Linux Audio

Check our new training course

Loading...
v4.6
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
 
  21#include <linux/namei.h>
  22#include <linux/sysctl.h>
  23#include <linux/poll.h>
  24#include <linux/mqueue.h>
  25#include <linux/msg.h>
  26#include <linux/skbuff.h>
  27#include <linux/vmalloc.h>
  28#include <linux/netlink.h>
  29#include <linux/syscalls.h>
  30#include <linux/audit.h>
  31#include <linux/signal.h>
  32#include <linux/mutex.h>
  33#include <linux/nsproxy.h>
  34#include <linux/pid.h>
  35#include <linux/ipc_namespace.h>
  36#include <linux/user_namespace.h>
  37#include <linux/slab.h>
 
 
 
  38
  39#include <net/sock.h>
  40#include "util.h"
  41
 
 
 
 
  42#define MQUEUE_MAGIC	0x19800202
  43#define DIRENT_SIZE	20
  44#define FILENT_SIZE	80
  45
  46#define SEND		0
  47#define RECV		1
  48
  49#define STATE_NONE	0
  50#define STATE_READY	1
  51
  52struct posix_msg_tree_node {
  53	struct rb_node		rb_node;
  54	struct list_head	msg_list;
  55	int			priority;
  56};
  57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58struct ext_wait_queue {		/* queue of sleeping tasks */
  59	struct task_struct *task;
  60	struct list_head list;
  61	struct msg_msg *msg;	/* ptr of loaded message */
  62	int state;		/* one of STATE_* values */
  63};
  64
  65struct mqueue_inode_info {
  66	spinlock_t lock;
  67	struct inode vfs_inode;
  68	wait_queue_head_t wait_q;
  69
  70	struct rb_root msg_tree;
 
  71	struct posix_msg_tree_node *node_cache;
  72	struct mq_attr attr;
  73
  74	struct sigevent notify;
  75	struct pid *notify_owner;
 
  76	struct user_namespace *notify_user_ns;
  77	struct user_struct *user;	/* user who created, for accounting */
  78	struct sock *notify_sock;
  79	struct sk_buff *notify_cookie;
  80
  81	/* for tasks waiting for free space and messages, respectively */
  82	struct ext_wait_queue e_wait_q[2];
  83
  84	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
  85};
  86
 
  87static const struct inode_operations mqueue_dir_inode_operations;
  88static const struct file_operations mqueue_file_operations;
  89static const struct super_operations mqueue_super_ops;
 
  90static void remove_notification(struct mqueue_inode_info *info);
  91
  92static struct kmem_cache *mqueue_inode_cachep;
  93
  94static struct ctl_table_header *mq_sysctl_table;
  95
  96static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
  97{
  98	return container_of(inode, struct mqueue_inode_info, vfs_inode);
  99}
 100
 101/*
 102 * This routine should be called with the mq_lock held.
 103 */
 104static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 105{
 106	return get_ipc_ns(inode->i_sb->s_fs_info);
 107}
 108
 109static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 110{
 111	struct ipc_namespace *ns;
 112
 113	spin_lock(&mq_lock);
 114	ns = __get_ns_from_inode(inode);
 115	spin_unlock(&mq_lock);
 116	return ns;
 117}
 118
 119/* Auxiliary functions to manipulate messages' list */
 120static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 121{
 122	struct rb_node **p, *parent = NULL;
 123	struct posix_msg_tree_node *leaf;
 
 124
 125	p = &info->msg_tree.rb_node;
 126	while (*p) {
 127		parent = *p;
 128		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 129
 130		if (likely(leaf->priority == msg->m_type))
 131			goto insert_msg;
 132		else if (msg->m_type < leaf->priority)
 133			p = &(*p)->rb_left;
 134		else
 
 135			p = &(*p)->rb_right;
 136	}
 137	if (info->node_cache) {
 138		leaf = info->node_cache;
 139		info->node_cache = NULL;
 140	} else {
 141		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 142		if (!leaf)
 143			return -ENOMEM;
 144		INIT_LIST_HEAD(&leaf->msg_list);
 145	}
 146	leaf->priority = msg->m_type;
 
 
 
 
 147	rb_link_node(&leaf->rb_node, parent, p);
 148	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 149insert_msg:
 150	info->attr.mq_curmsgs++;
 151	info->qsize += msg->m_ts;
 152	list_add_tail(&msg->m_list, &leaf->msg_list);
 153	return 0;
 154}
 155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 157{
 158	struct rb_node **p, *parent = NULL;
 159	struct posix_msg_tree_node *leaf;
 160	struct msg_msg *msg;
 161
 162try_again:
 163	p = &info->msg_tree.rb_node;
 164	while (*p) {
 165		parent = *p;
 166		/*
 167		 * During insert, low priorities go to the left and high to the
 168		 * right.  On receive, we want the highest priorities first, so
 169		 * walk all the way to the right.
 170		 */
 171		p = &(*p)->rb_right;
 172	}
 173	if (!parent) {
 174		if (info->attr.mq_curmsgs) {
 175			pr_warn_once("Inconsistency in POSIX message queue, "
 176				     "no tree element, but supposedly messages "
 177				     "should exist!\n");
 178			info->attr.mq_curmsgs = 0;
 179		}
 180		return NULL;
 181	}
 182	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 183	if (unlikely(list_empty(&leaf->msg_list))) {
 184		pr_warn_once("Inconsistency in POSIX message queue, "
 185			     "empty leaf node but we haven't implemented "
 186			     "lazy leaf delete!\n");
 187		rb_erase(&leaf->rb_node, &info->msg_tree);
 188		if (info->node_cache) {
 189			kfree(leaf);
 190		} else {
 191			info->node_cache = leaf;
 192		}
 193		goto try_again;
 194	} else {
 195		msg = list_first_entry(&leaf->msg_list,
 196				       struct msg_msg, m_list);
 197		list_del(&msg->m_list);
 198		if (list_empty(&leaf->msg_list)) {
 199			rb_erase(&leaf->rb_node, &info->msg_tree);
 200			if (info->node_cache) {
 201				kfree(leaf);
 202			} else {
 203				info->node_cache = leaf;
 204			}
 205		}
 206	}
 207	info->attr.mq_curmsgs--;
 208	info->qsize -= msg->m_ts;
 209	return msg;
 210}
 211
 212static struct inode *mqueue_get_inode(struct super_block *sb,
 213		struct ipc_namespace *ipc_ns, umode_t mode,
 214		struct mq_attr *attr)
 215{
 216	struct user_struct *u = current_user();
 217	struct inode *inode;
 218	int ret = -ENOMEM;
 219
 220	inode = new_inode(sb);
 221	if (!inode)
 222		goto err;
 223
 224	inode->i_ino = get_next_ino();
 225	inode->i_mode = mode;
 226	inode->i_uid = current_fsuid();
 227	inode->i_gid = current_fsgid();
 228	inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
 229
 230	if (S_ISREG(mode)) {
 231		struct mqueue_inode_info *info;
 232		unsigned long mq_bytes, mq_treesize;
 233
 234		inode->i_fop = &mqueue_file_operations;
 235		inode->i_size = FILENT_SIZE;
 236		/* mqueue specific info */
 237		info = MQUEUE_I(inode);
 238		spin_lock_init(&info->lock);
 239		init_waitqueue_head(&info->wait_q);
 240		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 241		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 242		info->notify_owner = NULL;
 243		info->notify_user_ns = NULL;
 244		info->qsize = 0;
 245		info->user = NULL;	/* set when all is ok */
 246		info->msg_tree = RB_ROOT;
 
 247		info->node_cache = NULL;
 248		memset(&info->attr, 0, sizeof(info->attr));
 249		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 250					   ipc_ns->mq_msg_default);
 251		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 252					    ipc_ns->mq_msgsize_default);
 253		if (attr) {
 254			info->attr.mq_maxmsg = attr->mq_maxmsg;
 255			info->attr.mq_msgsize = attr->mq_msgsize;
 256		}
 257		/*
 258		 * We used to allocate a static array of pointers and account
 259		 * the size of that array as well as one msg_msg struct per
 260		 * possible message into the queue size. That's no longer
 261		 * accurate as the queue is now an rbtree and will grow and
 262		 * shrink depending on usage patterns.  We can, however, still
 263		 * account one msg_msg struct per message, but the nodes are
 264		 * allocated depending on priority usage, and most programs
 265		 * only use one, or a handful, of priorities.  However, since
 266		 * this is pinned memory, we need to assume worst case, so
 267		 * that means the min(mq_maxmsg, max_priorities) * struct
 268		 * posix_msg_tree_node.
 269		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 271			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 272			sizeof(struct posix_msg_tree_node);
 273
 274		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 275					  info->attr.mq_msgsize);
 276
 277		spin_lock(&mq_lock);
 278		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 279		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 280			spin_unlock(&mq_lock);
 281			/* mqueue_evict_inode() releases info->messages */
 282			ret = -EMFILE;
 283			goto out_inode;
 284		}
 285		u->mq_bytes += mq_bytes;
 286		spin_unlock(&mq_lock);
 287
 288		/* all is ok */
 289		info->user = get_uid(u);
 290	} else if (S_ISDIR(mode)) {
 291		inc_nlink(inode);
 292		/* Some things misbehave if size == 0 on a directory */
 293		inode->i_size = 2 * DIRENT_SIZE;
 294		inode->i_op = &mqueue_dir_inode_operations;
 295		inode->i_fop = &simple_dir_operations;
 296	}
 297
 298	return inode;
 299out_inode:
 300	iput(inode);
 301err:
 302	return ERR_PTR(ret);
 303}
 304
 305static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
 306{
 307	struct inode *inode;
 308	struct ipc_namespace *ns = data;
 309
 
 310	sb->s_blocksize = PAGE_SIZE;
 311	sb->s_blocksize_bits = PAGE_SHIFT;
 312	sb->s_magic = MQUEUE_MAGIC;
 313	sb->s_op = &mqueue_super_ops;
 314
 315	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 316	if (IS_ERR(inode))
 317		return PTR_ERR(inode);
 318
 319	sb->s_root = d_make_root(inode);
 320	if (!sb->s_root)
 321		return -ENOMEM;
 322	return 0;
 323}
 324
 325static struct dentry *mqueue_mount(struct file_system_type *fs_type,
 326			 int flags, const char *dev_name,
 327			 void *data)
 328{
 329	if (!(flags & MS_KERNMOUNT)) {
 330		struct ipc_namespace *ns = current->nsproxy->ipc_ns;
 331		/* Don't allow mounting unless the caller has CAP_SYS_ADMIN
 332		 * over the ipc namespace.
 333		 */
 334		if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN))
 335			return ERR_PTR(-EPERM);
 336
 337		data = ns;
 338	}
 339	return mount_ns(fs_type, flags, data, mqueue_fill_super);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 340}
 341
 342static void init_once(void *foo)
 343{
 344	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 345
 346	inode_init_once(&p->vfs_inode);
 347}
 348
 349static struct inode *mqueue_alloc_inode(struct super_block *sb)
 350{
 351	struct mqueue_inode_info *ei;
 352
 353	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 354	if (!ei)
 355		return NULL;
 356	return &ei->vfs_inode;
 357}
 358
 359static void mqueue_i_callback(struct rcu_head *head)
 360{
 361	struct inode *inode = container_of(head, struct inode, i_rcu);
 362	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 363}
 364
 365static void mqueue_destroy_inode(struct inode *inode)
 366{
 367	call_rcu(&inode->i_rcu, mqueue_i_callback);
 368}
 369
 370static void mqueue_evict_inode(struct inode *inode)
 371{
 372	struct mqueue_inode_info *info;
 373	struct user_struct *user;
 374	unsigned long mq_bytes, mq_treesize;
 375	struct ipc_namespace *ipc_ns;
 376	struct msg_msg *msg;
 
 377
 378	clear_inode(inode);
 379
 380	if (S_ISDIR(inode->i_mode))
 381		return;
 382
 383	ipc_ns = get_ns_from_inode(inode);
 384	info = MQUEUE_I(inode);
 385	spin_lock(&info->lock);
 386	while ((msg = msg_get(info)) != NULL)
 387		free_msg(msg);
 388	kfree(info->node_cache);
 389	spin_unlock(&info->lock);
 390
 391	/* Total amount of bytes accounted for the mqueue */
 392	mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 393		min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 394		sizeof(struct posix_msg_tree_node);
 395
 396	mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 397				  info->attr.mq_msgsize);
 398
 399	user = info->user;
 400	if (user) {
 
 
 
 
 
 
 
 
 
 
 401		spin_lock(&mq_lock);
 402		user->mq_bytes -= mq_bytes;
 403		/*
 404		 * get_ns_from_inode() ensures that the
 405		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 406		 * to which we now hold a reference, or it is NULL.
 407		 * We can't put it here under mq_lock, though.
 408		 */
 409		if (ipc_ns)
 410			ipc_ns->mq_queues_count--;
 411		spin_unlock(&mq_lock);
 412		free_uid(user);
 413	}
 414	if (ipc_ns)
 415		put_ipc_ns(ipc_ns);
 416}
 417
 418static int mqueue_create(struct inode *dir, struct dentry *dentry,
 419				umode_t mode, bool excl)
 420{
 
 421	struct inode *inode;
 422	struct mq_attr *attr = dentry->d_fsdata;
 423	int error;
 424	struct ipc_namespace *ipc_ns;
 425
 426	spin_lock(&mq_lock);
 427	ipc_ns = __get_ns_from_inode(dir);
 428	if (!ipc_ns) {
 429		error = -EACCES;
 430		goto out_unlock;
 431	}
 432
 433	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 434	    !capable(CAP_SYS_RESOURCE)) {
 435		error = -ENOSPC;
 436		goto out_unlock;
 437	}
 438	ipc_ns->mq_queues_count++;
 439	spin_unlock(&mq_lock);
 440
 441	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 442	if (IS_ERR(inode)) {
 443		error = PTR_ERR(inode);
 444		spin_lock(&mq_lock);
 445		ipc_ns->mq_queues_count--;
 446		goto out_unlock;
 447	}
 448
 449	put_ipc_ns(ipc_ns);
 450	dir->i_size += DIRENT_SIZE;
 451	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 452
 453	d_instantiate(dentry, inode);
 454	dget(dentry);
 455	return 0;
 456out_unlock:
 457	spin_unlock(&mq_lock);
 458	if (ipc_ns)
 459		put_ipc_ns(ipc_ns);
 460	return error;
 461}
 462
 
 
 
 
 
 
 463static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 464{
 465	struct inode *inode = d_inode(dentry);
 466
 467	dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
 468	dir->i_size -= DIRENT_SIZE;
 469	drop_nlink(inode);
 470	dput(dentry);
 471	return 0;
 472}
 473
 474/*
 475*	This is routine for system read from queue file.
 476*	To avoid mess with doing here some sort of mq_receive we allow
 477*	to read only queue size & notification info (the only values
 478*	that are interesting from user point of view and aren't accessible
 479*	through std routines)
 480*/
 481static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 482				size_t count, loff_t *off)
 483{
 484	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 485	char buffer[FILENT_SIZE];
 486	ssize_t ret;
 487
 488	spin_lock(&info->lock);
 489	snprintf(buffer, sizeof(buffer),
 490			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 491			info->qsize,
 492			info->notify_owner ? info->notify.sigev_notify : 0,
 493			(info->notify_owner &&
 494			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 495				info->notify.sigev_signo : 0,
 496			pid_vnr(info->notify_owner));
 497	spin_unlock(&info->lock);
 498	buffer[sizeof(buffer)-1] = '\0';
 499
 500	ret = simple_read_from_buffer(u_data, count, off, buffer,
 501				strlen(buffer));
 502	if (ret <= 0)
 503		return ret;
 504
 505	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = CURRENT_TIME;
 506	return ret;
 507}
 508
 509static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 510{
 511	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 512
 513	spin_lock(&info->lock);
 514	if (task_tgid(current) == info->notify_owner)
 515		remove_notification(info);
 516
 517	spin_unlock(&info->lock);
 518	return 0;
 519}
 520
 521static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 522{
 523	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 524	int retval = 0;
 525
 526	poll_wait(filp, &info->wait_q, poll_tab);
 527
 528	spin_lock(&info->lock);
 529	if (info->attr.mq_curmsgs)
 530		retval = POLLIN | POLLRDNORM;
 531
 532	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 533		retval |= POLLOUT | POLLWRNORM;
 534	spin_unlock(&info->lock);
 535
 536	return retval;
 537}
 538
 539/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 540static void wq_add(struct mqueue_inode_info *info, int sr,
 541			struct ext_wait_queue *ewp)
 542{
 543	struct ext_wait_queue *walk;
 544
 545	ewp->task = current;
 546
 547	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 548		if (walk->task->static_prio <= current->static_prio) {
 549			list_add_tail(&ewp->list, &walk->list);
 550			return;
 551		}
 552	}
 553	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 554}
 555
 556/*
 557 * Puts current task to sleep. Caller must hold queue lock. After return
 558 * lock isn't held.
 559 * sr: SEND or RECV
 560 */
 561static int wq_sleep(struct mqueue_inode_info *info, int sr,
 562		    ktime_t *timeout, struct ext_wait_queue *ewp)
 
 563{
 564	int retval;
 565	signed long time;
 566
 567	wq_add(info, sr, ewp);
 568
 569	for (;;) {
 
 570		__set_current_state(TASK_INTERRUPTIBLE);
 571
 572		spin_unlock(&info->lock);
 573		time = schedule_hrtimeout_range_clock(timeout, 0,
 574			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 575
 576		if (ewp->state == STATE_READY) {
 
 
 577			retval = 0;
 578			goto out;
 579		}
 580		spin_lock(&info->lock);
 581		if (ewp->state == STATE_READY) {
 
 
 582			retval = 0;
 583			goto out_unlock;
 584		}
 585		if (signal_pending(current)) {
 586			retval = -ERESTARTSYS;
 587			break;
 588		}
 589		if (time == 0) {
 590			retval = -ETIMEDOUT;
 591			break;
 592		}
 593	}
 594	list_del(&ewp->list);
 595out_unlock:
 596	spin_unlock(&info->lock);
 597out:
 598	return retval;
 599}
 600
 601/*
 602 * Returns waiting task that should be serviced first or NULL if none exists
 603 */
 604static struct ext_wait_queue *wq_get_first_waiter(
 605		struct mqueue_inode_info *info, int sr)
 606{
 607	struct list_head *ptr;
 608
 609	ptr = info->e_wait_q[sr].list.prev;
 610	if (ptr == &info->e_wait_q[sr].list)
 611		return NULL;
 612	return list_entry(ptr, struct ext_wait_queue, list);
 613}
 614
 615
 616static inline void set_cookie(struct sk_buff *skb, char code)
 617{
 618	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 619}
 620
 621/*
 622 * The next function is only to split too long sys_mq_timedsend
 623 */
 624static void __do_notify(struct mqueue_inode_info *info)
 625{
 626	/* notification
 627	 * invoked when there is registered process and there isn't process
 628	 * waiting synchronously for message AND state of queue changed from
 629	 * empty to not empty. Here we are sure that no one is waiting
 630	 * synchronously. */
 631	if (info->notify_owner &&
 632	    info->attr.mq_curmsgs == 1) {
 633		struct siginfo sig_i;
 634		switch (info->notify.sigev_notify) {
 635		case SIGEV_NONE:
 636			break;
 637		case SIGEV_SIGNAL:
 638			/* sends signal */
 
 
 
 
 
 639
 
 640			sig_i.si_signo = info->notify.sigev_signo;
 641			sig_i.si_errno = 0;
 642			sig_i.si_code = SI_MESGQ;
 643			sig_i.si_value = info->notify.sigev_value;
 644			/* map current pid/uid into info->owner's namespaces */
 645			rcu_read_lock();
 
 646			sig_i.si_pid = task_tgid_nr_ns(current,
 647						ns_of_pid(info->notify_owner));
 648			sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649			rcu_read_unlock();
 650
 651			kill_pid_info(info->notify.sigev_signo,
 652				      &sig_i, info->notify_owner);
 653			break;
 
 654		case SIGEV_THREAD:
 655			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 656			netlink_sendskb(info->notify_sock, info->notify_cookie);
 657			break;
 658		}
 659		/* after notification unregisters process */
 660		put_pid(info->notify_owner);
 661		put_user_ns(info->notify_user_ns);
 662		info->notify_owner = NULL;
 663		info->notify_user_ns = NULL;
 664	}
 665	wake_up(&info->wait_q);
 666}
 667
 668static int prepare_timeout(const struct timespec __user *u_abs_timeout,
 669			   ktime_t *expires, struct timespec *ts)
 670{
 671	if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
 672		return -EFAULT;
 673	if (!timespec_valid(ts))
 674		return -EINVAL;
 675
 676	*expires = timespec_to_ktime(*ts);
 677	return 0;
 678}
 679
 680static void remove_notification(struct mqueue_inode_info *info)
 681{
 682	if (info->notify_owner != NULL &&
 683	    info->notify.sigev_notify == SIGEV_THREAD) {
 684		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 685		netlink_sendskb(info->notify_sock, info->notify_cookie);
 686	}
 687	put_pid(info->notify_owner);
 688	put_user_ns(info->notify_user_ns);
 689	info->notify_owner = NULL;
 690	info->notify_user_ns = NULL;
 691}
 692
 693static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
 694{
 695	int mq_treesize;
 696	unsigned long total_size;
 697
 698	if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
 699		return -EINVAL;
 700	if (capable(CAP_SYS_RESOURCE)) {
 701		if (attr->mq_maxmsg > HARD_MSGMAX ||
 702		    attr->mq_msgsize > HARD_MSGSIZEMAX)
 703			return -EINVAL;
 704	} else {
 705		if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
 706				attr->mq_msgsize > ipc_ns->mq_msgsize_max)
 707			return -EINVAL;
 708	}
 709	/* check for overflow */
 710	if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
 711		return -EOVERFLOW;
 712	mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
 713		min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
 714		sizeof(struct posix_msg_tree_node);
 715	total_size = attr->mq_maxmsg * attr->mq_msgsize;
 716	if (total_size + mq_treesize < total_size)
 717		return -EOVERFLOW;
 718	return 0;
 719}
 720
 721/*
 722 * Invoked when creating a new queue via sys_mq_open
 723 */
 724static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
 725			struct path *path, int oflag, umode_t mode,
 726			struct mq_attr *attr)
 727{
 728	const struct cred *cred = current_cred();
 729	int ret;
 730
 731	if (attr) {
 732		ret = mq_attr_ok(ipc_ns, attr);
 733		if (ret)
 734			return ERR_PTR(ret);
 735		/* store for use during create */
 736		path->dentry->d_fsdata = attr;
 737	} else {
 738		struct mq_attr def_attr;
 739
 740		def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 741					 ipc_ns->mq_msg_default);
 742		def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 743					  ipc_ns->mq_msgsize_default);
 744		ret = mq_attr_ok(ipc_ns, &def_attr);
 745		if (ret)
 746			return ERR_PTR(ret);
 747	}
 748
 749	mode &= ~current_umask();
 750	ret = vfs_create(dir, path->dentry, mode, true);
 751	path->dentry->d_fsdata = NULL;
 752	if (ret)
 753		return ERR_PTR(ret);
 754	return dentry_open(path, oflag, cred);
 755}
 756
 757/* Opens existing queue */
 758static struct file *do_open(struct path *path, int oflag)
 759{
 760	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 761						  MAY_READ | MAY_WRITE };
 762	int acc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 764		return ERR_PTR(-EINVAL);
 765	acc = oflag2acc[oflag & O_ACCMODE];
 766	if (inode_permission(d_inode(path->dentry), acc))
 767		return ERR_PTR(-EACCES);
 768	return dentry_open(path, oflag, current_cred());
 769}
 770
 771SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 772		struct mq_attr __user *, u_attr)
 773{
 774	struct path path;
 775	struct file *filp;
 776	struct filename *name;
 777	struct mq_attr attr;
 778	int fd, error;
 779	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 780	struct vfsmount *mnt = ipc_ns->mq_mnt;
 781	struct dentry *root = mnt->mnt_root;
 782	int ro;
 783
 784	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 785		return -EFAULT;
 786
 787	audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
 788
 789	if (IS_ERR(name = getname(u_name)))
 790		return PTR_ERR(name);
 791
 792	fd = get_unused_fd_flags(O_CLOEXEC);
 793	if (fd < 0)
 794		goto out_putname;
 795
 796	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 797	error = 0;
 798	inode_lock(d_inode(root));
 799	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 800	if (IS_ERR(path.dentry)) {
 801		error = PTR_ERR(path.dentry);
 802		goto out_putfd;
 803	}
 804	path.mnt = mntget(mnt);
 805
 806	if (oflag & O_CREAT) {
 807		if (d_really_is_positive(path.dentry)) {	/* entry already exists */
 808			audit_inode(name, path.dentry, 0);
 809			if (oflag & O_EXCL) {
 810				error = -EEXIST;
 811				goto out;
 812			}
 813			filp = do_open(&path, oflag);
 814		} else {
 815			if (ro) {
 816				error = ro;
 817				goto out;
 818			}
 819			audit_inode_parent_hidden(name, root);
 820			filp = do_create(ipc_ns, d_inode(root),
 821						&path, oflag, mode,
 822						u_attr ? &attr : NULL);
 823		}
 824	} else {
 825		if (d_really_is_negative(path.dentry)) {
 826			error = -ENOENT;
 827			goto out;
 828		}
 829		audit_inode(name, path.dentry, 0);
 830		filp = do_open(&path, oflag);
 831	}
 832
 833	if (!IS_ERR(filp))
 834		fd_install(fd, filp);
 835	else
 836		error = PTR_ERR(filp);
 837out:
 838	path_put(&path);
 839out_putfd:
 840	if (error) {
 841		put_unused_fd(fd);
 842		fd = error;
 843	}
 844	inode_unlock(d_inode(root));
 845	if (!ro)
 846		mnt_drop_write(mnt);
 847out_putname:
 848	putname(name);
 849	return fd;
 850}
 851
 
 
 
 
 
 
 
 
 
 
 852SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 853{
 854	int err;
 855	struct filename *name;
 856	struct dentry *dentry;
 857	struct inode *inode = NULL;
 858	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 859	struct vfsmount *mnt = ipc_ns->mq_mnt;
 860
 861	name = getname(u_name);
 862	if (IS_ERR(name))
 863		return PTR_ERR(name);
 864
 865	audit_inode_parent_hidden(name, mnt->mnt_root);
 866	err = mnt_want_write(mnt);
 867	if (err)
 868		goto out_name;
 869	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 870	dentry = lookup_one_len(name->name, mnt->mnt_root,
 871				strlen(name->name));
 872	if (IS_ERR(dentry)) {
 873		err = PTR_ERR(dentry);
 874		goto out_unlock;
 875	}
 876
 877	inode = d_inode(dentry);
 878	if (!inode) {
 879		err = -ENOENT;
 880	} else {
 881		ihold(inode);
 882		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 883	}
 884	dput(dentry);
 885
 886out_unlock:
 887	inode_unlock(d_inode(mnt->mnt_root));
 888	if (inode)
 889		iput(inode);
 890	mnt_drop_write(mnt);
 891out_name:
 892	putname(name);
 893
 894	return err;
 895}
 896
 897/* Pipelined send and receive functions.
 898 *
 899 * If a receiver finds no waiting message, then it registers itself in the
 900 * list of waiting receivers. A sender checks that list before adding the new
 901 * message into the message array. If there is a waiting receiver, then it
 902 * bypasses the message array and directly hands the message over to the
 903 * receiver. The receiver accepts the message and returns without grabbing the
 904 * queue spinlock:
 905 *
 906 * - Set pointer to message.
 907 * - Queue the receiver task for later wakeup (without the info->lock).
 908 * - Update its state to STATE_READY. Now the receiver can continue.
 909 * - Wake up the process after the lock is dropped. Should the process wake up
 910 *   before this wakeup (due to a timeout or a signal) it will either see
 911 *   STATE_READY and continue or acquire the lock to check the state again.
 912 *
 913 * The same algorithm is used for senders.
 914 */
 915
 
 
 
 
 
 
 
 
 
 
 
 
 916/* pipelined_send() - send a message directly to the task waiting in
 917 * sys_mq_timedreceive() (without inserting message into a queue).
 918 */
 919static inline void pipelined_send(struct wake_q_head *wake_q,
 920				  struct mqueue_inode_info *info,
 921				  struct msg_msg *message,
 922				  struct ext_wait_queue *receiver)
 923{
 924	receiver->msg = message;
 925	list_del(&receiver->list);
 926	wake_q_add(wake_q, receiver->task);
 927	/*
 928	 * Rely on the implicit cmpxchg barrier from wake_q_add such
 929	 * that we can ensure that updating receiver->state is the last
 930	 * write operation: As once set, the receiver can continue,
 931	 * and if we don't have the reference count from the wake_q,
 932	 * yet, at that point we can later have a use-after-free
 933	 * condition and bogus wakeup.
 934	 */
 935	receiver->state = STATE_READY;
 936}
 937
 938/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
 939 * gets its message and put to the queue (we have one free place for sure). */
 940static inline void pipelined_receive(struct wake_q_head *wake_q,
 941				     struct mqueue_inode_info *info)
 942{
 943	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
 944
 945	if (!sender) {
 946		/* for poll */
 947		wake_up_interruptible(&info->wait_q);
 948		return;
 949	}
 950	if (msg_insert(sender->msg, info))
 951		return;
 952
 953	list_del(&sender->list);
 954	wake_q_add(wake_q, sender->task);
 955	sender->state = STATE_READY;
 956}
 957
 958SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
 959		size_t, msg_len, unsigned int, msg_prio,
 960		const struct timespec __user *, u_abs_timeout)
 961{
 962	struct fd f;
 963	struct inode *inode;
 964	struct ext_wait_queue wait;
 965	struct ext_wait_queue *receiver;
 966	struct msg_msg *msg_ptr;
 967	struct mqueue_inode_info *info;
 968	ktime_t expires, *timeout = NULL;
 969	struct timespec ts;
 970	struct posix_msg_tree_node *new_leaf = NULL;
 971	int ret = 0;
 972	WAKE_Q(wake_q);
 973
 974	if (u_abs_timeout) {
 975		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
 976		if (res)
 977			return res;
 978		timeout = &expires;
 979	}
 980
 981	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
 982		return -EINVAL;
 983
 984	audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
 
 
 
 
 
 985
 986	f = fdget(mqdes);
 987	if (unlikely(!f.file)) {
 988		ret = -EBADF;
 989		goto out;
 990	}
 991
 992	inode = file_inode(f.file);
 993	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
 994		ret = -EBADF;
 995		goto out_fput;
 996	}
 997	info = MQUEUE_I(inode);
 998	audit_file(f.file);
 999
1000	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1001		ret = -EBADF;
1002		goto out_fput;
1003	}
1004
1005	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1006		ret = -EMSGSIZE;
1007		goto out_fput;
1008	}
1009
1010	/* First try to allocate memory, before doing anything with
1011	 * existing queues. */
1012	msg_ptr = load_msg(u_msg_ptr, msg_len);
1013	if (IS_ERR(msg_ptr)) {
1014		ret = PTR_ERR(msg_ptr);
1015		goto out_fput;
1016	}
1017	msg_ptr->m_ts = msg_len;
1018	msg_ptr->m_type = msg_prio;
1019
1020	/*
1021	 * msg_insert really wants us to have a valid, spare node struct so
1022	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1023	 * fall back to that if necessary.
1024	 */
1025	if (!info->node_cache)
1026		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1027
1028	spin_lock(&info->lock);
1029
1030	if (!info->node_cache && new_leaf) {
1031		/* Save our speculative allocation into the cache */
1032		INIT_LIST_HEAD(&new_leaf->msg_list);
1033		info->node_cache = new_leaf;
1034		new_leaf = NULL;
1035	} else {
1036		kfree(new_leaf);
1037	}
1038
1039	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1040		if (f.file->f_flags & O_NONBLOCK) {
1041			ret = -EAGAIN;
1042		} else {
1043			wait.task = current;
1044			wait.msg = (void *) msg_ptr;
1045			wait.state = STATE_NONE;
 
 
1046			ret = wq_sleep(info, SEND, timeout, &wait);
1047			/*
1048			 * wq_sleep must be called with info->lock held, and
1049			 * returns with the lock released
1050			 */
1051			goto out_free;
1052		}
1053	} else {
1054		receiver = wq_get_first_waiter(info, RECV);
1055		if (receiver) {
1056			pipelined_send(&wake_q, info, msg_ptr, receiver);
1057		} else {
1058			/* adds message to the queue */
1059			ret = msg_insert(msg_ptr, info);
1060			if (ret)
1061				goto out_unlock;
1062			__do_notify(info);
1063		}
1064		inode->i_atime = inode->i_mtime = inode->i_ctime =
1065				CURRENT_TIME;
1066	}
1067out_unlock:
1068	spin_unlock(&info->lock);
1069	wake_up_q(&wake_q);
1070out_free:
1071	if (ret)
1072		free_msg(msg_ptr);
1073out_fput:
1074	fdput(f);
1075out:
1076	return ret;
1077}
1078
1079SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1080		size_t, msg_len, unsigned int __user *, u_msg_prio,
1081		const struct timespec __user *, u_abs_timeout)
1082{
1083	ssize_t ret;
1084	struct msg_msg *msg_ptr;
1085	struct fd f;
1086	struct inode *inode;
1087	struct mqueue_inode_info *info;
1088	struct ext_wait_queue wait;
1089	ktime_t expires, *timeout = NULL;
1090	struct timespec ts;
1091	struct posix_msg_tree_node *new_leaf = NULL;
1092
1093	if (u_abs_timeout) {
1094		int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1095		if (res)
1096			return res;
1097		timeout = &expires;
1098	}
1099
1100	audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1101
1102	f = fdget(mqdes);
1103	if (unlikely(!f.file)) {
1104		ret = -EBADF;
1105		goto out;
1106	}
1107
1108	inode = file_inode(f.file);
1109	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1110		ret = -EBADF;
1111		goto out_fput;
1112	}
1113	info = MQUEUE_I(inode);
1114	audit_file(f.file);
1115
1116	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1117		ret = -EBADF;
1118		goto out_fput;
1119	}
1120
1121	/* checks if buffer is big enough */
1122	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1123		ret = -EMSGSIZE;
1124		goto out_fput;
1125	}
1126
1127	/*
1128	 * msg_insert really wants us to have a valid, spare node struct so
1129	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1130	 * fall back to that if necessary.
1131	 */
1132	if (!info->node_cache)
1133		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1134
1135	spin_lock(&info->lock);
1136
1137	if (!info->node_cache && new_leaf) {
1138		/* Save our speculative allocation into the cache */
1139		INIT_LIST_HEAD(&new_leaf->msg_list);
1140		info->node_cache = new_leaf;
1141	} else {
1142		kfree(new_leaf);
1143	}
1144
1145	if (info->attr.mq_curmsgs == 0) {
1146		if (f.file->f_flags & O_NONBLOCK) {
1147			spin_unlock(&info->lock);
1148			ret = -EAGAIN;
1149		} else {
1150			wait.task = current;
1151			wait.state = STATE_NONE;
 
 
1152			ret = wq_sleep(info, RECV, timeout, &wait);
1153			msg_ptr = wait.msg;
1154		}
1155	} else {
1156		WAKE_Q(wake_q);
1157
1158		msg_ptr = msg_get(info);
1159
1160		inode->i_atime = inode->i_mtime = inode->i_ctime =
1161				CURRENT_TIME;
1162
1163		/* There is now free space in queue. */
1164		pipelined_receive(&wake_q, info);
1165		spin_unlock(&info->lock);
1166		wake_up_q(&wake_q);
1167		ret = 0;
1168	}
1169	if (ret == 0) {
1170		ret = msg_ptr->m_ts;
1171
1172		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1173			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1174			ret = -EFAULT;
1175		}
1176		free_msg(msg_ptr);
1177	}
1178out_fput:
1179	fdput(f);
1180out:
1181	return ret;
1182}
1183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1184/*
1185 * Notes: the case when user wants us to deregister (with NULL as pointer)
1186 * and he isn't currently owner of notification, will be silently discarded.
1187 * It isn't explicitly defined in the POSIX.
1188 */
1189SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1190		const struct sigevent __user *, u_notification)
1191{
1192	int ret;
1193	struct fd f;
1194	struct sock *sock;
1195	struct inode *inode;
1196	struct sigevent notification;
1197	struct mqueue_inode_info *info;
1198	struct sk_buff *nc;
1199
1200	if (u_notification) {
1201		if (copy_from_user(&notification, u_notification,
1202					sizeof(struct sigevent)))
1203			return -EFAULT;
1204	}
1205
1206	audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1207
1208	nc = NULL;
1209	sock = NULL;
1210	if (u_notification != NULL) {
1211		if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1212			     notification.sigev_notify != SIGEV_SIGNAL &&
1213			     notification.sigev_notify != SIGEV_THREAD))
1214			return -EINVAL;
1215		if (notification.sigev_notify == SIGEV_SIGNAL &&
1216			!valid_signal(notification.sigev_signo)) {
1217			return -EINVAL;
1218		}
1219		if (notification.sigev_notify == SIGEV_THREAD) {
1220			long timeo;
1221
1222			/* create the notify skb */
1223			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1224			if (!nc) {
1225				ret = -ENOMEM;
1226				goto out;
1227			}
1228			if (copy_from_user(nc->data,
1229					notification.sigev_value.sival_ptr,
1230					NOTIFY_COOKIE_LEN)) {
1231				ret = -EFAULT;
1232				goto out;
1233			}
1234
1235			/* TODO: add a header? */
1236			skb_put(nc, NOTIFY_COOKIE_LEN);
1237			/* and attach it to the socket */
1238retry:
1239			f = fdget(notification.sigev_signo);
1240			if (!f.file) {
1241				ret = -EBADF;
1242				goto out;
1243			}
1244			sock = netlink_getsockbyfilp(f.file);
1245			fdput(f);
1246			if (IS_ERR(sock)) {
1247				ret = PTR_ERR(sock);
1248				sock = NULL;
1249				goto out;
1250			}
1251
1252			timeo = MAX_SCHEDULE_TIMEOUT;
1253			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1254			if (ret == 1)
1255				goto retry;
1256			if (ret) {
1257				sock = NULL;
1258				nc = NULL;
1259				goto out;
1260			}
 
 
1261		}
1262	}
1263
1264	f = fdget(mqdes);
1265	if (!f.file) {
1266		ret = -EBADF;
1267		goto out;
1268	}
1269
1270	inode = file_inode(f.file);
1271	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1272		ret = -EBADF;
1273		goto out_fput;
1274	}
1275	info = MQUEUE_I(inode);
1276
1277	ret = 0;
1278	spin_lock(&info->lock);
1279	if (u_notification == NULL) {
1280		if (info->notify_owner == task_tgid(current)) {
1281			remove_notification(info);
1282			inode->i_atime = inode->i_ctime = CURRENT_TIME;
1283		}
1284	} else if (info->notify_owner != NULL) {
1285		ret = -EBUSY;
1286	} else {
1287		switch (notification.sigev_notify) {
1288		case SIGEV_NONE:
1289			info->notify.sigev_notify = SIGEV_NONE;
1290			break;
1291		case SIGEV_THREAD:
1292			info->notify_sock = sock;
1293			info->notify_cookie = nc;
1294			sock = NULL;
1295			nc = NULL;
1296			info->notify.sigev_notify = SIGEV_THREAD;
1297			break;
1298		case SIGEV_SIGNAL:
1299			info->notify.sigev_signo = notification.sigev_signo;
1300			info->notify.sigev_value = notification.sigev_value;
1301			info->notify.sigev_notify = SIGEV_SIGNAL;
 
1302			break;
1303		}
1304
1305		info->notify_owner = get_pid(task_tgid(current));
1306		info->notify_user_ns = get_user_ns(current_user_ns());
1307		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1308	}
1309	spin_unlock(&info->lock);
1310out_fput:
1311	fdput(f);
1312out:
1313	if (sock)
1314		netlink_detachskb(sock, nc);
1315	else if (nc)
 
1316		dev_kfree_skb(nc);
1317
1318	return ret;
1319}
1320
1321SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1322		const struct mq_attr __user *, u_mqstat,
1323		struct mq_attr __user *, u_omqstat)
 
 
 
 
 
 
 
 
 
 
1324{
1325	int ret;
1326	struct mq_attr mqstat, omqstat;
1327	struct fd f;
1328	struct inode *inode;
1329	struct mqueue_inode_info *info;
1330
1331	if (u_mqstat != NULL) {
1332		if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1333			return -EFAULT;
1334		if (mqstat.mq_flags & (~O_NONBLOCK))
1335			return -EINVAL;
1336	}
1337
1338	f = fdget(mqdes);
1339	if (!f.file) {
1340		ret = -EBADF;
1341		goto out;
1342	}
1343
1344	inode = file_inode(f.file);
1345	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1346		ret = -EBADF;
1347		goto out_fput;
1348	}
 
 
1349	info = MQUEUE_I(inode);
1350
1351	spin_lock(&info->lock);
1352
1353	omqstat = info->attr;
1354	omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1355	if (u_mqstat) {
1356		audit_mq_getsetattr(mqdes, &mqstat);
 
 
1357		spin_lock(&f.file->f_lock);
1358		if (mqstat.mq_flags & O_NONBLOCK)
1359			f.file->f_flags |= O_NONBLOCK;
1360		else
1361			f.file->f_flags &= ~O_NONBLOCK;
1362		spin_unlock(&f.file->f_lock);
1363
1364		inode->i_atime = inode->i_ctime = CURRENT_TIME;
1365	}
1366
1367	spin_unlock(&info->lock);
 
 
 
1368
1369	ret = 0;
1370	if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1371						sizeof(struct mq_attr)))
1372		ret = -EFAULT;
 
 
 
1373
1374out_fput:
1375	fdput(f);
1376out:
1377	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378}
1379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1380static const struct inode_operations mqueue_dir_inode_operations = {
1381	.lookup = simple_lookup,
1382	.create = mqueue_create,
1383	.unlink = mqueue_unlink,
1384};
1385
1386static const struct file_operations mqueue_file_operations = {
1387	.flush = mqueue_flush_file,
1388	.poll = mqueue_poll_file,
1389	.read = mqueue_read_file,
1390	.llseek = default_llseek,
1391};
1392
1393static const struct super_operations mqueue_super_ops = {
1394	.alloc_inode = mqueue_alloc_inode,
1395	.destroy_inode = mqueue_destroy_inode,
1396	.evict_inode = mqueue_evict_inode,
1397	.statfs = simple_statfs,
1398};
1399
 
 
 
 
 
1400static struct file_system_type mqueue_fs_type = {
1401	.name = "mqueue",
1402	.mount = mqueue_mount,
1403	.kill_sb = kill_litter_super,
1404	.fs_flags = FS_USERNS_MOUNT,
1405};
1406
1407int mq_init_ns(struct ipc_namespace *ns)
1408{
 
 
1409	ns->mq_queues_count  = 0;
1410	ns->mq_queues_max    = DFLT_QUEUESMAX;
1411	ns->mq_msg_max       = DFLT_MSGMAX;
1412	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1413	ns->mq_msg_default   = DFLT_MSG;
1414	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1415
1416	ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1417	if (IS_ERR(ns->mq_mnt)) {
1418		int err = PTR_ERR(ns->mq_mnt);
1419		ns->mq_mnt = NULL;
1420		return err;
1421	}
1422	return 0;
1423}
1424
1425void mq_clear_sbinfo(struct ipc_namespace *ns)
1426{
1427	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1428}
1429
1430void mq_put_mnt(struct ipc_namespace *ns)
1431{
1432	kern_unmount(ns->mq_mnt);
1433}
1434
1435static int __init init_mqueue_fs(void)
1436{
1437	int error;
1438
1439	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1440				sizeof(struct mqueue_inode_info), 0,
1441				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1442	if (mqueue_inode_cachep == NULL)
1443		return -ENOMEM;
1444
1445	/* ignore failures - they are not fatal */
1446	mq_sysctl_table = mq_register_sysctl_table();
1447
1448	error = register_filesystem(&mqueue_fs_type);
1449	if (error)
1450		goto out_sysctl;
1451
1452	spin_lock_init(&mq_lock);
1453
1454	error = mq_init_ns(&init_ipc_ns);
1455	if (error)
1456		goto out_filesystem;
1457
1458	return 0;
1459
1460out_filesystem:
1461	unregister_filesystem(&mqueue_fs_type);
1462out_sysctl:
1463	if (mq_sysctl_table)
1464		unregister_sysctl_table(mq_sysctl_table);
1465	kmem_cache_destroy(mqueue_inode_cachep);
1466	return error;
1467}
1468
1469device_initcall(init_mqueue_fs);
v5.9
   1/*
   2 * POSIX message queues filesystem for Linux.
   3 *
   4 * Copyright (C) 2003,2004  Krzysztof Benedyczak    (golbi@mat.uni.torun.pl)
   5 *                          Michal Wronski          (michal.wronski@gmail.com)
   6 *
   7 * Spinlocks:               Mohamed Abbas           (abbas.mohamed@intel.com)
   8 * Lockless receive & send, fd based notify:
   9 *			    Manfred Spraul	    (manfred@colorfullife.com)
  10 *
  11 * Audit:                   George Wilson           (ltcgcw@us.ibm.com)
  12 *
  13 * This file is released under the GPL.
  14 */
  15
  16#include <linux/capability.h>
  17#include <linux/init.h>
  18#include <linux/pagemap.h>
  19#include <linux/file.h>
  20#include <linux/mount.h>
  21#include <linux/fs_context.h>
  22#include <linux/namei.h>
  23#include <linux/sysctl.h>
  24#include <linux/poll.h>
  25#include <linux/mqueue.h>
  26#include <linux/msg.h>
  27#include <linux/skbuff.h>
  28#include <linux/vmalloc.h>
  29#include <linux/netlink.h>
  30#include <linux/syscalls.h>
  31#include <linux/audit.h>
  32#include <linux/signal.h>
  33#include <linux/mutex.h>
  34#include <linux/nsproxy.h>
  35#include <linux/pid.h>
  36#include <linux/ipc_namespace.h>
  37#include <linux/user_namespace.h>
  38#include <linux/slab.h>
  39#include <linux/sched/wake_q.h>
  40#include <linux/sched/signal.h>
  41#include <linux/sched/user.h>
  42
  43#include <net/sock.h>
  44#include "util.h"
  45
  46struct mqueue_fs_context {
  47	struct ipc_namespace	*ipc_ns;
  48};
  49
  50#define MQUEUE_MAGIC	0x19800202
  51#define DIRENT_SIZE	20
  52#define FILENT_SIZE	80
  53
  54#define SEND		0
  55#define RECV		1
  56
  57#define STATE_NONE	0
  58#define STATE_READY	1
  59
  60struct posix_msg_tree_node {
  61	struct rb_node		rb_node;
  62	struct list_head	msg_list;
  63	int			priority;
  64};
  65
  66/*
  67 * Locking:
  68 *
  69 * Accesses to a message queue are synchronized by acquiring info->lock.
  70 *
  71 * There are two notable exceptions:
  72 * - The actual wakeup of a sleeping task is performed using the wake_q
  73 *   framework. info->lock is already released when wake_up_q is called.
  74 * - The exit codepaths after sleeping check ext_wait_queue->state without
  75 *   any locks. If it is STATE_READY, then the syscall is completed without
  76 *   acquiring info->lock.
  77 *
  78 * MQ_BARRIER:
  79 * To achieve proper release/acquire memory barrier pairing, the state is set to
  80 * STATE_READY with smp_store_release(), and it is read with READ_ONCE followed
  81 * by smp_acquire__after_ctrl_dep(). In addition, wake_q_add_safe() is used.
  82 *
  83 * This prevents the following races:
  84 *
  85 * 1) With the simple wake_q_add(), the task could be gone already before
  86 *    the increase of the reference happens
  87 * Thread A
  88 *				Thread B
  89 * WRITE_ONCE(wait.state, STATE_NONE);
  90 * schedule_hrtimeout()
  91 *				wake_q_add(A)
  92 *				if (cmpxchg()) // success
  93 *				   ->state = STATE_READY (reordered)
  94 * <timeout returns>
  95 * if (wait.state == STATE_READY) return;
  96 * sysret to user space
  97 * sys_exit()
  98 *				get_task_struct() // UaF
  99 *
 100 * Solution: Use wake_q_add_safe() and perform the get_task_struct() before
 101 * the smp_store_release() that does ->state = STATE_READY.
 102 *
 103 * 2) Without proper _release/_acquire barriers, the woken up task
 104 *    could read stale data
 105 *
 106 * Thread A
 107 *				Thread B
 108 * do_mq_timedreceive
 109 * WRITE_ONCE(wait.state, STATE_NONE);
 110 * schedule_hrtimeout()
 111 *				state = STATE_READY;
 112 * <timeout returns>
 113 * if (wait.state == STATE_READY) return;
 114 * msg_ptr = wait.msg;		// Access to stale data!
 115 *				receiver->msg = message; (reordered)
 116 *
 117 * Solution: use _release and _acquire barriers.
 118 *
 119 * 3) There is intentionally no barrier when setting current->state
 120 *    to TASK_INTERRUPTIBLE: spin_unlock(&info->lock) provides the
 121 *    release memory barrier, and the wakeup is triggered when holding
 122 *    info->lock, i.e. spin_lock(&info->lock) provided a pairing
 123 *    acquire memory barrier.
 124 */
 125
 126struct ext_wait_queue {		/* queue of sleeping tasks */
 127	struct task_struct *task;
 128	struct list_head list;
 129	struct msg_msg *msg;	/* ptr of loaded message */
 130	int state;		/* one of STATE_* values */
 131};
 132
 133struct mqueue_inode_info {
 134	spinlock_t lock;
 135	struct inode vfs_inode;
 136	wait_queue_head_t wait_q;
 137
 138	struct rb_root msg_tree;
 139	struct rb_node *msg_tree_rightmost;
 140	struct posix_msg_tree_node *node_cache;
 141	struct mq_attr attr;
 142
 143	struct sigevent notify;
 144	struct pid *notify_owner;
 145	u32 notify_self_exec_id;
 146	struct user_namespace *notify_user_ns;
 147	struct user_struct *user;	/* user who created, for accounting */
 148	struct sock *notify_sock;
 149	struct sk_buff *notify_cookie;
 150
 151	/* for tasks waiting for free space and messages, respectively */
 152	struct ext_wait_queue e_wait_q[2];
 153
 154	unsigned long qsize; /* size of queue in memory (sum of all msgs) */
 155};
 156
 157static struct file_system_type mqueue_fs_type;
 158static const struct inode_operations mqueue_dir_inode_operations;
 159static const struct file_operations mqueue_file_operations;
 160static const struct super_operations mqueue_super_ops;
 161static const struct fs_context_operations mqueue_fs_context_ops;
 162static void remove_notification(struct mqueue_inode_info *info);
 163
 164static struct kmem_cache *mqueue_inode_cachep;
 165
 166static struct ctl_table_header *mq_sysctl_table;
 167
 168static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
 169{
 170	return container_of(inode, struct mqueue_inode_info, vfs_inode);
 171}
 172
 173/*
 174 * This routine should be called with the mq_lock held.
 175 */
 176static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
 177{
 178	return get_ipc_ns(inode->i_sb->s_fs_info);
 179}
 180
 181static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
 182{
 183	struct ipc_namespace *ns;
 184
 185	spin_lock(&mq_lock);
 186	ns = __get_ns_from_inode(inode);
 187	spin_unlock(&mq_lock);
 188	return ns;
 189}
 190
 191/* Auxiliary functions to manipulate messages' list */
 192static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
 193{
 194	struct rb_node **p, *parent = NULL;
 195	struct posix_msg_tree_node *leaf;
 196	bool rightmost = true;
 197
 198	p = &info->msg_tree.rb_node;
 199	while (*p) {
 200		parent = *p;
 201		leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 202
 203		if (likely(leaf->priority == msg->m_type))
 204			goto insert_msg;
 205		else if (msg->m_type < leaf->priority) {
 206			p = &(*p)->rb_left;
 207			rightmost = false;
 208		} else
 209			p = &(*p)->rb_right;
 210	}
 211	if (info->node_cache) {
 212		leaf = info->node_cache;
 213		info->node_cache = NULL;
 214	} else {
 215		leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
 216		if (!leaf)
 217			return -ENOMEM;
 218		INIT_LIST_HEAD(&leaf->msg_list);
 219	}
 220	leaf->priority = msg->m_type;
 221
 222	if (rightmost)
 223		info->msg_tree_rightmost = &leaf->rb_node;
 224
 225	rb_link_node(&leaf->rb_node, parent, p);
 226	rb_insert_color(&leaf->rb_node, &info->msg_tree);
 227insert_msg:
 228	info->attr.mq_curmsgs++;
 229	info->qsize += msg->m_ts;
 230	list_add_tail(&msg->m_list, &leaf->msg_list);
 231	return 0;
 232}
 233
 234static inline void msg_tree_erase(struct posix_msg_tree_node *leaf,
 235				  struct mqueue_inode_info *info)
 236{
 237	struct rb_node *node = &leaf->rb_node;
 238
 239	if (info->msg_tree_rightmost == node)
 240		info->msg_tree_rightmost = rb_prev(node);
 241
 242	rb_erase(node, &info->msg_tree);
 243	if (info->node_cache)
 244		kfree(leaf);
 245	else
 246		info->node_cache = leaf;
 247}
 248
 249static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
 250{
 251	struct rb_node *parent = NULL;
 252	struct posix_msg_tree_node *leaf;
 253	struct msg_msg *msg;
 254
 255try_again:
 256	/*
 257	 * During insert, low priorities go to the left and high to the
 258	 * right.  On receive, we want the highest priorities first, so
 259	 * walk all the way to the right.
 260	 */
 261	parent = info->msg_tree_rightmost;
 
 
 
 
 262	if (!parent) {
 263		if (info->attr.mq_curmsgs) {
 264			pr_warn_once("Inconsistency in POSIX message queue, "
 265				     "no tree element, but supposedly messages "
 266				     "should exist!\n");
 267			info->attr.mq_curmsgs = 0;
 268		}
 269		return NULL;
 270	}
 271	leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
 272	if (unlikely(list_empty(&leaf->msg_list))) {
 273		pr_warn_once("Inconsistency in POSIX message queue, "
 274			     "empty leaf node but we haven't implemented "
 275			     "lazy leaf delete!\n");
 276		msg_tree_erase(leaf, info);
 
 
 
 
 
 277		goto try_again;
 278	} else {
 279		msg = list_first_entry(&leaf->msg_list,
 280				       struct msg_msg, m_list);
 281		list_del(&msg->m_list);
 282		if (list_empty(&leaf->msg_list)) {
 283			msg_tree_erase(leaf, info);
 
 
 
 
 
 284		}
 285	}
 286	info->attr.mq_curmsgs--;
 287	info->qsize -= msg->m_ts;
 288	return msg;
 289}
 290
 291static struct inode *mqueue_get_inode(struct super_block *sb,
 292		struct ipc_namespace *ipc_ns, umode_t mode,
 293		struct mq_attr *attr)
 294{
 295	struct user_struct *u = current_user();
 296	struct inode *inode;
 297	int ret = -ENOMEM;
 298
 299	inode = new_inode(sb);
 300	if (!inode)
 301		goto err;
 302
 303	inode->i_ino = get_next_ino();
 304	inode->i_mode = mode;
 305	inode->i_uid = current_fsuid();
 306	inode->i_gid = current_fsgid();
 307	inode->i_mtime = inode->i_ctime = inode->i_atime = current_time(inode);
 308
 309	if (S_ISREG(mode)) {
 310		struct mqueue_inode_info *info;
 311		unsigned long mq_bytes, mq_treesize;
 312
 313		inode->i_fop = &mqueue_file_operations;
 314		inode->i_size = FILENT_SIZE;
 315		/* mqueue specific info */
 316		info = MQUEUE_I(inode);
 317		spin_lock_init(&info->lock);
 318		init_waitqueue_head(&info->wait_q);
 319		INIT_LIST_HEAD(&info->e_wait_q[0].list);
 320		INIT_LIST_HEAD(&info->e_wait_q[1].list);
 321		info->notify_owner = NULL;
 322		info->notify_user_ns = NULL;
 323		info->qsize = 0;
 324		info->user = NULL;	/* set when all is ok */
 325		info->msg_tree = RB_ROOT;
 326		info->msg_tree_rightmost = NULL;
 327		info->node_cache = NULL;
 328		memset(&info->attr, 0, sizeof(info->attr));
 329		info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
 330					   ipc_ns->mq_msg_default);
 331		info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
 332					    ipc_ns->mq_msgsize_default);
 333		if (attr) {
 334			info->attr.mq_maxmsg = attr->mq_maxmsg;
 335			info->attr.mq_msgsize = attr->mq_msgsize;
 336		}
 337		/*
 338		 * We used to allocate a static array of pointers and account
 339		 * the size of that array as well as one msg_msg struct per
 340		 * possible message into the queue size. That's no longer
 341		 * accurate as the queue is now an rbtree and will grow and
 342		 * shrink depending on usage patterns.  We can, however, still
 343		 * account one msg_msg struct per message, but the nodes are
 344		 * allocated depending on priority usage, and most programs
 345		 * only use one, or a handful, of priorities.  However, since
 346		 * this is pinned memory, we need to assume worst case, so
 347		 * that means the min(mq_maxmsg, max_priorities) * struct
 348		 * posix_msg_tree_node.
 349		 */
 350
 351		ret = -EINVAL;
 352		if (info->attr.mq_maxmsg <= 0 || info->attr.mq_msgsize <= 0)
 353			goto out_inode;
 354		if (capable(CAP_SYS_RESOURCE)) {
 355			if (info->attr.mq_maxmsg > HARD_MSGMAX ||
 356			    info->attr.mq_msgsize > HARD_MSGSIZEMAX)
 357				goto out_inode;
 358		} else {
 359			if (info->attr.mq_maxmsg > ipc_ns->mq_msg_max ||
 360					info->attr.mq_msgsize > ipc_ns->mq_msgsize_max)
 361				goto out_inode;
 362		}
 363		ret = -EOVERFLOW;
 364		/* check for overflow */
 365		if (info->attr.mq_msgsize > ULONG_MAX/info->attr.mq_maxmsg)
 366			goto out_inode;
 367		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 368			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 369			sizeof(struct posix_msg_tree_node);
 370		mq_bytes = info->attr.mq_maxmsg * info->attr.mq_msgsize;
 371		if (mq_bytes + mq_treesize < mq_bytes)
 372			goto out_inode;
 373		mq_bytes += mq_treesize;
 374		spin_lock(&mq_lock);
 375		if (u->mq_bytes + mq_bytes < u->mq_bytes ||
 376		    u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
 377			spin_unlock(&mq_lock);
 378			/* mqueue_evict_inode() releases info->messages */
 379			ret = -EMFILE;
 380			goto out_inode;
 381		}
 382		u->mq_bytes += mq_bytes;
 383		spin_unlock(&mq_lock);
 384
 385		/* all is ok */
 386		info->user = get_uid(u);
 387	} else if (S_ISDIR(mode)) {
 388		inc_nlink(inode);
 389		/* Some things misbehave if size == 0 on a directory */
 390		inode->i_size = 2 * DIRENT_SIZE;
 391		inode->i_op = &mqueue_dir_inode_operations;
 392		inode->i_fop = &simple_dir_operations;
 393	}
 394
 395	return inode;
 396out_inode:
 397	iput(inode);
 398err:
 399	return ERR_PTR(ret);
 400}
 401
 402static int mqueue_fill_super(struct super_block *sb, struct fs_context *fc)
 403{
 404	struct inode *inode;
 405	struct ipc_namespace *ns = sb->s_fs_info;
 406
 407	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
 408	sb->s_blocksize = PAGE_SIZE;
 409	sb->s_blocksize_bits = PAGE_SHIFT;
 410	sb->s_magic = MQUEUE_MAGIC;
 411	sb->s_op = &mqueue_super_ops;
 412
 413	inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
 414	if (IS_ERR(inode))
 415		return PTR_ERR(inode);
 416
 417	sb->s_root = d_make_root(inode);
 418	if (!sb->s_root)
 419		return -ENOMEM;
 420	return 0;
 421}
 422
 423static int mqueue_get_tree(struct fs_context *fc)
 424{
 425	struct mqueue_fs_context *ctx = fc->fs_private;
 
 
 
 
 
 
 
 
 426
 427	return get_tree_keyed(fc, mqueue_fill_super, ctx->ipc_ns);
 428}
 429
 430static void mqueue_fs_context_free(struct fs_context *fc)
 431{
 432	struct mqueue_fs_context *ctx = fc->fs_private;
 433
 434	put_ipc_ns(ctx->ipc_ns);
 435	kfree(ctx);
 436}
 437
 438static int mqueue_init_fs_context(struct fs_context *fc)
 439{
 440	struct mqueue_fs_context *ctx;
 441
 442	ctx = kzalloc(sizeof(struct mqueue_fs_context), GFP_KERNEL);
 443	if (!ctx)
 444		return -ENOMEM;
 445
 446	ctx->ipc_ns = get_ipc_ns(current->nsproxy->ipc_ns);
 447	put_user_ns(fc->user_ns);
 448	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 449	fc->fs_private = ctx;
 450	fc->ops = &mqueue_fs_context_ops;
 451	return 0;
 452}
 453
 454static struct vfsmount *mq_create_mount(struct ipc_namespace *ns)
 455{
 456	struct mqueue_fs_context *ctx;
 457	struct fs_context *fc;
 458	struct vfsmount *mnt;
 459
 460	fc = fs_context_for_mount(&mqueue_fs_type, SB_KERNMOUNT);
 461	if (IS_ERR(fc))
 462		return ERR_CAST(fc);
 463
 464	ctx = fc->fs_private;
 465	put_ipc_ns(ctx->ipc_ns);
 466	ctx->ipc_ns = get_ipc_ns(ns);
 467	put_user_ns(fc->user_ns);
 468	fc->user_ns = get_user_ns(ctx->ipc_ns->user_ns);
 469
 470	mnt = fc_mount(fc);
 471	put_fs_context(fc);
 472	return mnt;
 473}
 474
 475static void init_once(void *foo)
 476{
 477	struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
 478
 479	inode_init_once(&p->vfs_inode);
 480}
 481
 482static struct inode *mqueue_alloc_inode(struct super_block *sb)
 483{
 484	struct mqueue_inode_info *ei;
 485
 486	ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
 487	if (!ei)
 488		return NULL;
 489	return &ei->vfs_inode;
 490}
 491
 492static void mqueue_free_inode(struct inode *inode)
 493{
 
 494	kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
 495}
 496
 
 
 
 
 
 497static void mqueue_evict_inode(struct inode *inode)
 498{
 499	struct mqueue_inode_info *info;
 500	struct user_struct *user;
 
 501	struct ipc_namespace *ipc_ns;
 502	struct msg_msg *msg, *nmsg;
 503	LIST_HEAD(tmp_msg);
 504
 505	clear_inode(inode);
 506
 507	if (S_ISDIR(inode->i_mode))
 508		return;
 509
 510	ipc_ns = get_ns_from_inode(inode);
 511	info = MQUEUE_I(inode);
 512	spin_lock(&info->lock);
 513	while ((msg = msg_get(info)) != NULL)
 514		list_add_tail(&msg->m_list, &tmp_msg);
 515	kfree(info->node_cache);
 516	spin_unlock(&info->lock);
 517
 518	list_for_each_entry_safe(msg, nmsg, &tmp_msg, m_list) {
 519		list_del(&msg->m_list);
 520		free_msg(msg);
 521	}
 
 
 
 522
 523	user = info->user;
 524	if (user) {
 525		unsigned long mq_bytes, mq_treesize;
 526
 527		/* Total amount of bytes accounted for the mqueue */
 528		mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
 529			min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
 530			sizeof(struct posix_msg_tree_node);
 531
 532		mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
 533					  info->attr.mq_msgsize);
 534
 535		spin_lock(&mq_lock);
 536		user->mq_bytes -= mq_bytes;
 537		/*
 538		 * get_ns_from_inode() ensures that the
 539		 * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
 540		 * to which we now hold a reference, or it is NULL.
 541		 * We can't put it here under mq_lock, though.
 542		 */
 543		if (ipc_ns)
 544			ipc_ns->mq_queues_count--;
 545		spin_unlock(&mq_lock);
 546		free_uid(user);
 547	}
 548	if (ipc_ns)
 549		put_ipc_ns(ipc_ns);
 550}
 551
 552static int mqueue_create_attr(struct dentry *dentry, umode_t mode, void *arg)
 
 553{
 554	struct inode *dir = dentry->d_parent->d_inode;
 555	struct inode *inode;
 556	struct mq_attr *attr = arg;
 557	int error;
 558	struct ipc_namespace *ipc_ns;
 559
 560	spin_lock(&mq_lock);
 561	ipc_ns = __get_ns_from_inode(dir);
 562	if (!ipc_ns) {
 563		error = -EACCES;
 564		goto out_unlock;
 565	}
 566
 567	if (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
 568	    !capable(CAP_SYS_RESOURCE)) {
 569		error = -ENOSPC;
 570		goto out_unlock;
 571	}
 572	ipc_ns->mq_queues_count++;
 573	spin_unlock(&mq_lock);
 574
 575	inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
 576	if (IS_ERR(inode)) {
 577		error = PTR_ERR(inode);
 578		spin_lock(&mq_lock);
 579		ipc_ns->mq_queues_count--;
 580		goto out_unlock;
 581	}
 582
 583	put_ipc_ns(ipc_ns);
 584	dir->i_size += DIRENT_SIZE;
 585	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 586
 587	d_instantiate(dentry, inode);
 588	dget(dentry);
 589	return 0;
 590out_unlock:
 591	spin_unlock(&mq_lock);
 592	if (ipc_ns)
 593		put_ipc_ns(ipc_ns);
 594	return error;
 595}
 596
 597static int mqueue_create(struct inode *dir, struct dentry *dentry,
 598				umode_t mode, bool excl)
 599{
 600	return mqueue_create_attr(dentry, mode, NULL);
 601}
 602
 603static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
 604{
 605	struct inode *inode = d_inode(dentry);
 606
 607	dir->i_ctime = dir->i_mtime = dir->i_atime = current_time(dir);
 608	dir->i_size -= DIRENT_SIZE;
 609	drop_nlink(inode);
 610	dput(dentry);
 611	return 0;
 612}
 613
 614/*
 615*	This is routine for system read from queue file.
 616*	To avoid mess with doing here some sort of mq_receive we allow
 617*	to read only queue size & notification info (the only values
 618*	that are interesting from user point of view and aren't accessible
 619*	through std routines)
 620*/
 621static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
 622				size_t count, loff_t *off)
 623{
 624	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 625	char buffer[FILENT_SIZE];
 626	ssize_t ret;
 627
 628	spin_lock(&info->lock);
 629	snprintf(buffer, sizeof(buffer),
 630			"QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
 631			info->qsize,
 632			info->notify_owner ? info->notify.sigev_notify : 0,
 633			(info->notify_owner &&
 634			 info->notify.sigev_notify == SIGEV_SIGNAL) ?
 635				info->notify.sigev_signo : 0,
 636			pid_vnr(info->notify_owner));
 637	spin_unlock(&info->lock);
 638	buffer[sizeof(buffer)-1] = '\0';
 639
 640	ret = simple_read_from_buffer(u_data, count, off, buffer,
 641				strlen(buffer));
 642	if (ret <= 0)
 643		return ret;
 644
 645	file_inode(filp)->i_atime = file_inode(filp)->i_ctime = current_time(file_inode(filp));
 646	return ret;
 647}
 648
 649static int mqueue_flush_file(struct file *filp, fl_owner_t id)
 650{
 651	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 652
 653	spin_lock(&info->lock);
 654	if (task_tgid(current) == info->notify_owner)
 655		remove_notification(info);
 656
 657	spin_unlock(&info->lock);
 658	return 0;
 659}
 660
 661static __poll_t mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
 662{
 663	struct mqueue_inode_info *info = MQUEUE_I(file_inode(filp));
 664	__poll_t retval = 0;
 665
 666	poll_wait(filp, &info->wait_q, poll_tab);
 667
 668	spin_lock(&info->lock);
 669	if (info->attr.mq_curmsgs)
 670		retval = EPOLLIN | EPOLLRDNORM;
 671
 672	if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
 673		retval |= EPOLLOUT | EPOLLWRNORM;
 674	spin_unlock(&info->lock);
 675
 676	return retval;
 677}
 678
 679/* Adds current to info->e_wait_q[sr] before element with smaller prio */
 680static void wq_add(struct mqueue_inode_info *info, int sr,
 681			struct ext_wait_queue *ewp)
 682{
 683	struct ext_wait_queue *walk;
 684
 
 
 685	list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
 686		if (walk->task->prio <= current->prio) {
 687			list_add_tail(&ewp->list, &walk->list);
 688			return;
 689		}
 690	}
 691	list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
 692}
 693
 694/*
 695 * Puts current task to sleep. Caller must hold queue lock. After return
 696 * lock isn't held.
 697 * sr: SEND or RECV
 698 */
 699static int wq_sleep(struct mqueue_inode_info *info, int sr,
 700		    ktime_t *timeout, struct ext_wait_queue *ewp)
 701	__releases(&info->lock)
 702{
 703	int retval;
 704	signed long time;
 705
 706	wq_add(info, sr, ewp);
 707
 708	for (;;) {
 709		/* memory barrier not required, we hold info->lock */
 710		__set_current_state(TASK_INTERRUPTIBLE);
 711
 712		spin_unlock(&info->lock);
 713		time = schedule_hrtimeout_range_clock(timeout, 0,
 714			HRTIMER_MODE_ABS, CLOCK_REALTIME);
 715
 716		if (READ_ONCE(ewp->state) == STATE_READY) {
 717			/* see MQ_BARRIER for purpose/pairing */
 718			smp_acquire__after_ctrl_dep();
 719			retval = 0;
 720			goto out;
 721		}
 722		spin_lock(&info->lock);
 723
 724		/* we hold info->lock, so no memory barrier required */
 725		if (READ_ONCE(ewp->state) == STATE_READY) {
 726			retval = 0;
 727			goto out_unlock;
 728		}
 729		if (signal_pending(current)) {
 730			retval = -ERESTARTSYS;
 731			break;
 732		}
 733		if (time == 0) {
 734			retval = -ETIMEDOUT;
 735			break;
 736		}
 737	}
 738	list_del(&ewp->list);
 739out_unlock:
 740	spin_unlock(&info->lock);
 741out:
 742	return retval;
 743}
 744
 745/*
 746 * Returns waiting task that should be serviced first or NULL if none exists
 747 */
 748static struct ext_wait_queue *wq_get_first_waiter(
 749		struct mqueue_inode_info *info, int sr)
 750{
 751	struct list_head *ptr;
 752
 753	ptr = info->e_wait_q[sr].list.prev;
 754	if (ptr == &info->e_wait_q[sr].list)
 755		return NULL;
 756	return list_entry(ptr, struct ext_wait_queue, list);
 757}
 758
 759
 760static inline void set_cookie(struct sk_buff *skb, char code)
 761{
 762	((char *)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
 763}
 764
 765/*
 766 * The next function is only to split too long sys_mq_timedsend
 767 */
 768static void __do_notify(struct mqueue_inode_info *info)
 769{
 770	/* notification
 771	 * invoked when there is registered process and there isn't process
 772	 * waiting synchronously for message AND state of queue changed from
 773	 * empty to not empty. Here we are sure that no one is waiting
 774	 * synchronously. */
 775	if (info->notify_owner &&
 776	    info->attr.mq_curmsgs == 1) {
 
 777		switch (info->notify.sigev_notify) {
 778		case SIGEV_NONE:
 779			break;
 780		case SIGEV_SIGNAL: {
 781			struct kernel_siginfo sig_i;
 782			struct task_struct *task;
 783
 784			/* do_mq_notify() accepts sigev_signo == 0, why?? */
 785			if (!info->notify.sigev_signo)
 786				break;
 787
 788			clear_siginfo(&sig_i);
 789			sig_i.si_signo = info->notify.sigev_signo;
 790			sig_i.si_errno = 0;
 791			sig_i.si_code = SI_MESGQ;
 792			sig_i.si_value = info->notify.sigev_value;
 
 793			rcu_read_lock();
 794			/* map current pid/uid into info->owner's namespaces */
 795			sig_i.si_pid = task_tgid_nr_ns(current,
 796						ns_of_pid(info->notify_owner));
 797			sig_i.si_uid = from_kuid_munged(info->notify_user_ns,
 798						current_uid());
 799			/*
 800			 * We can't use kill_pid_info(), this signal should
 801			 * bypass check_kill_permission(). It is from kernel
 802			 * but si_fromuser() can't know this.
 803			 * We do check the self_exec_id, to avoid sending
 804			 * signals to programs that don't expect them.
 805			 */
 806			task = pid_task(info->notify_owner, PIDTYPE_TGID);
 807			if (task && task->self_exec_id ==
 808						info->notify_self_exec_id) {
 809				do_send_sig_info(info->notify.sigev_signo,
 810						&sig_i, task, PIDTYPE_TGID);
 811			}
 812			rcu_read_unlock();
 
 
 
 813			break;
 814		}
 815		case SIGEV_THREAD:
 816			set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
 817			netlink_sendskb(info->notify_sock, info->notify_cookie);
 818			break;
 819		}
 820		/* after notification unregisters process */
 821		put_pid(info->notify_owner);
 822		put_user_ns(info->notify_user_ns);
 823		info->notify_owner = NULL;
 824		info->notify_user_ns = NULL;
 825	}
 826	wake_up(&info->wait_q);
 827}
 828
 829static int prepare_timeout(const struct __kernel_timespec __user *u_abs_timeout,
 830			   struct timespec64 *ts)
 831{
 832	if (get_timespec64(ts, u_abs_timeout))
 833		return -EFAULT;
 834	if (!timespec64_valid(ts))
 835		return -EINVAL;
 
 
 836	return 0;
 837}
 838
 839static void remove_notification(struct mqueue_inode_info *info)
 840{
 841	if (info->notify_owner != NULL &&
 842	    info->notify.sigev_notify == SIGEV_THREAD) {
 843		set_cookie(info->notify_cookie, NOTIFY_REMOVED);
 844		netlink_sendskb(info->notify_sock, info->notify_cookie);
 845	}
 846	put_pid(info->notify_owner);
 847	put_user_ns(info->notify_user_ns);
 848	info->notify_owner = NULL;
 849	info->notify_user_ns = NULL;
 850}
 851
 852static int prepare_open(struct dentry *dentry, int oflag, int ro,
 853			umode_t mode, struct filename *name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854			struct mq_attr *attr)
 855{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856	static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
 857						  MAY_READ | MAY_WRITE };
 858	int acc;
 859
 860	if (d_really_is_negative(dentry)) {
 861		if (!(oflag & O_CREAT))
 862			return -ENOENT;
 863		if (ro)
 864			return ro;
 865		audit_inode_parent_hidden(name, dentry->d_parent);
 866		return vfs_mkobj(dentry, mode & ~current_umask(),
 867				  mqueue_create_attr, attr);
 868	}
 869	/* it already existed */
 870	audit_inode(name, dentry, 0);
 871	if ((oflag & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
 872		return -EEXIST;
 873	if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
 874		return -EINVAL;
 875	acc = oflag2acc[oflag & O_ACCMODE];
 876	return inode_permission(d_inode(dentry), acc);
 
 
 877}
 878
 879static int do_mq_open(const char __user *u_name, int oflag, umode_t mode,
 880		      struct mq_attr *attr)
 881{
 882	struct vfsmount *mnt = current->nsproxy->ipc_ns->mq_mnt;
 883	struct dentry *root = mnt->mnt_root;
 884	struct filename *name;
 885	struct path path;
 886	int fd, error;
 
 
 
 887	int ro;
 888
 889	audit_mq_open(oflag, mode, attr);
 
 
 
 890
 891	if (IS_ERR(name = getname(u_name)))
 892		return PTR_ERR(name);
 893
 894	fd = get_unused_fd_flags(O_CLOEXEC);
 895	if (fd < 0)
 896		goto out_putname;
 897
 898	ro = mnt_want_write(mnt);	/* we'll drop it in any case */
 
 899	inode_lock(d_inode(root));
 900	path.dentry = lookup_one_len(name->name, root, strlen(name->name));
 901	if (IS_ERR(path.dentry)) {
 902		error = PTR_ERR(path.dentry);
 903		goto out_putfd;
 904	}
 905	path.mnt = mntget(mnt);
 906	error = prepare_open(path.dentry, oflag, ro, mode, name, attr);
 907	if (!error) {
 908		struct file *file = dentry_open(&path, oflag, current_cred());
 909		if (!IS_ERR(file))
 910			fd_install(fd, file);
 911		else
 912			error = PTR_ERR(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913	}
 
 
 
 
 
 
 914	path_put(&path);
 915out_putfd:
 916	if (error) {
 917		put_unused_fd(fd);
 918		fd = error;
 919	}
 920	inode_unlock(d_inode(root));
 921	if (!ro)
 922		mnt_drop_write(mnt);
 923out_putname:
 924	putname(name);
 925	return fd;
 926}
 927
 928SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
 929		struct mq_attr __user *, u_attr)
 930{
 931	struct mq_attr attr;
 932	if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
 933		return -EFAULT;
 934
 935	return do_mq_open(u_name, oflag, mode, u_attr ? &attr : NULL);
 936}
 937
 938SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
 939{
 940	int err;
 941	struct filename *name;
 942	struct dentry *dentry;
 943	struct inode *inode = NULL;
 944	struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
 945	struct vfsmount *mnt = ipc_ns->mq_mnt;
 946
 947	name = getname(u_name);
 948	if (IS_ERR(name))
 949		return PTR_ERR(name);
 950
 951	audit_inode_parent_hidden(name, mnt->mnt_root);
 952	err = mnt_want_write(mnt);
 953	if (err)
 954		goto out_name;
 955	inode_lock_nested(d_inode(mnt->mnt_root), I_MUTEX_PARENT);
 956	dentry = lookup_one_len(name->name, mnt->mnt_root,
 957				strlen(name->name));
 958	if (IS_ERR(dentry)) {
 959		err = PTR_ERR(dentry);
 960		goto out_unlock;
 961	}
 962
 963	inode = d_inode(dentry);
 964	if (!inode) {
 965		err = -ENOENT;
 966	} else {
 967		ihold(inode);
 968		err = vfs_unlink(d_inode(dentry->d_parent), dentry, NULL);
 969	}
 970	dput(dentry);
 971
 972out_unlock:
 973	inode_unlock(d_inode(mnt->mnt_root));
 974	if (inode)
 975		iput(inode);
 976	mnt_drop_write(mnt);
 977out_name:
 978	putname(name);
 979
 980	return err;
 981}
 982
 983/* Pipelined send and receive functions.
 984 *
 985 * If a receiver finds no waiting message, then it registers itself in the
 986 * list of waiting receivers. A sender checks that list before adding the new
 987 * message into the message array. If there is a waiting receiver, then it
 988 * bypasses the message array and directly hands the message over to the
 989 * receiver. The receiver accepts the message and returns without grabbing the
 990 * queue spinlock:
 991 *
 992 * - Set pointer to message.
 993 * - Queue the receiver task for later wakeup (without the info->lock).
 994 * - Update its state to STATE_READY. Now the receiver can continue.
 995 * - Wake up the process after the lock is dropped. Should the process wake up
 996 *   before this wakeup (due to a timeout or a signal) it will either see
 997 *   STATE_READY and continue or acquire the lock to check the state again.
 998 *
 999 * The same algorithm is used for senders.
1000 */
1001
1002static inline void __pipelined_op(struct wake_q_head *wake_q,
1003				  struct mqueue_inode_info *info,
1004				  struct ext_wait_queue *this)
1005{
1006	list_del(&this->list);
1007	get_task_struct(this->task);
1008
1009	/* see MQ_BARRIER for purpose/pairing */
1010	smp_store_release(&this->state, STATE_READY);
1011	wake_q_add_safe(wake_q, this->task);
1012}
1013
1014/* pipelined_send() - send a message directly to the task waiting in
1015 * sys_mq_timedreceive() (without inserting message into a queue).
1016 */
1017static inline void pipelined_send(struct wake_q_head *wake_q,
1018				  struct mqueue_inode_info *info,
1019				  struct msg_msg *message,
1020				  struct ext_wait_queue *receiver)
1021{
1022	receiver->msg = message;
1023	__pipelined_op(wake_q, info, receiver);
 
 
 
 
 
 
 
 
 
 
1024}
1025
1026/* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
1027 * gets its message and put to the queue (we have one free place for sure). */
1028static inline void pipelined_receive(struct wake_q_head *wake_q,
1029				     struct mqueue_inode_info *info)
1030{
1031	struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
1032
1033	if (!sender) {
1034		/* for poll */
1035		wake_up_interruptible(&info->wait_q);
1036		return;
1037	}
1038	if (msg_insert(sender->msg, info))
1039		return;
1040
1041	__pipelined_op(wake_q, info, sender);
 
 
1042}
1043
1044static int do_mq_timedsend(mqd_t mqdes, const char __user *u_msg_ptr,
1045		size_t msg_len, unsigned int msg_prio,
1046		struct timespec64 *ts)
1047{
1048	struct fd f;
1049	struct inode *inode;
1050	struct ext_wait_queue wait;
1051	struct ext_wait_queue *receiver;
1052	struct msg_msg *msg_ptr;
1053	struct mqueue_inode_info *info;
1054	ktime_t expires, *timeout = NULL;
 
1055	struct posix_msg_tree_node *new_leaf = NULL;
1056	int ret = 0;
1057	DEFINE_WAKE_Q(wake_q);
 
 
 
 
 
 
 
1058
1059	if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
1060		return -EINVAL;
1061
1062	if (ts) {
1063		expires = timespec64_to_ktime(*ts);
1064		timeout = &expires;
1065	}
1066
1067	audit_mq_sendrecv(mqdes, msg_len, msg_prio, ts);
1068
1069	f = fdget(mqdes);
1070	if (unlikely(!f.file)) {
1071		ret = -EBADF;
1072		goto out;
1073	}
1074
1075	inode = file_inode(f.file);
1076	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1077		ret = -EBADF;
1078		goto out_fput;
1079	}
1080	info = MQUEUE_I(inode);
1081	audit_file(f.file);
1082
1083	if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
1084		ret = -EBADF;
1085		goto out_fput;
1086	}
1087
1088	if (unlikely(msg_len > info->attr.mq_msgsize)) {
1089		ret = -EMSGSIZE;
1090		goto out_fput;
1091	}
1092
1093	/* First try to allocate memory, before doing anything with
1094	 * existing queues. */
1095	msg_ptr = load_msg(u_msg_ptr, msg_len);
1096	if (IS_ERR(msg_ptr)) {
1097		ret = PTR_ERR(msg_ptr);
1098		goto out_fput;
1099	}
1100	msg_ptr->m_ts = msg_len;
1101	msg_ptr->m_type = msg_prio;
1102
1103	/*
1104	 * msg_insert really wants us to have a valid, spare node struct so
1105	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1106	 * fall back to that if necessary.
1107	 */
1108	if (!info->node_cache)
1109		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1110
1111	spin_lock(&info->lock);
1112
1113	if (!info->node_cache && new_leaf) {
1114		/* Save our speculative allocation into the cache */
1115		INIT_LIST_HEAD(&new_leaf->msg_list);
1116		info->node_cache = new_leaf;
1117		new_leaf = NULL;
1118	} else {
1119		kfree(new_leaf);
1120	}
1121
1122	if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1123		if (f.file->f_flags & O_NONBLOCK) {
1124			ret = -EAGAIN;
1125		} else {
1126			wait.task = current;
1127			wait.msg = (void *) msg_ptr;
1128
1129			/* memory barrier not required, we hold info->lock */
1130			WRITE_ONCE(wait.state, STATE_NONE);
1131			ret = wq_sleep(info, SEND, timeout, &wait);
1132			/*
1133			 * wq_sleep must be called with info->lock held, and
1134			 * returns with the lock released
1135			 */
1136			goto out_free;
1137		}
1138	} else {
1139		receiver = wq_get_first_waiter(info, RECV);
1140		if (receiver) {
1141			pipelined_send(&wake_q, info, msg_ptr, receiver);
1142		} else {
1143			/* adds message to the queue */
1144			ret = msg_insert(msg_ptr, info);
1145			if (ret)
1146				goto out_unlock;
1147			__do_notify(info);
1148		}
1149		inode->i_atime = inode->i_mtime = inode->i_ctime =
1150				current_time(inode);
1151	}
1152out_unlock:
1153	spin_unlock(&info->lock);
1154	wake_up_q(&wake_q);
1155out_free:
1156	if (ret)
1157		free_msg(msg_ptr);
1158out_fput:
1159	fdput(f);
1160out:
1161	return ret;
1162}
1163
1164static int do_mq_timedreceive(mqd_t mqdes, char __user *u_msg_ptr,
1165		size_t msg_len, unsigned int __user *u_msg_prio,
1166		struct timespec64 *ts)
1167{
1168	ssize_t ret;
1169	struct msg_msg *msg_ptr;
1170	struct fd f;
1171	struct inode *inode;
1172	struct mqueue_inode_info *info;
1173	struct ext_wait_queue wait;
1174	ktime_t expires, *timeout = NULL;
 
1175	struct posix_msg_tree_node *new_leaf = NULL;
1176
1177	if (ts) {
1178		expires = timespec64_to_ktime(*ts);
 
 
1179		timeout = &expires;
1180	}
1181
1182	audit_mq_sendrecv(mqdes, msg_len, 0, ts);
1183
1184	f = fdget(mqdes);
1185	if (unlikely(!f.file)) {
1186		ret = -EBADF;
1187		goto out;
1188	}
1189
1190	inode = file_inode(f.file);
1191	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1192		ret = -EBADF;
1193		goto out_fput;
1194	}
1195	info = MQUEUE_I(inode);
1196	audit_file(f.file);
1197
1198	if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1199		ret = -EBADF;
1200		goto out_fput;
1201	}
1202
1203	/* checks if buffer is big enough */
1204	if (unlikely(msg_len < info->attr.mq_msgsize)) {
1205		ret = -EMSGSIZE;
1206		goto out_fput;
1207	}
1208
1209	/*
1210	 * msg_insert really wants us to have a valid, spare node struct so
1211	 * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1212	 * fall back to that if necessary.
1213	 */
1214	if (!info->node_cache)
1215		new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1216
1217	spin_lock(&info->lock);
1218
1219	if (!info->node_cache && new_leaf) {
1220		/* Save our speculative allocation into the cache */
1221		INIT_LIST_HEAD(&new_leaf->msg_list);
1222		info->node_cache = new_leaf;
1223	} else {
1224		kfree(new_leaf);
1225	}
1226
1227	if (info->attr.mq_curmsgs == 0) {
1228		if (f.file->f_flags & O_NONBLOCK) {
1229			spin_unlock(&info->lock);
1230			ret = -EAGAIN;
1231		} else {
1232			wait.task = current;
1233
1234			/* memory barrier not required, we hold info->lock */
1235			WRITE_ONCE(wait.state, STATE_NONE);
1236			ret = wq_sleep(info, RECV, timeout, &wait);
1237			msg_ptr = wait.msg;
1238		}
1239	} else {
1240		DEFINE_WAKE_Q(wake_q);
1241
1242		msg_ptr = msg_get(info);
1243
1244		inode->i_atime = inode->i_mtime = inode->i_ctime =
1245				current_time(inode);
1246
1247		/* There is now free space in queue. */
1248		pipelined_receive(&wake_q, info);
1249		spin_unlock(&info->lock);
1250		wake_up_q(&wake_q);
1251		ret = 0;
1252	}
1253	if (ret == 0) {
1254		ret = msg_ptr->m_ts;
1255
1256		if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1257			store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1258			ret = -EFAULT;
1259		}
1260		free_msg(msg_ptr);
1261	}
1262out_fput:
1263	fdput(f);
1264out:
1265	return ret;
1266}
1267
1268SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
1269		size_t, msg_len, unsigned int, msg_prio,
1270		const struct __kernel_timespec __user *, u_abs_timeout)
1271{
1272	struct timespec64 ts, *p = NULL;
1273	if (u_abs_timeout) {
1274		int res = prepare_timeout(u_abs_timeout, &ts);
1275		if (res)
1276			return res;
1277		p = &ts;
1278	}
1279	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1280}
1281
1282SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1283		size_t, msg_len, unsigned int __user *, u_msg_prio,
1284		const struct __kernel_timespec __user *, u_abs_timeout)
1285{
1286	struct timespec64 ts, *p = NULL;
1287	if (u_abs_timeout) {
1288		int res = prepare_timeout(u_abs_timeout, &ts);
1289		if (res)
1290			return res;
1291		p = &ts;
1292	}
1293	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1294}
1295
1296/*
1297 * Notes: the case when user wants us to deregister (with NULL as pointer)
1298 * and he isn't currently owner of notification, will be silently discarded.
1299 * It isn't explicitly defined in the POSIX.
1300 */
1301static int do_mq_notify(mqd_t mqdes, const struct sigevent *notification)
 
1302{
1303	int ret;
1304	struct fd f;
1305	struct sock *sock;
1306	struct inode *inode;
 
1307	struct mqueue_inode_info *info;
1308	struct sk_buff *nc;
1309
1310	audit_mq_notify(mqdes, notification);
 
 
 
 
 
 
1311
1312	nc = NULL;
1313	sock = NULL;
1314	if (notification != NULL) {
1315		if (unlikely(notification->sigev_notify != SIGEV_NONE &&
1316			     notification->sigev_notify != SIGEV_SIGNAL &&
1317			     notification->sigev_notify != SIGEV_THREAD))
1318			return -EINVAL;
1319		if (notification->sigev_notify == SIGEV_SIGNAL &&
1320			!valid_signal(notification->sigev_signo)) {
1321			return -EINVAL;
1322		}
1323		if (notification->sigev_notify == SIGEV_THREAD) {
1324			long timeo;
1325
1326			/* create the notify skb */
1327			nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1328			if (!nc)
1329				return -ENOMEM;
1330
 
1331			if (copy_from_user(nc->data,
1332					notification->sigev_value.sival_ptr,
1333					NOTIFY_COOKIE_LEN)) {
1334				ret = -EFAULT;
1335				goto free_skb;
1336			}
1337
1338			/* TODO: add a header? */
1339			skb_put(nc, NOTIFY_COOKIE_LEN);
1340			/* and attach it to the socket */
1341retry:
1342			f = fdget(notification->sigev_signo);
1343			if (!f.file) {
1344				ret = -EBADF;
1345				goto out;
1346			}
1347			sock = netlink_getsockbyfilp(f.file);
1348			fdput(f);
1349			if (IS_ERR(sock)) {
1350				ret = PTR_ERR(sock);
1351				goto free_skb;
 
1352			}
1353
1354			timeo = MAX_SCHEDULE_TIMEOUT;
1355			ret = netlink_attachskb(sock, nc, &timeo, NULL);
1356			if (ret == 1) {
 
 
1357				sock = NULL;
1358				goto retry;
 
1359			}
1360			if (ret)
1361				return ret;
1362		}
1363	}
1364
1365	f = fdget(mqdes);
1366	if (!f.file) {
1367		ret = -EBADF;
1368		goto out;
1369	}
1370
1371	inode = file_inode(f.file);
1372	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1373		ret = -EBADF;
1374		goto out_fput;
1375	}
1376	info = MQUEUE_I(inode);
1377
1378	ret = 0;
1379	spin_lock(&info->lock);
1380	if (notification == NULL) {
1381		if (info->notify_owner == task_tgid(current)) {
1382			remove_notification(info);
1383			inode->i_atime = inode->i_ctime = current_time(inode);
1384		}
1385	} else if (info->notify_owner != NULL) {
1386		ret = -EBUSY;
1387	} else {
1388		switch (notification->sigev_notify) {
1389		case SIGEV_NONE:
1390			info->notify.sigev_notify = SIGEV_NONE;
1391			break;
1392		case SIGEV_THREAD:
1393			info->notify_sock = sock;
1394			info->notify_cookie = nc;
1395			sock = NULL;
1396			nc = NULL;
1397			info->notify.sigev_notify = SIGEV_THREAD;
1398			break;
1399		case SIGEV_SIGNAL:
1400			info->notify.sigev_signo = notification->sigev_signo;
1401			info->notify.sigev_value = notification->sigev_value;
1402			info->notify.sigev_notify = SIGEV_SIGNAL;
1403			info->notify_self_exec_id = current->self_exec_id;
1404			break;
1405		}
1406
1407		info->notify_owner = get_pid(task_tgid(current));
1408		info->notify_user_ns = get_user_ns(current_user_ns());
1409		inode->i_atime = inode->i_ctime = current_time(inode);
1410	}
1411	spin_unlock(&info->lock);
1412out_fput:
1413	fdput(f);
1414out:
1415	if (sock)
1416		netlink_detachskb(sock, nc);
1417	else
1418free_skb:
1419		dev_kfree_skb(nc);
1420
1421	return ret;
1422}
1423
1424SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1425		const struct sigevent __user *, u_notification)
1426{
1427	struct sigevent n, *p = NULL;
1428	if (u_notification) {
1429		if (copy_from_user(&n, u_notification, sizeof(struct sigevent)))
1430			return -EFAULT;
1431		p = &n;
1432	}
1433	return do_mq_notify(mqdes, p);
1434}
1435
1436static int do_mq_getsetattr(int mqdes, struct mq_attr *new, struct mq_attr *old)
1437{
 
 
1438	struct fd f;
1439	struct inode *inode;
1440	struct mqueue_inode_info *info;
1441
1442	if (new && (new->mq_flags & (~O_NONBLOCK)))
1443		return -EINVAL;
 
 
 
 
1444
1445	f = fdget(mqdes);
1446	if (!f.file)
1447		return -EBADF;
 
 
1448
 
1449	if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1450		fdput(f);
1451		return -EBADF;
1452	}
1453
1454	inode = file_inode(f.file);
1455	info = MQUEUE_I(inode);
1456
1457	spin_lock(&info->lock);
1458
1459	if (old) {
1460		*old = info->attr;
1461		old->mq_flags = f.file->f_flags & O_NONBLOCK;
1462	}
1463	if (new) {
1464		audit_mq_getsetattr(mqdes, new);
1465		spin_lock(&f.file->f_lock);
1466		if (new->mq_flags & O_NONBLOCK)
1467			f.file->f_flags |= O_NONBLOCK;
1468		else
1469			f.file->f_flags &= ~O_NONBLOCK;
1470		spin_unlock(&f.file->f_lock);
1471
1472		inode->i_atime = inode->i_ctime = current_time(inode);
1473	}
1474
1475	spin_unlock(&info->lock);
1476	fdput(f);
1477	return 0;
1478}
1479
1480SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1481		const struct mq_attr __user *, u_mqstat,
1482		struct mq_attr __user *, u_omqstat)
1483{
1484	int ret;
1485	struct mq_attr mqstat, omqstat;
1486	struct mq_attr *new = NULL, *old = NULL;
1487
1488	if (u_mqstat) {
1489		new = &mqstat;
1490		if (copy_from_user(new, u_mqstat, sizeof(struct mq_attr)))
1491			return -EFAULT;
1492	}
1493	if (u_omqstat)
1494		old = &omqstat;
1495
1496	ret = do_mq_getsetattr(mqdes, new, old);
1497	if (ret || !old)
1498		return ret;
1499
1500	if (copy_to_user(u_omqstat, old, sizeof(struct mq_attr)))
1501		return -EFAULT;
1502	return 0;
1503}
1504
1505#ifdef CONFIG_COMPAT
1506
1507struct compat_mq_attr {
1508	compat_long_t mq_flags;      /* message queue flags		     */
1509	compat_long_t mq_maxmsg;     /* maximum number of messages	     */
1510	compat_long_t mq_msgsize;    /* maximum message size		     */
1511	compat_long_t mq_curmsgs;    /* number of messages currently queued  */
1512	compat_long_t __reserved[4]; /* ignored for input, zeroed for output */
1513};
1514
1515static inline int get_compat_mq_attr(struct mq_attr *attr,
1516			const struct compat_mq_attr __user *uattr)
1517{
1518	struct compat_mq_attr v;
1519
1520	if (copy_from_user(&v, uattr, sizeof(*uattr)))
1521		return -EFAULT;
1522
1523	memset(attr, 0, sizeof(*attr));
1524	attr->mq_flags = v.mq_flags;
1525	attr->mq_maxmsg = v.mq_maxmsg;
1526	attr->mq_msgsize = v.mq_msgsize;
1527	attr->mq_curmsgs = v.mq_curmsgs;
1528	return 0;
1529}
1530
1531static inline int put_compat_mq_attr(const struct mq_attr *attr,
1532			struct compat_mq_attr __user *uattr)
1533{
1534	struct compat_mq_attr v;
1535
1536	memset(&v, 0, sizeof(v));
1537	v.mq_flags = attr->mq_flags;
1538	v.mq_maxmsg = attr->mq_maxmsg;
1539	v.mq_msgsize = attr->mq_msgsize;
1540	v.mq_curmsgs = attr->mq_curmsgs;
1541	if (copy_to_user(uattr, &v, sizeof(*uattr)))
1542		return -EFAULT;
1543	return 0;
1544}
1545
1546COMPAT_SYSCALL_DEFINE4(mq_open, const char __user *, u_name,
1547		       int, oflag, compat_mode_t, mode,
1548		       struct compat_mq_attr __user *, u_attr)
1549{
1550	struct mq_attr attr, *p = NULL;
1551	if (u_attr && oflag & O_CREAT) {
1552		p = &attr;
1553		if (get_compat_mq_attr(&attr, u_attr))
1554			return -EFAULT;
1555	}
1556	return do_mq_open(u_name, oflag, mode, p);
1557}
1558
1559COMPAT_SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1560		       const struct compat_sigevent __user *, u_notification)
1561{
1562	struct sigevent n, *p = NULL;
1563	if (u_notification) {
1564		if (get_compat_sigevent(&n, u_notification))
1565			return -EFAULT;
1566		if (n.sigev_notify == SIGEV_THREAD)
1567			n.sigev_value.sival_ptr = compat_ptr(n.sigev_value.sival_int);
1568		p = &n;
1569	}
1570	return do_mq_notify(mqdes, p);
1571}
1572
1573COMPAT_SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1574		       const struct compat_mq_attr __user *, u_mqstat,
1575		       struct compat_mq_attr __user *, u_omqstat)
1576{
1577	int ret;
1578	struct mq_attr mqstat, omqstat;
1579	struct mq_attr *new = NULL, *old = NULL;
1580
1581	if (u_mqstat) {
1582		new = &mqstat;
1583		if (get_compat_mq_attr(new, u_mqstat))
1584			return -EFAULT;
1585	}
1586	if (u_omqstat)
1587		old = &omqstat;
1588
1589	ret = do_mq_getsetattr(mqdes, new, old);
1590	if (ret || !old)
1591		return ret;
1592
1593	if (put_compat_mq_attr(old, u_omqstat))
1594		return -EFAULT;
1595	return 0;
1596}
1597#endif
1598
1599#ifdef CONFIG_COMPAT_32BIT_TIME
1600static int compat_prepare_timeout(const struct old_timespec32 __user *p,
1601				   struct timespec64 *ts)
1602{
1603	if (get_old_timespec32(ts, p))
1604		return -EFAULT;
1605	if (!timespec64_valid(ts))
1606		return -EINVAL;
1607	return 0;
1608}
1609
1610SYSCALL_DEFINE5(mq_timedsend_time32, mqd_t, mqdes,
1611		const char __user *, u_msg_ptr,
1612		unsigned int, msg_len, unsigned int, msg_prio,
1613		const struct old_timespec32 __user *, u_abs_timeout)
1614{
1615	struct timespec64 ts, *p = NULL;
1616	if (u_abs_timeout) {
1617		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1618		if (res)
1619			return res;
1620		p = &ts;
1621	}
1622	return do_mq_timedsend(mqdes, u_msg_ptr, msg_len, msg_prio, p);
1623}
1624
1625SYSCALL_DEFINE5(mq_timedreceive_time32, mqd_t, mqdes,
1626		char __user *, u_msg_ptr,
1627		unsigned int, msg_len, unsigned int __user *, u_msg_prio,
1628		const struct old_timespec32 __user *, u_abs_timeout)
1629{
1630	struct timespec64 ts, *p = NULL;
1631	if (u_abs_timeout) {
1632		int res = compat_prepare_timeout(u_abs_timeout, &ts);
1633		if (res)
1634			return res;
1635		p = &ts;
1636	}
1637	return do_mq_timedreceive(mqdes, u_msg_ptr, msg_len, u_msg_prio, p);
1638}
1639#endif
1640
1641static const struct inode_operations mqueue_dir_inode_operations = {
1642	.lookup = simple_lookup,
1643	.create = mqueue_create,
1644	.unlink = mqueue_unlink,
1645};
1646
1647static const struct file_operations mqueue_file_operations = {
1648	.flush = mqueue_flush_file,
1649	.poll = mqueue_poll_file,
1650	.read = mqueue_read_file,
1651	.llseek = default_llseek,
1652};
1653
1654static const struct super_operations mqueue_super_ops = {
1655	.alloc_inode = mqueue_alloc_inode,
1656	.free_inode = mqueue_free_inode,
1657	.evict_inode = mqueue_evict_inode,
1658	.statfs = simple_statfs,
1659};
1660
1661static const struct fs_context_operations mqueue_fs_context_ops = {
1662	.free		= mqueue_fs_context_free,
1663	.get_tree	= mqueue_get_tree,
1664};
1665
1666static struct file_system_type mqueue_fs_type = {
1667	.name			= "mqueue",
1668	.init_fs_context	= mqueue_init_fs_context,
1669	.kill_sb		= kill_litter_super,
1670	.fs_flags		= FS_USERNS_MOUNT,
1671};
1672
1673int mq_init_ns(struct ipc_namespace *ns)
1674{
1675	struct vfsmount *m;
1676
1677	ns->mq_queues_count  = 0;
1678	ns->mq_queues_max    = DFLT_QUEUESMAX;
1679	ns->mq_msg_max       = DFLT_MSGMAX;
1680	ns->mq_msgsize_max   = DFLT_MSGSIZEMAX;
1681	ns->mq_msg_default   = DFLT_MSG;
1682	ns->mq_msgsize_default  = DFLT_MSGSIZE;
1683
1684	m = mq_create_mount(ns);
1685	if (IS_ERR(m))
1686		return PTR_ERR(m);
1687	ns->mq_mnt = m;
 
 
1688	return 0;
1689}
1690
1691void mq_clear_sbinfo(struct ipc_namespace *ns)
1692{
1693	ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1694}
1695
1696void mq_put_mnt(struct ipc_namespace *ns)
1697{
1698	kern_unmount(ns->mq_mnt);
1699}
1700
1701static int __init init_mqueue_fs(void)
1702{
1703	int error;
1704
1705	mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1706				sizeof(struct mqueue_inode_info), 0,
1707				SLAB_HWCACHE_ALIGN|SLAB_ACCOUNT, init_once);
1708	if (mqueue_inode_cachep == NULL)
1709		return -ENOMEM;
1710
1711	/* ignore failures - they are not fatal */
1712	mq_sysctl_table = mq_register_sysctl_table();
1713
1714	error = register_filesystem(&mqueue_fs_type);
1715	if (error)
1716		goto out_sysctl;
1717
1718	spin_lock_init(&mq_lock);
1719
1720	error = mq_init_ns(&init_ipc_ns);
1721	if (error)
1722		goto out_filesystem;
1723
1724	return 0;
1725
1726out_filesystem:
1727	unregister_filesystem(&mqueue_fs_type);
1728out_sysctl:
1729	if (mq_sysctl_table)
1730		unregister_sysctl_table(mq_sysctl_table);
1731	kmem_cache_destroy(mqueue_inode_cachep);
1732	return error;
1733}
1734
1735device_initcall(init_mqueue_fs);