Loading...
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34#include <linux/compat.h>
35#include "internal.h"
36
37/*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45{
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83out_unlock:
84 unlock_page(page);
85 return 1;
86}
87
88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93}
94
95/*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101{
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132error:
133 unlock_page(page);
134 return err;
135}
136
137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->files)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
250 }
251
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
255 }
256
257 pipe_unlock(pipe);
258
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
261
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
264
265 return ret;
266}
267EXPORT_SYMBOL_GPL(splice_to_pipe);
268
269void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270{
271 put_page(spd->pages[i]);
272}
273
274/*
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
277 */
278int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279{
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
285
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289 if (spd->pages && spd->partial)
290 return 0;
291
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
295}
296
297void splice_shrink_spd(struct splice_pipe_desc *spd)
298{
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
301
302 kfree(spd->pages);
303 kfree(spd->partial);
304}
305
306static int
307__generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
310{
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
326 };
327
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
330
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
335
336 /*
337 * Lookup the (hopefully) full range of pages we need.
338 */
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
341
342 /*
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
345 */
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
349
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
352 /*
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
355 */
356 page = find_get_page(mapping, index);
357 if (!page) {
358 /*
359 * page didn't exist, allocate one.
360 */
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
364
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 put_page(page);
369 if (error == -EEXIST)
370 continue;
371 break;
372 }
373 /*
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
376 */
377 unlock_page(page);
378 }
379
380 spd.pages[spd.nr_pages++] = page;
381 index++;
382 }
383
384 /*
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
387 */
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
393
394 if (!len)
395 break;
396
397 /*
398 * this_len is the max we'll use from this page
399 */
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
402
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
406
407 /*
408 * If the page isn't uptodate, we may need to start io on it
409 */
410 if (!PageUptodate(page)) {
411 lock_page(page);
412
413 /*
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
418 */
419 if (!page->mapping) {
420 unlock_page(page);
421retry_lookup:
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
424
425 if (!page) {
426 error = -ENOMEM;
427 break;
428 }
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
431 }
432 /*
433 * page was already under io and is now done, great
434 */
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
438 }
439
440 /*
441 * need to read in the page
442 */
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
445 /*
446 * Re-lookup the page
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 goto retry_lookup;
450
451 break;
452 }
453 }
454fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505}
506
507/**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524{
525 loff_t isize, left;
526 int ret;
527
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
530
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
533 return 0;
534
535 left = isize - *ppos;
536 if (unlikely(left < len))
537 len = left;
538
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 if (ret > 0) {
541 *ppos += ret;
542 file_accessed(in);
543 }
544
545 return ret;
546}
547EXPORT_SYMBOL(generic_file_splice_read);
548
549static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .can_merge = 0,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
555};
556
557static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
559{
560 return 1;
561}
562
563/* Pipe buffer operations for a socket and similar. */
564const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 .can_merge = 0,
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
570};
571EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572
573static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
575{
576 mm_segment_t old_fs;
577 loff_t pos = offset;
578 ssize_t res;
579
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 set_fs(old_fs);
585
586 return res;
587}
588
589ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 loff_t pos)
591{
592 mm_segment_t old_fs;
593 ssize_t res;
594
595 old_fs = get_fs();
596 set_fs(get_ds());
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 set_fs(old_fs);
600
601 return res;
602}
603EXPORT_SYMBOL(kernel_write);
604
605ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
607 unsigned int flags)
608{
609 unsigned int nr_pages;
610 unsigned int nr_freed;
611 size_t offset;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 ssize_t res;
616 size_t this_len;
617 int error;
618 int i;
619 struct splice_pipe_desc spd = {
620 .pages = pages,
621 .partial = partial,
622 .nr_pages_max = PIPE_DEF_BUFFERS,
623 .flags = flags,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
626 };
627
628 if (splice_grow_spd(pipe, &spd))
629 return -ENOMEM;
630
631 res = -ENOMEM;
632 vec = __vec;
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 if (!vec)
636 goto shrink_ret;
637 }
638
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 struct page *page;
644
645 page = alloc_page(GFP_USER);
646 error = -ENOMEM;
647 if (!page)
648 goto err;
649
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
653 spd.pages[i] = page;
654 spd.nr_pages++;
655 len -= this_len;
656 offset = 0;
657 }
658
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 if (res < 0) {
661 error = res;
662 goto err;
663 }
664
665 error = 0;
666 if (!res)
667 goto err;
668
669 nr_freed = 0;
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
674 if (!this_len) {
675 __free_page(spd.pages[i]);
676 spd.pages[i] = NULL;
677 nr_freed++;
678 }
679 res -= this_len;
680 }
681 spd.nr_pages -= nr_freed;
682
683 res = splice_to_pipe(pipe, &spd);
684 if (res > 0)
685 *ppos += res;
686
687shrink_ret:
688 if (vec != __vec)
689 kfree(vec);
690 splice_shrink_spd(&spd);
691 return res;
692
693err:
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
696
697 res = error;
698 goto shrink_ret;
699}
700EXPORT_SYMBOL(default_file_splice_read);
701
702/*
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
705 */
706static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
708{
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
711 int more;
712
713 if (!likely(file->f_op->sendpage))
714 return -EINVAL;
715
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
720
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
723}
724
725static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726{
727 smp_mb();
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731}
732
733/**
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
738 *
739 * Description:
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
747 *
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
751 * destination.
752 */
753static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 splice_actor *actor)
755{
756 int ret;
757
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
761
762 sd->len = buf->len;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
765
766 ret = buf->ops->confirm(pipe, buf);
767 if (unlikely(ret)) {
768 if (ret == -ENODATA)
769 ret = 0;
770 return ret;
771 }
772
773 ret = actor(pipe, buf, sd);
774 if (ret <= 0)
775 return ret;
776
777 buf->offset += ret;
778 buf->len -= ret;
779
780 sd->num_spliced += ret;
781 sd->len -= ret;
782 sd->pos += ret;
783 sd->total_len -= ret;
784
785 if (!buf->len) {
786 buf->ops = NULL;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 pipe->nrbufs--;
790 if (pipe->files)
791 sd->need_wakeup = true;
792 }
793
794 if (!sd->total_len)
795 return 0;
796 }
797
798 return 1;
799}
800
801/**
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
805 *
806 * Description:
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
810 */
811static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812{
813 /*
814 * Check for signal early to make process killable when there are
815 * always buffers available
816 */
817 if (signal_pending(current))
818 return -ERESTARTSYS;
819
820 while (!pipe->nrbufs) {
821 if (!pipe->writers)
822 return 0;
823
824 if (!pipe->waiting_writers && sd->num_spliced)
825 return 0;
826
827 if (sd->flags & SPLICE_F_NONBLOCK)
828 return -EAGAIN;
829
830 if (signal_pending(current))
831 return -ERESTARTSYS;
832
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
836 }
837
838 pipe_wait(pipe);
839 }
840
841 return 1;
842}
843
844/**
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
847 *
848 * Description:
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
852 */
853static void splice_from_pipe_begin(struct splice_desc *sd)
854{
855 sd->num_spliced = 0;
856 sd->need_wakeup = false;
857}
858
859/**
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
863 *
864 * Description:
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
868 */
869static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870{
871 if (sd->need_wakeup)
872 wakeup_pipe_writers(pipe);
873}
874
875/**
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
880 *
881 * Description:
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
885 * pipe_to_user.
886 *
887 */
888ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_actor *actor)
890{
891 int ret;
892
893 splice_from_pipe_begin(sd);
894 do {
895 cond_resched();
896 ret = splice_from_pipe_next(pipe, sd);
897 if (ret > 0)
898 ret = splice_from_pipe_feed(pipe, sd, actor);
899 } while (ret > 0);
900 splice_from_pipe_end(pipe, sd);
901
902 return sd->num_spliced ? sd->num_spliced : ret;
903}
904EXPORT_SYMBOL(__splice_from_pipe);
905
906/**
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
918 *
919 */
920ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
922 splice_actor *actor)
923{
924 ssize_t ret;
925 struct splice_desc sd = {
926 .total_len = len,
927 .flags = flags,
928 .pos = *ppos,
929 .u.file = out,
930 };
931
932 pipe_lock(pipe);
933 ret = __splice_from_pipe(pipe, &sd, actor);
934 pipe_unlock(pipe);
935
936 return ret;
937}
938
939/**
940 * iter_file_splice_write - splice data from a pipe to a file
941 * @pipe: pipe info
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
946 *
947 * Description:
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
951 *
952 */
953ssize_t
954iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
956{
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
962 };
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 GFP_KERNEL);
966 ssize_t ret;
967
968 if (unlikely(!array))
969 return -ENOMEM;
970
971 pipe_lock(pipe);
972
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
976 size_t left;
977 int n, idx;
978
979 ret = splice_from_pipe_next(pipe, &sd);
980 if (ret <= 0)
981 break;
982
983 if (unlikely(nbufs < pipe->buffers)) {
984 kfree(array);
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
987 GFP_KERNEL);
988 if (!array) {
989 ret = -ENOMEM;
990 break;
991 }
992 }
993
994 /* build the vector */
995 left = sd.total_len;
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
999
1000 if (this_len > left)
1001 this_len = left;
1002
1003 if (idx == pipe->buffers - 1)
1004 idx = -1;
1005
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1009 ret = 0;
1010 goto done;
1011 }
1012
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1016 left -= this_len;
1017 }
1018
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1022 if (ret <= 0)
1023 break;
1024
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos;
1028
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1046 }
1047 }
1048 }
1049done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1052
1053 pipe_unlock(pipe);
1054
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1057
1058 return ret;
1059}
1060
1061EXPORT_SYMBOL(iter_file_splice_write);
1062
1063static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065{
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1073
1074 return ret;
1075}
1076
1077static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080{
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088}
1089
1090/**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105{
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107}
1108
1109EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111/*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116{
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126}
1127
1128/*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134{
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (unlikely(len > MAX_RW_COUNT))
1147 len = MAX_RW_COUNT;
1148
1149 if (in->f_op->splice_read)
1150 splice_read = in->f_op->splice_read;
1151 else
1152 splice_read = default_file_splice_read;
1153
1154 return splice_read(in, ppos, pipe, len, flags);
1155}
1156
1157/**
1158 * splice_direct_to_actor - splices data directly between two non-pipes
1159 * @in: file to splice from
1160 * @sd: actor information on where to splice to
1161 * @actor: handles the data splicing
1162 *
1163 * Description:
1164 * This is a special case helper to splice directly between two
1165 * points, without requiring an explicit pipe. Internally an allocated
1166 * pipe is cached in the process, and reused during the lifetime of
1167 * that process.
1168 *
1169 */
1170ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 splice_direct_actor *actor)
1172{
1173 struct pipe_inode_info *pipe;
1174 long ret, bytes;
1175 umode_t i_mode;
1176 size_t len;
1177 int i, flags, more;
1178
1179 /*
1180 * We require the input being a regular file, as we don't want to
1181 * randomly drop data for eg socket -> socket splicing. Use the
1182 * piped splicing for that!
1183 */
1184 i_mode = file_inode(in)->i_mode;
1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 return -EINVAL;
1187
1188 /*
1189 * neither in nor out is a pipe, setup an internal pipe attached to
1190 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 */
1192 pipe = current->splice_pipe;
1193 if (unlikely(!pipe)) {
1194 pipe = alloc_pipe_info();
1195 if (!pipe)
1196 return -ENOMEM;
1197
1198 /*
1199 * We don't have an immediate reader, but we'll read the stuff
1200 * out of the pipe right after the splice_to_pipe(). So set
1201 * PIPE_READERS appropriately.
1202 */
1203 pipe->readers = 1;
1204
1205 current->splice_pipe = pipe;
1206 }
1207
1208 /*
1209 * Do the splice.
1210 */
1211 ret = 0;
1212 bytes = 0;
1213 len = sd->total_len;
1214 flags = sd->flags;
1215
1216 /*
1217 * Don't block on output, we have to drain the direct pipe.
1218 */
1219 sd->flags &= ~SPLICE_F_NONBLOCK;
1220 more = sd->flags & SPLICE_F_MORE;
1221
1222 while (len) {
1223 size_t read_len;
1224 loff_t pos = sd->pos, prev_pos = pos;
1225
1226 ret = do_splice_to(in, &pos, pipe, len, flags);
1227 if (unlikely(ret <= 0))
1228 goto out_release;
1229
1230 read_len = ret;
1231 sd->total_len = read_len;
1232
1233 /*
1234 * If more data is pending, set SPLICE_F_MORE
1235 * If this is the last data and SPLICE_F_MORE was not set
1236 * initially, clears it.
1237 */
1238 if (read_len < len)
1239 sd->flags |= SPLICE_F_MORE;
1240 else if (!more)
1241 sd->flags &= ~SPLICE_F_MORE;
1242 /*
1243 * NOTE: nonblocking mode only applies to the input. We
1244 * must not do the output in nonblocking mode as then we
1245 * could get stuck data in the internal pipe:
1246 */
1247 ret = actor(pipe, sd);
1248 if (unlikely(ret <= 0)) {
1249 sd->pos = prev_pos;
1250 goto out_release;
1251 }
1252
1253 bytes += ret;
1254 len -= ret;
1255 sd->pos = pos;
1256
1257 if (ret < read_len) {
1258 sd->pos = prev_pos + ret;
1259 goto out_release;
1260 }
1261 }
1262
1263done:
1264 pipe->nrbufs = pipe->curbuf = 0;
1265 file_accessed(in);
1266 return bytes;
1267
1268out_release:
1269 /*
1270 * If we did an incomplete transfer we must release
1271 * the pipe buffers in question:
1272 */
1273 for (i = 0; i < pipe->buffers; i++) {
1274 struct pipe_buffer *buf = pipe->bufs + i;
1275
1276 if (buf->ops) {
1277 buf->ops->release(pipe, buf);
1278 buf->ops = NULL;
1279 }
1280 }
1281
1282 if (!bytes)
1283 bytes = ret;
1284
1285 goto done;
1286}
1287EXPORT_SYMBOL(splice_direct_to_actor);
1288
1289static int direct_splice_actor(struct pipe_inode_info *pipe,
1290 struct splice_desc *sd)
1291{
1292 struct file *file = sd->u.file;
1293
1294 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1295 sd->flags);
1296}
1297
1298/**
1299 * do_splice_direct - splices data directly between two files
1300 * @in: file to splice from
1301 * @ppos: input file offset
1302 * @out: file to splice to
1303 * @opos: output file offset
1304 * @len: number of bytes to splice
1305 * @flags: splice modifier flags
1306 *
1307 * Description:
1308 * For use by do_sendfile(). splice can easily emulate sendfile, but
1309 * doing it in the application would incur an extra system call
1310 * (splice in + splice out, as compared to just sendfile()). So this helper
1311 * can splice directly through a process-private pipe.
1312 *
1313 */
1314long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1315 loff_t *opos, size_t len, unsigned int flags)
1316{
1317 struct splice_desc sd = {
1318 .len = len,
1319 .total_len = len,
1320 .flags = flags,
1321 .pos = *ppos,
1322 .u.file = out,
1323 .opos = opos,
1324 };
1325 long ret;
1326
1327 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1328 return -EBADF;
1329
1330 if (unlikely(out->f_flags & O_APPEND))
1331 return -EINVAL;
1332
1333 ret = rw_verify_area(WRITE, out, opos, len);
1334 if (unlikely(ret < 0))
1335 return ret;
1336
1337 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1338 if (ret > 0)
1339 *ppos = sd.pos;
1340
1341 return ret;
1342}
1343EXPORT_SYMBOL(do_splice_direct);
1344
1345static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1346 struct pipe_inode_info *opipe,
1347 size_t len, unsigned int flags);
1348
1349/*
1350 * Determine where to splice to/from.
1351 */
1352static long do_splice(struct file *in, loff_t __user *off_in,
1353 struct file *out, loff_t __user *off_out,
1354 size_t len, unsigned int flags)
1355{
1356 struct pipe_inode_info *ipipe;
1357 struct pipe_inode_info *opipe;
1358 loff_t offset;
1359 long ret;
1360
1361 ipipe = get_pipe_info(in);
1362 opipe = get_pipe_info(out);
1363
1364 if (ipipe && opipe) {
1365 if (off_in || off_out)
1366 return -ESPIPE;
1367
1368 if (!(in->f_mode & FMODE_READ))
1369 return -EBADF;
1370
1371 if (!(out->f_mode & FMODE_WRITE))
1372 return -EBADF;
1373
1374 /* Splicing to self would be fun, but... */
1375 if (ipipe == opipe)
1376 return -EINVAL;
1377
1378 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1379 }
1380
1381 if (ipipe) {
1382 if (off_in)
1383 return -ESPIPE;
1384 if (off_out) {
1385 if (!(out->f_mode & FMODE_PWRITE))
1386 return -EINVAL;
1387 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1388 return -EFAULT;
1389 } else {
1390 offset = out->f_pos;
1391 }
1392
1393 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1394 return -EBADF;
1395
1396 if (unlikely(out->f_flags & O_APPEND))
1397 return -EINVAL;
1398
1399 ret = rw_verify_area(WRITE, out, &offset, len);
1400 if (unlikely(ret < 0))
1401 return ret;
1402
1403 file_start_write(out);
1404 ret = do_splice_from(ipipe, out, &offset, len, flags);
1405 file_end_write(out);
1406
1407 if (!off_out)
1408 out->f_pos = offset;
1409 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413 }
1414
1415 if (opipe) {
1416 if (off_out)
1417 return -ESPIPE;
1418 if (off_in) {
1419 if (!(in->f_mode & FMODE_PREAD))
1420 return -EINVAL;
1421 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1422 return -EFAULT;
1423 } else {
1424 offset = in->f_pos;
1425 }
1426
1427 ret = do_splice_to(in, &offset, opipe, len, flags);
1428
1429 if (!off_in)
1430 in->f_pos = offset;
1431 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435 }
1436
1437 return -EINVAL;
1438}
1439
1440/*
1441 * Map an iov into an array of pages and offset/length tupples. With the
1442 * partial_page structure, we can map several non-contiguous ranges into
1443 * our ones pages[] map instead of splitting that operation into pieces.
1444 * Could easily be exported as a generic helper for other users, in which
1445 * case one would probably want to add a 'max_nr_pages' parameter as well.
1446 */
1447static int get_iovec_page_array(const struct iovec __user *iov,
1448 unsigned int nr_vecs, struct page **pages,
1449 struct partial_page *partial, bool aligned,
1450 unsigned int pipe_buffers)
1451{
1452 int buffers = 0, error = 0;
1453
1454 while (nr_vecs) {
1455 unsigned long off, npages;
1456 struct iovec entry;
1457 void __user *base;
1458 size_t len;
1459 int i;
1460
1461 error = -EFAULT;
1462 if (copy_from_user(&entry, iov, sizeof(entry)))
1463 break;
1464
1465 base = entry.iov_base;
1466 len = entry.iov_len;
1467
1468 /*
1469 * Sanity check this iovec. 0 read succeeds.
1470 */
1471 error = 0;
1472 if (unlikely(!len))
1473 break;
1474 error = -EFAULT;
1475 if (!access_ok(VERIFY_READ, base, len))
1476 break;
1477
1478 /*
1479 * Get this base offset and number of pages, then map
1480 * in the user pages.
1481 */
1482 off = (unsigned long) base & ~PAGE_MASK;
1483
1484 /*
1485 * If asked for alignment, the offset must be zero and the
1486 * length a multiple of the PAGE_SIZE.
1487 */
1488 error = -EINVAL;
1489 if (aligned && (off || len & ~PAGE_MASK))
1490 break;
1491
1492 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 if (npages > pipe_buffers - buffers)
1494 npages = pipe_buffers - buffers;
1495
1496 error = get_user_pages_fast((unsigned long)base, npages,
1497 0, &pages[buffers]);
1498
1499 if (unlikely(error <= 0))
1500 break;
1501
1502 /*
1503 * Fill this contiguous range into the partial page map.
1504 */
1505 for (i = 0; i < error; i++) {
1506 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507
1508 partial[buffers].offset = off;
1509 partial[buffers].len = plen;
1510
1511 off = 0;
1512 len -= plen;
1513 buffers++;
1514 }
1515
1516 /*
1517 * We didn't complete this iov, stop here since it probably
1518 * means we have to move some of this into a pipe to
1519 * be able to continue.
1520 */
1521 if (len)
1522 break;
1523
1524 /*
1525 * Don't continue if we mapped fewer pages than we asked for,
1526 * or if we mapped the max number of pages that we have
1527 * room for.
1528 */
1529 if (error < npages || buffers == pipe_buffers)
1530 break;
1531
1532 nr_vecs--;
1533 iov++;
1534 }
1535
1536 if (buffers)
1537 return buffers;
1538
1539 return error;
1540}
1541
1542static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1543 struct splice_desc *sd)
1544{
1545 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1546 return n == sd->len ? n : -EFAULT;
1547}
1548
1549/*
1550 * For lack of a better implementation, implement vmsplice() to userspace
1551 * as a simple copy of the pipes pages to the user iov.
1552 */
1553static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1554 unsigned long nr_segs, unsigned int flags)
1555{
1556 struct pipe_inode_info *pipe;
1557 struct splice_desc sd;
1558 long ret;
1559 struct iovec iovstack[UIO_FASTIOV];
1560 struct iovec *iov = iovstack;
1561 struct iov_iter iter;
1562
1563 pipe = get_pipe_info(file);
1564 if (!pipe)
1565 return -EBADF;
1566
1567 ret = import_iovec(READ, uiov, nr_segs,
1568 ARRAY_SIZE(iovstack), &iov, &iter);
1569 if (ret < 0)
1570 return ret;
1571
1572 sd.total_len = iov_iter_count(&iter);
1573 sd.len = 0;
1574 sd.flags = flags;
1575 sd.u.data = &iter;
1576 sd.pos = 0;
1577
1578 if (sd.total_len) {
1579 pipe_lock(pipe);
1580 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581 pipe_unlock(pipe);
1582 }
1583
1584 kfree(iov);
1585 return ret;
1586}
1587
1588/*
1589 * vmsplice splices a user address range into a pipe. It can be thought of
1590 * as splice-from-memory, where the regular splice is splice-from-file (or
1591 * to file). In both cases the output is a pipe, naturally.
1592 */
1593static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1594 unsigned long nr_segs, unsigned int flags)
1595{
1596 struct pipe_inode_info *pipe;
1597 struct page *pages[PIPE_DEF_BUFFERS];
1598 struct partial_page partial[PIPE_DEF_BUFFERS];
1599 struct splice_pipe_desc spd = {
1600 .pages = pages,
1601 .partial = partial,
1602 .nr_pages_max = PIPE_DEF_BUFFERS,
1603 .flags = flags,
1604 .ops = &user_page_pipe_buf_ops,
1605 .spd_release = spd_release_page,
1606 };
1607 long ret;
1608
1609 pipe = get_pipe_info(file);
1610 if (!pipe)
1611 return -EBADF;
1612
1613 if (splice_grow_spd(pipe, &spd))
1614 return -ENOMEM;
1615
1616 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1617 spd.partial, false,
1618 spd.nr_pages_max);
1619 if (spd.nr_pages <= 0)
1620 ret = spd.nr_pages;
1621 else
1622 ret = splice_to_pipe(pipe, &spd);
1623
1624 splice_shrink_spd(&spd);
1625 return ret;
1626}
1627
1628/*
1629 * Note that vmsplice only really supports true splicing _from_ user memory
1630 * to a pipe, not the other way around. Splicing from user memory is a simple
1631 * operation that can be supported without any funky alignment restrictions
1632 * or nasty vm tricks. We simply map in the user memory and fill them into
1633 * a pipe. The reverse isn't quite as easy, though. There are two possible
1634 * solutions for that:
1635 *
1636 * - memcpy() the data internally, at which point we might as well just
1637 * do a regular read() on the buffer anyway.
1638 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1639 * has restriction limitations on both ends of the pipe).
1640 *
1641 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642 *
1643 */
1644SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1645 unsigned long, nr_segs, unsigned int, flags)
1646{
1647 struct fd f;
1648 long error;
1649
1650 if (unlikely(nr_segs > UIO_MAXIOV))
1651 return -EINVAL;
1652 else if (unlikely(!nr_segs))
1653 return 0;
1654
1655 error = -EBADF;
1656 f = fdget(fd);
1657 if (f.file) {
1658 if (f.file->f_mode & FMODE_WRITE)
1659 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1660 else if (f.file->f_mode & FMODE_READ)
1661 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662
1663 fdput(f);
1664 }
1665
1666 return error;
1667}
1668
1669#ifdef CONFIG_COMPAT
1670COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1671 unsigned int, nr_segs, unsigned int, flags)
1672{
1673 unsigned i;
1674 struct iovec __user *iov;
1675 if (nr_segs > UIO_MAXIOV)
1676 return -EINVAL;
1677 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1678 for (i = 0; i < nr_segs; i++) {
1679 struct compat_iovec v;
1680 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1681 get_user(v.iov_len, &iov32[i].iov_len) ||
1682 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1683 put_user(v.iov_len, &iov[i].iov_len))
1684 return -EFAULT;
1685 }
1686 return sys_vmsplice(fd, iov, nr_segs, flags);
1687}
1688#endif
1689
1690SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691 int, fd_out, loff_t __user *, off_out,
1692 size_t, len, unsigned int, flags)
1693{
1694 struct fd in, out;
1695 long error;
1696
1697 if (unlikely(!len))
1698 return 0;
1699
1700 error = -EBADF;
1701 in = fdget(fd_in);
1702 if (in.file) {
1703 if (in.file->f_mode & FMODE_READ) {
1704 out = fdget(fd_out);
1705 if (out.file) {
1706 if (out.file->f_mode & FMODE_WRITE)
1707 error = do_splice(in.file, off_in,
1708 out.file, off_out,
1709 len, flags);
1710 fdput(out);
1711 }
1712 }
1713 fdput(in);
1714 }
1715 return error;
1716}
1717
1718/*
1719 * Make sure there's data to read. Wait for input if we can, otherwise
1720 * return an appropriate error.
1721 */
1722static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723{
1724 int ret;
1725
1726 /*
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1729 */
1730 if (pipe->nrbufs)
1731 return 0;
1732
1733 ret = 0;
1734 pipe_lock(pipe);
1735
1736 while (!pipe->nrbufs) {
1737 if (signal_pending(current)) {
1738 ret = -ERESTARTSYS;
1739 break;
1740 }
1741 if (!pipe->writers)
1742 break;
1743 if (!pipe->waiting_writers) {
1744 if (flags & SPLICE_F_NONBLOCK) {
1745 ret = -EAGAIN;
1746 break;
1747 }
1748 }
1749 pipe_wait(pipe);
1750 }
1751
1752 pipe_unlock(pipe);
1753 return ret;
1754}
1755
1756/*
1757 * Make sure there's writeable room. Wait for room if we can, otherwise
1758 * return an appropriate error.
1759 */
1760static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761{
1762 int ret;
1763
1764 /*
1765 * Check ->nrbufs without the inode lock first. This function
1766 * is speculative anyways, so missing one is ok.
1767 */
1768 if (pipe->nrbufs < pipe->buffers)
1769 return 0;
1770
1771 ret = 0;
1772 pipe_lock(pipe);
1773
1774 while (pipe->nrbufs >= pipe->buffers) {
1775 if (!pipe->readers) {
1776 send_sig(SIGPIPE, current, 0);
1777 ret = -EPIPE;
1778 break;
1779 }
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784 if (signal_pending(current)) {
1785 ret = -ERESTARTSYS;
1786 break;
1787 }
1788 pipe->waiting_writers++;
1789 pipe_wait(pipe);
1790 pipe->waiting_writers--;
1791 }
1792
1793 pipe_unlock(pipe);
1794 return ret;
1795}
1796
1797/*
1798 * Splice contents of ipipe to opipe.
1799 */
1800static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801 struct pipe_inode_info *opipe,
1802 size_t len, unsigned int flags)
1803{
1804 struct pipe_buffer *ibuf, *obuf;
1805 int ret = 0, nbuf;
1806 bool input_wakeup = false;
1807
1808
1809retry:
1810 ret = ipipe_prep(ipipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 ret = opipe_prep(opipe, flags);
1815 if (ret)
1816 return ret;
1817
1818 /*
1819 * Potential ABBA deadlock, work around it by ordering lock
1820 * grabbing by pipe info address. Otherwise two different processes
1821 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 */
1823 pipe_double_lock(ipipe, opipe);
1824
1825 do {
1826 if (!opipe->readers) {
1827 send_sig(SIGPIPE, current, 0);
1828 if (!ret)
1829 ret = -EPIPE;
1830 break;
1831 }
1832
1833 if (!ipipe->nrbufs && !ipipe->writers)
1834 break;
1835
1836 /*
1837 * Cannot make any progress, because either the input
1838 * pipe is empty or the output pipe is full.
1839 */
1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841 /* Already processed some buffers, break */
1842 if (ret)
1843 break;
1844
1845 if (flags & SPLICE_F_NONBLOCK) {
1846 ret = -EAGAIN;
1847 break;
1848 }
1849
1850 /*
1851 * We raced with another reader/writer and haven't
1852 * managed to process any buffers. A zero return
1853 * value means EOF, so retry instead.
1854 */
1855 pipe_unlock(ipipe);
1856 pipe_unlock(opipe);
1857 goto retry;
1858 }
1859
1860 ibuf = ipipe->bufs + ipipe->curbuf;
1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862 obuf = opipe->bufs + nbuf;
1863
1864 if (len >= ibuf->len) {
1865 /*
1866 * Simply move the whole buffer from ipipe to opipe
1867 */
1868 *obuf = *ibuf;
1869 ibuf->ops = NULL;
1870 opipe->nrbufs++;
1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872 ipipe->nrbufs--;
1873 input_wakeup = true;
1874 } else {
1875 /*
1876 * Get a reference to this pipe buffer,
1877 * so we can copy the contents over.
1878 */
1879 ibuf->ops->get(ipipe, ibuf);
1880 *obuf = *ibuf;
1881
1882 /*
1883 * Don't inherit the gift flag, we need to
1884 * prevent multiple steals of this page.
1885 */
1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887
1888 obuf->len = len;
1889 opipe->nrbufs++;
1890 ibuf->offset += obuf->len;
1891 ibuf->len -= obuf->len;
1892 }
1893 ret += obuf->len;
1894 len -= obuf->len;
1895 } while (len);
1896
1897 pipe_unlock(ipipe);
1898 pipe_unlock(opipe);
1899
1900 /*
1901 * If we put data in the output pipe, wakeup any potential readers.
1902 */
1903 if (ret > 0)
1904 wakeup_pipe_readers(opipe);
1905
1906 if (input_wakeup)
1907 wakeup_pipe_writers(ipipe);
1908
1909 return ret;
1910}
1911
1912/*
1913 * Link contents of ipipe to opipe.
1914 */
1915static int link_pipe(struct pipe_inode_info *ipipe,
1916 struct pipe_inode_info *opipe,
1917 size_t len, unsigned int flags)
1918{
1919 struct pipe_buffer *ibuf, *obuf;
1920 int ret = 0, i = 0, nbuf;
1921
1922 /*
1923 * Potential ABBA deadlock, work around it by ordering lock
1924 * grabbing by pipe info address. Otherwise two different processes
1925 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 */
1927 pipe_double_lock(ipipe, opipe);
1928
1929 do {
1930 if (!opipe->readers) {
1931 send_sig(SIGPIPE, current, 0);
1932 if (!ret)
1933 ret = -EPIPE;
1934 break;
1935 }
1936
1937 /*
1938 * If we have iterated all input buffers or ran out of
1939 * output room, break.
1940 */
1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 break;
1943
1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946
1947 /*
1948 * Get a reference to this pipe buffer,
1949 * so we can copy the contents over.
1950 */
1951 ibuf->ops->get(ipipe, ibuf);
1952
1953 obuf = opipe->bufs + nbuf;
1954 *obuf = *ibuf;
1955
1956 /*
1957 * Don't inherit the gift flag, we need to
1958 * prevent multiple steals of this page.
1959 */
1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961
1962 if (obuf->len > len)
1963 obuf->len = len;
1964
1965 opipe->nrbufs++;
1966 ret += obuf->len;
1967 len -= obuf->len;
1968 i++;
1969 } while (len);
1970
1971 /*
1972 * return EAGAIN if we have the potential of some data in the
1973 * future, otherwise just return 0
1974 */
1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976 ret = -EAGAIN;
1977
1978 pipe_unlock(ipipe);
1979 pipe_unlock(opipe);
1980
1981 /*
1982 * If we put data in the output pipe, wakeup any potential readers.
1983 */
1984 if (ret > 0)
1985 wakeup_pipe_readers(opipe);
1986
1987 return ret;
1988}
1989
1990/*
1991 * This is a tee(1) implementation that works on pipes. It doesn't copy
1992 * any data, it simply references the 'in' pages on the 'out' pipe.
1993 * The 'flags' used are the SPLICE_F_* variants, currently the only
1994 * applicable one is SPLICE_F_NONBLOCK.
1995 */
1996static long do_tee(struct file *in, struct file *out, size_t len,
1997 unsigned int flags)
1998{
1999 struct pipe_inode_info *ipipe = get_pipe_info(in);
2000 struct pipe_inode_info *opipe = get_pipe_info(out);
2001 int ret = -EINVAL;
2002
2003 /*
2004 * Duplicate the contents of ipipe to opipe without actually
2005 * copying the data.
2006 */
2007 if (ipipe && opipe && ipipe != opipe) {
2008 /*
2009 * Keep going, unless we encounter an error. The ipipe/opipe
2010 * ordering doesn't really matter.
2011 */
2012 ret = ipipe_prep(ipipe, flags);
2013 if (!ret) {
2014 ret = opipe_prep(opipe, flags);
2015 if (!ret)
2016 ret = link_pipe(ipipe, opipe, len, flags);
2017 }
2018 }
2019
2020 return ret;
2021}
2022
2023SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024{
2025 struct fd in;
2026 int error;
2027
2028 if (unlikely(!len))
2029 return 0;
2030
2031 error = -EBADF;
2032 in = fdget(fdin);
2033 if (in.file) {
2034 if (in.file->f_mode & FMODE_READ) {
2035 struct fd out = fdget(fdout);
2036 if (out.file) {
2037 if (out.file->f_mode & FMODE_WRITE)
2038 error = do_tee(in.file, out.file,
2039 len, flags);
2040 fdput(out);
2041 }
2042 }
2043 fdput(in);
2044 }
2045
2046 return error;
2047}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/security.h>
34#include <linux/gfp.h>
35#include <linux/socket.h>
36#include <linux/compat.h>
37#include <linux/sched/signal.h>
38
39#include "internal.h"
40
41/*
42 * Attempt to steal a page from a pipe buffer. This should perhaps go into
43 * a vm helper function, it's already simplified quite a bit by the
44 * addition of remove_mapping(). If success is returned, the caller may
45 * attempt to reuse this page for another destination.
46 */
47static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
48 struct pipe_buffer *buf)
49{
50 struct page *page = buf->page;
51 struct address_space *mapping;
52
53 lock_page(page);
54
55 mapping = page_mapping(page);
56 if (mapping) {
57 WARN_ON(!PageUptodate(page));
58
59 /*
60 * At least for ext2 with nobh option, we need to wait on
61 * writeback completing on this page, since we'll remove it
62 * from the pagecache. Otherwise truncate wont wait on the
63 * page, allowing the disk blocks to be reused by someone else
64 * before we actually wrote our data to them. fs corruption
65 * ensues.
66 */
67 wait_on_page_writeback(page);
68
69 if (page_has_private(page) &&
70 !try_to_release_page(page, GFP_KERNEL))
71 goto out_unlock;
72
73 /*
74 * If we succeeded in removing the mapping, set LRU flag
75 * and return good.
76 */
77 if (remove_mapping(mapping, page)) {
78 buf->flags |= PIPE_BUF_FLAG_LRU;
79 return true;
80 }
81 }
82
83 /*
84 * Raced with truncate or failed to remove page from current
85 * address space, unlock and return failure.
86 */
87out_unlock:
88 unlock_page(page);
89 return false;
90}
91
92static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
93 struct pipe_buffer *buf)
94{
95 put_page(buf->page);
96 buf->flags &= ~PIPE_BUF_FLAG_LRU;
97}
98
99/*
100 * Check whether the contents of buf is OK to access. Since the content
101 * is a page cache page, IO may be in flight.
102 */
103static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
104 struct pipe_buffer *buf)
105{
106 struct page *page = buf->page;
107 int err;
108
109 if (!PageUptodate(page)) {
110 lock_page(page);
111
112 /*
113 * Page got truncated/unhashed. This will cause a 0-byte
114 * splice, if this is the first page.
115 */
116 if (!page->mapping) {
117 err = -ENODATA;
118 goto error;
119 }
120
121 /*
122 * Uh oh, read-error from disk.
123 */
124 if (!PageUptodate(page)) {
125 err = -EIO;
126 goto error;
127 }
128
129 /*
130 * Page is ok afterall, we are done.
131 */
132 unlock_page(page);
133 }
134
135 return 0;
136error:
137 unlock_page(page);
138 return err;
139}
140
141const struct pipe_buf_operations page_cache_pipe_buf_ops = {
142 .confirm = page_cache_pipe_buf_confirm,
143 .release = page_cache_pipe_buf_release,
144 .try_steal = page_cache_pipe_buf_try_steal,
145 .get = generic_pipe_buf_get,
146};
147
148static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
149 struct pipe_buffer *buf)
150{
151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 return false;
153
154 buf->flags |= PIPE_BUF_FLAG_LRU;
155 return generic_pipe_buf_try_steal(pipe, buf);
156}
157
158static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 .release = page_cache_pipe_buf_release,
160 .try_steal = user_page_pipe_buf_try_steal,
161 .get = generic_pipe_buf_get,
162};
163
164static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
165{
166 smp_mb();
167 if (waitqueue_active(&pipe->rd_wait))
168 wake_up_interruptible(&pipe->rd_wait);
169 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
170}
171
172/**
173 * splice_to_pipe - fill passed data into a pipe
174 * @pipe: pipe to fill
175 * @spd: data to fill
176 *
177 * Description:
178 * @spd contains a map of pages and len/offset tuples, along with
179 * the struct pipe_buf_operations associated with these pages. This
180 * function will link that data to the pipe.
181 *
182 */
183ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
184 struct splice_pipe_desc *spd)
185{
186 unsigned int spd_pages = spd->nr_pages;
187 unsigned int tail = pipe->tail;
188 unsigned int head = pipe->head;
189 unsigned int mask = pipe->ring_size - 1;
190 int ret = 0, page_nr = 0;
191
192 if (!spd_pages)
193 return 0;
194
195 if (unlikely(!pipe->readers)) {
196 send_sig(SIGPIPE, current, 0);
197 ret = -EPIPE;
198 goto out;
199 }
200
201 while (!pipe_full(head, tail, pipe->max_usage)) {
202 struct pipe_buffer *buf = &pipe->bufs[head & mask];
203
204 buf->page = spd->pages[page_nr];
205 buf->offset = spd->partial[page_nr].offset;
206 buf->len = spd->partial[page_nr].len;
207 buf->private = spd->partial[page_nr].private;
208 buf->ops = spd->ops;
209 buf->flags = 0;
210
211 head++;
212 pipe->head = head;
213 page_nr++;
214 ret += buf->len;
215
216 if (!--spd->nr_pages)
217 break;
218 }
219
220 if (!ret)
221 ret = -EAGAIN;
222
223out:
224 while (page_nr < spd_pages)
225 spd->spd_release(spd, page_nr++);
226
227 return ret;
228}
229EXPORT_SYMBOL_GPL(splice_to_pipe);
230
231ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
232{
233 unsigned int head = pipe->head;
234 unsigned int tail = pipe->tail;
235 unsigned int mask = pipe->ring_size - 1;
236 int ret;
237
238 if (unlikely(!pipe->readers)) {
239 send_sig(SIGPIPE, current, 0);
240 ret = -EPIPE;
241 } else if (pipe_full(head, tail, pipe->max_usage)) {
242 ret = -EAGAIN;
243 } else {
244 pipe->bufs[head & mask] = *buf;
245 pipe->head = head + 1;
246 return buf->len;
247 }
248 pipe_buf_release(pipe, buf);
249 return ret;
250}
251EXPORT_SYMBOL(add_to_pipe);
252
253/*
254 * Check if we need to grow the arrays holding pages and partial page
255 * descriptions.
256 */
257int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
258{
259 unsigned int max_usage = READ_ONCE(pipe->max_usage);
260
261 spd->nr_pages_max = max_usage;
262 if (max_usage <= PIPE_DEF_BUFFERS)
263 return 0;
264
265 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
266 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
267 GFP_KERNEL);
268
269 if (spd->pages && spd->partial)
270 return 0;
271
272 kfree(spd->pages);
273 kfree(spd->partial);
274 return -ENOMEM;
275}
276
277void splice_shrink_spd(struct splice_pipe_desc *spd)
278{
279 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
280 return;
281
282 kfree(spd->pages);
283 kfree(spd->partial);
284}
285
286/**
287 * generic_file_splice_read - splice data from file to a pipe
288 * @in: file to splice from
289 * @ppos: position in @in
290 * @pipe: pipe to splice to
291 * @len: number of bytes to splice
292 * @flags: splice modifier flags
293 *
294 * Description:
295 * Will read pages from given file and fill them into a pipe. Can be
296 * used as long as it has more or less sane ->read_iter().
297 *
298 */
299ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
300 struct pipe_inode_info *pipe, size_t len,
301 unsigned int flags)
302{
303 struct iov_iter to;
304 struct kiocb kiocb;
305 unsigned int i_head;
306 int ret;
307
308 iov_iter_pipe(&to, READ, pipe, len);
309 i_head = to.head;
310 init_sync_kiocb(&kiocb, in);
311 kiocb.ki_pos = *ppos;
312 ret = call_read_iter(in, &kiocb, &to);
313 if (ret > 0) {
314 *ppos = kiocb.ki_pos;
315 file_accessed(in);
316 } else if (ret < 0) {
317 to.head = i_head;
318 to.iov_offset = 0;
319 iov_iter_advance(&to, 0); /* to free what was emitted */
320 /*
321 * callers of ->splice_read() expect -EAGAIN on
322 * "can't put anything in there", rather than -EFAULT.
323 */
324 if (ret == -EFAULT)
325 ret = -EAGAIN;
326 }
327
328 return ret;
329}
330EXPORT_SYMBOL(generic_file_splice_read);
331
332const struct pipe_buf_operations default_pipe_buf_ops = {
333 .release = generic_pipe_buf_release,
334 .try_steal = generic_pipe_buf_try_steal,
335 .get = generic_pipe_buf_get,
336};
337
338/* Pipe buffer operations for a socket and similar. */
339const struct pipe_buf_operations nosteal_pipe_buf_ops = {
340 .release = generic_pipe_buf_release,
341 .get = generic_pipe_buf_get,
342};
343EXPORT_SYMBOL(nosteal_pipe_buf_ops);
344
345static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
346 unsigned long vlen, loff_t offset)
347{
348 mm_segment_t old_fs;
349 loff_t pos = offset;
350 ssize_t res;
351
352 old_fs = get_fs();
353 set_fs(KERNEL_DS);
354 /* The cast to a user pointer is valid due to the set_fs() */
355 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
356 set_fs(old_fs);
357
358 return res;
359}
360
361static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
362 struct pipe_inode_info *pipe, size_t len,
363 unsigned int flags)
364{
365 struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
366 struct iov_iter to;
367 struct page **pages;
368 unsigned int nr_pages;
369 unsigned int mask;
370 size_t offset, base, copied = 0;
371 ssize_t res;
372 int i;
373
374 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
375 return -EAGAIN;
376
377 /*
378 * Try to keep page boundaries matching to source pagecache ones -
379 * it probably won't be much help, but...
380 */
381 offset = *ppos & ~PAGE_MASK;
382
383 iov_iter_pipe(&to, READ, pipe, len + offset);
384
385 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
386 if (res <= 0)
387 return -ENOMEM;
388
389 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
390
391 vec = __vec;
392 if (nr_pages > PIPE_DEF_BUFFERS) {
393 vec = kmalloc_array(nr_pages, sizeof(struct kvec), GFP_KERNEL);
394 if (unlikely(!vec)) {
395 res = -ENOMEM;
396 goto out;
397 }
398 }
399
400 mask = pipe->ring_size - 1;
401 pipe->bufs[to.head & mask].offset = offset;
402 pipe->bufs[to.head & mask].len -= offset;
403
404 for (i = 0; i < nr_pages; i++) {
405 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
406 vec[i].iov_base = page_address(pages[i]) + offset;
407 vec[i].iov_len = this_len;
408 len -= this_len;
409 offset = 0;
410 }
411
412 res = kernel_readv(in, vec, nr_pages, *ppos);
413 if (res > 0) {
414 copied = res;
415 *ppos += res;
416 }
417
418 if (vec != __vec)
419 kfree(vec);
420out:
421 for (i = 0; i < nr_pages; i++)
422 put_page(pages[i]);
423 kvfree(pages);
424 iov_iter_advance(&to, copied); /* truncates and discards */
425 return res;
426}
427
428/*
429 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
430 * using sendpage(). Return the number of bytes sent.
431 */
432static int pipe_to_sendpage(struct pipe_inode_info *pipe,
433 struct pipe_buffer *buf, struct splice_desc *sd)
434{
435 struct file *file = sd->u.file;
436 loff_t pos = sd->pos;
437 int more;
438
439 if (!likely(file->f_op->sendpage))
440 return -EINVAL;
441
442 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
443
444 if (sd->len < sd->total_len &&
445 pipe_occupancy(pipe->head, pipe->tail) > 1)
446 more |= MSG_SENDPAGE_NOTLAST;
447
448 return file->f_op->sendpage(file, buf->page, buf->offset,
449 sd->len, &pos, more);
450}
451
452static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
453{
454 smp_mb();
455 if (waitqueue_active(&pipe->wr_wait))
456 wake_up_interruptible(&pipe->wr_wait);
457 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
458}
459
460/**
461 * splice_from_pipe_feed - feed available data from a pipe to a file
462 * @pipe: pipe to splice from
463 * @sd: information to @actor
464 * @actor: handler that splices the data
465 *
466 * Description:
467 * This function loops over the pipe and calls @actor to do the
468 * actual moving of a single struct pipe_buffer to the desired
469 * destination. It returns when there's no more buffers left in
470 * the pipe or if the requested number of bytes (@sd->total_len)
471 * have been copied. It returns a positive number (one) if the
472 * pipe needs to be filled with more data, zero if the required
473 * number of bytes have been copied and -errno on error.
474 *
475 * This, together with splice_from_pipe_{begin,end,next}, may be
476 * used to implement the functionality of __splice_from_pipe() when
477 * locking is required around copying the pipe buffers to the
478 * destination.
479 */
480static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
481 splice_actor *actor)
482{
483 unsigned int head = pipe->head;
484 unsigned int tail = pipe->tail;
485 unsigned int mask = pipe->ring_size - 1;
486 int ret;
487
488 while (!pipe_empty(head, tail)) {
489 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
490
491 sd->len = buf->len;
492 if (sd->len > sd->total_len)
493 sd->len = sd->total_len;
494
495 ret = pipe_buf_confirm(pipe, buf);
496 if (unlikely(ret)) {
497 if (ret == -ENODATA)
498 ret = 0;
499 return ret;
500 }
501
502 ret = actor(pipe, buf, sd);
503 if (ret <= 0)
504 return ret;
505
506 buf->offset += ret;
507 buf->len -= ret;
508
509 sd->num_spliced += ret;
510 sd->len -= ret;
511 sd->pos += ret;
512 sd->total_len -= ret;
513
514 if (!buf->len) {
515 pipe_buf_release(pipe, buf);
516 tail++;
517 pipe->tail = tail;
518 if (pipe->files)
519 sd->need_wakeup = true;
520 }
521
522 if (!sd->total_len)
523 return 0;
524 }
525
526 return 1;
527}
528
529/* We know we have a pipe buffer, but maybe it's empty? */
530static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
531{
532 unsigned int tail = pipe->tail;
533 unsigned int mask = pipe->ring_size - 1;
534 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
535
536 if (unlikely(!buf->len)) {
537 pipe_buf_release(pipe, buf);
538 pipe->tail = tail+1;
539 return true;
540 }
541
542 return false;
543}
544
545/**
546 * splice_from_pipe_next - wait for some data to splice from
547 * @pipe: pipe to splice from
548 * @sd: information about the splice operation
549 *
550 * Description:
551 * This function will wait for some data and return a positive
552 * value (one) if pipe buffers are available. It will return zero
553 * or -errno if no more data needs to be spliced.
554 */
555static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
556{
557 /*
558 * Check for signal early to make process killable when there are
559 * always buffers available
560 */
561 if (signal_pending(current))
562 return -ERESTARTSYS;
563
564repeat:
565 while (pipe_empty(pipe->head, pipe->tail)) {
566 if (!pipe->writers)
567 return 0;
568
569 if (sd->num_spliced)
570 return 0;
571
572 if (sd->flags & SPLICE_F_NONBLOCK)
573 return -EAGAIN;
574
575 if (signal_pending(current))
576 return -ERESTARTSYS;
577
578 if (sd->need_wakeup) {
579 wakeup_pipe_writers(pipe);
580 sd->need_wakeup = false;
581 }
582
583 pipe_wait_readable(pipe);
584 }
585
586 if (eat_empty_buffer(pipe))
587 goto repeat;
588
589 return 1;
590}
591
592/**
593 * splice_from_pipe_begin - start splicing from pipe
594 * @sd: information about the splice operation
595 *
596 * Description:
597 * This function should be called before a loop containing
598 * splice_from_pipe_next() and splice_from_pipe_feed() to
599 * initialize the necessary fields of @sd.
600 */
601static void splice_from_pipe_begin(struct splice_desc *sd)
602{
603 sd->num_spliced = 0;
604 sd->need_wakeup = false;
605}
606
607/**
608 * splice_from_pipe_end - finish splicing from pipe
609 * @pipe: pipe to splice from
610 * @sd: information about the splice operation
611 *
612 * Description:
613 * This function will wake up pipe writers if necessary. It should
614 * be called after a loop containing splice_from_pipe_next() and
615 * splice_from_pipe_feed().
616 */
617static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
618{
619 if (sd->need_wakeup)
620 wakeup_pipe_writers(pipe);
621}
622
623/**
624 * __splice_from_pipe - splice data from a pipe to given actor
625 * @pipe: pipe to splice from
626 * @sd: information to @actor
627 * @actor: handler that splices the data
628 *
629 * Description:
630 * This function does little more than loop over the pipe and call
631 * @actor to do the actual moving of a single struct pipe_buffer to
632 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
633 * pipe_to_user.
634 *
635 */
636ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
637 splice_actor *actor)
638{
639 int ret;
640
641 splice_from_pipe_begin(sd);
642 do {
643 cond_resched();
644 ret = splice_from_pipe_next(pipe, sd);
645 if (ret > 0)
646 ret = splice_from_pipe_feed(pipe, sd, actor);
647 } while (ret > 0);
648 splice_from_pipe_end(pipe, sd);
649
650 return sd->num_spliced ? sd->num_spliced : ret;
651}
652EXPORT_SYMBOL(__splice_from_pipe);
653
654/**
655 * splice_from_pipe - splice data from a pipe to a file
656 * @pipe: pipe to splice from
657 * @out: file to splice to
658 * @ppos: position in @out
659 * @len: how many bytes to splice
660 * @flags: splice modifier flags
661 * @actor: handler that splices the data
662 *
663 * Description:
664 * See __splice_from_pipe. This function locks the pipe inode,
665 * otherwise it's identical to __splice_from_pipe().
666 *
667 */
668ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
669 loff_t *ppos, size_t len, unsigned int flags,
670 splice_actor *actor)
671{
672 ssize_t ret;
673 struct splice_desc sd = {
674 .total_len = len,
675 .flags = flags,
676 .pos = *ppos,
677 .u.file = out,
678 };
679
680 pipe_lock(pipe);
681 ret = __splice_from_pipe(pipe, &sd, actor);
682 pipe_unlock(pipe);
683
684 return ret;
685}
686
687/**
688 * iter_file_splice_write - splice data from a pipe to a file
689 * @pipe: pipe info
690 * @out: file to write to
691 * @ppos: position in @out
692 * @len: number of bytes to splice
693 * @flags: splice modifier flags
694 *
695 * Description:
696 * Will either move or copy pages (determined by @flags options) from
697 * the given pipe inode to the given file.
698 * This one is ->write_iter-based.
699 *
700 */
701ssize_t
702iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
703 loff_t *ppos, size_t len, unsigned int flags)
704{
705 struct splice_desc sd = {
706 .total_len = len,
707 .flags = flags,
708 .pos = *ppos,
709 .u.file = out,
710 };
711 int nbufs = pipe->max_usage;
712 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
713 GFP_KERNEL);
714 ssize_t ret;
715
716 if (unlikely(!array))
717 return -ENOMEM;
718
719 pipe_lock(pipe);
720
721 splice_from_pipe_begin(&sd);
722 while (sd.total_len) {
723 struct iov_iter from;
724 unsigned int head, tail, mask;
725 size_t left;
726 int n;
727
728 ret = splice_from_pipe_next(pipe, &sd);
729 if (ret <= 0)
730 break;
731
732 if (unlikely(nbufs < pipe->max_usage)) {
733 kfree(array);
734 nbufs = pipe->max_usage;
735 array = kcalloc(nbufs, sizeof(struct bio_vec),
736 GFP_KERNEL);
737 if (!array) {
738 ret = -ENOMEM;
739 break;
740 }
741 }
742
743 head = pipe->head;
744 tail = pipe->tail;
745 mask = pipe->ring_size - 1;
746
747 /* build the vector */
748 left = sd.total_len;
749 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++, n++) {
750 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
751 size_t this_len = buf->len;
752
753 if (this_len > left)
754 this_len = left;
755
756 ret = pipe_buf_confirm(pipe, buf);
757 if (unlikely(ret)) {
758 if (ret == -ENODATA)
759 ret = 0;
760 goto done;
761 }
762
763 array[n].bv_page = buf->page;
764 array[n].bv_len = this_len;
765 array[n].bv_offset = buf->offset;
766 left -= this_len;
767 }
768
769 iov_iter_bvec(&from, WRITE, array, n, sd.total_len - left);
770 ret = vfs_iter_write(out, &from, &sd.pos, 0);
771 if (ret <= 0)
772 break;
773
774 sd.num_spliced += ret;
775 sd.total_len -= ret;
776 *ppos = sd.pos;
777
778 /* dismiss the fully eaten buffers, adjust the partial one */
779 tail = pipe->tail;
780 while (ret) {
781 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
782 if (ret >= buf->len) {
783 ret -= buf->len;
784 buf->len = 0;
785 pipe_buf_release(pipe, buf);
786 tail++;
787 pipe->tail = tail;
788 if (pipe->files)
789 sd.need_wakeup = true;
790 } else {
791 buf->offset += ret;
792 buf->len -= ret;
793 ret = 0;
794 }
795 }
796 }
797done:
798 kfree(array);
799 splice_from_pipe_end(pipe, &sd);
800
801 pipe_unlock(pipe);
802
803 if (sd.num_spliced)
804 ret = sd.num_spliced;
805
806 return ret;
807}
808
809EXPORT_SYMBOL(iter_file_splice_write);
810
811static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
812 struct splice_desc *sd)
813{
814 int ret;
815 void *data;
816 loff_t tmp = sd->pos;
817
818 data = kmap(buf->page);
819 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
820 kunmap(buf->page);
821
822 return ret;
823}
824
825static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
826 struct file *out, loff_t *ppos,
827 size_t len, unsigned int flags)
828{
829 ssize_t ret;
830
831 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
832 if (ret > 0)
833 *ppos += ret;
834
835 return ret;
836}
837
838/**
839 * generic_splice_sendpage - splice data from a pipe to a socket
840 * @pipe: pipe to splice from
841 * @out: socket to write to
842 * @ppos: position in @out
843 * @len: number of bytes to splice
844 * @flags: splice modifier flags
845 *
846 * Description:
847 * Will send @len bytes from the pipe to a network socket. No data copying
848 * is involved.
849 *
850 */
851ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
852 loff_t *ppos, size_t len, unsigned int flags)
853{
854 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
855}
856
857EXPORT_SYMBOL(generic_splice_sendpage);
858
859/*
860 * Attempt to initiate a splice from pipe to file.
861 */
862static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
863 loff_t *ppos, size_t len, unsigned int flags)
864{
865 if (out->f_op->splice_write)
866 return out->f_op->splice_write(pipe, out, ppos, len, flags);
867 return default_file_splice_write(pipe, out, ppos, len, flags);
868}
869
870/*
871 * Attempt to initiate a splice from a file to a pipe.
872 */
873static long do_splice_to(struct file *in, loff_t *ppos,
874 struct pipe_inode_info *pipe, size_t len,
875 unsigned int flags)
876{
877 int ret;
878
879 if (unlikely(!(in->f_mode & FMODE_READ)))
880 return -EBADF;
881
882 ret = rw_verify_area(READ, in, ppos, len);
883 if (unlikely(ret < 0))
884 return ret;
885
886 if (unlikely(len > MAX_RW_COUNT))
887 len = MAX_RW_COUNT;
888
889 if (in->f_op->splice_read)
890 return in->f_op->splice_read(in, ppos, pipe, len, flags);
891 return default_file_splice_read(in, ppos, pipe, len, flags);
892}
893
894/**
895 * splice_direct_to_actor - splices data directly between two non-pipes
896 * @in: file to splice from
897 * @sd: actor information on where to splice to
898 * @actor: handles the data splicing
899 *
900 * Description:
901 * This is a special case helper to splice directly between two
902 * points, without requiring an explicit pipe. Internally an allocated
903 * pipe is cached in the process, and reused during the lifetime of
904 * that process.
905 *
906 */
907ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
908 splice_direct_actor *actor)
909{
910 struct pipe_inode_info *pipe;
911 long ret, bytes;
912 umode_t i_mode;
913 size_t len;
914 int i, flags, more;
915
916 /*
917 * We require the input being a regular file, as we don't want to
918 * randomly drop data for eg socket -> socket splicing. Use the
919 * piped splicing for that!
920 */
921 i_mode = file_inode(in)->i_mode;
922 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
923 return -EINVAL;
924
925 /*
926 * neither in nor out is a pipe, setup an internal pipe attached to
927 * 'out' and transfer the wanted data from 'in' to 'out' through that
928 */
929 pipe = current->splice_pipe;
930 if (unlikely(!pipe)) {
931 pipe = alloc_pipe_info();
932 if (!pipe)
933 return -ENOMEM;
934
935 /*
936 * We don't have an immediate reader, but we'll read the stuff
937 * out of the pipe right after the splice_to_pipe(). So set
938 * PIPE_READERS appropriately.
939 */
940 pipe->readers = 1;
941
942 current->splice_pipe = pipe;
943 }
944
945 /*
946 * Do the splice.
947 */
948 ret = 0;
949 bytes = 0;
950 len = sd->total_len;
951 flags = sd->flags;
952
953 /*
954 * Don't block on output, we have to drain the direct pipe.
955 */
956 sd->flags &= ~SPLICE_F_NONBLOCK;
957 more = sd->flags & SPLICE_F_MORE;
958
959 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
960
961 while (len) {
962 unsigned int p_space;
963 size_t read_len;
964 loff_t pos = sd->pos, prev_pos = pos;
965
966 /* Don't try to read more the pipe has space for. */
967 p_space = pipe->max_usage -
968 pipe_occupancy(pipe->head, pipe->tail);
969 read_len = min_t(size_t, len, p_space << PAGE_SHIFT);
970 ret = do_splice_to(in, &pos, pipe, read_len, flags);
971 if (unlikely(ret <= 0))
972 goto out_release;
973
974 read_len = ret;
975 sd->total_len = read_len;
976
977 /*
978 * If more data is pending, set SPLICE_F_MORE
979 * If this is the last data and SPLICE_F_MORE was not set
980 * initially, clears it.
981 */
982 if (read_len < len)
983 sd->flags |= SPLICE_F_MORE;
984 else if (!more)
985 sd->flags &= ~SPLICE_F_MORE;
986 /*
987 * NOTE: nonblocking mode only applies to the input. We
988 * must not do the output in nonblocking mode as then we
989 * could get stuck data in the internal pipe:
990 */
991 ret = actor(pipe, sd);
992 if (unlikely(ret <= 0)) {
993 sd->pos = prev_pos;
994 goto out_release;
995 }
996
997 bytes += ret;
998 len -= ret;
999 sd->pos = pos;
1000
1001 if (ret < read_len) {
1002 sd->pos = prev_pos + ret;
1003 goto out_release;
1004 }
1005 }
1006
1007done:
1008 pipe->tail = pipe->head = 0;
1009 file_accessed(in);
1010 return bytes;
1011
1012out_release:
1013 /*
1014 * If we did an incomplete transfer we must release
1015 * the pipe buffers in question:
1016 */
1017 for (i = 0; i < pipe->ring_size; i++) {
1018 struct pipe_buffer *buf = &pipe->bufs[i];
1019
1020 if (buf->ops)
1021 pipe_buf_release(pipe, buf);
1022 }
1023
1024 if (!bytes)
1025 bytes = ret;
1026
1027 goto done;
1028}
1029EXPORT_SYMBOL(splice_direct_to_actor);
1030
1031static int direct_splice_actor(struct pipe_inode_info *pipe,
1032 struct splice_desc *sd)
1033{
1034 struct file *file = sd->u.file;
1035
1036 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1037 sd->flags);
1038}
1039
1040/**
1041 * do_splice_direct - splices data directly between two files
1042 * @in: file to splice from
1043 * @ppos: input file offset
1044 * @out: file to splice to
1045 * @opos: output file offset
1046 * @len: number of bytes to splice
1047 * @flags: splice modifier flags
1048 *
1049 * Description:
1050 * For use by do_sendfile(). splice can easily emulate sendfile, but
1051 * doing it in the application would incur an extra system call
1052 * (splice in + splice out, as compared to just sendfile()). So this helper
1053 * can splice directly through a process-private pipe.
1054 *
1055 */
1056long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1057 loff_t *opos, size_t len, unsigned int flags)
1058{
1059 struct splice_desc sd = {
1060 .len = len,
1061 .total_len = len,
1062 .flags = flags,
1063 .pos = *ppos,
1064 .u.file = out,
1065 .opos = opos,
1066 };
1067 long ret;
1068
1069 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1070 return -EBADF;
1071
1072 if (unlikely(out->f_flags & O_APPEND))
1073 return -EINVAL;
1074
1075 ret = rw_verify_area(WRITE, out, opos, len);
1076 if (unlikely(ret < 0))
1077 return ret;
1078
1079 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1080 if (ret > 0)
1081 *ppos = sd.pos;
1082
1083 return ret;
1084}
1085EXPORT_SYMBOL(do_splice_direct);
1086
1087static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1088{
1089 for (;;) {
1090 if (unlikely(!pipe->readers)) {
1091 send_sig(SIGPIPE, current, 0);
1092 return -EPIPE;
1093 }
1094 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1095 return 0;
1096 if (flags & SPLICE_F_NONBLOCK)
1097 return -EAGAIN;
1098 if (signal_pending(current))
1099 return -ERESTARTSYS;
1100 pipe_wait_writable(pipe);
1101 }
1102}
1103
1104static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1105 struct pipe_inode_info *opipe,
1106 size_t len, unsigned int flags);
1107
1108/*
1109 * Determine where to splice to/from.
1110 */
1111long do_splice(struct file *in, loff_t __user *off_in,
1112 struct file *out, loff_t __user *off_out,
1113 size_t len, unsigned int flags)
1114{
1115 struct pipe_inode_info *ipipe;
1116 struct pipe_inode_info *opipe;
1117 loff_t offset;
1118 long ret;
1119
1120 if (unlikely(!(in->f_mode & FMODE_READ) ||
1121 !(out->f_mode & FMODE_WRITE)))
1122 return -EBADF;
1123
1124 ipipe = get_pipe_info(in, true);
1125 opipe = get_pipe_info(out, true);
1126
1127 if (ipipe && opipe) {
1128 if (off_in || off_out)
1129 return -ESPIPE;
1130
1131 /* Splicing to self would be fun, but... */
1132 if (ipipe == opipe)
1133 return -EINVAL;
1134
1135 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1136 flags |= SPLICE_F_NONBLOCK;
1137
1138 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1139 }
1140
1141 if (ipipe) {
1142 if (off_in)
1143 return -ESPIPE;
1144 if (off_out) {
1145 if (!(out->f_mode & FMODE_PWRITE))
1146 return -EINVAL;
1147 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1148 return -EFAULT;
1149 } else {
1150 offset = out->f_pos;
1151 }
1152
1153 if (unlikely(out->f_flags & O_APPEND))
1154 return -EINVAL;
1155
1156 ret = rw_verify_area(WRITE, out, &offset, len);
1157 if (unlikely(ret < 0))
1158 return ret;
1159
1160 if (in->f_flags & O_NONBLOCK)
1161 flags |= SPLICE_F_NONBLOCK;
1162
1163 file_start_write(out);
1164 ret = do_splice_from(ipipe, out, &offset, len, flags);
1165 file_end_write(out);
1166
1167 if (!off_out)
1168 out->f_pos = offset;
1169 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1170 ret = -EFAULT;
1171
1172 return ret;
1173 }
1174
1175 if (opipe) {
1176 if (off_out)
1177 return -ESPIPE;
1178 if (off_in) {
1179 if (!(in->f_mode & FMODE_PREAD))
1180 return -EINVAL;
1181 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1182 return -EFAULT;
1183 } else {
1184 offset = in->f_pos;
1185 }
1186
1187 if (out->f_flags & O_NONBLOCK)
1188 flags |= SPLICE_F_NONBLOCK;
1189
1190 pipe_lock(opipe);
1191 ret = wait_for_space(opipe, flags);
1192 if (!ret) {
1193 unsigned int p_space;
1194
1195 /* Don't try to read more the pipe has space for. */
1196 p_space = opipe->max_usage - pipe_occupancy(opipe->head, opipe->tail);
1197 len = min_t(size_t, len, p_space << PAGE_SHIFT);
1198
1199 ret = do_splice_to(in, &offset, opipe, len, flags);
1200 }
1201 pipe_unlock(opipe);
1202 if (ret > 0)
1203 wakeup_pipe_readers(opipe);
1204 if (!off_in)
1205 in->f_pos = offset;
1206 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1207 ret = -EFAULT;
1208
1209 return ret;
1210 }
1211
1212 return -EINVAL;
1213}
1214
1215static int iter_to_pipe(struct iov_iter *from,
1216 struct pipe_inode_info *pipe,
1217 unsigned flags)
1218{
1219 struct pipe_buffer buf = {
1220 .ops = &user_page_pipe_buf_ops,
1221 .flags = flags
1222 };
1223 size_t total = 0;
1224 int ret = 0;
1225 bool failed = false;
1226
1227 while (iov_iter_count(from) && !failed) {
1228 struct page *pages[16];
1229 ssize_t copied;
1230 size_t start;
1231 int n;
1232
1233 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1234 if (copied <= 0) {
1235 ret = copied;
1236 break;
1237 }
1238
1239 for (n = 0; copied; n++, start = 0) {
1240 int size = min_t(int, copied, PAGE_SIZE - start);
1241 if (!failed) {
1242 buf.page = pages[n];
1243 buf.offset = start;
1244 buf.len = size;
1245 ret = add_to_pipe(pipe, &buf);
1246 if (unlikely(ret < 0)) {
1247 failed = true;
1248 } else {
1249 iov_iter_advance(from, ret);
1250 total += ret;
1251 }
1252 } else {
1253 put_page(pages[n]);
1254 }
1255 copied -= size;
1256 }
1257 }
1258 return total ? total : ret;
1259}
1260
1261static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1262 struct splice_desc *sd)
1263{
1264 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1265 return n == sd->len ? n : -EFAULT;
1266}
1267
1268/*
1269 * For lack of a better implementation, implement vmsplice() to userspace
1270 * as a simple copy of the pipes pages to the user iov.
1271 */
1272static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1273 unsigned int flags)
1274{
1275 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1276 struct splice_desc sd = {
1277 .total_len = iov_iter_count(iter),
1278 .flags = flags,
1279 .u.data = iter
1280 };
1281 long ret = 0;
1282
1283 if (!pipe)
1284 return -EBADF;
1285
1286 if (sd.total_len) {
1287 pipe_lock(pipe);
1288 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1289 pipe_unlock(pipe);
1290 }
1291
1292 return ret;
1293}
1294
1295/*
1296 * vmsplice splices a user address range into a pipe. It can be thought of
1297 * as splice-from-memory, where the regular splice is splice-from-file (or
1298 * to file). In both cases the output is a pipe, naturally.
1299 */
1300static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1301 unsigned int flags)
1302{
1303 struct pipe_inode_info *pipe;
1304 long ret = 0;
1305 unsigned buf_flag = 0;
1306
1307 if (flags & SPLICE_F_GIFT)
1308 buf_flag = PIPE_BUF_FLAG_GIFT;
1309
1310 pipe = get_pipe_info(file, true);
1311 if (!pipe)
1312 return -EBADF;
1313
1314 pipe_lock(pipe);
1315 ret = wait_for_space(pipe, flags);
1316 if (!ret)
1317 ret = iter_to_pipe(iter, pipe, buf_flag);
1318 pipe_unlock(pipe);
1319 if (ret > 0)
1320 wakeup_pipe_readers(pipe);
1321 return ret;
1322}
1323
1324static int vmsplice_type(struct fd f, int *type)
1325{
1326 if (!f.file)
1327 return -EBADF;
1328 if (f.file->f_mode & FMODE_WRITE) {
1329 *type = WRITE;
1330 } else if (f.file->f_mode & FMODE_READ) {
1331 *type = READ;
1332 } else {
1333 fdput(f);
1334 return -EBADF;
1335 }
1336 return 0;
1337}
1338
1339/*
1340 * Note that vmsplice only really supports true splicing _from_ user memory
1341 * to a pipe, not the other way around. Splicing from user memory is a simple
1342 * operation that can be supported without any funky alignment restrictions
1343 * or nasty vm tricks. We simply map in the user memory and fill them into
1344 * a pipe. The reverse isn't quite as easy, though. There are two possible
1345 * solutions for that:
1346 *
1347 * - memcpy() the data internally, at which point we might as well just
1348 * do a regular read() on the buffer anyway.
1349 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1350 * has restriction limitations on both ends of the pipe).
1351 *
1352 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1353 *
1354 */
1355static long do_vmsplice(struct file *f, struct iov_iter *iter, unsigned int flags)
1356{
1357 if (unlikely(flags & ~SPLICE_F_ALL))
1358 return -EINVAL;
1359
1360 if (!iov_iter_count(iter))
1361 return 0;
1362
1363 if (iov_iter_rw(iter) == WRITE)
1364 return vmsplice_to_pipe(f, iter, flags);
1365 else
1366 return vmsplice_to_user(f, iter, flags);
1367}
1368
1369SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1370 unsigned long, nr_segs, unsigned int, flags)
1371{
1372 struct iovec iovstack[UIO_FASTIOV];
1373 struct iovec *iov = iovstack;
1374 struct iov_iter iter;
1375 ssize_t error;
1376 struct fd f;
1377 int type;
1378
1379 f = fdget(fd);
1380 error = vmsplice_type(f, &type);
1381 if (error)
1382 return error;
1383
1384 error = import_iovec(type, uiov, nr_segs,
1385 ARRAY_SIZE(iovstack), &iov, &iter);
1386 if (error >= 0) {
1387 error = do_vmsplice(f.file, &iter, flags);
1388 kfree(iov);
1389 }
1390 fdput(f);
1391 return error;
1392}
1393
1394#ifdef CONFIG_COMPAT
1395COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1396 unsigned int, nr_segs, unsigned int, flags)
1397{
1398 struct iovec iovstack[UIO_FASTIOV];
1399 struct iovec *iov = iovstack;
1400 struct iov_iter iter;
1401 ssize_t error;
1402 struct fd f;
1403 int type;
1404
1405 f = fdget(fd);
1406 error = vmsplice_type(f, &type);
1407 if (error)
1408 return error;
1409
1410 error = compat_import_iovec(type, iov32, nr_segs,
1411 ARRAY_SIZE(iovstack), &iov, &iter);
1412 if (error >= 0) {
1413 error = do_vmsplice(f.file, &iter, flags);
1414 kfree(iov);
1415 }
1416 fdput(f);
1417 return error;
1418}
1419#endif
1420
1421SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1422 int, fd_out, loff_t __user *, off_out,
1423 size_t, len, unsigned int, flags)
1424{
1425 struct fd in, out;
1426 long error;
1427
1428 if (unlikely(!len))
1429 return 0;
1430
1431 if (unlikely(flags & ~SPLICE_F_ALL))
1432 return -EINVAL;
1433
1434 error = -EBADF;
1435 in = fdget(fd_in);
1436 if (in.file) {
1437 out = fdget(fd_out);
1438 if (out.file) {
1439 error = do_splice(in.file, off_in, out.file, off_out,
1440 len, flags);
1441 fdput(out);
1442 }
1443 fdput(in);
1444 }
1445 return error;
1446}
1447
1448/*
1449 * Make sure there's data to read. Wait for input if we can, otherwise
1450 * return an appropriate error.
1451 */
1452static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1453{
1454 int ret;
1455
1456 /*
1457 * Check the pipe occupancy without the inode lock first. This function
1458 * is speculative anyways, so missing one is ok.
1459 */
1460 if (!pipe_empty(pipe->head, pipe->tail))
1461 return 0;
1462
1463 ret = 0;
1464 pipe_lock(pipe);
1465
1466 while (pipe_empty(pipe->head, pipe->tail)) {
1467 if (signal_pending(current)) {
1468 ret = -ERESTARTSYS;
1469 break;
1470 }
1471 if (!pipe->writers)
1472 break;
1473 if (flags & SPLICE_F_NONBLOCK) {
1474 ret = -EAGAIN;
1475 break;
1476 }
1477 pipe_wait_readable(pipe);
1478 }
1479
1480 pipe_unlock(pipe);
1481 return ret;
1482}
1483
1484/*
1485 * Make sure there's writeable room. Wait for room if we can, otherwise
1486 * return an appropriate error.
1487 */
1488static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1489{
1490 int ret;
1491
1492 /*
1493 * Check pipe occupancy without the inode lock first. This function
1494 * is speculative anyways, so missing one is ok.
1495 */
1496 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1497 return 0;
1498
1499 ret = 0;
1500 pipe_lock(pipe);
1501
1502 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1503 if (!pipe->readers) {
1504 send_sig(SIGPIPE, current, 0);
1505 ret = -EPIPE;
1506 break;
1507 }
1508 if (flags & SPLICE_F_NONBLOCK) {
1509 ret = -EAGAIN;
1510 break;
1511 }
1512 if (signal_pending(current)) {
1513 ret = -ERESTARTSYS;
1514 break;
1515 }
1516 pipe_wait_writable(pipe);
1517 }
1518
1519 pipe_unlock(pipe);
1520 return ret;
1521}
1522
1523/*
1524 * Splice contents of ipipe to opipe.
1525 */
1526static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1527 struct pipe_inode_info *opipe,
1528 size_t len, unsigned int flags)
1529{
1530 struct pipe_buffer *ibuf, *obuf;
1531 unsigned int i_head, o_head;
1532 unsigned int i_tail, o_tail;
1533 unsigned int i_mask, o_mask;
1534 int ret = 0;
1535 bool input_wakeup = false;
1536
1537
1538retry:
1539 ret = ipipe_prep(ipipe, flags);
1540 if (ret)
1541 return ret;
1542
1543 ret = opipe_prep(opipe, flags);
1544 if (ret)
1545 return ret;
1546
1547 /*
1548 * Potential ABBA deadlock, work around it by ordering lock
1549 * grabbing by pipe info address. Otherwise two different processes
1550 * could deadlock (one doing tee from A -> B, the other from B -> A).
1551 */
1552 pipe_double_lock(ipipe, opipe);
1553
1554 i_tail = ipipe->tail;
1555 i_mask = ipipe->ring_size - 1;
1556 o_head = opipe->head;
1557 o_mask = opipe->ring_size - 1;
1558
1559 do {
1560 size_t o_len;
1561
1562 if (!opipe->readers) {
1563 send_sig(SIGPIPE, current, 0);
1564 if (!ret)
1565 ret = -EPIPE;
1566 break;
1567 }
1568
1569 i_head = ipipe->head;
1570 o_tail = opipe->tail;
1571
1572 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1573 break;
1574
1575 /*
1576 * Cannot make any progress, because either the input
1577 * pipe is empty or the output pipe is full.
1578 */
1579 if (pipe_empty(i_head, i_tail) ||
1580 pipe_full(o_head, o_tail, opipe->max_usage)) {
1581 /* Already processed some buffers, break */
1582 if (ret)
1583 break;
1584
1585 if (flags & SPLICE_F_NONBLOCK) {
1586 ret = -EAGAIN;
1587 break;
1588 }
1589
1590 /*
1591 * We raced with another reader/writer and haven't
1592 * managed to process any buffers. A zero return
1593 * value means EOF, so retry instead.
1594 */
1595 pipe_unlock(ipipe);
1596 pipe_unlock(opipe);
1597 goto retry;
1598 }
1599
1600 ibuf = &ipipe->bufs[i_tail & i_mask];
1601 obuf = &opipe->bufs[o_head & o_mask];
1602
1603 if (len >= ibuf->len) {
1604 /*
1605 * Simply move the whole buffer from ipipe to opipe
1606 */
1607 *obuf = *ibuf;
1608 ibuf->ops = NULL;
1609 i_tail++;
1610 ipipe->tail = i_tail;
1611 input_wakeup = true;
1612 o_len = obuf->len;
1613 o_head++;
1614 opipe->head = o_head;
1615 } else {
1616 /*
1617 * Get a reference to this pipe buffer,
1618 * so we can copy the contents over.
1619 */
1620 if (!pipe_buf_get(ipipe, ibuf)) {
1621 if (ret == 0)
1622 ret = -EFAULT;
1623 break;
1624 }
1625 *obuf = *ibuf;
1626
1627 /*
1628 * Don't inherit the gift and merge flags, we need to
1629 * prevent multiple steals of this page.
1630 */
1631 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1632 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1633
1634 obuf->len = len;
1635 ibuf->offset += len;
1636 ibuf->len -= len;
1637 o_len = len;
1638 o_head++;
1639 opipe->head = o_head;
1640 }
1641 ret += o_len;
1642 len -= o_len;
1643 } while (len);
1644
1645 pipe_unlock(ipipe);
1646 pipe_unlock(opipe);
1647
1648 /*
1649 * If we put data in the output pipe, wakeup any potential readers.
1650 */
1651 if (ret > 0)
1652 wakeup_pipe_readers(opipe);
1653
1654 if (input_wakeup)
1655 wakeup_pipe_writers(ipipe);
1656
1657 return ret;
1658}
1659
1660/*
1661 * Link contents of ipipe to opipe.
1662 */
1663static int link_pipe(struct pipe_inode_info *ipipe,
1664 struct pipe_inode_info *opipe,
1665 size_t len, unsigned int flags)
1666{
1667 struct pipe_buffer *ibuf, *obuf;
1668 unsigned int i_head, o_head;
1669 unsigned int i_tail, o_tail;
1670 unsigned int i_mask, o_mask;
1671 int ret = 0;
1672
1673 /*
1674 * Potential ABBA deadlock, work around it by ordering lock
1675 * grabbing by pipe info address. Otherwise two different processes
1676 * could deadlock (one doing tee from A -> B, the other from B -> A).
1677 */
1678 pipe_double_lock(ipipe, opipe);
1679
1680 i_tail = ipipe->tail;
1681 i_mask = ipipe->ring_size - 1;
1682 o_head = opipe->head;
1683 o_mask = opipe->ring_size - 1;
1684
1685 do {
1686 if (!opipe->readers) {
1687 send_sig(SIGPIPE, current, 0);
1688 if (!ret)
1689 ret = -EPIPE;
1690 break;
1691 }
1692
1693 i_head = ipipe->head;
1694 o_tail = opipe->tail;
1695
1696 /*
1697 * If we have iterated all input buffers or run out of
1698 * output room, break.
1699 */
1700 if (pipe_empty(i_head, i_tail) ||
1701 pipe_full(o_head, o_tail, opipe->max_usage))
1702 break;
1703
1704 ibuf = &ipipe->bufs[i_tail & i_mask];
1705 obuf = &opipe->bufs[o_head & o_mask];
1706
1707 /*
1708 * Get a reference to this pipe buffer,
1709 * so we can copy the contents over.
1710 */
1711 if (!pipe_buf_get(ipipe, ibuf)) {
1712 if (ret == 0)
1713 ret = -EFAULT;
1714 break;
1715 }
1716
1717 *obuf = *ibuf;
1718
1719 /*
1720 * Don't inherit the gift and merge flag, we need to prevent
1721 * multiple steals of this page.
1722 */
1723 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1724 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1725
1726 if (obuf->len > len)
1727 obuf->len = len;
1728 ret += obuf->len;
1729 len -= obuf->len;
1730
1731 o_head++;
1732 opipe->head = o_head;
1733 i_tail++;
1734 } while (len);
1735
1736 pipe_unlock(ipipe);
1737 pipe_unlock(opipe);
1738
1739 /*
1740 * If we put data in the output pipe, wakeup any potential readers.
1741 */
1742 if (ret > 0)
1743 wakeup_pipe_readers(opipe);
1744
1745 return ret;
1746}
1747
1748/*
1749 * This is a tee(1) implementation that works on pipes. It doesn't copy
1750 * any data, it simply references the 'in' pages on the 'out' pipe.
1751 * The 'flags' used are the SPLICE_F_* variants, currently the only
1752 * applicable one is SPLICE_F_NONBLOCK.
1753 */
1754long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1755{
1756 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1757 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1758 int ret = -EINVAL;
1759
1760 if (unlikely(!(in->f_mode & FMODE_READ) ||
1761 !(out->f_mode & FMODE_WRITE)))
1762 return -EBADF;
1763
1764 /*
1765 * Duplicate the contents of ipipe to opipe without actually
1766 * copying the data.
1767 */
1768 if (ipipe && opipe && ipipe != opipe) {
1769 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1770 flags |= SPLICE_F_NONBLOCK;
1771
1772 /*
1773 * Keep going, unless we encounter an error. The ipipe/opipe
1774 * ordering doesn't really matter.
1775 */
1776 ret = ipipe_prep(ipipe, flags);
1777 if (!ret) {
1778 ret = opipe_prep(opipe, flags);
1779 if (!ret)
1780 ret = link_pipe(ipipe, opipe, len, flags);
1781 }
1782 }
1783
1784 return ret;
1785}
1786
1787SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1788{
1789 struct fd in, out;
1790 int error;
1791
1792 if (unlikely(flags & ~SPLICE_F_ALL))
1793 return -EINVAL;
1794
1795 if (unlikely(!len))
1796 return 0;
1797
1798 error = -EBADF;
1799 in = fdget(fdin);
1800 if (in.file) {
1801 out = fdget(fdout);
1802 if (out.file) {
1803 error = do_tee(in.file, out.file, len, flags);
1804 fdput(out);
1805 }
1806 fdput(in);
1807 }
1808
1809 return error;
1810}