Linux Audio

Check our new training course

Loading...
v4.6
 
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <asm/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120				int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148				  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156			    dma_addr_t buf)
 157{
 158	u32 lstatus;
 159
 160	bdp->bufPtr = cpu_to_be32(buf);
 161
 162	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164		lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166	gfar_wmb();
 167
 168	bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173	struct gfar_private *priv = netdev_priv(ndev);
 174	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175	struct gfar_priv_tx_q *tx_queue = NULL;
 176	struct gfar_priv_rx_q *rx_queue = NULL;
 177	struct txbd8 *txbdp;
 178	u32 __iomem *rfbptr;
 179	int i, j;
 180
 181	for (i = 0; i < priv->num_tx_queues; i++) {
 182		tx_queue = priv->tx_queue[i];
 183		/* Initialize some variables in our dev structure */
 184		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186		tx_queue->cur_tx = tx_queue->tx_bd_base;
 187		tx_queue->skb_curtx = 0;
 188		tx_queue->skb_dirtytx = 0;
 189
 190		/* Initialize Transmit Descriptor Ring */
 191		txbdp = tx_queue->tx_bd_base;
 192		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193			txbdp->lstatus = 0;
 194			txbdp->bufPtr = 0;
 195			txbdp++;
 196		}
 197
 198		/* Set the last descriptor in the ring to indicate wrap */
 199		txbdp--;
 200		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201					    TXBD_WRAP);
 202	}
 203
 204	rfbptr = &regs->rfbptr0;
 205	for (i = 0; i < priv->num_rx_queues; i++) {
 206		rx_queue = priv->rx_queue[i];
 207
 208		rx_queue->next_to_clean = 0;
 209		rx_queue->next_to_use = 0;
 210		rx_queue->next_to_alloc = 0;
 211
 212		/* make sure next_to_clean != next_to_use after this
 213		 * by leaving at least 1 unused descriptor
 214		 */
 215		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217		rx_queue->rfbptr = rfbptr;
 218		rfbptr += 2;
 219	}
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224	void *vaddr;
 225	dma_addr_t addr;
 226	int i, j;
 227	struct gfar_private *priv = netdev_priv(ndev);
 228	struct device *dev = priv->dev;
 229	struct gfar_priv_tx_q *tx_queue = NULL;
 230	struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232	priv->total_tx_ring_size = 0;
 233	for (i = 0; i < priv->num_tx_queues; i++)
 234		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236	priv->total_rx_ring_size = 0;
 237	for (i = 0; i < priv->num_rx_queues; i++)
 238		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240	/* Allocate memory for the buffer descriptors */
 241	vaddr = dma_alloc_coherent(dev,
 242				   (priv->total_tx_ring_size *
 243				    sizeof(struct txbd8)) +
 244				   (priv->total_rx_ring_size *
 245				    sizeof(struct rxbd8)),
 246				   &addr, GFP_KERNEL);
 247	if (!vaddr)
 248		return -ENOMEM;
 249
 250	for (i = 0; i < priv->num_tx_queues; i++) {
 251		tx_queue = priv->tx_queue[i];
 252		tx_queue->tx_bd_base = vaddr;
 253		tx_queue->tx_bd_dma_base = addr;
 254		tx_queue->dev = ndev;
 255		/* enet DMA only understands physical addresses */
 256		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258	}
 259
 260	/* Start the rx descriptor ring where the tx ring leaves off */
 261	for (i = 0; i < priv->num_rx_queues; i++) {
 262		rx_queue = priv->rx_queue[i];
 263		rx_queue->rx_bd_base = vaddr;
 264		rx_queue->rx_bd_dma_base = addr;
 265		rx_queue->ndev = ndev;
 266		rx_queue->dev = dev;
 267		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269	}
 270
 271	/* Setup the skbuff rings */
 272	for (i = 0; i < priv->num_tx_queues; i++) {
 273		tx_queue = priv->tx_queue[i];
 274		tx_queue->tx_skbuff =
 275			kmalloc_array(tx_queue->tx_ring_size,
 276				      sizeof(*tx_queue->tx_skbuff),
 277				      GFP_KERNEL);
 278		if (!tx_queue->tx_skbuff)
 279			goto cleanup;
 280
 281		for (j = 0; j < tx_queue->tx_ring_size; j++)
 282			tx_queue->tx_skbuff[j] = NULL;
 283	}
 284
 285	for (i = 0; i < priv->num_rx_queues; i++) {
 286		rx_queue = priv->rx_queue[i];
 287		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288					    sizeof(*rx_queue->rx_buff),
 289					    GFP_KERNEL);
 290		if (!rx_queue->rx_buff)
 291			goto cleanup;
 292	}
 293
 294	gfar_init_bds(ndev);
 295
 296	return 0;
 297
 298cleanup:
 299	free_skb_resources(priv);
 300	return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306	u32 __iomem *baddr;
 307	int i;
 308
 309	baddr = &regs->tbase0;
 310	for (i = 0; i < priv->num_tx_queues; i++) {
 311		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312		baddr += 2;
 313	}
 314
 315	baddr = &regs->rbase0;
 316	for (i = 0; i < priv->num_rx_queues; i++) {
 317		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318		baddr += 2;
 319	}
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325	u32 __iomem *baddr;
 326	int i;
 327
 328	baddr = &regs->rqprm0;
 329	for (i = 0; i < priv->num_rx_queues; i++) {
 330		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332		baddr++;
 333	}
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338	/* set this when rx hw offload (TOE) functions are being used */
 339	priv->uses_rxfcb = 0;
 340
 341	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342		priv->uses_rxfcb = 1;
 343
 344	if (priv->hwts_rx_en || priv->rx_filer_enable)
 345		priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351	u32 rctrl = 0;
 352
 353	if (priv->rx_filer_enable) {
 354		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355		/* Program the RIR0 reg with the required distribution */
 356		if (priv->poll_mode == GFAR_SQ_POLLING)
 357			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358		else /* GFAR_MQ_POLLING */
 359			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360	}
 361
 362	/* Restore PROMISC mode */
 363	if (priv->ndev->flags & IFF_PROMISC)
 364		rctrl |= RCTRL_PROM;
 365
 366	if (priv->ndev->features & NETIF_F_RXCSUM)
 367		rctrl |= RCTRL_CHECKSUMMING;
 368
 369	if (priv->extended_hash)
 370		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372	if (priv->padding) {
 373		rctrl &= ~RCTRL_PAL_MASK;
 374		rctrl |= RCTRL_PADDING(priv->padding);
 375	}
 376
 377	/* Enable HW time stamping if requested from user space */
 378	if (priv->hwts_rx_en)
 379		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384	/* Clear the LFC bit */
 385	gfar_write(&regs->rctrl, rctrl);
 386	/* Init flow control threshold values */
 387	gfar_init_rqprm(priv);
 388	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389	rctrl |= RCTRL_LFC;
 390
 391	/* Init rctrl based on our settings */
 392	gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398	u32 tctrl = 0;
 399
 400	if (priv->ndev->features & NETIF_F_IP_CSUM)
 401		tctrl |= TCTRL_INIT_CSUM;
 402
 403	if (priv->prio_sched_en)
 404		tctrl |= TCTRL_TXSCHED_PRIO;
 405	else {
 406		tctrl |= TCTRL_TXSCHED_WRRS;
 407		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409	}
 410
 411	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412		tctrl |= TCTRL_VLINS;
 413
 414	gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418			       unsigned long tx_mask, unsigned long rx_mask)
 419{
 420	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421	u32 __iomem *baddr;
 422
 423	if (priv->mode == MQ_MG_MODE) {
 424		int i = 0;
 425
 426		baddr = &regs->txic0;
 427		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428			gfar_write(baddr + i, 0);
 429			if (likely(priv->tx_queue[i]->txcoalescing))
 430				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431		}
 432
 433		baddr = &regs->rxic0;
 434		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435			gfar_write(baddr + i, 0);
 436			if (likely(priv->rx_queue[i]->rxcoalescing))
 437				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438		}
 439	} else {
 440		/* Backward compatible case -- even if we enable
 441		 * multiple queues, there's only single reg to program
 442		 */
 443		gfar_write(&regs->txic, 0);
 444		if (likely(priv->tx_queue[0]->txcoalescing))
 445			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447		gfar_write(&regs->rxic, 0);
 448		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450	}
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460	struct gfar_private *priv = netdev_priv(dev);
 461	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462	unsigned long tx_packets = 0, tx_bytes = 0;
 463	int i;
 464
 465	for (i = 0; i < priv->num_rx_queues; i++) {
 466		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469	}
 470
 471	dev->stats.rx_packets = rx_packets;
 472	dev->stats.rx_bytes   = rx_bytes;
 473	dev->stats.rx_dropped = rx_dropped;
 474
 475	for (i = 0; i < priv->num_tx_queues; i++) {
 476		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 478	}
 479
 480	dev->stats.tx_bytes   = tx_bytes;
 481	dev->stats.tx_packets = tx_packets;
 482
 483	return &dev->stats;
 484}
 485
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488	eth_mac_addr(dev, p);
 489
 490	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492	return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496	.ndo_open = gfar_enet_open,
 497	.ndo_start_xmit = gfar_start_xmit,
 498	.ndo_stop = gfar_close,
 499	.ndo_change_mtu = gfar_change_mtu,
 500	.ndo_set_features = gfar_set_features,
 501	.ndo_set_rx_mode = gfar_set_multi,
 502	.ndo_tx_timeout = gfar_timeout,
 503	.ndo_do_ioctl = gfar_ioctl,
 504	.ndo_get_stats = gfar_get_stats,
 505	.ndo_set_mac_address = gfar_set_mac_addr,
 506	.ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508	.ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514	int i;
 515	for (i = 0; i < priv->num_grps; i++) {
 516		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517		/* Clear IEVENT */
 518		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520		/* Initialize IMASK */
 521		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522	}
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527	int i;
 528	for (i = 0; i < priv->num_grps; i++) {
 529		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530		/* Unmask the interrupts we look for */
 531		gfar_write(&regs->imask, IMASK_DEFAULT);
 532	}
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537	int i;
 538
 539	for (i = 0; i < priv->num_tx_queues; i++) {
 540		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541					    GFP_KERNEL);
 542		if (!priv->tx_queue[i])
 543			return -ENOMEM;
 544
 545		priv->tx_queue[i]->tx_skbuff = NULL;
 546		priv->tx_queue[i]->qindex = i;
 547		priv->tx_queue[i]->dev = priv->ndev;
 548		spin_lock_init(&(priv->tx_queue[i]->txlock));
 549	}
 550	return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555	int i;
 556
 557	for (i = 0; i < priv->num_rx_queues; i++) {
 558		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559					    GFP_KERNEL);
 560		if (!priv->rx_queue[i])
 561			return -ENOMEM;
 562
 563		priv->rx_queue[i]->qindex = i;
 564		priv->rx_queue[i]->ndev = priv->ndev;
 565	}
 566	return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571	int i;
 572
 573	for (i = 0; i < priv->num_tx_queues; i++)
 574		kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579	int i;
 580
 581	for (i = 0; i < priv->num_rx_queues; i++)
 582		kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587	int i;
 588
 589	for (i = 0; i < MAXGROUPS; i++)
 590		if (priv->gfargrp[i].regs)
 591			iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596	int i, j;
 597
 598	for (i = 0; i < priv->num_grps; i++)
 599		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600			kfree(priv->gfargrp[i].irqinfo[j]);
 601			priv->gfargrp[i].irqinfo[j] = NULL;
 602		}
 603
 604	free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609	int i;
 610
 611	for (i = 0; i < priv->num_grps; i++) {
 612		napi_disable(&priv->gfargrp[i].napi_rx);
 613		napi_disable(&priv->gfargrp[i].napi_tx);
 614	}
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619	int i;
 620
 621	for (i = 0; i < priv->num_grps; i++) {
 622		napi_enable(&priv->gfargrp[i].napi_rx);
 623		napi_enable(&priv->gfargrp[i].napi_tx);
 624	}
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628			    struct gfar_private *priv, const char *model)
 629{
 630	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631	int i;
 632
 633	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635					  GFP_KERNEL);
 636		if (!grp->irqinfo[i])
 637			return -ENOMEM;
 638	}
 639
 640	grp->regs = of_iomap(np, 0);
 641	if (!grp->regs)
 642		return -ENOMEM;
 643
 644	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646	/* If we aren't the FEC we have multiple interrupts */
 647	if (model && strcasecmp(model, "FEC")) {
 648		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650		if (!gfar_irq(grp, TX)->irq ||
 651		    !gfar_irq(grp, RX)->irq ||
 652		    !gfar_irq(grp, ER)->irq)
 653			return -EINVAL;
 654	}
 655
 656	grp->priv = priv;
 657	spin_lock_init(&grp->grplock);
 658	if (priv->mode == MQ_MG_MODE) {
 659		u32 rxq_mask, txq_mask;
 660		int ret;
 661
 662		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666		if (!ret) {
 667			grp->rx_bit_map = rxq_mask ?
 668			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669		}
 670
 671		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672		if (!ret) {
 673			grp->tx_bit_map = txq_mask ?
 674			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675		}
 676
 677		if (priv->poll_mode == GFAR_SQ_POLLING) {
 678			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681		}
 682	} else {
 683		grp->rx_bit_map = 0xFF;
 684		grp->tx_bit_map = 0xFF;
 685	}
 686
 687	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688	 * right to left, so we need to revert the 8 bits to get the q index
 689	 */
 690	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694	 * also assign queues to groups
 695	 */
 696	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697		if (!grp->rx_queue)
 698			grp->rx_queue = priv->rx_queue[i];
 699		grp->num_rx_queues++;
 700		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702		priv->rx_queue[i]->grp = grp;
 703	}
 704
 705	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706		if (!grp->tx_queue)
 707			grp->tx_queue = priv->tx_queue[i];
 708		grp->num_tx_queues++;
 709		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710		priv->tqueue |= (TQUEUE_EN0 >> i);
 711		priv->tx_queue[i]->grp = grp;
 712	}
 713
 714	priv->num_grps++;
 715
 716	return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721	struct device_node *child;
 722	int num = 0;
 723
 724	for_each_available_child_of_node(np, child)
 725		if (!of_node_cmp(child->name, "queue-group"))
 726			num++;
 727
 728	return num;
 729}
 730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733	const char *model;
 734	const char *ctype;
 735	const void *mac_addr;
 736	int err = 0, i;
 
 737	struct net_device *dev = NULL;
 738	struct gfar_private *priv = NULL;
 739	struct device_node *np = ofdev->dev.of_node;
 740	struct device_node *child = NULL;
 741	u32 stash_len = 0;
 742	u32 stash_idx = 0;
 743	unsigned int num_tx_qs, num_rx_qs;
 744	unsigned short mode, poll_mode;
 745
 746	if (!np)
 747		return -ENODEV;
 748
 749	if (of_device_is_compatible(np, "fsl,etsec2")) {
 750		mode = MQ_MG_MODE;
 751		poll_mode = GFAR_SQ_POLLING;
 752	} else {
 753		mode = SQ_SG_MODE;
 754		poll_mode = GFAR_SQ_POLLING;
 755	}
 756
 757	if (mode == SQ_SG_MODE) {
 758		num_tx_qs = 1;
 759		num_rx_qs = 1;
 760	} else { /* MQ_MG_MODE */
 761		/* get the actual number of supported groups */
 762		unsigned int num_grps = gfar_of_group_count(np);
 763
 764		if (num_grps == 0 || num_grps > MAXGROUPS) {
 765			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766				num_grps);
 767			pr_err("Cannot do alloc_etherdev, aborting\n");
 768			return -EINVAL;
 769		}
 770
 771		if (poll_mode == GFAR_SQ_POLLING) {
 772			num_tx_qs = num_grps; /* one txq per int group */
 773			num_rx_qs = num_grps; /* one rxq per int group */
 774		} else { /* GFAR_MQ_POLLING */
 775			u32 tx_queues, rx_queues;
 776			int ret;
 777
 778			/* parse the num of HW tx and rx queues */
 779			ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780						   &tx_queues);
 781			num_tx_qs = ret ? 1 : tx_queues;
 782
 783			ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784						   &rx_queues);
 785			num_rx_qs = ret ? 1 : rx_queues;
 786		}
 787	}
 788
 789	if (num_tx_qs > MAX_TX_QS) {
 790		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791		       num_tx_qs, MAX_TX_QS);
 792		pr_err("Cannot do alloc_etherdev, aborting\n");
 793		return -EINVAL;
 794	}
 795
 796	if (num_rx_qs > MAX_RX_QS) {
 797		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798		       num_rx_qs, MAX_RX_QS);
 799		pr_err("Cannot do alloc_etherdev, aborting\n");
 800		return -EINVAL;
 801	}
 802
 803	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804	dev = *pdev;
 805	if (NULL == dev)
 806		return -ENOMEM;
 807
 808	priv = netdev_priv(dev);
 809	priv->ndev = dev;
 810
 811	priv->mode = mode;
 812	priv->poll_mode = poll_mode;
 813
 814	priv->num_tx_queues = num_tx_qs;
 815	netif_set_real_num_rx_queues(dev, num_rx_qs);
 816	priv->num_rx_queues = num_rx_qs;
 817
 818	err = gfar_alloc_tx_queues(priv);
 819	if (err)
 820		goto tx_alloc_failed;
 821
 822	err = gfar_alloc_rx_queues(priv);
 823	if (err)
 824		goto rx_alloc_failed;
 825
 826	err = of_property_read_string(np, "model", &model);
 827	if (err) {
 828		pr_err("Device model property missing, aborting\n");
 829		goto rx_alloc_failed;
 830	}
 831
 832	/* Init Rx queue filer rule set linked list */
 833	INIT_LIST_HEAD(&priv->rx_list.list);
 834	priv->rx_list.count = 0;
 835	mutex_init(&priv->rx_queue_access);
 836
 837	for (i = 0; i < MAXGROUPS; i++)
 838		priv->gfargrp[i].regs = NULL;
 839
 840	/* Parse and initialize group specific information */
 841	if (priv->mode == MQ_MG_MODE) {
 842		for_each_available_child_of_node(np, child) {
 843			if (of_node_cmp(child->name, "queue-group"))
 844				continue;
 845
 846			err = gfar_parse_group(child, priv, model);
 847			if (err)
 
 848				goto err_grp_init;
 
 849		}
 850	} else { /* SQ_SG_MODE */
 851		err = gfar_parse_group(np, priv, model);
 852		if (err)
 853			goto err_grp_init;
 854	}
 855
 856	if (of_property_read_bool(np, "bd-stash")) {
 857		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858		priv->bd_stash_en = 1;
 859	}
 860
 861	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863	if (err == 0)
 864		priv->rx_stash_size = stash_len;
 865
 866	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868	if (err == 0)
 869		priv->rx_stash_index = stash_idx;
 870
 871	if (stash_len || stash_idx)
 872		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874	mac_addr = of_get_mac_address(np);
 875
 876	if (mac_addr)
 877		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 
 
 
 
 878
 879	if (model && !strcasecmp(model, "TSEC"))
 880		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881				     FSL_GIANFAR_DEV_HAS_COALESCE |
 882				     FSL_GIANFAR_DEV_HAS_RMON |
 883				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885	if (model && !strcasecmp(model, "eTSEC"))
 886		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887				     FSL_GIANFAR_DEV_HAS_COALESCE |
 888				     FSL_GIANFAR_DEV_HAS_RMON |
 889				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890				     FSL_GIANFAR_DEV_HAS_CSUM |
 891				     FSL_GIANFAR_DEV_HAS_VLAN |
 892				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894				     FSL_GIANFAR_DEV_HAS_TIMER |
 895				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897	err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899	/* We only care about rgmii-id.  The rest are autodetected */
 900	if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 
 
 902	else
 903		priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905	if (of_find_property(np, "fsl,magic-packet", NULL))
 906		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913	/* In the case of a fixed PHY, the DT node associated
 914	 * to the PHY is the Ethernet MAC DT node.
 915	 */
 916	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917		err = of_phy_register_fixed_link(np);
 918		if (err)
 919			goto err_grp_init;
 920
 921		priv->phy_node = of_node_get(np);
 922	}
 923
 924	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927	return 0;
 928
 929err_grp_init:
 930	unmap_group_regs(priv);
 931rx_alloc_failed:
 932	gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934	gfar_free_tx_queues(priv);
 935	free_gfar_dev(priv);
 936	return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941	struct hwtstamp_config config;
 942	struct gfar_private *priv = netdev_priv(netdev);
 943
 944	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945		return -EFAULT;
 946
 947	/* reserved for future extensions */
 948	if (config.flags)
 949		return -EINVAL;
 950
 951	switch (config.tx_type) {
 952	case HWTSTAMP_TX_OFF:
 953		priv->hwts_tx_en = 0;
 954		break;
 955	case HWTSTAMP_TX_ON:
 956		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957			return -ERANGE;
 958		priv->hwts_tx_en = 1;
 959		break;
 960	default:
 961		return -ERANGE;
 962	}
 963
 964	switch (config.rx_filter) {
 965	case HWTSTAMP_FILTER_NONE:
 966		if (priv->hwts_rx_en) {
 967			priv->hwts_rx_en = 0;
 968			reset_gfar(netdev);
 969		}
 970		break;
 971	default:
 972		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973			return -ERANGE;
 974		if (!priv->hwts_rx_en) {
 975			priv->hwts_rx_en = 1;
 976			reset_gfar(netdev);
 977		}
 978		config.rx_filter = HWTSTAMP_FILTER_ALL;
 979		break;
 980	}
 981
 982	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983		-EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988	struct hwtstamp_config config;
 989	struct gfar_private *priv = netdev_priv(netdev);
 990
 991	config.flags = 0;
 992	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993	config.rx_filter = (priv->hwts_rx_en ?
 994			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997		-EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002	struct gfar_private *priv = netdev_priv(dev);
1003
1004	if (!netif_running(dev))
1005		return -EINVAL;
1006
1007	if (cmd == SIOCSHWTSTAMP)
1008		return gfar_hwtstamp_set(dev, rq);
1009	if (cmd == SIOCGHWTSTAMP)
1010		return gfar_hwtstamp_get(dev, rq);
1011
1012	if (!priv->phydev)
1013		return -ENODEV;
1014
1015	return phy_mii_ioctl(priv->phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019				   u32 class)
1020{
1021	u32 rqfpr = FPR_FILER_MASK;
1022	u32 rqfcr = 0x0;
1023
1024	rqfar--;
1025	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026	priv->ftp_rqfpr[rqfar] = rqfpr;
1027	priv->ftp_rqfcr[rqfar] = rqfcr;
1028	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030	rqfar--;
1031	rqfcr = RQFCR_CMP_NOMATCH;
1032	priv->ftp_rqfpr[rqfar] = rqfpr;
1033	priv->ftp_rqfcr[rqfar] = rqfcr;
1034	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036	rqfar--;
1037	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038	rqfpr = class;
1039	priv->ftp_rqfcr[rqfar] = rqfcr;
1040	priv->ftp_rqfpr[rqfar] = rqfpr;
1041	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043	rqfar--;
1044	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045	rqfpr = class;
1046	priv->ftp_rqfcr[rqfar] = rqfcr;
1047	priv->ftp_rqfpr[rqfar] = rqfpr;
1048	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050	return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055	int i = 0x0;
1056	u32 rqfar = MAX_FILER_IDX;
1057	u32 rqfcr = 0x0;
1058	u32 rqfpr = FPR_FILER_MASK;
1059
1060	/* Default rule */
1061	rqfcr = RQFCR_CMP_MATCH;
1062	priv->ftp_rqfcr[rqfar] = rqfcr;
1063	priv->ftp_rqfpr[rqfar] = rqfpr;
1064	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073	/* cur_filer_idx indicated the first non-masked rule */
1074	priv->cur_filer_idx = rqfar;
1075
1076	/* Rest are masked rules */
1077	rqfcr = RQFCR_CMP_NOMATCH;
1078	for (i = 0; i < rqfar; i++) {
1079		priv->ftp_rqfcr[i] = rqfcr;
1080		priv->ftp_rqfpr[i] = rqfpr;
1081		gfar_write_filer(priv, i, rqfcr, rqfpr);
1082	}
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088	unsigned int pvr = mfspr(SPRN_PVR);
1089	unsigned int svr = mfspr(SPRN_SVR);
1090	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091	unsigned int rev = svr & 0xffff;
1092
1093	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1094	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096		priv->errata |= GFAR_ERRATA_74;
1097
1098	/* MPC8313 and MPC837x all rev */
1099	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101		priv->errata |= GFAR_ERRATA_76;
1102
1103	/* MPC8313 Rev < 2.0 */
1104	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105		priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110	unsigned int svr = mfspr(SPRN_SVR);
1111
1112	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113		priv->errata |= GFAR_ERRATA_12;
1114	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124	struct device *dev = &priv->ofdev->dev;
1125
1126	/* no plans to fix */
1127	priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131		__gfar_detect_errata_85xx(priv);
1132	else /* non-mpc85xx parts, i.e. e300 core based */
1133		__gfar_detect_errata_83xx(priv);
1134#endif
1135
1136	if (priv->errata)
1137		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138			 priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144	u32 tempval;
1145
1146	/* Reset MAC layer */
1147	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149	/* We need to delay at least 3 TX clocks */
1150	udelay(3);
1151
1152	/* the soft reset bit is not self-resetting, so we need to
1153	 * clear it before resuming normal operation
1154	 */
1155	gfar_write(&regs->maccfg1, 0);
1156
1157	udelay(3);
1158
1159	gfar_rx_offload_en(priv);
1160
1161	/* Initialize the max receive frame/buffer lengths */
1162	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165	/* Initialize the Minimum Frame Length Register */
1166	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168	/* Initialize MACCFG2. */
1169	tempval = MACCFG2_INIT_SETTINGS;
1170
1171	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174	 */
1175	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178	gfar_write(&regs->maccfg2, tempval);
1179
1180	/* Clear mac addr hash registers */
1181	gfar_write(&regs->igaddr0, 0);
1182	gfar_write(&regs->igaddr1, 0);
1183	gfar_write(&regs->igaddr2, 0);
1184	gfar_write(&regs->igaddr3, 0);
1185	gfar_write(&regs->igaddr4, 0);
1186	gfar_write(&regs->igaddr5, 0);
1187	gfar_write(&regs->igaddr6, 0);
1188	gfar_write(&regs->igaddr7, 0);
1189
1190	gfar_write(&regs->gaddr0, 0);
1191	gfar_write(&regs->gaddr1, 0);
1192	gfar_write(&regs->gaddr2, 0);
1193	gfar_write(&regs->gaddr3, 0);
1194	gfar_write(&regs->gaddr4, 0);
1195	gfar_write(&regs->gaddr5, 0);
1196	gfar_write(&regs->gaddr6, 0);
1197	gfar_write(&regs->gaddr7, 0);
1198
1199	if (priv->extended_hash)
1200		gfar_clear_exact_match(priv->ndev);
1201
1202	gfar_mac_rx_config(priv);
1203
1204	gfar_mac_tx_config(priv);
1205
1206	gfar_set_mac_address(priv->ndev);
1207
1208	gfar_set_multi(priv->ndev);
1209
1210	/* clear ievent and imask before configuring coalescing */
1211	gfar_ints_disable(priv);
1212
1213	/* Configure the coalescing support */
1214	gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220	u32 attrs;
1221
1222	/* Stop the DMA engine now, in case it was running before
1223	 * (The firmware could have used it, and left it running).
1224	 */
1225	gfar_halt(priv);
1226
1227	gfar_mac_reset(priv);
1228
1229	/* Zero out the rmon mib registers if it has them */
1230	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233		/* Mask off the CAM interrupts */
1234		gfar_write(&regs->rmon.cam1, 0xffffffff);
1235		gfar_write(&regs->rmon.cam2, 0xffffffff);
1236	}
1237
1238	/* Initialize ECNTRL */
1239	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241	/* Set the extraction length and index */
1242	attrs = ATTRELI_EL(priv->rx_stash_size) |
1243		ATTRELI_EI(priv->rx_stash_index);
1244
1245	gfar_write(&regs->attreli, attrs);
1246
1247	/* Start with defaults, and add stashing
1248	 * depending on driver parameters
1249	 */
1250	attrs = ATTR_INIT_SETTINGS;
1251
1252	if (priv->bd_stash_en)
1253		attrs |= ATTR_BDSTASH;
1254
1255	if (priv->rx_stash_size != 0)
1256		attrs |= ATTR_BUFSTASH;
1257
1258	gfar_write(&regs->attr, attrs);
1259
1260	/* FIFO configs */
1261	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265	/* Program the interrupt steering regs, only for MG devices */
1266	if (priv->num_grps > 1)
1267		gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275		priv->extended_hash = 1;
1276		priv->hash_width = 9;
1277
1278		priv->hash_regs[0] = &regs->igaddr0;
1279		priv->hash_regs[1] = &regs->igaddr1;
1280		priv->hash_regs[2] = &regs->igaddr2;
1281		priv->hash_regs[3] = &regs->igaddr3;
1282		priv->hash_regs[4] = &regs->igaddr4;
1283		priv->hash_regs[5] = &regs->igaddr5;
1284		priv->hash_regs[6] = &regs->igaddr6;
1285		priv->hash_regs[7] = &regs->igaddr7;
1286		priv->hash_regs[8] = &regs->gaddr0;
1287		priv->hash_regs[9] = &regs->gaddr1;
1288		priv->hash_regs[10] = &regs->gaddr2;
1289		priv->hash_regs[11] = &regs->gaddr3;
1290		priv->hash_regs[12] = &regs->gaddr4;
1291		priv->hash_regs[13] = &regs->gaddr5;
1292		priv->hash_regs[14] = &regs->gaddr6;
1293		priv->hash_regs[15] = &regs->gaddr7;
1294
1295	} else {
1296		priv->extended_hash = 0;
1297		priv->hash_width = 8;
1298
1299		priv->hash_regs[0] = &regs->gaddr0;
1300		priv->hash_regs[1] = &regs->gaddr1;
1301		priv->hash_regs[2] = &regs->gaddr2;
1302		priv->hash_regs[3] = &regs->gaddr3;
1303		priv->hash_regs[4] = &regs->gaddr4;
1304		priv->hash_regs[5] = &regs->gaddr5;
1305		priv->hash_regs[6] = &regs->gaddr6;
1306		priv->hash_regs[7] = &regs->gaddr7;
1307	}
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315	struct net_device *dev = NULL;
1316	struct gfar_private *priv = NULL;
1317	int err = 0, i;
1318
1319	err = gfar_of_init(ofdev, &dev);
1320
1321	if (err)
1322		return err;
1323
1324	priv = netdev_priv(dev);
1325	priv->ndev = dev;
1326	priv->ofdev = ofdev;
1327	priv->dev = &ofdev->dev;
1328	SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330	INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332	platform_set_drvdata(ofdev, priv);
1333
1334	gfar_detect_errata(priv);
1335
1336	/* Set the dev->base_addr to the gfar reg region */
1337	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339	/* Fill in the dev structure */
1340	dev->watchdog_timeo = TX_TIMEOUT;
1341	dev->mtu = 1500;
1342	dev->netdev_ops = &gfar_netdev_ops;
1343	dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345	/* Register for napi ...We are registering NAPI for each grp */
1346	for (i = 0; i < priv->num_grps; i++) {
1347		if (priv->poll_mode == GFAR_SQ_POLLING) {
1348			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351				       gfar_poll_tx_sq, 2);
1352		} else {
1353			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1355			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356				       gfar_poll_tx, 2);
1357		}
1358	}
1359
1360	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362				   NETIF_F_RXCSUM;
1363		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365	}
1366
1367	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369				    NETIF_F_HW_VLAN_CTAG_RX;
1370		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371	}
1372
1373	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375	gfar_init_addr_hash_table(priv);
1376
1377	/* Insert receive time stamps into padding alignment bytes */
1378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379		priv->padding = 8;
1380
1381	if (dev->features & NETIF_F_IP_CSUM ||
1382	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383		dev->needed_headroom = GMAC_FCB_LEN;
1384
1385	/* Initializing some of the rx/tx queue level parameters */
1386	for (i = 0; i < priv->num_tx_queues; i++) {
1387		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391	}
1392
1393	for (i = 0; i < priv->num_rx_queues; i++) {
1394		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397	}
1398
1399	/* Always enable rx filer if available */
1400	priv->rx_filer_enable =
1401	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1402	/* Enable most messages by default */
1403	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1404	/* use pritority h/w tx queue scheduling for single queue devices */
1405	if (priv->num_tx_queues == 1)
1406		priv->prio_sched_en = 1;
1407
1408	set_bit(GFAR_DOWN, &priv->state);
1409
1410	gfar_hw_init(priv);
1411
1412	/* Carrier starts down, phylib will bring it up */
1413	netif_carrier_off(dev);
1414
1415	err = register_netdev(dev);
1416
1417	if (err) {
1418		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1419		goto register_fail;
1420	}
1421
1422	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1423		priv->wol_supported |= GFAR_WOL_MAGIC;
1424
1425	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1426	    priv->rx_filer_enable)
1427		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1428
1429	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1430
1431	/* fill out IRQ number and name fields */
1432	for (i = 0; i < priv->num_grps; i++) {
1433		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1434		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1435			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1436				dev->name, "_g", '0' + i, "_tx");
1437			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1438				dev->name, "_g", '0' + i, "_rx");
1439			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1440				dev->name, "_g", '0' + i, "_er");
1441		} else
1442			strcpy(gfar_irq(grp, TX)->name, dev->name);
1443	}
1444
1445	/* Initialize the filer table */
1446	gfar_init_filer_table(priv);
1447
1448	/* Print out the device info */
1449	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1450
1451	/* Even more device info helps when determining which kernel
1452	 * provided which set of benchmarks.
1453	 */
1454	netdev_info(dev, "Running with NAPI enabled\n");
1455	for (i = 0; i < priv->num_rx_queues; i++)
1456		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1457			    i, priv->rx_queue[i]->rx_ring_size);
1458	for (i = 0; i < priv->num_tx_queues; i++)
1459		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1460			    i, priv->tx_queue[i]->tx_ring_size);
1461
1462	return 0;
1463
1464register_fail:
1465	unmap_group_regs(priv);
1466	gfar_free_rx_queues(priv);
1467	gfar_free_tx_queues(priv);
1468	of_node_put(priv->phy_node);
1469	of_node_put(priv->tbi_node);
1470	free_gfar_dev(priv);
1471	return err;
1472}
1473
1474static int gfar_remove(struct platform_device *ofdev)
1475{
1476	struct gfar_private *priv = platform_get_drvdata(ofdev);
1477
1478	of_node_put(priv->phy_node);
1479	of_node_put(priv->tbi_node);
1480
1481	unregister_netdev(priv->ndev);
1482	unmap_group_regs(priv);
1483	gfar_free_rx_queues(priv);
1484	gfar_free_tx_queues(priv);
1485	free_gfar_dev(priv);
1486
1487	return 0;
1488}
1489
1490#ifdef CONFIG_PM
1491
1492static void __gfar_filer_disable(struct gfar_private *priv)
1493{
1494	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1495	u32 temp;
1496
1497	temp = gfar_read(&regs->rctrl);
1498	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1499	gfar_write(&regs->rctrl, temp);
1500}
1501
1502static void __gfar_filer_enable(struct gfar_private *priv)
1503{
1504	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1505	u32 temp;
1506
1507	temp = gfar_read(&regs->rctrl);
1508	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1509	gfar_write(&regs->rctrl, temp);
1510}
1511
1512/* Filer rules implementing wol capabilities */
1513static void gfar_filer_config_wol(struct gfar_private *priv)
1514{
1515	unsigned int i;
1516	u32 rqfcr;
1517
1518	__gfar_filer_disable(priv);
1519
1520	/* clear the filer table, reject any packet by default */
1521	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1522	for (i = 0; i <= MAX_FILER_IDX; i++)
1523		gfar_write_filer(priv, i, rqfcr, 0);
1524
1525	i = 0;
1526	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1527		/* unicast packet, accept it */
1528		struct net_device *ndev = priv->ndev;
1529		/* get the default rx queue index */
1530		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1531		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1532				    (ndev->dev_addr[1] << 8) |
1533				     ndev->dev_addr[2];
1534
1535		rqfcr = (qindex << 10) | RQFCR_AND |
1536			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1537
1538		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1539
1540		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1541				(ndev->dev_addr[4] << 8) |
1542				 ndev->dev_addr[5];
1543		rqfcr = (qindex << 10) | RQFCR_GPI |
1544			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1545		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1546	}
1547
1548	__gfar_filer_enable(priv);
1549}
1550
1551static void gfar_filer_restore_table(struct gfar_private *priv)
1552{
1553	u32 rqfcr, rqfpr;
1554	unsigned int i;
1555
1556	__gfar_filer_disable(priv);
1557
1558	for (i = 0; i <= MAX_FILER_IDX; i++) {
1559		rqfcr = priv->ftp_rqfcr[i];
1560		rqfpr = priv->ftp_rqfpr[i];
1561		gfar_write_filer(priv, i, rqfcr, rqfpr);
1562	}
1563
1564	__gfar_filer_enable(priv);
1565}
1566
1567/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1568static void gfar_start_wol_filer(struct gfar_private *priv)
1569{
1570	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1571	u32 tempval;
1572	int i = 0;
1573
1574	/* Enable Rx hw queues */
1575	gfar_write(&regs->rqueue, priv->rqueue);
1576
1577	/* Initialize DMACTRL to have WWR and WOP */
1578	tempval = gfar_read(&regs->dmactrl);
1579	tempval |= DMACTRL_INIT_SETTINGS;
1580	gfar_write(&regs->dmactrl, tempval);
1581
1582	/* Make sure we aren't stopped */
1583	tempval = gfar_read(&regs->dmactrl);
1584	tempval &= ~DMACTRL_GRS;
1585	gfar_write(&regs->dmactrl, tempval);
1586
1587	for (i = 0; i < priv->num_grps; i++) {
1588		regs = priv->gfargrp[i].regs;
1589		/* Clear RHLT, so that the DMA starts polling now */
1590		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1591		/* enable the Filer General Purpose Interrupt */
1592		gfar_write(&regs->imask, IMASK_FGPI);
1593	}
1594
1595	/* Enable Rx DMA */
1596	tempval = gfar_read(&regs->maccfg1);
1597	tempval |= MACCFG1_RX_EN;
1598	gfar_write(&regs->maccfg1, tempval);
1599}
1600
1601static int gfar_suspend(struct device *dev)
1602{
1603	struct gfar_private *priv = dev_get_drvdata(dev);
1604	struct net_device *ndev = priv->ndev;
1605	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606	u32 tempval;
1607	u16 wol = priv->wol_opts;
1608
1609	if (!netif_running(ndev))
1610		return 0;
1611
1612	disable_napi(priv);
1613	netif_tx_lock(ndev);
1614	netif_device_detach(ndev);
1615	netif_tx_unlock(ndev);
1616
1617	gfar_halt(priv);
1618
1619	if (wol & GFAR_WOL_MAGIC) {
1620		/* Enable interrupt on Magic Packet */
1621		gfar_write(&regs->imask, IMASK_MAG);
1622
1623		/* Enable Magic Packet mode */
1624		tempval = gfar_read(&regs->maccfg2);
1625		tempval |= MACCFG2_MPEN;
1626		gfar_write(&regs->maccfg2, tempval);
1627
1628		/* re-enable the Rx block */
1629		tempval = gfar_read(&regs->maccfg1);
1630		tempval |= MACCFG1_RX_EN;
1631		gfar_write(&regs->maccfg1, tempval);
1632
1633	} else if (wol & GFAR_WOL_FILER_UCAST) {
1634		gfar_filer_config_wol(priv);
1635		gfar_start_wol_filer(priv);
1636
1637	} else {
1638		phy_stop(priv->phydev);
1639	}
1640
1641	return 0;
1642}
1643
1644static int gfar_resume(struct device *dev)
1645{
1646	struct gfar_private *priv = dev_get_drvdata(dev);
1647	struct net_device *ndev = priv->ndev;
1648	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649	u32 tempval;
1650	u16 wol = priv->wol_opts;
1651
1652	if (!netif_running(ndev))
1653		return 0;
1654
1655	if (wol & GFAR_WOL_MAGIC) {
1656		/* Disable Magic Packet mode */
1657		tempval = gfar_read(&regs->maccfg2);
1658		tempval &= ~MACCFG2_MPEN;
1659		gfar_write(&regs->maccfg2, tempval);
1660
1661	} else if (wol & GFAR_WOL_FILER_UCAST) {
1662		/* need to stop rx only, tx is already down */
1663		gfar_halt(priv);
1664		gfar_filer_restore_table(priv);
1665
1666	} else {
1667		phy_start(priv->phydev);
1668	}
1669
1670	gfar_start(priv);
1671
1672	netif_device_attach(ndev);
1673	enable_napi(priv);
1674
1675	return 0;
1676}
1677
1678static int gfar_restore(struct device *dev)
1679{
1680	struct gfar_private *priv = dev_get_drvdata(dev);
1681	struct net_device *ndev = priv->ndev;
1682
1683	if (!netif_running(ndev)) {
1684		netif_device_attach(ndev);
1685
1686		return 0;
1687	}
1688
1689	gfar_init_bds(ndev);
1690
1691	gfar_mac_reset(priv);
1692
1693	gfar_init_tx_rx_base(priv);
1694
1695	gfar_start(priv);
1696
1697	priv->oldlink = 0;
1698	priv->oldspeed = 0;
1699	priv->oldduplex = -1;
1700
1701	if (priv->phydev)
1702		phy_start(priv->phydev);
1703
1704	netif_device_attach(ndev);
1705	enable_napi(priv);
1706
1707	return 0;
1708}
1709
1710static struct dev_pm_ops gfar_pm_ops = {
1711	.suspend = gfar_suspend,
1712	.resume = gfar_resume,
1713	.freeze = gfar_suspend,
1714	.thaw = gfar_resume,
1715	.restore = gfar_restore,
1716};
1717
1718#define GFAR_PM_OPS (&gfar_pm_ops)
1719
1720#else
1721
1722#define GFAR_PM_OPS NULL
1723
1724#endif
1725
1726/* Reads the controller's registers to determine what interface
1727 * connects it to the PHY.
1728 */
1729static phy_interface_t gfar_get_interface(struct net_device *dev)
1730{
1731	struct gfar_private *priv = netdev_priv(dev);
1732	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1733	u32 ecntrl;
1734
1735	ecntrl = gfar_read(&regs->ecntrl);
1736
1737	if (ecntrl & ECNTRL_SGMII_MODE)
1738		return PHY_INTERFACE_MODE_SGMII;
1739
1740	if (ecntrl & ECNTRL_TBI_MODE) {
1741		if (ecntrl & ECNTRL_REDUCED_MODE)
1742			return PHY_INTERFACE_MODE_RTBI;
1743		else
1744			return PHY_INTERFACE_MODE_TBI;
1745	}
1746
1747	if (ecntrl & ECNTRL_REDUCED_MODE) {
1748		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1749			return PHY_INTERFACE_MODE_RMII;
1750		}
1751		else {
1752			phy_interface_t interface = priv->interface;
1753
1754			/* This isn't autodetected right now, so it must
1755			 * be set by the device tree or platform code.
1756			 */
1757			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1758				return PHY_INTERFACE_MODE_RGMII_ID;
1759
1760			return PHY_INTERFACE_MODE_RGMII;
1761		}
1762	}
1763
1764	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1765		return PHY_INTERFACE_MODE_GMII;
1766
1767	return PHY_INTERFACE_MODE_MII;
1768}
1769
1770
1771/* Initializes driver's PHY state, and attaches to the PHY.
1772 * Returns 0 on success.
1773 */
1774static int init_phy(struct net_device *dev)
1775{
1776	struct gfar_private *priv = netdev_priv(dev);
1777	uint gigabit_support =
1778		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1779		GFAR_SUPPORTED_GBIT : 0;
1780	phy_interface_t interface;
1781
1782	priv->oldlink = 0;
1783	priv->oldspeed = 0;
1784	priv->oldduplex = -1;
1785
1786	interface = gfar_get_interface(dev);
1787
1788	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1789				      interface);
1790	if (!priv->phydev) {
1791		dev_err(&dev->dev, "could not attach to PHY\n");
1792		return -ENODEV;
1793	}
1794
1795	if (interface == PHY_INTERFACE_MODE_SGMII)
1796		gfar_configure_serdes(dev);
1797
1798	/* Remove any features not supported by the controller */
1799	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1800	priv->phydev->advertising = priv->phydev->supported;
1801
1802	/* Add support for flow control, but don't advertise it by default */
1803	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1804
1805	return 0;
1806}
1807
1808/* Initialize TBI PHY interface for communicating with the
1809 * SERDES lynx PHY on the chip.  We communicate with this PHY
1810 * through the MDIO bus on each controller, treating it as a
1811 * "normal" PHY at the address found in the TBIPA register.  We assume
1812 * that the TBIPA register is valid.  Either the MDIO bus code will set
1813 * it to a value that doesn't conflict with other PHYs on the bus, or the
1814 * value doesn't matter, as there are no other PHYs on the bus.
1815 */
1816static void gfar_configure_serdes(struct net_device *dev)
1817{
1818	struct gfar_private *priv = netdev_priv(dev);
1819	struct phy_device *tbiphy;
1820
1821	if (!priv->tbi_node) {
1822		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1823				    "device tree specify a tbi-handle\n");
1824		return;
1825	}
1826
1827	tbiphy = of_phy_find_device(priv->tbi_node);
1828	if (!tbiphy) {
1829		dev_err(&dev->dev, "error: Could not get TBI device\n");
1830		return;
1831	}
1832
1833	/* If the link is already up, we must already be ok, and don't need to
1834	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1835	 * everything for us?  Resetting it takes the link down and requires
1836	 * several seconds for it to come back.
1837	 */
1838	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1839		put_device(&tbiphy->mdio.dev);
1840		return;
1841	}
1842
1843	/* Single clk mode, mii mode off(for serdes communication) */
1844	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1845
1846	phy_write(tbiphy, MII_ADVERTISE,
1847		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1848		  ADVERTISE_1000XPSE_ASYM);
1849
1850	phy_write(tbiphy, MII_BMCR,
1851		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1852		  BMCR_SPEED1000);
1853
1854	put_device(&tbiphy->mdio.dev);
1855}
1856
1857static int __gfar_is_rx_idle(struct gfar_private *priv)
1858{
1859	u32 res;
1860
1861	/* Normaly TSEC should not hang on GRS commands, so we should
1862	 * actually wait for IEVENT_GRSC flag.
1863	 */
1864	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1865		return 0;
1866
1867	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1868	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1869	 * and the Rx can be safely reset.
1870	 */
1871	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1872	res &= 0x7f807f80;
1873	if ((res & 0xffff) == (res >> 16))
1874		return 1;
1875
1876	return 0;
1877}
1878
1879/* Halt the receive and transmit queues */
1880static void gfar_halt_nodisable(struct gfar_private *priv)
1881{
1882	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1883	u32 tempval;
1884	unsigned int timeout;
1885	int stopped;
1886
1887	gfar_ints_disable(priv);
1888
1889	if (gfar_is_dma_stopped(priv))
1890		return;
1891
1892	/* Stop the DMA, and wait for it to stop */
1893	tempval = gfar_read(&regs->dmactrl);
1894	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1895	gfar_write(&regs->dmactrl, tempval);
1896
1897retry:
1898	timeout = 1000;
1899	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1900		cpu_relax();
1901		timeout--;
1902	}
1903
1904	if (!timeout)
1905		stopped = gfar_is_dma_stopped(priv);
1906
1907	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1908	    !__gfar_is_rx_idle(priv))
1909		goto retry;
1910}
1911
1912/* Halt the receive and transmit queues */
1913void gfar_halt(struct gfar_private *priv)
1914{
1915	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1916	u32 tempval;
1917
1918	/* Dissable the Rx/Tx hw queues */
1919	gfar_write(&regs->rqueue, 0);
1920	gfar_write(&regs->tqueue, 0);
1921
1922	mdelay(10);
1923
1924	gfar_halt_nodisable(priv);
1925
1926	/* Disable Rx/Tx DMA */
1927	tempval = gfar_read(&regs->maccfg1);
1928	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1929	gfar_write(&regs->maccfg1, tempval);
1930}
1931
1932void stop_gfar(struct net_device *dev)
1933{
1934	struct gfar_private *priv = netdev_priv(dev);
1935
1936	netif_tx_stop_all_queues(dev);
1937
1938	smp_mb__before_atomic();
1939	set_bit(GFAR_DOWN, &priv->state);
1940	smp_mb__after_atomic();
1941
1942	disable_napi(priv);
1943
1944	/* disable ints and gracefully shut down Rx/Tx DMA */
1945	gfar_halt(priv);
1946
1947	phy_stop(priv->phydev);
1948
1949	free_skb_resources(priv);
1950}
1951
1952static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1953{
1954	struct txbd8 *txbdp;
1955	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1956	int i, j;
1957
1958	txbdp = tx_queue->tx_bd_base;
1959
1960	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1961		if (!tx_queue->tx_skbuff[i])
1962			continue;
1963
1964		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1965				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1966		txbdp->lstatus = 0;
1967		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1968		     j++) {
1969			txbdp++;
1970			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1971				       be16_to_cpu(txbdp->length),
1972				       DMA_TO_DEVICE);
1973		}
1974		txbdp++;
1975		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1976		tx_queue->tx_skbuff[i] = NULL;
1977	}
1978	kfree(tx_queue->tx_skbuff);
1979	tx_queue->tx_skbuff = NULL;
1980}
1981
1982static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1983{
1984	int i;
1985
1986	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1987
1988	if (rx_queue->skb)
1989		dev_kfree_skb(rx_queue->skb);
1990
1991	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1992		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1993
1994		rxbdp->lstatus = 0;
1995		rxbdp->bufPtr = 0;
1996		rxbdp++;
1997
1998		if (!rxb->page)
1999			continue;
2000
2001		dma_unmap_single(rx_queue->dev, rxb->dma,
2002				 PAGE_SIZE, DMA_FROM_DEVICE);
2003		__free_page(rxb->page);
2004
2005		rxb->page = NULL;
2006	}
2007
2008	kfree(rx_queue->rx_buff);
2009	rx_queue->rx_buff = NULL;
2010}
2011
2012/* If there are any tx skbs or rx skbs still around, free them.
2013 * Then free tx_skbuff and rx_skbuff
2014 */
2015static void free_skb_resources(struct gfar_private *priv)
2016{
2017	struct gfar_priv_tx_q *tx_queue = NULL;
2018	struct gfar_priv_rx_q *rx_queue = NULL;
2019	int i;
2020
2021	/* Go through all the buffer descriptors and free their data buffers */
2022	for (i = 0; i < priv->num_tx_queues; i++) {
2023		struct netdev_queue *txq;
2024
2025		tx_queue = priv->tx_queue[i];
2026		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2027		if (tx_queue->tx_skbuff)
2028			free_skb_tx_queue(tx_queue);
2029		netdev_tx_reset_queue(txq);
2030	}
2031
2032	for (i = 0; i < priv->num_rx_queues; i++) {
2033		rx_queue = priv->rx_queue[i];
2034		if (rx_queue->rx_buff)
2035			free_skb_rx_queue(rx_queue);
2036	}
2037
2038	dma_free_coherent(priv->dev,
2039			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2040			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2041			  priv->tx_queue[0]->tx_bd_base,
2042			  priv->tx_queue[0]->tx_bd_dma_base);
2043}
2044
2045void gfar_start(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046{
2047	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2048	u32 tempval;
2049	int i = 0;
2050
2051	/* Enable Rx/Tx hw queues */
2052	gfar_write(&regs->rqueue, priv->rqueue);
2053	gfar_write(&regs->tqueue, priv->tqueue);
2054
2055	/* Initialize DMACTRL to have WWR and WOP */
2056	tempval = gfar_read(&regs->dmactrl);
2057	tempval |= DMACTRL_INIT_SETTINGS;
2058	gfar_write(&regs->dmactrl, tempval);
2059
2060	/* Make sure we aren't stopped */
2061	tempval = gfar_read(&regs->dmactrl);
2062	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2063	gfar_write(&regs->dmactrl, tempval);
2064
2065	for (i = 0; i < priv->num_grps; i++) {
2066		regs = priv->gfargrp[i].regs;
2067		/* Clear THLT/RHLT, so that the DMA starts polling now */
2068		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2069		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2070	}
2071
2072	/* Enable Rx/Tx DMA */
2073	tempval = gfar_read(&regs->maccfg1);
2074	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2075	gfar_write(&regs->maccfg1, tempval);
2076
2077	gfar_ints_enable(priv);
2078
2079	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2080}
2081
2082static void free_grp_irqs(struct gfar_priv_grp *grp)
2083{
2084	free_irq(gfar_irq(grp, TX)->irq, grp);
2085	free_irq(gfar_irq(grp, RX)->irq, grp);
2086	free_irq(gfar_irq(grp, ER)->irq, grp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2087}
2088
2089static int register_grp_irqs(struct gfar_priv_grp *grp)
2090{
2091	struct gfar_private *priv = grp->priv;
2092	struct net_device *dev = priv->ndev;
2093	int err;
2094
2095	/* If the device has multiple interrupts, register for
2096	 * them.  Otherwise, only register for the one
2097	 */
2098	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2099		/* Install our interrupt handlers for Error,
2100		 * Transmit, and Receive
2101		 */
2102		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2103				  gfar_irq(grp, ER)->name, grp);
2104		if (err < 0) {
2105			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2106				  gfar_irq(grp, ER)->irq);
2107
2108			goto err_irq_fail;
2109		}
2110		enable_irq_wake(gfar_irq(grp, ER)->irq);
 
 
 
2111
2112		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2113				  gfar_irq(grp, TX)->name, grp);
2114		if (err < 0) {
2115			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2116				  gfar_irq(grp, TX)->irq);
2117			goto tx_irq_fail;
 
 
 
 
 
2118		}
2119		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2120				  gfar_irq(grp, RX)->name, grp);
2121		if (err < 0) {
2122			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2123				  gfar_irq(grp, RX)->irq);
2124			goto rx_irq_fail;
 
 
 
 
 
 
 
2125		}
2126		enable_irq_wake(gfar_irq(grp, RX)->irq);
2127
2128	} else {
2129		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2130				  gfar_irq(grp, TX)->name, grp);
2131		if (err < 0) {
2132			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2133				  gfar_irq(grp, TX)->irq);
2134			goto err_irq_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135		}
2136		enable_irq_wake(gfar_irq(grp, TX)->irq);
 
 
 
 
2137	}
2138
2139	return 0;
 
 
2140
2141rx_irq_fail:
2142	free_irq(gfar_irq(grp, TX)->irq, grp);
2143tx_irq_fail:
2144	free_irq(gfar_irq(grp, ER)->irq, grp);
2145err_irq_fail:
2146	return err;
 
 
2147
 
 
 
2148}
2149
2150static void gfar_free_irq(struct gfar_private *priv)
2151{
2152	int i;
 
 
 
 
 
 
2153
2154	/* Free the IRQs */
2155	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2156		for (i = 0; i < priv->num_grps; i++)
2157			free_grp_irqs(&priv->gfargrp[i]);
2158	} else {
2159		for (i = 0; i < priv->num_grps; i++)
2160			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2161				 &priv->gfargrp[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2162	}
2163}
2164
2165static int gfar_request_irq(struct gfar_private *priv)
2166{
2167	int err, i, j;
 
 
 
 
 
 
 
2168
2169	for (i = 0; i < priv->num_grps; i++) {
2170		err = register_grp_irqs(&priv->gfargrp[i]);
2171		if (err) {
2172			for (j = 0; j < i; j++)
2173				free_grp_irqs(&priv->gfargrp[j]);
2174			return err;
2175		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176	}
2177
 
 
2178	return 0;
 
 
 
 
2179}
2180
2181/* Bring the controller up and running */
2182int startup_gfar(struct net_device *ndev)
2183{
2184	struct gfar_private *priv = netdev_priv(ndev);
2185	int err;
2186
2187	gfar_mac_reset(priv);
2188
2189	err = gfar_alloc_skb_resources(ndev);
2190	if (err)
2191		return err;
2192
2193	gfar_init_tx_rx_base(priv);
2194
2195	smp_mb__before_atomic();
2196	clear_bit(GFAR_DOWN, &priv->state);
2197	smp_mb__after_atomic();
2198
2199	/* Start Rx/Tx DMA and enable the interrupts */
2200	gfar_start(priv);
2201
2202	/* force link state update after mac reset */
2203	priv->oldlink = 0;
2204	priv->oldspeed = 0;
2205	priv->oldduplex = -1;
2206
2207	phy_start(priv->phydev);
2208
2209	enable_napi(priv);
2210
2211	netif_tx_wake_all_queues(ndev);
2212
2213	return 0;
2214}
2215
2216/* Called when something needs to use the ethernet device
2217 * Returns 0 for success.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2218 */
2219static int gfar_enet_open(struct net_device *dev)
2220{
2221	struct gfar_private *priv = netdev_priv(dev);
2222	int err;
2223
2224	err = init_phy(dev);
2225	if (err)
2226		return err;
 
 
2227
2228	err = gfar_request_irq(priv);
2229	if (err)
2230		return err;
 
 
 
 
 
 
 
 
 
2231
2232	err = startup_gfar(dev);
2233	if (err)
2234		return err;
 
 
2235
2236	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2237}
2238
2239static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2240{
2241	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2242
2243	memset(fcb, 0, GMAC_FCB_LEN);
2244
2245	return fcb;
2246}
2247
2248static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2249				    int fcb_length)
2250{
2251	/* If we're here, it's a IP packet with a TCP or UDP
2252	 * payload.  We set it to checksum, using a pseudo-header
2253	 * we provide
2254	 */
2255	u8 flags = TXFCB_DEFAULT;
2256
2257	/* Tell the controller what the protocol is
2258	 * And provide the already calculated phcs
2259	 */
2260	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2261		flags |= TXFCB_UDP;
2262		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2263	} else
2264		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2265
2266	/* l3os is the distance between the start of the
2267	 * frame (skb->data) and the start of the IP hdr.
2268	 * l4os is the distance between the start of the
2269	 * l3 hdr and the l4 hdr
2270	 */
2271	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2272	fcb->l4os = skb_network_header_len(skb);
2273
2274	fcb->flags = flags;
2275}
2276
2277void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2278{
2279	fcb->flags |= TXFCB_VLN;
2280	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2281}
2282
2283static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2284				      struct txbd8 *base, int ring_size)
2285{
2286	struct txbd8 *new_bd = bdp + stride;
2287
2288	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2289}
2290
2291static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2292				      int ring_size)
2293{
2294	return skip_txbd(bdp, 1, base, ring_size);
2295}
2296
2297/* eTSEC12: csum generation not supported for some fcb offsets */
2298static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2299				       unsigned long fcb_addr)
2300{
2301	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2302	       (fcb_addr % 0x20) > 0x18);
2303}
2304
2305/* eTSEC76: csum generation for frames larger than 2500 may
2306 * cause excess delays before start of transmission
2307 */
2308static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2309				       unsigned int len)
2310{
2311	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2312	       (len > 2500));
2313}
2314
2315/* This is called by the kernel when a frame is ready for transmission.
2316 * It is pointed to by the dev->hard_start_xmit function pointer
2317 */
2318static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2319{
2320	struct gfar_private *priv = netdev_priv(dev);
2321	struct gfar_priv_tx_q *tx_queue = NULL;
2322	struct netdev_queue *txq;
2323	struct gfar __iomem *regs = NULL;
2324	struct txfcb *fcb = NULL;
2325	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2326	u32 lstatus;
2327	skb_frag_t *frag;
2328	int i, rq = 0;
2329	int do_tstamp, do_csum, do_vlan;
2330	u32 bufaddr;
2331	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2332
2333	rq = skb->queue_mapping;
2334	tx_queue = priv->tx_queue[rq];
2335	txq = netdev_get_tx_queue(dev, rq);
2336	base = tx_queue->tx_bd_base;
2337	regs = tx_queue->grp->regs;
2338
2339	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2340	do_vlan = skb_vlan_tag_present(skb);
2341	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2342		    priv->hwts_tx_en;
2343
2344	if (do_csum || do_vlan)
2345		fcb_len = GMAC_FCB_LEN;
2346
2347	/* check if time stamp should be generated */
2348	if (unlikely(do_tstamp))
2349		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2350
2351	/* make space for additional header when fcb is needed */
2352	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2353		struct sk_buff *skb_new;
2354
2355		skb_new = skb_realloc_headroom(skb, fcb_len);
2356		if (!skb_new) {
2357			dev->stats.tx_errors++;
2358			dev_kfree_skb_any(skb);
2359			return NETDEV_TX_OK;
2360		}
2361
2362		if (skb->sk)
2363			skb_set_owner_w(skb_new, skb->sk);
2364		dev_consume_skb_any(skb);
2365		skb = skb_new;
2366	}
2367
2368	/* total number of fragments in the SKB */
2369	nr_frags = skb_shinfo(skb)->nr_frags;
2370
2371	/* calculate the required number of TxBDs for this skb */
2372	if (unlikely(do_tstamp))
2373		nr_txbds = nr_frags + 2;
2374	else
2375		nr_txbds = nr_frags + 1;
2376
2377	/* check if there is space to queue this packet */
2378	if (nr_txbds > tx_queue->num_txbdfree) {
2379		/* no space, stop the queue */
2380		netif_tx_stop_queue(txq);
2381		dev->stats.tx_fifo_errors++;
2382		return NETDEV_TX_BUSY;
2383	}
2384
2385	/* Update transmit stats */
2386	bytes_sent = skb->len;
2387	tx_queue->stats.tx_bytes += bytes_sent;
2388	/* keep Tx bytes on wire for BQL accounting */
2389	GFAR_CB(skb)->bytes_sent = bytes_sent;
2390	tx_queue->stats.tx_packets++;
2391
2392	txbdp = txbdp_start = tx_queue->cur_tx;
2393	lstatus = be32_to_cpu(txbdp->lstatus);
2394
2395	/* Add TxPAL between FCB and frame if required */
2396	if (unlikely(do_tstamp)) {
2397		skb_push(skb, GMAC_TXPAL_LEN);
2398		memset(skb->data, 0, GMAC_TXPAL_LEN);
2399	}
2400
2401	/* Add TxFCB if required */
2402	if (fcb_len) {
2403		fcb = gfar_add_fcb(skb);
2404		lstatus |= BD_LFLAG(TXBD_TOE);
2405	}
2406
2407	/* Set up checksumming */
2408	if (do_csum) {
2409		gfar_tx_checksum(skb, fcb, fcb_len);
2410
2411		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2412		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2413			__skb_pull(skb, GMAC_FCB_LEN);
2414			skb_checksum_help(skb);
2415			if (do_vlan || do_tstamp) {
2416				/* put back a new fcb for vlan/tstamp TOE */
2417				fcb = gfar_add_fcb(skb);
2418			} else {
2419				/* Tx TOE not used */
2420				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2421				fcb = NULL;
2422			}
2423		}
2424	}
2425
2426	if (do_vlan)
2427		gfar_tx_vlan(skb, fcb);
2428
2429	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2430				 DMA_TO_DEVICE);
2431	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2432		goto dma_map_err;
2433
2434	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2435
2436	/* Time stamp insertion requires one additional TxBD */
2437	if (unlikely(do_tstamp))
2438		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2439						 tx_queue->tx_ring_size);
2440
2441	if (likely(!nr_frags)) {
2442		lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
 
2443	} else {
2444		u32 lstatus_start = lstatus;
2445
2446		/* Place the fragment addresses and lengths into the TxBDs */
2447		frag = &skb_shinfo(skb)->frags[0];
2448		for (i = 0; i < nr_frags; i++, frag++) {
2449			unsigned int size;
2450
2451			/* Point at the next BD, wrapping as needed */
2452			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2453
2454			size = skb_frag_size(frag);
2455
2456			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2457				  BD_LFLAG(TXBD_READY);
2458
2459			/* Handle the last BD specially */
2460			if (i == nr_frags - 1)
2461				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2462
2463			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2464						   size, DMA_TO_DEVICE);
2465			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2466				goto dma_map_err;
2467
2468			/* set the TxBD length and buffer pointer */
2469			txbdp->bufPtr = cpu_to_be32(bufaddr);
2470			txbdp->lstatus = cpu_to_be32(lstatus);
2471		}
2472
2473		lstatus = lstatus_start;
2474	}
2475
2476	/* If time stamping is requested one additional TxBD must be set up. The
2477	 * first TxBD points to the FCB and must have a data length of
2478	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2479	 * the full frame length.
2480	 */
2481	if (unlikely(do_tstamp)) {
2482		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2483
2484		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2485		bufaddr += fcb_len;
2486
2487		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2488			      (skb_headlen(skb) - fcb_len);
2489		if (!nr_frags)
2490			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2491
2492		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2493		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2494		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2495
2496		/* Setup tx hardware time stamping */
2497		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2498		fcb->ptp = 1;
2499	} else {
2500		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2501	}
2502
2503	netdev_tx_sent_queue(txq, bytes_sent);
2504
2505	gfar_wmb();
2506
2507	txbdp_start->lstatus = cpu_to_be32(lstatus);
2508
2509	gfar_wmb(); /* force lstatus write before tx_skbuff */
2510
2511	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2512
2513	/* Update the current skb pointer to the next entry we will use
2514	 * (wrapping if necessary)
2515	 */
2516	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2517			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2518
2519	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2520
2521	/* We can work in parallel with gfar_clean_tx_ring(), except
2522	 * when modifying num_txbdfree. Note that we didn't grab the lock
2523	 * when we were reading the num_txbdfree and checking for available
2524	 * space, that's because outside of this function it can only grow.
2525	 */
2526	spin_lock_bh(&tx_queue->txlock);
2527	/* reduce TxBD free count */
2528	tx_queue->num_txbdfree -= (nr_txbds);
2529	spin_unlock_bh(&tx_queue->txlock);
2530
2531	/* If the next BD still needs to be cleaned up, then the bds
2532	 * are full.  We need to tell the kernel to stop sending us stuff.
2533	 */
2534	if (!tx_queue->num_txbdfree) {
2535		netif_tx_stop_queue(txq);
2536
2537		dev->stats.tx_fifo_errors++;
2538	}
2539
2540	/* Tell the DMA to go go go */
2541	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2542
2543	return NETDEV_TX_OK;
2544
2545dma_map_err:
2546	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2547	if (do_tstamp)
2548		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2549	for (i = 0; i < nr_frags; i++) {
2550		lstatus = be32_to_cpu(txbdp->lstatus);
2551		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2552			break;
2553
2554		lstatus &= ~BD_LFLAG(TXBD_READY);
2555		txbdp->lstatus = cpu_to_be32(lstatus);
2556		bufaddr = be32_to_cpu(txbdp->bufPtr);
2557		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2558			       DMA_TO_DEVICE);
2559		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2560	}
2561	gfar_wmb();
2562	dev_kfree_skb_any(skb);
2563	return NETDEV_TX_OK;
2564}
2565
2566/* Stops the kernel queue, and halts the controller */
2567static int gfar_close(struct net_device *dev)
2568{
2569	struct gfar_private *priv = netdev_priv(dev);
2570
2571	cancel_work_sync(&priv->reset_task);
2572	stop_gfar(dev);
2573
2574	/* Disconnect from the PHY */
2575	phy_disconnect(priv->phydev);
2576	priv->phydev = NULL;
2577
2578	gfar_free_irq(priv);
2579
2580	return 0;
2581}
2582
2583/* Changes the mac address if the controller is not running. */
2584static int gfar_set_mac_address(struct net_device *dev)
2585{
2586	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2587
2588	return 0;
2589}
2590
2591static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2592{
2593	struct gfar_private *priv = netdev_priv(dev);
2594	int frame_size = new_mtu + ETH_HLEN;
2595
2596	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2597		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2598		return -EINVAL;
2599	}
2600
2601	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2602		cpu_relax();
2603
2604	if (dev->flags & IFF_UP)
2605		stop_gfar(dev);
2606
2607	dev->mtu = new_mtu;
2608
2609	if (dev->flags & IFF_UP)
2610		startup_gfar(dev);
2611
2612	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2613
2614	return 0;
2615}
2616
2617void reset_gfar(struct net_device *ndev)
2618{
2619	struct gfar_private *priv = netdev_priv(ndev);
2620
2621	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2622		cpu_relax();
2623
2624	stop_gfar(ndev);
2625	startup_gfar(ndev);
2626
2627	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628}
2629
2630/* gfar_reset_task gets scheduled when a packet has not been
2631 * transmitted after a set amount of time.
2632 * For now, assume that clearing out all the structures, and
2633 * starting over will fix the problem.
2634 */
2635static void gfar_reset_task(struct work_struct *work)
2636{
2637	struct gfar_private *priv = container_of(work, struct gfar_private,
2638						 reset_task);
2639	reset_gfar(priv->ndev);
2640}
2641
2642static void gfar_timeout(struct net_device *dev)
2643{
2644	struct gfar_private *priv = netdev_priv(dev);
2645
2646	dev->stats.tx_errors++;
2647	schedule_work(&priv->reset_task);
2648}
2649
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650/* Interrupt Handler for Transmit complete */
2651static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2652{
2653	struct net_device *dev = tx_queue->dev;
2654	struct netdev_queue *txq;
2655	struct gfar_private *priv = netdev_priv(dev);
2656	struct txbd8 *bdp, *next = NULL;
2657	struct txbd8 *lbdp = NULL;
2658	struct txbd8 *base = tx_queue->tx_bd_base;
2659	struct sk_buff *skb;
2660	int skb_dirtytx;
2661	int tx_ring_size = tx_queue->tx_ring_size;
2662	int frags = 0, nr_txbds = 0;
2663	int i;
2664	int howmany = 0;
2665	int tqi = tx_queue->qindex;
2666	unsigned int bytes_sent = 0;
2667	u32 lstatus;
2668	size_t buflen;
2669
2670	txq = netdev_get_tx_queue(dev, tqi);
2671	bdp = tx_queue->dirty_tx;
2672	skb_dirtytx = tx_queue->skb_dirtytx;
2673
2674	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
 
 
 
 
2675
2676		frags = skb_shinfo(skb)->nr_frags;
2677
2678		/* When time stamping, one additional TxBD must be freed.
2679		 * Also, we need to dma_unmap_single() the TxPAL.
2680		 */
2681		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2682			nr_txbds = frags + 2;
2683		else
2684			nr_txbds = frags + 1;
2685
2686		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2687
2688		lstatus = be32_to_cpu(lbdp->lstatus);
2689
2690		/* Only clean completed frames */
2691		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2692		    (lstatus & BD_LENGTH_MASK))
2693			break;
2694
2695		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2696			next = next_txbd(bdp, base, tx_ring_size);
2697			buflen = be16_to_cpu(next->length) +
2698				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2699		} else
2700			buflen = be16_to_cpu(bdp->length);
2701
2702		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2703				 buflen, DMA_TO_DEVICE);
2704
2705		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2706			struct skb_shared_hwtstamps shhwtstamps;
2707			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2708					  ~0x7UL);
2709
2710			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2711			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2712			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2713			skb_tstamp_tx(skb, &shhwtstamps);
2714			gfar_clear_txbd_status(bdp);
2715			bdp = next;
2716		}
2717
2718		gfar_clear_txbd_status(bdp);
2719		bdp = next_txbd(bdp, base, tx_ring_size);
2720
2721		for (i = 0; i < frags; i++) {
2722			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2723				       be16_to_cpu(bdp->length),
2724				       DMA_TO_DEVICE);
2725			gfar_clear_txbd_status(bdp);
2726			bdp = next_txbd(bdp, base, tx_ring_size);
2727		}
2728
2729		bytes_sent += GFAR_CB(skb)->bytes_sent;
2730
2731		dev_kfree_skb_any(skb);
2732
2733		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2734
2735		skb_dirtytx = (skb_dirtytx + 1) &
2736			      TX_RING_MOD_MASK(tx_ring_size);
2737
2738		howmany++;
2739		spin_lock(&tx_queue->txlock);
2740		tx_queue->num_txbdfree += nr_txbds;
2741		spin_unlock(&tx_queue->txlock);
2742	}
2743
2744	/* If we freed a buffer, we can restart transmission, if necessary */
2745	if (tx_queue->num_txbdfree &&
2746	    netif_tx_queue_stopped(txq) &&
2747	    !(test_bit(GFAR_DOWN, &priv->state)))
2748		netif_wake_subqueue(priv->ndev, tqi);
2749
2750	/* Update dirty indicators */
2751	tx_queue->skb_dirtytx = skb_dirtytx;
2752	tx_queue->dirty_tx = bdp;
2753
2754	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2755}
2756
2757static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2758{
2759	struct page *page;
2760	dma_addr_t addr;
2761
2762	page = dev_alloc_page();
2763	if (unlikely(!page))
2764		return false;
2765
2766	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2767	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2768		__free_page(page);
2769
2770		return false;
2771	}
2772
2773	rxb->dma = addr;
2774	rxb->page = page;
2775	rxb->page_offset = 0;
2776
2777	return true;
2778}
2779
2780static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2781{
2782	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2783	struct gfar_extra_stats *estats = &priv->extra_stats;
2784
2785	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2786	atomic64_inc(&estats->rx_alloc_err);
2787}
2788
2789static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2790				int alloc_cnt)
2791{
2792	struct rxbd8 *bdp;
2793	struct gfar_rx_buff *rxb;
2794	int i;
2795
2796	i = rx_queue->next_to_use;
2797	bdp = &rx_queue->rx_bd_base[i];
2798	rxb = &rx_queue->rx_buff[i];
2799
2800	while (alloc_cnt--) {
2801		/* try reuse page */
2802		if (unlikely(!rxb->page)) {
2803			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2804				gfar_rx_alloc_err(rx_queue);
2805				break;
2806			}
2807		}
2808
2809		/* Setup the new RxBD */
2810		gfar_init_rxbdp(rx_queue, bdp,
2811				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2812
2813		/* Update to the next pointer */
2814		bdp++;
2815		rxb++;
2816
2817		if (unlikely(++i == rx_queue->rx_ring_size)) {
2818			i = 0;
2819			bdp = rx_queue->rx_bd_base;
2820			rxb = rx_queue->rx_buff;
2821		}
2822	}
2823
2824	rx_queue->next_to_use = i;
2825	rx_queue->next_to_alloc = i;
2826}
2827
2828static void count_errors(u32 lstatus, struct net_device *ndev)
2829{
2830	struct gfar_private *priv = netdev_priv(ndev);
2831	struct net_device_stats *stats = &ndev->stats;
2832	struct gfar_extra_stats *estats = &priv->extra_stats;
2833
2834	/* If the packet was truncated, none of the other errors matter */
2835	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2836		stats->rx_length_errors++;
2837
2838		atomic64_inc(&estats->rx_trunc);
2839
2840		return;
2841	}
2842	/* Count the errors, if there were any */
2843	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2844		stats->rx_length_errors++;
2845
2846		if (lstatus & BD_LFLAG(RXBD_LARGE))
2847			atomic64_inc(&estats->rx_large);
2848		else
2849			atomic64_inc(&estats->rx_short);
2850	}
2851	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2852		stats->rx_frame_errors++;
2853		atomic64_inc(&estats->rx_nonoctet);
2854	}
2855	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2856		atomic64_inc(&estats->rx_crcerr);
2857		stats->rx_crc_errors++;
2858	}
2859	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2860		atomic64_inc(&estats->rx_overrun);
2861		stats->rx_over_errors++;
2862	}
2863}
2864
2865irqreturn_t gfar_receive(int irq, void *grp_id)
2866{
2867	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2868	unsigned long flags;
2869	u32 imask, ievent;
2870
2871	ievent = gfar_read(&grp->regs->ievent);
2872
2873	if (unlikely(ievent & IEVENT_FGPI)) {
2874		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2875		return IRQ_HANDLED;
2876	}
2877
2878	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2879		spin_lock_irqsave(&grp->grplock, flags);
2880		imask = gfar_read(&grp->regs->imask);
2881		imask &= IMASK_RX_DISABLED;
2882		gfar_write(&grp->regs->imask, imask);
2883		spin_unlock_irqrestore(&grp->grplock, flags);
2884		__napi_schedule(&grp->napi_rx);
2885	} else {
2886		/* Clear IEVENT, so interrupts aren't called again
2887		 * because of the packets that have already arrived.
2888		 */
2889		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2890	}
2891
2892	return IRQ_HANDLED;
2893}
2894
2895/* Interrupt Handler for Transmit complete */
2896static irqreturn_t gfar_transmit(int irq, void *grp_id)
2897{
2898	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2899	unsigned long flags;
2900	u32 imask;
2901
2902	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2903		spin_lock_irqsave(&grp->grplock, flags);
2904		imask = gfar_read(&grp->regs->imask);
2905		imask &= IMASK_TX_DISABLED;
2906		gfar_write(&grp->regs->imask, imask);
2907		spin_unlock_irqrestore(&grp->grplock, flags);
2908		__napi_schedule(&grp->napi_tx);
2909	} else {
2910		/* Clear IEVENT, so interrupts aren't called again
2911		 * because of the packets that have already arrived.
2912		 */
2913		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2914	}
2915
2916	return IRQ_HANDLED;
2917}
2918
2919static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2920			     struct sk_buff *skb, bool first)
2921{
2922	unsigned int size = lstatus & BD_LENGTH_MASK;
2923	struct page *page = rxb->page;
2924
2925	/* Remove the FCS from the packet length */
2926	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2927		size -= ETH_FCS_LEN;
2928
2929	if (likely(first))
2930		skb_put(skb, size);
2931	else
 
 
 
 
2932		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2933				rxb->page_offset + RXBUF_ALIGNMENT,
2934				size, GFAR_RXB_TRUESIZE);
 
2935
2936	/* try reuse page */
2937	if (unlikely(page_count(page) != 1))
2938		return false;
2939
2940	/* change offset to the other half */
2941	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2942
2943	page_ref_inc(page);
2944
2945	return true;
2946}
2947
2948static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2949			       struct gfar_rx_buff *old_rxb)
2950{
2951	struct gfar_rx_buff *new_rxb;
2952	u16 nta = rxq->next_to_alloc;
2953
2954	new_rxb = &rxq->rx_buff[nta];
2955
2956	/* find next buf that can reuse a page */
2957	nta++;
2958	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2959
2960	/* copy page reference */
2961	*new_rxb = *old_rxb;
2962
2963	/* sync for use by the device */
2964	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2965					 old_rxb->page_offset,
2966					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2967}
2968
2969static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2970					    u32 lstatus, struct sk_buff *skb)
2971{
2972	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2973	struct page *page = rxb->page;
2974	bool first = false;
2975
2976	if (likely(!skb)) {
2977		void *buff_addr = page_address(page) + rxb->page_offset;
2978
2979		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2980		if (unlikely(!skb)) {
2981			gfar_rx_alloc_err(rx_queue);
2982			return NULL;
2983		}
2984		skb_reserve(skb, RXBUF_ALIGNMENT);
2985		first = true;
2986	}
2987
2988	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2989				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2990
2991	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2992		/* reuse the free half of the page */
2993		gfar_reuse_rx_page(rx_queue, rxb);
2994	} else {
2995		/* page cannot be reused, unmap it */
2996		dma_unmap_page(rx_queue->dev, rxb->dma,
2997			       PAGE_SIZE, DMA_FROM_DEVICE);
2998	}
2999
3000	/* clear rxb content */
3001	rxb->page = NULL;
3002
3003	return skb;
3004}
3005
3006static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3007{
3008	/* If valid headers were found, and valid sums
3009	 * were verified, then we tell the kernel that no
3010	 * checksumming is necessary.  Otherwise, it is [FIXME]
3011	 */
3012	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3013	    (RXFCB_CIP | RXFCB_CTU))
3014		skb->ip_summed = CHECKSUM_UNNECESSARY;
3015	else
3016		skb_checksum_none_assert(skb);
3017}
3018
3019/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3020static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3021{
3022	struct gfar_private *priv = netdev_priv(ndev);
3023	struct rxfcb *fcb = NULL;
3024
3025	/* fcb is at the beginning if exists */
3026	fcb = (struct rxfcb *)skb->data;
3027
3028	/* Remove the FCB from the skb
3029	 * Remove the padded bytes, if there are any
3030	 */
3031	if (priv->uses_rxfcb)
3032		skb_pull(skb, GMAC_FCB_LEN);
3033
3034	/* Get receive timestamp from the skb */
3035	if (priv->hwts_rx_en) {
3036		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3037		u64 *ns = (u64 *) skb->data;
3038
3039		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3040		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3041	}
3042
3043	if (priv->padding)
3044		skb_pull(skb, priv->padding);
3045
 
 
 
3046	if (ndev->features & NETIF_F_RXCSUM)
3047		gfar_rx_checksum(skb, fcb);
3048
3049	/* Tell the skb what kind of packet this is */
3050	skb->protocol = eth_type_trans(skb, ndev);
3051
3052	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3053	 * Even if vlan rx accel is disabled, on some chips
3054	 * RXFCB_VLN is pseudo randomly set.
3055	 */
3056	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3057	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3058		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3059				       be16_to_cpu(fcb->vlctl));
3060}
3061
3062/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3063 * until the budget/quota has been reached. Returns the number
3064 * of frames handled
3065 */
3066int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
 
3067{
3068	struct net_device *ndev = rx_queue->ndev;
3069	struct gfar_private *priv = netdev_priv(ndev);
3070	struct rxbd8 *bdp;
3071	int i, howmany = 0;
3072	struct sk_buff *skb = rx_queue->skb;
3073	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3074	unsigned int total_bytes = 0, total_pkts = 0;
3075
3076	/* Get the first full descriptor */
3077	i = rx_queue->next_to_clean;
3078
3079	while (rx_work_limit--) {
3080		u32 lstatus;
3081
3082		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3083			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3084			cleaned_cnt = 0;
3085		}
3086
3087		bdp = &rx_queue->rx_bd_base[i];
3088		lstatus = be32_to_cpu(bdp->lstatus);
3089		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3090			break;
3091
3092		/* order rx buffer descriptor reads */
3093		rmb();
3094
3095		/* fetch next to clean buffer from the ring */
3096		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3097		if (unlikely(!skb))
3098			break;
3099
3100		cleaned_cnt++;
3101		howmany++;
3102
3103		if (unlikely(++i == rx_queue->rx_ring_size))
3104			i = 0;
3105
3106		rx_queue->next_to_clean = i;
3107
3108		/* fetch next buffer if not the last in frame */
3109		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3110			continue;
3111
3112		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3113			count_errors(lstatus, ndev);
3114
3115			/* discard faulty buffer */
3116			dev_kfree_skb(skb);
3117			skb = NULL;
3118			rx_queue->stats.rx_dropped++;
3119			continue;
3120		}
3121
 
 
3122		/* Increment the number of packets */
3123		total_pkts++;
3124		total_bytes += skb->len;
3125
3126		skb_record_rx_queue(skb, rx_queue->qindex);
3127
3128		gfar_process_frame(ndev, skb);
3129
3130		/* Send the packet up the stack */
3131		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3132
3133		skb = NULL;
3134	}
3135
3136	/* Store incomplete frames for completion */
3137	rx_queue->skb = skb;
3138
3139	rx_queue->stats.rx_packets += total_pkts;
3140	rx_queue->stats.rx_bytes += total_bytes;
3141
3142	if (cleaned_cnt)
3143		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3144
3145	/* Update Last Free RxBD pointer for LFC */
3146	if (unlikely(priv->tx_actual_en)) {
3147		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3148
3149		gfar_write(rx_queue->rfbptr, bdp_dma);
3150	}
3151
3152	return howmany;
3153}
3154
3155static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3156{
3157	struct gfar_priv_grp *gfargrp =
3158		container_of(napi, struct gfar_priv_grp, napi_rx);
3159	struct gfar __iomem *regs = gfargrp->regs;
3160	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3161	int work_done = 0;
3162
3163	/* Clear IEVENT, so interrupts aren't called again
3164	 * because of the packets that have already arrived
3165	 */
3166	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3167
3168	work_done = gfar_clean_rx_ring(rx_queue, budget);
3169
3170	if (work_done < budget) {
3171		u32 imask;
3172		napi_complete(napi);
3173		/* Clear the halt bit in RSTAT */
3174		gfar_write(&regs->rstat, gfargrp->rstat);
3175
3176		spin_lock_irq(&gfargrp->grplock);
3177		imask = gfar_read(&regs->imask);
3178		imask |= IMASK_RX_DEFAULT;
3179		gfar_write(&regs->imask, imask);
3180		spin_unlock_irq(&gfargrp->grplock);
3181	}
3182
3183	return work_done;
3184}
3185
3186static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3187{
3188	struct gfar_priv_grp *gfargrp =
3189		container_of(napi, struct gfar_priv_grp, napi_tx);
3190	struct gfar __iomem *regs = gfargrp->regs;
3191	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3192	u32 imask;
3193
3194	/* Clear IEVENT, so interrupts aren't called again
3195	 * because of the packets that have already arrived
3196	 */
3197	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3198
3199	/* run Tx cleanup to completion */
3200	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3201		gfar_clean_tx_ring(tx_queue);
3202
3203	napi_complete(napi);
3204
3205	spin_lock_irq(&gfargrp->grplock);
3206	imask = gfar_read(&regs->imask);
3207	imask |= IMASK_TX_DEFAULT;
3208	gfar_write(&regs->imask, imask);
3209	spin_unlock_irq(&gfargrp->grplock);
3210
3211	return 0;
3212}
3213
3214static int gfar_poll_rx(struct napi_struct *napi, int budget)
3215{
3216	struct gfar_priv_grp *gfargrp =
3217		container_of(napi, struct gfar_priv_grp, napi_rx);
3218	struct gfar_private *priv = gfargrp->priv;
3219	struct gfar __iomem *regs = gfargrp->regs;
3220	struct gfar_priv_rx_q *rx_queue = NULL;
3221	int work_done = 0, work_done_per_q = 0;
3222	int i, budget_per_q = 0;
3223	unsigned long rstat_rxf;
3224	int num_act_queues;
3225
3226	/* Clear IEVENT, so interrupts aren't called again
3227	 * because of the packets that have already arrived
3228	 */
3229	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3230
3231	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3232
3233	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3234	if (num_act_queues)
3235		budget_per_q = budget/num_act_queues;
3236
3237	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3238		/* skip queue if not active */
3239		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3240			continue;
3241
3242		rx_queue = priv->rx_queue[i];
3243		work_done_per_q =
3244			gfar_clean_rx_ring(rx_queue, budget_per_q);
3245		work_done += work_done_per_q;
3246
3247		/* finished processing this queue */
3248		if (work_done_per_q < budget_per_q) {
3249			/* clear active queue hw indication */
3250			gfar_write(&regs->rstat,
3251				   RSTAT_CLEAR_RXF0 >> i);
3252			num_act_queues--;
3253
3254			if (!num_act_queues)
3255				break;
3256		}
3257	}
3258
3259	if (!num_act_queues) {
3260		u32 imask;
3261		napi_complete(napi);
3262
3263		/* Clear the halt bit in RSTAT */
3264		gfar_write(&regs->rstat, gfargrp->rstat);
3265
3266		spin_lock_irq(&gfargrp->grplock);
3267		imask = gfar_read(&regs->imask);
3268		imask |= IMASK_RX_DEFAULT;
3269		gfar_write(&regs->imask, imask);
3270		spin_unlock_irq(&gfargrp->grplock);
3271	}
3272
3273	return work_done;
3274}
3275
3276static int gfar_poll_tx(struct napi_struct *napi, int budget)
3277{
3278	struct gfar_priv_grp *gfargrp =
3279		container_of(napi, struct gfar_priv_grp, napi_tx);
3280	struct gfar_private *priv = gfargrp->priv;
3281	struct gfar __iomem *regs = gfargrp->regs;
3282	struct gfar_priv_tx_q *tx_queue = NULL;
3283	int has_tx_work = 0;
3284	int i;
3285
3286	/* Clear IEVENT, so interrupts aren't called again
3287	 * because of the packets that have already arrived
3288	 */
3289	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3290
3291	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3292		tx_queue = priv->tx_queue[i];
3293		/* run Tx cleanup to completion */
3294		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3295			gfar_clean_tx_ring(tx_queue);
3296			has_tx_work = 1;
3297		}
3298	}
3299
3300	if (!has_tx_work) {
3301		u32 imask;
3302		napi_complete(napi);
3303
3304		spin_lock_irq(&gfargrp->grplock);
3305		imask = gfar_read(&regs->imask);
3306		imask |= IMASK_TX_DEFAULT;
3307		gfar_write(&regs->imask, imask);
3308		spin_unlock_irq(&gfargrp->grplock);
3309	}
3310
3311	return 0;
3312}
3313
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3314
3315#ifdef CONFIG_NET_POLL_CONTROLLER
3316/* Polling 'interrupt' - used by things like netconsole to send skbs
3317 * without having to re-enable interrupts. It's not called while
3318 * the interrupt routine is executing.
3319 */
3320static void gfar_netpoll(struct net_device *dev)
3321{
3322	struct gfar_private *priv = netdev_priv(dev);
3323	int i;
3324
3325	/* If the device has multiple interrupts, run tx/rx */
3326	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3327		for (i = 0; i < priv->num_grps; i++) {
3328			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3329
3330			disable_irq(gfar_irq(grp, TX)->irq);
3331			disable_irq(gfar_irq(grp, RX)->irq);
3332			disable_irq(gfar_irq(grp, ER)->irq);
3333			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3334			enable_irq(gfar_irq(grp, ER)->irq);
3335			enable_irq(gfar_irq(grp, RX)->irq);
3336			enable_irq(gfar_irq(grp, TX)->irq);
3337		}
3338	} else {
3339		for (i = 0; i < priv->num_grps; i++) {
3340			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3341
3342			disable_irq(gfar_irq(grp, TX)->irq);
3343			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3344			enable_irq(gfar_irq(grp, TX)->irq);
3345		}
3346	}
3347}
3348#endif
3349
3350/* The interrupt handler for devices with one interrupt */
3351static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3352{
3353	struct gfar_priv_grp *gfargrp = grp_id;
 
 
 
3354
3355	/* Save ievent for future reference */
3356	u32 events = gfar_read(&gfargrp->regs->ievent);
 
 
 
3357
3358	/* Check for reception */
3359	if (events & IEVENT_RX_MASK)
3360		gfar_receive(irq, grp_id);
 
 
 
 
 
 
 
 
 
3361
3362	/* Check for transmit completion */
3363	if (events & IEVENT_TX_MASK)
3364		gfar_transmit(irq, grp_id);
3365
3366	/* Check for errors */
3367	if (events & IEVENT_ERR_MASK)
3368		gfar_error(irq, grp_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3369
3370	return IRQ_HANDLED;
3371}
3372
3373/* Called every time the controller might need to be made
3374 * aware of new link state.  The PHY code conveys this
3375 * information through variables in the phydev structure, and this
3376 * function converts those variables into the appropriate
3377 * register values, and can bring down the device if needed.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3378 */
3379static void adjust_link(struct net_device *dev)
3380{
3381	struct gfar_private *priv = netdev_priv(dev);
3382	struct phy_device *phydev = priv->phydev;
3383
3384	if (unlikely(phydev->link != priv->oldlink ||
3385		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3386				       phydev->speed != priv->oldspeed))))
3387		gfar_update_link_state(priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3388}
3389
3390/* Update the hash table based on the current list of multicast
3391 * addresses we subscribe to.  Also, change the promiscuity of
3392 * the device based on the flags (this function is called
3393 * whenever dev->flags is changed
3394 */
3395static void gfar_set_multi(struct net_device *dev)
3396{
3397	struct netdev_hw_addr *ha;
3398	struct gfar_private *priv = netdev_priv(dev);
3399	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3400	u32 tempval;
3401
3402	if (dev->flags & IFF_PROMISC) {
3403		/* Set RCTRL to PROM */
3404		tempval = gfar_read(&regs->rctrl);
3405		tempval |= RCTRL_PROM;
3406		gfar_write(&regs->rctrl, tempval);
3407	} else {
3408		/* Set RCTRL to not PROM */
3409		tempval = gfar_read(&regs->rctrl);
3410		tempval &= ~(RCTRL_PROM);
3411		gfar_write(&regs->rctrl, tempval);
3412	}
3413
3414	if (dev->flags & IFF_ALLMULTI) {
3415		/* Set the hash to rx all multicast frames */
3416		gfar_write(&regs->igaddr0, 0xffffffff);
3417		gfar_write(&regs->igaddr1, 0xffffffff);
3418		gfar_write(&regs->igaddr2, 0xffffffff);
3419		gfar_write(&regs->igaddr3, 0xffffffff);
3420		gfar_write(&regs->igaddr4, 0xffffffff);
3421		gfar_write(&regs->igaddr5, 0xffffffff);
3422		gfar_write(&regs->igaddr6, 0xffffffff);
3423		gfar_write(&regs->igaddr7, 0xffffffff);
3424		gfar_write(&regs->gaddr0, 0xffffffff);
3425		gfar_write(&regs->gaddr1, 0xffffffff);
3426		gfar_write(&regs->gaddr2, 0xffffffff);
3427		gfar_write(&regs->gaddr3, 0xffffffff);
3428		gfar_write(&regs->gaddr4, 0xffffffff);
3429		gfar_write(&regs->gaddr5, 0xffffffff);
3430		gfar_write(&regs->gaddr6, 0xffffffff);
3431		gfar_write(&regs->gaddr7, 0xffffffff);
3432	} else {
3433		int em_num;
3434		int idx;
3435
3436		/* zero out the hash */
3437		gfar_write(&regs->igaddr0, 0x0);
3438		gfar_write(&regs->igaddr1, 0x0);
3439		gfar_write(&regs->igaddr2, 0x0);
3440		gfar_write(&regs->igaddr3, 0x0);
3441		gfar_write(&regs->igaddr4, 0x0);
3442		gfar_write(&regs->igaddr5, 0x0);
3443		gfar_write(&regs->igaddr6, 0x0);
3444		gfar_write(&regs->igaddr7, 0x0);
3445		gfar_write(&regs->gaddr0, 0x0);
3446		gfar_write(&regs->gaddr1, 0x0);
3447		gfar_write(&regs->gaddr2, 0x0);
3448		gfar_write(&regs->gaddr3, 0x0);
3449		gfar_write(&regs->gaddr4, 0x0);
3450		gfar_write(&regs->gaddr5, 0x0);
3451		gfar_write(&regs->gaddr6, 0x0);
3452		gfar_write(&regs->gaddr7, 0x0);
3453
3454		/* If we have extended hash tables, we need to
3455		 * clear the exact match registers to prepare for
3456		 * setting them
3457		 */
3458		if (priv->extended_hash) {
3459			em_num = GFAR_EM_NUM + 1;
3460			gfar_clear_exact_match(dev);
3461			idx = 1;
3462		} else {
3463			idx = 0;
3464			em_num = 0;
3465		}
3466
3467		if (netdev_mc_empty(dev))
3468			return;
3469
3470		/* Parse the list, and set the appropriate bits */
3471		netdev_for_each_mc_addr(ha, dev) {
3472			if (idx < em_num) {
3473				gfar_set_mac_for_addr(dev, idx, ha->addr);
3474				idx++;
3475			} else
3476				gfar_set_hash_for_addr(dev, ha->addr);
3477		}
3478	}
3479}
3480
3481
3482/* Clears each of the exact match registers to zero, so they
3483 * don't interfere with normal reception
3484 */
3485static void gfar_clear_exact_match(struct net_device *dev)
3486{
3487	int idx;
3488	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3489
3490	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3491		gfar_set_mac_for_addr(dev, idx, zero_arr);
3492}
3493
3494/* Set the appropriate hash bit for the given addr */
3495/* The algorithm works like so:
3496 * 1) Take the Destination Address (ie the multicast address), and
3497 * do a CRC on it (little endian), and reverse the bits of the
3498 * result.
3499 * 2) Use the 8 most significant bits as a hash into a 256-entry
3500 * table.  The table is controlled through 8 32-bit registers:
3501 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3502 * gaddr7.  This means that the 3 most significant bits in the
3503 * hash index which gaddr register to use, and the 5 other bits
3504 * indicate which bit (assuming an IBM numbering scheme, which
3505 * for PowerPC (tm) is usually the case) in the register holds
3506 * the entry.
3507 */
3508static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3509{
3510	u32 tempval;
3511	struct gfar_private *priv = netdev_priv(dev);
3512	u32 result = ether_crc(ETH_ALEN, addr);
3513	int width = priv->hash_width;
3514	u8 whichbit = (result >> (32 - width)) & 0x1f;
3515	u8 whichreg = result >> (32 - width + 5);
3516	u32 value = (1 << (31-whichbit));
3517
3518	tempval = gfar_read(priv->hash_regs[whichreg]);
3519	tempval |= value;
3520	gfar_write(priv->hash_regs[whichreg], tempval);
3521}
3522
 
3523
3524/* There are multiple MAC Address register pairs on some controllers
3525 * This function sets the numth pair to a given address
3526 */
3527static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3528				  const u8 *addr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3529{
3530	struct gfar_private *priv = netdev_priv(dev);
3531	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3532	u32 tempval;
3533	u32 __iomem *macptr = &regs->macstnaddr1;
3534
3535	macptr += num*2;
 
 
 
3536
3537	/* For a station address of 0x12345678ABCD in transmission
3538	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3539	 * MACnADDR2 is set to 0x34120000.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3540	 */
3541	tempval = (addr[5] << 24) | (addr[4] << 16) |
3542		  (addr[3] << 8)  |  addr[2];
3543
3544	gfar_write(macptr, tempval);
 
3545
3546	tempval = (addr[1] << 24) | (addr[0] << 16);
 
3547
3548	gfar_write(macptr+1, tempval);
 
 
 
 
 
 
 
 
 
3549}
3550
3551/* GFAR error interrupt handler */
3552static irqreturn_t gfar_error(int irq, void *grp_id)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3553{
3554	struct gfar_priv_grp *gfargrp = grp_id;
3555	struct gfar __iomem *regs = gfargrp->regs;
3556	struct gfar_private *priv= gfargrp->priv;
3557	struct net_device *dev = priv->ndev;
3558
3559	/* Save ievent for future reference */
3560	u32 events = gfar_read(&regs->ievent);
3561
3562	/* Clear IEVENT */
3563	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3564
3565	/* Magic Packet is not an error. */
3566	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3567	    (events & IEVENT_MAG))
3568		events &= ~IEVENT_MAG;
 
3569
3570	/* Hmm... */
3571	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3572		netdev_dbg(dev,
3573			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3574			   events, gfar_read(&regs->imask));
3575
3576	/* Update the error counters */
3577	if (events & IEVENT_TXE) {
3578		dev->stats.tx_errors++;
3579
3580		if (events & IEVENT_LC)
3581			dev->stats.tx_window_errors++;
3582		if (events & IEVENT_CRL)
3583			dev->stats.tx_aborted_errors++;
3584		if (events & IEVENT_XFUN) {
3585			netif_dbg(priv, tx_err, dev,
3586				  "TX FIFO underrun, packet dropped\n");
3587			dev->stats.tx_dropped++;
3588			atomic64_inc(&priv->extra_stats.tx_underrun);
3589
3590			schedule_work(&priv->reset_task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3591		}
3592		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3593	}
3594	if (events & IEVENT_BSY) {
3595		dev->stats.rx_over_errors++;
3596		atomic64_inc(&priv->extra_stats.rx_bsy);
3597
3598		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3599			  gfar_read(&regs->rstat));
 
 
 
3600	}
3601	if (events & IEVENT_BABR) {
3602		dev->stats.rx_errors++;
3603		atomic64_inc(&priv->extra_stats.rx_babr);
3604
3605		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
 
 
 
3606	}
3607	if (events & IEVENT_EBERR) {
3608		atomic64_inc(&priv->extra_stats.eberr);
3609		netif_dbg(priv, rx_err, dev, "bus error\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3610	}
3611	if (events & IEVENT_RXC)
3612		netif_dbg(priv, rx_status, dev, "control frame\n");
3613
3614	if (events & IEVENT_BABT) {
3615		atomic64_inc(&priv->extra_stats.tx_babt);
3616		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
 
3617	}
3618	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3619}
3620
3621static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3622{
3623	struct phy_device *phydev = priv->phydev;
3624	u32 val = 0;
3625
3626	if (!phydev->duplex)
3627		return val;
3628
3629	if (!priv->pause_aneg_en) {
3630		if (priv->tx_pause_en)
3631			val |= MACCFG1_TX_FLOW;
3632		if (priv->rx_pause_en)
3633			val |= MACCFG1_RX_FLOW;
3634	} else {
3635		u16 lcl_adv, rmt_adv;
3636		u8 flowctrl;
3637		/* get link partner capabilities */
3638		rmt_adv = 0;
3639		if (phydev->pause)
3640			rmt_adv = LPA_PAUSE_CAP;
3641		if (phydev->asym_pause)
3642			rmt_adv |= LPA_PAUSE_ASYM;
3643
3644		lcl_adv = 0;
3645		if (phydev->advertising & ADVERTISED_Pause)
3646			lcl_adv |= ADVERTISE_PAUSE_CAP;
3647		if (phydev->advertising & ADVERTISED_Asym_Pause)
3648			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3649
3650		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3651		if (flowctrl & FLOW_CTRL_TX)
3652			val |= MACCFG1_TX_FLOW;
3653		if (flowctrl & FLOW_CTRL_RX)
3654			val |= MACCFG1_RX_FLOW;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3655	}
3656
3657	return val;
3658}
3659
3660static noinline void gfar_update_link_state(struct gfar_private *priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3661{
3662	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3663	struct phy_device *phydev = priv->phydev;
3664	struct gfar_priv_rx_q *rx_queue = NULL;
3665	int i;
3666
3667	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3668		return;
3669
3670	if (phydev->link) {
3671		u32 tempval1 = gfar_read(&regs->maccfg1);
3672		u32 tempval = gfar_read(&regs->maccfg2);
3673		u32 ecntrl = gfar_read(&regs->ecntrl);
3674		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3675
3676		if (phydev->duplex != priv->oldduplex) {
3677			if (!(phydev->duplex))
3678				tempval &= ~(MACCFG2_FULL_DUPLEX);
3679			else
3680				tempval |= MACCFG2_FULL_DUPLEX;
3681
3682			priv->oldduplex = phydev->duplex;
3683		}
 
 
 
 
 
3684
3685		if (phydev->speed != priv->oldspeed) {
3686			switch (phydev->speed) {
3687			case 1000:
3688				tempval =
3689				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3690
3691				ecntrl &= ~(ECNTRL_R100);
3692				break;
3693			case 100:
3694			case 10:
3695				tempval =
3696				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
 
3697
3698				/* Reduced mode distinguishes
3699				 * between 10 and 100
3700				 */
3701				if (phydev->speed == SPEED_100)
3702					ecntrl |= ECNTRL_R100;
3703				else
3704					ecntrl &= ~(ECNTRL_R100);
3705				break;
3706			default:
3707				netif_warn(priv, link, priv->ndev,
3708					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3709					   phydev->speed);
3710				break;
3711			}
3712
3713			priv->oldspeed = phydev->speed;
3714		}
 
 
3715
3716		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3717		tempval1 |= gfar_get_flowctrl_cfg(priv);
3718
3719		/* Turn last free buffer recording on */
3720		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3721			for (i = 0; i < priv->num_rx_queues; i++) {
3722				u32 bdp_dma;
3723
3724				rx_queue = priv->rx_queue[i];
3725				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3726				gfar_write(rx_queue->rfbptr, bdp_dma);
3727			}
3728
3729			priv->tx_actual_en = 1;
3730		}
 
 
3731
3732		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3733			priv->tx_actual_en = 0;
 
3734
3735		gfar_write(&regs->maccfg1, tempval1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3736		gfar_write(&regs->maccfg2, tempval);
3737		gfar_write(&regs->ecntrl, ecntrl);
3738
3739		if (!priv->oldlink)
3740			priv->oldlink = 1;
 
 
3741
3742	} else if (priv->oldlink) {
3743		priv->oldlink = 0;
3744		priv->oldspeed = 0;
3745		priv->oldduplex = -1;
3746	}
3747
3748	if (netif_msg_link(priv))
3749		phy_print_status(phydev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3750}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3751
3752static const struct of_device_id gfar_match[] =
3753{
3754	{
3755		.type = "network",
3756		.compatible = "gianfar",
3757	},
3758	{
3759		.compatible = "fsl,etsec2",
3760	},
3761	{},
3762};
3763MODULE_DEVICE_TABLE(of, gfar_match);
3764
3765/* Structure for a device driver */
3766static struct platform_driver gfar_driver = {
3767	.driver = {
3768		.name = "fsl-gianfar",
3769		.pm = GFAR_PM_OPS,
3770		.of_match_table = gfar_match,
3771	},
3772	.probe = gfar_probe,
3773	.remove = gfar_remove,
3774};
3775
3776module_platform_driver(gfar_driver);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* drivers/net/ethernet/freescale/gianfar.c
   3 *
   4 * Gianfar Ethernet Driver
   5 * This driver is designed for the non-CPM ethernet controllers
   6 * on the 85xx and 83xx family of integrated processors
   7 * Based on 8260_io/fcc_enet.c
   8 *
   9 * Author: Andy Fleming
  10 * Maintainer: Kumar Gala
  11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  12 *
  13 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  14 * Copyright 2007 MontaVista Software, Inc.
  15 *
 
 
 
 
 
  16 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  17 *  RA 11 31 24.2
  18 *  Dec +69 19 52
  19 *  V 3.84
  20 *  B-V +1.62
  21 *
  22 *  Theory of operation
  23 *
  24 *  The driver is initialized through of_device. Configuration information
  25 *  is therefore conveyed through an OF-style device tree.
  26 *
  27 *  The Gianfar Ethernet Controller uses a ring of buffer
  28 *  descriptors.  The beginning is indicated by a register
  29 *  pointing to the physical address of the start of the ring.
  30 *  The end is determined by a "wrap" bit being set in the
  31 *  last descriptor of the ring.
  32 *
  33 *  When a packet is received, the RXF bit in the
  34 *  IEVENT register is set, triggering an interrupt when the
  35 *  corresponding bit in the IMASK register is also set (if
  36 *  interrupt coalescing is active, then the interrupt may not
  37 *  happen immediately, but will wait until either a set number
  38 *  of frames or amount of time have passed).  In NAPI, the
  39 *  interrupt handler will signal there is work to be done, and
  40 *  exit. This method will start at the last known empty
  41 *  descriptor, and process every subsequent descriptor until there
  42 *  are none left with data (NAPI will stop after a set number of
  43 *  packets to give time to other tasks, but will eventually
  44 *  process all the packets).  The data arrives inside a
  45 *  pre-allocated skb, and so after the skb is passed up to the
  46 *  stack, a new skb must be allocated, and the address field in
  47 *  the buffer descriptor must be updated to indicate this new
  48 *  skb.
  49 *
  50 *  When the kernel requests that a packet be transmitted, the
  51 *  driver starts where it left off last time, and points the
  52 *  descriptor at the buffer which was passed in.  The driver
  53 *  then informs the DMA engine that there are packets ready to
  54 *  be transmitted.  Once the controller is finished transmitting
  55 *  the packet, an interrupt may be triggered (under the same
  56 *  conditions as for reception, but depending on the TXF bit).
  57 *  The driver then cleans up the buffer.
  58 */
  59
  60#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  61#define DEBUG
  62
  63#include <linux/kernel.h>
  64#include <linux/string.h>
  65#include <linux/errno.h>
  66#include <linux/unistd.h>
  67#include <linux/slab.h>
  68#include <linux/interrupt.h>
  69#include <linux/delay.h>
  70#include <linux/netdevice.h>
  71#include <linux/etherdevice.h>
  72#include <linux/skbuff.h>
  73#include <linux/if_vlan.h>
  74#include <linux/spinlock.h>
  75#include <linux/mm.h>
  76#include <linux/of_address.h>
  77#include <linux/of_irq.h>
  78#include <linux/of_mdio.h>
  79#include <linux/of_platform.h>
  80#include <linux/ip.h>
  81#include <linux/tcp.h>
  82#include <linux/udp.h>
  83#include <linux/in.h>
  84#include <linux/net_tstamp.h>
  85
  86#include <asm/io.h>
  87#ifdef CONFIG_PPC
  88#include <asm/reg.h>
  89#include <asm/mpc85xx.h>
  90#endif
  91#include <asm/irq.h>
  92#include <linux/uaccess.h>
  93#include <linux/module.h>
  94#include <linux/dma-mapping.h>
  95#include <linux/crc32.h>
  96#include <linux/mii.h>
  97#include <linux/phy.h>
  98#include <linux/phy_fixed.h>
  99#include <linux/of.h>
 100#include <linux/of_net.h>
 
 
 101
 102#include "gianfar.h"
 103
 104#define TX_TIMEOUT      (5*HZ)
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106MODULE_AUTHOR("Freescale Semiconductor, Inc");
 107MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 108MODULE_LICENSE("GPL");
 109
 110static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 111			    dma_addr_t buf)
 112{
 113	u32 lstatus;
 114
 115	bdp->bufPtr = cpu_to_be32(buf);
 116
 117	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 118	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 119		lstatus |= BD_LFLAG(RXBD_WRAP);
 120
 121	gfar_wmb();
 122
 123	bdp->lstatus = cpu_to_be32(lstatus);
 124}
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126static void gfar_init_tx_rx_base(struct gfar_private *priv)
 127{
 128	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 129	u32 __iomem *baddr;
 130	int i;
 131
 132	baddr = &regs->tbase0;
 133	for (i = 0; i < priv->num_tx_queues; i++) {
 134		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 135		baddr += 2;
 136	}
 137
 138	baddr = &regs->rbase0;
 139	for (i = 0; i < priv->num_rx_queues; i++) {
 140		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 141		baddr += 2;
 142	}
 143}
 144
 145static void gfar_init_rqprm(struct gfar_private *priv)
 146{
 147	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 148	u32 __iomem *baddr;
 149	int i;
 150
 151	baddr = &regs->rqprm0;
 152	for (i = 0; i < priv->num_rx_queues; i++) {
 153		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 154			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 155		baddr++;
 156	}
 157}
 158
 159static void gfar_rx_offload_en(struct gfar_private *priv)
 160{
 161	/* set this when rx hw offload (TOE) functions are being used */
 162	priv->uses_rxfcb = 0;
 163
 164	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 165		priv->uses_rxfcb = 1;
 166
 167	if (priv->hwts_rx_en || priv->rx_filer_enable)
 168		priv->uses_rxfcb = 1;
 169}
 170
 171static void gfar_mac_rx_config(struct gfar_private *priv)
 172{
 173	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 174	u32 rctrl = 0;
 175
 176	if (priv->rx_filer_enable) {
 177		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 178		/* Program the RIR0 reg with the required distribution */
 179		if (priv->poll_mode == GFAR_SQ_POLLING)
 180			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 181		else /* GFAR_MQ_POLLING */
 182			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 183	}
 184
 185	/* Restore PROMISC mode */
 186	if (priv->ndev->flags & IFF_PROMISC)
 187		rctrl |= RCTRL_PROM;
 188
 189	if (priv->ndev->features & NETIF_F_RXCSUM)
 190		rctrl |= RCTRL_CHECKSUMMING;
 191
 192	if (priv->extended_hash)
 193		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 194
 195	if (priv->padding) {
 196		rctrl &= ~RCTRL_PAL_MASK;
 197		rctrl |= RCTRL_PADDING(priv->padding);
 198	}
 199
 200	/* Enable HW time stamping if requested from user space */
 201	if (priv->hwts_rx_en)
 202		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 203
 204	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 205		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 206
 207	/* Clear the LFC bit */
 208	gfar_write(&regs->rctrl, rctrl);
 209	/* Init flow control threshold values */
 210	gfar_init_rqprm(priv);
 211	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 212	rctrl |= RCTRL_LFC;
 213
 214	/* Init rctrl based on our settings */
 215	gfar_write(&regs->rctrl, rctrl);
 216}
 217
 218static void gfar_mac_tx_config(struct gfar_private *priv)
 219{
 220	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 221	u32 tctrl = 0;
 222
 223	if (priv->ndev->features & NETIF_F_IP_CSUM)
 224		tctrl |= TCTRL_INIT_CSUM;
 225
 226	if (priv->prio_sched_en)
 227		tctrl |= TCTRL_TXSCHED_PRIO;
 228	else {
 229		tctrl |= TCTRL_TXSCHED_WRRS;
 230		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 231		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 232	}
 233
 234	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 235		tctrl |= TCTRL_VLINS;
 236
 237	gfar_write(&regs->tctrl, tctrl);
 238}
 239
 240static void gfar_configure_coalescing(struct gfar_private *priv,
 241			       unsigned long tx_mask, unsigned long rx_mask)
 242{
 243	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 244	u32 __iomem *baddr;
 245
 246	if (priv->mode == MQ_MG_MODE) {
 247		int i = 0;
 248
 249		baddr = &regs->txic0;
 250		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 251			gfar_write(baddr + i, 0);
 252			if (likely(priv->tx_queue[i]->txcoalescing))
 253				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 254		}
 255
 256		baddr = &regs->rxic0;
 257		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 258			gfar_write(baddr + i, 0);
 259			if (likely(priv->rx_queue[i]->rxcoalescing))
 260				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 261		}
 262	} else {
 263		/* Backward compatible case -- even if we enable
 264		 * multiple queues, there's only single reg to program
 265		 */
 266		gfar_write(&regs->txic, 0);
 267		if (likely(priv->tx_queue[0]->txcoalescing))
 268			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 269
 270		gfar_write(&regs->rxic, 0);
 271		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 272			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 273	}
 274}
 275
 276static void gfar_configure_coalescing_all(struct gfar_private *priv)
 277{
 278	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 279}
 280
 281static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 282{
 283	struct gfar_private *priv = netdev_priv(dev);
 284	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 285	unsigned long tx_packets = 0, tx_bytes = 0;
 286	int i;
 287
 288	for (i = 0; i < priv->num_rx_queues; i++) {
 289		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 290		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 291		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 292	}
 293
 294	dev->stats.rx_packets = rx_packets;
 295	dev->stats.rx_bytes   = rx_bytes;
 296	dev->stats.rx_dropped = rx_dropped;
 297
 298	for (i = 0; i < priv->num_tx_queues; i++) {
 299		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 300		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 301	}
 302
 303	dev->stats.tx_bytes   = tx_bytes;
 304	dev->stats.tx_packets = tx_packets;
 305
 306	return &dev->stats;
 307}
 308
 309/* Set the appropriate hash bit for the given addr */
 310/* The algorithm works like so:
 311 * 1) Take the Destination Address (ie the multicast address), and
 312 * do a CRC on it (little endian), and reverse the bits of the
 313 * result.
 314 * 2) Use the 8 most significant bits as a hash into a 256-entry
 315 * table.  The table is controlled through 8 32-bit registers:
 316 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
 317 * gaddr7.  This means that the 3 most significant bits in the
 318 * hash index which gaddr register to use, and the 5 other bits
 319 * indicate which bit (assuming an IBM numbering scheme, which
 320 * for PowerPC (tm) is usually the case) in the register holds
 321 * the entry.
 322 */
 323static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
 324{
 325	u32 tempval;
 326	struct gfar_private *priv = netdev_priv(dev);
 327	u32 result = ether_crc(ETH_ALEN, addr);
 328	int width = priv->hash_width;
 329	u8 whichbit = (result >> (32 - width)) & 0x1f;
 330	u8 whichreg = result >> (32 - width + 5);
 331	u32 value = (1 << (31-whichbit));
 332
 333	tempval = gfar_read(priv->hash_regs[whichreg]);
 334	tempval |= value;
 335	gfar_write(priv->hash_regs[whichreg], tempval);
 336}
 337
 338/* There are multiple MAC Address register pairs on some controllers
 339 * This function sets the numth pair to a given address
 340 */
 341static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 342				  const u8 *addr)
 343{
 344	struct gfar_private *priv = netdev_priv(dev);
 345	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 346	u32 tempval;
 347	u32 __iomem *macptr = &regs->macstnaddr1;
 348
 349	macptr += num*2;
 350
 351	/* For a station address of 0x12345678ABCD in transmission
 352	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
 353	 * MACnADDR2 is set to 0x34120000.
 354	 */
 355	tempval = (addr[5] << 24) | (addr[4] << 16) |
 356		  (addr[3] << 8)  |  addr[2];
 357
 358	gfar_write(macptr, tempval);
 359
 360	tempval = (addr[1] << 24) | (addr[0] << 16);
 361
 362	gfar_write(macptr+1, tempval);
 363}
 364
 365static int gfar_set_mac_addr(struct net_device *dev, void *p)
 366{
 367	eth_mac_addr(dev, p);
 368
 369	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 370
 371	return 0;
 372}
 373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 374static void gfar_ints_disable(struct gfar_private *priv)
 375{
 376	int i;
 377	for (i = 0; i < priv->num_grps; i++) {
 378		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 379		/* Clear IEVENT */
 380		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 381
 382		/* Initialize IMASK */
 383		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 384	}
 385}
 386
 387static void gfar_ints_enable(struct gfar_private *priv)
 388{
 389	int i;
 390	for (i = 0; i < priv->num_grps; i++) {
 391		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 392		/* Unmask the interrupts we look for */
 393		gfar_write(&regs->imask, IMASK_DEFAULT);
 394	}
 395}
 396
 397static int gfar_alloc_tx_queues(struct gfar_private *priv)
 398{
 399	int i;
 400
 401	for (i = 0; i < priv->num_tx_queues; i++) {
 402		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 403					    GFP_KERNEL);
 404		if (!priv->tx_queue[i])
 405			return -ENOMEM;
 406
 407		priv->tx_queue[i]->tx_skbuff = NULL;
 408		priv->tx_queue[i]->qindex = i;
 409		priv->tx_queue[i]->dev = priv->ndev;
 410		spin_lock_init(&(priv->tx_queue[i]->txlock));
 411	}
 412	return 0;
 413}
 414
 415static int gfar_alloc_rx_queues(struct gfar_private *priv)
 416{
 417	int i;
 418
 419	for (i = 0; i < priv->num_rx_queues; i++) {
 420		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 421					    GFP_KERNEL);
 422		if (!priv->rx_queue[i])
 423			return -ENOMEM;
 424
 425		priv->rx_queue[i]->qindex = i;
 426		priv->rx_queue[i]->ndev = priv->ndev;
 427	}
 428	return 0;
 429}
 430
 431static void gfar_free_tx_queues(struct gfar_private *priv)
 432{
 433	int i;
 434
 435	for (i = 0; i < priv->num_tx_queues; i++)
 436		kfree(priv->tx_queue[i]);
 437}
 438
 439static void gfar_free_rx_queues(struct gfar_private *priv)
 440{
 441	int i;
 442
 443	for (i = 0; i < priv->num_rx_queues; i++)
 444		kfree(priv->rx_queue[i]);
 445}
 446
 447static void unmap_group_regs(struct gfar_private *priv)
 448{
 449	int i;
 450
 451	for (i = 0; i < MAXGROUPS; i++)
 452		if (priv->gfargrp[i].regs)
 453			iounmap(priv->gfargrp[i].regs);
 454}
 455
 456static void free_gfar_dev(struct gfar_private *priv)
 457{
 458	int i, j;
 459
 460	for (i = 0; i < priv->num_grps; i++)
 461		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 462			kfree(priv->gfargrp[i].irqinfo[j]);
 463			priv->gfargrp[i].irqinfo[j] = NULL;
 464		}
 465
 466	free_netdev(priv->ndev);
 467}
 468
 469static void disable_napi(struct gfar_private *priv)
 470{
 471	int i;
 472
 473	for (i = 0; i < priv->num_grps; i++) {
 474		napi_disable(&priv->gfargrp[i].napi_rx);
 475		napi_disable(&priv->gfargrp[i].napi_tx);
 476	}
 477}
 478
 479static void enable_napi(struct gfar_private *priv)
 480{
 481	int i;
 482
 483	for (i = 0; i < priv->num_grps; i++) {
 484		napi_enable(&priv->gfargrp[i].napi_rx);
 485		napi_enable(&priv->gfargrp[i].napi_tx);
 486	}
 487}
 488
 489static int gfar_parse_group(struct device_node *np,
 490			    struct gfar_private *priv, const char *model)
 491{
 492	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 493	int i;
 494
 495	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 496		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 497					  GFP_KERNEL);
 498		if (!grp->irqinfo[i])
 499			return -ENOMEM;
 500	}
 501
 502	grp->regs = of_iomap(np, 0);
 503	if (!grp->regs)
 504		return -ENOMEM;
 505
 506	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 507
 508	/* If we aren't the FEC we have multiple interrupts */
 509	if (model && strcasecmp(model, "FEC")) {
 510		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 511		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 512		if (!gfar_irq(grp, TX)->irq ||
 513		    !gfar_irq(grp, RX)->irq ||
 514		    !gfar_irq(grp, ER)->irq)
 515			return -EINVAL;
 516	}
 517
 518	grp->priv = priv;
 519	spin_lock_init(&grp->grplock);
 520	if (priv->mode == MQ_MG_MODE) {
 521		u32 rxq_mask, txq_mask;
 522		int ret;
 523
 524		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 525		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 526
 527		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 528		if (!ret) {
 529			grp->rx_bit_map = rxq_mask ?
 530			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 531		}
 532
 533		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 534		if (!ret) {
 535			grp->tx_bit_map = txq_mask ?
 536			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 537		}
 538
 539		if (priv->poll_mode == GFAR_SQ_POLLING) {
 540			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 541			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 542			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 543		}
 544	} else {
 545		grp->rx_bit_map = 0xFF;
 546		grp->tx_bit_map = 0xFF;
 547	}
 548
 549	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 550	 * right to left, so we need to revert the 8 bits to get the q index
 551	 */
 552	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 553	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 554
 555	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 556	 * also assign queues to groups
 557	 */
 558	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 559		if (!grp->rx_queue)
 560			grp->rx_queue = priv->rx_queue[i];
 561		grp->num_rx_queues++;
 562		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 563		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 564		priv->rx_queue[i]->grp = grp;
 565	}
 566
 567	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 568		if (!grp->tx_queue)
 569			grp->tx_queue = priv->tx_queue[i];
 570		grp->num_tx_queues++;
 571		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 572		priv->tqueue |= (TQUEUE_EN0 >> i);
 573		priv->tx_queue[i]->grp = grp;
 574	}
 575
 576	priv->num_grps++;
 577
 578	return 0;
 579}
 580
 581static int gfar_of_group_count(struct device_node *np)
 582{
 583	struct device_node *child;
 584	int num = 0;
 585
 586	for_each_available_child_of_node(np, child)
 587		if (of_node_name_eq(child, "queue-group"))
 588			num++;
 589
 590	return num;
 591}
 592
 593/* Reads the controller's registers to determine what interface
 594 * connects it to the PHY.
 595 */
 596static phy_interface_t gfar_get_interface(struct net_device *dev)
 597{
 598	struct gfar_private *priv = netdev_priv(dev);
 599	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 600	u32 ecntrl;
 601
 602	ecntrl = gfar_read(&regs->ecntrl);
 603
 604	if (ecntrl & ECNTRL_SGMII_MODE)
 605		return PHY_INTERFACE_MODE_SGMII;
 606
 607	if (ecntrl & ECNTRL_TBI_MODE) {
 608		if (ecntrl & ECNTRL_REDUCED_MODE)
 609			return PHY_INTERFACE_MODE_RTBI;
 610		else
 611			return PHY_INTERFACE_MODE_TBI;
 612	}
 613
 614	if (ecntrl & ECNTRL_REDUCED_MODE) {
 615		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
 616			return PHY_INTERFACE_MODE_RMII;
 617		}
 618		else {
 619			phy_interface_t interface = priv->interface;
 620
 621			/* This isn't autodetected right now, so it must
 622			 * be set by the device tree or platform code.
 623			 */
 624			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
 625				return PHY_INTERFACE_MODE_RGMII_ID;
 626
 627			return PHY_INTERFACE_MODE_RGMII;
 628		}
 629	}
 630
 631	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
 632		return PHY_INTERFACE_MODE_GMII;
 633
 634	return PHY_INTERFACE_MODE_MII;
 635}
 636
 637static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 638{
 639	const char *model;
 
 640	const void *mac_addr;
 641	int err = 0, i;
 642	phy_interface_t interface;
 643	struct net_device *dev = NULL;
 644	struct gfar_private *priv = NULL;
 645	struct device_node *np = ofdev->dev.of_node;
 646	struct device_node *child = NULL;
 647	u32 stash_len = 0;
 648	u32 stash_idx = 0;
 649	unsigned int num_tx_qs, num_rx_qs;
 650	unsigned short mode, poll_mode;
 651
 652	if (!np)
 653		return -ENODEV;
 654
 655	if (of_device_is_compatible(np, "fsl,etsec2")) {
 656		mode = MQ_MG_MODE;
 657		poll_mode = GFAR_SQ_POLLING;
 658	} else {
 659		mode = SQ_SG_MODE;
 660		poll_mode = GFAR_SQ_POLLING;
 661	}
 662
 663	if (mode == SQ_SG_MODE) {
 664		num_tx_qs = 1;
 665		num_rx_qs = 1;
 666	} else { /* MQ_MG_MODE */
 667		/* get the actual number of supported groups */
 668		unsigned int num_grps = gfar_of_group_count(np);
 669
 670		if (num_grps == 0 || num_grps > MAXGROUPS) {
 671			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 672				num_grps);
 673			pr_err("Cannot do alloc_etherdev, aborting\n");
 674			return -EINVAL;
 675		}
 676
 677		if (poll_mode == GFAR_SQ_POLLING) {
 678			num_tx_qs = num_grps; /* one txq per int group */
 679			num_rx_qs = num_grps; /* one rxq per int group */
 680		} else { /* GFAR_MQ_POLLING */
 681			u32 tx_queues, rx_queues;
 682			int ret;
 683
 684			/* parse the num of HW tx and rx queues */
 685			ret = of_property_read_u32(np, "fsl,num_tx_queues",
 686						   &tx_queues);
 687			num_tx_qs = ret ? 1 : tx_queues;
 688
 689			ret = of_property_read_u32(np, "fsl,num_rx_queues",
 690						   &rx_queues);
 691			num_rx_qs = ret ? 1 : rx_queues;
 692		}
 693	}
 694
 695	if (num_tx_qs > MAX_TX_QS) {
 696		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 697		       num_tx_qs, MAX_TX_QS);
 698		pr_err("Cannot do alloc_etherdev, aborting\n");
 699		return -EINVAL;
 700	}
 701
 702	if (num_rx_qs > MAX_RX_QS) {
 703		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 704		       num_rx_qs, MAX_RX_QS);
 705		pr_err("Cannot do alloc_etherdev, aborting\n");
 706		return -EINVAL;
 707	}
 708
 709	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 710	dev = *pdev;
 711	if (NULL == dev)
 712		return -ENOMEM;
 713
 714	priv = netdev_priv(dev);
 715	priv->ndev = dev;
 716
 717	priv->mode = mode;
 718	priv->poll_mode = poll_mode;
 719
 720	priv->num_tx_queues = num_tx_qs;
 721	netif_set_real_num_rx_queues(dev, num_rx_qs);
 722	priv->num_rx_queues = num_rx_qs;
 723
 724	err = gfar_alloc_tx_queues(priv);
 725	if (err)
 726		goto tx_alloc_failed;
 727
 728	err = gfar_alloc_rx_queues(priv);
 729	if (err)
 730		goto rx_alloc_failed;
 731
 732	err = of_property_read_string(np, "model", &model);
 733	if (err) {
 734		pr_err("Device model property missing, aborting\n");
 735		goto rx_alloc_failed;
 736	}
 737
 738	/* Init Rx queue filer rule set linked list */
 739	INIT_LIST_HEAD(&priv->rx_list.list);
 740	priv->rx_list.count = 0;
 741	mutex_init(&priv->rx_queue_access);
 742
 743	for (i = 0; i < MAXGROUPS; i++)
 744		priv->gfargrp[i].regs = NULL;
 745
 746	/* Parse and initialize group specific information */
 747	if (priv->mode == MQ_MG_MODE) {
 748		for_each_available_child_of_node(np, child) {
 749			if (!of_node_name_eq(child, "queue-group"))
 750				continue;
 751
 752			err = gfar_parse_group(child, priv, model);
 753			if (err) {
 754				of_node_put(child);
 755				goto err_grp_init;
 756			}
 757		}
 758	} else { /* SQ_SG_MODE */
 759		err = gfar_parse_group(np, priv, model);
 760		if (err)
 761			goto err_grp_init;
 762	}
 763
 764	if (of_property_read_bool(np, "bd-stash")) {
 765		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 766		priv->bd_stash_en = 1;
 767	}
 768
 769	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 770
 771	if (err == 0)
 772		priv->rx_stash_size = stash_len;
 773
 774	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 775
 776	if (err == 0)
 777		priv->rx_stash_index = stash_idx;
 778
 779	if (stash_len || stash_idx)
 780		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 781
 782	mac_addr = of_get_mac_address(np);
 783
 784	if (!IS_ERR(mac_addr)) {
 785		ether_addr_copy(dev->dev_addr, mac_addr);
 786	} else {
 787		eth_hw_addr_random(dev);
 788		dev_info(&ofdev->dev, "Using random MAC address: %pM\n", dev->dev_addr);
 789	}
 790
 791	if (model && !strcasecmp(model, "TSEC"))
 792		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 793				     FSL_GIANFAR_DEV_HAS_COALESCE |
 794				     FSL_GIANFAR_DEV_HAS_RMON |
 795				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 796
 797	if (model && !strcasecmp(model, "eTSEC"))
 798		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 799				     FSL_GIANFAR_DEV_HAS_COALESCE |
 800				     FSL_GIANFAR_DEV_HAS_RMON |
 801				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 802				     FSL_GIANFAR_DEV_HAS_CSUM |
 803				     FSL_GIANFAR_DEV_HAS_VLAN |
 804				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 805				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 806				     FSL_GIANFAR_DEV_HAS_TIMER |
 807				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 808
 809	/* Use PHY connection type from the DT node if one is specified there.
 810	 * rgmii-id really needs to be specified. Other types can be
 811	 * detected by hardware
 812	 */
 813	err = of_get_phy_mode(np, &interface);
 814	if (!err)
 815		priv->interface = interface;
 816	else
 817		priv->interface = gfar_get_interface(dev);
 818
 819	if (of_find_property(np, "fsl,magic-packet", NULL))
 820		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 821
 822	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 823		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 824
 825	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 826
 827	/* In the case of a fixed PHY, the DT node associated
 828	 * to the PHY is the Ethernet MAC DT node.
 829	 */
 830	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 831		err = of_phy_register_fixed_link(np);
 832		if (err)
 833			goto err_grp_init;
 834
 835		priv->phy_node = of_node_get(np);
 836	}
 837
 838	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 839	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 840
 841	return 0;
 842
 843err_grp_init:
 844	unmap_group_regs(priv);
 845rx_alloc_failed:
 846	gfar_free_rx_queues(priv);
 847tx_alloc_failed:
 848	gfar_free_tx_queues(priv);
 849	free_gfar_dev(priv);
 850	return err;
 851}
 852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 853static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
 854				   u32 class)
 855{
 856	u32 rqfpr = FPR_FILER_MASK;
 857	u32 rqfcr = 0x0;
 858
 859	rqfar--;
 860	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
 861	priv->ftp_rqfpr[rqfar] = rqfpr;
 862	priv->ftp_rqfcr[rqfar] = rqfcr;
 863	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 864
 865	rqfar--;
 866	rqfcr = RQFCR_CMP_NOMATCH;
 867	priv->ftp_rqfpr[rqfar] = rqfpr;
 868	priv->ftp_rqfcr[rqfar] = rqfcr;
 869	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 870
 871	rqfar--;
 872	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
 873	rqfpr = class;
 874	priv->ftp_rqfcr[rqfar] = rqfcr;
 875	priv->ftp_rqfpr[rqfar] = rqfpr;
 876	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 877
 878	rqfar--;
 879	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
 880	rqfpr = class;
 881	priv->ftp_rqfcr[rqfar] = rqfcr;
 882	priv->ftp_rqfpr[rqfar] = rqfpr;
 883	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 884
 885	return rqfar;
 886}
 887
 888static void gfar_init_filer_table(struct gfar_private *priv)
 889{
 890	int i = 0x0;
 891	u32 rqfar = MAX_FILER_IDX;
 892	u32 rqfcr = 0x0;
 893	u32 rqfpr = FPR_FILER_MASK;
 894
 895	/* Default rule */
 896	rqfcr = RQFCR_CMP_MATCH;
 897	priv->ftp_rqfcr[rqfar] = rqfcr;
 898	priv->ftp_rqfpr[rqfar] = rqfpr;
 899	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
 900
 901	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
 902	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
 903	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
 904	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
 905	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
 906	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
 907
 908	/* cur_filer_idx indicated the first non-masked rule */
 909	priv->cur_filer_idx = rqfar;
 910
 911	/* Rest are masked rules */
 912	rqfcr = RQFCR_CMP_NOMATCH;
 913	for (i = 0; i < rqfar; i++) {
 914		priv->ftp_rqfcr[i] = rqfcr;
 915		priv->ftp_rqfpr[i] = rqfpr;
 916		gfar_write_filer(priv, i, rqfcr, rqfpr);
 917	}
 918}
 919
 920#ifdef CONFIG_PPC
 921static void __gfar_detect_errata_83xx(struct gfar_private *priv)
 922{
 923	unsigned int pvr = mfspr(SPRN_PVR);
 924	unsigned int svr = mfspr(SPRN_SVR);
 925	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
 926	unsigned int rev = svr & 0xffff;
 927
 928	/* MPC8313 Rev 2.0 and higher; All MPC837x */
 929	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
 930	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 931		priv->errata |= GFAR_ERRATA_74;
 932
 933	/* MPC8313 and MPC837x all rev */
 934	if ((pvr == 0x80850010 && mod == 0x80b0) ||
 935	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
 936		priv->errata |= GFAR_ERRATA_76;
 937
 938	/* MPC8313 Rev < 2.0 */
 939	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
 940		priv->errata |= GFAR_ERRATA_12;
 941}
 942
 943static void __gfar_detect_errata_85xx(struct gfar_private *priv)
 944{
 945	unsigned int svr = mfspr(SPRN_SVR);
 946
 947	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
 948		priv->errata |= GFAR_ERRATA_12;
 949	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
 950	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
 951	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
 952	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
 953		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
 954}
 955#endif
 956
 957static void gfar_detect_errata(struct gfar_private *priv)
 958{
 959	struct device *dev = &priv->ofdev->dev;
 960
 961	/* no plans to fix */
 962	priv->errata |= GFAR_ERRATA_A002;
 963
 964#ifdef CONFIG_PPC
 965	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
 966		__gfar_detect_errata_85xx(priv);
 967	else /* non-mpc85xx parts, i.e. e300 core based */
 968		__gfar_detect_errata_83xx(priv);
 969#endif
 970
 971	if (priv->errata)
 972		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
 973			 priv->errata);
 974}
 975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 976static void gfar_init_addr_hash_table(struct gfar_private *priv)
 977{
 978	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 979
 980	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
 981		priv->extended_hash = 1;
 982		priv->hash_width = 9;
 983
 984		priv->hash_regs[0] = &regs->igaddr0;
 985		priv->hash_regs[1] = &regs->igaddr1;
 986		priv->hash_regs[2] = &regs->igaddr2;
 987		priv->hash_regs[3] = &regs->igaddr3;
 988		priv->hash_regs[4] = &regs->igaddr4;
 989		priv->hash_regs[5] = &regs->igaddr5;
 990		priv->hash_regs[6] = &regs->igaddr6;
 991		priv->hash_regs[7] = &regs->igaddr7;
 992		priv->hash_regs[8] = &regs->gaddr0;
 993		priv->hash_regs[9] = &regs->gaddr1;
 994		priv->hash_regs[10] = &regs->gaddr2;
 995		priv->hash_regs[11] = &regs->gaddr3;
 996		priv->hash_regs[12] = &regs->gaddr4;
 997		priv->hash_regs[13] = &regs->gaddr5;
 998		priv->hash_regs[14] = &regs->gaddr6;
 999		priv->hash_regs[15] = &regs->gaddr7;
1000
1001	} else {
1002		priv->extended_hash = 0;
1003		priv->hash_width = 8;
1004
1005		priv->hash_regs[0] = &regs->gaddr0;
1006		priv->hash_regs[1] = &regs->gaddr1;
1007		priv->hash_regs[2] = &regs->gaddr2;
1008		priv->hash_regs[3] = &regs->gaddr3;
1009		priv->hash_regs[4] = &regs->gaddr4;
1010		priv->hash_regs[5] = &regs->gaddr5;
1011		priv->hash_regs[6] = &regs->gaddr6;
1012		priv->hash_regs[7] = &regs->gaddr7;
1013	}
1014}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016static int __gfar_is_rx_idle(struct gfar_private *priv)
1017{
1018	u32 res;
1019
1020	/* Normaly TSEC should not hang on GRS commands, so we should
1021	 * actually wait for IEVENT_GRSC flag.
1022	 */
1023	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1024		return 0;
1025
1026	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1027	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1028	 * and the Rx can be safely reset.
1029	 */
1030	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1031	res &= 0x7f807f80;
1032	if ((res & 0xffff) == (res >> 16))
1033		return 1;
1034
1035	return 0;
1036}
1037
1038/* Halt the receive and transmit queues */
1039static void gfar_halt_nodisable(struct gfar_private *priv)
1040{
1041	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1042	u32 tempval;
1043	unsigned int timeout;
1044	int stopped;
1045
1046	gfar_ints_disable(priv);
1047
1048	if (gfar_is_dma_stopped(priv))
1049		return;
1050
1051	/* Stop the DMA, and wait for it to stop */
1052	tempval = gfar_read(&regs->dmactrl);
1053	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1054	gfar_write(&regs->dmactrl, tempval);
1055
1056retry:
1057	timeout = 1000;
1058	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1059		cpu_relax();
1060		timeout--;
1061	}
1062
1063	if (!timeout)
1064		stopped = gfar_is_dma_stopped(priv);
1065
1066	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1067	    !__gfar_is_rx_idle(priv))
1068		goto retry;
1069}
1070
1071/* Halt the receive and transmit queues */
1072static void gfar_halt(struct gfar_private *priv)
1073{
1074	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1075	u32 tempval;
1076
1077	/* Dissable the Rx/Tx hw queues */
1078	gfar_write(&regs->rqueue, 0);
1079	gfar_write(&regs->tqueue, 0);
1080
1081	mdelay(10);
1082
1083	gfar_halt_nodisable(priv);
1084
1085	/* Disable Rx/Tx DMA */
1086	tempval = gfar_read(&regs->maccfg1);
1087	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1088	gfar_write(&regs->maccfg1, tempval);
1089}
1090
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1091static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1092{
1093	struct txbd8 *txbdp;
1094	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1095	int i, j;
1096
1097	txbdp = tx_queue->tx_bd_base;
1098
1099	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1100		if (!tx_queue->tx_skbuff[i])
1101			continue;
1102
1103		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1104				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1105		txbdp->lstatus = 0;
1106		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1107		     j++) {
1108			txbdp++;
1109			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1110				       be16_to_cpu(txbdp->length),
1111				       DMA_TO_DEVICE);
1112		}
1113		txbdp++;
1114		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1115		tx_queue->tx_skbuff[i] = NULL;
1116	}
1117	kfree(tx_queue->tx_skbuff);
1118	tx_queue->tx_skbuff = NULL;
1119}
1120
1121static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1122{
1123	int i;
1124
1125	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1126
1127	dev_kfree_skb(rx_queue->skb);
 
1128
1129	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1130		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1131
1132		rxbdp->lstatus = 0;
1133		rxbdp->bufPtr = 0;
1134		rxbdp++;
1135
1136		if (!rxb->page)
1137			continue;
1138
1139		dma_unmap_page(rx_queue->dev, rxb->dma,
1140			       PAGE_SIZE, DMA_FROM_DEVICE);
1141		__free_page(rxb->page);
1142
1143		rxb->page = NULL;
1144	}
1145
1146	kfree(rx_queue->rx_buff);
1147	rx_queue->rx_buff = NULL;
1148}
1149
1150/* If there are any tx skbs or rx skbs still around, free them.
1151 * Then free tx_skbuff and rx_skbuff
1152 */
1153static void free_skb_resources(struct gfar_private *priv)
1154{
1155	struct gfar_priv_tx_q *tx_queue = NULL;
1156	struct gfar_priv_rx_q *rx_queue = NULL;
1157	int i;
1158
1159	/* Go through all the buffer descriptors and free their data buffers */
1160	for (i = 0; i < priv->num_tx_queues; i++) {
1161		struct netdev_queue *txq;
1162
1163		tx_queue = priv->tx_queue[i];
1164		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
1165		if (tx_queue->tx_skbuff)
1166			free_skb_tx_queue(tx_queue);
1167		netdev_tx_reset_queue(txq);
1168	}
1169
1170	for (i = 0; i < priv->num_rx_queues; i++) {
1171		rx_queue = priv->rx_queue[i];
1172		if (rx_queue->rx_buff)
1173			free_skb_rx_queue(rx_queue);
1174	}
1175
1176	dma_free_coherent(priv->dev,
1177			  sizeof(struct txbd8) * priv->total_tx_ring_size +
1178			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
1179			  priv->tx_queue[0]->tx_bd_base,
1180			  priv->tx_queue[0]->tx_bd_dma_base);
1181}
1182
1183void stop_gfar(struct net_device *dev)
1184{
1185	struct gfar_private *priv = netdev_priv(dev);
1186
1187	netif_tx_stop_all_queues(dev);
1188
1189	smp_mb__before_atomic();
1190	set_bit(GFAR_DOWN, &priv->state);
1191	smp_mb__after_atomic();
1192
1193	disable_napi(priv);
1194
1195	/* disable ints and gracefully shut down Rx/Tx DMA */
1196	gfar_halt(priv);
1197
1198	phy_stop(dev->phydev);
1199
1200	free_skb_resources(priv);
1201}
1202
1203static void gfar_start(struct gfar_private *priv)
1204{
1205	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1206	u32 tempval;
1207	int i = 0;
1208
1209	/* Enable Rx/Tx hw queues */
1210	gfar_write(&regs->rqueue, priv->rqueue);
1211	gfar_write(&regs->tqueue, priv->tqueue);
1212
1213	/* Initialize DMACTRL to have WWR and WOP */
1214	tempval = gfar_read(&regs->dmactrl);
1215	tempval |= DMACTRL_INIT_SETTINGS;
1216	gfar_write(&regs->dmactrl, tempval);
1217
1218	/* Make sure we aren't stopped */
1219	tempval = gfar_read(&regs->dmactrl);
1220	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1221	gfar_write(&regs->dmactrl, tempval);
1222
1223	for (i = 0; i < priv->num_grps; i++) {
1224		regs = priv->gfargrp[i].regs;
1225		/* Clear THLT/RHLT, so that the DMA starts polling now */
1226		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1227		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1228	}
1229
1230	/* Enable Rx/Tx DMA */
1231	tempval = gfar_read(&regs->maccfg1);
1232	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1233	gfar_write(&regs->maccfg1, tempval);
1234
1235	gfar_ints_enable(priv);
1236
1237	netif_trans_update(priv->ndev); /* prevent tx timeout */
1238}
1239
1240static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
1241{
1242	struct page *page;
1243	dma_addr_t addr;
1244
1245	page = dev_alloc_page();
1246	if (unlikely(!page))
1247		return false;
1248
1249	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
1250	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
1251		__free_page(page);
1252
1253		return false;
1254	}
1255
1256	rxb->dma = addr;
1257	rxb->page = page;
1258	rxb->page_offset = 0;
1259
1260	return true;
1261}
1262
1263static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
1264{
1265	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
1266	struct gfar_extra_stats *estats = &priv->extra_stats;
 
1267
1268	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
1269	atomic64_inc(&estats->rx_alloc_err);
1270}
 
 
 
 
 
 
 
 
 
1271
1272static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
1273				int alloc_cnt)
1274{
1275	struct rxbd8 *bdp;
1276	struct gfar_rx_buff *rxb;
1277	int i;
1278
1279	i = rx_queue->next_to_use;
1280	bdp = &rx_queue->rx_bd_base[i];
1281	rxb = &rx_queue->rx_buff[i];
1282
1283	while (alloc_cnt--) {
1284		/* try reuse page */
1285		if (unlikely(!rxb->page)) {
1286			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
1287				gfar_rx_alloc_err(rx_queue);
1288				break;
1289			}
1290		}
1291
1292		/* Setup the new RxBD */
1293		gfar_init_rxbdp(rx_queue, bdp,
1294				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
1295
1296		/* Update to the next pointer */
1297		bdp++;
1298		rxb++;
1299
1300		if (unlikely(++i == rx_queue->rx_ring_size)) {
1301			i = 0;
1302			bdp = rx_queue->rx_bd_base;
1303			rxb = rx_queue->rx_buff;
1304		}
1305	}
1306
1307	rx_queue->next_to_use = i;
1308	rx_queue->next_to_alloc = i;
1309}
1310
1311static void gfar_init_bds(struct net_device *ndev)
1312{
1313	struct gfar_private *priv = netdev_priv(ndev);
1314	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1315	struct gfar_priv_tx_q *tx_queue = NULL;
1316	struct gfar_priv_rx_q *rx_queue = NULL;
1317	struct txbd8 *txbdp;
1318	u32 __iomem *rfbptr;
1319	int i, j;
1320
1321	for (i = 0; i < priv->num_tx_queues; i++) {
1322		tx_queue = priv->tx_queue[i];
1323		/* Initialize some variables in our dev structure */
1324		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
1325		tx_queue->dirty_tx = tx_queue->tx_bd_base;
1326		tx_queue->cur_tx = tx_queue->tx_bd_base;
1327		tx_queue->skb_curtx = 0;
1328		tx_queue->skb_dirtytx = 0;
1329
1330		/* Initialize Transmit Descriptor Ring */
1331		txbdp = tx_queue->tx_bd_base;
1332		for (j = 0; j < tx_queue->tx_ring_size; j++) {
1333			txbdp->lstatus = 0;
1334			txbdp->bufPtr = 0;
1335			txbdp++;
1336		}
1337
1338		/* Set the last descriptor in the ring to indicate wrap */
1339		txbdp--;
1340		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
1341					    TXBD_WRAP);
1342	}
1343
1344	rfbptr = &regs->rfbptr0;
1345	for (i = 0; i < priv->num_rx_queues; i++) {
1346		rx_queue = priv->rx_queue[i];
1347
1348		rx_queue->next_to_clean = 0;
1349		rx_queue->next_to_use = 0;
1350		rx_queue->next_to_alloc = 0;
1351
1352		/* make sure next_to_clean != next_to_use after this
1353		 * by leaving at least 1 unused descriptor
1354		 */
1355		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
1356
1357		rx_queue->rfbptr = rfbptr;
1358		rfbptr += 2;
1359	}
1360}
1361
1362static int gfar_alloc_skb_resources(struct net_device *ndev)
1363{
1364	void *vaddr;
1365	dma_addr_t addr;
1366	int i, j;
1367	struct gfar_private *priv = netdev_priv(ndev);
1368	struct device *dev = priv->dev;
1369	struct gfar_priv_tx_q *tx_queue = NULL;
1370	struct gfar_priv_rx_q *rx_queue = NULL;
1371
1372	priv->total_tx_ring_size = 0;
1373	for (i = 0; i < priv->num_tx_queues; i++)
1374		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
1375
1376	priv->total_rx_ring_size = 0;
1377	for (i = 0; i < priv->num_rx_queues; i++)
1378		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
1379
1380	/* Allocate memory for the buffer descriptors */
1381	vaddr = dma_alloc_coherent(dev,
1382				   (priv->total_tx_ring_size *
1383				    sizeof(struct txbd8)) +
1384				   (priv->total_rx_ring_size *
1385				    sizeof(struct rxbd8)),
1386				   &addr, GFP_KERNEL);
1387	if (!vaddr)
1388		return -ENOMEM;
1389
1390	for (i = 0; i < priv->num_tx_queues; i++) {
1391		tx_queue = priv->tx_queue[i];
1392		tx_queue->tx_bd_base = vaddr;
1393		tx_queue->tx_bd_dma_base = addr;
1394		tx_queue->dev = ndev;
1395		/* enet DMA only understands physical addresses */
1396		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1397		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
1398	}
 
1399
1400	/* Start the rx descriptor ring where the tx ring leaves off */
1401	for (i = 0; i < priv->num_rx_queues; i++) {
1402		rx_queue = priv->rx_queue[i];
1403		rx_queue->rx_bd_base = vaddr;
1404		rx_queue->rx_bd_dma_base = addr;
1405		rx_queue->ndev = ndev;
1406		rx_queue->dev = dev;
1407		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1408		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
1409	}
1410
1411	/* Setup the skbuff rings */
1412	for (i = 0; i < priv->num_tx_queues; i++) {
1413		tx_queue = priv->tx_queue[i];
1414		tx_queue->tx_skbuff =
1415			kmalloc_array(tx_queue->tx_ring_size,
1416				      sizeof(*tx_queue->tx_skbuff),
1417				      GFP_KERNEL);
1418		if (!tx_queue->tx_skbuff)
1419			goto cleanup;
1420
1421		for (j = 0; j < tx_queue->tx_ring_size; j++)
1422			tx_queue->tx_skbuff[j] = NULL;
1423	}
1424
1425	for (i = 0; i < priv->num_rx_queues; i++) {
1426		rx_queue = priv->rx_queue[i];
1427		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
1428					    sizeof(*rx_queue->rx_buff),
1429					    GFP_KERNEL);
1430		if (!rx_queue->rx_buff)
1431			goto cleanup;
1432	}
1433
1434	gfar_init_bds(ndev);
1435
1436	return 0;
1437
1438cleanup:
1439	free_skb_resources(priv);
1440	return -ENOMEM;
1441}
1442
1443/* Bring the controller up and running */
1444int startup_gfar(struct net_device *ndev)
1445{
1446	struct gfar_private *priv = netdev_priv(ndev);
1447	int err;
1448
1449	gfar_mac_reset(priv);
1450
1451	err = gfar_alloc_skb_resources(ndev);
1452	if (err)
1453		return err;
1454
1455	gfar_init_tx_rx_base(priv);
1456
1457	smp_mb__before_atomic();
1458	clear_bit(GFAR_DOWN, &priv->state);
1459	smp_mb__after_atomic();
1460
1461	/* Start Rx/Tx DMA and enable the interrupts */
1462	gfar_start(priv);
1463
1464	/* force link state update after mac reset */
1465	priv->oldlink = 0;
1466	priv->oldspeed = 0;
1467	priv->oldduplex = -1;
1468
1469	phy_start(ndev->phydev);
1470
1471	enable_napi(priv);
1472
1473	netif_tx_wake_all_queues(ndev);
1474
1475	return 0;
1476}
1477
1478static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
1479{
1480	struct net_device *ndev = priv->ndev;
1481	struct phy_device *phydev = ndev->phydev;
1482	u32 val = 0;
1483
1484	if (!phydev->duplex)
1485		return val;
1486
1487	if (!priv->pause_aneg_en) {
1488		if (priv->tx_pause_en)
1489			val |= MACCFG1_TX_FLOW;
1490		if (priv->rx_pause_en)
1491			val |= MACCFG1_RX_FLOW;
1492	} else {
1493		u16 lcl_adv, rmt_adv;
1494		u8 flowctrl;
1495		/* get link partner capabilities */
1496		rmt_adv = 0;
1497		if (phydev->pause)
1498			rmt_adv = LPA_PAUSE_CAP;
1499		if (phydev->asym_pause)
1500			rmt_adv |= LPA_PAUSE_ASYM;
1501
1502		lcl_adv = linkmode_adv_to_lcl_adv_t(phydev->advertising);
1503		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
1504		if (flowctrl & FLOW_CTRL_TX)
1505			val |= MACCFG1_TX_FLOW;
1506		if (flowctrl & FLOW_CTRL_RX)
1507			val |= MACCFG1_RX_FLOW;
1508	}
1509
1510	return val;
1511}
1512
1513static noinline void gfar_update_link_state(struct gfar_private *priv)
1514{
1515	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516	struct net_device *ndev = priv->ndev;
1517	struct phy_device *phydev = ndev->phydev;
1518	struct gfar_priv_rx_q *rx_queue = NULL;
1519	int i;
1520
1521	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
1522		return;
1523
1524	if (phydev->link) {
1525		u32 tempval1 = gfar_read(&regs->maccfg1);
1526		u32 tempval = gfar_read(&regs->maccfg2);
1527		u32 ecntrl = gfar_read(&regs->ecntrl);
1528		u32 tx_flow_oldval = (tempval1 & MACCFG1_TX_FLOW);
1529
1530		if (phydev->duplex != priv->oldduplex) {
1531			if (!(phydev->duplex))
1532				tempval &= ~(MACCFG2_FULL_DUPLEX);
1533			else
1534				tempval |= MACCFG2_FULL_DUPLEX;
1535
1536			priv->oldduplex = phydev->duplex;
1537		}
1538
1539		if (phydev->speed != priv->oldspeed) {
1540			switch (phydev->speed) {
1541			case 1000:
1542				tempval =
1543				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
1544
1545				ecntrl &= ~(ECNTRL_R100);
1546				break;
1547			case 100:
1548			case 10:
1549				tempval =
1550				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
1551
1552				/* Reduced mode distinguishes
1553				 * between 10 and 100
1554				 */
1555				if (phydev->speed == SPEED_100)
1556					ecntrl |= ECNTRL_R100;
1557				else
1558					ecntrl &= ~(ECNTRL_R100);
1559				break;
1560			default:
1561				netif_warn(priv, link, priv->ndev,
1562					   "Ack!  Speed (%d) is not 10/100/1000!\n",
1563					   phydev->speed);
1564				break;
1565			}
1566
1567			priv->oldspeed = phydev->speed;
1568		}
1569
1570		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1571		tempval1 |= gfar_get_flowctrl_cfg(priv);
1572
1573		/* Turn last free buffer recording on */
1574		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
1575			for (i = 0; i < priv->num_rx_queues; i++) {
1576				u32 bdp_dma;
1577
1578				rx_queue = priv->rx_queue[i];
1579				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
1580				gfar_write(rx_queue->rfbptr, bdp_dma);
1581			}
1582
1583			priv->tx_actual_en = 1;
1584		}
1585
1586		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
1587			priv->tx_actual_en = 0;
1588
1589		gfar_write(&regs->maccfg1, tempval1);
1590		gfar_write(&regs->maccfg2, tempval);
1591		gfar_write(&regs->ecntrl, ecntrl);
1592
1593		if (!priv->oldlink)
1594			priv->oldlink = 1;
1595
1596	} else if (priv->oldlink) {
1597		priv->oldlink = 0;
1598		priv->oldspeed = 0;
1599		priv->oldduplex = -1;
1600	}
1601
1602	if (netif_msg_link(priv))
1603		phy_print_status(phydev);
1604}
1605
1606/* Called every time the controller might need to be made
1607 * aware of new link state.  The PHY code conveys this
1608 * information through variables in the phydev structure, and this
1609 * function converts those variables into the appropriate
1610 * register values, and can bring down the device if needed.
1611 */
1612static void adjust_link(struct net_device *dev)
1613{
1614	struct gfar_private *priv = netdev_priv(dev);
1615	struct phy_device *phydev = dev->phydev;
1616
1617	if (unlikely(phydev->link != priv->oldlink ||
1618		     (phydev->link && (phydev->duplex != priv->oldduplex ||
1619				       phydev->speed != priv->oldspeed))))
1620		gfar_update_link_state(priv);
1621}
1622
1623/* Initialize TBI PHY interface for communicating with the
1624 * SERDES lynx PHY on the chip.  We communicate with this PHY
1625 * through the MDIO bus on each controller, treating it as a
1626 * "normal" PHY at the address found in the TBIPA register.  We assume
1627 * that the TBIPA register is valid.  Either the MDIO bus code will set
1628 * it to a value that doesn't conflict with other PHYs on the bus, or the
1629 * value doesn't matter, as there are no other PHYs on the bus.
1630 */
1631static void gfar_configure_serdes(struct net_device *dev)
1632{
1633	struct gfar_private *priv = netdev_priv(dev);
1634	struct phy_device *tbiphy;
1635
1636	if (!priv->tbi_node) {
1637		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1638				    "device tree specify a tbi-handle\n");
1639		return;
1640	}
1641
1642	tbiphy = of_phy_find_device(priv->tbi_node);
1643	if (!tbiphy) {
1644		dev_err(&dev->dev, "error: Could not get TBI device\n");
1645		return;
1646	}
1647
1648	/* If the link is already up, we must already be ok, and don't need to
1649	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1650	 * everything for us?  Resetting it takes the link down and requires
1651	 * several seconds for it to come back.
1652	 */
1653	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1654		put_device(&tbiphy->mdio.dev);
1655		return;
1656	}
1657
1658	/* Single clk mode, mii mode off(for serdes communication) */
1659	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1660
1661	phy_write(tbiphy, MII_ADVERTISE,
1662		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1663		  ADVERTISE_1000XPSE_ASYM);
1664
1665	phy_write(tbiphy, MII_BMCR,
1666		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1667		  BMCR_SPEED1000);
1668
1669	put_device(&tbiphy->mdio.dev);
1670}
1671
1672/* Initializes driver's PHY state, and attaches to the PHY.
1673 * Returns 0 on success.
1674 */
1675static int init_phy(struct net_device *dev)
1676{
1677	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1678	struct gfar_private *priv = netdev_priv(dev);
1679	phy_interface_t interface = priv->interface;
1680	struct phy_device *phydev;
1681	struct ethtool_eee edata;
1682
1683	linkmode_set_bit_array(phy_10_100_features_array,
1684			       ARRAY_SIZE(phy_10_100_features_array),
1685			       mask);
1686	linkmode_set_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, mask);
1687	linkmode_set_bit(ETHTOOL_LINK_MODE_MII_BIT, mask);
1688	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1689		linkmode_set_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT, mask);
1690
1691	priv->oldlink = 0;
1692	priv->oldspeed = 0;
1693	priv->oldduplex = -1;
1694
1695	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1696				interface);
1697	if (!phydev) {
1698		dev_err(&dev->dev, "could not attach to PHY\n");
1699		return -ENODEV;
1700	}
1701
1702	if (interface == PHY_INTERFACE_MODE_SGMII)
1703		gfar_configure_serdes(dev);
1704
1705	/* Remove any features not supported by the controller */
1706	linkmode_and(phydev->supported, phydev->supported, mask);
1707	linkmode_copy(phydev->advertising, phydev->supported);
1708
1709	/* Add support for flow control */
1710	phy_support_asym_pause(phydev);
1711
1712	/* disable EEE autoneg, EEE not supported by eTSEC */
1713	memset(&edata, 0, sizeof(struct ethtool_eee));
1714	phy_ethtool_set_eee(phydev, &edata);
1715
1716	return 0;
1717}
1718
1719static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1720{
1721	struct txfcb *fcb = skb_push(skb, GMAC_FCB_LEN);
1722
1723	memset(fcb, 0, GMAC_FCB_LEN);
1724
1725	return fcb;
1726}
1727
1728static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
1729				    int fcb_length)
1730{
1731	/* If we're here, it's a IP packet with a TCP or UDP
1732	 * payload.  We set it to checksum, using a pseudo-header
1733	 * we provide
1734	 */
1735	u8 flags = TXFCB_DEFAULT;
1736
1737	/* Tell the controller what the protocol is
1738	 * And provide the already calculated phcs
1739	 */
1740	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
1741		flags |= TXFCB_UDP;
1742		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
1743	} else
1744		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
1745
1746	/* l3os is the distance between the start of the
1747	 * frame (skb->data) and the start of the IP hdr.
1748	 * l4os is the distance between the start of the
1749	 * l3 hdr and the l4 hdr
1750	 */
1751	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
1752	fcb->l4os = skb_network_header_len(skb);
1753
1754	fcb->flags = flags;
1755}
1756
1757static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
1758{
1759	fcb->flags |= TXFCB_VLN;
1760	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
1761}
1762
1763static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
1764				      struct txbd8 *base, int ring_size)
1765{
1766	struct txbd8 *new_bd = bdp + stride;
1767
1768	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
1769}
1770
1771static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
1772				      int ring_size)
1773{
1774	return skip_txbd(bdp, 1, base, ring_size);
1775}
1776
1777/* eTSEC12: csum generation not supported for some fcb offsets */
1778static inline bool gfar_csum_errata_12(struct gfar_private *priv,
1779				       unsigned long fcb_addr)
1780{
1781	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
1782	       (fcb_addr % 0x20) > 0x18);
1783}
1784
1785/* eTSEC76: csum generation for frames larger than 2500 may
1786 * cause excess delays before start of transmission
1787 */
1788static inline bool gfar_csum_errata_76(struct gfar_private *priv,
1789				       unsigned int len)
1790{
1791	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
1792	       (len > 2500));
1793}
1794
1795/* This is called by the kernel when a frame is ready for transmission.
1796 * It is pointed to by the dev->hard_start_xmit function pointer
1797 */
1798static netdev_tx_t gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
1799{
1800	struct gfar_private *priv = netdev_priv(dev);
1801	struct gfar_priv_tx_q *tx_queue = NULL;
1802	struct netdev_queue *txq;
1803	struct gfar __iomem *regs = NULL;
1804	struct txfcb *fcb = NULL;
1805	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
1806	u32 lstatus;
1807	skb_frag_t *frag;
1808	int i, rq = 0;
1809	int do_tstamp, do_csum, do_vlan;
1810	u32 bufaddr;
1811	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
1812
1813	rq = skb->queue_mapping;
1814	tx_queue = priv->tx_queue[rq];
1815	txq = netdev_get_tx_queue(dev, rq);
1816	base = tx_queue->tx_bd_base;
1817	regs = tx_queue->grp->regs;
1818
1819	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
1820	do_vlan = skb_vlan_tag_present(skb);
1821	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1822		    priv->hwts_tx_en;
1823
1824	if (do_csum || do_vlan)
1825		fcb_len = GMAC_FCB_LEN;
1826
1827	/* check if time stamp should be generated */
1828	if (unlikely(do_tstamp))
1829		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
1830
1831	/* make space for additional header when fcb is needed */
1832	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
1833		struct sk_buff *skb_new;
1834
1835		skb_new = skb_realloc_headroom(skb, fcb_len);
1836		if (!skb_new) {
1837			dev->stats.tx_errors++;
1838			dev_kfree_skb_any(skb);
1839			return NETDEV_TX_OK;
1840		}
1841
1842		if (skb->sk)
1843			skb_set_owner_w(skb_new, skb->sk);
1844		dev_consume_skb_any(skb);
1845		skb = skb_new;
1846	}
1847
1848	/* total number of fragments in the SKB */
1849	nr_frags = skb_shinfo(skb)->nr_frags;
1850
1851	/* calculate the required number of TxBDs for this skb */
1852	if (unlikely(do_tstamp))
1853		nr_txbds = nr_frags + 2;
1854	else
1855		nr_txbds = nr_frags + 1;
1856
1857	/* check if there is space to queue this packet */
1858	if (nr_txbds > tx_queue->num_txbdfree) {
1859		/* no space, stop the queue */
1860		netif_tx_stop_queue(txq);
1861		dev->stats.tx_fifo_errors++;
1862		return NETDEV_TX_BUSY;
1863	}
1864
1865	/* Update transmit stats */
1866	bytes_sent = skb->len;
1867	tx_queue->stats.tx_bytes += bytes_sent;
1868	/* keep Tx bytes on wire for BQL accounting */
1869	GFAR_CB(skb)->bytes_sent = bytes_sent;
1870	tx_queue->stats.tx_packets++;
1871
1872	txbdp = txbdp_start = tx_queue->cur_tx;
1873	lstatus = be32_to_cpu(txbdp->lstatus);
1874
1875	/* Add TxPAL between FCB and frame if required */
1876	if (unlikely(do_tstamp)) {
1877		skb_push(skb, GMAC_TXPAL_LEN);
1878		memset(skb->data, 0, GMAC_TXPAL_LEN);
1879	}
1880
1881	/* Add TxFCB if required */
1882	if (fcb_len) {
1883		fcb = gfar_add_fcb(skb);
1884		lstatus |= BD_LFLAG(TXBD_TOE);
1885	}
1886
1887	/* Set up checksumming */
1888	if (do_csum) {
1889		gfar_tx_checksum(skb, fcb, fcb_len);
1890
1891		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
1892		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
1893			__skb_pull(skb, GMAC_FCB_LEN);
1894			skb_checksum_help(skb);
1895			if (do_vlan || do_tstamp) {
1896				/* put back a new fcb for vlan/tstamp TOE */
1897				fcb = gfar_add_fcb(skb);
1898			} else {
1899				/* Tx TOE not used */
1900				lstatus &= ~(BD_LFLAG(TXBD_TOE));
1901				fcb = NULL;
1902			}
1903		}
1904	}
1905
1906	if (do_vlan)
1907		gfar_tx_vlan(skb, fcb);
1908
1909	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
1910				 DMA_TO_DEVICE);
1911	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1912		goto dma_map_err;
1913
1914	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
1915
1916	/* Time stamp insertion requires one additional TxBD */
1917	if (unlikely(do_tstamp))
1918		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
1919						 tx_queue->tx_ring_size);
1920
1921	if (likely(!nr_frags)) {
1922		if (likely(!do_tstamp))
1923			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1924	} else {
1925		u32 lstatus_start = lstatus;
1926
1927		/* Place the fragment addresses and lengths into the TxBDs */
1928		frag = &skb_shinfo(skb)->frags[0];
1929		for (i = 0; i < nr_frags; i++, frag++) {
1930			unsigned int size;
1931
1932			/* Point at the next BD, wrapping as needed */
1933			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
1934
1935			size = skb_frag_size(frag);
1936
1937			lstatus = be32_to_cpu(txbdp->lstatus) | size |
1938				  BD_LFLAG(TXBD_READY);
1939
1940			/* Handle the last BD specially */
1941			if (i == nr_frags - 1)
1942				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1943
1944			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
1945						   size, DMA_TO_DEVICE);
1946			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
1947				goto dma_map_err;
1948
1949			/* set the TxBD length and buffer pointer */
1950			txbdp->bufPtr = cpu_to_be32(bufaddr);
1951			txbdp->lstatus = cpu_to_be32(lstatus);
1952		}
1953
1954		lstatus = lstatus_start;
1955	}
1956
1957	/* If time stamping is requested one additional TxBD must be set up. The
1958	 * first TxBD points to the FCB and must have a data length of
1959	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
1960	 * the full frame length.
1961	 */
1962	if (unlikely(do_tstamp)) {
1963		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
1964
1965		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
1966		bufaddr += fcb_len;
1967
1968		lstatus_ts |= BD_LFLAG(TXBD_READY) |
1969			      (skb_headlen(skb) - fcb_len);
1970		if (!nr_frags)
1971			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
1972
1973		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
1974		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
1975		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
1976
1977		/* Setup tx hardware time stamping */
1978		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1979		fcb->ptp = 1;
1980	} else {
1981		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
1982	}
1983
1984	netdev_tx_sent_queue(txq, bytes_sent);
1985
1986	gfar_wmb();
1987
1988	txbdp_start->lstatus = cpu_to_be32(lstatus);
1989
1990	gfar_wmb(); /* force lstatus write before tx_skbuff */
1991
1992	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
1993
1994	/* Update the current skb pointer to the next entry we will use
1995	 * (wrapping if necessary)
1996	 */
1997	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
1998			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
1999
2000	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2001
2002	/* We can work in parallel with gfar_clean_tx_ring(), except
2003	 * when modifying num_txbdfree. Note that we didn't grab the lock
2004	 * when we were reading the num_txbdfree and checking for available
2005	 * space, that's because outside of this function it can only grow.
2006	 */
2007	spin_lock_bh(&tx_queue->txlock);
2008	/* reduce TxBD free count */
2009	tx_queue->num_txbdfree -= (nr_txbds);
2010	spin_unlock_bh(&tx_queue->txlock);
2011
2012	/* If the next BD still needs to be cleaned up, then the bds
2013	 * are full.  We need to tell the kernel to stop sending us stuff.
2014	 */
2015	if (!tx_queue->num_txbdfree) {
2016		netif_tx_stop_queue(txq);
2017
2018		dev->stats.tx_fifo_errors++;
2019	}
2020
2021	/* Tell the DMA to go go go */
2022	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2023
2024	return NETDEV_TX_OK;
2025
2026dma_map_err:
2027	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2028	if (do_tstamp)
2029		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2030	for (i = 0; i < nr_frags; i++) {
2031		lstatus = be32_to_cpu(txbdp->lstatus);
2032		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2033			break;
2034
2035		lstatus &= ~BD_LFLAG(TXBD_READY);
2036		txbdp->lstatus = cpu_to_be32(lstatus);
2037		bufaddr = be32_to_cpu(txbdp->bufPtr);
2038		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2039			       DMA_TO_DEVICE);
2040		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2041	}
2042	gfar_wmb();
2043	dev_kfree_skb_any(skb);
2044	return NETDEV_TX_OK;
2045}
2046
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2047/* Changes the mac address if the controller is not running. */
2048static int gfar_set_mac_address(struct net_device *dev)
2049{
2050	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2051
2052	return 0;
2053}
2054
2055static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2056{
2057	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
 
 
2058
2059	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2060		cpu_relax();
2061
2062	if (dev->flags & IFF_UP)
2063		stop_gfar(dev);
2064
2065	dev->mtu = new_mtu;
2066
2067	if (dev->flags & IFF_UP)
2068		startup_gfar(dev);
2069
2070	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2071
2072	return 0;
2073}
2074
2075static void reset_gfar(struct net_device *ndev)
2076{
2077	struct gfar_private *priv = netdev_priv(ndev);
2078
2079	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2080		cpu_relax();
2081
2082	stop_gfar(ndev);
2083	startup_gfar(ndev);
2084
2085	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2086}
2087
2088/* gfar_reset_task gets scheduled when a packet has not been
2089 * transmitted after a set amount of time.
2090 * For now, assume that clearing out all the structures, and
2091 * starting over will fix the problem.
2092 */
2093static void gfar_reset_task(struct work_struct *work)
2094{
2095	struct gfar_private *priv = container_of(work, struct gfar_private,
2096						 reset_task);
2097	reset_gfar(priv->ndev);
2098}
2099
2100static void gfar_timeout(struct net_device *dev, unsigned int txqueue)
2101{
2102	struct gfar_private *priv = netdev_priv(dev);
2103
2104	dev->stats.tx_errors++;
2105	schedule_work(&priv->reset_task);
2106}
2107
2108static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
2109{
2110	struct hwtstamp_config config;
2111	struct gfar_private *priv = netdev_priv(netdev);
2112
2113	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2114		return -EFAULT;
2115
2116	/* reserved for future extensions */
2117	if (config.flags)
2118		return -EINVAL;
2119
2120	switch (config.tx_type) {
2121	case HWTSTAMP_TX_OFF:
2122		priv->hwts_tx_en = 0;
2123		break;
2124	case HWTSTAMP_TX_ON:
2125		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2126			return -ERANGE;
2127		priv->hwts_tx_en = 1;
2128		break;
2129	default:
2130		return -ERANGE;
2131	}
2132
2133	switch (config.rx_filter) {
2134	case HWTSTAMP_FILTER_NONE:
2135		if (priv->hwts_rx_en) {
2136			priv->hwts_rx_en = 0;
2137			reset_gfar(netdev);
2138		}
2139		break;
2140	default:
2141		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
2142			return -ERANGE;
2143		if (!priv->hwts_rx_en) {
2144			priv->hwts_rx_en = 1;
2145			reset_gfar(netdev);
2146		}
2147		config.rx_filter = HWTSTAMP_FILTER_ALL;
2148		break;
2149	}
2150
2151	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2152		-EFAULT : 0;
2153}
2154
2155static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
2156{
2157	struct hwtstamp_config config;
2158	struct gfar_private *priv = netdev_priv(netdev);
2159
2160	config.flags = 0;
2161	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
2162	config.rx_filter = (priv->hwts_rx_en ?
2163			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
2164
2165	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2166		-EFAULT : 0;
2167}
2168
2169static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2170{
2171	struct phy_device *phydev = dev->phydev;
2172
2173	if (!netif_running(dev))
2174		return -EINVAL;
2175
2176	if (cmd == SIOCSHWTSTAMP)
2177		return gfar_hwtstamp_set(dev, rq);
2178	if (cmd == SIOCGHWTSTAMP)
2179		return gfar_hwtstamp_get(dev, rq);
2180
2181	if (!phydev)
2182		return -ENODEV;
2183
2184	return phy_mii_ioctl(phydev, rq, cmd);
2185}
2186
2187/* Interrupt Handler for Transmit complete */
2188static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2189{
2190	struct net_device *dev = tx_queue->dev;
2191	struct netdev_queue *txq;
2192	struct gfar_private *priv = netdev_priv(dev);
2193	struct txbd8 *bdp, *next = NULL;
2194	struct txbd8 *lbdp = NULL;
2195	struct txbd8 *base = tx_queue->tx_bd_base;
2196	struct sk_buff *skb;
2197	int skb_dirtytx;
2198	int tx_ring_size = tx_queue->tx_ring_size;
2199	int frags = 0, nr_txbds = 0;
2200	int i;
2201	int howmany = 0;
2202	int tqi = tx_queue->qindex;
2203	unsigned int bytes_sent = 0;
2204	u32 lstatus;
2205	size_t buflen;
2206
2207	txq = netdev_get_tx_queue(dev, tqi);
2208	bdp = tx_queue->dirty_tx;
2209	skb_dirtytx = tx_queue->skb_dirtytx;
2210
2211	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2212		bool do_tstamp;
2213
2214		do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2215			    priv->hwts_tx_en;
2216
2217		frags = skb_shinfo(skb)->nr_frags;
2218
2219		/* When time stamping, one additional TxBD must be freed.
2220		 * Also, we need to dma_unmap_single() the TxPAL.
2221		 */
2222		if (unlikely(do_tstamp))
2223			nr_txbds = frags + 2;
2224		else
2225			nr_txbds = frags + 1;
2226
2227		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2228
2229		lstatus = be32_to_cpu(lbdp->lstatus);
2230
2231		/* Only clean completed frames */
2232		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2233		    (lstatus & BD_LENGTH_MASK))
2234			break;
2235
2236		if (unlikely(do_tstamp)) {
2237			next = next_txbd(bdp, base, tx_ring_size);
2238			buflen = be16_to_cpu(next->length) +
2239				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2240		} else
2241			buflen = be16_to_cpu(bdp->length);
2242
2243		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2244				 buflen, DMA_TO_DEVICE);
2245
2246		if (unlikely(do_tstamp)) {
2247			struct skb_shared_hwtstamps shhwtstamps;
2248			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2249					  ~0x7UL);
2250
2251			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2252			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2253			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2254			skb_tstamp_tx(skb, &shhwtstamps);
2255			gfar_clear_txbd_status(bdp);
2256			bdp = next;
2257		}
2258
2259		gfar_clear_txbd_status(bdp);
2260		bdp = next_txbd(bdp, base, tx_ring_size);
2261
2262		for (i = 0; i < frags; i++) {
2263			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2264				       be16_to_cpu(bdp->length),
2265				       DMA_TO_DEVICE);
2266			gfar_clear_txbd_status(bdp);
2267			bdp = next_txbd(bdp, base, tx_ring_size);
2268		}
2269
2270		bytes_sent += GFAR_CB(skb)->bytes_sent;
2271
2272		dev_kfree_skb_any(skb);
2273
2274		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2275
2276		skb_dirtytx = (skb_dirtytx + 1) &
2277			      TX_RING_MOD_MASK(tx_ring_size);
2278
2279		howmany++;
2280		spin_lock(&tx_queue->txlock);
2281		tx_queue->num_txbdfree += nr_txbds;
2282		spin_unlock(&tx_queue->txlock);
2283	}
2284
2285	/* If we freed a buffer, we can restart transmission, if necessary */
2286	if (tx_queue->num_txbdfree &&
2287	    netif_tx_queue_stopped(txq) &&
2288	    !(test_bit(GFAR_DOWN, &priv->state)))
2289		netif_wake_subqueue(priv->ndev, tqi);
2290
2291	/* Update dirty indicators */
2292	tx_queue->skb_dirtytx = skb_dirtytx;
2293	tx_queue->dirty_tx = bdp;
2294
2295	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2296}
2297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2298static void count_errors(u32 lstatus, struct net_device *ndev)
2299{
2300	struct gfar_private *priv = netdev_priv(ndev);
2301	struct net_device_stats *stats = &ndev->stats;
2302	struct gfar_extra_stats *estats = &priv->extra_stats;
2303
2304	/* If the packet was truncated, none of the other errors matter */
2305	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2306		stats->rx_length_errors++;
2307
2308		atomic64_inc(&estats->rx_trunc);
2309
2310		return;
2311	}
2312	/* Count the errors, if there were any */
2313	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2314		stats->rx_length_errors++;
2315
2316		if (lstatus & BD_LFLAG(RXBD_LARGE))
2317			atomic64_inc(&estats->rx_large);
2318		else
2319			atomic64_inc(&estats->rx_short);
2320	}
2321	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2322		stats->rx_frame_errors++;
2323		atomic64_inc(&estats->rx_nonoctet);
2324	}
2325	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2326		atomic64_inc(&estats->rx_crcerr);
2327		stats->rx_crc_errors++;
2328	}
2329	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2330		atomic64_inc(&estats->rx_overrun);
2331		stats->rx_over_errors++;
2332	}
2333}
2334
2335static irqreturn_t gfar_receive(int irq, void *grp_id)
2336{
2337	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2338	unsigned long flags;
2339	u32 imask, ievent;
2340
2341	ievent = gfar_read(&grp->regs->ievent);
2342
2343	if (unlikely(ievent & IEVENT_FGPI)) {
2344		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2345		return IRQ_HANDLED;
2346	}
2347
2348	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2349		spin_lock_irqsave(&grp->grplock, flags);
2350		imask = gfar_read(&grp->regs->imask);
2351		imask &= IMASK_RX_DISABLED;
2352		gfar_write(&grp->regs->imask, imask);
2353		spin_unlock_irqrestore(&grp->grplock, flags);
2354		__napi_schedule(&grp->napi_rx);
2355	} else {
2356		/* Clear IEVENT, so interrupts aren't called again
2357		 * because of the packets that have already arrived.
2358		 */
2359		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2360	}
2361
2362	return IRQ_HANDLED;
2363}
2364
2365/* Interrupt Handler for Transmit complete */
2366static irqreturn_t gfar_transmit(int irq, void *grp_id)
2367{
2368	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2369	unsigned long flags;
2370	u32 imask;
2371
2372	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2373		spin_lock_irqsave(&grp->grplock, flags);
2374		imask = gfar_read(&grp->regs->imask);
2375		imask &= IMASK_TX_DISABLED;
2376		gfar_write(&grp->regs->imask, imask);
2377		spin_unlock_irqrestore(&grp->grplock, flags);
2378		__napi_schedule(&grp->napi_tx);
2379	} else {
2380		/* Clear IEVENT, so interrupts aren't called again
2381		 * because of the packets that have already arrived.
2382		 */
2383		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2384	}
2385
2386	return IRQ_HANDLED;
2387}
2388
2389static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2390			     struct sk_buff *skb, bool first)
2391{
2392	int size = lstatus & BD_LENGTH_MASK;
2393	struct page *page = rxb->page;
2394
2395	if (likely(first)) {
 
 
 
 
2396		skb_put(skb, size);
2397	} else {
2398		/* the last fragments' length contains the full frame length */
2399		if (lstatus & BD_LFLAG(RXBD_LAST))
2400			size -= skb->len;
2401
2402		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2403				rxb->page_offset + RXBUF_ALIGNMENT,
2404				size, GFAR_RXB_TRUESIZE);
2405	}
2406
2407	/* try reuse page */
2408	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2409		return false;
2410
2411	/* change offset to the other half */
2412	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2413
2414	page_ref_inc(page);
2415
2416	return true;
2417}
2418
2419static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2420			       struct gfar_rx_buff *old_rxb)
2421{
2422	struct gfar_rx_buff *new_rxb;
2423	u16 nta = rxq->next_to_alloc;
2424
2425	new_rxb = &rxq->rx_buff[nta];
2426
2427	/* find next buf that can reuse a page */
2428	nta++;
2429	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2430
2431	/* copy page reference */
2432	*new_rxb = *old_rxb;
2433
2434	/* sync for use by the device */
2435	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2436					 old_rxb->page_offset,
2437					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2438}
2439
2440static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2441					    u32 lstatus, struct sk_buff *skb)
2442{
2443	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2444	struct page *page = rxb->page;
2445	bool first = false;
2446
2447	if (likely(!skb)) {
2448		void *buff_addr = page_address(page) + rxb->page_offset;
2449
2450		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2451		if (unlikely(!skb)) {
2452			gfar_rx_alloc_err(rx_queue);
2453			return NULL;
2454		}
2455		skb_reserve(skb, RXBUF_ALIGNMENT);
2456		first = true;
2457	}
2458
2459	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2460				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2461
2462	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2463		/* reuse the free half of the page */
2464		gfar_reuse_rx_page(rx_queue, rxb);
2465	} else {
2466		/* page cannot be reused, unmap it */
2467		dma_unmap_page(rx_queue->dev, rxb->dma,
2468			       PAGE_SIZE, DMA_FROM_DEVICE);
2469	}
2470
2471	/* clear rxb content */
2472	rxb->page = NULL;
2473
2474	return skb;
2475}
2476
2477static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2478{
2479	/* If valid headers were found, and valid sums
2480	 * were verified, then we tell the kernel that no
2481	 * checksumming is necessary.  Otherwise, it is [FIXME]
2482	 */
2483	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
2484	    (RXFCB_CIP | RXFCB_CTU))
2485		skb->ip_summed = CHECKSUM_UNNECESSARY;
2486	else
2487		skb_checksum_none_assert(skb);
2488}
2489
2490/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
2491static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
2492{
2493	struct gfar_private *priv = netdev_priv(ndev);
2494	struct rxfcb *fcb = NULL;
2495
2496	/* fcb is at the beginning if exists */
2497	fcb = (struct rxfcb *)skb->data;
2498
2499	/* Remove the FCB from the skb
2500	 * Remove the padded bytes, if there are any
2501	 */
2502	if (priv->uses_rxfcb)
2503		skb_pull(skb, GMAC_FCB_LEN);
2504
2505	/* Get receive timestamp from the skb */
2506	if (priv->hwts_rx_en) {
2507		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2508		u64 *ns = (u64 *) skb->data;
2509
2510		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2511		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2512	}
2513
2514	if (priv->padding)
2515		skb_pull(skb, priv->padding);
2516
2517	/* Trim off the FCS */
2518	pskb_trim(skb, skb->len - ETH_FCS_LEN);
2519
2520	if (ndev->features & NETIF_F_RXCSUM)
2521		gfar_rx_checksum(skb, fcb);
2522
 
 
 
2523	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
2524	 * Even if vlan rx accel is disabled, on some chips
2525	 * RXFCB_VLN is pseudo randomly set.
2526	 */
2527	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
2528	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
2529		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
2530				       be16_to_cpu(fcb->vlctl));
2531}
2532
2533/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2534 * until the budget/quota has been reached. Returns the number
2535 * of frames handled
2536 */
2537static int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue,
2538			      int rx_work_limit)
2539{
2540	struct net_device *ndev = rx_queue->ndev;
2541	struct gfar_private *priv = netdev_priv(ndev);
2542	struct rxbd8 *bdp;
2543	int i, howmany = 0;
2544	struct sk_buff *skb = rx_queue->skb;
2545	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
2546	unsigned int total_bytes = 0, total_pkts = 0;
2547
2548	/* Get the first full descriptor */
2549	i = rx_queue->next_to_clean;
2550
2551	while (rx_work_limit--) {
2552		u32 lstatus;
2553
2554		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
2555			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2556			cleaned_cnt = 0;
2557		}
2558
2559		bdp = &rx_queue->rx_bd_base[i];
2560		lstatus = be32_to_cpu(bdp->lstatus);
2561		if (lstatus & BD_LFLAG(RXBD_EMPTY))
2562			break;
2563
2564		/* order rx buffer descriptor reads */
2565		rmb();
2566
2567		/* fetch next to clean buffer from the ring */
2568		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
2569		if (unlikely(!skb))
2570			break;
2571
2572		cleaned_cnt++;
2573		howmany++;
2574
2575		if (unlikely(++i == rx_queue->rx_ring_size))
2576			i = 0;
2577
2578		rx_queue->next_to_clean = i;
2579
2580		/* fetch next buffer if not the last in frame */
2581		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
2582			continue;
2583
2584		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
2585			count_errors(lstatus, ndev);
2586
2587			/* discard faulty buffer */
2588			dev_kfree_skb(skb);
2589			skb = NULL;
2590			rx_queue->stats.rx_dropped++;
2591			continue;
2592		}
2593
2594		gfar_process_frame(ndev, skb);
2595
2596		/* Increment the number of packets */
2597		total_pkts++;
2598		total_bytes += skb->len;
2599
2600		skb_record_rx_queue(skb, rx_queue->qindex);
2601
2602		skb->protocol = eth_type_trans(skb, ndev);
2603
2604		/* Send the packet up the stack */
2605		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
2606
2607		skb = NULL;
2608	}
2609
2610	/* Store incomplete frames for completion */
2611	rx_queue->skb = skb;
2612
2613	rx_queue->stats.rx_packets += total_pkts;
2614	rx_queue->stats.rx_bytes += total_bytes;
2615
2616	if (cleaned_cnt)
2617		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
2618
2619	/* Update Last Free RxBD pointer for LFC */
2620	if (unlikely(priv->tx_actual_en)) {
2621		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
2622
2623		gfar_write(rx_queue->rfbptr, bdp_dma);
2624	}
2625
2626	return howmany;
2627}
2628
2629static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
2630{
2631	struct gfar_priv_grp *gfargrp =
2632		container_of(napi, struct gfar_priv_grp, napi_rx);
2633	struct gfar __iomem *regs = gfargrp->regs;
2634	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
2635	int work_done = 0;
2636
2637	/* Clear IEVENT, so interrupts aren't called again
2638	 * because of the packets that have already arrived
2639	 */
2640	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2641
2642	work_done = gfar_clean_rx_ring(rx_queue, budget);
2643
2644	if (work_done < budget) {
2645		u32 imask;
2646		napi_complete_done(napi, work_done);
2647		/* Clear the halt bit in RSTAT */
2648		gfar_write(&regs->rstat, gfargrp->rstat);
2649
2650		spin_lock_irq(&gfargrp->grplock);
2651		imask = gfar_read(&regs->imask);
2652		imask |= IMASK_RX_DEFAULT;
2653		gfar_write(&regs->imask, imask);
2654		spin_unlock_irq(&gfargrp->grplock);
2655	}
2656
2657	return work_done;
2658}
2659
2660static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
2661{
2662	struct gfar_priv_grp *gfargrp =
2663		container_of(napi, struct gfar_priv_grp, napi_tx);
2664	struct gfar __iomem *regs = gfargrp->regs;
2665	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
2666	u32 imask;
2667
2668	/* Clear IEVENT, so interrupts aren't called again
2669	 * because of the packets that have already arrived
2670	 */
2671	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2672
2673	/* run Tx cleanup to completion */
2674	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
2675		gfar_clean_tx_ring(tx_queue);
2676
2677	napi_complete(napi);
2678
2679	spin_lock_irq(&gfargrp->grplock);
2680	imask = gfar_read(&regs->imask);
2681	imask |= IMASK_TX_DEFAULT;
2682	gfar_write(&regs->imask, imask);
2683	spin_unlock_irq(&gfargrp->grplock);
2684
2685	return 0;
2686}
2687
2688static int gfar_poll_rx(struct napi_struct *napi, int budget)
2689{
2690	struct gfar_priv_grp *gfargrp =
2691		container_of(napi, struct gfar_priv_grp, napi_rx);
2692	struct gfar_private *priv = gfargrp->priv;
2693	struct gfar __iomem *regs = gfargrp->regs;
2694	struct gfar_priv_rx_q *rx_queue = NULL;
2695	int work_done = 0, work_done_per_q = 0;
2696	int i, budget_per_q = 0;
2697	unsigned long rstat_rxf;
2698	int num_act_queues;
2699
2700	/* Clear IEVENT, so interrupts aren't called again
2701	 * because of the packets that have already arrived
2702	 */
2703	gfar_write(&regs->ievent, IEVENT_RX_MASK);
2704
2705	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
2706
2707	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
2708	if (num_act_queues)
2709		budget_per_q = budget/num_act_queues;
2710
2711	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2712		/* skip queue if not active */
2713		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
2714			continue;
2715
2716		rx_queue = priv->rx_queue[i];
2717		work_done_per_q =
2718			gfar_clean_rx_ring(rx_queue, budget_per_q);
2719		work_done += work_done_per_q;
2720
2721		/* finished processing this queue */
2722		if (work_done_per_q < budget_per_q) {
2723			/* clear active queue hw indication */
2724			gfar_write(&regs->rstat,
2725				   RSTAT_CLEAR_RXF0 >> i);
2726			num_act_queues--;
2727
2728			if (!num_act_queues)
2729				break;
2730		}
2731	}
2732
2733	if (!num_act_queues) {
2734		u32 imask;
2735		napi_complete_done(napi, work_done);
2736
2737		/* Clear the halt bit in RSTAT */
2738		gfar_write(&regs->rstat, gfargrp->rstat);
2739
2740		spin_lock_irq(&gfargrp->grplock);
2741		imask = gfar_read(&regs->imask);
2742		imask |= IMASK_RX_DEFAULT;
2743		gfar_write(&regs->imask, imask);
2744		spin_unlock_irq(&gfargrp->grplock);
2745	}
2746
2747	return work_done;
2748}
2749
2750static int gfar_poll_tx(struct napi_struct *napi, int budget)
2751{
2752	struct gfar_priv_grp *gfargrp =
2753		container_of(napi, struct gfar_priv_grp, napi_tx);
2754	struct gfar_private *priv = gfargrp->priv;
2755	struct gfar __iomem *regs = gfargrp->regs;
2756	struct gfar_priv_tx_q *tx_queue = NULL;
2757	int has_tx_work = 0;
2758	int i;
2759
2760	/* Clear IEVENT, so interrupts aren't called again
2761	 * because of the packets that have already arrived
2762	 */
2763	gfar_write(&regs->ievent, IEVENT_TX_MASK);
2764
2765	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
2766		tx_queue = priv->tx_queue[i];
2767		/* run Tx cleanup to completion */
2768		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
2769			gfar_clean_tx_ring(tx_queue);
2770			has_tx_work = 1;
2771		}
2772	}
2773
2774	if (!has_tx_work) {
2775		u32 imask;
2776		napi_complete(napi);
2777
2778		spin_lock_irq(&gfargrp->grplock);
2779		imask = gfar_read(&regs->imask);
2780		imask |= IMASK_TX_DEFAULT;
2781		gfar_write(&regs->imask, imask);
2782		spin_unlock_irq(&gfargrp->grplock);
2783	}
2784
2785	return 0;
2786}
2787
2788/* GFAR error interrupt handler */
2789static irqreturn_t gfar_error(int irq, void *grp_id)
2790{
2791	struct gfar_priv_grp *gfargrp = grp_id;
2792	struct gfar __iomem *regs = gfargrp->regs;
2793	struct gfar_private *priv= gfargrp->priv;
2794	struct net_device *dev = priv->ndev;
2795
2796	/* Save ievent for future reference */
2797	u32 events = gfar_read(&regs->ievent);
2798
2799	/* Clear IEVENT */
2800	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
2801
2802	/* Magic Packet is not an error. */
2803	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
2804	    (events & IEVENT_MAG))
2805		events &= ~IEVENT_MAG;
2806
2807	/* Hmm... */
2808	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
2809		netdev_dbg(dev,
2810			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
2811			   events, gfar_read(&regs->imask));
2812
2813	/* Update the error counters */
2814	if (events & IEVENT_TXE) {
2815		dev->stats.tx_errors++;
2816
2817		if (events & IEVENT_LC)
2818			dev->stats.tx_window_errors++;
2819		if (events & IEVENT_CRL)
2820			dev->stats.tx_aborted_errors++;
2821		if (events & IEVENT_XFUN) {
2822			netif_dbg(priv, tx_err, dev,
2823				  "TX FIFO underrun, packet dropped\n");
2824			dev->stats.tx_dropped++;
2825			atomic64_inc(&priv->extra_stats.tx_underrun);
2826
2827			schedule_work(&priv->reset_task);
2828		}
2829		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
2830	}
2831	if (events & IEVENT_BSY) {
2832		dev->stats.rx_over_errors++;
2833		atomic64_inc(&priv->extra_stats.rx_bsy);
2834
2835		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
2836			  gfar_read(&regs->rstat));
2837	}
2838	if (events & IEVENT_BABR) {
2839		dev->stats.rx_errors++;
2840		atomic64_inc(&priv->extra_stats.rx_babr);
2841
2842		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
2843	}
2844	if (events & IEVENT_EBERR) {
2845		atomic64_inc(&priv->extra_stats.eberr);
2846		netif_dbg(priv, rx_err, dev, "bus error\n");
2847	}
2848	if (events & IEVENT_RXC)
2849		netif_dbg(priv, rx_status, dev, "control frame\n");
2850
2851	if (events & IEVENT_BABT) {
2852		atomic64_inc(&priv->extra_stats.tx_babt);
2853		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
2854	}
2855	return IRQ_HANDLED;
2856}
2857
2858/* The interrupt handler for devices with one interrupt */
2859static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2860{
2861	struct gfar_priv_grp *gfargrp = grp_id;
2862
2863	/* Save ievent for future reference */
2864	u32 events = gfar_read(&gfargrp->regs->ievent);
2865
2866	/* Check for reception */
2867	if (events & IEVENT_RX_MASK)
2868		gfar_receive(irq, grp_id);
2869
2870	/* Check for transmit completion */
2871	if (events & IEVENT_TX_MASK)
2872		gfar_transmit(irq, grp_id);
2873
2874	/* Check for errors */
2875	if (events & IEVENT_ERR_MASK)
2876		gfar_error(irq, grp_id);
2877
2878	return IRQ_HANDLED;
2879}
2880
2881#ifdef CONFIG_NET_POLL_CONTROLLER
2882/* Polling 'interrupt' - used by things like netconsole to send skbs
2883 * without having to re-enable interrupts. It's not called while
2884 * the interrupt routine is executing.
2885 */
2886static void gfar_netpoll(struct net_device *dev)
2887{
2888	struct gfar_private *priv = netdev_priv(dev);
2889	int i;
2890
2891	/* If the device has multiple interrupts, run tx/rx */
2892	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2893		for (i = 0; i < priv->num_grps; i++) {
2894			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2895
2896			disable_irq(gfar_irq(grp, TX)->irq);
2897			disable_irq(gfar_irq(grp, RX)->irq);
2898			disable_irq(gfar_irq(grp, ER)->irq);
2899			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2900			enable_irq(gfar_irq(grp, ER)->irq);
2901			enable_irq(gfar_irq(grp, RX)->irq);
2902			enable_irq(gfar_irq(grp, TX)->irq);
2903		}
2904	} else {
2905		for (i = 0; i < priv->num_grps; i++) {
2906			struct gfar_priv_grp *grp = &priv->gfargrp[i];
2907
2908			disable_irq(gfar_irq(grp, TX)->irq);
2909			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
2910			enable_irq(gfar_irq(grp, TX)->irq);
2911		}
2912	}
2913}
2914#endif
2915
2916static void free_grp_irqs(struct gfar_priv_grp *grp)
 
2917{
2918	free_irq(gfar_irq(grp, TX)->irq, grp);
2919	free_irq(gfar_irq(grp, RX)->irq, grp);
2920	free_irq(gfar_irq(grp, ER)->irq, grp);
2921}
2922
2923static int register_grp_irqs(struct gfar_priv_grp *grp)
2924{
2925	struct gfar_private *priv = grp->priv;
2926	struct net_device *dev = priv->ndev;
2927	int err;
2928
2929	/* If the device has multiple interrupts, register for
2930	 * them.  Otherwise, only register for the one
2931	 */
2932	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2933		/* Install our interrupt handlers for Error,
2934		 * Transmit, and Receive
2935		 */
2936		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2937				  gfar_irq(grp, ER)->name, grp);
2938		if (err < 0) {
2939			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2940				  gfar_irq(grp, ER)->irq);
2941
2942			goto err_irq_fail;
2943		}
2944		enable_irq_wake(gfar_irq(grp, ER)->irq);
2945
2946		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2947				  gfar_irq(grp, TX)->name, grp);
2948		if (err < 0) {
2949			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2950				  gfar_irq(grp, TX)->irq);
2951			goto tx_irq_fail;
2952		}
2953		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2954				  gfar_irq(grp, RX)->name, grp);
2955		if (err < 0) {
2956			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2957				  gfar_irq(grp, RX)->irq);
2958			goto rx_irq_fail;
2959		}
2960		enable_irq_wake(gfar_irq(grp, RX)->irq);
2961
2962	} else {
2963		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2964				  gfar_irq(grp, TX)->name, grp);
2965		if (err < 0) {
2966			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2967				  gfar_irq(grp, TX)->irq);
2968			goto err_irq_fail;
2969		}
2970		enable_irq_wake(gfar_irq(grp, TX)->irq);
2971	}
2972
2973	return 0;
2974
2975rx_irq_fail:
2976	free_irq(gfar_irq(grp, TX)->irq, grp);
2977tx_irq_fail:
2978	free_irq(gfar_irq(grp, ER)->irq, grp);
2979err_irq_fail:
2980	return err;
2981
 
2982}
2983
2984static void gfar_free_irq(struct gfar_private *priv)
2985{
2986	int i;
2987
2988	/* Free the IRQs */
2989	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2990		for (i = 0; i < priv->num_grps; i++)
2991			free_grp_irqs(&priv->gfargrp[i]);
2992	} else {
2993		for (i = 0; i < priv->num_grps; i++)
2994			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2995				 &priv->gfargrp[i]);
2996	}
2997}
2998
2999static int gfar_request_irq(struct gfar_private *priv)
3000{
3001	int err, i, j;
3002
3003	for (i = 0; i < priv->num_grps; i++) {
3004		err = register_grp_irqs(&priv->gfargrp[i]);
3005		if (err) {
3006			for (j = 0; j < i; j++)
3007				free_grp_irqs(&priv->gfargrp[j]);
3008			return err;
3009		}
3010	}
3011
3012	return 0;
3013}
3014
3015/* Called when something needs to use the ethernet device
3016 * Returns 0 for success.
3017 */
3018static int gfar_enet_open(struct net_device *dev)
3019{
3020	struct gfar_private *priv = netdev_priv(dev);
3021	int err;
3022
3023	err = init_phy(dev);
3024	if (err)
3025		return err;
3026
3027	err = gfar_request_irq(priv);
3028	if (err)
3029		return err;
3030
3031	err = startup_gfar(dev);
3032	if (err)
3033		return err;
3034
3035	return err;
3036}
3037
3038/* Stops the kernel queue, and halts the controller */
3039static int gfar_close(struct net_device *dev)
3040{
3041	struct gfar_private *priv = netdev_priv(dev);
3042
3043	cancel_work_sync(&priv->reset_task);
3044	stop_gfar(dev);
3045
3046	/* Disconnect from the PHY */
3047	phy_disconnect(dev->phydev);
3048
3049	gfar_free_irq(priv);
3050
3051	return 0;
3052}
3053
3054/* Clears each of the exact match registers to zero, so they
3055 * don't interfere with normal reception
3056 */
3057static void gfar_clear_exact_match(struct net_device *dev)
3058{
3059	int idx;
3060	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3061
3062	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3063		gfar_set_mac_for_addr(dev, idx, zero_arr);
3064}
3065
3066/* Update the hash table based on the current list of multicast
3067 * addresses we subscribe to.  Also, change the promiscuity of
3068 * the device based on the flags (this function is called
3069 * whenever dev->flags is changed
3070 */
3071static void gfar_set_multi(struct net_device *dev)
3072{
3073	struct netdev_hw_addr *ha;
3074	struct gfar_private *priv = netdev_priv(dev);
3075	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3076	u32 tempval;
3077
3078	if (dev->flags & IFF_PROMISC) {
3079		/* Set RCTRL to PROM */
3080		tempval = gfar_read(&regs->rctrl);
3081		tempval |= RCTRL_PROM;
3082		gfar_write(&regs->rctrl, tempval);
3083	} else {
3084		/* Set RCTRL to not PROM */
3085		tempval = gfar_read(&regs->rctrl);
3086		tempval &= ~(RCTRL_PROM);
3087		gfar_write(&regs->rctrl, tempval);
3088	}
3089
3090	if (dev->flags & IFF_ALLMULTI) {
3091		/* Set the hash to rx all multicast frames */
3092		gfar_write(&regs->igaddr0, 0xffffffff);
3093		gfar_write(&regs->igaddr1, 0xffffffff);
3094		gfar_write(&regs->igaddr2, 0xffffffff);
3095		gfar_write(&regs->igaddr3, 0xffffffff);
3096		gfar_write(&regs->igaddr4, 0xffffffff);
3097		gfar_write(&regs->igaddr5, 0xffffffff);
3098		gfar_write(&regs->igaddr6, 0xffffffff);
3099		gfar_write(&regs->igaddr7, 0xffffffff);
3100		gfar_write(&regs->gaddr0, 0xffffffff);
3101		gfar_write(&regs->gaddr1, 0xffffffff);
3102		gfar_write(&regs->gaddr2, 0xffffffff);
3103		gfar_write(&regs->gaddr3, 0xffffffff);
3104		gfar_write(&regs->gaddr4, 0xffffffff);
3105		gfar_write(&regs->gaddr5, 0xffffffff);
3106		gfar_write(&regs->gaddr6, 0xffffffff);
3107		gfar_write(&regs->gaddr7, 0xffffffff);
3108	} else {
3109		int em_num;
3110		int idx;
3111
3112		/* zero out the hash */
3113		gfar_write(&regs->igaddr0, 0x0);
3114		gfar_write(&regs->igaddr1, 0x0);
3115		gfar_write(&regs->igaddr2, 0x0);
3116		gfar_write(&regs->igaddr3, 0x0);
3117		gfar_write(&regs->igaddr4, 0x0);
3118		gfar_write(&regs->igaddr5, 0x0);
3119		gfar_write(&regs->igaddr6, 0x0);
3120		gfar_write(&regs->igaddr7, 0x0);
3121		gfar_write(&regs->gaddr0, 0x0);
3122		gfar_write(&regs->gaddr1, 0x0);
3123		gfar_write(&regs->gaddr2, 0x0);
3124		gfar_write(&regs->gaddr3, 0x0);
3125		gfar_write(&regs->gaddr4, 0x0);
3126		gfar_write(&regs->gaddr5, 0x0);
3127		gfar_write(&regs->gaddr6, 0x0);
3128		gfar_write(&regs->gaddr7, 0x0);
3129
3130		/* If we have extended hash tables, we need to
3131		 * clear the exact match registers to prepare for
3132		 * setting them
3133		 */
3134		if (priv->extended_hash) {
3135			em_num = GFAR_EM_NUM + 1;
3136			gfar_clear_exact_match(dev);
3137			idx = 1;
3138		} else {
3139			idx = 0;
3140			em_num = 0;
3141		}
3142
3143		if (netdev_mc_empty(dev))
3144			return;
3145
3146		/* Parse the list, and set the appropriate bits */
3147		netdev_for_each_mc_addr(ha, dev) {
3148			if (idx < em_num) {
3149				gfar_set_mac_for_addr(dev, idx, ha->addr);
3150				idx++;
3151			} else
3152				gfar_set_hash_for_addr(dev, ha->addr);
3153		}
3154	}
3155}
3156
3157void gfar_mac_reset(struct gfar_private *priv)
 
 
 
 
3158{
3159	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3160	u32 tempval;
3161
3162	/* Reset MAC layer */
3163	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
 
3164
3165	/* We need to delay at least 3 TX clocks */
3166	udelay(3);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3167
3168	/* the soft reset bit is not self-resetting, so we need to
3169	 * clear it before resuming normal operation
3170	 */
3171	gfar_write(&regs->maccfg1, 0);
3172
3173	udelay(3);
3174
3175	gfar_rx_offload_en(priv);
3176
3177	/* Initialize the max receive frame/buffer lengths */
3178	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
3179	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
3180
3181	/* Initialize the Minimum Frame Length Register */
3182	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
3183
3184	/* Initialize MACCFG2. */
3185	tempval = MACCFG2_INIT_SETTINGS;
3186
3187	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
3188	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
3189	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
3190	 */
3191	if (gfar_has_errata(priv, GFAR_ERRATA_74))
3192		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
3193
3194	gfar_write(&regs->maccfg2, tempval);
3195
3196	/* Clear mac addr hash registers */
3197	gfar_write(&regs->igaddr0, 0);
3198	gfar_write(&regs->igaddr1, 0);
3199	gfar_write(&regs->igaddr2, 0);
3200	gfar_write(&regs->igaddr3, 0);
3201	gfar_write(&regs->igaddr4, 0);
3202	gfar_write(&regs->igaddr5, 0);
3203	gfar_write(&regs->igaddr6, 0);
3204	gfar_write(&regs->igaddr7, 0);
3205
3206	gfar_write(&regs->gaddr0, 0);
3207	gfar_write(&regs->gaddr1, 0);
3208	gfar_write(&regs->gaddr2, 0);
3209	gfar_write(&regs->gaddr3, 0);
3210	gfar_write(&regs->gaddr4, 0);
3211	gfar_write(&regs->gaddr5, 0);
3212	gfar_write(&regs->gaddr6, 0);
3213	gfar_write(&regs->gaddr7, 0);
3214
3215	if (priv->extended_hash)
3216		gfar_clear_exact_match(priv->ndev);
3217
3218	gfar_mac_rx_config(priv);
3219
3220	gfar_mac_tx_config(priv);
3221
3222	gfar_set_mac_address(priv->ndev);
3223
3224	gfar_set_multi(priv->ndev);
3225
3226	/* clear ievent and imask before configuring coalescing */
3227	gfar_ints_disable(priv);
3228
3229	/* Configure the coalescing support */
3230	gfar_configure_coalescing_all(priv);
3231}
3232
3233static void gfar_hw_init(struct gfar_private *priv)
3234{
 
3235	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3236	u32 attrs;
 
3237
3238	/* Stop the DMA engine now, in case it was running before
3239	 * (The firmware could have used it, and left it running).
3240	 */
3241	gfar_halt(priv);
3242
3243	gfar_mac_reset(priv);
3244
3245	/* Zero out the rmon mib registers if it has them */
3246	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
3247		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
3248
3249		/* Mask off the CAM interrupts */
3250		gfar_write(&regs->rmon.cam1, 0xffffffff);
3251		gfar_write(&regs->rmon.cam2, 0xffffffff);
3252	}
3253
3254	/* Initialize ECNTRL */
3255	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
3256
3257	/* Set the extraction length and index */
3258	attrs = ATTRELI_EL(priv->rx_stash_size) |
3259		ATTRELI_EI(priv->rx_stash_index);
3260
3261	gfar_write(&regs->attreli, attrs);
3262
3263	/* Start with defaults, and add stashing
3264	 * depending on driver parameters
3265	 */
3266	attrs = ATTR_INIT_SETTINGS;
 
3267
3268	if (priv->bd_stash_en)
3269		attrs |= ATTR_BDSTASH;
3270
3271	if (priv->rx_stash_size != 0)
3272		attrs |= ATTR_BUFSTASH;
3273
3274	gfar_write(&regs->attr, attrs);
3275
3276	/* FIFO configs */
3277	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
3278	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
3279	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
3280
3281	/* Program the interrupt steering regs, only for MG devices */
3282	if (priv->num_grps > 1)
3283		gfar_write_isrg(priv);
3284}
3285
3286static const struct net_device_ops gfar_netdev_ops = {
3287	.ndo_open = gfar_enet_open,
3288	.ndo_start_xmit = gfar_start_xmit,
3289	.ndo_stop = gfar_close,
3290	.ndo_change_mtu = gfar_change_mtu,
3291	.ndo_set_features = gfar_set_features,
3292	.ndo_set_rx_mode = gfar_set_multi,
3293	.ndo_tx_timeout = gfar_timeout,
3294	.ndo_do_ioctl = gfar_ioctl,
3295	.ndo_get_stats = gfar_get_stats,
3296	.ndo_change_carrier = fixed_phy_change_carrier,
3297	.ndo_set_mac_address = gfar_set_mac_addr,
3298	.ndo_validate_addr = eth_validate_addr,
3299#ifdef CONFIG_NET_POLL_CONTROLLER
3300	.ndo_poll_controller = gfar_netpoll,
3301#endif
3302};
3303
3304/* Set up the ethernet device structure, private data,
3305 * and anything else we need before we start
3306 */
3307static int gfar_probe(struct platform_device *ofdev)
3308{
3309	struct device_node *np = ofdev->dev.of_node;
3310	struct net_device *dev = NULL;
3311	struct gfar_private *priv = NULL;
3312	int err = 0, i;
3313
3314	err = gfar_of_init(ofdev, &dev);
 
3315
3316	if (err)
3317		return err;
3318
3319	priv = netdev_priv(dev);
3320	priv->ndev = dev;
3321	priv->ofdev = ofdev;
3322	priv->dev = &ofdev->dev;
3323	SET_NETDEV_DEV(dev, &ofdev->dev);
3324
3325	INIT_WORK(&priv->reset_task, gfar_reset_task);
 
 
 
 
3326
3327	platform_set_drvdata(ofdev, priv);
 
 
3328
3329	gfar_detect_errata(priv);
 
 
 
 
 
 
 
 
3330
3331	/* Set the dev->base_addr to the gfar reg region */
3332	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
3333
3334	/* Fill in the dev structure */
3335	dev->watchdog_timeo = TX_TIMEOUT;
3336	/* MTU range: 50 - 9586 */
3337	dev->mtu = 1500;
3338	dev->min_mtu = 50;
3339	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
3340	dev->netdev_ops = &gfar_netdev_ops;
3341	dev->ethtool_ops = &gfar_ethtool_ops;
3342
3343	/* Register for napi ...We are registering NAPI for each grp */
3344	for (i = 0; i < priv->num_grps; i++) {
3345		if (priv->poll_mode == GFAR_SQ_POLLING) {
3346			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3347				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
3348			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3349				       gfar_poll_tx_sq, 2);
3350		} else {
3351			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
3352				       gfar_poll_rx, GFAR_DEV_WEIGHT);
3353			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
3354				       gfar_poll_tx, 2);
3355		}
 
3356	}
 
 
 
3357
3358	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
3359		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3360				   NETIF_F_RXCSUM;
3361		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
3362				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
3363	}
 
 
 
3364
3365	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
3366		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
3367				    NETIF_F_HW_VLAN_CTAG_RX;
3368		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
3369	}
3370
3371	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
3372
3373	gfar_init_addr_hash_table(priv);
3374
3375	/* Insert receive time stamps into padding alignment bytes, and
3376	 * plus 2 bytes padding to ensure the cpu alignment.
3377	 */
3378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3379		priv->padding = 8 + DEFAULT_PADDING;
3380
3381	if (dev->features & NETIF_F_IP_CSUM ||
3382	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
3383		dev->needed_headroom = GMAC_FCB_LEN;
3384
3385	/* Initializing some of the rx/tx queue level parameters */
3386	for (i = 0; i < priv->num_tx_queues; i++) {
3387		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
3388		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
3389		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
3390		priv->tx_queue[i]->txic = DEFAULT_TXIC;
3391	}
 
 
3392
3393	for (i = 0; i < priv->num_rx_queues; i++) {
3394		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
3395		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
3396		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
3397	}
3398
3399	/* Always enable rx filer if available */
3400	priv->rx_filer_enable =
3401	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
3402	/* Enable most messages by default */
3403	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
3404	/* use pritority h/w tx queue scheduling for single queue devices */
3405	if (priv->num_tx_queues == 1)
3406		priv->prio_sched_en = 1;
3407
3408	set_bit(GFAR_DOWN, &priv->state);
3409
3410	gfar_hw_init(priv);
3411
3412	/* Carrier starts down, phylib will bring it up */
3413	netif_carrier_off(dev);
3414
3415	err = register_netdev(dev);
3416
3417	if (err) {
3418		pr_err("%s: Cannot register net device, aborting\n", dev->name);
3419		goto register_fail;
3420	}
3421
3422	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
3423		priv->wol_supported |= GFAR_WOL_MAGIC;
3424
3425	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
3426	    priv->rx_filer_enable)
3427		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
3428
3429	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
3430
3431	/* fill out IRQ number and name fields */
3432	for (i = 0; i < priv->num_grps; i++) {
3433		struct gfar_priv_grp *grp = &priv->gfargrp[i];
3434		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3435			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
3436				dev->name, "_g", '0' + i, "_tx");
3437			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
3438				dev->name, "_g", '0' + i, "_rx");
3439			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
3440				dev->name, "_g", '0' + i, "_er");
3441		} else
3442			strcpy(gfar_irq(grp, TX)->name, dev->name);
3443	}
3444
3445	/* Initialize the filer table */
3446	gfar_init_filer_table(priv);
3447
3448	/* Print out the device info */
3449	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
3450
3451	/* Even more device info helps when determining which kernel
3452	 * provided which set of benchmarks.
3453	 */
3454	netdev_info(dev, "Running with NAPI enabled\n");
3455	for (i = 0; i < priv->num_rx_queues; i++)
3456		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
3457			    i, priv->rx_queue[i]->rx_ring_size);
3458	for (i = 0; i < priv->num_tx_queues; i++)
3459		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
3460			    i, priv->tx_queue[i]->tx_ring_size);
3461
3462	return 0;
3463
3464register_fail:
3465	if (of_phy_is_fixed_link(np))
3466		of_phy_deregister_fixed_link(np);
3467	unmap_group_regs(priv);
3468	gfar_free_rx_queues(priv);
3469	gfar_free_tx_queues(priv);
3470	of_node_put(priv->phy_node);
3471	of_node_put(priv->tbi_node);
3472	free_gfar_dev(priv);
3473	return err;
3474}
3475
3476static int gfar_remove(struct platform_device *ofdev)
3477{
3478	struct gfar_private *priv = platform_get_drvdata(ofdev);
3479	struct device_node *np = ofdev->dev.of_node;
3480
3481	of_node_put(priv->phy_node);
3482	of_node_put(priv->tbi_node);
3483
3484	unregister_netdev(priv->ndev);
 
 
 
 
 
 
 
 
 
 
 
 
 
3485
3486	if (of_phy_is_fixed_link(np))
3487		of_phy_deregister_fixed_link(np);
 
 
 
3488
3489	unmap_group_regs(priv);
3490	gfar_free_rx_queues(priv);
3491	gfar_free_tx_queues(priv);
3492	free_gfar_dev(priv);
3493
3494	return 0;
3495}
3496
3497#ifdef CONFIG_PM
3498
3499static void __gfar_filer_disable(struct gfar_private *priv)
3500{
3501	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3502	u32 temp;
3503
3504	temp = gfar_read(&regs->rctrl);
3505	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
3506	gfar_write(&regs->rctrl, temp);
3507}
3508
3509static void __gfar_filer_enable(struct gfar_private *priv)
3510{
3511	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3512	u32 temp;
3513
3514	temp = gfar_read(&regs->rctrl);
3515	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
3516	gfar_write(&regs->rctrl, temp);
3517}
3518
3519/* Filer rules implementing wol capabilities */
3520static void gfar_filer_config_wol(struct gfar_private *priv)
3521{
3522	unsigned int i;
3523	u32 rqfcr;
3524
3525	__gfar_filer_disable(priv);
3526
3527	/* clear the filer table, reject any packet by default */
3528	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
3529	for (i = 0; i <= MAX_FILER_IDX; i++)
3530		gfar_write_filer(priv, i, rqfcr, 0);
3531
3532	i = 0;
3533	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
3534		/* unicast packet, accept it */
3535		struct net_device *ndev = priv->ndev;
3536		/* get the default rx queue index */
3537		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
3538		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
3539				    (ndev->dev_addr[1] << 8) |
3540				     ndev->dev_addr[2];
3541
3542		rqfcr = (qindex << 10) | RQFCR_AND |
3543			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
3544
3545		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3546
3547		dest_mac_addr = (ndev->dev_addr[3] << 16) |
3548				(ndev->dev_addr[4] << 8) |
3549				 ndev->dev_addr[5];
3550		rqfcr = (qindex << 10) | RQFCR_GPI |
3551			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
3552		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
3553	}
3554
3555	__gfar_filer_enable(priv);
3556}
3557
3558static void gfar_filer_restore_table(struct gfar_private *priv)
3559{
3560	u32 rqfcr, rqfpr;
3561	unsigned int i;
3562
3563	__gfar_filer_disable(priv);
3564
3565	for (i = 0; i <= MAX_FILER_IDX; i++) {
3566		rqfcr = priv->ftp_rqfcr[i];
3567		rqfpr = priv->ftp_rqfpr[i];
3568		gfar_write_filer(priv, i, rqfcr, rqfpr);
3569	}
3570
3571	__gfar_filer_enable(priv);
3572}
3573
3574/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
3575static void gfar_start_wol_filer(struct gfar_private *priv)
3576{
3577	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3578	u32 tempval;
3579	int i = 0;
 
3580
3581	/* Enable Rx hw queues */
3582	gfar_write(&regs->rqueue, priv->rqueue);
3583
3584	/* Initialize DMACTRL to have WWR and WOP */
3585	tempval = gfar_read(&regs->dmactrl);
3586	tempval |= DMACTRL_INIT_SETTINGS;
3587	gfar_write(&regs->dmactrl, tempval);
 
3588
3589	/* Make sure we aren't stopped */
3590	tempval = gfar_read(&regs->dmactrl);
3591	tempval &= ~DMACTRL_GRS;
3592	gfar_write(&regs->dmactrl, tempval);
 
3593
3594	for (i = 0; i < priv->num_grps; i++) {
3595		regs = priv->gfargrp[i].regs;
3596		/* Clear RHLT, so that the DMA starts polling now */
3597		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
3598		/* enable the Filer General Purpose Interrupt */
3599		gfar_write(&regs->imask, IMASK_FGPI);
3600	}
3601
3602	/* Enable Rx DMA */
3603	tempval = gfar_read(&regs->maccfg1);
3604	tempval |= MACCFG1_RX_EN;
3605	gfar_write(&regs->maccfg1, tempval);
3606}
3607
3608static int gfar_suspend(struct device *dev)
3609{
3610	struct gfar_private *priv = dev_get_drvdata(dev);
3611	struct net_device *ndev = priv->ndev;
3612	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3613	u32 tempval;
3614	u16 wol = priv->wol_opts;
3615
3616	if (!netif_running(ndev))
3617		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3618
3619	disable_napi(priv);
3620	netif_tx_lock(ndev);
3621	netif_device_detach(ndev);
3622	netif_tx_unlock(ndev);
3623
3624	gfar_halt(priv);
 
3625
3626	if (wol & GFAR_WOL_MAGIC) {
3627		/* Enable interrupt on Magic Packet */
3628		gfar_write(&regs->imask, IMASK_MAG);
 
3629
3630		/* Enable Magic Packet mode */
3631		tempval = gfar_read(&regs->maccfg2);
3632		tempval |= MACCFG2_MPEN;
3633		gfar_write(&regs->maccfg2, tempval);
3634
3635		/* re-enable the Rx block */
3636		tempval = gfar_read(&regs->maccfg1);
3637		tempval |= MACCFG1_RX_EN;
3638		gfar_write(&regs->maccfg1, tempval);
3639
3640	} else if (wol & GFAR_WOL_FILER_UCAST) {
3641		gfar_filer_config_wol(priv);
3642		gfar_start_wol_filer(priv);
3643
3644	} else {
3645		phy_stop(ndev->phydev);
3646	}
3647
3648	return 0;
3649}
3650
3651static int gfar_resume(struct device *dev)
3652{
3653	struct gfar_private *priv = dev_get_drvdata(dev);
3654	struct net_device *ndev = priv->ndev;
3655	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3656	u32 tempval;
3657	u16 wol = priv->wol_opts;
3658
3659	if (!netif_running(ndev))
3660		return 0;
3661
3662	if (wol & GFAR_WOL_MAGIC) {
3663		/* Disable Magic Packet mode */
3664		tempval = gfar_read(&regs->maccfg2);
3665		tempval &= ~MACCFG2_MPEN;
3666		gfar_write(&regs->maccfg2, tempval);
 
3667
3668	} else if (wol & GFAR_WOL_FILER_UCAST) {
3669		/* need to stop rx only, tx is already down */
3670		gfar_halt(priv);
3671		gfar_filer_restore_table(priv);
3672
3673	} else {
3674		phy_start(ndev->phydev);
 
 
3675	}
3676
3677	gfar_start(priv);
3678
3679	netif_device_attach(ndev);
3680	enable_napi(priv);
3681
3682	return 0;
3683}
3684
3685static int gfar_restore(struct device *dev)
3686{
3687	struct gfar_private *priv = dev_get_drvdata(dev);
3688	struct net_device *ndev = priv->ndev;
3689
3690	if (!netif_running(ndev)) {
3691		netif_device_attach(ndev);
3692
3693		return 0;
3694	}
3695
3696	gfar_init_bds(ndev);
3697
3698	gfar_mac_reset(priv);
3699
3700	gfar_init_tx_rx_base(priv);
3701
3702	gfar_start(priv);
3703
3704	priv->oldlink = 0;
3705	priv->oldspeed = 0;
3706	priv->oldduplex = -1;
3707
3708	if (ndev->phydev)
3709		phy_start(ndev->phydev);
3710
3711	netif_device_attach(ndev);
3712	enable_napi(priv);
3713
3714	return 0;
3715}
3716
3717static const struct dev_pm_ops gfar_pm_ops = {
3718	.suspend = gfar_suspend,
3719	.resume = gfar_resume,
3720	.freeze = gfar_suspend,
3721	.thaw = gfar_resume,
3722	.restore = gfar_restore,
3723};
3724
3725#define GFAR_PM_OPS (&gfar_pm_ops)
3726
3727#else
3728
3729#define GFAR_PM_OPS NULL
3730
3731#endif
3732
3733static const struct of_device_id gfar_match[] =
3734{
3735	{
3736		.type = "network",
3737		.compatible = "gianfar",
3738	},
3739	{
3740		.compatible = "fsl,etsec2",
3741	},
3742	{},
3743};
3744MODULE_DEVICE_TABLE(of, gfar_match);
3745
3746/* Structure for a device driver */
3747static struct platform_driver gfar_driver = {
3748	.driver = {
3749		.name = "fsl-gianfar",
3750		.pm = GFAR_PM_OPS,
3751		.of_match_table = gfar_match,
3752	},
3753	.probe = gfar_probe,
3754	.remove = gfar_remove,
3755};
3756
3757module_platform_driver(gfar_driver);