Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
 
 
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96					struct context *tcontext,
  97					u16 tclass,
  98					struct av_decision *avd,
  99					struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 
 
 
 
 
 
 
 
 
 
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 
 
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd,
 570					  NULL);
 571		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 572			return;		/* no masked permission */
 573		masked = ~lo_avd.allowed & avd->allowed;
 574	}
 575
 576	if (target->bounds) {
 577		memset(&lo_avd, 0, sizeof(lo_avd));
 578
 579		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 580		lo_tcontext.type = target->bounds;
 581
 582		context_struct_compute_av(scontext,
 583					  &lo_tcontext,
 584					  tclass,
 585					  &lo_avd,
 586					  NULL);
 587		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 588			return;		/* no masked permission */
 589		masked = ~lo_avd.allowed & avd->allowed;
 590	}
 591
 592	if (source->bounds && target->bounds) {
 593		memset(&lo_avd, 0, sizeof(lo_avd));
 594		/*
 595		 * lo_scontext and lo_tcontext are already
 596		 * set up.
 597		 */
 598
 599		context_struct_compute_av(&lo_scontext,
 600					  &lo_tcontext,
 601					  tclass,
 602					  &lo_avd,
 603					  NULL);
 604		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 605			return;		/* no masked permission */
 606		masked = ~lo_avd.allowed & avd->allowed;
 607	}
 608
 609	if (masked) {
 610		/* mask violated permissions */
 611		avd->allowed &= ~masked;
 612
 613		/* audit masked permissions */
 614		security_dump_masked_av(scontext, tcontext,
 615					tclass, masked, "bounds");
 616	}
 617}
 618
 619/*
 620 * flag which drivers have permissions
 621 * only looking for ioctl based extended permssions
 622 */
 623void services_compute_xperms_drivers(
 624		struct extended_perms *xperms,
 625		struct avtab_node *node)
 626{
 627	unsigned int i;
 628
 629	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 630		/* if one or more driver has all permissions allowed */
 631		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 632			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 633	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 634		/* if allowing permissions within a driver */
 635		security_xperm_set(xperms->drivers.p,
 636					node->datum.u.xperms->driver);
 637	}
 638
 639	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 640	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 641		xperms->len = 1;
 642}
 643
 644/*
 645 * Compute access vectors and extended permissions based on a context
 646 * structure pair for the permissions in a particular class.
 647 */
 648static void context_struct_compute_av(struct context *scontext,
 649					struct context *tcontext,
 650					u16 tclass,
 651					struct av_decision *avd,
 652					struct extended_perms *xperms)
 
 653{
 654	struct constraint_node *constraint;
 655	struct role_allow *ra;
 656	struct avtab_key avkey;
 657	struct avtab_node *node;
 658	struct class_datum *tclass_datum;
 659	struct ebitmap *sattr, *tattr;
 660	struct ebitmap_node *snode, *tnode;
 661	unsigned int i, j;
 662
 663	avd->allowed = 0;
 664	avd->auditallow = 0;
 665	avd->auditdeny = 0xffffffff;
 666	if (xperms) {
 667		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 668		xperms->len = 0;
 669	}
 670
 671	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 672		if (printk_ratelimit())
 673			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 674		return;
 675	}
 676
 677	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 678
 679	/*
 680	 * If a specific type enforcement rule was defined for
 681	 * this permission check, then use it.
 682	 */
 683	avkey.target_class = tclass;
 684	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 685	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 686	BUG_ON(!sattr);
 687	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 688	BUG_ON(!tattr);
 689	ebitmap_for_each_positive_bit(sattr, snode, i) {
 690		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 691			avkey.source_type = i + 1;
 692			avkey.target_type = j + 1;
 693			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 694			     node;
 695			     node = avtab_search_node_next(node, avkey.specified)) {
 696				if (node->key.specified == AVTAB_ALLOWED)
 697					avd->allowed |= node->datum.u.data;
 698				else if (node->key.specified == AVTAB_AUDITALLOW)
 699					avd->auditallow |= node->datum.u.data;
 700				else if (node->key.specified == AVTAB_AUDITDENY)
 701					avd->auditdeny &= node->datum.u.data;
 702				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 703					services_compute_xperms_drivers(xperms, node);
 704			}
 705
 706			/* Check conditional av table for additional permissions */
 707			cond_compute_av(&policydb.te_cond_avtab, &avkey,
 708					avd, xperms);
 709
 710		}
 711	}
 712
 713	/*
 714	 * Remove any permissions prohibited by a constraint (this includes
 715	 * the MLS policy).
 716	 */
 717	constraint = tclass_datum->constraints;
 718	while (constraint) {
 719		if ((constraint->permissions & (avd->allowed)) &&
 720		    !constraint_expr_eval(scontext, tcontext, NULL,
 721					  constraint->expr)) {
 722			avd->allowed &= ~(constraint->permissions);
 723		}
 724		constraint = constraint->next;
 725	}
 726
 727	/*
 728	 * If checking process transition permission and the
 729	 * role is changing, then check the (current_role, new_role)
 730	 * pair.
 731	 */
 732	if (tclass == policydb.process_class &&
 733	    (avd->allowed & policydb.process_trans_perms) &&
 734	    scontext->role != tcontext->role) {
 735		for (ra = policydb.role_allow; ra; ra = ra->next) {
 736			if (scontext->role == ra->role &&
 737			    tcontext->role == ra->new_role)
 738				break;
 739		}
 740		if (!ra)
 741			avd->allowed &= ~policydb.process_trans_perms;
 742	}
 743
 744	/*
 745	 * If the given source and target types have boundary
 746	 * constraint, lazy checks have to mask any violated
 747	 * permission and notice it to userspace via audit.
 748	 */
 749	type_attribute_bounds_av(scontext, tcontext,
 750				 tclass, avd);
 751}
 752
 753static int security_validtrans_handle_fail(struct context *ocontext,
 754					   struct context *ncontext,
 755					   struct context *tcontext,
 756					   u16 tclass)
 
 757{
 
 
 758	char *o = NULL, *n = NULL, *t = NULL;
 759	u32 olen, nlen, tlen;
 760
 761	if (context_struct_to_string(ocontext, &o, &olen))
 762		goto out;
 763	if (context_struct_to_string(ncontext, &n, &nlen))
 764		goto out;
 765	if (context_struct_to_string(tcontext, &t, &tlen))
 766		goto out;
 767	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 768		  "op=security_validate_transition seresult=denied"
 769		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 770		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 771out:
 772	kfree(o);
 773	kfree(n);
 774	kfree(t);
 775
 776	if (!selinux_enforcing)
 777		return 0;
 778	return -EPERM;
 779}
 780
 781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 782					  u16 orig_tclass, bool user)
 783{
 784	struct context *ocontext;
 785	struct context *ncontext;
 786	struct context *tcontext;
 
 
 
 787	struct class_datum *tclass_datum;
 788	struct constraint_node *constraint;
 789	u16 tclass;
 790	int rc = 0;
 791
 792	if (!ss_initialized)
 
 793		return 0;
 794
 795	read_lock(&policy_rwlock);
 
 
 
 
 796
 797	if (!user)
 798		tclass = unmap_class(orig_tclass);
 799	else
 800		tclass = orig_tclass;
 801
 802	if (!tclass || tclass > policydb.p_classes.nprim) {
 803		rc = -EINVAL;
 804		goto out;
 805	}
 806	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 807
 808	ocontext = sidtab_search(&sidtab, oldsid);
 809	if (!ocontext) {
 810		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 811			__func__, oldsid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	ncontext = sidtab_search(&sidtab, newsid);
 817	if (!ncontext) {
 818		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 819			__func__, newsid);
 820		rc = -EINVAL;
 821		goto out;
 822	}
 823
 824	tcontext = sidtab_search(&sidtab, tasksid);
 825	if (!tcontext) {
 826		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 827			__func__, tasksid);
 828		rc = -EINVAL;
 829		goto out;
 830	}
 831
 832	constraint = tclass_datum->validatetrans;
 833	while (constraint) {
 834		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 835					  constraint->expr)) {
 836			if (user)
 837				rc = -EPERM;
 838			else
 839				rc = security_validtrans_handle_fail(ocontext,
 840								     ncontext,
 841								     tcontext,
 842								     tclass);
 
 843			goto out;
 844		}
 845		constraint = constraint->next;
 846	}
 847
 848out:
 849	read_unlock(&policy_rwlock);
 850	return rc;
 851}
 852
 853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 854					u16 tclass)
 855{
 856	return security_compute_validatetrans(oldsid, newsid, tasksid,
 857						tclass, true);
 858}
 859
 860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 861				 u16 orig_tclass)
 862{
 863	return security_compute_validatetrans(oldsid, newsid, tasksid,
 864						orig_tclass, false);
 865}
 866
 867/*
 868 * security_bounded_transition - check whether the given
 869 * transition is directed to bounded, or not.
 870 * It returns 0, if @newsid is bounded by @oldsid.
 871 * Otherwise, it returns error code.
 872 *
 873 * @oldsid : current security identifier
 874 * @newsid : destinated security identifier
 875 */
 876int security_bounded_transition(u32 old_sid, u32 new_sid)
 877{
 878	struct context *old_context, *new_context;
 
 
 
 879	struct type_datum *type;
 880	int index;
 881	int rc;
 882
 883	read_lock(&policy_rwlock);
 
 
 
 
 
 
 884
 885	rc = -EINVAL;
 886	old_context = sidtab_search(&sidtab, old_sid);
 887	if (!old_context) {
 888		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_context = sidtab_search(&sidtab, new_sid);
 895	if (!new_context) {
 896		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_context->type == new_context->type)
 904		goto out;
 905
 906	index = new_context->type;
 907	while (true) {
 908		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 909					  index - 1);
 910		BUG_ON(!type);
 911
 912		/* not bounded anymore */
 913		rc = -EPERM;
 914		if (!type->bounds)
 915			break;
 916
 917		/* @newsid is bounded by @oldsid */
 918		rc = 0;
 919		if (type->bounds == old_context->type)
 920			break;
 921
 922		index = type->bounds;
 923	}
 924
 925	if (rc) {
 926		char *old_name = NULL;
 927		char *new_name = NULL;
 928		u32 length;
 929
 930		if (!context_struct_to_string(old_context,
 931					      &old_name, &length) &&
 932		    !context_struct_to_string(new_context,
 933					      &new_name, &length)) {
 934			audit_log(current->audit_context,
 935				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 936				  "op=security_bounded_transition "
 937				  "seresult=denied "
 938				  "oldcontext=%s newcontext=%s",
 939				  old_name, new_name);
 940		}
 941		kfree(new_name);
 942		kfree(old_name);
 943	}
 944out:
 945	read_unlock(&policy_rwlock);
 946
 947	return rc;
 948}
 949
 950static void avd_init(struct av_decision *avd)
 951{
 952	avd->allowed = 0;
 953	avd->auditallow = 0;
 954	avd->auditdeny = 0xffffffff;
 955	avd->seqno = latest_granting;
 
 
 
 956	avd->flags = 0;
 957}
 958
 959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 960					struct avtab_node *node)
 961{
 962	unsigned int i;
 963
 964	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 965		if (xpermd->driver != node->datum.u.xperms->driver)
 966			return;
 967	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 968		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 969					xpermd->driver))
 970			return;
 971	} else {
 972		BUG();
 973	}
 974
 975	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 976		xpermd->used |= XPERMS_ALLOWED;
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978			memset(xpermd->allowed->p, 0xff,
 979					sizeof(xpermd->allowed->p));
 980		}
 981		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 983				xpermd->allowed->p[i] |=
 984					node->datum.u.xperms->perms.p[i];
 985		}
 986	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 987		xpermd->used |= XPERMS_AUDITALLOW;
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989			memset(xpermd->auditallow->p, 0xff,
 990					sizeof(xpermd->auditallow->p));
 991		}
 992		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 994				xpermd->auditallow->p[i] |=
 995					node->datum.u.xperms->perms.p[i];
 996		}
 997	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 998		xpermd->used |= XPERMS_DONTAUDIT;
 999		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000			memset(xpermd->dontaudit->p, 0xff,
1001					sizeof(xpermd->dontaudit->p));
1002		}
1003		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005				xpermd->dontaudit->p[i] |=
1006					node->datum.u.xperms->perms.p[i];
1007		}
1008	} else {
1009		BUG();
1010	}
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014				u32 tsid,
1015				u16 orig_tclass,
1016				u8 driver,
1017				struct extended_perms_decision *xpermd)
1018{
 
 
 
1019	u16 tclass;
1020	struct context *scontext, *tcontext;
1021	struct avtab_key avkey;
1022	struct avtab_node *node;
1023	struct ebitmap *sattr, *tattr;
1024	struct ebitmap_node *snode, *tnode;
1025	unsigned int i, j;
1026
1027	xpermd->driver = driver;
1028	xpermd->used = 0;
1029	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033	read_lock(&policy_rwlock);
1034	if (!ss_initialized)
1035		goto allow;
1036
1037	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 
1038	if (!scontext) {
1039		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1040		       __func__, ssid);
1041		goto out;
1042	}
1043
1044	tcontext = sidtab_search(&sidtab, tsid);
1045	if (!tcontext) {
1046		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1047		       __func__, tsid);
1048		goto out;
1049	}
1050
1051	tclass = unmap_class(orig_tclass);
1052	if (unlikely(orig_tclass && !tclass)) {
1053		if (policydb.allow_unknown)
1054			goto allow;
1055		goto out;
1056	}
1057
1058
1059	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1061		goto out;
1062	}
1063
1064	avkey.target_class = tclass;
1065	avkey.specified = AVTAB_XPERMS;
1066	sattr = flex_array_get(policydb.type_attr_map_array,
1067				scontext->type - 1);
1068	BUG_ON(!sattr);
1069	tattr = flex_array_get(policydb.type_attr_map_array,
1070				tcontext->type - 1);
1071	BUG_ON(!tattr);
1072	ebitmap_for_each_positive_bit(sattr, snode, i) {
1073		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074			avkey.source_type = i + 1;
1075			avkey.target_type = j + 1;
1076			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
1077			     node;
1078			     node = avtab_search_node_next(node, avkey.specified))
1079				services_compute_xperms_decision(xpermd, node);
1080
1081			cond_compute_xperms(&policydb.te_cond_avtab,
1082						&avkey, xpermd);
1083		}
1084	}
1085out:
1086	read_unlock(&policy_rwlock);
1087	return;
1088allow:
1089	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090	goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
1105			 u32 tsid,
1106			 u16 orig_tclass,
1107			 struct av_decision *avd,
1108			 struct extended_perms *xperms)
1109{
 
 
 
1110	u16 tclass;
1111	struct context *scontext = NULL, *tcontext = NULL;
1112
1113	read_lock(&policy_rwlock);
1114	avd_init(avd);
 
1115	xperms->len = 0;
1116	if (!ss_initialized)
1117		goto allow;
1118
1119	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1120	if (!scontext) {
1121		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1122		       __func__, ssid);
1123		goto out;
1124	}
1125
1126	/* permissive domain? */
1127	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128		avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130	tcontext = sidtab_search(&sidtab, tsid);
1131	if (!tcontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, tsid);
1134		goto out;
1135	}
1136
1137	tclass = unmap_class(orig_tclass);
1138	if (unlikely(orig_tclass && !tclass)) {
1139		if (policydb.allow_unknown)
1140			goto allow;
1141		goto out;
1142	}
1143	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
1145out:
1146	read_unlock(&policy_rwlock);
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
 
 
 
1158	struct context *scontext = NULL, *tcontext = NULL;
1159
1160	read_lock(&policy_rwlock);
1161	avd_init(avd);
1162	if (!ss_initialized)
 
1163		goto allow;
1164
1165	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1166	if (!scontext) {
1167		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168		       __func__, ssid);
1169		goto out;
1170	}
1171
1172	/* permissive domain? */
1173	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174		avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176	tcontext = sidtab_search(&sidtab, tsid);
1177	if (!tcontext) {
1178		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1179		       __func__, tsid);
1180		goto out;
1181	}
1182
1183	if (unlikely(!tclass)) {
1184		if (policydb.allow_unknown)
1185			goto allow;
1186		goto out;
1187	}
1188
1189	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
 
1190 out:
1191	read_unlock(&policy_rwlock);
1192	return;
1193allow:
1194	avd->allowed = 0xffffffff;
1195	goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size.  Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1206{
1207	char *scontextp;
1208
1209	if (scontext)
1210		*scontext = NULL;
1211	*scontext_len = 0;
1212
1213	if (context->len) {
1214		*scontext_len = context->len;
1215		if (scontext) {
1216			*scontext = kstrdup(context->str, GFP_ATOMIC);
1217			if (!(*scontext))
1218				return -ENOMEM;
1219		}
1220		return 0;
1221	}
1222
1223	/* Compute the size of the context. */
1224	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227	*scontext_len += mls_compute_context_len(context);
1228
1229	if (!scontext)
1230		return 0;
1231
1232	/* Allocate space for the context; caller must free this space. */
1233	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234	if (!scontextp)
1235		return -ENOMEM;
1236	*scontext = scontextp;
1237
1238	/*
1239	 * Copy the user name, role name and type name into the context.
1240	 */
1241	scontextp += sprintf(scontextp, "%s:%s:%s",
1242		sym_name(&policydb, SYM_USERS, context->user - 1),
1243		sym_name(&policydb, SYM_ROLES, context->role - 1),
1244		sym_name(&policydb, SYM_TYPES, context->type - 1));
1245
1246	mls_sid_to_context(context, &scontextp);
1247
1248	*scontextp = 0;
1249
1250	return 0;
1251}
1252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253#include "initial_sid_to_string.h"
1254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257	if (unlikely(sid > SECINITSID_NUM))
1258		return NULL;
1259	return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263					u32 *scontext_len, int force)
 
1264{
1265	struct context *context;
 
 
 
1266	int rc = 0;
1267
1268	if (scontext)
1269		*scontext = NULL;
1270	*scontext_len  = 0;
1271
1272	if (!ss_initialized) {
1273		if (sid <= SECINITSID_NUM) {
1274			char *scontextp;
 
1275
1276			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1277			if (!scontext)
1278				goto out;
1279			scontextp = kmemdup(initial_sid_to_string[sid],
1280					    *scontext_len, GFP_ATOMIC);
1281			if (!scontextp) {
1282				rc = -ENOMEM;
1283				goto out;
1284			}
1285			*scontext = scontextp;
1286			goto out;
1287		}
1288		printk(KERN_ERR "SELinux: %s:  called before initial "
1289		       "load_policy on unknown SID %d\n", __func__, sid);
1290		rc = -EINVAL;
1291		goto out;
1292	}
1293	read_lock(&policy_rwlock);
 
 
 
 
1294	if (force)
1295		context = sidtab_search_force(&sidtab, sid);
1296	else
1297		context = sidtab_search(&sidtab, sid);
1298	if (!context) {
1299		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1300			__func__, sid);
1301		rc = -EINVAL;
1302		goto out_unlock;
1303	}
1304	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1305out_unlock:
1306	read_unlock(&policy_rwlock);
1307out:
1308	return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size.  Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1323{
1324	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
 
 
 
 
 
 
 
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328{
1329	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1330}
1331
1332/*
1333 * Caveat:  Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336				    struct sidtab *sidtabp,
1337				    char *scontext,
1338				    u32 scontext_len,
1339				    struct context *ctx,
1340				    u32 def_sid)
1341{
1342	struct role_datum *role;
1343	struct type_datum *typdatum;
1344	struct user_datum *usrdatum;
1345	char *scontextp, *p, oldc;
1346	int rc = 0;
1347
1348	context_init(ctx);
1349
1350	/* Parse the security context. */
1351
1352	rc = -EINVAL;
1353	scontextp = (char *) scontext;
1354
1355	/* Extract the user. */
1356	p = scontextp;
1357	while (*p && *p != ':')
1358		p++;
1359
1360	if (*p == 0)
1361		goto out;
1362
1363	*p++ = 0;
1364
1365	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366	if (!usrdatum)
1367		goto out;
1368
1369	ctx->user = usrdatum->value;
1370
1371	/* Extract role. */
1372	scontextp = p;
1373	while (*p && *p != ':')
1374		p++;
1375
1376	if (*p == 0)
1377		goto out;
1378
1379	*p++ = 0;
1380
1381	role = hashtab_search(pol->p_roles.table, scontextp);
1382	if (!role)
1383		goto out;
1384	ctx->role = role->value;
1385
1386	/* Extract type. */
1387	scontextp = p;
1388	while (*p && *p != ':')
1389		p++;
1390	oldc = *p;
1391	*p++ = 0;
1392
1393	typdatum = hashtab_search(pol->p_types.table, scontextp);
1394	if (!typdatum || typdatum->attribute)
1395		goto out;
1396
1397	ctx->type = typdatum->value;
1398
1399	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400	if (rc)
1401		goto out;
1402
1403	rc = -EINVAL;
1404	if ((p - scontext) < scontext_len)
1405		goto out;
1406
1407	/* Check the validity of the new context. */
 
1408	if (!policydb_context_isvalid(pol, ctx))
1409		goto out;
1410	rc = 0;
1411out:
1412	if (rc)
1413		context_destroy(ctx);
1414	return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1418					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419					int force)
1420{
 
 
 
1421	char *scontext2, *str = NULL;
1422	struct context context;
1423	int rc = 0;
1424
1425	/* An empty security context is never valid. */
1426	if (!scontext_len)
1427		return -EINVAL;
1428
1429	if (!ss_initialized) {
1430		int i;
 
 
 
 
 
1431
1432		for (i = 1; i < SECINITSID_NUM; i++) {
1433			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1434				*sid = i;
1435				return 0;
1436			}
1437		}
1438		*sid = SECINITSID_KERNEL;
1439		return 0;
1440	}
1441	*sid = SECSID_NULL;
1442
1443	/* Copy the string so that we can modify the copy as we parse it. */
1444	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445	if (!scontext2)
1446		return -ENOMEM;
1447	memcpy(scontext2, scontext, scontext_len);
1448	scontext2[scontext_len] = 0;
1449
1450	if (force) {
1451		/* Save another copy for storing in uninterpreted form */
1452		rc = -ENOMEM;
1453		str = kstrdup(scontext2, gfp_flags);
1454		if (!str)
1455			goto out;
1456	}
1457
1458	read_lock(&policy_rwlock);
1459	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460				      scontext_len, &context, def_sid);
 
 
 
1461	if (rc == -EINVAL && force) {
1462		context.str = str;
1463		context.len = scontext_len;
1464		str = NULL;
1465	} else if (rc)
1466		goto out_unlock;
1467	rc = sidtab_context_to_sid(&sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1468	context_destroy(&context);
1469out_unlock:
1470	read_unlock(&policy_rwlock);
1471out:
1472	kfree(scontext2);
1473	kfree(str);
1474	return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1490			    gfp_t gfp)
1491{
1492	return security_context_to_sid_core(scontext, scontext_len,
1493					    sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1497{
1498	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
 
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
 
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1520				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522	return security_context_to_sid_core(scontext, scontext_len,
1523					    sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1527				  u32 *sid)
1528{
1529	return security_context_to_sid_core(scontext, scontext_len,
1530					    sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
1534	struct context *scontext,
1535	struct context *tcontext,
 
1536	u16 tclass,
1537	struct context *newcontext)
1538{
 
 
1539	char *s = NULL, *t = NULL, *n = NULL;
1540	u32 slen, tlen, nlen;
 
1541
1542	if (context_struct_to_string(scontext, &s, &slen))
 
 
1543		goto out;
1544	if (context_struct_to_string(tcontext, &t, &tlen))
1545		goto out;
1546	if (context_struct_to_string(newcontext, &n, &nlen))
 
1547		goto out;
1548	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549		  "op=security_compute_sid invalid_context=%s"
1550		  " scontext=%s"
1551		  " tcontext=%s"
1552		  " tclass=%s",
1553		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
1554out:
1555	kfree(s);
1556	kfree(t);
1557	kfree(n);
1558	if (!selinux_enforcing)
1559		return 0;
1560	return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1564				  u32 stype, u32 ttype, u16 tclass,
1565				  const char *objname)
1566{
1567	struct filename_trans ft;
1568	struct filename_trans_datum *otype;
1569
1570	/*
1571	 * Most filename trans rules are going to live in specific directories
1572	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1573	 * if the ttype does not contain any rules.
1574	 */
1575	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576		return;
1577
1578	ft.stype = stype;
1579	ft.ttype = ttype;
1580	ft.tclass = tclass;
1581	ft.name = objname;
1582
1583	otype = hashtab_search(p->filename_trans, &ft);
1584	if (otype)
1585		newcontext->type = otype->otype;
 
 
 
 
 
1586}
1587
1588static int security_compute_sid(u32 ssid,
1589				u32 tsid,
1590				u16 orig_tclass,
1591				u32 specified,
1592				const char *objname,
1593				u32 *out_sid,
1594				bool kern)
1595{
1596	struct class_datum *cladatum = NULL;
1597	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598	struct role_trans *roletr = NULL;
 
 
 
1599	struct avtab_key avkey;
1600	struct avtab_datum *avdatum;
1601	struct avtab_node *node;
1602	u16 tclass;
1603	int rc = 0;
1604	bool sock;
1605
1606	if (!ss_initialized) {
1607		switch (orig_tclass) {
1608		case SECCLASS_PROCESS: /* kernel value */
1609			*out_sid = ssid;
1610			break;
1611		default:
1612			*out_sid = tsid;
1613			break;
1614		}
1615		goto out;
1616	}
1617
 
 
1618	context_init(&newcontext);
1619
1620	read_lock(&policy_rwlock);
 
 
1621
1622	if (kern) {
1623		tclass = unmap_class(orig_tclass);
1624		sock = security_is_socket_class(orig_tclass);
1625	} else {
1626		tclass = orig_tclass;
1627		sock = security_is_socket_class(map_class(tclass));
 
1628	}
1629
1630	scontext = sidtab_search(&sidtab, ssid);
1631	if (!scontext) {
1632		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1633		       __func__, ssid);
1634		rc = -EINVAL;
1635		goto out_unlock;
1636	}
1637	tcontext = sidtab_search(&sidtab, tsid);
1638	if (!tcontext) {
1639		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1640		       __func__, tsid);
1641		rc = -EINVAL;
1642		goto out_unlock;
1643	}
1644
1645	if (tclass && tclass <= policydb.p_classes.nprim)
1646		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1647
1648	/* Set the user identity. */
1649	switch (specified) {
1650	case AVTAB_TRANSITION:
1651	case AVTAB_CHANGE:
1652		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653			newcontext.user = tcontext->user;
1654		} else {
1655			/* notice this gets both DEFAULT_SOURCE and unset */
1656			/* Use the process user identity. */
1657			newcontext.user = scontext->user;
1658		}
1659		break;
1660	case AVTAB_MEMBER:
1661		/* Use the related object owner. */
1662		newcontext.user = tcontext->user;
1663		break;
1664	}
1665
1666	/* Set the role to default values. */
1667	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1668		newcontext.role = scontext->role;
1669	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670		newcontext.role = tcontext->role;
1671	} else {
1672		if ((tclass == policydb.process_class) || (sock == true))
1673			newcontext.role = scontext->role;
1674		else
1675			newcontext.role = OBJECT_R_VAL;
1676	}
1677
1678	/* Set the type to default values. */
1679	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680		newcontext.type = scontext->type;
1681	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682		newcontext.type = tcontext->type;
1683	} else {
1684		if ((tclass == policydb.process_class) || (sock == true)) {
1685			/* Use the type of process. */
1686			newcontext.type = scontext->type;
1687		} else {
1688			/* Use the type of the related object. */
1689			newcontext.type = tcontext->type;
1690		}
1691	}
1692
1693	/* Look for a type transition/member/change rule. */
1694	avkey.source_type = scontext->type;
1695	avkey.target_type = tcontext->type;
1696	avkey.target_class = tclass;
1697	avkey.specified = specified;
1698	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700	/* If no permanent rule, also check for enabled conditional rules */
1701	if (!avdatum) {
1702		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703		for (; node; node = avtab_search_node_next(node, specified)) {
1704			if (node->key.specified & AVTAB_ENABLED) {
1705				avdatum = &node->datum;
1706				break;
1707			}
1708		}
1709	}
1710
1711	if (avdatum) {
1712		/* Use the type from the type transition/member/change rule. */
1713		newcontext.type = avdatum->u.data;
1714	}
1715
1716	/* if we have a objname this is a file trans check so check those rules */
1717	if (objname)
1718		filename_compute_type(&policydb, &newcontext, scontext->type,
1719				      tcontext->type, tclass, objname);
1720
1721	/* Check for class-specific changes. */
1722	if (specified & AVTAB_TRANSITION) {
1723		/* Look for a role transition rule. */
1724		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1725			if ((roletr->role == scontext->role) &&
1726			    (roletr->type == tcontext->type) &&
1727			    (roletr->tclass == tclass)) {
1728				/* Use the role transition rule. */
1729				newcontext.role = roletr->new_role;
1730				break;
1731			}
1732		}
 
1733	}
1734
1735	/* Set the MLS attributes.
1736	   This is done last because it may allocate memory. */
1737	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738			     &newcontext, sock);
1739	if (rc)
1740		goto out_unlock;
1741
1742	/* Check the validity of the context. */
1743	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744		rc = compute_sid_handle_invalid_context(scontext,
1745							tcontext,
1746							tclass,
1747							&newcontext);
1748		if (rc)
1749			goto out_unlock;
1750	}
1751	/* Obtain the sid for the context. */
1752	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
 
 
 
 
 
1753out_unlock:
1754	read_unlock(&policy_rwlock);
1755	context_destroy(&newcontext);
1756out:
1757	return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
 
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1774			    const struct qstr *qstr, u32 *out_sid)
1775{
1776	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1777				    qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1781				 const char *objname, u32 *out_sid)
1782{
1783	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1784				    objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
1801			u32 tsid,
1802			u16 tclass,
1803			u32 *out_sid)
1804{
1805	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1806				    out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
1823			u32 tsid,
1824			u16 tclass,
1825			u32 *out_sid)
1826{
1827	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1828				    out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833		     struct context *context,
1834		     void *arg)
1835{
1836	struct sidtab *s = arg;
1837
1838	if (sid > SECINITSID_NUM)
1839		return sidtab_insert(s, sid, context);
1840	else
1841		return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
1846	char *s;
1847	u32 len;
1848
1849	if (selinux_enforcing)
1850		return -EINVAL;
1851
1852	if (!context_struct_to_string(context, &s, &len)) {
1853		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1854		kfree(s);
1855	}
1856	return 0;
1857}
1858
1859struct convert_context_args {
1860	struct policydb *oldp;
1861	struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'.  Verify that the
1869 * context is valid under the new policy.
1870 */
1871static int convert_context(u32 key,
1872			   struct context *c,
1873			   void *p)
1874{
1875	struct convert_context_args *args;
1876	struct context oldc;
1877	struct ocontext *oc;
1878	struct mls_range *range;
1879	struct role_datum *role;
1880	struct type_datum *typdatum;
1881	struct user_datum *usrdatum;
1882	char *s;
1883	u32 len;
1884	int rc = 0;
1885
1886	if (key <= SECINITSID_NUM)
1887		goto out;
1888
1889	args = p;
1890
1891	if (c->str) {
1892		struct context ctx;
1893
1894		rc = -ENOMEM;
1895		s = kstrdup(c->str, GFP_KERNEL);
1896		if (!s)
1897			goto out;
1898
1899		rc = string_to_context_struct(args->newp, NULL, s,
1900					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1901		kfree(s);
1902		if (!rc) {
1903			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1904			       c->str);
1905			/* Replace string with mapped representation. */
1906			kfree(c->str);
1907			memcpy(c, &ctx, sizeof(*c));
1908			goto out;
1909		} else if (rc == -EINVAL) {
1910			/* Retain string representation for later mapping. */
1911			rc = 0;
1912			goto out;
1913		} else {
1914			/* Other error condition, e.g. ENOMEM. */
1915			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1916			       c->str, -rc);
1917			goto out;
1918		}
 
 
 
1919	}
1920
1921	rc = context_cpy(&oldc, c);
1922	if (rc)
1923		goto out;
1924
1925	/* Convert the user. */
1926	rc = -EINVAL;
1927	usrdatum = hashtab_search(args->newp->p_users.table,
1928				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1929	if (!usrdatum)
1930		goto bad;
1931	c->user = usrdatum->value;
1932
1933	/* Convert the role. */
1934	rc = -EINVAL;
1935	role = hashtab_search(args->newp->p_roles.table,
1936			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937	if (!role)
1938		goto bad;
1939	c->role = role->value;
1940
1941	/* Convert the type. */
1942	rc = -EINVAL;
1943	typdatum = hashtab_search(args->newp->p_types.table,
1944				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1945	if (!typdatum)
1946		goto bad;
1947	c->type = typdatum->value;
1948
1949	/* Convert the MLS fields if dealing with MLS policies */
1950	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951		rc = mls_convert_context(args->oldp, args->newp, c);
1952		if (rc)
1953			goto bad;
1954	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955		/*
1956		 * Switching between MLS and non-MLS policy:
1957		 * free any storage used by the MLS fields in the
1958		 * context for all existing entries in the sidtab.
1959		 */
1960		mls_context_destroy(c);
1961	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962		/*
1963		 * Switching between non-MLS and MLS policy:
1964		 * ensure that the MLS fields of the context for all
1965		 * existing entries in the sidtab are filled in with a
1966		 * suitable default value, likely taken from one of the
1967		 * initial SIDs.
1968		 */
1969		oc = args->newp->ocontexts[OCON_ISID];
1970		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971			oc = oc->next;
1972		rc = -EINVAL;
1973		if (!oc) {
1974			printk(KERN_ERR "SELinux:  unable to look up"
1975				" the initial SIDs list\n");
1976			goto bad;
1977		}
1978		range = &oc->context[0].range;
1979		rc = mls_range_set(c, range);
1980		if (rc)
1981			goto bad;
1982	}
1983
1984	/* Check the validity of the new context. */
1985	if (!policydb_context_isvalid(args->newp, c)) {
1986		rc = convert_context_handle_invalid_context(&oldc);
1987		if (rc)
1988			goto bad;
1989	}
1990
1991	context_destroy(&oldc);
1992
1993	rc = 0;
1994out:
1995	return rc;
1996bad:
1997	/* Map old representation to string and save it. */
1998	rc = context_struct_to_string(&oldc, &s, &len);
1999	if (rc)
2000		return rc;
2001	context_destroy(&oldc);
2002	context_destroy(c);
2003	c->str = s;
2004	c->len = len;
2005	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2006	       c->str);
2007	rc = 0;
2008	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009}
2010
2011static void security_load_policycaps(void)
2012{
2013	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014						  POLICYDB_CAPABILITY_NETPEER);
2015	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016						  POLICYDB_CAPABILITY_OPENPERM);
2017	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
 
2019}
2020
2021static int security_preserve_bools(struct policydb *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
 
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
 
2034{
2035	struct policydb *oldpolicydb, *newpolicydb;
2036	struct sidtab oldsidtab, newsidtab;
2037	struct selinux_mapping *oldmap, *map = NULL;
2038	struct convert_context_args args;
2039	u32 seqno;
2040	u16 map_size;
2041	int rc = 0;
2042	struct policy_file file = { data, len }, *fp = &file;
2043
2044	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045	if (!oldpolicydb) {
2046		rc = -ENOMEM;
2047		goto out;
2048	}
2049	newpolicydb = oldpolicydb + 1;
2050
2051	if (!ss_initialized) {
2052		avtab_cache_init();
2053		rc = policydb_read(&policydb, fp);
2054		if (rc) {
2055			avtab_cache_destroy();
2056			goto out;
2057		}
2058
2059		policydb.len = len;
2060		rc = selinux_set_mapping(&policydb, secclass_map,
2061					 &current_mapping,
2062					 &current_mapping_size);
2063		if (rc) {
2064			policydb_destroy(&policydb);
2065			avtab_cache_destroy();
2066			goto out;
2067		}
2068
2069		rc = policydb_load_isids(&policydb, &sidtab);
2070		if (rc) {
2071			policydb_destroy(&policydb);
2072			avtab_cache_destroy();
2073			goto out;
2074		}
2075
2076		security_load_policycaps();
2077		ss_initialized = 1;
2078		seqno = ++latest_granting;
2079		selinux_complete_init();
2080		avc_ss_reset(seqno);
2081		selnl_notify_policyload(seqno);
2082		selinux_status_update_policyload(seqno);
2083		selinux_netlbl_cache_invalidate();
2084		selinux_xfrm_notify_policyload();
2085		goto out;
2086	}
2087
2088#if 0
2089	sidtab_hash_eval(&sidtab, "sids");
2090#endif
2091
2092	rc = policydb_read(newpolicydb, fp);
2093	if (rc)
2094		goto out;
2095
2096	newpolicydb->len = len;
2097	/* If switching between different policy types, log MLS status */
2098	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103	rc = policydb_load_isids(newpolicydb, &newsidtab);
2104	if (rc) {
2105		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2106		policydb_destroy(newpolicydb);
2107		goto out;
2108	}
2109
2110	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111	if (rc)
2112		goto err;
2113
2114	rc = security_preserve_bools(newpolicydb);
2115	if (rc) {
2116		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2117		goto err;
2118	}
2119
2120	/* Clone the SID table. */
2121	sidtab_shutdown(&sidtab);
2122
2123	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124	if (rc)
2125		goto err;
 
 
 
2126
2127	/*
2128	 * Convert the internal representations of contexts
2129	 * in the new SID table.
2130	 */
2131	args.oldp = &policydb;
2132	args.newp = newpolicydb;
2133	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
 
 
 
 
 
2134	if (rc) {
2135		printk(KERN_ERR "SELinux:  unable to convert the internal"
2136			" representation of contexts in the new SID"
2137			" table\n");
2138		goto err;
2139	}
2140
2141	/* Save the old policydb and SID table to free later. */
2142	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143	sidtab_set(&oldsidtab, &sidtab);
2144
2145	/* Install the new policydb and SID table. */
2146	write_lock_irq(&policy_rwlock);
2147	memcpy(&policydb, newpolicydb, sizeof(policydb));
2148	sidtab_set(&sidtab, &newsidtab);
2149	security_load_policycaps();
2150	oldmap = current_mapping;
2151	current_mapping = map;
2152	current_mapping_size = map_size;
2153	seqno = ++latest_granting;
2154	write_unlock_irq(&policy_rwlock);
2155
2156	/* Free the old policydb and SID table. */
2157	policydb_destroy(oldpolicydb);
2158	sidtab_destroy(&oldsidtab);
2159	kfree(oldmap);
2160
2161	avc_ss_reset(seqno);
2162	selnl_notify_policyload(seqno);
2163	selinux_status_update_policyload(seqno);
2164	selinux_netlbl_cache_invalidate();
2165	selinux_xfrm_notify_policyload();
2166
2167	rc = 0;
2168	goto out;
2169
2170err:
2171	kfree(map);
2172	sidtab_destroy(&newsidtab);
2173	policydb_destroy(newpolicydb);
 
 
 
 
 
 
 
 
2174
2175out:
2176	kfree(oldpolicydb);
2177	return rc;
2178}
2179
2180size_t security_policydb_len(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2181{
2182	size_t len;
 
2183
2184	read_lock(&policy_rwlock);
2185	len = policydb.len;
2186	read_unlock(&policy_rwlock);
 
 
 
2187
2188	return len;
 
 
 
 
 
 
 
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2198{
 
 
 
2199	struct ocontext *c;
2200	int rc = 0;
2201
2202	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2203
2204	c = policydb.ocontexts[OCON_PORT];
2205	while (c) {
2206		if (c->u.port.protocol == protocol &&
2207		    c->u.port.low_port <= port &&
2208		    c->u.port.high_port >= port)
2209			break;
2210		c = c->next;
2211	}
2212
2213	if (c) {
2214		if (!c->sid[0]) {
2215			rc = sidtab_context_to_sid(&sidtab,
2216						   &c->context[0],
2217						   &c->sid[0]);
2218			if (rc)
2219				goto out;
2220		}
2221		*out_sid = c->sid[0];
 
2222	} else {
2223		*out_sid = SECINITSID_PORT;
2224	}
2225
2226out:
2227	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228	return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
2237{
2238	int rc = 0;
 
 
 
2239	struct ocontext *c;
2240
2241	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2242
2243	c = policydb.ocontexts[OCON_NETIF];
2244	while (c) {
2245		if (strcmp(name, c->u.name) == 0)
2246			break;
2247		c = c->next;
2248	}
2249
2250	if (c) {
2251		if (!c->sid[0] || !c->sid[1]) {
2252			rc = sidtab_context_to_sid(&sidtab,
2253						  &c->context[0],
2254						  &c->sid[0]);
2255			if (rc)
2256				goto out;
2257			rc = sidtab_context_to_sid(&sidtab,
2258						   &c->context[1],
2259						   &c->sid[1]);
2260			if (rc)
2261				goto out;
2262		}
2263		*if_sid = c->sid[0];
 
2264	} else
2265		*if_sid = SECINITSID_NETIF;
2266
2267out:
2268	read_unlock(&policy_rwlock);
2269	return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274	int i, fail = 0;
2275
2276	for (i = 0; i < 4; i++)
2277		if (addr[i] != (input[i] & mask[i])) {
2278			fail = 1;
2279			break;
2280		}
2281
2282	return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
2293		      void *addrp,
2294		      u32 addrlen,
2295		      u32 *out_sid)
2296{
 
 
 
2297	int rc;
2298	struct ocontext *c;
2299
2300	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2301
2302	switch (domain) {
2303	case AF_INET: {
2304		u32 addr;
2305
2306		rc = -EINVAL;
2307		if (addrlen != sizeof(u32))
2308			goto out;
2309
2310		addr = *((u32 *)addrp);
2311
2312		c = policydb.ocontexts[OCON_NODE];
2313		while (c) {
2314			if (c->u.node.addr == (addr & c->u.node.mask))
2315				break;
2316			c = c->next;
2317		}
2318		break;
2319	}
2320
2321	case AF_INET6:
2322		rc = -EINVAL;
2323		if (addrlen != sizeof(u64) * 2)
2324			goto out;
2325		c = policydb.ocontexts[OCON_NODE6];
2326		while (c) {
2327			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328						c->u.node6.mask))
2329				break;
2330			c = c->next;
2331		}
2332		break;
2333
2334	default:
2335		rc = 0;
2336		*out_sid = SECINITSID_NODE;
2337		goto out;
2338	}
2339
2340	if (c) {
2341		if (!c->sid[0]) {
2342			rc = sidtab_context_to_sid(&sidtab,
2343						   &c->context[0],
2344						   &c->sid[0]);
2345			if (rc)
2346				goto out;
2347		}
2348		*out_sid = c->sid[0];
 
2349	} else {
2350		*out_sid = SECINITSID_NODE;
2351	}
2352
2353	rc = 0;
2354out:
2355	read_unlock(&policy_rwlock);
2356	return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs.  Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
2376			   char *username,
2377			   u32 **sids,
2378			   u32 *nel)
2379{
 
 
 
2380	struct context *fromcon, usercon;
2381	u32 *mysids = NULL, *mysids2, sid;
2382	u32 mynel = 0, maxnel = SIDS_NEL;
2383	struct user_datum *user;
2384	struct role_datum *role;
2385	struct ebitmap_node *rnode, *tnode;
2386	int rc = 0, i, j;
2387
2388	*sids = NULL;
2389	*nel = 0;
2390
2391	if (!ss_initialized)
2392		goto out;
 
 
 
 
2393
2394	read_lock(&policy_rwlock);
 
 
 
 
 
2395
2396	context_init(&usercon);
2397
2398	rc = -EINVAL;
2399	fromcon = sidtab_search(&sidtab, fromsid);
2400	if (!fromcon)
2401		goto out_unlock;
2402
2403	rc = -EINVAL;
2404	user = hashtab_search(policydb.p_users.table, username);
2405	if (!user)
2406		goto out_unlock;
2407
2408	usercon.user = user->value;
2409
2410	rc = -ENOMEM;
2411	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412	if (!mysids)
2413		goto out_unlock;
2414
2415	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416		role = policydb.role_val_to_struct[i];
2417		usercon.role = i + 1;
2418		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419			usercon.type = j + 1;
2420
2421			if (mls_setup_user_range(fromcon, user, &usercon))
 
2422				continue;
2423
2424			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
 
 
 
 
2425			if (rc)
2426				goto out_unlock;
2427			if (mynel < maxnel) {
2428				mysids[mynel++] = sid;
2429			} else {
2430				rc = -ENOMEM;
2431				maxnel += SIDS_NEL;
2432				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433				if (!mysids2)
2434					goto out_unlock;
2435				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436				kfree(mysids);
2437				mysids = mysids2;
2438				mysids[mynel++] = sid;
2439			}
2440		}
2441	}
2442	rc = 0;
2443out_unlock:
2444	read_unlock(&policy_rwlock);
2445	if (rc || !mynel) {
2446		kfree(mysids);
2447		goto out;
2448	}
2449
2450	rc = -ENOMEM;
2451	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452	if (!mysids2) {
2453		kfree(mysids);
2454		goto out;
2455	}
2456	for (i = 0, j = 0; i < mynel; i++) {
2457		struct av_decision dummy_avd;
2458		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2459					  SECCLASS_PROCESS, /* kernel value */
2460					  PROCESS__TRANSITION, AVC_STRICT,
2461					  &dummy_avd);
2462		if (!rc)
2463			mysids2[j++] = mysids[i];
2464		cond_resched();
2465	}
2466	rc = 0;
2467	kfree(mysids);
2468	*sids = mysids2;
2469	*nel = j;
2470out:
2471	return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
 
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
 
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
2488				       char *path,
 
2489				       u16 orig_sclass,
2490				       u32 *sid)
2491{
2492	int len;
 
2493	u16 sclass;
2494	struct genfs *genfs;
2495	struct ocontext *c;
2496	int rc, cmp = 0;
2497
2498	while (path[0] == '/' && path[1] == '/')
2499		path++;
2500
2501	sclass = unmap_class(orig_sclass);
2502	*sid = SECINITSID_UNLABELED;
2503
2504	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505		cmp = strcmp(fstype, genfs->fstype);
2506		if (cmp <= 0)
2507			break;
2508	}
2509
2510	rc = -ENOENT;
2511	if (!genfs || cmp)
2512		goto out;
2513
2514	for (c = genfs->head; c; c = c->next) {
2515		len = strlen(c->u.name);
2516		if ((!c->v.sclass || sclass == c->v.sclass) &&
2517		    (strncmp(c->u.name, path, len) == 0))
2518			break;
2519	}
2520
2521	rc = -ENOENT;
2522	if (!c)
2523		goto out;
2524
2525	if (!c->sid[0]) {
2526		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527		if (rc)
2528			goto out;
2529	}
2530
2531	*sid = c->sid[0];
2532	rc = 0;
2533out:
2534	return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
2548		       char *path,
2549		       u16 orig_sclass,
2550		       u32 *sid)
2551{
 
2552	int retval;
2553
2554	read_lock(&policy_rwlock);
2555	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2557	return retval;
2558}
2559
 
 
 
 
 
 
 
 
 
 
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
2563 */
2564int security_fs_use(struct super_block *sb)
2565{
2566	int rc = 0;
 
 
 
2567	struct ocontext *c;
2568	struct superblock_security_struct *sbsec = sb->s_security;
2569	const char *fstype = sb->s_type->name;
2570
2571	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2572
2573	c = policydb.ocontexts[OCON_FSUSE];
2574	while (c) {
2575		if (strcmp(fstype, c->u.name) == 0)
2576			break;
2577		c = c->next;
2578	}
2579
2580	if (c) {
2581		sbsec->behavior = c->v.behavior;
2582		if (!c->sid[0]) {
2583			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584						   &c->sid[0]);
2585			if (rc)
2586				goto out;
2587		}
2588		sbsec->sid = c->sid[0];
 
2589	} else {
2590		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591					  &sbsec->sid);
 
 
 
 
2592		if (rc) {
2593			sbsec->behavior = SECURITY_FS_USE_NONE;
2594			rc = 0;
2595		} else {
2596			sbsec->behavior = SECURITY_FS_USE_GENFS;
2597		}
2598	}
2599
2600out:
2601	read_unlock(&policy_rwlock);
2602	return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
 
2606{
2607	int i, rc;
 
 
 
 
2608
2609	read_lock(&policy_rwlock);
2610	*names = NULL;
2611	*values = NULL;
2612
2613	rc = 0;
2614	*len = policydb.p_bools.nprim;
2615	if (!*len)
2616		goto out;
2617
2618	rc = -ENOMEM;
2619	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620	if (!*names)
2621		goto err;
2622
2623	rc = -ENOMEM;
2624	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625	if (!*values)
2626		goto err;
2627
2628	for (i = 0; i < *len; i++) {
2629		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2630
2631		rc = -ENOMEM;
2632		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
 
2633		if (!(*names)[i])
2634			goto err;
2635	}
2636	rc = 0;
2637out:
2638	read_unlock(&policy_rwlock);
2639	return rc;
2640err:
2641	if (*names) {
2642		for (i = 0; i < *len; i++)
2643			kfree((*names)[i]);
 
2644	}
2645	kfree(*values);
 
 
 
2646	goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
2652	int i, rc;
2653	int lenp, seqno = 0;
2654	struct cond_node *cur;
 
2655
2656	write_lock_irq(&policy_rwlock);
 
2657
2658	rc = -EFAULT;
2659	lenp = policydb.p_bools.nprim;
2660	if (len != lenp)
2661		goto out;
 
 
 
 
 
 
2662
 
 
 
 
 
 
 
 
 
 
 
2663	for (i = 0; i < len; i++) {
2664		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2666				AUDIT_MAC_CONFIG_CHANGE,
2667				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2668				sym_name(&policydb, SYM_BOOLS, i),
2669				!!values[i],
2670				policydb.bool_val_to_struct[i]->state,
2671				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672				audit_get_sessionid(current));
 
2673		}
2674		if (values[i])
2675			policydb.bool_val_to_struct[i]->state = 1;
2676		else
2677			policydb.bool_val_to_struct[i]->state = 0;
2678	}
2679
2680	for (cur = policydb.cond_list; cur; cur = cur->next) {
2681		rc = evaluate_cond_node(&policydb, cur);
2682		if (rc)
2683			goto out;
2684	}
2685
2686	seqno = ++latest_granting;
2687	rc = 0;
2688out:
2689	write_unlock_irq(&policy_rwlock);
2690	if (!rc) {
2691		avc_ss_reset(seqno);
2692		selnl_notify_policyload(seqno);
2693		selinux_status_update_policyload(seqno);
2694		selinux_xfrm_notify_policyload();
2695	}
2696	return rc;
 
 
 
 
 
 
 
2697}
2698
2699int security_get_bool_value(int bool)
2700{
 
 
2701	int rc;
2702	int len;
2703
2704	read_lock(&policy_rwlock);
 
 
 
 
 
2705
2706	rc = -EFAULT;
2707	len = policydb.p_bools.nprim;
2708	if (bool >= len)
2709		goto out;
2710
2711	rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713	read_unlock(&policy_rwlock);
2714	return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
 
2718{
2719	int rc, nbools = 0, *bvalues = NULL, i;
2720	char **bnames = NULL;
2721	struct cond_bool_datum *booldatum;
2722	struct cond_node *cur;
2723
2724	rc = security_get_bools(&nbools, &bnames, &bvalues);
2725	if (rc)
2726		goto out;
2727	for (i = 0; i < nbools; i++) {
2728		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
 
2729		if (booldatum)
2730			booldatum->state = bvalues[i];
2731	}
2732	for (cur = p->cond_list; cur; cur = cur->next) {
2733		rc = evaluate_cond_node(p, cur);
2734		if (rc)
2735			goto out;
2736	}
2737
2738out:
2739	if (bnames) {
2740		for (i = 0; i < nbools; i++)
2741			kfree(bnames[i]);
2742	}
2743	kfree(bnames);
2744	kfree(bvalues);
2745	return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2753{
 
 
 
2754	struct context *context1;
2755	struct context *context2;
2756	struct context newcon;
2757	char *s;
2758	u32 len;
2759	int rc;
2760
2761	rc = 0;
2762	if (!ss_initialized || !policydb.mls_enabled) {
2763		*new_sid = sid;
2764		goto out;
2765	}
2766
 
 
2767	context_init(&newcon);
2768
2769	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
2770
2771	rc = -EINVAL;
2772	context1 = sidtab_search(&sidtab, sid);
2773	if (!context1) {
2774		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2775			__func__, sid);
2776		goto out_unlock;
2777	}
2778
2779	rc = -EINVAL;
2780	context2 = sidtab_search(&sidtab, mls_sid);
2781	if (!context2) {
2782		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2783			__func__, mls_sid);
2784		goto out_unlock;
2785	}
2786
2787	newcon.user = context1->user;
2788	newcon.role = context1->role;
2789	newcon.type = context1->type;
2790	rc = mls_context_cpy(&newcon, context2);
2791	if (rc)
2792		goto out_unlock;
2793
2794	/* Check the validity of the new context. */
2795	if (!policydb_context_isvalid(&policydb, &newcon)) {
2796		rc = convert_context_handle_invalid_context(&newcon);
 
2797		if (rc) {
2798			if (!context_struct_to_string(&newcon, &s, &len)) {
2799				audit_log(current->audit_context,
2800					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801					  "op=security_sid_mls_copy "
2802					  "invalid_context=%s", s);
 
 
 
 
 
 
 
2803				kfree(s);
2804			}
2805			goto out_unlock;
2806		}
2807	}
2808
2809	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
 
 
 
 
2810out_unlock:
2811	read_unlock(&policy_rwlock);
2812	context_destroy(&newcon);
2813out:
2814	return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
 
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value.  A table summarizing the behavior is below:
2828 *
2829 *                                 | function return |      @sid
2830 *   ------------------------------+-----------------+-----------------
2831 *   no peer labels                |        0        |    SECSID_NULL
2832 *   single peer label             |        0        |    <peer_label>
2833 *   multiple, consistent labels   |        0        |    <peer_label>
2834 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2838				 u32 xfrm_sid,
2839				 u32 *peer_sid)
2840{
 
 
 
2841	int rc;
2842	struct context *nlbl_ctx;
2843	struct context *xfrm_ctx;
2844
2845	*peer_sid = SECSID_NULL;
2846
2847	/* handle the common (which also happens to be the set of easy) cases
2848	 * right away, these two if statements catch everything involving a
2849	 * single or absent peer SID/label */
2850	if (xfrm_sid == SECSID_NULL) {
2851		*peer_sid = nlbl_sid;
2852		return 0;
2853	}
2854	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856	 * is present */
2857	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858		*peer_sid = xfrm_sid;
2859		return 0;
2860	}
2861
2862	/* we don't need to check ss_initialized here since the only way both
2863	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864	 * security server was initialized and ss_initialized was true */
2865	if (!policydb.mls_enabled)
2866		return 0;
2867
2868	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2869
2870	rc = -EINVAL;
2871	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872	if (!nlbl_ctx) {
2873		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2874		       __func__, nlbl_sid);
2875		goto out;
2876	}
2877	rc = -EINVAL;
2878	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879	if (!xfrm_ctx) {
2880		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2881		       __func__, xfrm_sid);
2882		goto out;
2883	}
2884	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885	if (rc)
2886		goto out;
2887
2888	/* at present NetLabel SIDs/labels really only carry MLS
2889	 * information so if the MLS portion of the NetLabel SID
2890	 * matches the MLS portion of the labeled XFRM SID/label
2891	 * then pass along the XFRM SID as it is the most
2892	 * expressive */
2893	*peer_sid = xfrm_sid;
2894out:
2895	read_unlock(&policy_rwlock);
2896	return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901	struct class_datum *datum = d;
2902	char *name = k, **classes = args;
2903	int value = datum->value - 1;
2904
2905	classes[value] = kstrdup(name, GFP_ATOMIC);
2906	if (!classes[value])
2907		return -ENOMEM;
2908
2909	return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
 
2913{
 
2914	int rc;
2915
2916	read_lock(&policy_rwlock);
2917
2918	rc = -ENOMEM;
2919	*nclasses = policydb.p_classes.nprim;
2920	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921	if (!*classes)
2922		goto out;
2923
2924	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925			*classes);
2926	if (rc) {
2927		int i;
 
2928		for (i = 0; i < *nclasses; i++)
2929			kfree((*classes)[i]);
2930		kfree(*classes);
2931	}
2932
2933out:
2934	read_unlock(&policy_rwlock);
2935	return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940	struct perm_datum *datum = d;
2941	char *name = k, **perms = args;
2942	int value = datum->value - 1;
2943
2944	perms[value] = kstrdup(name, GFP_ATOMIC);
2945	if (!perms[value])
2946		return -ENOMEM;
2947
2948	return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
 
2952{
2953	int rc, i;
 
 
2954	struct class_datum *match;
2955
2956	read_lock(&policy_rwlock);
2957
2958	rc = -EINVAL;
2959	match = hashtab_search(policydb.p_classes.table, class);
2960	if (!match) {
2961		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2962			__func__, class);
2963		goto out;
2964	}
2965
2966	rc = -ENOMEM;
2967	*nperms = match->permissions.nprim;
2968	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969	if (!*perms)
2970		goto out;
2971
2972	if (match->comdatum) {
2973		rc = hashtab_map(match->comdatum->permissions.table,
2974				get_permissions_callback, *perms);
2975		if (rc)
2976			goto err;
2977	}
2978
2979	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980			*perms);
2981	if (rc)
2982		goto err;
2983
2984out:
2985	read_unlock(&policy_rwlock);
2986	return rc;
2987
2988err:
2989	read_unlock(&policy_rwlock);
2990	for (i = 0; i < *nperms; i++)
2991		kfree((*perms)[i]);
2992	kfree(*perms);
2993	return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998	return policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003	return policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap.  Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
3017{
 
3018	int rc;
3019
3020	read_lock(&policy_rwlock);
3021	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022	read_unlock(&policy_rwlock);
 
 
 
 
3023
3024	return rc;
3025}
3026
3027struct selinux_audit_rule {
3028	u32 au_seqno;
3029	struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034	struct selinux_audit_rule *rule = vrule;
3035
3036	if (rule) {
3037		context_destroy(&rule->au_ctxt);
3038		kfree(rule);
3039	}
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
 
 
 
3044	struct selinux_audit_rule *tmprule;
3045	struct role_datum *roledatum;
3046	struct type_datum *typedatum;
3047	struct user_datum *userdatum;
3048	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049	int rc = 0;
3050
3051	*rule = NULL;
3052
3053	if (!ss_initialized)
3054		return -EOPNOTSUPP;
3055
3056	switch (field) {
3057	case AUDIT_SUBJ_USER:
3058	case AUDIT_SUBJ_ROLE:
3059	case AUDIT_SUBJ_TYPE:
3060	case AUDIT_OBJ_USER:
3061	case AUDIT_OBJ_ROLE:
3062	case AUDIT_OBJ_TYPE:
3063		/* only 'equals' and 'not equals' fit user, role, and type */
3064		if (op != Audit_equal && op != Audit_not_equal)
3065			return -EINVAL;
3066		break;
3067	case AUDIT_SUBJ_SEN:
3068	case AUDIT_SUBJ_CLR:
3069	case AUDIT_OBJ_LEV_LOW:
3070	case AUDIT_OBJ_LEV_HIGH:
3071		/* we do not allow a range, indicated by the presence of '-' */
3072		if (strchr(rulestr, '-'))
3073			return -EINVAL;
3074		break;
3075	default:
3076		/* only the above fields are valid */
3077		return -EINVAL;
3078	}
3079
3080	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081	if (!tmprule)
3082		return -ENOMEM;
3083
3084	context_init(&tmprule->au_ctxt);
3085
3086	read_lock(&policy_rwlock);
3087
3088	tmprule->au_seqno = latest_granting;
3089
3090	switch (field) {
3091	case AUDIT_SUBJ_USER:
3092	case AUDIT_OBJ_USER:
3093		rc = -EINVAL;
3094		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095		if (!userdatum)
3096			goto out;
 
3097		tmprule->au_ctxt.user = userdatum->value;
3098		break;
3099	case AUDIT_SUBJ_ROLE:
3100	case AUDIT_OBJ_ROLE:
3101		rc = -EINVAL;
3102		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103		if (!roledatum)
3104			goto out;
 
3105		tmprule->au_ctxt.role = roledatum->value;
3106		break;
3107	case AUDIT_SUBJ_TYPE:
3108	case AUDIT_OBJ_TYPE:
3109		rc = -EINVAL;
3110		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111		if (!typedatum)
3112			goto out;
 
3113		tmprule->au_ctxt.type = typedatum->value;
3114		break;
3115	case AUDIT_SUBJ_SEN:
3116	case AUDIT_SUBJ_CLR:
3117	case AUDIT_OBJ_LEV_LOW:
3118	case AUDIT_OBJ_LEV_HIGH:
3119		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
3120		if (rc)
3121			goto out;
3122		break;
3123	}
3124	rc = 0;
3125out:
3126	read_unlock(&policy_rwlock);
3127
3128	if (rc) {
3129		selinux_audit_rule_free(tmprule);
3130		tmprule = NULL;
3131	}
3132
3133	*rule = tmprule;
 
3134
 
 
 
 
3135	return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141	int i;
3142
3143	for (i = 0; i < rule->field_count; i++) {
3144		struct audit_field *f = &rule->fields[i];
3145		switch (f->type) {
3146		case AUDIT_SUBJ_USER:
3147		case AUDIT_SUBJ_ROLE:
3148		case AUDIT_SUBJ_TYPE:
3149		case AUDIT_SUBJ_SEN:
3150		case AUDIT_SUBJ_CLR:
3151		case AUDIT_OBJ_USER:
3152		case AUDIT_OBJ_ROLE:
3153		case AUDIT_OBJ_TYPE:
3154		case AUDIT_OBJ_LEV_LOW:
3155		case AUDIT_OBJ_LEV_HIGH:
3156			return 1;
3157		}
3158	}
3159
3160	return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164			     struct audit_context *actx)
3165{
 
 
3166	struct context *ctxt;
3167	struct mls_level *level;
3168	struct selinux_audit_rule *rule = vrule;
3169	int match = 0;
3170
3171	if (unlikely(!rule)) {
3172		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3173		return -ENOENT;
3174	}
3175
3176	read_lock(&policy_rwlock);
 
 
 
 
 
3177
3178	if (rule->au_seqno < latest_granting) {
3179		match = -ESTALE;
3180		goto out;
3181	}
3182
3183	ctxt = sidtab_search(&sidtab, sid);
3184	if (unlikely(!ctxt)) {
3185		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3186			  sid);
3187		match = -ENOENT;
3188		goto out;
3189	}
3190
3191	/* a field/op pair that is not caught here will simply fall through
3192	   without a match */
3193	switch (field) {
3194	case AUDIT_SUBJ_USER:
3195	case AUDIT_OBJ_USER:
3196		switch (op) {
3197		case Audit_equal:
3198			match = (ctxt->user == rule->au_ctxt.user);
3199			break;
3200		case Audit_not_equal:
3201			match = (ctxt->user != rule->au_ctxt.user);
3202			break;
3203		}
3204		break;
3205	case AUDIT_SUBJ_ROLE:
3206	case AUDIT_OBJ_ROLE:
3207		switch (op) {
3208		case Audit_equal:
3209			match = (ctxt->role == rule->au_ctxt.role);
3210			break;
3211		case Audit_not_equal:
3212			match = (ctxt->role != rule->au_ctxt.role);
3213			break;
3214		}
3215		break;
3216	case AUDIT_SUBJ_TYPE:
3217	case AUDIT_OBJ_TYPE:
3218		switch (op) {
3219		case Audit_equal:
3220			match = (ctxt->type == rule->au_ctxt.type);
3221			break;
3222		case Audit_not_equal:
3223			match = (ctxt->type != rule->au_ctxt.type);
3224			break;
3225		}
3226		break;
3227	case AUDIT_SUBJ_SEN:
3228	case AUDIT_SUBJ_CLR:
3229	case AUDIT_OBJ_LEV_LOW:
3230	case AUDIT_OBJ_LEV_HIGH:
3231		level = ((field == AUDIT_SUBJ_SEN ||
3232			  field == AUDIT_OBJ_LEV_LOW) ?
3233			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3234		switch (op) {
3235		case Audit_equal:
3236			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237					     level);
3238			break;
3239		case Audit_not_equal:
3240			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241					      level);
3242			break;
3243		case Audit_lt:
3244			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245					       level) &&
3246				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247					       level));
3248			break;
3249		case Audit_le:
3250			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251					      level);
3252			break;
3253		case Audit_gt:
3254			match = (mls_level_dom(level,
3255					      &rule->au_ctxt.range.level[0]) &&
3256				 !mls_level_eq(level,
3257					       &rule->au_ctxt.range.level[0]));
3258			break;
3259		case Audit_ge:
3260			match = mls_level_dom(level,
3261					      &rule->au_ctxt.range.level[0]);
3262			break;
3263		}
3264	}
3265
3266out:
3267	read_unlock(&policy_rwlock);
3268	return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
3274{
3275	int err = 0;
3276
3277	if (event == AVC_CALLBACK_RESET && aurule_callback)
3278		err = aurule_callback();
3279	return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284	int err;
3285
3286	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3287	if (err)
3288		panic("avc_add_callback() failed, error %d\n", err);
3289
3290	return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307				      u32 sid)
3308{
3309	u32 *sid_cache;
3310
3311	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312	if (sid_cache == NULL)
3313		return;
3314	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315	if (secattr->cache == NULL) {
3316		kfree(sid_cache);
3317		return;
3318	}
3319
3320	*sid_cache = sid;
3321	secattr->cache->free = kfree;
3322	secattr->cache->data = sid_cache;
3323	secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID.  If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups.  Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3342				   u32 *sid)
3343{
 
 
 
3344	int rc;
3345	struct context *ctx;
3346	struct context ctx_new;
3347
3348	if (!ss_initialized) {
3349		*sid = SECSID_NULL;
3350		return 0;
3351	}
3352
3353	read_lock(&policy_rwlock);
 
 
 
 
 
3354
3355	if (secattr->flags & NETLBL_SECATTR_CACHE)
3356		*sid = *(u32 *)secattr->cache->data;
3357	else if (secattr->flags & NETLBL_SECATTR_SECID)
3358		*sid = secattr->attr.secid;
3359	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360		rc = -EIDRM;
3361		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362		if (ctx == NULL)
3363			goto out;
3364
3365		context_init(&ctx_new);
3366		ctx_new.user = ctx->user;
3367		ctx_new.role = ctx->role;
3368		ctx_new.type = ctx->type;
3369		mls_import_netlbl_lvl(&ctx_new, secattr);
3370		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371			rc = mls_import_netlbl_cat(&ctx_new, secattr);
3372			if (rc)
3373				goto out;
3374		}
3375		rc = -EIDRM;
3376		if (!mls_context_isvalid(&policydb, &ctx_new))
3377			goto out_free;
 
 
3378
3379		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
 
 
 
 
 
3380		if (rc)
3381			goto out_free;
3382
3383		security_netlbl_cache_add(secattr, *sid);
3384
3385		ebitmap_destroy(&ctx_new.range.level[0].cat);
3386	} else
3387		*sid = SECSID_NULL;
3388
3389	read_unlock(&policy_rwlock);
3390	return 0;
3391out_free:
3392	ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394	read_unlock(&policy_rwlock);
3395	return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3409{
 
 
3410	int rc;
3411	struct context *ctx;
3412
3413	if (!ss_initialized)
3414		return 0;
3415
3416	read_lock(&policy_rwlock);
 
 
3417
3418	rc = -ENOENT;
3419	ctx = sidtab_search(&sidtab, sid);
3420	if (ctx == NULL)
3421		goto out;
3422
3423	rc = -ENOMEM;
3424	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425				  GFP_ATOMIC);
3426	if (secattr->domain == NULL)
3427		goto out;
3428
3429	secattr->attr.secid = sid;
3430	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431	mls_export_netlbl_lvl(ctx, secattr);
3432	rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434	read_unlock(&policy_rwlock);
3435	return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
 
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
 
3446{
3447	int rc;
3448	struct policy_file fp;
3449
3450	if (!ss_initialized)
3451		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3452
3453	*len = security_policydb_len();
 
 
 
3454
 
3455	*data = vmalloc_user(*len);
3456	if (!*data)
3457		return -ENOMEM;
3458
3459	fp.data = *data;
3460	fp.len = *len;
3461
3462	read_lock(&policy_rwlock);
3463	rc = policydb_write(&policydb, &fp);
3464	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3465
3466	if (rc)
3467		return rc;
 
 
3468
3469	*len = (unsigned long)fp.data - (unsigned long)*data;
3470	return 0;
 
 
3471
 
 
 
 
 
 
 
3472}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
 
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
 
 
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
 
  98{
 
 
  99	u16 i, j;
 
 100	bool print_unknown_handle = false;
 101
 102	/* Find number of classes in the input mapping */
 103	if (!map)
 104		return -EINVAL;
 105	i = 0;
 106	while (map[i].name)
 107		i++;
 108
 109	/* Allocate space for the class records, plus one for class zero */
 110	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 111	if (!out_map->mapping)
 112		return -ENOMEM;
 113
 114	/* Store the raw class and permission values */
 115	j = 0;
 116	while (map[j].name) {
 117		const struct security_class_mapping *p_in = map + (j++);
 118		struct selinux_mapping *p_out = out_map->mapping + j;
 119		u16 k;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= (u32)1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= (u32)1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= (u32)1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= (u32)1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= (u32)1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= (u32)1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(void)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized())
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(selinux_state.policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 
 
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 
 
 
 
 558
 559	if (target->bounds) {
 
 
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 
 
 
 
 
 
 
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permissions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	xperms->len = 1;
 
 
 605}
 606
 607/*
 608 * Compute access vectors and extended permissions based on a context
 609 * structure pair for the permissions in a particular class.
 610 */
 611static void context_struct_compute_av(struct policydb *policydb,
 612				      struct context *scontext,
 613				      struct context *tcontext,
 614				      u16 tclass,
 615				      struct av_decision *avd,
 616				      struct extended_perms *xperms)
 617{
 618	struct constraint_node *constraint;
 619	struct role_allow *ra;
 620	struct avtab_key avkey;
 621	struct avtab_node *node;
 622	struct class_datum *tclass_datum;
 623	struct ebitmap *sattr, *tattr;
 624	struct ebitmap_node *snode, *tnode;
 625	unsigned int i, j;
 626
 627	avd->allowed = 0;
 628	avd->auditallow = 0;
 629	avd->auditdeny = 0xffffffff;
 630	if (xperms) {
 631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 632		xperms->len = 0;
 633	}
 634
 635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 636		if (printk_ratelimit())
 637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 638		return;
 639	}
 640
 641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 642
 643	/*
 644	 * If a specific type enforcement rule was defined for
 645	 * this permission check, then use it.
 646	 */
 647	avkey.target_class = tclass;
 648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 651	ebitmap_for_each_positive_bit(sattr, snode, i) {
 652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 653			avkey.source_type = i + 1;
 654			avkey.target_type = j + 1;
 655			for (node = avtab_search_node(&policydb->te_avtab,
 656						      &avkey);
 657			     node;
 658			     node = avtab_search_node_next(node, avkey.specified)) {
 659				if (node->key.specified == AVTAB_ALLOWED)
 660					avd->allowed |= node->datum.u.data;
 661				else if (node->key.specified == AVTAB_AUDITALLOW)
 662					avd->auditallow |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITDENY)
 664					avd->auditdeny &= node->datum.u.data;
 665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 666					services_compute_xperms_drivers(xperms, node);
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 671					avd, xperms);
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb->process_class &&
 696	    (avd->allowed & policydb->process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb->role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb->process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(policydb, scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct selinux_policy *policy,
 717					struct sidtab_entry *oentry,
 718					struct sidtab_entry *nentry,
 719					struct sidtab_entry *tentry,
 720					u16 tclass)
 721{
 722	struct policydb *p = &policy->policydb;
 723	struct sidtab *sidtab = policy->sidtab;
 724	char *o = NULL, *n = NULL, *t = NULL;
 725	u32 olen, nlen, tlen;
 726
 727	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 728		goto out;
 729	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 730		goto out;
 731	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 732		goto out;
 733	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 734		  "op=security_validate_transition seresult=denied"
 735		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 736		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 737out:
 738	kfree(o);
 739	kfree(n);
 740	kfree(t);
 741
 742	if (!enforcing_enabled())
 743		return 0;
 744	return -EPERM;
 745}
 746
 747static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 748					  u16 orig_tclass, bool user)
 749{
 750	struct selinux_policy *policy;
 751	struct policydb *policydb;
 752	struct sidtab *sidtab;
 753	struct sidtab_entry *oentry;
 754	struct sidtab_entry *nentry;
 755	struct sidtab_entry *tentry;
 756	struct class_datum *tclass_datum;
 757	struct constraint_node *constraint;
 758	u16 tclass;
 759	int rc = 0;
 760
 761
 762	if (!selinux_initialized())
 763		return 0;
 764
 765	rcu_read_lock();
 766
 767	policy = rcu_dereference(selinux_state.policy);
 768	policydb = &policy->policydb;
 769	sidtab = policy->sidtab;
 770
 771	if (!user)
 772		tclass = unmap_class(&policy->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	oentry = sidtab_search_entry(sidtab, oldsid);
 783	if (!oentry) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	nentry = sidtab_search_entry(sidtab, newsid);
 791	if (!nentry) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tentry = sidtab_search_entry(sidtab, tasksid);
 799	if (!tentry) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, &oentry->context,
 809					  &nentry->context, &tentry->context,
 810					  constraint->expr)) {
 811			if (user)
 812				rc = -EPERM;
 813			else
 814				rc = security_validtrans_handle_fail(policy,
 815								oentry,
 816								nentry,
 817								tentry,
 818								tclass);
 819			goto out;
 820		}
 821		constraint = constraint->next;
 822	}
 823
 824out:
 825	rcu_read_unlock();
 826	return rc;
 827}
 828
 829int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 837				 u16 orig_tclass)
 838{
 839	return security_compute_validatetrans(oldsid, newsid, tasksid,
 840					      orig_tclass, false);
 841}
 842
 843/*
 844 * security_bounded_transition - check whether the given
 845 * transition is directed to bounded, or not.
 846 * It returns 0, if @newsid is bounded by @oldsid.
 847 * Otherwise, it returns error code.
 848 *
 849 * @oldsid : current security identifier
 850 * @newsid : destinated security identifier
 851 */
 852int security_bounded_transition(u32 old_sid, u32 new_sid)
 853{
 854	struct selinux_policy *policy;
 855	struct policydb *policydb;
 856	struct sidtab *sidtab;
 857	struct sidtab_entry *old_entry, *new_entry;
 858	struct type_datum *type;
 859	u32 index;
 860	int rc;
 861
 862	if (!selinux_initialized())
 863		return 0;
 864
 865	rcu_read_lock();
 866	policy = rcu_dereference(selinux_state.policy);
 867	policydb = &policy->policydb;
 868	sidtab = policy->sidtab;
 869
 870	rc = -EINVAL;
 871	old_entry = sidtab_search_entry(sidtab, old_sid);
 872	if (!old_entry) {
 873		pr_err("SELinux: %s: unrecognized SID %u\n",
 874		       __func__, old_sid);
 875		goto out;
 876	}
 877
 878	rc = -EINVAL;
 879	new_entry = sidtab_search_entry(sidtab, new_sid);
 880	if (!new_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, new_sid);
 883		goto out;
 884	}
 885
 886	rc = 0;
 887	/* type/domain unchanged */
 888	if (old_entry->context.type == new_entry->context.type)
 889		goto out;
 890
 891	index = new_entry->context.type;
 892	while (true) {
 893		type = policydb->type_val_to_struct[index - 1];
 
 894		BUG_ON(!type);
 895
 896		/* not bounded anymore */
 897		rc = -EPERM;
 898		if (!type->bounds)
 899			break;
 900
 901		/* @newsid is bounded by @oldsid */
 902		rc = 0;
 903		if (type->bounds == old_entry->context.type)
 904			break;
 905
 906		index = type->bounds;
 907	}
 908
 909	if (rc) {
 910		char *old_name = NULL;
 911		char *new_name = NULL;
 912		u32 length;
 913
 914		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 915					    &old_name, &length) &&
 916		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 917					    &new_name, &length)) {
 918			audit_log(audit_context(),
 919				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 920				  "op=security_bounded_transition "
 921				  "seresult=denied "
 922				  "oldcontext=%s newcontext=%s",
 923				  old_name, new_name);
 924		}
 925		kfree(new_name);
 926		kfree(old_name);
 927	}
 928out:
 929	rcu_read_unlock();
 930
 931	return rc;
 932}
 933
 934static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 935{
 936	avd->allowed = 0;
 937	avd->auditallow = 0;
 938	avd->auditdeny = 0xffffffff;
 939	if (policy)
 940		avd->seqno = policy->latest_granting;
 941	else
 942		avd->seqno = 0;
 943	avd->flags = 0;
 944}
 945
 946void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 947					struct avtab_node *node)
 948{
 949	unsigned int i;
 950
 951	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 952		if (xpermd->driver != node->datum.u.xperms->driver)
 953			return;
 954	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 955		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 956					xpermd->driver))
 957			return;
 958	} else {
 959		BUG();
 960	}
 961
 962	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 963		xpermd->used |= XPERMS_ALLOWED;
 964		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 965			memset(xpermd->allowed->p, 0xff,
 966					sizeof(xpermd->allowed->p));
 967		}
 968		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 969			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 970				xpermd->allowed->p[i] |=
 971					node->datum.u.xperms->perms.p[i];
 972		}
 973	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 974		xpermd->used |= XPERMS_AUDITALLOW;
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 976			memset(xpermd->auditallow->p, 0xff,
 977					sizeof(xpermd->auditallow->p));
 978		}
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 980			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 981				xpermd->auditallow->p[i] |=
 982					node->datum.u.xperms->perms.p[i];
 983		}
 984	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 985		xpermd->used |= XPERMS_DONTAUDIT;
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 987			memset(xpermd->dontaudit->p, 0xff,
 988					sizeof(xpermd->dontaudit->p));
 989		}
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 991			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 992				xpermd->dontaudit->p[i] |=
 993					node->datum.u.xperms->perms.p[i];
 994		}
 995	} else {
 996		BUG();
 997	}
 998}
 999
1000void security_compute_xperms_decision(u32 ssid,
1001				      u32 tsid,
1002				      u16 orig_tclass,
1003				      u8 driver,
1004				      struct extended_perms_decision *xpermd)
1005{
1006	struct selinux_policy *policy;
1007	struct policydb *policydb;
1008	struct sidtab *sidtab;
1009	u16 tclass;
1010	struct context *scontext, *tcontext;
1011	struct avtab_key avkey;
1012	struct avtab_node *node;
1013	struct ebitmap *sattr, *tattr;
1014	struct ebitmap_node *snode, *tnode;
1015	unsigned int i, j;
1016
1017	xpermd->driver = driver;
1018	xpermd->used = 0;
1019	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022
1023	rcu_read_lock();
1024	if (!selinux_initialized())
1025		goto allow;
1026
1027	policy = rcu_dereference(selinux_state.policy);
1028	policydb = &policy->policydb;
1029	sidtab = policy->sidtab;
1030
1031	scontext = sidtab_search(sidtab, ssid);
1032	if (!scontext) {
1033		pr_err("SELinux: %s:  unrecognized SID %d\n",
1034		       __func__, ssid);
1035		goto out;
1036	}
1037
1038	tcontext = sidtab_search(sidtab, tsid);
1039	if (!tcontext) {
1040		pr_err("SELinux: %s:  unrecognized SID %d\n",
1041		       __func__, tsid);
1042		goto out;
1043	}
1044
1045	tclass = unmap_class(&policy->map, orig_tclass);
1046	if (unlikely(orig_tclass && !tclass)) {
1047		if (policydb->allow_unknown)
1048			goto allow;
1049		goto out;
1050	}
1051
1052
1053	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1054		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1055		goto out;
1056	}
1057
1058	avkey.target_class = tclass;
1059	avkey.specified = AVTAB_XPERMS;
1060	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1061	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1062	ebitmap_for_each_positive_bit(sattr, snode, i) {
1063		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1064			avkey.source_type = i + 1;
1065			avkey.target_type = j + 1;
1066			for (node = avtab_search_node(&policydb->te_avtab,
1067						      &avkey);
1068			     node;
1069			     node = avtab_search_node_next(node, avkey.specified))
1070				services_compute_xperms_decision(xpermd, node);
1071
1072			cond_compute_xperms(&policydb->te_cond_avtab,
1073						&avkey, xpermd);
1074		}
1075	}
1076out:
1077	rcu_read_unlock();
1078	return;
1079allow:
1080	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081	goto out;
1082}
1083
1084/**
1085 * security_compute_av - Compute access vector decisions.
1086 * @ssid: source security identifier
1087 * @tsid: target security identifier
1088 * @orig_tclass: target security class
1089 * @avd: access vector decisions
1090 * @xperms: extended permissions
1091 *
1092 * Compute a set of access vector decisions based on the
1093 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1094 */
1095void security_compute_av(u32 ssid,
1096			 u32 tsid,
1097			 u16 orig_tclass,
1098			 struct av_decision *avd,
1099			 struct extended_perms *xperms)
1100{
1101	struct selinux_policy *policy;
1102	struct policydb *policydb;
1103	struct sidtab *sidtab;
1104	u16 tclass;
1105	struct context *scontext = NULL, *tcontext = NULL;
1106
1107	rcu_read_lock();
1108	policy = rcu_dereference(selinux_state.policy);
1109	avd_init(policy, avd);
1110	xperms->len = 0;
1111	if (!selinux_initialized())
1112		goto allow;
1113
1114	policydb = &policy->policydb;
1115	sidtab = policy->sidtab;
1116
1117	scontext = sidtab_search(sidtab, ssid);
1118	if (!scontext) {
1119		pr_err("SELinux: %s:  unrecognized SID %d\n",
1120		       __func__, ssid);
1121		goto out;
1122	}
1123
1124	/* permissive domain? */
1125	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126		avd->flags |= AVD_FLAGS_PERMISSIVE;
1127
1128	tcontext = sidtab_search(sidtab, tsid);
1129	if (!tcontext) {
1130		pr_err("SELinux: %s:  unrecognized SID %d\n",
1131		       __func__, tsid);
1132		goto out;
1133	}
1134
1135	tclass = unmap_class(&policy->map, orig_tclass);
1136	if (unlikely(orig_tclass && !tclass)) {
1137		if (policydb->allow_unknown)
1138			goto allow;
1139		goto out;
1140	}
1141	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142				  xperms);
1143	map_decision(&policy->map, orig_tclass, avd,
1144		     policydb->allow_unknown);
1145out:
1146	rcu_read_unlock();
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
1158	struct selinux_policy *policy;
1159	struct policydb *policydb;
1160	struct sidtab *sidtab;
1161	struct context *scontext = NULL, *tcontext = NULL;
1162
1163	rcu_read_lock();
1164	policy = rcu_dereference(selinux_state.policy);
1165	avd_init(policy, avd);
1166	if (!selinux_initialized())
1167		goto allow;
1168
1169	policydb = &policy->policydb;
1170	sidtab = policy->sidtab;
1171
1172	scontext = sidtab_search(sidtab, ssid);
1173	if (!scontext) {
1174		pr_err("SELinux: %s:  unrecognized SID %d\n",
1175		       __func__, ssid);
1176		goto out;
1177	}
1178
1179	/* permissive domain? */
1180	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1181		avd->flags |= AVD_FLAGS_PERMISSIVE;
1182
1183	tcontext = sidtab_search(sidtab, tsid);
1184	if (!tcontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, tsid);
1187		goto out;
1188	}
1189
1190	if (unlikely(!tclass)) {
1191		if (policydb->allow_unknown)
1192			goto allow;
1193		goto out;
1194	}
1195
1196	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1197				  NULL);
1198 out:
1199	rcu_read_unlock();
1200	return;
1201allow:
1202	avd->allowed = 0xffffffff;
1203	goto out;
1204}
1205
1206/*
1207 * Write the security context string representation of
1208 * the context structure `context' into a dynamically
1209 * allocated string of the correct size.  Set `*scontext'
1210 * to point to this string and set `*scontext_len' to
1211 * the length of the string.
1212 */
1213static int context_struct_to_string(struct policydb *p,
1214				    struct context *context,
1215				    char **scontext, u32 *scontext_len)
1216{
1217	char *scontextp;
1218
1219	if (scontext)
1220		*scontext = NULL;
1221	*scontext_len = 0;
1222
1223	if (context->len) {
1224		*scontext_len = context->len;
1225		if (scontext) {
1226			*scontext = kstrdup(context->str, GFP_ATOMIC);
1227			if (!(*scontext))
1228				return -ENOMEM;
1229		}
1230		return 0;
1231	}
1232
1233	/* Compute the size of the context. */
1234	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1235	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1236	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1237	*scontext_len += mls_compute_context_len(p, context);
1238
1239	if (!scontext)
1240		return 0;
1241
1242	/* Allocate space for the context; caller must free this space. */
1243	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1244	if (!scontextp)
1245		return -ENOMEM;
1246	*scontext = scontextp;
1247
1248	/*
1249	 * Copy the user name, role name and type name into the context.
1250	 */
1251	scontextp += sprintf(scontextp, "%s:%s:%s",
1252		sym_name(p, SYM_USERS, context->user - 1),
1253		sym_name(p, SYM_ROLES, context->role - 1),
1254		sym_name(p, SYM_TYPES, context->type - 1));
1255
1256	mls_sid_to_context(p, context, &scontextp);
1257
1258	*scontextp = 0;
1259
1260	return 0;
1261}
1262
1263static int sidtab_entry_to_string(struct policydb *p,
1264				  struct sidtab *sidtab,
1265				  struct sidtab_entry *entry,
1266				  char **scontext, u32 *scontext_len)
1267{
1268	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1269
1270	if (rc != -ENOENT)
1271		return rc;
1272
1273	rc = context_struct_to_string(p, &entry->context, scontext,
1274				      scontext_len);
1275	if (!rc && scontext)
1276		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1277	return rc;
1278}
1279
1280#include "initial_sid_to_string.h"
1281
1282int security_sidtab_hash_stats(char *page)
1283{
1284	struct selinux_policy *policy;
1285	int rc;
1286
1287	if (!selinux_initialized()) {
1288		pr_err("SELinux: %s:  called before initial load_policy\n",
1289		       __func__);
1290		return -EINVAL;
1291	}
1292
1293	rcu_read_lock();
1294	policy = rcu_dereference(selinux_state.policy);
1295	rc = sidtab_hash_stats(policy->sidtab, page);
1296	rcu_read_unlock();
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(u32 sid, char **scontext,
1309					u32 *scontext_len, int force,
1310					int only_invalid)
1311{
1312	struct selinux_policy *policy;
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized()) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s;
1326
1327			/*
1328			 * Before the policy is loaded, translate
1329			 * SECINITSID_INIT to "kernel", because systemd and
1330			 * libselinux < 2.6 take a getcon_raw() result that is
1331			 * both non-null and not "kernel" to mean that a policy
1332			 * is already loaded.
1333			 */
1334			if (sid == SECINITSID_INIT)
1335				sid = SECINITSID_KERNEL;
1336
1337			s = initial_sid_to_string[sid];
1338			if (!s)
1339				return -EINVAL;
1340			*scontext_len = strlen(s) + 1;
1341			if (!scontext)
1342				return 0;
1343			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1344			if (!scontextp)
1345				return -ENOMEM;
 
 
 
1346			*scontext = scontextp;
1347			return 0;
1348		}
1349		pr_err("SELinux: %s:  called before initial "
1350		       "load_policy on unknown SID %d\n", __func__, sid);
1351		return -EINVAL;
 
1352	}
1353	rcu_read_lock();
1354	policy = rcu_dereference(selinux_state.policy);
1355	policydb = &policy->policydb;
1356	sidtab = policy->sidtab;
1357
1358	if (force)
1359		entry = sidtab_search_entry_force(sidtab, sid);
1360	else
1361		entry = sidtab_search_entry(sidtab, sid);
1362	if (!entry) {
1363		pr_err("SELinux: %s:  unrecognized SID %d\n",
1364			__func__, sid);
1365		rc = -EINVAL;
1366		goto out_unlock;
1367	}
1368	if (only_invalid && !entry->context.len)
1369		goto out_unlock;
1370
1371	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1372				    scontext_len);
1373
1374out_unlock:
1375	rcu_read_unlock();
 
1376	return rc;
1377
1378}
1379
1380/**
1381 * security_sid_to_context - Obtain a context for a given SID.
1382 * @sid: security identifier, SID
1383 * @scontext: security context
1384 * @scontext_len: length in bytes
1385 *
1386 * Write the string representation of the context associated with @sid
1387 * into a dynamically allocated string of the correct size.  Set @scontext
1388 * to point to this string and set @scontext_len to the length of the string.
1389 */
1390int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1391{
1392	return security_sid_to_context_core(sid, scontext,
1393					    scontext_len, 0, 0);
1394}
1395
1396int security_sid_to_context_force(u32 sid,
1397				  char **scontext, u32 *scontext_len)
1398{
1399	return security_sid_to_context_core(sid, scontext,
1400					    scontext_len, 1, 0);
1401}
1402
1403/**
1404 * security_sid_to_context_inval - Obtain a context for a given SID if it
1405 *                                 is invalid.
1406 * @sid: security identifier, SID
1407 * @scontext: security context
1408 * @scontext_len: length in bytes
1409 *
1410 * Write the string representation of the context associated with @sid
1411 * into a dynamically allocated string of the correct size, but only if the
1412 * context is invalid in the current policy.  Set @scontext to point to
1413 * this string (or NULL if the context is valid) and set @scontext_len to
1414 * the length of the string (or 0 if the context is valid).
1415 */
1416int security_sid_to_context_inval(u32 sid,
1417				  char **scontext, u32 *scontext_len)
1418{
1419	return security_sid_to_context_core(sid, scontext,
1420					    scontext_len, 1, 1);
1421}
1422
1423/*
1424 * Caveat:  Mutates scontext.
1425 */
1426static int string_to_context_struct(struct policydb *pol,
1427				    struct sidtab *sidtabp,
1428				    char *scontext,
 
1429				    struct context *ctx,
1430				    u32 def_sid)
1431{
1432	struct role_datum *role;
1433	struct type_datum *typdatum;
1434	struct user_datum *usrdatum;
1435	char *scontextp, *p, oldc;
1436	int rc = 0;
1437
1438	context_init(ctx);
1439
1440	/* Parse the security context. */
1441
1442	rc = -EINVAL;
1443	scontextp = scontext;
1444
1445	/* Extract the user. */
1446	p = scontextp;
1447	while (*p && *p != ':')
1448		p++;
1449
1450	if (*p == 0)
1451		goto out;
1452
1453	*p++ = 0;
1454
1455	usrdatum = symtab_search(&pol->p_users, scontextp);
1456	if (!usrdatum)
1457		goto out;
1458
1459	ctx->user = usrdatum->value;
1460
1461	/* Extract role. */
1462	scontextp = p;
1463	while (*p && *p != ':')
1464		p++;
1465
1466	if (*p == 0)
1467		goto out;
1468
1469	*p++ = 0;
1470
1471	role = symtab_search(&pol->p_roles, scontextp);
1472	if (!role)
1473		goto out;
1474	ctx->role = role->value;
1475
1476	/* Extract type. */
1477	scontextp = p;
1478	while (*p && *p != ':')
1479		p++;
1480	oldc = *p;
1481	*p++ = 0;
1482
1483	typdatum = symtab_search(&pol->p_types, scontextp);
1484	if (!typdatum || typdatum->attribute)
1485		goto out;
1486
1487	ctx->type = typdatum->value;
1488
1489	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1490	if (rc)
1491		goto out;
1492
 
 
 
 
1493	/* Check the validity of the new context. */
1494	rc = -EINVAL;
1495	if (!policydb_context_isvalid(pol, ctx))
1496		goto out;
1497	rc = 0;
1498out:
1499	if (rc)
1500		context_destroy(ctx);
1501	return rc;
1502}
1503
1504static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1505					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1506					int force)
1507{
1508	struct selinux_policy *policy;
1509	struct policydb *policydb;
1510	struct sidtab *sidtab;
1511	char *scontext2, *str = NULL;
1512	struct context context;
1513	int rc = 0;
1514
1515	/* An empty security context is never valid. */
1516	if (!scontext_len)
1517		return -EINVAL;
1518
1519	/* Copy the string to allow changes and ensure a NUL terminator */
1520	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1521	if (!scontext2)
1522		return -ENOMEM;
1523
1524	if (!selinux_initialized()) {
1525		u32 i;
1526
1527		for (i = 1; i < SECINITSID_NUM; i++) {
1528			const char *s = initial_sid_to_string[i];
1529
1530			if (s && !strcmp(s, scontext2)) {
1531				*sid = i;
1532				goto out;
1533			}
1534		}
1535		*sid = SECINITSID_KERNEL;
1536		goto out;
1537	}
1538	*sid = SECSID_NULL;
1539
 
 
 
 
 
 
 
1540	if (force) {
1541		/* Save another copy for storing in uninterpreted form */
1542		rc = -ENOMEM;
1543		str = kstrdup(scontext2, gfp_flags);
1544		if (!str)
1545			goto out;
1546	}
1547retry:
1548	rcu_read_lock();
1549	policy = rcu_dereference(selinux_state.policy);
1550	policydb = &policy->policydb;
1551	sidtab = policy->sidtab;
1552	rc = string_to_context_struct(policydb, sidtab, scontext2,
1553				      &context, def_sid);
1554	if (rc == -EINVAL && force) {
1555		context.str = str;
1556		context.len = strlen(str) + 1;
1557		str = NULL;
1558	} else if (rc)
1559		goto out_unlock;
1560	rc = sidtab_context_to_sid(sidtab, &context, sid);
1561	if (rc == -ESTALE) {
1562		rcu_read_unlock();
1563		if (context.str) {
1564			str = context.str;
1565			context.str = NULL;
1566		}
1567		context_destroy(&context);
1568		goto retry;
1569	}
1570	context_destroy(&context);
1571out_unlock:
1572	rcu_read_unlock();
1573out:
1574	kfree(scontext2);
1575	kfree(str);
1576	return rc;
1577}
1578
1579/**
1580 * security_context_to_sid - Obtain a SID for a given security context.
1581 * @scontext: security context
1582 * @scontext_len: length in bytes
1583 * @sid: security identifier, SID
1584 * @gfp: context for the allocation
1585 *
1586 * Obtains a SID associated with the security context that
1587 * has the string representation specified by @scontext.
1588 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1589 * memory is available, or 0 on success.
1590 */
1591int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1592			    gfp_t gfp)
1593{
1594	return security_context_to_sid_core(scontext, scontext_len,
1595					    sid, SECSID_NULL, gfp, 0);
1596}
1597
1598int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1599{
1600	return security_context_to_sid(scontext, strlen(scontext),
1601				       sid, gfp);
1602}
1603
1604/**
1605 * security_context_to_sid_default - Obtain a SID for a given security context,
1606 * falling back to specified default if needed.
1607 *
1608 * @scontext: security context
1609 * @scontext_len: length in bytes
1610 * @sid: security identifier, SID
1611 * @def_sid: default SID to assign on error
1612 * @gfp_flags: the allocator get-free-page (GFP) flags
1613 *
1614 * Obtains a SID associated with the security context that
1615 * has the string representation specified by @scontext.
1616 * The default SID is passed to the MLS layer to be used to allow
1617 * kernel labeling of the MLS field if the MLS field is not present
1618 * (for upgrading to MLS without full relabel).
1619 * Implicitly forces adding of the context even if it cannot be mapped yet.
1620 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1621 * memory is available, or 0 on success.
1622 */
1623int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1624				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1625{
1626	return security_context_to_sid_core(scontext, scontext_len,
1627					    sid, def_sid, gfp_flags, 1);
1628}
1629
1630int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1631				  u32 *sid)
1632{
1633	return security_context_to_sid_core(scontext, scontext_len,
1634					    sid, SECSID_NULL, GFP_KERNEL, 1);
1635}
1636
1637static int compute_sid_handle_invalid_context(
1638	struct selinux_policy *policy,
1639	struct sidtab_entry *sentry,
1640	struct sidtab_entry *tentry,
1641	u16 tclass,
1642	struct context *newcontext)
1643{
1644	struct policydb *policydb = &policy->policydb;
1645	struct sidtab *sidtab = policy->sidtab;
1646	char *s = NULL, *t = NULL, *n = NULL;
1647	u32 slen, tlen, nlen;
1648	struct audit_buffer *ab;
1649
1650	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1651		goto out;
1652	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1653		goto out;
1654	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1655		goto out;
1656	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1657	if (!ab)
1658		goto out;
1659	audit_log_format(ab,
1660			 "op=security_compute_sid invalid_context=");
1661	/* no need to record the NUL with untrusted strings */
1662	audit_log_n_untrustedstring(ab, n, nlen - 1);
1663	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1664			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1665	audit_log_end(ab);
1666out:
1667	kfree(s);
1668	kfree(t);
1669	kfree(n);
1670	if (!enforcing_enabled())
1671		return 0;
1672	return -EACCES;
1673}
1674
1675static void filename_compute_type(struct policydb *policydb,
1676				  struct context *newcontext,
1677				  u32 stype, u32 ttype, u16 tclass,
1678				  const char *objname)
1679{
1680	struct filename_trans_key ft;
1681	struct filename_trans_datum *datum;
1682
1683	/*
1684	 * Most filename trans rules are going to live in specific directories
1685	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1686	 * if the ttype does not contain any rules.
1687	 */
1688	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1689		return;
1690
 
1691	ft.ttype = ttype;
1692	ft.tclass = tclass;
1693	ft.name = objname;
1694
1695	datum = policydb_filenametr_search(policydb, &ft);
1696	while (datum) {
1697		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1698			newcontext->type = datum->otype;
1699			return;
1700		}
1701		datum = datum->next;
1702	}
1703}
1704
1705static int security_compute_sid(u32 ssid,
1706				u32 tsid,
1707				u16 orig_tclass,
1708				u16 specified,
1709				const char *objname,
1710				u32 *out_sid,
1711				bool kern)
1712{
1713	struct selinux_policy *policy;
1714	struct policydb *policydb;
1715	struct sidtab *sidtab;
1716	struct class_datum *cladatum;
1717	struct context *scontext, *tcontext, newcontext;
1718	struct sidtab_entry *sentry, *tentry;
1719	struct avtab_key avkey;
1720	struct avtab_node *avnode, *node;
 
1721	u16 tclass;
1722	int rc = 0;
1723	bool sock;
1724
1725	if (!selinux_initialized()) {
1726		switch (orig_tclass) {
1727		case SECCLASS_PROCESS: /* kernel value */
1728			*out_sid = ssid;
1729			break;
1730		default:
1731			*out_sid = tsid;
1732			break;
1733		}
1734		goto out;
1735	}
1736
1737retry:
1738	cladatum = NULL;
1739	context_init(&newcontext);
1740
1741	rcu_read_lock();
1742
1743	policy = rcu_dereference(selinux_state.policy);
1744
1745	if (kern) {
1746		tclass = unmap_class(&policy->map, orig_tclass);
1747		sock = security_is_socket_class(orig_tclass);
1748	} else {
1749		tclass = orig_tclass;
1750		sock = security_is_socket_class(map_class(&policy->map,
1751							  tclass));
1752	}
1753
1754	policydb = &policy->policydb;
1755	sidtab = policy->sidtab;
1756
1757	sentry = sidtab_search_entry(sidtab, ssid);
1758	if (!sentry) {
1759		pr_err("SELinux: %s:  unrecognized SID %d\n",
1760		       __func__, ssid);
1761		rc = -EINVAL;
1762		goto out_unlock;
1763	}
1764	tentry = sidtab_search_entry(sidtab, tsid);
1765	if (!tentry) {
1766		pr_err("SELinux: %s:  unrecognized SID %d\n",
1767		       __func__, tsid);
1768		rc = -EINVAL;
1769		goto out_unlock;
1770	}
1771
1772	scontext = &sentry->context;
1773	tcontext = &tentry->context;
1774
1775	if (tclass && tclass <= policydb->p_classes.nprim)
1776		cladatum = policydb->class_val_to_struct[tclass - 1];
1777
1778	/* Set the user identity. */
1779	switch (specified) {
1780	case AVTAB_TRANSITION:
1781	case AVTAB_CHANGE:
1782		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1783			newcontext.user = tcontext->user;
1784		} else {
1785			/* notice this gets both DEFAULT_SOURCE and unset */
1786			/* Use the process user identity. */
1787			newcontext.user = scontext->user;
1788		}
1789		break;
1790	case AVTAB_MEMBER:
1791		/* Use the related object owner. */
1792		newcontext.user = tcontext->user;
1793		break;
1794	}
1795
1796	/* Set the role to default values. */
1797	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1798		newcontext.role = scontext->role;
1799	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1800		newcontext.role = tcontext->role;
1801	} else {
1802		if ((tclass == policydb->process_class) || sock)
1803			newcontext.role = scontext->role;
1804		else
1805			newcontext.role = OBJECT_R_VAL;
1806	}
1807
1808	/* Set the type to default values. */
1809	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1810		newcontext.type = scontext->type;
1811	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1812		newcontext.type = tcontext->type;
1813	} else {
1814		if ((tclass == policydb->process_class) || sock) {
1815			/* Use the type of process. */
1816			newcontext.type = scontext->type;
1817		} else {
1818			/* Use the type of the related object. */
1819			newcontext.type = tcontext->type;
1820		}
1821	}
1822
1823	/* Look for a type transition/member/change rule. */
1824	avkey.source_type = scontext->type;
1825	avkey.target_type = tcontext->type;
1826	avkey.target_class = tclass;
1827	avkey.specified = specified;
1828	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1829
1830	/* If no permanent rule, also check for enabled conditional rules */
1831	if (!avnode) {
1832		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1833		for (; node; node = avtab_search_node_next(node, specified)) {
1834			if (node->key.specified & AVTAB_ENABLED) {
1835				avnode = node;
1836				break;
1837			}
1838		}
1839	}
1840
1841	if (avnode) {
1842		/* Use the type from the type transition/member/change rule. */
1843		newcontext.type = avnode->datum.u.data;
1844	}
1845
1846	/* if we have a objname this is a file trans check so check those rules */
1847	if (objname)
1848		filename_compute_type(policydb, &newcontext, scontext->type,
1849				      tcontext->type, tclass, objname);
1850
1851	/* Check for class-specific changes. */
1852	if (specified & AVTAB_TRANSITION) {
1853		/* Look for a role transition rule. */
1854		struct role_trans_datum *rtd;
1855		struct role_trans_key rtk = {
1856			.role = scontext->role,
1857			.type = tcontext->type,
1858			.tclass = tclass,
1859		};
1860
1861		rtd = policydb_roletr_search(policydb, &rtk);
1862		if (rtd)
1863			newcontext.role = rtd->new_role;
1864	}
1865
1866	/* Set the MLS attributes.
1867	   This is done last because it may allocate memory. */
1868	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1869			     &newcontext, sock);
1870	if (rc)
1871		goto out_unlock;
1872
1873	/* Check the validity of the context. */
1874	if (!policydb_context_isvalid(policydb, &newcontext)) {
1875		rc = compute_sid_handle_invalid_context(policy, sentry,
1876							tentry, tclass,
 
1877							&newcontext);
1878		if (rc)
1879			goto out_unlock;
1880	}
1881	/* Obtain the sid for the context. */
1882	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1883	if (rc == -ESTALE) {
1884		rcu_read_unlock();
1885		context_destroy(&newcontext);
1886		goto retry;
1887	}
1888out_unlock:
1889	rcu_read_unlock();
1890	context_destroy(&newcontext);
1891out:
1892	return rc;
1893}
1894
1895/**
1896 * security_transition_sid - Compute the SID for a new subject/object.
1897 * @ssid: source security identifier
1898 * @tsid: target security identifier
1899 * @tclass: target security class
1900 * @qstr: object name
1901 * @out_sid: security identifier for new subject/object
1902 *
1903 * Compute a SID to use for labeling a new subject or object in the
1904 * class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the new SID was
1907 * computed successfully.
1908 */
1909int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1910			    const struct qstr *qstr, u32 *out_sid)
1911{
1912	return security_compute_sid(ssid, tsid, tclass,
1913				    AVTAB_TRANSITION,
1914				    qstr ? qstr->name : NULL, out_sid, true);
1915}
1916
1917int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1918				 const char *objname, u32 *out_sid)
1919{
1920	return security_compute_sid(ssid, tsid, tclass,
1921				    AVTAB_TRANSITION,
1922				    objname, out_sid, false);
1923}
1924
1925/**
1926 * security_member_sid - Compute the SID for member selection.
1927 * @ssid: source security identifier
1928 * @tsid: target security identifier
1929 * @tclass: target security class
1930 * @out_sid: security identifier for selected member
1931 *
1932 * Compute a SID to use when selecting a member of a polyinstantiated
1933 * object of class @tclass based on a SID pair (@ssid, @tsid).
1934 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1935 * if insufficient memory is available, or %0 if the SID was
1936 * computed successfully.
1937 */
1938int security_member_sid(u32 ssid,
1939			u32 tsid,
1940			u16 tclass,
1941			u32 *out_sid)
1942{
1943	return security_compute_sid(ssid, tsid, tclass,
1944				    AVTAB_MEMBER, NULL,
1945				    out_sid, false);
1946}
1947
1948/**
1949 * security_change_sid - Compute the SID for object relabeling.
1950 * @ssid: source security identifier
1951 * @tsid: target security identifier
1952 * @tclass: target security class
1953 * @out_sid: security identifier for selected member
1954 *
1955 * Compute a SID to use for relabeling an object of class @tclass
1956 * based on a SID pair (@ssid, @tsid).
1957 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1958 * if insufficient memory is available, or %0 if the SID was
1959 * computed successfully.
1960 */
1961int security_change_sid(u32 ssid,
1962			u32 tsid,
1963			u16 tclass,
1964			u32 *out_sid)
1965{
1966	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1967				    out_sid, false);
1968}
1969
1970static inline int convert_context_handle_invalid_context(
1971	struct policydb *policydb,
1972	struct context *context)
 
 
 
 
 
 
 
 
 
 
 
1973{
1974	char *s;
1975	u32 len;
1976
1977	if (enforcing_enabled())
1978		return -EINVAL;
1979
1980	if (!context_struct_to_string(policydb, context, &s, &len)) {
1981		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1982			s);
1983		kfree(s);
1984	}
1985	return 0;
1986}
1987
1988/**
1989 * services_convert_context - Convert a security context across policies.
1990 * @args: populated convert_context_args struct
1991 * @oldc: original context
1992 * @newc: converted context
1993 * @gfp_flags: allocation flags
1994 *
1995 * Convert the values in the security context structure @oldc from the values
1996 * specified in the policy @args->oldp to the values specified in the policy
1997 * @args->newp, storing the new context in @newc, and verifying that the
1998 * context is valid under the new policy.
1999 */
2000int services_convert_context(struct convert_context_args *args,
2001			     struct context *oldc, struct context *newc,
2002			     gfp_t gfp_flags)
2003{
 
 
2004	struct ocontext *oc;
 
2005	struct role_datum *role;
2006	struct type_datum *typdatum;
2007	struct user_datum *usrdatum;
2008	char *s;
2009	u32 len;
2010	int rc;
 
 
 
 
 
 
 
 
2011
2012	if (oldc->str) {
2013		s = kstrdup(oldc->str, gfp_flags);
2014		if (!s)
2015			return -ENOMEM;
2016
2017		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2018		if (rc == -EINVAL) {
2019			/*
2020			 * Retain string representation for later mapping.
2021			 *
2022			 * IMPORTANT: We need to copy the contents of oldc->str
2023			 * back into s again because string_to_context_struct()
2024			 * may have garbled it.
2025			 */
2026			memcpy(s, oldc->str, oldc->len);
2027			context_init(newc);
2028			newc->str = s;
2029			newc->len = oldc->len;
2030			return 0;
2031		}
2032		kfree(s);
2033		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2034			/* Other error condition, e.g. ENOMEM. */
2035			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2036			       oldc->str, -rc);
2037			return rc;
2038		}
2039		pr_info("SELinux:  Context %s became valid (mapped).\n",
2040			oldc->str);
2041		return 0;
2042	}
2043
2044	context_init(newc);
 
 
2045
2046	/* Convert the user. */
2047	usrdatum = symtab_search(&args->newp->p_users,
2048				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
 
2049	if (!usrdatum)
2050		goto bad;
2051	newc->user = usrdatum->value;
2052
2053	/* Convert the role. */
2054	role = symtab_search(&args->newp->p_roles,
2055			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2056	if (!role)
2057		goto bad;
2058	newc->role = role->value;
2059
2060	/* Convert the type. */
2061	typdatum = symtab_search(&args->newp->p_types,
2062				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
 
2063	if (!typdatum)
2064		goto bad;
2065	newc->type = typdatum->value;
2066
2067	/* Convert the MLS fields if dealing with MLS policies */
2068	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2069		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2070		if (rc)
2071			goto bad;
 
 
 
 
 
 
 
2072	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2073		/*
2074		 * Switching between non-MLS and MLS policy:
2075		 * ensure that the MLS fields of the context for all
2076		 * existing entries in the sidtab are filled in with a
2077		 * suitable default value, likely taken from one of the
2078		 * initial SIDs.
2079		 */
2080		oc = args->newp->ocontexts[OCON_ISID];
2081		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2082			oc = oc->next;
 
2083		if (!oc) {
2084			pr_err("SELinux:  unable to look up"
2085				" the initial SIDs list\n");
2086			goto bad;
2087		}
2088		rc = mls_range_set(newc, &oc->context[0].range);
 
2089		if (rc)
2090			goto bad;
2091	}
2092
2093	/* Check the validity of the new context. */
2094	if (!policydb_context_isvalid(args->newp, newc)) {
2095		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2096		if (rc)
2097			goto bad;
2098	}
2099
2100	return 0;
 
 
 
 
2101bad:
2102	/* Map old representation to string and save it. */
2103	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2104	if (rc)
2105		return rc;
2106	context_destroy(newc);
2107	newc->str = s;
2108	newc->len = len;
2109	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2110		newc->str);
2111	return 0;
2112}
2113
2114static void security_load_policycaps(struct selinux_policy *policy)
2115{
2116	struct policydb *p;
2117	unsigned int i;
2118	struct ebitmap_node *node;
2119
2120	p = &policy->policydb;
2121
2122	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2123		WRITE_ONCE(selinux_state.policycap[i],
2124			ebitmap_get_bit(&p->policycaps, i));
2125
2126	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2127		pr_info("SELinux:  policy capability %s=%d\n",
2128			selinux_policycap_names[i],
2129			ebitmap_get_bit(&p->policycaps, i));
2130
2131	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2132		if (i >= ARRAY_SIZE(selinux_policycap_names))
2133			pr_info("SELinux:  unknown policy capability %u\n",
2134				i);
2135	}
2136}
2137
2138static int security_preserve_bools(struct selinux_policy *oldpolicy,
2139				struct selinux_policy *newpolicy);
2140
2141static void selinux_policy_free(struct selinux_policy *policy)
2142{
2143	if (!policy)
2144		return;
2145
2146	sidtab_destroy(policy->sidtab);
2147	kfree(policy->map.mapping);
2148	policydb_destroy(&policy->policydb);
2149	kfree(policy->sidtab);
2150	kfree(policy);
2151}
2152
2153static void selinux_policy_cond_free(struct selinux_policy *policy)
2154{
2155	cond_policydb_destroy_dup(&policy->policydb);
2156	kfree(policy);
2157}
2158
2159void selinux_policy_cancel(struct selinux_load_state *load_state)
2160{
2161	struct selinux_state *state = &selinux_state;
2162	struct selinux_policy *oldpolicy;
2163
2164	oldpolicy = rcu_dereference_protected(state->policy,
2165					lockdep_is_held(&state->policy_mutex));
2166
2167	sidtab_cancel_convert(oldpolicy->sidtab);
2168	selinux_policy_free(load_state->policy);
2169	kfree(load_state->convert_data);
2170}
2171
2172static void selinux_notify_policy_change(u32 seqno)
2173{
2174	/* Flush external caches and notify userspace of policy load */
2175	avc_ss_reset(seqno);
2176	selnl_notify_policyload(seqno);
2177	selinux_status_update_policyload(seqno);
2178	selinux_netlbl_cache_invalidate();
2179	selinux_xfrm_notify_policyload();
2180	selinux_ima_measure_state_locked();
2181}
2182
2183void selinux_policy_commit(struct selinux_load_state *load_state)
2184{
2185	struct selinux_state *state = &selinux_state;
2186	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2187	unsigned long flags;
2188	u32 seqno;
2189
2190	oldpolicy = rcu_dereference_protected(state->policy,
2191					lockdep_is_held(&state->policy_mutex));
2192
2193	/* If switching between different policy types, log MLS status */
2194	if (oldpolicy) {
2195		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2196			pr_info("SELinux: Disabling MLS support...\n");
2197		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2198			pr_info("SELinux: Enabling MLS support...\n");
2199	}
2200
2201	/* Set latest granting seqno for new policy. */
2202	if (oldpolicy)
2203		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2204	else
2205		newpolicy->latest_granting = 1;
2206	seqno = newpolicy->latest_granting;
2207
2208	/* Install the new policy. */
2209	if (oldpolicy) {
2210		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2211		rcu_assign_pointer(state->policy, newpolicy);
2212		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2213	} else {
2214		rcu_assign_pointer(state->policy, newpolicy);
2215	}
2216
2217	/* Load the policycaps from the new policy */
2218	security_load_policycaps(newpolicy);
2219
2220	if (!selinux_initialized()) {
2221		/*
2222		 * After first policy load, the security server is
2223		 * marked as initialized and ready to handle requests and
2224		 * any objects created prior to policy load are then labeled.
2225		 */
2226		selinux_mark_initialized();
2227		selinux_complete_init();
2228	}
2229
2230	/* Free the old policy */
2231	synchronize_rcu();
2232	selinux_policy_free(oldpolicy);
2233	kfree(load_state->convert_data);
2234
2235	/* Notify others of the policy change */
2236	selinux_notify_policy_change(seqno);
2237}
2238
2239/**
2240 * security_load_policy - Load a security policy configuration.
2241 * @data: binary policy data
2242 * @len: length of data in bytes
2243 * @load_state: policy load state
2244 *
2245 * Load a new set of security policy configuration data,
2246 * validate it and convert the SID table as necessary.
2247 * This function will flush the access vector cache after
2248 * loading the new policy.
2249 */
2250int security_load_policy(void *data, size_t len,
2251			 struct selinux_load_state *load_state)
2252{
2253	struct selinux_state *state = &selinux_state;
2254	struct selinux_policy *newpolicy, *oldpolicy;
2255	struct selinux_policy_convert_data *convert_data;
 
 
 
2256	int rc = 0;
2257	struct policy_file file = { data, len }, *fp = &file;
2258
2259	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2260	if (!newpolicy)
2261		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2262
2263	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2264	if (!newpolicy->sidtab) {
2265		rc = -ENOMEM;
2266		goto err_policy;
 
 
 
 
 
 
2267	}
2268
2269	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2270	if (rc)
2271		goto err_sidtab;
2272
2273	newpolicy->policydb.len = len;
2274	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2275				&newpolicy->map);
2276	if (rc)
2277		goto err_policydb;
 
2278
2279	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2280	if (rc) {
2281		pr_err("SELinux:  unable to load the initial SIDs\n");
2282		goto err_mapping;
 
2283	}
2284
2285	if (!selinux_initialized()) {
2286		/* First policy load, so no need to preserve state from old policy */
2287		load_state->policy = newpolicy;
2288		load_state->convert_data = NULL;
2289		return 0;
 
 
 
2290	}
2291
2292	oldpolicy = rcu_dereference_protected(state->policy,
2293					lockdep_is_held(&state->policy_mutex));
2294
2295	/* Preserve active boolean values from the old policy */
2296	rc = security_preserve_bools(oldpolicy, newpolicy);
2297	if (rc) {
2298		pr_err("SELinux:  unable to preserve booleans\n");
2299		goto err_free_isids;
2300	}
2301
2302	/*
2303	 * Convert the internal representations of contexts
2304	 * in the new SID table.
2305	 */
2306
2307	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2308	if (!convert_data) {
2309		rc = -ENOMEM;
2310		goto err_free_isids;
2311	}
2312
2313	convert_data->args.oldp = &oldpolicy->policydb;
2314	convert_data->args.newp = &newpolicy->policydb;
2315
2316	convert_data->sidtab_params.args = &convert_data->args;
2317	convert_data->sidtab_params.target = newpolicy->sidtab;
2318
2319	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2320	if (rc) {
2321		pr_err("SELinux:  unable to convert the internal"
2322			" representation of contexts in the new SID"
2323			" table\n");
2324		goto err_free_convert_data;
2325	}
2326
2327	load_state->policy = newpolicy;
2328	load_state->convert_data = convert_data;
2329	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331err_free_convert_data:
2332	kfree(convert_data);
2333err_free_isids:
2334	sidtab_destroy(newpolicy->sidtab);
2335err_mapping:
2336	kfree(newpolicy->map.mapping);
2337err_policydb:
2338	policydb_destroy(&newpolicy->policydb);
2339err_sidtab:
2340	kfree(newpolicy->sidtab);
2341err_policy:
2342	kfree(newpolicy);
2343
 
 
2344	return rc;
2345}
2346
2347/**
2348 * ocontext_to_sid - Helper to safely get sid for an ocontext
2349 * @sidtab: SID table
2350 * @c: ocontext structure
2351 * @index: index of the context entry (0 or 1)
2352 * @out_sid: pointer to the resulting SID value
2353 *
2354 * For all ocontexts except OCON_ISID the SID fields are populated
2355 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2356 * operation, this helper must be used to do that safely.
2357 *
2358 * WARNING: This function may return -ESTALE, indicating that the caller
2359 * must retry the operation after re-acquiring the policy pointer!
2360 */
2361static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2362			   size_t index, u32 *out_sid)
2363{
2364	int rc;
2365	u32 sid;
2366
2367	/* Ensure the associated sidtab entry is visible to this thread. */
2368	sid = smp_load_acquire(&c->sid[index]);
2369	if (!sid) {
2370		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2371		if (rc)
2372			return rc;
2373
2374		/*
2375		 * Ensure the new sidtab entry is visible to other threads
2376		 * when they see the SID.
2377		 */
2378		smp_store_release(&c->sid[index], sid);
2379	}
2380	*out_sid = sid;
2381	return 0;
2382}
2383
2384/**
2385 * security_port_sid - Obtain the SID for a port.
2386 * @protocol: protocol number
2387 * @port: port number
2388 * @out_sid: security identifier
2389 */
2390int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2391{
2392	struct selinux_policy *policy;
2393	struct policydb *policydb;
2394	struct sidtab *sidtab;
2395	struct ocontext *c;
2396	int rc;
2397
2398	if (!selinux_initialized()) {
2399		*out_sid = SECINITSID_PORT;
2400		return 0;
2401	}
2402
2403retry:
2404	rc = 0;
2405	rcu_read_lock();
2406	policy = rcu_dereference(selinux_state.policy);
2407	policydb = &policy->policydb;
2408	sidtab = policy->sidtab;
2409
2410	c = policydb->ocontexts[OCON_PORT];
2411	while (c) {
2412		if (c->u.port.protocol == protocol &&
2413		    c->u.port.low_port <= port &&
2414		    c->u.port.high_port >= port)
2415			break;
2416		c = c->next;
2417	}
2418
2419	if (c) {
2420		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2421		if (rc == -ESTALE) {
2422			rcu_read_unlock();
2423			goto retry;
 
 
2424		}
2425		if (rc)
2426			goto out;
2427	} else {
2428		*out_sid = SECINITSID_PORT;
2429	}
2430
2431out:
2432	rcu_read_unlock();
2433	return rc;
2434}
2435
2436/**
2437 * security_ib_pkey_sid - Obtain the SID for a pkey.
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2443{
2444	struct selinux_policy *policy;
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	struct ocontext *c;
2448	int rc;
2449
2450	if (!selinux_initialized()) {
2451		*out_sid = SECINITSID_UNLABELED;
2452		return 0;
2453	}
2454
2455retry:
2456	rc = 0;
2457	rcu_read_lock();
2458	policy = rcu_dereference(selinux_state.policy);
2459	policydb = &policy->policydb;
2460	sidtab = policy->sidtab;
2461
2462	c = policydb->ocontexts[OCON_IBPKEY];
2463	while (c) {
2464		if (c->u.ibpkey.low_pkey <= pkey_num &&
2465		    c->u.ibpkey.high_pkey >= pkey_num &&
2466		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2467			break;
2468
2469		c = c->next;
2470	}
2471
2472	if (c) {
2473		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2474		if (rc == -ESTALE) {
2475			rcu_read_unlock();
2476			goto retry;
2477		}
2478		if (rc)
2479			goto out;
2480	} else
2481		*out_sid = SECINITSID_UNLABELED;
2482
2483out:
2484	rcu_read_unlock();
2485	return rc;
2486}
2487
2488/**
2489 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2490 * @dev_name: device name
2491 * @port_num: port number
2492 * @out_sid: security identifier
2493 */
2494int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2495{
2496	struct selinux_policy *policy;
2497	struct policydb *policydb;
2498	struct sidtab *sidtab;
2499	struct ocontext *c;
2500	int rc;
2501
2502	if (!selinux_initialized()) {
2503		*out_sid = SECINITSID_UNLABELED;
2504		return 0;
2505	}
2506
2507retry:
2508	rc = 0;
2509	rcu_read_lock();
2510	policy = rcu_dereference(selinux_state.policy);
2511	policydb = &policy->policydb;
2512	sidtab = policy->sidtab;
2513
2514	c = policydb->ocontexts[OCON_IBENDPORT];
2515	while (c) {
2516		if (c->u.ibendport.port == port_num &&
2517		    !strncmp(c->u.ibendport.dev_name,
2518			     dev_name,
2519			     IB_DEVICE_NAME_MAX))
2520			break;
2521
2522		c = c->next;
2523	}
2524
2525	if (c) {
2526		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2527		if (rc == -ESTALE) {
2528			rcu_read_unlock();
2529			goto retry;
2530		}
2531		if (rc)
2532			goto out;
2533	} else
2534		*out_sid = SECINITSID_UNLABELED;
2535
2536out:
2537	rcu_read_unlock();
2538	return rc;
2539}
2540
2541/**
2542 * security_netif_sid - Obtain the SID for a network interface.
2543 * @name: interface name
2544 * @if_sid: interface SID
2545 */
2546int security_netif_sid(char *name, u32 *if_sid)
2547{
2548	struct selinux_policy *policy;
2549	struct policydb *policydb;
2550	struct sidtab *sidtab;
2551	int rc;
2552	struct ocontext *c;
2553
2554	if (!selinux_initialized()) {
2555		*if_sid = SECINITSID_NETIF;
2556		return 0;
2557	}
2558
2559retry:
2560	rc = 0;
2561	rcu_read_lock();
2562	policy = rcu_dereference(selinux_state.policy);
2563	policydb = &policy->policydb;
2564	sidtab = policy->sidtab;
2565
2566	c = policydb->ocontexts[OCON_NETIF];
2567	while (c) {
2568		if (strcmp(name, c->u.name) == 0)
2569			break;
2570		c = c->next;
2571	}
2572
2573	if (c) {
2574		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2575		if (rc == -ESTALE) {
2576			rcu_read_unlock();
2577			goto retry;
 
 
 
 
 
 
 
2578		}
2579		if (rc)
2580			goto out;
2581	} else
2582		*if_sid = SECINITSID_NETIF;
2583
2584out:
2585	rcu_read_unlock();
2586	return rc;
2587}
2588
2589static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2590{
2591	int i, fail = 0;
2592
2593	for (i = 0; i < 4; i++)
2594		if (addr[i] != (input[i] & mask[i])) {
2595			fail = 1;
2596			break;
2597		}
2598
2599	return !fail;
2600}
2601
2602/**
2603 * security_node_sid - Obtain the SID for a node (host).
2604 * @domain: communication domain aka address family
2605 * @addrp: address
2606 * @addrlen: address length in bytes
2607 * @out_sid: security identifier
2608 */
2609int security_node_sid(u16 domain,
2610		      void *addrp,
2611		      u32 addrlen,
2612		      u32 *out_sid)
2613{
2614	struct selinux_policy *policy;
2615	struct policydb *policydb;
2616	struct sidtab *sidtab;
2617	int rc;
2618	struct ocontext *c;
2619
2620	if (!selinux_initialized()) {
2621		*out_sid = SECINITSID_NODE;
2622		return 0;
2623	}
2624
2625retry:
2626	rcu_read_lock();
2627	policy = rcu_dereference(selinux_state.policy);
2628	policydb = &policy->policydb;
2629	sidtab = policy->sidtab;
2630
2631	switch (domain) {
2632	case AF_INET: {
2633		u32 addr;
2634
2635		rc = -EINVAL;
2636		if (addrlen != sizeof(u32))
2637			goto out;
2638
2639		addr = *((u32 *)addrp);
2640
2641		c = policydb->ocontexts[OCON_NODE];
2642		while (c) {
2643			if (c->u.node.addr == (addr & c->u.node.mask))
2644				break;
2645			c = c->next;
2646		}
2647		break;
2648	}
2649
2650	case AF_INET6:
2651		rc = -EINVAL;
2652		if (addrlen != sizeof(u64) * 2)
2653			goto out;
2654		c = policydb->ocontexts[OCON_NODE6];
2655		while (c) {
2656			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2657						c->u.node6.mask))
2658				break;
2659			c = c->next;
2660		}
2661		break;
2662
2663	default:
2664		rc = 0;
2665		*out_sid = SECINITSID_NODE;
2666		goto out;
2667	}
2668
2669	if (c) {
2670		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2671		if (rc == -ESTALE) {
2672			rcu_read_unlock();
2673			goto retry;
 
 
2674		}
2675		if (rc)
2676			goto out;
2677	} else {
2678		*out_sid = SECINITSID_NODE;
2679	}
2680
2681	rc = 0;
2682out:
2683	rcu_read_unlock();
2684	return rc;
2685}
2686
2687#define SIDS_NEL 25
2688
2689/**
2690 * security_get_user_sids - Obtain reachable SIDs for a user.
2691 * @fromsid: starting SID
2692 * @username: username
2693 * @sids: array of reachable SIDs for user
2694 * @nel: number of elements in @sids
2695 *
2696 * Generate the set of SIDs for legal security contexts
2697 * for a given user that can be reached by @fromsid.
2698 * Set *@sids to point to a dynamically allocated
2699 * array containing the set of SIDs.  Set *@nel to the
2700 * number of elements in the array.
2701 */
2702
2703int security_get_user_sids(u32 fromsid,
2704			   char *username,
2705			   u32 **sids,
2706			   u32 *nel)
2707{
2708	struct selinux_policy *policy;
2709	struct policydb *policydb;
2710	struct sidtab *sidtab;
2711	struct context *fromcon, usercon;
2712	u32 *mysids = NULL, *mysids2, sid;
2713	u32 i, j, mynel, maxnel = SIDS_NEL;
2714	struct user_datum *user;
2715	struct role_datum *role;
2716	struct ebitmap_node *rnode, *tnode;
2717	int rc;
2718
2719	*sids = NULL;
2720	*nel = 0;
2721
2722	if (!selinux_initialized())
2723		return 0;
2724
2725	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2726	if (!mysids)
2727		return -ENOMEM;
2728
2729retry:
2730	mynel = 0;
2731	rcu_read_lock();
2732	policy = rcu_dereference(selinux_state.policy);
2733	policydb = &policy->policydb;
2734	sidtab = policy->sidtab;
2735
2736	context_init(&usercon);
2737
2738	rc = -EINVAL;
2739	fromcon = sidtab_search(sidtab, fromsid);
2740	if (!fromcon)
2741		goto out_unlock;
2742
2743	rc = -EINVAL;
2744	user = symtab_search(&policydb->p_users, username);
2745	if (!user)
2746		goto out_unlock;
2747
2748	usercon.user = user->value;
2749
 
 
 
 
 
2750	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2751		role = policydb->role_val_to_struct[i];
2752		usercon.role = i + 1;
2753		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2754			usercon.type = j + 1;
2755
2756			if (mls_setup_user_range(policydb, fromcon, user,
2757						 &usercon))
2758				continue;
2759
2760			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2761			if (rc == -ESTALE) {
2762				rcu_read_unlock();
2763				goto retry;
2764			}
2765			if (rc)
2766				goto out_unlock;
2767			if (mynel < maxnel) {
2768				mysids[mynel++] = sid;
2769			} else {
2770				rc = -ENOMEM;
2771				maxnel += SIDS_NEL;
2772				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2773				if (!mysids2)
2774					goto out_unlock;
2775				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2776				kfree(mysids);
2777				mysids = mysids2;
2778				mysids[mynel++] = sid;
2779			}
2780		}
2781	}
2782	rc = 0;
2783out_unlock:
2784	rcu_read_unlock();
2785	if (rc || !mynel) {
2786		kfree(mysids);
2787		return rc;
2788	}
2789
2790	rc = -ENOMEM;
2791	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2792	if (!mysids2) {
2793		kfree(mysids);
2794		return rc;
2795	}
2796	for (i = 0, j = 0; i < mynel; i++) {
2797		struct av_decision dummy_avd;
2798		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2799					  SECCLASS_PROCESS, /* kernel value */
2800					  PROCESS__TRANSITION, AVC_STRICT,
2801					  &dummy_avd);
2802		if (!rc)
2803			mysids2[j++] = mysids[i];
2804		cond_resched();
2805	}
 
2806	kfree(mysids);
2807	*sids = mysids2;
2808	*nel = j;
2809	return 0;
 
2810}
2811
2812/**
2813 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2814 * @policy: policy
2815 * @fstype: filesystem type
2816 * @path: path from root of mount
2817 * @orig_sclass: file security class
2818 * @sid: SID for path
2819 *
2820 * Obtain a SID to use for a file in a filesystem that
2821 * cannot support xattr or use a fixed labeling behavior like
2822 * transition SIDs or task SIDs.
2823 *
2824 * WARNING: This function may return -ESTALE, indicating that the caller
2825 * must retry the operation after re-acquiring the policy pointer!
2826 */
2827static inline int __security_genfs_sid(struct selinux_policy *policy,
2828				       const char *fstype,
2829				       const char *path,
2830				       u16 orig_sclass,
2831				       u32 *sid)
2832{
2833	struct policydb *policydb = &policy->policydb;
2834	struct sidtab *sidtab = policy->sidtab;
2835	u16 sclass;
2836	struct genfs *genfs;
2837	struct ocontext *c;
2838	int cmp = 0;
2839
2840	while (path[0] == '/' && path[1] == '/')
2841		path++;
2842
2843	sclass = unmap_class(&policy->map, orig_sclass);
2844	*sid = SECINITSID_UNLABELED;
2845
2846	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2847		cmp = strcmp(fstype, genfs->fstype);
2848		if (cmp <= 0)
2849			break;
2850	}
2851
 
2852	if (!genfs || cmp)
2853		return -ENOENT;
2854
2855	for (c = genfs->head; c; c = c->next) {
2856		size_t len = strlen(c->u.name);
2857		if ((!c->v.sclass || sclass == c->v.sclass) &&
2858		    (strncmp(c->u.name, path, len) == 0))
2859			break;
2860	}
2861
 
2862	if (!c)
2863		return -ENOENT;
 
 
 
 
 
 
2864
2865	return ocontext_to_sid(sidtab, c, 0, sid);
 
 
 
2866}
2867
2868/**
2869 * security_genfs_sid - Obtain a SID for a file in a filesystem
2870 * @fstype: filesystem type
2871 * @path: path from root of mount
2872 * @orig_sclass: file security class
2873 * @sid: SID for path
2874 *
2875 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2876 * it afterward.
2877 */
2878int security_genfs_sid(const char *fstype,
2879		       const char *path,
2880		       u16 orig_sclass,
2881		       u32 *sid)
2882{
2883	struct selinux_policy *policy;
2884	int retval;
2885
2886	if (!selinux_initialized()) {
2887		*sid = SECINITSID_UNLABELED;
2888		return 0;
2889	}
2890
2891	do {
2892		rcu_read_lock();
2893		policy = rcu_dereference(selinux_state.policy);
2894		retval = __security_genfs_sid(policy, fstype, path,
2895					      orig_sclass, sid);
2896		rcu_read_unlock();
2897	} while (retval == -ESTALE);
2898	return retval;
2899}
2900
2901int selinux_policy_genfs_sid(struct selinux_policy *policy,
2902			const char *fstype,
2903			const char *path,
2904			u16 orig_sclass,
2905			u32 *sid)
2906{
2907	/* no lock required, policy is not yet accessible by other threads */
2908	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2909}
2910
2911/**
2912 * security_fs_use - Determine how to handle labeling for a filesystem.
2913 * @sb: superblock in question
2914 */
2915int security_fs_use(struct super_block *sb)
2916{
2917	struct selinux_policy *policy;
2918	struct policydb *policydb;
2919	struct sidtab *sidtab;
2920	int rc;
2921	struct ocontext *c;
2922	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2923	const char *fstype = sb->s_type->name;
2924
2925	if (!selinux_initialized()) {
2926		sbsec->behavior = SECURITY_FS_USE_NONE;
2927		sbsec->sid = SECINITSID_UNLABELED;
2928		return 0;
2929	}
2930
2931retry:
2932	rcu_read_lock();
2933	policy = rcu_dereference(selinux_state.policy);
2934	policydb = &policy->policydb;
2935	sidtab = policy->sidtab;
2936
2937	c = policydb->ocontexts[OCON_FSUSE];
2938	while (c) {
2939		if (strcmp(fstype, c->u.name) == 0)
2940			break;
2941		c = c->next;
2942	}
2943
2944	if (c) {
2945		sbsec->behavior = c->v.behavior;
2946		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2947		if (rc == -ESTALE) {
2948			rcu_read_unlock();
2949			goto retry;
 
2950		}
2951		if (rc)
2952			goto out;
2953	} else {
2954		rc = __security_genfs_sid(policy, fstype, "/",
2955					SECCLASS_DIR, &sbsec->sid);
2956		if (rc == -ESTALE) {
2957			rcu_read_unlock();
2958			goto retry;
2959		}
2960		if (rc) {
2961			sbsec->behavior = SECURITY_FS_USE_NONE;
2962			rc = 0;
2963		} else {
2964			sbsec->behavior = SECURITY_FS_USE_GENFS;
2965		}
2966	}
2967
2968out:
2969	rcu_read_unlock();
2970	return rc;
2971}
2972
2973int security_get_bools(struct selinux_policy *policy,
2974		       u32 *len, char ***names, int **values)
2975{
2976	struct policydb *policydb;
2977	u32 i;
2978	int rc;
2979
2980	policydb = &policy->policydb;
2981
 
2982	*names = NULL;
2983	*values = NULL;
2984
2985	rc = 0;
2986	*len = policydb->p_bools.nprim;
2987	if (!*len)
2988		goto out;
2989
2990	rc = -ENOMEM;
2991	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2992	if (!*names)
2993		goto err;
2994
2995	rc = -ENOMEM;
2996	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2997	if (!*values)
2998		goto err;
2999
3000	for (i = 0; i < *len; i++) {
3001		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3002
3003		rc = -ENOMEM;
3004		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3005				      GFP_ATOMIC);
3006		if (!(*names)[i])
3007			goto err;
3008	}
3009	rc = 0;
3010out:
 
3011	return rc;
3012err:
3013	if (*names) {
3014		for (i = 0; i < *len; i++)
3015			kfree((*names)[i]);
3016		kfree(*names);
3017	}
3018	kfree(*values);
3019	*len = 0;
3020	*names = NULL;
3021	*values = NULL;
3022	goto out;
3023}
3024
3025
3026int security_set_bools(u32 len, int *values)
3027{
3028	struct selinux_state *state = &selinux_state;
3029	struct selinux_policy *newpolicy, *oldpolicy;
3030	int rc;
3031	u32 i, seqno = 0;
3032
3033	if (!selinux_initialized())
3034		return -EINVAL;
3035
3036	oldpolicy = rcu_dereference_protected(state->policy,
3037					lockdep_is_held(&state->policy_mutex));
3038
3039	/* Consistency check on number of booleans, should never fail */
3040	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3041		return -EINVAL;
3042
3043	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3044	if (!newpolicy)
3045		return -ENOMEM;
3046
3047	/*
3048	 * Deep copy only the parts of the policydb that might be
3049	 * modified as a result of changing booleans.
3050	 */
3051	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3052	if (rc) {
3053		kfree(newpolicy);
3054		return -ENOMEM;
3055	}
3056
3057	/* Update the boolean states in the copy */
3058	for (i = 0; i < len; i++) {
3059		int new_state = !!values[i];
3060		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3061
3062		if (new_state != old_state) {
3063			audit_log(audit_context(), GFP_ATOMIC,
3064				AUDIT_MAC_CONFIG_CHANGE,
3065				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3066				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3067				new_state,
3068				old_state,
3069				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3070				audit_get_sessionid(current));
3071			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3072		}
 
 
 
 
3073	}
3074
3075	/* Re-evaluate the conditional rules in the copy */
3076	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3077
3078	/* Set latest granting seqno for new policy */
3079	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3080	seqno = newpolicy->latest_granting;
3081
3082	/* Install the new policy */
3083	rcu_assign_pointer(state->policy, newpolicy);
3084
3085	/*
3086	 * Free the conditional portions of the old policydb
3087	 * that were copied for the new policy, and the oldpolicy
3088	 * structure itself but not what it references.
3089	 */
3090	synchronize_rcu();
3091	selinux_policy_cond_free(oldpolicy);
3092
3093	/* Notify others of the policy change */
3094	selinux_notify_policy_change(seqno);
3095	return 0;
3096}
3097
3098int security_get_bool_value(u32 index)
3099{
3100	struct selinux_policy *policy;
3101	struct policydb *policydb;
3102	int rc;
3103	u32 len;
3104
3105	if (!selinux_initialized())
3106		return 0;
3107
3108	rcu_read_lock();
3109	policy = rcu_dereference(selinux_state.policy);
3110	policydb = &policy->policydb;
3111
3112	rc = -EFAULT;
3113	len = policydb->p_bools.nprim;
3114	if (index >= len)
3115		goto out;
3116
3117	rc = policydb->bool_val_to_struct[index]->state;
3118out:
3119	rcu_read_unlock();
3120	return rc;
3121}
3122
3123static int security_preserve_bools(struct selinux_policy *oldpolicy,
3124				struct selinux_policy *newpolicy)
3125{
3126	int rc, *bvalues = NULL;
3127	char **bnames = NULL;
3128	struct cond_bool_datum *booldatum;
3129	u32 i, nbools = 0;
3130
3131	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3132	if (rc)
3133		goto out;
3134	for (i = 0; i < nbools; i++) {
3135		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3136					bnames[i]);
3137		if (booldatum)
3138			booldatum->state = bvalues[i];
3139	}
3140	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3141
3142out:
3143	if (bnames) {
3144		for (i = 0; i < nbools; i++)
3145			kfree(bnames[i]);
3146	}
3147	kfree(bnames);
3148	kfree(bvalues);
3149	return rc;
3150}
3151
3152/*
3153 * security_sid_mls_copy() - computes a new sid based on the given
3154 * sid and the mls portion of mls_sid.
3155 */
3156int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3157{
3158	struct selinux_policy *policy;
3159	struct policydb *policydb;
3160	struct sidtab *sidtab;
3161	struct context *context1;
3162	struct context *context2;
3163	struct context newcon;
3164	char *s;
3165	u32 len;
3166	int rc;
3167
3168	if (!selinux_initialized()) {
 
3169		*new_sid = sid;
3170		return 0;
3171	}
3172
3173retry:
3174	rc = 0;
3175	context_init(&newcon);
3176
3177	rcu_read_lock();
3178	policy = rcu_dereference(selinux_state.policy);
3179	policydb = &policy->policydb;
3180	sidtab = policy->sidtab;
3181
3182	if (!policydb->mls_enabled) {
3183		*new_sid = sid;
3184		goto out_unlock;
3185	}
3186
3187	rc = -EINVAL;
3188	context1 = sidtab_search(sidtab, sid);
3189	if (!context1) {
3190		pr_err("SELinux: %s:  unrecognized SID %d\n",
3191			__func__, sid);
3192		goto out_unlock;
3193	}
3194
3195	rc = -EINVAL;
3196	context2 = sidtab_search(sidtab, mls_sid);
3197	if (!context2) {
3198		pr_err("SELinux: %s:  unrecognized SID %d\n",
3199			__func__, mls_sid);
3200		goto out_unlock;
3201	}
3202
3203	newcon.user = context1->user;
3204	newcon.role = context1->role;
3205	newcon.type = context1->type;
3206	rc = mls_context_cpy(&newcon, context2);
3207	if (rc)
3208		goto out_unlock;
3209
3210	/* Check the validity of the new context. */
3211	if (!policydb_context_isvalid(policydb, &newcon)) {
3212		rc = convert_context_handle_invalid_context(policydb,
3213							&newcon);
3214		if (rc) {
3215			if (!context_struct_to_string(policydb, &newcon, &s,
3216						      &len)) {
3217				struct audit_buffer *ab;
3218
3219				ab = audit_log_start(audit_context(),
3220						     GFP_ATOMIC,
3221						     AUDIT_SELINUX_ERR);
3222				audit_log_format(ab,
3223						 "op=security_sid_mls_copy invalid_context=");
3224				/* don't record NUL with untrusted strings */
3225				audit_log_n_untrustedstring(ab, s, len - 1);
3226				audit_log_end(ab);
3227				kfree(s);
3228			}
3229			goto out_unlock;
3230		}
3231	}
3232	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3233	if (rc == -ESTALE) {
3234		rcu_read_unlock();
3235		context_destroy(&newcon);
3236		goto retry;
3237	}
3238out_unlock:
3239	rcu_read_unlock();
3240	context_destroy(&newcon);
 
3241	return rc;
3242}
3243
3244/**
3245 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3246 * @nlbl_sid: NetLabel SID
3247 * @nlbl_type: NetLabel labeling protocol type
3248 * @xfrm_sid: XFRM SID
3249 * @peer_sid: network peer sid
3250 *
3251 * Description:
3252 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3253 * resolved into a single SID it is returned via @peer_sid and the function
3254 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3255 * returns a negative value.  A table summarizing the behavior is below:
3256 *
3257 *                                 | function return |      @sid
3258 *   ------------------------------+-----------------+-----------------
3259 *   no peer labels                |        0        |    SECSID_NULL
3260 *   single peer label             |        0        |    <peer_label>
3261 *   multiple, consistent labels   |        0        |    <peer_label>
3262 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3263 *
3264 */
3265int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3266				 u32 xfrm_sid,
3267				 u32 *peer_sid)
3268{
3269	struct selinux_policy *policy;
3270	struct policydb *policydb;
3271	struct sidtab *sidtab;
3272	int rc;
3273	struct context *nlbl_ctx;
3274	struct context *xfrm_ctx;
3275
3276	*peer_sid = SECSID_NULL;
3277
3278	/* handle the common (which also happens to be the set of easy) cases
3279	 * right away, these two if statements catch everything involving a
3280	 * single or absent peer SID/label */
3281	if (xfrm_sid == SECSID_NULL) {
3282		*peer_sid = nlbl_sid;
3283		return 0;
3284	}
3285	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3286	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3287	 * is present */
3288	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3289		*peer_sid = xfrm_sid;
3290		return 0;
3291	}
3292
3293	if (!selinux_initialized())
 
 
 
3294		return 0;
3295
3296	rcu_read_lock();
3297	policy = rcu_dereference(selinux_state.policy);
3298	policydb = &policy->policydb;
3299	sidtab = policy->sidtab;
3300
3301	/*
3302	 * We don't need to check initialized here since the only way both
3303	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3304	 * security server was initialized and state->initialized was true.
3305	 */
3306	if (!policydb->mls_enabled) {
3307		rc = 0;
3308		goto out;
3309	}
3310
3311	rc = -EINVAL;
3312	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3313	if (!nlbl_ctx) {
3314		pr_err("SELinux: %s:  unrecognized SID %d\n",
3315		       __func__, nlbl_sid);
3316		goto out;
3317	}
3318	rc = -EINVAL;
3319	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3320	if (!xfrm_ctx) {
3321		pr_err("SELinux: %s:  unrecognized SID %d\n",
3322		       __func__, xfrm_sid);
3323		goto out;
3324	}
3325	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3326	if (rc)
3327		goto out;
3328
3329	/* at present NetLabel SIDs/labels really only carry MLS
3330	 * information so if the MLS portion of the NetLabel SID
3331	 * matches the MLS portion of the labeled XFRM SID/label
3332	 * then pass along the XFRM SID as it is the most
3333	 * expressive */
3334	*peer_sid = xfrm_sid;
3335out:
3336	rcu_read_unlock();
3337	return rc;
3338}
3339
3340static int get_classes_callback(void *k, void *d, void *args)
3341{
3342	struct class_datum *datum = d;
3343	char *name = k, **classes = args;
3344	u32 value = datum->value - 1;
3345
3346	classes[value] = kstrdup(name, GFP_ATOMIC);
3347	if (!classes[value])
3348		return -ENOMEM;
3349
3350	return 0;
3351}
3352
3353int security_get_classes(struct selinux_policy *policy,
3354			 char ***classes, u32 *nclasses)
3355{
3356	struct policydb *policydb;
3357	int rc;
3358
3359	policydb = &policy->policydb;
3360
3361	rc = -ENOMEM;
3362	*nclasses = policydb->p_classes.nprim;
3363	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3364	if (!*classes)
3365		goto out;
3366
3367	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3368			 *classes);
3369	if (rc) {
3370		u32 i;
3371
3372		for (i = 0; i < *nclasses; i++)
3373			kfree((*classes)[i]);
3374		kfree(*classes);
3375	}
3376
3377out:
 
3378	return rc;
3379}
3380
3381static int get_permissions_callback(void *k, void *d, void *args)
3382{
3383	struct perm_datum *datum = d;
3384	char *name = k, **perms = args;
3385	u32 value = datum->value - 1;
3386
3387	perms[value] = kstrdup(name, GFP_ATOMIC);
3388	if (!perms[value])
3389		return -ENOMEM;
3390
3391	return 0;
3392}
3393
3394int security_get_permissions(struct selinux_policy *policy,
3395			     const char *class, char ***perms, u32 *nperms)
3396{
3397	struct policydb *policydb;
3398	u32 i;
3399	int rc;
3400	struct class_datum *match;
3401
3402	policydb = &policy->policydb;
3403
3404	rc = -EINVAL;
3405	match = symtab_search(&policydb->p_classes, class);
3406	if (!match) {
3407		pr_err("SELinux: %s:  unrecognized class %s\n",
3408			__func__, class);
3409		goto out;
3410	}
3411
3412	rc = -ENOMEM;
3413	*nperms = match->permissions.nprim;
3414	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3415	if (!*perms)
3416		goto out;
3417
3418	if (match->comdatum) {
3419		rc = hashtab_map(&match->comdatum->permissions.table,
3420				 get_permissions_callback, *perms);
3421		if (rc)
3422			goto err;
3423	}
3424
3425	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3426			 *perms);
3427	if (rc)
3428		goto err;
3429
3430out:
 
3431	return rc;
3432
3433err:
 
3434	for (i = 0; i < *nperms; i++)
3435		kfree((*perms)[i]);
3436	kfree(*perms);
3437	return rc;
3438}
3439
3440int security_get_reject_unknown(void)
3441{
3442	struct selinux_policy *policy;
3443	int value;
3444
3445	if (!selinux_initialized())
3446		return 0;
3447
3448	rcu_read_lock();
3449	policy = rcu_dereference(selinux_state.policy);
3450	value = policy->policydb.reject_unknown;
3451	rcu_read_unlock();
3452	return value;
3453}
3454
3455int security_get_allow_unknown(void)
3456{
3457	struct selinux_policy *policy;
3458	int value;
3459
3460	if (!selinux_initialized())
3461		return 0;
3462
3463	rcu_read_lock();
3464	policy = rcu_dereference(selinux_state.policy);
3465	value = policy->policydb.allow_unknown;
3466	rcu_read_unlock();
3467	return value;
3468}
3469
3470/**
3471 * security_policycap_supported - Check for a specific policy capability
3472 * @req_cap: capability
3473 *
3474 * Description:
3475 * This function queries the currently loaded policy to see if it supports the
3476 * capability specified by @req_cap.  Returns true (1) if the capability is
3477 * supported, false (0) if it isn't supported.
3478 *
3479 */
3480int security_policycap_supported(unsigned int req_cap)
3481{
3482	struct selinux_policy *policy;
3483	int rc;
3484
3485	if (!selinux_initialized())
3486		return 0;
3487
3488	rcu_read_lock();
3489	policy = rcu_dereference(selinux_state.policy);
3490	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3491	rcu_read_unlock();
3492
3493	return rc;
3494}
3495
3496struct selinux_audit_rule {
3497	u32 au_seqno;
3498	struct context au_ctxt;
3499};
3500
3501void selinux_audit_rule_free(void *vrule)
3502{
3503	struct selinux_audit_rule *rule = vrule;
3504
3505	if (rule) {
3506		context_destroy(&rule->au_ctxt);
3507		kfree(rule);
3508	}
3509}
3510
3511int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3512{
3513	struct selinux_state *state = &selinux_state;
3514	struct selinux_policy *policy;
3515	struct policydb *policydb;
3516	struct selinux_audit_rule *tmprule;
3517	struct role_datum *roledatum;
3518	struct type_datum *typedatum;
3519	struct user_datum *userdatum;
3520	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3521	int rc = 0;
3522
3523	*rule = NULL;
3524
3525	if (!selinux_initialized())
3526		return -EOPNOTSUPP;
3527
3528	switch (field) {
3529	case AUDIT_SUBJ_USER:
3530	case AUDIT_SUBJ_ROLE:
3531	case AUDIT_SUBJ_TYPE:
3532	case AUDIT_OBJ_USER:
3533	case AUDIT_OBJ_ROLE:
3534	case AUDIT_OBJ_TYPE:
3535		/* only 'equals' and 'not equals' fit user, role, and type */
3536		if (op != Audit_equal && op != Audit_not_equal)
3537			return -EINVAL;
3538		break;
3539	case AUDIT_SUBJ_SEN:
3540	case AUDIT_SUBJ_CLR:
3541	case AUDIT_OBJ_LEV_LOW:
3542	case AUDIT_OBJ_LEV_HIGH:
3543		/* we do not allow a range, indicated by the presence of '-' */
3544		if (strchr(rulestr, '-'))
3545			return -EINVAL;
3546		break;
3547	default:
3548		/* only the above fields are valid */
3549		return -EINVAL;
3550	}
3551
3552	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3553	if (!tmprule)
3554		return -ENOMEM;
 
3555	context_init(&tmprule->au_ctxt);
3556
3557	rcu_read_lock();
3558	policy = rcu_dereference(state->policy);
3559	policydb = &policy->policydb;
3560	tmprule->au_seqno = policy->latest_granting;
3561	switch (field) {
3562	case AUDIT_SUBJ_USER:
3563	case AUDIT_OBJ_USER:
3564		userdatum = symtab_search(&policydb->p_users, rulestr);
3565		if (!userdatum) {
3566			rc = -EINVAL;
3567			goto err;
3568		}
3569		tmprule->au_ctxt.user = userdatum->value;
3570		break;
3571	case AUDIT_SUBJ_ROLE:
3572	case AUDIT_OBJ_ROLE:
3573		roledatum = symtab_search(&policydb->p_roles, rulestr);
3574		if (!roledatum) {
3575			rc = -EINVAL;
3576			goto err;
3577		}
3578		tmprule->au_ctxt.role = roledatum->value;
3579		break;
3580	case AUDIT_SUBJ_TYPE:
3581	case AUDIT_OBJ_TYPE:
3582		typedatum = symtab_search(&policydb->p_types, rulestr);
3583		if (!typedatum) {
3584			rc = -EINVAL;
3585			goto err;
3586		}
3587		tmprule->au_ctxt.type = typedatum->value;
3588		break;
3589	case AUDIT_SUBJ_SEN:
3590	case AUDIT_SUBJ_CLR:
3591	case AUDIT_OBJ_LEV_LOW:
3592	case AUDIT_OBJ_LEV_HIGH:
3593		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3594				     GFP_ATOMIC);
3595		if (rc)
3596			goto err;
3597		break;
3598	}
3599	rcu_read_unlock();
 
 
 
 
 
 
 
3600
3601	*rule = tmprule;
3602	return 0;
3603
3604err:
3605	rcu_read_unlock();
3606	selinux_audit_rule_free(tmprule);
3607	*rule = NULL;
3608	return rc;
3609}
3610
3611/* Check to see if the rule contains any selinux fields */
3612int selinux_audit_rule_known(struct audit_krule *rule)
3613{
3614	u32 i;
3615
3616	for (i = 0; i < rule->field_count; i++) {
3617		struct audit_field *f = &rule->fields[i];
3618		switch (f->type) {
3619		case AUDIT_SUBJ_USER:
3620		case AUDIT_SUBJ_ROLE:
3621		case AUDIT_SUBJ_TYPE:
3622		case AUDIT_SUBJ_SEN:
3623		case AUDIT_SUBJ_CLR:
3624		case AUDIT_OBJ_USER:
3625		case AUDIT_OBJ_ROLE:
3626		case AUDIT_OBJ_TYPE:
3627		case AUDIT_OBJ_LEV_LOW:
3628		case AUDIT_OBJ_LEV_HIGH:
3629			return 1;
3630		}
3631	}
3632
3633	return 0;
3634}
3635
3636int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3637{
3638	struct selinux_state *state = &selinux_state;
3639	struct selinux_policy *policy;
3640	struct context *ctxt;
3641	struct mls_level *level;
3642	struct selinux_audit_rule *rule = vrule;
3643	int match = 0;
3644
3645	if (unlikely(!rule)) {
3646		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3647		return -ENOENT;
3648	}
3649
3650	if (!selinux_initialized())
3651		return 0;
3652
3653	rcu_read_lock();
3654
3655	policy = rcu_dereference(state->policy);
3656
3657	if (rule->au_seqno < policy->latest_granting) {
3658		match = -ESTALE;
3659		goto out;
3660	}
3661
3662	ctxt = sidtab_search(policy->sidtab, sid);
3663	if (unlikely(!ctxt)) {
3664		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3665			  sid);
3666		match = -ENOENT;
3667		goto out;
3668	}
3669
3670	/* a field/op pair that is not caught here will simply fall through
3671	   without a match */
3672	switch (field) {
3673	case AUDIT_SUBJ_USER:
3674	case AUDIT_OBJ_USER:
3675		switch (op) {
3676		case Audit_equal:
3677			match = (ctxt->user == rule->au_ctxt.user);
3678			break;
3679		case Audit_not_equal:
3680			match = (ctxt->user != rule->au_ctxt.user);
3681			break;
3682		}
3683		break;
3684	case AUDIT_SUBJ_ROLE:
3685	case AUDIT_OBJ_ROLE:
3686		switch (op) {
3687		case Audit_equal:
3688			match = (ctxt->role == rule->au_ctxt.role);
3689			break;
3690		case Audit_not_equal:
3691			match = (ctxt->role != rule->au_ctxt.role);
3692			break;
3693		}
3694		break;
3695	case AUDIT_SUBJ_TYPE:
3696	case AUDIT_OBJ_TYPE:
3697		switch (op) {
3698		case Audit_equal:
3699			match = (ctxt->type == rule->au_ctxt.type);
3700			break;
3701		case Audit_not_equal:
3702			match = (ctxt->type != rule->au_ctxt.type);
3703			break;
3704		}
3705		break;
3706	case AUDIT_SUBJ_SEN:
3707	case AUDIT_SUBJ_CLR:
3708	case AUDIT_OBJ_LEV_LOW:
3709	case AUDIT_OBJ_LEV_HIGH:
3710		level = ((field == AUDIT_SUBJ_SEN ||
3711			  field == AUDIT_OBJ_LEV_LOW) ?
3712			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3713		switch (op) {
3714		case Audit_equal:
3715			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3716					     level);
3717			break;
3718		case Audit_not_equal:
3719			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3720					      level);
3721			break;
3722		case Audit_lt:
3723			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3724					       level) &&
3725				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3726					       level));
3727			break;
3728		case Audit_le:
3729			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3730					      level);
3731			break;
3732		case Audit_gt:
3733			match = (mls_level_dom(level,
3734					      &rule->au_ctxt.range.level[0]) &&
3735				 !mls_level_eq(level,
3736					       &rule->au_ctxt.range.level[0]));
3737			break;
3738		case Audit_ge:
3739			match = mls_level_dom(level,
3740					      &rule->au_ctxt.range.level[0]);
3741			break;
3742		}
3743	}
3744
3745out:
3746	rcu_read_unlock();
3747	return match;
3748}
3749
 
 
3750static int aurule_avc_callback(u32 event)
3751{
3752	if (event == AVC_CALLBACK_RESET)
3753		return audit_update_lsm_rules();
3754	return 0;
 
 
3755}
3756
3757static int __init aurule_init(void)
3758{
3759	int err;
3760
3761	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3762	if (err)
3763		panic("avc_add_callback() failed, error %d\n", err);
3764
3765	return err;
3766}
3767__initcall(aurule_init);
3768
3769#ifdef CONFIG_NETLABEL
3770/**
3771 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3772 * @secattr: the NetLabel packet security attributes
3773 * @sid: the SELinux SID
3774 *
3775 * Description:
3776 * Attempt to cache the context in @ctx, which was derived from the packet in
3777 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3778 * already been initialized.
3779 *
3780 */
3781static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3782				      u32 sid)
3783{
3784	u32 *sid_cache;
3785
3786	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3787	if (sid_cache == NULL)
3788		return;
3789	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3790	if (secattr->cache == NULL) {
3791		kfree(sid_cache);
3792		return;
3793	}
3794
3795	*sid_cache = sid;
3796	secattr->cache->free = kfree;
3797	secattr->cache->data = sid_cache;
3798	secattr->flags |= NETLBL_SECATTR_CACHE;
3799}
3800
3801/**
3802 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3803 * @secattr: the NetLabel packet security attributes
3804 * @sid: the SELinux SID
3805 *
3806 * Description:
3807 * Convert the given NetLabel security attributes in @secattr into a
3808 * SELinux SID.  If the @secattr field does not contain a full SELinux
3809 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3810 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3811 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3812 * conversion for future lookups.  Returns zero on success, negative values on
3813 * failure.
3814 *
3815 */
3816int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3817				   u32 *sid)
3818{
3819	struct selinux_policy *policy;
3820	struct policydb *policydb;
3821	struct sidtab *sidtab;
3822	int rc;
3823	struct context *ctx;
3824	struct context ctx_new;
3825
3826	if (!selinux_initialized()) {
3827		*sid = SECSID_NULL;
3828		return 0;
3829	}
3830
3831retry:
3832	rc = 0;
3833	rcu_read_lock();
3834	policy = rcu_dereference(selinux_state.policy);
3835	policydb = &policy->policydb;
3836	sidtab = policy->sidtab;
3837
3838	if (secattr->flags & NETLBL_SECATTR_CACHE)
3839		*sid = *(u32 *)secattr->cache->data;
3840	else if (secattr->flags & NETLBL_SECATTR_SECID)
3841		*sid = secattr->attr.secid;
3842	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3843		rc = -EIDRM;
3844		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3845		if (ctx == NULL)
3846			goto out;
3847
3848		context_init(&ctx_new);
3849		ctx_new.user = ctx->user;
3850		ctx_new.role = ctx->role;
3851		ctx_new.type = ctx->type;
3852		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3853		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3854			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3855			if (rc)
3856				goto out;
3857		}
3858		rc = -EIDRM;
3859		if (!mls_context_isvalid(policydb, &ctx_new)) {
3860			ebitmap_destroy(&ctx_new.range.level[0].cat);
3861			goto out;
3862		}
3863
3864		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3865		ebitmap_destroy(&ctx_new.range.level[0].cat);
3866		if (rc == -ESTALE) {
3867			rcu_read_unlock();
3868			goto retry;
3869		}
3870		if (rc)
3871			goto out;
3872
3873		security_netlbl_cache_add(secattr, *sid);
 
 
3874	} else
3875		*sid = SECSID_NULL;
3876
 
 
 
 
3877out:
3878	rcu_read_unlock();
3879	return rc;
3880}
3881
3882/**
3883 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3884 * @sid: the SELinux SID
3885 * @secattr: the NetLabel packet security attributes
3886 *
3887 * Description:
3888 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3889 * Returns zero on success, negative values on failure.
3890 *
3891 */
3892int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3893{
3894	struct selinux_policy *policy;
3895	struct policydb *policydb;
3896	int rc;
3897	struct context *ctx;
3898
3899	if (!selinux_initialized())
3900		return 0;
3901
3902	rcu_read_lock();
3903	policy = rcu_dereference(selinux_state.policy);
3904	policydb = &policy->policydb;
3905
3906	rc = -ENOENT;
3907	ctx = sidtab_search(policy->sidtab, sid);
3908	if (ctx == NULL)
3909		goto out;
3910
3911	rc = -ENOMEM;
3912	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3913				  GFP_ATOMIC);
3914	if (secattr->domain == NULL)
3915		goto out;
3916
3917	secattr->attr.secid = sid;
3918	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3919	mls_export_netlbl_lvl(policydb, ctx, secattr);
3920	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3921out:
3922	rcu_read_unlock();
3923	return rc;
3924}
3925#endif /* CONFIG_NETLABEL */
3926
3927/**
3928 * __security_read_policy - read the policy.
3929 * @policy: SELinux policy
3930 * @data: binary policy data
3931 * @len: length of data in bytes
3932 *
3933 */
3934static int __security_read_policy(struct selinux_policy *policy,
3935				  void *data, size_t *len)
3936{
3937	int rc;
3938	struct policy_file fp;
3939
3940	fp.data = data;
3941	fp.len = *len;
3942
3943	rc = policydb_write(&policy->policydb, &fp);
3944	if (rc)
3945		return rc;
3946
3947	*len = (unsigned long)fp.data - (unsigned long)data;
3948	return 0;
3949}
3950
3951/**
3952 * security_read_policy - read the policy.
3953 * @data: binary policy data
3954 * @len: length of data in bytes
3955 *
3956 */
3957int security_read_policy(void **data, size_t *len)
3958{
3959	struct selinux_state *state = &selinux_state;
3960	struct selinux_policy *policy;
3961
3962	policy = rcu_dereference_protected(
3963			state->policy, lockdep_is_held(&state->policy_mutex));
3964	if (!policy)
3965		return -EINVAL;
3966
3967	*len = policy->policydb.len;
3968	*data = vmalloc_user(*len);
3969	if (!*data)
3970		return -ENOMEM;
3971
3972	return __security_read_policy(policy, *data, len);
3973}
3974
3975/**
3976 * security_read_state_kernel - read the policy.
3977 * @data: binary policy data
3978 * @len: length of data in bytes
3979 *
3980 * Allocates kernel memory for reading SELinux policy.
3981 * This function is for internal use only and should not
3982 * be used for returning data to user space.
3983 *
3984 * This function must be called with policy_mutex held.
3985 */
3986int security_read_state_kernel(void **data, size_t *len)
3987{
3988	int err;
3989	struct selinux_state *state = &selinux_state;
3990	struct selinux_policy *policy;
3991
3992	policy = rcu_dereference_protected(
3993			state->policy, lockdep_is_held(&state->policy_mutex));
3994	if (!policy)
3995		return -EINVAL;
3996
3997	*len = policy->policydb.len;
3998	*data = vmalloc(*len);
3999	if (!*data)
4000		return -ENOMEM;
4001
4002	err = __security_read_policy(policy, *data, len);
4003	if (err) {
4004		vfree(*data);
4005		*data = NULL;
4006		*len = 0;
4007	}
4008	return err;
4009}