Loading...
1/*
2 * Implementation of the security services.
3 *
4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
5 * James Morris <jmorris@redhat.com>
6 *
7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
8 *
9 * Support for enhanced MLS infrastructure.
10 * Support for context based audit filters.
11 *
12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
13 *
14 * Added conditional policy language extensions
15 *
16 * Updated: Hewlett-Packard <paul@paul-moore.com>
17 *
18 * Added support for NetLabel
19 * Added support for the policy capability bitmap
20 *
21 * Updated: Chad Sellers <csellers@tresys.com>
22 *
23 * Added validation of kernel classes and permissions
24 *
25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
26 *
27 * Added support for bounds domain and audit messaged on masked permissions
28 *
29 * Updated: Guido Trentalancia <guido@trentalancia.com>
30 *
31 * Added support for runtime switching of the policy type
32 *
33 * Copyright (C) 2008, 2009 NEC Corporation
34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
38 * This program is free software; you can redistribute it and/or modify
39 * it under the terms of the GNU General Public License as published by
40 * the Free Software Foundation, version 2.
41 */
42#include <linux/kernel.h>
43#include <linux/slab.h>
44#include <linux/string.h>
45#include <linux/spinlock.h>
46#include <linux/rcupdate.h>
47#include <linux/errno.h>
48#include <linux/in.h>
49#include <linux/sched.h>
50#include <linux/audit.h>
51#include <linux/mutex.h>
52#include <linux/selinux.h>
53#include <linux/flex_array.h>
54#include <linux/vmalloc.h>
55#include <net/netlabel.h>
56
57#include "flask.h"
58#include "avc.h"
59#include "avc_ss.h"
60#include "security.h"
61#include "context.h"
62#include "policydb.h"
63#include "sidtab.h"
64#include "services.h"
65#include "conditional.h"
66#include "mls.h"
67#include "objsec.h"
68#include "netlabel.h"
69#include "xfrm.h"
70#include "ebitmap.h"
71#include "audit.h"
72
73int selinux_policycap_netpeer;
74int selinux_policycap_openperm;
75int selinux_policycap_alwaysnetwork;
76
77static DEFINE_RWLOCK(policy_rwlock);
78
79static struct sidtab sidtab;
80struct policydb policydb;
81int ss_initialized;
82
83/*
84 * The largest sequence number that has been used when
85 * providing an access decision to the access vector cache.
86 * The sequence number only changes when a policy change
87 * occurs.
88 */
89static u32 latest_granting;
90
91/* Forward declaration. */
92static int context_struct_to_string(struct context *context, char **scontext,
93 u32 *scontext_len);
94
95static void context_struct_compute_av(struct context *scontext,
96 struct context *tcontext,
97 u16 tclass,
98 struct av_decision *avd,
99 struct extended_perms *xperms);
100
101struct selinux_mapping {
102 u16 value; /* policy value */
103 unsigned num_perms;
104 u32 perms[sizeof(u32) * 8];
105};
106
107static struct selinux_mapping *current_mapping;
108static u16 current_mapping_size;
109
110static int selinux_set_mapping(struct policydb *pol,
111 struct security_class_mapping *map,
112 struct selinux_mapping **out_map_p,
113 u16 *out_map_size)
114{
115 struct selinux_mapping *out_map = NULL;
116 size_t size = sizeof(struct selinux_mapping);
117 u16 i, j;
118 unsigned k;
119 bool print_unknown_handle = false;
120
121 /* Find number of classes in the input mapping */
122 if (!map)
123 return -EINVAL;
124 i = 0;
125 while (map[i].name)
126 i++;
127
128 /* Allocate space for the class records, plus one for class zero */
129 out_map = kcalloc(++i, size, GFP_ATOMIC);
130 if (!out_map)
131 return -ENOMEM;
132
133 /* Store the raw class and permission values */
134 j = 0;
135 while (map[j].name) {
136 struct security_class_mapping *p_in = map + (j++);
137 struct selinux_mapping *p_out = out_map + j;
138
139 /* An empty class string skips ahead */
140 if (!strcmp(p_in->name, "")) {
141 p_out->num_perms = 0;
142 continue;
143 }
144
145 p_out->value = string_to_security_class(pol, p_in->name);
146 if (!p_out->value) {
147 printk(KERN_INFO
148 "SELinux: Class %s not defined in policy.\n",
149 p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 p_out->num_perms = 0;
153 print_unknown_handle = true;
154 continue;
155 }
156
157 k = 0;
158 while (p_in->perms && p_in->perms[k]) {
159 /* An empty permission string skips ahead */
160 if (!*p_in->perms[k]) {
161 k++;
162 continue;
163 }
164 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
165 p_in->perms[k]);
166 if (!p_out->perms[k]) {
167 printk(KERN_INFO
168 "SELinux: Permission %s in class %s not defined in policy.\n",
169 p_in->perms[k], p_in->name);
170 if (pol->reject_unknown)
171 goto err;
172 print_unknown_handle = true;
173 }
174
175 k++;
176 }
177 p_out->num_perms = k;
178 }
179
180 if (print_unknown_handle)
181 printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
182 pol->allow_unknown ? "allowed" : "denied");
183
184 *out_map_p = out_map;
185 *out_map_size = i;
186 return 0;
187err:
188 kfree(out_map);
189 return -EINVAL;
190}
191
192/*
193 * Get real, policy values from mapped values
194 */
195
196static u16 unmap_class(u16 tclass)
197{
198 if (tclass < current_mapping_size)
199 return current_mapping[tclass].value;
200
201 return tclass;
202}
203
204/*
205 * Get kernel value for class from its policy value
206 */
207static u16 map_class(u16 pol_value)
208{
209 u16 i;
210
211 for (i = 1; i < current_mapping_size; i++) {
212 if (current_mapping[i].value == pol_value)
213 return i;
214 }
215
216 return SECCLASS_NULL;
217}
218
219static void map_decision(u16 tclass, struct av_decision *avd,
220 int allow_unknown)
221{
222 if (tclass < current_mapping_size) {
223 unsigned i, n = current_mapping[tclass].num_perms;
224 u32 result;
225
226 for (i = 0, result = 0; i < n; i++) {
227 if (avd->allowed & current_mapping[tclass].perms[i])
228 result |= 1<<i;
229 if (allow_unknown && !current_mapping[tclass].perms[i])
230 result |= 1<<i;
231 }
232 avd->allowed = result;
233
234 for (i = 0, result = 0; i < n; i++)
235 if (avd->auditallow & current_mapping[tclass].perms[i])
236 result |= 1<<i;
237 avd->auditallow = result;
238
239 for (i = 0, result = 0; i < n; i++) {
240 if (avd->auditdeny & current_mapping[tclass].perms[i])
241 result |= 1<<i;
242 if (!allow_unknown && !current_mapping[tclass].perms[i])
243 result |= 1<<i;
244 }
245 /*
246 * In case the kernel has a bug and requests a permission
247 * between num_perms and the maximum permission number, we
248 * should audit that denial
249 */
250 for (; i < (sizeof(u32)*8); i++)
251 result |= 1<<i;
252 avd->auditdeny = result;
253 }
254}
255
256int security_mls_enabled(void)
257{
258 return policydb.mls_enabled;
259}
260
261/*
262 * Return the boolean value of a constraint expression
263 * when it is applied to the specified source and target
264 * security contexts.
265 *
266 * xcontext is a special beast... It is used by the validatetrans rules
267 * only. For these rules, scontext is the context before the transition,
268 * tcontext is the context after the transition, and xcontext is the context
269 * of the process performing the transition. All other callers of
270 * constraint_expr_eval should pass in NULL for xcontext.
271 */
272static int constraint_expr_eval(struct context *scontext,
273 struct context *tcontext,
274 struct context *xcontext,
275 struct constraint_expr *cexpr)
276{
277 u32 val1, val2;
278 struct context *c;
279 struct role_datum *r1, *r2;
280 struct mls_level *l1, *l2;
281 struct constraint_expr *e;
282 int s[CEXPR_MAXDEPTH];
283 int sp = -1;
284
285 for (e = cexpr; e; e = e->next) {
286 switch (e->expr_type) {
287 case CEXPR_NOT:
288 BUG_ON(sp < 0);
289 s[sp] = !s[sp];
290 break;
291 case CEXPR_AND:
292 BUG_ON(sp < 1);
293 sp--;
294 s[sp] &= s[sp + 1];
295 break;
296 case CEXPR_OR:
297 BUG_ON(sp < 1);
298 sp--;
299 s[sp] |= s[sp + 1];
300 break;
301 case CEXPR_ATTR:
302 if (sp == (CEXPR_MAXDEPTH - 1))
303 return 0;
304 switch (e->attr) {
305 case CEXPR_USER:
306 val1 = scontext->user;
307 val2 = tcontext->user;
308 break;
309 case CEXPR_TYPE:
310 val1 = scontext->type;
311 val2 = tcontext->type;
312 break;
313 case CEXPR_ROLE:
314 val1 = scontext->role;
315 val2 = tcontext->role;
316 r1 = policydb.role_val_to_struct[val1 - 1];
317 r2 = policydb.role_val_to_struct[val2 - 1];
318 switch (e->op) {
319 case CEXPR_DOM:
320 s[++sp] = ebitmap_get_bit(&r1->dominates,
321 val2 - 1);
322 continue;
323 case CEXPR_DOMBY:
324 s[++sp] = ebitmap_get_bit(&r2->dominates,
325 val1 - 1);
326 continue;
327 case CEXPR_INCOMP:
328 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
329 val2 - 1) &&
330 !ebitmap_get_bit(&r2->dominates,
331 val1 - 1));
332 continue;
333 default:
334 break;
335 }
336 break;
337 case CEXPR_L1L2:
338 l1 = &(scontext->range.level[0]);
339 l2 = &(tcontext->range.level[0]);
340 goto mls_ops;
341 case CEXPR_L1H2:
342 l1 = &(scontext->range.level[0]);
343 l2 = &(tcontext->range.level[1]);
344 goto mls_ops;
345 case CEXPR_H1L2:
346 l1 = &(scontext->range.level[1]);
347 l2 = &(tcontext->range.level[0]);
348 goto mls_ops;
349 case CEXPR_H1H2:
350 l1 = &(scontext->range.level[1]);
351 l2 = &(tcontext->range.level[1]);
352 goto mls_ops;
353 case CEXPR_L1H1:
354 l1 = &(scontext->range.level[0]);
355 l2 = &(scontext->range.level[1]);
356 goto mls_ops;
357 case CEXPR_L2H2:
358 l1 = &(tcontext->range.level[0]);
359 l2 = &(tcontext->range.level[1]);
360 goto mls_ops;
361mls_ops:
362 switch (e->op) {
363 case CEXPR_EQ:
364 s[++sp] = mls_level_eq(l1, l2);
365 continue;
366 case CEXPR_NEQ:
367 s[++sp] = !mls_level_eq(l1, l2);
368 continue;
369 case CEXPR_DOM:
370 s[++sp] = mls_level_dom(l1, l2);
371 continue;
372 case CEXPR_DOMBY:
373 s[++sp] = mls_level_dom(l2, l1);
374 continue;
375 case CEXPR_INCOMP:
376 s[++sp] = mls_level_incomp(l2, l1);
377 continue;
378 default:
379 BUG();
380 return 0;
381 }
382 break;
383 default:
384 BUG();
385 return 0;
386 }
387
388 switch (e->op) {
389 case CEXPR_EQ:
390 s[++sp] = (val1 == val2);
391 break;
392 case CEXPR_NEQ:
393 s[++sp] = (val1 != val2);
394 break;
395 default:
396 BUG();
397 return 0;
398 }
399 break;
400 case CEXPR_NAMES:
401 if (sp == (CEXPR_MAXDEPTH-1))
402 return 0;
403 c = scontext;
404 if (e->attr & CEXPR_TARGET)
405 c = tcontext;
406 else if (e->attr & CEXPR_XTARGET) {
407 c = xcontext;
408 if (!c) {
409 BUG();
410 return 0;
411 }
412 }
413 if (e->attr & CEXPR_USER)
414 val1 = c->user;
415 else if (e->attr & CEXPR_ROLE)
416 val1 = c->role;
417 else if (e->attr & CEXPR_TYPE)
418 val1 = c->type;
419 else {
420 BUG();
421 return 0;
422 }
423
424 switch (e->op) {
425 case CEXPR_EQ:
426 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
427 break;
428 case CEXPR_NEQ:
429 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
430 break;
431 default:
432 BUG();
433 return 0;
434 }
435 break;
436 default:
437 BUG();
438 return 0;
439 }
440 }
441
442 BUG_ON(sp != 0);
443 return s[0];
444}
445
446/*
447 * security_dump_masked_av - dumps masked permissions during
448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
449 */
450static int dump_masked_av_helper(void *k, void *d, void *args)
451{
452 struct perm_datum *pdatum = d;
453 char **permission_names = args;
454
455 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
456
457 permission_names[pdatum->value - 1] = (char *)k;
458
459 return 0;
460}
461
462static void security_dump_masked_av(struct context *scontext,
463 struct context *tcontext,
464 u16 tclass,
465 u32 permissions,
466 const char *reason)
467{
468 struct common_datum *common_dat;
469 struct class_datum *tclass_dat;
470 struct audit_buffer *ab;
471 char *tclass_name;
472 char *scontext_name = NULL;
473 char *tcontext_name = NULL;
474 char *permission_names[32];
475 int index;
476 u32 length;
477 bool need_comma = false;
478
479 if (!permissions)
480 return;
481
482 tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
483 tclass_dat = policydb.class_val_to_struct[tclass - 1];
484 common_dat = tclass_dat->comdatum;
485
486 /* init permission_names */
487 if (common_dat &&
488 hashtab_map(common_dat->permissions.table,
489 dump_masked_av_helper, permission_names) < 0)
490 goto out;
491
492 if (hashtab_map(tclass_dat->permissions.table,
493 dump_masked_av_helper, permission_names) < 0)
494 goto out;
495
496 /* get scontext/tcontext in text form */
497 if (context_struct_to_string(scontext,
498 &scontext_name, &length) < 0)
499 goto out;
500
501 if (context_struct_to_string(tcontext,
502 &tcontext_name, &length) < 0)
503 goto out;
504
505 /* audit a message */
506 ab = audit_log_start(current->audit_context,
507 GFP_ATOMIC, AUDIT_SELINUX_ERR);
508 if (!ab)
509 goto out;
510
511 audit_log_format(ab, "op=security_compute_av reason=%s "
512 "scontext=%s tcontext=%s tclass=%s perms=",
513 reason, scontext_name, tcontext_name, tclass_name);
514
515 for (index = 0; index < 32; index++) {
516 u32 mask = (1 << index);
517
518 if ((mask & permissions) == 0)
519 continue;
520
521 audit_log_format(ab, "%s%s",
522 need_comma ? "," : "",
523 permission_names[index]
524 ? permission_names[index] : "????");
525 need_comma = true;
526 }
527 audit_log_end(ab);
528out:
529 /* release scontext/tcontext */
530 kfree(tcontext_name);
531 kfree(scontext_name);
532
533 return;
534}
535
536/*
537 * security_boundary_permission - drops violated permissions
538 * on boundary constraint.
539 */
540static void type_attribute_bounds_av(struct context *scontext,
541 struct context *tcontext,
542 u16 tclass,
543 struct av_decision *avd)
544{
545 struct context lo_scontext;
546 struct context lo_tcontext;
547 struct av_decision lo_avd;
548 struct type_datum *source;
549 struct type_datum *target;
550 u32 masked = 0;
551
552 source = flex_array_get_ptr(policydb.type_val_to_struct_array,
553 scontext->type - 1);
554 BUG_ON(!source);
555
556 target = flex_array_get_ptr(policydb.type_val_to_struct_array,
557 tcontext->type - 1);
558 BUG_ON(!target);
559
560 if (source->bounds) {
561 memset(&lo_avd, 0, sizeof(lo_avd));
562
563 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
564 lo_scontext.type = source->bounds;
565
566 context_struct_compute_av(&lo_scontext,
567 tcontext,
568 tclass,
569 &lo_avd,
570 NULL);
571 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
572 return; /* no masked permission */
573 masked = ~lo_avd.allowed & avd->allowed;
574 }
575
576 if (target->bounds) {
577 memset(&lo_avd, 0, sizeof(lo_avd));
578
579 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
580 lo_tcontext.type = target->bounds;
581
582 context_struct_compute_av(scontext,
583 &lo_tcontext,
584 tclass,
585 &lo_avd,
586 NULL);
587 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
588 return; /* no masked permission */
589 masked = ~lo_avd.allowed & avd->allowed;
590 }
591
592 if (source->bounds && target->bounds) {
593 memset(&lo_avd, 0, sizeof(lo_avd));
594 /*
595 * lo_scontext and lo_tcontext are already
596 * set up.
597 */
598
599 context_struct_compute_av(&lo_scontext,
600 &lo_tcontext,
601 tclass,
602 &lo_avd,
603 NULL);
604 if ((lo_avd.allowed & avd->allowed) == avd->allowed)
605 return; /* no masked permission */
606 masked = ~lo_avd.allowed & avd->allowed;
607 }
608
609 if (masked) {
610 /* mask violated permissions */
611 avd->allowed &= ~masked;
612
613 /* audit masked permissions */
614 security_dump_masked_av(scontext, tcontext,
615 tclass, masked, "bounds");
616 }
617}
618
619/*
620 * flag which drivers have permissions
621 * only looking for ioctl based extended permssions
622 */
623void services_compute_xperms_drivers(
624 struct extended_perms *xperms,
625 struct avtab_node *node)
626{
627 unsigned int i;
628
629 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
630 /* if one or more driver has all permissions allowed */
631 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
632 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
633 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
634 /* if allowing permissions within a driver */
635 security_xperm_set(xperms->drivers.p,
636 node->datum.u.xperms->driver);
637 }
638
639 /* If no ioctl commands are allowed, ignore auditallow and auditdeny */
640 if (node->key.specified & AVTAB_XPERMS_ALLOWED)
641 xperms->len = 1;
642}
643
644/*
645 * Compute access vectors and extended permissions based on a context
646 * structure pair for the permissions in a particular class.
647 */
648static void context_struct_compute_av(struct context *scontext,
649 struct context *tcontext,
650 u16 tclass,
651 struct av_decision *avd,
652 struct extended_perms *xperms)
653{
654 struct constraint_node *constraint;
655 struct role_allow *ra;
656 struct avtab_key avkey;
657 struct avtab_node *node;
658 struct class_datum *tclass_datum;
659 struct ebitmap *sattr, *tattr;
660 struct ebitmap_node *snode, *tnode;
661 unsigned int i, j;
662
663 avd->allowed = 0;
664 avd->auditallow = 0;
665 avd->auditdeny = 0xffffffff;
666 if (xperms) {
667 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
668 xperms->len = 0;
669 }
670
671 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
672 if (printk_ratelimit())
673 printk(KERN_WARNING "SELinux: Invalid class %hu\n", tclass);
674 return;
675 }
676
677 tclass_datum = policydb.class_val_to_struct[tclass - 1];
678
679 /*
680 * If a specific type enforcement rule was defined for
681 * this permission check, then use it.
682 */
683 avkey.target_class = tclass;
684 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
685 sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
686 BUG_ON(!sattr);
687 tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
688 BUG_ON(!tattr);
689 ebitmap_for_each_positive_bit(sattr, snode, i) {
690 ebitmap_for_each_positive_bit(tattr, tnode, j) {
691 avkey.source_type = i + 1;
692 avkey.target_type = j + 1;
693 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
694 node;
695 node = avtab_search_node_next(node, avkey.specified)) {
696 if (node->key.specified == AVTAB_ALLOWED)
697 avd->allowed |= node->datum.u.data;
698 else if (node->key.specified == AVTAB_AUDITALLOW)
699 avd->auditallow |= node->datum.u.data;
700 else if (node->key.specified == AVTAB_AUDITDENY)
701 avd->auditdeny &= node->datum.u.data;
702 else if (xperms && (node->key.specified & AVTAB_XPERMS))
703 services_compute_xperms_drivers(xperms, node);
704 }
705
706 /* Check conditional av table for additional permissions */
707 cond_compute_av(&policydb.te_cond_avtab, &avkey,
708 avd, xperms);
709
710 }
711 }
712
713 /*
714 * Remove any permissions prohibited by a constraint (this includes
715 * the MLS policy).
716 */
717 constraint = tclass_datum->constraints;
718 while (constraint) {
719 if ((constraint->permissions & (avd->allowed)) &&
720 !constraint_expr_eval(scontext, tcontext, NULL,
721 constraint->expr)) {
722 avd->allowed &= ~(constraint->permissions);
723 }
724 constraint = constraint->next;
725 }
726
727 /*
728 * If checking process transition permission and the
729 * role is changing, then check the (current_role, new_role)
730 * pair.
731 */
732 if (tclass == policydb.process_class &&
733 (avd->allowed & policydb.process_trans_perms) &&
734 scontext->role != tcontext->role) {
735 for (ra = policydb.role_allow; ra; ra = ra->next) {
736 if (scontext->role == ra->role &&
737 tcontext->role == ra->new_role)
738 break;
739 }
740 if (!ra)
741 avd->allowed &= ~policydb.process_trans_perms;
742 }
743
744 /*
745 * If the given source and target types have boundary
746 * constraint, lazy checks have to mask any violated
747 * permission and notice it to userspace via audit.
748 */
749 type_attribute_bounds_av(scontext, tcontext,
750 tclass, avd);
751}
752
753static int security_validtrans_handle_fail(struct context *ocontext,
754 struct context *ncontext,
755 struct context *tcontext,
756 u16 tclass)
757{
758 char *o = NULL, *n = NULL, *t = NULL;
759 u32 olen, nlen, tlen;
760
761 if (context_struct_to_string(ocontext, &o, &olen))
762 goto out;
763 if (context_struct_to_string(ncontext, &n, &nlen))
764 goto out;
765 if (context_struct_to_string(tcontext, &t, &tlen))
766 goto out;
767 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
768 "op=security_validate_transition seresult=denied"
769 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
770 o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
771out:
772 kfree(o);
773 kfree(n);
774 kfree(t);
775
776 if (!selinux_enforcing)
777 return 0;
778 return -EPERM;
779}
780
781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
782 u16 orig_tclass, bool user)
783{
784 struct context *ocontext;
785 struct context *ncontext;
786 struct context *tcontext;
787 struct class_datum *tclass_datum;
788 struct constraint_node *constraint;
789 u16 tclass;
790 int rc = 0;
791
792 if (!ss_initialized)
793 return 0;
794
795 read_lock(&policy_rwlock);
796
797 if (!user)
798 tclass = unmap_class(orig_tclass);
799 else
800 tclass = orig_tclass;
801
802 if (!tclass || tclass > policydb.p_classes.nprim) {
803 rc = -EINVAL;
804 goto out;
805 }
806 tclass_datum = policydb.class_val_to_struct[tclass - 1];
807
808 ocontext = sidtab_search(&sidtab, oldsid);
809 if (!ocontext) {
810 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
811 __func__, oldsid);
812 rc = -EINVAL;
813 goto out;
814 }
815
816 ncontext = sidtab_search(&sidtab, newsid);
817 if (!ncontext) {
818 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
819 __func__, newsid);
820 rc = -EINVAL;
821 goto out;
822 }
823
824 tcontext = sidtab_search(&sidtab, tasksid);
825 if (!tcontext) {
826 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
827 __func__, tasksid);
828 rc = -EINVAL;
829 goto out;
830 }
831
832 constraint = tclass_datum->validatetrans;
833 while (constraint) {
834 if (!constraint_expr_eval(ocontext, ncontext, tcontext,
835 constraint->expr)) {
836 if (user)
837 rc = -EPERM;
838 else
839 rc = security_validtrans_handle_fail(ocontext,
840 ncontext,
841 tcontext,
842 tclass);
843 goto out;
844 }
845 constraint = constraint->next;
846 }
847
848out:
849 read_unlock(&policy_rwlock);
850 return rc;
851}
852
853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
854 u16 tclass)
855{
856 return security_compute_validatetrans(oldsid, newsid, tasksid,
857 tclass, true);
858}
859
860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
861 u16 orig_tclass)
862{
863 return security_compute_validatetrans(oldsid, newsid, tasksid,
864 orig_tclass, false);
865}
866
867/*
868 * security_bounded_transition - check whether the given
869 * transition is directed to bounded, or not.
870 * It returns 0, if @newsid is bounded by @oldsid.
871 * Otherwise, it returns error code.
872 *
873 * @oldsid : current security identifier
874 * @newsid : destinated security identifier
875 */
876int security_bounded_transition(u32 old_sid, u32 new_sid)
877{
878 struct context *old_context, *new_context;
879 struct type_datum *type;
880 int index;
881 int rc;
882
883 read_lock(&policy_rwlock);
884
885 rc = -EINVAL;
886 old_context = sidtab_search(&sidtab, old_sid);
887 if (!old_context) {
888 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
889 __func__, old_sid);
890 goto out;
891 }
892
893 rc = -EINVAL;
894 new_context = sidtab_search(&sidtab, new_sid);
895 if (!new_context) {
896 printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
897 __func__, new_sid);
898 goto out;
899 }
900
901 rc = 0;
902 /* type/domain unchanged */
903 if (old_context->type == new_context->type)
904 goto out;
905
906 index = new_context->type;
907 while (true) {
908 type = flex_array_get_ptr(policydb.type_val_to_struct_array,
909 index - 1);
910 BUG_ON(!type);
911
912 /* not bounded anymore */
913 rc = -EPERM;
914 if (!type->bounds)
915 break;
916
917 /* @newsid is bounded by @oldsid */
918 rc = 0;
919 if (type->bounds == old_context->type)
920 break;
921
922 index = type->bounds;
923 }
924
925 if (rc) {
926 char *old_name = NULL;
927 char *new_name = NULL;
928 u32 length;
929
930 if (!context_struct_to_string(old_context,
931 &old_name, &length) &&
932 !context_struct_to_string(new_context,
933 &new_name, &length)) {
934 audit_log(current->audit_context,
935 GFP_ATOMIC, AUDIT_SELINUX_ERR,
936 "op=security_bounded_transition "
937 "seresult=denied "
938 "oldcontext=%s newcontext=%s",
939 old_name, new_name);
940 }
941 kfree(new_name);
942 kfree(old_name);
943 }
944out:
945 read_unlock(&policy_rwlock);
946
947 return rc;
948}
949
950static void avd_init(struct av_decision *avd)
951{
952 avd->allowed = 0;
953 avd->auditallow = 0;
954 avd->auditdeny = 0xffffffff;
955 avd->seqno = latest_granting;
956 avd->flags = 0;
957}
958
959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
960 struct avtab_node *node)
961{
962 unsigned int i;
963
964 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
965 if (xpermd->driver != node->datum.u.xperms->driver)
966 return;
967 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
968 if (!security_xperm_test(node->datum.u.xperms->perms.p,
969 xpermd->driver))
970 return;
971 } else {
972 BUG();
973 }
974
975 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
976 xpermd->used |= XPERMS_ALLOWED;
977 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
978 memset(xpermd->allowed->p, 0xff,
979 sizeof(xpermd->allowed->p));
980 }
981 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
982 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
983 xpermd->allowed->p[i] |=
984 node->datum.u.xperms->perms.p[i];
985 }
986 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
987 xpermd->used |= XPERMS_AUDITALLOW;
988 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
989 memset(xpermd->auditallow->p, 0xff,
990 sizeof(xpermd->auditallow->p));
991 }
992 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
993 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
994 xpermd->auditallow->p[i] |=
995 node->datum.u.xperms->perms.p[i];
996 }
997 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
998 xpermd->used |= XPERMS_DONTAUDIT;
999 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000 memset(xpermd->dontaudit->p, 0xff,
1001 sizeof(xpermd->dontaudit->p));
1002 }
1003 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005 xpermd->dontaudit->p[i] |=
1006 node->datum.u.xperms->perms.p[i];
1007 }
1008 } else {
1009 BUG();
1010 }
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014 u32 tsid,
1015 u16 orig_tclass,
1016 u8 driver,
1017 struct extended_perms_decision *xpermd)
1018{
1019 u16 tclass;
1020 struct context *scontext, *tcontext;
1021 struct avtab_key avkey;
1022 struct avtab_node *node;
1023 struct ebitmap *sattr, *tattr;
1024 struct ebitmap_node *snode, *tnode;
1025 unsigned int i, j;
1026
1027 xpermd->driver = driver;
1028 xpermd->used = 0;
1029 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033 read_lock(&policy_rwlock);
1034 if (!ss_initialized)
1035 goto allow;
1036
1037 scontext = sidtab_search(&sidtab, ssid);
1038 if (!scontext) {
1039 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1040 __func__, ssid);
1041 goto out;
1042 }
1043
1044 tcontext = sidtab_search(&sidtab, tsid);
1045 if (!tcontext) {
1046 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1047 __func__, tsid);
1048 goto out;
1049 }
1050
1051 tclass = unmap_class(orig_tclass);
1052 if (unlikely(orig_tclass && !tclass)) {
1053 if (policydb.allow_unknown)
1054 goto allow;
1055 goto out;
1056 }
1057
1058
1059 if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1061 goto out;
1062 }
1063
1064 avkey.target_class = tclass;
1065 avkey.specified = AVTAB_XPERMS;
1066 sattr = flex_array_get(policydb.type_attr_map_array,
1067 scontext->type - 1);
1068 BUG_ON(!sattr);
1069 tattr = flex_array_get(policydb.type_attr_map_array,
1070 tcontext->type - 1);
1071 BUG_ON(!tattr);
1072 ebitmap_for_each_positive_bit(sattr, snode, i) {
1073 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074 avkey.source_type = i + 1;
1075 avkey.target_type = j + 1;
1076 for (node = avtab_search_node(&policydb.te_avtab, &avkey);
1077 node;
1078 node = avtab_search_node_next(node, avkey.specified))
1079 services_compute_xperms_decision(xpermd, node);
1080
1081 cond_compute_xperms(&policydb.te_cond_avtab,
1082 &avkey, xpermd);
1083 }
1084 }
1085out:
1086 read_unlock(&policy_rwlock);
1087 return;
1088allow:
1089 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090 goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
1105 u32 tsid,
1106 u16 orig_tclass,
1107 struct av_decision *avd,
1108 struct extended_perms *xperms)
1109{
1110 u16 tclass;
1111 struct context *scontext = NULL, *tcontext = NULL;
1112
1113 read_lock(&policy_rwlock);
1114 avd_init(avd);
1115 xperms->len = 0;
1116 if (!ss_initialized)
1117 goto allow;
1118
1119 scontext = sidtab_search(&sidtab, ssid);
1120 if (!scontext) {
1121 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1122 __func__, ssid);
1123 goto out;
1124 }
1125
1126 /* permissive domain? */
1127 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128 avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130 tcontext = sidtab_search(&sidtab, tsid);
1131 if (!tcontext) {
1132 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1133 __func__, tsid);
1134 goto out;
1135 }
1136
1137 tclass = unmap_class(orig_tclass);
1138 if (unlikely(orig_tclass && !tclass)) {
1139 if (policydb.allow_unknown)
1140 goto allow;
1141 goto out;
1142 }
1143 context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144 map_decision(orig_tclass, avd, policydb.allow_unknown);
1145out:
1146 read_unlock(&policy_rwlock);
1147 return;
1148allow:
1149 avd->allowed = 0xffffffff;
1150 goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154 u32 tsid,
1155 u16 tclass,
1156 struct av_decision *avd)
1157{
1158 struct context *scontext = NULL, *tcontext = NULL;
1159
1160 read_lock(&policy_rwlock);
1161 avd_init(avd);
1162 if (!ss_initialized)
1163 goto allow;
1164
1165 scontext = sidtab_search(&sidtab, ssid);
1166 if (!scontext) {
1167 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1168 __func__, ssid);
1169 goto out;
1170 }
1171
1172 /* permissive domain? */
1173 if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174 avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176 tcontext = sidtab_search(&sidtab, tsid);
1177 if (!tcontext) {
1178 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1179 __func__, tsid);
1180 goto out;
1181 }
1182
1183 if (unlikely(!tclass)) {
1184 if (policydb.allow_unknown)
1185 goto allow;
1186 goto out;
1187 }
1188
1189 context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
1190 out:
1191 read_unlock(&policy_rwlock);
1192 return;
1193allow:
1194 avd->allowed = 0xffffffff;
1195 goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size. Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
1206{
1207 char *scontextp;
1208
1209 if (scontext)
1210 *scontext = NULL;
1211 *scontext_len = 0;
1212
1213 if (context->len) {
1214 *scontext_len = context->len;
1215 if (scontext) {
1216 *scontext = kstrdup(context->str, GFP_ATOMIC);
1217 if (!(*scontext))
1218 return -ENOMEM;
1219 }
1220 return 0;
1221 }
1222
1223 /* Compute the size of the context. */
1224 *scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225 *scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226 *scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227 *scontext_len += mls_compute_context_len(context);
1228
1229 if (!scontext)
1230 return 0;
1231
1232 /* Allocate space for the context; caller must free this space. */
1233 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234 if (!scontextp)
1235 return -ENOMEM;
1236 *scontext = scontextp;
1237
1238 /*
1239 * Copy the user name, role name and type name into the context.
1240 */
1241 scontextp += sprintf(scontextp, "%s:%s:%s",
1242 sym_name(&policydb, SYM_USERS, context->user - 1),
1243 sym_name(&policydb, SYM_ROLES, context->role - 1),
1244 sym_name(&policydb, SYM_TYPES, context->type - 1));
1245
1246 mls_sid_to_context(context, &scontextp);
1247
1248 *scontextp = 0;
1249
1250 return 0;
1251}
1252
1253#include "initial_sid_to_string.h"
1254
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257 if (unlikely(sid > SECINITSID_NUM))
1258 return NULL;
1259 return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263 u32 *scontext_len, int force)
1264{
1265 struct context *context;
1266 int rc = 0;
1267
1268 if (scontext)
1269 *scontext = NULL;
1270 *scontext_len = 0;
1271
1272 if (!ss_initialized) {
1273 if (sid <= SECINITSID_NUM) {
1274 char *scontextp;
1275
1276 *scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1277 if (!scontext)
1278 goto out;
1279 scontextp = kmemdup(initial_sid_to_string[sid],
1280 *scontext_len, GFP_ATOMIC);
1281 if (!scontextp) {
1282 rc = -ENOMEM;
1283 goto out;
1284 }
1285 *scontext = scontextp;
1286 goto out;
1287 }
1288 printk(KERN_ERR "SELinux: %s: called before initial "
1289 "load_policy on unknown SID %d\n", __func__, sid);
1290 rc = -EINVAL;
1291 goto out;
1292 }
1293 read_lock(&policy_rwlock);
1294 if (force)
1295 context = sidtab_search_force(&sidtab, sid);
1296 else
1297 context = sidtab_search(&sidtab, sid);
1298 if (!context) {
1299 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1300 __func__, sid);
1301 rc = -EINVAL;
1302 goto out_unlock;
1303 }
1304 rc = context_struct_to_string(context, scontext, scontext_len);
1305out_unlock:
1306 read_unlock(&policy_rwlock);
1307out:
1308 return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size. Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1323{
1324 return security_sid_to_context_core(sid, scontext, scontext_len, 0);
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
1328{
1329 return security_sid_to_context_core(sid, scontext, scontext_len, 1);
1330}
1331
1332/*
1333 * Caveat: Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336 struct sidtab *sidtabp,
1337 char *scontext,
1338 u32 scontext_len,
1339 struct context *ctx,
1340 u32 def_sid)
1341{
1342 struct role_datum *role;
1343 struct type_datum *typdatum;
1344 struct user_datum *usrdatum;
1345 char *scontextp, *p, oldc;
1346 int rc = 0;
1347
1348 context_init(ctx);
1349
1350 /* Parse the security context. */
1351
1352 rc = -EINVAL;
1353 scontextp = (char *) scontext;
1354
1355 /* Extract the user. */
1356 p = scontextp;
1357 while (*p && *p != ':')
1358 p++;
1359
1360 if (*p == 0)
1361 goto out;
1362
1363 *p++ = 0;
1364
1365 usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366 if (!usrdatum)
1367 goto out;
1368
1369 ctx->user = usrdatum->value;
1370
1371 /* Extract role. */
1372 scontextp = p;
1373 while (*p && *p != ':')
1374 p++;
1375
1376 if (*p == 0)
1377 goto out;
1378
1379 *p++ = 0;
1380
1381 role = hashtab_search(pol->p_roles.table, scontextp);
1382 if (!role)
1383 goto out;
1384 ctx->role = role->value;
1385
1386 /* Extract type. */
1387 scontextp = p;
1388 while (*p && *p != ':')
1389 p++;
1390 oldc = *p;
1391 *p++ = 0;
1392
1393 typdatum = hashtab_search(pol->p_types.table, scontextp);
1394 if (!typdatum || typdatum->attribute)
1395 goto out;
1396
1397 ctx->type = typdatum->value;
1398
1399 rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400 if (rc)
1401 goto out;
1402
1403 rc = -EINVAL;
1404 if ((p - scontext) < scontext_len)
1405 goto out;
1406
1407 /* Check the validity of the new context. */
1408 if (!policydb_context_isvalid(pol, ctx))
1409 goto out;
1410 rc = 0;
1411out:
1412 if (rc)
1413 context_destroy(ctx);
1414 return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1418 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419 int force)
1420{
1421 char *scontext2, *str = NULL;
1422 struct context context;
1423 int rc = 0;
1424
1425 /* An empty security context is never valid. */
1426 if (!scontext_len)
1427 return -EINVAL;
1428
1429 if (!ss_initialized) {
1430 int i;
1431
1432 for (i = 1; i < SECINITSID_NUM; i++) {
1433 if (!strcmp(initial_sid_to_string[i], scontext)) {
1434 *sid = i;
1435 return 0;
1436 }
1437 }
1438 *sid = SECINITSID_KERNEL;
1439 return 0;
1440 }
1441 *sid = SECSID_NULL;
1442
1443 /* Copy the string so that we can modify the copy as we parse it. */
1444 scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445 if (!scontext2)
1446 return -ENOMEM;
1447 memcpy(scontext2, scontext, scontext_len);
1448 scontext2[scontext_len] = 0;
1449
1450 if (force) {
1451 /* Save another copy for storing in uninterpreted form */
1452 rc = -ENOMEM;
1453 str = kstrdup(scontext2, gfp_flags);
1454 if (!str)
1455 goto out;
1456 }
1457
1458 read_lock(&policy_rwlock);
1459 rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460 scontext_len, &context, def_sid);
1461 if (rc == -EINVAL && force) {
1462 context.str = str;
1463 context.len = scontext_len;
1464 str = NULL;
1465 } else if (rc)
1466 goto out_unlock;
1467 rc = sidtab_context_to_sid(&sidtab, &context, sid);
1468 context_destroy(&context);
1469out_unlock:
1470 read_unlock(&policy_rwlock);
1471out:
1472 kfree(scontext2);
1473 kfree(str);
1474 return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1490 gfp_t gfp)
1491{
1492 return security_context_to_sid_core(scontext, scontext_len,
1493 sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1497{
1498 return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1520 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522 return security_context_to_sid_core(scontext, scontext_len,
1523 sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1527 u32 *sid)
1528{
1529 return security_context_to_sid_core(scontext, scontext_len,
1530 sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
1534 struct context *scontext,
1535 struct context *tcontext,
1536 u16 tclass,
1537 struct context *newcontext)
1538{
1539 char *s = NULL, *t = NULL, *n = NULL;
1540 u32 slen, tlen, nlen;
1541
1542 if (context_struct_to_string(scontext, &s, &slen))
1543 goto out;
1544 if (context_struct_to_string(tcontext, &t, &tlen))
1545 goto out;
1546 if (context_struct_to_string(newcontext, &n, &nlen))
1547 goto out;
1548 audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549 "op=security_compute_sid invalid_context=%s"
1550 " scontext=%s"
1551 " tcontext=%s"
1552 " tclass=%s",
1553 n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
1554out:
1555 kfree(s);
1556 kfree(t);
1557 kfree(n);
1558 if (!selinux_enforcing)
1559 return 0;
1560 return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
1564 u32 stype, u32 ttype, u16 tclass,
1565 const char *objname)
1566{
1567 struct filename_trans ft;
1568 struct filename_trans_datum *otype;
1569
1570 /*
1571 * Most filename trans rules are going to live in specific directories
1572 * like /dev or /var/run. This bitmap will quickly skip rule searches
1573 * if the ttype does not contain any rules.
1574 */
1575 if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576 return;
1577
1578 ft.stype = stype;
1579 ft.ttype = ttype;
1580 ft.tclass = tclass;
1581 ft.name = objname;
1582
1583 otype = hashtab_search(p->filename_trans, &ft);
1584 if (otype)
1585 newcontext->type = otype->otype;
1586}
1587
1588static int security_compute_sid(u32 ssid,
1589 u32 tsid,
1590 u16 orig_tclass,
1591 u32 specified,
1592 const char *objname,
1593 u32 *out_sid,
1594 bool kern)
1595{
1596 struct class_datum *cladatum = NULL;
1597 struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598 struct role_trans *roletr = NULL;
1599 struct avtab_key avkey;
1600 struct avtab_datum *avdatum;
1601 struct avtab_node *node;
1602 u16 tclass;
1603 int rc = 0;
1604 bool sock;
1605
1606 if (!ss_initialized) {
1607 switch (orig_tclass) {
1608 case SECCLASS_PROCESS: /* kernel value */
1609 *out_sid = ssid;
1610 break;
1611 default:
1612 *out_sid = tsid;
1613 break;
1614 }
1615 goto out;
1616 }
1617
1618 context_init(&newcontext);
1619
1620 read_lock(&policy_rwlock);
1621
1622 if (kern) {
1623 tclass = unmap_class(orig_tclass);
1624 sock = security_is_socket_class(orig_tclass);
1625 } else {
1626 tclass = orig_tclass;
1627 sock = security_is_socket_class(map_class(tclass));
1628 }
1629
1630 scontext = sidtab_search(&sidtab, ssid);
1631 if (!scontext) {
1632 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1633 __func__, ssid);
1634 rc = -EINVAL;
1635 goto out_unlock;
1636 }
1637 tcontext = sidtab_search(&sidtab, tsid);
1638 if (!tcontext) {
1639 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
1640 __func__, tsid);
1641 rc = -EINVAL;
1642 goto out_unlock;
1643 }
1644
1645 if (tclass && tclass <= policydb.p_classes.nprim)
1646 cladatum = policydb.class_val_to_struct[tclass - 1];
1647
1648 /* Set the user identity. */
1649 switch (specified) {
1650 case AVTAB_TRANSITION:
1651 case AVTAB_CHANGE:
1652 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653 newcontext.user = tcontext->user;
1654 } else {
1655 /* notice this gets both DEFAULT_SOURCE and unset */
1656 /* Use the process user identity. */
1657 newcontext.user = scontext->user;
1658 }
1659 break;
1660 case AVTAB_MEMBER:
1661 /* Use the related object owner. */
1662 newcontext.user = tcontext->user;
1663 break;
1664 }
1665
1666 /* Set the role to default values. */
1667 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1668 newcontext.role = scontext->role;
1669 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670 newcontext.role = tcontext->role;
1671 } else {
1672 if ((tclass == policydb.process_class) || (sock == true))
1673 newcontext.role = scontext->role;
1674 else
1675 newcontext.role = OBJECT_R_VAL;
1676 }
1677
1678 /* Set the type to default values. */
1679 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680 newcontext.type = scontext->type;
1681 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682 newcontext.type = tcontext->type;
1683 } else {
1684 if ((tclass == policydb.process_class) || (sock == true)) {
1685 /* Use the type of process. */
1686 newcontext.type = scontext->type;
1687 } else {
1688 /* Use the type of the related object. */
1689 newcontext.type = tcontext->type;
1690 }
1691 }
1692
1693 /* Look for a type transition/member/change rule. */
1694 avkey.source_type = scontext->type;
1695 avkey.target_type = tcontext->type;
1696 avkey.target_class = tclass;
1697 avkey.specified = specified;
1698 avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700 /* If no permanent rule, also check for enabled conditional rules */
1701 if (!avdatum) {
1702 node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703 for (; node; node = avtab_search_node_next(node, specified)) {
1704 if (node->key.specified & AVTAB_ENABLED) {
1705 avdatum = &node->datum;
1706 break;
1707 }
1708 }
1709 }
1710
1711 if (avdatum) {
1712 /* Use the type from the type transition/member/change rule. */
1713 newcontext.type = avdatum->u.data;
1714 }
1715
1716 /* if we have a objname this is a file trans check so check those rules */
1717 if (objname)
1718 filename_compute_type(&policydb, &newcontext, scontext->type,
1719 tcontext->type, tclass, objname);
1720
1721 /* Check for class-specific changes. */
1722 if (specified & AVTAB_TRANSITION) {
1723 /* Look for a role transition rule. */
1724 for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1725 if ((roletr->role == scontext->role) &&
1726 (roletr->type == tcontext->type) &&
1727 (roletr->tclass == tclass)) {
1728 /* Use the role transition rule. */
1729 newcontext.role = roletr->new_role;
1730 break;
1731 }
1732 }
1733 }
1734
1735 /* Set the MLS attributes.
1736 This is done last because it may allocate memory. */
1737 rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738 &newcontext, sock);
1739 if (rc)
1740 goto out_unlock;
1741
1742 /* Check the validity of the context. */
1743 if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744 rc = compute_sid_handle_invalid_context(scontext,
1745 tcontext,
1746 tclass,
1747 &newcontext);
1748 if (rc)
1749 goto out_unlock;
1750 }
1751 /* Obtain the sid for the context. */
1752 rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1753out_unlock:
1754 read_unlock(&policy_rwlock);
1755 context_destroy(&newcontext);
1756out:
1757 return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1774 const struct qstr *qstr, u32 *out_sid)
1775{
1776 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1777 qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1781 const char *objname, u32 *out_sid)
1782{
1783 return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
1784 objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
1801 u32 tsid,
1802 u16 tclass,
1803 u32 *out_sid)
1804{
1805 return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
1806 out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
1823 u32 tsid,
1824 u16 tclass,
1825 u32 *out_sid)
1826{
1827 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1828 out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833 struct context *context,
1834 void *arg)
1835{
1836 struct sidtab *s = arg;
1837
1838 if (sid > SECINITSID_NUM)
1839 return sidtab_insert(s, sid, context);
1840 else
1841 return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
1846 char *s;
1847 u32 len;
1848
1849 if (selinux_enforcing)
1850 return -EINVAL;
1851
1852 if (!context_struct_to_string(context, &s, &len)) {
1853 printk(KERN_WARNING "SELinux: Context %s would be invalid if enforcing\n", s);
1854 kfree(s);
1855 }
1856 return 0;
1857}
1858
1859struct convert_context_args {
1860 struct policydb *oldp;
1861 struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'. Verify that the
1869 * context is valid under the new policy.
1870 */
1871static int convert_context(u32 key,
1872 struct context *c,
1873 void *p)
1874{
1875 struct convert_context_args *args;
1876 struct context oldc;
1877 struct ocontext *oc;
1878 struct mls_range *range;
1879 struct role_datum *role;
1880 struct type_datum *typdatum;
1881 struct user_datum *usrdatum;
1882 char *s;
1883 u32 len;
1884 int rc = 0;
1885
1886 if (key <= SECINITSID_NUM)
1887 goto out;
1888
1889 args = p;
1890
1891 if (c->str) {
1892 struct context ctx;
1893
1894 rc = -ENOMEM;
1895 s = kstrdup(c->str, GFP_KERNEL);
1896 if (!s)
1897 goto out;
1898
1899 rc = string_to_context_struct(args->newp, NULL, s,
1900 c->len, &ctx, SECSID_NULL);
1901 kfree(s);
1902 if (!rc) {
1903 printk(KERN_INFO "SELinux: Context %s became valid (mapped).\n",
1904 c->str);
1905 /* Replace string with mapped representation. */
1906 kfree(c->str);
1907 memcpy(c, &ctx, sizeof(*c));
1908 goto out;
1909 } else if (rc == -EINVAL) {
1910 /* Retain string representation for later mapping. */
1911 rc = 0;
1912 goto out;
1913 } else {
1914 /* Other error condition, e.g. ENOMEM. */
1915 printk(KERN_ERR "SELinux: Unable to map context %s, rc = %d.\n",
1916 c->str, -rc);
1917 goto out;
1918 }
1919 }
1920
1921 rc = context_cpy(&oldc, c);
1922 if (rc)
1923 goto out;
1924
1925 /* Convert the user. */
1926 rc = -EINVAL;
1927 usrdatum = hashtab_search(args->newp->p_users.table,
1928 sym_name(args->oldp, SYM_USERS, c->user - 1));
1929 if (!usrdatum)
1930 goto bad;
1931 c->user = usrdatum->value;
1932
1933 /* Convert the role. */
1934 rc = -EINVAL;
1935 role = hashtab_search(args->newp->p_roles.table,
1936 sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937 if (!role)
1938 goto bad;
1939 c->role = role->value;
1940
1941 /* Convert the type. */
1942 rc = -EINVAL;
1943 typdatum = hashtab_search(args->newp->p_types.table,
1944 sym_name(args->oldp, SYM_TYPES, c->type - 1));
1945 if (!typdatum)
1946 goto bad;
1947 c->type = typdatum->value;
1948
1949 /* Convert the MLS fields if dealing with MLS policies */
1950 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951 rc = mls_convert_context(args->oldp, args->newp, c);
1952 if (rc)
1953 goto bad;
1954 } else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955 /*
1956 * Switching between MLS and non-MLS policy:
1957 * free any storage used by the MLS fields in the
1958 * context for all existing entries in the sidtab.
1959 */
1960 mls_context_destroy(c);
1961 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962 /*
1963 * Switching between non-MLS and MLS policy:
1964 * ensure that the MLS fields of the context for all
1965 * existing entries in the sidtab are filled in with a
1966 * suitable default value, likely taken from one of the
1967 * initial SIDs.
1968 */
1969 oc = args->newp->ocontexts[OCON_ISID];
1970 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971 oc = oc->next;
1972 rc = -EINVAL;
1973 if (!oc) {
1974 printk(KERN_ERR "SELinux: unable to look up"
1975 " the initial SIDs list\n");
1976 goto bad;
1977 }
1978 range = &oc->context[0].range;
1979 rc = mls_range_set(c, range);
1980 if (rc)
1981 goto bad;
1982 }
1983
1984 /* Check the validity of the new context. */
1985 if (!policydb_context_isvalid(args->newp, c)) {
1986 rc = convert_context_handle_invalid_context(&oldc);
1987 if (rc)
1988 goto bad;
1989 }
1990
1991 context_destroy(&oldc);
1992
1993 rc = 0;
1994out:
1995 return rc;
1996bad:
1997 /* Map old representation to string and save it. */
1998 rc = context_struct_to_string(&oldc, &s, &len);
1999 if (rc)
2000 return rc;
2001 context_destroy(&oldc);
2002 context_destroy(c);
2003 c->str = s;
2004 c->len = len;
2005 printk(KERN_INFO "SELinux: Context %s became invalid (unmapped).\n",
2006 c->str);
2007 rc = 0;
2008 goto out;
2009}
2010
2011static void security_load_policycaps(void)
2012{
2013 selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014 POLICYDB_CAPABILITY_NETPEER);
2015 selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016 POLICYDB_CAPABILITY_OPENPERM);
2017 selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018 POLICYDB_CAPABILITY_ALWAYSNETWORK);
2019}
2020
2021static int security_preserve_bools(struct policydb *p);
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
2034{
2035 struct policydb *oldpolicydb, *newpolicydb;
2036 struct sidtab oldsidtab, newsidtab;
2037 struct selinux_mapping *oldmap, *map = NULL;
2038 struct convert_context_args args;
2039 u32 seqno;
2040 u16 map_size;
2041 int rc = 0;
2042 struct policy_file file = { data, len }, *fp = &file;
2043
2044 oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045 if (!oldpolicydb) {
2046 rc = -ENOMEM;
2047 goto out;
2048 }
2049 newpolicydb = oldpolicydb + 1;
2050
2051 if (!ss_initialized) {
2052 avtab_cache_init();
2053 rc = policydb_read(&policydb, fp);
2054 if (rc) {
2055 avtab_cache_destroy();
2056 goto out;
2057 }
2058
2059 policydb.len = len;
2060 rc = selinux_set_mapping(&policydb, secclass_map,
2061 ¤t_mapping,
2062 ¤t_mapping_size);
2063 if (rc) {
2064 policydb_destroy(&policydb);
2065 avtab_cache_destroy();
2066 goto out;
2067 }
2068
2069 rc = policydb_load_isids(&policydb, &sidtab);
2070 if (rc) {
2071 policydb_destroy(&policydb);
2072 avtab_cache_destroy();
2073 goto out;
2074 }
2075
2076 security_load_policycaps();
2077 ss_initialized = 1;
2078 seqno = ++latest_granting;
2079 selinux_complete_init();
2080 avc_ss_reset(seqno);
2081 selnl_notify_policyload(seqno);
2082 selinux_status_update_policyload(seqno);
2083 selinux_netlbl_cache_invalidate();
2084 selinux_xfrm_notify_policyload();
2085 goto out;
2086 }
2087
2088#if 0
2089 sidtab_hash_eval(&sidtab, "sids");
2090#endif
2091
2092 rc = policydb_read(newpolicydb, fp);
2093 if (rc)
2094 goto out;
2095
2096 newpolicydb->len = len;
2097 /* If switching between different policy types, log MLS status */
2098 if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099 printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100 else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101 printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103 rc = policydb_load_isids(newpolicydb, &newsidtab);
2104 if (rc) {
2105 printk(KERN_ERR "SELinux: unable to load the initial SIDs\n");
2106 policydb_destroy(newpolicydb);
2107 goto out;
2108 }
2109
2110 rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111 if (rc)
2112 goto err;
2113
2114 rc = security_preserve_bools(newpolicydb);
2115 if (rc) {
2116 printk(KERN_ERR "SELinux: unable to preserve booleans\n");
2117 goto err;
2118 }
2119
2120 /* Clone the SID table. */
2121 sidtab_shutdown(&sidtab);
2122
2123 rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124 if (rc)
2125 goto err;
2126
2127 /*
2128 * Convert the internal representations of contexts
2129 * in the new SID table.
2130 */
2131 args.oldp = &policydb;
2132 args.newp = newpolicydb;
2133 rc = sidtab_map(&newsidtab, convert_context, &args);
2134 if (rc) {
2135 printk(KERN_ERR "SELinux: unable to convert the internal"
2136 " representation of contexts in the new SID"
2137 " table\n");
2138 goto err;
2139 }
2140
2141 /* Save the old policydb and SID table to free later. */
2142 memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143 sidtab_set(&oldsidtab, &sidtab);
2144
2145 /* Install the new policydb and SID table. */
2146 write_lock_irq(&policy_rwlock);
2147 memcpy(&policydb, newpolicydb, sizeof(policydb));
2148 sidtab_set(&sidtab, &newsidtab);
2149 security_load_policycaps();
2150 oldmap = current_mapping;
2151 current_mapping = map;
2152 current_mapping_size = map_size;
2153 seqno = ++latest_granting;
2154 write_unlock_irq(&policy_rwlock);
2155
2156 /* Free the old policydb and SID table. */
2157 policydb_destroy(oldpolicydb);
2158 sidtab_destroy(&oldsidtab);
2159 kfree(oldmap);
2160
2161 avc_ss_reset(seqno);
2162 selnl_notify_policyload(seqno);
2163 selinux_status_update_policyload(seqno);
2164 selinux_netlbl_cache_invalidate();
2165 selinux_xfrm_notify_policyload();
2166
2167 rc = 0;
2168 goto out;
2169
2170err:
2171 kfree(map);
2172 sidtab_destroy(&newsidtab);
2173 policydb_destroy(newpolicydb);
2174
2175out:
2176 kfree(oldpolicydb);
2177 return rc;
2178}
2179
2180size_t security_policydb_len(void)
2181{
2182 size_t len;
2183
2184 read_lock(&policy_rwlock);
2185 len = policydb.len;
2186 read_unlock(&policy_rwlock);
2187
2188 return len;
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2198{
2199 struct ocontext *c;
2200 int rc = 0;
2201
2202 read_lock(&policy_rwlock);
2203
2204 c = policydb.ocontexts[OCON_PORT];
2205 while (c) {
2206 if (c->u.port.protocol == protocol &&
2207 c->u.port.low_port <= port &&
2208 c->u.port.high_port >= port)
2209 break;
2210 c = c->next;
2211 }
2212
2213 if (c) {
2214 if (!c->sid[0]) {
2215 rc = sidtab_context_to_sid(&sidtab,
2216 &c->context[0],
2217 &c->sid[0]);
2218 if (rc)
2219 goto out;
2220 }
2221 *out_sid = c->sid[0];
2222 } else {
2223 *out_sid = SECINITSID_PORT;
2224 }
2225
2226out:
2227 read_unlock(&policy_rwlock);
2228 return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
2237{
2238 int rc = 0;
2239 struct ocontext *c;
2240
2241 read_lock(&policy_rwlock);
2242
2243 c = policydb.ocontexts[OCON_NETIF];
2244 while (c) {
2245 if (strcmp(name, c->u.name) == 0)
2246 break;
2247 c = c->next;
2248 }
2249
2250 if (c) {
2251 if (!c->sid[0] || !c->sid[1]) {
2252 rc = sidtab_context_to_sid(&sidtab,
2253 &c->context[0],
2254 &c->sid[0]);
2255 if (rc)
2256 goto out;
2257 rc = sidtab_context_to_sid(&sidtab,
2258 &c->context[1],
2259 &c->sid[1]);
2260 if (rc)
2261 goto out;
2262 }
2263 *if_sid = c->sid[0];
2264 } else
2265 *if_sid = SECINITSID_NETIF;
2266
2267out:
2268 read_unlock(&policy_rwlock);
2269 return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274 int i, fail = 0;
2275
2276 for (i = 0; i < 4; i++)
2277 if (addr[i] != (input[i] & mask[i])) {
2278 fail = 1;
2279 break;
2280 }
2281
2282 return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
2293 void *addrp,
2294 u32 addrlen,
2295 u32 *out_sid)
2296{
2297 int rc;
2298 struct ocontext *c;
2299
2300 read_lock(&policy_rwlock);
2301
2302 switch (domain) {
2303 case AF_INET: {
2304 u32 addr;
2305
2306 rc = -EINVAL;
2307 if (addrlen != sizeof(u32))
2308 goto out;
2309
2310 addr = *((u32 *)addrp);
2311
2312 c = policydb.ocontexts[OCON_NODE];
2313 while (c) {
2314 if (c->u.node.addr == (addr & c->u.node.mask))
2315 break;
2316 c = c->next;
2317 }
2318 break;
2319 }
2320
2321 case AF_INET6:
2322 rc = -EINVAL;
2323 if (addrlen != sizeof(u64) * 2)
2324 goto out;
2325 c = policydb.ocontexts[OCON_NODE6];
2326 while (c) {
2327 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328 c->u.node6.mask))
2329 break;
2330 c = c->next;
2331 }
2332 break;
2333
2334 default:
2335 rc = 0;
2336 *out_sid = SECINITSID_NODE;
2337 goto out;
2338 }
2339
2340 if (c) {
2341 if (!c->sid[0]) {
2342 rc = sidtab_context_to_sid(&sidtab,
2343 &c->context[0],
2344 &c->sid[0]);
2345 if (rc)
2346 goto out;
2347 }
2348 *out_sid = c->sid[0];
2349 } else {
2350 *out_sid = SECINITSID_NODE;
2351 }
2352
2353 rc = 0;
2354out:
2355 read_unlock(&policy_rwlock);
2356 return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs. Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
2376 char *username,
2377 u32 **sids,
2378 u32 *nel)
2379{
2380 struct context *fromcon, usercon;
2381 u32 *mysids = NULL, *mysids2, sid;
2382 u32 mynel = 0, maxnel = SIDS_NEL;
2383 struct user_datum *user;
2384 struct role_datum *role;
2385 struct ebitmap_node *rnode, *tnode;
2386 int rc = 0, i, j;
2387
2388 *sids = NULL;
2389 *nel = 0;
2390
2391 if (!ss_initialized)
2392 goto out;
2393
2394 read_lock(&policy_rwlock);
2395
2396 context_init(&usercon);
2397
2398 rc = -EINVAL;
2399 fromcon = sidtab_search(&sidtab, fromsid);
2400 if (!fromcon)
2401 goto out_unlock;
2402
2403 rc = -EINVAL;
2404 user = hashtab_search(policydb.p_users.table, username);
2405 if (!user)
2406 goto out_unlock;
2407
2408 usercon.user = user->value;
2409
2410 rc = -ENOMEM;
2411 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412 if (!mysids)
2413 goto out_unlock;
2414
2415 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416 role = policydb.role_val_to_struct[i];
2417 usercon.role = i + 1;
2418 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419 usercon.type = j + 1;
2420
2421 if (mls_setup_user_range(fromcon, user, &usercon))
2422 continue;
2423
2424 rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2425 if (rc)
2426 goto out_unlock;
2427 if (mynel < maxnel) {
2428 mysids[mynel++] = sid;
2429 } else {
2430 rc = -ENOMEM;
2431 maxnel += SIDS_NEL;
2432 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433 if (!mysids2)
2434 goto out_unlock;
2435 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436 kfree(mysids);
2437 mysids = mysids2;
2438 mysids[mynel++] = sid;
2439 }
2440 }
2441 }
2442 rc = 0;
2443out_unlock:
2444 read_unlock(&policy_rwlock);
2445 if (rc || !mynel) {
2446 kfree(mysids);
2447 goto out;
2448 }
2449
2450 rc = -ENOMEM;
2451 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452 if (!mysids2) {
2453 kfree(mysids);
2454 goto out;
2455 }
2456 for (i = 0, j = 0; i < mynel; i++) {
2457 struct av_decision dummy_avd;
2458 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2459 SECCLASS_PROCESS, /* kernel value */
2460 PROCESS__TRANSITION, AVC_STRICT,
2461 &dummy_avd);
2462 if (!rc)
2463 mysids2[j++] = mysids[i];
2464 cond_resched();
2465 }
2466 rc = 0;
2467 kfree(mysids);
2468 *sids = mysids2;
2469 *nel = j;
2470out:
2471 return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
2488 char *path,
2489 u16 orig_sclass,
2490 u32 *sid)
2491{
2492 int len;
2493 u16 sclass;
2494 struct genfs *genfs;
2495 struct ocontext *c;
2496 int rc, cmp = 0;
2497
2498 while (path[0] == '/' && path[1] == '/')
2499 path++;
2500
2501 sclass = unmap_class(orig_sclass);
2502 *sid = SECINITSID_UNLABELED;
2503
2504 for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505 cmp = strcmp(fstype, genfs->fstype);
2506 if (cmp <= 0)
2507 break;
2508 }
2509
2510 rc = -ENOENT;
2511 if (!genfs || cmp)
2512 goto out;
2513
2514 for (c = genfs->head; c; c = c->next) {
2515 len = strlen(c->u.name);
2516 if ((!c->v.sclass || sclass == c->v.sclass) &&
2517 (strncmp(c->u.name, path, len) == 0))
2518 break;
2519 }
2520
2521 rc = -ENOENT;
2522 if (!c)
2523 goto out;
2524
2525 if (!c->sid[0]) {
2526 rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527 if (rc)
2528 goto out;
2529 }
2530
2531 *sid = c->sid[0];
2532 rc = 0;
2533out:
2534 return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
2548 char *path,
2549 u16 orig_sclass,
2550 u32 *sid)
2551{
2552 int retval;
2553
2554 read_lock(&policy_rwlock);
2555 retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556 read_unlock(&policy_rwlock);
2557 return retval;
2558}
2559
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
2563 */
2564int security_fs_use(struct super_block *sb)
2565{
2566 int rc = 0;
2567 struct ocontext *c;
2568 struct superblock_security_struct *sbsec = sb->s_security;
2569 const char *fstype = sb->s_type->name;
2570
2571 read_lock(&policy_rwlock);
2572
2573 c = policydb.ocontexts[OCON_FSUSE];
2574 while (c) {
2575 if (strcmp(fstype, c->u.name) == 0)
2576 break;
2577 c = c->next;
2578 }
2579
2580 if (c) {
2581 sbsec->behavior = c->v.behavior;
2582 if (!c->sid[0]) {
2583 rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584 &c->sid[0]);
2585 if (rc)
2586 goto out;
2587 }
2588 sbsec->sid = c->sid[0];
2589 } else {
2590 rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591 &sbsec->sid);
2592 if (rc) {
2593 sbsec->behavior = SECURITY_FS_USE_NONE;
2594 rc = 0;
2595 } else {
2596 sbsec->behavior = SECURITY_FS_USE_GENFS;
2597 }
2598 }
2599
2600out:
2601 read_unlock(&policy_rwlock);
2602 return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
2606{
2607 int i, rc;
2608
2609 read_lock(&policy_rwlock);
2610 *names = NULL;
2611 *values = NULL;
2612
2613 rc = 0;
2614 *len = policydb.p_bools.nprim;
2615 if (!*len)
2616 goto out;
2617
2618 rc = -ENOMEM;
2619 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620 if (!*names)
2621 goto err;
2622
2623 rc = -ENOMEM;
2624 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625 if (!*values)
2626 goto err;
2627
2628 for (i = 0; i < *len; i++) {
2629 (*values)[i] = policydb.bool_val_to_struct[i]->state;
2630
2631 rc = -ENOMEM;
2632 (*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
2633 if (!(*names)[i])
2634 goto err;
2635 }
2636 rc = 0;
2637out:
2638 read_unlock(&policy_rwlock);
2639 return rc;
2640err:
2641 if (*names) {
2642 for (i = 0; i < *len; i++)
2643 kfree((*names)[i]);
2644 }
2645 kfree(*values);
2646 goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
2652 int i, rc;
2653 int lenp, seqno = 0;
2654 struct cond_node *cur;
2655
2656 write_lock_irq(&policy_rwlock);
2657
2658 rc = -EFAULT;
2659 lenp = policydb.p_bools.nprim;
2660 if (len != lenp)
2661 goto out;
2662
2663 for (i = 0; i < len; i++) {
2664 if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665 audit_log(current->audit_context, GFP_ATOMIC,
2666 AUDIT_MAC_CONFIG_CHANGE,
2667 "bool=%s val=%d old_val=%d auid=%u ses=%u",
2668 sym_name(&policydb, SYM_BOOLS, i),
2669 !!values[i],
2670 policydb.bool_val_to_struct[i]->state,
2671 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672 audit_get_sessionid(current));
2673 }
2674 if (values[i])
2675 policydb.bool_val_to_struct[i]->state = 1;
2676 else
2677 policydb.bool_val_to_struct[i]->state = 0;
2678 }
2679
2680 for (cur = policydb.cond_list; cur; cur = cur->next) {
2681 rc = evaluate_cond_node(&policydb, cur);
2682 if (rc)
2683 goto out;
2684 }
2685
2686 seqno = ++latest_granting;
2687 rc = 0;
2688out:
2689 write_unlock_irq(&policy_rwlock);
2690 if (!rc) {
2691 avc_ss_reset(seqno);
2692 selnl_notify_policyload(seqno);
2693 selinux_status_update_policyload(seqno);
2694 selinux_xfrm_notify_policyload();
2695 }
2696 return rc;
2697}
2698
2699int security_get_bool_value(int bool)
2700{
2701 int rc;
2702 int len;
2703
2704 read_lock(&policy_rwlock);
2705
2706 rc = -EFAULT;
2707 len = policydb.p_bools.nprim;
2708 if (bool >= len)
2709 goto out;
2710
2711 rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713 read_unlock(&policy_rwlock);
2714 return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
2718{
2719 int rc, nbools = 0, *bvalues = NULL, i;
2720 char **bnames = NULL;
2721 struct cond_bool_datum *booldatum;
2722 struct cond_node *cur;
2723
2724 rc = security_get_bools(&nbools, &bnames, &bvalues);
2725 if (rc)
2726 goto out;
2727 for (i = 0; i < nbools; i++) {
2728 booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2729 if (booldatum)
2730 booldatum->state = bvalues[i];
2731 }
2732 for (cur = p->cond_list; cur; cur = cur->next) {
2733 rc = evaluate_cond_node(p, cur);
2734 if (rc)
2735 goto out;
2736 }
2737
2738out:
2739 if (bnames) {
2740 for (i = 0; i < nbools; i++)
2741 kfree(bnames[i]);
2742 }
2743 kfree(bnames);
2744 kfree(bvalues);
2745 return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2753{
2754 struct context *context1;
2755 struct context *context2;
2756 struct context newcon;
2757 char *s;
2758 u32 len;
2759 int rc;
2760
2761 rc = 0;
2762 if (!ss_initialized || !policydb.mls_enabled) {
2763 *new_sid = sid;
2764 goto out;
2765 }
2766
2767 context_init(&newcon);
2768
2769 read_lock(&policy_rwlock);
2770
2771 rc = -EINVAL;
2772 context1 = sidtab_search(&sidtab, sid);
2773 if (!context1) {
2774 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2775 __func__, sid);
2776 goto out_unlock;
2777 }
2778
2779 rc = -EINVAL;
2780 context2 = sidtab_search(&sidtab, mls_sid);
2781 if (!context2) {
2782 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2783 __func__, mls_sid);
2784 goto out_unlock;
2785 }
2786
2787 newcon.user = context1->user;
2788 newcon.role = context1->role;
2789 newcon.type = context1->type;
2790 rc = mls_context_cpy(&newcon, context2);
2791 if (rc)
2792 goto out_unlock;
2793
2794 /* Check the validity of the new context. */
2795 if (!policydb_context_isvalid(&policydb, &newcon)) {
2796 rc = convert_context_handle_invalid_context(&newcon);
2797 if (rc) {
2798 if (!context_struct_to_string(&newcon, &s, &len)) {
2799 audit_log(current->audit_context,
2800 GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801 "op=security_sid_mls_copy "
2802 "invalid_context=%s", s);
2803 kfree(s);
2804 }
2805 goto out_unlock;
2806 }
2807 }
2808
2809 rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2810out_unlock:
2811 read_unlock(&policy_rwlock);
2812 context_destroy(&newcon);
2813out:
2814 return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value. A table summarizing the behavior is below:
2828 *
2829 * | function return | @sid
2830 * ------------------------------+-----------------+-----------------
2831 * no peer labels | 0 | SECSID_NULL
2832 * single peer label | 0 | <peer_label>
2833 * multiple, consistent labels | 0 | <peer_label>
2834 * multiple, inconsistent labels | -<errno> | SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2838 u32 xfrm_sid,
2839 u32 *peer_sid)
2840{
2841 int rc;
2842 struct context *nlbl_ctx;
2843 struct context *xfrm_ctx;
2844
2845 *peer_sid = SECSID_NULL;
2846
2847 /* handle the common (which also happens to be the set of easy) cases
2848 * right away, these two if statements catch everything involving a
2849 * single or absent peer SID/label */
2850 if (xfrm_sid == SECSID_NULL) {
2851 *peer_sid = nlbl_sid;
2852 return 0;
2853 }
2854 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856 * is present */
2857 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858 *peer_sid = xfrm_sid;
2859 return 0;
2860 }
2861
2862 /* we don't need to check ss_initialized here since the only way both
2863 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864 * security server was initialized and ss_initialized was true */
2865 if (!policydb.mls_enabled)
2866 return 0;
2867
2868 read_lock(&policy_rwlock);
2869
2870 rc = -EINVAL;
2871 nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872 if (!nlbl_ctx) {
2873 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2874 __func__, nlbl_sid);
2875 goto out;
2876 }
2877 rc = -EINVAL;
2878 xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879 if (!xfrm_ctx) {
2880 printk(KERN_ERR "SELinux: %s: unrecognized SID %d\n",
2881 __func__, xfrm_sid);
2882 goto out;
2883 }
2884 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885 if (rc)
2886 goto out;
2887
2888 /* at present NetLabel SIDs/labels really only carry MLS
2889 * information so if the MLS portion of the NetLabel SID
2890 * matches the MLS portion of the labeled XFRM SID/label
2891 * then pass along the XFRM SID as it is the most
2892 * expressive */
2893 *peer_sid = xfrm_sid;
2894out:
2895 read_unlock(&policy_rwlock);
2896 return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901 struct class_datum *datum = d;
2902 char *name = k, **classes = args;
2903 int value = datum->value - 1;
2904
2905 classes[value] = kstrdup(name, GFP_ATOMIC);
2906 if (!classes[value])
2907 return -ENOMEM;
2908
2909 return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
2913{
2914 int rc;
2915
2916 read_lock(&policy_rwlock);
2917
2918 rc = -ENOMEM;
2919 *nclasses = policydb.p_classes.nprim;
2920 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921 if (!*classes)
2922 goto out;
2923
2924 rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925 *classes);
2926 if (rc) {
2927 int i;
2928 for (i = 0; i < *nclasses; i++)
2929 kfree((*classes)[i]);
2930 kfree(*classes);
2931 }
2932
2933out:
2934 read_unlock(&policy_rwlock);
2935 return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940 struct perm_datum *datum = d;
2941 char *name = k, **perms = args;
2942 int value = datum->value - 1;
2943
2944 perms[value] = kstrdup(name, GFP_ATOMIC);
2945 if (!perms[value])
2946 return -ENOMEM;
2947
2948 return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
2952{
2953 int rc, i;
2954 struct class_datum *match;
2955
2956 read_lock(&policy_rwlock);
2957
2958 rc = -EINVAL;
2959 match = hashtab_search(policydb.p_classes.table, class);
2960 if (!match) {
2961 printk(KERN_ERR "SELinux: %s: unrecognized class %s\n",
2962 __func__, class);
2963 goto out;
2964 }
2965
2966 rc = -ENOMEM;
2967 *nperms = match->permissions.nprim;
2968 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969 if (!*perms)
2970 goto out;
2971
2972 if (match->comdatum) {
2973 rc = hashtab_map(match->comdatum->permissions.table,
2974 get_permissions_callback, *perms);
2975 if (rc)
2976 goto err;
2977 }
2978
2979 rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980 *perms);
2981 if (rc)
2982 goto err;
2983
2984out:
2985 read_unlock(&policy_rwlock);
2986 return rc;
2987
2988err:
2989 read_unlock(&policy_rwlock);
2990 for (i = 0; i < *nperms; i++)
2991 kfree((*perms)[i]);
2992 kfree(*perms);
2993 return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998 return policydb.reject_unknown;
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003 return policydb.allow_unknown;
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap. Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
3017{
3018 int rc;
3019
3020 read_lock(&policy_rwlock);
3021 rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022 read_unlock(&policy_rwlock);
3023
3024 return rc;
3025}
3026
3027struct selinux_audit_rule {
3028 u32 au_seqno;
3029 struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034 struct selinux_audit_rule *rule = vrule;
3035
3036 if (rule) {
3037 context_destroy(&rule->au_ctxt);
3038 kfree(rule);
3039 }
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
3044 struct selinux_audit_rule *tmprule;
3045 struct role_datum *roledatum;
3046 struct type_datum *typedatum;
3047 struct user_datum *userdatum;
3048 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049 int rc = 0;
3050
3051 *rule = NULL;
3052
3053 if (!ss_initialized)
3054 return -EOPNOTSUPP;
3055
3056 switch (field) {
3057 case AUDIT_SUBJ_USER:
3058 case AUDIT_SUBJ_ROLE:
3059 case AUDIT_SUBJ_TYPE:
3060 case AUDIT_OBJ_USER:
3061 case AUDIT_OBJ_ROLE:
3062 case AUDIT_OBJ_TYPE:
3063 /* only 'equals' and 'not equals' fit user, role, and type */
3064 if (op != Audit_equal && op != Audit_not_equal)
3065 return -EINVAL;
3066 break;
3067 case AUDIT_SUBJ_SEN:
3068 case AUDIT_SUBJ_CLR:
3069 case AUDIT_OBJ_LEV_LOW:
3070 case AUDIT_OBJ_LEV_HIGH:
3071 /* we do not allow a range, indicated by the presence of '-' */
3072 if (strchr(rulestr, '-'))
3073 return -EINVAL;
3074 break;
3075 default:
3076 /* only the above fields are valid */
3077 return -EINVAL;
3078 }
3079
3080 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081 if (!tmprule)
3082 return -ENOMEM;
3083
3084 context_init(&tmprule->au_ctxt);
3085
3086 read_lock(&policy_rwlock);
3087
3088 tmprule->au_seqno = latest_granting;
3089
3090 switch (field) {
3091 case AUDIT_SUBJ_USER:
3092 case AUDIT_OBJ_USER:
3093 rc = -EINVAL;
3094 userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095 if (!userdatum)
3096 goto out;
3097 tmprule->au_ctxt.user = userdatum->value;
3098 break;
3099 case AUDIT_SUBJ_ROLE:
3100 case AUDIT_OBJ_ROLE:
3101 rc = -EINVAL;
3102 roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103 if (!roledatum)
3104 goto out;
3105 tmprule->au_ctxt.role = roledatum->value;
3106 break;
3107 case AUDIT_SUBJ_TYPE:
3108 case AUDIT_OBJ_TYPE:
3109 rc = -EINVAL;
3110 typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111 if (!typedatum)
3112 goto out;
3113 tmprule->au_ctxt.type = typedatum->value;
3114 break;
3115 case AUDIT_SUBJ_SEN:
3116 case AUDIT_SUBJ_CLR:
3117 case AUDIT_OBJ_LEV_LOW:
3118 case AUDIT_OBJ_LEV_HIGH:
3119 rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
3120 if (rc)
3121 goto out;
3122 break;
3123 }
3124 rc = 0;
3125out:
3126 read_unlock(&policy_rwlock);
3127
3128 if (rc) {
3129 selinux_audit_rule_free(tmprule);
3130 tmprule = NULL;
3131 }
3132
3133 *rule = tmprule;
3134
3135 return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141 int i;
3142
3143 for (i = 0; i < rule->field_count; i++) {
3144 struct audit_field *f = &rule->fields[i];
3145 switch (f->type) {
3146 case AUDIT_SUBJ_USER:
3147 case AUDIT_SUBJ_ROLE:
3148 case AUDIT_SUBJ_TYPE:
3149 case AUDIT_SUBJ_SEN:
3150 case AUDIT_SUBJ_CLR:
3151 case AUDIT_OBJ_USER:
3152 case AUDIT_OBJ_ROLE:
3153 case AUDIT_OBJ_TYPE:
3154 case AUDIT_OBJ_LEV_LOW:
3155 case AUDIT_OBJ_LEV_HIGH:
3156 return 1;
3157 }
3158 }
3159
3160 return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164 struct audit_context *actx)
3165{
3166 struct context *ctxt;
3167 struct mls_level *level;
3168 struct selinux_audit_rule *rule = vrule;
3169 int match = 0;
3170
3171 if (unlikely(!rule)) {
3172 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3173 return -ENOENT;
3174 }
3175
3176 read_lock(&policy_rwlock);
3177
3178 if (rule->au_seqno < latest_granting) {
3179 match = -ESTALE;
3180 goto out;
3181 }
3182
3183 ctxt = sidtab_search(&sidtab, sid);
3184 if (unlikely(!ctxt)) {
3185 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3186 sid);
3187 match = -ENOENT;
3188 goto out;
3189 }
3190
3191 /* a field/op pair that is not caught here will simply fall through
3192 without a match */
3193 switch (field) {
3194 case AUDIT_SUBJ_USER:
3195 case AUDIT_OBJ_USER:
3196 switch (op) {
3197 case Audit_equal:
3198 match = (ctxt->user == rule->au_ctxt.user);
3199 break;
3200 case Audit_not_equal:
3201 match = (ctxt->user != rule->au_ctxt.user);
3202 break;
3203 }
3204 break;
3205 case AUDIT_SUBJ_ROLE:
3206 case AUDIT_OBJ_ROLE:
3207 switch (op) {
3208 case Audit_equal:
3209 match = (ctxt->role == rule->au_ctxt.role);
3210 break;
3211 case Audit_not_equal:
3212 match = (ctxt->role != rule->au_ctxt.role);
3213 break;
3214 }
3215 break;
3216 case AUDIT_SUBJ_TYPE:
3217 case AUDIT_OBJ_TYPE:
3218 switch (op) {
3219 case Audit_equal:
3220 match = (ctxt->type == rule->au_ctxt.type);
3221 break;
3222 case Audit_not_equal:
3223 match = (ctxt->type != rule->au_ctxt.type);
3224 break;
3225 }
3226 break;
3227 case AUDIT_SUBJ_SEN:
3228 case AUDIT_SUBJ_CLR:
3229 case AUDIT_OBJ_LEV_LOW:
3230 case AUDIT_OBJ_LEV_HIGH:
3231 level = ((field == AUDIT_SUBJ_SEN ||
3232 field == AUDIT_OBJ_LEV_LOW) ?
3233 &ctxt->range.level[0] : &ctxt->range.level[1]);
3234 switch (op) {
3235 case Audit_equal:
3236 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237 level);
3238 break;
3239 case Audit_not_equal:
3240 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241 level);
3242 break;
3243 case Audit_lt:
3244 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245 level) &&
3246 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247 level));
3248 break;
3249 case Audit_le:
3250 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251 level);
3252 break;
3253 case Audit_gt:
3254 match = (mls_level_dom(level,
3255 &rule->au_ctxt.range.level[0]) &&
3256 !mls_level_eq(level,
3257 &rule->au_ctxt.range.level[0]));
3258 break;
3259 case Audit_ge:
3260 match = mls_level_dom(level,
3261 &rule->au_ctxt.range.level[0]);
3262 break;
3263 }
3264 }
3265
3266out:
3267 read_unlock(&policy_rwlock);
3268 return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
3274{
3275 int err = 0;
3276
3277 if (event == AVC_CALLBACK_RESET && aurule_callback)
3278 err = aurule_callback();
3279 return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284 int err;
3285
3286 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3287 if (err)
3288 panic("avc_add_callback() failed, error %d\n", err);
3289
3290 return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307 u32 sid)
3308{
3309 u32 *sid_cache;
3310
3311 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312 if (sid_cache == NULL)
3313 return;
3314 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315 if (secattr->cache == NULL) {
3316 kfree(sid_cache);
3317 return;
3318 }
3319
3320 *sid_cache = sid;
3321 secattr->cache->free = kfree;
3322 secattr->cache->data = sid_cache;
3323 secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID. If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups. Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3342 u32 *sid)
3343{
3344 int rc;
3345 struct context *ctx;
3346 struct context ctx_new;
3347
3348 if (!ss_initialized) {
3349 *sid = SECSID_NULL;
3350 return 0;
3351 }
3352
3353 read_lock(&policy_rwlock);
3354
3355 if (secattr->flags & NETLBL_SECATTR_CACHE)
3356 *sid = *(u32 *)secattr->cache->data;
3357 else if (secattr->flags & NETLBL_SECATTR_SECID)
3358 *sid = secattr->attr.secid;
3359 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360 rc = -EIDRM;
3361 ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362 if (ctx == NULL)
3363 goto out;
3364
3365 context_init(&ctx_new);
3366 ctx_new.user = ctx->user;
3367 ctx_new.role = ctx->role;
3368 ctx_new.type = ctx->type;
3369 mls_import_netlbl_lvl(&ctx_new, secattr);
3370 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371 rc = mls_import_netlbl_cat(&ctx_new, secattr);
3372 if (rc)
3373 goto out;
3374 }
3375 rc = -EIDRM;
3376 if (!mls_context_isvalid(&policydb, &ctx_new))
3377 goto out_free;
3378
3379 rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3380 if (rc)
3381 goto out_free;
3382
3383 security_netlbl_cache_add(secattr, *sid);
3384
3385 ebitmap_destroy(&ctx_new.range.level[0].cat);
3386 } else
3387 *sid = SECSID_NULL;
3388
3389 read_unlock(&policy_rwlock);
3390 return 0;
3391out_free:
3392 ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394 read_unlock(&policy_rwlock);
3395 return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3409{
3410 int rc;
3411 struct context *ctx;
3412
3413 if (!ss_initialized)
3414 return 0;
3415
3416 read_lock(&policy_rwlock);
3417
3418 rc = -ENOENT;
3419 ctx = sidtab_search(&sidtab, sid);
3420 if (ctx == NULL)
3421 goto out;
3422
3423 rc = -ENOMEM;
3424 secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425 GFP_ATOMIC);
3426 if (secattr->domain == NULL)
3427 goto out;
3428
3429 secattr->attr.secid = sid;
3430 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431 mls_export_netlbl_lvl(ctx, secattr);
3432 rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434 read_unlock(&policy_rwlock);
3435 return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
3446{
3447 int rc;
3448 struct policy_file fp;
3449
3450 if (!ss_initialized)
3451 return -EINVAL;
3452
3453 *len = security_policydb_len();
3454
3455 *data = vmalloc_user(*len);
3456 if (!*data)
3457 return -ENOMEM;
3458
3459 fp.data = *data;
3460 fp.len = *len;
3461
3462 read_lock(&policy_rwlock);
3463 rc = policydb_write(&policydb, &fp);
3464 read_unlock(&policy_rwlock);
3465
3466 if (rc)
3467 return rc;
3468
3469 *len = (unsigned long)fp.data - (unsigned long)*data;
3470 return 0;
3471
3472}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Implementation of the security services.
4 *
5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
6 * James Morris <jmorris@redhat.com>
7 *
8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
9 *
10 * Support for enhanced MLS infrastructure.
11 * Support for context based audit filters.
12 *
13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
14 *
15 * Added conditional policy language extensions
16 *
17 * Updated: Hewlett-Packard <paul@paul-moore.com>
18 *
19 * Added support for NetLabel
20 * Added support for the policy capability bitmap
21 *
22 * Updated: Chad Sellers <csellers@tresys.com>
23 *
24 * Added validation of kernel classes and permissions
25 *
26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
27 *
28 * Added support for bounds domain and audit messaged on masked permissions
29 *
30 * Updated: Guido Trentalancia <guido@trentalancia.com>
31 *
32 * Added support for runtime switching of the policy type
33 *
34 * Copyright (C) 2008, 2009 NEC Corporation
35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
39 */
40#include <linux/kernel.h>
41#include <linux/slab.h>
42#include <linux/string.h>
43#include <linux/spinlock.h>
44#include <linux/rcupdate.h>
45#include <linux/errno.h>
46#include <linux/in.h>
47#include <linux/sched.h>
48#include <linux/audit.h>
49#include <linux/vmalloc.h>
50#include <linux/lsm_hooks.h>
51#include <net/netlabel.h>
52
53#include "flask.h"
54#include "avc.h"
55#include "avc_ss.h"
56#include "security.h"
57#include "context.h"
58#include "policydb.h"
59#include "sidtab.h"
60#include "services.h"
61#include "conditional.h"
62#include "mls.h"
63#include "objsec.h"
64#include "netlabel.h"
65#include "xfrm.h"
66#include "ebitmap.h"
67#include "audit.h"
68#include "policycap_names.h"
69#include "ima.h"
70
71struct selinux_policy_convert_data {
72 struct convert_context_args args;
73 struct sidtab_convert_params sidtab_params;
74};
75
76/* Forward declaration. */
77static int context_struct_to_string(struct policydb *policydb,
78 struct context *context,
79 char **scontext,
80 u32 *scontext_len);
81
82static int sidtab_entry_to_string(struct policydb *policydb,
83 struct sidtab *sidtab,
84 struct sidtab_entry *entry,
85 char **scontext,
86 u32 *scontext_len);
87
88static void context_struct_compute_av(struct policydb *policydb,
89 struct context *scontext,
90 struct context *tcontext,
91 u16 tclass,
92 struct av_decision *avd,
93 struct extended_perms *xperms);
94
95static int selinux_set_mapping(struct policydb *pol,
96 const struct security_class_mapping *map,
97 struct selinux_map *out_map)
98{
99 u16 i, j;
100 bool print_unknown_handle = false;
101
102 /* Find number of classes in the input mapping */
103 if (!map)
104 return -EINVAL;
105 i = 0;
106 while (map[i].name)
107 i++;
108
109 /* Allocate space for the class records, plus one for class zero */
110 out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
111 if (!out_map->mapping)
112 return -ENOMEM;
113
114 /* Store the raw class and permission values */
115 j = 0;
116 while (map[j].name) {
117 const struct security_class_mapping *p_in = map + (j++);
118 struct selinux_mapping *p_out = out_map->mapping + j;
119 u16 k;
120
121 /* An empty class string skips ahead */
122 if (!strcmp(p_in->name, "")) {
123 p_out->num_perms = 0;
124 continue;
125 }
126
127 p_out->value = string_to_security_class(pol, p_in->name);
128 if (!p_out->value) {
129 pr_info("SELinux: Class %s not defined in policy.\n",
130 p_in->name);
131 if (pol->reject_unknown)
132 goto err;
133 p_out->num_perms = 0;
134 print_unknown_handle = true;
135 continue;
136 }
137
138 k = 0;
139 while (p_in->perms[k]) {
140 /* An empty permission string skips ahead */
141 if (!*p_in->perms[k]) {
142 k++;
143 continue;
144 }
145 p_out->perms[k] = string_to_av_perm(pol, p_out->value,
146 p_in->perms[k]);
147 if (!p_out->perms[k]) {
148 pr_info("SELinux: Permission %s in class %s not defined in policy.\n",
149 p_in->perms[k], p_in->name);
150 if (pol->reject_unknown)
151 goto err;
152 print_unknown_handle = true;
153 }
154
155 k++;
156 }
157 p_out->num_perms = k;
158 }
159
160 if (print_unknown_handle)
161 pr_info("SELinux: the above unknown classes and permissions will be %s\n",
162 pol->allow_unknown ? "allowed" : "denied");
163
164 out_map->size = i;
165 return 0;
166err:
167 kfree(out_map->mapping);
168 out_map->mapping = NULL;
169 return -EINVAL;
170}
171
172/*
173 * Get real, policy values from mapped values
174 */
175
176static u16 unmap_class(struct selinux_map *map, u16 tclass)
177{
178 if (tclass < map->size)
179 return map->mapping[tclass].value;
180
181 return tclass;
182}
183
184/*
185 * Get kernel value for class from its policy value
186 */
187static u16 map_class(struct selinux_map *map, u16 pol_value)
188{
189 u16 i;
190
191 for (i = 1; i < map->size; i++) {
192 if (map->mapping[i].value == pol_value)
193 return i;
194 }
195
196 return SECCLASS_NULL;
197}
198
199static void map_decision(struct selinux_map *map,
200 u16 tclass, struct av_decision *avd,
201 int allow_unknown)
202{
203 if (tclass < map->size) {
204 struct selinux_mapping *mapping = &map->mapping[tclass];
205 unsigned int i, n = mapping->num_perms;
206 u32 result;
207
208 for (i = 0, result = 0; i < n; i++) {
209 if (avd->allowed & mapping->perms[i])
210 result |= (u32)1<<i;
211 if (allow_unknown && !mapping->perms[i])
212 result |= (u32)1<<i;
213 }
214 avd->allowed = result;
215
216 for (i = 0, result = 0; i < n; i++)
217 if (avd->auditallow & mapping->perms[i])
218 result |= (u32)1<<i;
219 avd->auditallow = result;
220
221 for (i = 0, result = 0; i < n; i++) {
222 if (avd->auditdeny & mapping->perms[i])
223 result |= (u32)1<<i;
224 if (!allow_unknown && !mapping->perms[i])
225 result |= (u32)1<<i;
226 }
227 /*
228 * In case the kernel has a bug and requests a permission
229 * between num_perms and the maximum permission number, we
230 * should audit that denial
231 */
232 for (; i < (sizeof(u32)*8); i++)
233 result |= (u32)1<<i;
234 avd->auditdeny = result;
235 }
236}
237
238int security_mls_enabled(void)
239{
240 int mls_enabled;
241 struct selinux_policy *policy;
242
243 if (!selinux_initialized())
244 return 0;
245
246 rcu_read_lock();
247 policy = rcu_dereference(selinux_state.policy);
248 mls_enabled = policy->policydb.mls_enabled;
249 rcu_read_unlock();
250 return mls_enabled;
251}
252
253/*
254 * Return the boolean value of a constraint expression
255 * when it is applied to the specified source and target
256 * security contexts.
257 *
258 * xcontext is a special beast... It is used by the validatetrans rules
259 * only. For these rules, scontext is the context before the transition,
260 * tcontext is the context after the transition, and xcontext is the context
261 * of the process performing the transition. All other callers of
262 * constraint_expr_eval should pass in NULL for xcontext.
263 */
264static int constraint_expr_eval(struct policydb *policydb,
265 struct context *scontext,
266 struct context *tcontext,
267 struct context *xcontext,
268 struct constraint_expr *cexpr)
269{
270 u32 val1, val2;
271 struct context *c;
272 struct role_datum *r1, *r2;
273 struct mls_level *l1, *l2;
274 struct constraint_expr *e;
275 int s[CEXPR_MAXDEPTH];
276 int sp = -1;
277
278 for (e = cexpr; e; e = e->next) {
279 switch (e->expr_type) {
280 case CEXPR_NOT:
281 BUG_ON(sp < 0);
282 s[sp] = !s[sp];
283 break;
284 case CEXPR_AND:
285 BUG_ON(sp < 1);
286 sp--;
287 s[sp] &= s[sp + 1];
288 break;
289 case CEXPR_OR:
290 BUG_ON(sp < 1);
291 sp--;
292 s[sp] |= s[sp + 1];
293 break;
294 case CEXPR_ATTR:
295 if (sp == (CEXPR_MAXDEPTH - 1))
296 return 0;
297 switch (e->attr) {
298 case CEXPR_USER:
299 val1 = scontext->user;
300 val2 = tcontext->user;
301 break;
302 case CEXPR_TYPE:
303 val1 = scontext->type;
304 val2 = tcontext->type;
305 break;
306 case CEXPR_ROLE:
307 val1 = scontext->role;
308 val2 = tcontext->role;
309 r1 = policydb->role_val_to_struct[val1 - 1];
310 r2 = policydb->role_val_to_struct[val2 - 1];
311 switch (e->op) {
312 case CEXPR_DOM:
313 s[++sp] = ebitmap_get_bit(&r1->dominates,
314 val2 - 1);
315 continue;
316 case CEXPR_DOMBY:
317 s[++sp] = ebitmap_get_bit(&r2->dominates,
318 val1 - 1);
319 continue;
320 case CEXPR_INCOMP:
321 s[++sp] = (!ebitmap_get_bit(&r1->dominates,
322 val2 - 1) &&
323 !ebitmap_get_bit(&r2->dominates,
324 val1 - 1));
325 continue;
326 default:
327 break;
328 }
329 break;
330 case CEXPR_L1L2:
331 l1 = &(scontext->range.level[0]);
332 l2 = &(tcontext->range.level[0]);
333 goto mls_ops;
334 case CEXPR_L1H2:
335 l1 = &(scontext->range.level[0]);
336 l2 = &(tcontext->range.level[1]);
337 goto mls_ops;
338 case CEXPR_H1L2:
339 l1 = &(scontext->range.level[1]);
340 l2 = &(tcontext->range.level[0]);
341 goto mls_ops;
342 case CEXPR_H1H2:
343 l1 = &(scontext->range.level[1]);
344 l2 = &(tcontext->range.level[1]);
345 goto mls_ops;
346 case CEXPR_L1H1:
347 l1 = &(scontext->range.level[0]);
348 l2 = &(scontext->range.level[1]);
349 goto mls_ops;
350 case CEXPR_L2H2:
351 l1 = &(tcontext->range.level[0]);
352 l2 = &(tcontext->range.level[1]);
353 goto mls_ops;
354mls_ops:
355 switch (e->op) {
356 case CEXPR_EQ:
357 s[++sp] = mls_level_eq(l1, l2);
358 continue;
359 case CEXPR_NEQ:
360 s[++sp] = !mls_level_eq(l1, l2);
361 continue;
362 case CEXPR_DOM:
363 s[++sp] = mls_level_dom(l1, l2);
364 continue;
365 case CEXPR_DOMBY:
366 s[++sp] = mls_level_dom(l2, l1);
367 continue;
368 case CEXPR_INCOMP:
369 s[++sp] = mls_level_incomp(l2, l1);
370 continue;
371 default:
372 BUG();
373 return 0;
374 }
375 break;
376 default:
377 BUG();
378 return 0;
379 }
380
381 switch (e->op) {
382 case CEXPR_EQ:
383 s[++sp] = (val1 == val2);
384 break;
385 case CEXPR_NEQ:
386 s[++sp] = (val1 != val2);
387 break;
388 default:
389 BUG();
390 return 0;
391 }
392 break;
393 case CEXPR_NAMES:
394 if (sp == (CEXPR_MAXDEPTH-1))
395 return 0;
396 c = scontext;
397 if (e->attr & CEXPR_TARGET)
398 c = tcontext;
399 else if (e->attr & CEXPR_XTARGET) {
400 c = xcontext;
401 if (!c) {
402 BUG();
403 return 0;
404 }
405 }
406 if (e->attr & CEXPR_USER)
407 val1 = c->user;
408 else if (e->attr & CEXPR_ROLE)
409 val1 = c->role;
410 else if (e->attr & CEXPR_TYPE)
411 val1 = c->type;
412 else {
413 BUG();
414 return 0;
415 }
416
417 switch (e->op) {
418 case CEXPR_EQ:
419 s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
420 break;
421 case CEXPR_NEQ:
422 s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
423 break;
424 default:
425 BUG();
426 return 0;
427 }
428 break;
429 default:
430 BUG();
431 return 0;
432 }
433 }
434
435 BUG_ON(sp != 0);
436 return s[0];
437}
438
439/*
440 * security_dump_masked_av - dumps masked permissions during
441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
442 */
443static int dump_masked_av_helper(void *k, void *d, void *args)
444{
445 struct perm_datum *pdatum = d;
446 char **permission_names = args;
447
448 BUG_ON(pdatum->value < 1 || pdatum->value > 32);
449
450 permission_names[pdatum->value - 1] = (char *)k;
451
452 return 0;
453}
454
455static void security_dump_masked_av(struct policydb *policydb,
456 struct context *scontext,
457 struct context *tcontext,
458 u16 tclass,
459 u32 permissions,
460 const char *reason)
461{
462 struct common_datum *common_dat;
463 struct class_datum *tclass_dat;
464 struct audit_buffer *ab;
465 char *tclass_name;
466 char *scontext_name = NULL;
467 char *tcontext_name = NULL;
468 char *permission_names[32];
469 int index;
470 u32 length;
471 bool need_comma = false;
472
473 if (!permissions)
474 return;
475
476 tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
477 tclass_dat = policydb->class_val_to_struct[tclass - 1];
478 common_dat = tclass_dat->comdatum;
479
480 /* init permission_names */
481 if (common_dat &&
482 hashtab_map(&common_dat->permissions.table,
483 dump_masked_av_helper, permission_names) < 0)
484 goto out;
485
486 if (hashtab_map(&tclass_dat->permissions.table,
487 dump_masked_av_helper, permission_names) < 0)
488 goto out;
489
490 /* get scontext/tcontext in text form */
491 if (context_struct_to_string(policydb, scontext,
492 &scontext_name, &length) < 0)
493 goto out;
494
495 if (context_struct_to_string(policydb, tcontext,
496 &tcontext_name, &length) < 0)
497 goto out;
498
499 /* audit a message */
500 ab = audit_log_start(audit_context(),
501 GFP_ATOMIC, AUDIT_SELINUX_ERR);
502 if (!ab)
503 goto out;
504
505 audit_log_format(ab, "op=security_compute_av reason=%s "
506 "scontext=%s tcontext=%s tclass=%s perms=",
507 reason, scontext_name, tcontext_name, tclass_name);
508
509 for (index = 0; index < 32; index++) {
510 u32 mask = (1 << index);
511
512 if ((mask & permissions) == 0)
513 continue;
514
515 audit_log_format(ab, "%s%s",
516 need_comma ? "," : "",
517 permission_names[index]
518 ? permission_names[index] : "????");
519 need_comma = true;
520 }
521 audit_log_end(ab);
522out:
523 /* release scontext/tcontext */
524 kfree(tcontext_name);
525 kfree(scontext_name);
526}
527
528/*
529 * security_boundary_permission - drops violated permissions
530 * on boundary constraint.
531 */
532static void type_attribute_bounds_av(struct policydb *policydb,
533 struct context *scontext,
534 struct context *tcontext,
535 u16 tclass,
536 struct av_decision *avd)
537{
538 struct context lo_scontext;
539 struct context lo_tcontext, *tcontextp = tcontext;
540 struct av_decision lo_avd;
541 struct type_datum *source;
542 struct type_datum *target;
543 u32 masked = 0;
544
545 source = policydb->type_val_to_struct[scontext->type - 1];
546 BUG_ON(!source);
547
548 if (!source->bounds)
549 return;
550
551 target = policydb->type_val_to_struct[tcontext->type - 1];
552 BUG_ON(!target);
553
554 memset(&lo_avd, 0, sizeof(lo_avd));
555
556 memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
557 lo_scontext.type = source->bounds;
558
559 if (target->bounds) {
560 memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
561 lo_tcontext.type = target->bounds;
562 tcontextp = &lo_tcontext;
563 }
564
565 context_struct_compute_av(policydb, &lo_scontext,
566 tcontextp,
567 tclass,
568 &lo_avd,
569 NULL);
570
571 masked = ~lo_avd.allowed & avd->allowed;
572
573 if (likely(!masked))
574 return; /* no masked permission */
575
576 /* mask violated permissions */
577 avd->allowed &= ~masked;
578
579 /* audit masked permissions */
580 security_dump_masked_av(policydb, scontext, tcontext,
581 tclass, masked, "bounds");
582}
583
584/*
585 * flag which drivers have permissions
586 * only looking for ioctl based extended permissions
587 */
588void services_compute_xperms_drivers(
589 struct extended_perms *xperms,
590 struct avtab_node *node)
591{
592 unsigned int i;
593
594 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
595 /* if one or more driver has all permissions allowed */
596 for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
597 xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
598 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
599 /* if allowing permissions within a driver */
600 security_xperm_set(xperms->drivers.p,
601 node->datum.u.xperms->driver);
602 }
603
604 xperms->len = 1;
605}
606
607/*
608 * Compute access vectors and extended permissions based on a context
609 * structure pair for the permissions in a particular class.
610 */
611static void context_struct_compute_av(struct policydb *policydb,
612 struct context *scontext,
613 struct context *tcontext,
614 u16 tclass,
615 struct av_decision *avd,
616 struct extended_perms *xperms)
617{
618 struct constraint_node *constraint;
619 struct role_allow *ra;
620 struct avtab_key avkey;
621 struct avtab_node *node;
622 struct class_datum *tclass_datum;
623 struct ebitmap *sattr, *tattr;
624 struct ebitmap_node *snode, *tnode;
625 unsigned int i, j;
626
627 avd->allowed = 0;
628 avd->auditallow = 0;
629 avd->auditdeny = 0xffffffff;
630 if (xperms) {
631 memset(&xperms->drivers, 0, sizeof(xperms->drivers));
632 xperms->len = 0;
633 }
634
635 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
636 if (printk_ratelimit())
637 pr_warn("SELinux: Invalid class %hu\n", tclass);
638 return;
639 }
640
641 tclass_datum = policydb->class_val_to_struct[tclass - 1];
642
643 /*
644 * If a specific type enforcement rule was defined for
645 * this permission check, then use it.
646 */
647 avkey.target_class = tclass;
648 avkey.specified = AVTAB_AV | AVTAB_XPERMS;
649 sattr = &policydb->type_attr_map_array[scontext->type - 1];
650 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
651 ebitmap_for_each_positive_bit(sattr, snode, i) {
652 ebitmap_for_each_positive_bit(tattr, tnode, j) {
653 avkey.source_type = i + 1;
654 avkey.target_type = j + 1;
655 for (node = avtab_search_node(&policydb->te_avtab,
656 &avkey);
657 node;
658 node = avtab_search_node_next(node, avkey.specified)) {
659 if (node->key.specified == AVTAB_ALLOWED)
660 avd->allowed |= node->datum.u.data;
661 else if (node->key.specified == AVTAB_AUDITALLOW)
662 avd->auditallow |= node->datum.u.data;
663 else if (node->key.specified == AVTAB_AUDITDENY)
664 avd->auditdeny &= node->datum.u.data;
665 else if (xperms && (node->key.specified & AVTAB_XPERMS))
666 services_compute_xperms_drivers(xperms, node);
667 }
668
669 /* Check conditional av table for additional permissions */
670 cond_compute_av(&policydb->te_cond_avtab, &avkey,
671 avd, xperms);
672
673 }
674 }
675
676 /*
677 * Remove any permissions prohibited by a constraint (this includes
678 * the MLS policy).
679 */
680 constraint = tclass_datum->constraints;
681 while (constraint) {
682 if ((constraint->permissions & (avd->allowed)) &&
683 !constraint_expr_eval(policydb, scontext, tcontext, NULL,
684 constraint->expr)) {
685 avd->allowed &= ~(constraint->permissions);
686 }
687 constraint = constraint->next;
688 }
689
690 /*
691 * If checking process transition permission and the
692 * role is changing, then check the (current_role, new_role)
693 * pair.
694 */
695 if (tclass == policydb->process_class &&
696 (avd->allowed & policydb->process_trans_perms) &&
697 scontext->role != tcontext->role) {
698 for (ra = policydb->role_allow; ra; ra = ra->next) {
699 if (scontext->role == ra->role &&
700 tcontext->role == ra->new_role)
701 break;
702 }
703 if (!ra)
704 avd->allowed &= ~policydb->process_trans_perms;
705 }
706
707 /*
708 * If the given source and target types have boundary
709 * constraint, lazy checks have to mask any violated
710 * permission and notice it to userspace via audit.
711 */
712 type_attribute_bounds_av(policydb, scontext, tcontext,
713 tclass, avd);
714}
715
716static int security_validtrans_handle_fail(struct selinux_policy *policy,
717 struct sidtab_entry *oentry,
718 struct sidtab_entry *nentry,
719 struct sidtab_entry *tentry,
720 u16 tclass)
721{
722 struct policydb *p = &policy->policydb;
723 struct sidtab *sidtab = policy->sidtab;
724 char *o = NULL, *n = NULL, *t = NULL;
725 u32 olen, nlen, tlen;
726
727 if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
728 goto out;
729 if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
730 goto out;
731 if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
732 goto out;
733 audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
734 "op=security_validate_transition seresult=denied"
735 " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
736 o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
737out:
738 kfree(o);
739 kfree(n);
740 kfree(t);
741
742 if (!enforcing_enabled())
743 return 0;
744 return -EPERM;
745}
746
747static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
748 u16 orig_tclass, bool user)
749{
750 struct selinux_policy *policy;
751 struct policydb *policydb;
752 struct sidtab *sidtab;
753 struct sidtab_entry *oentry;
754 struct sidtab_entry *nentry;
755 struct sidtab_entry *tentry;
756 struct class_datum *tclass_datum;
757 struct constraint_node *constraint;
758 u16 tclass;
759 int rc = 0;
760
761
762 if (!selinux_initialized())
763 return 0;
764
765 rcu_read_lock();
766
767 policy = rcu_dereference(selinux_state.policy);
768 policydb = &policy->policydb;
769 sidtab = policy->sidtab;
770
771 if (!user)
772 tclass = unmap_class(&policy->map, orig_tclass);
773 else
774 tclass = orig_tclass;
775
776 if (!tclass || tclass > policydb->p_classes.nprim) {
777 rc = -EINVAL;
778 goto out;
779 }
780 tclass_datum = policydb->class_val_to_struct[tclass - 1];
781
782 oentry = sidtab_search_entry(sidtab, oldsid);
783 if (!oentry) {
784 pr_err("SELinux: %s: unrecognized SID %d\n",
785 __func__, oldsid);
786 rc = -EINVAL;
787 goto out;
788 }
789
790 nentry = sidtab_search_entry(sidtab, newsid);
791 if (!nentry) {
792 pr_err("SELinux: %s: unrecognized SID %d\n",
793 __func__, newsid);
794 rc = -EINVAL;
795 goto out;
796 }
797
798 tentry = sidtab_search_entry(sidtab, tasksid);
799 if (!tentry) {
800 pr_err("SELinux: %s: unrecognized SID %d\n",
801 __func__, tasksid);
802 rc = -EINVAL;
803 goto out;
804 }
805
806 constraint = tclass_datum->validatetrans;
807 while (constraint) {
808 if (!constraint_expr_eval(policydb, &oentry->context,
809 &nentry->context, &tentry->context,
810 constraint->expr)) {
811 if (user)
812 rc = -EPERM;
813 else
814 rc = security_validtrans_handle_fail(policy,
815 oentry,
816 nentry,
817 tentry,
818 tclass);
819 goto out;
820 }
821 constraint = constraint->next;
822 }
823
824out:
825 rcu_read_unlock();
826 return rc;
827}
828
829int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
830 u16 tclass)
831{
832 return security_compute_validatetrans(oldsid, newsid, tasksid,
833 tclass, true);
834}
835
836int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
837 u16 orig_tclass)
838{
839 return security_compute_validatetrans(oldsid, newsid, tasksid,
840 orig_tclass, false);
841}
842
843/*
844 * security_bounded_transition - check whether the given
845 * transition is directed to bounded, or not.
846 * It returns 0, if @newsid is bounded by @oldsid.
847 * Otherwise, it returns error code.
848 *
849 * @oldsid : current security identifier
850 * @newsid : destinated security identifier
851 */
852int security_bounded_transition(u32 old_sid, u32 new_sid)
853{
854 struct selinux_policy *policy;
855 struct policydb *policydb;
856 struct sidtab *sidtab;
857 struct sidtab_entry *old_entry, *new_entry;
858 struct type_datum *type;
859 u32 index;
860 int rc;
861
862 if (!selinux_initialized())
863 return 0;
864
865 rcu_read_lock();
866 policy = rcu_dereference(selinux_state.policy);
867 policydb = &policy->policydb;
868 sidtab = policy->sidtab;
869
870 rc = -EINVAL;
871 old_entry = sidtab_search_entry(sidtab, old_sid);
872 if (!old_entry) {
873 pr_err("SELinux: %s: unrecognized SID %u\n",
874 __func__, old_sid);
875 goto out;
876 }
877
878 rc = -EINVAL;
879 new_entry = sidtab_search_entry(sidtab, new_sid);
880 if (!new_entry) {
881 pr_err("SELinux: %s: unrecognized SID %u\n",
882 __func__, new_sid);
883 goto out;
884 }
885
886 rc = 0;
887 /* type/domain unchanged */
888 if (old_entry->context.type == new_entry->context.type)
889 goto out;
890
891 index = new_entry->context.type;
892 while (true) {
893 type = policydb->type_val_to_struct[index - 1];
894 BUG_ON(!type);
895
896 /* not bounded anymore */
897 rc = -EPERM;
898 if (!type->bounds)
899 break;
900
901 /* @newsid is bounded by @oldsid */
902 rc = 0;
903 if (type->bounds == old_entry->context.type)
904 break;
905
906 index = type->bounds;
907 }
908
909 if (rc) {
910 char *old_name = NULL;
911 char *new_name = NULL;
912 u32 length;
913
914 if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
915 &old_name, &length) &&
916 !sidtab_entry_to_string(policydb, sidtab, new_entry,
917 &new_name, &length)) {
918 audit_log(audit_context(),
919 GFP_ATOMIC, AUDIT_SELINUX_ERR,
920 "op=security_bounded_transition "
921 "seresult=denied "
922 "oldcontext=%s newcontext=%s",
923 old_name, new_name);
924 }
925 kfree(new_name);
926 kfree(old_name);
927 }
928out:
929 rcu_read_unlock();
930
931 return rc;
932}
933
934static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
935{
936 avd->allowed = 0;
937 avd->auditallow = 0;
938 avd->auditdeny = 0xffffffff;
939 if (policy)
940 avd->seqno = policy->latest_granting;
941 else
942 avd->seqno = 0;
943 avd->flags = 0;
944}
945
946void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
947 struct avtab_node *node)
948{
949 unsigned int i;
950
951 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
952 if (xpermd->driver != node->datum.u.xperms->driver)
953 return;
954 } else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
955 if (!security_xperm_test(node->datum.u.xperms->perms.p,
956 xpermd->driver))
957 return;
958 } else {
959 BUG();
960 }
961
962 if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
963 xpermd->used |= XPERMS_ALLOWED;
964 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
965 memset(xpermd->allowed->p, 0xff,
966 sizeof(xpermd->allowed->p));
967 }
968 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
969 for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
970 xpermd->allowed->p[i] |=
971 node->datum.u.xperms->perms.p[i];
972 }
973 } else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
974 xpermd->used |= XPERMS_AUDITALLOW;
975 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
976 memset(xpermd->auditallow->p, 0xff,
977 sizeof(xpermd->auditallow->p));
978 }
979 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
980 for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
981 xpermd->auditallow->p[i] |=
982 node->datum.u.xperms->perms.p[i];
983 }
984 } else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
985 xpermd->used |= XPERMS_DONTAUDIT;
986 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
987 memset(xpermd->dontaudit->p, 0xff,
988 sizeof(xpermd->dontaudit->p));
989 }
990 if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
991 for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
992 xpermd->dontaudit->p[i] |=
993 node->datum.u.xperms->perms.p[i];
994 }
995 } else {
996 BUG();
997 }
998}
999
1000void security_compute_xperms_decision(u32 ssid,
1001 u32 tsid,
1002 u16 orig_tclass,
1003 u8 driver,
1004 struct extended_perms_decision *xpermd)
1005{
1006 struct selinux_policy *policy;
1007 struct policydb *policydb;
1008 struct sidtab *sidtab;
1009 u16 tclass;
1010 struct context *scontext, *tcontext;
1011 struct avtab_key avkey;
1012 struct avtab_node *node;
1013 struct ebitmap *sattr, *tattr;
1014 struct ebitmap_node *snode, *tnode;
1015 unsigned int i, j;
1016
1017 xpermd->driver = driver;
1018 xpermd->used = 0;
1019 memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1020 memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1021 memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1022
1023 rcu_read_lock();
1024 if (!selinux_initialized())
1025 goto allow;
1026
1027 policy = rcu_dereference(selinux_state.policy);
1028 policydb = &policy->policydb;
1029 sidtab = policy->sidtab;
1030
1031 scontext = sidtab_search(sidtab, ssid);
1032 if (!scontext) {
1033 pr_err("SELinux: %s: unrecognized SID %d\n",
1034 __func__, ssid);
1035 goto out;
1036 }
1037
1038 tcontext = sidtab_search(sidtab, tsid);
1039 if (!tcontext) {
1040 pr_err("SELinux: %s: unrecognized SID %d\n",
1041 __func__, tsid);
1042 goto out;
1043 }
1044
1045 tclass = unmap_class(&policy->map, orig_tclass);
1046 if (unlikely(orig_tclass && !tclass)) {
1047 if (policydb->allow_unknown)
1048 goto allow;
1049 goto out;
1050 }
1051
1052
1053 if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1054 pr_warn_ratelimited("SELinux: Invalid class %hu\n", tclass);
1055 goto out;
1056 }
1057
1058 avkey.target_class = tclass;
1059 avkey.specified = AVTAB_XPERMS;
1060 sattr = &policydb->type_attr_map_array[scontext->type - 1];
1061 tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1062 ebitmap_for_each_positive_bit(sattr, snode, i) {
1063 ebitmap_for_each_positive_bit(tattr, tnode, j) {
1064 avkey.source_type = i + 1;
1065 avkey.target_type = j + 1;
1066 for (node = avtab_search_node(&policydb->te_avtab,
1067 &avkey);
1068 node;
1069 node = avtab_search_node_next(node, avkey.specified))
1070 services_compute_xperms_decision(xpermd, node);
1071
1072 cond_compute_xperms(&policydb->te_cond_avtab,
1073 &avkey, xpermd);
1074 }
1075 }
1076out:
1077 rcu_read_unlock();
1078 return;
1079allow:
1080 memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1081 goto out;
1082}
1083
1084/**
1085 * security_compute_av - Compute access vector decisions.
1086 * @ssid: source security identifier
1087 * @tsid: target security identifier
1088 * @orig_tclass: target security class
1089 * @avd: access vector decisions
1090 * @xperms: extended permissions
1091 *
1092 * Compute a set of access vector decisions based on the
1093 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1094 */
1095void security_compute_av(u32 ssid,
1096 u32 tsid,
1097 u16 orig_tclass,
1098 struct av_decision *avd,
1099 struct extended_perms *xperms)
1100{
1101 struct selinux_policy *policy;
1102 struct policydb *policydb;
1103 struct sidtab *sidtab;
1104 u16 tclass;
1105 struct context *scontext = NULL, *tcontext = NULL;
1106
1107 rcu_read_lock();
1108 policy = rcu_dereference(selinux_state.policy);
1109 avd_init(policy, avd);
1110 xperms->len = 0;
1111 if (!selinux_initialized())
1112 goto allow;
1113
1114 policydb = &policy->policydb;
1115 sidtab = policy->sidtab;
1116
1117 scontext = sidtab_search(sidtab, ssid);
1118 if (!scontext) {
1119 pr_err("SELinux: %s: unrecognized SID %d\n",
1120 __func__, ssid);
1121 goto out;
1122 }
1123
1124 /* permissive domain? */
1125 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1126 avd->flags |= AVD_FLAGS_PERMISSIVE;
1127
1128 tcontext = sidtab_search(sidtab, tsid);
1129 if (!tcontext) {
1130 pr_err("SELinux: %s: unrecognized SID %d\n",
1131 __func__, tsid);
1132 goto out;
1133 }
1134
1135 tclass = unmap_class(&policy->map, orig_tclass);
1136 if (unlikely(orig_tclass && !tclass)) {
1137 if (policydb->allow_unknown)
1138 goto allow;
1139 goto out;
1140 }
1141 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1142 xperms);
1143 map_decision(&policy->map, orig_tclass, avd,
1144 policydb->allow_unknown);
1145out:
1146 rcu_read_unlock();
1147 return;
1148allow:
1149 avd->allowed = 0xffffffff;
1150 goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
1154 u32 tsid,
1155 u16 tclass,
1156 struct av_decision *avd)
1157{
1158 struct selinux_policy *policy;
1159 struct policydb *policydb;
1160 struct sidtab *sidtab;
1161 struct context *scontext = NULL, *tcontext = NULL;
1162
1163 rcu_read_lock();
1164 policy = rcu_dereference(selinux_state.policy);
1165 avd_init(policy, avd);
1166 if (!selinux_initialized())
1167 goto allow;
1168
1169 policydb = &policy->policydb;
1170 sidtab = policy->sidtab;
1171
1172 scontext = sidtab_search(sidtab, ssid);
1173 if (!scontext) {
1174 pr_err("SELinux: %s: unrecognized SID %d\n",
1175 __func__, ssid);
1176 goto out;
1177 }
1178
1179 /* permissive domain? */
1180 if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1181 avd->flags |= AVD_FLAGS_PERMISSIVE;
1182
1183 tcontext = sidtab_search(sidtab, tsid);
1184 if (!tcontext) {
1185 pr_err("SELinux: %s: unrecognized SID %d\n",
1186 __func__, tsid);
1187 goto out;
1188 }
1189
1190 if (unlikely(!tclass)) {
1191 if (policydb->allow_unknown)
1192 goto allow;
1193 goto out;
1194 }
1195
1196 context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1197 NULL);
1198 out:
1199 rcu_read_unlock();
1200 return;
1201allow:
1202 avd->allowed = 0xffffffff;
1203 goto out;
1204}
1205
1206/*
1207 * Write the security context string representation of
1208 * the context structure `context' into a dynamically
1209 * allocated string of the correct size. Set `*scontext'
1210 * to point to this string and set `*scontext_len' to
1211 * the length of the string.
1212 */
1213static int context_struct_to_string(struct policydb *p,
1214 struct context *context,
1215 char **scontext, u32 *scontext_len)
1216{
1217 char *scontextp;
1218
1219 if (scontext)
1220 *scontext = NULL;
1221 *scontext_len = 0;
1222
1223 if (context->len) {
1224 *scontext_len = context->len;
1225 if (scontext) {
1226 *scontext = kstrdup(context->str, GFP_ATOMIC);
1227 if (!(*scontext))
1228 return -ENOMEM;
1229 }
1230 return 0;
1231 }
1232
1233 /* Compute the size of the context. */
1234 *scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1235 *scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1236 *scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1237 *scontext_len += mls_compute_context_len(p, context);
1238
1239 if (!scontext)
1240 return 0;
1241
1242 /* Allocate space for the context; caller must free this space. */
1243 scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1244 if (!scontextp)
1245 return -ENOMEM;
1246 *scontext = scontextp;
1247
1248 /*
1249 * Copy the user name, role name and type name into the context.
1250 */
1251 scontextp += sprintf(scontextp, "%s:%s:%s",
1252 sym_name(p, SYM_USERS, context->user - 1),
1253 sym_name(p, SYM_ROLES, context->role - 1),
1254 sym_name(p, SYM_TYPES, context->type - 1));
1255
1256 mls_sid_to_context(p, context, &scontextp);
1257
1258 *scontextp = 0;
1259
1260 return 0;
1261}
1262
1263static int sidtab_entry_to_string(struct policydb *p,
1264 struct sidtab *sidtab,
1265 struct sidtab_entry *entry,
1266 char **scontext, u32 *scontext_len)
1267{
1268 int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1269
1270 if (rc != -ENOENT)
1271 return rc;
1272
1273 rc = context_struct_to_string(p, &entry->context, scontext,
1274 scontext_len);
1275 if (!rc && scontext)
1276 sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1277 return rc;
1278}
1279
1280#include "initial_sid_to_string.h"
1281
1282int security_sidtab_hash_stats(char *page)
1283{
1284 struct selinux_policy *policy;
1285 int rc;
1286
1287 if (!selinux_initialized()) {
1288 pr_err("SELinux: %s: called before initial load_policy\n",
1289 __func__);
1290 return -EINVAL;
1291 }
1292
1293 rcu_read_lock();
1294 policy = rcu_dereference(selinux_state.policy);
1295 rc = sidtab_hash_stats(policy->sidtab, page);
1296 rcu_read_unlock();
1297
1298 return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303 if (unlikely(sid > SECINITSID_NUM))
1304 return NULL;
1305 return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(u32 sid, char **scontext,
1309 u32 *scontext_len, int force,
1310 int only_invalid)
1311{
1312 struct selinux_policy *policy;
1313 struct policydb *policydb;
1314 struct sidtab *sidtab;
1315 struct sidtab_entry *entry;
1316 int rc = 0;
1317
1318 if (scontext)
1319 *scontext = NULL;
1320 *scontext_len = 0;
1321
1322 if (!selinux_initialized()) {
1323 if (sid <= SECINITSID_NUM) {
1324 char *scontextp;
1325 const char *s;
1326
1327 /*
1328 * Before the policy is loaded, translate
1329 * SECINITSID_INIT to "kernel", because systemd and
1330 * libselinux < 2.6 take a getcon_raw() result that is
1331 * both non-null and not "kernel" to mean that a policy
1332 * is already loaded.
1333 */
1334 if (sid == SECINITSID_INIT)
1335 sid = SECINITSID_KERNEL;
1336
1337 s = initial_sid_to_string[sid];
1338 if (!s)
1339 return -EINVAL;
1340 *scontext_len = strlen(s) + 1;
1341 if (!scontext)
1342 return 0;
1343 scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1344 if (!scontextp)
1345 return -ENOMEM;
1346 *scontext = scontextp;
1347 return 0;
1348 }
1349 pr_err("SELinux: %s: called before initial "
1350 "load_policy on unknown SID %d\n", __func__, sid);
1351 return -EINVAL;
1352 }
1353 rcu_read_lock();
1354 policy = rcu_dereference(selinux_state.policy);
1355 policydb = &policy->policydb;
1356 sidtab = policy->sidtab;
1357
1358 if (force)
1359 entry = sidtab_search_entry_force(sidtab, sid);
1360 else
1361 entry = sidtab_search_entry(sidtab, sid);
1362 if (!entry) {
1363 pr_err("SELinux: %s: unrecognized SID %d\n",
1364 __func__, sid);
1365 rc = -EINVAL;
1366 goto out_unlock;
1367 }
1368 if (only_invalid && !entry->context.len)
1369 goto out_unlock;
1370
1371 rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1372 scontext_len);
1373
1374out_unlock:
1375 rcu_read_unlock();
1376 return rc;
1377
1378}
1379
1380/**
1381 * security_sid_to_context - Obtain a context for a given SID.
1382 * @sid: security identifier, SID
1383 * @scontext: security context
1384 * @scontext_len: length in bytes
1385 *
1386 * Write the string representation of the context associated with @sid
1387 * into a dynamically allocated string of the correct size. Set @scontext
1388 * to point to this string and set @scontext_len to the length of the string.
1389 */
1390int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1391{
1392 return security_sid_to_context_core(sid, scontext,
1393 scontext_len, 0, 0);
1394}
1395
1396int security_sid_to_context_force(u32 sid,
1397 char **scontext, u32 *scontext_len)
1398{
1399 return security_sid_to_context_core(sid, scontext,
1400 scontext_len, 1, 0);
1401}
1402
1403/**
1404 * security_sid_to_context_inval - Obtain a context for a given SID if it
1405 * is invalid.
1406 * @sid: security identifier, SID
1407 * @scontext: security context
1408 * @scontext_len: length in bytes
1409 *
1410 * Write the string representation of the context associated with @sid
1411 * into a dynamically allocated string of the correct size, but only if the
1412 * context is invalid in the current policy. Set @scontext to point to
1413 * this string (or NULL if the context is valid) and set @scontext_len to
1414 * the length of the string (or 0 if the context is valid).
1415 */
1416int security_sid_to_context_inval(u32 sid,
1417 char **scontext, u32 *scontext_len)
1418{
1419 return security_sid_to_context_core(sid, scontext,
1420 scontext_len, 1, 1);
1421}
1422
1423/*
1424 * Caveat: Mutates scontext.
1425 */
1426static int string_to_context_struct(struct policydb *pol,
1427 struct sidtab *sidtabp,
1428 char *scontext,
1429 struct context *ctx,
1430 u32 def_sid)
1431{
1432 struct role_datum *role;
1433 struct type_datum *typdatum;
1434 struct user_datum *usrdatum;
1435 char *scontextp, *p, oldc;
1436 int rc = 0;
1437
1438 context_init(ctx);
1439
1440 /* Parse the security context. */
1441
1442 rc = -EINVAL;
1443 scontextp = scontext;
1444
1445 /* Extract the user. */
1446 p = scontextp;
1447 while (*p && *p != ':')
1448 p++;
1449
1450 if (*p == 0)
1451 goto out;
1452
1453 *p++ = 0;
1454
1455 usrdatum = symtab_search(&pol->p_users, scontextp);
1456 if (!usrdatum)
1457 goto out;
1458
1459 ctx->user = usrdatum->value;
1460
1461 /* Extract role. */
1462 scontextp = p;
1463 while (*p && *p != ':')
1464 p++;
1465
1466 if (*p == 0)
1467 goto out;
1468
1469 *p++ = 0;
1470
1471 role = symtab_search(&pol->p_roles, scontextp);
1472 if (!role)
1473 goto out;
1474 ctx->role = role->value;
1475
1476 /* Extract type. */
1477 scontextp = p;
1478 while (*p && *p != ':')
1479 p++;
1480 oldc = *p;
1481 *p++ = 0;
1482
1483 typdatum = symtab_search(&pol->p_types, scontextp);
1484 if (!typdatum || typdatum->attribute)
1485 goto out;
1486
1487 ctx->type = typdatum->value;
1488
1489 rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1490 if (rc)
1491 goto out;
1492
1493 /* Check the validity of the new context. */
1494 rc = -EINVAL;
1495 if (!policydb_context_isvalid(pol, ctx))
1496 goto out;
1497 rc = 0;
1498out:
1499 if (rc)
1500 context_destroy(ctx);
1501 return rc;
1502}
1503
1504static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1505 u32 *sid, u32 def_sid, gfp_t gfp_flags,
1506 int force)
1507{
1508 struct selinux_policy *policy;
1509 struct policydb *policydb;
1510 struct sidtab *sidtab;
1511 char *scontext2, *str = NULL;
1512 struct context context;
1513 int rc = 0;
1514
1515 /* An empty security context is never valid. */
1516 if (!scontext_len)
1517 return -EINVAL;
1518
1519 /* Copy the string to allow changes and ensure a NUL terminator */
1520 scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1521 if (!scontext2)
1522 return -ENOMEM;
1523
1524 if (!selinux_initialized()) {
1525 u32 i;
1526
1527 for (i = 1; i < SECINITSID_NUM; i++) {
1528 const char *s = initial_sid_to_string[i];
1529
1530 if (s && !strcmp(s, scontext2)) {
1531 *sid = i;
1532 goto out;
1533 }
1534 }
1535 *sid = SECINITSID_KERNEL;
1536 goto out;
1537 }
1538 *sid = SECSID_NULL;
1539
1540 if (force) {
1541 /* Save another copy for storing in uninterpreted form */
1542 rc = -ENOMEM;
1543 str = kstrdup(scontext2, gfp_flags);
1544 if (!str)
1545 goto out;
1546 }
1547retry:
1548 rcu_read_lock();
1549 policy = rcu_dereference(selinux_state.policy);
1550 policydb = &policy->policydb;
1551 sidtab = policy->sidtab;
1552 rc = string_to_context_struct(policydb, sidtab, scontext2,
1553 &context, def_sid);
1554 if (rc == -EINVAL && force) {
1555 context.str = str;
1556 context.len = strlen(str) + 1;
1557 str = NULL;
1558 } else if (rc)
1559 goto out_unlock;
1560 rc = sidtab_context_to_sid(sidtab, &context, sid);
1561 if (rc == -ESTALE) {
1562 rcu_read_unlock();
1563 if (context.str) {
1564 str = context.str;
1565 context.str = NULL;
1566 }
1567 context_destroy(&context);
1568 goto retry;
1569 }
1570 context_destroy(&context);
1571out_unlock:
1572 rcu_read_unlock();
1573out:
1574 kfree(scontext2);
1575 kfree(str);
1576 return rc;
1577}
1578
1579/**
1580 * security_context_to_sid - Obtain a SID for a given security context.
1581 * @scontext: security context
1582 * @scontext_len: length in bytes
1583 * @sid: security identifier, SID
1584 * @gfp: context for the allocation
1585 *
1586 * Obtains a SID associated with the security context that
1587 * has the string representation specified by @scontext.
1588 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1589 * memory is available, or 0 on success.
1590 */
1591int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1592 gfp_t gfp)
1593{
1594 return security_context_to_sid_core(scontext, scontext_len,
1595 sid, SECSID_NULL, gfp, 0);
1596}
1597
1598int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1599{
1600 return security_context_to_sid(scontext, strlen(scontext),
1601 sid, gfp);
1602}
1603
1604/**
1605 * security_context_to_sid_default - Obtain a SID for a given security context,
1606 * falling back to specified default if needed.
1607 *
1608 * @scontext: security context
1609 * @scontext_len: length in bytes
1610 * @sid: security identifier, SID
1611 * @def_sid: default SID to assign on error
1612 * @gfp_flags: the allocator get-free-page (GFP) flags
1613 *
1614 * Obtains a SID associated with the security context that
1615 * has the string representation specified by @scontext.
1616 * The default SID is passed to the MLS layer to be used to allow
1617 * kernel labeling of the MLS field if the MLS field is not present
1618 * (for upgrading to MLS without full relabel).
1619 * Implicitly forces adding of the context even if it cannot be mapped yet.
1620 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1621 * memory is available, or 0 on success.
1622 */
1623int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1624 u32 *sid, u32 def_sid, gfp_t gfp_flags)
1625{
1626 return security_context_to_sid_core(scontext, scontext_len,
1627 sid, def_sid, gfp_flags, 1);
1628}
1629
1630int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1631 u32 *sid)
1632{
1633 return security_context_to_sid_core(scontext, scontext_len,
1634 sid, SECSID_NULL, GFP_KERNEL, 1);
1635}
1636
1637static int compute_sid_handle_invalid_context(
1638 struct selinux_policy *policy,
1639 struct sidtab_entry *sentry,
1640 struct sidtab_entry *tentry,
1641 u16 tclass,
1642 struct context *newcontext)
1643{
1644 struct policydb *policydb = &policy->policydb;
1645 struct sidtab *sidtab = policy->sidtab;
1646 char *s = NULL, *t = NULL, *n = NULL;
1647 u32 slen, tlen, nlen;
1648 struct audit_buffer *ab;
1649
1650 if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1651 goto out;
1652 if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1653 goto out;
1654 if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1655 goto out;
1656 ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1657 if (!ab)
1658 goto out;
1659 audit_log_format(ab,
1660 "op=security_compute_sid invalid_context=");
1661 /* no need to record the NUL with untrusted strings */
1662 audit_log_n_untrustedstring(ab, n, nlen - 1);
1663 audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1664 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1665 audit_log_end(ab);
1666out:
1667 kfree(s);
1668 kfree(t);
1669 kfree(n);
1670 if (!enforcing_enabled())
1671 return 0;
1672 return -EACCES;
1673}
1674
1675static void filename_compute_type(struct policydb *policydb,
1676 struct context *newcontext,
1677 u32 stype, u32 ttype, u16 tclass,
1678 const char *objname)
1679{
1680 struct filename_trans_key ft;
1681 struct filename_trans_datum *datum;
1682
1683 /*
1684 * Most filename trans rules are going to live in specific directories
1685 * like /dev or /var/run. This bitmap will quickly skip rule searches
1686 * if the ttype does not contain any rules.
1687 */
1688 if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1689 return;
1690
1691 ft.ttype = ttype;
1692 ft.tclass = tclass;
1693 ft.name = objname;
1694
1695 datum = policydb_filenametr_search(policydb, &ft);
1696 while (datum) {
1697 if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1698 newcontext->type = datum->otype;
1699 return;
1700 }
1701 datum = datum->next;
1702 }
1703}
1704
1705static int security_compute_sid(u32 ssid,
1706 u32 tsid,
1707 u16 orig_tclass,
1708 u16 specified,
1709 const char *objname,
1710 u32 *out_sid,
1711 bool kern)
1712{
1713 struct selinux_policy *policy;
1714 struct policydb *policydb;
1715 struct sidtab *sidtab;
1716 struct class_datum *cladatum;
1717 struct context *scontext, *tcontext, newcontext;
1718 struct sidtab_entry *sentry, *tentry;
1719 struct avtab_key avkey;
1720 struct avtab_node *avnode, *node;
1721 u16 tclass;
1722 int rc = 0;
1723 bool sock;
1724
1725 if (!selinux_initialized()) {
1726 switch (orig_tclass) {
1727 case SECCLASS_PROCESS: /* kernel value */
1728 *out_sid = ssid;
1729 break;
1730 default:
1731 *out_sid = tsid;
1732 break;
1733 }
1734 goto out;
1735 }
1736
1737retry:
1738 cladatum = NULL;
1739 context_init(&newcontext);
1740
1741 rcu_read_lock();
1742
1743 policy = rcu_dereference(selinux_state.policy);
1744
1745 if (kern) {
1746 tclass = unmap_class(&policy->map, orig_tclass);
1747 sock = security_is_socket_class(orig_tclass);
1748 } else {
1749 tclass = orig_tclass;
1750 sock = security_is_socket_class(map_class(&policy->map,
1751 tclass));
1752 }
1753
1754 policydb = &policy->policydb;
1755 sidtab = policy->sidtab;
1756
1757 sentry = sidtab_search_entry(sidtab, ssid);
1758 if (!sentry) {
1759 pr_err("SELinux: %s: unrecognized SID %d\n",
1760 __func__, ssid);
1761 rc = -EINVAL;
1762 goto out_unlock;
1763 }
1764 tentry = sidtab_search_entry(sidtab, tsid);
1765 if (!tentry) {
1766 pr_err("SELinux: %s: unrecognized SID %d\n",
1767 __func__, tsid);
1768 rc = -EINVAL;
1769 goto out_unlock;
1770 }
1771
1772 scontext = &sentry->context;
1773 tcontext = &tentry->context;
1774
1775 if (tclass && tclass <= policydb->p_classes.nprim)
1776 cladatum = policydb->class_val_to_struct[tclass - 1];
1777
1778 /* Set the user identity. */
1779 switch (specified) {
1780 case AVTAB_TRANSITION:
1781 case AVTAB_CHANGE:
1782 if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1783 newcontext.user = tcontext->user;
1784 } else {
1785 /* notice this gets both DEFAULT_SOURCE and unset */
1786 /* Use the process user identity. */
1787 newcontext.user = scontext->user;
1788 }
1789 break;
1790 case AVTAB_MEMBER:
1791 /* Use the related object owner. */
1792 newcontext.user = tcontext->user;
1793 break;
1794 }
1795
1796 /* Set the role to default values. */
1797 if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1798 newcontext.role = scontext->role;
1799 } else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1800 newcontext.role = tcontext->role;
1801 } else {
1802 if ((tclass == policydb->process_class) || sock)
1803 newcontext.role = scontext->role;
1804 else
1805 newcontext.role = OBJECT_R_VAL;
1806 }
1807
1808 /* Set the type to default values. */
1809 if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1810 newcontext.type = scontext->type;
1811 } else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1812 newcontext.type = tcontext->type;
1813 } else {
1814 if ((tclass == policydb->process_class) || sock) {
1815 /* Use the type of process. */
1816 newcontext.type = scontext->type;
1817 } else {
1818 /* Use the type of the related object. */
1819 newcontext.type = tcontext->type;
1820 }
1821 }
1822
1823 /* Look for a type transition/member/change rule. */
1824 avkey.source_type = scontext->type;
1825 avkey.target_type = tcontext->type;
1826 avkey.target_class = tclass;
1827 avkey.specified = specified;
1828 avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1829
1830 /* If no permanent rule, also check for enabled conditional rules */
1831 if (!avnode) {
1832 node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1833 for (; node; node = avtab_search_node_next(node, specified)) {
1834 if (node->key.specified & AVTAB_ENABLED) {
1835 avnode = node;
1836 break;
1837 }
1838 }
1839 }
1840
1841 if (avnode) {
1842 /* Use the type from the type transition/member/change rule. */
1843 newcontext.type = avnode->datum.u.data;
1844 }
1845
1846 /* if we have a objname this is a file trans check so check those rules */
1847 if (objname)
1848 filename_compute_type(policydb, &newcontext, scontext->type,
1849 tcontext->type, tclass, objname);
1850
1851 /* Check for class-specific changes. */
1852 if (specified & AVTAB_TRANSITION) {
1853 /* Look for a role transition rule. */
1854 struct role_trans_datum *rtd;
1855 struct role_trans_key rtk = {
1856 .role = scontext->role,
1857 .type = tcontext->type,
1858 .tclass = tclass,
1859 };
1860
1861 rtd = policydb_roletr_search(policydb, &rtk);
1862 if (rtd)
1863 newcontext.role = rtd->new_role;
1864 }
1865
1866 /* Set the MLS attributes.
1867 This is done last because it may allocate memory. */
1868 rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1869 &newcontext, sock);
1870 if (rc)
1871 goto out_unlock;
1872
1873 /* Check the validity of the context. */
1874 if (!policydb_context_isvalid(policydb, &newcontext)) {
1875 rc = compute_sid_handle_invalid_context(policy, sentry,
1876 tentry, tclass,
1877 &newcontext);
1878 if (rc)
1879 goto out_unlock;
1880 }
1881 /* Obtain the sid for the context. */
1882 rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1883 if (rc == -ESTALE) {
1884 rcu_read_unlock();
1885 context_destroy(&newcontext);
1886 goto retry;
1887 }
1888out_unlock:
1889 rcu_read_unlock();
1890 context_destroy(&newcontext);
1891out:
1892 return rc;
1893}
1894
1895/**
1896 * security_transition_sid - Compute the SID for a new subject/object.
1897 * @ssid: source security identifier
1898 * @tsid: target security identifier
1899 * @tclass: target security class
1900 * @qstr: object name
1901 * @out_sid: security identifier for new subject/object
1902 *
1903 * Compute a SID to use for labeling a new subject or object in the
1904 * class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the new SID was
1907 * computed successfully.
1908 */
1909int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1910 const struct qstr *qstr, u32 *out_sid)
1911{
1912 return security_compute_sid(ssid, tsid, tclass,
1913 AVTAB_TRANSITION,
1914 qstr ? qstr->name : NULL, out_sid, true);
1915}
1916
1917int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1918 const char *objname, u32 *out_sid)
1919{
1920 return security_compute_sid(ssid, tsid, tclass,
1921 AVTAB_TRANSITION,
1922 objname, out_sid, false);
1923}
1924
1925/**
1926 * security_member_sid - Compute the SID for member selection.
1927 * @ssid: source security identifier
1928 * @tsid: target security identifier
1929 * @tclass: target security class
1930 * @out_sid: security identifier for selected member
1931 *
1932 * Compute a SID to use when selecting a member of a polyinstantiated
1933 * object of class @tclass based on a SID pair (@ssid, @tsid).
1934 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1935 * if insufficient memory is available, or %0 if the SID was
1936 * computed successfully.
1937 */
1938int security_member_sid(u32 ssid,
1939 u32 tsid,
1940 u16 tclass,
1941 u32 *out_sid)
1942{
1943 return security_compute_sid(ssid, tsid, tclass,
1944 AVTAB_MEMBER, NULL,
1945 out_sid, false);
1946}
1947
1948/**
1949 * security_change_sid - Compute the SID for object relabeling.
1950 * @ssid: source security identifier
1951 * @tsid: target security identifier
1952 * @tclass: target security class
1953 * @out_sid: security identifier for selected member
1954 *
1955 * Compute a SID to use for relabeling an object of class @tclass
1956 * based on a SID pair (@ssid, @tsid).
1957 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1958 * if insufficient memory is available, or %0 if the SID was
1959 * computed successfully.
1960 */
1961int security_change_sid(u32 ssid,
1962 u32 tsid,
1963 u16 tclass,
1964 u32 *out_sid)
1965{
1966 return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1967 out_sid, false);
1968}
1969
1970static inline int convert_context_handle_invalid_context(
1971 struct policydb *policydb,
1972 struct context *context)
1973{
1974 char *s;
1975 u32 len;
1976
1977 if (enforcing_enabled())
1978 return -EINVAL;
1979
1980 if (!context_struct_to_string(policydb, context, &s, &len)) {
1981 pr_warn("SELinux: Context %s would be invalid if enforcing\n",
1982 s);
1983 kfree(s);
1984 }
1985 return 0;
1986}
1987
1988/**
1989 * services_convert_context - Convert a security context across policies.
1990 * @args: populated convert_context_args struct
1991 * @oldc: original context
1992 * @newc: converted context
1993 * @gfp_flags: allocation flags
1994 *
1995 * Convert the values in the security context structure @oldc from the values
1996 * specified in the policy @args->oldp to the values specified in the policy
1997 * @args->newp, storing the new context in @newc, and verifying that the
1998 * context is valid under the new policy.
1999 */
2000int services_convert_context(struct convert_context_args *args,
2001 struct context *oldc, struct context *newc,
2002 gfp_t gfp_flags)
2003{
2004 struct ocontext *oc;
2005 struct role_datum *role;
2006 struct type_datum *typdatum;
2007 struct user_datum *usrdatum;
2008 char *s;
2009 u32 len;
2010 int rc;
2011
2012 if (oldc->str) {
2013 s = kstrdup(oldc->str, gfp_flags);
2014 if (!s)
2015 return -ENOMEM;
2016
2017 rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2018 if (rc == -EINVAL) {
2019 /*
2020 * Retain string representation for later mapping.
2021 *
2022 * IMPORTANT: We need to copy the contents of oldc->str
2023 * back into s again because string_to_context_struct()
2024 * may have garbled it.
2025 */
2026 memcpy(s, oldc->str, oldc->len);
2027 context_init(newc);
2028 newc->str = s;
2029 newc->len = oldc->len;
2030 return 0;
2031 }
2032 kfree(s);
2033 if (rc) {
2034 /* Other error condition, e.g. ENOMEM. */
2035 pr_err("SELinux: Unable to map context %s, rc = %d.\n",
2036 oldc->str, -rc);
2037 return rc;
2038 }
2039 pr_info("SELinux: Context %s became valid (mapped).\n",
2040 oldc->str);
2041 return 0;
2042 }
2043
2044 context_init(newc);
2045
2046 /* Convert the user. */
2047 usrdatum = symtab_search(&args->newp->p_users,
2048 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
2049 if (!usrdatum)
2050 goto bad;
2051 newc->user = usrdatum->value;
2052
2053 /* Convert the role. */
2054 role = symtab_search(&args->newp->p_roles,
2055 sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2056 if (!role)
2057 goto bad;
2058 newc->role = role->value;
2059
2060 /* Convert the type. */
2061 typdatum = symtab_search(&args->newp->p_types,
2062 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
2063 if (!typdatum)
2064 goto bad;
2065 newc->type = typdatum->value;
2066
2067 /* Convert the MLS fields if dealing with MLS policies */
2068 if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2069 rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2070 if (rc)
2071 goto bad;
2072 } else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2073 /*
2074 * Switching between non-MLS and MLS policy:
2075 * ensure that the MLS fields of the context for all
2076 * existing entries in the sidtab are filled in with a
2077 * suitable default value, likely taken from one of the
2078 * initial SIDs.
2079 */
2080 oc = args->newp->ocontexts[OCON_ISID];
2081 while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2082 oc = oc->next;
2083 if (!oc) {
2084 pr_err("SELinux: unable to look up"
2085 " the initial SIDs list\n");
2086 goto bad;
2087 }
2088 rc = mls_range_set(newc, &oc->context[0].range);
2089 if (rc)
2090 goto bad;
2091 }
2092
2093 /* Check the validity of the new context. */
2094 if (!policydb_context_isvalid(args->newp, newc)) {
2095 rc = convert_context_handle_invalid_context(args->oldp, oldc);
2096 if (rc)
2097 goto bad;
2098 }
2099
2100 return 0;
2101bad:
2102 /* Map old representation to string and save it. */
2103 rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2104 if (rc)
2105 return rc;
2106 context_destroy(newc);
2107 newc->str = s;
2108 newc->len = len;
2109 pr_info("SELinux: Context %s became invalid (unmapped).\n",
2110 newc->str);
2111 return 0;
2112}
2113
2114static void security_load_policycaps(struct selinux_policy *policy)
2115{
2116 struct policydb *p;
2117 unsigned int i;
2118 struct ebitmap_node *node;
2119
2120 p = &policy->policydb;
2121
2122 for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2123 WRITE_ONCE(selinux_state.policycap[i],
2124 ebitmap_get_bit(&p->policycaps, i));
2125
2126 for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2127 pr_info("SELinux: policy capability %s=%d\n",
2128 selinux_policycap_names[i],
2129 ebitmap_get_bit(&p->policycaps, i));
2130
2131 ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2132 if (i >= ARRAY_SIZE(selinux_policycap_names))
2133 pr_info("SELinux: unknown policy capability %u\n",
2134 i);
2135 }
2136}
2137
2138static int security_preserve_bools(struct selinux_policy *oldpolicy,
2139 struct selinux_policy *newpolicy);
2140
2141static void selinux_policy_free(struct selinux_policy *policy)
2142{
2143 if (!policy)
2144 return;
2145
2146 sidtab_destroy(policy->sidtab);
2147 kfree(policy->map.mapping);
2148 policydb_destroy(&policy->policydb);
2149 kfree(policy->sidtab);
2150 kfree(policy);
2151}
2152
2153static void selinux_policy_cond_free(struct selinux_policy *policy)
2154{
2155 cond_policydb_destroy_dup(&policy->policydb);
2156 kfree(policy);
2157}
2158
2159void selinux_policy_cancel(struct selinux_load_state *load_state)
2160{
2161 struct selinux_state *state = &selinux_state;
2162 struct selinux_policy *oldpolicy;
2163
2164 oldpolicy = rcu_dereference_protected(state->policy,
2165 lockdep_is_held(&state->policy_mutex));
2166
2167 sidtab_cancel_convert(oldpolicy->sidtab);
2168 selinux_policy_free(load_state->policy);
2169 kfree(load_state->convert_data);
2170}
2171
2172static void selinux_notify_policy_change(u32 seqno)
2173{
2174 /* Flush external caches and notify userspace of policy load */
2175 avc_ss_reset(seqno);
2176 selnl_notify_policyload(seqno);
2177 selinux_status_update_policyload(seqno);
2178 selinux_netlbl_cache_invalidate();
2179 selinux_xfrm_notify_policyload();
2180 selinux_ima_measure_state_locked();
2181}
2182
2183void selinux_policy_commit(struct selinux_load_state *load_state)
2184{
2185 struct selinux_state *state = &selinux_state;
2186 struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2187 unsigned long flags;
2188 u32 seqno;
2189
2190 oldpolicy = rcu_dereference_protected(state->policy,
2191 lockdep_is_held(&state->policy_mutex));
2192
2193 /* If switching between different policy types, log MLS status */
2194 if (oldpolicy) {
2195 if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2196 pr_info("SELinux: Disabling MLS support...\n");
2197 else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2198 pr_info("SELinux: Enabling MLS support...\n");
2199 }
2200
2201 /* Set latest granting seqno for new policy. */
2202 if (oldpolicy)
2203 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2204 else
2205 newpolicy->latest_granting = 1;
2206 seqno = newpolicy->latest_granting;
2207
2208 /* Install the new policy. */
2209 if (oldpolicy) {
2210 sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2211 rcu_assign_pointer(state->policy, newpolicy);
2212 sidtab_freeze_end(oldpolicy->sidtab, &flags);
2213 } else {
2214 rcu_assign_pointer(state->policy, newpolicy);
2215 }
2216
2217 /* Load the policycaps from the new policy */
2218 security_load_policycaps(newpolicy);
2219
2220 if (!selinux_initialized()) {
2221 /*
2222 * After first policy load, the security server is
2223 * marked as initialized and ready to handle requests and
2224 * any objects created prior to policy load are then labeled.
2225 */
2226 selinux_mark_initialized();
2227 selinux_complete_init();
2228 }
2229
2230 /* Free the old policy */
2231 synchronize_rcu();
2232 selinux_policy_free(oldpolicy);
2233 kfree(load_state->convert_data);
2234
2235 /* Notify others of the policy change */
2236 selinux_notify_policy_change(seqno);
2237}
2238
2239/**
2240 * security_load_policy - Load a security policy configuration.
2241 * @data: binary policy data
2242 * @len: length of data in bytes
2243 * @load_state: policy load state
2244 *
2245 * Load a new set of security policy configuration data,
2246 * validate it and convert the SID table as necessary.
2247 * This function will flush the access vector cache after
2248 * loading the new policy.
2249 */
2250int security_load_policy(void *data, size_t len,
2251 struct selinux_load_state *load_state)
2252{
2253 struct selinux_state *state = &selinux_state;
2254 struct selinux_policy *newpolicy, *oldpolicy;
2255 struct selinux_policy_convert_data *convert_data;
2256 int rc = 0;
2257 struct policy_file file = { data, len }, *fp = &file;
2258
2259 newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2260 if (!newpolicy)
2261 return -ENOMEM;
2262
2263 newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2264 if (!newpolicy->sidtab) {
2265 rc = -ENOMEM;
2266 goto err_policy;
2267 }
2268
2269 rc = policydb_read(&newpolicy->policydb, fp);
2270 if (rc)
2271 goto err_sidtab;
2272
2273 newpolicy->policydb.len = len;
2274 rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2275 &newpolicy->map);
2276 if (rc)
2277 goto err_policydb;
2278
2279 rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2280 if (rc) {
2281 pr_err("SELinux: unable to load the initial SIDs\n");
2282 goto err_mapping;
2283 }
2284
2285 if (!selinux_initialized()) {
2286 /* First policy load, so no need to preserve state from old policy */
2287 load_state->policy = newpolicy;
2288 load_state->convert_data = NULL;
2289 return 0;
2290 }
2291
2292 oldpolicy = rcu_dereference_protected(state->policy,
2293 lockdep_is_held(&state->policy_mutex));
2294
2295 /* Preserve active boolean values from the old policy */
2296 rc = security_preserve_bools(oldpolicy, newpolicy);
2297 if (rc) {
2298 pr_err("SELinux: unable to preserve booleans\n");
2299 goto err_free_isids;
2300 }
2301
2302 /*
2303 * Convert the internal representations of contexts
2304 * in the new SID table.
2305 */
2306
2307 convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2308 if (!convert_data) {
2309 rc = -ENOMEM;
2310 goto err_free_isids;
2311 }
2312
2313 convert_data->args.oldp = &oldpolicy->policydb;
2314 convert_data->args.newp = &newpolicy->policydb;
2315
2316 convert_data->sidtab_params.args = &convert_data->args;
2317 convert_data->sidtab_params.target = newpolicy->sidtab;
2318
2319 rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2320 if (rc) {
2321 pr_err("SELinux: unable to convert the internal"
2322 " representation of contexts in the new SID"
2323 " table\n");
2324 goto err_free_convert_data;
2325 }
2326
2327 load_state->policy = newpolicy;
2328 load_state->convert_data = convert_data;
2329 return 0;
2330
2331err_free_convert_data:
2332 kfree(convert_data);
2333err_free_isids:
2334 sidtab_destroy(newpolicy->sidtab);
2335err_mapping:
2336 kfree(newpolicy->map.mapping);
2337err_policydb:
2338 policydb_destroy(&newpolicy->policydb);
2339err_sidtab:
2340 kfree(newpolicy->sidtab);
2341err_policy:
2342 kfree(newpolicy);
2343
2344 return rc;
2345}
2346
2347/**
2348 * ocontext_to_sid - Helper to safely get sid for an ocontext
2349 * @sidtab: SID table
2350 * @c: ocontext structure
2351 * @index: index of the context entry (0 or 1)
2352 * @out_sid: pointer to the resulting SID value
2353 *
2354 * For all ocontexts except OCON_ISID the SID fields are populated
2355 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2356 * operation, this helper must be used to do that safely.
2357 *
2358 * WARNING: This function may return -ESTALE, indicating that the caller
2359 * must retry the operation after re-acquiring the policy pointer!
2360 */
2361static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2362 size_t index, u32 *out_sid)
2363{
2364 int rc;
2365 u32 sid;
2366
2367 /* Ensure the associated sidtab entry is visible to this thread. */
2368 sid = smp_load_acquire(&c->sid[index]);
2369 if (!sid) {
2370 rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2371 if (rc)
2372 return rc;
2373
2374 /*
2375 * Ensure the new sidtab entry is visible to other threads
2376 * when they see the SID.
2377 */
2378 smp_store_release(&c->sid[index], sid);
2379 }
2380 *out_sid = sid;
2381 return 0;
2382}
2383
2384/**
2385 * security_port_sid - Obtain the SID for a port.
2386 * @protocol: protocol number
2387 * @port: port number
2388 * @out_sid: security identifier
2389 */
2390int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2391{
2392 struct selinux_policy *policy;
2393 struct policydb *policydb;
2394 struct sidtab *sidtab;
2395 struct ocontext *c;
2396 int rc;
2397
2398 if (!selinux_initialized()) {
2399 *out_sid = SECINITSID_PORT;
2400 return 0;
2401 }
2402
2403retry:
2404 rc = 0;
2405 rcu_read_lock();
2406 policy = rcu_dereference(selinux_state.policy);
2407 policydb = &policy->policydb;
2408 sidtab = policy->sidtab;
2409
2410 c = policydb->ocontexts[OCON_PORT];
2411 while (c) {
2412 if (c->u.port.protocol == protocol &&
2413 c->u.port.low_port <= port &&
2414 c->u.port.high_port >= port)
2415 break;
2416 c = c->next;
2417 }
2418
2419 if (c) {
2420 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2421 if (rc == -ESTALE) {
2422 rcu_read_unlock();
2423 goto retry;
2424 }
2425 if (rc)
2426 goto out;
2427 } else {
2428 *out_sid = SECINITSID_PORT;
2429 }
2430
2431out:
2432 rcu_read_unlock();
2433 return rc;
2434}
2435
2436/**
2437 * security_ib_pkey_sid - Obtain the SID for a pkey.
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2443{
2444 struct selinux_policy *policy;
2445 struct policydb *policydb;
2446 struct sidtab *sidtab;
2447 struct ocontext *c;
2448 int rc;
2449
2450 if (!selinux_initialized()) {
2451 *out_sid = SECINITSID_UNLABELED;
2452 return 0;
2453 }
2454
2455retry:
2456 rc = 0;
2457 rcu_read_lock();
2458 policy = rcu_dereference(selinux_state.policy);
2459 policydb = &policy->policydb;
2460 sidtab = policy->sidtab;
2461
2462 c = policydb->ocontexts[OCON_IBPKEY];
2463 while (c) {
2464 if (c->u.ibpkey.low_pkey <= pkey_num &&
2465 c->u.ibpkey.high_pkey >= pkey_num &&
2466 c->u.ibpkey.subnet_prefix == subnet_prefix)
2467 break;
2468
2469 c = c->next;
2470 }
2471
2472 if (c) {
2473 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2474 if (rc == -ESTALE) {
2475 rcu_read_unlock();
2476 goto retry;
2477 }
2478 if (rc)
2479 goto out;
2480 } else
2481 *out_sid = SECINITSID_UNLABELED;
2482
2483out:
2484 rcu_read_unlock();
2485 return rc;
2486}
2487
2488/**
2489 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2490 * @dev_name: device name
2491 * @port_num: port number
2492 * @out_sid: security identifier
2493 */
2494int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2495{
2496 struct selinux_policy *policy;
2497 struct policydb *policydb;
2498 struct sidtab *sidtab;
2499 struct ocontext *c;
2500 int rc;
2501
2502 if (!selinux_initialized()) {
2503 *out_sid = SECINITSID_UNLABELED;
2504 return 0;
2505 }
2506
2507retry:
2508 rc = 0;
2509 rcu_read_lock();
2510 policy = rcu_dereference(selinux_state.policy);
2511 policydb = &policy->policydb;
2512 sidtab = policy->sidtab;
2513
2514 c = policydb->ocontexts[OCON_IBENDPORT];
2515 while (c) {
2516 if (c->u.ibendport.port == port_num &&
2517 !strncmp(c->u.ibendport.dev_name,
2518 dev_name,
2519 IB_DEVICE_NAME_MAX))
2520 break;
2521
2522 c = c->next;
2523 }
2524
2525 if (c) {
2526 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2527 if (rc == -ESTALE) {
2528 rcu_read_unlock();
2529 goto retry;
2530 }
2531 if (rc)
2532 goto out;
2533 } else
2534 *out_sid = SECINITSID_UNLABELED;
2535
2536out:
2537 rcu_read_unlock();
2538 return rc;
2539}
2540
2541/**
2542 * security_netif_sid - Obtain the SID for a network interface.
2543 * @name: interface name
2544 * @if_sid: interface SID
2545 */
2546int security_netif_sid(char *name, u32 *if_sid)
2547{
2548 struct selinux_policy *policy;
2549 struct policydb *policydb;
2550 struct sidtab *sidtab;
2551 int rc;
2552 struct ocontext *c;
2553
2554 if (!selinux_initialized()) {
2555 *if_sid = SECINITSID_NETIF;
2556 return 0;
2557 }
2558
2559retry:
2560 rc = 0;
2561 rcu_read_lock();
2562 policy = rcu_dereference(selinux_state.policy);
2563 policydb = &policy->policydb;
2564 sidtab = policy->sidtab;
2565
2566 c = policydb->ocontexts[OCON_NETIF];
2567 while (c) {
2568 if (strcmp(name, c->u.name) == 0)
2569 break;
2570 c = c->next;
2571 }
2572
2573 if (c) {
2574 rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2575 if (rc == -ESTALE) {
2576 rcu_read_unlock();
2577 goto retry;
2578 }
2579 if (rc)
2580 goto out;
2581 } else
2582 *if_sid = SECINITSID_NETIF;
2583
2584out:
2585 rcu_read_unlock();
2586 return rc;
2587}
2588
2589static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2590{
2591 int i, fail = 0;
2592
2593 for (i = 0; i < 4; i++)
2594 if (addr[i] != (input[i] & mask[i])) {
2595 fail = 1;
2596 break;
2597 }
2598
2599 return !fail;
2600}
2601
2602/**
2603 * security_node_sid - Obtain the SID for a node (host).
2604 * @domain: communication domain aka address family
2605 * @addrp: address
2606 * @addrlen: address length in bytes
2607 * @out_sid: security identifier
2608 */
2609int security_node_sid(u16 domain,
2610 void *addrp,
2611 u32 addrlen,
2612 u32 *out_sid)
2613{
2614 struct selinux_policy *policy;
2615 struct policydb *policydb;
2616 struct sidtab *sidtab;
2617 int rc;
2618 struct ocontext *c;
2619
2620 if (!selinux_initialized()) {
2621 *out_sid = SECINITSID_NODE;
2622 return 0;
2623 }
2624
2625retry:
2626 rcu_read_lock();
2627 policy = rcu_dereference(selinux_state.policy);
2628 policydb = &policy->policydb;
2629 sidtab = policy->sidtab;
2630
2631 switch (domain) {
2632 case AF_INET: {
2633 u32 addr;
2634
2635 rc = -EINVAL;
2636 if (addrlen != sizeof(u32))
2637 goto out;
2638
2639 addr = *((u32 *)addrp);
2640
2641 c = policydb->ocontexts[OCON_NODE];
2642 while (c) {
2643 if (c->u.node.addr == (addr & c->u.node.mask))
2644 break;
2645 c = c->next;
2646 }
2647 break;
2648 }
2649
2650 case AF_INET6:
2651 rc = -EINVAL;
2652 if (addrlen != sizeof(u64) * 2)
2653 goto out;
2654 c = policydb->ocontexts[OCON_NODE6];
2655 while (c) {
2656 if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2657 c->u.node6.mask))
2658 break;
2659 c = c->next;
2660 }
2661 break;
2662
2663 default:
2664 rc = 0;
2665 *out_sid = SECINITSID_NODE;
2666 goto out;
2667 }
2668
2669 if (c) {
2670 rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2671 if (rc == -ESTALE) {
2672 rcu_read_unlock();
2673 goto retry;
2674 }
2675 if (rc)
2676 goto out;
2677 } else {
2678 *out_sid = SECINITSID_NODE;
2679 }
2680
2681 rc = 0;
2682out:
2683 rcu_read_unlock();
2684 return rc;
2685}
2686
2687#define SIDS_NEL 25
2688
2689/**
2690 * security_get_user_sids - Obtain reachable SIDs for a user.
2691 * @fromsid: starting SID
2692 * @username: username
2693 * @sids: array of reachable SIDs for user
2694 * @nel: number of elements in @sids
2695 *
2696 * Generate the set of SIDs for legal security contexts
2697 * for a given user that can be reached by @fromsid.
2698 * Set *@sids to point to a dynamically allocated
2699 * array containing the set of SIDs. Set *@nel to the
2700 * number of elements in the array.
2701 */
2702
2703int security_get_user_sids(u32 fromsid,
2704 char *username,
2705 u32 **sids,
2706 u32 *nel)
2707{
2708 struct selinux_policy *policy;
2709 struct policydb *policydb;
2710 struct sidtab *sidtab;
2711 struct context *fromcon, usercon;
2712 u32 *mysids = NULL, *mysids2, sid;
2713 u32 i, j, mynel, maxnel = SIDS_NEL;
2714 struct user_datum *user;
2715 struct role_datum *role;
2716 struct ebitmap_node *rnode, *tnode;
2717 int rc;
2718
2719 *sids = NULL;
2720 *nel = 0;
2721
2722 if (!selinux_initialized())
2723 return 0;
2724
2725 mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2726 if (!mysids)
2727 return -ENOMEM;
2728
2729retry:
2730 mynel = 0;
2731 rcu_read_lock();
2732 policy = rcu_dereference(selinux_state.policy);
2733 policydb = &policy->policydb;
2734 sidtab = policy->sidtab;
2735
2736 context_init(&usercon);
2737
2738 rc = -EINVAL;
2739 fromcon = sidtab_search(sidtab, fromsid);
2740 if (!fromcon)
2741 goto out_unlock;
2742
2743 rc = -EINVAL;
2744 user = symtab_search(&policydb->p_users, username);
2745 if (!user)
2746 goto out_unlock;
2747
2748 usercon.user = user->value;
2749
2750 ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2751 role = policydb->role_val_to_struct[i];
2752 usercon.role = i + 1;
2753 ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2754 usercon.type = j + 1;
2755
2756 if (mls_setup_user_range(policydb, fromcon, user,
2757 &usercon))
2758 continue;
2759
2760 rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2761 if (rc == -ESTALE) {
2762 rcu_read_unlock();
2763 goto retry;
2764 }
2765 if (rc)
2766 goto out_unlock;
2767 if (mynel < maxnel) {
2768 mysids[mynel++] = sid;
2769 } else {
2770 rc = -ENOMEM;
2771 maxnel += SIDS_NEL;
2772 mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2773 if (!mysids2)
2774 goto out_unlock;
2775 memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2776 kfree(mysids);
2777 mysids = mysids2;
2778 mysids[mynel++] = sid;
2779 }
2780 }
2781 }
2782 rc = 0;
2783out_unlock:
2784 rcu_read_unlock();
2785 if (rc || !mynel) {
2786 kfree(mysids);
2787 return rc;
2788 }
2789
2790 rc = -ENOMEM;
2791 mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2792 if (!mysids2) {
2793 kfree(mysids);
2794 return rc;
2795 }
2796 for (i = 0, j = 0; i < mynel; i++) {
2797 struct av_decision dummy_avd;
2798 rc = avc_has_perm_noaudit(fromsid, mysids[i],
2799 SECCLASS_PROCESS, /* kernel value */
2800 PROCESS__TRANSITION, AVC_STRICT,
2801 &dummy_avd);
2802 if (!rc)
2803 mysids2[j++] = mysids[i];
2804 cond_resched();
2805 }
2806 kfree(mysids);
2807 *sids = mysids2;
2808 *nel = j;
2809 return 0;
2810}
2811
2812/**
2813 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2814 * @policy: policy
2815 * @fstype: filesystem type
2816 * @path: path from root of mount
2817 * @orig_sclass: file security class
2818 * @sid: SID for path
2819 *
2820 * Obtain a SID to use for a file in a filesystem that
2821 * cannot support xattr or use a fixed labeling behavior like
2822 * transition SIDs or task SIDs.
2823 *
2824 * WARNING: This function may return -ESTALE, indicating that the caller
2825 * must retry the operation after re-acquiring the policy pointer!
2826 */
2827static inline int __security_genfs_sid(struct selinux_policy *policy,
2828 const char *fstype,
2829 const char *path,
2830 u16 orig_sclass,
2831 u32 *sid)
2832{
2833 struct policydb *policydb = &policy->policydb;
2834 struct sidtab *sidtab = policy->sidtab;
2835 u16 sclass;
2836 struct genfs *genfs;
2837 struct ocontext *c;
2838 int cmp = 0;
2839
2840 while (path[0] == '/' && path[1] == '/')
2841 path++;
2842
2843 sclass = unmap_class(&policy->map, orig_sclass);
2844 *sid = SECINITSID_UNLABELED;
2845
2846 for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2847 cmp = strcmp(fstype, genfs->fstype);
2848 if (cmp <= 0)
2849 break;
2850 }
2851
2852 if (!genfs || cmp)
2853 return -ENOENT;
2854
2855 for (c = genfs->head; c; c = c->next) {
2856 size_t len = strlen(c->u.name);
2857 if ((!c->v.sclass || sclass == c->v.sclass) &&
2858 (strncmp(c->u.name, path, len) == 0))
2859 break;
2860 }
2861
2862 if (!c)
2863 return -ENOENT;
2864
2865 return ocontext_to_sid(sidtab, c, 0, sid);
2866}
2867
2868/**
2869 * security_genfs_sid - Obtain a SID for a file in a filesystem
2870 * @fstype: filesystem type
2871 * @path: path from root of mount
2872 * @orig_sclass: file security class
2873 * @sid: SID for path
2874 *
2875 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2876 * it afterward.
2877 */
2878int security_genfs_sid(const char *fstype,
2879 const char *path,
2880 u16 orig_sclass,
2881 u32 *sid)
2882{
2883 struct selinux_policy *policy;
2884 int retval;
2885
2886 if (!selinux_initialized()) {
2887 *sid = SECINITSID_UNLABELED;
2888 return 0;
2889 }
2890
2891 do {
2892 rcu_read_lock();
2893 policy = rcu_dereference(selinux_state.policy);
2894 retval = __security_genfs_sid(policy, fstype, path,
2895 orig_sclass, sid);
2896 rcu_read_unlock();
2897 } while (retval == -ESTALE);
2898 return retval;
2899}
2900
2901int selinux_policy_genfs_sid(struct selinux_policy *policy,
2902 const char *fstype,
2903 const char *path,
2904 u16 orig_sclass,
2905 u32 *sid)
2906{
2907 /* no lock required, policy is not yet accessible by other threads */
2908 return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2909}
2910
2911/**
2912 * security_fs_use - Determine how to handle labeling for a filesystem.
2913 * @sb: superblock in question
2914 */
2915int security_fs_use(struct super_block *sb)
2916{
2917 struct selinux_policy *policy;
2918 struct policydb *policydb;
2919 struct sidtab *sidtab;
2920 int rc;
2921 struct ocontext *c;
2922 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2923 const char *fstype = sb->s_type->name;
2924
2925 if (!selinux_initialized()) {
2926 sbsec->behavior = SECURITY_FS_USE_NONE;
2927 sbsec->sid = SECINITSID_UNLABELED;
2928 return 0;
2929 }
2930
2931retry:
2932 rcu_read_lock();
2933 policy = rcu_dereference(selinux_state.policy);
2934 policydb = &policy->policydb;
2935 sidtab = policy->sidtab;
2936
2937 c = policydb->ocontexts[OCON_FSUSE];
2938 while (c) {
2939 if (strcmp(fstype, c->u.name) == 0)
2940 break;
2941 c = c->next;
2942 }
2943
2944 if (c) {
2945 sbsec->behavior = c->v.behavior;
2946 rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2947 if (rc == -ESTALE) {
2948 rcu_read_unlock();
2949 goto retry;
2950 }
2951 if (rc)
2952 goto out;
2953 } else {
2954 rc = __security_genfs_sid(policy, fstype, "/",
2955 SECCLASS_DIR, &sbsec->sid);
2956 if (rc == -ESTALE) {
2957 rcu_read_unlock();
2958 goto retry;
2959 }
2960 if (rc) {
2961 sbsec->behavior = SECURITY_FS_USE_NONE;
2962 rc = 0;
2963 } else {
2964 sbsec->behavior = SECURITY_FS_USE_GENFS;
2965 }
2966 }
2967
2968out:
2969 rcu_read_unlock();
2970 return rc;
2971}
2972
2973int security_get_bools(struct selinux_policy *policy,
2974 u32 *len, char ***names, int **values)
2975{
2976 struct policydb *policydb;
2977 u32 i;
2978 int rc;
2979
2980 policydb = &policy->policydb;
2981
2982 *names = NULL;
2983 *values = NULL;
2984
2985 rc = 0;
2986 *len = policydb->p_bools.nprim;
2987 if (!*len)
2988 goto out;
2989
2990 rc = -ENOMEM;
2991 *names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2992 if (!*names)
2993 goto err;
2994
2995 rc = -ENOMEM;
2996 *values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2997 if (!*values)
2998 goto err;
2999
3000 for (i = 0; i < *len; i++) {
3001 (*values)[i] = policydb->bool_val_to_struct[i]->state;
3002
3003 rc = -ENOMEM;
3004 (*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3005 GFP_ATOMIC);
3006 if (!(*names)[i])
3007 goto err;
3008 }
3009 rc = 0;
3010out:
3011 return rc;
3012err:
3013 if (*names) {
3014 for (i = 0; i < *len; i++)
3015 kfree((*names)[i]);
3016 kfree(*names);
3017 }
3018 kfree(*values);
3019 *len = 0;
3020 *names = NULL;
3021 *values = NULL;
3022 goto out;
3023}
3024
3025
3026int security_set_bools(u32 len, int *values)
3027{
3028 struct selinux_state *state = &selinux_state;
3029 struct selinux_policy *newpolicy, *oldpolicy;
3030 int rc;
3031 u32 i, seqno = 0;
3032
3033 if (!selinux_initialized())
3034 return -EINVAL;
3035
3036 oldpolicy = rcu_dereference_protected(state->policy,
3037 lockdep_is_held(&state->policy_mutex));
3038
3039 /* Consistency check on number of booleans, should never fail */
3040 if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3041 return -EINVAL;
3042
3043 newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3044 if (!newpolicy)
3045 return -ENOMEM;
3046
3047 /*
3048 * Deep copy only the parts of the policydb that might be
3049 * modified as a result of changing booleans.
3050 */
3051 rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3052 if (rc) {
3053 kfree(newpolicy);
3054 return -ENOMEM;
3055 }
3056
3057 /* Update the boolean states in the copy */
3058 for (i = 0; i < len; i++) {
3059 int new_state = !!values[i];
3060 int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3061
3062 if (new_state != old_state) {
3063 audit_log(audit_context(), GFP_ATOMIC,
3064 AUDIT_MAC_CONFIG_CHANGE,
3065 "bool=%s val=%d old_val=%d auid=%u ses=%u",
3066 sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3067 new_state,
3068 old_state,
3069 from_kuid(&init_user_ns, audit_get_loginuid(current)),
3070 audit_get_sessionid(current));
3071 newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3072 }
3073 }
3074
3075 /* Re-evaluate the conditional rules in the copy */
3076 evaluate_cond_nodes(&newpolicy->policydb);
3077
3078 /* Set latest granting seqno for new policy */
3079 newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3080 seqno = newpolicy->latest_granting;
3081
3082 /* Install the new policy */
3083 rcu_assign_pointer(state->policy, newpolicy);
3084
3085 /*
3086 * Free the conditional portions of the old policydb
3087 * that were copied for the new policy, and the oldpolicy
3088 * structure itself but not what it references.
3089 */
3090 synchronize_rcu();
3091 selinux_policy_cond_free(oldpolicy);
3092
3093 /* Notify others of the policy change */
3094 selinux_notify_policy_change(seqno);
3095 return 0;
3096}
3097
3098int security_get_bool_value(u32 index)
3099{
3100 struct selinux_policy *policy;
3101 struct policydb *policydb;
3102 int rc;
3103 u32 len;
3104
3105 if (!selinux_initialized())
3106 return 0;
3107
3108 rcu_read_lock();
3109 policy = rcu_dereference(selinux_state.policy);
3110 policydb = &policy->policydb;
3111
3112 rc = -EFAULT;
3113 len = policydb->p_bools.nprim;
3114 if (index >= len)
3115 goto out;
3116
3117 rc = policydb->bool_val_to_struct[index]->state;
3118out:
3119 rcu_read_unlock();
3120 return rc;
3121}
3122
3123static int security_preserve_bools(struct selinux_policy *oldpolicy,
3124 struct selinux_policy *newpolicy)
3125{
3126 int rc, *bvalues = NULL;
3127 char **bnames = NULL;
3128 struct cond_bool_datum *booldatum;
3129 u32 i, nbools = 0;
3130
3131 rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3132 if (rc)
3133 goto out;
3134 for (i = 0; i < nbools; i++) {
3135 booldatum = symtab_search(&newpolicy->policydb.p_bools,
3136 bnames[i]);
3137 if (booldatum)
3138 booldatum->state = bvalues[i];
3139 }
3140 evaluate_cond_nodes(&newpolicy->policydb);
3141
3142out:
3143 if (bnames) {
3144 for (i = 0; i < nbools; i++)
3145 kfree(bnames[i]);
3146 }
3147 kfree(bnames);
3148 kfree(bvalues);
3149 return rc;
3150}
3151
3152/*
3153 * security_sid_mls_copy() - computes a new sid based on the given
3154 * sid and the mls portion of mls_sid.
3155 */
3156int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3157{
3158 struct selinux_policy *policy;
3159 struct policydb *policydb;
3160 struct sidtab *sidtab;
3161 struct context *context1;
3162 struct context *context2;
3163 struct context newcon;
3164 char *s;
3165 u32 len;
3166 int rc;
3167
3168 if (!selinux_initialized()) {
3169 *new_sid = sid;
3170 return 0;
3171 }
3172
3173retry:
3174 rc = 0;
3175 context_init(&newcon);
3176
3177 rcu_read_lock();
3178 policy = rcu_dereference(selinux_state.policy);
3179 policydb = &policy->policydb;
3180 sidtab = policy->sidtab;
3181
3182 if (!policydb->mls_enabled) {
3183 *new_sid = sid;
3184 goto out_unlock;
3185 }
3186
3187 rc = -EINVAL;
3188 context1 = sidtab_search(sidtab, sid);
3189 if (!context1) {
3190 pr_err("SELinux: %s: unrecognized SID %d\n",
3191 __func__, sid);
3192 goto out_unlock;
3193 }
3194
3195 rc = -EINVAL;
3196 context2 = sidtab_search(sidtab, mls_sid);
3197 if (!context2) {
3198 pr_err("SELinux: %s: unrecognized SID %d\n",
3199 __func__, mls_sid);
3200 goto out_unlock;
3201 }
3202
3203 newcon.user = context1->user;
3204 newcon.role = context1->role;
3205 newcon.type = context1->type;
3206 rc = mls_context_cpy(&newcon, context2);
3207 if (rc)
3208 goto out_unlock;
3209
3210 /* Check the validity of the new context. */
3211 if (!policydb_context_isvalid(policydb, &newcon)) {
3212 rc = convert_context_handle_invalid_context(policydb,
3213 &newcon);
3214 if (rc) {
3215 if (!context_struct_to_string(policydb, &newcon, &s,
3216 &len)) {
3217 struct audit_buffer *ab;
3218
3219 ab = audit_log_start(audit_context(),
3220 GFP_ATOMIC,
3221 AUDIT_SELINUX_ERR);
3222 audit_log_format(ab,
3223 "op=security_sid_mls_copy invalid_context=");
3224 /* don't record NUL with untrusted strings */
3225 audit_log_n_untrustedstring(ab, s, len - 1);
3226 audit_log_end(ab);
3227 kfree(s);
3228 }
3229 goto out_unlock;
3230 }
3231 }
3232 rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3233 if (rc == -ESTALE) {
3234 rcu_read_unlock();
3235 context_destroy(&newcon);
3236 goto retry;
3237 }
3238out_unlock:
3239 rcu_read_unlock();
3240 context_destroy(&newcon);
3241 return rc;
3242}
3243
3244/**
3245 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3246 * @nlbl_sid: NetLabel SID
3247 * @nlbl_type: NetLabel labeling protocol type
3248 * @xfrm_sid: XFRM SID
3249 * @peer_sid: network peer sid
3250 *
3251 * Description:
3252 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3253 * resolved into a single SID it is returned via @peer_sid and the function
3254 * returns zero. Otherwise @peer_sid is set to SECSID_NULL and the function
3255 * returns a negative value. A table summarizing the behavior is below:
3256 *
3257 * | function return | @sid
3258 * ------------------------------+-----------------+-----------------
3259 * no peer labels | 0 | SECSID_NULL
3260 * single peer label | 0 | <peer_label>
3261 * multiple, consistent labels | 0 | <peer_label>
3262 * multiple, inconsistent labels | -<errno> | SECSID_NULL
3263 *
3264 */
3265int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3266 u32 xfrm_sid,
3267 u32 *peer_sid)
3268{
3269 struct selinux_policy *policy;
3270 struct policydb *policydb;
3271 struct sidtab *sidtab;
3272 int rc;
3273 struct context *nlbl_ctx;
3274 struct context *xfrm_ctx;
3275
3276 *peer_sid = SECSID_NULL;
3277
3278 /* handle the common (which also happens to be the set of easy) cases
3279 * right away, these two if statements catch everything involving a
3280 * single or absent peer SID/label */
3281 if (xfrm_sid == SECSID_NULL) {
3282 *peer_sid = nlbl_sid;
3283 return 0;
3284 }
3285 /* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3286 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3287 * is present */
3288 if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3289 *peer_sid = xfrm_sid;
3290 return 0;
3291 }
3292
3293 if (!selinux_initialized())
3294 return 0;
3295
3296 rcu_read_lock();
3297 policy = rcu_dereference(selinux_state.policy);
3298 policydb = &policy->policydb;
3299 sidtab = policy->sidtab;
3300
3301 /*
3302 * We don't need to check initialized here since the only way both
3303 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3304 * security server was initialized and state->initialized was true.
3305 */
3306 if (!policydb->mls_enabled) {
3307 rc = 0;
3308 goto out;
3309 }
3310
3311 rc = -EINVAL;
3312 nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3313 if (!nlbl_ctx) {
3314 pr_err("SELinux: %s: unrecognized SID %d\n",
3315 __func__, nlbl_sid);
3316 goto out;
3317 }
3318 rc = -EINVAL;
3319 xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3320 if (!xfrm_ctx) {
3321 pr_err("SELinux: %s: unrecognized SID %d\n",
3322 __func__, xfrm_sid);
3323 goto out;
3324 }
3325 rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3326 if (rc)
3327 goto out;
3328
3329 /* at present NetLabel SIDs/labels really only carry MLS
3330 * information so if the MLS portion of the NetLabel SID
3331 * matches the MLS portion of the labeled XFRM SID/label
3332 * then pass along the XFRM SID as it is the most
3333 * expressive */
3334 *peer_sid = xfrm_sid;
3335out:
3336 rcu_read_unlock();
3337 return rc;
3338}
3339
3340static int get_classes_callback(void *k, void *d, void *args)
3341{
3342 struct class_datum *datum = d;
3343 char *name = k, **classes = args;
3344 u32 value = datum->value - 1;
3345
3346 classes[value] = kstrdup(name, GFP_ATOMIC);
3347 if (!classes[value])
3348 return -ENOMEM;
3349
3350 return 0;
3351}
3352
3353int security_get_classes(struct selinux_policy *policy,
3354 char ***classes, u32 *nclasses)
3355{
3356 struct policydb *policydb;
3357 int rc;
3358
3359 policydb = &policy->policydb;
3360
3361 rc = -ENOMEM;
3362 *nclasses = policydb->p_classes.nprim;
3363 *classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3364 if (!*classes)
3365 goto out;
3366
3367 rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3368 *classes);
3369 if (rc) {
3370 u32 i;
3371
3372 for (i = 0; i < *nclasses; i++)
3373 kfree((*classes)[i]);
3374 kfree(*classes);
3375 }
3376
3377out:
3378 return rc;
3379}
3380
3381static int get_permissions_callback(void *k, void *d, void *args)
3382{
3383 struct perm_datum *datum = d;
3384 char *name = k, **perms = args;
3385 u32 value = datum->value - 1;
3386
3387 perms[value] = kstrdup(name, GFP_ATOMIC);
3388 if (!perms[value])
3389 return -ENOMEM;
3390
3391 return 0;
3392}
3393
3394int security_get_permissions(struct selinux_policy *policy,
3395 const char *class, char ***perms, u32 *nperms)
3396{
3397 struct policydb *policydb;
3398 u32 i;
3399 int rc;
3400 struct class_datum *match;
3401
3402 policydb = &policy->policydb;
3403
3404 rc = -EINVAL;
3405 match = symtab_search(&policydb->p_classes, class);
3406 if (!match) {
3407 pr_err("SELinux: %s: unrecognized class %s\n",
3408 __func__, class);
3409 goto out;
3410 }
3411
3412 rc = -ENOMEM;
3413 *nperms = match->permissions.nprim;
3414 *perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3415 if (!*perms)
3416 goto out;
3417
3418 if (match->comdatum) {
3419 rc = hashtab_map(&match->comdatum->permissions.table,
3420 get_permissions_callback, *perms);
3421 if (rc)
3422 goto err;
3423 }
3424
3425 rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3426 *perms);
3427 if (rc)
3428 goto err;
3429
3430out:
3431 return rc;
3432
3433err:
3434 for (i = 0; i < *nperms; i++)
3435 kfree((*perms)[i]);
3436 kfree(*perms);
3437 return rc;
3438}
3439
3440int security_get_reject_unknown(void)
3441{
3442 struct selinux_policy *policy;
3443 int value;
3444
3445 if (!selinux_initialized())
3446 return 0;
3447
3448 rcu_read_lock();
3449 policy = rcu_dereference(selinux_state.policy);
3450 value = policy->policydb.reject_unknown;
3451 rcu_read_unlock();
3452 return value;
3453}
3454
3455int security_get_allow_unknown(void)
3456{
3457 struct selinux_policy *policy;
3458 int value;
3459
3460 if (!selinux_initialized())
3461 return 0;
3462
3463 rcu_read_lock();
3464 policy = rcu_dereference(selinux_state.policy);
3465 value = policy->policydb.allow_unknown;
3466 rcu_read_unlock();
3467 return value;
3468}
3469
3470/**
3471 * security_policycap_supported - Check for a specific policy capability
3472 * @req_cap: capability
3473 *
3474 * Description:
3475 * This function queries the currently loaded policy to see if it supports the
3476 * capability specified by @req_cap. Returns true (1) if the capability is
3477 * supported, false (0) if it isn't supported.
3478 *
3479 */
3480int security_policycap_supported(unsigned int req_cap)
3481{
3482 struct selinux_policy *policy;
3483 int rc;
3484
3485 if (!selinux_initialized())
3486 return 0;
3487
3488 rcu_read_lock();
3489 policy = rcu_dereference(selinux_state.policy);
3490 rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3491 rcu_read_unlock();
3492
3493 return rc;
3494}
3495
3496struct selinux_audit_rule {
3497 u32 au_seqno;
3498 struct context au_ctxt;
3499};
3500
3501void selinux_audit_rule_free(void *vrule)
3502{
3503 struct selinux_audit_rule *rule = vrule;
3504
3505 if (rule) {
3506 context_destroy(&rule->au_ctxt);
3507 kfree(rule);
3508 }
3509}
3510
3511int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3512{
3513 struct selinux_state *state = &selinux_state;
3514 struct selinux_policy *policy;
3515 struct policydb *policydb;
3516 struct selinux_audit_rule *tmprule;
3517 struct role_datum *roledatum;
3518 struct type_datum *typedatum;
3519 struct user_datum *userdatum;
3520 struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3521 int rc = 0;
3522
3523 *rule = NULL;
3524
3525 if (!selinux_initialized())
3526 return -EOPNOTSUPP;
3527
3528 switch (field) {
3529 case AUDIT_SUBJ_USER:
3530 case AUDIT_SUBJ_ROLE:
3531 case AUDIT_SUBJ_TYPE:
3532 case AUDIT_OBJ_USER:
3533 case AUDIT_OBJ_ROLE:
3534 case AUDIT_OBJ_TYPE:
3535 /* only 'equals' and 'not equals' fit user, role, and type */
3536 if (op != Audit_equal && op != Audit_not_equal)
3537 return -EINVAL;
3538 break;
3539 case AUDIT_SUBJ_SEN:
3540 case AUDIT_SUBJ_CLR:
3541 case AUDIT_OBJ_LEV_LOW:
3542 case AUDIT_OBJ_LEV_HIGH:
3543 /* we do not allow a range, indicated by the presence of '-' */
3544 if (strchr(rulestr, '-'))
3545 return -EINVAL;
3546 break;
3547 default:
3548 /* only the above fields are valid */
3549 return -EINVAL;
3550 }
3551
3552 tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3553 if (!tmprule)
3554 return -ENOMEM;
3555 context_init(&tmprule->au_ctxt);
3556
3557 rcu_read_lock();
3558 policy = rcu_dereference(state->policy);
3559 policydb = &policy->policydb;
3560 tmprule->au_seqno = policy->latest_granting;
3561 switch (field) {
3562 case AUDIT_SUBJ_USER:
3563 case AUDIT_OBJ_USER:
3564 userdatum = symtab_search(&policydb->p_users, rulestr);
3565 if (!userdatum) {
3566 rc = -EINVAL;
3567 goto err;
3568 }
3569 tmprule->au_ctxt.user = userdatum->value;
3570 break;
3571 case AUDIT_SUBJ_ROLE:
3572 case AUDIT_OBJ_ROLE:
3573 roledatum = symtab_search(&policydb->p_roles, rulestr);
3574 if (!roledatum) {
3575 rc = -EINVAL;
3576 goto err;
3577 }
3578 tmprule->au_ctxt.role = roledatum->value;
3579 break;
3580 case AUDIT_SUBJ_TYPE:
3581 case AUDIT_OBJ_TYPE:
3582 typedatum = symtab_search(&policydb->p_types, rulestr);
3583 if (!typedatum) {
3584 rc = -EINVAL;
3585 goto err;
3586 }
3587 tmprule->au_ctxt.type = typedatum->value;
3588 break;
3589 case AUDIT_SUBJ_SEN:
3590 case AUDIT_SUBJ_CLR:
3591 case AUDIT_OBJ_LEV_LOW:
3592 case AUDIT_OBJ_LEV_HIGH:
3593 rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3594 GFP_ATOMIC);
3595 if (rc)
3596 goto err;
3597 break;
3598 }
3599 rcu_read_unlock();
3600
3601 *rule = tmprule;
3602 return 0;
3603
3604err:
3605 rcu_read_unlock();
3606 selinux_audit_rule_free(tmprule);
3607 *rule = NULL;
3608 return rc;
3609}
3610
3611/* Check to see if the rule contains any selinux fields */
3612int selinux_audit_rule_known(struct audit_krule *rule)
3613{
3614 u32 i;
3615
3616 for (i = 0; i < rule->field_count; i++) {
3617 struct audit_field *f = &rule->fields[i];
3618 switch (f->type) {
3619 case AUDIT_SUBJ_USER:
3620 case AUDIT_SUBJ_ROLE:
3621 case AUDIT_SUBJ_TYPE:
3622 case AUDIT_SUBJ_SEN:
3623 case AUDIT_SUBJ_CLR:
3624 case AUDIT_OBJ_USER:
3625 case AUDIT_OBJ_ROLE:
3626 case AUDIT_OBJ_TYPE:
3627 case AUDIT_OBJ_LEV_LOW:
3628 case AUDIT_OBJ_LEV_HIGH:
3629 return 1;
3630 }
3631 }
3632
3633 return 0;
3634}
3635
3636int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
3637{
3638 struct selinux_state *state = &selinux_state;
3639 struct selinux_policy *policy;
3640 struct context *ctxt;
3641 struct mls_level *level;
3642 struct selinux_audit_rule *rule = vrule;
3643 int match = 0;
3644
3645 if (unlikely(!rule)) {
3646 WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3647 return -ENOENT;
3648 }
3649
3650 if (!selinux_initialized())
3651 return 0;
3652
3653 rcu_read_lock();
3654
3655 policy = rcu_dereference(state->policy);
3656
3657 if (rule->au_seqno < policy->latest_granting) {
3658 match = -ESTALE;
3659 goto out;
3660 }
3661
3662 ctxt = sidtab_search(policy->sidtab, sid);
3663 if (unlikely(!ctxt)) {
3664 WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3665 sid);
3666 match = -ENOENT;
3667 goto out;
3668 }
3669
3670 /* a field/op pair that is not caught here will simply fall through
3671 without a match */
3672 switch (field) {
3673 case AUDIT_SUBJ_USER:
3674 case AUDIT_OBJ_USER:
3675 switch (op) {
3676 case Audit_equal:
3677 match = (ctxt->user == rule->au_ctxt.user);
3678 break;
3679 case Audit_not_equal:
3680 match = (ctxt->user != rule->au_ctxt.user);
3681 break;
3682 }
3683 break;
3684 case AUDIT_SUBJ_ROLE:
3685 case AUDIT_OBJ_ROLE:
3686 switch (op) {
3687 case Audit_equal:
3688 match = (ctxt->role == rule->au_ctxt.role);
3689 break;
3690 case Audit_not_equal:
3691 match = (ctxt->role != rule->au_ctxt.role);
3692 break;
3693 }
3694 break;
3695 case AUDIT_SUBJ_TYPE:
3696 case AUDIT_OBJ_TYPE:
3697 switch (op) {
3698 case Audit_equal:
3699 match = (ctxt->type == rule->au_ctxt.type);
3700 break;
3701 case Audit_not_equal:
3702 match = (ctxt->type != rule->au_ctxt.type);
3703 break;
3704 }
3705 break;
3706 case AUDIT_SUBJ_SEN:
3707 case AUDIT_SUBJ_CLR:
3708 case AUDIT_OBJ_LEV_LOW:
3709 case AUDIT_OBJ_LEV_HIGH:
3710 level = ((field == AUDIT_SUBJ_SEN ||
3711 field == AUDIT_OBJ_LEV_LOW) ?
3712 &ctxt->range.level[0] : &ctxt->range.level[1]);
3713 switch (op) {
3714 case Audit_equal:
3715 match = mls_level_eq(&rule->au_ctxt.range.level[0],
3716 level);
3717 break;
3718 case Audit_not_equal:
3719 match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3720 level);
3721 break;
3722 case Audit_lt:
3723 match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3724 level) &&
3725 !mls_level_eq(&rule->au_ctxt.range.level[0],
3726 level));
3727 break;
3728 case Audit_le:
3729 match = mls_level_dom(&rule->au_ctxt.range.level[0],
3730 level);
3731 break;
3732 case Audit_gt:
3733 match = (mls_level_dom(level,
3734 &rule->au_ctxt.range.level[0]) &&
3735 !mls_level_eq(level,
3736 &rule->au_ctxt.range.level[0]));
3737 break;
3738 case Audit_ge:
3739 match = mls_level_dom(level,
3740 &rule->au_ctxt.range.level[0]);
3741 break;
3742 }
3743 }
3744
3745out:
3746 rcu_read_unlock();
3747 return match;
3748}
3749
3750static int aurule_avc_callback(u32 event)
3751{
3752 if (event == AVC_CALLBACK_RESET)
3753 return audit_update_lsm_rules();
3754 return 0;
3755}
3756
3757static int __init aurule_init(void)
3758{
3759 int err;
3760
3761 err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3762 if (err)
3763 panic("avc_add_callback() failed, error %d\n", err);
3764
3765 return err;
3766}
3767__initcall(aurule_init);
3768
3769#ifdef CONFIG_NETLABEL
3770/**
3771 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3772 * @secattr: the NetLabel packet security attributes
3773 * @sid: the SELinux SID
3774 *
3775 * Description:
3776 * Attempt to cache the context in @ctx, which was derived from the packet in
3777 * @skb, in the NetLabel subsystem cache. This function assumes @secattr has
3778 * already been initialized.
3779 *
3780 */
3781static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3782 u32 sid)
3783{
3784 u32 *sid_cache;
3785
3786 sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3787 if (sid_cache == NULL)
3788 return;
3789 secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3790 if (secattr->cache == NULL) {
3791 kfree(sid_cache);
3792 return;
3793 }
3794
3795 *sid_cache = sid;
3796 secattr->cache->free = kfree;
3797 secattr->cache->data = sid_cache;
3798 secattr->flags |= NETLBL_SECATTR_CACHE;
3799}
3800
3801/**
3802 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3803 * @secattr: the NetLabel packet security attributes
3804 * @sid: the SELinux SID
3805 *
3806 * Description:
3807 * Convert the given NetLabel security attributes in @secattr into a
3808 * SELinux SID. If the @secattr field does not contain a full SELinux
3809 * SID/context then use SECINITSID_NETMSG as the foundation. If possible the
3810 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3811 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3812 * conversion for future lookups. Returns zero on success, negative values on
3813 * failure.
3814 *
3815 */
3816int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3817 u32 *sid)
3818{
3819 struct selinux_policy *policy;
3820 struct policydb *policydb;
3821 struct sidtab *sidtab;
3822 int rc;
3823 struct context *ctx;
3824 struct context ctx_new;
3825
3826 if (!selinux_initialized()) {
3827 *sid = SECSID_NULL;
3828 return 0;
3829 }
3830
3831retry:
3832 rc = 0;
3833 rcu_read_lock();
3834 policy = rcu_dereference(selinux_state.policy);
3835 policydb = &policy->policydb;
3836 sidtab = policy->sidtab;
3837
3838 if (secattr->flags & NETLBL_SECATTR_CACHE)
3839 *sid = *(u32 *)secattr->cache->data;
3840 else if (secattr->flags & NETLBL_SECATTR_SECID)
3841 *sid = secattr->attr.secid;
3842 else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3843 rc = -EIDRM;
3844 ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3845 if (ctx == NULL)
3846 goto out;
3847
3848 context_init(&ctx_new);
3849 ctx_new.user = ctx->user;
3850 ctx_new.role = ctx->role;
3851 ctx_new.type = ctx->type;
3852 mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3853 if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3854 rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3855 if (rc)
3856 goto out;
3857 }
3858 rc = -EIDRM;
3859 if (!mls_context_isvalid(policydb, &ctx_new)) {
3860 ebitmap_destroy(&ctx_new.range.level[0].cat);
3861 goto out;
3862 }
3863
3864 rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3865 ebitmap_destroy(&ctx_new.range.level[0].cat);
3866 if (rc == -ESTALE) {
3867 rcu_read_unlock();
3868 goto retry;
3869 }
3870 if (rc)
3871 goto out;
3872
3873 security_netlbl_cache_add(secattr, *sid);
3874 } else
3875 *sid = SECSID_NULL;
3876
3877out:
3878 rcu_read_unlock();
3879 return rc;
3880}
3881
3882/**
3883 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3884 * @sid: the SELinux SID
3885 * @secattr: the NetLabel packet security attributes
3886 *
3887 * Description:
3888 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3889 * Returns zero on success, negative values on failure.
3890 *
3891 */
3892int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3893{
3894 struct selinux_policy *policy;
3895 struct policydb *policydb;
3896 int rc;
3897 struct context *ctx;
3898
3899 if (!selinux_initialized())
3900 return 0;
3901
3902 rcu_read_lock();
3903 policy = rcu_dereference(selinux_state.policy);
3904 policydb = &policy->policydb;
3905
3906 rc = -ENOENT;
3907 ctx = sidtab_search(policy->sidtab, sid);
3908 if (ctx == NULL)
3909 goto out;
3910
3911 rc = -ENOMEM;
3912 secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3913 GFP_ATOMIC);
3914 if (secattr->domain == NULL)
3915 goto out;
3916
3917 secattr->attr.secid = sid;
3918 secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3919 mls_export_netlbl_lvl(policydb, ctx, secattr);
3920 rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3921out:
3922 rcu_read_unlock();
3923 return rc;
3924}
3925#endif /* CONFIG_NETLABEL */
3926
3927/**
3928 * __security_read_policy - read the policy.
3929 * @policy: SELinux policy
3930 * @data: binary policy data
3931 * @len: length of data in bytes
3932 *
3933 */
3934static int __security_read_policy(struct selinux_policy *policy,
3935 void *data, size_t *len)
3936{
3937 int rc;
3938 struct policy_file fp;
3939
3940 fp.data = data;
3941 fp.len = *len;
3942
3943 rc = policydb_write(&policy->policydb, &fp);
3944 if (rc)
3945 return rc;
3946
3947 *len = (unsigned long)fp.data - (unsigned long)data;
3948 return 0;
3949}
3950
3951/**
3952 * security_read_policy - read the policy.
3953 * @data: binary policy data
3954 * @len: length of data in bytes
3955 *
3956 */
3957int security_read_policy(void **data, size_t *len)
3958{
3959 struct selinux_state *state = &selinux_state;
3960 struct selinux_policy *policy;
3961
3962 policy = rcu_dereference_protected(
3963 state->policy, lockdep_is_held(&state->policy_mutex));
3964 if (!policy)
3965 return -EINVAL;
3966
3967 *len = policy->policydb.len;
3968 *data = vmalloc_user(*len);
3969 if (!*data)
3970 return -ENOMEM;
3971
3972 return __security_read_policy(policy, *data, len);
3973}
3974
3975/**
3976 * security_read_state_kernel - read the policy.
3977 * @data: binary policy data
3978 * @len: length of data in bytes
3979 *
3980 * Allocates kernel memory for reading SELinux policy.
3981 * This function is for internal use only and should not
3982 * be used for returning data to user space.
3983 *
3984 * This function must be called with policy_mutex held.
3985 */
3986int security_read_state_kernel(void **data, size_t *len)
3987{
3988 int err;
3989 struct selinux_state *state = &selinux_state;
3990 struct selinux_policy *policy;
3991
3992 policy = rcu_dereference_protected(
3993 state->policy, lockdep_is_held(&state->policy_mutex));
3994 if (!policy)
3995 return -EINVAL;
3996
3997 *len = policy->policydb.len;
3998 *data = vmalloc(*len);
3999 if (!*data)
4000 return -ENOMEM;
4001
4002 err = __security_read_policy(policy, *data, len);
4003 if (err) {
4004 vfree(*data);
4005 *data = NULL;
4006 *len = 0;
4007 }
4008 return err;
4009}