Loading...
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/pagemap.h>
23#include <linux/splice.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/export.h>
29#include <linux/syscalls.h>
30#include <linux/uio.h>
31#include <linux/security.h>
32#include <linux/gfp.h>
33#include <linux/socket.h>
34#include <linux/compat.h>
35#include "internal.h"
36
37/*
38 * Attempt to steal a page from a pipe buffer. This should perhaps go into
39 * a vm helper function, it's already simplified quite a bit by the
40 * addition of remove_mapping(). If success is returned, the caller may
41 * attempt to reuse this page for another destination.
42 */
43static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
44 struct pipe_buffer *buf)
45{
46 struct page *page = buf->page;
47 struct address_space *mapping;
48
49 lock_page(page);
50
51 mapping = page_mapping(page);
52 if (mapping) {
53 WARN_ON(!PageUptodate(page));
54
55 /*
56 * At least for ext2 with nobh option, we need to wait on
57 * writeback completing on this page, since we'll remove it
58 * from the pagecache. Otherwise truncate wont wait on the
59 * page, allowing the disk blocks to be reused by someone else
60 * before we actually wrote our data to them. fs corruption
61 * ensues.
62 */
63 wait_on_page_writeback(page);
64
65 if (page_has_private(page) &&
66 !try_to_release_page(page, GFP_KERNEL))
67 goto out_unlock;
68
69 /*
70 * If we succeeded in removing the mapping, set LRU flag
71 * and return good.
72 */
73 if (remove_mapping(mapping, page)) {
74 buf->flags |= PIPE_BUF_FLAG_LRU;
75 return 0;
76 }
77 }
78
79 /*
80 * Raced with truncate or failed to remove page from current
81 * address space, unlock and return failure.
82 */
83out_unlock:
84 unlock_page(page);
85 return 1;
86}
87
88static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
89 struct pipe_buffer *buf)
90{
91 put_page(buf->page);
92 buf->flags &= ~PIPE_BUF_FLAG_LRU;
93}
94
95/*
96 * Check whether the contents of buf is OK to access. Since the content
97 * is a page cache page, IO may be in flight.
98 */
99static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
100 struct pipe_buffer *buf)
101{
102 struct page *page = buf->page;
103 int err;
104
105 if (!PageUptodate(page)) {
106 lock_page(page);
107
108 /*
109 * Page got truncated/unhashed. This will cause a 0-byte
110 * splice, if this is the first page.
111 */
112 if (!page->mapping) {
113 err = -ENODATA;
114 goto error;
115 }
116
117 /*
118 * Uh oh, read-error from disk.
119 */
120 if (!PageUptodate(page)) {
121 err = -EIO;
122 goto error;
123 }
124
125 /*
126 * Page is ok afterall, we are done.
127 */
128 unlock_page(page);
129 }
130
131 return 0;
132error:
133 unlock_page(page);
134 return err;
135}
136
137const struct pipe_buf_operations page_cache_pipe_buf_ops = {
138 .can_merge = 0,
139 .confirm = page_cache_pipe_buf_confirm,
140 .release = page_cache_pipe_buf_release,
141 .steal = page_cache_pipe_buf_steal,
142 .get = generic_pipe_buf_get,
143};
144
145static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
146 struct pipe_buffer *buf)
147{
148 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
149 return 1;
150
151 buf->flags |= PIPE_BUF_FLAG_LRU;
152 return generic_pipe_buf_steal(pipe, buf);
153}
154
155static const struct pipe_buf_operations user_page_pipe_buf_ops = {
156 .can_merge = 0,
157 .confirm = generic_pipe_buf_confirm,
158 .release = page_cache_pipe_buf_release,
159 .steal = user_page_pipe_buf_steal,
160 .get = generic_pipe_buf_get,
161};
162
163static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
164{
165 smp_mb();
166 if (waitqueue_active(&pipe->wait))
167 wake_up_interruptible(&pipe->wait);
168 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
169}
170
171/**
172 * splice_to_pipe - fill passed data into a pipe
173 * @pipe: pipe to fill
174 * @spd: data to fill
175 *
176 * Description:
177 * @spd contains a map of pages and len/offset tuples, along with
178 * the struct pipe_buf_operations associated with these pages. This
179 * function will link that data to the pipe.
180 *
181 */
182ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
183 struct splice_pipe_desc *spd)
184{
185 unsigned int spd_pages = spd->nr_pages;
186 int ret, do_wakeup, page_nr;
187
188 if (!spd_pages)
189 return 0;
190
191 ret = 0;
192 do_wakeup = 0;
193 page_nr = 0;
194
195 pipe_lock(pipe);
196
197 for (;;) {
198 if (!pipe->readers) {
199 send_sig(SIGPIPE, current, 0);
200 if (!ret)
201 ret = -EPIPE;
202 break;
203 }
204
205 if (pipe->nrbufs < pipe->buffers) {
206 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
207 struct pipe_buffer *buf = pipe->bufs + newbuf;
208
209 buf->page = spd->pages[page_nr];
210 buf->offset = spd->partial[page_nr].offset;
211 buf->len = spd->partial[page_nr].len;
212 buf->private = spd->partial[page_nr].private;
213 buf->ops = spd->ops;
214 if (spd->flags & SPLICE_F_GIFT)
215 buf->flags |= PIPE_BUF_FLAG_GIFT;
216
217 pipe->nrbufs++;
218 page_nr++;
219 ret += buf->len;
220
221 if (pipe->files)
222 do_wakeup = 1;
223
224 if (!--spd->nr_pages)
225 break;
226 if (pipe->nrbufs < pipe->buffers)
227 continue;
228
229 break;
230 }
231
232 if (spd->flags & SPLICE_F_NONBLOCK) {
233 if (!ret)
234 ret = -EAGAIN;
235 break;
236 }
237
238 if (signal_pending(current)) {
239 if (!ret)
240 ret = -ERESTARTSYS;
241 break;
242 }
243
244 if (do_wakeup) {
245 smp_mb();
246 if (waitqueue_active(&pipe->wait))
247 wake_up_interruptible_sync(&pipe->wait);
248 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
249 do_wakeup = 0;
250 }
251
252 pipe->waiting_writers++;
253 pipe_wait(pipe);
254 pipe->waiting_writers--;
255 }
256
257 pipe_unlock(pipe);
258
259 if (do_wakeup)
260 wakeup_pipe_readers(pipe);
261
262 while (page_nr < spd_pages)
263 spd->spd_release(spd, page_nr++);
264
265 return ret;
266}
267EXPORT_SYMBOL_GPL(splice_to_pipe);
268
269void spd_release_page(struct splice_pipe_desc *spd, unsigned int i)
270{
271 put_page(spd->pages[i]);
272}
273
274/*
275 * Check if we need to grow the arrays holding pages and partial page
276 * descriptions.
277 */
278int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
279{
280 unsigned int buffers = ACCESS_ONCE(pipe->buffers);
281
282 spd->nr_pages_max = buffers;
283 if (buffers <= PIPE_DEF_BUFFERS)
284 return 0;
285
286 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
287 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
288
289 if (spd->pages && spd->partial)
290 return 0;
291
292 kfree(spd->pages);
293 kfree(spd->partial);
294 return -ENOMEM;
295}
296
297void splice_shrink_spd(struct splice_pipe_desc *spd)
298{
299 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
300 return;
301
302 kfree(spd->pages);
303 kfree(spd->partial);
304}
305
306static int
307__generic_file_splice_read(struct file *in, loff_t *ppos,
308 struct pipe_inode_info *pipe, size_t len,
309 unsigned int flags)
310{
311 struct address_space *mapping = in->f_mapping;
312 unsigned int loff, nr_pages, req_pages;
313 struct page *pages[PIPE_DEF_BUFFERS];
314 struct partial_page partial[PIPE_DEF_BUFFERS];
315 struct page *page;
316 pgoff_t index, end_index;
317 loff_t isize;
318 int error, page_nr;
319 struct splice_pipe_desc spd = {
320 .pages = pages,
321 .partial = partial,
322 .nr_pages_max = PIPE_DEF_BUFFERS,
323 .flags = flags,
324 .ops = &page_cache_pipe_buf_ops,
325 .spd_release = spd_release_page,
326 };
327
328 if (splice_grow_spd(pipe, &spd))
329 return -ENOMEM;
330
331 index = *ppos >> PAGE_SHIFT;
332 loff = *ppos & ~PAGE_MASK;
333 req_pages = (len + loff + PAGE_SIZE - 1) >> PAGE_SHIFT;
334 nr_pages = min(req_pages, spd.nr_pages_max);
335
336 /*
337 * Lookup the (hopefully) full range of pages we need.
338 */
339 spd.nr_pages = find_get_pages_contig(mapping, index, nr_pages, spd.pages);
340 index += spd.nr_pages;
341
342 /*
343 * If find_get_pages_contig() returned fewer pages than we needed,
344 * readahead/allocate the rest and fill in the holes.
345 */
346 if (spd.nr_pages < nr_pages)
347 page_cache_sync_readahead(mapping, &in->f_ra, in,
348 index, req_pages - spd.nr_pages);
349
350 error = 0;
351 while (spd.nr_pages < nr_pages) {
352 /*
353 * Page could be there, find_get_pages_contig() breaks on
354 * the first hole.
355 */
356 page = find_get_page(mapping, index);
357 if (!page) {
358 /*
359 * page didn't exist, allocate one.
360 */
361 page = page_cache_alloc_cold(mapping);
362 if (!page)
363 break;
364
365 error = add_to_page_cache_lru(page, mapping, index,
366 mapping_gfp_constraint(mapping, GFP_KERNEL));
367 if (unlikely(error)) {
368 put_page(page);
369 if (error == -EEXIST)
370 continue;
371 break;
372 }
373 /*
374 * add_to_page_cache() locks the page, unlock it
375 * to avoid convoluting the logic below even more.
376 */
377 unlock_page(page);
378 }
379
380 spd.pages[spd.nr_pages++] = page;
381 index++;
382 }
383
384 /*
385 * Now loop over the map and see if we need to start IO on any
386 * pages, fill in the partial map, etc.
387 */
388 index = *ppos >> PAGE_SHIFT;
389 nr_pages = spd.nr_pages;
390 spd.nr_pages = 0;
391 for (page_nr = 0; page_nr < nr_pages; page_nr++) {
392 unsigned int this_len;
393
394 if (!len)
395 break;
396
397 /*
398 * this_len is the max we'll use from this page
399 */
400 this_len = min_t(unsigned long, len, PAGE_SIZE - loff);
401 page = spd.pages[page_nr];
402
403 if (PageReadahead(page))
404 page_cache_async_readahead(mapping, &in->f_ra, in,
405 page, index, req_pages - page_nr);
406
407 /*
408 * If the page isn't uptodate, we may need to start io on it
409 */
410 if (!PageUptodate(page)) {
411 lock_page(page);
412
413 /*
414 * Page was truncated, or invalidated by the
415 * filesystem. Redo the find/create, but this time the
416 * page is kept locked, so there's no chance of another
417 * race with truncate/invalidate.
418 */
419 if (!page->mapping) {
420 unlock_page(page);
421retry_lookup:
422 page = find_or_create_page(mapping, index,
423 mapping_gfp_mask(mapping));
424
425 if (!page) {
426 error = -ENOMEM;
427 break;
428 }
429 put_page(spd.pages[page_nr]);
430 spd.pages[page_nr] = page;
431 }
432 /*
433 * page was already under io and is now done, great
434 */
435 if (PageUptodate(page)) {
436 unlock_page(page);
437 goto fill_it;
438 }
439
440 /*
441 * need to read in the page
442 */
443 error = mapping->a_ops->readpage(in, page);
444 if (unlikely(error)) {
445 /*
446 * Re-lookup the page
447 */
448 if (error == AOP_TRUNCATED_PAGE)
449 goto retry_lookup;
450
451 break;
452 }
453 }
454fill_it:
455 /*
456 * i_size must be checked after PageUptodate.
457 */
458 isize = i_size_read(mapping->host);
459 end_index = (isize - 1) >> PAGE_SHIFT;
460 if (unlikely(!isize || index > end_index))
461 break;
462
463 /*
464 * if this is the last page, see if we need to shrink
465 * the length and stop
466 */
467 if (end_index == index) {
468 unsigned int plen;
469
470 /*
471 * max good bytes in this page
472 */
473 plen = ((isize - 1) & ~PAGE_MASK) + 1;
474 if (plen <= loff)
475 break;
476
477 /*
478 * force quit after adding this page
479 */
480 this_len = min(this_len, plen - loff);
481 len = this_len;
482 }
483
484 spd.partial[page_nr].offset = loff;
485 spd.partial[page_nr].len = this_len;
486 len -= this_len;
487 loff = 0;
488 spd.nr_pages++;
489 index++;
490 }
491
492 /*
493 * Release any pages at the end, if we quit early. 'page_nr' is how far
494 * we got, 'nr_pages' is how many pages are in the map.
495 */
496 while (page_nr < nr_pages)
497 put_page(spd.pages[page_nr++]);
498 in->f_ra.prev_pos = (loff_t)index << PAGE_SHIFT;
499
500 if (spd.nr_pages)
501 error = splice_to_pipe(pipe, &spd);
502
503 splice_shrink_spd(&spd);
504 return error;
505}
506
507/**
508 * generic_file_splice_read - splice data from file to a pipe
509 * @in: file to splice from
510 * @ppos: position in @in
511 * @pipe: pipe to splice to
512 * @len: number of bytes to splice
513 * @flags: splice modifier flags
514 *
515 * Description:
516 * Will read pages from given file and fill them into a pipe. Can be
517 * used as long as the address_space operations for the source implements
518 * a readpage() hook.
519 *
520 */
521ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
522 struct pipe_inode_info *pipe, size_t len,
523 unsigned int flags)
524{
525 loff_t isize, left;
526 int ret;
527
528 if (IS_DAX(in->f_mapping->host))
529 return default_file_splice_read(in, ppos, pipe, len, flags);
530
531 isize = i_size_read(in->f_mapping->host);
532 if (unlikely(*ppos >= isize))
533 return 0;
534
535 left = isize - *ppos;
536 if (unlikely(left < len))
537 len = left;
538
539 ret = __generic_file_splice_read(in, ppos, pipe, len, flags);
540 if (ret > 0) {
541 *ppos += ret;
542 file_accessed(in);
543 }
544
545 return ret;
546}
547EXPORT_SYMBOL(generic_file_splice_read);
548
549static const struct pipe_buf_operations default_pipe_buf_ops = {
550 .can_merge = 0,
551 .confirm = generic_pipe_buf_confirm,
552 .release = generic_pipe_buf_release,
553 .steal = generic_pipe_buf_steal,
554 .get = generic_pipe_buf_get,
555};
556
557static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
558 struct pipe_buffer *buf)
559{
560 return 1;
561}
562
563/* Pipe buffer operations for a socket and similar. */
564const struct pipe_buf_operations nosteal_pipe_buf_ops = {
565 .can_merge = 0,
566 .confirm = generic_pipe_buf_confirm,
567 .release = generic_pipe_buf_release,
568 .steal = generic_pipe_buf_nosteal,
569 .get = generic_pipe_buf_get,
570};
571EXPORT_SYMBOL(nosteal_pipe_buf_ops);
572
573static ssize_t kernel_readv(struct file *file, const struct iovec *vec,
574 unsigned long vlen, loff_t offset)
575{
576 mm_segment_t old_fs;
577 loff_t pos = offset;
578 ssize_t res;
579
580 old_fs = get_fs();
581 set_fs(get_ds());
582 /* The cast to a user pointer is valid due to the set_fs() */
583 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
584 set_fs(old_fs);
585
586 return res;
587}
588
589ssize_t kernel_write(struct file *file, const char *buf, size_t count,
590 loff_t pos)
591{
592 mm_segment_t old_fs;
593 ssize_t res;
594
595 old_fs = get_fs();
596 set_fs(get_ds());
597 /* The cast to a user pointer is valid due to the set_fs() */
598 res = vfs_write(file, (__force const char __user *)buf, count, &pos);
599 set_fs(old_fs);
600
601 return res;
602}
603EXPORT_SYMBOL(kernel_write);
604
605ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
606 struct pipe_inode_info *pipe, size_t len,
607 unsigned int flags)
608{
609 unsigned int nr_pages;
610 unsigned int nr_freed;
611 size_t offset;
612 struct page *pages[PIPE_DEF_BUFFERS];
613 struct partial_page partial[PIPE_DEF_BUFFERS];
614 struct iovec *vec, __vec[PIPE_DEF_BUFFERS];
615 ssize_t res;
616 size_t this_len;
617 int error;
618 int i;
619 struct splice_pipe_desc spd = {
620 .pages = pages,
621 .partial = partial,
622 .nr_pages_max = PIPE_DEF_BUFFERS,
623 .flags = flags,
624 .ops = &default_pipe_buf_ops,
625 .spd_release = spd_release_page,
626 };
627
628 if (splice_grow_spd(pipe, &spd))
629 return -ENOMEM;
630
631 res = -ENOMEM;
632 vec = __vec;
633 if (spd.nr_pages_max > PIPE_DEF_BUFFERS) {
634 vec = kmalloc(spd.nr_pages_max * sizeof(struct iovec), GFP_KERNEL);
635 if (!vec)
636 goto shrink_ret;
637 }
638
639 offset = *ppos & ~PAGE_MASK;
640 nr_pages = (len + offset + PAGE_SIZE - 1) >> PAGE_SHIFT;
641
642 for (i = 0; i < nr_pages && i < spd.nr_pages_max && len; i++) {
643 struct page *page;
644
645 page = alloc_page(GFP_USER);
646 error = -ENOMEM;
647 if (!page)
648 goto err;
649
650 this_len = min_t(size_t, len, PAGE_SIZE - offset);
651 vec[i].iov_base = (void __user *) page_address(page);
652 vec[i].iov_len = this_len;
653 spd.pages[i] = page;
654 spd.nr_pages++;
655 len -= this_len;
656 offset = 0;
657 }
658
659 res = kernel_readv(in, vec, spd.nr_pages, *ppos);
660 if (res < 0) {
661 error = res;
662 goto err;
663 }
664
665 error = 0;
666 if (!res)
667 goto err;
668
669 nr_freed = 0;
670 for (i = 0; i < spd.nr_pages; i++) {
671 this_len = min_t(size_t, vec[i].iov_len, res);
672 spd.partial[i].offset = 0;
673 spd.partial[i].len = this_len;
674 if (!this_len) {
675 __free_page(spd.pages[i]);
676 spd.pages[i] = NULL;
677 nr_freed++;
678 }
679 res -= this_len;
680 }
681 spd.nr_pages -= nr_freed;
682
683 res = splice_to_pipe(pipe, &spd);
684 if (res > 0)
685 *ppos += res;
686
687shrink_ret:
688 if (vec != __vec)
689 kfree(vec);
690 splice_shrink_spd(&spd);
691 return res;
692
693err:
694 for (i = 0; i < spd.nr_pages; i++)
695 __free_page(spd.pages[i]);
696
697 res = error;
698 goto shrink_ret;
699}
700EXPORT_SYMBOL(default_file_splice_read);
701
702/*
703 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
704 * using sendpage(). Return the number of bytes sent.
705 */
706static int pipe_to_sendpage(struct pipe_inode_info *pipe,
707 struct pipe_buffer *buf, struct splice_desc *sd)
708{
709 struct file *file = sd->u.file;
710 loff_t pos = sd->pos;
711 int more;
712
713 if (!likely(file->f_op->sendpage))
714 return -EINVAL;
715
716 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
717
718 if (sd->len < sd->total_len && pipe->nrbufs > 1)
719 more |= MSG_SENDPAGE_NOTLAST;
720
721 return file->f_op->sendpage(file, buf->page, buf->offset,
722 sd->len, &pos, more);
723}
724
725static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
726{
727 smp_mb();
728 if (waitqueue_active(&pipe->wait))
729 wake_up_interruptible(&pipe->wait);
730 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
731}
732
733/**
734 * splice_from_pipe_feed - feed available data from a pipe to a file
735 * @pipe: pipe to splice from
736 * @sd: information to @actor
737 * @actor: handler that splices the data
738 *
739 * Description:
740 * This function loops over the pipe and calls @actor to do the
741 * actual moving of a single struct pipe_buffer to the desired
742 * destination. It returns when there's no more buffers left in
743 * the pipe or if the requested number of bytes (@sd->total_len)
744 * have been copied. It returns a positive number (one) if the
745 * pipe needs to be filled with more data, zero if the required
746 * number of bytes have been copied and -errno on error.
747 *
748 * This, together with splice_from_pipe_{begin,end,next}, may be
749 * used to implement the functionality of __splice_from_pipe() when
750 * locking is required around copying the pipe buffers to the
751 * destination.
752 */
753static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
754 splice_actor *actor)
755{
756 int ret;
757
758 while (pipe->nrbufs) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 const struct pipe_buf_operations *ops = buf->ops;
761
762 sd->len = buf->len;
763 if (sd->len > sd->total_len)
764 sd->len = sd->total_len;
765
766 ret = buf->ops->confirm(pipe, buf);
767 if (unlikely(ret)) {
768 if (ret == -ENODATA)
769 ret = 0;
770 return ret;
771 }
772
773 ret = actor(pipe, buf, sd);
774 if (ret <= 0)
775 return ret;
776
777 buf->offset += ret;
778 buf->len -= ret;
779
780 sd->num_spliced += ret;
781 sd->len -= ret;
782 sd->pos += ret;
783 sd->total_len -= ret;
784
785 if (!buf->len) {
786 buf->ops = NULL;
787 ops->release(pipe, buf);
788 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
789 pipe->nrbufs--;
790 if (pipe->files)
791 sd->need_wakeup = true;
792 }
793
794 if (!sd->total_len)
795 return 0;
796 }
797
798 return 1;
799}
800
801/**
802 * splice_from_pipe_next - wait for some data to splice from
803 * @pipe: pipe to splice from
804 * @sd: information about the splice operation
805 *
806 * Description:
807 * This function will wait for some data and return a positive
808 * value (one) if pipe buffers are available. It will return zero
809 * or -errno if no more data needs to be spliced.
810 */
811static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
812{
813 /*
814 * Check for signal early to make process killable when there are
815 * always buffers available
816 */
817 if (signal_pending(current))
818 return -ERESTARTSYS;
819
820 while (!pipe->nrbufs) {
821 if (!pipe->writers)
822 return 0;
823
824 if (!pipe->waiting_writers && sd->num_spliced)
825 return 0;
826
827 if (sd->flags & SPLICE_F_NONBLOCK)
828 return -EAGAIN;
829
830 if (signal_pending(current))
831 return -ERESTARTSYS;
832
833 if (sd->need_wakeup) {
834 wakeup_pipe_writers(pipe);
835 sd->need_wakeup = false;
836 }
837
838 pipe_wait(pipe);
839 }
840
841 return 1;
842}
843
844/**
845 * splice_from_pipe_begin - start splicing from pipe
846 * @sd: information about the splice operation
847 *
848 * Description:
849 * This function should be called before a loop containing
850 * splice_from_pipe_next() and splice_from_pipe_feed() to
851 * initialize the necessary fields of @sd.
852 */
853static void splice_from_pipe_begin(struct splice_desc *sd)
854{
855 sd->num_spliced = 0;
856 sd->need_wakeup = false;
857}
858
859/**
860 * splice_from_pipe_end - finish splicing from pipe
861 * @pipe: pipe to splice from
862 * @sd: information about the splice operation
863 *
864 * Description:
865 * This function will wake up pipe writers if necessary. It should
866 * be called after a loop containing splice_from_pipe_next() and
867 * splice_from_pipe_feed().
868 */
869static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
870{
871 if (sd->need_wakeup)
872 wakeup_pipe_writers(pipe);
873}
874
875/**
876 * __splice_from_pipe - splice data from a pipe to given actor
877 * @pipe: pipe to splice from
878 * @sd: information to @actor
879 * @actor: handler that splices the data
880 *
881 * Description:
882 * This function does little more than loop over the pipe and call
883 * @actor to do the actual moving of a single struct pipe_buffer to
884 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
885 * pipe_to_user.
886 *
887 */
888ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
889 splice_actor *actor)
890{
891 int ret;
892
893 splice_from_pipe_begin(sd);
894 do {
895 cond_resched();
896 ret = splice_from_pipe_next(pipe, sd);
897 if (ret > 0)
898 ret = splice_from_pipe_feed(pipe, sd, actor);
899 } while (ret > 0);
900 splice_from_pipe_end(pipe, sd);
901
902 return sd->num_spliced ? sd->num_spliced : ret;
903}
904EXPORT_SYMBOL(__splice_from_pipe);
905
906/**
907 * splice_from_pipe - splice data from a pipe to a file
908 * @pipe: pipe to splice from
909 * @out: file to splice to
910 * @ppos: position in @out
911 * @len: how many bytes to splice
912 * @flags: splice modifier flags
913 * @actor: handler that splices the data
914 *
915 * Description:
916 * See __splice_from_pipe. This function locks the pipe inode,
917 * otherwise it's identical to __splice_from_pipe().
918 *
919 */
920ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
921 loff_t *ppos, size_t len, unsigned int flags,
922 splice_actor *actor)
923{
924 ssize_t ret;
925 struct splice_desc sd = {
926 .total_len = len,
927 .flags = flags,
928 .pos = *ppos,
929 .u.file = out,
930 };
931
932 pipe_lock(pipe);
933 ret = __splice_from_pipe(pipe, &sd, actor);
934 pipe_unlock(pipe);
935
936 return ret;
937}
938
939/**
940 * iter_file_splice_write - splice data from a pipe to a file
941 * @pipe: pipe info
942 * @out: file to write to
943 * @ppos: position in @out
944 * @len: number of bytes to splice
945 * @flags: splice modifier flags
946 *
947 * Description:
948 * Will either move or copy pages (determined by @flags options) from
949 * the given pipe inode to the given file.
950 * This one is ->write_iter-based.
951 *
952 */
953ssize_t
954iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
955 loff_t *ppos, size_t len, unsigned int flags)
956{
957 struct splice_desc sd = {
958 .total_len = len,
959 .flags = flags,
960 .pos = *ppos,
961 .u.file = out,
962 };
963 int nbufs = pipe->buffers;
964 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
965 GFP_KERNEL);
966 ssize_t ret;
967
968 if (unlikely(!array))
969 return -ENOMEM;
970
971 pipe_lock(pipe);
972
973 splice_from_pipe_begin(&sd);
974 while (sd.total_len) {
975 struct iov_iter from;
976 size_t left;
977 int n, idx;
978
979 ret = splice_from_pipe_next(pipe, &sd);
980 if (ret <= 0)
981 break;
982
983 if (unlikely(nbufs < pipe->buffers)) {
984 kfree(array);
985 nbufs = pipe->buffers;
986 array = kcalloc(nbufs, sizeof(struct bio_vec),
987 GFP_KERNEL);
988 if (!array) {
989 ret = -ENOMEM;
990 break;
991 }
992 }
993
994 /* build the vector */
995 left = sd.total_len;
996 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
997 struct pipe_buffer *buf = pipe->bufs + idx;
998 size_t this_len = buf->len;
999
1000 if (this_len > left)
1001 this_len = left;
1002
1003 if (idx == pipe->buffers - 1)
1004 idx = -1;
1005
1006 ret = buf->ops->confirm(pipe, buf);
1007 if (unlikely(ret)) {
1008 if (ret == -ENODATA)
1009 ret = 0;
1010 goto done;
1011 }
1012
1013 array[n].bv_page = buf->page;
1014 array[n].bv_len = this_len;
1015 array[n].bv_offset = buf->offset;
1016 left -= this_len;
1017 }
1018
1019 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
1020 sd.total_len - left);
1021 ret = vfs_iter_write(out, &from, &sd.pos);
1022 if (ret <= 0)
1023 break;
1024
1025 sd.num_spliced += ret;
1026 sd.total_len -= ret;
1027 *ppos = sd.pos;
1028
1029 /* dismiss the fully eaten buffers, adjust the partial one */
1030 while (ret) {
1031 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
1032 if (ret >= buf->len) {
1033 const struct pipe_buf_operations *ops = buf->ops;
1034 ret -= buf->len;
1035 buf->len = 0;
1036 buf->ops = NULL;
1037 ops->release(pipe, buf);
1038 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
1039 pipe->nrbufs--;
1040 if (pipe->files)
1041 sd.need_wakeup = true;
1042 } else {
1043 buf->offset += ret;
1044 buf->len -= ret;
1045 ret = 0;
1046 }
1047 }
1048 }
1049done:
1050 kfree(array);
1051 splice_from_pipe_end(pipe, &sd);
1052
1053 pipe_unlock(pipe);
1054
1055 if (sd.num_spliced)
1056 ret = sd.num_spliced;
1057
1058 return ret;
1059}
1060
1061EXPORT_SYMBOL(iter_file_splice_write);
1062
1063static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1064 struct splice_desc *sd)
1065{
1066 int ret;
1067 void *data;
1068 loff_t tmp = sd->pos;
1069
1070 data = kmap(buf->page);
1071 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
1072 kunmap(buf->page);
1073
1074 return ret;
1075}
1076
1077static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
1078 struct file *out, loff_t *ppos,
1079 size_t len, unsigned int flags)
1080{
1081 ssize_t ret;
1082
1083 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
1084 if (ret > 0)
1085 *ppos += ret;
1086
1087 return ret;
1088}
1089
1090/**
1091 * generic_splice_sendpage - splice data from a pipe to a socket
1092 * @pipe: pipe to splice from
1093 * @out: socket to write to
1094 * @ppos: position in @out
1095 * @len: number of bytes to splice
1096 * @flags: splice modifier flags
1097 *
1098 * Description:
1099 * Will send @len bytes from the pipe to a network socket. No data copying
1100 * is involved.
1101 *
1102 */
1103ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
1104 loff_t *ppos, size_t len, unsigned int flags)
1105{
1106 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
1107}
1108
1109EXPORT_SYMBOL(generic_splice_sendpage);
1110
1111/*
1112 * Attempt to initiate a splice from pipe to file.
1113 */
1114static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
1115 loff_t *ppos, size_t len, unsigned int flags)
1116{
1117 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
1118 loff_t *, size_t, unsigned int);
1119
1120 if (out->f_op->splice_write)
1121 splice_write = out->f_op->splice_write;
1122 else
1123 splice_write = default_file_splice_write;
1124
1125 return splice_write(pipe, out, ppos, len, flags);
1126}
1127
1128/*
1129 * Attempt to initiate a splice from a file to a pipe.
1130 */
1131static long do_splice_to(struct file *in, loff_t *ppos,
1132 struct pipe_inode_info *pipe, size_t len,
1133 unsigned int flags)
1134{
1135 ssize_t (*splice_read)(struct file *, loff_t *,
1136 struct pipe_inode_info *, size_t, unsigned int);
1137 int ret;
1138
1139 if (unlikely(!(in->f_mode & FMODE_READ)))
1140 return -EBADF;
1141
1142 ret = rw_verify_area(READ, in, ppos, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 if (unlikely(len > MAX_RW_COUNT))
1147 len = MAX_RW_COUNT;
1148
1149 if (in->f_op->splice_read)
1150 splice_read = in->f_op->splice_read;
1151 else
1152 splice_read = default_file_splice_read;
1153
1154 return splice_read(in, ppos, pipe, len, flags);
1155}
1156
1157/**
1158 * splice_direct_to_actor - splices data directly between two non-pipes
1159 * @in: file to splice from
1160 * @sd: actor information on where to splice to
1161 * @actor: handles the data splicing
1162 *
1163 * Description:
1164 * This is a special case helper to splice directly between two
1165 * points, without requiring an explicit pipe. Internally an allocated
1166 * pipe is cached in the process, and reused during the lifetime of
1167 * that process.
1168 *
1169 */
1170ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
1171 splice_direct_actor *actor)
1172{
1173 struct pipe_inode_info *pipe;
1174 long ret, bytes;
1175 umode_t i_mode;
1176 size_t len;
1177 int i, flags, more;
1178
1179 /*
1180 * We require the input being a regular file, as we don't want to
1181 * randomly drop data for eg socket -> socket splicing. Use the
1182 * piped splicing for that!
1183 */
1184 i_mode = file_inode(in)->i_mode;
1185 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
1186 return -EINVAL;
1187
1188 /*
1189 * neither in nor out is a pipe, setup an internal pipe attached to
1190 * 'out' and transfer the wanted data from 'in' to 'out' through that
1191 */
1192 pipe = current->splice_pipe;
1193 if (unlikely(!pipe)) {
1194 pipe = alloc_pipe_info();
1195 if (!pipe)
1196 return -ENOMEM;
1197
1198 /*
1199 * We don't have an immediate reader, but we'll read the stuff
1200 * out of the pipe right after the splice_to_pipe(). So set
1201 * PIPE_READERS appropriately.
1202 */
1203 pipe->readers = 1;
1204
1205 current->splice_pipe = pipe;
1206 }
1207
1208 /*
1209 * Do the splice.
1210 */
1211 ret = 0;
1212 bytes = 0;
1213 len = sd->total_len;
1214 flags = sd->flags;
1215
1216 /*
1217 * Don't block on output, we have to drain the direct pipe.
1218 */
1219 sd->flags &= ~SPLICE_F_NONBLOCK;
1220 more = sd->flags & SPLICE_F_MORE;
1221
1222 while (len) {
1223 size_t read_len;
1224 loff_t pos = sd->pos, prev_pos = pos;
1225
1226 ret = do_splice_to(in, &pos, pipe, len, flags);
1227 if (unlikely(ret <= 0))
1228 goto out_release;
1229
1230 read_len = ret;
1231 sd->total_len = read_len;
1232
1233 /*
1234 * If more data is pending, set SPLICE_F_MORE
1235 * If this is the last data and SPLICE_F_MORE was not set
1236 * initially, clears it.
1237 */
1238 if (read_len < len)
1239 sd->flags |= SPLICE_F_MORE;
1240 else if (!more)
1241 sd->flags &= ~SPLICE_F_MORE;
1242 /*
1243 * NOTE: nonblocking mode only applies to the input. We
1244 * must not do the output in nonblocking mode as then we
1245 * could get stuck data in the internal pipe:
1246 */
1247 ret = actor(pipe, sd);
1248 if (unlikely(ret <= 0)) {
1249 sd->pos = prev_pos;
1250 goto out_release;
1251 }
1252
1253 bytes += ret;
1254 len -= ret;
1255 sd->pos = pos;
1256
1257 if (ret < read_len) {
1258 sd->pos = prev_pos + ret;
1259 goto out_release;
1260 }
1261 }
1262
1263done:
1264 pipe->nrbufs = pipe->curbuf = 0;
1265 file_accessed(in);
1266 return bytes;
1267
1268out_release:
1269 /*
1270 * If we did an incomplete transfer we must release
1271 * the pipe buffers in question:
1272 */
1273 for (i = 0; i < pipe->buffers; i++) {
1274 struct pipe_buffer *buf = pipe->bufs + i;
1275
1276 if (buf->ops) {
1277 buf->ops->release(pipe, buf);
1278 buf->ops = NULL;
1279 }
1280 }
1281
1282 if (!bytes)
1283 bytes = ret;
1284
1285 goto done;
1286}
1287EXPORT_SYMBOL(splice_direct_to_actor);
1288
1289static int direct_splice_actor(struct pipe_inode_info *pipe,
1290 struct splice_desc *sd)
1291{
1292 struct file *file = sd->u.file;
1293
1294 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1295 sd->flags);
1296}
1297
1298/**
1299 * do_splice_direct - splices data directly between two files
1300 * @in: file to splice from
1301 * @ppos: input file offset
1302 * @out: file to splice to
1303 * @opos: output file offset
1304 * @len: number of bytes to splice
1305 * @flags: splice modifier flags
1306 *
1307 * Description:
1308 * For use by do_sendfile(). splice can easily emulate sendfile, but
1309 * doing it in the application would incur an extra system call
1310 * (splice in + splice out, as compared to just sendfile()). So this helper
1311 * can splice directly through a process-private pipe.
1312 *
1313 */
1314long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1315 loff_t *opos, size_t len, unsigned int flags)
1316{
1317 struct splice_desc sd = {
1318 .len = len,
1319 .total_len = len,
1320 .flags = flags,
1321 .pos = *ppos,
1322 .u.file = out,
1323 .opos = opos,
1324 };
1325 long ret;
1326
1327 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1328 return -EBADF;
1329
1330 if (unlikely(out->f_flags & O_APPEND))
1331 return -EINVAL;
1332
1333 ret = rw_verify_area(WRITE, out, opos, len);
1334 if (unlikely(ret < 0))
1335 return ret;
1336
1337 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1338 if (ret > 0)
1339 *ppos = sd.pos;
1340
1341 return ret;
1342}
1343EXPORT_SYMBOL(do_splice_direct);
1344
1345static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1346 struct pipe_inode_info *opipe,
1347 size_t len, unsigned int flags);
1348
1349/*
1350 * Determine where to splice to/from.
1351 */
1352static long do_splice(struct file *in, loff_t __user *off_in,
1353 struct file *out, loff_t __user *off_out,
1354 size_t len, unsigned int flags)
1355{
1356 struct pipe_inode_info *ipipe;
1357 struct pipe_inode_info *opipe;
1358 loff_t offset;
1359 long ret;
1360
1361 ipipe = get_pipe_info(in);
1362 opipe = get_pipe_info(out);
1363
1364 if (ipipe && opipe) {
1365 if (off_in || off_out)
1366 return -ESPIPE;
1367
1368 if (!(in->f_mode & FMODE_READ))
1369 return -EBADF;
1370
1371 if (!(out->f_mode & FMODE_WRITE))
1372 return -EBADF;
1373
1374 /* Splicing to self would be fun, but... */
1375 if (ipipe == opipe)
1376 return -EINVAL;
1377
1378 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1379 }
1380
1381 if (ipipe) {
1382 if (off_in)
1383 return -ESPIPE;
1384 if (off_out) {
1385 if (!(out->f_mode & FMODE_PWRITE))
1386 return -EINVAL;
1387 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1388 return -EFAULT;
1389 } else {
1390 offset = out->f_pos;
1391 }
1392
1393 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1394 return -EBADF;
1395
1396 if (unlikely(out->f_flags & O_APPEND))
1397 return -EINVAL;
1398
1399 ret = rw_verify_area(WRITE, out, &offset, len);
1400 if (unlikely(ret < 0))
1401 return ret;
1402
1403 file_start_write(out);
1404 ret = do_splice_from(ipipe, out, &offset, len, flags);
1405 file_end_write(out);
1406
1407 if (!off_out)
1408 out->f_pos = offset;
1409 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1410 ret = -EFAULT;
1411
1412 return ret;
1413 }
1414
1415 if (opipe) {
1416 if (off_out)
1417 return -ESPIPE;
1418 if (off_in) {
1419 if (!(in->f_mode & FMODE_PREAD))
1420 return -EINVAL;
1421 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1422 return -EFAULT;
1423 } else {
1424 offset = in->f_pos;
1425 }
1426
1427 ret = do_splice_to(in, &offset, opipe, len, flags);
1428
1429 if (!off_in)
1430 in->f_pos = offset;
1431 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1432 ret = -EFAULT;
1433
1434 return ret;
1435 }
1436
1437 return -EINVAL;
1438}
1439
1440/*
1441 * Map an iov into an array of pages and offset/length tupples. With the
1442 * partial_page structure, we can map several non-contiguous ranges into
1443 * our ones pages[] map instead of splitting that operation into pieces.
1444 * Could easily be exported as a generic helper for other users, in which
1445 * case one would probably want to add a 'max_nr_pages' parameter as well.
1446 */
1447static int get_iovec_page_array(const struct iovec __user *iov,
1448 unsigned int nr_vecs, struct page **pages,
1449 struct partial_page *partial, bool aligned,
1450 unsigned int pipe_buffers)
1451{
1452 int buffers = 0, error = 0;
1453
1454 while (nr_vecs) {
1455 unsigned long off, npages;
1456 struct iovec entry;
1457 void __user *base;
1458 size_t len;
1459 int i;
1460
1461 error = -EFAULT;
1462 if (copy_from_user(&entry, iov, sizeof(entry)))
1463 break;
1464
1465 base = entry.iov_base;
1466 len = entry.iov_len;
1467
1468 /*
1469 * Sanity check this iovec. 0 read succeeds.
1470 */
1471 error = 0;
1472 if (unlikely(!len))
1473 break;
1474 error = -EFAULT;
1475 if (!access_ok(VERIFY_READ, base, len))
1476 break;
1477
1478 /*
1479 * Get this base offset and number of pages, then map
1480 * in the user pages.
1481 */
1482 off = (unsigned long) base & ~PAGE_MASK;
1483
1484 /*
1485 * If asked for alignment, the offset must be zero and the
1486 * length a multiple of the PAGE_SIZE.
1487 */
1488 error = -EINVAL;
1489 if (aligned && (off || len & ~PAGE_MASK))
1490 break;
1491
1492 npages = (off + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1493 if (npages > pipe_buffers - buffers)
1494 npages = pipe_buffers - buffers;
1495
1496 error = get_user_pages_fast((unsigned long)base, npages,
1497 0, &pages[buffers]);
1498
1499 if (unlikely(error <= 0))
1500 break;
1501
1502 /*
1503 * Fill this contiguous range into the partial page map.
1504 */
1505 for (i = 0; i < error; i++) {
1506 const int plen = min_t(size_t, len, PAGE_SIZE - off);
1507
1508 partial[buffers].offset = off;
1509 partial[buffers].len = plen;
1510
1511 off = 0;
1512 len -= plen;
1513 buffers++;
1514 }
1515
1516 /*
1517 * We didn't complete this iov, stop here since it probably
1518 * means we have to move some of this into a pipe to
1519 * be able to continue.
1520 */
1521 if (len)
1522 break;
1523
1524 /*
1525 * Don't continue if we mapped fewer pages than we asked for,
1526 * or if we mapped the max number of pages that we have
1527 * room for.
1528 */
1529 if (error < npages || buffers == pipe_buffers)
1530 break;
1531
1532 nr_vecs--;
1533 iov++;
1534 }
1535
1536 if (buffers)
1537 return buffers;
1538
1539 return error;
1540}
1541
1542static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1543 struct splice_desc *sd)
1544{
1545 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1546 return n == sd->len ? n : -EFAULT;
1547}
1548
1549/*
1550 * For lack of a better implementation, implement vmsplice() to userspace
1551 * as a simple copy of the pipes pages to the user iov.
1552 */
1553static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1554 unsigned long nr_segs, unsigned int flags)
1555{
1556 struct pipe_inode_info *pipe;
1557 struct splice_desc sd;
1558 long ret;
1559 struct iovec iovstack[UIO_FASTIOV];
1560 struct iovec *iov = iovstack;
1561 struct iov_iter iter;
1562
1563 pipe = get_pipe_info(file);
1564 if (!pipe)
1565 return -EBADF;
1566
1567 ret = import_iovec(READ, uiov, nr_segs,
1568 ARRAY_SIZE(iovstack), &iov, &iter);
1569 if (ret < 0)
1570 return ret;
1571
1572 sd.total_len = iov_iter_count(&iter);
1573 sd.len = 0;
1574 sd.flags = flags;
1575 sd.u.data = &iter;
1576 sd.pos = 0;
1577
1578 if (sd.total_len) {
1579 pipe_lock(pipe);
1580 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1581 pipe_unlock(pipe);
1582 }
1583
1584 kfree(iov);
1585 return ret;
1586}
1587
1588/*
1589 * vmsplice splices a user address range into a pipe. It can be thought of
1590 * as splice-from-memory, where the regular splice is splice-from-file (or
1591 * to file). In both cases the output is a pipe, naturally.
1592 */
1593static long vmsplice_to_pipe(struct file *file, const struct iovec __user *iov,
1594 unsigned long nr_segs, unsigned int flags)
1595{
1596 struct pipe_inode_info *pipe;
1597 struct page *pages[PIPE_DEF_BUFFERS];
1598 struct partial_page partial[PIPE_DEF_BUFFERS];
1599 struct splice_pipe_desc spd = {
1600 .pages = pages,
1601 .partial = partial,
1602 .nr_pages_max = PIPE_DEF_BUFFERS,
1603 .flags = flags,
1604 .ops = &user_page_pipe_buf_ops,
1605 .spd_release = spd_release_page,
1606 };
1607 long ret;
1608
1609 pipe = get_pipe_info(file);
1610 if (!pipe)
1611 return -EBADF;
1612
1613 if (splice_grow_spd(pipe, &spd))
1614 return -ENOMEM;
1615
1616 spd.nr_pages = get_iovec_page_array(iov, nr_segs, spd.pages,
1617 spd.partial, false,
1618 spd.nr_pages_max);
1619 if (spd.nr_pages <= 0)
1620 ret = spd.nr_pages;
1621 else
1622 ret = splice_to_pipe(pipe, &spd);
1623
1624 splice_shrink_spd(&spd);
1625 return ret;
1626}
1627
1628/*
1629 * Note that vmsplice only really supports true splicing _from_ user memory
1630 * to a pipe, not the other way around. Splicing from user memory is a simple
1631 * operation that can be supported without any funky alignment restrictions
1632 * or nasty vm tricks. We simply map in the user memory and fill them into
1633 * a pipe. The reverse isn't quite as easy, though. There are two possible
1634 * solutions for that:
1635 *
1636 * - memcpy() the data internally, at which point we might as well just
1637 * do a regular read() on the buffer anyway.
1638 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1639 * has restriction limitations on both ends of the pipe).
1640 *
1641 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1642 *
1643 */
1644SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1645 unsigned long, nr_segs, unsigned int, flags)
1646{
1647 struct fd f;
1648 long error;
1649
1650 if (unlikely(nr_segs > UIO_MAXIOV))
1651 return -EINVAL;
1652 else if (unlikely(!nr_segs))
1653 return 0;
1654
1655 error = -EBADF;
1656 f = fdget(fd);
1657 if (f.file) {
1658 if (f.file->f_mode & FMODE_WRITE)
1659 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1660 else if (f.file->f_mode & FMODE_READ)
1661 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1662
1663 fdput(f);
1664 }
1665
1666 return error;
1667}
1668
1669#ifdef CONFIG_COMPAT
1670COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1671 unsigned int, nr_segs, unsigned int, flags)
1672{
1673 unsigned i;
1674 struct iovec __user *iov;
1675 if (nr_segs > UIO_MAXIOV)
1676 return -EINVAL;
1677 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1678 for (i = 0; i < nr_segs; i++) {
1679 struct compat_iovec v;
1680 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1681 get_user(v.iov_len, &iov32[i].iov_len) ||
1682 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1683 put_user(v.iov_len, &iov[i].iov_len))
1684 return -EFAULT;
1685 }
1686 return sys_vmsplice(fd, iov, nr_segs, flags);
1687}
1688#endif
1689
1690SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1691 int, fd_out, loff_t __user *, off_out,
1692 size_t, len, unsigned int, flags)
1693{
1694 struct fd in, out;
1695 long error;
1696
1697 if (unlikely(!len))
1698 return 0;
1699
1700 error = -EBADF;
1701 in = fdget(fd_in);
1702 if (in.file) {
1703 if (in.file->f_mode & FMODE_READ) {
1704 out = fdget(fd_out);
1705 if (out.file) {
1706 if (out.file->f_mode & FMODE_WRITE)
1707 error = do_splice(in.file, off_in,
1708 out.file, off_out,
1709 len, flags);
1710 fdput(out);
1711 }
1712 }
1713 fdput(in);
1714 }
1715 return error;
1716}
1717
1718/*
1719 * Make sure there's data to read. Wait for input if we can, otherwise
1720 * return an appropriate error.
1721 */
1722static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1723{
1724 int ret;
1725
1726 /*
1727 * Check ->nrbufs without the inode lock first. This function
1728 * is speculative anyways, so missing one is ok.
1729 */
1730 if (pipe->nrbufs)
1731 return 0;
1732
1733 ret = 0;
1734 pipe_lock(pipe);
1735
1736 while (!pipe->nrbufs) {
1737 if (signal_pending(current)) {
1738 ret = -ERESTARTSYS;
1739 break;
1740 }
1741 if (!pipe->writers)
1742 break;
1743 if (!pipe->waiting_writers) {
1744 if (flags & SPLICE_F_NONBLOCK) {
1745 ret = -EAGAIN;
1746 break;
1747 }
1748 }
1749 pipe_wait(pipe);
1750 }
1751
1752 pipe_unlock(pipe);
1753 return ret;
1754}
1755
1756/*
1757 * Make sure there's writeable room. Wait for room if we can, otherwise
1758 * return an appropriate error.
1759 */
1760static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1761{
1762 int ret;
1763
1764 /*
1765 * Check ->nrbufs without the inode lock first. This function
1766 * is speculative anyways, so missing one is ok.
1767 */
1768 if (pipe->nrbufs < pipe->buffers)
1769 return 0;
1770
1771 ret = 0;
1772 pipe_lock(pipe);
1773
1774 while (pipe->nrbufs >= pipe->buffers) {
1775 if (!pipe->readers) {
1776 send_sig(SIGPIPE, current, 0);
1777 ret = -EPIPE;
1778 break;
1779 }
1780 if (flags & SPLICE_F_NONBLOCK) {
1781 ret = -EAGAIN;
1782 break;
1783 }
1784 if (signal_pending(current)) {
1785 ret = -ERESTARTSYS;
1786 break;
1787 }
1788 pipe->waiting_writers++;
1789 pipe_wait(pipe);
1790 pipe->waiting_writers--;
1791 }
1792
1793 pipe_unlock(pipe);
1794 return ret;
1795}
1796
1797/*
1798 * Splice contents of ipipe to opipe.
1799 */
1800static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1801 struct pipe_inode_info *opipe,
1802 size_t len, unsigned int flags)
1803{
1804 struct pipe_buffer *ibuf, *obuf;
1805 int ret = 0, nbuf;
1806 bool input_wakeup = false;
1807
1808
1809retry:
1810 ret = ipipe_prep(ipipe, flags);
1811 if (ret)
1812 return ret;
1813
1814 ret = opipe_prep(opipe, flags);
1815 if (ret)
1816 return ret;
1817
1818 /*
1819 * Potential ABBA deadlock, work around it by ordering lock
1820 * grabbing by pipe info address. Otherwise two different processes
1821 * could deadlock (one doing tee from A -> B, the other from B -> A).
1822 */
1823 pipe_double_lock(ipipe, opipe);
1824
1825 do {
1826 if (!opipe->readers) {
1827 send_sig(SIGPIPE, current, 0);
1828 if (!ret)
1829 ret = -EPIPE;
1830 break;
1831 }
1832
1833 if (!ipipe->nrbufs && !ipipe->writers)
1834 break;
1835
1836 /*
1837 * Cannot make any progress, because either the input
1838 * pipe is empty or the output pipe is full.
1839 */
1840 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1841 /* Already processed some buffers, break */
1842 if (ret)
1843 break;
1844
1845 if (flags & SPLICE_F_NONBLOCK) {
1846 ret = -EAGAIN;
1847 break;
1848 }
1849
1850 /*
1851 * We raced with another reader/writer and haven't
1852 * managed to process any buffers. A zero return
1853 * value means EOF, so retry instead.
1854 */
1855 pipe_unlock(ipipe);
1856 pipe_unlock(opipe);
1857 goto retry;
1858 }
1859
1860 ibuf = ipipe->bufs + ipipe->curbuf;
1861 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1862 obuf = opipe->bufs + nbuf;
1863
1864 if (len >= ibuf->len) {
1865 /*
1866 * Simply move the whole buffer from ipipe to opipe
1867 */
1868 *obuf = *ibuf;
1869 ibuf->ops = NULL;
1870 opipe->nrbufs++;
1871 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1872 ipipe->nrbufs--;
1873 input_wakeup = true;
1874 } else {
1875 /*
1876 * Get a reference to this pipe buffer,
1877 * so we can copy the contents over.
1878 */
1879 ibuf->ops->get(ipipe, ibuf);
1880 *obuf = *ibuf;
1881
1882 /*
1883 * Don't inherit the gift flag, we need to
1884 * prevent multiple steals of this page.
1885 */
1886 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1887
1888 obuf->len = len;
1889 opipe->nrbufs++;
1890 ibuf->offset += obuf->len;
1891 ibuf->len -= obuf->len;
1892 }
1893 ret += obuf->len;
1894 len -= obuf->len;
1895 } while (len);
1896
1897 pipe_unlock(ipipe);
1898 pipe_unlock(opipe);
1899
1900 /*
1901 * If we put data in the output pipe, wakeup any potential readers.
1902 */
1903 if (ret > 0)
1904 wakeup_pipe_readers(opipe);
1905
1906 if (input_wakeup)
1907 wakeup_pipe_writers(ipipe);
1908
1909 return ret;
1910}
1911
1912/*
1913 * Link contents of ipipe to opipe.
1914 */
1915static int link_pipe(struct pipe_inode_info *ipipe,
1916 struct pipe_inode_info *opipe,
1917 size_t len, unsigned int flags)
1918{
1919 struct pipe_buffer *ibuf, *obuf;
1920 int ret = 0, i = 0, nbuf;
1921
1922 /*
1923 * Potential ABBA deadlock, work around it by ordering lock
1924 * grabbing by pipe info address. Otherwise two different processes
1925 * could deadlock (one doing tee from A -> B, the other from B -> A).
1926 */
1927 pipe_double_lock(ipipe, opipe);
1928
1929 do {
1930 if (!opipe->readers) {
1931 send_sig(SIGPIPE, current, 0);
1932 if (!ret)
1933 ret = -EPIPE;
1934 break;
1935 }
1936
1937 /*
1938 * If we have iterated all input buffers or ran out of
1939 * output room, break.
1940 */
1941 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1942 break;
1943
1944 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1945 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1946
1947 /*
1948 * Get a reference to this pipe buffer,
1949 * so we can copy the contents over.
1950 */
1951 ibuf->ops->get(ipipe, ibuf);
1952
1953 obuf = opipe->bufs + nbuf;
1954 *obuf = *ibuf;
1955
1956 /*
1957 * Don't inherit the gift flag, we need to
1958 * prevent multiple steals of this page.
1959 */
1960 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1961
1962 if (obuf->len > len)
1963 obuf->len = len;
1964
1965 opipe->nrbufs++;
1966 ret += obuf->len;
1967 len -= obuf->len;
1968 i++;
1969 } while (len);
1970
1971 /*
1972 * return EAGAIN if we have the potential of some data in the
1973 * future, otherwise just return 0
1974 */
1975 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1976 ret = -EAGAIN;
1977
1978 pipe_unlock(ipipe);
1979 pipe_unlock(opipe);
1980
1981 /*
1982 * If we put data in the output pipe, wakeup any potential readers.
1983 */
1984 if (ret > 0)
1985 wakeup_pipe_readers(opipe);
1986
1987 return ret;
1988}
1989
1990/*
1991 * This is a tee(1) implementation that works on pipes. It doesn't copy
1992 * any data, it simply references the 'in' pages on the 'out' pipe.
1993 * The 'flags' used are the SPLICE_F_* variants, currently the only
1994 * applicable one is SPLICE_F_NONBLOCK.
1995 */
1996static long do_tee(struct file *in, struct file *out, size_t len,
1997 unsigned int flags)
1998{
1999 struct pipe_inode_info *ipipe = get_pipe_info(in);
2000 struct pipe_inode_info *opipe = get_pipe_info(out);
2001 int ret = -EINVAL;
2002
2003 /*
2004 * Duplicate the contents of ipipe to opipe without actually
2005 * copying the data.
2006 */
2007 if (ipipe && opipe && ipipe != opipe) {
2008 /*
2009 * Keep going, unless we encounter an error. The ipipe/opipe
2010 * ordering doesn't really matter.
2011 */
2012 ret = ipipe_prep(ipipe, flags);
2013 if (!ret) {
2014 ret = opipe_prep(opipe, flags);
2015 if (!ret)
2016 ret = link_pipe(ipipe, opipe, len, flags);
2017 }
2018 }
2019
2020 return ret;
2021}
2022
2023SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
2024{
2025 struct fd in;
2026 int error;
2027
2028 if (unlikely(!len))
2029 return 0;
2030
2031 error = -EBADF;
2032 in = fdget(fdin);
2033 if (in.file) {
2034 if (in.file->f_mode & FMODE_READ) {
2035 struct fd out = fdget(fdout);
2036 if (out.file) {
2037 if (out.file->f_mode & FMODE_WRITE)
2038 error = do_tee(in.file, out.file,
2039 len, flags);
2040 fdput(out);
2041 }
2042 }
2043 fdput(in);
2044 }
2045
2046 return error;
2047}
1/*
2 * "splice": joining two ropes together by interweaving their strands.
3 *
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
7 *
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
10 *
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
14 *
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
18 *
19 */
20#include <linux/bvec.h>
21#include <linux/fs.h>
22#include <linux/file.h>
23#include <linux/pagemap.h>
24#include <linux/splice.h>
25#include <linux/memcontrol.h>
26#include <linux/mm_inline.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
29#include <linux/export.h>
30#include <linux/syscalls.h>
31#include <linux/uio.h>
32#include <linux/security.h>
33#include <linux/gfp.h>
34#include <linux/socket.h>
35#include <linux/compat.h>
36#include <linux/sched/signal.h>
37
38#include "internal.h"
39
40/*
41 * Attempt to steal a page from a pipe buffer. This should perhaps go into
42 * a vm helper function, it's already simplified quite a bit by the
43 * addition of remove_mapping(). If success is returned, the caller may
44 * attempt to reuse this page for another destination.
45 */
46static int page_cache_pipe_buf_steal(struct pipe_inode_info *pipe,
47 struct pipe_buffer *buf)
48{
49 struct page *page = buf->page;
50 struct address_space *mapping;
51
52 lock_page(page);
53
54 mapping = page_mapping(page);
55 if (mapping) {
56 WARN_ON(!PageUptodate(page));
57
58 /*
59 * At least for ext2 with nobh option, we need to wait on
60 * writeback completing on this page, since we'll remove it
61 * from the pagecache. Otherwise truncate wont wait on the
62 * page, allowing the disk blocks to be reused by someone else
63 * before we actually wrote our data to them. fs corruption
64 * ensues.
65 */
66 wait_on_page_writeback(page);
67
68 if (page_has_private(page) &&
69 !try_to_release_page(page, GFP_KERNEL))
70 goto out_unlock;
71
72 /*
73 * If we succeeded in removing the mapping, set LRU flag
74 * and return good.
75 */
76 if (remove_mapping(mapping, page)) {
77 buf->flags |= PIPE_BUF_FLAG_LRU;
78 return 0;
79 }
80 }
81
82 /*
83 * Raced with truncate or failed to remove page from current
84 * address space, unlock and return failure.
85 */
86out_unlock:
87 unlock_page(page);
88 return 1;
89}
90
91static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
92 struct pipe_buffer *buf)
93{
94 put_page(buf->page);
95 buf->flags &= ~PIPE_BUF_FLAG_LRU;
96}
97
98/*
99 * Check whether the contents of buf is OK to access. Since the content
100 * is a page cache page, IO may be in flight.
101 */
102static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
103 struct pipe_buffer *buf)
104{
105 struct page *page = buf->page;
106 int err;
107
108 if (!PageUptodate(page)) {
109 lock_page(page);
110
111 /*
112 * Page got truncated/unhashed. This will cause a 0-byte
113 * splice, if this is the first page.
114 */
115 if (!page->mapping) {
116 err = -ENODATA;
117 goto error;
118 }
119
120 /*
121 * Uh oh, read-error from disk.
122 */
123 if (!PageUptodate(page)) {
124 err = -EIO;
125 goto error;
126 }
127
128 /*
129 * Page is ok afterall, we are done.
130 */
131 unlock_page(page);
132 }
133
134 return 0;
135error:
136 unlock_page(page);
137 return err;
138}
139
140const struct pipe_buf_operations page_cache_pipe_buf_ops = {
141 .can_merge = 0,
142 .confirm = page_cache_pipe_buf_confirm,
143 .release = page_cache_pipe_buf_release,
144 .steal = page_cache_pipe_buf_steal,
145 .get = generic_pipe_buf_get,
146};
147
148static int user_page_pipe_buf_steal(struct pipe_inode_info *pipe,
149 struct pipe_buffer *buf)
150{
151 if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
152 return 1;
153
154 buf->flags |= PIPE_BUF_FLAG_LRU;
155 return generic_pipe_buf_steal(pipe, buf);
156}
157
158static const struct pipe_buf_operations user_page_pipe_buf_ops = {
159 .can_merge = 0,
160 .confirm = generic_pipe_buf_confirm,
161 .release = page_cache_pipe_buf_release,
162 .steal = user_page_pipe_buf_steal,
163 .get = generic_pipe_buf_get,
164};
165
166static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
167{
168 smp_mb();
169 if (waitqueue_active(&pipe->wait))
170 wake_up_interruptible(&pipe->wait);
171 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
172}
173
174/**
175 * splice_to_pipe - fill passed data into a pipe
176 * @pipe: pipe to fill
177 * @spd: data to fill
178 *
179 * Description:
180 * @spd contains a map of pages and len/offset tuples, along with
181 * the struct pipe_buf_operations associated with these pages. This
182 * function will link that data to the pipe.
183 *
184 */
185ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
186 struct splice_pipe_desc *spd)
187{
188 unsigned int spd_pages = spd->nr_pages;
189 int ret = 0, page_nr = 0;
190
191 if (!spd_pages)
192 return 0;
193
194 if (unlikely(!pipe->readers)) {
195 send_sig(SIGPIPE, current, 0);
196 ret = -EPIPE;
197 goto out;
198 }
199
200 while (pipe->nrbufs < pipe->buffers) {
201 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
202 struct pipe_buffer *buf = pipe->bufs + newbuf;
203
204 buf->page = spd->pages[page_nr];
205 buf->offset = spd->partial[page_nr].offset;
206 buf->len = spd->partial[page_nr].len;
207 buf->private = spd->partial[page_nr].private;
208 buf->ops = spd->ops;
209 buf->flags = 0;
210
211 pipe->nrbufs++;
212 page_nr++;
213 ret += buf->len;
214
215 if (!--spd->nr_pages)
216 break;
217 }
218
219 if (!ret)
220 ret = -EAGAIN;
221
222out:
223 while (page_nr < spd_pages)
224 spd->spd_release(spd, page_nr++);
225
226 return ret;
227}
228EXPORT_SYMBOL_GPL(splice_to_pipe);
229
230ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
231{
232 int ret;
233
234 if (unlikely(!pipe->readers)) {
235 send_sig(SIGPIPE, current, 0);
236 ret = -EPIPE;
237 } else if (pipe->nrbufs == pipe->buffers) {
238 ret = -EAGAIN;
239 } else {
240 int newbuf = (pipe->curbuf + pipe->nrbufs) & (pipe->buffers - 1);
241 pipe->bufs[newbuf] = *buf;
242 pipe->nrbufs++;
243 return buf->len;
244 }
245 pipe_buf_release(pipe, buf);
246 return ret;
247}
248EXPORT_SYMBOL(add_to_pipe);
249
250/*
251 * Check if we need to grow the arrays holding pages and partial page
252 * descriptions.
253 */
254int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
255{
256 unsigned int buffers = READ_ONCE(pipe->buffers);
257
258 spd->nr_pages_max = buffers;
259 if (buffers <= PIPE_DEF_BUFFERS)
260 return 0;
261
262 spd->pages = kmalloc(buffers * sizeof(struct page *), GFP_KERNEL);
263 spd->partial = kmalloc(buffers * sizeof(struct partial_page), GFP_KERNEL);
264
265 if (spd->pages && spd->partial)
266 return 0;
267
268 kfree(spd->pages);
269 kfree(spd->partial);
270 return -ENOMEM;
271}
272
273void splice_shrink_spd(struct splice_pipe_desc *spd)
274{
275 if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
276 return;
277
278 kfree(spd->pages);
279 kfree(spd->partial);
280}
281
282/**
283 * generic_file_splice_read - splice data from file to a pipe
284 * @in: file to splice from
285 * @ppos: position in @in
286 * @pipe: pipe to splice to
287 * @len: number of bytes to splice
288 * @flags: splice modifier flags
289 *
290 * Description:
291 * Will read pages from given file and fill them into a pipe. Can be
292 * used as long as it has more or less sane ->read_iter().
293 *
294 */
295ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
296 struct pipe_inode_info *pipe, size_t len,
297 unsigned int flags)
298{
299 struct iov_iter to;
300 struct kiocb kiocb;
301 int idx, ret;
302
303 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len);
304 idx = to.idx;
305 init_sync_kiocb(&kiocb, in);
306 kiocb.ki_pos = *ppos;
307 ret = call_read_iter(in, &kiocb, &to);
308 if (ret > 0) {
309 *ppos = kiocb.ki_pos;
310 file_accessed(in);
311 } else if (ret < 0) {
312 to.idx = idx;
313 to.iov_offset = 0;
314 iov_iter_advance(&to, 0); /* to free what was emitted */
315 /*
316 * callers of ->splice_read() expect -EAGAIN on
317 * "can't put anything in there", rather than -EFAULT.
318 */
319 if (ret == -EFAULT)
320 ret = -EAGAIN;
321 }
322
323 return ret;
324}
325EXPORT_SYMBOL(generic_file_splice_read);
326
327const struct pipe_buf_operations default_pipe_buf_ops = {
328 .can_merge = 0,
329 .confirm = generic_pipe_buf_confirm,
330 .release = generic_pipe_buf_release,
331 .steal = generic_pipe_buf_steal,
332 .get = generic_pipe_buf_get,
333};
334
335static int generic_pipe_buf_nosteal(struct pipe_inode_info *pipe,
336 struct pipe_buffer *buf)
337{
338 return 1;
339}
340
341/* Pipe buffer operations for a socket and similar. */
342const struct pipe_buf_operations nosteal_pipe_buf_ops = {
343 .can_merge = 0,
344 .confirm = generic_pipe_buf_confirm,
345 .release = generic_pipe_buf_release,
346 .steal = generic_pipe_buf_nosteal,
347 .get = generic_pipe_buf_get,
348};
349EXPORT_SYMBOL(nosteal_pipe_buf_ops);
350
351static ssize_t kernel_readv(struct file *file, const struct kvec *vec,
352 unsigned long vlen, loff_t offset)
353{
354 mm_segment_t old_fs;
355 loff_t pos = offset;
356 ssize_t res;
357
358 old_fs = get_fs();
359 set_fs(get_ds());
360 /* The cast to a user pointer is valid due to the set_fs() */
361 res = vfs_readv(file, (const struct iovec __user *)vec, vlen, &pos, 0);
362 set_fs(old_fs);
363
364 return res;
365}
366
367static ssize_t default_file_splice_read(struct file *in, loff_t *ppos,
368 struct pipe_inode_info *pipe, size_t len,
369 unsigned int flags)
370{
371 struct kvec *vec, __vec[PIPE_DEF_BUFFERS];
372 struct iov_iter to;
373 struct page **pages;
374 unsigned int nr_pages;
375 size_t offset, base, copied = 0;
376 ssize_t res;
377 int i;
378
379 if (pipe->nrbufs == pipe->buffers)
380 return -EAGAIN;
381
382 /*
383 * Try to keep page boundaries matching to source pagecache ones -
384 * it probably won't be much help, but...
385 */
386 offset = *ppos & ~PAGE_MASK;
387
388 iov_iter_pipe(&to, ITER_PIPE | READ, pipe, len + offset);
389
390 res = iov_iter_get_pages_alloc(&to, &pages, len + offset, &base);
391 if (res <= 0)
392 return -ENOMEM;
393
394 nr_pages = DIV_ROUND_UP(res + base, PAGE_SIZE);
395
396 vec = __vec;
397 if (nr_pages > PIPE_DEF_BUFFERS) {
398 vec = kmalloc(nr_pages * sizeof(struct kvec), GFP_KERNEL);
399 if (unlikely(!vec)) {
400 res = -ENOMEM;
401 goto out;
402 }
403 }
404
405 pipe->bufs[to.idx].offset = offset;
406 pipe->bufs[to.idx].len -= offset;
407
408 for (i = 0; i < nr_pages; i++) {
409 size_t this_len = min_t(size_t, len, PAGE_SIZE - offset);
410 vec[i].iov_base = page_address(pages[i]) + offset;
411 vec[i].iov_len = this_len;
412 len -= this_len;
413 offset = 0;
414 }
415
416 res = kernel_readv(in, vec, nr_pages, *ppos);
417 if (res > 0) {
418 copied = res;
419 *ppos += res;
420 }
421
422 if (vec != __vec)
423 kfree(vec);
424out:
425 for (i = 0; i < nr_pages; i++)
426 put_page(pages[i]);
427 kvfree(pages);
428 iov_iter_advance(&to, copied); /* truncates and discards */
429 return res;
430}
431
432/*
433 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
434 * using sendpage(). Return the number of bytes sent.
435 */
436static int pipe_to_sendpage(struct pipe_inode_info *pipe,
437 struct pipe_buffer *buf, struct splice_desc *sd)
438{
439 struct file *file = sd->u.file;
440 loff_t pos = sd->pos;
441 int more;
442
443 if (!likely(file->f_op->sendpage))
444 return -EINVAL;
445
446 more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
447
448 if (sd->len < sd->total_len && pipe->nrbufs > 1)
449 more |= MSG_SENDPAGE_NOTLAST;
450
451 return file->f_op->sendpage(file, buf->page, buf->offset,
452 sd->len, &pos, more);
453}
454
455static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
456{
457 smp_mb();
458 if (waitqueue_active(&pipe->wait))
459 wake_up_interruptible(&pipe->wait);
460 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
461}
462
463/**
464 * splice_from_pipe_feed - feed available data from a pipe to a file
465 * @pipe: pipe to splice from
466 * @sd: information to @actor
467 * @actor: handler that splices the data
468 *
469 * Description:
470 * This function loops over the pipe and calls @actor to do the
471 * actual moving of a single struct pipe_buffer to the desired
472 * destination. It returns when there's no more buffers left in
473 * the pipe or if the requested number of bytes (@sd->total_len)
474 * have been copied. It returns a positive number (one) if the
475 * pipe needs to be filled with more data, zero if the required
476 * number of bytes have been copied and -errno on error.
477 *
478 * This, together with splice_from_pipe_{begin,end,next}, may be
479 * used to implement the functionality of __splice_from_pipe() when
480 * locking is required around copying the pipe buffers to the
481 * destination.
482 */
483static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
484 splice_actor *actor)
485{
486 int ret;
487
488 while (pipe->nrbufs) {
489 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
490
491 sd->len = buf->len;
492 if (sd->len > sd->total_len)
493 sd->len = sd->total_len;
494
495 ret = pipe_buf_confirm(pipe, buf);
496 if (unlikely(ret)) {
497 if (ret == -ENODATA)
498 ret = 0;
499 return ret;
500 }
501
502 ret = actor(pipe, buf, sd);
503 if (ret <= 0)
504 return ret;
505
506 buf->offset += ret;
507 buf->len -= ret;
508
509 sd->num_spliced += ret;
510 sd->len -= ret;
511 sd->pos += ret;
512 sd->total_len -= ret;
513
514 if (!buf->len) {
515 pipe_buf_release(pipe, buf);
516 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
517 pipe->nrbufs--;
518 if (pipe->files)
519 sd->need_wakeup = true;
520 }
521
522 if (!sd->total_len)
523 return 0;
524 }
525
526 return 1;
527}
528
529/**
530 * splice_from_pipe_next - wait for some data to splice from
531 * @pipe: pipe to splice from
532 * @sd: information about the splice operation
533 *
534 * Description:
535 * This function will wait for some data and return a positive
536 * value (one) if pipe buffers are available. It will return zero
537 * or -errno if no more data needs to be spliced.
538 */
539static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
540{
541 /*
542 * Check for signal early to make process killable when there are
543 * always buffers available
544 */
545 if (signal_pending(current))
546 return -ERESTARTSYS;
547
548 while (!pipe->nrbufs) {
549 if (!pipe->writers)
550 return 0;
551
552 if (!pipe->waiting_writers && sd->num_spliced)
553 return 0;
554
555 if (sd->flags & SPLICE_F_NONBLOCK)
556 return -EAGAIN;
557
558 if (signal_pending(current))
559 return -ERESTARTSYS;
560
561 if (sd->need_wakeup) {
562 wakeup_pipe_writers(pipe);
563 sd->need_wakeup = false;
564 }
565
566 pipe_wait(pipe);
567 }
568
569 return 1;
570}
571
572/**
573 * splice_from_pipe_begin - start splicing from pipe
574 * @sd: information about the splice operation
575 *
576 * Description:
577 * This function should be called before a loop containing
578 * splice_from_pipe_next() and splice_from_pipe_feed() to
579 * initialize the necessary fields of @sd.
580 */
581static void splice_from_pipe_begin(struct splice_desc *sd)
582{
583 sd->num_spliced = 0;
584 sd->need_wakeup = false;
585}
586
587/**
588 * splice_from_pipe_end - finish splicing from pipe
589 * @pipe: pipe to splice from
590 * @sd: information about the splice operation
591 *
592 * Description:
593 * This function will wake up pipe writers if necessary. It should
594 * be called after a loop containing splice_from_pipe_next() and
595 * splice_from_pipe_feed().
596 */
597static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
598{
599 if (sd->need_wakeup)
600 wakeup_pipe_writers(pipe);
601}
602
603/**
604 * __splice_from_pipe - splice data from a pipe to given actor
605 * @pipe: pipe to splice from
606 * @sd: information to @actor
607 * @actor: handler that splices the data
608 *
609 * Description:
610 * This function does little more than loop over the pipe and call
611 * @actor to do the actual moving of a single struct pipe_buffer to
612 * the desired destination. See pipe_to_file, pipe_to_sendpage, or
613 * pipe_to_user.
614 *
615 */
616ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
617 splice_actor *actor)
618{
619 int ret;
620
621 splice_from_pipe_begin(sd);
622 do {
623 cond_resched();
624 ret = splice_from_pipe_next(pipe, sd);
625 if (ret > 0)
626 ret = splice_from_pipe_feed(pipe, sd, actor);
627 } while (ret > 0);
628 splice_from_pipe_end(pipe, sd);
629
630 return sd->num_spliced ? sd->num_spliced : ret;
631}
632EXPORT_SYMBOL(__splice_from_pipe);
633
634/**
635 * splice_from_pipe - splice data from a pipe to a file
636 * @pipe: pipe to splice from
637 * @out: file to splice to
638 * @ppos: position in @out
639 * @len: how many bytes to splice
640 * @flags: splice modifier flags
641 * @actor: handler that splices the data
642 *
643 * Description:
644 * See __splice_from_pipe. This function locks the pipe inode,
645 * otherwise it's identical to __splice_from_pipe().
646 *
647 */
648ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
649 loff_t *ppos, size_t len, unsigned int flags,
650 splice_actor *actor)
651{
652 ssize_t ret;
653 struct splice_desc sd = {
654 .total_len = len,
655 .flags = flags,
656 .pos = *ppos,
657 .u.file = out,
658 };
659
660 pipe_lock(pipe);
661 ret = __splice_from_pipe(pipe, &sd, actor);
662 pipe_unlock(pipe);
663
664 return ret;
665}
666
667/**
668 * iter_file_splice_write - splice data from a pipe to a file
669 * @pipe: pipe info
670 * @out: file to write to
671 * @ppos: position in @out
672 * @len: number of bytes to splice
673 * @flags: splice modifier flags
674 *
675 * Description:
676 * Will either move or copy pages (determined by @flags options) from
677 * the given pipe inode to the given file.
678 * This one is ->write_iter-based.
679 *
680 */
681ssize_t
682iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
683 loff_t *ppos, size_t len, unsigned int flags)
684{
685 struct splice_desc sd = {
686 .total_len = len,
687 .flags = flags,
688 .pos = *ppos,
689 .u.file = out,
690 };
691 int nbufs = pipe->buffers;
692 struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
693 GFP_KERNEL);
694 ssize_t ret;
695
696 if (unlikely(!array))
697 return -ENOMEM;
698
699 pipe_lock(pipe);
700
701 splice_from_pipe_begin(&sd);
702 while (sd.total_len) {
703 struct iov_iter from;
704 size_t left;
705 int n, idx;
706
707 ret = splice_from_pipe_next(pipe, &sd);
708 if (ret <= 0)
709 break;
710
711 if (unlikely(nbufs < pipe->buffers)) {
712 kfree(array);
713 nbufs = pipe->buffers;
714 array = kcalloc(nbufs, sizeof(struct bio_vec),
715 GFP_KERNEL);
716 if (!array) {
717 ret = -ENOMEM;
718 break;
719 }
720 }
721
722 /* build the vector */
723 left = sd.total_len;
724 for (n = 0, idx = pipe->curbuf; left && n < pipe->nrbufs; n++, idx++) {
725 struct pipe_buffer *buf = pipe->bufs + idx;
726 size_t this_len = buf->len;
727
728 if (this_len > left)
729 this_len = left;
730
731 if (idx == pipe->buffers - 1)
732 idx = -1;
733
734 ret = pipe_buf_confirm(pipe, buf);
735 if (unlikely(ret)) {
736 if (ret == -ENODATA)
737 ret = 0;
738 goto done;
739 }
740
741 array[n].bv_page = buf->page;
742 array[n].bv_len = this_len;
743 array[n].bv_offset = buf->offset;
744 left -= this_len;
745 }
746
747 iov_iter_bvec(&from, ITER_BVEC | WRITE, array, n,
748 sd.total_len - left);
749 ret = vfs_iter_write(out, &from, &sd.pos, 0);
750 if (ret <= 0)
751 break;
752
753 sd.num_spliced += ret;
754 sd.total_len -= ret;
755 *ppos = sd.pos;
756
757 /* dismiss the fully eaten buffers, adjust the partial one */
758 while (ret) {
759 struct pipe_buffer *buf = pipe->bufs + pipe->curbuf;
760 if (ret >= buf->len) {
761 ret -= buf->len;
762 buf->len = 0;
763 pipe_buf_release(pipe, buf);
764 pipe->curbuf = (pipe->curbuf + 1) & (pipe->buffers - 1);
765 pipe->nrbufs--;
766 if (pipe->files)
767 sd.need_wakeup = true;
768 } else {
769 buf->offset += ret;
770 buf->len -= ret;
771 ret = 0;
772 }
773 }
774 }
775done:
776 kfree(array);
777 splice_from_pipe_end(pipe, &sd);
778
779 pipe_unlock(pipe);
780
781 if (sd.num_spliced)
782 ret = sd.num_spliced;
783
784 return ret;
785}
786
787EXPORT_SYMBOL(iter_file_splice_write);
788
789static int write_pipe_buf(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
790 struct splice_desc *sd)
791{
792 int ret;
793 void *data;
794 loff_t tmp = sd->pos;
795
796 data = kmap(buf->page);
797 ret = __kernel_write(sd->u.file, data + buf->offset, sd->len, &tmp);
798 kunmap(buf->page);
799
800 return ret;
801}
802
803static ssize_t default_file_splice_write(struct pipe_inode_info *pipe,
804 struct file *out, loff_t *ppos,
805 size_t len, unsigned int flags)
806{
807 ssize_t ret;
808
809 ret = splice_from_pipe(pipe, out, ppos, len, flags, write_pipe_buf);
810 if (ret > 0)
811 *ppos += ret;
812
813 return ret;
814}
815
816/**
817 * generic_splice_sendpage - splice data from a pipe to a socket
818 * @pipe: pipe to splice from
819 * @out: socket to write to
820 * @ppos: position in @out
821 * @len: number of bytes to splice
822 * @flags: splice modifier flags
823 *
824 * Description:
825 * Will send @len bytes from the pipe to a network socket. No data copying
826 * is involved.
827 *
828 */
829ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
830 loff_t *ppos, size_t len, unsigned int flags)
831{
832 return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
833}
834
835EXPORT_SYMBOL(generic_splice_sendpage);
836
837/*
838 * Attempt to initiate a splice from pipe to file.
839 */
840static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
841 loff_t *ppos, size_t len, unsigned int flags)
842{
843 ssize_t (*splice_write)(struct pipe_inode_info *, struct file *,
844 loff_t *, size_t, unsigned int);
845
846 if (out->f_op->splice_write)
847 splice_write = out->f_op->splice_write;
848 else
849 splice_write = default_file_splice_write;
850
851 return splice_write(pipe, out, ppos, len, flags);
852}
853
854/*
855 * Attempt to initiate a splice from a file to a pipe.
856 */
857static long do_splice_to(struct file *in, loff_t *ppos,
858 struct pipe_inode_info *pipe, size_t len,
859 unsigned int flags)
860{
861 ssize_t (*splice_read)(struct file *, loff_t *,
862 struct pipe_inode_info *, size_t, unsigned int);
863 int ret;
864
865 if (unlikely(!(in->f_mode & FMODE_READ)))
866 return -EBADF;
867
868 ret = rw_verify_area(READ, in, ppos, len);
869 if (unlikely(ret < 0))
870 return ret;
871
872 if (unlikely(len > MAX_RW_COUNT))
873 len = MAX_RW_COUNT;
874
875 if (in->f_op->splice_read)
876 splice_read = in->f_op->splice_read;
877 else
878 splice_read = default_file_splice_read;
879
880 return splice_read(in, ppos, pipe, len, flags);
881}
882
883/**
884 * splice_direct_to_actor - splices data directly between two non-pipes
885 * @in: file to splice from
886 * @sd: actor information on where to splice to
887 * @actor: handles the data splicing
888 *
889 * Description:
890 * This is a special case helper to splice directly between two
891 * points, without requiring an explicit pipe. Internally an allocated
892 * pipe is cached in the process, and reused during the lifetime of
893 * that process.
894 *
895 */
896ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
897 splice_direct_actor *actor)
898{
899 struct pipe_inode_info *pipe;
900 long ret, bytes;
901 umode_t i_mode;
902 size_t len;
903 int i, flags, more;
904
905 /*
906 * We require the input being a regular file, as we don't want to
907 * randomly drop data for eg socket -> socket splicing. Use the
908 * piped splicing for that!
909 */
910 i_mode = file_inode(in)->i_mode;
911 if (unlikely(!S_ISREG(i_mode) && !S_ISBLK(i_mode)))
912 return -EINVAL;
913
914 /*
915 * neither in nor out is a pipe, setup an internal pipe attached to
916 * 'out' and transfer the wanted data from 'in' to 'out' through that
917 */
918 pipe = current->splice_pipe;
919 if (unlikely(!pipe)) {
920 pipe = alloc_pipe_info();
921 if (!pipe)
922 return -ENOMEM;
923
924 /*
925 * We don't have an immediate reader, but we'll read the stuff
926 * out of the pipe right after the splice_to_pipe(). So set
927 * PIPE_READERS appropriately.
928 */
929 pipe->readers = 1;
930
931 current->splice_pipe = pipe;
932 }
933
934 /*
935 * Do the splice.
936 */
937 ret = 0;
938 bytes = 0;
939 len = sd->total_len;
940 flags = sd->flags;
941
942 /*
943 * Don't block on output, we have to drain the direct pipe.
944 */
945 sd->flags &= ~SPLICE_F_NONBLOCK;
946 more = sd->flags & SPLICE_F_MORE;
947
948 while (len) {
949 size_t read_len;
950 loff_t pos = sd->pos, prev_pos = pos;
951
952 ret = do_splice_to(in, &pos, pipe, len, flags);
953 if (unlikely(ret <= 0))
954 goto out_release;
955
956 read_len = ret;
957 sd->total_len = read_len;
958
959 /*
960 * If more data is pending, set SPLICE_F_MORE
961 * If this is the last data and SPLICE_F_MORE was not set
962 * initially, clears it.
963 */
964 if (read_len < len)
965 sd->flags |= SPLICE_F_MORE;
966 else if (!more)
967 sd->flags &= ~SPLICE_F_MORE;
968 /*
969 * NOTE: nonblocking mode only applies to the input. We
970 * must not do the output in nonblocking mode as then we
971 * could get stuck data in the internal pipe:
972 */
973 ret = actor(pipe, sd);
974 if (unlikely(ret <= 0)) {
975 sd->pos = prev_pos;
976 goto out_release;
977 }
978
979 bytes += ret;
980 len -= ret;
981 sd->pos = pos;
982
983 if (ret < read_len) {
984 sd->pos = prev_pos + ret;
985 goto out_release;
986 }
987 }
988
989done:
990 pipe->nrbufs = pipe->curbuf = 0;
991 file_accessed(in);
992 return bytes;
993
994out_release:
995 /*
996 * If we did an incomplete transfer we must release
997 * the pipe buffers in question:
998 */
999 for (i = 0; i < pipe->buffers; i++) {
1000 struct pipe_buffer *buf = pipe->bufs + i;
1001
1002 if (buf->ops)
1003 pipe_buf_release(pipe, buf);
1004 }
1005
1006 if (!bytes)
1007 bytes = ret;
1008
1009 goto done;
1010}
1011EXPORT_SYMBOL(splice_direct_to_actor);
1012
1013static int direct_splice_actor(struct pipe_inode_info *pipe,
1014 struct splice_desc *sd)
1015{
1016 struct file *file = sd->u.file;
1017
1018 return do_splice_from(pipe, file, sd->opos, sd->total_len,
1019 sd->flags);
1020}
1021
1022/**
1023 * do_splice_direct - splices data directly between two files
1024 * @in: file to splice from
1025 * @ppos: input file offset
1026 * @out: file to splice to
1027 * @opos: output file offset
1028 * @len: number of bytes to splice
1029 * @flags: splice modifier flags
1030 *
1031 * Description:
1032 * For use by do_sendfile(). splice can easily emulate sendfile, but
1033 * doing it in the application would incur an extra system call
1034 * (splice in + splice out, as compared to just sendfile()). So this helper
1035 * can splice directly through a process-private pipe.
1036 *
1037 */
1038long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1039 loff_t *opos, size_t len, unsigned int flags)
1040{
1041 struct splice_desc sd = {
1042 .len = len,
1043 .total_len = len,
1044 .flags = flags,
1045 .pos = *ppos,
1046 .u.file = out,
1047 .opos = opos,
1048 };
1049 long ret;
1050
1051 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1052 return -EBADF;
1053
1054 if (unlikely(out->f_flags & O_APPEND))
1055 return -EINVAL;
1056
1057 ret = rw_verify_area(WRITE, out, opos, len);
1058 if (unlikely(ret < 0))
1059 return ret;
1060
1061 ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1062 if (ret > 0)
1063 *ppos = sd.pos;
1064
1065 return ret;
1066}
1067EXPORT_SYMBOL(do_splice_direct);
1068
1069static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1070{
1071 for (;;) {
1072 if (unlikely(!pipe->readers)) {
1073 send_sig(SIGPIPE, current, 0);
1074 return -EPIPE;
1075 }
1076 if (pipe->nrbufs != pipe->buffers)
1077 return 0;
1078 if (flags & SPLICE_F_NONBLOCK)
1079 return -EAGAIN;
1080 if (signal_pending(current))
1081 return -ERESTARTSYS;
1082 pipe->waiting_writers++;
1083 pipe_wait(pipe);
1084 pipe->waiting_writers--;
1085 }
1086}
1087
1088static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1089 struct pipe_inode_info *opipe,
1090 size_t len, unsigned int flags);
1091
1092/*
1093 * Determine where to splice to/from.
1094 */
1095static long do_splice(struct file *in, loff_t __user *off_in,
1096 struct file *out, loff_t __user *off_out,
1097 size_t len, unsigned int flags)
1098{
1099 struct pipe_inode_info *ipipe;
1100 struct pipe_inode_info *opipe;
1101 loff_t offset;
1102 long ret;
1103
1104 ipipe = get_pipe_info(in);
1105 opipe = get_pipe_info(out);
1106
1107 if (ipipe && opipe) {
1108 if (off_in || off_out)
1109 return -ESPIPE;
1110
1111 if (!(in->f_mode & FMODE_READ))
1112 return -EBADF;
1113
1114 if (!(out->f_mode & FMODE_WRITE))
1115 return -EBADF;
1116
1117 /* Splicing to self would be fun, but... */
1118 if (ipipe == opipe)
1119 return -EINVAL;
1120
1121 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1122 }
1123
1124 if (ipipe) {
1125 if (off_in)
1126 return -ESPIPE;
1127 if (off_out) {
1128 if (!(out->f_mode & FMODE_PWRITE))
1129 return -EINVAL;
1130 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1131 return -EFAULT;
1132 } else {
1133 offset = out->f_pos;
1134 }
1135
1136 if (unlikely(!(out->f_mode & FMODE_WRITE)))
1137 return -EBADF;
1138
1139 if (unlikely(out->f_flags & O_APPEND))
1140 return -EINVAL;
1141
1142 ret = rw_verify_area(WRITE, out, &offset, len);
1143 if (unlikely(ret < 0))
1144 return ret;
1145
1146 file_start_write(out);
1147 ret = do_splice_from(ipipe, out, &offset, len, flags);
1148 file_end_write(out);
1149
1150 if (!off_out)
1151 out->f_pos = offset;
1152 else if (copy_to_user(off_out, &offset, sizeof(loff_t)))
1153 ret = -EFAULT;
1154
1155 return ret;
1156 }
1157
1158 if (opipe) {
1159 if (off_out)
1160 return -ESPIPE;
1161 if (off_in) {
1162 if (!(in->f_mode & FMODE_PREAD))
1163 return -EINVAL;
1164 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1165 return -EFAULT;
1166 } else {
1167 offset = in->f_pos;
1168 }
1169
1170 pipe_lock(opipe);
1171 ret = wait_for_space(opipe, flags);
1172 if (!ret)
1173 ret = do_splice_to(in, &offset, opipe, len, flags);
1174 pipe_unlock(opipe);
1175 if (ret > 0)
1176 wakeup_pipe_readers(opipe);
1177 if (!off_in)
1178 in->f_pos = offset;
1179 else if (copy_to_user(off_in, &offset, sizeof(loff_t)))
1180 ret = -EFAULT;
1181
1182 return ret;
1183 }
1184
1185 return -EINVAL;
1186}
1187
1188static int iter_to_pipe(struct iov_iter *from,
1189 struct pipe_inode_info *pipe,
1190 unsigned flags)
1191{
1192 struct pipe_buffer buf = {
1193 .ops = &user_page_pipe_buf_ops,
1194 .flags = flags
1195 };
1196 size_t total = 0;
1197 int ret = 0;
1198 bool failed = false;
1199
1200 while (iov_iter_count(from) && !failed) {
1201 struct page *pages[16];
1202 ssize_t copied;
1203 size_t start;
1204 int n;
1205
1206 copied = iov_iter_get_pages(from, pages, ~0UL, 16, &start);
1207 if (copied <= 0) {
1208 ret = copied;
1209 break;
1210 }
1211
1212 for (n = 0; copied; n++, start = 0) {
1213 int size = min_t(int, copied, PAGE_SIZE - start);
1214 if (!failed) {
1215 buf.page = pages[n];
1216 buf.offset = start;
1217 buf.len = size;
1218 ret = add_to_pipe(pipe, &buf);
1219 if (unlikely(ret < 0)) {
1220 failed = true;
1221 } else {
1222 iov_iter_advance(from, ret);
1223 total += ret;
1224 }
1225 } else {
1226 put_page(pages[n]);
1227 }
1228 copied -= size;
1229 }
1230 }
1231 return total ? total : ret;
1232}
1233
1234static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1235 struct splice_desc *sd)
1236{
1237 int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1238 return n == sd->len ? n : -EFAULT;
1239}
1240
1241/*
1242 * For lack of a better implementation, implement vmsplice() to userspace
1243 * as a simple copy of the pipes pages to the user iov.
1244 */
1245static long vmsplice_to_user(struct file *file, const struct iovec __user *uiov,
1246 unsigned long nr_segs, unsigned int flags)
1247{
1248 struct pipe_inode_info *pipe;
1249 struct splice_desc sd;
1250 long ret;
1251 struct iovec iovstack[UIO_FASTIOV];
1252 struct iovec *iov = iovstack;
1253 struct iov_iter iter;
1254
1255 pipe = get_pipe_info(file);
1256 if (!pipe)
1257 return -EBADF;
1258
1259 ret = import_iovec(READ, uiov, nr_segs,
1260 ARRAY_SIZE(iovstack), &iov, &iter);
1261 if (ret < 0)
1262 return ret;
1263
1264 sd.total_len = iov_iter_count(&iter);
1265 sd.len = 0;
1266 sd.flags = flags;
1267 sd.u.data = &iter;
1268 sd.pos = 0;
1269
1270 if (sd.total_len) {
1271 pipe_lock(pipe);
1272 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1273 pipe_unlock(pipe);
1274 }
1275
1276 kfree(iov);
1277 return ret;
1278}
1279
1280/*
1281 * vmsplice splices a user address range into a pipe. It can be thought of
1282 * as splice-from-memory, where the regular splice is splice-from-file (or
1283 * to file). In both cases the output is a pipe, naturally.
1284 */
1285static long vmsplice_to_pipe(struct file *file, const struct iovec __user *uiov,
1286 unsigned long nr_segs, unsigned int flags)
1287{
1288 struct pipe_inode_info *pipe;
1289 struct iovec iovstack[UIO_FASTIOV];
1290 struct iovec *iov = iovstack;
1291 struct iov_iter from;
1292 long ret;
1293 unsigned buf_flag = 0;
1294
1295 if (flags & SPLICE_F_GIFT)
1296 buf_flag = PIPE_BUF_FLAG_GIFT;
1297
1298 pipe = get_pipe_info(file);
1299 if (!pipe)
1300 return -EBADF;
1301
1302 ret = import_iovec(WRITE, uiov, nr_segs,
1303 ARRAY_SIZE(iovstack), &iov, &from);
1304 if (ret < 0)
1305 return ret;
1306
1307 pipe_lock(pipe);
1308 ret = wait_for_space(pipe, flags);
1309 if (!ret)
1310 ret = iter_to_pipe(&from, pipe, buf_flag);
1311 pipe_unlock(pipe);
1312 if (ret > 0)
1313 wakeup_pipe_readers(pipe);
1314 kfree(iov);
1315 return ret;
1316}
1317
1318/*
1319 * Note that vmsplice only really supports true splicing _from_ user memory
1320 * to a pipe, not the other way around. Splicing from user memory is a simple
1321 * operation that can be supported without any funky alignment restrictions
1322 * or nasty vm tricks. We simply map in the user memory and fill them into
1323 * a pipe. The reverse isn't quite as easy, though. There are two possible
1324 * solutions for that:
1325 *
1326 * - memcpy() the data internally, at which point we might as well just
1327 * do a regular read() on the buffer anyway.
1328 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1329 * has restriction limitations on both ends of the pipe).
1330 *
1331 * Currently we punt and implement it as a normal copy, see pipe_to_user().
1332 *
1333 */
1334static long do_vmsplice(int fd, const struct iovec __user *iov,
1335 unsigned long nr_segs, unsigned int flags)
1336{
1337 struct fd f;
1338 long error;
1339
1340 if (unlikely(flags & ~SPLICE_F_ALL))
1341 return -EINVAL;
1342 if (unlikely(nr_segs > UIO_MAXIOV))
1343 return -EINVAL;
1344 else if (unlikely(!nr_segs))
1345 return 0;
1346
1347 error = -EBADF;
1348 f = fdget(fd);
1349 if (f.file) {
1350 if (f.file->f_mode & FMODE_WRITE)
1351 error = vmsplice_to_pipe(f.file, iov, nr_segs, flags);
1352 else if (f.file->f_mode & FMODE_READ)
1353 error = vmsplice_to_user(f.file, iov, nr_segs, flags);
1354
1355 fdput(f);
1356 }
1357
1358 return error;
1359}
1360
1361SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, iov,
1362 unsigned long, nr_segs, unsigned int, flags)
1363{
1364 return do_vmsplice(fd, iov, nr_segs, flags);
1365}
1366
1367#ifdef CONFIG_COMPAT
1368COMPAT_SYSCALL_DEFINE4(vmsplice, int, fd, const struct compat_iovec __user *, iov32,
1369 unsigned int, nr_segs, unsigned int, flags)
1370{
1371 unsigned i;
1372 struct iovec __user *iov;
1373 if (nr_segs > UIO_MAXIOV)
1374 return -EINVAL;
1375 iov = compat_alloc_user_space(nr_segs * sizeof(struct iovec));
1376 for (i = 0; i < nr_segs; i++) {
1377 struct compat_iovec v;
1378 if (get_user(v.iov_base, &iov32[i].iov_base) ||
1379 get_user(v.iov_len, &iov32[i].iov_len) ||
1380 put_user(compat_ptr(v.iov_base), &iov[i].iov_base) ||
1381 put_user(v.iov_len, &iov[i].iov_len))
1382 return -EFAULT;
1383 }
1384 return do_vmsplice(fd, iov, nr_segs, flags);
1385}
1386#endif
1387
1388SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1389 int, fd_out, loff_t __user *, off_out,
1390 size_t, len, unsigned int, flags)
1391{
1392 struct fd in, out;
1393 long error;
1394
1395 if (unlikely(!len))
1396 return 0;
1397
1398 if (unlikely(flags & ~SPLICE_F_ALL))
1399 return -EINVAL;
1400
1401 error = -EBADF;
1402 in = fdget(fd_in);
1403 if (in.file) {
1404 if (in.file->f_mode & FMODE_READ) {
1405 out = fdget(fd_out);
1406 if (out.file) {
1407 if (out.file->f_mode & FMODE_WRITE)
1408 error = do_splice(in.file, off_in,
1409 out.file, off_out,
1410 len, flags);
1411 fdput(out);
1412 }
1413 }
1414 fdput(in);
1415 }
1416 return error;
1417}
1418
1419/*
1420 * Make sure there's data to read. Wait for input if we can, otherwise
1421 * return an appropriate error.
1422 */
1423static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1424{
1425 int ret;
1426
1427 /*
1428 * Check ->nrbufs without the inode lock first. This function
1429 * is speculative anyways, so missing one is ok.
1430 */
1431 if (pipe->nrbufs)
1432 return 0;
1433
1434 ret = 0;
1435 pipe_lock(pipe);
1436
1437 while (!pipe->nrbufs) {
1438 if (signal_pending(current)) {
1439 ret = -ERESTARTSYS;
1440 break;
1441 }
1442 if (!pipe->writers)
1443 break;
1444 if (!pipe->waiting_writers) {
1445 if (flags & SPLICE_F_NONBLOCK) {
1446 ret = -EAGAIN;
1447 break;
1448 }
1449 }
1450 pipe_wait(pipe);
1451 }
1452
1453 pipe_unlock(pipe);
1454 return ret;
1455}
1456
1457/*
1458 * Make sure there's writeable room. Wait for room if we can, otherwise
1459 * return an appropriate error.
1460 */
1461static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1462{
1463 int ret;
1464
1465 /*
1466 * Check ->nrbufs without the inode lock first. This function
1467 * is speculative anyways, so missing one is ok.
1468 */
1469 if (pipe->nrbufs < pipe->buffers)
1470 return 0;
1471
1472 ret = 0;
1473 pipe_lock(pipe);
1474
1475 while (pipe->nrbufs >= pipe->buffers) {
1476 if (!pipe->readers) {
1477 send_sig(SIGPIPE, current, 0);
1478 ret = -EPIPE;
1479 break;
1480 }
1481 if (flags & SPLICE_F_NONBLOCK) {
1482 ret = -EAGAIN;
1483 break;
1484 }
1485 if (signal_pending(current)) {
1486 ret = -ERESTARTSYS;
1487 break;
1488 }
1489 pipe->waiting_writers++;
1490 pipe_wait(pipe);
1491 pipe->waiting_writers--;
1492 }
1493
1494 pipe_unlock(pipe);
1495 return ret;
1496}
1497
1498/*
1499 * Splice contents of ipipe to opipe.
1500 */
1501static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1502 struct pipe_inode_info *opipe,
1503 size_t len, unsigned int flags)
1504{
1505 struct pipe_buffer *ibuf, *obuf;
1506 int ret = 0, nbuf;
1507 bool input_wakeup = false;
1508
1509
1510retry:
1511 ret = ipipe_prep(ipipe, flags);
1512 if (ret)
1513 return ret;
1514
1515 ret = opipe_prep(opipe, flags);
1516 if (ret)
1517 return ret;
1518
1519 /*
1520 * Potential ABBA deadlock, work around it by ordering lock
1521 * grabbing by pipe info address. Otherwise two different processes
1522 * could deadlock (one doing tee from A -> B, the other from B -> A).
1523 */
1524 pipe_double_lock(ipipe, opipe);
1525
1526 do {
1527 if (!opipe->readers) {
1528 send_sig(SIGPIPE, current, 0);
1529 if (!ret)
1530 ret = -EPIPE;
1531 break;
1532 }
1533
1534 if (!ipipe->nrbufs && !ipipe->writers)
1535 break;
1536
1537 /*
1538 * Cannot make any progress, because either the input
1539 * pipe is empty or the output pipe is full.
1540 */
1541 if (!ipipe->nrbufs || opipe->nrbufs >= opipe->buffers) {
1542 /* Already processed some buffers, break */
1543 if (ret)
1544 break;
1545
1546 if (flags & SPLICE_F_NONBLOCK) {
1547 ret = -EAGAIN;
1548 break;
1549 }
1550
1551 /*
1552 * We raced with another reader/writer and haven't
1553 * managed to process any buffers. A zero return
1554 * value means EOF, so retry instead.
1555 */
1556 pipe_unlock(ipipe);
1557 pipe_unlock(opipe);
1558 goto retry;
1559 }
1560
1561 ibuf = ipipe->bufs + ipipe->curbuf;
1562 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1563 obuf = opipe->bufs + nbuf;
1564
1565 if (len >= ibuf->len) {
1566 /*
1567 * Simply move the whole buffer from ipipe to opipe
1568 */
1569 *obuf = *ibuf;
1570 ibuf->ops = NULL;
1571 opipe->nrbufs++;
1572 ipipe->curbuf = (ipipe->curbuf + 1) & (ipipe->buffers - 1);
1573 ipipe->nrbufs--;
1574 input_wakeup = true;
1575 } else {
1576 /*
1577 * Get a reference to this pipe buffer,
1578 * so we can copy the contents over.
1579 */
1580 pipe_buf_get(ipipe, ibuf);
1581 *obuf = *ibuf;
1582
1583 /*
1584 * Don't inherit the gift flag, we need to
1585 * prevent multiple steals of this page.
1586 */
1587 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1588
1589 obuf->len = len;
1590 opipe->nrbufs++;
1591 ibuf->offset += obuf->len;
1592 ibuf->len -= obuf->len;
1593 }
1594 ret += obuf->len;
1595 len -= obuf->len;
1596 } while (len);
1597
1598 pipe_unlock(ipipe);
1599 pipe_unlock(opipe);
1600
1601 /*
1602 * If we put data in the output pipe, wakeup any potential readers.
1603 */
1604 if (ret > 0)
1605 wakeup_pipe_readers(opipe);
1606
1607 if (input_wakeup)
1608 wakeup_pipe_writers(ipipe);
1609
1610 return ret;
1611}
1612
1613/*
1614 * Link contents of ipipe to opipe.
1615 */
1616static int link_pipe(struct pipe_inode_info *ipipe,
1617 struct pipe_inode_info *opipe,
1618 size_t len, unsigned int flags)
1619{
1620 struct pipe_buffer *ibuf, *obuf;
1621 int ret = 0, i = 0, nbuf;
1622
1623 /*
1624 * Potential ABBA deadlock, work around it by ordering lock
1625 * grabbing by pipe info address. Otherwise two different processes
1626 * could deadlock (one doing tee from A -> B, the other from B -> A).
1627 */
1628 pipe_double_lock(ipipe, opipe);
1629
1630 do {
1631 if (!opipe->readers) {
1632 send_sig(SIGPIPE, current, 0);
1633 if (!ret)
1634 ret = -EPIPE;
1635 break;
1636 }
1637
1638 /*
1639 * If we have iterated all input buffers or ran out of
1640 * output room, break.
1641 */
1642 if (i >= ipipe->nrbufs || opipe->nrbufs >= opipe->buffers)
1643 break;
1644
1645 ibuf = ipipe->bufs + ((ipipe->curbuf + i) & (ipipe->buffers-1));
1646 nbuf = (opipe->curbuf + opipe->nrbufs) & (opipe->buffers - 1);
1647
1648 /*
1649 * Get a reference to this pipe buffer,
1650 * so we can copy the contents over.
1651 */
1652 pipe_buf_get(ipipe, ibuf);
1653
1654 obuf = opipe->bufs + nbuf;
1655 *obuf = *ibuf;
1656
1657 /*
1658 * Don't inherit the gift flag, we need to
1659 * prevent multiple steals of this page.
1660 */
1661 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1662
1663 if (obuf->len > len)
1664 obuf->len = len;
1665
1666 opipe->nrbufs++;
1667 ret += obuf->len;
1668 len -= obuf->len;
1669 i++;
1670 } while (len);
1671
1672 /*
1673 * return EAGAIN if we have the potential of some data in the
1674 * future, otherwise just return 0
1675 */
1676 if (!ret && ipipe->waiting_writers && (flags & SPLICE_F_NONBLOCK))
1677 ret = -EAGAIN;
1678
1679 pipe_unlock(ipipe);
1680 pipe_unlock(opipe);
1681
1682 /*
1683 * If we put data in the output pipe, wakeup any potential readers.
1684 */
1685 if (ret > 0)
1686 wakeup_pipe_readers(opipe);
1687
1688 return ret;
1689}
1690
1691/*
1692 * This is a tee(1) implementation that works on pipes. It doesn't copy
1693 * any data, it simply references the 'in' pages on the 'out' pipe.
1694 * The 'flags' used are the SPLICE_F_* variants, currently the only
1695 * applicable one is SPLICE_F_NONBLOCK.
1696 */
1697static long do_tee(struct file *in, struct file *out, size_t len,
1698 unsigned int flags)
1699{
1700 struct pipe_inode_info *ipipe = get_pipe_info(in);
1701 struct pipe_inode_info *opipe = get_pipe_info(out);
1702 int ret = -EINVAL;
1703
1704 /*
1705 * Duplicate the contents of ipipe to opipe without actually
1706 * copying the data.
1707 */
1708 if (ipipe && opipe && ipipe != opipe) {
1709 /*
1710 * Keep going, unless we encounter an error. The ipipe/opipe
1711 * ordering doesn't really matter.
1712 */
1713 ret = ipipe_prep(ipipe, flags);
1714 if (!ret) {
1715 ret = opipe_prep(opipe, flags);
1716 if (!ret)
1717 ret = link_pipe(ipipe, opipe, len, flags);
1718 }
1719 }
1720
1721 return ret;
1722}
1723
1724SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1725{
1726 struct fd in;
1727 int error;
1728
1729 if (unlikely(flags & ~SPLICE_F_ALL))
1730 return -EINVAL;
1731
1732 if (unlikely(!len))
1733 return 0;
1734
1735 error = -EBADF;
1736 in = fdget(fdin);
1737 if (in.file) {
1738 if (in.file->f_mode & FMODE_READ) {
1739 struct fd out = fdget(fdout);
1740 if (out.file) {
1741 if (out.file->f_mode & FMODE_WRITE)
1742 error = do_tee(in.file, out.file,
1743 len, flags);
1744 fdput(out);
1745 }
1746 }
1747 fdput(in);
1748 }
1749
1750 return error;
1751}