
4751#endif	/* CONFIG_PM */
4752
4753/*-------------------------------------------------------------------------*/
4754
4755/* Once a hub descriptor is fetched for a device, we need to update the xHC's
4756 * internal data structures for the device.
4757 */
4758int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4759			struct usb_tt *tt, gfp_t mem_flags)
4760{
4761	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4762	struct xhci_virt_device *vdev;
4763	struct xhci_command *config_cmd;
4764	struct xhci_input_control_ctx *ctrl_ctx;
4765	struct xhci_slot_ctx *slot_ctx;
4766	unsigned long flags;
4767	unsigned think_time;
4768	int ret;
4769
4770	/* Ignore root hubs */
4771	if (!hdev->parent)
4772		return 0;
4773
4774	vdev = xhci->devs[hdev->slot_id];
4775	if (!vdev) {
4776		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4777		return -EINVAL;
4778	}
4779	config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4780	if (!config_cmd) {
4781		xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4782		return -ENOMEM;
4783	}
4784	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4785	if (!ctrl_ctx) {
4786		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4787				__func__);
4788		xhci_free_command(xhci, config_cmd);
4789		return -ENOMEM;
4790	}
4791
4792	spin_lock_irqsave(&xhci->lock, flags);
4793	if (hdev->speed == USB_SPEED_HIGH &&
4794			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4795		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4796		xhci_free_command(xhci, config_cmd);
4797		spin_unlock_irqrestore(&xhci->lock, flags);
4798		return -ENOMEM;
4799	}
4800
4801	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4802	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4803	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4804	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4805	/*
4806	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4807	 * but it may be already set to 1 when setup an xHCI virtual
4808	 * device, so clear it anyway.
4809	 */
4810	if (tt->multi)
4811		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4812	else if (hdev->speed == USB_SPEED_FULL)
4813		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4814
4815	if (xhci->hci_version > 0x95) {
4816		xhci_dbg(xhci, "xHCI version %x needs hub "
4817				"TT think time and number of ports\n",
4818				(unsigned int) xhci->hci_version);
4819		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4820		/* Set TT think time - convert from ns to FS bit times.
4821		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4822		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4823		 *
4824		 * xHCI 1.0: this field shall be 0 if the device is not a
4825		 * High-spped hub.
4826		 */
4827		think_time = tt->think_time;
4828		if (think_time != 0)
4829			think_time = (think_time / 666) - 1;
4830		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4831			slot_ctx->tt_info |=
4832				cpu_to_le32(TT_THINK_TIME(think_time));
4833	} else {
4834		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4835				"TT think time or number of ports\n",
4836				(unsigned int) xhci->hci_version);
4837	}
4838	slot_ctx->dev_state = 0;
4839	spin_unlock_irqrestore(&xhci->lock, flags);
4840
4841	xhci_dbg(xhci, "Set up %s for hub device.\n",
4842			(xhci->hci_version > 0x95) ?
4843			"configure endpoint" : "evaluate context");
4844	xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4845	xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4846
4847	/* Issue and wait for the configure endpoint or
4848	 * evaluate context command.
4849	 */
4850	if (xhci->hci_version > 0x95)
4851		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4852				false, false);
4853	else
4854		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4855				true, false);
4856
4857	xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4858	xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4859
4860	xhci_free_command(xhci, config_cmd);
4861	return ret;
4862}
4863
4864int xhci_get_frame(struct usb_hcd *hcd)
4865{
4866	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4867	/* EHCI mods by the periodic size.  Why? */
4868	return readl(&xhci->run_regs->microframe_index) >> 3;
4869}
4870
4871int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4872{
4873	struct xhci_hcd		*xhci;
4874	struct device		*dev = hcd->self.controller;
 
 
 
 
 
4875	int			retval;
4876
4877	/* Accept arbitrarily long scatter-gather lists */
4878	hcd->self.sg_tablesize = ~0;
4879
4880	/* support to build packet from discontinuous buffers */
4881	hcd->self.no_sg_constraint = 1;
4882
4883	/* XHCI controllers don't stop the ep queue on short packets :| */
4884	hcd->self.no_stop_on_short = 1;
4885
4886	xhci = hcd_to_xhci(hcd);
4887
4888	if (usb_hcd_is_primary_hcd(hcd)) {
4889		xhci->main_hcd = hcd;
 
4890		/* Mark the first roothub as being USB 2.0.
4891		 * The xHCI driver will register the USB 3.0 roothub.
4892		 */
4893		hcd->speed = HCD_USB2;
4894		hcd->self.root_hub->speed = USB_SPEED_HIGH;
4895		/*
4896		 * USB 2.0 roothub under xHCI has an integrated TT,
4897		 * (rate matching hub) as opposed to having an OHCI/UHCI
4898		 * companion controller.
4899		 */
4900		hcd->has_tt = 1;
4901	} else {
4902		if (xhci->sbrn == 0x31) {
4903			xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4904			hcd->speed = HCD_USB31;
4905			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
 
 
4906		}
 
 
 
 
 
4907		/* xHCI private pointer was set in xhci_pci_probe for the second
4908		 * registered roothub.
4909		 */
4910		return 0;
4911	}
4912
4913	mutex_init(&xhci->mutex);
4914	xhci->cap_regs = hcd->regs;
4915	xhci->op_regs = hcd->regs +
4916		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4917	xhci->run_regs = hcd->regs +
4918		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4919	/* Cache read-only capability registers */
4920	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4921	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4922	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4923	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4924	xhci->hci_version = HC_VERSION(xhci->hcc_params);
4925	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4926	if (xhci->hci_version > 0x100)
4927		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4928	xhci_print_registers(xhci);
4929
4930	xhci->quirks = quirks;
4931
4932	get_quirks(dev, xhci);
4933
4934	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
4935	 * success event after a short transfer. This quirk will ignore such
4936	 * spurious event.
4937	 */
4938	if (xhci->hci_version > 0x96)
4939		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4940
4941	/* Make sure the HC is halted. */
4942	retval = xhci_halt(xhci);
4943	if (retval)
4944		return retval;
4945
 
 
4946	xhci_dbg(xhci, "Resetting HCD\n");
4947	/* Reset the internal HC memory state and registers. */
4948	retval = xhci_reset(xhci);
4949	if (retval)
4950		return retval;
4951	xhci_dbg(xhci, "Reset complete\n");
4952
4953	/*
4954	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4955	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4956	 * address memory pointers actually. So, this driver clears the AC64
4957	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4958	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
4959	 */
4960	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
4961		xhci->hcc_params &= ~BIT(0);
4962
4963	/* Set dma_mask and coherent_dma_mask to 64-bits,
4964	 * if xHC supports 64-bit addressing */
4965	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
4966			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
4967		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
4968		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
4969	} else {
4970		/*
4971		 * This is to avoid error in cases where a 32-bit USB
4972		 * controller is used on a 64-bit capable system.
4973		 */
4974		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
4975		if (retval)
4976			return retval;
4977		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
4978		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
4979	}
4980
4981	xhci_dbg(xhci, "Calling HCD init\n");
4982	/* Initialize HCD and host controller data structures. */
4983	retval = xhci_init(hcd);
4984	if (retval)
4985		return retval;
4986	xhci_dbg(xhci, "Called HCD init\n");
4987
4988	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
4989		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
4990
4991	return 0;
4992}
4993EXPORT_SYMBOL_GPL(xhci_gen_setup);
4994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4995static const struct hc_driver xhci_hc_driver = {
4996	.description =		"xhci-hcd",
4997	.product_desc =		"xHCI Host Controller",
4998	.hcd_priv_size =	sizeof(struct xhci_hcd),
4999
5000	/*
5001	 * generic hardware linkage
5002	 */
5003	.irq =			xhci_irq,
5004	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
 
5005
5006	/*
5007	 * basic lifecycle operations
5008	 */
5009	.reset =		NULL, /* set in xhci_init_driver() */
5010	.start =		xhci_run,
5011	.stop =			xhci_stop,
5012	.shutdown =		xhci_shutdown,
5013
5014	/*
5015	 * managing i/o requests and associated device resources
5016	 */
 
 
5017	.urb_enqueue =		xhci_urb_enqueue,
5018	.urb_dequeue =		xhci_urb_dequeue,
5019	.alloc_dev =		xhci_alloc_dev,
5020	.free_dev =		xhci_free_dev,
5021	.alloc_streams =	xhci_alloc_streams,
5022	.free_streams =		xhci_free_streams,
5023	.add_endpoint =		xhci_add_endpoint,
5024	.drop_endpoint =	xhci_drop_endpoint,
 
5025	.endpoint_reset =	xhci_endpoint_reset,
5026	.check_bandwidth =	xhci_check_bandwidth,
5027	.reset_bandwidth =	xhci_reset_bandwidth,
5028	.address_device =	xhci_address_device,
5029	.enable_device =	xhci_enable_device,
5030	.update_hub_device =	xhci_update_hub_device,
5031	.reset_device =		xhci_discover_or_reset_device,
5032
5033	/*
5034	 * scheduling support
5035	 */
5036	.get_frame_number =	xhci_get_frame,
5037
5038	/*
5039	 * root hub support
5040	 */
5041	.hub_control =		xhci_hub_control,
5042	.hub_status_data =	xhci_hub_status_data,
5043	.bus_suspend =		xhci_bus_suspend,
5044	.bus_resume =		xhci_bus_resume,
 
5045
5046	/*
5047	 * call back when device connected and addressed
5048	 */
5049	.update_device =        xhci_update_device,
5050	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5051	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5052	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5053	.find_raw_port_number =	xhci_find_raw_port_number,
 
5054};
5055
5056void xhci_init_driver(struct hc_driver *drv,
5057		      const struct xhci_driver_overrides *over)
5058{
5059	BUG_ON(!over);
5060
5061	/* Copy the generic table to drv then apply the overrides */
5062	*drv = xhci_hc_driver;
5063
5064	if (over) {
5065		drv->hcd_priv_size += over->extra_priv_size;
5066		if (over->reset)
5067			drv->reset = over->reset;
5068		if (over->start)
5069			drv->start = over->start;
 
 
 
 
 
 
 
 
5070	}
5071}
5072EXPORT_SYMBOL_GPL(xhci_init_driver);
5073
5074MODULE_DESCRIPTION(DRIVER_DESC);
5075MODULE_AUTHOR(DRIVER_AUTHOR);
5076MODULE_LICENSE("GPL");
5077
5078static int __init xhci_hcd_init(void)
5079{
5080	/*
5081	 * Check the compiler generated sizes of structures that must be laid
5082	 * out in specific ways for hardware access.
5083	 */
5084	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5085	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5086	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5087	/* xhci_device_control has eight fields, and also
5088	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5089	 */
5090	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5091	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5092	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5093	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5094	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5095	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5096	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5097
5098	if (usb_disabled())
5099		return -ENODEV;
5100
 
 
5101	return 0;
5102}
5103
5104/*
5105 * If an init function is provided, an exit function must also be provided
5106 * to allow module unload.
5107 */
5108static void __exit xhci_hcd_fini(void) { }
 
 
 
5109
5110module_init(xhci_hcd_init);
5111module_exit(xhci_hcd_fini);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * xHCI host controller driver
   4 *
   5 * Copyright (C) 2008 Intel Corp.
   6 *
   7 * Author: Sarah Sharp
   8 * Some code borrowed from the Linux EHCI driver.
 
 
 
 
 
 
 
 
 
 
 
 
 
   9 */
  10
  11#include <linux/pci.h>
  12#include <linux/iopoll.h>
  13#include <linux/irq.h>
  14#include <linux/log2.h>
  15#include <linux/module.h>
  16#include <linux/moduleparam.h>
  17#include <linux/slab.h>
  18#include <linux/dmi.h>
  19#include <linux/dma-mapping.h>
  20
  21#include "xhci.h"
  22#include "xhci-trace.h"
  23#include "xhci-debugfs.h"
  24#include "xhci-dbgcap.h"
  25
  26#define DRIVER_AUTHOR "Sarah Sharp"
  27#define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
  28
  29#define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
  30
  31/* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
  32static int link_quirk;
  33module_param(link_quirk, int, S_IRUGO | S_IWUSR);
  34MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
  35
  36static unsigned long long quirks;
  37module_param(quirks, ullong, S_IRUGO);
  38MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
  39
  40static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
  41{
  42	struct xhci_segment *seg = ring->first_seg;
  43
  44	if (!td || !td->start_seg)
  45		return false;
  46	do {
  47		if (seg == td->start_seg)
  48			return true;
  49		seg = seg->next;
  50	} while (seg && seg != ring->first_seg);
  51
  52	return false;
  53}
  54
  55/*
  56 * xhci_handshake - spin reading hc until handshake completes or fails
  57 * @ptr: address of hc register to be read
  58 * @mask: bits to look at in result of read
  59 * @done: value of those bits when handshake succeeds
  60 * @usec: timeout in microseconds
  61 *
  62 * Returns negative errno, or zero on success
  63 *
  64 * Success happens when the "mask" bits have the specified value (hardware
  65 * handshake done).  There are two failure modes:  "usec" have passed (major
  66 * hardware flakeout), or the register reads as all-ones (hardware removed).
  67 */
  68int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
  69{
  70	u32	result;
  71	int	ret;
  72
  73	ret = readl_poll_timeout_atomic(ptr, result,
  74					(result & mask) == done ||
  75					result == U32_MAX,
  76					1, usec);
  77	if (result == U32_MAX)		/* card removed */
  78		return -ENODEV;
  79
  80	return ret;
 
 
 
  81}
  82
  83/*
  84 * Disable interrupts and begin the xHCI halting process.
  85 */
  86void xhci_quiesce(struct xhci_hcd *xhci)
  87{
  88	u32 halted;
  89	u32 cmd;
  90	u32 mask;
  91
  92	mask = ~(XHCI_IRQS);
  93	halted = readl(&xhci->op_regs->status) & STS_HALT;
  94	if (!halted)
  95		mask &= ~CMD_RUN;
  96
  97	cmd = readl(&xhci->op_regs->command);
  98	cmd &= mask;
  99	writel(cmd, &xhci->op_regs->command);
 100}
 101
 102/*
 103 * Force HC into halt state.
 104 *
 105 * Disable any IRQs and clear the run/stop bit.
 106 * HC will complete any current and actively pipelined transactions, and
 107 * should halt within 16 ms of the run/stop bit being cleared.
 108 * Read HC Halted bit in the status register to see when the HC is finished.
 109 */
 110int xhci_halt(struct xhci_hcd *xhci)
 111{
 112	int ret;
 113	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
 114	xhci_quiesce(xhci);
 115
 116	ret = xhci_handshake(&xhci->op_regs->status,
 117			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
 118	if (ret) {
 119		xhci_warn(xhci, "Host halt failed, %d\n", ret);
 120		return ret;
 121	}
 122	xhci->xhc_state |= XHCI_STATE_HALTED;
 123	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 124	return ret;
 125}
 126
 127/*
 128 * Set the run bit and wait for the host to be running.
 129 */
 130int xhci_start(struct xhci_hcd *xhci)
 131{
 132	u32 temp;
 133	int ret;
 134
 135	temp = readl(&xhci->op_regs->command);
 136	temp |= (CMD_RUN);
 137	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
 138			temp);
 139	writel(temp, &xhci->op_regs->command);
 140
 141	/*
 142	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
 143	 * running.
 144	 */
 145	ret = xhci_handshake(&xhci->op_regs->status,
 146			STS_HALT, 0, XHCI_MAX_HALT_USEC);
 147	if (ret == -ETIMEDOUT)
 148		xhci_err(xhci, "Host took too long to start, "
 149				"waited %u microseconds.\n",
 150				XHCI_MAX_HALT_USEC);
 151	if (!ret)
 152		/* clear state flags. Including dying, halted or removing */
 153		xhci->xhc_state = 0;
 154
 155	return ret;
 156}
 157
 158/*
 159 * Reset a halted HC.
 160 *
 161 * This resets pipelines, timers, counters, state machines, etc.
 162 * Transactions will be terminated immediately, and operational registers
 163 * will be set to their defaults.
 164 */
 165int xhci_reset(struct xhci_hcd *xhci)
 166{
 167	u32 command;
 168	u32 state;
 169	int ret;
 170
 171	state = readl(&xhci->op_regs->status);
 172
 173	if (state == ~(u32)0) {
 174		xhci_warn(xhci, "Host not accessible, reset failed.\n");
 175		return -ENODEV;
 176	}
 177
 178	if ((state & STS_HALT) == 0) {
 179		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
 180		return 0;
 181	}
 182
 183	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
 184	command = readl(&xhci->op_regs->command);
 185	command |= CMD_RESET;
 186	writel(command, &xhci->op_regs->command);
 187
 188	/* Existing Intel xHCI controllers require a delay of 1 mS,
 189	 * after setting the CMD_RESET bit, and before accessing any
 190	 * HC registers. This allows the HC to complete the
 191	 * reset operation and be ready for HC register access.
 192	 * Without this delay, the subsequent HC register access,
 193	 * may result in a system hang very rarely.
 194	 */
 195	if (xhci->quirks & XHCI_INTEL_HOST)
 196		udelay(1000);
 197
 198	ret = xhci_handshake(&xhci->op_regs->command,
 199			CMD_RESET, 0, 10 * 1000 * 1000);
 200	if (ret)
 201		return ret;
 202
 203	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
 204		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
 205
 206	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 207			 "Wait for controller to be ready for doorbell rings");
 208	/*
 209	 * xHCI cannot write to any doorbells or operational registers other
 210	 * than status until the "Controller Not Ready" flag is cleared.
 211	 */
 212	ret = xhci_handshake(&xhci->op_regs->status,
 213			STS_CNR, 0, 10 * 1000 * 1000);
 214
 215	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
 216	xhci->usb2_rhub.bus_state.suspended_ports = 0;
 217	xhci->usb2_rhub.bus_state.resuming_ports = 0;
 218	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
 219	xhci->usb3_rhub.bus_state.suspended_ports = 0;
 220	xhci->usb3_rhub.bus_state.resuming_ports = 0;
 221
 222	return ret;
 223}
 224
 225static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
 
 226{
 227	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
 228	int err, i;
 229	u64 val;
 230	u32 intrs;
 231
 232	/*
 233	 * Some Renesas controllers get into a weird state if they are
 234	 * reset while programmed with 64bit addresses (they will preserve
 235	 * the top half of the address in internal, non visible
 236	 * registers). You end up with half the address coming from the
 237	 * kernel, and the other half coming from the firmware. Also,
 238	 * changing the programming leads to extra accesses even if the
 239	 * controller is supposed to be halted. The controller ends up with
 240	 * a fatal fault, and is then ripe for being properly reset.
 241	 *
 242	 * Special care is taken to only apply this if the device is behind
 243	 * an iommu. Doing anything when there is no iommu is definitely
 244	 * unsafe...
 245	 */
 246	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
 247		return;
 248
 249	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
 250
 251	/* Clear HSEIE so that faults do not get signaled */
 252	val = readl(&xhci->op_regs->command);
 253	val &= ~CMD_HSEIE;
 254	writel(val, &xhci->op_regs->command);
 255
 256	/* Clear HSE (aka FATAL) */
 257	val = readl(&xhci->op_regs->status);
 258	val |= STS_FATAL;
 259	writel(val, &xhci->op_regs->status);
 260
 261	/* Now zero the registers, and brace for impact */
 262	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 263	if (upper_32_bits(val))
 264		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
 265	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 266	if (upper_32_bits(val))
 267		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
 268
 269	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
 270		      ARRAY_SIZE(xhci->run_regs->ir_set));
 271
 272	for (i = 0; i < intrs; i++) {
 273		struct xhci_intr_reg __iomem *ir;
 274
 275		ir = &xhci->run_regs->ir_set[i];
 276		val = xhci_read_64(xhci, &ir->erst_base);
 277		if (upper_32_bits(val))
 278			xhci_write_64(xhci, 0, &ir->erst_base);
 279		val= xhci_read_64(xhci, &ir->erst_dequeue);
 280		if (upper_32_bits(val))
 281			xhci_write_64(xhci, 0, &ir->erst_dequeue);
 282	}
 283
 284	/* Wait for the fault to appear. It will be cleared on reset */
 285	err = xhci_handshake(&xhci->op_regs->status,
 286			     STS_FATAL, STS_FATAL,
 287			     XHCI_MAX_HALT_USEC);
 288	if (!err)
 289		xhci_info(xhci, "Fault detected\n");
 290}
 291
 292#ifdef CONFIG_USB_PCI
 293/*
 294 * Set up MSI
 295 */
 296static int xhci_setup_msi(struct xhci_hcd *xhci)
 297{
 298	int ret;
 299	/*
 300	 * TODO:Check with MSI Soc for sysdev
 301	 */
 302	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 303
 304	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
 305	if (ret < 0) {
 306		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 307				"failed to allocate MSI entry");
 308		return ret;
 309	}
 310
 311	ret = request_irq(pdev->irq, xhci_msi_irq,
 312				0, "xhci_hcd", xhci_to_hcd(xhci));
 313	if (ret) {
 314		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 315				"disable MSI interrupt");
 316		pci_free_irq_vectors(pdev);
 317	}
 318
 319	return ret;
 320}
 321
 322/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323 * Set up MSI-X
 324 */
 325static int xhci_setup_msix(struct xhci_hcd *xhci)
 326{
 327	int i, ret = 0;
 328	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 329	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 330
 331	/*
 332	 * calculate number of msi-x vectors supported.
 333	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
 334	 *   with max number of interrupters based on the xhci HCSPARAMS1.
 335	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
 336	 *   Add additional 1 vector to ensure always available interrupt.
 337	 */
 338	xhci->msix_count = min(num_online_cpus() + 1,
 339				HCS_MAX_INTRS(xhci->hcs_params1));
 340
 341	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
 342			PCI_IRQ_MSIX);
 343	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
 
 
 344		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 345				"Failed to enable MSI-X");
 346		return ret;
 347	}
 348
 349	for (i = 0; i < xhci->msix_count; i++) {
 350		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
 351				"xhci_hcd", xhci_to_hcd(xhci));
 
 352		if (ret)
 353			goto disable_msix;
 354	}
 355
 356	hcd->msix_enabled = 1;
 357	return ret;
 358
 359disable_msix:
 360	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
 361	while (--i >= 0)
 362		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 363	pci_free_irq_vectors(pdev);
 
 
 364	return ret;
 365}
 366
 367/* Free any IRQs and disable MSI-X */
 368static void xhci_cleanup_msix(struct xhci_hcd *xhci)
 369{
 370	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 371	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 372
 373	if (xhci->quirks & XHCI_PLAT)
 374		return;
 375
 376	/* return if using legacy interrupt */
 377	if (hcd->irq > 0)
 378		return;
 379
 380	if (hcd->msix_enabled) {
 381		int i;
 382
 383		for (i = 0; i < xhci->msix_count; i++)
 384			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
 385	} else {
 386		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
 387	}
 388
 389	pci_free_irq_vectors(pdev);
 390	hcd->msix_enabled = 0;
 
 391}
 392
 393static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 394{
 395	struct usb_hcd *hcd = xhci_to_hcd(xhci);
 396
 397	if (hcd->msix_enabled) {
 398		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
 399		int i;
 400
 
 401		for (i = 0; i < xhci->msix_count; i++)
 402			synchronize_irq(pci_irq_vector(pdev, i));
 403	}
 404}
 405
 406static int xhci_try_enable_msi(struct usb_hcd *hcd)
 407{
 408	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 409	struct pci_dev  *pdev;
 410	int ret;
 411
 412	/* The xhci platform device has set up IRQs through usb_add_hcd. */
 413	if (xhci->quirks & XHCI_PLAT)
 414		return 0;
 415
 416	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
 417	/*
 418	 * Some Fresco Logic host controllers advertise MSI, but fail to
 419	 * generate interrupts.  Don't even try to enable MSI.
 420	 */
 421	if (xhci->quirks & XHCI_BROKEN_MSI)
 422		goto legacy_irq;
 423
 424	/* unregister the legacy interrupt */
 425	if (hcd->irq)
 426		free_irq(hcd->irq, hcd);
 427	hcd->irq = 0;
 428
 429	ret = xhci_setup_msix(xhci);
 430	if (ret)
 431		/* fall back to msi*/
 432		ret = xhci_setup_msi(xhci);
 433
 434	if (!ret) {
 435		hcd->msi_enabled = 1;
 436		return 0;
 437	}
 438
 439	if (!pdev->irq) {
 440		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
 441		return -EINVAL;
 442	}
 443
 444 legacy_irq:
 445	if (!strlen(hcd->irq_descr))
 446		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
 447			 hcd->driver->description, hcd->self.busnum);
 448
 449	/* fall back to legacy interrupt*/
 450	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
 451			hcd->irq_descr, hcd);
 452	if (ret) {
 453		xhci_err(xhci, "request interrupt %d failed\n",
 454				pdev->irq);
 455		return ret;
 456	}
 457	hcd->irq = pdev->irq;
 458	return 0;
 459}
 460
 461#else
 462
 463static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
 464{
 465	return 0;
 466}
 467
 468static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
 469{
 470}
 471
 472static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
 473{
 474}
 475
 476#endif
 477
 478static void compliance_mode_recovery(struct timer_list *t)
 479{
 480	struct xhci_hcd *xhci;
 481	struct usb_hcd *hcd;
 482	struct xhci_hub *rhub;
 483	u32 temp;
 484	int i;
 485
 486	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
 487	rhub = &xhci->usb3_rhub;
 488
 489	for (i = 0; i < rhub->num_ports; i++) {
 490		temp = readl(rhub->ports[i]->addr);
 491		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
 492			/*
 493			 * Compliance Mode Detected. Letting USB Core
 494			 * handle the Warm Reset
 495			 */
 496			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 497					"Compliance mode detected->port %d",
 498					i + 1);
 499			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 500					"Attempting compliance mode recovery");
 501			hcd = xhci->shared_hcd;
 502
 503			if (hcd->state == HC_STATE_SUSPENDED)
 504				usb_hcd_resume_root_hub(hcd);
 505
 506			usb_hcd_poll_rh_status(hcd);
 507		}
 508	}
 509
 510	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
 511		mod_timer(&xhci->comp_mode_recovery_timer,
 512			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
 513}
 514
 515/*
 516 * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
 517 * that causes ports behind that hardware to enter compliance mode sometimes.
 518 * The quirk creates a timer that polls every 2 seconds the link state of
 519 * each host controller's port and recovers it by issuing a Warm reset
 520 * if Compliance mode is detected, otherwise the port will become "dead" (no
 521 * device connections or disconnections will be detected anymore). Becasue no
 522 * status event is generated when entering compliance mode (per xhci spec),
 523 * this quirk is needed on systems that have the failing hardware installed.
 524 */
 525static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
 526{
 527	xhci->port_status_u0 = 0;
 528	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
 529		    0);
 530	xhci->comp_mode_recovery_timer.expires = jiffies +
 531			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
 532
 
 
 533	add_timer(&xhci->comp_mode_recovery_timer);
 534	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 535			"Compliance mode recovery timer initialized");
 536}
 537
 538/*
 539 * This function identifies the systems that have installed the SN65LVPE502CP
 540 * USB3.0 re-driver and that need the Compliance Mode Quirk.
 541 * Systems:
 542 * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
 543 */
 544static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
 545{
 546	const char *dmi_product_name, *dmi_sys_vendor;
 547
 548	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
 549	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
 550	if (!dmi_product_name || !dmi_sys_vendor)
 551		return false;
 552
 553	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
 554		return false;
 555
 556	if (strstr(dmi_product_name, "Z420") ||
 557			strstr(dmi_product_name, "Z620") ||
 558			strstr(dmi_product_name, "Z820") ||
 559			strstr(dmi_product_name, "Z1 Workstation"))
 560		return true;
 561
 562	return false;
 563}
 564
 565static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
 566{
 567	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
 568}
 569
 570
 571/*
 572 * Initialize memory for HCD and xHC (one-time init).
 573 *
 574 * Program the PAGESIZE register, initialize the device context array, create
 575 * device contexts (?), set up a command ring segment (or two?), create event
 576 * ring (one for now).
 577 */
 578static int xhci_init(struct usb_hcd *hcd)
 579{
 580	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 581	int retval = 0;
 582
 583	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
 584	spin_lock_init(&xhci->lock);
 585	if (xhci->hci_version == 0x95 && link_quirk) {
 586		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 587				"QUIRK: Not clearing Link TRB chain bits.");
 588		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
 589	} else {
 590		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 591				"xHCI doesn't need link TRB QUIRK");
 592	}
 593	retval = xhci_mem_init(xhci, GFP_KERNEL);
 594	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
 595
 596	/* Initializing Compliance Mode Recovery Data If Needed */
 597	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
 598		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
 599		compliance_mode_recovery_timer_init(xhci);
 600	}
 601
 602	return retval;
 603}
 604
 605/*-------------------------------------------------------------------------*/
 606
 607
 608static int xhci_run_finished(struct xhci_hcd *xhci)
 609{
 610	if (xhci_start(xhci)) {
 611		xhci_halt(xhci);
 612		return -ENODEV;
 613	}
 614	xhci->shared_hcd->state = HC_STATE_RUNNING;
 615	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
 616
 617	if (xhci->quirks & XHCI_NEC_HOST)
 618		xhci_ring_cmd_db(xhci);
 619
 620	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 621			"Finished xhci_run for USB3 roothub");
 622	return 0;
 623}
 624
 625/*
 626 * Start the HC after it was halted.
 627 *
 628 * This function is called by the USB core when the HC driver is added.
 629 * Its opposite is xhci_stop().
 630 *
 631 * xhci_init() must be called once before this function can be called.
 632 * Reset the HC, enable device slot contexts, program DCBAAP, and
 633 * set command ring pointer and event ring pointer.
 634 *
 635 * Setup MSI-X vectors and enable interrupts.
 636 */
 637int xhci_run(struct usb_hcd *hcd)
 638{
 639	u32 temp;
 640	u64 temp_64;
 641	int ret;
 642	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 643
 644	/* Start the xHCI host controller running only after the USB 2.0 roothub
 645	 * is setup.
 646	 */
 647
 648	hcd->uses_new_polling = 1;
 649	if (!usb_hcd_is_primary_hcd(hcd))
 650		return xhci_run_finished(xhci);
 651
 652	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
 653
 654	ret = xhci_try_enable_msi(hcd);
 655	if (ret)
 656		return ret;
 657
 
 
 
 
 
 
 
 
 
 
 658	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 659	temp_64 &= ~ERST_PTR_MASK;
 660	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 661			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
 662
 663	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 664			"// Set the interrupt modulation register");
 665	temp = readl(&xhci->ir_set->irq_control);
 666	temp &= ~ER_IRQ_INTERVAL_MASK;
 667	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
 
 
 
 
 668	writel(temp, &xhci->ir_set->irq_control);
 669
 670	/* Set the HCD state before we enable the irqs */
 671	temp = readl(&xhci->op_regs->command);
 672	temp |= (CMD_EIE);
 673	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 674			"// Enable interrupts, cmd = 0x%x.", temp);
 675	writel(temp, &xhci->op_regs->command);
 676
 677	temp = readl(&xhci->ir_set->irq_pending);
 678	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 679			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
 680			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
 681	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
 
 682
 683	if (xhci->quirks & XHCI_NEC_HOST) {
 684		struct xhci_command *command;
 685
 686		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
 687		if (!command)
 688			return -ENOMEM;
 689
 690		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
 691				TRB_TYPE(TRB_NEC_GET_FW));
 692		if (ret)
 693			xhci_free_command(xhci, command);
 694	}
 695	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
 696	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 697			"Finished xhci_run for USB2 roothub");
 698
 699	xhci_dbc_init(xhci);
 700
 701	xhci_debugfs_init(xhci);
 702
 703	return 0;
 704}
 705EXPORT_SYMBOL_GPL(xhci_run);
 706
 707/*
 708 * Stop xHCI driver.
 709 *
 710 * This function is called by the USB core when the HC driver is removed.
 711 * Its opposite is xhci_run().
 712 *
 713 * Disable device contexts, disable IRQs, and quiesce the HC.
 714 * Reset the HC, finish any completed transactions, and cleanup memory.
 715 */
 716static void xhci_stop(struct usb_hcd *hcd)
 717{
 718	u32 temp;
 719	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 720
 721	mutex_lock(&xhci->mutex);
 722
 723	/* Only halt host and free memory after both hcds are removed */
 724	if (!usb_hcd_is_primary_hcd(hcd)) {
 725		mutex_unlock(&xhci->mutex);
 726		return;
 727	}
 728
 729	xhci_dbc_exit(xhci);
 730
 
 731	spin_lock_irq(&xhci->lock);
 732	xhci->xhc_state |= XHCI_STATE_HALTED;
 733	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
 
 
 
 
 734	xhci_halt(xhci);
 735	xhci_reset(xhci);
 736	spin_unlock_irq(&xhci->lock);
 737
 738	xhci_cleanup_msix(xhci);
 739
 740	/* Deleting Compliance Mode Recovery Timer */
 741	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
 742			(!(xhci_all_ports_seen_u0(xhci)))) {
 743		del_timer_sync(&xhci->comp_mode_recovery_timer);
 744		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
 745				"%s: compliance mode recovery timer deleted",
 746				__func__);
 747	}
 748
 749	if (xhci->quirks & XHCI_AMD_PLL_FIX)
 750		usb_amd_dev_put();
 751
 752	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 753			"// Disabling event ring interrupts");
 754	temp = readl(&xhci->op_regs->status);
 755	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
 756	temp = readl(&xhci->ir_set->irq_pending);
 757	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
 758
 759	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
 760	xhci_mem_cleanup(xhci);
 761	xhci_debugfs_exit(xhci);
 762	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 763			"xhci_stop completed - status = %x",
 764			readl(&xhci->op_regs->status));
 765	mutex_unlock(&xhci->mutex);
 766}
 767
 768/*
 769 * Shutdown HC (not bus-specific)
 770 *
 771 * This is called when the machine is rebooting or halting.  We assume that the
 772 * machine will be powered off, and the HC's internal state will be reset.
 773 * Don't bother to free memory.
 774 *
 775 * This will only ever be called with the main usb_hcd (the USB3 roothub).
 776 */
 777void xhci_shutdown(struct usb_hcd *hcd)
 778{
 779	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 780
 781	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
 782		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
 783
 784	spin_lock_irq(&xhci->lock);
 785	xhci_halt(xhci);
 786	/* Workaround for spurious wakeups at shutdown with HSW */
 787	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
 788		xhci_reset(xhci);
 789	spin_unlock_irq(&xhci->lock);
 790
 791	xhci_cleanup_msix(xhci);
 792
 793	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 794			"xhci_shutdown completed - status = %x",
 795			readl(&xhci->op_regs->status));
 
 
 
 
 796}
 797EXPORT_SYMBOL_GPL(xhci_shutdown);
 798
 799#ifdef CONFIG_PM
 800static void xhci_save_registers(struct xhci_hcd *xhci)
 801{
 802	xhci->s3.command = readl(&xhci->op_regs->command);
 803	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
 804	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
 805	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
 806	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
 807	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
 808	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
 809	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
 810	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
 811}
 812
 813static void xhci_restore_registers(struct xhci_hcd *xhci)
 814{
 815	writel(xhci->s3.command, &xhci->op_regs->command);
 816	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
 817	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
 818	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
 819	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
 820	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
 821	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
 822	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
 823	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
 824}
 825
 826static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
 827{
 828	u64	val_64;
 829
 830	/* step 2: initialize command ring buffer */
 831	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
 832	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
 833		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
 834				      xhci->cmd_ring->dequeue) &
 835		 (u64) ~CMD_RING_RSVD_BITS) |
 836		xhci->cmd_ring->cycle_state;
 837	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
 838			"// Setting command ring address to 0x%llx",
 839			(long unsigned long) val_64);
 840	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
 841}
 842
 843/*
 844 * The whole command ring must be cleared to zero when we suspend the host.
 845 *
 846 * The host doesn't save the command ring pointer in the suspend well, so we
 847 * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
 848 * aligned, because of the reserved bits in the command ring dequeue pointer
 849 * register.  Therefore, we can't just set the dequeue pointer back in the
 850 * middle of the ring (TRBs are 16-byte aligned).
 851 */
 852static void xhci_clear_command_ring(struct xhci_hcd *xhci)
 853{
 854	struct xhci_ring *ring;
 855	struct xhci_segment *seg;
 856
 857	ring = xhci->cmd_ring;
 858	seg = ring->deq_seg;
 859	do {
 860		memset(seg->trbs, 0,
 861			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
 862		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
 863			cpu_to_le32(~TRB_CYCLE);
 864		seg = seg->next;
 865	} while (seg != ring->deq_seg);
 866
 867	/* Reset the software enqueue and dequeue pointers */
 868	ring->deq_seg = ring->first_seg;
 869	ring->dequeue = ring->first_seg->trbs;
 870	ring->enq_seg = ring->deq_seg;
 871	ring->enqueue = ring->dequeue;
 872
 873	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
 874	/*
 875	 * Ring is now zeroed, so the HW should look for change of ownership
 876	 * when the cycle bit is set to 1.
 877	 */
 878	ring->cycle_state = 1;
 879
 880	/*
 881	 * Reset the hardware dequeue pointer.
 882	 * Yes, this will need to be re-written after resume, but we're paranoid
 883	 * and want to make sure the hardware doesn't access bogus memory
 884	 * because, say, the BIOS or an SMI started the host without changing
 885	 * the command ring pointers.
 886	 */
 887	xhci_set_cmd_ring_deq(xhci);
 888}
 889
 890/*
 891 * Disable port wake bits if do_wakeup is not set.
 892 *
 893 * Also clear a possible internal port wake state left hanging for ports that
 894 * detected termination but never successfully enumerated (trained to 0U).
 895 * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
 896 * at enumeration clears this wake, force one here as well for unconnected ports
 897 */
 898
 899static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
 900				       struct xhci_hub *rhub,
 901				       bool do_wakeup)
 902{
 
 
 903	unsigned long flags;
 904	u32 t1, t2, portsc;
 905	int i;
 906
 907	spin_lock_irqsave(&xhci->lock, flags);
 908
 909	for (i = 0; i < rhub->num_ports; i++) {
 910		portsc = readl(rhub->ports[i]->addr);
 911		t1 = xhci_port_state_to_neutral(portsc);
 912		t2 = t1;
 913
 914		/* clear wake bits if do_wake is not set */
 915		if (!do_wakeup)
 916			t2 &= ~PORT_WAKE_BITS;
 917
 918		/* Don't touch csc bit if connected or connect change is set */
 919		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
 920			t2 |= PORT_CSC;
 921
 922		if (t1 != t2) {
 923			writel(t2, rhub->ports[i]->addr);
 924			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
 925				 rhub->hcd->self.busnum, i + 1, portsc, t2);
 926		}
 927	}
 928	spin_unlock_irqrestore(&xhci->lock, flags);
 929}
 930
 931static bool xhci_pending_portevent(struct xhci_hcd *xhci)
 932{
 933	struct xhci_port	**ports;
 934	int			port_index;
 935	u32			status;
 936	u32			portsc;
 937
 938	status = readl(&xhci->op_regs->status);
 939	if (status & STS_EINT)
 940		return true;
 941	/*
 942	 * Checking STS_EINT is not enough as there is a lag between a change
 943	 * bit being set and the Port Status Change Event that it generated
 944	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
 945	 */
 946
 947	port_index = xhci->usb2_rhub.num_ports;
 948	ports = xhci->usb2_rhub.ports;
 949	while (port_index--) {
 950		portsc = readl(ports[port_index]->addr);
 951		if (portsc & PORT_CHANGE_MASK ||
 952		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 953			return true;
 
 954	}
 955	port_index = xhci->usb3_rhub.num_ports;
 956	ports = xhci->usb3_rhub.ports;
 957	while (port_index--) {
 958		portsc = readl(ports[port_index]->addr);
 959		if (portsc & PORT_CHANGE_MASK ||
 960		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
 961			return true;
 962	}
 963	return false;
 964}
 965
 966/*
 967 * Stop HC (not bus-specific)
 968 *
 969 * This is called when the machine transition into S3/S4 mode.
 970 *
 971 */
 972int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
 973{
 974	int			rc = 0;
 975	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
 976	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
 977	u32			command;
 978	u32			res;
 979
 980	if (!hcd->state)
 981		return 0;
 982
 983	if (hcd->state != HC_STATE_SUSPENDED ||
 984			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
 985		return -EINVAL;
 986
 987	/* Clear root port wake on bits if wakeup not allowed. */
 988	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
 989	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
 990
 991	if (!HCD_HW_ACCESSIBLE(hcd))
 992		return 0;
 993
 994	xhci_dbc_suspend(xhci);
 995
 996	/* Don't poll the roothubs on bus suspend. */
 997	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
 998	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
 999	del_timer_sync(&hcd->rh_timer);
1000	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1001	del_timer_sync(&xhci->shared_hcd->rh_timer);
1002
1003	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1004		usleep_range(1000, 1500);
1005
1006	spin_lock_irq(&xhci->lock);
1007	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1008	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1009	/* step 1: stop endpoint */
1010	/* skipped assuming that port suspend has done */
1011
1012	/* step 2: clear Run/Stop bit */
1013	command = readl(&xhci->op_regs->command);
1014	command &= ~CMD_RUN;
1015	writel(command, &xhci->op_regs->command);
1016
1017	/* Some chips from Fresco Logic need an extraordinary delay */
1018	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1019
1020	if (xhci_handshake(&xhci->op_regs->status,
1021		      STS_HALT, STS_HALT, delay)) {
1022		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1023		spin_unlock_irq(&xhci->lock);
1024		return -ETIMEDOUT;
1025	}
1026	xhci_clear_command_ring(xhci);
1027
1028	/* step 3: save registers */
1029	xhci_save_registers(xhci);
1030
1031	/* step 4: set CSS flag */
1032	command = readl(&xhci->op_regs->command);
1033	command |= CMD_CSS;
1034	writel(command, &xhci->op_regs->command);
1035	xhci->broken_suspend = 0;
1036	if (xhci_handshake(&xhci->op_regs->status,
1037				STS_SAVE, 0, 20 * 1000)) {
1038	/*
1039	 * AMD SNPS xHC 3.0 occasionally does not clear the
1040	 * SSS bit of USBSTS and when driver tries to poll
1041	 * to see if the xHC clears BIT(8) which never happens
1042	 * and driver assumes that controller is not responding
1043	 * and times out. To workaround this, its good to check
1044	 * if SRE and HCE bits are not set (as per xhci
1045	 * Section 5.4.2) and bypass the timeout.
1046	 */
1047		res = readl(&xhci->op_regs->status);
1048		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1049		    (((res & STS_SRE) == 0) &&
1050				((res & STS_HCE) == 0))) {
1051			xhci->broken_suspend = 1;
1052		} else {
1053			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1054			spin_unlock_irq(&xhci->lock);
1055			return -ETIMEDOUT;
1056		}
1057	}
1058	spin_unlock_irq(&xhci->lock);
1059
1060	/*
1061	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1062	 * is about to be suspended.
1063	 */
1064	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1065			(!(xhci_all_ports_seen_u0(xhci)))) {
1066		del_timer_sync(&xhci->comp_mode_recovery_timer);
1067		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1068				"%s: compliance mode recovery timer deleted",
1069				__func__);
1070	}
1071
1072	/* step 5: remove core well power */
1073	/* synchronize irq when using MSI-X */
1074	xhci_msix_sync_irqs(xhci);
1075
1076	return rc;
1077}
1078EXPORT_SYMBOL_GPL(xhci_suspend);
1079
1080/*
1081 * start xHC (not bus-specific)
1082 *
1083 * This is called when the machine transition from S3/S4 mode.
1084 *
1085 */
1086int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1087{
1088	u32			command, temp = 0;
1089	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1090	struct usb_hcd		*secondary_hcd;
1091	int			retval = 0;
1092	bool			comp_timer_running = false;
1093	bool			pending_portevent = false;
1094
1095	if (!hcd->state)
1096		return 0;
1097
1098	/* Wait a bit if either of the roothubs need to settle from the
1099	 * transition into bus suspend.
1100	 */
1101
1102	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1103	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1104		msleep(100);
1105
1106	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1107	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1108
1109	spin_lock_irq(&xhci->lock);
1110	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1111		hibernated = true;
1112
1113	if (!hibernated) {
1114		/*
1115		 * Some controllers might lose power during suspend, so wait
1116		 * for controller not ready bit to clear, just as in xHC init.
1117		 */
1118		retval = xhci_handshake(&xhci->op_regs->status,
1119					STS_CNR, 0, 10 * 1000 * 1000);
1120		if (retval) {
1121			xhci_warn(xhci, "Controller not ready at resume %d\n",
1122				  retval);
1123			spin_unlock_irq(&xhci->lock);
1124			return retval;
1125		}
1126		/* step 1: restore register */
1127		xhci_restore_registers(xhci);
1128		/* step 2: initialize command ring buffer */
1129		xhci_set_cmd_ring_deq(xhci);
1130		/* step 3: restore state and start state*/
1131		/* step 3: set CRS flag */
1132		command = readl(&xhci->op_regs->command);
1133		command |= CMD_CRS;
1134		writel(command, &xhci->op_regs->command);
1135		/*
1136		 * Some controllers take up to 55+ ms to complete the controller
1137		 * restore so setting the timeout to 100ms. Xhci specification
1138		 * doesn't mention any timeout value.
1139		 */
1140		if (xhci_handshake(&xhci->op_regs->status,
1141			      STS_RESTORE, 0, 100 * 1000)) {
1142			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1143			spin_unlock_irq(&xhci->lock);
1144			return -ETIMEDOUT;
1145		}
1146		temp = readl(&xhci->op_regs->status);
1147	}
1148
1149	/* If restore operation fails, re-initialize the HC during resume */
1150	if ((temp & STS_SRE) || hibernated) {
1151
1152		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1153				!(xhci_all_ports_seen_u0(xhci))) {
1154			del_timer_sync(&xhci->comp_mode_recovery_timer);
1155			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1156				"Compliance Mode Recovery Timer deleted!");
1157		}
1158
1159		/* Let the USB core know _both_ roothubs lost power. */
1160		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1161		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1162
1163		xhci_dbg(xhci, "Stop HCD\n");
1164		xhci_halt(xhci);
1165		xhci_zero_64b_regs(xhci);
1166		retval = xhci_reset(xhci);
1167		spin_unlock_irq(&xhci->lock);
1168		if (retval)
1169			return retval;
1170		xhci_cleanup_msix(xhci);
1171
1172		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1173		temp = readl(&xhci->op_regs->status);
1174		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1175		temp = readl(&xhci->ir_set->irq_pending);
1176		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
 
1177
1178		xhci_dbg(xhci, "cleaning up memory\n");
1179		xhci_mem_cleanup(xhci);
1180		xhci_debugfs_exit(xhci);
1181		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1182			    readl(&xhci->op_regs->status));
1183
1184		/* USB core calls the PCI reinit and start functions twice:
1185		 * first with the primary HCD, and then with the secondary HCD.
1186		 * If we don't do the same, the host will never be started.
1187		 */
1188		if (!usb_hcd_is_primary_hcd(hcd))
1189			secondary_hcd = hcd;
1190		else
1191			secondary_hcd = xhci->shared_hcd;
1192
1193		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1194		retval = xhci_init(hcd->primary_hcd);
1195		if (retval)
1196			return retval;
1197		comp_timer_running = true;
1198
1199		xhci_dbg(xhci, "Start the primary HCD\n");
1200		retval = xhci_run(hcd->primary_hcd);
1201		if (!retval) {
1202			xhci_dbg(xhci, "Start the secondary HCD\n");
1203			retval = xhci_run(secondary_hcd);
1204		}
1205		hcd->state = HC_STATE_SUSPENDED;
1206		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1207		goto done;
1208	}
1209
1210	/* step 4: set Run/Stop bit */
1211	command = readl(&xhci->op_regs->command);
1212	command |= CMD_RUN;
1213	writel(command, &xhci->op_regs->command);
1214	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1215		  0, 250 * 1000);
1216
1217	/* step 5: walk topology and initialize portsc,
1218	 * portpmsc and portli
1219	 */
1220	/* this is done in bus_resume */
1221
1222	/* step 6: restart each of the previously
1223	 * Running endpoints by ringing their doorbells
1224	 */
1225
1226	spin_unlock_irq(&xhci->lock);
1227
1228	xhci_dbc_resume(xhci);
1229
1230 done:
1231	if (retval == 0) {
1232		/*
1233		 * Resume roothubs only if there are pending events.
1234		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1235		 * the first wake signalling failed, give it that chance.
1236		 */
1237		pending_portevent = xhci_pending_portevent(xhci);
1238		if (!pending_portevent) {
1239			msleep(120);
1240			pending_portevent = xhci_pending_portevent(xhci);
1241		}
1242
1243		if (pending_portevent) {
1244			usb_hcd_resume_root_hub(xhci->shared_hcd);
1245			usb_hcd_resume_root_hub(hcd);
1246		}
1247	}
 
1248	/*
1249	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1250	 * be re-initialized Always after a system resume. Ports are subject
1251	 * to suffer the Compliance Mode issue again. It doesn't matter if
1252	 * ports have entered previously to U0 before system's suspension.
1253	 */
1254	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1255		compliance_mode_recovery_timer_init(xhci);
1256
1257	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1258		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1259
1260	/* Re-enable port polling. */
1261	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1262	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1263	usb_hcd_poll_rh_status(xhci->shared_hcd);
1264	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1265	usb_hcd_poll_rh_status(hcd);
1266
1267	return retval;
1268}
1269EXPORT_SYMBOL_GPL(xhci_resume);
1270#endif	/* CONFIG_PM */
1271
1272/*-------------------------------------------------------------------------*/
1273
1274static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1275{
1276	void *temp;
1277	int ret = 0;
1278	unsigned int buf_len;
1279	enum dma_data_direction dir;
1280
1281	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1282	buf_len = urb->transfer_buffer_length;
1283
1284	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1285			    dev_to_node(hcd->self.sysdev));
1286
1287	if (usb_urb_dir_out(urb))
1288		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1289				   temp, buf_len, 0);
1290
1291	urb->transfer_buffer = temp;
1292	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1293					   urb->transfer_buffer,
1294					   urb->transfer_buffer_length,
1295					   dir);
1296
1297	if (dma_mapping_error(hcd->self.sysdev,
1298			      urb->transfer_dma)) {
1299		ret = -EAGAIN;
1300		kfree(temp);
1301	} else {
1302		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1303	}
1304
1305	return ret;
1306}
1307
1308static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1309					  struct urb *urb)
1310{
1311	bool ret = false;
1312	unsigned int i;
1313	unsigned int len = 0;
1314	unsigned int trb_size;
1315	unsigned int max_pkt;
1316	struct scatterlist *sg;
1317	struct scatterlist *tail_sg;
1318
1319	tail_sg = urb->sg;
1320	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1321
1322	if (!urb->num_sgs)
1323		return ret;
1324
1325	if (urb->dev->speed >= USB_SPEED_SUPER)
1326		trb_size = TRB_CACHE_SIZE_SS;
1327	else
1328		trb_size = TRB_CACHE_SIZE_HS;
1329
1330	if (urb->transfer_buffer_length != 0 &&
1331	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1332		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1333			len = len + sg->length;
1334			if (i > trb_size - 2) {
1335				len = len - tail_sg->length;
1336				if (len < max_pkt) {
1337					ret = true;
1338					break;
1339				}
1340
1341				tail_sg = sg_next(tail_sg);
1342			}
1343		}
1344	}
1345	return ret;
1346}
1347
1348static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1349{
1350	unsigned int len;
1351	unsigned int buf_len;
1352	enum dma_data_direction dir;
1353
1354	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1355
1356	buf_len = urb->transfer_buffer_length;
1357
1358	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1359	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1360		dma_unmap_single(hcd->self.sysdev,
1361				 urb->transfer_dma,
1362				 urb->transfer_buffer_length,
1363				 dir);
1364
1365	if (usb_urb_dir_in(urb)) {
1366		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1367					   urb->transfer_buffer,
1368					   buf_len,
1369					   0);
1370		if (len != buf_len) {
1371			xhci_dbg(hcd_to_xhci(hcd),
1372				 "Copy from tmp buf to urb sg list failed\n");
1373			urb->actual_length = len;
1374		}
1375	}
1376	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1377	kfree(urb->transfer_buffer);
1378	urb->transfer_buffer = NULL;
1379}
1380
1381/*
1382 * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1383 * we'll copy the actual data into the TRB address register. This is limited to
1384 * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1385 * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1386 */
1387static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1388				gfp_t mem_flags)
1389{
1390	struct xhci_hcd *xhci;
1391
1392	xhci = hcd_to_xhci(hcd);
1393
1394	if (xhci_urb_suitable_for_idt(urb))
1395		return 0;
1396
1397	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1398		if (xhci_urb_temp_buffer_required(hcd, urb))
1399			return xhci_map_temp_buffer(hcd, urb);
1400	}
1401	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1402}
1403
1404static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1405{
1406	struct xhci_hcd *xhci;
1407	bool unmap_temp_buf = false;
1408
1409	xhci = hcd_to_xhci(hcd);
1410
1411	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1412		unmap_temp_buf = true;
1413
1414	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1415		xhci_unmap_temp_buf(hcd, urb);
1416	else
1417		usb_hcd_unmap_urb_for_dma(hcd, urb);
1418}
1419
1420/**
1421 * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1422 * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1423 * value to right shift 1 for the bitmask.
1424 *
1425 * Index  = (epnum * 2) + direction - 1,
1426 * where direction = 0 for OUT, 1 for IN.
1427 * For control endpoints, the IN index is used (OUT index is unused), so
1428 * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1429 */
1430unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1431{
1432	unsigned int index;
1433	if (usb_endpoint_xfer_control(desc))
1434		index = (unsigned int) (usb_endpoint_num(desc)*2);
1435	else
1436		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1437			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1438	return index;
1439}
1440EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1441
1442/* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1443 * address from the XHCI endpoint index.
1444 */
1445unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1446{
1447	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1448	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1449	return direction | number;
1450}
1451
1452/* Find the flag for this endpoint (for use in the control context).  Use the
1453 * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1454 * bit 1, etc.
1455 */
1456static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1457{
1458	return 1 << (xhci_get_endpoint_index(desc) + 1);
1459}
1460
 
 
 
 
 
 
 
 
 
1461/* Compute the last valid endpoint context index.  Basically, this is the
1462 * endpoint index plus one.  For slot contexts with more than valid endpoint,
1463 * we find the most significant bit set in the added contexts flags.
1464 * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1465 * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1466 */
1467unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1468{
1469	return fls(added_ctxs) - 1;
1470}
1471
1472/* Returns 1 if the arguments are OK;
1473 * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1474 */
1475static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1476		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1477		const char *func) {
1478	struct xhci_hcd	*xhci;
1479	struct xhci_virt_device	*virt_dev;
1480
1481	if (!hcd || (check_ep && !ep) || !udev) {
1482		pr_debug("xHCI %s called with invalid args\n", func);
1483		return -EINVAL;
1484	}
1485	if (!udev->parent) {
1486		pr_debug("xHCI %s called for root hub\n", func);
1487		return 0;
1488	}
1489
1490	xhci = hcd_to_xhci(hcd);
1491	if (check_virt_dev) {
1492		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1493			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1494					func);
1495			return -EINVAL;
1496		}
1497
1498		virt_dev = xhci->devs[udev->slot_id];
1499		if (virt_dev->udev != udev) {
1500			xhci_dbg(xhci, "xHCI %s called with udev and "
1501					  "virt_dev does not match\n", func);
1502			return -EINVAL;
1503		}
1504	}
1505
1506	if (xhci->xhc_state & XHCI_STATE_HALTED)
1507		return -ENODEV;
1508
1509	return 1;
1510}
1511
1512static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1513		struct usb_device *udev, struct xhci_command *command,
1514		bool ctx_change, bool must_succeed);
1515
1516/*
1517 * Full speed devices may have a max packet size greater than 8 bytes, but the
1518 * USB core doesn't know that until it reads the first 8 bytes of the
1519 * descriptor.  If the usb_device's max packet size changes after that point,
1520 * we need to issue an evaluate context command and wait on it.
1521 */
1522static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1523		unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1524{
1525	struct xhci_container_ctx *out_ctx;
1526	struct xhci_input_control_ctx *ctrl_ctx;
1527	struct xhci_ep_ctx *ep_ctx;
1528	struct xhci_command *command;
1529	int max_packet_size;
1530	int hw_max_packet_size;
1531	int ret = 0;
1532
1533	out_ctx = xhci->devs[slot_id]->out_ctx;
1534	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1535	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1536	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1537	if (hw_max_packet_size != max_packet_size) {
1538		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1539				"Max Packet Size for ep 0 changed.");
1540		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1541				"Max packet size in usb_device = %d",
1542				max_packet_size);
1543		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1544				"Max packet size in xHCI HW = %d",
1545				hw_max_packet_size);
1546		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1547				"Issuing evaluate context command.");
1548
1549		/* Set up the input context flags for the command */
1550		/* FIXME: This won't work if a non-default control endpoint
1551		 * changes max packet sizes.
1552		 */
1553
1554		command = xhci_alloc_command(xhci, true, mem_flags);
1555		if (!command)
1556			return -ENOMEM;
1557
1558		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1559		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1560		if (!ctrl_ctx) {
1561			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1562					__func__);
1563			ret = -ENOMEM;
1564			goto command_cleanup;
1565		}
1566		/* Set up the modified control endpoint 0 */
1567		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1568				xhci->devs[slot_id]->out_ctx, ep_index);
1569
1570		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1571		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1572		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1573		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1574
1575		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1576		ctrl_ctx->drop_flags = 0;
1577
 
 
 
 
 
1578		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1579				true, false);
1580
1581		/* Clean up the input context for later use by bandwidth
1582		 * functions.
1583		 */
1584		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1585command_cleanup:
1586		kfree(command->completion);
1587		kfree(command);
1588	}
1589	return ret;
1590}
1591
1592/*
1593 * non-error returns are a promise to giveback() the urb later
1594 * we drop ownership so next owner (or urb unlink) can get it
1595 */
1596static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1597{
1598	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
 
1599	unsigned long flags;
1600	int ret = 0;
1601	unsigned int slot_id, ep_index;
1602	unsigned int *ep_state;
1603	struct urb_priv	*urb_priv;
1604	int num_tds;
1605
1606	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1607					true, true, __func__) <= 0)
1608		return -EINVAL;
1609
1610	slot_id = urb->dev->slot_id;
1611	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1612	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1613
1614	if (!HCD_HW_ACCESSIBLE(hcd))
1615		return -ESHUTDOWN;
1616
1617	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1618		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1619		return -ENODEV;
1620	}
1621
1622	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1623		num_tds = urb->number_of_packets;
1624	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1625	    urb->transfer_buffer_length > 0 &&
1626	    urb->transfer_flags & URB_ZERO_PACKET &&
1627	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1628		num_tds = 2;
1629	else
1630		num_tds = 1;
1631
1632	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
 
1633	if (!urb_priv)
1634		return -ENOMEM;
1635
1636	urb_priv->num_tds = num_tds;
1637	urb_priv->num_tds_done = 0;
 
 
 
 
 
 
 
 
 
 
 
1638	urb->hcpriv = urb_priv;
1639
1640	trace_xhci_urb_enqueue(urb);
1641
1642	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1643		/* Check to see if the max packet size for the default control
1644		 * endpoint changed during FS device enumeration
1645		 */
1646		if (urb->dev->speed == USB_SPEED_FULL) {
1647			ret = xhci_check_maxpacket(xhci, slot_id,
1648					ep_index, urb, mem_flags);
1649			if (ret < 0) {
1650				xhci_urb_free_priv(urb_priv);
1651				urb->hcpriv = NULL;
1652				return ret;
1653			}
1654		}
1655	}
1656
1657	spin_lock_irqsave(&xhci->lock, flags);
1658
1659	if (xhci->xhc_state & XHCI_STATE_DYING) {
1660		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1661			 urb->ep->desc.bEndpointAddress, urb);
1662		ret = -ESHUTDOWN;
1663		goto free_priv;
1664	}
1665	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1666		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1667			  *ep_state);
1668		ret = -EINVAL;
1669		goto free_priv;
1670	}
1671	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1672		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1673		ret = -EINVAL;
1674		goto free_priv;
1675	}
1676
1677	switch (usb_endpoint_type(&urb->ep->desc)) {
1678
1679	case USB_ENDPOINT_XFER_CONTROL:
1680		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1681					 slot_id, ep_index);
1682		break;
1683	case USB_ENDPOINT_XFER_BULK:
1684		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1685					 slot_id, ep_index);
1686		break;
1687	case USB_ENDPOINT_XFER_INT:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1688		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1689				slot_id, ep_index);
1690		break;
1691	case USB_ENDPOINT_XFER_ISOC:
 
 
 
 
 
1692		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1693				slot_id, ep_index);
 
 
 
1694	}
1695
1696	if (ret) {
 
 
 
 
 
1697free_priv:
1698		xhci_urb_free_priv(urb_priv);
1699		urb->hcpriv = NULL;
1700	}
1701	spin_unlock_irqrestore(&xhci->lock, flags);
1702	return ret;
1703}
1704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1705/*
1706 * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1707 * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1708 * should pick up where it left off in the TD, unless a Set Transfer Ring
1709 * Dequeue Pointer is issued.
1710 *
1711 * The TRBs that make up the buffers for the canceled URB will be "removed" from
1712 * the ring.  Since the ring is a contiguous structure, they can't be physically
1713 * removed.  Instead, there are two options:
1714 *
1715 *  1) If the HC is in the middle of processing the URB to be canceled, we
1716 *     simply move the ring's dequeue pointer past those TRBs using the Set
1717 *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1718 *     when drivers timeout on the last submitted URB and attempt to cancel.
1719 *
1720 *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1721 *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1722 *     HC will need to invalidate the any TRBs it has cached after the stop
1723 *     endpoint command, as noted in the xHCI 0.95 errata.
1724 *
1725 *  3) The TD may have completed by the time the Stop Endpoint Command
1726 *     completes, so software needs to handle that case too.
1727 *
1728 * This function should protect against the TD enqueueing code ringing the
1729 * doorbell while this code is waiting for a Stop Endpoint command to complete.
1730 * It also needs to account for multiple cancellations on happening at the same
1731 * time for the same endpoint.
1732 *
1733 * Note that this function can be called in any context, or so says
1734 * usb_hcd_unlink_urb()
1735 */
1736static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1737{
1738	unsigned long flags;
1739	int ret, i;
1740	u32 temp;
1741	struct xhci_hcd *xhci;
1742	struct urb_priv	*urb_priv;
1743	struct xhci_td *td;
1744	unsigned int ep_index;
1745	struct xhci_ring *ep_ring;
1746	struct xhci_virt_ep *ep;
1747	struct xhci_command *command;
1748	struct xhci_virt_device *vdev;
1749
1750	xhci = hcd_to_xhci(hcd);
1751	spin_lock_irqsave(&xhci->lock, flags);
1752
1753	trace_xhci_urb_dequeue(urb);
1754
1755	/* Make sure the URB hasn't completed or been unlinked already */
1756	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1757	if (ret)
1758		goto done;
1759
1760	/* give back URB now if we can't queue it for cancel */
1761	vdev = xhci->devs[urb->dev->slot_id];
1762	urb_priv = urb->hcpriv;
1763	if (!vdev || !urb_priv)
1764		goto err_giveback;
1765
1766	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1767	ep = &vdev->eps[ep_index];
1768	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1769	if (!ep || !ep_ring)
1770		goto err_giveback;
1771
1772	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1773	temp = readl(&xhci->op_regs->status);
1774	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1775		xhci_hc_died(xhci);
1776		goto done;
1777	}
1778
1779	/*
1780	 * check ring is not re-allocated since URB was enqueued. If it is, then
1781	 * make sure none of the ring related pointers in this URB private data
1782	 * are touched, such as td_list, otherwise we overwrite freed data
1783	 */
1784	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1785		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1786		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1787			td = &urb_priv->td[i];
1788			if (!list_empty(&td->cancelled_td_list))
1789				list_del_init(&td->cancelled_td_list);
1790		}
1791		goto err_giveback;
1792	}
1793
1794	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1795		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1796				"HC halted, freeing TD manually.");
1797		for (i = urb_priv->num_tds_done;
1798		     i < urb_priv->num_tds;
 
1799		     i++) {
1800			td = &urb_priv->td[i];
1801			if (!list_empty(&td->td_list))
1802				list_del_init(&td->td_list);
1803			if (!list_empty(&td->cancelled_td_list))
1804				list_del_init(&td->cancelled_td_list);
1805		}
1806		goto err_giveback;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807	}
1808
1809	i = urb_priv->num_tds_done;
1810	if (i < urb_priv->num_tds)
 
1811		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1812				"Cancel URB %p, dev %s, ep 0x%x, "
1813				"starting at offset 0x%llx",
1814				urb, urb->dev->devpath,
1815				urb->ep->desc.bEndpointAddress,
1816				(unsigned long long) xhci_trb_virt_to_dma(
1817					urb_priv->td[i].start_seg,
1818					urb_priv->td[i].first_trb));
1819
1820	for (; i < urb_priv->num_tds; i++) {
1821		td = &urb_priv->td[i];
1822		/* TD can already be on cancelled list if ep halted on it */
1823		if (list_empty(&td->cancelled_td_list)) {
1824			td->cancel_status = TD_DIRTY;
1825			list_add_tail(&td->cancelled_td_list,
1826				      &ep->cancelled_td_list);
1827		}
1828	}
1829
1830	/* Queue a stop endpoint command, but only if this is
1831	 * the first cancellation to be handled.
1832	 */
1833	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1834		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1835		if (!command) {
1836			ret = -ENOMEM;
1837			goto done;
1838		}
1839		ep->ep_state |= EP_STOP_CMD_PENDING;
 
1840		ep->stop_cmd_timer.expires = jiffies +
1841			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1842		add_timer(&ep->stop_cmd_timer);
1843		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1844					 ep_index, 0);
1845		xhci_ring_cmd_db(xhci);
1846	}
1847done:
1848	spin_unlock_irqrestore(&xhci->lock, flags);
1849	return ret;
1850
1851err_giveback:
1852	if (urb_priv)
1853		xhci_urb_free_priv(urb_priv);
1854	usb_hcd_unlink_urb_from_ep(hcd, urb);
1855	spin_unlock_irqrestore(&xhci->lock, flags);
1856	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1857	return ret;
1858}
1859
1860/* Drop an endpoint from a new bandwidth configuration for this device.
1861 * Only one call to this function is allowed per endpoint before
1862 * check_bandwidth() or reset_bandwidth() must be called.
1863 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1864 * add the endpoint to the schedule with possibly new parameters denoted by a
1865 * different endpoint descriptor in usb_host_endpoint.
1866 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1867 * not allowed.
1868 *
1869 * The USB core will not allow URBs to be queued to an endpoint that is being
1870 * disabled, so there's no need for mutual exclusion to protect
1871 * the xhci->devs[slot_id] structure.
1872 */
1873int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1874		       struct usb_host_endpoint *ep)
1875{
1876	struct xhci_hcd *xhci;
1877	struct xhci_container_ctx *in_ctx, *out_ctx;
1878	struct xhci_input_control_ctx *ctrl_ctx;
1879	unsigned int ep_index;
1880	struct xhci_ep_ctx *ep_ctx;
1881	u32 drop_flag;
1882	u32 new_add_flags, new_drop_flags;
1883	int ret;
1884
1885	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1886	if (ret <= 0)
1887		return ret;
1888	xhci = hcd_to_xhci(hcd);
1889	if (xhci->xhc_state & XHCI_STATE_DYING)
1890		return -ENODEV;
1891
1892	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1893	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1894	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1895		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1896				__func__, drop_flag);
1897		return 0;
1898	}
1899
1900	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1901	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1902	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1903	if (!ctrl_ctx) {
1904		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1905				__func__);
1906		return 0;
1907	}
1908
1909	ep_index = xhci_get_endpoint_index(&ep->desc);
1910	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1911	/* If the HC already knows the endpoint is disabled,
1912	 * or the HCD has noted it is disabled, ignore this request
1913	 */
1914	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
 
1915	    le32_to_cpu(ctrl_ctx->drop_flags) &
1916	    xhci_get_endpoint_flag(&ep->desc)) {
1917		/* Do not warn when called after a usb_device_reset */
1918		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1919			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1920				  __func__, ep);
1921		return 0;
1922	}
1923
1924	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1925	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1926
1927	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1928	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1929
1930	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1931
1932	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
 
1933
1934	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1935			(unsigned int) ep->desc.bEndpointAddress,
1936			udev->slot_id,
1937			(unsigned int) new_drop_flags,
1938			(unsigned int) new_add_flags);
1939	return 0;
1940}
1941EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1942
1943/* Add an endpoint to a new possible bandwidth configuration for this device.
1944 * Only one call to this function is allowed per endpoint before
1945 * check_bandwidth() or reset_bandwidth() must be called.
1946 * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1947 * add the endpoint to the schedule with possibly new parameters denoted by a
1948 * different endpoint descriptor in usb_host_endpoint.
1949 * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1950 * not allowed.
1951 *
1952 * The USB core will not allow URBs to be queued to an endpoint until the
1953 * configuration or alt setting is installed in the device, so there's no need
1954 * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1955 */
1956int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1957		      struct usb_host_endpoint *ep)
1958{
1959	struct xhci_hcd *xhci;
1960	struct xhci_container_ctx *in_ctx;
1961	unsigned int ep_index;
1962	struct xhci_input_control_ctx *ctrl_ctx;
1963	struct xhci_ep_ctx *ep_ctx;
1964	u32 added_ctxs;
1965	u32 new_add_flags, new_drop_flags;
1966	struct xhci_virt_device *virt_dev;
1967	int ret = 0;
1968
1969	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1970	if (ret <= 0) {
1971		/* So we won't queue a reset ep command for a root hub */
1972		ep->hcpriv = NULL;
1973		return ret;
1974	}
1975	xhci = hcd_to_xhci(hcd);
1976	if (xhci->xhc_state & XHCI_STATE_DYING)
1977		return -ENODEV;
1978
1979	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1980	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1981		/* FIXME when we have to issue an evaluate endpoint command to
1982		 * deal with ep0 max packet size changing once we get the
1983		 * descriptors
1984		 */
1985		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1986				__func__, added_ctxs);
1987		return 0;
1988	}
1989
1990	virt_dev = xhci->devs[udev->slot_id];
1991	in_ctx = virt_dev->in_ctx;
1992	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1993	if (!ctrl_ctx) {
1994		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1995				__func__);
1996		return 0;
1997	}
1998
1999	ep_index = xhci_get_endpoint_index(&ep->desc);
2000	/* If this endpoint is already in use, and the upper layers are trying
2001	 * to add it again without dropping it, reject the addition.
2002	 */
2003	if (virt_dev->eps[ep_index].ring &&
2004			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
2005		xhci_warn(xhci, "Trying to add endpoint 0x%x "
2006				"without dropping it.\n",
2007				(unsigned int) ep->desc.bEndpointAddress);
2008		return -EINVAL;
2009	}
2010
2011	/* If the HCD has already noted the endpoint is enabled,
2012	 * ignore this request.
2013	 */
2014	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
2015		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
2016				__func__, ep);
2017		return 0;
2018	}
2019
2020	/*
2021	 * Configuration and alternate setting changes must be done in
2022	 * process context, not interrupt context (or so documenation
2023	 * for usb_set_interface() and usb_set_configuration() claim).
2024	 */
2025	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
2026		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
2027				__func__, ep->desc.bEndpointAddress);
2028		return -ENOMEM;
2029	}
2030
 
 
 
 
 
 
 
 
 
2031	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
2032	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
2033
2034	/* If xhci_endpoint_disable() was called for this endpoint, but the
2035	 * xHC hasn't been notified yet through the check_bandwidth() call,
2036	 * this re-adds a new state for the endpoint from the new endpoint
2037	 * descriptors.  We must drop and re-add this endpoint, so we leave the
2038	 * drop flags alone.
2039	 */
2040	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
2041
2042	/* Store the usb_device pointer for later use */
2043	ep->hcpriv = udev;
2044
2045	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
2046	trace_xhci_add_endpoint(ep_ctx);
2047
2048	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
2049			(unsigned int) ep->desc.bEndpointAddress,
2050			udev->slot_id,
2051			(unsigned int) new_drop_flags,
2052			(unsigned int) new_add_flags);
2053	return 0;
2054}
2055EXPORT_SYMBOL_GPL(xhci_add_endpoint);
2056
2057static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
2058{
2059	struct xhci_input_control_ctx *ctrl_ctx;
2060	struct xhci_ep_ctx *ep_ctx;
2061	struct xhci_slot_ctx *slot_ctx;
2062	int i;
2063
2064	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2065	if (!ctrl_ctx) {
2066		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2067				__func__);
2068		return;
2069	}
2070
2071	/* When a device's add flag and drop flag are zero, any subsequent
2072	 * configure endpoint command will leave that endpoint's state
2073	 * untouched.  Make sure we don't leave any old state in the input
2074	 * endpoint contexts.
2075	 */
2076	ctrl_ctx->drop_flags = 0;
2077	ctrl_ctx->add_flags = 0;
2078	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2079	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2080	/* Endpoint 0 is always valid */
2081	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2082	for (i = 1; i < 31; i++) {
2083		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2084		ep_ctx->ep_info = 0;
2085		ep_ctx->ep_info2 = 0;
2086		ep_ctx->deq = 0;
2087		ep_ctx->tx_info = 0;
2088	}
2089}
2090
2091static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2092		struct usb_device *udev, u32 *cmd_status)
2093{
2094	int ret;
2095
2096	switch (*cmd_status) {
2097	case COMP_COMMAND_ABORTED:
2098	case COMP_COMMAND_RING_STOPPED:
2099		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2100		ret = -ETIME;
2101		break;
2102	case COMP_RESOURCE_ERROR:
2103		dev_warn(&udev->dev,
2104			 "Not enough host controller resources for new device state.\n");
2105		ret = -ENOMEM;
2106		/* FIXME: can we allocate more resources for the HC? */
2107		break;
2108	case COMP_BANDWIDTH_ERROR:
2109	case COMP_SECONDARY_BANDWIDTH_ERROR:
2110		dev_warn(&udev->dev,
2111			 "Not enough bandwidth for new device state.\n");
2112		ret = -ENOSPC;
2113		/* FIXME: can we go back to the old state? */
2114		break;
2115	case COMP_TRB_ERROR:
2116		/* the HCD set up something wrong */
2117		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2118				"add flag = 1, "
2119				"and endpoint is not disabled.\n");
2120		ret = -EINVAL;
2121		break;
2122	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2123		dev_warn(&udev->dev,
2124			 "ERROR: Incompatible device for endpoint configure command.\n");
2125		ret = -ENODEV;
2126		break;
2127	case COMP_SUCCESS:
2128		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2129				"Successful Endpoint Configure command");
2130		ret = 0;
2131		break;
2132	default:
2133		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2134				*cmd_status);
2135		ret = -EINVAL;
2136		break;
2137	}
2138	return ret;
2139}
2140
2141static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2142		struct usb_device *udev, u32 *cmd_status)
2143{
2144	int ret;
 
2145
2146	switch (*cmd_status) {
2147	case COMP_COMMAND_ABORTED:
2148	case COMP_COMMAND_RING_STOPPED:
2149		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2150		ret = -ETIME;
2151		break;
2152	case COMP_PARAMETER_ERROR:
2153		dev_warn(&udev->dev,
2154			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2155		ret = -EINVAL;
2156		break;
2157	case COMP_SLOT_NOT_ENABLED_ERROR:
2158		dev_warn(&udev->dev,
2159			"WARN: slot not enabled for evaluate context command.\n");
2160		ret = -EINVAL;
2161		break;
2162	case COMP_CONTEXT_STATE_ERROR:
2163		dev_warn(&udev->dev,
2164			"WARN: invalid context state for evaluate context command.\n");
 
2165		ret = -EINVAL;
2166		break;
2167	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2168		dev_warn(&udev->dev,
2169			"ERROR: Incompatible device for evaluate context command.\n");
2170		ret = -ENODEV;
2171		break;
2172	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2173		/* Max Exit Latency too large error */
2174		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2175		ret = -EINVAL;
2176		break;
2177	case COMP_SUCCESS:
2178		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2179				"Successful evaluate context command");
2180		ret = 0;
2181		break;
2182	default:
2183		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2184			*cmd_status);
2185		ret = -EINVAL;
2186		break;
2187	}
2188	return ret;
2189}
2190
2191static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2192		struct xhci_input_control_ctx *ctrl_ctx)
2193{
2194	u32 valid_add_flags;
2195	u32 valid_drop_flags;
2196
2197	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2198	 * (bit 1).  The default control endpoint is added during the Address
2199	 * Device command and is never removed until the slot is disabled.
2200	 */
2201	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2202	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2203
2204	/* Use hweight32 to count the number of ones in the add flags, or
2205	 * number of endpoints added.  Don't count endpoints that are changed
2206	 * (both added and dropped).
2207	 */
2208	return hweight32(valid_add_flags) -
2209		hweight32(valid_add_flags & valid_drop_flags);
2210}
2211
2212static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2213		struct xhci_input_control_ctx *ctrl_ctx)
2214{
2215	u32 valid_add_flags;
2216	u32 valid_drop_flags;
2217
2218	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2219	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2220
2221	return hweight32(valid_drop_flags) -
2222		hweight32(valid_add_flags & valid_drop_flags);
2223}
2224
2225/*
2226 * We need to reserve the new number of endpoints before the configure endpoint
2227 * command completes.  We can't subtract the dropped endpoints from the number
2228 * of active endpoints until the command completes because we can oversubscribe
2229 * the host in this case:
2230 *
2231 *  - the first configure endpoint command drops more endpoints than it adds
2232 *  - a second configure endpoint command that adds more endpoints is queued
2233 *  - the first configure endpoint command fails, so the config is unchanged
2234 *  - the second command may succeed, even though there isn't enough resources
2235 *
2236 * Must be called with xhci->lock held.
2237 */
2238static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2239		struct xhci_input_control_ctx *ctrl_ctx)
2240{
2241	u32 added_eps;
2242
2243	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2244	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2245		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2246				"Not enough ep ctxs: "
2247				"%u active, need to add %u, limit is %u.",
2248				xhci->num_active_eps, added_eps,
2249				xhci->limit_active_eps);
2250		return -ENOMEM;
2251	}
2252	xhci->num_active_eps += added_eps;
2253	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2254			"Adding %u ep ctxs, %u now active.", added_eps,
2255			xhci->num_active_eps);
2256	return 0;
2257}
2258
2259/*
2260 * The configure endpoint was failed by the xHC for some other reason, so we
2261 * need to revert the resources that failed configuration would have used.
2262 *
2263 * Must be called with xhci->lock held.
2264 */
2265static void xhci_free_host_resources(struct xhci_hcd *xhci,
2266		struct xhci_input_control_ctx *ctrl_ctx)
2267{
2268	u32 num_failed_eps;
2269
2270	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2271	xhci->num_active_eps -= num_failed_eps;
2272	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2273			"Removing %u failed ep ctxs, %u now active.",
2274			num_failed_eps,
2275			xhci->num_active_eps);
2276}
2277
2278/*
2279 * Now that the command has completed, clean up the active endpoint count by
2280 * subtracting out the endpoints that were dropped (but not changed).
2281 *
2282 * Must be called with xhci->lock held.
2283 */
2284static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2285		struct xhci_input_control_ctx *ctrl_ctx)
2286{
2287	u32 num_dropped_eps;
2288
2289	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2290	xhci->num_active_eps -= num_dropped_eps;
2291	if (num_dropped_eps)
2292		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2293				"Removing %u dropped ep ctxs, %u now active.",
2294				num_dropped_eps,
2295				xhci->num_active_eps);
2296}
2297
2298static unsigned int xhci_get_block_size(struct usb_device *udev)
2299{
2300	switch (udev->speed) {
2301	case USB_SPEED_LOW:
2302	case USB_SPEED_FULL:
2303		return FS_BLOCK;
2304	case USB_SPEED_HIGH:
2305		return HS_BLOCK;
2306	case USB_SPEED_SUPER:
2307	case USB_SPEED_SUPER_PLUS:
2308		return SS_BLOCK;
2309	case USB_SPEED_UNKNOWN:
2310	case USB_SPEED_WIRELESS:
2311	default:
2312		/* Should never happen */
2313		return 1;
2314	}
2315}
2316
2317static unsigned int
2318xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2319{
2320	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2321		return LS_OVERHEAD;
2322	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2323		return FS_OVERHEAD;
2324	return HS_OVERHEAD;
2325}
2326
2327/* If we are changing a LS/FS device under a HS hub,
2328 * make sure (if we are activating a new TT) that the HS bus has enough
2329 * bandwidth for this new TT.
2330 */
2331static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2332		struct xhci_virt_device *virt_dev,
2333		int old_active_eps)
2334{
2335	struct xhci_interval_bw_table *bw_table;
2336	struct xhci_tt_bw_info *tt_info;
2337
2338	/* Find the bandwidth table for the root port this TT is attached to. */
2339	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2340	tt_info = virt_dev->tt_info;
2341	/* If this TT already had active endpoints, the bandwidth for this TT
2342	 * has already been added.  Removing all periodic endpoints (and thus
2343	 * making the TT enactive) will only decrease the bandwidth used.
2344	 */
2345	if (old_active_eps)
2346		return 0;
2347	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2348		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2349			return -ENOMEM;
2350		return 0;
2351	}
2352	/* Not sure why we would have no new active endpoints...
2353	 *
2354	 * Maybe because of an Evaluate Context change for a hub update or a
2355	 * control endpoint 0 max packet size change?
2356	 * FIXME: skip the bandwidth calculation in that case.
2357	 */
2358	return 0;
2359}
2360
2361static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2362		struct xhci_virt_device *virt_dev)
2363{
2364	unsigned int bw_reserved;
2365
2366	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2367	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2368		return -ENOMEM;
2369
2370	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2371	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2372		return -ENOMEM;
2373
2374	return 0;
2375}
2376
2377/*
2378 * This algorithm is a very conservative estimate of the worst-case scheduling
2379 * scenario for any one interval.  The hardware dynamically schedules the
2380 * packets, so we can't tell which microframe could be the limiting factor in
2381 * the bandwidth scheduling.  This only takes into account periodic endpoints.
2382 *
2383 * Obviously, we can't solve an NP complete problem to find the minimum worst
2384 * case scenario.  Instead, we come up with an estimate that is no less than
2385 * the worst case bandwidth used for any one microframe, but may be an
2386 * over-estimate.
2387 *
2388 * We walk the requirements for each endpoint by interval, starting with the
2389 * smallest interval, and place packets in the schedule where there is only one
2390 * possible way to schedule packets for that interval.  In order to simplify
2391 * this algorithm, we record the largest max packet size for each interval, and
2392 * assume all packets will be that size.
2393 *
2394 * For interval 0, we obviously must schedule all packets for each interval.
2395 * The bandwidth for interval 0 is just the amount of data to be transmitted
2396 * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2397 * the number of packets).
2398 *
2399 * For interval 1, we have two possible microframes to schedule those packets
2400 * in.  For this algorithm, if we can schedule the same number of packets for
2401 * each possible scheduling opportunity (each microframe), we will do so.  The
2402 * remaining number of packets will be saved to be transmitted in the gaps in
2403 * the next interval's scheduling sequence.
2404 *
2405 * As we move those remaining packets to be scheduled with interval 2 packets,
2406 * we have to double the number of remaining packets to transmit.  This is
2407 * because the intervals are actually powers of 2, and we would be transmitting
2408 * the previous interval's packets twice in this interval.  We also have to be
2409 * sure that when we look at the largest max packet size for this interval, we
2410 * also look at the largest max packet size for the remaining packets and take
2411 * the greater of the two.
2412 *
2413 * The algorithm continues to evenly distribute packets in each scheduling
2414 * opportunity, and push the remaining packets out, until we get to the last
2415 * interval.  Then those packets and their associated overhead are just added
2416 * to the bandwidth used.
2417 */
2418static int xhci_check_bw_table(struct xhci_hcd *xhci,
2419		struct xhci_virt_device *virt_dev,
2420		int old_active_eps)
2421{
2422	unsigned int bw_reserved;
2423	unsigned int max_bandwidth;
2424	unsigned int bw_used;
2425	unsigned int block_size;
2426	struct xhci_interval_bw_table *bw_table;
2427	unsigned int packet_size = 0;
2428	unsigned int overhead = 0;
2429	unsigned int packets_transmitted = 0;
2430	unsigned int packets_remaining = 0;
2431	unsigned int i;
2432
2433	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2434		return xhci_check_ss_bw(xhci, virt_dev);
2435
2436	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2437		max_bandwidth = HS_BW_LIMIT;
2438		/* Convert percent of bus BW reserved to blocks reserved */
2439		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2440	} else {
2441		max_bandwidth = FS_BW_LIMIT;
2442		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2443	}
2444
2445	bw_table = virt_dev->bw_table;
2446	/* We need to translate the max packet size and max ESIT payloads into
2447	 * the units the hardware uses.
2448	 */
2449	block_size = xhci_get_block_size(virt_dev->udev);
2450
2451	/* If we are manipulating a LS/FS device under a HS hub, double check
2452	 * that the HS bus has enough bandwidth if we are activing a new TT.
2453	 */
2454	if (virt_dev->tt_info) {
2455		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2456				"Recalculating BW for rootport %u",
2457				virt_dev->real_port);
2458		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2459			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2460					"newly activated TT.\n");
2461			return -ENOMEM;
2462		}
2463		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2464				"Recalculating BW for TT slot %u port %u",
2465				virt_dev->tt_info->slot_id,
2466				virt_dev->tt_info->ttport);
2467	} else {
2468		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2469				"Recalculating BW for rootport %u",
2470				virt_dev->real_port);
2471	}
2472
2473	/* Add in how much bandwidth will be used for interval zero, or the
2474	 * rounded max ESIT payload + number of packets * largest overhead.
2475	 */
2476	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2477		bw_table->interval_bw[0].num_packets *
2478		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2479
2480	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2481		unsigned int bw_added;
2482		unsigned int largest_mps;
2483		unsigned int interval_overhead;
2484
2485		/*
2486		 * How many packets could we transmit in this interval?
2487		 * If packets didn't fit in the previous interval, we will need
2488		 * to transmit that many packets twice within this interval.
2489		 */
2490		packets_remaining = 2 * packets_remaining +
2491			bw_table->interval_bw[i].num_packets;
2492
2493		/* Find the largest max packet size of this or the previous
2494		 * interval.
2495		 */
2496		if (list_empty(&bw_table->interval_bw[i].endpoints))
2497			largest_mps = 0;
2498		else {
2499			struct xhci_virt_ep *virt_ep;
2500			struct list_head *ep_entry;
2501
2502			ep_entry = bw_table->interval_bw[i].endpoints.next;
2503			virt_ep = list_entry(ep_entry,
2504					struct xhci_virt_ep, bw_endpoint_list);
2505			/* Convert to blocks, rounding up */
2506			largest_mps = DIV_ROUND_UP(
2507					virt_ep->bw_info.max_packet_size,
2508					block_size);
2509		}
2510		if (largest_mps > packet_size)
2511			packet_size = largest_mps;
2512
2513		/* Use the larger overhead of this or the previous interval. */
2514		interval_overhead = xhci_get_largest_overhead(
2515				&bw_table->interval_bw[i]);
2516		if (interval_overhead > overhead)
2517			overhead = interval_overhead;
2518
2519		/* How many packets can we evenly distribute across
2520		 * (1 << (i + 1)) possible scheduling opportunities?
2521		 */
2522		packets_transmitted = packets_remaining >> (i + 1);
2523
2524		/* Add in the bandwidth used for those scheduled packets */
2525		bw_added = packets_transmitted * (overhead + packet_size);
2526
2527		/* How many packets do we have remaining to transmit? */
2528		packets_remaining = packets_remaining % (1 << (i + 1));
2529
2530		/* What largest max packet size should those packets have? */
2531		/* If we've transmitted all packets, don't carry over the
2532		 * largest packet size.
2533		 */
2534		if (packets_remaining == 0) {
2535			packet_size = 0;
2536			overhead = 0;
2537		} else if (packets_transmitted > 0) {
2538			/* Otherwise if we do have remaining packets, and we've
2539			 * scheduled some packets in this interval, take the
2540			 * largest max packet size from endpoints with this
2541			 * interval.
2542			 */
2543			packet_size = largest_mps;
2544			overhead = interval_overhead;
2545		}
2546		/* Otherwise carry over packet_size and overhead from the last
2547		 * time we had a remainder.
2548		 */
2549		bw_used += bw_added;
2550		if (bw_used > max_bandwidth) {
2551			xhci_warn(xhci, "Not enough bandwidth. "
2552					"Proposed: %u, Max: %u\n",
2553				bw_used, max_bandwidth);
2554			return -ENOMEM;
2555		}
2556	}
2557	/*
2558	 * Ok, we know we have some packets left over after even-handedly
2559	 * scheduling interval 15.  We don't know which microframes they will
2560	 * fit into, so we over-schedule and say they will be scheduled every
2561	 * microframe.
2562	 */
2563	if (packets_remaining > 0)
2564		bw_used += overhead + packet_size;
2565
2566	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2567		unsigned int port_index = virt_dev->real_port - 1;
2568
2569		/* OK, we're manipulating a HS device attached to a
2570		 * root port bandwidth domain.  Include the number of active TTs
2571		 * in the bandwidth used.
2572		 */
2573		bw_used += TT_HS_OVERHEAD *
2574			xhci->rh_bw[port_index].num_active_tts;
2575	}
2576
2577	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2578		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2579		"Available: %u " "percent",
2580		bw_used, max_bandwidth, bw_reserved,
2581		(max_bandwidth - bw_used - bw_reserved) * 100 /
2582		max_bandwidth);
2583
2584	bw_used += bw_reserved;
2585	if (bw_used > max_bandwidth) {
2586		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2587				bw_used, max_bandwidth);
2588		return -ENOMEM;
2589	}
2590
2591	bw_table->bw_used = bw_used;
2592	return 0;
2593}
2594
2595static bool xhci_is_async_ep(unsigned int ep_type)
2596{
2597	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2598					ep_type != ISOC_IN_EP &&
2599					ep_type != INT_IN_EP);
2600}
2601
2602static bool xhci_is_sync_in_ep(unsigned int ep_type)
2603{
2604	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2605}
2606
2607static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2608{
2609	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2610
2611	if (ep_bw->ep_interval == 0)
2612		return SS_OVERHEAD_BURST +
2613			(ep_bw->mult * ep_bw->num_packets *
2614					(SS_OVERHEAD + mps));
2615	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2616				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2617				1 << ep_bw->ep_interval);
2618
2619}
2620
2621static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2622		struct xhci_bw_info *ep_bw,
2623		struct xhci_interval_bw_table *bw_table,
2624		struct usb_device *udev,
2625		struct xhci_virt_ep *virt_ep,
2626		struct xhci_tt_bw_info *tt_info)
2627{
2628	struct xhci_interval_bw	*interval_bw;
2629	int normalized_interval;
2630
2631	if (xhci_is_async_ep(ep_bw->type))
2632		return;
2633
2634	if (udev->speed >= USB_SPEED_SUPER) {
2635		if (xhci_is_sync_in_ep(ep_bw->type))
2636			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2637				xhci_get_ss_bw_consumed(ep_bw);
2638		else
2639			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2640				xhci_get_ss_bw_consumed(ep_bw);
2641		return;
2642	}
2643
2644	/* SuperSpeed endpoints never get added to intervals in the table, so
2645	 * this check is only valid for HS/FS/LS devices.
2646	 */
2647	if (list_empty(&virt_ep->bw_endpoint_list))
2648		return;
2649	/* For LS/FS devices, we need to translate the interval expressed in
2650	 * microframes to frames.
2651	 */
2652	if (udev->speed == USB_SPEED_HIGH)
2653		normalized_interval = ep_bw->ep_interval;
2654	else
2655		normalized_interval = ep_bw->ep_interval - 3;
2656
2657	if (normalized_interval == 0)
2658		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2659	interval_bw = &bw_table->interval_bw[normalized_interval];
2660	interval_bw->num_packets -= ep_bw->num_packets;
2661	switch (udev->speed) {
2662	case USB_SPEED_LOW:
2663		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2664		break;
2665	case USB_SPEED_FULL:
2666		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2667		break;
2668	case USB_SPEED_HIGH:
2669		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2670		break;
2671	case USB_SPEED_SUPER:
2672	case USB_SPEED_SUPER_PLUS:
2673	case USB_SPEED_UNKNOWN:
2674	case USB_SPEED_WIRELESS:
2675		/* Should never happen because only LS/FS/HS endpoints will get
2676		 * added to the endpoint list.
2677		 */
2678		return;
2679	}
2680	if (tt_info)
2681		tt_info->active_eps -= 1;
2682	list_del_init(&virt_ep->bw_endpoint_list);
2683}
2684
2685static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2686		struct xhci_bw_info *ep_bw,
2687		struct xhci_interval_bw_table *bw_table,
2688		struct usb_device *udev,
2689		struct xhci_virt_ep *virt_ep,
2690		struct xhci_tt_bw_info *tt_info)
2691{
2692	struct xhci_interval_bw	*interval_bw;
2693	struct xhci_virt_ep *smaller_ep;
2694	int normalized_interval;
2695
2696	if (xhci_is_async_ep(ep_bw->type))
2697		return;
2698
2699	if (udev->speed == USB_SPEED_SUPER) {
2700		if (xhci_is_sync_in_ep(ep_bw->type))
2701			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2702				xhci_get_ss_bw_consumed(ep_bw);
2703		else
2704			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2705				xhci_get_ss_bw_consumed(ep_bw);
2706		return;
2707	}
2708
2709	/* For LS/FS devices, we need to translate the interval expressed in
2710	 * microframes to frames.
2711	 */
2712	if (udev->speed == USB_SPEED_HIGH)
2713		normalized_interval = ep_bw->ep_interval;
2714	else
2715		normalized_interval = ep_bw->ep_interval - 3;
2716
2717	if (normalized_interval == 0)
2718		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2719	interval_bw = &bw_table->interval_bw[normalized_interval];
2720	interval_bw->num_packets += ep_bw->num_packets;
2721	switch (udev->speed) {
2722	case USB_SPEED_LOW:
2723		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2724		break;
2725	case USB_SPEED_FULL:
2726		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2727		break;
2728	case USB_SPEED_HIGH:
2729		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2730		break;
2731	case USB_SPEED_SUPER:
2732	case USB_SPEED_SUPER_PLUS:
2733	case USB_SPEED_UNKNOWN:
2734	case USB_SPEED_WIRELESS:
2735		/* Should never happen because only LS/FS/HS endpoints will get
2736		 * added to the endpoint list.
2737		 */
2738		return;
2739	}
2740
2741	if (tt_info)
2742		tt_info->active_eps += 1;
2743	/* Insert the endpoint into the list, largest max packet size first. */
2744	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2745			bw_endpoint_list) {
2746		if (ep_bw->max_packet_size >=
2747				smaller_ep->bw_info.max_packet_size) {
2748			/* Add the new ep before the smaller endpoint */
2749			list_add_tail(&virt_ep->bw_endpoint_list,
2750					&smaller_ep->bw_endpoint_list);
2751			return;
2752		}
2753	}
2754	/* Add the new endpoint at the end of the list. */
2755	list_add_tail(&virt_ep->bw_endpoint_list,
2756			&interval_bw->endpoints);
2757}
2758
2759void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2760		struct xhci_virt_device *virt_dev,
2761		int old_active_eps)
2762{
2763	struct xhci_root_port_bw_info *rh_bw_info;
2764	if (!virt_dev->tt_info)
2765		return;
2766
2767	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2768	if (old_active_eps == 0 &&
2769				virt_dev->tt_info->active_eps != 0) {
2770		rh_bw_info->num_active_tts += 1;
2771		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2772	} else if (old_active_eps != 0 &&
2773				virt_dev->tt_info->active_eps == 0) {
2774		rh_bw_info->num_active_tts -= 1;
2775		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2776	}
2777}
2778
2779static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2780		struct xhci_virt_device *virt_dev,
2781		struct xhci_container_ctx *in_ctx)
2782{
2783	struct xhci_bw_info ep_bw_info[31];
2784	int i;
2785	struct xhci_input_control_ctx *ctrl_ctx;
2786	int old_active_eps = 0;
2787
2788	if (virt_dev->tt_info)
2789		old_active_eps = virt_dev->tt_info->active_eps;
2790
2791	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2792	if (!ctrl_ctx) {
2793		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2794				__func__);
2795		return -ENOMEM;
2796	}
2797
2798	for (i = 0; i < 31; i++) {
2799		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2800			continue;
2801
2802		/* Make a copy of the BW info in case we need to revert this */
2803		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2804				sizeof(ep_bw_info[i]));
2805		/* Drop the endpoint from the interval table if the endpoint is
2806		 * being dropped or changed.
2807		 */
2808		if (EP_IS_DROPPED(ctrl_ctx, i))
2809			xhci_drop_ep_from_interval_table(xhci,
2810					&virt_dev->eps[i].bw_info,
2811					virt_dev->bw_table,
2812					virt_dev->udev,
2813					&virt_dev->eps[i],
2814					virt_dev->tt_info);
2815	}
2816	/* Overwrite the information stored in the endpoints' bw_info */
2817	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2818	for (i = 0; i < 31; i++) {
2819		/* Add any changed or added endpoints to the interval table */
2820		if (EP_IS_ADDED(ctrl_ctx, i))
2821			xhci_add_ep_to_interval_table(xhci,
2822					&virt_dev->eps[i].bw_info,
2823					virt_dev->bw_table,
2824					virt_dev->udev,
2825					&virt_dev->eps[i],
2826					virt_dev->tt_info);
2827	}
2828
2829	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2830		/* Ok, this fits in the bandwidth we have.
2831		 * Update the number of active TTs.
2832		 */
2833		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2834		return 0;
2835	}
2836
2837	/* We don't have enough bandwidth for this, revert the stored info. */
2838	for (i = 0; i < 31; i++) {
2839		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2840			continue;
2841
2842		/* Drop the new copies of any added or changed endpoints from
2843		 * the interval table.
2844		 */
2845		if (EP_IS_ADDED(ctrl_ctx, i)) {
2846			xhci_drop_ep_from_interval_table(xhci,
2847					&virt_dev->eps[i].bw_info,
2848					virt_dev->bw_table,
2849					virt_dev->udev,
2850					&virt_dev->eps[i],
2851					virt_dev->tt_info);
2852		}
2853		/* Revert the endpoint back to its old information */
2854		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2855				sizeof(ep_bw_info[i]));
2856		/* Add any changed or dropped endpoints back into the table */
2857		if (EP_IS_DROPPED(ctrl_ctx, i))
2858			xhci_add_ep_to_interval_table(xhci,
2859					&virt_dev->eps[i].bw_info,
2860					virt_dev->bw_table,
2861					virt_dev->udev,
2862					&virt_dev->eps[i],
2863					virt_dev->tt_info);
2864	}
2865	return -ENOMEM;
2866}
2867
2868
2869/* Issue a configure endpoint command or evaluate context command
2870 * and wait for it to finish.
2871 */
2872static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2873		struct usb_device *udev,
2874		struct xhci_command *command,
2875		bool ctx_change, bool must_succeed)
2876{
2877	int ret;
2878	unsigned long flags;
2879	struct xhci_input_control_ctx *ctrl_ctx;
2880	struct xhci_virt_device *virt_dev;
2881	struct xhci_slot_ctx *slot_ctx;
2882
2883	if (!command)
2884		return -EINVAL;
2885
2886	spin_lock_irqsave(&xhci->lock, flags);
2887
2888	if (xhci->xhc_state & XHCI_STATE_DYING) {
2889		spin_unlock_irqrestore(&xhci->lock, flags);
2890		return -ESHUTDOWN;
2891	}
2892
2893	virt_dev = xhci->devs[udev->slot_id];
2894
2895	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2896	if (!ctrl_ctx) {
2897		spin_unlock_irqrestore(&xhci->lock, flags);
2898		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2899				__func__);
2900		return -ENOMEM;
2901	}
2902
2903	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2904			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2905		spin_unlock_irqrestore(&xhci->lock, flags);
2906		xhci_warn(xhci, "Not enough host resources, "
2907				"active endpoint contexts = %u\n",
2908				xhci->num_active_eps);
2909		return -ENOMEM;
2910	}
2911	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2912	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2913		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2914			xhci_free_host_resources(xhci, ctrl_ctx);
2915		spin_unlock_irqrestore(&xhci->lock, flags);
2916		xhci_warn(xhci, "Not enough bandwidth\n");
2917		return -ENOMEM;
2918	}
2919
2920	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2921
2922	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2923	trace_xhci_configure_endpoint(slot_ctx);
2924
2925	if (!ctx_change)
2926		ret = xhci_queue_configure_endpoint(xhci, command,
2927				command->in_ctx->dma,
2928				udev->slot_id, must_succeed);
2929	else
2930		ret = xhci_queue_evaluate_context(xhci, command,
2931				command->in_ctx->dma,
2932				udev->slot_id, must_succeed);
2933	if (ret < 0) {
2934		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2935			xhci_free_host_resources(xhci, ctrl_ctx);
2936		spin_unlock_irqrestore(&xhci->lock, flags);
2937		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2938				"FIXME allocate a new ring segment");
2939		return -ENOMEM;
2940	}
2941	xhci_ring_cmd_db(xhci);
2942	spin_unlock_irqrestore(&xhci->lock, flags);
2943
2944	/* Wait for the configure endpoint command to complete */
2945	wait_for_completion(command->completion);
2946
2947	if (!ctx_change)
2948		ret = xhci_configure_endpoint_result(xhci, udev,
2949						     &command->status);
2950	else
2951		ret = xhci_evaluate_context_result(xhci, udev,
2952						   &command->status);
2953
2954	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2955		spin_lock_irqsave(&xhci->lock, flags);
2956		/* If the command failed, remove the reserved resources.
2957		 * Otherwise, clean up the estimate to include dropped eps.
2958		 */
2959		if (ret)
2960			xhci_free_host_resources(xhci, ctrl_ctx);
2961		else
2962			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2963		spin_unlock_irqrestore(&xhci->lock, flags);
2964	}
2965	return ret;
2966}
2967
2968static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2969	struct xhci_virt_device *vdev, int i)
2970{
2971	struct xhci_virt_ep *ep = &vdev->eps[i];
2972
2973	if (ep->ep_state & EP_HAS_STREAMS) {
2974		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2975				xhci_get_endpoint_address(i));
2976		xhci_free_stream_info(xhci, ep->stream_info);
2977		ep->stream_info = NULL;
2978		ep->ep_state &= ~EP_HAS_STREAMS;
2979	}
2980}
2981
2982/* Called after one or more calls to xhci_add_endpoint() or
2983 * xhci_drop_endpoint().  If this call fails, the USB core is expected
2984 * to call xhci_reset_bandwidth().
2985 *
2986 * Since we are in the middle of changing either configuration or
2987 * installing a new alt setting, the USB core won't allow URBs to be
2988 * enqueued for any endpoint on the old config or interface.  Nothing
2989 * else should be touching the xhci->devs[slot_id] structure, so we
2990 * don't need to take the xhci->lock for manipulating that.
2991 */
2992int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2993{
2994	int i;
2995	int ret = 0;
2996	struct xhci_hcd *xhci;
2997	struct xhci_virt_device	*virt_dev;
2998	struct xhci_input_control_ctx *ctrl_ctx;
2999	struct xhci_slot_ctx *slot_ctx;
3000	struct xhci_command *command;
3001
3002	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3003	if (ret <= 0)
3004		return ret;
3005	xhci = hcd_to_xhci(hcd);
3006	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
3007		(xhci->xhc_state & XHCI_STATE_REMOVING))
3008		return -ENODEV;
3009
3010	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3011	virt_dev = xhci->devs[udev->slot_id];
3012
3013	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3014	if (!command)
3015		return -ENOMEM;
3016
3017	command->in_ctx = virt_dev->in_ctx;
3018
3019	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
3020	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3021	if (!ctrl_ctx) {
3022		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3023				__func__);
3024		ret = -ENOMEM;
3025		goto command_cleanup;
3026	}
3027	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3028	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3029	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3030
3031	/* Don't issue the command if there's no endpoints to update. */
3032	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3033	    ctrl_ctx->drop_flags == 0) {
3034		ret = 0;
3035		goto command_cleanup;
3036	}
3037	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3038	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3039	for (i = 31; i >= 1; i--) {
3040		__le32 le32 = cpu_to_le32(BIT(i));
3041
3042		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3043		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3044			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3045			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3046			break;
3047		}
3048	}
 
 
 
3049
3050	ret = xhci_configure_endpoint(xhci, udev, command,
3051			false, false);
3052	if (ret)
3053		/* Callee should call reset_bandwidth() */
3054		goto command_cleanup;
3055
 
 
 
 
3056	/* Free any rings that were dropped, but not changed. */
3057	for (i = 1; i < 31; i++) {
3058		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3059		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3060			xhci_free_endpoint_ring(xhci, virt_dev, i);
3061			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3062		}
3063	}
3064	xhci_zero_in_ctx(xhci, virt_dev);
3065	/*
3066	 * Install any rings for completely new endpoints or changed endpoints,
3067	 * and free any old rings from changed endpoints.
3068	 */
3069	for (i = 1; i < 31; i++) {
3070		if (!virt_dev->eps[i].new_ring)
3071			continue;
3072		/* Only free the old ring if it exists.
3073		 * It may not if this is the first add of an endpoint.
3074		 */
3075		if (virt_dev->eps[i].ring) {
3076			xhci_free_endpoint_ring(xhci, virt_dev, i);
3077		}
3078		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3079		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3080		virt_dev->eps[i].new_ring = NULL;
3081		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3082	}
3083command_cleanup:
3084	kfree(command->completion);
3085	kfree(command);
3086
3087	return ret;
3088}
3089EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3090
3091void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3092{
3093	struct xhci_hcd *xhci;
3094	struct xhci_virt_device	*virt_dev;
3095	int i, ret;
3096
3097	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3098	if (ret <= 0)
3099		return;
3100	xhci = hcd_to_xhci(hcd);
3101
3102	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3103	virt_dev = xhci->devs[udev->slot_id];
3104	/* Free any rings allocated for added endpoints */
3105	for (i = 0; i < 31; i++) {
3106		if (virt_dev->eps[i].new_ring) {
3107			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3108			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3109			virt_dev->eps[i].new_ring = NULL;
3110		}
3111	}
3112	xhci_zero_in_ctx(xhci, virt_dev);
3113}
3114EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3115
3116static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3117		struct xhci_container_ctx *in_ctx,
3118		struct xhci_container_ctx *out_ctx,
3119		struct xhci_input_control_ctx *ctrl_ctx,
3120		u32 add_flags, u32 drop_flags)
3121{
3122	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3123	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3124	xhci_slot_copy(xhci, in_ctx, out_ctx);
3125	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
 
 
 
3126}
3127
3128static void xhci_endpoint_disable(struct usb_hcd *hcd,
3129				  struct usb_host_endpoint *host_ep)
 
3130{
3131	struct xhci_hcd		*xhci;
3132	struct xhci_virt_device	*vdev;
3133	struct xhci_virt_ep	*ep;
3134	struct usb_device	*udev;
3135	unsigned long		flags;
3136	unsigned int		ep_index;
3137
3138	xhci = hcd_to_xhci(hcd);
3139rescan:
3140	spin_lock_irqsave(&xhci->lock, flags);
 
 
 
 
3141
3142	udev = (struct usb_device *)host_ep->hcpriv;
3143	if (!udev || !udev->slot_id)
3144		goto done;
3145
3146	vdev = xhci->devs[udev->slot_id];
3147	if (!vdev)
3148		goto done;
3149
3150	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3151	ep = &vdev->eps[ep_index];
3152	if (!ep)
3153		goto done;
3154
3155	/* wait for hub_tt_work to finish clearing hub TT */
3156	if (ep->ep_state & EP_CLEARING_TT) {
3157		spin_unlock_irqrestore(&xhci->lock, flags);
3158		schedule_timeout_uninterruptible(1);
3159		goto rescan;
3160	}
 
3161
3162	if (ep->ep_state)
3163		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3164			 ep->ep_state);
3165done:
3166	host_ep->hcpriv = NULL;
3167	spin_unlock_irqrestore(&xhci->lock, flags);
3168}
3169
3170/*
3171 * Called after usb core issues a clear halt control message.
3172 * The host side of the halt should already be cleared by a reset endpoint
3173 * command issued when the STALL event was received.
3174 *
3175 * The reset endpoint command may only be issued to endpoints in the halted
3176 * state. For software that wishes to reset the data toggle or sequence number
3177 * of an endpoint that isn't in the halted state this function will issue a
3178 * configure endpoint command with the Drop and Add bits set for the target
3179 * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3180 */
3181
3182static void xhci_endpoint_reset(struct usb_hcd *hcd,
3183		struct usb_host_endpoint *host_ep)
3184{
3185	struct xhci_hcd *xhci;
3186	struct usb_device *udev;
3187	struct xhci_virt_device *vdev;
3188	struct xhci_virt_ep *ep;
3189	struct xhci_input_control_ctx *ctrl_ctx;
3190	struct xhci_command *stop_cmd, *cfg_cmd;
3191	unsigned int ep_index;
3192	unsigned long flags;
3193	u32 ep_flag;
3194	int err;
 
 
 
 
3195
3196	xhci = hcd_to_xhci(hcd);
3197	if (!host_ep->hcpriv)
3198		return;
3199	udev = (struct usb_device *) host_ep->hcpriv;
3200	vdev = xhci->devs[udev->slot_id];
3201
3202	/*
3203	 * vdev may be lost due to xHC restore error and re-initialization
3204	 * during S3/S4 resume. A new vdev will be allocated later by
3205	 * xhci_discover_or_reset_device()
3206	 */
3207	if (!udev->slot_id || !vdev)
3208		return;
3209	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3210	ep = &vdev->eps[ep_index];
3211	if (!ep)
3212		return;
3213
3214	/* Bail out if toggle is already being cleared by a endpoint reset */
3215	spin_lock_irqsave(&xhci->lock, flags);
3216	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3217		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3218		spin_unlock_irqrestore(&xhci->lock, flags);
3219		return;
 
 
 
3220	}
3221	spin_unlock_irqrestore(&xhci->lock, flags);
3222	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3223	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3224	    usb_endpoint_xfer_isoc(&host_ep->desc))
3225		return;
3226
3227	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
 
 
 
 
 
 
3228
3229	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3230		return;
 
 
3231
3232	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3233	if (!stop_cmd)
3234		return;
3235
3236	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3237	if (!cfg_cmd)
3238		goto cleanup;
3239
3240	spin_lock_irqsave(&xhci->lock, flags);
3241
3242	/* block queuing new trbs and ringing ep doorbell */
3243	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3244
3245	/*
3246	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3247	 * Driver is required to synchronously cancel all transfer request.
3248	 * Stop the endpoint to force xHC to update the output context
 
 
 
3249	 */
3250
3251	if (!list_empty(&ep->ring->td_list)) {
3252		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3253		spin_unlock_irqrestore(&xhci->lock, flags);
3254		xhci_free_command(xhci, cfg_cmd);
3255		goto cleanup;
3256	}
3257
3258	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3259					ep_index, 0);
3260	if (err < 0) {
3261		spin_unlock_irqrestore(&xhci->lock, flags);
3262		xhci_free_command(xhci, cfg_cmd);
3263		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3264				__func__, err);
3265		goto cleanup;
3266	}
3267
3268	xhci_ring_cmd_db(xhci);
3269	spin_unlock_irqrestore(&xhci->lock, flags);
3270
3271	wait_for_completion(stop_cmd->completion);
3272
3273	spin_lock_irqsave(&xhci->lock, flags);
3274
3275	/* config ep command clears toggle if add and drop ep flags are set */
3276	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3277	if (!ctrl_ctx) {
3278		spin_unlock_irqrestore(&xhci->lock, flags);
3279		xhci_free_command(xhci, cfg_cmd);
3280		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3281				__func__);
3282		goto cleanup;
3283	}
3284
3285	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3286					   ctrl_ctx, ep_flag, ep_flag);
3287	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3288
3289	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3290				      udev->slot_id, false);
3291	if (err < 0) {
3292		spin_unlock_irqrestore(&xhci->lock, flags);
3293		xhci_free_command(xhci, cfg_cmd);
3294		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3295				__func__, err);
3296		goto cleanup;
3297	}
3298
3299	xhci_ring_cmd_db(xhci);
3300	spin_unlock_irqrestore(&xhci->lock, flags);
3301
3302	wait_for_completion(cfg_cmd->completion);
3303
3304	xhci_free_command(xhci, cfg_cmd);
3305cleanup:
3306	xhci_free_command(xhci, stop_cmd);
3307	spin_lock_irqsave(&xhci->lock, flags);
3308	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3309		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3310	spin_unlock_irqrestore(&xhci->lock, flags);
3311}
3312
3313static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3314		struct usb_device *udev, struct usb_host_endpoint *ep,
3315		unsigned int slot_id)
3316{
3317	int ret;
3318	unsigned int ep_index;
3319	unsigned int ep_state;
3320
3321	if (!ep)
3322		return -EINVAL;
3323	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3324	if (ret <= 0)
3325		return -EINVAL;
3326	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3327		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3328				" descriptor for ep 0x%x does not support streams\n",
3329				ep->desc.bEndpointAddress);
3330		return -EINVAL;
3331	}
3332
3333	ep_index = xhci_get_endpoint_index(&ep->desc);
3334	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3335	if (ep_state & EP_HAS_STREAMS ||
3336			ep_state & EP_GETTING_STREAMS) {
3337		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3338				"already has streams set up.\n",
3339				ep->desc.bEndpointAddress);
3340		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3341				"dynamic stream context array reallocation.\n");
3342		return -EINVAL;
3343	}
3344	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3345		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3346				"endpoint 0x%x; URBs are pending.\n",
3347				ep->desc.bEndpointAddress);
3348		return -EINVAL;
3349	}
3350	return 0;
3351}
3352
3353static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3354		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3355{
3356	unsigned int max_streams;
3357
3358	/* The stream context array size must be a power of two */
3359	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3360	/*
3361	 * Find out how many primary stream array entries the host controller
3362	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3363	 * level page entries), but that's an optional feature for xHCI host
3364	 * controllers. xHCs must support at least 4 stream IDs.
3365	 */
3366	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3367	if (*num_stream_ctxs > max_streams) {
3368		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3369				max_streams);
3370		*num_stream_ctxs = max_streams;
3371		*num_streams = max_streams;
3372	}
3373}
3374
3375/* Returns an error code if one of the endpoint already has streams.
3376 * This does not change any data structures, it only checks and gathers
3377 * information.
3378 */
3379static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3380		struct usb_device *udev,
3381		struct usb_host_endpoint **eps, unsigned int num_eps,
3382		unsigned int *num_streams, u32 *changed_ep_bitmask)
3383{
3384	unsigned int max_streams;
3385	unsigned int endpoint_flag;
3386	int i;
3387	int ret;
3388
3389	for (i = 0; i < num_eps; i++) {
3390		ret = xhci_check_streams_endpoint(xhci, udev,
3391				eps[i], udev->slot_id);
3392		if (ret < 0)
3393			return ret;
3394
3395		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3396		if (max_streams < (*num_streams - 1)) {
3397			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3398					eps[i]->desc.bEndpointAddress,
3399					max_streams);
3400			*num_streams = max_streams+1;
3401		}
3402
3403		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3404		if (*changed_ep_bitmask & endpoint_flag)
3405			return -EINVAL;
3406		*changed_ep_bitmask |= endpoint_flag;
3407	}
3408	return 0;
3409}
3410
3411static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3412		struct usb_device *udev,
3413		struct usb_host_endpoint **eps, unsigned int num_eps)
3414{
3415	u32 changed_ep_bitmask = 0;
3416	unsigned int slot_id;
3417	unsigned int ep_index;
3418	unsigned int ep_state;
3419	int i;
3420
3421	slot_id = udev->slot_id;
3422	if (!xhci->devs[slot_id])
3423		return 0;
3424
3425	for (i = 0; i < num_eps; i++) {
3426		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3427		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3428		/* Are streams already being freed for the endpoint? */
3429		if (ep_state & EP_GETTING_NO_STREAMS) {
3430			xhci_warn(xhci, "WARN Can't disable streams for "
3431					"endpoint 0x%x, "
3432					"streams are being disabled already\n",
3433					eps[i]->desc.bEndpointAddress);
3434			return 0;
3435		}
3436		/* Are there actually any streams to free? */
3437		if (!(ep_state & EP_HAS_STREAMS) &&
3438				!(ep_state & EP_GETTING_STREAMS)) {
3439			xhci_warn(xhci, "WARN Can't disable streams for "
3440					"endpoint 0x%x, "
3441					"streams are already disabled!\n",
3442					eps[i]->desc.bEndpointAddress);
3443			xhci_warn(xhci, "WARN xhci_free_streams() called "
3444					"with non-streams endpoint\n");
3445			return 0;
3446		}
3447		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3448	}
3449	return changed_ep_bitmask;
3450}
3451
3452/*
3453 * The USB device drivers use this function (through the HCD interface in USB
3454 * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3455 * coordinate mass storage command queueing across multiple endpoints (basically
3456 * a stream ID == a task ID).
3457 *
3458 * Setting up streams involves allocating the same size stream context array
3459 * for each endpoint and issuing a configure endpoint command for all endpoints.
3460 *
3461 * Don't allow the call to succeed if one endpoint only supports one stream
3462 * (which means it doesn't support streams at all).
3463 *
3464 * Drivers may get less stream IDs than they asked for, if the host controller
3465 * hardware or endpoints claim they can't support the number of requested
3466 * stream IDs.
3467 */
3468static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3469		struct usb_host_endpoint **eps, unsigned int num_eps,
3470		unsigned int num_streams, gfp_t mem_flags)
3471{
3472	int i, ret;
3473	struct xhci_hcd *xhci;
3474	struct xhci_virt_device *vdev;
3475	struct xhci_command *config_cmd;
3476	struct xhci_input_control_ctx *ctrl_ctx;
3477	unsigned int ep_index;
3478	unsigned int num_stream_ctxs;
3479	unsigned int max_packet;
3480	unsigned long flags;
3481	u32 changed_ep_bitmask = 0;
3482
3483	if (!eps)
3484		return -EINVAL;
3485
3486	/* Add one to the number of streams requested to account for
3487	 * stream 0 that is reserved for xHCI usage.
3488	 */
3489	num_streams += 1;
3490	xhci = hcd_to_xhci(hcd);
3491	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3492			num_streams);
3493
3494	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3495	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3496			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3497		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3498		return -ENOSYS;
3499	}
3500
3501	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3502	if (!config_cmd)
 
3503		return -ENOMEM;
3504
3505	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3506	if (!ctrl_ctx) {
3507		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3508				__func__);
3509		xhci_free_command(xhci, config_cmd);
3510		return -ENOMEM;
3511	}
3512
3513	/* Check to make sure all endpoints are not already configured for
3514	 * streams.  While we're at it, find the maximum number of streams that
3515	 * all the endpoints will support and check for duplicate endpoints.
3516	 */
3517	spin_lock_irqsave(&xhci->lock, flags);
3518	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3519			num_eps, &num_streams, &changed_ep_bitmask);
3520	if (ret < 0) {
3521		xhci_free_command(xhci, config_cmd);
3522		spin_unlock_irqrestore(&xhci->lock, flags);
3523		return ret;
3524	}
3525	if (num_streams <= 1) {
3526		xhci_warn(xhci, "WARN: endpoints can't handle "
3527				"more than one stream.\n");
3528		xhci_free_command(xhci, config_cmd);
3529		spin_unlock_irqrestore(&xhci->lock, flags);
3530		return -EINVAL;
3531	}
3532	vdev = xhci->devs[udev->slot_id];
3533	/* Mark each endpoint as being in transition, so
3534	 * xhci_urb_enqueue() will reject all URBs.
3535	 */
3536	for (i = 0; i < num_eps; i++) {
3537		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3538		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3539	}
3540	spin_unlock_irqrestore(&xhci->lock, flags);
3541
3542	/* Setup internal data structures and allocate HW data structures for
3543	 * streams (but don't install the HW structures in the input context
3544	 * until we're sure all memory allocation succeeded).
3545	 */
3546	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3547	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3548			num_stream_ctxs, num_streams);
3549
3550	for (i = 0; i < num_eps; i++) {
3551		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3552		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3553		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3554				num_stream_ctxs,
3555				num_streams,
3556				max_packet, mem_flags);
3557		if (!vdev->eps[ep_index].stream_info)
3558			goto cleanup;
3559		/* Set maxPstreams in endpoint context and update deq ptr to
3560		 * point to stream context array. FIXME
3561		 */
3562	}
3563
3564	/* Set up the input context for a configure endpoint command. */
3565	for (i = 0; i < num_eps; i++) {
3566		struct xhci_ep_ctx *ep_ctx;
3567
3568		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3569		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3570
3571		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3572				vdev->out_ctx, ep_index);
3573		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3574				vdev->eps[ep_index].stream_info);
3575	}
3576	/* Tell the HW to drop its old copy of the endpoint context info
3577	 * and add the updated copy from the input context.
3578	 */
3579	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3580			vdev->out_ctx, ctrl_ctx,
3581			changed_ep_bitmask, changed_ep_bitmask);
3582
3583	/* Issue and wait for the configure endpoint command */
3584	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3585			false, false);
3586
3587	/* xHC rejected the configure endpoint command for some reason, so we
3588	 * leave the old ring intact and free our internal streams data
3589	 * structure.
3590	 */
3591	if (ret < 0)
3592		goto cleanup;
3593
3594	spin_lock_irqsave(&xhci->lock, flags);
3595	for (i = 0; i < num_eps; i++) {
3596		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3597		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3598		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3599			 udev->slot_id, ep_index);
3600		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3601	}
3602	xhci_free_command(xhci, config_cmd);
3603	spin_unlock_irqrestore(&xhci->lock, flags);
3604
3605	for (i = 0; i < num_eps; i++) {
3606		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3607		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3608	}
3609	/* Subtract 1 for stream 0, which drivers can't use */
3610	return num_streams - 1;
3611
3612cleanup:
3613	/* If it didn't work, free the streams! */
3614	for (i = 0; i < num_eps; i++) {
3615		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3616		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3617		vdev->eps[ep_index].stream_info = NULL;
3618		/* FIXME Unset maxPstreams in endpoint context and
3619		 * update deq ptr to point to normal string ring.
3620		 */
3621		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3622		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3623		xhci_endpoint_zero(xhci, vdev, eps[i]);
3624	}
3625	xhci_free_command(xhci, config_cmd);
3626	return -ENOMEM;
3627}
3628
3629/* Transition the endpoint from using streams to being a "normal" endpoint
3630 * without streams.
3631 *
3632 * Modify the endpoint context state, submit a configure endpoint command,
3633 * and free all endpoint rings for streams if that completes successfully.
3634 */
3635static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3636		struct usb_host_endpoint **eps, unsigned int num_eps,
3637		gfp_t mem_flags)
3638{
3639	int i, ret;
3640	struct xhci_hcd *xhci;
3641	struct xhci_virt_device *vdev;
3642	struct xhci_command *command;
3643	struct xhci_input_control_ctx *ctrl_ctx;
3644	unsigned int ep_index;
3645	unsigned long flags;
3646	u32 changed_ep_bitmask;
3647
3648	xhci = hcd_to_xhci(hcd);
3649	vdev = xhci->devs[udev->slot_id];
3650
3651	/* Set up a configure endpoint command to remove the streams rings */
3652	spin_lock_irqsave(&xhci->lock, flags);
3653	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3654			udev, eps, num_eps);
3655	if (changed_ep_bitmask == 0) {
3656		spin_unlock_irqrestore(&xhci->lock, flags);
3657		return -EINVAL;
3658	}
3659
3660	/* Use the xhci_command structure from the first endpoint.  We may have
3661	 * allocated too many, but the driver may call xhci_free_streams() for
3662	 * each endpoint it grouped into one call to xhci_alloc_streams().
3663	 */
3664	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3665	command = vdev->eps[ep_index].stream_info->free_streams_command;
3666	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3667	if (!ctrl_ctx) {
3668		spin_unlock_irqrestore(&xhci->lock, flags);
3669		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3670				__func__);
3671		return -EINVAL;
3672	}
3673
3674	for (i = 0; i < num_eps; i++) {
3675		struct xhci_ep_ctx *ep_ctx;
3676
3677		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3678		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3679		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3680			EP_GETTING_NO_STREAMS;
3681
3682		xhci_endpoint_copy(xhci, command->in_ctx,
3683				vdev->out_ctx, ep_index);
3684		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3685				&vdev->eps[ep_index]);
3686	}
3687	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3688			vdev->out_ctx, ctrl_ctx,
3689			changed_ep_bitmask, changed_ep_bitmask);
3690	spin_unlock_irqrestore(&xhci->lock, flags);
3691
3692	/* Issue and wait for the configure endpoint command,
3693	 * which must succeed.
3694	 */
3695	ret = xhci_configure_endpoint(xhci, udev, command,
3696			false, true);
3697
3698	/* xHC rejected the configure endpoint command for some reason, so we
3699	 * leave the streams rings intact.
3700	 */
3701	if (ret < 0)
3702		return ret;
3703
3704	spin_lock_irqsave(&xhci->lock, flags);
3705	for (i = 0; i < num_eps; i++) {
3706		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3707		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3708		vdev->eps[ep_index].stream_info = NULL;
3709		/* FIXME Unset maxPstreams in endpoint context and
3710		 * update deq ptr to point to normal string ring.
3711		 */
3712		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3713		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3714	}
3715	spin_unlock_irqrestore(&xhci->lock, flags);
3716
3717	return 0;
3718}
3719
3720/*
3721 * Deletes endpoint resources for endpoints that were active before a Reset
3722 * Device command, or a Disable Slot command.  The Reset Device command leaves
3723 * the control endpoint intact, whereas the Disable Slot command deletes it.
3724 *
3725 * Must be called with xhci->lock held.
3726 */
3727void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3728	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3729{
3730	int i;
3731	unsigned int num_dropped_eps = 0;
3732	unsigned int drop_flags = 0;
3733
3734	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3735		if (virt_dev->eps[i].ring) {
3736			drop_flags |= 1 << i;
3737			num_dropped_eps++;
3738		}
3739	}
3740	xhci->num_active_eps -= num_dropped_eps;
3741	if (num_dropped_eps)
3742		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3743				"Dropped %u ep ctxs, flags = 0x%x, "
3744				"%u now active.",
3745				num_dropped_eps, drop_flags,
3746				xhci->num_active_eps);
3747}
3748
3749/*
3750 * This submits a Reset Device Command, which will set the device state to 0,
3751 * set the device address to 0, and disable all the endpoints except the default
3752 * control endpoint.  The USB core should come back and call
3753 * xhci_address_device(), and then re-set up the configuration.  If this is
3754 * called because of a usb_reset_and_verify_device(), then the old alternate
3755 * settings will be re-installed through the normal bandwidth allocation
3756 * functions.
3757 *
3758 * Wait for the Reset Device command to finish.  Remove all structures
3759 * associated with the endpoints that were disabled.  Clear the input device
3760 * structure? Reset the control endpoint 0 max packet size?
3761 *
3762 * If the virt_dev to be reset does not exist or does not match the udev,
3763 * it means the device is lost, possibly due to the xHC restore error and
3764 * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3765 * re-allocate the device.
3766 */
3767static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3768		struct usb_device *udev)
3769{
3770	int ret, i;
3771	unsigned long flags;
3772	struct xhci_hcd *xhci;
3773	unsigned int slot_id;
3774	struct xhci_virt_device *virt_dev;
3775	struct xhci_command *reset_device_cmd;
 
3776	struct xhci_slot_ctx *slot_ctx;
3777	int old_active_eps = 0;
3778
3779	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3780	if (ret <= 0)
3781		return ret;
3782	xhci = hcd_to_xhci(hcd);
3783	slot_id = udev->slot_id;
3784	virt_dev = xhci->devs[slot_id];
3785	if (!virt_dev) {
3786		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3787				"not exist. Re-allocate the device\n", slot_id);
3788		ret = xhci_alloc_dev(hcd, udev);
3789		if (ret == 1)
3790			return 0;
3791		else
3792			return -EINVAL;
3793	}
3794
3795	if (virt_dev->tt_info)
3796		old_active_eps = virt_dev->tt_info->active_eps;
3797
3798	if (virt_dev->udev != udev) {
3799		/* If the virt_dev and the udev does not match, this virt_dev
3800		 * may belong to another udev.
3801		 * Re-allocate the device.
3802		 */
3803		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3804				"not match the udev. Re-allocate the device\n",
3805				slot_id);
3806		ret = xhci_alloc_dev(hcd, udev);
3807		if (ret == 1)
3808			return 0;
3809		else
3810			return -EINVAL;
3811	}
3812
3813	/* If device is not setup, there is no point in resetting it */
3814	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3815	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3816						SLOT_STATE_DISABLED)
3817		return 0;
3818
3819	trace_xhci_discover_or_reset_device(slot_ctx);
3820
3821	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3822	/* Allocate the command structure that holds the struct completion.
3823	 * Assume we're in process context, since the normal device reset
3824	 * process has to wait for the device anyway.  Storage devices are
3825	 * reset as part of error handling, so use GFP_NOIO instead of
3826	 * GFP_KERNEL.
3827	 */
3828	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3829	if (!reset_device_cmd) {
3830		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3831		return -ENOMEM;
3832	}
3833
3834	/* Attempt to submit the Reset Device command to the command ring */
3835	spin_lock_irqsave(&xhci->lock, flags);
3836
3837	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3838	if (ret) {
3839		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3840		spin_unlock_irqrestore(&xhci->lock, flags);
3841		goto command_cleanup;
3842	}
3843	xhci_ring_cmd_db(xhci);
3844	spin_unlock_irqrestore(&xhci->lock, flags);
3845
3846	/* Wait for the Reset Device command to finish */
3847	wait_for_completion(reset_device_cmd->completion);
3848
3849	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3850	 * unless we tried to reset a slot ID that wasn't enabled,
3851	 * or the device wasn't in the addressed or configured state.
3852	 */
3853	ret = reset_device_cmd->status;
3854	switch (ret) {
3855	case COMP_COMMAND_ABORTED:
3856	case COMP_COMMAND_RING_STOPPED:
3857		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3858		ret = -ETIME;
3859		goto command_cleanup;
3860	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3861	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3862		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3863				slot_id,
3864				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3865		xhci_dbg(xhci, "Not freeing device rings.\n");
3866		/* Don't treat this as an error.  May change my mind later. */
3867		ret = 0;
3868		goto command_cleanup;
3869	case COMP_SUCCESS:
3870		xhci_dbg(xhci, "Successful reset device command.\n");
3871		break;
3872	default:
3873		if (xhci_is_vendor_info_code(xhci, ret))
3874			break;
3875		xhci_warn(xhci, "Unknown completion code %u for "
3876				"reset device command.\n", ret);
3877		ret = -EINVAL;
3878		goto command_cleanup;
3879	}
3880
3881	/* Free up host controller endpoint resources */
3882	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3883		spin_lock_irqsave(&xhci->lock, flags);
3884		/* Don't delete the default control endpoint resources */
3885		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3886		spin_unlock_irqrestore(&xhci->lock, flags);
3887	}
3888
3889	/* Everything but endpoint 0 is disabled, so free the rings. */
3890	for (i = 1; i < 31; i++) {
 
3891		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3892
3893		if (ep->ep_state & EP_HAS_STREAMS) {
3894			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3895					xhci_get_endpoint_address(i));
3896			xhci_free_stream_info(xhci, ep->stream_info);
3897			ep->stream_info = NULL;
3898			ep->ep_state &= ~EP_HAS_STREAMS;
3899		}
3900
3901		if (ep->ring) {
3902			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3903			xhci_free_endpoint_ring(xhci, virt_dev, i);
3904		}
3905		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3906			xhci_drop_ep_from_interval_table(xhci,
3907					&virt_dev->eps[i].bw_info,
3908					virt_dev->bw_table,
3909					udev,
3910					&virt_dev->eps[i],
3911					virt_dev->tt_info);
3912		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3913	}
3914	/* If necessary, update the number of active TTs on this root port */
3915	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3916	virt_dev->flags = 0;
 
 
3917	ret = 0;
3918
3919command_cleanup:
3920	xhci_free_command(xhci, reset_device_cmd);
3921	return ret;
3922}
3923
3924/*
3925 * At this point, the struct usb_device is about to go away, the device has
3926 * disconnected, and all traffic has been stopped and the endpoints have been
3927 * disabled.  Free any HC data structures associated with that device.
3928 */
3929static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3930{
3931	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3932	struct xhci_virt_device *virt_dev;
3933	struct xhci_slot_ctx *slot_ctx;
 
3934	int i, ret;
 
 
 
 
 
3935
3936#ifndef CONFIG_USB_DEFAULT_PERSIST
3937	/*
3938	 * We called pm_runtime_get_noresume when the device was attached.
3939	 * Decrement the counter here to allow controller to runtime suspend
3940	 * if no devices remain.
3941	 */
3942	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3943		pm_runtime_put_noidle(hcd->self.controller);
3944#endif
3945
3946	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3947	/* If the host is halted due to driver unload, we still need to free the
3948	 * device.
3949	 */
3950	if (ret <= 0 && ret != -ENODEV)
 
3951		return;
 
3952
3953	virt_dev = xhci->devs[udev->slot_id];
3954	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3955	trace_xhci_free_dev(slot_ctx);
3956
3957	/* Stop any wayward timer functions (which may grab the lock) */
3958	for (i = 0; i < 31; i++) {
3959		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3960		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3961	}
3962	virt_dev->udev = NULL;
3963	ret = xhci_disable_slot(xhci, udev->slot_id);
3964	if (ret)
3965		xhci_free_virt_device(xhci, udev->slot_id);
3966}
3967
3968int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3969{
3970	struct xhci_command *command;
3971	unsigned long flags;
3972	u32 state;
3973	int ret = 0;
3974
3975	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3976	if (!command)
3977		return -ENOMEM;
3978
3979	xhci_debugfs_remove_slot(xhci, slot_id);
3980
3981	spin_lock_irqsave(&xhci->lock, flags);
3982	/* Don't disable the slot if the host controller is dead. */
3983	state = readl(&xhci->op_regs->status);
3984	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3985			(xhci->xhc_state & XHCI_STATE_HALTED)) {
 
3986		spin_unlock_irqrestore(&xhci->lock, flags);
3987		kfree(command);
3988		return -ENODEV;
3989	}
3990
3991	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3992				slot_id);
3993	if (ret) {
3994		spin_unlock_irqrestore(&xhci->lock, flags);
3995		kfree(command);
3996		return ret;
3997	}
3998	xhci_ring_cmd_db(xhci);
3999	spin_unlock_irqrestore(&xhci->lock, flags);
4000	return ret;
 
 
 
 
4001}
4002
4003/*
4004 * Checks if we have enough host controller resources for the default control
4005 * endpoint.
4006 *
4007 * Must be called with xhci->lock held.
4008 */
4009static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4010{
4011	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4012		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4013				"Not enough ep ctxs: "
4014				"%u active, need to add 1, limit is %u.",
4015				xhci->num_active_eps, xhci->limit_active_eps);
4016		return -ENOMEM;
4017	}
4018	xhci->num_active_eps += 1;
4019	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4020			"Adding 1 ep ctx, %u now active.",
4021			xhci->num_active_eps);
4022	return 0;
4023}
4024
4025
4026/*
4027 * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4028 * timed out, or allocating memory failed.  Returns 1 on success.
4029 */
4030int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4031{
4032	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4033	struct xhci_virt_device *vdev;
4034	struct xhci_slot_ctx *slot_ctx;
4035	unsigned long flags;
4036	int ret, slot_id;
4037	struct xhci_command *command;
4038
4039	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4040	if (!command)
4041		return 0;
4042
 
 
4043	spin_lock_irqsave(&xhci->lock, flags);
 
4044	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4045	if (ret) {
4046		spin_unlock_irqrestore(&xhci->lock, flags);
 
4047		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4048		xhci_free_command(xhci, command);
4049		return 0;
4050	}
4051	xhci_ring_cmd_db(xhci);
4052	spin_unlock_irqrestore(&xhci->lock, flags);
4053
4054	wait_for_completion(command->completion);
4055	slot_id = command->slot_id;
 
4056
4057	if (!slot_id || command->status != COMP_SUCCESS) {
4058		xhci_err(xhci, "Error while assigning device slot ID\n");
4059		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4060				HCS_MAX_SLOTS(
4061					readl(&xhci->cap_regs->hcs_params1)));
4062		xhci_free_command(xhci, command);
4063		return 0;
4064	}
4065
4066	xhci_free_command(xhci, command);
4067
4068	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4069		spin_lock_irqsave(&xhci->lock, flags);
4070		ret = xhci_reserve_host_control_ep_resources(xhci);
4071		if (ret) {
4072			spin_unlock_irqrestore(&xhci->lock, flags);
4073			xhci_warn(xhci, "Not enough host resources, "
4074					"active endpoint contexts = %u\n",
4075					xhci->num_active_eps);
4076			goto disable_slot;
4077		}
4078		spin_unlock_irqrestore(&xhci->lock, flags);
4079	}
4080	/* Use GFP_NOIO, since this function can be called from
4081	 * xhci_discover_or_reset_device(), which may be called as part of
4082	 * mass storage driver error handling.
4083	 */
4084	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4085		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4086		goto disable_slot;
4087	}
4088	vdev = xhci->devs[slot_id];
4089	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4090	trace_xhci_alloc_dev(slot_ctx);
4091
4092	udev->slot_id = slot_id;
4093
4094	xhci_debugfs_create_slot(xhci, slot_id);
4095
4096#ifndef CONFIG_USB_DEFAULT_PERSIST
4097	/*
4098	 * If resetting upon resume, we can't put the controller into runtime
4099	 * suspend if there is a device attached.
4100	 */
4101	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4102		pm_runtime_get_noresume(hcd->self.controller);
4103#endif
4104
 
 
4105	/* Is this a LS or FS device under a HS hub? */
4106	/* Hub or peripherial? */
4107	return 1;
4108
4109disable_slot:
4110	ret = xhci_disable_slot(xhci, udev->slot_id);
4111	if (ret)
4112		xhci_free_virt_device(xhci, udev->slot_id);
4113
 
 
 
 
4114	return 0;
4115}
4116
4117/*
4118 * Issue an Address Device command and optionally send a corresponding
4119 * SetAddress request to the device.
4120 */
4121static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4122			     enum xhci_setup_dev setup)
4123{
4124	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4125	unsigned long flags;
4126	struct xhci_virt_device *virt_dev;
4127	int ret = 0;
4128	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4129	struct xhci_slot_ctx *slot_ctx;
4130	struct xhci_input_control_ctx *ctrl_ctx;
4131	u64 temp_64;
4132	struct xhci_command *command = NULL;
4133
4134	mutex_lock(&xhci->mutex);
4135
4136	if (xhci->xhc_state) {	/* dying, removing or halted */
4137		ret = -ESHUTDOWN;
4138		goto out;
4139	}
4140
4141	if (!udev->slot_id) {
4142		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4143				"Bad Slot ID %d", udev->slot_id);
4144		ret = -EINVAL;
4145		goto out;
4146	}
4147
4148	virt_dev = xhci->devs[udev->slot_id];
4149
4150	if (WARN_ON(!virt_dev)) {
4151		/*
4152		 * In plug/unplug torture test with an NEC controller,
4153		 * a zero-dereference was observed once due to virt_dev = 0.
4154		 * Print useful debug rather than crash if it is observed again!
4155		 */
4156		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4157			udev->slot_id);
4158		ret = -EINVAL;
4159		goto out;
4160	}
4161	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4162	trace_xhci_setup_device_slot(slot_ctx);
4163
4164	if (setup == SETUP_CONTEXT_ONLY) {
 
4165		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4166		    SLOT_STATE_DEFAULT) {
4167			xhci_dbg(xhci, "Slot already in default state\n");
4168			goto out;
4169		}
4170	}
4171
4172	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4173	if (!command) {
4174		ret = -ENOMEM;
4175		goto out;
4176	}
4177
4178	command->in_ctx = virt_dev->in_ctx;
 
4179
4180	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4181	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4182	if (!ctrl_ctx) {
4183		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4184				__func__);
4185		ret = -EINVAL;
4186		goto out;
4187	}
4188	/*
4189	 * If this is the first Set Address since device plug-in or
4190	 * virt_device realloaction after a resume with an xHCI power loss,
4191	 * then set up the slot context.
4192	 */
4193	if (!slot_ctx->dev_info)
4194		xhci_setup_addressable_virt_dev(xhci, udev);
4195	/* Otherwise, update the control endpoint ring enqueue pointer. */
4196	else
4197		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4198	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4199	ctrl_ctx->drop_flags = 0;
4200
 
 
4201	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4202				le32_to_cpu(slot_ctx->dev_info) >> 27);
4203
4204	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4205	spin_lock_irqsave(&xhci->lock, flags);
4206	trace_xhci_setup_device(virt_dev);
4207	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4208					udev->slot_id, setup);
4209	if (ret) {
4210		spin_unlock_irqrestore(&xhci->lock, flags);
4211		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4212				"FIXME: allocate a command ring segment");
4213		goto out;
4214	}
4215	xhci_ring_cmd_db(xhci);
4216	spin_unlock_irqrestore(&xhci->lock, flags);
4217
4218	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4219	wait_for_completion(command->completion);
4220
4221	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4222	 * the SetAddress() "recovery interval" required by USB and aborting the
4223	 * command on a timeout.
4224	 */
4225	switch (command->status) {
4226	case COMP_COMMAND_ABORTED:
4227	case COMP_COMMAND_RING_STOPPED:
4228		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4229		ret = -ETIME;
4230		break;
4231	case COMP_CONTEXT_STATE_ERROR:
4232	case COMP_SLOT_NOT_ENABLED_ERROR:
4233		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4234			 act, udev->slot_id);
4235		ret = -EINVAL;
4236		break;
4237	case COMP_USB_TRANSACTION_ERROR:
4238		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4239
4240		mutex_unlock(&xhci->mutex);
4241		ret = xhci_disable_slot(xhci, udev->slot_id);
4242		if (!ret)
4243			xhci_alloc_dev(hcd, udev);
4244		kfree(command->completion);
4245		kfree(command);
4246		return -EPROTO;
4247	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4248		dev_warn(&udev->dev,
4249			 "ERROR: Incompatible device for setup %s command\n", act);
4250		ret = -ENODEV;
4251		break;
4252	case COMP_SUCCESS:
4253		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4254			       "Successful setup %s command", act);
4255		break;
4256	default:
4257		xhci_err(xhci,
4258			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4259			 act, command->status);
 
 
4260		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4261		ret = -EINVAL;
4262		break;
4263	}
4264	if (ret)
4265		goto out;
4266	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4267	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4268			"Op regs DCBAA ptr = %#016llx", temp_64);
4269	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4270		"Slot ID %d dcbaa entry @%p = %#016llx",
4271		udev->slot_id,
4272		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4273		(unsigned long long)
4274		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4275	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4276			"Output Context DMA address = %#08llx",
4277			(unsigned long long)virt_dev->out_ctx->dma);
 
 
4278	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4279				le32_to_cpu(slot_ctx->dev_info) >> 27);
 
 
4280	/*
4281	 * USB core uses address 1 for the roothubs, so we add one to the
4282	 * address given back to us by the HC.
4283	 */
 
4284	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4285				le32_to_cpu(slot_ctx->dev_info) >> 27);
4286	/* Zero the input context control for later use */
4287	ctrl_ctx->add_flags = 0;
4288	ctrl_ctx->drop_flags = 0;
4289	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4290	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4291
4292	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4293		       "Internal device address = %d",
4294		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4295out:
4296	mutex_unlock(&xhci->mutex);
4297	if (command) {
4298		kfree(command->completion);
4299		kfree(command);
4300	}
4301	return ret;
4302}
4303
4304static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4305{
4306	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4307}
4308
4309static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4310{
4311	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4312}
4313
4314/*
4315 * Transfer the port index into real index in the HW port status
4316 * registers. Caculate offset between the port's PORTSC register
4317 * and port status base. Divide the number of per port register
4318 * to get the real index. The raw port number bases 1.
4319 */
4320int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4321{
4322	struct xhci_hub *rhub;
 
 
 
4323
4324	rhub = xhci_get_rhub(hcd);
4325	return rhub->ports[port1 - 1]->hw_portnum + 1;
 
 
 
 
 
4326}
4327
4328/*
4329 * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4330 * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4331 */
4332static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4333			struct usb_device *udev, u16 max_exit_latency)
4334{
4335	struct xhci_virt_device *virt_dev;
4336	struct xhci_command *command;
4337	struct xhci_input_control_ctx *ctrl_ctx;
4338	struct xhci_slot_ctx *slot_ctx;
4339	unsigned long flags;
4340	int ret;
4341
4342	spin_lock_irqsave(&xhci->lock, flags);
4343
4344	virt_dev = xhci->devs[udev->slot_id];
4345
4346	/*
4347	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4348	 * xHC was re-initialized. Exit latency will be set later after
4349	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4350	 */
4351
4352	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4353		spin_unlock_irqrestore(&xhci->lock, flags);
4354		return 0;
4355	}
4356
4357	/* Attempt to issue an Evaluate Context command to change the MEL. */
4358	command = xhci->lpm_command;
4359	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4360	if (!ctrl_ctx) {
4361		spin_unlock_irqrestore(&xhci->lock, flags);
4362		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4363				__func__);
4364		return -ENOMEM;
4365	}
4366
4367	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4368	spin_unlock_irqrestore(&xhci->lock, flags);
4369
4370	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4371	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4372	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4373	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4374	slot_ctx->dev_state = 0;
4375
4376	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4377			"Set up evaluate context for LPM MEL change.");
 
 
4378
4379	/* Issue and wait for the evaluate context command. */
4380	ret = xhci_configure_endpoint(xhci, udev, command,
4381			true, true);
 
 
4382
4383	if (!ret) {
4384		spin_lock_irqsave(&xhci->lock, flags);
4385		virt_dev->current_mel = max_exit_latency;
4386		spin_unlock_irqrestore(&xhci->lock, flags);
4387	}
4388	return ret;
4389}
4390
4391#ifdef CONFIG_PM
4392
4393/* BESL to HIRD Encoding array for USB2 LPM */
4394static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4395	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4396
4397/* Calculate HIRD/BESL for USB2 PORTPMSC*/
4398static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4399					struct usb_device *udev)
4400{
4401	int u2del, besl, besl_host;
4402	int besl_device = 0;
4403	u32 field;
4404
4405	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4406	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4407
4408	if (field & USB_BESL_SUPPORT) {
4409		for (besl_host = 0; besl_host < 16; besl_host++) {
4410			if (xhci_besl_encoding[besl_host] >= u2del)
4411				break;
4412		}
4413		/* Use baseline BESL value as default */
4414		if (field & USB_BESL_BASELINE_VALID)
4415			besl_device = USB_GET_BESL_BASELINE(field);
4416		else if (field & USB_BESL_DEEP_VALID)
4417			besl_device = USB_GET_BESL_DEEP(field);
4418	} else {
4419		if (u2del <= 50)
4420			besl_host = 0;
4421		else
4422			besl_host = (u2del - 51) / 75 + 1;
4423	}
4424
4425	besl = besl_host + besl_device;
4426	if (besl > 15)
4427		besl = 15;
4428
4429	return besl;
4430}
4431
4432/* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4433static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4434{
4435	u32 field;
4436	int l1;
4437	int besld = 0;
4438	int hirdm = 0;
4439
4440	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4441
4442	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4443	l1 = udev->l1_params.timeout / 256;
4444
4445	/* device has preferred BESLD */
4446	if (field & USB_BESL_DEEP_VALID) {
4447		besld = USB_GET_BESL_DEEP(field);
4448		hirdm = 1;
4449	}
4450
4451	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4452}
4453
4454static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4455			struct usb_device *udev, int enable)
4456{
4457	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4458	struct xhci_port **ports;
4459	__le32 __iomem	*pm_addr, *hlpm_addr;
4460	u32		pm_val, hlpm_val, field;
4461	unsigned int	port_num;
4462	unsigned long	flags;
4463	int		hird, exit_latency;
4464	int		ret;
4465
4466	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4467		return -EPERM;
4468
4469	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4470			!udev->lpm_capable)
4471		return -EPERM;
4472
4473	if (!udev->parent || udev->parent->parent ||
4474			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4475		return -EPERM;
4476
4477	if (udev->usb2_hw_lpm_capable != 1)
4478		return -EPERM;
4479
4480	spin_lock_irqsave(&xhci->lock, flags);
4481
4482	ports = xhci->usb2_rhub.ports;
4483	port_num = udev->portnum - 1;
4484	pm_addr = ports[port_num]->addr + PORTPMSC;
4485	pm_val = readl(pm_addr);
4486	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
 
4487
4488	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4489			enable ? "enable" : "disable", port_num + 1);
4490
4491	if (enable) {
4492		/* Host supports BESL timeout instead of HIRD */
4493		if (udev->usb2_hw_lpm_besl_capable) {
4494			/* if device doesn't have a preferred BESL value use a
4495			 * default one which works with mixed HIRD and BESL
4496			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4497			 */
4498			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4499			if ((field & USB_BESL_SUPPORT) &&
4500			    (field & USB_BESL_BASELINE_VALID))
4501				hird = USB_GET_BESL_BASELINE(field);
4502			else
4503				hird = udev->l1_params.besl;
4504
4505			exit_latency = xhci_besl_encoding[hird];
4506			spin_unlock_irqrestore(&xhci->lock, flags);
4507
4508			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4509			 * input context for link powermanagement evaluate
4510			 * context commands. It is protected by hcd->bandwidth
4511			 * mutex and is shared by all devices. We need to set
4512			 * the max ext latency in USB 2 BESL LPM as well, so
4513			 * use the same mutex and xhci_change_max_exit_latency()
4514			 */
4515			mutex_lock(hcd->bandwidth_mutex);
4516			ret = xhci_change_max_exit_latency(xhci, udev,
4517							   exit_latency);
4518			mutex_unlock(hcd->bandwidth_mutex);
4519
4520			if (ret < 0)
4521				return ret;
4522			spin_lock_irqsave(&xhci->lock, flags);
4523
4524			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4525			writel(hlpm_val, hlpm_addr);
4526			/* flush write */
4527			readl(hlpm_addr);
4528		} else {
4529			hird = xhci_calculate_hird_besl(xhci, udev);
4530		}
4531
4532		pm_val &= ~PORT_HIRD_MASK;
4533		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4534		writel(pm_val, pm_addr);
4535		pm_val = readl(pm_addr);
4536		pm_val |= PORT_HLE;
4537		writel(pm_val, pm_addr);
4538		/* flush write */
4539		readl(pm_addr);
4540	} else {
4541		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4542		writel(pm_val, pm_addr);
4543		/* flush write */
4544		readl(pm_addr);
4545		if (udev->usb2_hw_lpm_besl_capable) {
4546			spin_unlock_irqrestore(&xhci->lock, flags);
4547			mutex_lock(hcd->bandwidth_mutex);
4548			xhci_change_max_exit_latency(xhci, udev, 0);
4549			mutex_unlock(hcd->bandwidth_mutex);
4550			readl_poll_timeout(ports[port_num]->addr, pm_val,
4551					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4552					   100, 10000);
4553			return 0;
4554		}
4555	}
4556
4557	spin_unlock_irqrestore(&xhci->lock, flags);
4558	return 0;
4559}
4560
4561/* check if a usb2 port supports a given extened capability protocol
4562 * only USB2 ports extended protocol capability values are cached.
4563 * Return 1 if capability is supported
4564 */
4565static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4566					   unsigned capability)
4567{
4568	u32 port_offset, port_count;
4569	int i;
4570
4571	for (i = 0; i < xhci->num_ext_caps; i++) {
4572		if (xhci->ext_caps[i] & capability) {
4573			/* port offsets starts at 1 */
4574			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4575			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4576			if (port >= port_offset &&
4577			    port < port_offset + port_count)
4578				return 1;
4579		}
4580	}
4581	return 0;
4582}
4583
4584static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4585{
4586	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4587	int		portnum = udev->portnum - 1;
4588
4589	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
 
4590		return 0;
4591
4592	/* we only support lpm for non-hub device connected to root hub yet */
4593	if (!udev->parent || udev->parent->parent ||
4594			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4595		return 0;
4596
4597	if (xhci->hw_lpm_support == 1 &&
4598			xhci_check_usb2_port_capability(
4599				xhci, portnum, XHCI_HLC)) {
4600		udev->usb2_hw_lpm_capable = 1;
4601		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4602		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4603		if (xhci_check_usb2_port_capability(xhci, portnum,
4604					XHCI_BLC))
4605			udev->usb2_hw_lpm_besl_capable = 1;
4606	}
4607
4608	return 0;
4609}
4610
4611/*---------------------- USB 3.0 Link PM functions ------------------------*/
4612
4613/* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4614static unsigned long long xhci_service_interval_to_ns(
4615		struct usb_endpoint_descriptor *desc)
4616{
4617	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4618}
4619
4620static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4621		enum usb3_link_state state)
4622{
4623	unsigned long long sel;
4624	unsigned long long pel;
4625	unsigned int max_sel_pel;
4626	char *state_name;
4627
4628	switch (state) {
4629	case USB3_LPM_U1:
4630		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4631		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4632		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4633		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4634		state_name = "U1";
4635		break;
4636	case USB3_LPM_U2:
4637		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4638		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4639		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4640		state_name = "U2";
4641		break;
4642	default:
4643		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4644				__func__);
4645		return USB3_LPM_DISABLED;
4646	}
4647
4648	if (sel <= max_sel_pel && pel <= max_sel_pel)
4649		return USB3_LPM_DEVICE_INITIATED;
4650
4651	if (sel > max_sel_pel)
4652		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4653				"due to long SEL %llu ms\n",
4654				state_name, sel);
4655	else
4656		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4657				"due to long PEL %llu ms\n",
4658				state_name, pel);
4659	return USB3_LPM_DISABLED;
4660}
4661
4662/* The U1 timeout should be the maximum of the following values:
4663 *  - For control endpoints, U1 system exit latency (SEL) * 3
4664 *  - For bulk endpoints, U1 SEL * 5
4665 *  - For interrupt endpoints:
4666 *    - Notification EPs, U1 SEL * 3
4667 *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4668 *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4669 */
4670static unsigned long long xhci_calculate_intel_u1_timeout(
4671		struct usb_device *udev,
4672		struct usb_endpoint_descriptor *desc)
4673{
4674	unsigned long long timeout_ns;
4675	int ep_type;
4676	int intr_type;
4677
4678	ep_type = usb_endpoint_type(desc);
4679	switch (ep_type) {
4680	case USB_ENDPOINT_XFER_CONTROL:
4681		timeout_ns = udev->u1_params.sel * 3;
4682		break;
4683	case USB_ENDPOINT_XFER_BULK:
4684		timeout_ns = udev->u1_params.sel * 5;
4685		break;
4686	case USB_ENDPOINT_XFER_INT:
4687		intr_type = usb_endpoint_interrupt_type(desc);
4688		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4689			timeout_ns = udev->u1_params.sel * 3;
4690			break;
4691		}
4692		/* Otherwise the calculation is the same as isoc eps */
4693		fallthrough;
4694	case USB_ENDPOINT_XFER_ISOC:
4695		timeout_ns = xhci_service_interval_to_ns(desc);
4696		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4697		if (timeout_ns < udev->u1_params.sel * 2)
4698			timeout_ns = udev->u1_params.sel * 2;
4699		break;
4700	default:
4701		return 0;
4702	}
4703
4704	return timeout_ns;
4705}
4706
4707/* Returns the hub-encoded U1 timeout value. */
4708static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4709		struct usb_device *udev,
4710		struct usb_endpoint_descriptor *desc)
4711{
4712	unsigned long long timeout_ns;
4713
4714	/* Prevent U1 if service interval is shorter than U1 exit latency */
4715	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4716		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4717			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4718			return USB3_LPM_DISABLED;
4719		}
4720	}
4721
4722	if (xhci->quirks & XHCI_INTEL_HOST)
4723		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4724	else
4725		timeout_ns = udev->u1_params.sel;
4726
4727	/* The U1 timeout is encoded in 1us intervals.
4728	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4729	 */
4730	if (timeout_ns == USB3_LPM_DISABLED)
4731		timeout_ns = 1;
4732	else
4733		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4734
4735	/* If the necessary timeout value is bigger than what we can set in the
4736	 * USB 3.0 hub, we have to disable hub-initiated U1.
4737	 */
4738	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4739		return timeout_ns;
4740	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4741			"due to long timeout %llu ms\n", timeout_ns);
4742	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4743}
4744
4745/* The U2 timeout should be the maximum of:
4746 *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4747 *  - largest bInterval of any active periodic endpoint (to avoid going
4748 *    into lower power link states between intervals).
4749 *  - the U2 Exit Latency of the device
4750 */
4751static unsigned long long xhci_calculate_intel_u2_timeout(
4752		struct usb_device *udev,
4753		struct usb_endpoint_descriptor *desc)
4754{
4755	unsigned long long timeout_ns;
4756	unsigned long long u2_del_ns;
4757
4758	timeout_ns = 10 * 1000 * 1000;
4759
4760	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4761			(xhci_service_interval_to_ns(desc) > timeout_ns))
4762		timeout_ns = xhci_service_interval_to_ns(desc);
4763
4764	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4765	if (u2_del_ns > timeout_ns)
4766		timeout_ns = u2_del_ns;
4767
4768	return timeout_ns;
4769}
4770
4771/* Returns the hub-encoded U2 timeout value. */
4772static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4773		struct usb_device *udev,
4774		struct usb_endpoint_descriptor *desc)
4775{
4776	unsigned long long timeout_ns;
4777
4778	/* Prevent U2 if service interval is shorter than U2 exit latency */
4779	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4780		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4781			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4782			return USB3_LPM_DISABLED;
4783		}
4784	}
4785
4786	if (xhci->quirks & XHCI_INTEL_HOST)
4787		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4788	else
4789		timeout_ns = udev->u2_params.sel;
4790
4791	/* The U2 timeout is encoded in 256us intervals */
4792	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4793	/* If the necessary timeout value is bigger than what we can set in the
4794	 * USB 3.0 hub, we have to disable hub-initiated U2.
4795	 */
4796	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4797		return timeout_ns;
4798	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4799			"due to long timeout %llu ms\n", timeout_ns);
4800	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4801}
4802
4803static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4804		struct usb_device *udev,
4805		struct usb_endpoint_descriptor *desc,
4806		enum usb3_link_state state,
4807		u16 *timeout)
4808{
4809	if (state == USB3_LPM_U1)
4810		return xhci_calculate_u1_timeout(xhci, udev, desc);
4811	else if (state == USB3_LPM_U2)
4812		return xhci_calculate_u2_timeout(xhci, udev, desc);
4813
4814	return USB3_LPM_DISABLED;
4815}
4816
4817static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4818		struct usb_device *udev,
4819		struct usb_endpoint_descriptor *desc,
4820		enum usb3_link_state state,
4821		u16 *timeout)
4822{
4823	u16 alt_timeout;
4824
4825	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4826		desc, state, timeout);
4827
4828	/* If we found we can't enable hub-initiated LPM, and
4829	 * the U1 or U2 exit latency was too high to allow
4830	 * device-initiated LPM as well, then we will disable LPM
4831	 * for this device, so stop searching any further.
4832	 */
4833	if (alt_timeout == USB3_LPM_DISABLED) {
 
4834		*timeout = alt_timeout;
4835		return -E2BIG;
4836	}
4837	if (alt_timeout > *timeout)
4838		*timeout = alt_timeout;
4839	return 0;
4840}
4841
4842static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4843		struct usb_device *udev,
4844		struct usb_host_interface *alt,
4845		enum usb3_link_state state,
4846		u16 *timeout)
4847{
4848	int j;
4849
4850	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4851		if (xhci_update_timeout_for_endpoint(xhci, udev,
4852					&alt->endpoint[j].desc, state, timeout))
4853			return -E2BIG;
 
4854	}
4855	return 0;
4856}
4857
4858static int xhci_check_intel_tier_policy(struct usb_device *udev,
4859		enum usb3_link_state state)
4860{
4861	struct usb_device *parent;
4862	unsigned int num_hubs;
4863
4864	if (state == USB3_LPM_U2)
4865		return 0;
4866
4867	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4868	for (parent = udev->parent, num_hubs = 0; parent->parent;
4869			parent = parent->parent)
4870		num_hubs++;
4871
4872	if (num_hubs < 2)
4873		return 0;
4874
4875	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4876			" below second-tier hub.\n");
4877	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4878			"to decrease power consumption.\n");
4879	return -E2BIG;
4880}
4881
4882static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4883		struct usb_device *udev,
4884		enum usb3_link_state state)
4885{
4886	if (xhci->quirks & XHCI_INTEL_HOST)
4887		return xhci_check_intel_tier_policy(udev, state);
4888	else
4889		return 0;
4890}
4891
4892/* Returns the U1 or U2 timeout that should be enabled.
4893 * If the tier check or timeout setting functions return with a non-zero exit
4894 * code, that means the timeout value has been finalized and we shouldn't look
4895 * at any more endpoints.
4896 */
4897static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4898			struct usb_device *udev, enum usb3_link_state state)
4899{
4900	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4901	struct usb_host_config *config;
4902	char *state_name;
4903	int i;
4904	u16 timeout = USB3_LPM_DISABLED;
4905
4906	if (state == USB3_LPM_U1)
4907		state_name = "U1";
4908	else if (state == USB3_LPM_U2)
4909		state_name = "U2";
4910	else {
4911		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4912				state);
4913		return timeout;
4914	}
4915
4916	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4917		return timeout;
4918
4919	/* Gather some information about the currently installed configuration
4920	 * and alternate interface settings.
4921	 */
4922	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4923			state, &timeout))
4924		return timeout;
4925
4926	config = udev->actconfig;
4927	if (!config)
4928		return timeout;
4929
4930	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4931		struct usb_driver *driver;
4932		struct usb_interface *intf = config->interface[i];
4933
4934		if (!intf)
4935			continue;
4936
4937		/* Check if any currently bound drivers want hub-initiated LPM
4938		 * disabled.
4939		 */
4940		if (intf->dev.driver) {
4941			driver = to_usb_driver(intf->dev.driver);
4942			if (driver && driver->disable_hub_initiated_lpm) {
4943				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4944					state_name, driver->name);
4945				timeout = xhci_get_timeout_no_hub_lpm(udev,
4946								      state);
4947				if (timeout == USB3_LPM_DISABLED)
4948					return timeout;
4949			}
4950		}
4951
4952		/* Not sure how this could happen... */
4953		if (!intf->cur_altsetting)
4954			continue;
4955
4956		if (xhci_update_timeout_for_interface(xhci, udev,
4957					intf->cur_altsetting,
4958					state, &timeout))
4959			return timeout;
4960	}
4961	return timeout;
4962}
4963
4964static int calculate_max_exit_latency(struct usb_device *udev,
4965		enum usb3_link_state state_changed,
4966		u16 hub_encoded_timeout)
4967{
4968	unsigned long long u1_mel_us = 0;
4969	unsigned long long u2_mel_us = 0;
4970	unsigned long long mel_us = 0;
4971	bool disabling_u1;
4972	bool disabling_u2;
4973	bool enabling_u1;
4974	bool enabling_u2;
4975
4976	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4977			hub_encoded_timeout == USB3_LPM_DISABLED);
4978	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4979			hub_encoded_timeout == USB3_LPM_DISABLED);
4980
4981	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4982			hub_encoded_timeout != USB3_LPM_DISABLED);
4983	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4984			hub_encoded_timeout != USB3_LPM_DISABLED);
4985
4986	/* If U1 was already enabled and we're not disabling it,
4987	 * or we're going to enable U1, account for the U1 max exit latency.
4988	 */
4989	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4990			enabling_u1)
4991		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4992	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4993			enabling_u2)
4994		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4995
4996	if (u1_mel_us > u2_mel_us)
4997		mel_us = u1_mel_us;
4998	else
4999		mel_us = u2_mel_us;
5000	/* xHCI host controller max exit latency field is only 16 bits wide. */
5001	if (mel_us > MAX_EXIT) {
5002		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5003				"is too big.\n", mel_us);
5004		return -E2BIG;
5005	}
5006	return mel_us;
5007}
5008
5009/* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
5010static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5011			struct usb_device *udev, enum usb3_link_state state)
5012{
5013	struct xhci_hcd	*xhci;
5014	u16 hub_encoded_timeout;
5015	int mel;
5016	int ret;
5017
5018	xhci = hcd_to_xhci(hcd);
5019	/* The LPM timeout values are pretty host-controller specific, so don't
5020	 * enable hub-initiated timeouts unless the vendor has provided
5021	 * information about their timeout algorithm.
5022	 */
5023	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5024			!xhci->devs[udev->slot_id])
5025		return USB3_LPM_DISABLED;
5026
5027	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5028	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5029	if (mel < 0) {
5030		/* Max Exit Latency is too big, disable LPM. */
5031		hub_encoded_timeout = USB3_LPM_DISABLED;
5032		mel = 0;
5033	}
5034
5035	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5036	if (ret)
5037		return ret;
5038	return hub_encoded_timeout;
5039}
5040
5041static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5042			struct usb_device *udev, enum usb3_link_state state)
5043{
5044	struct xhci_hcd	*xhci;
5045	u16 mel;
5046
5047	xhci = hcd_to_xhci(hcd);
5048	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5049			!xhci->devs[udev->slot_id])
5050		return 0;
5051
5052	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5053	return xhci_change_max_exit_latency(xhci, udev, mel);
5054}
5055#else /* CONFIG_PM */
5056
5057static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5058				struct usb_device *udev, int enable)
5059{
5060	return 0;
5061}
5062
5063static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5064{
5065	return 0;
5066}
5067
5068static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5069			struct usb_device *udev, enum usb3_link_state state)
5070{
5071	return USB3_LPM_DISABLED;
5072}
5073
5074static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5075			struct usb_device *udev, enum usb3_link_state state)
5076{
5077	return 0;
5078}
5079#endif	/* CONFIG_PM */
5080
5081/*-------------------------------------------------------------------------*/
5082
5083/* Once a hub descriptor is fetched for a device, we need to update the xHC's
5084 * internal data structures for the device.
5085 */
5086static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5087			struct usb_tt *tt, gfp_t mem_flags)
5088{
5089	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5090	struct xhci_virt_device *vdev;
5091	struct xhci_command *config_cmd;
5092	struct xhci_input_control_ctx *ctrl_ctx;
5093	struct xhci_slot_ctx *slot_ctx;
5094	unsigned long flags;
5095	unsigned think_time;
5096	int ret;
5097
5098	/* Ignore root hubs */
5099	if (!hdev->parent)
5100		return 0;
5101
5102	vdev = xhci->devs[hdev->slot_id];
5103	if (!vdev) {
5104		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5105		return -EINVAL;
5106	}
5107
5108	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5109	if (!config_cmd)
5110		return -ENOMEM;
5111
5112	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5113	if (!ctrl_ctx) {
5114		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5115				__func__);
5116		xhci_free_command(xhci, config_cmd);
5117		return -ENOMEM;
5118	}
5119
5120	spin_lock_irqsave(&xhci->lock, flags);
5121	if (hdev->speed == USB_SPEED_HIGH &&
5122			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5123		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5124		xhci_free_command(xhci, config_cmd);
5125		spin_unlock_irqrestore(&xhci->lock, flags);
5126		return -ENOMEM;
5127	}
5128
5129	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5130	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5131	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5132	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5133	/*
5134	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5135	 * but it may be already set to 1 when setup an xHCI virtual
5136	 * device, so clear it anyway.
5137	 */
5138	if (tt->multi)
5139		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5140	else if (hdev->speed == USB_SPEED_FULL)
5141		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5142
5143	if (xhci->hci_version > 0x95) {
5144		xhci_dbg(xhci, "xHCI version %x needs hub "
5145				"TT think time and number of ports\n",
5146				(unsigned int) xhci->hci_version);
5147		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5148		/* Set TT think time - convert from ns to FS bit times.
5149		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5150		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5151		 *
5152		 * xHCI 1.0: this field shall be 0 if the device is not a
5153		 * High-spped hub.
5154		 */
5155		think_time = tt->think_time;
5156		if (think_time != 0)
5157			think_time = (think_time / 666) - 1;
5158		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5159			slot_ctx->tt_info |=
5160				cpu_to_le32(TT_THINK_TIME(think_time));
5161	} else {
5162		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5163				"TT think time or number of ports\n",
5164				(unsigned int) xhci->hci_version);
5165	}
5166	slot_ctx->dev_state = 0;
5167	spin_unlock_irqrestore(&xhci->lock, flags);
5168
5169	xhci_dbg(xhci, "Set up %s for hub device.\n",
5170			(xhci->hci_version > 0x95) ?
5171			"configure endpoint" : "evaluate context");
 
 
5172
5173	/* Issue and wait for the configure endpoint or
5174	 * evaluate context command.
5175	 */
5176	if (xhci->hci_version > 0x95)
5177		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5178				false, false);
5179	else
5180		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5181				true, false);
5182
 
 
 
5183	xhci_free_command(xhci, config_cmd);
5184	return ret;
5185}
5186
5187static int xhci_get_frame(struct usb_hcd *hcd)
5188{
5189	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5190	/* EHCI mods by the periodic size.  Why? */
5191	return readl(&xhci->run_regs->microframe_index) >> 3;
5192}
5193
5194int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5195{
5196	struct xhci_hcd		*xhci;
5197	/*
5198	 * TODO: Check with DWC3 clients for sysdev according to
5199	 * quirks
5200	 */
5201	struct device		*dev = hcd->self.sysdev;
5202	unsigned int		minor_rev;
5203	int			retval;
5204
5205	/* Accept arbitrarily long scatter-gather lists */
5206	hcd->self.sg_tablesize = ~0;
5207
5208	/* support to build packet from discontinuous buffers */
5209	hcd->self.no_sg_constraint = 1;
5210
5211	/* XHCI controllers don't stop the ep queue on short packets :| */
5212	hcd->self.no_stop_on_short = 1;
5213
5214	xhci = hcd_to_xhci(hcd);
5215
5216	if (usb_hcd_is_primary_hcd(hcd)) {
5217		xhci->main_hcd = hcd;
5218		xhci->usb2_rhub.hcd = hcd;
5219		/* Mark the first roothub as being USB 2.0.
5220		 * The xHCI driver will register the USB 3.0 roothub.
5221		 */
5222		hcd->speed = HCD_USB2;
5223		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5224		/*
5225		 * USB 2.0 roothub under xHCI has an integrated TT,
5226		 * (rate matching hub) as opposed to having an OHCI/UHCI
5227		 * companion controller.
5228		 */
5229		hcd->has_tt = 1;
5230	} else {
5231		/*
5232		 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5233		 * should return 0x31 for sbrn, or that the minor revision
5234		 * is a two digit BCD containig minor and sub-minor numbers.
5235		 * This was later clarified in xHCI 1.2.
5236		 *
5237		 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5238		 * minor revision set to 0x1 instead of 0x10.
5239		 */
5240		if (xhci->usb3_rhub.min_rev == 0x1)
5241			minor_rev = 1;
5242		else
5243			minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5244
5245		switch (minor_rev) {
5246		case 2:
5247			hcd->speed = HCD_USB32;
5248			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5249			hcd->self.root_hub->rx_lanes = 2;
5250			hcd->self.root_hub->tx_lanes = 2;
5251			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5252			break;
5253		case 1:
5254			hcd->speed = HCD_USB31;
5255			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5256			hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5257			break;
5258		}
5259		xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5260			  minor_rev,
5261			  minor_rev ? "Enhanced " : "");
5262
5263		xhci->usb3_rhub.hcd = hcd;
5264		/* xHCI private pointer was set in xhci_pci_probe for the second
5265		 * registered roothub.
5266		 */
5267		return 0;
5268	}
5269
5270	mutex_init(&xhci->mutex);
5271	xhci->cap_regs = hcd->regs;
5272	xhci->op_regs = hcd->regs +
5273		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5274	xhci->run_regs = hcd->regs +
5275		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5276	/* Cache read-only capability registers */
5277	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5278	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5279	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5280	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5281	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5282	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5283	if (xhci->hci_version > 0x100)
5284		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
 
5285
5286	xhci->quirks |= quirks;
5287
5288	get_quirks(dev, xhci);
5289
5290	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5291	 * success event after a short transfer. This quirk will ignore such
5292	 * spurious event.
5293	 */
5294	if (xhci->hci_version > 0x96)
5295		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5296
5297	/* Make sure the HC is halted. */
5298	retval = xhci_halt(xhci);
5299	if (retval)
5300		return retval;
5301
5302	xhci_zero_64b_regs(xhci);
5303
5304	xhci_dbg(xhci, "Resetting HCD\n");
5305	/* Reset the internal HC memory state and registers. */
5306	retval = xhci_reset(xhci);
5307	if (retval)
5308		return retval;
5309	xhci_dbg(xhci, "Reset complete\n");
5310
5311	/*
5312	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5313	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5314	 * address memory pointers actually. So, this driver clears the AC64
5315	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5316	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5317	 */
5318	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5319		xhci->hcc_params &= ~BIT(0);
5320
5321	/* Set dma_mask and coherent_dma_mask to 64-bits,
5322	 * if xHC supports 64-bit addressing */
5323	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5324			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5325		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5326		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5327	} else {
5328		/*
5329		 * This is to avoid error in cases where a 32-bit USB
5330		 * controller is used on a 64-bit capable system.
5331		 */
5332		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5333		if (retval)
5334			return retval;
5335		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5336		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5337	}
5338
5339	xhci_dbg(xhci, "Calling HCD init\n");
5340	/* Initialize HCD and host controller data structures. */
5341	retval = xhci_init(hcd);
5342	if (retval)
5343		return retval;
5344	xhci_dbg(xhci, "Called HCD init\n");
5345
5346	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5347		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5348
5349	return 0;
5350}
5351EXPORT_SYMBOL_GPL(xhci_gen_setup);
5352
5353static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5354		struct usb_host_endpoint *ep)
5355{
5356	struct xhci_hcd *xhci;
5357	struct usb_device *udev;
5358	unsigned int slot_id;
5359	unsigned int ep_index;
5360	unsigned long flags;
5361
5362	xhci = hcd_to_xhci(hcd);
5363
5364	spin_lock_irqsave(&xhci->lock, flags);
5365	udev = (struct usb_device *)ep->hcpriv;
5366	slot_id = udev->slot_id;
5367	ep_index = xhci_get_endpoint_index(&ep->desc);
5368
5369	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5370	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5371	spin_unlock_irqrestore(&xhci->lock, flags);
5372}
5373
5374static const struct hc_driver xhci_hc_driver = {
5375	.description =		"xhci-hcd",
5376	.product_desc =		"xHCI Host Controller",
5377	.hcd_priv_size =	sizeof(struct xhci_hcd),
5378
5379	/*
5380	 * generic hardware linkage
5381	 */
5382	.irq =			xhci_irq,
5383	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5384				HCD_BH,
5385
5386	/*
5387	 * basic lifecycle operations
5388	 */
5389	.reset =		NULL, /* set in xhci_init_driver() */
5390	.start =		xhci_run,
5391	.stop =			xhci_stop,
5392	.shutdown =		xhci_shutdown,
5393
5394	/*
5395	 * managing i/o requests and associated device resources
5396	 */
5397	.map_urb_for_dma =      xhci_map_urb_for_dma,
5398	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5399	.urb_enqueue =		xhci_urb_enqueue,
5400	.urb_dequeue =		xhci_urb_dequeue,
5401	.alloc_dev =		xhci_alloc_dev,
5402	.free_dev =		xhci_free_dev,
5403	.alloc_streams =	xhci_alloc_streams,
5404	.free_streams =		xhci_free_streams,
5405	.add_endpoint =		xhci_add_endpoint,
5406	.drop_endpoint =	xhci_drop_endpoint,
5407	.endpoint_disable =	xhci_endpoint_disable,
5408	.endpoint_reset =	xhci_endpoint_reset,
5409	.check_bandwidth =	xhci_check_bandwidth,
5410	.reset_bandwidth =	xhci_reset_bandwidth,
5411	.address_device =	xhci_address_device,
5412	.enable_device =	xhci_enable_device,
5413	.update_hub_device =	xhci_update_hub_device,
5414	.reset_device =		xhci_discover_or_reset_device,
5415
5416	/*
5417	 * scheduling support
5418	 */
5419	.get_frame_number =	xhci_get_frame,
5420
5421	/*
5422	 * root hub support
5423	 */
5424	.hub_control =		xhci_hub_control,
5425	.hub_status_data =	xhci_hub_status_data,
5426	.bus_suspend =		xhci_bus_suspend,
5427	.bus_resume =		xhci_bus_resume,
5428	.get_resuming_ports =	xhci_get_resuming_ports,
5429
5430	/*
5431	 * call back when device connected and addressed
5432	 */
5433	.update_device =        xhci_update_device,
5434	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5435	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5436	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5437	.find_raw_port_number =	xhci_find_raw_port_number,
5438	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5439};
5440
5441void xhci_init_driver(struct hc_driver *drv,
5442		      const struct xhci_driver_overrides *over)
5443{
5444	BUG_ON(!over);
5445
5446	/* Copy the generic table to drv then apply the overrides */
5447	*drv = xhci_hc_driver;
5448
5449	if (over) {
5450		drv->hcd_priv_size += over->extra_priv_size;
5451		if (over->reset)
5452			drv->reset = over->reset;
5453		if (over->start)
5454			drv->start = over->start;
5455		if (over->add_endpoint)
5456			drv->add_endpoint = over->add_endpoint;
5457		if (over->drop_endpoint)
5458			drv->drop_endpoint = over->drop_endpoint;
5459		if (over->check_bandwidth)
5460			drv->check_bandwidth = over->check_bandwidth;
5461		if (over->reset_bandwidth)
5462			drv->reset_bandwidth = over->reset_bandwidth;
5463	}
5464}
5465EXPORT_SYMBOL_GPL(xhci_init_driver);
5466
5467MODULE_DESCRIPTION(DRIVER_DESC);
5468MODULE_AUTHOR(DRIVER_AUTHOR);
5469MODULE_LICENSE("GPL");
5470
5471static int __init xhci_hcd_init(void)
5472{
5473	/*
5474	 * Check the compiler generated sizes of structures that must be laid
5475	 * out in specific ways for hardware access.
5476	 */
5477	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5478	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5479	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5480	/* xhci_device_control has eight fields, and also
5481	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5482	 */
5483	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5484	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5485	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5486	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5487	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5488	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5489	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5490
5491	if (usb_disabled())
5492		return -ENODEV;
5493
5494	xhci_debugfs_create_root();
5495
5496	return 0;
5497}
5498
5499/*
5500 * If an init function is provided, an exit function must also be provided
5501 * to allow module unload.
5502 */
5503static void __exit xhci_hcd_fini(void)
5504{
5505	xhci_debugfs_remove_root();
5506}
5507
5508module_init(xhci_hcd_init);
5509module_exit(xhci_hcd_fini);