Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
 
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
 
 
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96					struct context *tcontext,
  97					u16 tclass,
  98					struct av_decision *avd,
  99					struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 
 
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd,
 570					  NULL);
 571		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 572			return;		/* no masked permission */
 573		masked = ~lo_avd.allowed & avd->allowed;
 574	}
 575
 576	if (target->bounds) {
 577		memset(&lo_avd, 0, sizeof(lo_avd));
 578
 579		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 580		lo_tcontext.type = target->bounds;
 581
 582		context_struct_compute_av(scontext,
 583					  &lo_tcontext,
 584					  tclass,
 585					  &lo_avd,
 586					  NULL);
 587		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 588			return;		/* no masked permission */
 589		masked = ~lo_avd.allowed & avd->allowed;
 590	}
 591
 592	if (source->bounds && target->bounds) {
 593		memset(&lo_avd, 0, sizeof(lo_avd));
 594		/*
 595		 * lo_scontext and lo_tcontext are already
 596		 * set up.
 597		 */
 598
 599		context_struct_compute_av(&lo_scontext,
 600					  &lo_tcontext,
 601					  tclass,
 602					  &lo_avd,
 603					  NULL);
 604		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 605			return;		/* no masked permission */
 606		masked = ~lo_avd.allowed & avd->allowed;
 607	}
 608
 609	if (masked) {
 610		/* mask violated permissions */
 611		avd->allowed &= ~masked;
 612
 613		/* audit masked permissions */
 614		security_dump_masked_av(scontext, tcontext,
 615					tclass, masked, "bounds");
 616	}
 617}
 618
 619/*
 620 * flag which drivers have permissions
 621 * only looking for ioctl based extended permssions
 622 */
 623void services_compute_xperms_drivers(
 624		struct extended_perms *xperms,
 625		struct avtab_node *node)
 626{
 627	unsigned int i;
 628
 629	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 630		/* if one or more driver has all permissions allowed */
 631		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 632			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 633	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 634		/* if allowing permissions within a driver */
 635		security_xperm_set(xperms->drivers.p,
 636					node->datum.u.xperms->driver);
 637	}
 638
 639	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 640	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 641		xperms->len = 1;
 642}
 643
 644/*
 645 * Compute access vectors and extended permissions based on a context
 646 * structure pair for the permissions in a particular class.
 647 */
 648static void context_struct_compute_av(struct context *scontext,
 649					struct context *tcontext,
 650					u16 tclass,
 651					struct av_decision *avd,
 652					struct extended_perms *xperms)
 
 653{
 654	struct constraint_node *constraint;
 655	struct role_allow *ra;
 656	struct avtab_key avkey;
 657	struct avtab_node *node;
 658	struct class_datum *tclass_datum;
 659	struct ebitmap *sattr, *tattr;
 660	struct ebitmap_node *snode, *tnode;
 661	unsigned int i, j;
 662
 663	avd->allowed = 0;
 664	avd->auditallow = 0;
 665	avd->auditdeny = 0xffffffff;
 666	if (xperms) {
 667		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 668		xperms->len = 0;
 669	}
 670
 671	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 672		if (printk_ratelimit())
 673			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 674		return;
 675	}
 676
 677	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 678
 679	/*
 680	 * If a specific type enforcement rule was defined for
 681	 * this permission check, then use it.
 682	 */
 683	avkey.target_class = tclass;
 684	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 685	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 686	BUG_ON(!sattr);
 687	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 688	BUG_ON(!tattr);
 689	ebitmap_for_each_positive_bit(sattr, snode, i) {
 690		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 691			avkey.source_type = i + 1;
 692			avkey.target_type = j + 1;
 693			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 694			     node;
 695			     node = avtab_search_node_next(node, avkey.specified)) {
 696				if (node->key.specified == AVTAB_ALLOWED)
 697					avd->allowed |= node->datum.u.data;
 698				else if (node->key.specified == AVTAB_AUDITALLOW)
 699					avd->auditallow |= node->datum.u.data;
 700				else if (node->key.specified == AVTAB_AUDITDENY)
 701					avd->auditdeny &= node->datum.u.data;
 702				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 703					services_compute_xperms_drivers(xperms, node);
 704			}
 705
 706			/* Check conditional av table for additional permissions */
 707			cond_compute_av(&policydb.te_cond_avtab, &avkey,
 708					avd, xperms);
 709
 710		}
 711	}
 712
 713	/*
 714	 * Remove any permissions prohibited by a constraint (this includes
 715	 * the MLS policy).
 716	 */
 717	constraint = tclass_datum->constraints;
 718	while (constraint) {
 719		if ((constraint->permissions & (avd->allowed)) &&
 720		    !constraint_expr_eval(scontext, tcontext, NULL,
 721					  constraint->expr)) {
 722			avd->allowed &= ~(constraint->permissions);
 723		}
 724		constraint = constraint->next;
 725	}
 726
 727	/*
 728	 * If checking process transition permission and the
 729	 * role is changing, then check the (current_role, new_role)
 730	 * pair.
 731	 */
 732	if (tclass == policydb.process_class &&
 733	    (avd->allowed & policydb.process_trans_perms) &&
 734	    scontext->role != tcontext->role) {
 735		for (ra = policydb.role_allow; ra; ra = ra->next) {
 736			if (scontext->role == ra->role &&
 737			    tcontext->role == ra->new_role)
 738				break;
 739		}
 740		if (!ra)
 741			avd->allowed &= ~policydb.process_trans_perms;
 742	}
 743
 744	/*
 745	 * If the given source and target types have boundary
 746	 * constraint, lazy checks have to mask any violated
 747	 * permission and notice it to userspace via audit.
 748	 */
 749	type_attribute_bounds_av(scontext, tcontext,
 750				 tclass, avd);
 751}
 752
 753static int security_validtrans_handle_fail(struct context *ocontext,
 754					   struct context *ncontext,
 755					   struct context *tcontext,
 
 756					   u16 tclass)
 757{
 
 
 758	char *o = NULL, *n = NULL, *t = NULL;
 759	u32 olen, nlen, tlen;
 760
 761	if (context_struct_to_string(ocontext, &o, &olen))
 762		goto out;
 763	if (context_struct_to_string(ncontext, &n, &nlen))
 764		goto out;
 765	if (context_struct_to_string(tcontext, &t, &tlen))
 766		goto out;
 767	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 768		  "op=security_validate_transition seresult=denied"
 769		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 770		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 771out:
 772	kfree(o);
 773	kfree(n);
 774	kfree(t);
 775
 776	if (!selinux_enforcing)
 777		return 0;
 778	return -EPERM;
 779}
 780
 781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 
 782					  u16 orig_tclass, bool user)
 783{
 784	struct context *ocontext;
 785	struct context *ncontext;
 786	struct context *tcontext;
 
 
 787	struct class_datum *tclass_datum;
 788	struct constraint_node *constraint;
 789	u16 tclass;
 790	int rc = 0;
 791
 792	if (!ss_initialized)
 
 793		return 0;
 794
 795	read_lock(&policy_rwlock);
 
 
 
 796
 797	if (!user)
 798		tclass = unmap_class(orig_tclass);
 799	else
 800		tclass = orig_tclass;
 801
 802	if (!tclass || tclass > policydb.p_classes.nprim) {
 803		rc = -EINVAL;
 804		goto out;
 805	}
 806	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 807
 808	ocontext = sidtab_search(&sidtab, oldsid);
 809	if (!ocontext) {
 810		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 811			__func__, oldsid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	ncontext = sidtab_search(&sidtab, newsid);
 817	if (!ncontext) {
 818		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 819			__func__, newsid);
 820		rc = -EINVAL;
 821		goto out;
 822	}
 823
 824	tcontext = sidtab_search(&sidtab, tasksid);
 825	if (!tcontext) {
 826		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 827			__func__, tasksid);
 828		rc = -EINVAL;
 829		goto out;
 830	}
 831
 832	constraint = tclass_datum->validatetrans;
 833	while (constraint) {
 834		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 835					  constraint->expr)) {
 836			if (user)
 837				rc = -EPERM;
 838			else
 839				rc = security_validtrans_handle_fail(ocontext,
 840								     ncontext,
 841								     tcontext,
 
 842								     tclass);
 843			goto out;
 844		}
 845		constraint = constraint->next;
 846	}
 847
 848out:
 849	read_unlock(&policy_rwlock);
 850	return rc;
 851}
 852
 853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 854					u16 tclass)
 
 855{
 856	return security_compute_validatetrans(oldsid, newsid, tasksid,
 857						tclass, true);
 858}
 859
 860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 
 861				 u16 orig_tclass)
 862{
 863	return security_compute_validatetrans(oldsid, newsid, tasksid,
 864						orig_tclass, false);
 865}
 866
 867/*
 868 * security_bounded_transition - check whether the given
 869 * transition is directed to bounded, or not.
 870 * It returns 0, if @newsid is bounded by @oldsid.
 871 * Otherwise, it returns error code.
 872 *
 873 * @oldsid : current security identifier
 874 * @newsid : destinated security identifier
 875 */
 876int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 877{
 878	struct context *old_context, *new_context;
 
 
 879	struct type_datum *type;
 880	int index;
 881	int rc;
 882
 883	read_lock(&policy_rwlock);
 
 
 
 
 
 
 884
 885	rc = -EINVAL;
 886	old_context = sidtab_search(&sidtab, old_sid);
 887	if (!old_context) {
 888		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_context = sidtab_search(&sidtab, new_sid);
 895	if (!new_context) {
 896		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_context->type == new_context->type)
 904		goto out;
 905
 906	index = new_context->type;
 907	while (true) {
 908		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 909					  index - 1);
 910		BUG_ON(!type);
 911
 912		/* not bounded anymore */
 913		rc = -EPERM;
 914		if (!type->bounds)
 915			break;
 916
 917		/* @newsid is bounded by @oldsid */
 918		rc = 0;
 919		if (type->bounds == old_context->type)
 920			break;
 921
 922		index = type->bounds;
 923	}
 924
 925	if (rc) {
 926		char *old_name = NULL;
 927		char *new_name = NULL;
 928		u32 length;
 929
 930		if (!context_struct_to_string(old_context,
 931					      &old_name, &length) &&
 932		    !context_struct_to_string(new_context,
 933					      &new_name, &length)) {
 934			audit_log(current->audit_context,
 935				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 936				  "op=security_bounded_transition "
 937				  "seresult=denied "
 938				  "oldcontext=%s newcontext=%s",
 939				  old_name, new_name);
 940		}
 941		kfree(new_name);
 942		kfree(old_name);
 943	}
 944out:
 945	read_unlock(&policy_rwlock);
 946
 947	return rc;
 948}
 949
 950static void avd_init(struct av_decision *avd)
 951{
 952	avd->allowed = 0;
 953	avd->auditallow = 0;
 954	avd->auditdeny = 0xffffffff;
 955	avd->seqno = latest_granting;
 956	avd->flags = 0;
 957}
 958
 959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 960					struct avtab_node *node)
 961{
 962	unsigned int i;
 963
 964	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 965		if (xpermd->driver != node->datum.u.xperms->driver)
 966			return;
 967	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 968		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 969					xpermd->driver))
 970			return;
 971	} else {
 972		BUG();
 973	}
 974
 975	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 976		xpermd->used |= XPERMS_ALLOWED;
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978			memset(xpermd->allowed->p, 0xff,
 979					sizeof(xpermd->allowed->p));
 980		}
 981		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 983				xpermd->allowed->p[i] |=
 984					node->datum.u.xperms->perms.p[i];
 985		}
 986	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 987		xpermd->used |= XPERMS_AUDITALLOW;
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989			memset(xpermd->auditallow->p, 0xff,
 990					sizeof(xpermd->auditallow->p));
 991		}
 992		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 994				xpermd->auditallow->p[i] |=
 995					node->datum.u.xperms->perms.p[i];
 996		}
 997	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 998		xpermd->used |= XPERMS_DONTAUDIT;
 999		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000			memset(xpermd->dontaudit->p, 0xff,
1001					sizeof(xpermd->dontaudit->p));
1002		}
1003		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005				xpermd->dontaudit->p[i] |=
1006					node->datum.u.xperms->perms.p[i];
1007		}
1008	} else {
1009		BUG();
1010	}
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014				u32 tsid,
1015				u16 orig_tclass,
1016				u8 driver,
1017				struct extended_perms_decision *xpermd)
 
1018{
 
 
1019	u16 tclass;
1020	struct context *scontext, *tcontext;
1021	struct avtab_key avkey;
1022	struct avtab_node *node;
1023	struct ebitmap *sattr, *tattr;
1024	struct ebitmap_node *snode, *tnode;
1025	unsigned int i, j;
1026
1027	xpermd->driver = driver;
1028	xpermd->used = 0;
1029	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033	read_lock(&policy_rwlock);
1034	if (!ss_initialized)
1035		goto allow;
1036
1037	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1038	if (!scontext) {
1039		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1040		       __func__, ssid);
1041		goto out;
1042	}
1043
1044	tcontext = sidtab_search(&sidtab, tsid);
1045	if (!tcontext) {
1046		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1047		       __func__, tsid);
1048		goto out;
1049	}
1050
1051	tclass = unmap_class(orig_tclass);
1052	if (unlikely(orig_tclass && !tclass)) {
1053		if (policydb.allow_unknown)
1054			goto allow;
1055		goto out;
1056	}
1057
1058
1059	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1061		goto out;
1062	}
1063
1064	avkey.target_class = tclass;
1065	avkey.specified = AVTAB_XPERMS;
1066	sattr = flex_array_get(policydb.type_attr_map_array,
1067				scontext->type - 1);
1068	BUG_ON(!sattr);
1069	tattr = flex_array_get(policydb.type_attr_map_array,
1070				tcontext->type - 1);
1071	BUG_ON(!tattr);
1072	ebitmap_for_each_positive_bit(sattr, snode, i) {
1073		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074			avkey.source_type = i + 1;
1075			avkey.target_type = j + 1;
1076			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
1077			     node;
1078			     node = avtab_search_node_next(node, avkey.specified))
1079				services_compute_xperms_decision(xpermd, node);
1080
1081			cond_compute_xperms(&policydb.te_cond_avtab,
1082						&avkey, xpermd);
1083		}
1084	}
1085out:
1086	read_unlock(&policy_rwlock);
1087	return;
1088allow:
1089	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090	goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
 
1105			 u32 tsid,
1106			 u16 orig_tclass,
1107			 struct av_decision *avd,
1108			 struct extended_perms *xperms)
1109{
 
 
1110	u16 tclass;
1111	struct context *scontext = NULL, *tcontext = NULL;
1112
1113	read_lock(&policy_rwlock);
1114	avd_init(avd);
1115	xperms->len = 0;
1116	if (!ss_initialized)
1117		goto allow;
1118
1119	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1120	if (!scontext) {
1121		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1122		       __func__, ssid);
1123		goto out;
1124	}
1125
1126	/* permissive domain? */
1127	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128		avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130	tcontext = sidtab_search(&sidtab, tsid);
1131	if (!tcontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, tsid);
1134		goto out;
1135	}
1136
1137	tclass = unmap_class(orig_tclass);
1138	if (unlikely(orig_tclass && !tclass)) {
1139		if (policydb.allow_unknown)
1140			goto allow;
1141		goto out;
1142	}
1143	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
1145out:
1146	read_unlock(&policy_rwlock);
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
 
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
 
 
1158	struct context *scontext = NULL, *tcontext = NULL;
1159
1160	read_lock(&policy_rwlock);
1161	avd_init(avd);
1162	if (!ss_initialized)
1163		goto allow;
1164
1165	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1166	if (!scontext) {
1167		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168		       __func__, ssid);
1169		goto out;
1170	}
1171
1172	/* permissive domain? */
1173	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174		avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176	tcontext = sidtab_search(&sidtab, tsid);
1177	if (!tcontext) {
1178		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1179		       __func__, tsid);
1180		goto out;
1181	}
1182
1183	if (unlikely(!tclass)) {
1184		if (policydb.allow_unknown)
1185			goto allow;
1186		goto out;
1187	}
1188
1189	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
 
1190 out:
1191	read_unlock(&policy_rwlock);
1192	return;
1193allow:
1194	avd->allowed = 0xffffffff;
1195	goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size.  Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1206{
1207	char *scontextp;
1208
1209	if (scontext)
1210		*scontext = NULL;
1211	*scontext_len = 0;
1212
1213	if (context->len) {
1214		*scontext_len = context->len;
1215		if (scontext) {
1216			*scontext = kstrdup(context->str, GFP_ATOMIC);
1217			if (!(*scontext))
1218				return -ENOMEM;
1219		}
1220		return 0;
1221	}
1222
1223	/* Compute the size of the context. */
1224	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227	*scontext_len += mls_compute_context_len(context);
1228
1229	if (!scontext)
1230		return 0;
1231
1232	/* Allocate space for the context; caller must free this space. */
1233	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234	if (!scontextp)
1235		return -ENOMEM;
1236	*scontext = scontextp;
1237
1238	/*
1239	 * Copy the user name, role name and type name into the context.
1240	 */
1241	scontextp += sprintf(scontextp, "%s:%s:%s",
1242		sym_name(&policydb, SYM_USERS, context->user - 1),
1243		sym_name(&policydb, SYM_ROLES, context->role - 1),
1244		sym_name(&policydb, SYM_TYPES, context->type - 1));
1245
1246	mls_sid_to_context(context, &scontextp);
1247
1248	*scontextp = 0;
1249
1250	return 0;
1251}
1252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253#include "initial_sid_to_string.h"
1254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257	if (unlikely(sid > SECINITSID_NUM))
1258		return NULL;
1259	return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263					u32 *scontext_len, int force)
1264{
1265	struct context *context;
 
 
 
 
1266	int rc = 0;
1267
1268	if (scontext)
1269		*scontext = NULL;
1270	*scontext_len  = 0;
1271
1272	if (!ss_initialized) {
1273		if (sid <= SECINITSID_NUM) {
1274			char *scontextp;
 
1275
1276			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1277			if (!scontext)
1278				goto out;
1279			scontextp = kmemdup(initial_sid_to_string[sid],
1280					    *scontext_len, GFP_ATOMIC);
1281			if (!scontextp) {
1282				rc = -ENOMEM;
1283				goto out;
1284			}
1285			*scontext = scontextp;
1286			goto out;
1287		}
1288		printk(KERN_ERR "SELinux: %s:  called before initial "
1289		       "load_policy on unknown SID %d\n", __func__, sid);
1290		rc = -EINVAL;
1291		goto out;
1292	}
1293	read_lock(&policy_rwlock);
 
 
 
1294	if (force)
1295		context = sidtab_search_force(&sidtab, sid);
1296	else
1297		context = sidtab_search(&sidtab, sid);
1298	if (!context) {
1299		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1300			__func__, sid);
1301		rc = -EINVAL;
1302		goto out_unlock;
1303	}
1304	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1305out_unlock:
1306	read_unlock(&policy_rwlock);
1307out:
1308	return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size.  Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
1323{
1324	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328{
1329	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1330}
1331
1332/*
1333 * Caveat:  Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336				    struct sidtab *sidtabp,
1337				    char *scontext,
1338				    u32 scontext_len,
1339				    struct context *ctx,
1340				    u32 def_sid)
1341{
1342	struct role_datum *role;
1343	struct type_datum *typdatum;
1344	struct user_datum *usrdatum;
1345	char *scontextp, *p, oldc;
1346	int rc = 0;
1347
1348	context_init(ctx);
1349
1350	/* Parse the security context. */
1351
1352	rc = -EINVAL;
1353	scontextp = (char *) scontext;
1354
1355	/* Extract the user. */
1356	p = scontextp;
1357	while (*p && *p != ':')
1358		p++;
1359
1360	if (*p == 0)
1361		goto out;
1362
1363	*p++ = 0;
1364
1365	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366	if (!usrdatum)
1367		goto out;
1368
1369	ctx->user = usrdatum->value;
1370
1371	/* Extract role. */
1372	scontextp = p;
1373	while (*p && *p != ':')
1374		p++;
1375
1376	if (*p == 0)
1377		goto out;
1378
1379	*p++ = 0;
1380
1381	role = hashtab_search(pol->p_roles.table, scontextp);
1382	if (!role)
1383		goto out;
1384	ctx->role = role->value;
1385
1386	/* Extract type. */
1387	scontextp = p;
1388	while (*p && *p != ':')
1389		p++;
1390	oldc = *p;
1391	*p++ = 0;
1392
1393	typdatum = hashtab_search(pol->p_types.table, scontextp);
1394	if (!typdatum || typdatum->attribute)
1395		goto out;
1396
1397	ctx->type = typdatum->value;
1398
1399	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400	if (rc)
1401		goto out;
1402
1403	rc = -EINVAL;
1404	if ((p - scontext) < scontext_len)
1405		goto out;
1406
1407	/* Check the validity of the new context. */
 
1408	if (!policydb_context_isvalid(pol, ctx))
1409		goto out;
1410	rc = 0;
1411out:
1412	if (rc)
1413		context_destroy(ctx);
1414	return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1418					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419					int force)
1420{
 
 
1421	char *scontext2, *str = NULL;
1422	struct context context;
1423	int rc = 0;
1424
1425	/* An empty security context is never valid. */
1426	if (!scontext_len)
1427		return -EINVAL;
1428
1429	if (!ss_initialized) {
 
 
 
 
 
1430		int i;
1431
1432		for (i = 1; i < SECINITSID_NUM; i++) {
1433			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1434				*sid = i;
1435				return 0;
1436			}
1437		}
1438		*sid = SECINITSID_KERNEL;
1439		return 0;
1440	}
1441	*sid = SECSID_NULL;
1442
1443	/* Copy the string so that we can modify the copy as we parse it. */
1444	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445	if (!scontext2)
1446		return -ENOMEM;
1447	memcpy(scontext2, scontext, scontext_len);
1448	scontext2[scontext_len] = 0;
1449
1450	if (force) {
1451		/* Save another copy for storing in uninterpreted form */
1452		rc = -ENOMEM;
1453		str = kstrdup(scontext2, gfp_flags);
1454		if (!str)
1455			goto out;
1456	}
1457
1458	read_lock(&policy_rwlock);
1459	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460				      scontext_len, &context, def_sid);
 
1461	if (rc == -EINVAL && force) {
1462		context.str = str;
1463		context.len = scontext_len;
1464		str = NULL;
1465	} else if (rc)
1466		goto out_unlock;
1467	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1468	context_destroy(&context);
1469out_unlock:
1470	read_unlock(&policy_rwlock);
1471out:
1472	kfree(scontext2);
1473	kfree(str);
1474	return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1490			    gfp_t gfp)
1491{
1492	return security_context_to_sid_core(scontext, scontext_len,
1493					    sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
 
1497{
1498	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
 
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1520				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522	return security_context_to_sid_core(scontext, scontext_len,
1523					    sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1527				  u32 *sid)
1528{
1529	return security_context_to_sid_core(scontext, scontext_len,
1530					    sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
1534	struct context *scontext,
1535	struct context *tcontext,
 
1536	u16 tclass,
1537	struct context *newcontext)
1538{
 
 
1539	char *s = NULL, *t = NULL, *n = NULL;
1540	u32 slen, tlen, nlen;
 
1541
1542	if (context_struct_to_string(scontext, &s, &slen))
1543		goto out;
1544	if (context_struct_to_string(tcontext, &t, &tlen))
1545		goto out;
1546	if (context_struct_to_string(newcontext, &n, &nlen))
1547		goto out;
1548	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549		  "op=security_compute_sid invalid_context=%s"
1550		  " scontext=%s"
1551		  " tcontext=%s"
1552		  " tclass=%s",
1553		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
1554out:
1555	kfree(s);
1556	kfree(t);
1557	kfree(n);
1558	if (!selinux_enforcing)
1559		return 0;
1560	return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1564				  u32 stype, u32 ttype, u16 tclass,
1565				  const char *objname)
1566{
1567	struct filename_trans ft;
1568	struct filename_trans_datum *otype;
1569
1570	/*
1571	 * Most filename trans rules are going to live in specific directories
1572	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1573	 * if the ttype does not contain any rules.
1574	 */
1575	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576		return;
1577
1578	ft.stype = stype;
1579	ft.ttype = ttype;
1580	ft.tclass = tclass;
1581	ft.name = objname;
1582
1583	otype = hashtab_search(p->filename_trans, &ft);
1584	if (otype)
1585		newcontext->type = otype->otype;
 
 
 
 
 
1586}
1587
1588static int security_compute_sid(u32 ssid,
 
1589				u32 tsid,
1590				u16 orig_tclass,
1591				u32 specified,
1592				const char *objname,
1593				u32 *out_sid,
1594				bool kern)
1595{
 
 
1596	struct class_datum *cladatum = NULL;
1597	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598	struct role_trans *roletr = NULL;
1599	struct avtab_key avkey;
1600	struct avtab_datum *avdatum;
1601	struct avtab_node *node;
1602	u16 tclass;
1603	int rc = 0;
1604	bool sock;
1605
1606	if (!ss_initialized) {
1607		switch (orig_tclass) {
1608		case SECCLASS_PROCESS: /* kernel value */
1609			*out_sid = ssid;
1610			break;
1611		default:
1612			*out_sid = tsid;
1613			break;
1614		}
1615		goto out;
1616	}
1617
1618	context_init(&newcontext);
1619
1620	read_lock(&policy_rwlock);
1621
1622	if (kern) {
1623		tclass = unmap_class(orig_tclass);
1624		sock = security_is_socket_class(orig_tclass);
1625	} else {
1626		tclass = orig_tclass;
1627		sock = security_is_socket_class(map_class(tclass));
 
1628	}
1629
1630	scontext = sidtab_search(&sidtab, ssid);
1631	if (!scontext) {
1632		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1633		       __func__, ssid);
1634		rc = -EINVAL;
1635		goto out_unlock;
1636	}
1637	tcontext = sidtab_search(&sidtab, tsid);
1638	if (!tcontext) {
1639		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1640		       __func__, tsid);
1641		rc = -EINVAL;
1642		goto out_unlock;
1643	}
1644
1645	if (tclass && tclass <= policydb.p_classes.nprim)
1646		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1647
1648	/* Set the user identity. */
1649	switch (specified) {
1650	case AVTAB_TRANSITION:
1651	case AVTAB_CHANGE:
1652		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653			newcontext.user = tcontext->user;
1654		} else {
1655			/* notice this gets both DEFAULT_SOURCE and unset */
1656			/* Use the process user identity. */
1657			newcontext.user = scontext->user;
1658		}
1659		break;
1660	case AVTAB_MEMBER:
1661		/* Use the related object owner. */
1662		newcontext.user = tcontext->user;
1663		break;
1664	}
1665
1666	/* Set the role to default values. */
1667	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1668		newcontext.role = scontext->role;
1669	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670		newcontext.role = tcontext->role;
1671	} else {
1672		if ((tclass == policydb.process_class) || (sock == true))
1673			newcontext.role = scontext->role;
1674		else
1675			newcontext.role = OBJECT_R_VAL;
1676	}
1677
1678	/* Set the type to default values. */
1679	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680		newcontext.type = scontext->type;
1681	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682		newcontext.type = tcontext->type;
1683	} else {
1684		if ((tclass == policydb.process_class) || (sock == true)) {
1685			/* Use the type of process. */
1686			newcontext.type = scontext->type;
1687		} else {
1688			/* Use the type of the related object. */
1689			newcontext.type = tcontext->type;
1690		}
1691	}
1692
1693	/* Look for a type transition/member/change rule. */
1694	avkey.source_type = scontext->type;
1695	avkey.target_type = tcontext->type;
1696	avkey.target_class = tclass;
1697	avkey.specified = specified;
1698	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700	/* If no permanent rule, also check for enabled conditional rules */
1701	if (!avdatum) {
1702		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703		for (; node; node = avtab_search_node_next(node, specified)) {
1704			if (node->key.specified & AVTAB_ENABLED) {
1705				avdatum = &node->datum;
1706				break;
1707			}
1708		}
1709	}
1710
1711	if (avdatum) {
1712		/* Use the type from the type transition/member/change rule. */
1713		newcontext.type = avdatum->u.data;
1714	}
1715
1716	/* if we have a objname this is a file trans check so check those rules */
1717	if (objname)
1718		filename_compute_type(&policydb, &newcontext, scontext->type,
1719				      tcontext->type, tclass, objname);
1720
1721	/* Check for class-specific changes. */
1722	if (specified & AVTAB_TRANSITION) {
1723		/* Look for a role transition rule. */
1724		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1725			if ((roletr->role == scontext->role) &&
1726			    (roletr->type == tcontext->type) &&
1727			    (roletr->tclass == tclass)) {
1728				/* Use the role transition rule. */
1729				newcontext.role = roletr->new_role;
1730				break;
1731			}
1732		}
 
1733	}
1734
1735	/* Set the MLS attributes.
1736	   This is done last because it may allocate memory. */
1737	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738			     &newcontext, sock);
1739	if (rc)
1740		goto out_unlock;
1741
1742	/* Check the validity of the context. */
1743	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744		rc = compute_sid_handle_invalid_context(scontext,
1745							tcontext,
1746							tclass,
1747							&newcontext);
1748		if (rc)
1749			goto out_unlock;
1750	}
1751	/* Obtain the sid for the context. */
1752	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1753out_unlock:
1754	read_unlock(&policy_rwlock);
1755	context_destroy(&newcontext);
1756out:
1757	return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1774			    const struct qstr *qstr, u32 *out_sid)
1775{
1776	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1777				    qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1781				 const char *objname, u32 *out_sid)
1782{
1783	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1784				    objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
 
1801			u32 tsid,
1802			u16 tclass,
1803			u32 *out_sid)
1804{
1805	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1806				    out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
 
1823			u32 tsid,
1824			u16 tclass,
1825			u32 *out_sid)
1826{
1827	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1828				    out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833		     struct context *context,
1834		     void *arg)
1835{
1836	struct sidtab *s = arg;
1837
1838	if (sid > SECINITSID_NUM)
1839		return sidtab_insert(s, sid, context);
1840	else
1841		return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
 
1846	char *s;
1847	u32 len;
1848
1849	if (selinux_enforcing)
1850		return -EINVAL;
1851
1852	if (!context_struct_to_string(context, &s, &len)) {
1853		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1854		kfree(s);
1855	}
1856	return 0;
1857}
1858
1859struct convert_context_args {
 
1860	struct policydb *oldp;
1861	struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'.  Verify that the
1869 * context is valid under the new policy.
 
1870 */
1871static int convert_context(u32 key,
1872			   struct context *c,
1873			   void *p)
1874{
1875	struct convert_context_args *args;
1876	struct context oldc;
1877	struct ocontext *oc;
1878	struct mls_range *range;
1879	struct role_datum *role;
1880	struct type_datum *typdatum;
1881	struct user_datum *usrdatum;
1882	char *s;
1883	u32 len;
1884	int rc = 0;
1885
1886	if (key <= SECINITSID_NUM)
1887		goto out;
1888
1889	args = p;
1890
1891	if (c->str) {
1892		struct context ctx;
1893
1894		rc = -ENOMEM;
1895		s = kstrdup(c->str, GFP_KERNEL);
1896		if (!s)
1897			goto out;
1898
1899		rc = string_to_context_struct(args->newp, NULL, s,
1900					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901		kfree(s);
1902		if (!rc) {
1903			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1904			       c->str);
1905			/* Replace string with mapped representation. */
1906			kfree(c->str);
1907			memcpy(c, &ctx, sizeof(*c));
1908			goto out;
1909		} else if (rc == -EINVAL) {
1910			/* Retain string representation for later mapping. */
1911			rc = 0;
1912			goto out;
1913		} else {
1914			/* Other error condition, e.g. ENOMEM. */
1915			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1916			       c->str, -rc);
1917			goto out;
1918		}
 
 
 
1919	}
1920
1921	rc = context_cpy(&oldc, c);
1922	if (rc)
1923		goto out;
1924
1925	/* Convert the user. */
1926	rc = -EINVAL;
1927	usrdatum = hashtab_search(args->newp->p_users.table,
1928				  sym_name(args->oldp, SYM_USERS, c->user - 1));
 
1929	if (!usrdatum)
1930		goto bad;
1931	c->user = usrdatum->value;
1932
1933	/* Convert the role. */
1934	rc = -EINVAL;
1935	role = hashtab_search(args->newp->p_roles.table,
1936			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937	if (!role)
1938		goto bad;
1939	c->role = role->value;
1940
1941	/* Convert the type. */
1942	rc = -EINVAL;
1943	typdatum = hashtab_search(args->newp->p_types.table,
1944				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
 
1945	if (!typdatum)
1946		goto bad;
1947	c->type = typdatum->value;
1948
1949	/* Convert the MLS fields if dealing with MLS policies */
1950	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951		rc = mls_convert_context(args->oldp, args->newp, c);
1952		if (rc)
1953			goto bad;
1954	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955		/*
1956		 * Switching between MLS and non-MLS policy:
1957		 * free any storage used by the MLS fields in the
1958		 * context for all existing entries in the sidtab.
1959		 */
1960		mls_context_destroy(c);
1961	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962		/*
1963		 * Switching between non-MLS and MLS policy:
1964		 * ensure that the MLS fields of the context for all
1965		 * existing entries in the sidtab are filled in with a
1966		 * suitable default value, likely taken from one of the
1967		 * initial SIDs.
1968		 */
1969		oc = args->newp->ocontexts[OCON_ISID];
1970		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971			oc = oc->next;
1972		rc = -EINVAL;
1973		if (!oc) {
1974			printk(KERN_ERR "SELinux:  unable to look up"
1975				" the initial SIDs list\n");
1976			goto bad;
1977		}
1978		range = &oc->context[0].range;
1979		rc = mls_range_set(c, range);
1980		if (rc)
1981			goto bad;
1982	}
1983
1984	/* Check the validity of the new context. */
1985	if (!policydb_context_isvalid(args->newp, c)) {
1986		rc = convert_context_handle_invalid_context(&oldc);
1987		if (rc)
1988			goto bad;
1989	}
1990
1991	context_destroy(&oldc);
1992
1993	rc = 0;
1994out:
1995	return rc;
1996bad:
1997	/* Map old representation to string and save it. */
1998	rc = context_struct_to_string(&oldc, &s, &len);
1999	if (rc)
2000		return rc;
2001	context_destroy(&oldc);
2002	context_destroy(c);
2003	c->str = s;
2004	c->len = len;
2005	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2006	       c->str);
2007	rc = 0;
2008	goto out;
2009}
2010
2011static void security_load_policycaps(void)
2012{
2013	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014						  POLICYDB_CAPABILITY_NETPEER);
2015	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016						  POLICYDB_CAPABILITY_OPENPERM);
2017	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
 
 
 
 
 
 
 
 
 
 
 
2019}
2020
2021static int security_preserve_bools(struct policydb *p);
 
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
2034{
 
 
2035	struct policydb *oldpolicydb, *newpolicydb;
2036	struct sidtab oldsidtab, newsidtab;
2037	struct selinux_mapping *oldmap, *map = NULL;
 
2038	struct convert_context_args args;
2039	u32 seqno;
2040	u16 map_size;
2041	int rc = 0;
2042	struct policy_file file = { data, len }, *fp = &file;
2043
2044	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045	if (!oldpolicydb) {
2046		rc = -ENOMEM;
2047		goto out;
2048	}
2049	newpolicydb = oldpolicydb + 1;
2050
2051	if (!ss_initialized) {
2052		avtab_cache_init();
2053		rc = policydb_read(&policydb, fp);
2054		if (rc) {
2055			avtab_cache_destroy();
2056			goto out;
2057		}
2058
2059		policydb.len = len;
2060		rc = selinux_set_mapping(&policydb, secclass_map,
2061					 &current_mapping,
2062					 &current_mapping_size);
2063		if (rc) {
2064			policydb_destroy(&policydb);
2065			avtab_cache_destroy();
2066			goto out;
2067		}
2068
2069		rc = policydb_load_isids(&policydb, &sidtab);
2070		if (rc) {
2071			policydb_destroy(&policydb);
2072			avtab_cache_destroy();
2073			goto out;
2074		}
2075
2076		security_load_policycaps();
2077		ss_initialized = 1;
2078		seqno = ++latest_granting;
 
2079		selinux_complete_init();
2080		avc_ss_reset(seqno);
2081		selnl_notify_policyload(seqno);
2082		selinux_status_update_policyload(seqno);
2083		selinux_netlbl_cache_invalidate();
2084		selinux_xfrm_notify_policyload();
2085		goto out;
2086	}
2087
2088#if 0
2089	sidtab_hash_eval(&sidtab, "sids");
2090#endif
 
 
 
2091
2092	rc = policydb_read(newpolicydb, fp);
2093	if (rc)
 
2094		goto out;
 
2095
2096	newpolicydb->len = len;
2097	/* If switching between different policy types, log MLS status */
2098	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103	rc = policydb_load_isids(newpolicydb, &newsidtab);
2104	if (rc) {
2105		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2106		policydb_destroy(newpolicydb);
 
2107		goto out;
2108	}
2109
2110	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111	if (rc)
2112		goto err;
2113
2114	rc = security_preserve_bools(newpolicydb);
2115	if (rc) {
2116		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2117		goto err;
2118	}
2119
2120	/* Clone the SID table. */
2121	sidtab_shutdown(&sidtab);
2122
2123	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124	if (rc)
2125		goto err;
2126
2127	/*
2128	 * Convert the internal representations of contexts
2129	 * in the new SID table.
2130	 */
2131	args.oldp = &policydb;
 
2132	args.newp = newpolicydb;
2133	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
2134	if (rc) {
2135		printk(KERN_ERR "SELinux:  unable to convert the internal"
2136			" representation of contexts in the new SID"
2137			" table\n");
2138		goto err;
2139	}
2140
2141	/* Save the old policydb and SID table to free later. */
2142	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143	sidtab_set(&oldsidtab, &sidtab);
2144
2145	/* Install the new policydb and SID table. */
2146	write_lock_irq(&policy_rwlock);
2147	memcpy(&policydb, newpolicydb, sizeof(policydb));
2148	sidtab_set(&sidtab, &newsidtab);
2149	security_load_policycaps();
2150	oldmap = current_mapping;
2151	current_mapping = map;
2152	current_mapping_size = map_size;
2153	seqno = ++latest_granting;
2154	write_unlock_irq(&policy_rwlock);
2155
2156	/* Free the old policydb and SID table. */
2157	policydb_destroy(oldpolicydb);
2158	sidtab_destroy(&oldsidtab);
2159	kfree(oldmap);
 
2160
2161	avc_ss_reset(seqno);
2162	selnl_notify_policyload(seqno);
2163	selinux_status_update_policyload(seqno);
2164	selinux_netlbl_cache_invalidate();
2165	selinux_xfrm_notify_policyload();
2166
2167	rc = 0;
2168	goto out;
2169
2170err:
2171	kfree(map);
2172	sidtab_destroy(&newsidtab);
 
2173	policydb_destroy(newpolicydb);
2174
2175out:
2176	kfree(oldpolicydb);
2177	return rc;
2178}
2179
2180size_t security_policydb_len(void)
2181{
 
2182	size_t len;
2183
2184	read_lock(&policy_rwlock);
2185	len = policydb.len;
2186	read_unlock(&policy_rwlock);
2187
2188	return len;
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2198{
 
 
2199	struct ocontext *c;
2200	int rc = 0;
2201
2202	read_lock(&policy_rwlock);
2203
2204	c = policydb.ocontexts[OCON_PORT];
 
 
 
2205	while (c) {
2206		if (c->u.port.protocol == protocol &&
2207		    c->u.port.low_port <= port &&
2208		    c->u.port.high_port >= port)
2209			break;
2210		c = c->next;
2211	}
2212
2213	if (c) {
2214		if (!c->sid[0]) {
2215			rc = sidtab_context_to_sid(&sidtab,
2216						   &c->context[0],
2217						   &c->sid[0]);
2218			if (rc)
2219				goto out;
2220		}
2221		*out_sid = c->sid[0];
2222	} else {
2223		*out_sid = SECINITSID_PORT;
2224	}
2225
2226out:
2227	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228	return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
 
2237{
 
 
2238	int rc = 0;
2239	struct ocontext *c;
2240
2241	read_lock(&policy_rwlock);
2242
2243	c = policydb.ocontexts[OCON_NETIF];
 
 
 
2244	while (c) {
2245		if (strcmp(name, c->u.name) == 0)
2246			break;
2247		c = c->next;
2248	}
2249
2250	if (c) {
2251		if (!c->sid[0] || !c->sid[1]) {
2252			rc = sidtab_context_to_sid(&sidtab,
2253						  &c->context[0],
2254						  &c->sid[0]);
2255			if (rc)
2256				goto out;
2257			rc = sidtab_context_to_sid(&sidtab,
2258						   &c->context[1],
2259						   &c->sid[1]);
2260			if (rc)
2261				goto out;
2262		}
2263		*if_sid = c->sid[0];
2264	} else
2265		*if_sid = SECINITSID_NETIF;
2266
2267out:
2268	read_unlock(&policy_rwlock);
2269	return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274	int i, fail = 0;
2275
2276	for (i = 0; i < 4; i++)
2277		if (addr[i] != (input[i] & mask[i])) {
2278			fail = 1;
2279			break;
2280		}
2281
2282	return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
 
2293		      void *addrp,
2294		      u32 addrlen,
2295		      u32 *out_sid)
2296{
 
 
2297	int rc;
2298	struct ocontext *c;
2299
2300	read_lock(&policy_rwlock);
 
 
 
2301
2302	switch (domain) {
2303	case AF_INET: {
2304		u32 addr;
2305
2306		rc = -EINVAL;
2307		if (addrlen != sizeof(u32))
2308			goto out;
2309
2310		addr = *((u32 *)addrp);
2311
2312		c = policydb.ocontexts[OCON_NODE];
2313		while (c) {
2314			if (c->u.node.addr == (addr & c->u.node.mask))
2315				break;
2316			c = c->next;
2317		}
2318		break;
2319	}
2320
2321	case AF_INET6:
2322		rc = -EINVAL;
2323		if (addrlen != sizeof(u64) * 2)
2324			goto out;
2325		c = policydb.ocontexts[OCON_NODE6];
2326		while (c) {
2327			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328						c->u.node6.mask))
2329				break;
2330			c = c->next;
2331		}
2332		break;
2333
2334	default:
2335		rc = 0;
2336		*out_sid = SECINITSID_NODE;
2337		goto out;
2338	}
2339
2340	if (c) {
2341		if (!c->sid[0]) {
2342			rc = sidtab_context_to_sid(&sidtab,
2343						   &c->context[0],
2344						   &c->sid[0]);
2345			if (rc)
2346				goto out;
2347		}
2348		*out_sid = c->sid[0];
2349	} else {
2350		*out_sid = SECINITSID_NODE;
2351	}
2352
2353	rc = 0;
2354out:
2355	read_unlock(&policy_rwlock);
2356	return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs.  Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
 
2376			   char *username,
2377			   u32 **sids,
2378			   u32 *nel)
2379{
 
 
2380	struct context *fromcon, usercon;
2381	u32 *mysids = NULL, *mysids2, sid;
2382	u32 mynel = 0, maxnel = SIDS_NEL;
2383	struct user_datum *user;
2384	struct role_datum *role;
2385	struct ebitmap_node *rnode, *tnode;
2386	int rc = 0, i, j;
2387
2388	*sids = NULL;
2389	*nel = 0;
2390
2391	if (!ss_initialized)
2392		goto out;
2393
2394	read_lock(&policy_rwlock);
 
 
 
2395
2396	context_init(&usercon);
2397
2398	rc = -EINVAL;
2399	fromcon = sidtab_search(&sidtab, fromsid);
2400	if (!fromcon)
2401		goto out_unlock;
2402
2403	rc = -EINVAL;
2404	user = hashtab_search(policydb.p_users.table, username);
2405	if (!user)
2406		goto out_unlock;
2407
2408	usercon.user = user->value;
2409
2410	rc = -ENOMEM;
2411	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412	if (!mysids)
2413		goto out_unlock;
2414
2415	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416		role = policydb.role_val_to_struct[i];
2417		usercon.role = i + 1;
2418		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419			usercon.type = j + 1;
2420
2421			if (mls_setup_user_range(fromcon, user, &usercon))
 
2422				continue;
2423
2424			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2425			if (rc)
2426				goto out_unlock;
2427			if (mynel < maxnel) {
2428				mysids[mynel++] = sid;
2429			} else {
2430				rc = -ENOMEM;
2431				maxnel += SIDS_NEL;
2432				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433				if (!mysids2)
2434					goto out_unlock;
2435				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436				kfree(mysids);
2437				mysids = mysids2;
2438				mysids[mynel++] = sid;
2439			}
2440		}
2441	}
2442	rc = 0;
2443out_unlock:
2444	read_unlock(&policy_rwlock);
2445	if (rc || !mynel) {
2446		kfree(mysids);
2447		goto out;
2448	}
2449
2450	rc = -ENOMEM;
2451	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452	if (!mysids2) {
2453		kfree(mysids);
2454		goto out;
2455	}
2456	for (i = 0, j = 0; i < mynel; i++) {
2457		struct av_decision dummy_avd;
2458		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2459					  SECCLASS_PROCESS, /* kernel value */
2460					  PROCESS__TRANSITION, AVC_STRICT,
2461					  &dummy_avd);
2462		if (!rc)
2463			mysids2[j++] = mysids[i];
2464		cond_resched();
2465	}
2466	rc = 0;
2467	kfree(mysids);
2468	*sids = mysids2;
2469	*nel = j;
2470out:
2471	return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
 
2488				       char *path,
2489				       u16 orig_sclass,
2490				       u32 *sid)
2491{
 
 
2492	int len;
2493	u16 sclass;
2494	struct genfs *genfs;
2495	struct ocontext *c;
2496	int rc, cmp = 0;
2497
2498	while (path[0] == '/' && path[1] == '/')
2499		path++;
2500
2501	sclass = unmap_class(orig_sclass);
2502	*sid = SECINITSID_UNLABELED;
2503
2504	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505		cmp = strcmp(fstype, genfs->fstype);
2506		if (cmp <= 0)
2507			break;
2508	}
2509
2510	rc = -ENOENT;
2511	if (!genfs || cmp)
2512		goto out;
2513
2514	for (c = genfs->head; c; c = c->next) {
2515		len = strlen(c->u.name);
2516		if ((!c->v.sclass || sclass == c->v.sclass) &&
2517		    (strncmp(c->u.name, path, len) == 0))
2518			break;
2519	}
2520
2521	rc = -ENOENT;
2522	if (!c)
2523		goto out;
2524
2525	if (!c->sid[0]) {
2526		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527		if (rc)
2528			goto out;
2529	}
2530
2531	*sid = c->sid[0];
2532	rc = 0;
2533out:
2534	return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
 
2548		       char *path,
2549		       u16 orig_sclass,
2550		       u32 *sid)
2551{
2552	int retval;
2553
2554	read_lock(&policy_rwlock);
2555	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556	read_unlock(&policy_rwlock);
2557	return retval;
2558}
2559
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
2563 */
2564int security_fs_use(struct super_block *sb)
2565{
 
 
2566	int rc = 0;
2567	struct ocontext *c;
2568	struct superblock_security_struct *sbsec = sb->s_security;
2569	const char *fstype = sb->s_type->name;
2570
2571	read_lock(&policy_rwlock);
2572
2573	c = policydb.ocontexts[OCON_FSUSE];
 
 
 
2574	while (c) {
2575		if (strcmp(fstype, c->u.name) == 0)
2576			break;
2577		c = c->next;
2578	}
2579
2580	if (c) {
2581		sbsec->behavior = c->v.behavior;
2582		if (!c->sid[0]) {
2583			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584						   &c->sid[0]);
2585			if (rc)
2586				goto out;
2587		}
2588		sbsec->sid = c->sid[0];
2589	} else {
2590		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591					  &sbsec->sid);
2592		if (rc) {
2593			sbsec->behavior = SECURITY_FS_USE_NONE;
2594			rc = 0;
2595		} else {
2596			sbsec->behavior = SECURITY_FS_USE_GENFS;
2597		}
2598	}
2599
2600out:
2601	read_unlock(&policy_rwlock);
2602	return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
 
2606{
2607	int i, rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
2608
2609	read_lock(&policy_rwlock);
2610	*names = NULL;
2611	*values = NULL;
2612
2613	rc = 0;
2614	*len = policydb.p_bools.nprim;
2615	if (!*len)
2616		goto out;
2617
2618	rc = -ENOMEM;
2619	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620	if (!*names)
2621		goto err;
2622
2623	rc = -ENOMEM;
2624	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625	if (!*values)
2626		goto err;
2627
2628	for (i = 0; i < *len; i++) {
2629		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2630
2631		rc = -ENOMEM;
2632		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
 
2633		if (!(*names)[i])
2634			goto err;
2635	}
2636	rc = 0;
2637out:
2638	read_unlock(&policy_rwlock);
2639	return rc;
2640err:
2641	if (*names) {
2642		for (i = 0; i < *len; i++)
2643			kfree((*names)[i]);
 
2644	}
2645	kfree(*values);
 
 
 
2646	goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
2652	int i, rc;
2653	int lenp, seqno = 0;
2654	struct cond_node *cur;
2655
2656	write_lock_irq(&policy_rwlock);
 
 
2657
2658	rc = -EFAULT;
2659	lenp = policydb.p_bools.nprim;
2660	if (len != lenp)
2661		goto out;
2662
2663	for (i = 0; i < len; i++) {
2664		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665			audit_log(current->audit_context, GFP_ATOMIC,
2666				AUDIT_MAC_CONFIG_CHANGE,
2667				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2668				sym_name(&policydb, SYM_BOOLS, i),
2669				!!values[i],
2670				policydb.bool_val_to_struct[i]->state,
2671				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672				audit_get_sessionid(current));
2673		}
2674		if (values[i])
2675			policydb.bool_val_to_struct[i]->state = 1;
2676		else
2677			policydb.bool_val_to_struct[i]->state = 0;
2678	}
2679
2680	for (cur = policydb.cond_list; cur; cur = cur->next) {
2681		rc = evaluate_cond_node(&policydb, cur);
2682		if (rc)
2683			goto out;
2684	}
2685
2686	seqno = ++latest_granting;
2687	rc = 0;
2688out:
2689	write_unlock_irq(&policy_rwlock);
2690	if (!rc) {
2691		avc_ss_reset(seqno);
2692		selnl_notify_policyload(seqno);
2693		selinux_status_update_policyload(seqno);
2694		selinux_xfrm_notify_policyload();
2695	}
2696	return rc;
2697}
2698
2699int security_get_bool_value(int bool)
 
2700{
 
2701	int rc;
2702	int len;
2703
2704	read_lock(&policy_rwlock);
 
 
2705
2706	rc = -EFAULT;
2707	len = policydb.p_bools.nprim;
2708	if (bool >= len)
2709		goto out;
2710
2711	rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713	read_unlock(&policy_rwlock);
2714	return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
 
2718{
2719	int rc, nbools = 0, *bvalues = NULL, i;
2720	char **bnames = NULL;
2721	struct cond_bool_datum *booldatum;
2722	struct cond_node *cur;
2723
2724	rc = security_get_bools(&nbools, &bnames, &bvalues);
2725	if (rc)
2726		goto out;
2727	for (i = 0; i < nbools; i++) {
2728		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2729		if (booldatum)
2730			booldatum->state = bvalues[i];
2731	}
2732	for (cur = p->cond_list; cur; cur = cur->next) {
2733		rc = evaluate_cond_node(p, cur);
2734		if (rc)
2735			goto out;
2736	}
2737
2738out:
2739	if (bnames) {
2740		for (i = 0; i < nbools; i++)
2741			kfree(bnames[i]);
2742	}
2743	kfree(bnames);
2744	kfree(bvalues);
2745	return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2753{
 
 
2754	struct context *context1;
2755	struct context *context2;
2756	struct context newcon;
2757	char *s;
2758	u32 len;
2759	int rc;
2760
2761	rc = 0;
2762	if (!ss_initialized || !policydb.mls_enabled) {
2763		*new_sid = sid;
2764		goto out;
2765	}
2766
2767	context_init(&newcon);
2768
2769	read_lock(&policy_rwlock);
2770
2771	rc = -EINVAL;
2772	context1 = sidtab_search(&sidtab, sid);
2773	if (!context1) {
2774		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2775			__func__, sid);
2776		goto out_unlock;
2777	}
2778
2779	rc = -EINVAL;
2780	context2 = sidtab_search(&sidtab, mls_sid);
2781	if (!context2) {
2782		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2783			__func__, mls_sid);
2784		goto out_unlock;
2785	}
2786
2787	newcon.user = context1->user;
2788	newcon.role = context1->role;
2789	newcon.type = context1->type;
2790	rc = mls_context_cpy(&newcon, context2);
2791	if (rc)
2792		goto out_unlock;
2793
2794	/* Check the validity of the new context. */
2795	if (!policydb_context_isvalid(&policydb, &newcon)) {
2796		rc = convert_context_handle_invalid_context(&newcon);
2797		if (rc) {
2798			if (!context_struct_to_string(&newcon, &s, &len)) {
2799				audit_log(current->audit_context,
2800					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801					  "op=security_sid_mls_copy "
2802					  "invalid_context=%s", s);
 
 
 
 
 
 
 
2803				kfree(s);
2804			}
2805			goto out_unlock;
2806		}
2807	}
2808
2809	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2810out_unlock:
2811	read_unlock(&policy_rwlock);
2812	context_destroy(&newcon);
2813out:
2814	return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value.  A table summarizing the behavior is below:
2828 *
2829 *                                 | function return |      @sid
2830 *   ------------------------------+-----------------+-----------------
2831 *   no peer labels                |        0        |    SECSID_NULL
2832 *   single peer label             |        0        |    <peer_label>
2833 *   multiple, consistent labels   |        0        |    <peer_label>
2834 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2838				 u32 xfrm_sid,
2839				 u32 *peer_sid)
2840{
 
 
2841	int rc;
2842	struct context *nlbl_ctx;
2843	struct context *xfrm_ctx;
2844
2845	*peer_sid = SECSID_NULL;
2846
2847	/* handle the common (which also happens to be the set of easy) cases
2848	 * right away, these two if statements catch everything involving a
2849	 * single or absent peer SID/label */
2850	if (xfrm_sid == SECSID_NULL) {
2851		*peer_sid = nlbl_sid;
2852		return 0;
2853	}
2854	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856	 * is present */
2857	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858		*peer_sid = xfrm_sid;
2859		return 0;
2860	}
2861
2862	/* we don't need to check ss_initialized here since the only way both
 
2863	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864	 * security server was initialized and ss_initialized was true */
2865	if (!policydb.mls_enabled)
 
2866		return 0;
2867
2868	read_lock(&policy_rwlock);
2869
2870	rc = -EINVAL;
2871	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872	if (!nlbl_ctx) {
2873		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2874		       __func__, nlbl_sid);
2875		goto out;
2876	}
2877	rc = -EINVAL;
2878	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879	if (!xfrm_ctx) {
2880		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2881		       __func__, xfrm_sid);
2882		goto out;
2883	}
2884	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885	if (rc)
2886		goto out;
2887
2888	/* at present NetLabel SIDs/labels really only carry MLS
2889	 * information so if the MLS portion of the NetLabel SID
2890	 * matches the MLS portion of the labeled XFRM SID/label
2891	 * then pass along the XFRM SID as it is the most
2892	 * expressive */
2893	*peer_sid = xfrm_sid;
2894out:
2895	read_unlock(&policy_rwlock);
2896	return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901	struct class_datum *datum = d;
2902	char *name = k, **classes = args;
2903	int value = datum->value - 1;
2904
2905	classes[value] = kstrdup(name, GFP_ATOMIC);
2906	if (!classes[value])
2907		return -ENOMEM;
2908
2909	return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
 
2913{
 
2914	int rc;
2915
2916	read_lock(&policy_rwlock);
 
 
 
 
 
 
2917
2918	rc = -ENOMEM;
2919	*nclasses = policydb.p_classes.nprim;
2920	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921	if (!*classes)
2922		goto out;
2923
2924	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925			*classes);
2926	if (rc) {
2927		int i;
2928		for (i = 0; i < *nclasses; i++)
2929			kfree((*classes)[i]);
2930		kfree(*classes);
2931	}
2932
2933out:
2934	read_unlock(&policy_rwlock);
2935	return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940	struct perm_datum *datum = d;
2941	char *name = k, **perms = args;
2942	int value = datum->value - 1;
2943
2944	perms[value] = kstrdup(name, GFP_ATOMIC);
2945	if (!perms[value])
2946		return -ENOMEM;
2947
2948	return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
 
2952{
 
2953	int rc, i;
2954	struct class_datum *match;
2955
2956	read_lock(&policy_rwlock);
2957
2958	rc = -EINVAL;
2959	match = hashtab_search(policydb.p_classes.table, class);
2960	if (!match) {
2961		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2962			__func__, class);
2963		goto out;
2964	}
2965
2966	rc = -ENOMEM;
2967	*nperms = match->permissions.nprim;
2968	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969	if (!*perms)
2970		goto out;
2971
2972	if (match->comdatum) {
2973		rc = hashtab_map(match->comdatum->permissions.table,
2974				get_permissions_callback, *perms);
2975		if (rc)
2976			goto err;
2977	}
2978
2979	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980			*perms);
2981	if (rc)
2982		goto err;
2983
2984out:
2985	read_unlock(&policy_rwlock);
2986	return rc;
2987
2988err:
2989	read_unlock(&policy_rwlock);
2990	for (i = 0; i < *nperms; i++)
2991		kfree((*perms)[i]);
2992	kfree(*perms);
2993	return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998	return policydb.reject_unknown;
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003	return policydb.allow_unknown;
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap.  Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
 
3017{
 
3018	int rc;
3019
3020	read_lock(&policy_rwlock);
3021	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022	read_unlock(&policy_rwlock);
3023
3024	return rc;
3025}
3026
3027struct selinux_audit_rule {
3028	u32 au_seqno;
3029	struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034	struct selinux_audit_rule *rule = vrule;
3035
3036	if (rule) {
3037		context_destroy(&rule->au_ctxt);
3038		kfree(rule);
3039	}
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
 
 
3044	struct selinux_audit_rule *tmprule;
3045	struct role_datum *roledatum;
3046	struct type_datum *typedatum;
3047	struct user_datum *userdatum;
3048	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049	int rc = 0;
3050
3051	*rule = NULL;
3052
3053	if (!ss_initialized)
3054		return -EOPNOTSUPP;
3055
3056	switch (field) {
3057	case AUDIT_SUBJ_USER:
3058	case AUDIT_SUBJ_ROLE:
3059	case AUDIT_SUBJ_TYPE:
3060	case AUDIT_OBJ_USER:
3061	case AUDIT_OBJ_ROLE:
3062	case AUDIT_OBJ_TYPE:
3063		/* only 'equals' and 'not equals' fit user, role, and type */
3064		if (op != Audit_equal && op != Audit_not_equal)
3065			return -EINVAL;
3066		break;
3067	case AUDIT_SUBJ_SEN:
3068	case AUDIT_SUBJ_CLR:
3069	case AUDIT_OBJ_LEV_LOW:
3070	case AUDIT_OBJ_LEV_HIGH:
3071		/* we do not allow a range, indicated by the presence of '-' */
3072		if (strchr(rulestr, '-'))
3073			return -EINVAL;
3074		break;
3075	default:
3076		/* only the above fields are valid */
3077		return -EINVAL;
3078	}
3079
3080	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081	if (!tmprule)
3082		return -ENOMEM;
3083
3084	context_init(&tmprule->au_ctxt);
3085
3086	read_lock(&policy_rwlock);
3087
3088	tmprule->au_seqno = latest_granting;
3089
3090	switch (field) {
3091	case AUDIT_SUBJ_USER:
3092	case AUDIT_OBJ_USER:
3093		rc = -EINVAL;
3094		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095		if (!userdatum)
3096			goto out;
3097		tmprule->au_ctxt.user = userdatum->value;
3098		break;
3099	case AUDIT_SUBJ_ROLE:
3100	case AUDIT_OBJ_ROLE:
3101		rc = -EINVAL;
3102		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103		if (!roledatum)
3104			goto out;
3105		tmprule->au_ctxt.role = roledatum->value;
3106		break;
3107	case AUDIT_SUBJ_TYPE:
3108	case AUDIT_OBJ_TYPE:
3109		rc = -EINVAL;
3110		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111		if (!typedatum)
3112			goto out;
3113		tmprule->au_ctxt.type = typedatum->value;
3114		break;
3115	case AUDIT_SUBJ_SEN:
3116	case AUDIT_SUBJ_CLR:
3117	case AUDIT_OBJ_LEV_LOW:
3118	case AUDIT_OBJ_LEV_HIGH:
3119		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
3120		if (rc)
3121			goto out;
3122		break;
3123	}
3124	rc = 0;
3125out:
3126	read_unlock(&policy_rwlock);
3127
3128	if (rc) {
3129		selinux_audit_rule_free(tmprule);
3130		tmprule = NULL;
3131	}
3132
3133	*rule = tmprule;
3134
3135	return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141	int i;
3142
3143	for (i = 0; i < rule->field_count; i++) {
3144		struct audit_field *f = &rule->fields[i];
3145		switch (f->type) {
3146		case AUDIT_SUBJ_USER:
3147		case AUDIT_SUBJ_ROLE:
3148		case AUDIT_SUBJ_TYPE:
3149		case AUDIT_SUBJ_SEN:
3150		case AUDIT_SUBJ_CLR:
3151		case AUDIT_OBJ_USER:
3152		case AUDIT_OBJ_ROLE:
3153		case AUDIT_OBJ_TYPE:
3154		case AUDIT_OBJ_LEV_LOW:
3155		case AUDIT_OBJ_LEV_HIGH:
3156			return 1;
3157		}
3158	}
3159
3160	return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164			     struct audit_context *actx)
3165{
 
3166	struct context *ctxt;
3167	struct mls_level *level;
3168	struct selinux_audit_rule *rule = vrule;
3169	int match = 0;
3170
3171	if (unlikely(!rule)) {
3172		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3173		return -ENOENT;
3174	}
3175
3176	read_lock(&policy_rwlock);
3177
3178	if (rule->au_seqno < latest_granting) {
3179		match = -ESTALE;
3180		goto out;
3181	}
3182
3183	ctxt = sidtab_search(&sidtab, sid);
3184	if (unlikely(!ctxt)) {
3185		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3186			  sid);
3187		match = -ENOENT;
3188		goto out;
3189	}
3190
3191	/* a field/op pair that is not caught here will simply fall through
3192	   without a match */
3193	switch (field) {
3194	case AUDIT_SUBJ_USER:
3195	case AUDIT_OBJ_USER:
3196		switch (op) {
3197		case Audit_equal:
3198			match = (ctxt->user == rule->au_ctxt.user);
3199			break;
3200		case Audit_not_equal:
3201			match = (ctxt->user != rule->au_ctxt.user);
3202			break;
3203		}
3204		break;
3205	case AUDIT_SUBJ_ROLE:
3206	case AUDIT_OBJ_ROLE:
3207		switch (op) {
3208		case Audit_equal:
3209			match = (ctxt->role == rule->au_ctxt.role);
3210			break;
3211		case Audit_not_equal:
3212			match = (ctxt->role != rule->au_ctxt.role);
3213			break;
3214		}
3215		break;
3216	case AUDIT_SUBJ_TYPE:
3217	case AUDIT_OBJ_TYPE:
3218		switch (op) {
3219		case Audit_equal:
3220			match = (ctxt->type == rule->au_ctxt.type);
3221			break;
3222		case Audit_not_equal:
3223			match = (ctxt->type != rule->au_ctxt.type);
3224			break;
3225		}
3226		break;
3227	case AUDIT_SUBJ_SEN:
3228	case AUDIT_SUBJ_CLR:
3229	case AUDIT_OBJ_LEV_LOW:
3230	case AUDIT_OBJ_LEV_HIGH:
3231		level = ((field == AUDIT_SUBJ_SEN ||
3232			  field == AUDIT_OBJ_LEV_LOW) ?
3233			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3234		switch (op) {
3235		case Audit_equal:
3236			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237					     level);
3238			break;
3239		case Audit_not_equal:
3240			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241					      level);
3242			break;
3243		case Audit_lt:
3244			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245					       level) &&
3246				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247					       level));
3248			break;
3249		case Audit_le:
3250			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251					      level);
3252			break;
3253		case Audit_gt:
3254			match = (mls_level_dom(level,
3255					      &rule->au_ctxt.range.level[0]) &&
3256				 !mls_level_eq(level,
3257					       &rule->au_ctxt.range.level[0]));
3258			break;
3259		case Audit_ge:
3260			match = mls_level_dom(level,
3261					      &rule->au_ctxt.range.level[0]);
3262			break;
3263		}
3264	}
3265
3266out:
3267	read_unlock(&policy_rwlock);
3268	return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
3274{
3275	int err = 0;
3276
3277	if (event == AVC_CALLBACK_RESET && aurule_callback)
3278		err = aurule_callback();
3279	return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284	int err;
3285
3286	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3287	if (err)
3288		panic("avc_add_callback() failed, error %d\n", err);
3289
3290	return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307				      u32 sid)
3308{
3309	u32 *sid_cache;
3310
3311	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312	if (sid_cache == NULL)
3313		return;
3314	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315	if (secattr->cache == NULL) {
3316		kfree(sid_cache);
3317		return;
3318	}
3319
3320	*sid_cache = sid;
3321	secattr->cache->free = kfree;
3322	secattr->cache->data = sid_cache;
3323	secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID.  If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups.  Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3342				   u32 *sid)
3343{
 
 
3344	int rc;
3345	struct context *ctx;
3346	struct context ctx_new;
3347
3348	if (!ss_initialized) {
3349		*sid = SECSID_NULL;
3350		return 0;
3351	}
3352
3353	read_lock(&policy_rwlock);
3354
3355	if (secattr->flags & NETLBL_SECATTR_CACHE)
3356		*sid = *(u32 *)secattr->cache->data;
3357	else if (secattr->flags & NETLBL_SECATTR_SECID)
3358		*sid = secattr->attr.secid;
3359	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360		rc = -EIDRM;
3361		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362		if (ctx == NULL)
3363			goto out;
3364
3365		context_init(&ctx_new);
3366		ctx_new.user = ctx->user;
3367		ctx_new.role = ctx->role;
3368		ctx_new.type = ctx->type;
3369		mls_import_netlbl_lvl(&ctx_new, secattr);
3370		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371			rc = mls_import_netlbl_cat(&ctx_new, secattr);
3372			if (rc)
3373				goto out;
3374		}
3375		rc = -EIDRM;
3376		if (!mls_context_isvalid(&policydb, &ctx_new))
3377			goto out_free;
3378
3379		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3380		if (rc)
3381			goto out_free;
3382
3383		security_netlbl_cache_add(secattr, *sid);
3384
3385		ebitmap_destroy(&ctx_new.range.level[0].cat);
3386	} else
3387		*sid = SECSID_NULL;
3388
3389	read_unlock(&policy_rwlock);
3390	return 0;
3391out_free:
3392	ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394	read_unlock(&policy_rwlock);
3395	return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3409{
 
3410	int rc;
3411	struct context *ctx;
3412
3413	if (!ss_initialized)
3414		return 0;
3415
3416	read_lock(&policy_rwlock);
3417
3418	rc = -ENOENT;
3419	ctx = sidtab_search(&sidtab, sid);
3420	if (ctx == NULL)
3421		goto out;
3422
3423	rc = -ENOMEM;
3424	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425				  GFP_ATOMIC);
3426	if (secattr->domain == NULL)
3427		goto out;
3428
3429	secattr->attr.secid = sid;
3430	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431	mls_export_netlbl_lvl(ctx, secattr);
3432	rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434	read_unlock(&policy_rwlock);
3435	return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
 
3446{
 
3447	int rc;
3448	struct policy_file fp;
3449
3450	if (!ss_initialized)
3451		return -EINVAL;
3452
3453	*len = security_policydb_len();
3454
3455	*data = vmalloc_user(*len);
3456	if (!*data)
3457		return -ENOMEM;
3458
3459	fp.data = *data;
3460	fp.len = *len;
3461
3462	read_lock(&policy_rwlock);
3463	rc = policydb_write(&policydb, &fp);
3464	read_unlock(&policy_rwlock);
3465
3466	if (rc)
3467		return rc;
3468
3469	*len = (unsigned long)fp.data - (unsigned long)*data;
3470	return 0;
3471
3472}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <net/netlabel.h>
  51
  52#include "flask.h"
  53#include "avc.h"
  54#include "avc_ss.h"
  55#include "security.h"
  56#include "context.h"
  57#include "policydb.h"
  58#include "sidtab.h"
  59#include "services.h"
  60#include "conditional.h"
  61#include "mls.h"
  62#include "objsec.h"
  63#include "netlabel.h"
  64#include "xfrm.h"
  65#include "ebitmap.h"
  66#include "audit.h"
  67
  68/* Policy capability names */
  69const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  70	"network_peer_controls",
  71	"open_perms",
  72	"extended_socket_class",
  73	"always_check_network",
  74	"cgroup_seclabel",
  75	"nnp_nosuid_transition",
  76	"genfs_seclabel_symlinks"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	*ss = &selinux_ss;
  85}
  86
  87/* Forward declaration. */
  88static int context_struct_to_string(struct policydb *policydb,
  89				    struct context *context,
  90				    char **scontext,
  91				    u32 *scontext_len);
  92
  93static int sidtab_entry_to_string(struct policydb *policydb,
  94				  struct sidtab *sidtab,
  95				  struct sidtab_entry *entry,
  96				  char **scontext,
  97				  u32 *scontext_len);
  98
  99static void context_struct_compute_av(struct policydb *policydb,
 100				      struct context *scontext,
 101				      struct context *tcontext,
 102				      u16 tclass,
 103				      struct av_decision *avd,
 104				      struct extended_perms *xperms);
 
 
 105
 106static int selinux_set_mapping(struct policydb *pol,
 107			       struct security_class_mapping *map,
 108			       struct selinux_map *out_map)
 
 109{
 
 
 110	u16 i, j;
 111	unsigned k;
 112	bool print_unknown_handle = false;
 113
 114	/* Find number of classes in the input mapping */
 115	if (!map)
 116		return -EINVAL;
 117	i = 0;
 118	while (map[i].name)
 119		i++;
 120
 121	/* Allocate space for the class records, plus one for class zero */
 122	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 123	if (!out_map->mapping)
 124		return -ENOMEM;
 125
 126	/* Store the raw class and permission values */
 127	j = 0;
 128	while (map[j].name) {
 129		struct security_class_mapping *p_in = map + (j++);
 130		struct selinux_mapping *p_out = out_map->mapping + j;
 131
 132		/* An empty class string skips ahead */
 133		if (!strcmp(p_in->name, "")) {
 134			p_out->num_perms = 0;
 135			continue;
 136		}
 137
 138		p_out->value = string_to_security_class(pol, p_in->name);
 139		if (!p_out->value) {
 140			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 160				       p_in->perms[k], p_in->name);
 161				if (pol->reject_unknown)
 162					goto err;
 163				print_unknown_handle = true;
 164			}
 165
 166			k++;
 167		}
 168		p_out->num_perms = k;
 169	}
 170
 171	if (print_unknown_handle)
 172		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 173		       pol->allow_unknown ? "allowed" : "denied");
 174
 175	out_map->size = i;
 
 176	return 0;
 177err:
 178	kfree(out_map->mapping);
 179	out_map->mapping = NULL;
 180	return -EINVAL;
 181}
 182
 183/*
 184 * Get real, policy values from mapped values
 185 */
 186
 187static u16 unmap_class(struct selinux_map *map, u16 tclass)
 188{
 189	if (tclass < map->size)
 190		return map->mapping[tclass].value;
 191
 192	return tclass;
 193}
 194
 195/*
 196 * Get kernel value for class from its policy value
 197 */
 198static u16 map_class(struct selinux_map *map, u16 pol_value)
 199{
 200	u16 i;
 201
 202	for (i = 1; i < map->size; i++) {
 203		if (map->mapping[i].value == pol_value)
 204			return i;
 205	}
 206
 207	return SECCLASS_NULL;
 208}
 209
 210static void map_decision(struct selinux_map *map,
 211			 u16 tclass, struct av_decision *avd,
 212			 int allow_unknown)
 213{
 214	if (tclass < map->size) {
 215		struct selinux_mapping *mapping = &map->mapping[tclass];
 216		unsigned int i, n = mapping->num_perms;
 217		u32 result;
 218
 219		for (i = 0, result = 0; i < n; i++) {
 220			if (avd->allowed & mapping->perms[i])
 221				result |= 1<<i;
 222			if (allow_unknown && !mapping->perms[i])
 223				result |= 1<<i;
 224		}
 225		avd->allowed = result;
 226
 227		for (i = 0, result = 0; i < n; i++)
 228			if (avd->auditallow & mapping->perms[i])
 229				result |= 1<<i;
 230		avd->auditallow = result;
 231
 232		for (i = 0, result = 0; i < n; i++) {
 233			if (avd->auditdeny & mapping->perms[i])
 234				result |= 1<<i;
 235			if (!allow_unknown && !mapping->perms[i])
 236				result |= 1<<i;
 237		}
 238		/*
 239		 * In case the kernel has a bug and requests a permission
 240		 * between num_perms and the maximum permission number, we
 241		 * should audit that denial
 242		 */
 243		for (; i < (sizeof(u32)*8); i++)
 244			result |= 1<<i;
 245		avd->auditdeny = result;
 246	}
 247}
 248
 249int security_mls_enabled(struct selinux_state *state)
 250{
 251	struct policydb *p = &state->ss->policydb;
 252
 253	return p->mls_enabled;
 254}
 255
 256/*
 257 * Return the boolean value of a constraint expression
 258 * when it is applied to the specified source and target
 259 * security contexts.
 260 *
 261 * xcontext is a special beast...  It is used by the validatetrans rules
 262 * only.  For these rules, scontext is the context before the transition,
 263 * tcontext is the context after the transition, and xcontext is the context
 264 * of the process performing the transition.  All other callers of
 265 * constraint_expr_eval should pass in NULL for xcontext.
 266 */
 267static int constraint_expr_eval(struct policydb *policydb,
 268				struct context *scontext,
 269				struct context *tcontext,
 270				struct context *xcontext,
 271				struct constraint_expr *cexpr)
 272{
 273	u32 val1, val2;
 274	struct context *c;
 275	struct role_datum *r1, *r2;
 276	struct mls_level *l1, *l2;
 277	struct constraint_expr *e;
 278	int s[CEXPR_MAXDEPTH];
 279	int sp = -1;
 280
 281	for (e = cexpr; e; e = e->next) {
 282		switch (e->expr_type) {
 283		case CEXPR_NOT:
 284			BUG_ON(sp < 0);
 285			s[sp] = !s[sp];
 286			break;
 287		case CEXPR_AND:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] &= s[sp + 1];
 291			break;
 292		case CEXPR_OR:
 293			BUG_ON(sp < 1);
 294			sp--;
 295			s[sp] |= s[sp + 1];
 296			break;
 297		case CEXPR_ATTR:
 298			if (sp == (CEXPR_MAXDEPTH - 1))
 299				return 0;
 300			switch (e->attr) {
 301			case CEXPR_USER:
 302				val1 = scontext->user;
 303				val2 = tcontext->user;
 304				break;
 305			case CEXPR_TYPE:
 306				val1 = scontext->type;
 307				val2 = tcontext->type;
 308				break;
 309			case CEXPR_ROLE:
 310				val1 = scontext->role;
 311				val2 = tcontext->role;
 312				r1 = policydb->role_val_to_struct[val1 - 1];
 313				r2 = policydb->role_val_to_struct[val2 - 1];
 314				switch (e->op) {
 315				case CEXPR_DOM:
 316					s[++sp] = ebitmap_get_bit(&r1->dominates,
 317								  val2 - 1);
 318					continue;
 319				case CEXPR_DOMBY:
 320					s[++sp] = ebitmap_get_bit(&r2->dominates,
 321								  val1 - 1);
 322					continue;
 323				case CEXPR_INCOMP:
 324					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 325								    val2 - 1) &&
 326						   !ebitmap_get_bit(&r2->dominates,
 327								    val1 - 1));
 328					continue;
 329				default:
 330					break;
 331				}
 332				break;
 333			case CEXPR_L1L2:
 334				l1 = &(scontext->range.level[0]);
 335				l2 = &(tcontext->range.level[0]);
 336				goto mls_ops;
 337			case CEXPR_L1H2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[1]);
 340				goto mls_ops;
 341			case CEXPR_H1L2:
 342				l1 = &(scontext->range.level[1]);
 343				l2 = &(tcontext->range.level[0]);
 344				goto mls_ops;
 345			case CEXPR_H1H2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[1]);
 348				goto mls_ops;
 349			case CEXPR_L1H1:
 350				l1 = &(scontext->range.level[0]);
 351				l2 = &(scontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L2H2:
 354				l1 = &(tcontext->range.level[0]);
 355				l2 = &(tcontext->range.level[1]);
 356				goto mls_ops;
 357mls_ops:
 358			switch (e->op) {
 359			case CEXPR_EQ:
 360				s[++sp] = mls_level_eq(l1, l2);
 361				continue;
 362			case CEXPR_NEQ:
 363				s[++sp] = !mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_DOM:
 366				s[++sp] = mls_level_dom(l1, l2);
 367				continue;
 368			case CEXPR_DOMBY:
 369				s[++sp] = mls_level_dom(l2, l1);
 370				continue;
 371			case CEXPR_INCOMP:
 372				s[++sp] = mls_level_incomp(l2, l1);
 373				continue;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378			break;
 379			default:
 380				BUG();
 381				return 0;
 382			}
 383
 384			switch (e->op) {
 385			case CEXPR_EQ:
 386				s[++sp] = (val1 == val2);
 387				break;
 388			case CEXPR_NEQ:
 389				s[++sp] = (val1 != val2);
 390				break;
 391			default:
 392				BUG();
 393				return 0;
 394			}
 395			break;
 396		case CEXPR_NAMES:
 397			if (sp == (CEXPR_MAXDEPTH-1))
 398				return 0;
 399			c = scontext;
 400			if (e->attr & CEXPR_TARGET)
 401				c = tcontext;
 402			else if (e->attr & CEXPR_XTARGET) {
 403				c = xcontext;
 404				if (!c) {
 405					BUG();
 406					return 0;
 407				}
 408			}
 409			if (e->attr & CEXPR_USER)
 410				val1 = c->user;
 411			else if (e->attr & CEXPR_ROLE)
 412				val1 = c->role;
 413			else if (e->attr & CEXPR_TYPE)
 414				val1 = c->type;
 415			else {
 416				BUG();
 417				return 0;
 418			}
 419
 420			switch (e->op) {
 421			case CEXPR_EQ:
 422				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			case CEXPR_NEQ:
 425				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			default:
 428				BUG();
 429				return 0;
 430			}
 431			break;
 432		default:
 433			BUG();
 434			return 0;
 435		}
 436	}
 437
 438	BUG_ON(sp != 0);
 439	return s[0];
 440}
 441
 442/*
 443 * security_dump_masked_av - dumps masked permissions during
 444 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 445 */
 446static int dump_masked_av_helper(void *k, void *d, void *args)
 447{
 448	struct perm_datum *pdatum = d;
 449	char **permission_names = args;
 450
 451	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 452
 453	permission_names[pdatum->value - 1] = (char *)k;
 454
 455	return 0;
 456}
 457
 458static void security_dump_masked_av(struct policydb *policydb,
 459				    struct context *scontext,
 460				    struct context *tcontext,
 461				    u16 tclass,
 462				    u32 permissions,
 463				    const char *reason)
 464{
 465	struct common_datum *common_dat;
 466	struct class_datum *tclass_dat;
 467	struct audit_buffer *ab;
 468	char *tclass_name;
 469	char *scontext_name = NULL;
 470	char *tcontext_name = NULL;
 471	char *permission_names[32];
 472	int index;
 473	u32 length;
 474	bool need_comma = false;
 475
 476	if (!permissions)
 477		return;
 478
 479	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 480	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 481	common_dat = tclass_dat->comdatum;
 482
 483	/* init permission_names */
 484	if (common_dat &&
 485	    hashtab_map(&common_dat->permissions.table,
 486			dump_masked_av_helper, permission_names) < 0)
 487		goto out;
 488
 489	if (hashtab_map(&tclass_dat->permissions.table,
 490			dump_masked_av_helper, permission_names) < 0)
 491		goto out;
 492
 493	/* get scontext/tcontext in text form */
 494	if (context_struct_to_string(policydb, scontext,
 495				     &scontext_name, &length) < 0)
 496		goto out;
 497
 498	if (context_struct_to_string(policydb, tcontext,
 499				     &tcontext_name, &length) < 0)
 500		goto out;
 501
 502	/* audit a message */
 503	ab = audit_log_start(audit_context(),
 504			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 505	if (!ab)
 506		goto out;
 507
 508	audit_log_format(ab, "op=security_compute_av reason=%s "
 509			 "scontext=%s tcontext=%s tclass=%s perms=",
 510			 reason, scontext_name, tcontext_name, tclass_name);
 511
 512	for (index = 0; index < 32; index++) {
 513		u32 mask = (1 << index);
 514
 515		if ((mask & permissions) == 0)
 516			continue;
 517
 518		audit_log_format(ab, "%s%s",
 519				 need_comma ? "," : "",
 520				 permission_names[index]
 521				 ? permission_names[index] : "????");
 522		need_comma = true;
 523	}
 524	audit_log_end(ab);
 525out:
 526	/* release scontext/tcontext */
 527	kfree(tcontext_name);
 528	kfree(scontext_name);
 529
 530	return;
 531}
 532
 533/*
 534 * security_boundary_permission - drops violated permissions
 535 * on boundary constraint.
 536 */
 537static void type_attribute_bounds_av(struct policydb *policydb,
 538				     struct context *scontext,
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext, *tcontextp = tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = policydb->type_val_to_struct[scontext->type - 1];
 
 551	BUG_ON(!source);
 552
 553	if (!source->bounds)
 554		return;
 
 555
 556	target = policydb->type_val_to_struct[tcontext->type - 1];
 557	BUG_ON(!target);
 558
 559	memset(&lo_avd, 0, sizeof(lo_avd));
 
 560
 561	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 
 563
 564	if (target->bounds) {
 
 
 565		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 566		lo_tcontext.type = target->bounds;
 567		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 
 568	}
 569
 570	context_struct_compute_av(policydb, &lo_scontext,
 571				  tcontextp,
 572				  tclass,
 573				  &lo_avd,
 574				  NULL);
 
 575
 576	masked = ~lo_avd.allowed & avd->allowed;
 577
 578	if (likely(!masked))
 579		return;		/* no masked permission */
 580
 581	/* mask violated permissions */
 582	avd->allowed &= ~masked;
 583
 584	/* audit masked permissions */
 585	security_dump_masked_av(policydb, scontext, tcontext,
 586				tclass, masked, "bounds");
 
 
 
 
 
 
 
 587}
 588
 589/*
 590 * flag which drivers have permissions
 591 * only looking for ioctl based extended permssions
 592 */
 593void services_compute_xperms_drivers(
 594		struct extended_perms *xperms,
 595		struct avtab_node *node)
 596{
 597	unsigned int i;
 598
 599	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 600		/* if one or more driver has all permissions allowed */
 601		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 602			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 603	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 604		/* if allowing permissions within a driver */
 605		security_xperm_set(xperms->drivers.p,
 606					node->datum.u.xperms->driver);
 607	}
 608
 609	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 610	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 611		xperms->len = 1;
 612}
 613
 614/*
 615 * Compute access vectors and extended permissions based on a context
 616 * structure pair for the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct policydb *policydb,
 619				      struct context *scontext,
 620				      struct context *tcontext,
 621				      u16 tclass,
 622				      struct av_decision *avd,
 623				      struct extended_perms *xperms)
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 637	if (xperms) {
 638		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 639		xperms->len = 0;
 640	}
 641
 642	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 643		if (printk_ratelimit())
 644			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 645		return;
 646	}
 647
 648	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 649
 650	/*
 651	 * If a specific type enforcement rule was defined for
 652	 * this permission check, then use it.
 653	 */
 654	avkey.target_class = tclass;
 655	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 656	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 657	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 658	ebitmap_for_each_positive_bit(sattr, snode, i) {
 659		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 660			avkey.source_type = i + 1;
 661			avkey.target_type = j + 1;
 662			for (node = avtab_search_node(&policydb->te_avtab,
 663						      &avkey);
 664			     node;
 665			     node = avtab_search_node_next(node, avkey.specified)) {
 666				if (node->key.specified == AVTAB_ALLOWED)
 667					avd->allowed |= node->datum.u.data;
 668				else if (node->key.specified == AVTAB_AUDITALLOW)
 669					avd->auditallow |= node->datum.u.data;
 670				else if (node->key.specified == AVTAB_AUDITDENY)
 671					avd->auditdeny &= node->datum.u.data;
 672				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 673					services_compute_xperms_drivers(xperms, node);
 674			}
 675
 676			/* Check conditional av table for additional permissions */
 677			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 678					avd, xperms);
 679
 680		}
 681	}
 682
 683	/*
 684	 * Remove any permissions prohibited by a constraint (this includes
 685	 * the MLS policy).
 686	 */
 687	constraint = tclass_datum->constraints;
 688	while (constraint) {
 689		if ((constraint->permissions & (avd->allowed)) &&
 690		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 691					  constraint->expr)) {
 692			avd->allowed &= ~(constraint->permissions);
 693		}
 694		constraint = constraint->next;
 695	}
 696
 697	/*
 698	 * If checking process transition permission and the
 699	 * role is changing, then check the (current_role, new_role)
 700	 * pair.
 701	 */
 702	if (tclass == policydb->process_class &&
 703	    (avd->allowed & policydb->process_trans_perms) &&
 704	    scontext->role != tcontext->role) {
 705		for (ra = policydb->role_allow; ra; ra = ra->next) {
 706			if (scontext->role == ra->role &&
 707			    tcontext->role == ra->new_role)
 708				break;
 709		}
 710		if (!ra)
 711			avd->allowed &= ~policydb->process_trans_perms;
 712	}
 713
 714	/*
 715	 * If the given source and target types have boundary
 716	 * constraint, lazy checks have to mask any violated
 717	 * permission and notice it to userspace via audit.
 718	 */
 719	type_attribute_bounds_av(policydb, scontext, tcontext,
 720				 tclass, avd);
 721}
 722
 723static int security_validtrans_handle_fail(struct selinux_state *state,
 724					   struct sidtab_entry *oentry,
 725					   struct sidtab_entry *nentry,
 726					   struct sidtab_entry *tentry,
 727					   u16 tclass)
 728{
 729	struct policydb *p = &state->ss->policydb;
 730	struct sidtab *sidtab = state->ss->sidtab;
 731	char *o = NULL, *n = NULL, *t = NULL;
 732	u32 olen, nlen, tlen;
 733
 734	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 735		goto out;
 736	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 739		goto out;
 740	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 741		  "op=security_validate_transition seresult=denied"
 742		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 743		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 744out:
 745	kfree(o);
 746	kfree(n);
 747	kfree(t);
 748
 749	if (!enforcing_enabled(state))
 750		return 0;
 751	return -EPERM;
 752}
 753
 754static int security_compute_validatetrans(struct selinux_state *state,
 755					  u32 oldsid, u32 newsid, u32 tasksid,
 756					  u16 orig_tclass, bool user)
 757{
 758	struct policydb *policydb;
 759	struct sidtab *sidtab;
 760	struct sidtab_entry *oentry;
 761	struct sidtab_entry *nentry;
 762	struct sidtab_entry *tentry;
 763	struct class_datum *tclass_datum;
 764	struct constraint_node *constraint;
 765	u16 tclass;
 766	int rc = 0;
 767
 768
 769	if (!selinux_initialized(state))
 770		return 0;
 771
 772	read_lock(&state->ss->policy_rwlock);
 773
 774	policydb = &state->ss->policydb;
 775	sidtab = state->ss->sidtab;
 776
 777	if (!user)
 778		tclass = unmap_class(&state->ss->map, orig_tclass);
 779	else
 780		tclass = orig_tclass;
 781
 782	if (!tclass || tclass > policydb->p_classes.nprim) {
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 787
 788	oentry = sidtab_search_entry(sidtab, oldsid);
 789	if (!oentry) {
 790		pr_err("SELinux: %s:  unrecognized SID %d\n",
 791			__func__, oldsid);
 792		rc = -EINVAL;
 793		goto out;
 794	}
 795
 796	nentry = sidtab_search_entry(sidtab, newsid);
 797	if (!nentry) {
 798		pr_err("SELinux: %s:  unrecognized SID %d\n",
 799			__func__, newsid);
 800		rc = -EINVAL;
 801		goto out;
 802	}
 803
 804	tentry = sidtab_search_entry(sidtab, tasksid);
 805	if (!tentry) {
 806		pr_err("SELinux: %s:  unrecognized SID %d\n",
 807			__func__, tasksid);
 808		rc = -EINVAL;
 809		goto out;
 810	}
 811
 812	constraint = tclass_datum->validatetrans;
 813	while (constraint) {
 814		if (!constraint_expr_eval(policydb, &oentry->context,
 815					  &nentry->context, &tentry->context,
 816					  constraint->expr)) {
 817			if (user)
 818				rc = -EPERM;
 819			else
 820				rc = security_validtrans_handle_fail(state,
 821								     oentry,
 822								     nentry,
 823								     tentry,
 824								     tclass);
 825			goto out;
 826		}
 827		constraint = constraint->next;
 828	}
 829
 830out:
 831	read_unlock(&state->ss->policy_rwlock);
 832	return rc;
 833}
 834
 835int security_validate_transition_user(struct selinux_state *state,
 836				      u32 oldsid, u32 newsid, u32 tasksid,
 837				      u16 tclass)
 838{
 839	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 840					      tclass, true);
 841}
 842
 843int security_validate_transition(struct selinux_state *state,
 844				 u32 oldsid, u32 newsid, u32 tasksid,
 845				 u16 orig_tclass)
 846{
 847	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 848					      orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(struct selinux_state *state,
 861				u32 old_sid, u32 new_sid)
 862{
 863	struct policydb *policydb;
 864	struct sidtab *sidtab;
 865	struct sidtab_entry *old_entry, *new_entry;
 866	struct type_datum *type;
 867	int index;
 868	int rc;
 869
 870	if (!selinux_initialized(state))
 871		return 0;
 872
 873	read_lock(&state->ss->policy_rwlock);
 874
 875	policydb = &state->ss->policydb;
 876	sidtab = state->ss->sidtab;
 877
 878	rc = -EINVAL;
 879	old_entry = sidtab_search_entry(sidtab, old_sid);
 880	if (!old_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, old_sid);
 883		goto out;
 884	}
 885
 886	rc = -EINVAL;
 887	new_entry = sidtab_search_entry(sidtab, new_sid);
 888	if (!new_entry) {
 889		pr_err("SELinux: %s: unrecognized SID %u\n",
 890		       __func__, new_sid);
 891		goto out;
 892	}
 893
 894	rc = 0;
 895	/* type/domain unchanged */
 896	if (old_entry->context.type == new_entry->context.type)
 897		goto out;
 898
 899	index = new_entry->context.type;
 900	while (true) {
 901		type = policydb->type_val_to_struct[index - 1];
 
 902		BUG_ON(!type);
 903
 904		/* not bounded anymore */
 905		rc = -EPERM;
 906		if (!type->bounds)
 907			break;
 908
 909		/* @newsid is bounded by @oldsid */
 910		rc = 0;
 911		if (type->bounds == old_entry->context.type)
 912			break;
 913
 914		index = type->bounds;
 915	}
 916
 917	if (rc) {
 918		char *old_name = NULL;
 919		char *new_name = NULL;
 920		u32 length;
 921
 922		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923					    &old_name, &length) &&
 924		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925					    &new_name, &length)) {
 926			audit_log(audit_context(),
 927				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928				  "op=security_bounded_transition "
 929				  "seresult=denied "
 930				  "oldcontext=%s newcontext=%s",
 931				  old_name, new_name);
 932		}
 933		kfree(new_name);
 934		kfree(old_name);
 935	}
 936out:
 937	read_unlock(&state->ss->policy_rwlock);
 938
 939	return rc;
 940}
 941
 942static void avd_init(struct selinux_state *state, struct av_decision *avd)
 943{
 944	avd->allowed = 0;
 945	avd->auditallow = 0;
 946	avd->auditdeny = 0xffffffff;
 947	avd->seqno = state->ss->latest_granting;
 948	avd->flags = 0;
 949}
 950
 951void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 952					struct avtab_node *node)
 953{
 954	unsigned int i;
 955
 956	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 957		if (xpermd->driver != node->datum.u.xperms->driver)
 958			return;
 959	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 960		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 961					xpermd->driver))
 962			return;
 963	} else {
 964		BUG();
 965	}
 966
 967	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 968		xpermd->used |= XPERMS_ALLOWED;
 969		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970			memset(xpermd->allowed->p, 0xff,
 971					sizeof(xpermd->allowed->p));
 972		}
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 974			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 975				xpermd->allowed->p[i] |=
 976					node->datum.u.xperms->perms.p[i];
 977		}
 978	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 979		xpermd->used |= XPERMS_AUDITALLOW;
 980		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 981			memset(xpermd->auditallow->p, 0xff,
 982					sizeof(xpermd->auditallow->p));
 983		}
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 985			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 986				xpermd->auditallow->p[i] |=
 987					node->datum.u.xperms->perms.p[i];
 988		}
 989	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 990		xpermd->used |= XPERMS_DONTAUDIT;
 991		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 992			memset(xpermd->dontaudit->p, 0xff,
 993					sizeof(xpermd->dontaudit->p));
 994		}
 995		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 996			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 997				xpermd->dontaudit->p[i] |=
 998					node->datum.u.xperms->perms.p[i];
 999		}
1000	} else {
1001		BUG();
1002	}
1003}
1004
1005void security_compute_xperms_decision(struct selinux_state *state,
1006				      u32 ssid,
1007				      u32 tsid,
1008				      u16 orig_tclass,
1009				      u8 driver,
1010				      struct extended_perms_decision *xpermd)
1011{
1012	struct policydb *policydb;
1013	struct sidtab *sidtab;
1014	u16 tclass;
1015	struct context *scontext, *tcontext;
1016	struct avtab_key avkey;
1017	struct avtab_node *node;
1018	struct ebitmap *sattr, *tattr;
1019	struct ebitmap_node *snode, *tnode;
1020	unsigned int i, j;
1021
1022	xpermd->driver = driver;
1023	xpermd->used = 0;
1024	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027
1028	read_lock(&state->ss->policy_rwlock);
1029	if (!selinux_initialized(state))
1030		goto allow;
1031
1032	policydb = &state->ss->policydb;
1033	sidtab = state->ss->sidtab;
1034
1035	scontext = sidtab_search(sidtab, ssid);
1036	if (!scontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, ssid);
1039		goto out;
1040	}
1041
1042	tcontext = sidtab_search(sidtab, tsid);
1043	if (!tcontext) {
1044		pr_err("SELinux: %s:  unrecognized SID %d\n",
1045		       __func__, tsid);
1046		goto out;
1047	}
1048
1049	tclass = unmap_class(&state->ss->map, orig_tclass);
1050	if (unlikely(orig_tclass && !tclass)) {
1051		if (policydb->allow_unknown)
1052			goto allow;
1053		goto out;
1054	}
1055
1056
1057	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059		goto out;
1060	}
1061
1062	avkey.target_class = tclass;
1063	avkey.specified = AVTAB_XPERMS;
1064	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1066	ebitmap_for_each_positive_bit(sattr, snode, i) {
1067		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068			avkey.source_type = i + 1;
1069			avkey.target_type = j + 1;
1070			for (node = avtab_search_node(&policydb->te_avtab,
1071						      &avkey);
1072			     node;
1073			     node = avtab_search_node_next(node, avkey.specified))
1074				services_compute_xperms_decision(xpermd, node);
1075
1076			cond_compute_xperms(&policydb->te_cond_avtab,
1077						&avkey, xpermd);
1078		}
1079	}
1080out:
1081	read_unlock(&state->ss->policy_rwlock);
1082	return;
1083allow:
1084	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085	goto out;
1086}
1087
1088/**
1089 * security_compute_av - Compute access vector decisions.
1090 * @ssid: source security identifier
1091 * @tsid: target security identifier
1092 * @tclass: target security class
1093 * @avd: access vector decisions
1094 * @xperms: extended permissions
1095 *
1096 * Compute a set of access vector decisions based on the
1097 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098 */
1099void security_compute_av(struct selinux_state *state,
1100			 u32 ssid,
1101			 u32 tsid,
1102			 u16 orig_tclass,
1103			 struct av_decision *avd,
1104			 struct extended_perms *xperms)
1105{
1106	struct policydb *policydb;
1107	struct sidtab *sidtab;
1108	u16 tclass;
1109	struct context *scontext = NULL, *tcontext = NULL;
1110
1111	read_lock(&state->ss->policy_rwlock);
1112	avd_init(state, avd);
1113	xperms->len = 0;
1114	if (!selinux_initialized(state))
1115		goto allow;
1116
1117	policydb = &state->ss->policydb;
1118	sidtab = state->ss->sidtab;
1119
1120	scontext = sidtab_search(sidtab, ssid);
1121	if (!scontext) {
1122		pr_err("SELinux: %s:  unrecognized SID %d\n",
1123		       __func__, ssid);
1124		goto out;
1125	}
1126
1127	/* permissive domain? */
1128	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129		avd->flags |= AVD_FLAGS_PERMISSIVE;
1130
1131	tcontext = sidtab_search(sidtab, tsid);
1132	if (!tcontext) {
1133		pr_err("SELinux: %s:  unrecognized SID %d\n",
1134		       __func__, tsid);
1135		goto out;
1136	}
1137
1138	tclass = unmap_class(&state->ss->map, orig_tclass);
1139	if (unlikely(orig_tclass && !tclass)) {
1140		if (policydb->allow_unknown)
1141			goto allow;
1142		goto out;
1143	}
1144	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145				  xperms);
1146	map_decision(&state->ss->map, orig_tclass, avd,
1147		     policydb->allow_unknown);
1148out:
1149	read_unlock(&state->ss->policy_rwlock);
1150	return;
1151allow:
1152	avd->allowed = 0xffffffff;
1153	goto out;
1154}
1155
1156void security_compute_av_user(struct selinux_state *state,
1157			      u32 ssid,
1158			      u32 tsid,
1159			      u16 tclass,
1160			      struct av_decision *avd)
1161{
1162	struct policydb *policydb;
1163	struct sidtab *sidtab;
1164	struct context *scontext = NULL, *tcontext = NULL;
1165
1166	read_lock(&state->ss->policy_rwlock);
1167	avd_init(state, avd);
1168	if (!selinux_initialized(state))
1169		goto allow;
1170
1171	policydb = &state->ss->policydb;
1172	sidtab = state->ss->sidtab;
1173
1174	scontext = sidtab_search(sidtab, ssid);
1175	if (!scontext) {
1176		pr_err("SELinux: %s:  unrecognized SID %d\n",
1177		       __func__, ssid);
1178		goto out;
1179	}
1180
1181	/* permissive domain? */
1182	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1183		avd->flags |= AVD_FLAGS_PERMISSIVE;
1184
1185	tcontext = sidtab_search(sidtab, tsid);
1186	if (!tcontext) {
1187		pr_err("SELinux: %s:  unrecognized SID %d\n",
1188		       __func__, tsid);
1189		goto out;
1190	}
1191
1192	if (unlikely(!tclass)) {
1193		if (policydb->allow_unknown)
1194			goto allow;
1195		goto out;
1196	}
1197
1198	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1199				  NULL);
1200 out:
1201	read_unlock(&state->ss->policy_rwlock);
1202	return;
1203allow:
1204	avd->allowed = 0xffffffff;
1205	goto out;
1206}
1207
1208/*
1209 * Write the security context string representation of
1210 * the context structure `context' into a dynamically
1211 * allocated string of the correct size.  Set `*scontext'
1212 * to point to this string and set `*scontext_len' to
1213 * the length of the string.
1214 */
1215static int context_struct_to_string(struct policydb *p,
1216				    struct context *context,
1217				    char **scontext, u32 *scontext_len)
1218{
1219	char *scontextp;
1220
1221	if (scontext)
1222		*scontext = NULL;
1223	*scontext_len = 0;
1224
1225	if (context->len) {
1226		*scontext_len = context->len;
1227		if (scontext) {
1228			*scontext = kstrdup(context->str, GFP_ATOMIC);
1229			if (!(*scontext))
1230				return -ENOMEM;
1231		}
1232		return 0;
1233	}
1234
1235	/* Compute the size of the context. */
1236	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1237	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1238	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1239	*scontext_len += mls_compute_context_len(p, context);
1240
1241	if (!scontext)
1242		return 0;
1243
1244	/* Allocate space for the context; caller must free this space. */
1245	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1246	if (!scontextp)
1247		return -ENOMEM;
1248	*scontext = scontextp;
1249
1250	/*
1251	 * Copy the user name, role name and type name into the context.
1252	 */
1253	scontextp += sprintf(scontextp, "%s:%s:%s",
1254		sym_name(p, SYM_USERS, context->user - 1),
1255		sym_name(p, SYM_ROLES, context->role - 1),
1256		sym_name(p, SYM_TYPES, context->type - 1));
1257
1258	mls_sid_to_context(p, context, &scontextp);
1259
1260	*scontextp = 0;
1261
1262	return 0;
1263}
1264
1265static int sidtab_entry_to_string(struct policydb *p,
1266				  struct sidtab *sidtab,
1267				  struct sidtab_entry *entry,
1268				  char **scontext, u32 *scontext_len)
1269{
1270	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1271
1272	if (rc != -ENOENT)
1273		return rc;
1274
1275	rc = context_struct_to_string(p, &entry->context, scontext,
1276				      scontext_len);
1277	if (!rc && scontext)
1278		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1279	return rc;
1280}
1281
1282#include "initial_sid_to_string.h"
1283
1284int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1285{
1286	int rc;
1287
1288	if (!selinux_initialized(state)) {
1289		pr_err("SELinux: %s:  called before initial load_policy\n",
1290		       __func__);
1291		return -EINVAL;
1292	}
1293
1294	read_lock(&state->ss->policy_rwlock);
1295	rc = sidtab_hash_stats(state->ss->sidtab, page);
1296	read_unlock(&state->ss->policy_rwlock);
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(struct selinux_state *state,
1309					u32 sid, char **scontext,
1310					u32 *scontext_len, int force,
1311					int only_invalid)
1312{
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized(state)) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s = initial_sid_to_string[sid];
1326
1327			if (!s)
1328				return -EINVAL;
1329			*scontext_len = strlen(s) + 1;
1330			if (!scontext)
1331				return 0;
1332			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333			if (!scontextp)
1334				return -ENOMEM;
 
 
 
1335			*scontext = scontextp;
1336			return 0;
1337		}
1338		pr_err("SELinux: %s:  called before initial "
1339		       "load_policy on unknown SID %d\n", __func__, sid);
1340		return -EINVAL;
 
1341	}
1342	read_lock(&state->ss->policy_rwlock);
1343	policydb = &state->ss->policydb;
1344	sidtab = state->ss->sidtab;
1345
1346	if (force)
1347		entry = sidtab_search_entry_force(sidtab, sid);
1348	else
1349		entry = sidtab_search_entry(sidtab, sid);
1350	if (!entry) {
1351		pr_err("SELinux: %s:  unrecognized SID %d\n",
1352			__func__, sid);
1353		rc = -EINVAL;
1354		goto out_unlock;
1355	}
1356	if (only_invalid && !entry->context.len)
1357		goto out_unlock;
1358
1359	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1360				    scontext_len);
1361
1362out_unlock:
1363	read_unlock(&state->ss->policy_rwlock);
 
1364	return rc;
1365
1366}
1367
1368/**
1369 * security_sid_to_context - Obtain a context for a given SID.
1370 * @sid: security identifier, SID
1371 * @scontext: security context
1372 * @scontext_len: length in bytes
1373 *
1374 * Write the string representation of the context associated with @sid
1375 * into a dynamically allocated string of the correct size.  Set @scontext
1376 * to point to this string and set @scontext_len to the length of the string.
1377 */
1378int security_sid_to_context(struct selinux_state *state,
1379			    u32 sid, char **scontext, u32 *scontext_len)
1380{
1381	return security_sid_to_context_core(state, sid, scontext,
1382					    scontext_len, 0, 0);
1383}
1384
1385int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1386				  char **scontext, u32 *scontext_len)
1387{
1388	return security_sid_to_context_core(state, sid, scontext,
1389					    scontext_len, 1, 0);
1390}
1391
1392/**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 *                                 is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy.  Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
1405int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1406				  char **scontext, u32 *scontext_len)
1407{
1408	return security_sid_to_context_core(state, sid, scontext,
1409					    scontext_len, 1, 1);
1410}
1411
1412/*
1413 * Caveat:  Mutates scontext.
1414 */
1415static int string_to_context_struct(struct policydb *pol,
1416				    struct sidtab *sidtabp,
1417				    char *scontext,
 
1418				    struct context *ctx,
1419				    u32 def_sid)
1420{
1421	struct role_datum *role;
1422	struct type_datum *typdatum;
1423	struct user_datum *usrdatum;
1424	char *scontextp, *p, oldc;
1425	int rc = 0;
1426
1427	context_init(ctx);
1428
1429	/* Parse the security context. */
1430
1431	rc = -EINVAL;
1432	scontextp = (char *) scontext;
1433
1434	/* Extract the user. */
1435	p = scontextp;
1436	while (*p && *p != ':')
1437		p++;
1438
1439	if (*p == 0)
1440		goto out;
1441
1442	*p++ = 0;
1443
1444	usrdatum = symtab_search(&pol->p_users, scontextp);
1445	if (!usrdatum)
1446		goto out;
1447
1448	ctx->user = usrdatum->value;
1449
1450	/* Extract role. */
1451	scontextp = p;
1452	while (*p && *p != ':')
1453		p++;
1454
1455	if (*p == 0)
1456		goto out;
1457
1458	*p++ = 0;
1459
1460	role = symtab_search(&pol->p_roles, scontextp);
1461	if (!role)
1462		goto out;
1463	ctx->role = role->value;
1464
1465	/* Extract type. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469	oldc = *p;
1470	*p++ = 0;
1471
1472	typdatum = symtab_search(&pol->p_types, scontextp);
1473	if (!typdatum || typdatum->attribute)
1474		goto out;
1475
1476	ctx->type = typdatum->value;
1477
1478	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479	if (rc)
1480		goto out;
1481
 
 
 
 
1482	/* Check the validity of the new context. */
1483	rc = -EINVAL;
1484	if (!policydb_context_isvalid(pol, ctx))
1485		goto out;
1486	rc = 0;
1487out:
1488	if (rc)
1489		context_destroy(ctx);
1490	return rc;
1491}
1492
1493static int security_context_to_sid_core(struct selinux_state *state,
1494					const char *scontext, u32 scontext_len,
1495					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1496					int force)
1497{
1498	struct policydb *policydb;
1499	struct sidtab *sidtab;
1500	char *scontext2, *str = NULL;
1501	struct context context;
1502	int rc = 0;
1503
1504	/* An empty security context is never valid. */
1505	if (!scontext_len)
1506		return -EINVAL;
1507
1508	/* Copy the string to allow changes and ensure a NUL terminator */
1509	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510	if (!scontext2)
1511		return -ENOMEM;
1512
1513	if (!selinux_initialized(state)) {
1514		int i;
1515
1516		for (i = 1; i < SECINITSID_NUM; i++) {
1517			const char *s = initial_sid_to_string[i];
1518
1519			if (s && !strcmp(s, scontext2)) {
1520				*sid = i;
1521				goto out;
1522			}
1523		}
1524		*sid = SECINITSID_KERNEL;
1525		goto out;
1526	}
1527	*sid = SECSID_NULL;
1528
 
 
 
 
 
 
 
1529	if (force) {
1530		/* Save another copy for storing in uninterpreted form */
1531		rc = -ENOMEM;
1532		str = kstrdup(scontext2, gfp_flags);
1533		if (!str)
1534			goto out;
1535	}
1536	read_lock(&state->ss->policy_rwlock);
1537	policydb = &state->ss->policydb;
1538	sidtab = state->ss->sidtab;
1539	rc = string_to_context_struct(policydb, sidtab, scontext2,
1540				      &context, def_sid);
1541	if (rc == -EINVAL && force) {
1542		context.str = str;
1543		context.len = strlen(str) + 1;
1544		str = NULL;
1545	} else if (rc)
1546		goto out_unlock;
1547	rc = sidtab_context_to_sid(sidtab, &context, sid);
1548	context_destroy(&context);
1549out_unlock:
1550	read_unlock(&state->ss->policy_rwlock);
1551out:
1552	kfree(scontext2);
1553	kfree(str);
1554	return rc;
1555}
1556
1557/**
1558 * security_context_to_sid - Obtain a SID for a given security context.
1559 * @scontext: security context
1560 * @scontext_len: length in bytes
1561 * @sid: security identifier, SID
1562 * @gfp: context for the allocation
1563 *
1564 * Obtains a SID associated with the security context that
1565 * has the string representation specified by @scontext.
1566 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1567 * memory is available, or 0 on success.
1568 */
1569int security_context_to_sid(struct selinux_state *state,
1570			    const char *scontext, u32 scontext_len, u32 *sid,
1571			    gfp_t gfp)
1572{
1573	return security_context_to_sid_core(state, scontext, scontext_len,
1574					    sid, SECSID_NULL, gfp, 0);
1575}
1576
1577int security_context_str_to_sid(struct selinux_state *state,
1578				const char *scontext, u32 *sid, gfp_t gfp)
1579{
1580	return security_context_to_sid(state, scontext, strlen(scontext),
1581				       sid, gfp);
1582}
1583
1584/**
1585 * security_context_to_sid_default - Obtain a SID for a given security context,
1586 * falling back to specified default if needed.
1587 *
1588 * @scontext: security context
1589 * @scontext_len: length in bytes
1590 * @sid: security identifier, SID
1591 * @def_sid: default SID to assign on error
1592 *
1593 * Obtains a SID associated with the security context that
1594 * has the string representation specified by @scontext.
1595 * The default SID is passed to the MLS layer to be used to allow
1596 * kernel labeling of the MLS field if the MLS field is not present
1597 * (for upgrading to MLS without full relabel).
1598 * Implicitly forces adding of the context even if it cannot be mapped yet.
1599 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1600 * memory is available, or 0 on success.
1601 */
1602int security_context_to_sid_default(struct selinux_state *state,
1603				    const char *scontext, u32 scontext_len,
1604				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1605{
1606	return security_context_to_sid_core(state, scontext, scontext_len,
1607					    sid, def_sid, gfp_flags, 1);
1608}
1609
1610int security_context_to_sid_force(struct selinux_state *state,
1611				  const char *scontext, u32 scontext_len,
1612				  u32 *sid)
1613{
1614	return security_context_to_sid_core(state, scontext, scontext_len,
1615					    sid, SECSID_NULL, GFP_KERNEL, 1);
1616}
1617
1618static int compute_sid_handle_invalid_context(
1619	struct selinux_state *state,
1620	struct sidtab_entry *sentry,
1621	struct sidtab_entry *tentry,
1622	u16 tclass,
1623	struct context *newcontext)
1624{
1625	struct policydb *policydb = &state->ss->policydb;
1626	struct sidtab *sidtab = state->ss->sidtab;
1627	char *s = NULL, *t = NULL, *n = NULL;
1628	u32 slen, tlen, nlen;
1629	struct audit_buffer *ab;
1630
1631	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1632		goto out;
1633	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1634		goto out;
1635	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1636		goto out;
1637	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1638	audit_log_format(ab,
1639			 "op=security_compute_sid invalid_context=");
1640	/* no need to record the NUL with untrusted strings */
1641	audit_log_n_untrustedstring(ab, n, nlen - 1);
1642	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1643			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1644	audit_log_end(ab);
1645out:
1646	kfree(s);
1647	kfree(t);
1648	kfree(n);
1649	if (!enforcing_enabled(state))
1650		return 0;
1651	return -EACCES;
1652}
1653
1654static void filename_compute_type(struct policydb *policydb,
1655				  struct context *newcontext,
1656				  u32 stype, u32 ttype, u16 tclass,
1657				  const char *objname)
1658{
1659	struct filename_trans_key ft;
1660	struct filename_trans_datum *datum;
1661
1662	/*
1663	 * Most filename trans rules are going to live in specific directories
1664	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1665	 * if the ttype does not contain any rules.
1666	 */
1667	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1668		return;
1669
 
1670	ft.ttype = ttype;
1671	ft.tclass = tclass;
1672	ft.name = objname;
1673
1674	datum = policydb_filenametr_search(policydb, &ft);
1675	while (datum) {
1676		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1677			newcontext->type = datum->otype;
1678			return;
1679		}
1680		datum = datum->next;
1681	}
1682}
1683
1684static int security_compute_sid(struct selinux_state *state,
1685				u32 ssid,
1686				u32 tsid,
1687				u16 orig_tclass,
1688				u32 specified,
1689				const char *objname,
1690				u32 *out_sid,
1691				bool kern)
1692{
1693	struct policydb *policydb;
1694	struct sidtab *sidtab;
1695	struct class_datum *cladatum = NULL;
1696	struct context *scontext, *tcontext, newcontext;
1697	struct sidtab_entry *sentry, *tentry;
1698	struct avtab_key avkey;
1699	struct avtab_datum *avdatum;
1700	struct avtab_node *node;
1701	u16 tclass;
1702	int rc = 0;
1703	bool sock;
1704
1705	if (!selinux_initialized(state)) {
1706		switch (orig_tclass) {
1707		case SECCLASS_PROCESS: /* kernel value */
1708			*out_sid = ssid;
1709			break;
1710		default:
1711			*out_sid = tsid;
1712			break;
1713		}
1714		goto out;
1715	}
1716
1717	context_init(&newcontext);
1718
1719	read_lock(&state->ss->policy_rwlock);
1720
1721	if (kern) {
1722		tclass = unmap_class(&state->ss->map, orig_tclass);
1723		sock = security_is_socket_class(orig_tclass);
1724	} else {
1725		tclass = orig_tclass;
1726		sock = security_is_socket_class(map_class(&state->ss->map,
1727							  tclass));
1728	}
1729
1730	policydb = &state->ss->policydb;
1731	sidtab = state->ss->sidtab;
1732
1733	sentry = sidtab_search_entry(sidtab, ssid);
1734	if (!sentry) {
1735		pr_err("SELinux: %s:  unrecognized SID %d\n",
1736		       __func__, ssid);
1737		rc = -EINVAL;
1738		goto out_unlock;
1739	}
1740	tentry = sidtab_search_entry(sidtab, tsid);
1741	if (!tentry) {
1742		pr_err("SELinux: %s:  unrecognized SID %d\n",
1743		       __func__, tsid);
1744		rc = -EINVAL;
1745		goto out_unlock;
1746	}
1747
1748	scontext = &sentry->context;
1749	tcontext = &tentry->context;
1750
1751	if (tclass && tclass <= policydb->p_classes.nprim)
1752		cladatum = policydb->class_val_to_struct[tclass - 1];
1753
1754	/* Set the user identity. */
1755	switch (specified) {
1756	case AVTAB_TRANSITION:
1757	case AVTAB_CHANGE:
1758		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1759			newcontext.user = tcontext->user;
1760		} else {
1761			/* notice this gets both DEFAULT_SOURCE and unset */
1762			/* Use the process user identity. */
1763			newcontext.user = scontext->user;
1764		}
1765		break;
1766	case AVTAB_MEMBER:
1767		/* Use the related object owner. */
1768		newcontext.user = tcontext->user;
1769		break;
1770	}
1771
1772	/* Set the role to default values. */
1773	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1774		newcontext.role = scontext->role;
1775	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1776		newcontext.role = tcontext->role;
1777	} else {
1778		if ((tclass == policydb->process_class) || sock)
1779			newcontext.role = scontext->role;
1780		else
1781			newcontext.role = OBJECT_R_VAL;
1782	}
1783
1784	/* Set the type to default values. */
1785	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1786		newcontext.type = scontext->type;
1787	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1788		newcontext.type = tcontext->type;
1789	} else {
1790		if ((tclass == policydb->process_class) || sock) {
1791			/* Use the type of process. */
1792			newcontext.type = scontext->type;
1793		} else {
1794			/* Use the type of the related object. */
1795			newcontext.type = tcontext->type;
1796		}
1797	}
1798
1799	/* Look for a type transition/member/change rule. */
1800	avkey.source_type = scontext->type;
1801	avkey.target_type = tcontext->type;
1802	avkey.target_class = tclass;
1803	avkey.specified = specified;
1804	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1805
1806	/* If no permanent rule, also check for enabled conditional rules */
1807	if (!avdatum) {
1808		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1809		for (; node; node = avtab_search_node_next(node, specified)) {
1810			if (node->key.specified & AVTAB_ENABLED) {
1811				avdatum = &node->datum;
1812				break;
1813			}
1814		}
1815	}
1816
1817	if (avdatum) {
1818		/* Use the type from the type transition/member/change rule. */
1819		newcontext.type = avdatum->u.data;
1820	}
1821
1822	/* if we have a objname this is a file trans check so check those rules */
1823	if (objname)
1824		filename_compute_type(policydb, &newcontext, scontext->type,
1825				      tcontext->type, tclass, objname);
1826
1827	/* Check for class-specific changes. */
1828	if (specified & AVTAB_TRANSITION) {
1829		/* Look for a role transition rule. */
1830		struct role_trans_datum *rtd;
1831		struct role_trans_key rtk = {
1832			.role = scontext->role,
1833			.type = tcontext->type,
1834			.tclass = tclass,
1835		};
1836
1837		rtd = policydb_roletr_search(policydb, &rtk);
1838		if (rtd)
1839			newcontext.role = rtd->new_role;
1840	}
1841
1842	/* Set the MLS attributes.
1843	   This is done last because it may allocate memory. */
1844	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1845			     &newcontext, sock);
1846	if (rc)
1847		goto out_unlock;
1848
1849	/* Check the validity of the context. */
1850	if (!policydb_context_isvalid(policydb, &newcontext)) {
1851		rc = compute_sid_handle_invalid_context(state, sentry, tentry,
1852							tclass, &newcontext);
 
 
1853		if (rc)
1854			goto out_unlock;
1855	}
1856	/* Obtain the sid for the context. */
1857	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1858out_unlock:
1859	read_unlock(&state->ss->policy_rwlock);
1860	context_destroy(&newcontext);
1861out:
1862	return rc;
1863}
1864
1865/**
1866 * security_transition_sid - Compute the SID for a new subject/object.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for new subject/object
1871 *
1872 * Compute a SID to use for labeling a new subject or object in the
1873 * class @tclass based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the new SID was
1876 * computed successfully.
1877 */
1878int security_transition_sid(struct selinux_state *state,
1879			    u32 ssid, u32 tsid, u16 tclass,
1880			    const struct qstr *qstr, u32 *out_sid)
1881{
1882	return security_compute_sid(state, ssid, tsid, tclass,
1883				    AVTAB_TRANSITION,
1884				    qstr ? qstr->name : NULL, out_sid, true);
1885}
1886
1887int security_transition_sid_user(struct selinux_state *state,
1888				 u32 ssid, u32 tsid, u16 tclass,
1889				 const char *objname, u32 *out_sid)
1890{
1891	return security_compute_sid(state, ssid, tsid, tclass,
1892				    AVTAB_TRANSITION,
1893				    objname, out_sid, false);
1894}
1895
1896/**
1897 * security_member_sid - Compute the SID for member selection.
1898 * @ssid: source security identifier
1899 * @tsid: target security identifier
1900 * @tclass: target security class
1901 * @out_sid: security identifier for selected member
1902 *
1903 * Compute a SID to use when selecting a member of a polyinstantiated
1904 * object of class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the SID was
1907 * computed successfully.
1908 */
1909int security_member_sid(struct selinux_state *state,
1910			u32 ssid,
1911			u32 tsid,
1912			u16 tclass,
1913			u32 *out_sid)
1914{
1915	return security_compute_sid(state, ssid, tsid, tclass,
1916				    AVTAB_MEMBER, NULL,
1917				    out_sid, false);
1918}
1919
1920/**
1921 * security_change_sid - Compute the SID for object relabeling.
1922 * @ssid: source security identifier
1923 * @tsid: target security identifier
1924 * @tclass: target security class
1925 * @out_sid: security identifier for selected member
1926 *
1927 * Compute a SID to use for relabeling an object of class @tclass
1928 * based on a SID pair (@ssid, @tsid).
1929 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1930 * if insufficient memory is available, or %0 if the SID was
1931 * computed successfully.
1932 */
1933int security_change_sid(struct selinux_state *state,
1934			u32 ssid,
1935			u32 tsid,
1936			u16 tclass,
1937			u32 *out_sid)
1938{
1939	return security_compute_sid(state,
1940				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1941				    out_sid, false);
1942}
1943
1944static inline int convert_context_handle_invalid_context(
1945	struct selinux_state *state,
1946	struct context *context)
 
 
 
 
 
 
 
 
 
 
 
1947{
1948	struct policydb *policydb = &state->ss->policydb;
1949	char *s;
1950	u32 len;
1951
1952	if (enforcing_enabled(state))
1953		return -EINVAL;
1954
1955	if (!context_struct_to_string(policydb, context, &s, &len)) {
1956		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1957			s);
1958		kfree(s);
1959	}
1960	return 0;
1961}
1962
1963struct convert_context_args {
1964	struct selinux_state *state;
1965	struct policydb *oldp;
1966	struct policydb *newp;
1967};
1968
1969/*
1970 * Convert the values in the security context
1971 * structure `oldc' from the values specified
1972 * in the policy `p->oldp' to the values specified
1973 * in the policy `p->newp', storing the new context
1974 * in `newc'.  Verify that the context is valid
1975 * under the new policy.
1976 */
1977static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
1978{
1979	struct convert_context_args *args;
 
1980	struct ocontext *oc;
 
1981	struct role_datum *role;
1982	struct type_datum *typdatum;
1983	struct user_datum *usrdatum;
1984	char *s;
1985	u32 len;
1986	int rc;
 
 
 
1987
1988	args = p;
1989
1990	if (oldc->str) {
1991		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
1992		if (!s)
1993			return -ENOMEM;
1994
1995		rc = string_to_context_struct(args->newp, NULL, s,
1996					      newc, SECSID_NULL);
1997		if (rc == -EINVAL) {
1998			/*
1999			 * Retain string representation for later mapping.
2000			 *
2001			 * IMPORTANT: We need to copy the contents of oldc->str
2002			 * back into s again because string_to_context_struct()
2003			 * may have garbled it.
2004			 */
2005			memcpy(s, oldc->str, oldc->len);
2006			context_init(newc);
2007			newc->str = s;
2008			newc->len = oldc->len;
2009			return 0;
2010		}
2011		kfree(s);
2012		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2013			/* Other error condition, e.g. ENOMEM. */
2014			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2015			       oldc->str, -rc);
2016			return rc;
2017		}
2018		pr_info("SELinux:  Context %s became valid (mapped).\n",
2019			oldc->str);
2020		return 0;
2021	}
2022
2023	context_init(newc);
 
 
2024
2025	/* Convert the user. */
2026	rc = -EINVAL;
2027	usrdatum = symtab_search(&args->newp->p_users,
2028				 sym_name(args->oldp,
2029					  SYM_USERS, oldc->user - 1));
2030	if (!usrdatum)
2031		goto bad;
2032	newc->user = usrdatum->value;
2033
2034	/* Convert the role. */
2035	rc = -EINVAL;
2036	role = symtab_search(&args->newp->p_roles,
2037			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2038	if (!role)
2039		goto bad;
2040	newc->role = role->value;
2041
2042	/* Convert the type. */
2043	rc = -EINVAL;
2044	typdatum = symtab_search(&args->newp->p_types,
2045				 sym_name(args->oldp,
2046					  SYM_TYPES, oldc->type - 1));
2047	if (!typdatum)
2048		goto bad;
2049	newc->type = typdatum->value;
2050
2051	/* Convert the MLS fields if dealing with MLS policies */
2052	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2053		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2054		if (rc)
2055			goto bad;
 
 
 
 
 
 
 
2056	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2057		/*
2058		 * Switching between non-MLS and MLS policy:
2059		 * ensure that the MLS fields of the context for all
2060		 * existing entries in the sidtab are filled in with a
2061		 * suitable default value, likely taken from one of the
2062		 * initial SIDs.
2063		 */
2064		oc = args->newp->ocontexts[OCON_ISID];
2065		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2066			oc = oc->next;
2067		rc = -EINVAL;
2068		if (!oc) {
2069			pr_err("SELinux:  unable to look up"
2070				" the initial SIDs list\n");
2071			goto bad;
2072		}
2073		rc = mls_range_set(newc, &oc->context[0].range);
 
2074		if (rc)
2075			goto bad;
2076	}
2077
2078	/* Check the validity of the new context. */
2079	if (!policydb_context_isvalid(args->newp, newc)) {
2080		rc = convert_context_handle_invalid_context(args->state, oldc);
2081		if (rc)
2082			goto bad;
2083	}
2084
2085	return 0;
 
 
 
 
2086bad:
2087	/* Map old representation to string and save it. */
2088	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2089	if (rc)
2090		return rc;
2091	context_destroy(newc);
2092	newc->str = s;
2093	newc->len = len;
2094	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2095		newc->str);
2096	return 0;
 
 
2097}
2098
2099static void security_load_policycaps(struct selinux_state *state)
2100{
2101	struct policydb *p = &state->ss->policydb;
2102	unsigned int i;
2103	struct ebitmap_node *node;
2104
2105	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2106		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2107
2108	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2109		pr_info("SELinux:  policy capability %s=%d\n",
2110			selinux_policycap_names[i],
2111			ebitmap_get_bit(&p->policycaps, i));
2112
2113	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2114		if (i >= ARRAY_SIZE(selinux_policycap_names))
2115			pr_info("SELinux:  unknown policy capability %u\n",
2116				i);
2117	}
2118}
2119
2120static int security_preserve_bools(struct selinux_state *state,
2121				   struct policydb *newpolicydb);
2122
2123/**
2124 * security_load_policy - Load a security policy configuration.
2125 * @data: binary policy data
2126 * @len: length of data in bytes
2127 *
2128 * Load a new set of security policy configuration data,
2129 * validate it and convert the SID table as necessary.
2130 * This function will flush the access vector cache after
2131 * loading the new policy.
2132 */
2133int security_load_policy(struct selinux_state *state, void *data, size_t len)
2134{
2135	struct policydb *policydb;
2136	struct sidtab *oldsidtab, *newsidtab;
2137	struct policydb *oldpolicydb, *newpolicydb;
2138	struct selinux_mapping *oldmapping;
2139	struct selinux_map newmap;
2140	struct sidtab_convert_params convert_params;
2141	struct convert_context_args args;
2142	u32 seqno;
 
2143	int rc = 0;
2144	struct policy_file file = { data, len }, *fp = &file;
2145
2146	policydb = &state->ss->policydb;
2147
2148	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2149	if (!newsidtab)
2150		return -ENOMEM;
 
2151
2152	if (!selinux_initialized(state)) {
2153		rc = policydb_read(policydb, fp);
 
2154		if (rc) {
2155			kfree(newsidtab);
2156			return rc;
2157		}
2158
2159		policydb->len = len;
2160		rc = selinux_set_mapping(policydb, secclass_map,
2161					 &state->ss->map);
 
2162		if (rc) {
2163			kfree(newsidtab);
2164			policydb_destroy(policydb);
2165			return rc;
2166		}
2167
2168		rc = policydb_load_isids(policydb, newsidtab);
2169		if (rc) {
2170			kfree(newsidtab);
2171			policydb_destroy(policydb);
2172			return rc;
2173		}
2174
2175		state->ss->sidtab = newsidtab;
2176		security_load_policycaps(state);
2177		selinux_mark_initialized(state);
2178		seqno = ++state->ss->latest_granting;
2179		selinux_complete_init();
2180		avc_ss_reset(state->avc, seqno);
2181		selnl_notify_policyload(seqno);
2182		selinux_status_update_policyload(state, seqno);
2183		selinux_netlbl_cache_invalidate();
2184		selinux_xfrm_notify_policyload();
2185		return 0;
2186	}
2187
2188	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2189	if (!oldpolicydb) {
2190		kfree(newsidtab);
2191		return -ENOMEM;
2192	}
2193	newpolicydb = oldpolicydb + 1;
2194
2195	rc = policydb_read(newpolicydb, fp);
2196	if (rc) {
2197		kfree(newsidtab);
2198		goto out;
2199	}
2200
2201	newpolicydb->len = len;
2202	/* If switching between different policy types, log MLS status */
2203	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2204		pr_info("SELinux: Disabling MLS support...\n");
2205	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2206		pr_info("SELinux: Enabling MLS support...\n");
2207
2208	rc = policydb_load_isids(newpolicydb, newsidtab);
2209	if (rc) {
2210		pr_err("SELinux:  unable to load the initial SIDs\n");
2211		policydb_destroy(newpolicydb);
2212		kfree(newsidtab);
2213		goto out;
2214	}
2215
2216	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2217	if (rc)
2218		goto err;
2219
2220	rc = security_preserve_bools(state, newpolicydb);
2221	if (rc) {
2222		pr_err("SELinux:  unable to preserve booleans\n");
2223		goto err;
2224	}
2225
2226	oldsidtab = state->ss->sidtab;
 
 
 
 
 
2227
2228	/*
2229	 * Convert the internal representations of contexts
2230	 * in the new SID table.
2231	 */
2232	args.state = state;
2233	args.oldp = policydb;
2234	args.newp = newpolicydb;
2235
2236	convert_params.func = convert_context;
2237	convert_params.args = &args;
2238	convert_params.target = newsidtab;
2239
2240	rc = sidtab_convert(oldsidtab, &convert_params);
2241	if (rc) {
2242		pr_err("SELinux:  unable to convert the internal"
2243			" representation of contexts in the new SID"
2244			" table\n");
2245		goto err;
2246	}
2247
2248	/* Save the old policydb and SID table to free later. */
2249	memcpy(oldpolicydb, policydb, sizeof(*policydb));
 
2250
2251	/* Install the new policydb and SID table. */
2252	write_lock_irq(&state->ss->policy_rwlock);
2253	memcpy(policydb, newpolicydb, sizeof(*policydb));
2254	state->ss->sidtab = newsidtab;
2255	security_load_policycaps(state);
2256	oldmapping = state->ss->map.mapping;
2257	state->ss->map.mapping = newmap.mapping;
2258	state->ss->map.size = newmap.size;
2259	seqno = ++state->ss->latest_granting;
2260	write_unlock_irq(&state->ss->policy_rwlock);
2261
2262	/* Free the old policydb and SID table. */
2263	policydb_destroy(oldpolicydb);
2264	sidtab_destroy(oldsidtab);
2265	kfree(oldsidtab);
2266	kfree(oldmapping);
2267
2268	avc_ss_reset(state->avc, seqno);
2269	selnl_notify_policyload(seqno);
2270	selinux_status_update_policyload(state, seqno);
2271	selinux_netlbl_cache_invalidate();
2272	selinux_xfrm_notify_policyload();
2273
2274	rc = 0;
2275	goto out;
2276
2277err:
2278	kfree(newmap.mapping);
2279	sidtab_destroy(newsidtab);
2280	kfree(newsidtab);
2281	policydb_destroy(newpolicydb);
2282
2283out:
2284	kfree(oldpolicydb);
2285	return rc;
2286}
2287
2288size_t security_policydb_len(struct selinux_state *state)
2289{
2290	struct policydb *p = &state->ss->policydb;
2291	size_t len;
2292
2293	read_lock(&state->ss->policy_rwlock);
2294	len = p->len;
2295	read_unlock(&state->ss->policy_rwlock);
2296
2297	return len;
2298}
2299
2300/**
2301 * security_port_sid - Obtain the SID for a port.
2302 * @protocol: protocol number
2303 * @port: port number
2304 * @out_sid: security identifier
2305 */
2306int security_port_sid(struct selinux_state *state,
2307		      u8 protocol, u16 port, u32 *out_sid)
2308{
2309	struct policydb *policydb;
2310	struct sidtab *sidtab;
2311	struct ocontext *c;
2312	int rc = 0;
2313
2314	read_lock(&state->ss->policy_rwlock);
2315
2316	policydb = &state->ss->policydb;
2317	sidtab = state->ss->sidtab;
2318
2319	c = policydb->ocontexts[OCON_PORT];
2320	while (c) {
2321		if (c->u.port.protocol == protocol &&
2322		    c->u.port.low_port <= port &&
2323		    c->u.port.high_port >= port)
2324			break;
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2331						   &c->sid[0]);
2332			if (rc)
2333				goto out;
2334		}
2335		*out_sid = c->sid[0];
2336	} else {
2337		*out_sid = SECINITSID_PORT;
2338	}
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_pkey_sid - Obtain the SID for a pkey.
2347 * @subnet_prefix: Subnet Prefix
2348 * @pkey_num: pkey number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_pkey_sid(struct selinux_state *state,
2352			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBPKEY];
2365	while (c) {
2366		if (c->u.ibpkey.low_pkey <= pkey_num &&
2367		    c->u.ibpkey.high_pkey >= pkey_num &&
2368		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2369			break;
2370
2371		c = c->next;
2372	}
2373
2374	if (c) {
2375		if (!c->sid[0]) {
2376			rc = sidtab_context_to_sid(sidtab,
2377						   &c->context[0],
2378						   &c->sid[0]);
2379			if (rc)
2380				goto out;
2381		}
2382		*out_sid = c->sid[0];
2383	} else
2384		*out_sid = SECINITSID_UNLABELED;
2385
2386out:
2387	read_unlock(&state->ss->policy_rwlock);
2388	return rc;
2389}
2390
2391/**
2392 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2393 * @dev_name: device name
2394 * @port: port number
2395 * @out_sid: security identifier
2396 */
2397int security_ib_endport_sid(struct selinux_state *state,
2398			    const char *dev_name, u8 port_num, u32 *out_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	struct ocontext *c;
2403	int rc = 0;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_IBENDPORT];
2411	while (c) {
2412		if (c->u.ibendport.port == port_num &&
2413		    !strncmp(c->u.ibendport.dev_name,
2414			     dev_name,
2415			     IB_DEVICE_NAME_MAX))
2416			break;
2417
2418		c = c->next;
2419	}
2420
2421	if (c) {
2422		if (!c->sid[0]) {
2423			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2424						   &c->sid[0]);
2425			if (rc)
2426				goto out;
2427		}
2428		*out_sid = c->sid[0];
2429	} else
2430		*out_sid = SECINITSID_UNLABELED;
2431
2432out:
2433	read_unlock(&state->ss->policy_rwlock);
2434	return rc;
2435}
2436
2437/**
2438 * security_netif_sid - Obtain the SID for a network interface.
2439 * @name: interface name
2440 * @if_sid: interface SID
2441 */
2442int security_netif_sid(struct selinux_state *state,
2443		       char *name, u32 *if_sid)
2444{
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	int rc = 0;
2448	struct ocontext *c;
2449
2450	read_lock(&state->ss->policy_rwlock);
2451
2452	policydb = &state->ss->policydb;
2453	sidtab = state->ss->sidtab;
2454
2455	c = policydb->ocontexts[OCON_NETIF];
2456	while (c) {
2457		if (strcmp(name, c->u.name) == 0)
2458			break;
2459		c = c->next;
2460	}
2461
2462	if (c) {
2463		if (!c->sid[0] || !c->sid[1]) {
2464			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2465						   &c->sid[0]);
 
2466			if (rc)
2467				goto out;
2468			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2469						   &c->sid[1]);
2470			if (rc)
2471				goto out;
2472		}
2473		*if_sid = c->sid[0];
2474	} else
2475		*if_sid = SECINITSID_NETIF;
2476
2477out:
2478	read_unlock(&state->ss->policy_rwlock);
2479	return rc;
2480}
2481
2482static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2483{
2484	int i, fail = 0;
2485
2486	for (i = 0; i < 4; i++)
2487		if (addr[i] != (input[i] & mask[i])) {
2488			fail = 1;
2489			break;
2490		}
2491
2492	return !fail;
2493}
2494
2495/**
2496 * security_node_sid - Obtain the SID for a node (host).
2497 * @domain: communication domain aka address family
2498 * @addrp: address
2499 * @addrlen: address length in bytes
2500 * @out_sid: security identifier
2501 */
2502int security_node_sid(struct selinux_state *state,
2503		      u16 domain,
2504		      void *addrp,
2505		      u32 addrlen,
2506		      u32 *out_sid)
2507{
2508	struct policydb *policydb;
2509	struct sidtab *sidtab;
2510	int rc;
2511	struct ocontext *c;
2512
2513	read_lock(&state->ss->policy_rwlock);
2514
2515	policydb = &state->ss->policydb;
2516	sidtab = state->ss->sidtab;
2517
2518	switch (domain) {
2519	case AF_INET: {
2520		u32 addr;
2521
2522		rc = -EINVAL;
2523		if (addrlen != sizeof(u32))
2524			goto out;
2525
2526		addr = *((u32 *)addrp);
2527
2528		c = policydb->ocontexts[OCON_NODE];
2529		while (c) {
2530			if (c->u.node.addr == (addr & c->u.node.mask))
2531				break;
2532			c = c->next;
2533		}
2534		break;
2535	}
2536
2537	case AF_INET6:
2538		rc = -EINVAL;
2539		if (addrlen != sizeof(u64) * 2)
2540			goto out;
2541		c = policydb->ocontexts[OCON_NODE6];
2542		while (c) {
2543			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2544						c->u.node6.mask))
2545				break;
2546			c = c->next;
2547		}
2548		break;
2549
2550	default:
2551		rc = 0;
2552		*out_sid = SECINITSID_NODE;
2553		goto out;
2554	}
2555
2556	if (c) {
2557		if (!c->sid[0]) {
2558			rc = sidtab_context_to_sid(sidtab,
2559						   &c->context[0],
2560						   &c->sid[0]);
2561			if (rc)
2562				goto out;
2563		}
2564		*out_sid = c->sid[0];
2565	} else {
2566		*out_sid = SECINITSID_NODE;
2567	}
2568
2569	rc = 0;
2570out:
2571	read_unlock(&state->ss->policy_rwlock);
2572	return rc;
2573}
2574
2575#define SIDS_NEL 25
2576
2577/**
2578 * security_get_user_sids - Obtain reachable SIDs for a user.
2579 * @fromsid: starting SID
2580 * @username: username
2581 * @sids: array of reachable SIDs for user
2582 * @nel: number of elements in @sids
2583 *
2584 * Generate the set of SIDs for legal security contexts
2585 * for a given user that can be reached by @fromsid.
2586 * Set *@sids to point to a dynamically allocated
2587 * array containing the set of SIDs.  Set *@nel to the
2588 * number of elements in the array.
2589 */
2590
2591int security_get_user_sids(struct selinux_state *state,
2592			   u32 fromsid,
2593			   char *username,
2594			   u32 **sids,
2595			   u32 *nel)
2596{
2597	struct policydb *policydb;
2598	struct sidtab *sidtab;
2599	struct context *fromcon, usercon;
2600	u32 *mysids = NULL, *mysids2, sid;
2601	u32 mynel = 0, maxnel = SIDS_NEL;
2602	struct user_datum *user;
2603	struct role_datum *role;
2604	struct ebitmap_node *rnode, *tnode;
2605	int rc = 0, i, j;
2606
2607	*sids = NULL;
2608	*nel = 0;
2609
2610	if (!selinux_initialized(state))
2611		goto out;
2612
2613	read_lock(&state->ss->policy_rwlock);
2614
2615	policydb = &state->ss->policydb;
2616	sidtab = state->ss->sidtab;
2617
2618	context_init(&usercon);
2619
2620	rc = -EINVAL;
2621	fromcon = sidtab_search(sidtab, fromsid);
2622	if (!fromcon)
2623		goto out_unlock;
2624
2625	rc = -EINVAL;
2626	user = symtab_search(&policydb->p_users, username);
2627	if (!user)
2628		goto out_unlock;
2629
2630	usercon.user = user->value;
2631
2632	rc = -ENOMEM;
2633	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2634	if (!mysids)
2635		goto out_unlock;
2636
2637	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2638		role = policydb->role_val_to_struct[i];
2639		usercon.role = i + 1;
2640		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2641			usercon.type = j + 1;
2642
2643			if (mls_setup_user_range(policydb, fromcon, user,
2644						 &usercon))
2645				continue;
2646
2647			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2648			if (rc)
2649				goto out_unlock;
2650			if (mynel < maxnel) {
2651				mysids[mynel++] = sid;
2652			} else {
2653				rc = -ENOMEM;
2654				maxnel += SIDS_NEL;
2655				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2656				if (!mysids2)
2657					goto out_unlock;
2658				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2659				kfree(mysids);
2660				mysids = mysids2;
2661				mysids[mynel++] = sid;
2662			}
2663		}
2664	}
2665	rc = 0;
2666out_unlock:
2667	read_unlock(&state->ss->policy_rwlock);
2668	if (rc || !mynel) {
2669		kfree(mysids);
2670		goto out;
2671	}
2672
2673	rc = -ENOMEM;
2674	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2675	if (!mysids2) {
2676		kfree(mysids);
2677		goto out;
2678	}
2679	for (i = 0, j = 0; i < mynel; i++) {
2680		struct av_decision dummy_avd;
2681		rc = avc_has_perm_noaudit(state,
2682					  fromsid, mysids[i],
2683					  SECCLASS_PROCESS, /* kernel value */
2684					  PROCESS__TRANSITION, AVC_STRICT,
2685					  &dummy_avd);
2686		if (!rc)
2687			mysids2[j++] = mysids[i];
2688		cond_resched();
2689	}
2690	rc = 0;
2691	kfree(mysids);
2692	*sids = mysids2;
2693	*nel = j;
2694out:
2695	return rc;
2696}
2697
2698/**
2699 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2700 * @fstype: filesystem type
2701 * @path: path from root of mount
2702 * @sclass: file security class
2703 * @sid: SID for path
2704 *
2705 * Obtain a SID to use for a file in a filesystem that
2706 * cannot support xattr or use a fixed labeling behavior like
2707 * transition SIDs or task SIDs.
2708 *
2709 * The caller must acquire the policy_rwlock before calling this function.
2710 */
2711static inline int __security_genfs_sid(struct selinux_state *state,
2712				       const char *fstype,
2713				       char *path,
2714				       u16 orig_sclass,
2715				       u32 *sid)
2716{
2717	struct policydb *policydb = &state->ss->policydb;
2718	struct sidtab *sidtab = state->ss->sidtab;
2719	int len;
2720	u16 sclass;
2721	struct genfs *genfs;
2722	struct ocontext *c;
2723	int rc, cmp = 0;
2724
2725	while (path[0] == '/' && path[1] == '/')
2726		path++;
2727
2728	sclass = unmap_class(&state->ss->map, orig_sclass);
2729	*sid = SECINITSID_UNLABELED;
2730
2731	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2732		cmp = strcmp(fstype, genfs->fstype);
2733		if (cmp <= 0)
2734			break;
2735	}
2736
2737	rc = -ENOENT;
2738	if (!genfs || cmp)
2739		goto out;
2740
2741	for (c = genfs->head; c; c = c->next) {
2742		len = strlen(c->u.name);
2743		if ((!c->v.sclass || sclass == c->v.sclass) &&
2744		    (strncmp(c->u.name, path, len) == 0))
2745			break;
2746	}
2747
2748	rc = -ENOENT;
2749	if (!c)
2750		goto out;
2751
2752	if (!c->sid[0]) {
2753		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2754		if (rc)
2755			goto out;
2756	}
2757
2758	*sid = c->sid[0];
2759	rc = 0;
2760out:
2761	return rc;
2762}
2763
2764/**
2765 * security_genfs_sid - Obtain a SID for a file in a filesystem
2766 * @fstype: filesystem type
2767 * @path: path from root of mount
2768 * @sclass: file security class
2769 * @sid: SID for path
2770 *
2771 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2772 * it afterward.
2773 */
2774int security_genfs_sid(struct selinux_state *state,
2775		       const char *fstype,
2776		       char *path,
2777		       u16 orig_sclass,
2778		       u32 *sid)
2779{
2780	int retval;
2781
2782	read_lock(&state->ss->policy_rwlock);
2783	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2784	read_unlock(&state->ss->policy_rwlock);
2785	return retval;
2786}
2787
2788/**
2789 * security_fs_use - Determine how to handle labeling for a filesystem.
2790 * @sb: superblock in question
2791 */
2792int security_fs_use(struct selinux_state *state, struct super_block *sb)
2793{
2794	struct policydb *policydb;
2795	struct sidtab *sidtab;
2796	int rc = 0;
2797	struct ocontext *c;
2798	struct superblock_security_struct *sbsec = sb->s_security;
2799	const char *fstype = sb->s_type->name;
2800
2801	read_lock(&state->ss->policy_rwlock);
2802
2803	policydb = &state->ss->policydb;
2804	sidtab = state->ss->sidtab;
2805
2806	c = policydb->ocontexts[OCON_FSUSE];
2807	while (c) {
2808		if (strcmp(fstype, c->u.name) == 0)
2809			break;
2810		c = c->next;
2811	}
2812
2813	if (c) {
2814		sbsec->behavior = c->v.behavior;
2815		if (!c->sid[0]) {
2816			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2817						   &c->sid[0]);
2818			if (rc)
2819				goto out;
2820		}
2821		sbsec->sid = c->sid[0];
2822	} else {
2823		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2824					  &sbsec->sid);
2825		if (rc) {
2826			sbsec->behavior = SECURITY_FS_USE_NONE;
2827			rc = 0;
2828		} else {
2829			sbsec->behavior = SECURITY_FS_USE_GENFS;
2830		}
2831	}
2832
2833out:
2834	read_unlock(&state->ss->policy_rwlock);
2835	return rc;
2836}
2837
2838int security_get_bools(struct selinux_state *state,
2839		       u32 *len, char ***names, int **values)
2840{
2841	struct policydb *policydb;
2842	u32 i;
2843	int rc;
2844
2845	if (!selinux_initialized(state)) {
2846		*len = 0;
2847		*names = NULL;
2848		*values = NULL;
2849		return 0;
2850	}
2851
2852	read_lock(&state->ss->policy_rwlock);
2853
2854	policydb = &state->ss->policydb;
2855
 
2856	*names = NULL;
2857	*values = NULL;
2858
2859	rc = 0;
2860	*len = policydb->p_bools.nprim;
2861	if (!*len)
2862		goto out;
2863
2864	rc = -ENOMEM;
2865	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2866	if (!*names)
2867		goto err;
2868
2869	rc = -ENOMEM;
2870	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2871	if (!*values)
2872		goto err;
2873
2874	for (i = 0; i < *len; i++) {
2875		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2876
2877		rc = -ENOMEM;
2878		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2879				      GFP_ATOMIC);
2880		if (!(*names)[i])
2881			goto err;
2882	}
2883	rc = 0;
2884out:
2885	read_unlock(&state->ss->policy_rwlock);
2886	return rc;
2887err:
2888	if (*names) {
2889		for (i = 0; i < *len; i++)
2890			kfree((*names)[i]);
2891		kfree(*names);
2892	}
2893	kfree(*values);
2894	*len = 0;
2895	*names = NULL;
2896	*values = NULL;
2897	goto out;
2898}
2899
2900
2901int security_set_bools(struct selinux_state *state, u32 len, int *values)
2902{
2903	struct policydb *policydb;
2904	int rc;
2905	u32 i, lenp, seqno = 0;
2906
2907	write_lock_irq(&state->ss->policy_rwlock);
2908
2909	policydb = &state->ss->policydb;
2910
2911	rc = -EFAULT;
2912	lenp = policydb->p_bools.nprim;
2913	if (len != lenp)
2914		goto out;
2915
2916	for (i = 0; i < len; i++) {
2917		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2918			audit_log(audit_context(), GFP_ATOMIC,
2919				AUDIT_MAC_CONFIG_CHANGE,
2920				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2921				sym_name(policydb, SYM_BOOLS, i),
2922				!!values[i],
2923				policydb->bool_val_to_struct[i]->state,
2924				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2925				audit_get_sessionid(current));
2926		}
2927		if (values[i])
2928			policydb->bool_val_to_struct[i]->state = 1;
2929		else
2930			policydb->bool_val_to_struct[i]->state = 0;
2931	}
2932
2933	evaluate_cond_nodes(policydb);
 
 
 
 
2934
2935	seqno = ++state->ss->latest_granting;
2936	rc = 0;
2937out:
2938	write_unlock_irq(&state->ss->policy_rwlock);
2939	if (!rc) {
2940		avc_ss_reset(state->avc, seqno);
2941		selnl_notify_policyload(seqno);
2942		selinux_status_update_policyload(state, seqno);
2943		selinux_xfrm_notify_policyload();
2944	}
2945	return rc;
2946}
2947
2948int security_get_bool_value(struct selinux_state *state,
2949			    u32 index)
2950{
2951	struct policydb *policydb;
2952	int rc;
2953	u32 len;
2954
2955	read_lock(&state->ss->policy_rwlock);
2956
2957	policydb = &state->ss->policydb;
2958
2959	rc = -EFAULT;
2960	len = policydb->p_bools.nprim;
2961	if (index >= len)
2962		goto out;
2963
2964	rc = policydb->bool_val_to_struct[index]->state;
2965out:
2966	read_unlock(&state->ss->policy_rwlock);
2967	return rc;
2968}
2969
2970static int security_preserve_bools(struct selinux_state *state,
2971				   struct policydb *policydb)
2972{
2973	int rc, *bvalues = NULL;
2974	char **bnames = NULL;
2975	struct cond_bool_datum *booldatum;
2976	u32 i, nbools = 0;
2977
2978	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2979	if (rc)
2980		goto out;
2981	for (i = 0; i < nbools; i++) {
2982		booldatum = symtab_search(&policydb->p_bools, bnames[i]);
2983		if (booldatum)
2984			booldatum->state = bvalues[i];
2985	}
2986	evaluate_cond_nodes(policydb);
 
 
 
 
2987
2988out:
2989	if (bnames) {
2990		for (i = 0; i < nbools; i++)
2991			kfree(bnames[i]);
2992	}
2993	kfree(bnames);
2994	kfree(bvalues);
2995	return rc;
2996}
2997
2998/*
2999 * security_sid_mls_copy() - computes a new sid based on the given
3000 * sid and the mls portion of mls_sid.
3001 */
3002int security_sid_mls_copy(struct selinux_state *state,
3003			  u32 sid, u32 mls_sid, u32 *new_sid)
3004{
3005	struct policydb *policydb = &state->ss->policydb;
3006	struct sidtab *sidtab = state->ss->sidtab;
3007	struct context *context1;
3008	struct context *context2;
3009	struct context newcon;
3010	char *s;
3011	u32 len;
3012	int rc;
3013
3014	rc = 0;
3015	if (!selinux_initialized(state) || !policydb->mls_enabled) {
3016		*new_sid = sid;
3017		goto out;
3018	}
3019
3020	context_init(&newcon);
3021
3022	read_lock(&state->ss->policy_rwlock);
3023
3024	rc = -EINVAL;
3025	context1 = sidtab_search(sidtab, sid);
3026	if (!context1) {
3027		pr_err("SELinux: %s:  unrecognized SID %d\n",
3028			__func__, sid);
3029		goto out_unlock;
3030	}
3031
3032	rc = -EINVAL;
3033	context2 = sidtab_search(sidtab, mls_sid);
3034	if (!context2) {
3035		pr_err("SELinux: %s:  unrecognized SID %d\n",
3036			__func__, mls_sid);
3037		goto out_unlock;
3038	}
3039
3040	newcon.user = context1->user;
3041	newcon.role = context1->role;
3042	newcon.type = context1->type;
3043	rc = mls_context_cpy(&newcon, context2);
3044	if (rc)
3045		goto out_unlock;
3046
3047	/* Check the validity of the new context. */
3048	if (!policydb_context_isvalid(policydb, &newcon)) {
3049		rc = convert_context_handle_invalid_context(state, &newcon);
3050		if (rc) {
3051			if (!context_struct_to_string(policydb, &newcon, &s,
3052						      &len)) {
3053				struct audit_buffer *ab;
3054
3055				ab = audit_log_start(audit_context(),
3056						     GFP_ATOMIC,
3057						     AUDIT_SELINUX_ERR);
3058				audit_log_format(ab,
3059						 "op=security_sid_mls_copy invalid_context=");
3060				/* don't record NUL with untrusted strings */
3061				audit_log_n_untrustedstring(ab, s, len - 1);
3062				audit_log_end(ab);
3063				kfree(s);
3064			}
3065			goto out_unlock;
3066		}
3067	}
3068	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
 
3069out_unlock:
3070	read_unlock(&state->ss->policy_rwlock);
3071	context_destroy(&newcon);
3072out:
3073	return rc;
3074}
3075
3076/**
3077 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3078 * @nlbl_sid: NetLabel SID
3079 * @nlbl_type: NetLabel labeling protocol type
3080 * @xfrm_sid: XFRM SID
3081 *
3082 * Description:
3083 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3084 * resolved into a single SID it is returned via @peer_sid and the function
3085 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3086 * returns a negative value.  A table summarizing the behavior is below:
3087 *
3088 *                                 | function return |      @sid
3089 *   ------------------------------+-----------------+-----------------
3090 *   no peer labels                |        0        |    SECSID_NULL
3091 *   single peer label             |        0        |    <peer_label>
3092 *   multiple, consistent labels   |        0        |    <peer_label>
3093 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3094 *
3095 */
3096int security_net_peersid_resolve(struct selinux_state *state,
3097				 u32 nlbl_sid, u32 nlbl_type,
3098				 u32 xfrm_sid,
3099				 u32 *peer_sid)
3100{
3101	struct policydb *policydb = &state->ss->policydb;
3102	struct sidtab *sidtab = state->ss->sidtab;
3103	int rc;
3104	struct context *nlbl_ctx;
3105	struct context *xfrm_ctx;
3106
3107	*peer_sid = SECSID_NULL;
3108
3109	/* handle the common (which also happens to be the set of easy) cases
3110	 * right away, these two if statements catch everything involving a
3111	 * single or absent peer SID/label */
3112	if (xfrm_sid == SECSID_NULL) {
3113		*peer_sid = nlbl_sid;
3114		return 0;
3115	}
3116	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3117	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3118	 * is present */
3119	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3120		*peer_sid = xfrm_sid;
3121		return 0;
3122	}
3123
3124	/*
3125	 * We don't need to check initialized here since the only way both
3126	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3127	 * security server was initialized and state->initialized was true.
3128	 */
3129	if (!policydb->mls_enabled)
3130		return 0;
3131
3132	read_lock(&state->ss->policy_rwlock);
3133
3134	rc = -EINVAL;
3135	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3136	if (!nlbl_ctx) {
3137		pr_err("SELinux: %s:  unrecognized SID %d\n",
3138		       __func__, nlbl_sid);
3139		goto out;
3140	}
3141	rc = -EINVAL;
3142	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3143	if (!xfrm_ctx) {
3144		pr_err("SELinux: %s:  unrecognized SID %d\n",
3145		       __func__, xfrm_sid);
3146		goto out;
3147	}
3148	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3149	if (rc)
3150		goto out;
3151
3152	/* at present NetLabel SIDs/labels really only carry MLS
3153	 * information so if the MLS portion of the NetLabel SID
3154	 * matches the MLS portion of the labeled XFRM SID/label
3155	 * then pass along the XFRM SID as it is the most
3156	 * expressive */
3157	*peer_sid = xfrm_sid;
3158out:
3159	read_unlock(&state->ss->policy_rwlock);
3160	return rc;
3161}
3162
3163static int get_classes_callback(void *k, void *d, void *args)
3164{
3165	struct class_datum *datum = d;
3166	char *name = k, **classes = args;
3167	int value = datum->value - 1;
3168
3169	classes[value] = kstrdup(name, GFP_ATOMIC);
3170	if (!classes[value])
3171		return -ENOMEM;
3172
3173	return 0;
3174}
3175
3176int security_get_classes(struct selinux_state *state,
3177			 char ***classes, int *nclasses)
3178{
3179	struct policydb *policydb = &state->ss->policydb;
3180	int rc;
3181
3182	if (!selinux_initialized(state)) {
3183		*nclasses = 0;
3184		*classes = NULL;
3185		return 0;
3186	}
3187
3188	read_lock(&state->ss->policy_rwlock);
3189
3190	rc = -ENOMEM;
3191	*nclasses = policydb->p_classes.nprim;
3192	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3193	if (!*classes)
3194		goto out;
3195
3196	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3197			 *classes);
3198	if (rc) {
3199		int i;
3200		for (i = 0; i < *nclasses; i++)
3201			kfree((*classes)[i]);
3202		kfree(*classes);
3203	}
3204
3205out:
3206	read_unlock(&state->ss->policy_rwlock);
3207	return rc;
3208}
3209
3210static int get_permissions_callback(void *k, void *d, void *args)
3211{
3212	struct perm_datum *datum = d;
3213	char *name = k, **perms = args;
3214	int value = datum->value - 1;
3215
3216	perms[value] = kstrdup(name, GFP_ATOMIC);
3217	if (!perms[value])
3218		return -ENOMEM;
3219
3220	return 0;
3221}
3222
3223int security_get_permissions(struct selinux_state *state,
3224			     char *class, char ***perms, int *nperms)
3225{
3226	struct policydb *policydb = &state->ss->policydb;
3227	int rc, i;
3228	struct class_datum *match;
3229
3230	read_lock(&state->ss->policy_rwlock);
3231
3232	rc = -EINVAL;
3233	match = symtab_search(&policydb->p_classes, class);
3234	if (!match) {
3235		pr_err("SELinux: %s:  unrecognized class %s\n",
3236			__func__, class);
3237		goto out;
3238	}
3239
3240	rc = -ENOMEM;
3241	*nperms = match->permissions.nprim;
3242	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3243	if (!*perms)
3244		goto out;
3245
3246	if (match->comdatum) {
3247		rc = hashtab_map(&match->comdatum->permissions.table,
3248				 get_permissions_callback, *perms);
3249		if (rc)
3250			goto err;
3251	}
3252
3253	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3254			 *perms);
3255	if (rc)
3256		goto err;
3257
3258out:
3259	read_unlock(&state->ss->policy_rwlock);
3260	return rc;
3261
3262err:
3263	read_unlock(&state->ss->policy_rwlock);
3264	for (i = 0; i < *nperms; i++)
3265		kfree((*perms)[i]);
3266	kfree(*perms);
3267	return rc;
3268}
3269
3270int security_get_reject_unknown(struct selinux_state *state)
3271{
3272	return state->ss->policydb.reject_unknown;
3273}
3274
3275int security_get_allow_unknown(struct selinux_state *state)
3276{
3277	return state->ss->policydb.allow_unknown;
3278}
3279
3280/**
3281 * security_policycap_supported - Check for a specific policy capability
3282 * @req_cap: capability
3283 *
3284 * Description:
3285 * This function queries the currently loaded policy to see if it supports the
3286 * capability specified by @req_cap.  Returns true (1) if the capability is
3287 * supported, false (0) if it isn't supported.
3288 *
3289 */
3290int security_policycap_supported(struct selinux_state *state,
3291				 unsigned int req_cap)
3292{
3293	struct policydb *policydb = &state->ss->policydb;
3294	int rc;
3295
3296	read_lock(&state->ss->policy_rwlock);
3297	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3298	read_unlock(&state->ss->policy_rwlock);
3299
3300	return rc;
3301}
3302
3303struct selinux_audit_rule {
3304	u32 au_seqno;
3305	struct context au_ctxt;
3306};
3307
3308void selinux_audit_rule_free(void *vrule)
3309{
3310	struct selinux_audit_rule *rule = vrule;
3311
3312	if (rule) {
3313		context_destroy(&rule->au_ctxt);
3314		kfree(rule);
3315	}
3316}
3317
3318int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3319{
3320	struct selinux_state *state = &selinux_state;
3321	struct policydb *policydb = &state->ss->policydb;
3322	struct selinux_audit_rule *tmprule;
3323	struct role_datum *roledatum;
3324	struct type_datum *typedatum;
3325	struct user_datum *userdatum;
3326	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3327	int rc = 0;
3328
3329	*rule = NULL;
3330
3331	if (!selinux_initialized(state))
3332		return -EOPNOTSUPP;
3333
3334	switch (field) {
3335	case AUDIT_SUBJ_USER:
3336	case AUDIT_SUBJ_ROLE:
3337	case AUDIT_SUBJ_TYPE:
3338	case AUDIT_OBJ_USER:
3339	case AUDIT_OBJ_ROLE:
3340	case AUDIT_OBJ_TYPE:
3341		/* only 'equals' and 'not equals' fit user, role, and type */
3342		if (op != Audit_equal && op != Audit_not_equal)
3343			return -EINVAL;
3344		break;
3345	case AUDIT_SUBJ_SEN:
3346	case AUDIT_SUBJ_CLR:
3347	case AUDIT_OBJ_LEV_LOW:
3348	case AUDIT_OBJ_LEV_HIGH:
3349		/* we do not allow a range, indicated by the presence of '-' */
3350		if (strchr(rulestr, '-'))
3351			return -EINVAL;
3352		break;
3353	default:
3354		/* only the above fields are valid */
3355		return -EINVAL;
3356	}
3357
3358	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3359	if (!tmprule)
3360		return -ENOMEM;
3361
3362	context_init(&tmprule->au_ctxt);
3363
3364	read_lock(&state->ss->policy_rwlock);
3365
3366	tmprule->au_seqno = state->ss->latest_granting;
3367
3368	switch (field) {
3369	case AUDIT_SUBJ_USER:
3370	case AUDIT_OBJ_USER:
3371		rc = -EINVAL;
3372		userdatum = symtab_search(&policydb->p_users, rulestr);
3373		if (!userdatum)
3374			goto out;
3375		tmprule->au_ctxt.user = userdatum->value;
3376		break;
3377	case AUDIT_SUBJ_ROLE:
3378	case AUDIT_OBJ_ROLE:
3379		rc = -EINVAL;
3380		roledatum = symtab_search(&policydb->p_roles, rulestr);
3381		if (!roledatum)
3382			goto out;
3383		tmprule->au_ctxt.role = roledatum->value;
3384		break;
3385	case AUDIT_SUBJ_TYPE:
3386	case AUDIT_OBJ_TYPE:
3387		rc = -EINVAL;
3388		typedatum = symtab_search(&policydb->p_types, rulestr);
3389		if (!typedatum)
3390			goto out;
3391		tmprule->au_ctxt.type = typedatum->value;
3392		break;
3393	case AUDIT_SUBJ_SEN:
3394	case AUDIT_SUBJ_CLR:
3395	case AUDIT_OBJ_LEV_LOW:
3396	case AUDIT_OBJ_LEV_HIGH:
3397		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3398				     GFP_ATOMIC);
3399		if (rc)
3400			goto out;
3401		break;
3402	}
3403	rc = 0;
3404out:
3405	read_unlock(&state->ss->policy_rwlock);
3406
3407	if (rc) {
3408		selinux_audit_rule_free(tmprule);
3409		tmprule = NULL;
3410	}
3411
3412	*rule = tmprule;
3413
3414	return rc;
3415}
3416
3417/* Check to see if the rule contains any selinux fields */
3418int selinux_audit_rule_known(struct audit_krule *rule)
3419{
3420	int i;
3421
3422	for (i = 0; i < rule->field_count; i++) {
3423		struct audit_field *f = &rule->fields[i];
3424		switch (f->type) {
3425		case AUDIT_SUBJ_USER:
3426		case AUDIT_SUBJ_ROLE:
3427		case AUDIT_SUBJ_TYPE:
3428		case AUDIT_SUBJ_SEN:
3429		case AUDIT_SUBJ_CLR:
3430		case AUDIT_OBJ_USER:
3431		case AUDIT_OBJ_ROLE:
3432		case AUDIT_OBJ_TYPE:
3433		case AUDIT_OBJ_LEV_LOW:
3434		case AUDIT_OBJ_LEV_HIGH:
3435			return 1;
3436		}
3437	}
3438
3439	return 0;
3440}
3441
3442int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3443{
3444	struct selinux_state *state = &selinux_state;
3445	struct context *ctxt;
3446	struct mls_level *level;
3447	struct selinux_audit_rule *rule = vrule;
3448	int match = 0;
3449
3450	if (unlikely(!rule)) {
3451		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3452		return -ENOENT;
3453	}
3454
3455	read_lock(&state->ss->policy_rwlock);
3456
3457	if (rule->au_seqno < state->ss->latest_granting) {
3458		match = -ESTALE;
3459		goto out;
3460	}
3461
3462	ctxt = sidtab_search(state->ss->sidtab, sid);
3463	if (unlikely(!ctxt)) {
3464		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3465			  sid);
3466		match = -ENOENT;
3467		goto out;
3468	}
3469
3470	/* a field/op pair that is not caught here will simply fall through
3471	   without a match */
3472	switch (field) {
3473	case AUDIT_SUBJ_USER:
3474	case AUDIT_OBJ_USER:
3475		switch (op) {
3476		case Audit_equal:
3477			match = (ctxt->user == rule->au_ctxt.user);
3478			break;
3479		case Audit_not_equal:
3480			match = (ctxt->user != rule->au_ctxt.user);
3481			break;
3482		}
3483		break;
3484	case AUDIT_SUBJ_ROLE:
3485	case AUDIT_OBJ_ROLE:
3486		switch (op) {
3487		case Audit_equal:
3488			match = (ctxt->role == rule->au_ctxt.role);
3489			break;
3490		case Audit_not_equal:
3491			match = (ctxt->role != rule->au_ctxt.role);
3492			break;
3493		}
3494		break;
3495	case AUDIT_SUBJ_TYPE:
3496	case AUDIT_OBJ_TYPE:
3497		switch (op) {
3498		case Audit_equal:
3499			match = (ctxt->type == rule->au_ctxt.type);
3500			break;
3501		case Audit_not_equal:
3502			match = (ctxt->type != rule->au_ctxt.type);
3503			break;
3504		}
3505		break;
3506	case AUDIT_SUBJ_SEN:
3507	case AUDIT_SUBJ_CLR:
3508	case AUDIT_OBJ_LEV_LOW:
3509	case AUDIT_OBJ_LEV_HIGH:
3510		level = ((field == AUDIT_SUBJ_SEN ||
3511			  field == AUDIT_OBJ_LEV_LOW) ?
3512			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3513		switch (op) {
3514		case Audit_equal:
3515			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3516					     level);
3517			break;
3518		case Audit_not_equal:
3519			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3520					      level);
3521			break;
3522		case Audit_lt:
3523			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3524					       level) &&
3525				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3526					       level));
3527			break;
3528		case Audit_le:
3529			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3530					      level);
3531			break;
3532		case Audit_gt:
3533			match = (mls_level_dom(level,
3534					      &rule->au_ctxt.range.level[0]) &&
3535				 !mls_level_eq(level,
3536					       &rule->au_ctxt.range.level[0]));
3537			break;
3538		case Audit_ge:
3539			match = mls_level_dom(level,
3540					      &rule->au_ctxt.range.level[0]);
3541			break;
3542		}
3543	}
3544
3545out:
3546	read_unlock(&state->ss->policy_rwlock);
3547	return match;
3548}
3549
3550static int (*aurule_callback)(void) = audit_update_lsm_rules;
3551
3552static int aurule_avc_callback(u32 event)
3553{
3554	int err = 0;
3555
3556	if (event == AVC_CALLBACK_RESET && aurule_callback)
3557		err = aurule_callback();
3558	return err;
3559}
3560
3561static int __init aurule_init(void)
3562{
3563	int err;
3564
3565	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3566	if (err)
3567		panic("avc_add_callback() failed, error %d\n", err);
3568
3569	return err;
3570}
3571__initcall(aurule_init);
3572
3573#ifdef CONFIG_NETLABEL
3574/**
3575 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3576 * @secattr: the NetLabel packet security attributes
3577 * @sid: the SELinux SID
3578 *
3579 * Description:
3580 * Attempt to cache the context in @ctx, which was derived from the packet in
3581 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3582 * already been initialized.
3583 *
3584 */
3585static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3586				      u32 sid)
3587{
3588	u32 *sid_cache;
3589
3590	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3591	if (sid_cache == NULL)
3592		return;
3593	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3594	if (secattr->cache == NULL) {
3595		kfree(sid_cache);
3596		return;
3597	}
3598
3599	*sid_cache = sid;
3600	secattr->cache->free = kfree;
3601	secattr->cache->data = sid_cache;
3602	secattr->flags |= NETLBL_SECATTR_CACHE;
3603}
3604
3605/**
3606 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3607 * @secattr: the NetLabel packet security attributes
3608 * @sid: the SELinux SID
3609 *
3610 * Description:
3611 * Convert the given NetLabel security attributes in @secattr into a
3612 * SELinux SID.  If the @secattr field does not contain a full SELinux
3613 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3614 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3615 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3616 * conversion for future lookups.  Returns zero on success, negative values on
3617 * failure.
3618 *
3619 */
3620int security_netlbl_secattr_to_sid(struct selinux_state *state,
3621				   struct netlbl_lsm_secattr *secattr,
3622				   u32 *sid)
3623{
3624	struct policydb *policydb = &state->ss->policydb;
3625	struct sidtab *sidtab = state->ss->sidtab;
3626	int rc;
3627	struct context *ctx;
3628	struct context ctx_new;
3629
3630	if (!selinux_initialized(state)) {
3631		*sid = SECSID_NULL;
3632		return 0;
3633	}
3634
3635	read_lock(&state->ss->policy_rwlock);
3636
3637	if (secattr->flags & NETLBL_SECATTR_CACHE)
3638		*sid = *(u32 *)secattr->cache->data;
3639	else if (secattr->flags & NETLBL_SECATTR_SECID)
3640		*sid = secattr->attr.secid;
3641	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3642		rc = -EIDRM;
3643		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3644		if (ctx == NULL)
3645			goto out;
3646
3647		context_init(&ctx_new);
3648		ctx_new.user = ctx->user;
3649		ctx_new.role = ctx->role;
3650		ctx_new.type = ctx->type;
3651		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3652		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3653			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3654			if (rc)
3655				goto out;
3656		}
3657		rc = -EIDRM;
3658		if (!mls_context_isvalid(policydb, &ctx_new))
3659			goto out_free;
3660
3661		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3662		if (rc)
3663			goto out_free;
3664
3665		security_netlbl_cache_add(secattr, *sid);
3666
3667		ebitmap_destroy(&ctx_new.range.level[0].cat);
3668	} else
3669		*sid = SECSID_NULL;
3670
3671	read_unlock(&state->ss->policy_rwlock);
3672	return 0;
3673out_free:
3674	ebitmap_destroy(&ctx_new.range.level[0].cat);
3675out:
3676	read_unlock(&state->ss->policy_rwlock);
3677	return rc;
3678}
3679
3680/**
3681 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3682 * @sid: the SELinux SID
3683 * @secattr: the NetLabel packet security attributes
3684 *
3685 * Description:
3686 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3687 * Returns zero on success, negative values on failure.
3688 *
3689 */
3690int security_netlbl_sid_to_secattr(struct selinux_state *state,
3691				   u32 sid, struct netlbl_lsm_secattr *secattr)
3692{
3693	struct policydb *policydb = &state->ss->policydb;
3694	int rc;
3695	struct context *ctx;
3696
3697	if (!selinux_initialized(state))
3698		return 0;
3699
3700	read_lock(&state->ss->policy_rwlock);
3701
3702	rc = -ENOENT;
3703	ctx = sidtab_search(state->ss->sidtab, sid);
3704	if (ctx == NULL)
3705		goto out;
3706
3707	rc = -ENOMEM;
3708	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3709				  GFP_ATOMIC);
3710	if (secattr->domain == NULL)
3711		goto out;
3712
3713	secattr->attr.secid = sid;
3714	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3715	mls_export_netlbl_lvl(policydb, ctx, secattr);
3716	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3717out:
3718	read_unlock(&state->ss->policy_rwlock);
3719	return rc;
3720}
3721#endif /* CONFIG_NETLABEL */
3722
3723/**
3724 * security_read_policy - read the policy.
3725 * @data: binary policy data
3726 * @len: length of data in bytes
3727 *
3728 */
3729int security_read_policy(struct selinux_state *state,
3730			 void **data, size_t *len)
3731{
3732	struct policydb *policydb = &state->ss->policydb;
3733	int rc;
3734	struct policy_file fp;
3735
3736	if (!selinux_initialized(state))
3737		return -EINVAL;
3738
3739	*len = security_policydb_len(state);
3740
3741	*data = vmalloc_user(*len);
3742	if (!*data)
3743		return -ENOMEM;
3744
3745	fp.data = *data;
3746	fp.len = *len;
3747
3748	read_lock(&state->ss->policy_rwlock);
3749	rc = policydb_write(policydb, &fp);
3750	read_unlock(&state->ss->policy_rwlock);
3751
3752	if (rc)
3753		return rc;
3754
3755	*len = (unsigned long)fp.data - (unsigned long)*data;
3756	return 0;
3757
3758}