Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
 
 
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96					struct context *tcontext,
  97					u16 tclass,
  98					struct av_decision *avd,
  99					struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 
 
 
 
 
 
 
 
 
 
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 
 
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd,
 570					  NULL);
 571		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 572			return;		/* no masked permission */
 573		masked = ~lo_avd.allowed & avd->allowed;
 574	}
 575
 576	if (target->bounds) {
 577		memset(&lo_avd, 0, sizeof(lo_avd));
 578
 579		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 580		lo_tcontext.type = target->bounds;
 581
 582		context_struct_compute_av(scontext,
 583					  &lo_tcontext,
 584					  tclass,
 585					  &lo_avd,
 586					  NULL);
 587		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 588			return;		/* no masked permission */
 589		masked = ~lo_avd.allowed & avd->allowed;
 590	}
 591
 592	if (source->bounds && target->bounds) {
 593		memset(&lo_avd, 0, sizeof(lo_avd));
 594		/*
 595		 * lo_scontext and lo_tcontext are already
 596		 * set up.
 597		 */
 598
 599		context_struct_compute_av(&lo_scontext,
 600					  &lo_tcontext,
 601					  tclass,
 602					  &lo_avd,
 603					  NULL);
 604		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 605			return;		/* no masked permission */
 606		masked = ~lo_avd.allowed & avd->allowed;
 607	}
 608
 609	if (masked) {
 610		/* mask violated permissions */
 611		avd->allowed &= ~masked;
 612
 613		/* audit masked permissions */
 614		security_dump_masked_av(scontext, tcontext,
 615					tclass, masked, "bounds");
 616	}
 617}
 618
 619/*
 620 * flag which drivers have permissions
 621 * only looking for ioctl based extended permssions
 622 */
 623void services_compute_xperms_drivers(
 624		struct extended_perms *xperms,
 625		struct avtab_node *node)
 626{
 627	unsigned int i;
 628
 629	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 630		/* if one or more driver has all permissions allowed */
 631		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 632			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 633	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 634		/* if allowing permissions within a driver */
 635		security_xperm_set(xperms->drivers.p,
 636					node->datum.u.xperms->driver);
 637	}
 638
 639	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 640	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 641		xperms->len = 1;
 642}
 643
 644/*
 645 * Compute access vectors and extended permissions based on a context
 646 * structure pair for the permissions in a particular class.
 647 */
 648static void context_struct_compute_av(struct context *scontext,
 649					struct context *tcontext,
 650					u16 tclass,
 651					struct av_decision *avd,
 652					struct extended_perms *xperms)
 
 653{
 654	struct constraint_node *constraint;
 655	struct role_allow *ra;
 656	struct avtab_key avkey;
 657	struct avtab_node *node;
 658	struct class_datum *tclass_datum;
 659	struct ebitmap *sattr, *tattr;
 660	struct ebitmap_node *snode, *tnode;
 661	unsigned int i, j;
 662
 663	avd->allowed = 0;
 664	avd->auditallow = 0;
 665	avd->auditdeny = 0xffffffff;
 666	if (xperms) {
 667		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 668		xperms->len = 0;
 669	}
 670
 671	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 672		if (printk_ratelimit())
 673			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 674		return;
 675	}
 676
 677	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 678
 679	/*
 680	 * If a specific type enforcement rule was defined for
 681	 * this permission check, then use it.
 682	 */
 683	avkey.target_class = tclass;
 684	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 685	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 686	BUG_ON(!sattr);
 687	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 688	BUG_ON(!tattr);
 689	ebitmap_for_each_positive_bit(sattr, snode, i) {
 690		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 691			avkey.source_type = i + 1;
 692			avkey.target_type = j + 1;
 693			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 694			     node;
 695			     node = avtab_search_node_next(node, avkey.specified)) {
 696				if (node->key.specified == AVTAB_ALLOWED)
 697					avd->allowed |= node->datum.u.data;
 698				else if (node->key.specified == AVTAB_AUDITALLOW)
 699					avd->auditallow |= node->datum.u.data;
 700				else if (node->key.specified == AVTAB_AUDITDENY)
 701					avd->auditdeny &= node->datum.u.data;
 702				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 703					services_compute_xperms_drivers(xperms, node);
 704			}
 705
 706			/* Check conditional av table for additional permissions */
 707			cond_compute_av(&policydb.te_cond_avtab, &avkey,
 708					avd, xperms);
 709
 710		}
 711	}
 712
 713	/*
 714	 * Remove any permissions prohibited by a constraint (this includes
 715	 * the MLS policy).
 716	 */
 717	constraint = tclass_datum->constraints;
 718	while (constraint) {
 719		if ((constraint->permissions & (avd->allowed)) &&
 720		    !constraint_expr_eval(scontext, tcontext, NULL,
 721					  constraint->expr)) {
 722			avd->allowed &= ~(constraint->permissions);
 723		}
 724		constraint = constraint->next;
 725	}
 726
 727	/*
 728	 * If checking process transition permission and the
 729	 * role is changing, then check the (current_role, new_role)
 730	 * pair.
 731	 */
 732	if (tclass == policydb.process_class &&
 733	    (avd->allowed & policydb.process_trans_perms) &&
 734	    scontext->role != tcontext->role) {
 735		for (ra = policydb.role_allow; ra; ra = ra->next) {
 736			if (scontext->role == ra->role &&
 737			    tcontext->role == ra->new_role)
 738				break;
 739		}
 740		if (!ra)
 741			avd->allowed &= ~policydb.process_trans_perms;
 742	}
 743
 744	/*
 745	 * If the given source and target types have boundary
 746	 * constraint, lazy checks have to mask any violated
 747	 * permission and notice it to userspace via audit.
 748	 */
 749	type_attribute_bounds_av(scontext, tcontext,
 750				 tclass, avd);
 751}
 752
 753static int security_validtrans_handle_fail(struct context *ocontext,
 754					   struct context *ncontext,
 755					   struct context *tcontext,
 756					   u16 tclass)
 
 
 757{
 
 
 758	char *o = NULL, *n = NULL, *t = NULL;
 759	u32 olen, nlen, tlen;
 760
 761	if (context_struct_to_string(ocontext, &o, &olen))
 762		goto out;
 763	if (context_struct_to_string(ncontext, &n, &nlen))
 764		goto out;
 765	if (context_struct_to_string(tcontext, &t, &tlen))
 766		goto out;
 767	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 768		  "op=security_validate_transition seresult=denied"
 769		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 770		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 771out:
 772	kfree(o);
 773	kfree(n);
 774	kfree(t);
 775
 776	if (!selinux_enforcing)
 777		return 0;
 778	return -EPERM;
 779}
 780
 781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 
 782					  u16 orig_tclass, bool user)
 783{
 784	struct context *ocontext;
 785	struct context *ncontext;
 786	struct context *tcontext;
 
 
 
 787	struct class_datum *tclass_datum;
 788	struct constraint_node *constraint;
 789	u16 tclass;
 790	int rc = 0;
 791
 792	if (!ss_initialized)
 
 793		return 0;
 794
 795	read_lock(&policy_rwlock);
 
 
 
 
 796
 797	if (!user)
 798		tclass = unmap_class(orig_tclass);
 799	else
 800		tclass = orig_tclass;
 801
 802	if (!tclass || tclass > policydb.p_classes.nprim) {
 803		rc = -EINVAL;
 804		goto out;
 805	}
 806	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 807
 808	ocontext = sidtab_search(&sidtab, oldsid);
 809	if (!ocontext) {
 810		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 811			__func__, oldsid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	ncontext = sidtab_search(&sidtab, newsid);
 817	if (!ncontext) {
 818		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 819			__func__, newsid);
 820		rc = -EINVAL;
 821		goto out;
 822	}
 823
 824	tcontext = sidtab_search(&sidtab, tasksid);
 825	if (!tcontext) {
 826		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 827			__func__, tasksid);
 828		rc = -EINVAL;
 829		goto out;
 830	}
 831
 832	constraint = tclass_datum->validatetrans;
 833	while (constraint) {
 834		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 835					  constraint->expr)) {
 836			if (user)
 837				rc = -EPERM;
 838			else
 839				rc = security_validtrans_handle_fail(ocontext,
 840								     ncontext,
 841								     tcontext,
 842								     tclass);
 
 
 843			goto out;
 844		}
 845		constraint = constraint->next;
 846	}
 847
 848out:
 849	read_unlock(&policy_rwlock);
 850	return rc;
 851}
 852
 853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 854					u16 tclass)
 
 855{
 856	return security_compute_validatetrans(oldsid, newsid, tasksid,
 857						tclass, true);
 858}
 859
 860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 
 861				 u16 orig_tclass)
 862{
 863	return security_compute_validatetrans(oldsid, newsid, tasksid,
 864						orig_tclass, false);
 865}
 866
 867/*
 868 * security_bounded_transition - check whether the given
 869 * transition is directed to bounded, or not.
 870 * It returns 0, if @newsid is bounded by @oldsid.
 871 * Otherwise, it returns error code.
 872 *
 
 873 * @oldsid : current security identifier
 874 * @newsid : destinated security identifier
 875 */
 876int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 877{
 878	struct context *old_context, *new_context;
 
 
 
 879	struct type_datum *type;
 880	int index;
 881	int rc;
 882
 883	read_lock(&policy_rwlock);
 
 
 
 
 
 
 884
 885	rc = -EINVAL;
 886	old_context = sidtab_search(&sidtab, old_sid);
 887	if (!old_context) {
 888		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_context = sidtab_search(&sidtab, new_sid);
 895	if (!new_context) {
 896		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_context->type == new_context->type)
 904		goto out;
 905
 906	index = new_context->type;
 907	while (true) {
 908		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 909					  index - 1);
 910		BUG_ON(!type);
 911
 912		/* not bounded anymore */
 913		rc = -EPERM;
 914		if (!type->bounds)
 915			break;
 916
 917		/* @newsid is bounded by @oldsid */
 918		rc = 0;
 919		if (type->bounds == old_context->type)
 920			break;
 921
 922		index = type->bounds;
 923	}
 924
 925	if (rc) {
 926		char *old_name = NULL;
 927		char *new_name = NULL;
 928		u32 length;
 929
 930		if (!context_struct_to_string(old_context,
 931					      &old_name, &length) &&
 932		    !context_struct_to_string(new_context,
 933					      &new_name, &length)) {
 934			audit_log(current->audit_context,
 935				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 936				  "op=security_bounded_transition "
 937				  "seresult=denied "
 938				  "oldcontext=%s newcontext=%s",
 939				  old_name, new_name);
 940		}
 941		kfree(new_name);
 942		kfree(old_name);
 943	}
 944out:
 945	read_unlock(&policy_rwlock);
 946
 947	return rc;
 948}
 949
 950static void avd_init(struct av_decision *avd)
 951{
 952	avd->allowed = 0;
 953	avd->auditallow = 0;
 954	avd->auditdeny = 0xffffffff;
 955	avd->seqno = latest_granting;
 
 
 
 956	avd->flags = 0;
 957}
 958
 959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 960					struct avtab_node *node)
 961{
 962	unsigned int i;
 963
 964	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 965		if (xpermd->driver != node->datum.u.xperms->driver)
 966			return;
 967	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 968		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 969					xpermd->driver))
 970			return;
 971	} else {
 972		BUG();
 973	}
 974
 975	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 976		xpermd->used |= XPERMS_ALLOWED;
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978			memset(xpermd->allowed->p, 0xff,
 979					sizeof(xpermd->allowed->p));
 980		}
 981		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 983				xpermd->allowed->p[i] |=
 984					node->datum.u.xperms->perms.p[i];
 985		}
 986	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 987		xpermd->used |= XPERMS_AUDITALLOW;
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989			memset(xpermd->auditallow->p, 0xff,
 990					sizeof(xpermd->auditallow->p));
 991		}
 992		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 994				xpermd->auditallow->p[i] |=
 995					node->datum.u.xperms->perms.p[i];
 996		}
 997	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 998		xpermd->used |= XPERMS_DONTAUDIT;
 999		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000			memset(xpermd->dontaudit->p, 0xff,
1001					sizeof(xpermd->dontaudit->p));
1002		}
1003		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005				xpermd->dontaudit->p[i] |=
1006					node->datum.u.xperms->perms.p[i];
1007		}
1008	} else {
1009		BUG();
1010	}
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014				u32 tsid,
1015				u16 orig_tclass,
1016				u8 driver,
1017				struct extended_perms_decision *xpermd)
1018{
 
 
 
 
1019	u16 tclass;
1020	struct context *scontext, *tcontext;
1021	struct avtab_key avkey;
1022	struct avtab_node *node;
1023	struct ebitmap *sattr, *tattr;
1024	struct ebitmap_node *snode, *tnode;
1025	unsigned int i, j;
1026
1027	xpermd->driver = driver;
1028	xpermd->used = 0;
1029	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033	read_lock(&policy_rwlock);
1034	if (!ss_initialized)
1035		goto allow;
1036
1037	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 
1038	if (!scontext) {
1039		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1040		       __func__, ssid);
1041		goto out;
1042	}
1043
1044	tcontext = sidtab_search(&sidtab, tsid);
1045	if (!tcontext) {
1046		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1047		       __func__, tsid);
1048		goto out;
1049	}
1050
1051	tclass = unmap_class(orig_tclass);
1052	if (unlikely(orig_tclass && !tclass)) {
1053		if (policydb.allow_unknown)
1054			goto allow;
1055		goto out;
1056	}
1057
1058
1059	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1061		goto out;
1062	}
1063
1064	avkey.target_class = tclass;
1065	avkey.specified = AVTAB_XPERMS;
1066	sattr = flex_array_get(policydb.type_attr_map_array,
1067				scontext->type - 1);
1068	BUG_ON(!sattr);
1069	tattr = flex_array_get(policydb.type_attr_map_array,
1070				tcontext->type - 1);
1071	BUG_ON(!tattr);
1072	ebitmap_for_each_positive_bit(sattr, snode, i) {
1073		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074			avkey.source_type = i + 1;
1075			avkey.target_type = j + 1;
1076			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
1077			     node;
1078			     node = avtab_search_node_next(node, avkey.specified))
1079				services_compute_xperms_decision(xpermd, node);
1080
1081			cond_compute_xperms(&policydb.te_cond_avtab,
1082						&avkey, xpermd);
1083		}
1084	}
1085out:
1086	read_unlock(&policy_rwlock);
1087	return;
1088allow:
1089	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090	goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
 
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
 
1105			 u32 tsid,
1106			 u16 orig_tclass,
1107			 struct av_decision *avd,
1108			 struct extended_perms *xperms)
1109{
 
 
 
1110	u16 tclass;
1111	struct context *scontext = NULL, *tcontext = NULL;
1112
1113	read_lock(&policy_rwlock);
1114	avd_init(avd);
 
1115	xperms->len = 0;
1116	if (!ss_initialized)
1117		goto allow;
1118
1119	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1120	if (!scontext) {
1121		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1122		       __func__, ssid);
1123		goto out;
1124	}
1125
1126	/* permissive domain? */
1127	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128		avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130	tcontext = sidtab_search(&sidtab, tsid);
1131	if (!tcontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, tsid);
1134		goto out;
1135	}
1136
1137	tclass = unmap_class(orig_tclass);
1138	if (unlikely(orig_tclass && !tclass)) {
1139		if (policydb.allow_unknown)
1140			goto allow;
1141		goto out;
1142	}
1143	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
1145out:
1146	read_unlock(&policy_rwlock);
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
 
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
 
 
 
1158	struct context *scontext = NULL, *tcontext = NULL;
1159
1160	read_lock(&policy_rwlock);
1161	avd_init(avd);
1162	if (!ss_initialized)
 
1163		goto allow;
1164
1165	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1166	if (!scontext) {
1167		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168		       __func__, ssid);
1169		goto out;
1170	}
1171
1172	/* permissive domain? */
1173	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174		avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176	tcontext = sidtab_search(&sidtab, tsid);
1177	if (!tcontext) {
1178		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1179		       __func__, tsid);
1180		goto out;
1181	}
1182
1183	if (unlikely(!tclass)) {
1184		if (policydb.allow_unknown)
1185			goto allow;
1186		goto out;
1187	}
1188
1189	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
 
1190 out:
1191	read_unlock(&policy_rwlock);
1192	return;
1193allow:
1194	avd->allowed = 0xffffffff;
1195	goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size.  Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1206{
1207	char *scontextp;
1208
1209	if (scontext)
1210		*scontext = NULL;
1211	*scontext_len = 0;
1212
1213	if (context->len) {
1214		*scontext_len = context->len;
1215		if (scontext) {
1216			*scontext = kstrdup(context->str, GFP_ATOMIC);
1217			if (!(*scontext))
1218				return -ENOMEM;
1219		}
1220		return 0;
1221	}
1222
1223	/* Compute the size of the context. */
1224	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227	*scontext_len += mls_compute_context_len(context);
1228
1229	if (!scontext)
1230		return 0;
1231
1232	/* Allocate space for the context; caller must free this space. */
1233	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234	if (!scontextp)
1235		return -ENOMEM;
1236	*scontext = scontextp;
1237
1238	/*
1239	 * Copy the user name, role name and type name into the context.
1240	 */
1241	scontextp += sprintf(scontextp, "%s:%s:%s",
1242		sym_name(&policydb, SYM_USERS, context->user - 1),
1243		sym_name(&policydb, SYM_ROLES, context->role - 1),
1244		sym_name(&policydb, SYM_TYPES, context->type - 1));
1245
1246	mls_sid_to_context(context, &scontextp);
1247
1248	*scontextp = 0;
1249
1250	return 0;
1251}
1252
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253#include "initial_sid_to_string.h"
1254
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257	if (unlikely(sid > SECINITSID_NUM))
1258		return NULL;
1259	return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263					u32 *scontext_len, int force)
1264{
1265	struct context *context;
 
 
 
 
 
1266	int rc = 0;
1267
1268	if (scontext)
1269		*scontext = NULL;
1270	*scontext_len  = 0;
1271
1272	if (!ss_initialized) {
1273		if (sid <= SECINITSID_NUM) {
1274			char *scontextp;
 
1275
1276			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1277			if (!scontext)
1278				goto out;
1279			scontextp = kmemdup(initial_sid_to_string[sid],
1280					    *scontext_len, GFP_ATOMIC);
1281			if (!scontextp) {
1282				rc = -ENOMEM;
1283				goto out;
1284			}
1285			*scontext = scontextp;
1286			goto out;
1287		}
1288		printk(KERN_ERR "SELinux: %s:  called before initial "
1289		       "load_policy on unknown SID %d\n", __func__, sid);
1290		rc = -EINVAL;
1291		goto out;
1292	}
1293	read_lock(&policy_rwlock);
 
 
 
 
1294	if (force)
1295		context = sidtab_search_force(&sidtab, sid);
1296	else
1297		context = sidtab_search(&sidtab, sid);
1298	if (!context) {
1299		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1300			__func__, sid);
1301		rc = -EINVAL;
1302		goto out_unlock;
1303	}
1304	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1305out_unlock:
1306	read_unlock(&policy_rwlock);
1307out:
1308	return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
 
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size.  Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1323{
1324	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
1328{
1329	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1330}
1331
1332/*
1333 * Caveat:  Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336				    struct sidtab *sidtabp,
1337				    char *scontext,
1338				    u32 scontext_len,
1339				    struct context *ctx,
1340				    u32 def_sid)
1341{
1342	struct role_datum *role;
1343	struct type_datum *typdatum;
1344	struct user_datum *usrdatum;
1345	char *scontextp, *p, oldc;
1346	int rc = 0;
1347
1348	context_init(ctx);
1349
1350	/* Parse the security context. */
1351
1352	rc = -EINVAL;
1353	scontextp = (char *) scontext;
1354
1355	/* Extract the user. */
1356	p = scontextp;
1357	while (*p && *p != ':')
1358		p++;
1359
1360	if (*p == 0)
1361		goto out;
1362
1363	*p++ = 0;
1364
1365	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366	if (!usrdatum)
1367		goto out;
1368
1369	ctx->user = usrdatum->value;
1370
1371	/* Extract role. */
1372	scontextp = p;
1373	while (*p && *p != ':')
1374		p++;
1375
1376	if (*p == 0)
1377		goto out;
1378
1379	*p++ = 0;
1380
1381	role = hashtab_search(pol->p_roles.table, scontextp);
1382	if (!role)
1383		goto out;
1384	ctx->role = role->value;
1385
1386	/* Extract type. */
1387	scontextp = p;
1388	while (*p && *p != ':')
1389		p++;
1390	oldc = *p;
1391	*p++ = 0;
1392
1393	typdatum = hashtab_search(pol->p_types.table, scontextp);
1394	if (!typdatum || typdatum->attribute)
1395		goto out;
1396
1397	ctx->type = typdatum->value;
1398
1399	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400	if (rc)
1401		goto out;
1402
1403	rc = -EINVAL;
1404	if ((p - scontext) < scontext_len)
1405		goto out;
1406
1407	/* Check the validity of the new context. */
 
1408	if (!policydb_context_isvalid(pol, ctx))
1409		goto out;
1410	rc = 0;
1411out:
1412	if (rc)
1413		context_destroy(ctx);
1414	return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1418					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419					int force)
1420{
 
 
 
1421	char *scontext2, *str = NULL;
1422	struct context context;
1423	int rc = 0;
1424
1425	/* An empty security context is never valid. */
1426	if (!scontext_len)
1427		return -EINVAL;
1428
1429	if (!ss_initialized) {
 
 
 
 
 
1430		int i;
1431
1432		for (i = 1; i < SECINITSID_NUM; i++) {
1433			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1434				*sid = i;
1435				return 0;
1436			}
1437		}
1438		*sid = SECINITSID_KERNEL;
1439		return 0;
1440	}
1441	*sid = SECSID_NULL;
1442
1443	/* Copy the string so that we can modify the copy as we parse it. */
1444	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445	if (!scontext2)
1446		return -ENOMEM;
1447	memcpy(scontext2, scontext, scontext_len);
1448	scontext2[scontext_len] = 0;
1449
1450	if (force) {
1451		/* Save another copy for storing in uninterpreted form */
1452		rc = -ENOMEM;
1453		str = kstrdup(scontext2, gfp_flags);
1454		if (!str)
1455			goto out;
1456	}
1457
1458	read_lock(&policy_rwlock);
1459	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460				      scontext_len, &context, def_sid);
 
 
 
1461	if (rc == -EINVAL && force) {
1462		context.str = str;
1463		context.len = scontext_len;
1464		str = NULL;
1465	} else if (rc)
1466		goto out_unlock;
1467	rc = sidtab_context_to_sid(&sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1468	context_destroy(&context);
1469out_unlock:
1470	read_unlock(&policy_rwlock);
1471out:
1472	kfree(scontext2);
1473	kfree(str);
1474	return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
 
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1490			    gfp_t gfp)
1491{
1492	return security_context_to_sid_core(scontext, scontext_len,
1493					    sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
 
1497{
1498	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
 
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
 
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1520				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522	return security_context_to_sid_core(scontext, scontext_len,
1523					    sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1527				  u32 *sid)
1528{
1529	return security_context_to_sid_core(scontext, scontext_len,
1530					    sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
1534	struct context *scontext,
1535	struct context *tcontext,
 
 
1536	u16 tclass,
1537	struct context *newcontext)
1538{
 
 
1539	char *s = NULL, *t = NULL, *n = NULL;
1540	u32 slen, tlen, nlen;
 
1541
1542	if (context_struct_to_string(scontext, &s, &slen))
1543		goto out;
1544	if (context_struct_to_string(tcontext, &t, &tlen))
1545		goto out;
1546	if (context_struct_to_string(newcontext, &n, &nlen))
1547		goto out;
1548	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549		  "op=security_compute_sid invalid_context=%s"
1550		  " scontext=%s"
1551		  " tcontext=%s"
1552		  " tclass=%s",
1553		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
1554out:
1555	kfree(s);
1556	kfree(t);
1557	kfree(n);
1558	if (!selinux_enforcing)
1559		return 0;
1560	return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1564				  u32 stype, u32 ttype, u16 tclass,
1565				  const char *objname)
1566{
1567	struct filename_trans ft;
1568	struct filename_trans_datum *otype;
1569
1570	/*
1571	 * Most filename trans rules are going to live in specific directories
1572	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1573	 * if the ttype does not contain any rules.
1574	 */
1575	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576		return;
1577
1578	ft.stype = stype;
1579	ft.ttype = ttype;
1580	ft.tclass = tclass;
1581	ft.name = objname;
1582
1583	otype = hashtab_search(p->filename_trans, &ft);
1584	if (otype)
1585		newcontext->type = otype->otype;
 
 
 
 
 
1586}
1587
1588static int security_compute_sid(u32 ssid,
 
1589				u32 tsid,
1590				u16 orig_tclass,
1591				u32 specified,
1592				const char *objname,
1593				u32 *out_sid,
1594				bool kern)
1595{
1596	struct class_datum *cladatum = NULL;
1597	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598	struct role_trans *roletr = NULL;
 
 
 
1599	struct avtab_key avkey;
1600	struct avtab_datum *avdatum;
1601	struct avtab_node *node;
1602	u16 tclass;
1603	int rc = 0;
1604	bool sock;
1605
1606	if (!ss_initialized) {
1607		switch (orig_tclass) {
1608		case SECCLASS_PROCESS: /* kernel value */
1609			*out_sid = ssid;
1610			break;
1611		default:
1612			*out_sid = tsid;
1613			break;
1614		}
1615		goto out;
1616	}
1617
 
 
1618	context_init(&newcontext);
1619
1620	read_lock(&policy_rwlock);
 
 
1621
1622	if (kern) {
1623		tclass = unmap_class(orig_tclass);
1624		sock = security_is_socket_class(orig_tclass);
1625	} else {
1626		tclass = orig_tclass;
1627		sock = security_is_socket_class(map_class(tclass));
 
1628	}
1629
1630	scontext = sidtab_search(&sidtab, ssid);
1631	if (!scontext) {
1632		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1633		       __func__, ssid);
1634		rc = -EINVAL;
1635		goto out_unlock;
1636	}
1637	tcontext = sidtab_search(&sidtab, tsid);
1638	if (!tcontext) {
1639		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1640		       __func__, tsid);
1641		rc = -EINVAL;
1642		goto out_unlock;
1643	}
1644
1645	if (tclass && tclass <= policydb.p_classes.nprim)
1646		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1647
1648	/* Set the user identity. */
1649	switch (specified) {
1650	case AVTAB_TRANSITION:
1651	case AVTAB_CHANGE:
1652		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653			newcontext.user = tcontext->user;
1654		} else {
1655			/* notice this gets both DEFAULT_SOURCE and unset */
1656			/* Use the process user identity. */
1657			newcontext.user = scontext->user;
1658		}
1659		break;
1660	case AVTAB_MEMBER:
1661		/* Use the related object owner. */
1662		newcontext.user = tcontext->user;
1663		break;
1664	}
1665
1666	/* Set the role to default values. */
1667	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1668		newcontext.role = scontext->role;
1669	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670		newcontext.role = tcontext->role;
1671	} else {
1672		if ((tclass == policydb.process_class) || (sock == true))
1673			newcontext.role = scontext->role;
1674		else
1675			newcontext.role = OBJECT_R_VAL;
1676	}
1677
1678	/* Set the type to default values. */
1679	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680		newcontext.type = scontext->type;
1681	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682		newcontext.type = tcontext->type;
1683	} else {
1684		if ((tclass == policydb.process_class) || (sock == true)) {
1685			/* Use the type of process. */
1686			newcontext.type = scontext->type;
1687		} else {
1688			/* Use the type of the related object. */
1689			newcontext.type = tcontext->type;
1690		}
1691	}
1692
1693	/* Look for a type transition/member/change rule. */
1694	avkey.source_type = scontext->type;
1695	avkey.target_type = tcontext->type;
1696	avkey.target_class = tclass;
1697	avkey.specified = specified;
1698	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700	/* If no permanent rule, also check for enabled conditional rules */
1701	if (!avdatum) {
1702		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703		for (; node; node = avtab_search_node_next(node, specified)) {
1704			if (node->key.specified & AVTAB_ENABLED) {
1705				avdatum = &node->datum;
1706				break;
1707			}
1708		}
1709	}
1710
1711	if (avdatum) {
1712		/* Use the type from the type transition/member/change rule. */
1713		newcontext.type = avdatum->u.data;
1714	}
1715
1716	/* if we have a objname this is a file trans check so check those rules */
1717	if (objname)
1718		filename_compute_type(&policydb, &newcontext, scontext->type,
1719				      tcontext->type, tclass, objname);
1720
1721	/* Check for class-specific changes. */
1722	if (specified & AVTAB_TRANSITION) {
1723		/* Look for a role transition rule. */
1724		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1725			if ((roletr->role == scontext->role) &&
1726			    (roletr->type == tcontext->type) &&
1727			    (roletr->tclass == tclass)) {
1728				/* Use the role transition rule. */
1729				newcontext.role = roletr->new_role;
1730				break;
1731			}
1732		}
 
1733	}
1734
1735	/* Set the MLS attributes.
1736	   This is done last because it may allocate memory. */
1737	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738			     &newcontext, sock);
1739	if (rc)
1740		goto out_unlock;
1741
1742	/* Check the validity of the context. */
1743	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744		rc = compute_sid_handle_invalid_context(scontext,
1745							tcontext,
1746							tclass,
1747							&newcontext);
1748		if (rc)
1749			goto out_unlock;
1750	}
1751	/* Obtain the sid for the context. */
1752	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
 
 
 
 
 
1753out_unlock:
1754	read_unlock(&policy_rwlock);
1755	context_destroy(&newcontext);
1756out:
1757	return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
 
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1774			    const struct qstr *qstr, u32 *out_sid)
1775{
1776	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1777				    qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1781				 const char *objname, u32 *out_sid)
1782{
1783	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1784				    objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
 
1801			u32 tsid,
1802			u16 tclass,
1803			u32 *out_sid)
1804{
1805	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1806				    out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
 
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
 
1823			u32 tsid,
1824			u16 tclass,
1825			u32 *out_sid)
1826{
1827	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1828				    out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833		     struct context *context,
1834		     void *arg)
1835{
1836	struct sidtab *s = arg;
1837
1838	if (sid > SECINITSID_NUM)
1839		return sidtab_insert(s, sid, context);
1840	else
1841		return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
1846	char *s;
1847	u32 len;
1848
1849	if (selinux_enforcing)
1850		return -EINVAL;
1851
1852	if (!context_struct_to_string(context, &s, &len)) {
1853		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1854		kfree(s);
1855	}
1856	return 0;
1857}
1858
1859struct convert_context_args {
1860	struct policydb *oldp;
1861	struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'.  Verify that the
1869 * context is valid under the new policy.
 
1870 */
1871static int convert_context(u32 key,
1872			   struct context *c,
1873			   void *p)
1874{
1875	struct convert_context_args *args;
1876	struct context oldc;
1877	struct ocontext *oc;
1878	struct mls_range *range;
1879	struct role_datum *role;
1880	struct type_datum *typdatum;
1881	struct user_datum *usrdatum;
1882	char *s;
1883	u32 len;
1884	int rc = 0;
1885
1886	if (key <= SECINITSID_NUM)
1887		goto out;
1888
1889	args = p;
1890
1891	if (c->str) {
1892		struct context ctx;
1893
1894		rc = -ENOMEM;
1895		s = kstrdup(c->str, GFP_KERNEL);
1896		if (!s)
1897			goto out;
1898
1899		rc = string_to_context_struct(args->newp, NULL, s,
1900					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901		kfree(s);
1902		if (!rc) {
1903			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1904			       c->str);
1905			/* Replace string with mapped representation. */
1906			kfree(c->str);
1907			memcpy(c, &ctx, sizeof(*c));
1908			goto out;
1909		} else if (rc == -EINVAL) {
1910			/* Retain string representation for later mapping. */
1911			rc = 0;
1912			goto out;
1913		} else {
1914			/* Other error condition, e.g. ENOMEM. */
1915			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1916			       c->str, -rc);
1917			goto out;
1918		}
 
 
 
1919	}
1920
1921	rc = context_cpy(&oldc, c);
1922	if (rc)
1923		goto out;
1924
1925	/* Convert the user. */
1926	rc = -EINVAL;
1927	usrdatum = hashtab_search(args->newp->p_users.table,
1928				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1929	if (!usrdatum)
1930		goto bad;
1931	c->user = usrdatum->value;
1932
1933	/* Convert the role. */
1934	rc = -EINVAL;
1935	role = hashtab_search(args->newp->p_roles.table,
1936			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937	if (!role)
1938		goto bad;
1939	c->role = role->value;
1940
1941	/* Convert the type. */
1942	rc = -EINVAL;
1943	typdatum = hashtab_search(args->newp->p_types.table,
1944				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1945	if (!typdatum)
1946		goto bad;
1947	c->type = typdatum->value;
1948
1949	/* Convert the MLS fields if dealing with MLS policies */
1950	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951		rc = mls_convert_context(args->oldp, args->newp, c);
1952		if (rc)
1953			goto bad;
1954	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955		/*
1956		 * Switching between MLS and non-MLS policy:
1957		 * free any storage used by the MLS fields in the
1958		 * context for all existing entries in the sidtab.
1959		 */
1960		mls_context_destroy(c);
1961	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962		/*
1963		 * Switching between non-MLS and MLS policy:
1964		 * ensure that the MLS fields of the context for all
1965		 * existing entries in the sidtab are filled in with a
1966		 * suitable default value, likely taken from one of the
1967		 * initial SIDs.
1968		 */
1969		oc = args->newp->ocontexts[OCON_ISID];
1970		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971			oc = oc->next;
1972		rc = -EINVAL;
1973		if (!oc) {
1974			printk(KERN_ERR "SELinux:  unable to look up"
1975				" the initial SIDs list\n");
1976			goto bad;
1977		}
1978		range = &oc->context[0].range;
1979		rc = mls_range_set(c, range);
1980		if (rc)
1981			goto bad;
1982	}
1983
1984	/* Check the validity of the new context. */
1985	if (!policydb_context_isvalid(args->newp, c)) {
1986		rc = convert_context_handle_invalid_context(&oldc);
 
 
1987		if (rc)
1988			goto bad;
1989	}
1990
1991	context_destroy(&oldc);
1992
1993	rc = 0;
1994out:
1995	return rc;
1996bad:
1997	/* Map old representation to string and save it. */
1998	rc = context_struct_to_string(&oldc, &s, &len);
1999	if (rc)
2000		return rc;
2001	context_destroy(&oldc);
2002	context_destroy(c);
2003	c->str = s;
2004	c->len = len;
2005	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2006	       c->str);
2007	rc = 0;
2008	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2009}
2010
2011static void security_load_policycaps(void)
 
 
 
2012{
2013	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014						  POLICYDB_CAPABILITY_NETPEER);
2015	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016						  POLICYDB_CAPABILITY_OPENPERM);
2017	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
 
 
2019}
2020
2021static int security_preserve_bools(struct policydb *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
 
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
 
2034{
2035	struct policydb *oldpolicydb, *newpolicydb;
2036	struct sidtab oldsidtab, newsidtab;
2037	struct selinux_mapping *oldmap, *map = NULL;
2038	struct convert_context_args args;
2039	u32 seqno;
2040	u16 map_size;
2041	int rc = 0;
2042	struct policy_file file = { data, len }, *fp = &file;
2043
2044	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045	if (!oldpolicydb) {
2046		rc = -ENOMEM;
2047		goto out;
2048	}
2049	newpolicydb = oldpolicydb + 1;
2050
2051	if (!ss_initialized) {
2052		avtab_cache_init();
2053		rc = policydb_read(&policydb, fp);
2054		if (rc) {
2055			avtab_cache_destroy();
2056			goto out;
2057		}
2058
2059		policydb.len = len;
2060		rc = selinux_set_mapping(&policydb, secclass_map,
2061					 &current_mapping,
2062					 &current_mapping_size);
2063		if (rc) {
2064			policydb_destroy(&policydb);
2065			avtab_cache_destroy();
2066			goto out;
2067		}
2068
2069		rc = policydb_load_isids(&policydb, &sidtab);
2070		if (rc) {
2071			policydb_destroy(&policydb);
2072			avtab_cache_destroy();
2073			goto out;
2074		}
2075
2076		security_load_policycaps();
2077		ss_initialized = 1;
2078		seqno = ++latest_granting;
2079		selinux_complete_init();
2080		avc_ss_reset(seqno);
2081		selnl_notify_policyload(seqno);
2082		selinux_status_update_policyload(seqno);
2083		selinux_netlbl_cache_invalidate();
2084		selinux_xfrm_notify_policyload();
2085		goto out;
2086	}
2087
2088#if 0
2089	sidtab_hash_eval(&sidtab, "sids");
2090#endif
2091
2092	rc = policydb_read(newpolicydb, fp);
2093	if (rc)
2094		goto out;
2095
2096	newpolicydb->len = len;
2097	/* If switching between different policy types, log MLS status */
2098	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103	rc = policydb_load_isids(newpolicydb, &newsidtab);
2104	if (rc) {
2105		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2106		policydb_destroy(newpolicydb);
2107		goto out;
2108	}
2109
2110	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111	if (rc)
2112		goto err;
 
 
 
 
 
 
2113
2114	rc = security_preserve_bools(newpolicydb);
 
2115	if (rc) {
2116		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2117		goto err;
2118	}
2119
2120	/* Clone the SID table. */
2121	sidtab_shutdown(&sidtab);
2122
2123	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124	if (rc)
2125		goto err;
2126
2127	/*
2128	 * Convert the internal representations of contexts
2129	 * in the new SID table.
2130	 */
2131	args.oldp = &policydb;
2132	args.newp = newpolicydb;
2133	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
2134	if (rc) {
2135		printk(KERN_ERR "SELinux:  unable to convert the internal"
2136			" representation of contexts in the new SID"
2137			" table\n");
2138		goto err;
2139	}
2140
2141	/* Save the old policydb and SID table to free later. */
2142	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143	sidtab_set(&oldsidtab, &sidtab);
2144
2145	/* Install the new policydb and SID table. */
2146	write_lock_irq(&policy_rwlock);
2147	memcpy(&policydb, newpolicydb, sizeof(policydb));
2148	sidtab_set(&sidtab, &newsidtab);
2149	security_load_policycaps();
2150	oldmap = current_mapping;
2151	current_mapping = map;
2152	current_mapping_size = map_size;
2153	seqno = ++latest_granting;
2154	write_unlock_irq(&policy_rwlock);
2155
2156	/* Free the old policydb and SID table. */
2157	policydb_destroy(oldpolicydb);
2158	sidtab_destroy(&oldsidtab);
2159	kfree(oldmap);
2160
2161	avc_ss_reset(seqno);
2162	selnl_notify_policyload(seqno);
2163	selinux_status_update_policyload(seqno);
2164	selinux_netlbl_cache_invalidate();
2165	selinux_xfrm_notify_policyload();
 
 
 
 
 
 
 
2166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167	rc = 0;
2168	goto out;
 
 
 
2169
2170err:
2171	kfree(map);
2172	sidtab_destroy(&newsidtab);
2173	policydb_destroy(newpolicydb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174
2175out:
2176	kfree(oldpolicydb);
2177	return rc;
2178}
2179
2180size_t security_policydb_len(void)
 
 
 
 
 
 
 
 
2181{
2182	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2183
2184	read_lock(&policy_rwlock);
2185	len = policydb.len;
2186	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2187
2188	return len;
 
 
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
 
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2198{
 
 
 
2199	struct ocontext *c;
2200	int rc = 0;
 
 
 
 
 
2201
2202	read_lock(&policy_rwlock);
 
 
 
 
 
2203
2204	c = policydb.ocontexts[OCON_PORT];
2205	while (c) {
2206		if (c->u.port.protocol == protocol &&
2207		    c->u.port.low_port <= port &&
2208		    c->u.port.high_port >= port)
 
2209			break;
 
2210		c = c->next;
2211	}
2212
2213	if (c) {
2214		if (!c->sid[0]) {
2215			rc = sidtab_context_to_sid(&sidtab,
2216						   &c->context[0],
2217						   &c->sid[0]);
 
 
 
 
2218			if (rc)
2219				goto out;
2220		}
2221		*out_sid = c->sid[0];
2222	} else {
2223		*out_sid = SECINITSID_PORT;
2224	}
2225
2226out:
2227	read_unlock(&policy_rwlock);
2228	return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
 
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
 
2237{
2238	int rc = 0;
 
 
 
2239	struct ocontext *c;
2240
2241	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2242
2243	c = policydb.ocontexts[OCON_NETIF];
2244	while (c) {
2245		if (strcmp(name, c->u.name) == 0)
2246			break;
2247		c = c->next;
2248	}
2249
2250	if (c) {
2251		if (!c->sid[0] || !c->sid[1]) {
2252			rc = sidtab_context_to_sid(&sidtab,
2253						  &c->context[0],
2254						  &c->sid[0]);
 
 
 
2255			if (rc)
2256				goto out;
2257			rc = sidtab_context_to_sid(&sidtab,
2258						   &c->context[1],
2259						   &c->sid[1]);
 
 
 
 
2260			if (rc)
2261				goto out;
2262		}
2263		*if_sid = c->sid[0];
2264	} else
2265		*if_sid = SECINITSID_NETIF;
2266
2267out:
2268	read_unlock(&policy_rwlock);
2269	return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274	int i, fail = 0;
2275
2276	for (i = 0; i < 4; i++)
2277		if (addr[i] != (input[i] & mask[i])) {
2278			fail = 1;
2279			break;
2280		}
2281
2282	return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
 
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
 
2293		      void *addrp,
2294		      u32 addrlen,
2295		      u32 *out_sid)
2296{
 
 
 
2297	int rc;
2298	struct ocontext *c;
2299
2300	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2301
2302	switch (domain) {
2303	case AF_INET: {
2304		u32 addr;
2305
2306		rc = -EINVAL;
2307		if (addrlen != sizeof(u32))
2308			goto out;
2309
2310		addr = *((u32 *)addrp);
2311
2312		c = policydb.ocontexts[OCON_NODE];
2313		while (c) {
2314			if (c->u.node.addr == (addr & c->u.node.mask))
2315				break;
2316			c = c->next;
2317		}
2318		break;
2319	}
2320
2321	case AF_INET6:
2322		rc = -EINVAL;
2323		if (addrlen != sizeof(u64) * 2)
2324			goto out;
2325		c = policydb.ocontexts[OCON_NODE6];
2326		while (c) {
2327			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328						c->u.node6.mask))
2329				break;
2330			c = c->next;
2331		}
2332		break;
2333
2334	default:
2335		rc = 0;
2336		*out_sid = SECINITSID_NODE;
2337		goto out;
2338	}
2339
2340	if (c) {
2341		if (!c->sid[0]) {
2342			rc = sidtab_context_to_sid(&sidtab,
2343						   &c->context[0],
2344						   &c->sid[0]);
 
 
 
 
2345			if (rc)
2346				goto out;
2347		}
2348		*out_sid = c->sid[0];
2349	} else {
2350		*out_sid = SECINITSID_NODE;
2351	}
2352
2353	rc = 0;
2354out:
2355	read_unlock(&policy_rwlock);
2356	return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs.  Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
 
2376			   char *username,
2377			   u32 **sids,
2378			   u32 *nel)
2379{
 
 
 
2380	struct context *fromcon, usercon;
2381	u32 *mysids = NULL, *mysids2, sid;
2382	u32 mynel = 0, maxnel = SIDS_NEL;
2383	struct user_datum *user;
2384	struct role_datum *role;
2385	struct ebitmap_node *rnode, *tnode;
2386	int rc = 0, i, j;
2387
2388	*sids = NULL;
2389	*nel = 0;
2390
2391	if (!ss_initialized)
2392		goto out;
2393
2394	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2395
2396	context_init(&usercon);
2397
2398	rc = -EINVAL;
2399	fromcon = sidtab_search(&sidtab, fromsid);
2400	if (!fromcon)
2401		goto out_unlock;
2402
2403	rc = -EINVAL;
2404	user = hashtab_search(policydb.p_users.table, username);
2405	if (!user)
2406		goto out_unlock;
2407
2408	usercon.user = user->value;
2409
2410	rc = -ENOMEM;
2411	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412	if (!mysids)
2413		goto out_unlock;
2414
2415	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416		role = policydb.role_val_to_struct[i];
2417		usercon.role = i + 1;
2418		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419			usercon.type = j + 1;
2420
2421			if (mls_setup_user_range(fromcon, user, &usercon))
 
2422				continue;
2423
2424			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
 
 
 
 
2425			if (rc)
2426				goto out_unlock;
2427			if (mynel < maxnel) {
2428				mysids[mynel++] = sid;
2429			} else {
2430				rc = -ENOMEM;
2431				maxnel += SIDS_NEL;
2432				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433				if (!mysids2)
2434					goto out_unlock;
2435				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436				kfree(mysids);
2437				mysids = mysids2;
2438				mysids[mynel++] = sid;
2439			}
2440		}
2441	}
2442	rc = 0;
2443out_unlock:
2444	read_unlock(&policy_rwlock);
2445	if (rc || !mynel) {
2446		kfree(mysids);
2447		goto out;
2448	}
2449
2450	rc = -ENOMEM;
2451	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452	if (!mysids2) {
2453		kfree(mysids);
2454		goto out;
2455	}
2456	for (i = 0, j = 0; i < mynel; i++) {
2457		struct av_decision dummy_avd;
2458		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2459					  SECCLASS_PROCESS, /* kernel value */
2460					  PROCESS__TRANSITION, AVC_STRICT,
2461					  &dummy_avd);
2462		if (!rc)
2463			mysids2[j++] = mysids[i];
2464		cond_resched();
2465	}
2466	rc = 0;
2467	kfree(mysids);
2468	*sids = mysids2;
2469	*nel = j;
2470out:
2471	return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
 
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
 
2488				       char *path,
2489				       u16 orig_sclass,
2490				       u32 *sid)
2491{
 
 
2492	int len;
2493	u16 sclass;
2494	struct genfs *genfs;
2495	struct ocontext *c;
2496	int rc, cmp = 0;
2497
2498	while (path[0] == '/' && path[1] == '/')
2499		path++;
2500
2501	sclass = unmap_class(orig_sclass);
2502	*sid = SECINITSID_UNLABELED;
2503
2504	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505		cmp = strcmp(fstype, genfs->fstype);
2506		if (cmp <= 0)
2507			break;
2508	}
2509
2510	rc = -ENOENT;
2511	if (!genfs || cmp)
2512		goto out;
2513
2514	for (c = genfs->head; c; c = c->next) {
2515		len = strlen(c->u.name);
2516		if ((!c->v.sclass || sclass == c->v.sclass) &&
2517		    (strncmp(c->u.name, path, len) == 0))
2518			break;
2519	}
2520
2521	rc = -ENOENT;
2522	if (!c)
2523		goto out;
2524
2525	if (!c->sid[0]) {
2526		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527		if (rc)
2528			goto out;
2529	}
2530
2531	*sid = c->sid[0];
2532	rc = 0;
2533out:
2534	return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
 
2548		       char *path,
2549		       u16 orig_sclass,
2550		       u32 *sid)
2551{
 
2552	int retval;
2553
2554	read_lock(&policy_rwlock);
2555	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2557	return retval;
2558}
2559
 
 
 
 
 
 
 
 
 
 
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
 
2562 * @sb: superblock in question
2563 */
2564int security_fs_use(struct super_block *sb)
2565{
2566	int rc = 0;
 
 
 
2567	struct ocontext *c;
2568	struct superblock_security_struct *sbsec = sb->s_security;
2569	const char *fstype = sb->s_type->name;
2570
2571	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
2572
2573	c = policydb.ocontexts[OCON_FSUSE];
2574	while (c) {
2575		if (strcmp(fstype, c->u.name) == 0)
2576			break;
2577		c = c->next;
2578	}
2579
2580	if (c) {
2581		sbsec->behavior = c->v.behavior;
2582		if (!c->sid[0]) {
2583			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584						   &c->sid[0]);
 
 
 
 
2585			if (rc)
2586				goto out;
2587		}
2588		sbsec->sid = c->sid[0];
2589	} else {
2590		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591					  &sbsec->sid);
 
 
 
 
2592		if (rc) {
2593			sbsec->behavior = SECURITY_FS_USE_NONE;
2594			rc = 0;
2595		} else {
2596			sbsec->behavior = SECURITY_FS_USE_GENFS;
2597		}
2598	}
2599
2600out:
2601	read_unlock(&policy_rwlock);
2602	return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
 
2606{
2607	int i, rc;
 
 
 
 
2608
2609	read_lock(&policy_rwlock);
2610	*names = NULL;
2611	*values = NULL;
2612
2613	rc = 0;
2614	*len = policydb.p_bools.nprim;
2615	if (!*len)
2616		goto out;
2617
2618	rc = -ENOMEM;
2619	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620	if (!*names)
2621		goto err;
2622
2623	rc = -ENOMEM;
2624	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625	if (!*values)
2626		goto err;
2627
2628	for (i = 0; i < *len; i++) {
2629		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2630
2631		rc = -ENOMEM;
2632		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
 
2633		if (!(*names)[i])
2634			goto err;
2635	}
2636	rc = 0;
2637out:
2638	read_unlock(&policy_rwlock);
2639	return rc;
2640err:
2641	if (*names) {
2642		for (i = 0; i < *len; i++)
2643			kfree((*names)[i]);
 
2644	}
2645	kfree(*values);
 
 
 
2646	goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
2652	int i, rc;
2653	int lenp, seqno = 0;
2654	struct cond_node *cur;
2655
2656	write_lock_irq(&policy_rwlock);
 
2657
2658	rc = -EFAULT;
2659	lenp = policydb.p_bools.nprim;
2660	if (len != lenp)
2661		goto out;
2662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2663	for (i = 0; i < len; i++) {
2664		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2666				AUDIT_MAC_CONFIG_CHANGE,
2667				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2668				sym_name(&policydb, SYM_BOOLS, i),
2669				!!values[i],
2670				policydb.bool_val_to_struct[i]->state,
2671				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672				audit_get_sessionid(current));
 
2673		}
2674		if (values[i])
2675			policydb.bool_val_to_struct[i]->state = 1;
2676		else
2677			policydb.bool_val_to_struct[i]->state = 0;
2678	}
2679
2680	for (cur = policydb.cond_list; cur; cur = cur->next) {
2681		rc = evaluate_cond_node(&policydb, cur);
2682		if (rc)
2683			goto out;
2684	}
2685
2686	seqno = ++latest_granting;
2687	rc = 0;
2688out:
2689	write_unlock_irq(&policy_rwlock);
2690	if (!rc) {
2691		avc_ss_reset(seqno);
2692		selnl_notify_policyload(seqno);
2693		selinux_status_update_policyload(seqno);
2694		selinux_xfrm_notify_policyload();
2695	}
2696	return rc;
 
 
 
 
 
 
 
2697}
2698
2699int security_get_bool_value(int bool)
 
2700{
 
 
2701	int rc;
2702	int len;
 
 
 
2703
2704	read_lock(&policy_rwlock);
 
 
2705
2706	rc = -EFAULT;
2707	len = policydb.p_bools.nprim;
2708	if (bool >= len)
2709		goto out;
2710
2711	rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713	read_unlock(&policy_rwlock);
2714	return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
 
2718{
2719	int rc, nbools = 0, *bvalues = NULL, i;
2720	char **bnames = NULL;
2721	struct cond_bool_datum *booldatum;
2722	struct cond_node *cur;
2723
2724	rc = security_get_bools(&nbools, &bnames, &bvalues);
2725	if (rc)
2726		goto out;
2727	for (i = 0; i < nbools; i++) {
2728		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
 
2729		if (booldatum)
2730			booldatum->state = bvalues[i];
2731	}
2732	for (cur = p->cond_list; cur; cur = cur->next) {
2733		rc = evaluate_cond_node(p, cur);
2734		if (rc)
2735			goto out;
2736	}
2737
2738out:
2739	if (bnames) {
2740		for (i = 0; i < nbools; i++)
2741			kfree(bnames[i]);
2742	}
2743	kfree(bnames);
2744	kfree(bvalues);
2745	return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2753{
 
 
 
2754	struct context *context1;
2755	struct context *context2;
2756	struct context newcon;
2757	char *s;
2758	u32 len;
2759	int rc;
2760
2761	rc = 0;
2762	if (!ss_initialized || !policydb.mls_enabled) {
2763		*new_sid = sid;
2764		goto out;
2765	}
2766
 
 
2767	context_init(&newcon);
2768
2769	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
2770
2771	rc = -EINVAL;
2772	context1 = sidtab_search(&sidtab, sid);
2773	if (!context1) {
2774		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2775			__func__, sid);
2776		goto out_unlock;
2777	}
2778
2779	rc = -EINVAL;
2780	context2 = sidtab_search(&sidtab, mls_sid);
2781	if (!context2) {
2782		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2783			__func__, mls_sid);
2784		goto out_unlock;
2785	}
2786
2787	newcon.user = context1->user;
2788	newcon.role = context1->role;
2789	newcon.type = context1->type;
2790	rc = mls_context_cpy(&newcon, context2);
2791	if (rc)
2792		goto out_unlock;
2793
2794	/* Check the validity of the new context. */
2795	if (!policydb_context_isvalid(&policydb, &newcon)) {
2796		rc = convert_context_handle_invalid_context(&newcon);
 
2797		if (rc) {
2798			if (!context_struct_to_string(&newcon, &s, &len)) {
2799				audit_log(current->audit_context,
2800					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801					  "op=security_sid_mls_copy "
2802					  "invalid_context=%s", s);
 
 
 
 
 
 
 
2803				kfree(s);
2804			}
2805			goto out_unlock;
2806		}
2807	}
2808
2809	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
 
 
 
 
2810out_unlock:
2811	read_unlock(&policy_rwlock);
2812	context_destroy(&newcon);
2813out:
2814	return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value.  A table summarizing the behavior is below:
2828 *
2829 *                                 | function return |      @sid
2830 *   ------------------------------+-----------------+-----------------
2831 *   no peer labels                |        0        |    SECSID_NULL
2832 *   single peer label             |        0        |    <peer_label>
2833 *   multiple, consistent labels   |        0        |    <peer_label>
2834 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2838				 u32 xfrm_sid,
2839				 u32 *peer_sid)
2840{
 
 
 
2841	int rc;
2842	struct context *nlbl_ctx;
2843	struct context *xfrm_ctx;
2844
2845	*peer_sid = SECSID_NULL;
2846
2847	/* handle the common (which also happens to be the set of easy) cases
2848	 * right away, these two if statements catch everything involving a
2849	 * single or absent peer SID/label */
2850	if (xfrm_sid == SECSID_NULL) {
2851		*peer_sid = nlbl_sid;
2852		return 0;
2853	}
2854	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856	 * is present */
2857	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858		*peer_sid = xfrm_sid;
2859		return 0;
2860	}
2861
2862	/* we don't need to check ss_initialized here since the only way both
2863	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864	 * security server was initialized and ss_initialized was true */
2865	if (!policydb.mls_enabled)
2866		return 0;
2867
2868	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2869
2870	rc = -EINVAL;
2871	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872	if (!nlbl_ctx) {
2873		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2874		       __func__, nlbl_sid);
2875		goto out;
2876	}
2877	rc = -EINVAL;
2878	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879	if (!xfrm_ctx) {
2880		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2881		       __func__, xfrm_sid);
2882		goto out;
2883	}
2884	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885	if (rc)
2886		goto out;
2887
2888	/* at present NetLabel SIDs/labels really only carry MLS
2889	 * information so if the MLS portion of the NetLabel SID
2890	 * matches the MLS portion of the labeled XFRM SID/label
2891	 * then pass along the XFRM SID as it is the most
2892	 * expressive */
2893	*peer_sid = xfrm_sid;
2894out:
2895	read_unlock(&policy_rwlock);
2896	return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901	struct class_datum *datum = d;
2902	char *name = k, **classes = args;
2903	int value = datum->value - 1;
2904
2905	classes[value] = kstrdup(name, GFP_ATOMIC);
2906	if (!classes[value])
2907		return -ENOMEM;
2908
2909	return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
 
2913{
 
2914	int rc;
2915
2916	read_lock(&policy_rwlock);
2917
2918	rc = -ENOMEM;
2919	*nclasses = policydb.p_classes.nprim;
2920	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921	if (!*classes)
2922		goto out;
2923
2924	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925			*classes);
2926	if (rc) {
2927		int i;
2928		for (i = 0; i < *nclasses; i++)
2929			kfree((*classes)[i]);
2930		kfree(*classes);
2931	}
2932
2933out:
2934	read_unlock(&policy_rwlock);
2935	return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940	struct perm_datum *datum = d;
2941	char *name = k, **perms = args;
2942	int value = datum->value - 1;
2943
2944	perms[value] = kstrdup(name, GFP_ATOMIC);
2945	if (!perms[value])
2946		return -ENOMEM;
2947
2948	return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
 
2952{
 
2953	int rc, i;
2954	struct class_datum *match;
2955
2956	read_lock(&policy_rwlock);
2957
2958	rc = -EINVAL;
2959	match = hashtab_search(policydb.p_classes.table, class);
2960	if (!match) {
2961		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2962			__func__, class);
2963		goto out;
2964	}
2965
2966	rc = -ENOMEM;
2967	*nperms = match->permissions.nprim;
2968	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969	if (!*perms)
2970		goto out;
2971
2972	if (match->comdatum) {
2973		rc = hashtab_map(match->comdatum->permissions.table,
2974				get_permissions_callback, *perms);
2975		if (rc)
2976			goto err;
2977	}
2978
2979	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980			*perms);
2981	if (rc)
2982		goto err;
2983
2984out:
2985	read_unlock(&policy_rwlock);
2986	return rc;
2987
2988err:
2989	read_unlock(&policy_rwlock);
2990	for (i = 0; i < *nperms; i++)
2991		kfree((*perms)[i]);
2992	kfree(*perms);
2993	return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998	return policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003	return policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
 
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap.  Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
 
3017{
 
3018	int rc;
3019
3020	read_lock(&policy_rwlock);
3021	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022	read_unlock(&policy_rwlock);
 
 
 
 
3023
3024	return rc;
3025}
3026
3027struct selinux_audit_rule {
3028	u32 au_seqno;
3029	struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034	struct selinux_audit_rule *rule = vrule;
3035
3036	if (rule) {
3037		context_destroy(&rule->au_ctxt);
3038		kfree(rule);
3039	}
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
 
 
 
3044	struct selinux_audit_rule *tmprule;
3045	struct role_datum *roledatum;
3046	struct type_datum *typedatum;
3047	struct user_datum *userdatum;
3048	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049	int rc = 0;
3050
3051	*rule = NULL;
3052
3053	if (!ss_initialized)
3054		return -EOPNOTSUPP;
3055
3056	switch (field) {
3057	case AUDIT_SUBJ_USER:
3058	case AUDIT_SUBJ_ROLE:
3059	case AUDIT_SUBJ_TYPE:
3060	case AUDIT_OBJ_USER:
3061	case AUDIT_OBJ_ROLE:
3062	case AUDIT_OBJ_TYPE:
3063		/* only 'equals' and 'not equals' fit user, role, and type */
3064		if (op != Audit_equal && op != Audit_not_equal)
3065			return -EINVAL;
3066		break;
3067	case AUDIT_SUBJ_SEN:
3068	case AUDIT_SUBJ_CLR:
3069	case AUDIT_OBJ_LEV_LOW:
3070	case AUDIT_OBJ_LEV_HIGH:
3071		/* we do not allow a range, indicated by the presence of '-' */
3072		if (strchr(rulestr, '-'))
3073			return -EINVAL;
3074		break;
3075	default:
3076		/* only the above fields are valid */
3077		return -EINVAL;
3078	}
3079
3080	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081	if (!tmprule)
3082		return -ENOMEM;
3083
3084	context_init(&tmprule->au_ctxt);
3085
3086	read_lock(&policy_rwlock);
 
 
3087
3088	tmprule->au_seqno = latest_granting;
3089
3090	switch (field) {
3091	case AUDIT_SUBJ_USER:
3092	case AUDIT_OBJ_USER:
3093		rc = -EINVAL;
3094		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095		if (!userdatum)
3096			goto out;
3097		tmprule->au_ctxt.user = userdatum->value;
3098		break;
3099	case AUDIT_SUBJ_ROLE:
3100	case AUDIT_OBJ_ROLE:
3101		rc = -EINVAL;
3102		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103		if (!roledatum)
3104			goto out;
3105		tmprule->au_ctxt.role = roledatum->value;
3106		break;
3107	case AUDIT_SUBJ_TYPE:
3108	case AUDIT_OBJ_TYPE:
3109		rc = -EINVAL;
3110		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111		if (!typedatum)
3112			goto out;
3113		tmprule->au_ctxt.type = typedatum->value;
3114		break;
3115	case AUDIT_SUBJ_SEN:
3116	case AUDIT_SUBJ_CLR:
3117	case AUDIT_OBJ_LEV_LOW:
3118	case AUDIT_OBJ_LEV_HIGH:
3119		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
3120		if (rc)
3121			goto out;
3122		break;
3123	}
3124	rc = 0;
3125out:
3126	read_unlock(&policy_rwlock);
3127
3128	if (rc) {
3129		selinux_audit_rule_free(tmprule);
3130		tmprule = NULL;
3131	}
3132
3133	*rule = tmprule;
3134
3135	return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141	int i;
3142
3143	for (i = 0; i < rule->field_count; i++) {
3144		struct audit_field *f = &rule->fields[i];
3145		switch (f->type) {
3146		case AUDIT_SUBJ_USER:
3147		case AUDIT_SUBJ_ROLE:
3148		case AUDIT_SUBJ_TYPE:
3149		case AUDIT_SUBJ_SEN:
3150		case AUDIT_SUBJ_CLR:
3151		case AUDIT_OBJ_USER:
3152		case AUDIT_OBJ_ROLE:
3153		case AUDIT_OBJ_TYPE:
3154		case AUDIT_OBJ_LEV_LOW:
3155		case AUDIT_OBJ_LEV_HIGH:
3156			return 1;
3157		}
3158	}
3159
3160	return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164			     struct audit_context *actx)
3165{
 
 
3166	struct context *ctxt;
3167	struct mls_level *level;
3168	struct selinux_audit_rule *rule = vrule;
3169	int match = 0;
3170
3171	if (unlikely(!rule)) {
3172		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3173		return -ENOENT;
3174	}
3175
3176	read_lock(&policy_rwlock);
 
 
 
3177
3178	if (rule->au_seqno < latest_granting) {
 
 
3179		match = -ESTALE;
3180		goto out;
3181	}
3182
3183	ctxt = sidtab_search(&sidtab, sid);
3184	if (unlikely(!ctxt)) {
3185		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3186			  sid);
3187		match = -ENOENT;
3188		goto out;
3189	}
3190
3191	/* a field/op pair that is not caught here will simply fall through
3192	   without a match */
3193	switch (field) {
3194	case AUDIT_SUBJ_USER:
3195	case AUDIT_OBJ_USER:
3196		switch (op) {
3197		case Audit_equal:
3198			match = (ctxt->user == rule->au_ctxt.user);
3199			break;
3200		case Audit_not_equal:
3201			match = (ctxt->user != rule->au_ctxt.user);
3202			break;
3203		}
3204		break;
3205	case AUDIT_SUBJ_ROLE:
3206	case AUDIT_OBJ_ROLE:
3207		switch (op) {
3208		case Audit_equal:
3209			match = (ctxt->role == rule->au_ctxt.role);
3210			break;
3211		case Audit_not_equal:
3212			match = (ctxt->role != rule->au_ctxt.role);
3213			break;
3214		}
3215		break;
3216	case AUDIT_SUBJ_TYPE:
3217	case AUDIT_OBJ_TYPE:
3218		switch (op) {
3219		case Audit_equal:
3220			match = (ctxt->type == rule->au_ctxt.type);
3221			break;
3222		case Audit_not_equal:
3223			match = (ctxt->type != rule->au_ctxt.type);
3224			break;
3225		}
3226		break;
3227	case AUDIT_SUBJ_SEN:
3228	case AUDIT_SUBJ_CLR:
3229	case AUDIT_OBJ_LEV_LOW:
3230	case AUDIT_OBJ_LEV_HIGH:
3231		level = ((field == AUDIT_SUBJ_SEN ||
3232			  field == AUDIT_OBJ_LEV_LOW) ?
3233			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3234		switch (op) {
3235		case Audit_equal:
3236			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237					     level);
3238			break;
3239		case Audit_not_equal:
3240			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241					      level);
3242			break;
3243		case Audit_lt:
3244			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245					       level) &&
3246				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247					       level));
3248			break;
3249		case Audit_le:
3250			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251					      level);
3252			break;
3253		case Audit_gt:
3254			match = (mls_level_dom(level,
3255					      &rule->au_ctxt.range.level[0]) &&
3256				 !mls_level_eq(level,
3257					       &rule->au_ctxt.range.level[0]));
3258			break;
3259		case Audit_ge:
3260			match = mls_level_dom(level,
3261					      &rule->au_ctxt.range.level[0]);
3262			break;
3263		}
3264	}
3265
3266out:
3267	read_unlock(&policy_rwlock);
3268	return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
3274{
3275	int err = 0;
3276
3277	if (event == AVC_CALLBACK_RESET && aurule_callback)
3278		err = aurule_callback();
3279	return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284	int err;
3285
3286	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3287	if (err)
3288		panic("avc_add_callback() failed, error %d\n", err);
3289
3290	return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307				      u32 sid)
3308{
3309	u32 *sid_cache;
3310
3311	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312	if (sid_cache == NULL)
3313		return;
3314	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315	if (secattr->cache == NULL) {
3316		kfree(sid_cache);
3317		return;
3318	}
3319
3320	*sid_cache = sid;
3321	secattr->cache->free = kfree;
3322	secattr->cache->data = sid_cache;
3323	secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID.  If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups.  Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3342				   u32 *sid)
3343{
 
 
 
3344	int rc;
3345	struct context *ctx;
3346	struct context ctx_new;
3347
3348	if (!ss_initialized) {
3349		*sid = SECSID_NULL;
3350		return 0;
3351	}
3352
3353	read_lock(&policy_rwlock);
 
 
 
 
 
3354
3355	if (secattr->flags & NETLBL_SECATTR_CACHE)
3356		*sid = *(u32 *)secattr->cache->data;
3357	else if (secattr->flags & NETLBL_SECATTR_SECID)
3358		*sid = secattr->attr.secid;
3359	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360		rc = -EIDRM;
3361		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362		if (ctx == NULL)
3363			goto out;
3364
3365		context_init(&ctx_new);
3366		ctx_new.user = ctx->user;
3367		ctx_new.role = ctx->role;
3368		ctx_new.type = ctx->type;
3369		mls_import_netlbl_lvl(&ctx_new, secattr);
3370		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371			rc = mls_import_netlbl_cat(&ctx_new, secattr);
3372			if (rc)
3373				goto out;
3374		}
3375		rc = -EIDRM;
3376		if (!mls_context_isvalid(&policydb, &ctx_new))
3377			goto out_free;
 
 
3378
3379		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
 
 
 
 
 
3380		if (rc)
3381			goto out_free;
3382
3383		security_netlbl_cache_add(secattr, *sid);
3384
3385		ebitmap_destroy(&ctx_new.range.level[0].cat);
3386	} else
3387		*sid = SECSID_NULL;
3388
3389	read_unlock(&policy_rwlock);
3390	return 0;
3391out_free:
3392	ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394	read_unlock(&policy_rwlock);
3395	return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3409{
 
 
3410	int rc;
3411	struct context *ctx;
3412
3413	if (!ss_initialized)
3414		return 0;
3415
3416	read_lock(&policy_rwlock);
 
 
3417
3418	rc = -ENOENT;
3419	ctx = sidtab_search(&sidtab, sid);
3420	if (ctx == NULL)
3421		goto out;
3422
3423	rc = -ENOMEM;
3424	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425				  GFP_ATOMIC);
3426	if (secattr->domain == NULL)
3427		goto out;
3428
3429	secattr->attr.secid = sid;
3430	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431	mls_export_netlbl_lvl(ctx, secattr);
3432	rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434	read_unlock(&policy_rwlock);
3435	return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
 
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
 
3446{
3447	int rc;
3448	struct policy_file fp;
3449
3450	if (!ss_initialized)
3451		return -EINVAL;
3452
3453	*len = security_policydb_len();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3454
 
3455	*data = vmalloc_user(*len);
3456	if (!*data)
3457		return -ENOMEM;
3458
3459	fp.data = *data;
3460	fp.len = *len;
3461
3462	read_lock(&policy_rwlock);
3463	rc = policydb_write(&policydb, &fp);
3464	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3465
3466	if (rc)
3467		return rc;
 
 
3468
3469	*len = (unsigned long)fp.data - (unsigned long)*data;
3470	return 0;
 
 
3471
 
3472}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct convert_context_args {
  72	struct selinux_state *state;
  73	struct policydb *oldp;
  74	struct policydb *newp;
  75};
 
 
 
 
  76
  77struct selinux_policy_convert_data {
  78	struct convert_context_args args;
  79	struct sidtab_convert_params sidtab_params;
  80};
 
 
 
  81
  82/* Forward declaration. */
  83static int context_struct_to_string(struct policydb *policydb,
  84				    struct context *context,
  85				    char **scontext,
  86				    u32 *scontext_len);
  87
  88static int sidtab_entry_to_string(struct policydb *policydb,
  89				  struct sidtab *sidtab,
  90				  struct sidtab_entry *entry,
  91				  char **scontext,
  92				  u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 
 
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 
 104{
 
 
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	int mls_enabled;
 247	struct selinux_policy *policy;
 248
 249	if (!selinux_initialized(state))
 250		return 0;
 251
 252	rcu_read_lock();
 253	policy = rcu_dereference(state->policy);
 254	mls_enabled = policy->policydb.mls_enabled;
 255	rcu_read_unlock();
 256	return mls_enabled;
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct policydb *policydb,
 271				struct context *scontext,
 272				struct context *tcontext,
 273				struct context *xcontext,
 274				struct constraint_expr *cexpr)
 275{
 276	u32 val1, val2;
 277	struct context *c;
 278	struct role_datum *r1, *r2;
 279	struct mls_level *l1, *l2;
 280	struct constraint_expr *e;
 281	int s[CEXPR_MAXDEPTH];
 282	int sp = -1;
 283
 284	for (e = cexpr; e; e = e->next) {
 285		switch (e->expr_type) {
 286		case CEXPR_NOT:
 287			BUG_ON(sp < 0);
 288			s[sp] = !s[sp];
 289			break;
 290		case CEXPR_AND:
 291			BUG_ON(sp < 1);
 292			sp--;
 293			s[sp] &= s[sp + 1];
 294			break;
 295		case CEXPR_OR:
 296			BUG_ON(sp < 1);
 297			sp--;
 298			s[sp] |= s[sp + 1];
 299			break;
 300		case CEXPR_ATTR:
 301			if (sp == (CEXPR_MAXDEPTH - 1))
 302				return 0;
 303			switch (e->attr) {
 304			case CEXPR_USER:
 305				val1 = scontext->user;
 306				val2 = tcontext->user;
 307				break;
 308			case CEXPR_TYPE:
 309				val1 = scontext->type;
 310				val2 = tcontext->type;
 311				break;
 312			case CEXPR_ROLE:
 313				val1 = scontext->role;
 314				val2 = tcontext->role;
 315				r1 = policydb->role_val_to_struct[val1 - 1];
 316				r2 = policydb->role_val_to_struct[val2 - 1];
 317				switch (e->op) {
 318				case CEXPR_DOM:
 319					s[++sp] = ebitmap_get_bit(&r1->dominates,
 320								  val2 - 1);
 321					continue;
 322				case CEXPR_DOMBY:
 323					s[++sp] = ebitmap_get_bit(&r2->dominates,
 324								  val1 - 1);
 325					continue;
 326				case CEXPR_INCOMP:
 327					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 328								    val2 - 1) &&
 329						   !ebitmap_get_bit(&r2->dominates,
 330								    val1 - 1));
 331					continue;
 332				default:
 333					break;
 334				}
 335				break;
 336			case CEXPR_L1L2:
 337				l1 = &(scontext->range.level[0]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_L1H2:
 341				l1 = &(scontext->range.level[0]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_H1L2:
 345				l1 = &(scontext->range.level[1]);
 346				l2 = &(tcontext->range.level[0]);
 347				goto mls_ops;
 348			case CEXPR_H1H2:
 349				l1 = &(scontext->range.level[1]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352			case CEXPR_L1H1:
 353				l1 = &(scontext->range.level[0]);
 354				l2 = &(scontext->range.level[1]);
 355				goto mls_ops;
 356			case CEXPR_L2H2:
 357				l1 = &(tcontext->range.level[0]);
 358				l2 = &(tcontext->range.level[1]);
 359				goto mls_ops;
 360mls_ops:
 361			switch (e->op) {
 362			case CEXPR_EQ:
 363				s[++sp] = mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_NEQ:
 366				s[++sp] = !mls_level_eq(l1, l2);
 367				continue;
 368			case CEXPR_DOM:
 369				s[++sp] = mls_level_dom(l1, l2);
 370				continue;
 371			case CEXPR_DOMBY:
 372				s[++sp] = mls_level_dom(l2, l1);
 373				continue;
 374			case CEXPR_INCOMP:
 375				s[++sp] = mls_level_incomp(l2, l1);
 376				continue;
 377			default:
 378				BUG();
 379				return 0;
 380			}
 381			break;
 382			default:
 383				BUG();
 384				return 0;
 385			}
 386
 387			switch (e->op) {
 388			case CEXPR_EQ:
 389				s[++sp] = (val1 == val2);
 390				break;
 391			case CEXPR_NEQ:
 392				s[++sp] = (val1 != val2);
 393				break;
 394			default:
 395				BUG();
 396				return 0;
 397			}
 398			break;
 399		case CEXPR_NAMES:
 400			if (sp == (CEXPR_MAXDEPTH-1))
 401				return 0;
 402			c = scontext;
 403			if (e->attr & CEXPR_TARGET)
 404				c = tcontext;
 405			else if (e->attr & CEXPR_XTARGET) {
 406				c = xcontext;
 407				if (!c) {
 408					BUG();
 409					return 0;
 410				}
 411			}
 412			if (e->attr & CEXPR_USER)
 413				val1 = c->user;
 414			else if (e->attr & CEXPR_ROLE)
 415				val1 = c->role;
 416			else if (e->attr & CEXPR_TYPE)
 417				val1 = c->type;
 418			else {
 419				BUG();
 420				return 0;
 421			}
 422
 423			switch (e->op) {
 424			case CEXPR_EQ:
 425				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			case CEXPR_NEQ:
 428				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 429				break;
 430			default:
 431				BUG();
 432				return 0;
 433			}
 434			break;
 435		default:
 436			BUG();
 437			return 0;
 438		}
 439	}
 440
 441	BUG_ON(sp != 0);
 442	return s[0];
 443}
 444
 445/*
 446 * security_dump_masked_av - dumps masked permissions during
 447 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 448 */
 449static int dump_masked_av_helper(void *k, void *d, void *args)
 450{
 451	struct perm_datum *pdatum = d;
 452	char **permission_names = args;
 453
 454	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 455
 456	permission_names[pdatum->value - 1] = (char *)k;
 457
 458	return 0;
 459}
 460
 461static void security_dump_masked_av(struct policydb *policydb,
 462				    struct context *scontext,
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(&common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(&tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(policydb, scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(policydb, tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(audit_context(),
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct policydb *policydb,
 541				     struct context *scontext,
 542				     struct context *tcontext,
 543				     u16 tclass,
 544				     struct av_decision *avd)
 545{
 546	struct context lo_scontext;
 547	struct context lo_tcontext, *tcontextp = tcontext;
 548	struct av_decision lo_avd;
 549	struct type_datum *source;
 550	struct type_datum *target;
 551	u32 masked = 0;
 552
 553	source = policydb->type_val_to_struct[scontext->type - 1];
 
 554	BUG_ON(!source);
 555
 556	if (!source->bounds)
 557		return;
 558
 559	target = policydb->type_val_to_struct[tcontext->type - 1];
 560	BUG_ON(!target);
 561
 562	memset(&lo_avd, 0, sizeof(lo_avd));
 
 563
 564	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 565	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 
 
 
 
 566
 567	if (target->bounds) {
 
 
 568		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 569		lo_tcontext.type = target->bounds;
 570		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 
 571	}
 572
 573	context_struct_compute_av(policydb, &lo_scontext,
 574				  tcontextp,
 575				  tclass,
 576				  &lo_avd,
 577				  NULL);
 
 578
 579	masked = ~lo_avd.allowed & avd->allowed;
 580
 581	if (likely(!masked))
 582		return;		/* no masked permission */
 583
 584	/* mask violated permissions */
 585	avd->allowed &= ~masked;
 586
 587	/* audit masked permissions */
 588	security_dump_masked_av(policydb, scontext, tcontext,
 589				tclass, masked, "bounds");
 
 
 
 
 
 
 
 590}
 591
 592/*
 593 * flag which drivers have permissions
 594 * only looking for ioctl based extended permssions
 595 */
 596void services_compute_xperms_drivers(
 597		struct extended_perms *xperms,
 598		struct avtab_node *node)
 599{
 600	unsigned int i;
 601
 602	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 603		/* if one or more driver has all permissions allowed */
 604		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 605			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 606	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 607		/* if allowing permissions within a driver */
 608		security_xperm_set(xperms->drivers.p,
 609					node->datum.u.xperms->driver);
 610	}
 611
 612	xperms->len = 1;
 
 
 613}
 614
 615/*
 616 * Compute access vectors and extended permissions based on a context
 617 * structure pair for the permissions in a particular class.
 618 */
 619static void context_struct_compute_av(struct policydb *policydb,
 620				      struct context *scontext,
 621				      struct context *tcontext,
 622				      u16 tclass,
 623				      struct av_decision *avd,
 624				      struct extended_perms *xperms)
 625{
 626	struct constraint_node *constraint;
 627	struct role_allow *ra;
 628	struct avtab_key avkey;
 629	struct avtab_node *node;
 630	struct class_datum *tclass_datum;
 631	struct ebitmap *sattr, *tattr;
 632	struct ebitmap_node *snode, *tnode;
 633	unsigned int i, j;
 634
 635	avd->allowed = 0;
 636	avd->auditallow = 0;
 637	avd->auditdeny = 0xffffffff;
 638	if (xperms) {
 639		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 640		xperms->len = 0;
 641	}
 642
 643	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 644		if (printk_ratelimit())
 645			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_state *state,
 725					struct selinux_policy *policy,
 726					struct sidtab_entry *oentry,
 727					struct sidtab_entry *nentry,
 728					struct sidtab_entry *tentry,
 729					u16 tclass)
 730{
 731	struct policydb *p = &policy->policydb;
 732	struct sidtab *sidtab = policy->sidtab;
 733	char *o = NULL, *n = NULL, *t = NULL;
 734	u32 olen, nlen, tlen;
 735
 736	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 739		goto out;
 740	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 741		goto out;
 742	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 743		  "op=security_validate_transition seresult=denied"
 744		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 745		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 746out:
 747	kfree(o);
 748	kfree(n);
 749	kfree(t);
 750
 751	if (!enforcing_enabled(state))
 752		return 0;
 753	return -EPERM;
 754}
 755
 756static int security_compute_validatetrans(struct selinux_state *state,
 757					  u32 oldsid, u32 newsid, u32 tasksid,
 758					  u16 orig_tclass, bool user)
 759{
 760	struct selinux_policy *policy;
 761	struct policydb *policydb;
 762	struct sidtab *sidtab;
 763	struct sidtab_entry *oentry;
 764	struct sidtab_entry *nentry;
 765	struct sidtab_entry *tentry;
 766	struct class_datum *tclass_datum;
 767	struct constraint_node *constraint;
 768	u16 tclass;
 769	int rc = 0;
 770
 771
 772	if (!selinux_initialized(state))
 773		return 0;
 774
 775	rcu_read_lock();
 776
 777	policy = rcu_dereference(state->policy);
 778	policydb = &policy->policydb;
 779	sidtab = policy->sidtab;
 780
 781	if (!user)
 782		tclass = unmap_class(&policy->map, orig_tclass);
 783	else
 784		tclass = orig_tclass;
 785
 786	if (!tclass || tclass > policydb->p_classes.nprim) {
 787		rc = -EINVAL;
 788		goto out;
 789	}
 790	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 791
 792	oentry = sidtab_search_entry(sidtab, oldsid);
 793	if (!oentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, oldsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	nentry = sidtab_search_entry(sidtab, newsid);
 801	if (!nentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, newsid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	tentry = sidtab_search_entry(sidtab, tasksid);
 809	if (!tentry) {
 810		pr_err("SELinux: %s:  unrecognized SID %d\n",
 811			__func__, tasksid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	constraint = tclass_datum->validatetrans;
 817	while (constraint) {
 818		if (!constraint_expr_eval(policydb, &oentry->context,
 819					  &nentry->context, &tentry->context,
 820					  constraint->expr)) {
 821			if (user)
 822				rc = -EPERM;
 823			else
 824				rc = security_validtrans_handle_fail(state,
 825								policy,
 826								oentry,
 827								nentry,
 828								tentry,
 829								tclass);
 830			goto out;
 831		}
 832		constraint = constraint->next;
 833	}
 834
 835out:
 836	rcu_read_unlock();
 837	return rc;
 838}
 839
 840int security_validate_transition_user(struct selinux_state *state,
 841				      u32 oldsid, u32 newsid, u32 tasksid,
 842				      u16 tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      tclass, true);
 846}
 847
 848int security_validate_transition(struct selinux_state *state,
 849				 u32 oldsid, u32 newsid, u32 tasksid,
 850				 u16 orig_tclass)
 851{
 852	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 853					      orig_tclass, false);
 854}
 855
 856/*
 857 * security_bounded_transition - check whether the given
 858 * transition is directed to bounded, or not.
 859 * It returns 0, if @newsid is bounded by @oldsid.
 860 * Otherwise, it returns error code.
 861 *
 862 * @state: SELinux state
 863 * @oldsid : current security identifier
 864 * @newsid : destinated security identifier
 865 */
 866int security_bounded_transition(struct selinux_state *state,
 867				u32 old_sid, u32 new_sid)
 868{
 869	struct selinux_policy *policy;
 870	struct policydb *policydb;
 871	struct sidtab *sidtab;
 872	struct sidtab_entry *old_entry, *new_entry;
 873	struct type_datum *type;
 874	int index;
 875	int rc;
 876
 877	if (!selinux_initialized(state))
 878		return 0;
 879
 880	rcu_read_lock();
 881	policy = rcu_dereference(state->policy);
 882	policydb = &policy->policydb;
 883	sidtab = policy->sidtab;
 884
 885	rc = -EINVAL;
 886	old_entry = sidtab_search_entry(sidtab, old_sid);
 887	if (!old_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_entry = sidtab_search_entry(sidtab, new_sid);
 895	if (!new_entry) {
 896		pr_err("SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_entry->context.type == new_entry->context.type)
 904		goto out;
 905
 906	index = new_entry->context.type;
 907	while (true) {
 908		type = policydb->type_val_to_struct[index - 1];
 
 909		BUG_ON(!type);
 910
 911		/* not bounded anymore */
 912		rc = -EPERM;
 913		if (!type->bounds)
 914			break;
 915
 916		/* @newsid is bounded by @oldsid */
 917		rc = 0;
 918		if (type->bounds == old_entry->context.type)
 919			break;
 920
 921		index = type->bounds;
 922	}
 923
 924	if (rc) {
 925		char *old_name = NULL;
 926		char *new_name = NULL;
 927		u32 length;
 928
 929		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 930					    &old_name, &length) &&
 931		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 932					    &new_name, &length)) {
 933			audit_log(audit_context(),
 934				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 935				  "op=security_bounded_transition "
 936				  "seresult=denied "
 937				  "oldcontext=%s newcontext=%s",
 938				  old_name, new_name);
 939		}
 940		kfree(new_name);
 941		kfree(old_name);
 942	}
 943out:
 944	rcu_read_unlock();
 945
 946	return rc;
 947}
 948
 949static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 950{
 951	avd->allowed = 0;
 952	avd->auditallow = 0;
 953	avd->auditdeny = 0xffffffff;
 954	if (policy)
 955		avd->seqno = policy->latest_granting;
 956	else
 957		avd->seqno = 0;
 958	avd->flags = 0;
 959}
 960
 961void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 962					struct avtab_node *node)
 963{
 964	unsigned int i;
 965
 966	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967		if (xpermd->driver != node->datum.u.xperms->driver)
 968			return;
 969	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 971					xpermd->driver))
 972			return;
 973	} else {
 974		BUG();
 975	}
 976
 977	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 978		xpermd->used |= XPERMS_ALLOWED;
 979		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 980			memset(xpermd->allowed->p, 0xff,
 981					sizeof(xpermd->allowed->p));
 982		}
 983		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 984			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 985				xpermd->allowed->p[i] |=
 986					node->datum.u.xperms->perms.p[i];
 987		}
 988	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 989		xpermd->used |= XPERMS_AUDITALLOW;
 990		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 991			memset(xpermd->auditallow->p, 0xff,
 992					sizeof(xpermd->auditallow->p));
 993		}
 994		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 995			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 996				xpermd->auditallow->p[i] |=
 997					node->datum.u.xperms->perms.p[i];
 998		}
 999	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1000		xpermd->used |= XPERMS_DONTAUDIT;
1001		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1002			memset(xpermd->dontaudit->p, 0xff,
1003					sizeof(xpermd->dontaudit->p));
1004		}
1005		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1006			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1007				xpermd->dontaudit->p[i] |=
1008					node->datum.u.xperms->perms.p[i];
1009		}
1010	} else {
1011		BUG();
1012	}
1013}
1014
1015void security_compute_xperms_decision(struct selinux_state *state,
1016				      u32 ssid,
1017				      u32 tsid,
1018				      u16 orig_tclass,
1019				      u8 driver,
1020				      struct extended_perms_decision *xpermd)
1021{
1022	struct selinux_policy *policy;
1023	struct policydb *policydb;
1024	struct sidtab *sidtab;
1025	u16 tclass;
1026	struct context *scontext, *tcontext;
1027	struct avtab_key avkey;
1028	struct avtab_node *node;
1029	struct ebitmap *sattr, *tattr;
1030	struct ebitmap_node *snode, *tnode;
1031	unsigned int i, j;
1032
1033	xpermd->driver = driver;
1034	xpermd->used = 0;
1035	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1036	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1037	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1038
1039	rcu_read_lock();
1040	if (!selinux_initialized(state))
1041		goto allow;
1042
1043	policy = rcu_dereference(state->policy);
1044	policydb = &policy->policydb;
1045	sidtab = policy->sidtab;
1046
1047	scontext = sidtab_search(sidtab, ssid);
1048	if (!scontext) {
1049		pr_err("SELinux: %s:  unrecognized SID %d\n",
1050		       __func__, ssid);
1051		goto out;
1052	}
1053
1054	tcontext = sidtab_search(sidtab, tsid);
1055	if (!tcontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, tsid);
1058		goto out;
1059	}
1060
1061	tclass = unmap_class(&policy->map, orig_tclass);
1062	if (unlikely(orig_tclass && !tclass)) {
1063		if (policydb->allow_unknown)
1064			goto allow;
1065		goto out;
1066	}
1067
1068
1069	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1070		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1071		goto out;
1072	}
1073
1074	avkey.target_class = tclass;
1075	avkey.specified = AVTAB_XPERMS;
1076	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1077	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1078	ebitmap_for_each_positive_bit(sattr, snode, i) {
1079		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1080			avkey.source_type = i + 1;
1081			avkey.target_type = j + 1;
1082			for (node = avtab_search_node(&policydb->te_avtab,
1083						      &avkey);
1084			     node;
1085			     node = avtab_search_node_next(node, avkey.specified))
1086				services_compute_xperms_decision(xpermd, node);
1087
1088			cond_compute_xperms(&policydb->te_cond_avtab,
1089						&avkey, xpermd);
1090		}
1091	}
1092out:
1093	rcu_read_unlock();
1094	return;
1095allow:
1096	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1097	goto out;
1098}
1099
1100/**
1101 * security_compute_av - Compute access vector decisions.
1102 * @state: SELinux state
1103 * @ssid: source security identifier
1104 * @tsid: target security identifier
1105 * @tclass: target security class
1106 * @avd: access vector decisions
1107 * @xperms: extended permissions
1108 *
1109 * Compute a set of access vector decisions based on the
1110 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1111 */
1112void security_compute_av(struct selinux_state *state,
1113			 u32 ssid,
1114			 u32 tsid,
1115			 u16 orig_tclass,
1116			 struct av_decision *avd,
1117			 struct extended_perms *xperms)
1118{
1119	struct selinux_policy *policy;
1120	struct policydb *policydb;
1121	struct sidtab *sidtab;
1122	u16 tclass;
1123	struct context *scontext = NULL, *tcontext = NULL;
1124
1125	rcu_read_lock();
1126	policy = rcu_dereference(state->policy);
1127	avd_init(policy, avd);
1128	xperms->len = 0;
1129	if (!selinux_initialized(state))
1130		goto allow;
1131
1132	policydb = &policy->policydb;
1133	sidtab = policy->sidtab;
1134
1135	scontext = sidtab_search(sidtab, ssid);
1136	if (!scontext) {
1137		pr_err("SELinux: %s:  unrecognized SID %d\n",
1138		       __func__, ssid);
1139		goto out;
1140	}
1141
1142	/* permissive domain? */
1143	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1144		avd->flags |= AVD_FLAGS_PERMISSIVE;
1145
1146	tcontext = sidtab_search(sidtab, tsid);
1147	if (!tcontext) {
1148		pr_err("SELinux: %s:  unrecognized SID %d\n",
1149		       __func__, tsid);
1150		goto out;
1151	}
1152
1153	tclass = unmap_class(&policy->map, orig_tclass);
1154	if (unlikely(orig_tclass && !tclass)) {
1155		if (policydb->allow_unknown)
1156			goto allow;
1157		goto out;
1158	}
1159	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1160				  xperms);
1161	map_decision(&policy->map, orig_tclass, avd,
1162		     policydb->allow_unknown);
1163out:
1164	rcu_read_unlock();
1165	return;
1166allow:
1167	avd->allowed = 0xffffffff;
1168	goto out;
1169}
1170
1171void security_compute_av_user(struct selinux_state *state,
1172			      u32 ssid,
1173			      u32 tsid,
1174			      u16 tclass,
1175			      struct av_decision *avd)
1176{
1177	struct selinux_policy *policy;
1178	struct policydb *policydb;
1179	struct sidtab *sidtab;
1180	struct context *scontext = NULL, *tcontext = NULL;
1181
1182	rcu_read_lock();
1183	policy = rcu_dereference(state->policy);
1184	avd_init(policy, avd);
1185	if (!selinux_initialized(state))
1186		goto allow;
1187
1188	policydb = &policy->policydb;
1189	sidtab = policy->sidtab;
1190
1191	scontext = sidtab_search(sidtab, ssid);
1192	if (!scontext) {
1193		pr_err("SELinux: %s:  unrecognized SID %d\n",
1194		       __func__, ssid);
1195		goto out;
1196	}
1197
1198	/* permissive domain? */
1199	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1200		avd->flags |= AVD_FLAGS_PERMISSIVE;
1201
1202	tcontext = sidtab_search(sidtab, tsid);
1203	if (!tcontext) {
1204		pr_err("SELinux: %s:  unrecognized SID %d\n",
1205		       __func__, tsid);
1206		goto out;
1207	}
1208
1209	if (unlikely(!tclass)) {
1210		if (policydb->allow_unknown)
1211			goto allow;
1212		goto out;
1213	}
1214
1215	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1216				  NULL);
1217 out:
1218	rcu_read_unlock();
1219	return;
1220allow:
1221	avd->allowed = 0xffffffff;
1222	goto out;
1223}
1224
1225/*
1226 * Write the security context string representation of
1227 * the context structure `context' into a dynamically
1228 * allocated string of the correct size.  Set `*scontext'
1229 * to point to this string and set `*scontext_len' to
1230 * the length of the string.
1231 */
1232static int context_struct_to_string(struct policydb *p,
1233				    struct context *context,
1234				    char **scontext, u32 *scontext_len)
1235{
1236	char *scontextp;
1237
1238	if (scontext)
1239		*scontext = NULL;
1240	*scontext_len = 0;
1241
1242	if (context->len) {
1243		*scontext_len = context->len;
1244		if (scontext) {
1245			*scontext = kstrdup(context->str, GFP_ATOMIC);
1246			if (!(*scontext))
1247				return -ENOMEM;
1248		}
1249		return 0;
1250	}
1251
1252	/* Compute the size of the context. */
1253	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1254	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1255	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1256	*scontext_len += mls_compute_context_len(p, context);
1257
1258	if (!scontext)
1259		return 0;
1260
1261	/* Allocate space for the context; caller must free this space. */
1262	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1263	if (!scontextp)
1264		return -ENOMEM;
1265	*scontext = scontextp;
1266
1267	/*
1268	 * Copy the user name, role name and type name into the context.
1269	 */
1270	scontextp += sprintf(scontextp, "%s:%s:%s",
1271		sym_name(p, SYM_USERS, context->user - 1),
1272		sym_name(p, SYM_ROLES, context->role - 1),
1273		sym_name(p, SYM_TYPES, context->type - 1));
1274
1275	mls_sid_to_context(p, context, &scontextp);
1276
1277	*scontextp = 0;
1278
1279	return 0;
1280}
1281
1282static int sidtab_entry_to_string(struct policydb *p,
1283				  struct sidtab *sidtab,
1284				  struct sidtab_entry *entry,
1285				  char **scontext, u32 *scontext_len)
1286{
1287	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1288
1289	if (rc != -ENOENT)
1290		return rc;
1291
1292	rc = context_struct_to_string(p, &entry->context, scontext,
1293				      scontext_len);
1294	if (!rc && scontext)
1295		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1296	return rc;
1297}
1298
1299#include "initial_sid_to_string.h"
1300
1301int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1302{
1303	struct selinux_policy *policy;
1304	int rc;
1305
1306	if (!selinux_initialized(state)) {
1307		pr_err("SELinux: %s:  called before initial load_policy\n",
1308		       __func__);
1309		return -EINVAL;
1310	}
1311
1312	rcu_read_lock();
1313	policy = rcu_dereference(state->policy);
1314	rc = sidtab_hash_stats(policy->sidtab, page);
1315	rcu_read_unlock();
1316
1317	return rc;
1318}
1319
1320const char *security_get_initial_sid_context(u32 sid)
1321{
1322	if (unlikely(sid > SECINITSID_NUM))
1323		return NULL;
1324	return initial_sid_to_string[sid];
1325}
1326
1327static int security_sid_to_context_core(struct selinux_state *state,
1328					u32 sid, char **scontext,
1329					u32 *scontext_len, int force,
1330					int only_invalid)
1331{
1332	struct selinux_policy *policy;
1333	struct policydb *policydb;
1334	struct sidtab *sidtab;
1335	struct sidtab_entry *entry;
1336	int rc = 0;
1337
1338	if (scontext)
1339		*scontext = NULL;
1340	*scontext_len  = 0;
1341
1342	if (!selinux_initialized(state)) {
1343		if (sid <= SECINITSID_NUM) {
1344			char *scontextp;
1345			const char *s = initial_sid_to_string[sid];
1346
1347			if (!s)
1348				return -EINVAL;
1349			*scontext_len = strlen(s) + 1;
1350			if (!scontext)
1351				return 0;
1352			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1353			if (!scontextp)
1354				return -ENOMEM;
 
 
 
1355			*scontext = scontextp;
1356			return 0;
1357		}
1358		pr_err("SELinux: %s:  called before initial "
1359		       "load_policy on unknown SID %d\n", __func__, sid);
1360		return -EINVAL;
 
1361	}
1362	rcu_read_lock();
1363	policy = rcu_dereference(state->policy);
1364	policydb = &policy->policydb;
1365	sidtab = policy->sidtab;
1366
1367	if (force)
1368		entry = sidtab_search_entry_force(sidtab, sid);
1369	else
1370		entry = sidtab_search_entry(sidtab, sid);
1371	if (!entry) {
1372		pr_err("SELinux: %s:  unrecognized SID %d\n",
1373			__func__, sid);
1374		rc = -EINVAL;
1375		goto out_unlock;
1376	}
1377	if (only_invalid && !entry->context.len)
1378		goto out_unlock;
1379
1380	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1381				    scontext_len);
1382
1383out_unlock:
1384	rcu_read_unlock();
 
1385	return rc;
1386
1387}
1388
1389/**
1390 * security_sid_to_context - Obtain a context for a given SID.
1391 * @state: SELinux state
1392 * @sid: security identifier, SID
1393 * @scontext: security context
1394 * @scontext_len: length in bytes
1395 *
1396 * Write the string representation of the context associated with @sid
1397 * into a dynamically allocated string of the correct size.  Set @scontext
1398 * to point to this string and set @scontext_len to the length of the string.
1399 */
1400int security_sid_to_context(struct selinux_state *state,
1401			    u32 sid, char **scontext, u32 *scontext_len)
1402{
1403	return security_sid_to_context_core(state, sid, scontext,
1404					    scontext_len, 0, 0);
1405}
1406
1407int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1408				  char **scontext, u32 *scontext_len)
1409{
1410	return security_sid_to_context_core(state, sid, scontext,
1411					    scontext_len, 1, 0);
1412}
1413
1414/**
1415 * security_sid_to_context_inval - Obtain a context for a given SID if it
1416 *                                 is invalid.
1417 * @state: SELinux state
1418 * @sid: security identifier, SID
1419 * @scontext: security context
1420 * @scontext_len: length in bytes
1421 *
1422 * Write the string representation of the context associated with @sid
1423 * into a dynamically allocated string of the correct size, but only if the
1424 * context is invalid in the current policy.  Set @scontext to point to
1425 * this string (or NULL if the context is valid) and set @scontext_len to
1426 * the length of the string (or 0 if the context is valid).
1427 */
1428int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1429				  char **scontext, u32 *scontext_len)
1430{
1431	return security_sid_to_context_core(state, sid, scontext,
1432					    scontext_len, 1, 1);
1433}
1434
1435/*
1436 * Caveat:  Mutates scontext.
1437 */
1438static int string_to_context_struct(struct policydb *pol,
1439				    struct sidtab *sidtabp,
1440				    char *scontext,
 
1441				    struct context *ctx,
1442				    u32 def_sid)
1443{
1444	struct role_datum *role;
1445	struct type_datum *typdatum;
1446	struct user_datum *usrdatum;
1447	char *scontextp, *p, oldc;
1448	int rc = 0;
1449
1450	context_init(ctx);
1451
1452	/* Parse the security context. */
1453
1454	rc = -EINVAL;
1455	scontextp = (char *) scontext;
1456
1457	/* Extract the user. */
1458	p = scontextp;
1459	while (*p && *p != ':')
1460		p++;
1461
1462	if (*p == 0)
1463		goto out;
1464
1465	*p++ = 0;
1466
1467	usrdatum = symtab_search(&pol->p_users, scontextp);
1468	if (!usrdatum)
1469		goto out;
1470
1471	ctx->user = usrdatum->value;
1472
1473	/* Extract role. */
1474	scontextp = p;
1475	while (*p && *p != ':')
1476		p++;
1477
1478	if (*p == 0)
1479		goto out;
1480
1481	*p++ = 0;
1482
1483	role = symtab_search(&pol->p_roles, scontextp);
1484	if (!role)
1485		goto out;
1486	ctx->role = role->value;
1487
1488	/* Extract type. */
1489	scontextp = p;
1490	while (*p && *p != ':')
1491		p++;
1492	oldc = *p;
1493	*p++ = 0;
1494
1495	typdatum = symtab_search(&pol->p_types, scontextp);
1496	if (!typdatum || typdatum->attribute)
1497		goto out;
1498
1499	ctx->type = typdatum->value;
1500
1501	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1502	if (rc)
1503		goto out;
1504
 
 
 
 
1505	/* Check the validity of the new context. */
1506	rc = -EINVAL;
1507	if (!policydb_context_isvalid(pol, ctx))
1508		goto out;
1509	rc = 0;
1510out:
1511	if (rc)
1512		context_destroy(ctx);
1513	return rc;
1514}
1515
1516static int security_context_to_sid_core(struct selinux_state *state,
1517					const char *scontext, u32 scontext_len,
1518					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1519					int force)
1520{
1521	struct selinux_policy *policy;
1522	struct policydb *policydb;
1523	struct sidtab *sidtab;
1524	char *scontext2, *str = NULL;
1525	struct context context;
1526	int rc = 0;
1527
1528	/* An empty security context is never valid. */
1529	if (!scontext_len)
1530		return -EINVAL;
1531
1532	/* Copy the string to allow changes and ensure a NUL terminator */
1533	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1534	if (!scontext2)
1535		return -ENOMEM;
1536
1537	if (!selinux_initialized(state)) {
1538		int i;
1539
1540		for (i = 1; i < SECINITSID_NUM; i++) {
1541			const char *s = initial_sid_to_string[i];
1542
1543			if (s && !strcmp(s, scontext2)) {
1544				*sid = i;
1545				goto out;
1546			}
1547		}
1548		*sid = SECINITSID_KERNEL;
1549		goto out;
1550	}
1551	*sid = SECSID_NULL;
1552
 
 
 
 
 
 
 
1553	if (force) {
1554		/* Save another copy for storing in uninterpreted form */
1555		rc = -ENOMEM;
1556		str = kstrdup(scontext2, gfp_flags);
1557		if (!str)
1558			goto out;
1559	}
1560retry:
1561	rcu_read_lock();
1562	policy = rcu_dereference(state->policy);
1563	policydb = &policy->policydb;
1564	sidtab = policy->sidtab;
1565	rc = string_to_context_struct(policydb, sidtab, scontext2,
1566				      &context, def_sid);
1567	if (rc == -EINVAL && force) {
1568		context.str = str;
1569		context.len = strlen(str) + 1;
1570		str = NULL;
1571	} else if (rc)
1572		goto out_unlock;
1573	rc = sidtab_context_to_sid(sidtab, &context, sid);
1574	if (rc == -ESTALE) {
1575		rcu_read_unlock();
1576		if (context.str) {
1577			str = context.str;
1578			context.str = NULL;
1579		}
1580		context_destroy(&context);
1581		goto retry;
1582	}
1583	context_destroy(&context);
1584out_unlock:
1585	rcu_read_unlock();
1586out:
1587	kfree(scontext2);
1588	kfree(str);
1589	return rc;
1590}
1591
1592/**
1593 * security_context_to_sid - Obtain a SID for a given security context.
1594 * @state: SELinux state
1595 * @scontext: security context
1596 * @scontext_len: length in bytes
1597 * @sid: security identifier, SID
1598 * @gfp: context for the allocation
1599 *
1600 * Obtains a SID associated with the security context that
1601 * has the string representation specified by @scontext.
1602 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1603 * memory is available, or 0 on success.
1604 */
1605int security_context_to_sid(struct selinux_state *state,
1606			    const char *scontext, u32 scontext_len, u32 *sid,
1607			    gfp_t gfp)
1608{
1609	return security_context_to_sid_core(state, scontext, scontext_len,
1610					    sid, SECSID_NULL, gfp, 0);
1611}
1612
1613int security_context_str_to_sid(struct selinux_state *state,
1614				const char *scontext, u32 *sid, gfp_t gfp)
1615{
1616	return security_context_to_sid(state, scontext, strlen(scontext),
1617				       sid, gfp);
1618}
1619
1620/**
1621 * security_context_to_sid_default - Obtain a SID for a given security context,
1622 * falling back to specified default if needed.
1623 *
1624 * @state: SELinux state
1625 * @scontext: security context
1626 * @scontext_len: length in bytes
1627 * @sid: security identifier, SID
1628 * @def_sid: default SID to assign on error
1629 *
1630 * Obtains a SID associated with the security context that
1631 * has the string representation specified by @scontext.
1632 * The default SID is passed to the MLS layer to be used to allow
1633 * kernel labeling of the MLS field if the MLS field is not present
1634 * (for upgrading to MLS without full relabel).
1635 * Implicitly forces adding of the context even if it cannot be mapped yet.
1636 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1637 * memory is available, or 0 on success.
1638 */
1639int security_context_to_sid_default(struct selinux_state *state,
1640				    const char *scontext, u32 scontext_len,
1641				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1642{
1643	return security_context_to_sid_core(state, scontext, scontext_len,
1644					    sid, def_sid, gfp_flags, 1);
1645}
1646
1647int security_context_to_sid_force(struct selinux_state *state,
1648				  const char *scontext, u32 scontext_len,
1649				  u32 *sid)
1650{
1651	return security_context_to_sid_core(state, scontext, scontext_len,
1652					    sid, SECSID_NULL, GFP_KERNEL, 1);
1653}
1654
1655static int compute_sid_handle_invalid_context(
1656	struct selinux_state *state,
1657	struct selinux_policy *policy,
1658	struct sidtab_entry *sentry,
1659	struct sidtab_entry *tentry,
1660	u16 tclass,
1661	struct context *newcontext)
1662{
1663	struct policydb *policydb = &policy->policydb;
1664	struct sidtab *sidtab = policy->sidtab;
1665	char *s = NULL, *t = NULL, *n = NULL;
1666	u32 slen, tlen, nlen;
1667	struct audit_buffer *ab;
1668
1669	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1670		goto out;
1671	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1672		goto out;
1673	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1674		goto out;
1675	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1676	audit_log_format(ab,
1677			 "op=security_compute_sid invalid_context=");
1678	/* no need to record the NUL with untrusted strings */
1679	audit_log_n_untrustedstring(ab, n, nlen - 1);
1680	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1681			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1682	audit_log_end(ab);
1683out:
1684	kfree(s);
1685	kfree(t);
1686	kfree(n);
1687	if (!enforcing_enabled(state))
1688		return 0;
1689	return -EACCES;
1690}
1691
1692static void filename_compute_type(struct policydb *policydb,
1693				  struct context *newcontext,
1694				  u32 stype, u32 ttype, u16 tclass,
1695				  const char *objname)
1696{
1697	struct filename_trans_key ft;
1698	struct filename_trans_datum *datum;
1699
1700	/*
1701	 * Most filename trans rules are going to live in specific directories
1702	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1703	 * if the ttype does not contain any rules.
1704	 */
1705	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1706		return;
1707
 
1708	ft.ttype = ttype;
1709	ft.tclass = tclass;
1710	ft.name = objname;
1711
1712	datum = policydb_filenametr_search(policydb, &ft);
1713	while (datum) {
1714		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1715			newcontext->type = datum->otype;
1716			return;
1717		}
1718		datum = datum->next;
1719	}
1720}
1721
1722static int security_compute_sid(struct selinux_state *state,
1723				u32 ssid,
1724				u32 tsid,
1725				u16 orig_tclass,
1726				u32 specified,
1727				const char *objname,
1728				u32 *out_sid,
1729				bool kern)
1730{
1731	struct selinux_policy *policy;
1732	struct policydb *policydb;
1733	struct sidtab *sidtab;
1734	struct class_datum *cladatum;
1735	struct context *scontext, *tcontext, newcontext;
1736	struct sidtab_entry *sentry, *tentry;
1737	struct avtab_key avkey;
1738	struct avtab_datum *avdatum;
1739	struct avtab_node *node;
1740	u16 tclass;
1741	int rc = 0;
1742	bool sock;
1743
1744	if (!selinux_initialized(state)) {
1745		switch (orig_tclass) {
1746		case SECCLASS_PROCESS: /* kernel value */
1747			*out_sid = ssid;
1748			break;
1749		default:
1750			*out_sid = tsid;
1751			break;
1752		}
1753		goto out;
1754	}
1755
1756retry:
1757	cladatum = NULL;
1758	context_init(&newcontext);
1759
1760	rcu_read_lock();
1761
1762	policy = rcu_dereference(state->policy);
1763
1764	if (kern) {
1765		tclass = unmap_class(&policy->map, orig_tclass);
1766		sock = security_is_socket_class(orig_tclass);
1767	} else {
1768		tclass = orig_tclass;
1769		sock = security_is_socket_class(map_class(&policy->map,
1770							  tclass));
1771	}
1772
1773	policydb = &policy->policydb;
1774	sidtab = policy->sidtab;
1775
1776	sentry = sidtab_search_entry(sidtab, ssid);
1777	if (!sentry) {
1778		pr_err("SELinux: %s:  unrecognized SID %d\n",
1779		       __func__, ssid);
1780		rc = -EINVAL;
1781		goto out_unlock;
1782	}
1783	tentry = sidtab_search_entry(sidtab, tsid);
1784	if (!tentry) {
1785		pr_err("SELinux: %s:  unrecognized SID %d\n",
1786		       __func__, tsid);
1787		rc = -EINVAL;
1788		goto out_unlock;
1789	}
1790
1791	scontext = &sentry->context;
1792	tcontext = &tentry->context;
1793
1794	if (tclass && tclass <= policydb->p_classes.nprim)
1795		cladatum = policydb->class_val_to_struct[tclass - 1];
1796
1797	/* Set the user identity. */
1798	switch (specified) {
1799	case AVTAB_TRANSITION:
1800	case AVTAB_CHANGE:
1801		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1802			newcontext.user = tcontext->user;
1803		} else {
1804			/* notice this gets both DEFAULT_SOURCE and unset */
1805			/* Use the process user identity. */
1806			newcontext.user = scontext->user;
1807		}
1808		break;
1809	case AVTAB_MEMBER:
1810		/* Use the related object owner. */
1811		newcontext.user = tcontext->user;
1812		break;
1813	}
1814
1815	/* Set the role to default values. */
1816	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1817		newcontext.role = scontext->role;
1818	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1819		newcontext.role = tcontext->role;
1820	} else {
1821		if ((tclass == policydb->process_class) || sock)
1822			newcontext.role = scontext->role;
1823		else
1824			newcontext.role = OBJECT_R_VAL;
1825	}
1826
1827	/* Set the type to default values. */
1828	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1829		newcontext.type = scontext->type;
1830	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1831		newcontext.type = tcontext->type;
1832	} else {
1833		if ((tclass == policydb->process_class) || sock) {
1834			/* Use the type of process. */
1835			newcontext.type = scontext->type;
1836		} else {
1837			/* Use the type of the related object. */
1838			newcontext.type = tcontext->type;
1839		}
1840	}
1841
1842	/* Look for a type transition/member/change rule. */
1843	avkey.source_type = scontext->type;
1844	avkey.target_type = tcontext->type;
1845	avkey.target_class = tclass;
1846	avkey.specified = specified;
1847	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1848
1849	/* If no permanent rule, also check for enabled conditional rules */
1850	if (!avdatum) {
1851		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1852		for (; node; node = avtab_search_node_next(node, specified)) {
1853			if (node->key.specified & AVTAB_ENABLED) {
1854				avdatum = &node->datum;
1855				break;
1856			}
1857		}
1858	}
1859
1860	if (avdatum) {
1861		/* Use the type from the type transition/member/change rule. */
1862		newcontext.type = avdatum->u.data;
1863	}
1864
1865	/* if we have a objname this is a file trans check so check those rules */
1866	if (objname)
1867		filename_compute_type(policydb, &newcontext, scontext->type,
1868				      tcontext->type, tclass, objname);
1869
1870	/* Check for class-specific changes. */
1871	if (specified & AVTAB_TRANSITION) {
1872		/* Look for a role transition rule. */
1873		struct role_trans_datum *rtd;
1874		struct role_trans_key rtk = {
1875			.role = scontext->role,
1876			.type = tcontext->type,
1877			.tclass = tclass,
1878		};
1879
1880		rtd = policydb_roletr_search(policydb, &rtk);
1881		if (rtd)
1882			newcontext.role = rtd->new_role;
1883	}
1884
1885	/* Set the MLS attributes.
1886	   This is done last because it may allocate memory. */
1887	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1888			     &newcontext, sock);
1889	if (rc)
1890		goto out_unlock;
1891
1892	/* Check the validity of the context. */
1893	if (!policydb_context_isvalid(policydb, &newcontext)) {
1894		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1895							tentry, tclass,
 
1896							&newcontext);
1897		if (rc)
1898			goto out_unlock;
1899	}
1900	/* Obtain the sid for the context. */
1901	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1902	if (rc == -ESTALE) {
1903		rcu_read_unlock();
1904		context_destroy(&newcontext);
1905		goto retry;
1906	}
1907out_unlock:
1908	rcu_read_unlock();
1909	context_destroy(&newcontext);
1910out:
1911	return rc;
1912}
1913
1914/**
1915 * security_transition_sid - Compute the SID for a new subject/object.
1916 * @state: SELinux state
1917 * @ssid: source security identifier
1918 * @tsid: target security identifier
1919 * @tclass: target security class
1920 * @out_sid: security identifier for new subject/object
1921 *
1922 * Compute a SID to use for labeling a new subject or object in the
1923 * class @tclass based on a SID pair (@ssid, @tsid).
1924 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1925 * if insufficient memory is available, or %0 if the new SID was
1926 * computed successfully.
1927 */
1928int security_transition_sid(struct selinux_state *state,
1929			    u32 ssid, u32 tsid, u16 tclass,
1930			    const struct qstr *qstr, u32 *out_sid)
1931{
1932	return security_compute_sid(state, ssid, tsid, tclass,
1933				    AVTAB_TRANSITION,
1934				    qstr ? qstr->name : NULL, out_sid, true);
1935}
1936
1937int security_transition_sid_user(struct selinux_state *state,
1938				 u32 ssid, u32 tsid, u16 tclass,
1939				 const char *objname, u32 *out_sid)
1940{
1941	return security_compute_sid(state, ssid, tsid, tclass,
1942				    AVTAB_TRANSITION,
1943				    objname, out_sid, false);
1944}
1945
1946/**
1947 * security_member_sid - Compute the SID for member selection.
1948 * @ssid: source security identifier
1949 * @tsid: target security identifier
1950 * @tclass: target security class
1951 * @out_sid: security identifier for selected member
1952 *
1953 * Compute a SID to use when selecting a member of a polyinstantiated
1954 * object of class @tclass based on a SID pair (@ssid, @tsid).
1955 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1956 * if insufficient memory is available, or %0 if the SID was
1957 * computed successfully.
1958 */
1959int security_member_sid(struct selinux_state *state,
1960			u32 ssid,
1961			u32 tsid,
1962			u16 tclass,
1963			u32 *out_sid)
1964{
1965	return security_compute_sid(state, ssid, tsid, tclass,
1966				    AVTAB_MEMBER, NULL,
1967				    out_sid, false);
1968}
1969
1970/**
1971 * security_change_sid - Compute the SID for object relabeling.
1972 * @state: SELinux state
1973 * @ssid: source security identifier
1974 * @tsid: target security identifier
1975 * @tclass: target security class
1976 * @out_sid: security identifier for selected member
1977 *
1978 * Compute a SID to use for relabeling an object of class @tclass
1979 * based on a SID pair (@ssid, @tsid).
1980 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1981 * if insufficient memory is available, or %0 if the SID was
1982 * computed successfully.
1983 */
1984int security_change_sid(struct selinux_state *state,
1985			u32 ssid,
1986			u32 tsid,
1987			u16 tclass,
1988			u32 *out_sid)
1989{
1990	return security_compute_sid(state,
1991				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992				    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
1996	struct selinux_state *state,
1997	struct policydb *policydb,
1998	struct context *context)
 
 
 
 
 
 
 
 
 
 
1999{
2000	char *s;
2001	u32 len;
2002
2003	if (enforcing_enabled(state))
2004		return -EINVAL;
2005
2006	if (!context_struct_to_string(policydb, context, &s, &len)) {
2007		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2008			s);
2009		kfree(s);
2010	}
2011	return 0;
2012}
2013
 
 
 
 
 
2014/*
2015 * Convert the values in the security context
2016 * structure `oldc' from the values specified
2017 * in the policy `p->oldp' to the values specified
2018 * in the policy `p->newp', storing the new context
2019 * in `newc'.  Verify that the context is valid
2020 * under the new policy.
2021 */
2022static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
2023{
2024	struct convert_context_args *args;
 
2025	struct ocontext *oc;
 
2026	struct role_datum *role;
2027	struct type_datum *typdatum;
2028	struct user_datum *usrdatum;
2029	char *s;
2030	u32 len;
2031	int rc;
 
 
 
2032
2033	args = p;
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s,
2041					      newc, SECSID_NULL);
2042		if (rc == -EINVAL) {
2043			/*
2044			 * Retain string representation for later mapping.
2045			 *
2046			 * IMPORTANT: We need to copy the contents of oldc->str
2047			 * back into s again because string_to_context_struct()
2048			 * may have garbled it.
2049			 */
2050			memcpy(s, oldc->str, oldc->len);
2051			context_init(newc);
2052			newc->str = s;
2053			newc->len = oldc->len;
2054			return 0;
2055		}
2056		kfree(s);
2057		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2058			/* Other error condition, e.g. ENOMEM. */
2059			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2060			       oldc->str, -rc);
2061			return rc;
2062		}
2063		pr_info("SELinux:  Context %s became valid (mapped).\n",
2064			oldc->str);
2065		return 0;
2066	}
2067
2068	context_init(newc);
 
 
2069
2070	/* Convert the user. */
2071	usrdatum = symtab_search(&args->newp->p_users,
2072				 sym_name(args->oldp,
2073					  SYM_USERS, oldc->user - 1));
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp,
2088					  SYM_TYPES, oldc->type - 1));
2089	if (!typdatum)
2090		goto bad;
2091	newc->type = typdatum->value;
2092
2093	/* Convert the MLS fields if dealing with MLS policies */
2094	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2095		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2096		if (rc)
2097			goto bad;
 
 
 
 
 
 
 
2098	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2099		/*
2100		 * Switching between non-MLS and MLS policy:
2101		 * ensure that the MLS fields of the context for all
2102		 * existing entries in the sidtab are filled in with a
2103		 * suitable default value, likely taken from one of the
2104		 * initial SIDs.
2105		 */
2106		oc = args->newp->ocontexts[OCON_ISID];
2107		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2108			oc = oc->next;
 
2109		if (!oc) {
2110			pr_err("SELinux:  unable to look up"
2111				" the initial SIDs list\n");
2112			goto bad;
2113		}
2114		rc = mls_range_set(newc, &oc->context[0].range);
 
2115		if (rc)
2116			goto bad;
2117	}
2118
2119	/* Check the validity of the new context. */
2120	if (!policydb_context_isvalid(args->newp, newc)) {
2121		rc = convert_context_handle_invalid_context(args->state,
2122							args->oldp,
2123							oldc);
2124		if (rc)
2125			goto bad;
2126	}
2127
2128	return 0;
 
 
 
 
2129bad:
2130	/* Map old representation to string and save it. */
2131	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2132	if (rc)
2133		return rc;
2134	context_destroy(newc);
2135	newc->str = s;
2136	newc->len = len;
2137	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2138		newc->str);
2139	return 0;
2140}
2141
2142static void security_load_policycaps(struct selinux_state *state,
2143				struct selinux_policy *policy)
2144{
2145	struct policydb *p;
2146	unsigned int i;
2147	struct ebitmap_node *node;
2148
2149	p = &policy->policydb;
2150
2151	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2152		WRITE_ONCE(state->policycap[i],
2153			ebitmap_get_bit(&p->policycaps, i));
2154
2155	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2156		pr_info("SELinux:  policy capability %s=%d\n",
2157			selinux_policycap_names[i],
2158			ebitmap_get_bit(&p->policycaps, i));
2159
2160	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2161		if (i >= ARRAY_SIZE(selinux_policycap_names))
2162			pr_info("SELinux:  unknown policy capability %u\n",
2163				i);
2164	}
2165}
2166
2167static int security_preserve_bools(struct selinux_policy *oldpolicy,
2168				struct selinux_policy *newpolicy);
2169
2170static void selinux_policy_free(struct selinux_policy *policy)
2171{
2172	if (!policy)
2173		return;
2174
2175	sidtab_destroy(policy->sidtab);
2176	kfree(policy->map.mapping);
2177	policydb_destroy(&policy->policydb);
2178	kfree(policy->sidtab);
2179	kfree(policy);
2180}
2181
2182static void selinux_policy_cond_free(struct selinux_policy *policy)
2183{
2184	cond_policydb_destroy_dup(&policy->policydb);
2185	kfree(policy);
2186}
2187
2188void selinux_policy_cancel(struct selinux_state *state,
2189			   struct selinux_load_state *load_state)
2190{
2191	struct selinux_policy *oldpolicy;
2192
2193	oldpolicy = rcu_dereference_protected(state->policy,
2194					lockdep_is_held(&state->policy_mutex));
2195
2196	sidtab_cancel_convert(oldpolicy->sidtab);
2197	selinux_policy_free(load_state->policy);
2198	kfree(load_state->convert_data);
2199}
2200
2201static void selinux_notify_policy_change(struct selinux_state *state,
2202					u32 seqno)
2203{
2204	/* Flush external caches and notify userspace of policy load */
2205	avc_ss_reset(state->avc, seqno);
2206	selnl_notify_policyload(seqno);
2207	selinux_status_update_policyload(state, seqno);
2208	selinux_netlbl_cache_invalidate();
2209	selinux_xfrm_notify_policyload();
2210	selinux_ima_measure_state_locked(state);
2211}
2212
2213void selinux_policy_commit(struct selinux_state *state,
2214			   struct selinux_load_state *load_state)
2215{
2216	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2217	unsigned long flags;
2218	u32 seqno;
2219
2220	oldpolicy = rcu_dereference_protected(state->policy,
2221					lockdep_is_held(&state->policy_mutex));
2222
2223	/* If switching between different policy types, log MLS status */
2224	if (oldpolicy) {
2225		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2226			pr_info("SELinux: Disabling MLS support...\n");
2227		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2228			pr_info("SELinux: Enabling MLS support...\n");
2229	}
2230
2231	/* Set latest granting seqno for new policy. */
2232	if (oldpolicy)
2233		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2234	else
2235		newpolicy->latest_granting = 1;
2236	seqno = newpolicy->latest_granting;
2237
2238	/* Install the new policy. */
2239	if (oldpolicy) {
2240		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2241		rcu_assign_pointer(state->policy, newpolicy);
2242		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2243	} else {
2244		rcu_assign_pointer(state->policy, newpolicy);
2245	}
2246
2247	/* Load the policycaps from the new policy */
2248	security_load_policycaps(state, newpolicy);
2249
2250	if (!selinux_initialized(state)) {
2251		/*
2252		 * After first policy load, the security server is
2253		 * marked as initialized and ready to handle requests and
2254		 * any objects created prior to policy load are then labeled.
2255		 */
2256		selinux_mark_initialized(state);
2257		selinux_complete_init();
2258	}
2259
2260	/* Free the old policy */
2261	synchronize_rcu();
2262	selinux_policy_free(oldpolicy);
2263	kfree(load_state->convert_data);
2264
2265	/* Notify others of the policy change */
2266	selinux_notify_policy_change(state, seqno);
2267}
2268
2269/**
2270 * security_load_policy - Load a security policy configuration.
2271 * @state: SELinux state
2272 * @data: binary policy data
2273 * @len: length of data in bytes
2274 *
2275 * Load a new set of security policy configuration data,
2276 * validate it and convert the SID table as necessary.
2277 * This function will flush the access vector cache after
2278 * loading the new policy.
2279 */
2280int security_load_policy(struct selinux_state *state, void *data, size_t len,
2281			 struct selinux_load_state *load_state)
2282{
2283	struct selinux_policy *newpolicy, *oldpolicy;
2284	struct selinux_policy_convert_data *convert_data;
 
 
 
 
2285	int rc = 0;
2286	struct policy_file file = { data, len }, *fp = &file;
2287
2288	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2289	if (!newpolicy)
2290		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2291
2292	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2293	if (!newpolicy->sidtab) {
2294		rc = -ENOMEM;
2295		goto err_policy;
 
 
 
 
 
 
2296	}
2297
2298	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2299	if (rc)
2300		goto err_sidtab;
2301
2302	newpolicy->policydb.len = len;
2303	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2304				&newpolicy->map);
2305	if (rc)
2306		goto err_policydb;
 
2307
2308	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2309	if (rc) {
2310		pr_err("SELinux:  unable to load the initial SIDs\n");
2311		goto err_mapping;
 
2312	}
2313
2314	if (!selinux_initialized(state)) {
2315		/* First policy load, so no need to preserve state from old policy */
2316		load_state->policy = newpolicy;
2317		load_state->convert_data = NULL;
2318		return 0;
2319	}
2320
2321	oldpolicy = rcu_dereference_protected(state->policy,
2322					lockdep_is_held(&state->policy_mutex));
2323
2324	/* Preserve active boolean values from the old policy */
2325	rc = security_preserve_bools(oldpolicy, newpolicy);
2326	if (rc) {
2327		pr_err("SELinux:  unable to preserve booleans\n");
2328		goto err_free_isids;
2329	}
2330
2331	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2332	if (!convert_data) {
2333		rc = -ENOMEM;
2334		goto err_free_isids;
2335	}
 
2336
2337	/*
2338	 * Convert the internal representations of contexts
2339	 * in the new SID table.
2340	 */
2341	convert_data->args.state = state;
2342	convert_data->args.oldp = &oldpolicy->policydb;
2343	convert_data->args.newp = &newpolicy->policydb;
2344
2345	convert_data->sidtab_params.func = convert_context;
2346	convert_data->sidtab_params.args = &convert_data->args;
2347	convert_data->sidtab_params.target = newpolicy->sidtab;
2348
2349	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2350	if (rc) {
2351		pr_err("SELinux:  unable to convert the internal"
2352			" representation of contexts in the new SID"
2353			" table\n");
2354		goto err_free_convert_data;
2355	}
2356
2357	load_state->policy = newpolicy;
2358	load_state->convert_data = convert_data;
2359	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360
2361err_free_convert_data:
2362	kfree(convert_data);
2363err_free_isids:
2364	sidtab_destroy(newpolicy->sidtab);
2365err_mapping:
2366	kfree(newpolicy->map.mapping);
2367err_policydb:
2368	policydb_destroy(&newpolicy->policydb);
2369err_sidtab:
2370	kfree(newpolicy->sidtab);
2371err_policy:
2372	kfree(newpolicy);
2373
2374	return rc;
2375}
2376
2377/**
2378 * security_port_sid - Obtain the SID for a port.
2379 * @state: SELinux state
2380 * @protocol: protocol number
2381 * @port: port number
2382 * @out_sid: security identifier
2383 */
2384int security_port_sid(struct selinux_state *state,
2385		      u8 protocol, u16 port, u32 *out_sid)
2386{
2387	struct selinux_policy *policy;
2388	struct policydb *policydb;
2389	struct sidtab *sidtab;
2390	struct ocontext *c;
2391	int rc;
2392
2393	if (!selinux_initialized(state)) {
2394		*out_sid = SECINITSID_PORT;
2395		return 0;
2396	}
2397
2398retry:
2399	rc = 0;
2400	rcu_read_lock();
2401	policy = rcu_dereference(state->policy);
2402	policydb = &policy->policydb;
2403	sidtab = policy->sidtab;
2404
2405	c = policydb->ocontexts[OCON_PORT];
2406	while (c) {
2407		if (c->u.port.protocol == protocol &&
2408		    c->u.port.low_port <= port &&
2409		    c->u.port.high_port >= port)
2410			break;
2411		c = c->next;
2412	}
2413
2414	if (c) {
2415		if (!c->sid[0]) {
2416			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2417						   &c->sid[0]);
2418			if (rc == -ESTALE) {
2419				rcu_read_unlock();
2420				goto retry;
2421			}
2422			if (rc)
2423				goto out;
2424		}
2425		*out_sid = c->sid[0];
2426	} else {
2427		*out_sid = SECINITSID_PORT;
2428	}
2429
2430out:
2431	rcu_read_unlock();
2432	return rc;
2433}
2434
2435/**
2436 * security_ib_pkey_sid - Obtain the SID for a pkey.
2437 * @state: SELinux state
2438 * @subnet_prefix: Subnet Prefix
2439 * @pkey_num: pkey number
2440 * @out_sid: security identifier
2441 */
2442int security_ib_pkey_sid(struct selinux_state *state,
2443			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2444{
2445	struct selinux_policy *policy;
2446	struct policydb *policydb;
2447	struct sidtab *sidtab;
2448	struct ocontext *c;
2449	int rc;
2450
2451	if (!selinux_initialized(state)) {
2452		*out_sid = SECINITSID_UNLABELED;
2453		return 0;
2454	}
2455
2456retry:
2457	rc = 0;
2458	rcu_read_lock();
2459	policy = rcu_dereference(state->policy);
2460	policydb = &policy->policydb;
2461	sidtab = policy->sidtab;
2462
2463	c = policydb->ocontexts[OCON_IBPKEY];
2464	while (c) {
2465		if (c->u.ibpkey.low_pkey <= pkey_num &&
2466		    c->u.ibpkey.high_pkey >= pkey_num &&
2467		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2468			break;
2469
2470		c = c->next;
2471	}
2472
2473	if (c) {
2474		if (!c->sid[0]) {
2475			rc = sidtab_context_to_sid(sidtab,
2476						   &c->context[0],
2477						   &c->sid[0]);
2478			if (rc == -ESTALE) {
2479				rcu_read_unlock();
2480				goto retry;
2481			}
2482			if (rc)
2483				goto out;
2484		}
2485		*out_sid = c->sid[0];
2486	} else
2487		*out_sid = SECINITSID_UNLABELED;
2488
2489out:
2490	rcu_read_unlock();
2491	return rc;
2492}
2493
2494/**
2495 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2496 * @state: SELinux state
2497 * @dev_name: device name
2498 * @port: port number
2499 * @out_sid: security identifier
2500 */
2501int security_ib_endport_sid(struct selinux_state *state,
2502			    const char *dev_name, u8 port_num, u32 *out_sid)
2503{
2504	struct selinux_policy *policy;
2505	struct policydb *policydb;
2506	struct sidtab *sidtab;
2507	struct ocontext *c;
2508	int rc;
2509
2510	if (!selinux_initialized(state)) {
2511		*out_sid = SECINITSID_UNLABELED;
2512		return 0;
2513	}
2514
2515retry:
2516	rc = 0;
2517	rcu_read_lock();
2518	policy = rcu_dereference(state->policy);
2519	policydb = &policy->policydb;
2520	sidtab = policy->sidtab;
2521
2522	c = policydb->ocontexts[OCON_IBENDPORT];
2523	while (c) {
2524		if (c->u.ibendport.port == port_num &&
2525		    !strncmp(c->u.ibendport.dev_name,
2526			     dev_name,
2527			     IB_DEVICE_NAME_MAX))
2528			break;
2529
2530		c = c->next;
2531	}
2532
2533	if (c) {
2534		if (!c->sid[0]) {
2535			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2536						   &c->sid[0]);
2537			if (rc == -ESTALE) {
2538				rcu_read_unlock();
2539				goto retry;
2540			}
2541			if (rc)
2542				goto out;
2543		}
2544		*out_sid = c->sid[0];
2545	} else
2546		*out_sid = SECINITSID_UNLABELED;
 
2547
2548out:
2549	rcu_read_unlock();
2550	return rc;
2551}
2552
2553/**
2554 * security_netif_sid - Obtain the SID for a network interface.
2555 * @state: SELinux state
2556 * @name: interface name
2557 * @if_sid: interface SID
2558 */
2559int security_netif_sid(struct selinux_state *state,
2560		       char *name, u32 *if_sid)
2561{
2562	struct selinux_policy *policy;
2563	struct policydb *policydb;
2564	struct sidtab *sidtab;
2565	int rc;
2566	struct ocontext *c;
2567
2568	if (!selinux_initialized(state)) {
2569		*if_sid = SECINITSID_NETIF;
2570		return 0;
2571	}
2572
2573retry:
2574	rc = 0;
2575	rcu_read_lock();
2576	policy = rcu_dereference(state->policy);
2577	policydb = &policy->policydb;
2578	sidtab = policy->sidtab;
2579
2580	c = policydb->ocontexts[OCON_NETIF];
2581	while (c) {
2582		if (strcmp(name, c->u.name) == 0)
2583			break;
2584		c = c->next;
2585	}
2586
2587	if (c) {
2588		if (!c->sid[0] || !c->sid[1]) {
2589			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2590						   &c->sid[0]);
2591			if (rc == -ESTALE) {
2592				rcu_read_unlock();
2593				goto retry;
2594			}
2595			if (rc)
2596				goto out;
2597			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2598						   &c->sid[1]);
2599			if (rc == -ESTALE) {
2600				rcu_read_unlock();
2601				goto retry;
2602			}
2603			if (rc)
2604				goto out;
2605		}
2606		*if_sid = c->sid[0];
2607	} else
2608		*if_sid = SECINITSID_NETIF;
2609
2610out:
2611	rcu_read_unlock();
2612	return rc;
2613}
2614
2615static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2616{
2617	int i, fail = 0;
2618
2619	for (i = 0; i < 4; i++)
2620		if (addr[i] != (input[i] & mask[i])) {
2621			fail = 1;
2622			break;
2623		}
2624
2625	return !fail;
2626}
2627
2628/**
2629 * security_node_sid - Obtain the SID for a node (host).
2630 * @state: SELinux state
2631 * @domain: communication domain aka address family
2632 * @addrp: address
2633 * @addrlen: address length in bytes
2634 * @out_sid: security identifier
2635 */
2636int security_node_sid(struct selinux_state *state,
2637		      u16 domain,
2638		      void *addrp,
2639		      u32 addrlen,
2640		      u32 *out_sid)
2641{
2642	struct selinux_policy *policy;
2643	struct policydb *policydb;
2644	struct sidtab *sidtab;
2645	int rc;
2646	struct ocontext *c;
2647
2648	if (!selinux_initialized(state)) {
2649		*out_sid = SECINITSID_NODE;
2650		return 0;
2651	}
2652
2653retry:
2654	rcu_read_lock();
2655	policy = rcu_dereference(state->policy);
2656	policydb = &policy->policydb;
2657	sidtab = policy->sidtab;
2658
2659	switch (domain) {
2660	case AF_INET: {
2661		u32 addr;
2662
2663		rc = -EINVAL;
2664		if (addrlen != sizeof(u32))
2665			goto out;
2666
2667		addr = *((u32 *)addrp);
2668
2669		c = policydb->ocontexts[OCON_NODE];
2670		while (c) {
2671			if (c->u.node.addr == (addr & c->u.node.mask))
2672				break;
2673			c = c->next;
2674		}
2675		break;
2676	}
2677
2678	case AF_INET6:
2679		rc = -EINVAL;
2680		if (addrlen != sizeof(u64) * 2)
2681			goto out;
2682		c = policydb->ocontexts[OCON_NODE6];
2683		while (c) {
2684			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2685						c->u.node6.mask))
2686				break;
2687			c = c->next;
2688		}
2689		break;
2690
2691	default:
2692		rc = 0;
2693		*out_sid = SECINITSID_NODE;
2694		goto out;
2695	}
2696
2697	if (c) {
2698		if (!c->sid[0]) {
2699			rc = sidtab_context_to_sid(sidtab,
2700						   &c->context[0],
2701						   &c->sid[0]);
2702			if (rc == -ESTALE) {
2703				rcu_read_unlock();
2704				goto retry;
2705			}
2706			if (rc)
2707				goto out;
2708		}
2709		*out_sid = c->sid[0];
2710	} else {
2711		*out_sid = SECINITSID_NODE;
2712	}
2713
2714	rc = 0;
2715out:
2716	rcu_read_unlock();
2717	return rc;
2718}
2719
2720#define SIDS_NEL 25
2721
2722/**
2723 * security_get_user_sids - Obtain reachable SIDs for a user.
2724 * @state: SELinux state
2725 * @fromsid: starting SID
2726 * @username: username
2727 * @sids: array of reachable SIDs for user
2728 * @nel: number of elements in @sids
2729 *
2730 * Generate the set of SIDs for legal security contexts
2731 * for a given user that can be reached by @fromsid.
2732 * Set *@sids to point to a dynamically allocated
2733 * array containing the set of SIDs.  Set *@nel to the
2734 * number of elements in the array.
2735 */
2736
2737int security_get_user_sids(struct selinux_state *state,
2738			   u32 fromsid,
2739			   char *username,
2740			   u32 **sids,
2741			   u32 *nel)
2742{
2743	struct selinux_policy *policy;
2744	struct policydb *policydb;
2745	struct sidtab *sidtab;
2746	struct context *fromcon, usercon;
2747	u32 *mysids = NULL, *mysids2, sid;
2748	u32 i, j, mynel, maxnel = SIDS_NEL;
2749	struct user_datum *user;
2750	struct role_datum *role;
2751	struct ebitmap_node *rnode, *tnode;
2752	int rc;
2753
2754	*sids = NULL;
2755	*nel = 0;
2756
2757	if (!selinux_initialized(state))
2758		return 0;
2759
2760	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2761	if (!mysids)
2762		return -ENOMEM;
2763
2764retry:
2765	mynel = 0;
2766	rcu_read_lock();
2767	policy = rcu_dereference(state->policy);
2768	policydb = &policy->policydb;
2769	sidtab = policy->sidtab;
2770
2771	context_init(&usercon);
2772
2773	rc = -EINVAL;
2774	fromcon = sidtab_search(sidtab, fromsid);
2775	if (!fromcon)
2776		goto out_unlock;
2777
2778	rc = -EINVAL;
2779	user = symtab_search(&policydb->p_users, username);
2780	if (!user)
2781		goto out_unlock;
2782
2783	usercon.user = user->value;
2784
 
 
 
 
 
2785	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2786		role = policydb->role_val_to_struct[i];
2787		usercon.role = i + 1;
2788		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2789			usercon.type = j + 1;
2790
2791			if (mls_setup_user_range(policydb, fromcon, user,
2792						 &usercon))
2793				continue;
2794
2795			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2796			if (rc == -ESTALE) {
2797				rcu_read_unlock();
2798				goto retry;
2799			}
2800			if (rc)
2801				goto out_unlock;
2802			if (mynel < maxnel) {
2803				mysids[mynel++] = sid;
2804			} else {
2805				rc = -ENOMEM;
2806				maxnel += SIDS_NEL;
2807				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2808				if (!mysids2)
2809					goto out_unlock;
2810				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2811				kfree(mysids);
2812				mysids = mysids2;
2813				mysids[mynel++] = sid;
2814			}
2815		}
2816	}
2817	rc = 0;
2818out_unlock:
2819	rcu_read_unlock();
2820	if (rc || !mynel) {
2821		kfree(mysids);
2822		return rc;
2823	}
2824
2825	rc = -ENOMEM;
2826	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2827	if (!mysids2) {
2828		kfree(mysids);
2829		return rc;
2830	}
2831	for (i = 0, j = 0; i < mynel; i++) {
2832		struct av_decision dummy_avd;
2833		rc = avc_has_perm_noaudit(state,
2834					  fromsid, mysids[i],
2835					  SECCLASS_PROCESS, /* kernel value */
2836					  PROCESS__TRANSITION, AVC_STRICT,
2837					  &dummy_avd);
2838		if (!rc)
2839			mysids2[j++] = mysids[i];
2840		cond_resched();
2841	}
 
2842	kfree(mysids);
2843	*sids = mysids2;
2844	*nel = j;
2845	return 0;
 
2846}
2847
2848/**
2849 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2850 * @fstype: filesystem type
2851 * @path: path from root of mount
2852 * @sclass: file security class
2853 * @sid: SID for path
2854 *
2855 * Obtain a SID to use for a file in a filesystem that
2856 * cannot support xattr or use a fixed labeling behavior like
2857 * transition SIDs or task SIDs.
2858 *
2859 * WARNING: This function may return -ESTALE, indicating that the caller
2860 * must retry the operation after re-acquiring the policy pointer!
2861 */
2862static inline int __security_genfs_sid(struct selinux_policy *policy,
2863				       const char *fstype,
2864				       char *path,
2865				       u16 orig_sclass,
2866				       u32 *sid)
2867{
2868	struct policydb *policydb = &policy->policydb;
2869	struct sidtab *sidtab = policy->sidtab;
2870	int len;
2871	u16 sclass;
2872	struct genfs *genfs;
2873	struct ocontext *c;
2874	int rc, cmp = 0;
2875
2876	while (path[0] == '/' && path[1] == '/')
2877		path++;
2878
2879	sclass = unmap_class(&policy->map, orig_sclass);
2880	*sid = SECINITSID_UNLABELED;
2881
2882	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2883		cmp = strcmp(fstype, genfs->fstype);
2884		if (cmp <= 0)
2885			break;
2886	}
2887
2888	rc = -ENOENT;
2889	if (!genfs || cmp)
2890		goto out;
2891
2892	for (c = genfs->head; c; c = c->next) {
2893		len = strlen(c->u.name);
2894		if ((!c->v.sclass || sclass == c->v.sclass) &&
2895		    (strncmp(c->u.name, path, len) == 0))
2896			break;
2897	}
2898
2899	rc = -ENOENT;
2900	if (!c)
2901		goto out;
2902
2903	if (!c->sid[0]) {
2904		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2905		if (rc)
2906			goto out;
2907	}
2908
2909	*sid = c->sid[0];
2910	rc = 0;
2911out:
2912	return rc;
2913}
2914
2915/**
2916 * security_genfs_sid - Obtain a SID for a file in a filesystem
2917 * @state: SELinux state
2918 * @fstype: filesystem type
2919 * @path: path from root of mount
2920 * @sclass: file security class
2921 * @sid: SID for path
2922 *
2923 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2924 * it afterward.
2925 */
2926int security_genfs_sid(struct selinux_state *state,
2927		       const char *fstype,
2928		       char *path,
2929		       u16 orig_sclass,
2930		       u32 *sid)
2931{
2932	struct selinux_policy *policy;
2933	int retval;
2934
2935	if (!selinux_initialized(state)) {
2936		*sid = SECINITSID_UNLABELED;
2937		return 0;
2938	}
2939
2940	do {
2941		rcu_read_lock();
2942		policy = rcu_dereference(state->policy);
2943		retval = __security_genfs_sid(policy, fstype, path,
2944					      orig_sclass, sid);
2945		rcu_read_unlock();
2946	} while (retval == -ESTALE);
2947	return retval;
2948}
2949
2950int selinux_policy_genfs_sid(struct selinux_policy *policy,
2951			const char *fstype,
2952			char *path,
2953			u16 orig_sclass,
2954			u32 *sid)
2955{
2956	/* no lock required, policy is not yet accessible by other threads */
2957	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2958}
2959
2960/**
2961 * security_fs_use - Determine how to handle labeling for a filesystem.
2962 * @state: SELinux state
2963 * @sb: superblock in question
2964 */
2965int security_fs_use(struct selinux_state *state, struct super_block *sb)
2966{
2967	struct selinux_policy *policy;
2968	struct policydb *policydb;
2969	struct sidtab *sidtab;
2970	int rc;
2971	struct ocontext *c;
2972	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2973	const char *fstype = sb->s_type->name;
2974
2975	if (!selinux_initialized(state)) {
2976		sbsec->behavior = SECURITY_FS_USE_NONE;
2977		sbsec->sid = SECINITSID_UNLABELED;
2978		return 0;
2979	}
2980
2981retry:
2982	rc = 0;
2983	rcu_read_lock();
2984	policy = rcu_dereference(state->policy);
2985	policydb = &policy->policydb;
2986	sidtab = policy->sidtab;
2987
2988	c = policydb->ocontexts[OCON_FSUSE];
2989	while (c) {
2990		if (strcmp(fstype, c->u.name) == 0)
2991			break;
2992		c = c->next;
2993	}
2994
2995	if (c) {
2996		sbsec->behavior = c->v.behavior;
2997		if (!c->sid[0]) {
2998			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2999						   &c->sid[0]);
3000			if (rc == -ESTALE) {
3001				rcu_read_unlock();
3002				goto retry;
3003			}
3004			if (rc)
3005				goto out;
3006		}
3007		sbsec->sid = c->sid[0];
3008	} else {
3009		rc = __security_genfs_sid(policy, fstype, "/",
3010					SECCLASS_DIR, &sbsec->sid);
3011		if (rc == -ESTALE) {
3012			rcu_read_unlock();
3013			goto retry;
3014		}
3015		if (rc) {
3016			sbsec->behavior = SECURITY_FS_USE_NONE;
3017			rc = 0;
3018		} else {
3019			sbsec->behavior = SECURITY_FS_USE_GENFS;
3020		}
3021	}
3022
3023out:
3024	rcu_read_unlock();
3025	return rc;
3026}
3027
3028int security_get_bools(struct selinux_policy *policy,
3029		       u32 *len, char ***names, int **values)
3030{
3031	struct policydb *policydb;
3032	u32 i;
3033	int rc;
3034
3035	policydb = &policy->policydb;
3036
 
3037	*names = NULL;
3038	*values = NULL;
3039
3040	rc = 0;
3041	*len = policydb->p_bools.nprim;
3042	if (!*len)
3043		goto out;
3044
3045	rc = -ENOMEM;
3046	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3047	if (!*names)
3048		goto err;
3049
3050	rc = -ENOMEM;
3051	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3052	if (!*values)
3053		goto err;
3054
3055	for (i = 0; i < *len; i++) {
3056		(*values)[i] = policydb->bool_val_to_struct[i]->state;
3057
3058		rc = -ENOMEM;
3059		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3060				      GFP_ATOMIC);
3061		if (!(*names)[i])
3062			goto err;
3063	}
3064	rc = 0;
3065out:
 
3066	return rc;
3067err:
3068	if (*names) {
3069		for (i = 0; i < *len; i++)
3070			kfree((*names)[i]);
3071		kfree(*names);
3072	}
3073	kfree(*values);
3074	*len = 0;
3075	*names = NULL;
3076	*values = NULL;
3077	goto out;
3078}
3079
3080
3081int security_set_bools(struct selinux_state *state, u32 len, int *values)
3082{
3083	struct selinux_policy *newpolicy, *oldpolicy;
3084	int rc;
3085	u32 i, seqno = 0;
3086
3087	if (!selinux_initialized(state))
3088		return -EINVAL;
3089
3090	oldpolicy = rcu_dereference_protected(state->policy,
3091					lockdep_is_held(&state->policy_mutex));
 
 
3092
3093	/* Consistency check on number of booleans, should never fail */
3094	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3095		return -EINVAL;
3096
3097	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3098	if (!newpolicy)
3099		return -ENOMEM;
3100
3101	/*
3102	 * Deep copy only the parts of the policydb that might be
3103	 * modified as a result of changing booleans.
3104	 */
3105	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3106	if (rc) {
3107		kfree(newpolicy);
3108		return -ENOMEM;
3109	}
3110
3111	/* Update the boolean states in the copy */
3112	for (i = 0; i < len; i++) {
3113		int new_state = !!values[i];
3114		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3115
3116		if (new_state != old_state) {
3117			audit_log(audit_context(), GFP_ATOMIC,
3118				AUDIT_MAC_CONFIG_CHANGE,
3119				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3120				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3121				new_state,
3122				old_state,
3123				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3124				audit_get_sessionid(current));
3125			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3126		}
 
 
 
 
3127	}
3128
3129	/* Re-evaluate the conditional rules in the copy */
3130	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3131
3132	/* Set latest granting seqno for new policy */
3133	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3134	seqno = newpolicy->latest_granting;
3135
3136	/* Install the new policy */
3137	rcu_assign_pointer(state->policy, newpolicy);
3138
3139	/*
3140	 * Free the conditional portions of the old policydb
3141	 * that were copied for the new policy, and the oldpolicy
3142	 * structure itself but not what it references.
3143	 */
3144	synchronize_rcu();
3145	selinux_policy_cond_free(oldpolicy);
3146
3147	/* Notify others of the policy change */
3148	selinux_notify_policy_change(state, seqno);
3149	return 0;
3150}
3151
3152int security_get_bool_value(struct selinux_state *state,
3153			    u32 index)
3154{
3155	struct selinux_policy *policy;
3156	struct policydb *policydb;
3157	int rc;
3158	u32 len;
3159
3160	if (!selinux_initialized(state))
3161		return 0;
3162
3163	rcu_read_lock();
3164	policy = rcu_dereference(state->policy);
3165	policydb = &policy->policydb;
3166
3167	rc = -EFAULT;
3168	len = policydb->p_bools.nprim;
3169	if (index >= len)
3170		goto out;
3171
3172	rc = policydb->bool_val_to_struct[index]->state;
3173out:
3174	rcu_read_unlock();
3175	return rc;
3176}
3177
3178static int security_preserve_bools(struct selinux_policy *oldpolicy,
3179				struct selinux_policy *newpolicy)
3180{
3181	int rc, *bvalues = NULL;
3182	char **bnames = NULL;
3183	struct cond_bool_datum *booldatum;
3184	u32 i, nbools = 0;
3185
3186	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3187	if (rc)
3188		goto out;
3189	for (i = 0; i < nbools; i++) {
3190		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3191					bnames[i]);
3192		if (booldatum)
3193			booldatum->state = bvalues[i];
3194	}
3195	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3196
3197out:
3198	if (bnames) {
3199		for (i = 0; i < nbools; i++)
3200			kfree(bnames[i]);
3201	}
3202	kfree(bnames);
3203	kfree(bvalues);
3204	return rc;
3205}
3206
3207/*
3208 * security_sid_mls_copy() - computes a new sid based on the given
3209 * sid and the mls portion of mls_sid.
3210 */
3211int security_sid_mls_copy(struct selinux_state *state,
3212			  u32 sid, u32 mls_sid, u32 *new_sid)
3213{
3214	struct selinux_policy *policy;
3215	struct policydb *policydb;
3216	struct sidtab *sidtab;
3217	struct context *context1;
3218	struct context *context2;
3219	struct context newcon;
3220	char *s;
3221	u32 len;
3222	int rc;
3223
3224	if (!selinux_initialized(state)) {
 
3225		*new_sid = sid;
3226		return 0;
3227	}
3228
3229retry:
3230	rc = 0;
3231	context_init(&newcon);
3232
3233	rcu_read_lock();
3234	policy = rcu_dereference(state->policy);
3235	policydb = &policy->policydb;
3236	sidtab = policy->sidtab;
3237
3238	if (!policydb->mls_enabled) {
3239		*new_sid = sid;
3240		goto out_unlock;
3241	}
3242
3243	rc = -EINVAL;
3244	context1 = sidtab_search(sidtab, sid);
3245	if (!context1) {
3246		pr_err("SELinux: %s:  unrecognized SID %d\n",
3247			__func__, sid);
3248		goto out_unlock;
3249	}
3250
3251	rc = -EINVAL;
3252	context2 = sidtab_search(sidtab, mls_sid);
3253	if (!context2) {
3254		pr_err("SELinux: %s:  unrecognized SID %d\n",
3255			__func__, mls_sid);
3256		goto out_unlock;
3257	}
3258
3259	newcon.user = context1->user;
3260	newcon.role = context1->role;
3261	newcon.type = context1->type;
3262	rc = mls_context_cpy(&newcon, context2);
3263	if (rc)
3264		goto out_unlock;
3265
3266	/* Check the validity of the new context. */
3267	if (!policydb_context_isvalid(policydb, &newcon)) {
3268		rc = convert_context_handle_invalid_context(state, policydb,
3269							&newcon);
3270		if (rc) {
3271			if (!context_struct_to_string(policydb, &newcon, &s,
3272						      &len)) {
3273				struct audit_buffer *ab;
3274
3275				ab = audit_log_start(audit_context(),
3276						     GFP_ATOMIC,
3277						     AUDIT_SELINUX_ERR);
3278				audit_log_format(ab,
3279						 "op=security_sid_mls_copy invalid_context=");
3280				/* don't record NUL with untrusted strings */
3281				audit_log_n_untrustedstring(ab, s, len - 1);
3282				audit_log_end(ab);
3283				kfree(s);
3284			}
3285			goto out_unlock;
3286		}
3287	}
3288	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3289	if (rc == -ESTALE) {
3290		rcu_read_unlock();
3291		context_destroy(&newcon);
3292		goto retry;
3293	}
3294out_unlock:
3295	rcu_read_unlock();
3296	context_destroy(&newcon);
 
3297	return rc;
3298}
3299
3300/**
3301 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3302 * @state: SELinux state
3303 * @nlbl_sid: NetLabel SID
3304 * @nlbl_type: NetLabel labeling protocol type
3305 * @xfrm_sid: XFRM SID
3306 *
3307 * Description:
3308 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3309 * resolved into a single SID it is returned via @peer_sid and the function
3310 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3311 * returns a negative value.  A table summarizing the behavior is below:
3312 *
3313 *                                 | function return |      @sid
3314 *   ------------------------------+-----------------+-----------------
3315 *   no peer labels                |        0        |    SECSID_NULL
3316 *   single peer label             |        0        |    <peer_label>
3317 *   multiple, consistent labels   |        0        |    <peer_label>
3318 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3319 *
3320 */
3321int security_net_peersid_resolve(struct selinux_state *state,
3322				 u32 nlbl_sid, u32 nlbl_type,
3323				 u32 xfrm_sid,
3324				 u32 *peer_sid)
3325{
3326	struct selinux_policy *policy;
3327	struct policydb *policydb;
3328	struct sidtab *sidtab;
3329	int rc;
3330	struct context *nlbl_ctx;
3331	struct context *xfrm_ctx;
3332
3333	*peer_sid = SECSID_NULL;
3334
3335	/* handle the common (which also happens to be the set of easy) cases
3336	 * right away, these two if statements catch everything involving a
3337	 * single or absent peer SID/label */
3338	if (xfrm_sid == SECSID_NULL) {
3339		*peer_sid = nlbl_sid;
3340		return 0;
3341	}
3342	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3343	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3344	 * is present */
3345	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3346		*peer_sid = xfrm_sid;
3347		return 0;
3348	}
3349
3350	if (!selinux_initialized(state))
 
 
 
3351		return 0;
3352
3353	rcu_read_lock();
3354	policy = rcu_dereference(state->policy);
3355	policydb = &policy->policydb;
3356	sidtab = policy->sidtab;
3357
3358	/*
3359	 * We don't need to check initialized here since the only way both
3360	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3361	 * security server was initialized and state->initialized was true.
3362	 */
3363	if (!policydb->mls_enabled) {
3364		rc = 0;
3365		goto out;
3366	}
3367
3368	rc = -EINVAL;
3369	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3370	if (!nlbl_ctx) {
3371		pr_err("SELinux: %s:  unrecognized SID %d\n",
3372		       __func__, nlbl_sid);
3373		goto out;
3374	}
3375	rc = -EINVAL;
3376	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3377	if (!xfrm_ctx) {
3378		pr_err("SELinux: %s:  unrecognized SID %d\n",
3379		       __func__, xfrm_sid);
3380		goto out;
3381	}
3382	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3383	if (rc)
3384		goto out;
3385
3386	/* at present NetLabel SIDs/labels really only carry MLS
3387	 * information so if the MLS portion of the NetLabel SID
3388	 * matches the MLS portion of the labeled XFRM SID/label
3389	 * then pass along the XFRM SID as it is the most
3390	 * expressive */
3391	*peer_sid = xfrm_sid;
3392out:
3393	rcu_read_unlock();
3394	return rc;
3395}
3396
3397static int get_classes_callback(void *k, void *d, void *args)
3398{
3399	struct class_datum *datum = d;
3400	char *name = k, **classes = args;
3401	int value = datum->value - 1;
3402
3403	classes[value] = kstrdup(name, GFP_ATOMIC);
3404	if (!classes[value])
3405		return -ENOMEM;
3406
3407	return 0;
3408}
3409
3410int security_get_classes(struct selinux_policy *policy,
3411			 char ***classes, int *nclasses)
3412{
3413	struct policydb *policydb;
3414	int rc;
3415
3416	policydb = &policy->policydb;
3417
3418	rc = -ENOMEM;
3419	*nclasses = policydb->p_classes.nprim;
3420	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3421	if (!*classes)
3422		goto out;
3423
3424	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3425			 *classes);
3426	if (rc) {
3427		int i;
3428		for (i = 0; i < *nclasses; i++)
3429			kfree((*classes)[i]);
3430		kfree(*classes);
3431	}
3432
3433out:
 
3434	return rc;
3435}
3436
3437static int get_permissions_callback(void *k, void *d, void *args)
3438{
3439	struct perm_datum *datum = d;
3440	char *name = k, **perms = args;
3441	int value = datum->value - 1;
3442
3443	perms[value] = kstrdup(name, GFP_ATOMIC);
3444	if (!perms[value])
3445		return -ENOMEM;
3446
3447	return 0;
3448}
3449
3450int security_get_permissions(struct selinux_policy *policy,
3451			     char *class, char ***perms, int *nperms)
3452{
3453	struct policydb *policydb;
3454	int rc, i;
3455	struct class_datum *match;
3456
3457	policydb = &policy->policydb;
3458
3459	rc = -EINVAL;
3460	match = symtab_search(&policydb->p_classes, class);
3461	if (!match) {
3462		pr_err("SELinux: %s:  unrecognized class %s\n",
3463			__func__, class);
3464		goto out;
3465	}
3466
3467	rc = -ENOMEM;
3468	*nperms = match->permissions.nprim;
3469	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3470	if (!*perms)
3471		goto out;
3472
3473	if (match->comdatum) {
3474		rc = hashtab_map(&match->comdatum->permissions.table,
3475				 get_permissions_callback, *perms);
3476		if (rc)
3477			goto err;
3478	}
3479
3480	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3481			 *perms);
3482	if (rc)
3483		goto err;
3484
3485out:
 
3486	return rc;
3487
3488err:
 
3489	for (i = 0; i < *nperms; i++)
3490		kfree((*perms)[i]);
3491	kfree(*perms);
3492	return rc;
3493}
3494
3495int security_get_reject_unknown(struct selinux_state *state)
3496{
3497	struct selinux_policy *policy;
3498	int value;
3499
3500	if (!selinux_initialized(state))
3501		return 0;
3502
3503	rcu_read_lock();
3504	policy = rcu_dereference(state->policy);
3505	value = policy->policydb.reject_unknown;
3506	rcu_read_unlock();
3507	return value;
3508}
3509
3510int security_get_allow_unknown(struct selinux_state *state)
3511{
3512	struct selinux_policy *policy;
3513	int value;
3514
3515	if (!selinux_initialized(state))
3516		return 0;
3517
3518	rcu_read_lock();
3519	policy = rcu_dereference(state->policy);
3520	value = policy->policydb.allow_unknown;
3521	rcu_read_unlock();
3522	return value;
3523}
3524
3525/**
3526 * security_policycap_supported - Check for a specific policy capability
3527 * @state: SELinux state
3528 * @req_cap: capability
3529 *
3530 * Description:
3531 * This function queries the currently loaded policy to see if it supports the
3532 * capability specified by @req_cap.  Returns true (1) if the capability is
3533 * supported, false (0) if it isn't supported.
3534 *
3535 */
3536int security_policycap_supported(struct selinux_state *state,
3537				 unsigned int req_cap)
3538{
3539	struct selinux_policy *policy;
3540	int rc;
3541
3542	if (!selinux_initialized(state))
3543		return 0;
3544
3545	rcu_read_lock();
3546	policy = rcu_dereference(state->policy);
3547	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3548	rcu_read_unlock();
3549
3550	return rc;
3551}
3552
3553struct selinux_audit_rule {
3554	u32 au_seqno;
3555	struct context au_ctxt;
3556};
3557
3558void selinux_audit_rule_free(void *vrule)
3559{
3560	struct selinux_audit_rule *rule = vrule;
3561
3562	if (rule) {
3563		context_destroy(&rule->au_ctxt);
3564		kfree(rule);
3565	}
3566}
3567
3568int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3569{
3570	struct selinux_state *state = &selinux_state;
3571	struct selinux_policy *policy;
3572	struct policydb *policydb;
3573	struct selinux_audit_rule *tmprule;
3574	struct role_datum *roledatum;
3575	struct type_datum *typedatum;
3576	struct user_datum *userdatum;
3577	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3578	int rc = 0;
3579
3580	*rule = NULL;
3581
3582	if (!selinux_initialized(state))
3583		return -EOPNOTSUPP;
3584
3585	switch (field) {
3586	case AUDIT_SUBJ_USER:
3587	case AUDIT_SUBJ_ROLE:
3588	case AUDIT_SUBJ_TYPE:
3589	case AUDIT_OBJ_USER:
3590	case AUDIT_OBJ_ROLE:
3591	case AUDIT_OBJ_TYPE:
3592		/* only 'equals' and 'not equals' fit user, role, and type */
3593		if (op != Audit_equal && op != Audit_not_equal)
3594			return -EINVAL;
3595		break;
3596	case AUDIT_SUBJ_SEN:
3597	case AUDIT_SUBJ_CLR:
3598	case AUDIT_OBJ_LEV_LOW:
3599	case AUDIT_OBJ_LEV_HIGH:
3600		/* we do not allow a range, indicated by the presence of '-' */
3601		if (strchr(rulestr, '-'))
3602			return -EINVAL;
3603		break;
3604	default:
3605		/* only the above fields are valid */
3606		return -EINVAL;
3607	}
3608
3609	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3610	if (!tmprule)
3611		return -ENOMEM;
3612
3613	context_init(&tmprule->au_ctxt);
3614
3615	rcu_read_lock();
3616	policy = rcu_dereference(state->policy);
3617	policydb = &policy->policydb;
3618
3619	tmprule->au_seqno = policy->latest_granting;
3620
3621	switch (field) {
3622	case AUDIT_SUBJ_USER:
3623	case AUDIT_OBJ_USER:
3624		rc = -EINVAL;
3625		userdatum = symtab_search(&policydb->p_users, rulestr);
3626		if (!userdatum)
3627			goto out;
3628		tmprule->au_ctxt.user = userdatum->value;
3629		break;
3630	case AUDIT_SUBJ_ROLE:
3631	case AUDIT_OBJ_ROLE:
3632		rc = -EINVAL;
3633		roledatum = symtab_search(&policydb->p_roles, rulestr);
3634		if (!roledatum)
3635			goto out;
3636		tmprule->au_ctxt.role = roledatum->value;
3637		break;
3638	case AUDIT_SUBJ_TYPE:
3639	case AUDIT_OBJ_TYPE:
3640		rc = -EINVAL;
3641		typedatum = symtab_search(&policydb->p_types, rulestr);
3642		if (!typedatum)
3643			goto out;
3644		tmprule->au_ctxt.type = typedatum->value;
3645		break;
3646	case AUDIT_SUBJ_SEN:
3647	case AUDIT_SUBJ_CLR:
3648	case AUDIT_OBJ_LEV_LOW:
3649	case AUDIT_OBJ_LEV_HIGH:
3650		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3651				     GFP_ATOMIC);
3652		if (rc)
3653			goto out;
3654		break;
3655	}
3656	rc = 0;
3657out:
3658	rcu_read_unlock();
3659
3660	if (rc) {
3661		selinux_audit_rule_free(tmprule);
3662		tmprule = NULL;
3663	}
3664
3665	*rule = tmprule;
3666
3667	return rc;
3668}
3669
3670/* Check to see if the rule contains any selinux fields */
3671int selinux_audit_rule_known(struct audit_krule *rule)
3672{
3673	int i;
3674
3675	for (i = 0; i < rule->field_count; i++) {
3676		struct audit_field *f = &rule->fields[i];
3677		switch (f->type) {
3678		case AUDIT_SUBJ_USER:
3679		case AUDIT_SUBJ_ROLE:
3680		case AUDIT_SUBJ_TYPE:
3681		case AUDIT_SUBJ_SEN:
3682		case AUDIT_SUBJ_CLR:
3683		case AUDIT_OBJ_USER:
3684		case AUDIT_OBJ_ROLE:
3685		case AUDIT_OBJ_TYPE:
3686		case AUDIT_OBJ_LEV_LOW:
3687		case AUDIT_OBJ_LEV_HIGH:
3688			return 1;
3689		}
3690	}
3691
3692	return 0;
3693}
3694
3695int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3696{
3697	struct selinux_state *state = &selinux_state;
3698	struct selinux_policy *policy;
3699	struct context *ctxt;
3700	struct mls_level *level;
3701	struct selinux_audit_rule *rule = vrule;
3702	int match = 0;
3703
3704	if (unlikely(!rule)) {
3705		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3706		return -ENOENT;
3707	}
3708
3709	if (!selinux_initialized(state))
3710		return 0;
3711
3712	rcu_read_lock();
3713
3714	policy = rcu_dereference(state->policy);
3715
3716	if (rule->au_seqno < policy->latest_granting) {
3717		match = -ESTALE;
3718		goto out;
3719	}
3720
3721	ctxt = sidtab_search(policy->sidtab, sid);
3722	if (unlikely(!ctxt)) {
3723		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3724			  sid);
3725		match = -ENOENT;
3726		goto out;
3727	}
3728
3729	/* a field/op pair that is not caught here will simply fall through
3730	   without a match */
3731	switch (field) {
3732	case AUDIT_SUBJ_USER:
3733	case AUDIT_OBJ_USER:
3734		switch (op) {
3735		case Audit_equal:
3736			match = (ctxt->user == rule->au_ctxt.user);
3737			break;
3738		case Audit_not_equal:
3739			match = (ctxt->user != rule->au_ctxt.user);
3740			break;
3741		}
3742		break;
3743	case AUDIT_SUBJ_ROLE:
3744	case AUDIT_OBJ_ROLE:
3745		switch (op) {
3746		case Audit_equal:
3747			match = (ctxt->role == rule->au_ctxt.role);
3748			break;
3749		case Audit_not_equal:
3750			match = (ctxt->role != rule->au_ctxt.role);
3751			break;
3752		}
3753		break;
3754	case AUDIT_SUBJ_TYPE:
3755	case AUDIT_OBJ_TYPE:
3756		switch (op) {
3757		case Audit_equal:
3758			match = (ctxt->type == rule->au_ctxt.type);
3759			break;
3760		case Audit_not_equal:
3761			match = (ctxt->type != rule->au_ctxt.type);
3762			break;
3763		}
3764		break;
3765	case AUDIT_SUBJ_SEN:
3766	case AUDIT_SUBJ_CLR:
3767	case AUDIT_OBJ_LEV_LOW:
3768	case AUDIT_OBJ_LEV_HIGH:
3769		level = ((field == AUDIT_SUBJ_SEN ||
3770			  field == AUDIT_OBJ_LEV_LOW) ?
3771			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3772		switch (op) {
3773		case Audit_equal:
3774			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3775					     level);
3776			break;
3777		case Audit_not_equal:
3778			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_lt:
3782			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3783					       level) &&
3784				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3785					       level));
3786			break;
3787		case Audit_le:
3788			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3789					      level);
3790			break;
3791		case Audit_gt:
3792			match = (mls_level_dom(level,
3793					      &rule->au_ctxt.range.level[0]) &&
3794				 !mls_level_eq(level,
3795					       &rule->au_ctxt.range.level[0]));
3796			break;
3797		case Audit_ge:
3798			match = mls_level_dom(level,
3799					      &rule->au_ctxt.range.level[0]);
3800			break;
3801		}
3802	}
3803
3804out:
3805	rcu_read_unlock();
3806	return match;
3807}
3808
 
 
3809static int aurule_avc_callback(u32 event)
3810{
3811	if (event == AVC_CALLBACK_RESET)
3812		return audit_update_lsm_rules();
3813	return 0;
 
 
3814}
3815
3816static int __init aurule_init(void)
3817{
3818	int err;
3819
3820	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3821	if (err)
3822		panic("avc_add_callback() failed, error %d\n", err);
3823
3824	return err;
3825}
3826__initcall(aurule_init);
3827
3828#ifdef CONFIG_NETLABEL
3829/**
3830 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3831 * @secattr: the NetLabel packet security attributes
3832 * @sid: the SELinux SID
3833 *
3834 * Description:
3835 * Attempt to cache the context in @ctx, which was derived from the packet in
3836 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3837 * already been initialized.
3838 *
3839 */
3840static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3841				      u32 sid)
3842{
3843	u32 *sid_cache;
3844
3845	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3846	if (sid_cache == NULL)
3847		return;
3848	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3849	if (secattr->cache == NULL) {
3850		kfree(sid_cache);
3851		return;
3852	}
3853
3854	*sid_cache = sid;
3855	secattr->cache->free = kfree;
3856	secattr->cache->data = sid_cache;
3857	secattr->flags |= NETLBL_SECATTR_CACHE;
3858}
3859
3860/**
3861 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3862 * @state: SELinux state
3863 * @secattr: the NetLabel packet security attributes
3864 * @sid: the SELinux SID
3865 *
3866 * Description:
3867 * Convert the given NetLabel security attributes in @secattr into a
3868 * SELinux SID.  If the @secattr field does not contain a full SELinux
3869 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3870 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3871 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3872 * conversion for future lookups.  Returns zero on success, negative values on
3873 * failure.
3874 *
3875 */
3876int security_netlbl_secattr_to_sid(struct selinux_state *state,
3877				   struct netlbl_lsm_secattr *secattr,
3878				   u32 *sid)
3879{
3880	struct selinux_policy *policy;
3881	struct policydb *policydb;
3882	struct sidtab *sidtab;
3883	int rc;
3884	struct context *ctx;
3885	struct context ctx_new;
3886
3887	if (!selinux_initialized(state)) {
3888		*sid = SECSID_NULL;
3889		return 0;
3890	}
3891
3892retry:
3893	rc = 0;
3894	rcu_read_lock();
3895	policy = rcu_dereference(state->policy);
3896	policydb = &policy->policydb;
3897	sidtab = policy->sidtab;
3898
3899	if (secattr->flags & NETLBL_SECATTR_CACHE)
3900		*sid = *(u32 *)secattr->cache->data;
3901	else if (secattr->flags & NETLBL_SECATTR_SECID)
3902		*sid = secattr->attr.secid;
3903	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3904		rc = -EIDRM;
3905		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3906		if (ctx == NULL)
3907			goto out;
3908
3909		context_init(&ctx_new);
3910		ctx_new.user = ctx->user;
3911		ctx_new.role = ctx->role;
3912		ctx_new.type = ctx->type;
3913		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3914		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3915			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3916			if (rc)
3917				goto out;
3918		}
3919		rc = -EIDRM;
3920		if (!mls_context_isvalid(policydb, &ctx_new)) {
3921			ebitmap_destroy(&ctx_new.range.level[0].cat);
3922			goto out;
3923		}
3924
3925		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3926		ebitmap_destroy(&ctx_new.range.level[0].cat);
3927		if (rc == -ESTALE) {
3928			rcu_read_unlock();
3929			goto retry;
3930		}
3931		if (rc)
3932			goto out;
3933
3934		security_netlbl_cache_add(secattr, *sid);
 
 
3935	} else
3936		*sid = SECSID_NULL;
3937
 
 
 
 
3938out:
3939	rcu_read_unlock();
3940	return rc;
3941}
3942
3943/**
3944 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3945 * @state: SELinux state
3946 * @sid: the SELinux SID
3947 * @secattr: the NetLabel packet security attributes
3948 *
3949 * Description:
3950 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3951 * Returns zero on success, negative values on failure.
3952 *
3953 */
3954int security_netlbl_sid_to_secattr(struct selinux_state *state,
3955				   u32 sid, struct netlbl_lsm_secattr *secattr)
3956{
3957	struct selinux_policy *policy;
3958	struct policydb *policydb;
3959	int rc;
3960	struct context *ctx;
3961
3962	if (!selinux_initialized(state))
3963		return 0;
3964
3965	rcu_read_lock();
3966	policy = rcu_dereference(state->policy);
3967	policydb = &policy->policydb;
3968
3969	rc = -ENOENT;
3970	ctx = sidtab_search(policy->sidtab, sid);
3971	if (ctx == NULL)
3972		goto out;
3973
3974	rc = -ENOMEM;
3975	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3976				  GFP_ATOMIC);
3977	if (secattr->domain == NULL)
3978		goto out;
3979
3980	secattr->attr.secid = sid;
3981	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3982	mls_export_netlbl_lvl(policydb, ctx, secattr);
3983	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3984out:
3985	rcu_read_unlock();
3986	return rc;
3987}
3988#endif /* CONFIG_NETLABEL */
3989
3990/**
3991 * __security_read_policy - read the policy.
3992 * @policy: SELinux policy
3993 * @data: binary policy data
3994 * @len: length of data in bytes
3995 *
3996 */
3997static int __security_read_policy(struct selinux_policy *policy,
3998				  void *data, size_t *len)
3999{
4000	int rc;
4001	struct policy_file fp;
4002
4003	fp.data = data;
4004	fp.len = *len;
4005
4006	rc = policydb_write(&policy->policydb, &fp);
4007	if (rc)
4008		return rc;
4009
4010	*len = (unsigned long)fp.data - (unsigned long)data;
4011	return 0;
4012}
4013
4014/**
4015 * security_read_policy - read the policy.
4016 * @state: selinux_state
4017 * @data: binary policy data
4018 * @len: length of data in bytes
4019 *
4020 */
4021int security_read_policy(struct selinux_state *state,
4022			 void **data, size_t *len)
4023{
4024	struct selinux_policy *policy;
4025
4026	policy = rcu_dereference_protected(
4027			state->policy, lockdep_is_held(&state->policy_mutex));
4028	if (!policy)
4029		return -EINVAL;
4030
4031	*len = policy->policydb.len;
4032	*data = vmalloc_user(*len);
4033	if (!*data)
4034		return -ENOMEM;
4035
4036	return __security_read_policy(policy, *data, len);
4037}
4038
4039/**
4040 * security_read_state_kernel - read the policy.
4041 * @state: selinux_state
4042 * @data: binary policy data
4043 * @len: length of data in bytes
4044 *
4045 * Allocates kernel memory for reading SELinux policy.
4046 * This function is for internal use only and should not
4047 * be used for returning data to user space.
4048 *
4049 * This function must be called with policy_mutex held.
4050 */
4051int security_read_state_kernel(struct selinux_state *state,
4052			       void **data, size_t *len)
4053{
4054	struct selinux_policy *policy;
4055
4056	policy = rcu_dereference_protected(
4057			state->policy, lockdep_is_held(&state->policy_mutex));
4058	if (!policy)
4059		return -EINVAL;
4060
4061	*len = policy->policydb.len;
4062	*data = vmalloc(*len);
4063	if (!*data)
4064		return -ENOMEM;
4065
4066	return __security_read_policy(policy, *data, len);
4067}