Loading...
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34#include <linux/compat.h>
35#include "internal.h"
36
37/*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45{
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83out_unlock:
84 unlock_page(page);
85 return 1;
86}
87
88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93}
94
95/*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101{
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132error:
133 unlock_page(page);
134 return err;
135}
136
137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->files)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
250 }
251
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
255 }
256
257 pipe_unlock(pipe);
258
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
261
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
264
265 return ret;
266}
267EXPORT_SYMBOL_GPL(splice_to_pipe);
268
269void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270{
271 put_page(spd->pages[i]);
272}
273
274/*
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
277 */
278int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279{
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
285
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289 if (spd->pages && spd->partial)
290 return 0;
291
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
295}
296
297void splice_shrink_spd(struct splice_pipe_desc *spd)
298{
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
301
302 kfree(spd->pages);
303 kfree(spd->partial);
304}
305
306static int
307__generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
310{
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
326 };
327
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
330
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
335
336 /*
337 * Lookup the (hopefully) full range of pages we need.
338 */
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
341
342 /*
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
345 */
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
349
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
352 /*
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
355 */
356 page = find_get_page(mapping, index);
357 if (!page) {
358 /*
359 * page didn't exist, allocate one.
360 */
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
364
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 put_page(page);
369 if (error == -EEXIST)
370 continue;
371 break;
372 }
373 /*
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
376 */
377 unlock_page(page);
378 }
379
380 spd.pages[spd.nr_pages++] = page;
381 index++;
382 }
383
384 /*
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
387 */
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
393
394 if (!len)
395 break;
396
397 /*
398 * this_len is the max we'll use from this page
399 */
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
402
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
406
407 /*
408 * If the page isn't uptodate, we may need to start io on it
409 */
410 if (!PageUptodate(page)) {
411 lock_page(page);
412
413 /*
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
418 */
419 if (!page->mapping) {
420 unlock_page(page);
421retry_lookup:
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
424
425 if (!page) {
426 error = -ENOMEM;
427 break;
428 }
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
431 }
432 /*
433 * page was already under io and is now done, great
434 */
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
438 }
439
440 /*
441 * need to read in the page
442 */
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
445 /*
446 * Re-lookup the page
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 goto retry_lookup;
450
451 break;
452 }
453 }
454fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505}
506
507/**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524{
525 loff_t isize, left;
526 int ret;
527
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
530
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
533 return 0;
534
535 left = isize - *ppos;
536 if (unlikely(left < len))
537 len = left;
538
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 if (ret > 0) {
541 *ppos += ret;
542 file_accessed(in);
543 }
544
545 return ret;
546}
547EXPORT_SYMBOL(generic_file_splice_read);
548
549static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .can_merge = 0,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
555};
556
557static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
559{
560 return 1;
561}
562
563/* Pipe buffer operations for a socket and similar. */
564const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 .can_merge = 0,
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
570};
571EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572
573static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
575{
576 mm_segment_t old_fs;
577 loff_t pos = offset;
578 ssize_t res;
579
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 set_fs(old_fs);
585
586 return res;
587}
588
589ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 loff_t pos)
591{
592 mm_segment_t old_fs;
593 ssize_t res;
594
595 old_fs = get_fs();
596 set_fs(get_ds());
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 set_fs(old_fs);
600
601 return res;
602}
603EXPORT_SYMBOL(kernel_write);
604
605ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
607 unsigned int flags)
608{
609 unsigned int nr_pages;
610 unsigned int nr_freed;
611 size_t offset;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 ssize_t res;
616 size_t this_len;
617 int error;
618 int i;
619 struct splice_pipe_desc spd = {
620 .pages = pages,
621 .partial = partial,
622 .nr_pages_max = PIPE_DEF_BUFFERS,
623 .flags = flags,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
626 };
627
628 if (splice_grow_spd(pipe, &spd))
629 return -ENOMEM;
630
631 res = -ENOMEM;
632 vec = __vec;
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 if (!vec)
636 goto shrink_ret;
637 }
638
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 struct page *page;
644
645 page = alloc_page(GFP_USER);
646 error = -ENOMEM;
647 if (!page)
648 goto err;
649
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
653 spd.pages[i] = page;
654 spd.nr_pages++;
655 len -= this_len;
656 offset = 0;
657 }
658
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 if (res < 0) {
661 error = res;
662 goto err;
663 }
664
665 error = 0;
666 if (!res)
667 goto err;
668
669 nr_freed = 0;
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
674 if (!this_len) {
675 __free_page(spd.pages[i]);
676 spd.pages[i] = NULL;
677 nr_freed++;
678 }
679 res -= this_len;
680 }
681 spd.nr_pages -= nr_freed;
682
683 res = splice_to_pipe(pipe, &spd);
684 if (res > 0)
685 *ppos += res;
686
687shrink_ret:
688 if (vec != __vec)
689 kfree(vec);
690 splice_shrink_spd(&spd);
691 return res;
692
693err:
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
696
697 res = error;
698 goto shrink_ret;
699}
700EXPORT_SYMBOL(default_file_splice_read);
701
702/*
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
705 */
706static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
708{
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
711 int more;
712
713 if (!likely(file->f_op->sendpage))
714 return -EINVAL;
715
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
720
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
723}
724
725static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726{
727 smp_mb();
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731}
732
733/**
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
738 *
739 * Description:
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
747 *
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
751 * destination.
752 */
753static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 splice_actor *actor)
755{
756 int ret;
757
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
761
762 sd->len = buf->len;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
765
766 ret = buf->ops->confirm(pipe, buf);
767 if (unlikely(ret)) {
768 if (ret == -ENODATA)
769 ret = 0;
770 return ret;
771 }
772
773 ret = actor(pipe, buf, sd);
774 if (ret <= 0)
775 return ret;
776
777 buf->offset += ret;
778 buf->len -= ret;
779
780 sd->num_spliced += ret;
781 sd->len -= ret;
782 sd->pos += ret;
783 sd->total_len -= ret;
784
785 if (!buf->len) {
786 buf->ops = NULL;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 pipe->nrbufs--;
790 if (pipe->files)
791 sd->need_wakeup = true;
792 }
793
794 if (!sd->total_len)
795 return 0;
796 }
797
798 return 1;
799}
800
801/**
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
805 *
806 * Description:
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
810 */
811static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812{
813 /*
814 * Check for signal early to make process killable when there are
815 * always buffers available
816 */
817 if (signal_pending(current))
818 return -ERESTARTSYS;
819
820 while (!pipe->nrbufs) {
821 if (!pipe->writers)
822 return 0;
823
824 if (!pipe->waiting_writers && sd->num_spliced)
825 return 0;
826
827 if (sd->flags & SPLICE_F_NONBLOCK)
828 return -EAGAIN;
829
830 if (signal_pending(current))
831 return -ERESTARTSYS;
832
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
836 }
837
838 pipe_wait(pipe);
839 }
840
841 return 1;
842}
843
844/**
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
847 *
848 * Description:
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
852 */
853static void splice_from_pipe_begin(struct splice_desc *sd)
854{
855 sd->num_spliced = 0;
856 sd->need_wakeup = false;
857}
858
859/**
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
863 *
864 * Description:
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
868 */
869static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870{
871 if (sd->need_wakeup)
872 wakeup_pipe_writers(pipe);
873}
874
875/**
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
880 *
881 * Description:
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
885 * pipe_to_user.
886 *
887 */
888ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_actor *actor)
890{
891 int ret;
892
893 splice_from_pipe_begin(sd);
894 do {
895 cond_resched();
896 ret = splice_from_pipe_next(pipe, sd);
897 if (ret > 0)
898 ret = splice_from_pipe_feed(pipe, sd, actor);
899 } while (ret > 0);
900 splice_from_pipe_end(pipe, sd);
901
902 return sd->num_spliced ? sd->num_spliced : ret;
903}
904EXPORT_SYMBOL(__splice_from_pipe);
905
906/**
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
918 *
919 */
920ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
922 splice_actor *actor)
923{
924 ssize_t ret;
925 struct splice_desc sd = {
926 .total_len = len,
927 .flags = flags,
928 .pos = *ppos,
929 .u.file = out,
930 };
931
932 pipe_lock(pipe);
933 ret = __splice_from_pipe(pipe, &sd, actor);
934 pipe_unlock(pipe);
935
936 return ret;
937}
938
939/**
940 * iter_file_splice_write - splice data from a pipe to a file
941 * @pipe: pipe info
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
946 *
947 * Description:
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
951 *
952 */
953ssize_t
954iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
956{
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
962 };
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 GFP_KERNEL);
966 ssize_t ret;
967
968 if (unlikely(!array))
969 return -ENOMEM;
970
971 pipe_lock(pipe);
972
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
976 size_t left;
977 int n, idx;
978
979 ret = splice_from_pipe_next(pipe, &sd);
980 if (ret <= 0)
981 break;
982
983 if (unlikely(nbufs < pipe->buffers)) {
984 kfree(array);
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
987 GFP_KERNEL);
988 if (!array) {
989 ret = -ENOMEM;
990 break;
991 }
992 }
993
994 /* build the vector */
995 left = sd.total_len;
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
999
1000 if (this_len > left)
1001 this_len = left;
1002
1003 if (idx == pipe->buffers - 1)
1004 idx = -1;
1005
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1009 ret = 0;
1010 goto done;
1011 }
1012
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1016 left -= this_len;
1017 }
1018
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1022 if (ret <= 0)
1023 break;
1024
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos;
1028
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1046 }
1047 }
1048 }
1049done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1052
1053 pipe_unlock(pipe);
1054
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1057
1058 return ret;
1059}
1060
1061EXPORT_SYMBOL(iter_file_splice_write);
1062
1063static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065{
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1073
1074 return ret;
1075}
1076
1077static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080{
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088}
1089
1090/**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105{
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107}
1108
1109EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111/*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116{
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126}
1127
1128/*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134{
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (unlikely(len > MAX_RW_COUNT))
1147 len = MAX_RW_COUNT;
1148
1149 if (in->f_op->splice_read)
1150 splice_read = in->f_op->splice_read;
1151 else
1152 splice_read = default_file_splice_read;
1153
1154 return splice_read(in, ppos, pipe, len, flags);
1155}
1156
1157/**
1158 * splice_direct_to_actor - splices data directly between two non-pipes
1159 * @in: file to splice from
1160 * @sd: actor information on where to splice to
1161 * @actor: handles the data splicing
1162 *
1163 * Description:
1164 * This is a special case helper to splice directly between two
1165 * points, without requiring an explicit pipe. Internally an allocated
1166 * pipe is cached in the process, and reused during the lifetime of
1167 * that process.
1168 *
1169 */
1170ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 splice_direct_actor *actor)
1172{
1173 struct pipe_inode_info *pipe;
1174 long ret, bytes;
1175 umode_t i_mode;
1176 size_t len;
1177 int i, flags, more;
1178
1179 /*
1180 * We require the input being a regular file, as we don't want to
1181 * randomly drop data for eg socket -> socket splicing. Use the
1182 * piped splicing for that!
1183 */
1184 i_mode = file_inode(in)->i_mode;
1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 return -EINVAL;
1187
1188 /*
1189 * neither in nor out is a pipe, setup an internal pipe attached to
1190 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 */
1192 pipe = current->splice_pipe;
1193 if (unlikely(!pipe)) {
1194 pipe = alloc_pipe_info();
1195 if (!pipe)
1196 return -ENOMEM;
1197
1198 /*
1199 * We don't have an immediate reader, but we'll read the stuff
1200 * out of the pipe right after the splice_to_pipe(). So set
1201 * PIPE_READERS appropriately.
1202 */
1203 pipe->readers = 1;
1204
1205 current->splice_pipe = pipe;
1206 }
1207
1208 /*
1209 * Do the splice.
1210 */
1211 ret = 0;
1212 bytes = 0;
1213 len = sd->total_len;
1214 flags = sd->flags;
1215
1216 /*
1217 * Don't block on output, we have to drain the direct pipe.
1218 */
1219 sd->flags &= ~SPLICE_F_NONBLOCK;
1220 more = sd->flags & SPLICE_F_MORE;
1221
1222 while (len) {
1223 size_t read_len;
1224 loff_t pos = sd->pos, prev_pos = pos;
1225
1226 ret = do_splice_to(in, &pos, pipe, len, flags);
1227 if (unlikely(ret <= 0))
1228 goto out_release;
1229
1230 read_len = ret;
1231 sd->total_len = read_len;
1232
1233 /*
1234 * If more data is pending, set SPLICE_F_MORE
1235 * If this is the last data and SPLICE_F_MORE was not set
1236 * initially, clears it.
1237 */
1238 if (read_len < len)
1239 sd->flags |= SPLICE_F_MORE;
1240 else if (!more)
1241 sd->flags &= ~SPLICE_F_MORE;
1242 /*
1243 * NOTE: nonblocking mode only applies to the input. We
1244 * must not do the output in nonblocking mode as then we
1245 * could get stuck data in the internal pipe:
1246 */
1247 ret = actor(pipe, sd);
1248 if (unlikely(ret <= 0)) {
1249 sd->pos = prev_pos;
1250 goto out_release;
1251 }
1252
1253 bytes += ret;
1254 len -= ret;
1255 sd->pos = pos;
1256
1257 if (ret < read_len) {
1258 sd->pos = prev_pos + ret;
1259 goto out_release;
1260 }
1261 }
1262
1263done:
1264 pipe->nrbufs = pipe->curbuf = 0;
1265 file_accessed(in);
1266 return bytes;
1267
1268out_release:
1269 /*
1270 * If we did an incomplete transfer we must release
1271 * the pipe buffers in question:
1272 */
1273 for (i = 0; i < pipe->buffers; i++) {
1274 struct pipe_buffer *buf = pipe->bufs + i;
1275
1276 if (buf->ops) {
1277 buf->ops->release(pipe, buf);
1278 buf->ops = NULL;
1279 }
1280 }
1281
1282 if (!bytes)
1283 bytes = ret;
1284
1285 goto done;
1286}
1287EXPORT_SYMBOL(splice_direct_to_actor);
1288
1289static int direct_splice_actor(struct pipe_inode_info *pipe,
1290 struct splice_desc *sd)
1291{
1292 struct file *file = sd->u.file;
1293
1294 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1295 sd->flags);
1296}
1297
1298/**
1299 * do_splice_direct - splices data directly between two files
1300 * @in: file to splice from
1301 * @ppos: input file offset
1302 * @out: file to splice to
1303 * @opos: output file offset
1304 * @len: number of bytes to splice
1305 * @flags: splice modifier flags
1306 *
1307 * Description:
1308 * For use by do_sendfile(). splice can easily emulate sendfile, but
1309 * doing it in the application would incur an extra system call
1310 * (splice in + splice out, as compared to just sendfile()). So this helper
1311 * can splice directly through a process-private pipe.
1312 *
1313 */
1314long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1315 loff_t *opos, size_t len, unsigned int flags)
1316{
1317 struct splice_desc sd = {
1318 .len = len,
1319 .total_len = len,
1320 .flags = flags,
1321 .pos = *ppos,
1322 .u.file = out,
1323 .opos = opos,
1324 };
1325 long ret;
1326
1327 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1328 return -EBADF;
1329
1330 if (unlikely(out->f_flags & O_APPEND))
1331 return -EINVAL;
1332
1333 ret = rw_verify_area(WRITE, out, opos, len);
1334 if (unlikely(ret < 0))
1335 return ret;
1336
1337 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1338 if (ret > 0)
1339 *ppos = sd.pos;
1340
1341 return ret;
1342}
1343EXPORT_SYMBOL(do_splice_direct);
1344
1345static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1346 struct pipe_inode_info *opipe,
1347 size_t len, unsigned int flags);
1348
1349/*
1350 * Determine where to splice to/from.
1351 */
1352static long do_splice(struct file *in, loff_t __user *off_in,
1353 struct file *out, loff_t __user *off_out,
1354 size_t len, unsigned int flags)
1355{
1356 struct pipe_inode_info *ipipe;
1357 struct pipe_inode_info *opipe;
1358 loff_t offset;
1359 long ret;
1360
1361 ipipe = get_pipe_info(in);
1362 opipe = get_pipe_info(out);
1363
1364 if (ipipe && opipe) {
1365 if (off_in || off_out)
1366 return -ESPIPE;
1367
1368 if (!(in->f_mode & FMODE_READ))
1369 return -EBADF;
1370
1371 if (!(out->f_mode & FMODE_WRITE))
1372 return -EBADF;
1373
1374 /* Splicing to self would be fun, but... */
1375 if (ipipe == opipe)
1376 return -EINVAL;
1377
1378 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1379 }
1380
1381 if (ipipe) {
1382 if (off_in)
1383 return -ESPIPE;
1384 if (off_out) {
1385 if (!(out->f_mode & FMODE_PWRITE))
1386 return -EINVAL;
1387 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1388 return -EFAULT;
1389 } else {
1390 offset = out->f_pos;
1391 }
1392
1393 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1394 return -EBADF;
1395
1396 if (unlikely(out->f_flags & O_APPEND))
1397 return -EINVAL;
1398
1399 ret = rw_verify_area(WRITE, out, &offset, len);
1400 if (unlikely(ret < 0))
1401 return ret;
1402
1403 file_start_write(out);
1404 ret = do_splice_from(ipipe, out, &offset, len, flags);
1405 file_end_write(out);
1406
1407 if (!off_out)
1408 out->f_pos = offset;
1409 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413 }
1414
1415 if (opipe) {
1416 if (off_out)
1417 return -ESPIPE;
1418 if (off_in) {
1419 if (!(in->f_mode & FMODE_PREAD))
1420 return -EINVAL;
1421 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1422 return -EFAULT;
1423 } else {
1424 offset = in->f_pos;
1425 }
1426
1427 ret = do_splice_to(in, &offset, opipe, len, flags);
1428
1429 if (!off_in)
1430 in->f_pos = offset;
1431 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435 }
1436
1437 return -EINVAL;
1438}
1439
1440/*
1441 * Map an iov into an array of pages and offset/length tupples. With the
1442 * partial_page structure, we can map several non-contiguous ranges into
1443 * our ones pages[] map instead of splitting that operation into pieces.
1444 * Could easily be exported as a generic helper for other users, in which
1445 * case one would probably want to add a 'max_nr_pages' parameter as well.
1446 */
1447static int get_iovec_page_array(const struct iovec __user *iov,
1448 unsigned int nr_vecs, struct page **pages,
1449 struct partial_page *partial, bool aligned,
1450 unsigned int pipe_buffers)
1451{
1452 int buffers = 0, error = 0;
1453
1454 while (nr_vecs) {
1455 unsigned long off, npages;
1456 struct iovec entry;
1457 void __user *base;
1458 size_t len;
1459 int i;
1460
1461 error = -EFAULT;
1462 if (copy_from_user(&entry, iov, sizeof(entry)))
1463 break;
1464
1465 base = entry.iov_base;
1466 len = entry.iov_len;
1467
1468 /*
1469 * Sanity check this iovec. 0 read succeeds.
1470 */
1471 error = 0;
1472 if (unlikely(!len))
1473 break;
1474 error = -EFAULT;
1475 if (!access_ok(VERIFY_READ, base, len))
1476 break;
1477
1478 /*
1479 * Get this base offset and number of pages, then map
1480 * in the user pages.
1481 */
1482 off = (unsigned long) base & ~PAGE_MASK;
1483
1484 /*
1485 * If asked for alignment, the offset must be zero and the
1486 * length a multiple of the PAGE_SIZE.
1487 */
1488 error = -EINVAL;
1489 if (aligned && (off || len & ~PAGE_MASK))
1490 break;
1491
1492 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 if (npages > pipe_buffers - buffers)
1494 npages = pipe_buffers - buffers;
1495
1496 error = get_user_pages_fast((unsigned long)base, npages,
1497 0, &pages[buffers]);
1498
1499 if (unlikely(error <= 0))
1500 break;
1501
1502 /*
1503 * Fill this contiguous range into the partial page map.
1504 */
1505 for (i = 0; i < error; i++) {
1506 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507
1508 partial[buffers].offset = off;
1509 partial[buffers].len = plen;
1510
1511 off = 0;
1512 len -= plen;
1513 buffers++;
1514 }
1515
1516 /*
1517 * We didn't complete this iov, stop here since it probably
1518 * means we have to move some of this into a pipe to
1519 * be able to continue.
1520 */
1521 if (len)
1522 break;
1523
1524 /*
1525 * Don't continue if we mapped fewer pages than we asked for,
1526 * or if we mapped the max number of pages that we have
1527 * room for.
1528 */
1529 if (error < npages || buffers == pipe_buffers)
1530 break;
1531
1532 nr_vecs--;
1533 iov++;
1534 }
1535
1536 if (buffers)
1537 return buffers;
1538
1539 return error;
1540}
1541
1542static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1543 struct splice_desc *sd)
1544{
1545 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1546 return n == sd->len ? n : -EFAULT;
1547}
1548
1549/*
1550 * For lack of a better implementation, implement vmsplice() to userspace
1551 * as a simple copy of the pipes pages to the user iov.
1552 */
1553static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1554 unsigned long nr_segs, unsigned int flags)
1555{
1556 struct pipe_inode_info *pipe;
1557 struct splice_desc sd;
1558 long ret;
1559 struct iovec iovstack[UIO_FASTIOV];
1560 struct iovec *iov = iovstack;
1561 struct iov_iter iter;
1562
1563 pipe = get_pipe_info(file);
1564 if (!pipe)
1565 return -EBADF;
1566
1567 ret = import_iovec(READ, uiov, nr_segs,
1568 ARRAY_SIZE(iovstack), &iov, &iter);
1569 if (ret < 0)
1570 return ret;
1571
1572 sd.total_len = iov_iter_count(&iter);
1573 sd.len = 0;
1574 sd.flags = flags;
1575 sd.u.data = &iter;
1576 sd.pos = 0;
1577
1578 if (sd.total_len) {
1579 pipe_lock(pipe);
1580 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581 pipe_unlock(pipe);
1582 }
1583
1584 kfree(iov);
1585 return ret;
1586}
1587
1588/*
1589 * vmsplice splices a user address range into a pipe. It can be thought of
1590 * as splice-from-memory, where the regular splice is splice-from-file (or
1591 * to file). In both cases the output is a pipe, naturally.
1592 */
1593static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1594 unsigned long nr_segs, unsigned int flags)
1595{
1596 struct pipe_inode_info *pipe;
1597 struct page *pages[PIPE_DEF_BUFFERS];
1598 struct partial_page partial[PIPE_DEF_BUFFERS];
1599 struct splice_pipe_desc spd = {
1600 .pages = pages,
1601 .partial = partial,
1602 .nr_pages_max = PIPE_DEF_BUFFERS,
1603 .flags = flags,
1604 .ops = &user_page_pipe_buf_ops,
1605 .spd_release = spd_release_page,
1606 };
1607 long ret;
1608
1609 pipe = get_pipe_info(file);
1610 if (!pipe)
1611 return -EBADF;
1612
1613 if (splice_grow_spd(pipe, &spd))
1614 return -ENOMEM;
1615
1616 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1617 spd.partial, false,
1618 spd.nr_pages_max);
1619 if (spd.nr_pages <= 0)
1620 ret = spd.nr_pages;
1621 else
1622 ret = splice_to_pipe(pipe, &spd);
1623
1624 splice_shrink_spd(&spd);
1625 return ret;
1626}
1627
1628/*
1629 * Note that vmsplice only really supports true splicing _from_ user memory
1630 * to a pipe, not the other way around. Splicing from user memory is a simple
1631 * operation that can be supported without any funky alignment restrictions
1632 * or nasty vm tricks. We simply map in the user memory and fill them into
1633 * a pipe. The reverse isn't quite as easy, though. There are two possible
1634 * solutions for that:
1635 *
1636 * - memcpy() the data internally, at which point we might as well just
1637 * do a regular read() on the buffer anyway.
1638 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1639 * has restriction limitations on both ends of the pipe).
1640 *
1641 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642 *
1643 */
1644SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1645 unsigned long, nr_segs, unsigned int, flags)
1646{
1647 struct fd f;
1648 long error;
1649
1650 if (unlikely(nr_segs > UIO_MAXIOV))
1651 return -EINVAL;
1652 else if (unlikely(!nr_segs))
1653 return 0;
1654
1655 error = -EBADF;
1656 f = fdget(fd);
1657 if (f.file) {
1658 if (f.file->f_mode & FMODE_WRITE)
1659 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1660 else if (f.file->f_mode & FMODE_READ)
1661 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662
1663 fdput(f);
1664 }
1665
1666 return error;
1667}
1668
1669#ifdef CONFIG_COMPAT
1670COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1671 unsigned int, nr_segs, unsigned int, flags)
1672{
1673 unsigned i;
1674 struct iovec __user *iov;
1675 if (nr_segs > UIO_MAXIOV)
1676 return -EINVAL;
1677 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1678 for (i = 0; i < nr_segs; i++) {
1679 struct compat_iovec v;
1680 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1681 get_user(v.iov_len, &iov32[i].iov_len) ||
1682 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1683 put_user(v.iov_len, &iov[i].iov_len))
1684 return -EFAULT;
1685 }
1686 return sys_vmsplice(fd, iov, nr_segs, flags);
1687}
1688#endif
1689
1690SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691 int, fd_out, loff_t __user *, off_out,
1692 size_t, len, unsigned int, flags)
1693{
1694 struct fd in, out;
1695 long error;
1696
1697 if (unlikely(!len))
1698 return 0;
1699
1700 error = -EBADF;
1701 in = fdget(fd_in);
1702 if (in.file) {
1703 if (in.file->f_mode & FMODE_READ) {
1704 out = fdget(fd_out);
1705 if (out.file) {
1706 if (out.file->f_mode & FMODE_WRITE)
1707 error = do_splice(in.file, off_in,
1708 out.file, off_out,
1709 len, flags);
1710 fdput(out);
1711 }
1712 }
1713 fdput(in);
1714 }
1715 return error;
1716}
1717
1718/*
1719 * Make sure there's data to read. Wait for input if we can, otherwise
1720 * return an appropriate error.
1721 */
1722static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723{
1724 int ret;
1725
1726 /*
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1729 */
1730 if (pipe->nrbufs)
1731 return 0;
1732
1733 ret = 0;
1734 pipe_lock(pipe);
1735
1736 while (!pipe->nrbufs) {
1737 if (signal_pending(current)) {
1738 ret = -ERESTARTSYS;
1739 break;
1740 }
1741 if (!pipe->writers)
1742 break;
1743 if (!pipe->waiting_writers) {
1744 if (flags & SPLICE_F_NONBLOCK) {
1745 ret = -EAGAIN;
1746 break;
1747 }
1748 }
1749 pipe_wait(pipe);
1750 }
1751
1752 pipe_unlock(pipe);
1753 return ret;
1754}
1755
1756/*
1757 * Make sure there's writeable room. Wait for room if we can, otherwise
1758 * return an appropriate error.
1759 */
1760static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761{
1762 int ret;
1763
1764 /*
1765 * Check ->nrbufs without the inode lock first. This function
1766 * is speculative anyways, so missing one is ok.
1767 */
1768 if (pipe->nrbufs < pipe->buffers)
1769 return 0;
1770
1771 ret = 0;
1772 pipe_lock(pipe);
1773
1774 while (pipe->nrbufs >= pipe->buffers) {
1775 if (!pipe->readers) {
1776 send_sig(SIGPIPE, current, 0);
1777 ret = -EPIPE;
1778 break;
1779 }
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784 if (signal_pending(current)) {
1785 ret = -ERESTARTSYS;
1786 break;
1787 }
1788 pipe->waiting_writers++;
1789 pipe_wait(pipe);
1790 pipe->waiting_writers--;
1791 }
1792
1793 pipe_unlock(pipe);
1794 return ret;
1795}
1796
1797/*
1798 * Splice contents of ipipe to opipe.
1799 */
1800static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801 struct pipe_inode_info *opipe,
1802 size_t len, unsigned int flags)
1803{
1804 struct pipe_buffer *ibuf, *obuf;
1805 int ret = 0, nbuf;
1806 bool input_wakeup = false;
1807
1808
1809retry:
1810 ret = ipipe_prep(ipipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 ret = opipe_prep(opipe, flags);
1815 if (ret)
1816 return ret;
1817
1818 /*
1819 * Potential ABBA deadlock, work around it by ordering lock
1820 * grabbing by pipe info address. Otherwise two different processes
1821 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 */
1823 pipe_double_lock(ipipe, opipe);
1824
1825 do {
1826 if (!opipe->readers) {
1827 send_sig(SIGPIPE, current, 0);
1828 if (!ret)
1829 ret = -EPIPE;
1830 break;
1831 }
1832
1833 if (!ipipe->nrbufs && !ipipe->writers)
1834 break;
1835
1836 /*
1837 * Cannot make any progress, because either the input
1838 * pipe is empty or the output pipe is full.
1839 */
1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841 /* Already processed some buffers, break */
1842 if (ret)
1843 break;
1844
1845 if (flags & SPLICE_F_NONBLOCK) {
1846 ret = -EAGAIN;
1847 break;
1848 }
1849
1850 /*
1851 * We raced with another reader/writer and haven't
1852 * managed to process any buffers. A zero return
1853 * value means EOF, so retry instead.
1854 */
1855 pipe_unlock(ipipe);
1856 pipe_unlock(opipe);
1857 goto retry;
1858 }
1859
1860 ibuf = ipipe->bufs + ipipe->curbuf;
1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862 obuf = opipe->bufs + nbuf;
1863
1864 if (len >= ibuf->len) {
1865 /*
1866 * Simply move the whole buffer from ipipe to opipe
1867 */
1868 *obuf = *ibuf;
1869 ibuf->ops = NULL;
1870 opipe->nrbufs++;
1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872 ipipe->nrbufs--;
1873 input_wakeup = true;
1874 } else {
1875 /*
1876 * Get a reference to this pipe buffer,
1877 * so we can copy the contents over.
1878 */
1879 ibuf->ops->get(ipipe, ibuf);
1880 *obuf = *ibuf;
1881
1882 /*
1883 * Don't inherit the gift flag, we need to
1884 * prevent multiple steals of this page.
1885 */
1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887
1888 obuf->len = len;
1889 opipe->nrbufs++;
1890 ibuf->offset += obuf->len;
1891 ibuf->len -= obuf->len;
1892 }
1893 ret += obuf->len;
1894 len -= obuf->len;
1895 } while (len);
1896
1897 pipe_unlock(ipipe);
1898 pipe_unlock(opipe);
1899
1900 /*
1901 * If we put data in the output pipe, wakeup any potential readers.
1902 */
1903 if (ret > 0)
1904 wakeup_pipe_readers(opipe);
1905
1906 if (input_wakeup)
1907 wakeup_pipe_writers(ipipe);
1908
1909 return ret;
1910}
1911
1912/*
1913 * Link contents of ipipe to opipe.
1914 */
1915static int link_pipe(struct pipe_inode_info *ipipe,
1916 struct pipe_inode_info *opipe,
1917 size_t len, unsigned int flags)
1918{
1919 struct pipe_buffer *ibuf, *obuf;
1920 int ret = 0, i = 0, nbuf;
1921
1922 /*
1923 * Potential ABBA deadlock, work around it by ordering lock
1924 * grabbing by pipe info address. Otherwise two different processes
1925 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 */
1927 pipe_double_lock(ipipe, opipe);
1928
1929 do {
1930 if (!opipe->readers) {
1931 send_sig(SIGPIPE, current, 0);
1932 if (!ret)
1933 ret = -EPIPE;
1934 break;
1935 }
1936
1937 /*
1938 * If we have iterated all input buffers or ran out of
1939 * output room, break.
1940 */
1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 break;
1943
1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946
1947 /*
1948 * Get a reference to this pipe buffer,
1949 * so we can copy the contents over.
1950 */
1951 ibuf->ops->get(ipipe, ibuf);
1952
1953 obuf = opipe->bufs + nbuf;
1954 *obuf = *ibuf;
1955
1956 /*
1957 * Don't inherit the gift flag, we need to
1958 * prevent multiple steals of this page.
1959 */
1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961
1962 if (obuf->len > len)
1963 obuf->len = len;
1964
1965 opipe->nrbufs++;
1966 ret += obuf->len;
1967 len -= obuf->len;
1968 i++;
1969 } while (len);
1970
1971 /*
1972 * return EAGAIN if we have the potential of some data in the
1973 * future, otherwise just return 0
1974 */
1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976 ret = -EAGAIN;
1977
1978 pipe_unlock(ipipe);
1979 pipe_unlock(opipe);
1980
1981 /*
1982 * If we put data in the output pipe, wakeup any potential readers.
1983 */
1984 if (ret > 0)
1985 wakeup_pipe_readers(opipe);
1986
1987 return ret;
1988}
1989
1990/*
1991 * This is a tee(1) implementation that works on pipes. It doesn't copy
1992 * any data, it simply references the 'in' pages on the 'out' pipe.
1993 * The 'flags' used are the SPLICE_F_* variants, currently the only
1994 * applicable one is SPLICE_F_NONBLOCK.
1995 */
1996static long do_tee(struct file *in, struct file *out, size_t len,
1997 unsigned int flags)
1998{
1999 struct pipe_inode_info *ipipe = get_pipe_info(in);
2000 struct pipe_inode_info *opipe = get_pipe_info(out);
2001 int ret = -EINVAL;
2002
2003 /*
2004 * Duplicate the contents of ipipe to opipe without actually
2005 * copying the data.
2006 */
2007 if (ipipe && opipe && ipipe != opipe) {
2008 /*
2009 * Keep going, unless we encounter an error. The ipipe/opipe
2010 * ordering doesn't really matter.
2011 */
2012 ret = ipipe_prep(ipipe, flags);
2013 if (!ret) {
2014 ret = opipe_prep(opipe, flags);
2015 if (!ret)
2016 ret = link_pipe(ipipe, opipe, len, flags);
2017 }
2018 }
2019
2020 return ret;
2021}
2022
2023SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024{
2025 struct fd in;
2026 int error;
2027
2028 if (unlikely(!len))
2029 return 0;
2030
2031 error = -EBADF;
2032 in = fdget(fdin);
2033 if (in.file) {
2034 if (in.file->f_mode & FMODE_READ) {
2035 struct fd out = fdget(fdout);
2036 if (out.file) {
2037 if (out.file->f_mode & FMODE_WRITE)
2038 error = do_tee(in.file, out.file,
2039 len, flags);
2040 fdput(out);
2041 }
2042 }
2043 fdput(in);
2044 }
2045
2046 return error;
2047}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * "splice": joining two ropes together by interweaving their strands.
4 *
5 * This is the "extended pipe" functionality, where a pipe is used as
6 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7 * buffer that you can use to transfer data from one end to the other.
8 *
9 * The traditional unix read/write is extended with a "splice()" operation
10 * that transfers data buffers to or from a pipe buffer.
11 *
12 * Named by Larry McVoy, original implementation from Linus, extended by
13 * Jens to support splicing to files, network, direct splicing, etc and
14 * fixing lots of bugs.
15 *
16 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19 *
20 */
21#include <linux/bvec.h>
22#include <linux/fs.h>
23#include <linux/file.h>
24#include <linux/pagemap.h>
25#include <linux/splice.h>
26#include <linux/memcontrol.h>
27#include <linux/mm_inline.h>
28#include <linux/swap.h>
29#include <linux/writeback.h>
30#include <linux/export.h>
31#include <linux/syscalls.h>
32#include <linux/uio.h>
33#include <linux/security.h>
34#include <linux/gfp.h>
35#include <linux/socket.h>
36#include <linux/sched/signal.h>
37
38#include "internal.h"
39
40/*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48{
49 struct folio *folio = page_folio(buf->page);
50 struct address_space *mapping;
51
52 folio_lock(folio);
53
54 mapping = folio_mapping(folio);
55 if (mapping) {
56 WARN_ON(!folio_test_uptodate(folio));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this folio, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * folio, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 folio_wait_writeback(folio);
67
68 if (folio_has_private(folio) &&
69 !filemap_release_folio(folio, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, folio)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return true;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove folio from current
84 * address space, unlock and return failure.
85 */
86out_unlock:
87 folio_unlock(folio);
88 return false;
89}
90
91static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93{
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96}
97
98/*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104{
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135error:
136 unlock_page(page);
137 return err;
138}
139
140const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .confirm = page_cache_pipe_buf_confirm,
142 .release = page_cache_pipe_buf_release,
143 .try_steal = page_cache_pipe_buf_try_steal,
144 .get = generic_pipe_buf_get,
145};
146
147static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
148 struct pipe_buffer *buf)
149{
150 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
151 return false;
152
153 buf->flags |= PIPE_BUF_FLAG_LRU;
154 return generic_pipe_buf_try_steal(pipe, buf);
155}
156
157static const struct pipe_buf_operations user_page_pipe_buf_ops = {
158 .release = page_cache_pipe_buf_release,
159 .try_steal = user_page_pipe_buf_try_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->rd_wait))
167 wake_up_interruptible(&pipe->rd_wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 unsigned int tail = pipe->tail;
187 unsigned int head = pipe->head;
188 unsigned int mask = pipe->ring_size - 1;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (!pipe_full(head, tail, pipe->max_usage)) {
201 struct pipe_buffer *buf = &pipe->bufs[head & mask];
202
203 buf->page = spd->pages[page_nr];
204 buf->offset = spd->partial[page_nr].offset;
205 buf->len = spd->partial[page_nr].len;
206 buf->private = spd->partial[page_nr].private;
207 buf->ops = spd->ops;
208 buf->flags = 0;
209
210 head++;
211 pipe->head = head;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227}
228EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231{
232 unsigned int head = pipe->head;
233 unsigned int tail = pipe->tail;
234 unsigned int mask = pipe->ring_size - 1;
235 int ret;
236
237 if (unlikely(!pipe->readers)) {
238 send_sig(SIGPIPE, current, 0);
239 ret = -EPIPE;
240 } else if (pipe_full(head, tail, pipe->max_usage)) {
241 ret = -EAGAIN;
242 } else {
243 pipe->bufs[head & mask] = *buf;
244 pipe->head = head + 1;
245 return buf->len;
246 }
247 pipe_buf_release(pipe, buf);
248 return ret;
249}
250EXPORT_SYMBOL(add_to_pipe);
251
252/*
253 * Check if we need to grow the arrays holding pages and partial page
254 * descriptions.
255 */
256int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
257{
258 unsigned int max_usage = READ_ONCE(pipe->max_usage);
259
260 spd->nr_pages_max = max_usage;
261 if (max_usage <= PIPE_DEF_BUFFERS)
262 return 0;
263
264 spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
265 spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
266 GFP_KERNEL);
267
268 if (spd->pages && spd->partial)
269 return 0;
270
271 kfree(spd->pages);
272 kfree(spd->partial);
273 return -ENOMEM;
274}
275
276void splice_shrink_spd(struct splice_pipe_desc *spd)
277{
278 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
279 return;
280
281 kfree(spd->pages);
282 kfree(spd->partial);
283}
284
285/**
286 * generic_file_splice_read - splice data from file to a pipe
287 * @in: file to splice from
288 * @ppos: position in @in
289 * @pipe: pipe to splice to
290 * @len: number of bytes to splice
291 * @flags: splice modifier flags
292 *
293 * Description:
294 * Will read pages from given file and fill them into a pipe. Can be
295 * used as long as it has more or less sane ->read_iter().
296 *
297 */
298ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
299 struct pipe_inode_info *pipe, size_t len,
300 unsigned int flags)
301{
302 struct iov_iter to;
303 struct kiocb kiocb;
304 int ret;
305
306 iov_iter_pipe(&to, ITER_DEST, pipe, len);
307 init_sync_kiocb(&kiocb, in);
308 kiocb.ki_pos = *ppos;
309 ret = call_read_iter(in, &kiocb, &to);
310 if (ret > 0) {
311 *ppos = kiocb.ki_pos;
312 file_accessed(in);
313 } else if (ret < 0) {
314 /* free what was emitted */
315 pipe_discard_from(pipe, to.start_head);
316 /*
317 * callers of ->splice_read() expect -EAGAIN on
318 * "can't put anything in there", rather than -EFAULT.
319 */
320 if (ret == -EFAULT)
321 ret = -EAGAIN;
322 }
323
324 return ret;
325}
326EXPORT_SYMBOL(generic_file_splice_read);
327
328const struct pipe_buf_operations default_pipe_buf_ops = {
329 .release = generic_pipe_buf_release,
330 .try_steal = generic_pipe_buf_try_steal,
331 .get = generic_pipe_buf_get,
332};
333
334/* Pipe buffer operations for a socket and similar. */
335const struct pipe_buf_operations nosteal_pipe_buf_ops = {
336 .release = generic_pipe_buf_release,
337 .get = generic_pipe_buf_get,
338};
339EXPORT_SYMBOL(nosteal_pipe_buf_ops);
340
341/*
342 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
343 * using sendpage(). Return the number of bytes sent.
344 */
345static int pipe_to_sendpage(struct pipe_inode_info *pipe,
346 struct pipe_buffer *buf, struct splice_desc *sd)
347{
348 struct file *file = sd->u.file;
349 loff_t pos = sd->pos;
350 int more;
351
352 if (!likely(file->f_op->sendpage))
353 return -EINVAL;
354
355 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
356
357 if (sd->len < sd->total_len &&
358 pipe_occupancy(pipe->head, pipe->tail) > 1)
359 more |= MSG_SENDPAGE_NOTLAST;
360
361 return file->f_op->sendpage(file, buf->page, buf->offset,
362 sd->len, &pos, more);
363}
364
365static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
366{
367 smp_mb();
368 if (waitqueue_active(&pipe->wr_wait))
369 wake_up_interruptible(&pipe->wr_wait);
370 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
371}
372
373/**
374 * splice_from_pipe_feed - feed available data from a pipe to a file
375 * @pipe: pipe to splice from
376 * @sd: information to @actor
377 * @actor: handler that splices the data
378 *
379 * Description:
380 * This function loops over the pipe and calls @actor to do the
381 * actual moving of a single struct pipe_buffer to the desired
382 * destination. It returns when there's no more buffers left in
383 * the pipe or if the requested number of bytes (@sd->total_len)
384 * have been copied. It returns a positive number (one) if the
385 * pipe needs to be filled with more data, zero if the required
386 * number of bytes have been copied and -errno on error.
387 *
388 * This, together with splice_from_pipe_{begin,end,next}, may be
389 * used to implement the functionality of __splice_from_pipe() when
390 * locking is required around copying the pipe buffers to the
391 * destination.
392 */
393static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
394 splice_actor *actor)
395{
396 unsigned int head = pipe->head;
397 unsigned int tail = pipe->tail;
398 unsigned int mask = pipe->ring_size - 1;
399 int ret;
400
401 while (!pipe_empty(head, tail)) {
402 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
403
404 sd->len = buf->len;
405 if (sd->len > sd->total_len)
406 sd->len = sd->total_len;
407
408 ret = pipe_buf_confirm(pipe, buf);
409 if (unlikely(ret)) {
410 if (ret == -ENODATA)
411 ret = 0;
412 return ret;
413 }
414
415 ret = actor(pipe, buf, sd);
416 if (ret <= 0)
417 return ret;
418
419 buf->offset += ret;
420 buf->len -= ret;
421
422 sd->num_spliced += ret;
423 sd->len -= ret;
424 sd->pos += ret;
425 sd->total_len -= ret;
426
427 if (!buf->len) {
428 pipe_buf_release(pipe, buf);
429 tail++;
430 pipe->tail = tail;
431 if (pipe->files)
432 sd->need_wakeup = true;
433 }
434
435 if (!sd->total_len)
436 return 0;
437 }
438
439 return 1;
440}
441
442/* We know we have a pipe buffer, but maybe it's empty? */
443static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
444{
445 unsigned int tail = pipe->tail;
446 unsigned int mask = pipe->ring_size - 1;
447 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
448
449 if (unlikely(!buf->len)) {
450 pipe_buf_release(pipe, buf);
451 pipe->tail = tail+1;
452 return true;
453 }
454
455 return false;
456}
457
458/**
459 * splice_from_pipe_next - wait for some data to splice from
460 * @pipe: pipe to splice from
461 * @sd: information about the splice operation
462 *
463 * Description:
464 * This function will wait for some data and return a positive
465 * value (one) if pipe buffers are available. It will return zero
466 * or -errno if no more data needs to be spliced.
467 */
468static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
469{
470 /*
471 * Check for signal early to make process killable when there are
472 * always buffers available
473 */
474 if (signal_pending(current))
475 return -ERESTARTSYS;
476
477repeat:
478 while (pipe_empty(pipe->head, pipe->tail)) {
479 if (!pipe->writers)
480 return 0;
481
482 if (sd->num_spliced)
483 return 0;
484
485 if (sd->flags & SPLICE_F_NONBLOCK)
486 return -EAGAIN;
487
488 if (signal_pending(current))
489 return -ERESTARTSYS;
490
491 if (sd->need_wakeup) {
492 wakeup_pipe_writers(pipe);
493 sd->need_wakeup = false;
494 }
495
496 pipe_wait_readable(pipe);
497 }
498
499 if (eat_empty_buffer(pipe))
500 goto repeat;
501
502 return 1;
503}
504
505/**
506 * splice_from_pipe_begin - start splicing from pipe
507 * @sd: information about the splice operation
508 *
509 * Description:
510 * This function should be called before a loop containing
511 * splice_from_pipe_next() and splice_from_pipe_feed() to
512 * initialize the necessary fields of @sd.
513 */
514static void splice_from_pipe_begin(struct splice_desc *sd)
515{
516 sd->num_spliced = 0;
517 sd->need_wakeup = false;
518}
519
520/**
521 * splice_from_pipe_end - finish splicing from pipe
522 * @pipe: pipe to splice from
523 * @sd: information about the splice operation
524 *
525 * Description:
526 * This function will wake up pipe writers if necessary. It should
527 * be called after a loop containing splice_from_pipe_next() and
528 * splice_from_pipe_feed().
529 */
530static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
531{
532 if (sd->need_wakeup)
533 wakeup_pipe_writers(pipe);
534}
535
536/**
537 * __splice_from_pipe - splice data from a pipe to given actor
538 * @pipe: pipe to splice from
539 * @sd: information to @actor
540 * @actor: handler that splices the data
541 *
542 * Description:
543 * This function does little more than loop over the pipe and call
544 * @actor to do the actual moving of a single struct pipe_buffer to
545 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
546 * pipe_to_user.
547 *
548 */
549ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
550 splice_actor *actor)
551{
552 int ret;
553
554 splice_from_pipe_begin(sd);
555 do {
556 cond_resched();
557 ret = splice_from_pipe_next(pipe, sd);
558 if (ret > 0)
559 ret = splice_from_pipe_feed(pipe, sd, actor);
560 } while (ret > 0);
561 splice_from_pipe_end(pipe, sd);
562
563 return sd->num_spliced ? sd->num_spliced : ret;
564}
565EXPORT_SYMBOL(__splice_from_pipe);
566
567/**
568 * splice_from_pipe - splice data from a pipe to a file
569 * @pipe: pipe to splice from
570 * @out: file to splice to
571 * @ppos: position in @out
572 * @len: how many bytes to splice
573 * @flags: splice modifier flags
574 * @actor: handler that splices the data
575 *
576 * Description:
577 * See __splice_from_pipe. This function locks the pipe inode,
578 * otherwise it's identical to __splice_from_pipe().
579 *
580 */
581ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
582 loff_t *ppos, size_t len, unsigned int flags,
583 splice_actor *actor)
584{
585 ssize_t ret;
586 struct splice_desc sd = {
587 .total_len = len,
588 .flags = flags,
589 .pos = *ppos,
590 .u.file = out,
591 };
592
593 pipe_lock(pipe);
594 ret = __splice_from_pipe(pipe, &sd, actor);
595 pipe_unlock(pipe);
596
597 return ret;
598}
599
600/**
601 * iter_file_splice_write - splice data from a pipe to a file
602 * @pipe: pipe info
603 * @out: file to write to
604 * @ppos: position in @out
605 * @len: number of bytes to splice
606 * @flags: splice modifier flags
607 *
608 * Description:
609 * Will either move or copy pages (determined by @flags options) from
610 * the given pipe inode to the given file.
611 * This one is ->write_iter-based.
612 *
613 */
614ssize_t
615iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
616 loff_t *ppos, size_t len, unsigned int flags)
617{
618 struct splice_desc sd = {
619 .total_len = len,
620 .flags = flags,
621 .pos = *ppos,
622 .u.file = out,
623 };
624 int nbufs = pipe->max_usage;
625 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
626 GFP_KERNEL);
627 ssize_t ret;
628
629 if (unlikely(!array))
630 return -ENOMEM;
631
632 pipe_lock(pipe);
633
634 splice_from_pipe_begin(&sd);
635 while (sd.total_len) {
636 struct iov_iter from;
637 unsigned int head, tail, mask;
638 size_t left;
639 int n;
640
641 ret = splice_from_pipe_next(pipe, &sd);
642 if (ret <= 0)
643 break;
644
645 if (unlikely(nbufs < pipe->max_usage)) {
646 kfree(array);
647 nbufs = pipe->max_usage;
648 array = kcalloc(nbufs, sizeof(struct bio_vec),
649 GFP_KERNEL);
650 if (!array) {
651 ret = -ENOMEM;
652 break;
653 }
654 }
655
656 head = pipe->head;
657 tail = pipe->tail;
658 mask = pipe->ring_size - 1;
659
660 /* build the vector */
661 left = sd.total_len;
662 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
663 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
664 size_t this_len = buf->len;
665
666 /* zero-length bvecs are not supported, skip them */
667 if (!this_len)
668 continue;
669 this_len = min(this_len, left);
670
671 ret = pipe_buf_confirm(pipe, buf);
672 if (unlikely(ret)) {
673 if (ret == -ENODATA)
674 ret = 0;
675 goto done;
676 }
677
678 array[n].bv_page = buf->page;
679 array[n].bv_len = this_len;
680 array[n].bv_offset = buf->offset;
681 left -= this_len;
682 n++;
683 }
684
685 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
686 ret = vfs_iter_write(out, &from, &sd.pos, 0);
687 if (ret <= 0)
688 break;
689
690 sd.num_spliced += ret;
691 sd.total_len -= ret;
692 *ppos = sd.pos;
693
694 /* dismiss the fully eaten buffers, adjust the partial one */
695 tail = pipe->tail;
696 while (ret) {
697 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
698 if (ret >= buf->len) {
699 ret -= buf->len;
700 buf->len = 0;
701 pipe_buf_release(pipe, buf);
702 tail++;
703 pipe->tail = tail;
704 if (pipe->files)
705 sd.need_wakeup = true;
706 } else {
707 buf->offset += ret;
708 buf->len -= ret;
709 ret = 0;
710 }
711 }
712 }
713done:
714 kfree(array);
715 splice_from_pipe_end(pipe, &sd);
716
717 pipe_unlock(pipe);
718
719 if (sd.num_spliced)
720 ret = sd.num_spliced;
721
722 return ret;
723}
724
725EXPORT_SYMBOL(iter_file_splice_write);
726
727/**
728 * generic_splice_sendpage - splice data from a pipe to a socket
729 * @pipe: pipe to splice from
730 * @out: socket to write to
731 * @ppos: position in @out
732 * @len: number of bytes to splice
733 * @flags: splice modifier flags
734 *
735 * Description:
736 * Will send @len bytes from the pipe to a network socket. No data copying
737 * is involved.
738 *
739 */
740ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
741 loff_t *ppos, size_t len, unsigned int flags)
742{
743 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
744}
745
746EXPORT_SYMBOL(generic_splice_sendpage);
747
748static int warn_unsupported(struct file *file, const char *op)
749{
750 pr_debug_ratelimited(
751 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
752 op, file, current->pid, current->comm);
753 return -EINVAL;
754}
755
756/*
757 * Attempt to initiate a splice from pipe to file.
758 */
759static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
760 loff_t *ppos, size_t len, unsigned int flags)
761{
762 if (unlikely(!out->f_op->splice_write))
763 return warn_unsupported(out, "write");
764 return out->f_op->splice_write(pipe, out, ppos, len, flags);
765}
766
767/*
768 * Attempt to initiate a splice from a file to a pipe.
769 */
770static long do_splice_to(struct file *in, loff_t *ppos,
771 struct pipe_inode_info *pipe, size_t len,
772 unsigned int flags)
773{
774 unsigned int p_space;
775 int ret;
776
777 if (unlikely(!(in->f_mode & FMODE_READ)))
778 return -EBADF;
779
780 /* Don't try to read more the pipe has space for. */
781 p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
782 len = min_t(size_t, len, p_space << PAGE_SHIFT);
783
784 ret = rw_verify_area(READ, in, ppos, len);
785 if (unlikely(ret < 0))
786 return ret;
787
788 if (unlikely(len > MAX_RW_COUNT))
789 len = MAX_RW_COUNT;
790
791 if (unlikely(!in->f_op->splice_read))
792 return warn_unsupported(in, "read");
793 return in->f_op->splice_read(in, ppos, pipe, len, flags);
794}
795
796/**
797 * splice_direct_to_actor - splices data directly between two non-pipes
798 * @in: file to splice from
799 * @sd: actor information on where to splice to
800 * @actor: handles the data splicing
801 *
802 * Description:
803 * This is a special case helper to splice directly between two
804 * points, without requiring an explicit pipe. Internally an allocated
805 * pipe is cached in the process, and reused during the lifetime of
806 * that process.
807 *
808 */
809ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
810 splice_direct_actor *actor)
811{
812 struct pipe_inode_info *pipe;
813 long ret, bytes;
814 size_t len;
815 int i, flags, more;
816
817 /*
818 * We require the input to be seekable, as we don't want to randomly
819 * drop data for eg socket -> socket splicing. Use the piped splicing
820 * for that!
821 */
822 if (unlikely(!(in->f_mode & FMODE_LSEEK)))
823 return -EINVAL;
824
825 /*
826 * neither in nor out is a pipe, setup an internal pipe attached to
827 * 'out' and transfer the wanted data from 'in' to 'out' through that
828 */
829 pipe = current->splice_pipe;
830 if (unlikely(!pipe)) {
831 pipe = alloc_pipe_info();
832 if (!pipe)
833 return -ENOMEM;
834
835 /*
836 * We don't have an immediate reader, but we'll read the stuff
837 * out of the pipe right after the splice_to_pipe(). So set
838 * PIPE_READERS appropriately.
839 */
840 pipe->readers = 1;
841
842 current->splice_pipe = pipe;
843 }
844
845 /*
846 * Do the splice.
847 */
848 ret = 0;
849 bytes = 0;
850 len = sd->total_len;
851 flags = sd->flags;
852
853 /*
854 * Don't block on output, we have to drain the direct pipe.
855 */
856 sd->flags &= ~SPLICE_F_NONBLOCK;
857 more = sd->flags & SPLICE_F_MORE;
858
859 WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
860
861 while (len) {
862 size_t read_len;
863 loff_t pos = sd->pos, prev_pos = pos;
864
865 ret = do_splice_to(in, &pos, pipe, len, flags);
866 if (unlikely(ret <= 0))
867 goto out_release;
868
869 read_len = ret;
870 sd->total_len = read_len;
871
872 /*
873 * If more data is pending, set SPLICE_F_MORE
874 * If this is the last data and SPLICE_F_MORE was not set
875 * initially, clears it.
876 */
877 if (read_len < len)
878 sd->flags |= SPLICE_F_MORE;
879 else if (!more)
880 sd->flags &= ~SPLICE_F_MORE;
881 /*
882 * NOTE: nonblocking mode only applies to the input. We
883 * must not do the output in nonblocking mode as then we
884 * could get stuck data in the internal pipe:
885 */
886 ret = actor(pipe, sd);
887 if (unlikely(ret <= 0)) {
888 sd->pos = prev_pos;
889 goto out_release;
890 }
891
892 bytes += ret;
893 len -= ret;
894 sd->pos = pos;
895
896 if (ret < read_len) {
897 sd->pos = prev_pos + ret;
898 goto out_release;
899 }
900 }
901
902done:
903 pipe->tail = pipe->head = 0;
904 file_accessed(in);
905 return bytes;
906
907out_release:
908 /*
909 * If we did an incomplete transfer we must release
910 * the pipe buffers in question:
911 */
912 for (i = 0; i < pipe->ring_size; i++) {
913 struct pipe_buffer *buf = &pipe->bufs[i];
914
915 if (buf->ops)
916 pipe_buf_release(pipe, buf);
917 }
918
919 if (!bytes)
920 bytes = ret;
921
922 goto done;
923}
924EXPORT_SYMBOL(splice_direct_to_actor);
925
926static int direct_splice_actor(struct pipe_inode_info *pipe,
927 struct splice_desc *sd)
928{
929 struct file *file = sd->u.file;
930
931 return do_splice_from(pipe, file, sd->opos, sd->total_len,
932 sd->flags);
933}
934
935/**
936 * do_splice_direct - splices data directly between two files
937 * @in: file to splice from
938 * @ppos: input file offset
939 * @out: file to splice to
940 * @opos: output file offset
941 * @len: number of bytes to splice
942 * @flags: splice modifier flags
943 *
944 * Description:
945 * For use by do_sendfile(). splice can easily emulate sendfile, but
946 * doing it in the application would incur an extra system call
947 * (splice in + splice out, as compared to just sendfile()). So this helper
948 * can splice directly through a process-private pipe.
949 *
950 */
951long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
952 loff_t *opos, size_t len, unsigned int flags)
953{
954 struct splice_desc sd = {
955 .len = len,
956 .total_len = len,
957 .flags = flags,
958 .pos = *ppos,
959 .u.file = out,
960 .opos = opos,
961 };
962 long ret;
963
964 if (unlikely(!(out->f_mode & FMODE_WRITE)))
965 return -EBADF;
966
967 if (unlikely(out->f_flags & O_APPEND))
968 return -EINVAL;
969
970 ret = rw_verify_area(WRITE, out, opos, len);
971 if (unlikely(ret < 0))
972 return ret;
973
974 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
975 if (ret > 0)
976 *ppos = sd.pos;
977
978 return ret;
979}
980EXPORT_SYMBOL(do_splice_direct);
981
982static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
983{
984 for (;;) {
985 if (unlikely(!pipe->readers)) {
986 send_sig(SIGPIPE, current, 0);
987 return -EPIPE;
988 }
989 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
990 return 0;
991 if (flags & SPLICE_F_NONBLOCK)
992 return -EAGAIN;
993 if (signal_pending(current))
994 return -ERESTARTSYS;
995 pipe_wait_writable(pipe);
996 }
997}
998
999static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1000 struct pipe_inode_info *opipe,
1001 size_t len, unsigned int flags);
1002
1003long splice_file_to_pipe(struct file *in,
1004 struct pipe_inode_info *opipe,
1005 loff_t *offset,
1006 size_t len, unsigned int flags)
1007{
1008 long ret;
1009
1010 pipe_lock(opipe);
1011 ret = wait_for_space(opipe, flags);
1012 if (!ret)
1013 ret = do_splice_to(in, offset, opipe, len, flags);
1014 pipe_unlock(opipe);
1015 if (ret > 0)
1016 wakeup_pipe_readers(opipe);
1017 return ret;
1018}
1019
1020/*
1021 * Determine where to splice to/from.
1022 */
1023long do_splice(struct file *in, loff_t *off_in, struct file *out,
1024 loff_t *off_out, size_t len, unsigned int flags)
1025{
1026 struct pipe_inode_info *ipipe;
1027 struct pipe_inode_info *opipe;
1028 loff_t offset;
1029 long ret;
1030
1031 if (unlikely(!(in->f_mode & FMODE_READ) ||
1032 !(out->f_mode & FMODE_WRITE)))
1033 return -EBADF;
1034
1035 ipipe = get_pipe_info(in, true);
1036 opipe = get_pipe_info(out, true);
1037
1038 if (ipipe && opipe) {
1039 if (off_in || off_out)
1040 return -ESPIPE;
1041
1042 /* Splicing to self would be fun, but... */
1043 if (ipipe == opipe)
1044 return -EINVAL;
1045
1046 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1047 flags |= SPLICE_F_NONBLOCK;
1048
1049 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1050 }
1051
1052 if (ipipe) {
1053 if (off_in)
1054 return -ESPIPE;
1055 if (off_out) {
1056 if (!(out->f_mode & FMODE_PWRITE))
1057 return -EINVAL;
1058 offset = *off_out;
1059 } else {
1060 offset = out->f_pos;
1061 }
1062
1063 if (unlikely(out->f_flags & O_APPEND))
1064 return -EINVAL;
1065
1066 ret = rw_verify_area(WRITE, out, &offset, len);
1067 if (unlikely(ret < 0))
1068 return ret;
1069
1070 if (in->f_flags & O_NONBLOCK)
1071 flags |= SPLICE_F_NONBLOCK;
1072
1073 file_start_write(out);
1074 ret = do_splice_from(ipipe, out, &offset, len, flags);
1075 file_end_write(out);
1076
1077 if (!off_out)
1078 out->f_pos = offset;
1079 else
1080 *off_out = offset;
1081
1082 return ret;
1083 }
1084
1085 if (opipe) {
1086 if (off_out)
1087 return -ESPIPE;
1088 if (off_in) {
1089 if (!(in->f_mode & FMODE_PREAD))
1090 return -EINVAL;
1091 offset = *off_in;
1092 } else {
1093 offset = in->f_pos;
1094 }
1095
1096 if (out->f_flags & O_NONBLOCK)
1097 flags |= SPLICE_F_NONBLOCK;
1098
1099 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1100 if (!off_in)
1101 in->f_pos = offset;
1102 else
1103 *off_in = offset;
1104
1105 return ret;
1106 }
1107
1108 return -EINVAL;
1109}
1110
1111static long __do_splice(struct file *in, loff_t __user *off_in,
1112 struct file *out, loff_t __user *off_out,
1113 size_t len, unsigned int flags)
1114{
1115 struct pipe_inode_info *ipipe;
1116 struct pipe_inode_info *opipe;
1117 loff_t offset, *__off_in = NULL, *__off_out = NULL;
1118 long ret;
1119
1120 ipipe = get_pipe_info(in, true);
1121 opipe = get_pipe_info(out, true);
1122
1123 if (ipipe && off_in)
1124 return -ESPIPE;
1125 if (opipe && off_out)
1126 return -ESPIPE;
1127
1128 if (off_out) {
1129 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1130 return -EFAULT;
1131 __off_out = &offset;
1132 }
1133 if (off_in) {
1134 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1135 return -EFAULT;
1136 __off_in = &offset;
1137 }
1138
1139 ret = do_splice(in, __off_in, out, __off_out, len, flags);
1140 if (ret < 0)
1141 return ret;
1142
1143 if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1144 return -EFAULT;
1145 if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1146 return -EFAULT;
1147
1148 return ret;
1149}
1150
1151static int iter_to_pipe(struct iov_iter *from,
1152 struct pipe_inode_info *pipe,
1153 unsigned flags)
1154{
1155 struct pipe_buffer buf = {
1156 .ops = &user_page_pipe_buf_ops,
1157 .flags = flags
1158 };
1159 size_t total = 0;
1160 int ret = 0;
1161
1162 while (iov_iter_count(from)) {
1163 struct page *pages[16];
1164 ssize_t left;
1165 size_t start;
1166 int i, n;
1167
1168 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1169 if (left <= 0) {
1170 ret = left;
1171 break;
1172 }
1173
1174 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1175 for (i = 0; i < n; i++) {
1176 int size = min_t(int, left, PAGE_SIZE - start);
1177
1178 buf.page = pages[i];
1179 buf.offset = start;
1180 buf.len = size;
1181 ret = add_to_pipe(pipe, &buf);
1182 if (unlikely(ret < 0)) {
1183 iov_iter_revert(from, left);
1184 // this one got dropped by add_to_pipe()
1185 while (++i < n)
1186 put_page(pages[i]);
1187 goto out;
1188 }
1189 total += ret;
1190 left -= size;
1191 start = 0;
1192 }
1193 }
1194out:
1195 return total ? total : ret;
1196}
1197
1198static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1199 struct splice_desc *sd)
1200{
1201 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1202 return n == sd->len ? n : -EFAULT;
1203}
1204
1205/*
1206 * For lack of a better implementation, implement vmsplice() to userspace
1207 * as a simple copy of the pipes pages to the user iov.
1208 */
1209static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1210 unsigned int flags)
1211{
1212 struct pipe_inode_info *pipe = get_pipe_info(file, true);
1213 struct splice_desc sd = {
1214 .total_len = iov_iter_count(iter),
1215 .flags = flags,
1216 .u.data = iter
1217 };
1218 long ret = 0;
1219
1220 if (!pipe)
1221 return -EBADF;
1222
1223 if (sd.total_len) {
1224 pipe_lock(pipe);
1225 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1226 pipe_unlock(pipe);
1227 }
1228
1229 return ret;
1230}
1231
1232/*
1233 * vmsplice splices a user address range into a pipe. It can be thought of
1234 * as splice-from-memory, where the regular splice is splice-from-file (or
1235 * to file). In both cases the output is a pipe, naturally.
1236 */
1237static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1238 unsigned int flags)
1239{
1240 struct pipe_inode_info *pipe;
1241 long ret = 0;
1242 unsigned buf_flag = 0;
1243
1244 if (flags & SPLICE_F_GIFT)
1245 buf_flag = PIPE_BUF_FLAG_GIFT;
1246
1247 pipe = get_pipe_info(file, true);
1248 if (!pipe)
1249 return -EBADF;
1250
1251 pipe_lock(pipe);
1252 ret = wait_for_space(pipe, flags);
1253 if (!ret)
1254 ret = iter_to_pipe(iter, pipe, buf_flag);
1255 pipe_unlock(pipe);
1256 if (ret > 0)
1257 wakeup_pipe_readers(pipe);
1258 return ret;
1259}
1260
1261static int vmsplice_type(struct fd f, int *type)
1262{
1263 if (!f.file)
1264 return -EBADF;
1265 if (f.file->f_mode & FMODE_WRITE) {
1266 *type = ITER_SOURCE;
1267 } else if (f.file->f_mode & FMODE_READ) {
1268 *type = ITER_DEST;
1269 } else {
1270 fdput(f);
1271 return -EBADF;
1272 }
1273 return 0;
1274}
1275
1276/*
1277 * Note that vmsplice only really supports true splicing _from_ user memory
1278 * to a pipe, not the other way around. Splicing from user memory is a simple
1279 * operation that can be supported without any funky alignment restrictions
1280 * or nasty vm tricks. We simply map in the user memory and fill them into
1281 * a pipe. The reverse isn't quite as easy, though. There are two possible
1282 * solutions for that:
1283 *
1284 * - memcpy() the data internally, at which point we might as well just
1285 * do a regular read() on the buffer anyway.
1286 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1287 * has restriction limitations on both ends of the pipe).
1288 *
1289 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1290 *
1291 */
1292SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1293 unsigned long, nr_segs, unsigned int, flags)
1294{
1295 struct iovec iovstack[UIO_FASTIOV];
1296 struct iovec *iov = iovstack;
1297 struct iov_iter iter;
1298 ssize_t error;
1299 struct fd f;
1300 int type;
1301
1302 if (unlikely(flags & ~SPLICE_F_ALL))
1303 return -EINVAL;
1304
1305 f = fdget(fd);
1306 error = vmsplice_type(f, &type);
1307 if (error)
1308 return error;
1309
1310 error = import_iovec(type, uiov, nr_segs,
1311 ARRAY_SIZE(iovstack), &iov, &iter);
1312 if (error < 0)
1313 goto out_fdput;
1314
1315 if (!iov_iter_count(&iter))
1316 error = 0;
1317 else if (type == ITER_SOURCE)
1318 error = vmsplice_to_pipe(f.file, &iter, flags);
1319 else
1320 error = vmsplice_to_user(f.file, &iter, flags);
1321
1322 kfree(iov);
1323out_fdput:
1324 fdput(f);
1325 return error;
1326}
1327
1328SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1329 int, fd_out, loff_t __user *, off_out,
1330 size_t, len, unsigned int, flags)
1331{
1332 struct fd in, out;
1333 long error;
1334
1335 if (unlikely(!len))
1336 return 0;
1337
1338 if (unlikely(flags & ~SPLICE_F_ALL))
1339 return -EINVAL;
1340
1341 error = -EBADF;
1342 in = fdget(fd_in);
1343 if (in.file) {
1344 out = fdget(fd_out);
1345 if (out.file) {
1346 error = __do_splice(in.file, off_in, out.file, off_out,
1347 len, flags);
1348 fdput(out);
1349 }
1350 fdput(in);
1351 }
1352 return error;
1353}
1354
1355/*
1356 * Make sure there's data to read. Wait for input if we can, otherwise
1357 * return an appropriate error.
1358 */
1359static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1360{
1361 int ret;
1362
1363 /*
1364 * Check the pipe occupancy without the inode lock first. This function
1365 * is speculative anyways, so missing one is ok.
1366 */
1367 if (!pipe_empty(pipe->head, pipe->tail))
1368 return 0;
1369
1370 ret = 0;
1371 pipe_lock(pipe);
1372
1373 while (pipe_empty(pipe->head, pipe->tail)) {
1374 if (signal_pending(current)) {
1375 ret = -ERESTARTSYS;
1376 break;
1377 }
1378 if (!pipe->writers)
1379 break;
1380 if (flags & SPLICE_F_NONBLOCK) {
1381 ret = -EAGAIN;
1382 break;
1383 }
1384 pipe_wait_readable(pipe);
1385 }
1386
1387 pipe_unlock(pipe);
1388 return ret;
1389}
1390
1391/*
1392 * Make sure there's writeable room. Wait for room if we can, otherwise
1393 * return an appropriate error.
1394 */
1395static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1396{
1397 int ret;
1398
1399 /*
1400 * Check pipe occupancy without the inode lock first. This function
1401 * is speculative anyways, so missing one is ok.
1402 */
1403 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1404 return 0;
1405
1406 ret = 0;
1407 pipe_lock(pipe);
1408
1409 while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1410 if (!pipe->readers) {
1411 send_sig(SIGPIPE, current, 0);
1412 ret = -EPIPE;
1413 break;
1414 }
1415 if (flags & SPLICE_F_NONBLOCK) {
1416 ret = -EAGAIN;
1417 break;
1418 }
1419 if (signal_pending(current)) {
1420 ret = -ERESTARTSYS;
1421 break;
1422 }
1423 pipe_wait_writable(pipe);
1424 }
1425
1426 pipe_unlock(pipe);
1427 return ret;
1428}
1429
1430/*
1431 * Splice contents of ipipe to opipe.
1432 */
1433static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1434 struct pipe_inode_info *opipe,
1435 size_t len, unsigned int flags)
1436{
1437 struct pipe_buffer *ibuf, *obuf;
1438 unsigned int i_head, o_head;
1439 unsigned int i_tail, o_tail;
1440 unsigned int i_mask, o_mask;
1441 int ret = 0;
1442 bool input_wakeup = false;
1443
1444
1445retry:
1446 ret = ipipe_prep(ipipe, flags);
1447 if (ret)
1448 return ret;
1449
1450 ret = opipe_prep(opipe, flags);
1451 if (ret)
1452 return ret;
1453
1454 /*
1455 * Potential ABBA deadlock, work around it by ordering lock
1456 * grabbing by pipe info address. Otherwise two different processes
1457 * could deadlock (one doing tee from A -> B, the other from B -> A).
1458 */
1459 pipe_double_lock(ipipe, opipe);
1460
1461 i_tail = ipipe->tail;
1462 i_mask = ipipe->ring_size - 1;
1463 o_head = opipe->head;
1464 o_mask = opipe->ring_size - 1;
1465
1466 do {
1467 size_t o_len;
1468
1469 if (!opipe->readers) {
1470 send_sig(SIGPIPE, current, 0);
1471 if (!ret)
1472 ret = -EPIPE;
1473 break;
1474 }
1475
1476 i_head = ipipe->head;
1477 o_tail = opipe->tail;
1478
1479 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1480 break;
1481
1482 /*
1483 * Cannot make any progress, because either the input
1484 * pipe is empty or the output pipe is full.
1485 */
1486 if (pipe_empty(i_head, i_tail) ||
1487 pipe_full(o_head, o_tail, opipe->max_usage)) {
1488 /* Already processed some buffers, break */
1489 if (ret)
1490 break;
1491
1492 if (flags & SPLICE_F_NONBLOCK) {
1493 ret = -EAGAIN;
1494 break;
1495 }
1496
1497 /*
1498 * We raced with another reader/writer and haven't
1499 * managed to process any buffers. A zero return
1500 * value means EOF, so retry instead.
1501 */
1502 pipe_unlock(ipipe);
1503 pipe_unlock(opipe);
1504 goto retry;
1505 }
1506
1507 ibuf = &ipipe->bufs[i_tail & i_mask];
1508 obuf = &opipe->bufs[o_head & o_mask];
1509
1510 if (len >= ibuf->len) {
1511 /*
1512 * Simply move the whole buffer from ipipe to opipe
1513 */
1514 *obuf = *ibuf;
1515 ibuf->ops = NULL;
1516 i_tail++;
1517 ipipe->tail = i_tail;
1518 input_wakeup = true;
1519 o_len = obuf->len;
1520 o_head++;
1521 opipe->head = o_head;
1522 } else {
1523 /*
1524 * Get a reference to this pipe buffer,
1525 * so we can copy the contents over.
1526 */
1527 if (!pipe_buf_get(ipipe, ibuf)) {
1528 if (ret == 0)
1529 ret = -EFAULT;
1530 break;
1531 }
1532 *obuf = *ibuf;
1533
1534 /*
1535 * Don't inherit the gift and merge flags, we need to
1536 * prevent multiple steals of this page.
1537 */
1538 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1539 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1540
1541 obuf->len = len;
1542 ibuf->offset += len;
1543 ibuf->len -= len;
1544 o_len = len;
1545 o_head++;
1546 opipe->head = o_head;
1547 }
1548 ret += o_len;
1549 len -= o_len;
1550 } while (len);
1551
1552 pipe_unlock(ipipe);
1553 pipe_unlock(opipe);
1554
1555 /*
1556 * If we put data in the output pipe, wakeup any potential readers.
1557 */
1558 if (ret > 0)
1559 wakeup_pipe_readers(opipe);
1560
1561 if (input_wakeup)
1562 wakeup_pipe_writers(ipipe);
1563
1564 return ret;
1565}
1566
1567/*
1568 * Link contents of ipipe to opipe.
1569 */
1570static int link_pipe(struct pipe_inode_info *ipipe,
1571 struct pipe_inode_info *opipe,
1572 size_t len, unsigned int flags)
1573{
1574 struct pipe_buffer *ibuf, *obuf;
1575 unsigned int i_head, o_head;
1576 unsigned int i_tail, o_tail;
1577 unsigned int i_mask, o_mask;
1578 int ret = 0;
1579
1580 /*
1581 * Potential ABBA deadlock, work around it by ordering lock
1582 * grabbing by pipe info address. Otherwise two different processes
1583 * could deadlock (one doing tee from A -> B, the other from B -> A).
1584 */
1585 pipe_double_lock(ipipe, opipe);
1586
1587 i_tail = ipipe->tail;
1588 i_mask = ipipe->ring_size - 1;
1589 o_head = opipe->head;
1590 o_mask = opipe->ring_size - 1;
1591
1592 do {
1593 if (!opipe->readers) {
1594 send_sig(SIGPIPE, current, 0);
1595 if (!ret)
1596 ret = -EPIPE;
1597 break;
1598 }
1599
1600 i_head = ipipe->head;
1601 o_tail = opipe->tail;
1602
1603 /*
1604 * If we have iterated all input buffers or run out of
1605 * output room, break.
1606 */
1607 if (pipe_empty(i_head, i_tail) ||
1608 pipe_full(o_head, o_tail, opipe->max_usage))
1609 break;
1610
1611 ibuf = &ipipe->bufs[i_tail & i_mask];
1612 obuf = &opipe->bufs[o_head & o_mask];
1613
1614 /*
1615 * Get a reference to this pipe buffer,
1616 * so we can copy the contents over.
1617 */
1618 if (!pipe_buf_get(ipipe, ibuf)) {
1619 if (ret == 0)
1620 ret = -EFAULT;
1621 break;
1622 }
1623
1624 *obuf = *ibuf;
1625
1626 /*
1627 * Don't inherit the gift and merge flag, we need to prevent
1628 * multiple steals of this page.
1629 */
1630 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1631 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1632
1633 if (obuf->len > len)
1634 obuf->len = len;
1635 ret += obuf->len;
1636 len -= obuf->len;
1637
1638 o_head++;
1639 opipe->head = o_head;
1640 i_tail++;
1641 } while (len);
1642
1643 pipe_unlock(ipipe);
1644 pipe_unlock(opipe);
1645
1646 /*
1647 * If we put data in the output pipe, wakeup any potential readers.
1648 */
1649 if (ret > 0)
1650 wakeup_pipe_readers(opipe);
1651
1652 return ret;
1653}
1654
1655/*
1656 * This is a tee(1) implementation that works on pipes. It doesn't copy
1657 * any data, it simply references the 'in' pages on the 'out' pipe.
1658 * The 'flags' used are the SPLICE_F_* variants, currently the only
1659 * applicable one is SPLICE_F_NONBLOCK.
1660 */
1661long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1662{
1663 struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1664 struct pipe_inode_info *opipe = get_pipe_info(out, true);
1665 int ret = -EINVAL;
1666
1667 if (unlikely(!(in->f_mode & FMODE_READ) ||
1668 !(out->f_mode & FMODE_WRITE)))
1669 return -EBADF;
1670
1671 /*
1672 * Duplicate the contents of ipipe to opipe without actually
1673 * copying the data.
1674 */
1675 if (ipipe && opipe && ipipe != opipe) {
1676 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1677 flags |= SPLICE_F_NONBLOCK;
1678
1679 /*
1680 * Keep going, unless we encounter an error. The ipipe/opipe
1681 * ordering doesn't really matter.
1682 */
1683 ret = ipipe_prep(ipipe, flags);
1684 if (!ret) {
1685 ret = opipe_prep(opipe, flags);
1686 if (!ret)
1687 ret = link_pipe(ipipe, opipe, len, flags);
1688 }
1689 }
1690
1691 return ret;
1692}
1693
1694SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1695{
1696 struct fd in, out;
1697 int error;
1698
1699 if (unlikely(flags & ~SPLICE_F_ALL))
1700 return -EINVAL;
1701
1702 if (unlikely(!len))
1703 return 0;
1704
1705 error = -EBADF;
1706 in = fdget(fdin);
1707 if (in.file) {
1708 out = fdget(fdout);
1709 if (out.file) {
1710 error = do_tee(in.file, out.file, len, flags);
1711 fdput(out);
1712 }
1713 fdput(in);
1714 }
1715
1716 return error;
1717}