Linux Audio

Check our new training course

Loading...
v4.6
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <asm/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120				int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148				  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156			    dma_addr_t buf)
 157{
 158	u32 lstatus;
 159
 160	bdp->bufPtr = cpu_to_be32(buf);
 161
 162	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164		lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166	gfar_wmb();
 167
 168	bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173	struct gfar_private *priv = netdev_priv(ndev);
 174	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175	struct gfar_priv_tx_q *tx_queue = NULL;
 176	struct gfar_priv_rx_q *rx_queue = NULL;
 177	struct txbd8 *txbdp;
 178	u32 __iomem *rfbptr;
 179	int i, j;
 180
 181	for (i = 0; i < priv->num_tx_queues; i++) {
 182		tx_queue = priv->tx_queue[i];
 183		/* Initialize some variables in our dev structure */
 184		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186		tx_queue->cur_tx = tx_queue->tx_bd_base;
 187		tx_queue->skb_curtx = 0;
 188		tx_queue->skb_dirtytx = 0;
 189
 190		/* Initialize Transmit Descriptor Ring */
 191		txbdp = tx_queue->tx_bd_base;
 192		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193			txbdp->lstatus = 0;
 194			txbdp->bufPtr = 0;
 195			txbdp++;
 196		}
 197
 198		/* Set the last descriptor in the ring to indicate wrap */
 199		txbdp--;
 200		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201					    TXBD_WRAP);
 202	}
 203
 204	rfbptr = &regs->rfbptr0;
 205	for (i = 0; i < priv->num_rx_queues; i++) {
 206		rx_queue = priv->rx_queue[i];
 207
 208		rx_queue->next_to_clean = 0;
 209		rx_queue->next_to_use = 0;
 210		rx_queue->next_to_alloc = 0;
 211
 212		/* make sure next_to_clean != next_to_use after this
 213		 * by leaving at least 1 unused descriptor
 214		 */
 215		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217		rx_queue->rfbptr = rfbptr;
 218		rfbptr += 2;
 219	}
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224	void *vaddr;
 225	dma_addr_t addr;
 226	int i, j;
 227	struct gfar_private *priv = netdev_priv(ndev);
 228	struct device *dev = priv->dev;
 229	struct gfar_priv_tx_q *tx_queue = NULL;
 230	struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232	priv->total_tx_ring_size = 0;
 233	for (i = 0; i < priv->num_tx_queues; i++)
 234		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236	priv->total_rx_ring_size = 0;
 237	for (i = 0; i < priv->num_rx_queues; i++)
 238		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240	/* Allocate memory for the buffer descriptors */
 241	vaddr = dma_alloc_coherent(dev,
 242				   (priv->total_tx_ring_size *
 243				    sizeof(struct txbd8)) +
 244				   (priv->total_rx_ring_size *
 245				    sizeof(struct rxbd8)),
 246				   &addr, GFP_KERNEL);
 247	if (!vaddr)
 248		return -ENOMEM;
 249
 250	for (i = 0; i < priv->num_tx_queues; i++) {
 251		tx_queue = priv->tx_queue[i];
 252		tx_queue->tx_bd_base = vaddr;
 253		tx_queue->tx_bd_dma_base = addr;
 254		tx_queue->dev = ndev;
 255		/* enet DMA only understands physical addresses */
 256		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258	}
 259
 260	/* Start the rx descriptor ring where the tx ring leaves off */
 261	for (i = 0; i < priv->num_rx_queues; i++) {
 262		rx_queue = priv->rx_queue[i];
 263		rx_queue->rx_bd_base = vaddr;
 264		rx_queue->rx_bd_dma_base = addr;
 265		rx_queue->ndev = ndev;
 266		rx_queue->dev = dev;
 267		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269	}
 270
 271	/* Setup the skbuff rings */
 272	for (i = 0; i < priv->num_tx_queues; i++) {
 273		tx_queue = priv->tx_queue[i];
 274		tx_queue->tx_skbuff =
 275			kmalloc_array(tx_queue->tx_ring_size,
 276				      sizeof(*tx_queue->tx_skbuff),
 277				      GFP_KERNEL);
 278		if (!tx_queue->tx_skbuff)
 279			goto cleanup;
 280
 281		for (j = 0; j < tx_queue->tx_ring_size; j++)
 282			tx_queue->tx_skbuff[j] = NULL;
 283	}
 284
 285	for (i = 0; i < priv->num_rx_queues; i++) {
 286		rx_queue = priv->rx_queue[i];
 287		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288					    sizeof(*rx_queue->rx_buff),
 289					    GFP_KERNEL);
 290		if (!rx_queue->rx_buff)
 291			goto cleanup;
 292	}
 293
 294	gfar_init_bds(ndev);
 295
 296	return 0;
 297
 298cleanup:
 299	free_skb_resources(priv);
 300	return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306	u32 __iomem *baddr;
 307	int i;
 308
 309	baddr = &regs->tbase0;
 310	for (i = 0; i < priv->num_tx_queues; i++) {
 311		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312		baddr += 2;
 313	}
 314
 315	baddr = &regs->rbase0;
 316	for (i = 0; i < priv->num_rx_queues; i++) {
 317		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318		baddr += 2;
 319	}
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325	u32 __iomem *baddr;
 326	int i;
 327
 328	baddr = &regs->rqprm0;
 329	for (i = 0; i < priv->num_rx_queues; i++) {
 330		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332		baddr++;
 333	}
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338	/* set this when rx hw offload (TOE) functions are being used */
 339	priv->uses_rxfcb = 0;
 340
 341	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342		priv->uses_rxfcb = 1;
 343
 344	if (priv->hwts_rx_en || priv->rx_filer_enable)
 345		priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351	u32 rctrl = 0;
 352
 353	if (priv->rx_filer_enable) {
 354		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355		/* Program the RIR0 reg with the required distribution */
 356		if (priv->poll_mode == GFAR_SQ_POLLING)
 357			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358		else /* GFAR_MQ_POLLING */
 359			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360	}
 361
 362	/* Restore PROMISC mode */
 363	if (priv->ndev->flags & IFF_PROMISC)
 364		rctrl |= RCTRL_PROM;
 365
 366	if (priv->ndev->features & NETIF_F_RXCSUM)
 367		rctrl |= RCTRL_CHECKSUMMING;
 368
 369	if (priv->extended_hash)
 370		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372	if (priv->padding) {
 373		rctrl &= ~RCTRL_PAL_MASK;
 374		rctrl |= RCTRL_PADDING(priv->padding);
 375	}
 376
 377	/* Enable HW time stamping if requested from user space */
 378	if (priv->hwts_rx_en)
 379		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384	/* Clear the LFC bit */
 385	gfar_write(&regs->rctrl, rctrl);
 386	/* Init flow control threshold values */
 387	gfar_init_rqprm(priv);
 388	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389	rctrl |= RCTRL_LFC;
 390
 391	/* Init rctrl based on our settings */
 392	gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398	u32 tctrl = 0;
 399
 400	if (priv->ndev->features & NETIF_F_IP_CSUM)
 401		tctrl |= TCTRL_INIT_CSUM;
 402
 403	if (priv->prio_sched_en)
 404		tctrl |= TCTRL_TXSCHED_PRIO;
 405	else {
 406		tctrl |= TCTRL_TXSCHED_WRRS;
 407		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409	}
 410
 411	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412		tctrl |= TCTRL_VLINS;
 413
 414	gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418			       unsigned long tx_mask, unsigned long rx_mask)
 419{
 420	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421	u32 __iomem *baddr;
 422
 423	if (priv->mode == MQ_MG_MODE) {
 424		int i = 0;
 425
 426		baddr = &regs->txic0;
 427		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428			gfar_write(baddr + i, 0);
 429			if (likely(priv->tx_queue[i]->txcoalescing))
 430				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431		}
 432
 433		baddr = &regs->rxic0;
 434		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435			gfar_write(baddr + i, 0);
 436			if (likely(priv->rx_queue[i]->rxcoalescing))
 437				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438		}
 439	} else {
 440		/* Backward compatible case -- even if we enable
 441		 * multiple queues, there's only single reg to program
 442		 */
 443		gfar_write(&regs->txic, 0);
 444		if (likely(priv->tx_queue[0]->txcoalescing))
 445			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447		gfar_write(&regs->rxic, 0);
 448		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450	}
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460	struct gfar_private *priv = netdev_priv(dev);
 461	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462	unsigned long tx_packets = 0, tx_bytes = 0;
 463	int i;
 464
 465	for (i = 0; i < priv->num_rx_queues; i++) {
 466		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469	}
 470
 471	dev->stats.rx_packets = rx_packets;
 472	dev->stats.rx_bytes   = rx_bytes;
 473	dev->stats.rx_dropped = rx_dropped;
 474
 475	for (i = 0; i < priv->num_tx_queues; i++) {
 476		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 478	}
 479
 480	dev->stats.tx_bytes   = tx_bytes;
 481	dev->stats.tx_packets = tx_packets;
 482
 483	return &dev->stats;
 484}
 485
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488	eth_mac_addr(dev, p);
 489
 490	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492	return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496	.ndo_open = gfar_enet_open,
 497	.ndo_start_xmit = gfar_start_xmit,
 498	.ndo_stop = gfar_close,
 499	.ndo_change_mtu = gfar_change_mtu,
 500	.ndo_set_features = gfar_set_features,
 501	.ndo_set_rx_mode = gfar_set_multi,
 502	.ndo_tx_timeout = gfar_timeout,
 503	.ndo_do_ioctl = gfar_ioctl,
 504	.ndo_get_stats = gfar_get_stats,
 505	.ndo_set_mac_address = gfar_set_mac_addr,
 506	.ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508	.ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514	int i;
 515	for (i = 0; i < priv->num_grps; i++) {
 516		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517		/* Clear IEVENT */
 518		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520		/* Initialize IMASK */
 521		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522	}
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527	int i;
 528	for (i = 0; i < priv->num_grps; i++) {
 529		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530		/* Unmask the interrupts we look for */
 531		gfar_write(&regs->imask, IMASK_DEFAULT);
 532	}
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537	int i;
 538
 539	for (i = 0; i < priv->num_tx_queues; i++) {
 540		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541					    GFP_KERNEL);
 542		if (!priv->tx_queue[i])
 543			return -ENOMEM;
 544
 545		priv->tx_queue[i]->tx_skbuff = NULL;
 546		priv->tx_queue[i]->qindex = i;
 547		priv->tx_queue[i]->dev = priv->ndev;
 548		spin_lock_init(&(priv->tx_queue[i]->txlock));
 549	}
 550	return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555	int i;
 556
 557	for (i = 0; i < priv->num_rx_queues; i++) {
 558		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559					    GFP_KERNEL);
 560		if (!priv->rx_queue[i])
 561			return -ENOMEM;
 562
 563		priv->rx_queue[i]->qindex = i;
 564		priv->rx_queue[i]->ndev = priv->ndev;
 565	}
 566	return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571	int i;
 572
 573	for (i = 0; i < priv->num_tx_queues; i++)
 574		kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579	int i;
 580
 581	for (i = 0; i < priv->num_rx_queues; i++)
 582		kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587	int i;
 588
 589	for (i = 0; i < MAXGROUPS; i++)
 590		if (priv->gfargrp[i].regs)
 591			iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596	int i, j;
 597
 598	for (i = 0; i < priv->num_grps; i++)
 599		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600			kfree(priv->gfargrp[i].irqinfo[j]);
 601			priv->gfargrp[i].irqinfo[j] = NULL;
 602		}
 603
 604	free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609	int i;
 610
 611	for (i = 0; i < priv->num_grps; i++) {
 612		napi_disable(&priv->gfargrp[i].napi_rx);
 613		napi_disable(&priv->gfargrp[i].napi_tx);
 614	}
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619	int i;
 620
 621	for (i = 0; i < priv->num_grps; i++) {
 622		napi_enable(&priv->gfargrp[i].napi_rx);
 623		napi_enable(&priv->gfargrp[i].napi_tx);
 624	}
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628			    struct gfar_private *priv, const char *model)
 629{
 630	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631	int i;
 632
 633	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635					  GFP_KERNEL);
 636		if (!grp->irqinfo[i])
 637			return -ENOMEM;
 638	}
 639
 640	grp->regs = of_iomap(np, 0);
 641	if (!grp->regs)
 642		return -ENOMEM;
 643
 644	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646	/* If we aren't the FEC we have multiple interrupts */
 647	if (model && strcasecmp(model, "FEC")) {
 648		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650		if (!gfar_irq(grp, TX)->irq ||
 651		    !gfar_irq(grp, RX)->irq ||
 652		    !gfar_irq(grp, ER)->irq)
 653			return -EINVAL;
 654	}
 655
 656	grp->priv = priv;
 657	spin_lock_init(&grp->grplock);
 658	if (priv->mode == MQ_MG_MODE) {
 659		u32 rxq_mask, txq_mask;
 660		int ret;
 661
 662		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666		if (!ret) {
 667			grp->rx_bit_map = rxq_mask ?
 668			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669		}
 670
 671		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672		if (!ret) {
 673			grp->tx_bit_map = txq_mask ?
 674			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675		}
 676
 677		if (priv->poll_mode == GFAR_SQ_POLLING) {
 678			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681		}
 682	} else {
 683		grp->rx_bit_map = 0xFF;
 684		grp->tx_bit_map = 0xFF;
 685	}
 686
 687	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688	 * right to left, so we need to revert the 8 bits to get the q index
 689	 */
 690	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694	 * also assign queues to groups
 695	 */
 696	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697		if (!grp->rx_queue)
 698			grp->rx_queue = priv->rx_queue[i];
 699		grp->num_rx_queues++;
 700		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702		priv->rx_queue[i]->grp = grp;
 703	}
 704
 705	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706		if (!grp->tx_queue)
 707			grp->tx_queue = priv->tx_queue[i];
 708		grp->num_tx_queues++;
 709		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710		priv->tqueue |= (TQUEUE_EN0 >> i);
 711		priv->tx_queue[i]->grp = grp;
 712	}
 713
 714	priv->num_grps++;
 715
 716	return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721	struct device_node *child;
 722	int num = 0;
 723
 724	for_each_available_child_of_node(np, child)
 725		if (!of_node_cmp(child->name, "queue-group"))
 726			num++;
 727
 728	return num;
 729}
 730
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733	const char *model;
 734	const char *ctype;
 735	const void *mac_addr;
 736	int err = 0, i;
 737	struct net_device *dev = NULL;
 738	struct gfar_private *priv = NULL;
 739	struct device_node *np = ofdev->dev.of_node;
 740	struct device_node *child = NULL;
 741	u32 stash_len = 0;
 742	u32 stash_idx = 0;
 743	unsigned int num_tx_qs, num_rx_qs;
 744	unsigned short mode, poll_mode;
 745
 746	if (!np)
 747		return -ENODEV;
 748
 749	if (of_device_is_compatible(np, "fsl,etsec2")) {
 750		mode = MQ_MG_MODE;
 751		poll_mode = GFAR_SQ_POLLING;
 752	} else {
 753		mode = SQ_SG_MODE;
 754		poll_mode = GFAR_SQ_POLLING;
 755	}
 756
 757	if (mode == SQ_SG_MODE) {
 758		num_tx_qs = 1;
 759		num_rx_qs = 1;
 760	} else { /* MQ_MG_MODE */
 761		/* get the actual number of supported groups */
 762		unsigned int num_grps = gfar_of_group_count(np);
 763
 764		if (num_grps == 0 || num_grps > MAXGROUPS) {
 765			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766				num_grps);
 767			pr_err("Cannot do alloc_etherdev, aborting\n");
 768			return -EINVAL;
 769		}
 770
 771		if (poll_mode == GFAR_SQ_POLLING) {
 772			num_tx_qs = num_grps; /* one txq per int group */
 773			num_rx_qs = num_grps; /* one rxq per int group */
 774		} else { /* GFAR_MQ_POLLING */
 775			u32 tx_queues, rx_queues;
 776			int ret;
 777
 778			/* parse the num of HW tx and rx queues */
 779			ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780						   &tx_queues);
 781			num_tx_qs = ret ? 1 : tx_queues;
 782
 783			ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784						   &rx_queues);
 785			num_rx_qs = ret ? 1 : rx_queues;
 786		}
 787	}
 788
 789	if (num_tx_qs > MAX_TX_QS) {
 790		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791		       num_tx_qs, MAX_TX_QS);
 792		pr_err("Cannot do alloc_etherdev, aborting\n");
 793		return -EINVAL;
 794	}
 795
 796	if (num_rx_qs > MAX_RX_QS) {
 797		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798		       num_rx_qs, MAX_RX_QS);
 799		pr_err("Cannot do alloc_etherdev, aborting\n");
 800		return -EINVAL;
 801	}
 802
 803	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804	dev = *pdev;
 805	if (NULL == dev)
 806		return -ENOMEM;
 807
 808	priv = netdev_priv(dev);
 809	priv->ndev = dev;
 810
 811	priv->mode = mode;
 812	priv->poll_mode = poll_mode;
 813
 814	priv->num_tx_queues = num_tx_qs;
 815	netif_set_real_num_rx_queues(dev, num_rx_qs);
 816	priv->num_rx_queues = num_rx_qs;
 817
 818	err = gfar_alloc_tx_queues(priv);
 819	if (err)
 820		goto tx_alloc_failed;
 821
 822	err = gfar_alloc_rx_queues(priv);
 823	if (err)
 824		goto rx_alloc_failed;
 825
 826	err = of_property_read_string(np, "model", &model);
 827	if (err) {
 828		pr_err("Device model property missing, aborting\n");
 829		goto rx_alloc_failed;
 830	}
 831
 832	/* Init Rx queue filer rule set linked list */
 833	INIT_LIST_HEAD(&priv->rx_list.list);
 834	priv->rx_list.count = 0;
 835	mutex_init(&priv->rx_queue_access);
 836
 837	for (i = 0; i < MAXGROUPS; i++)
 838		priv->gfargrp[i].regs = NULL;
 839
 840	/* Parse and initialize group specific information */
 841	if (priv->mode == MQ_MG_MODE) {
 842		for_each_available_child_of_node(np, child) {
 843			if (of_node_cmp(child->name, "queue-group"))
 844				continue;
 845
 846			err = gfar_parse_group(child, priv, model);
 847			if (err)
 848				goto err_grp_init;
 849		}
 850	} else { /* SQ_SG_MODE */
 851		err = gfar_parse_group(np, priv, model);
 852		if (err)
 853			goto err_grp_init;
 854	}
 855
 856	if (of_property_read_bool(np, "bd-stash")) {
 857		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858		priv->bd_stash_en = 1;
 859	}
 860
 861	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863	if (err == 0)
 864		priv->rx_stash_size = stash_len;
 865
 866	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868	if (err == 0)
 869		priv->rx_stash_index = stash_idx;
 870
 871	if (stash_len || stash_idx)
 872		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874	mac_addr = of_get_mac_address(np);
 875
 876	if (mac_addr)
 877		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 878
 879	if (model && !strcasecmp(model, "TSEC"))
 880		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881				     FSL_GIANFAR_DEV_HAS_COALESCE |
 882				     FSL_GIANFAR_DEV_HAS_RMON |
 883				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885	if (model && !strcasecmp(model, "eTSEC"))
 886		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887				     FSL_GIANFAR_DEV_HAS_COALESCE |
 888				     FSL_GIANFAR_DEV_HAS_RMON |
 889				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890				     FSL_GIANFAR_DEV_HAS_CSUM |
 891				     FSL_GIANFAR_DEV_HAS_VLAN |
 892				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894				     FSL_GIANFAR_DEV_HAS_TIMER |
 895				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897	err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899	/* We only care about rgmii-id.  The rest are autodetected */
 900	if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 902	else
 903		priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905	if (of_find_property(np, "fsl,magic-packet", NULL))
 906		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913	/* In the case of a fixed PHY, the DT node associated
 914	 * to the PHY is the Ethernet MAC DT node.
 915	 */
 916	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917		err = of_phy_register_fixed_link(np);
 918		if (err)
 919			goto err_grp_init;
 920
 921		priv->phy_node = of_node_get(np);
 922	}
 923
 924	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927	return 0;
 928
 929err_grp_init:
 930	unmap_group_regs(priv);
 931rx_alloc_failed:
 932	gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934	gfar_free_tx_queues(priv);
 935	free_gfar_dev(priv);
 936	return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941	struct hwtstamp_config config;
 942	struct gfar_private *priv = netdev_priv(netdev);
 943
 944	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945		return -EFAULT;
 946
 947	/* reserved for future extensions */
 948	if (config.flags)
 949		return -EINVAL;
 950
 951	switch (config.tx_type) {
 952	case HWTSTAMP_TX_OFF:
 953		priv->hwts_tx_en = 0;
 954		break;
 955	case HWTSTAMP_TX_ON:
 956		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957			return -ERANGE;
 958		priv->hwts_tx_en = 1;
 959		break;
 960	default:
 961		return -ERANGE;
 962	}
 963
 964	switch (config.rx_filter) {
 965	case HWTSTAMP_FILTER_NONE:
 966		if (priv->hwts_rx_en) {
 967			priv->hwts_rx_en = 0;
 968			reset_gfar(netdev);
 969		}
 970		break;
 971	default:
 972		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973			return -ERANGE;
 974		if (!priv->hwts_rx_en) {
 975			priv->hwts_rx_en = 1;
 976			reset_gfar(netdev);
 977		}
 978		config.rx_filter = HWTSTAMP_FILTER_ALL;
 979		break;
 980	}
 981
 982	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983		-EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988	struct hwtstamp_config config;
 989	struct gfar_private *priv = netdev_priv(netdev);
 990
 991	config.flags = 0;
 992	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993	config.rx_filter = (priv->hwts_rx_en ?
 994			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997		-EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002	struct gfar_private *priv = netdev_priv(dev);
1003
1004	if (!netif_running(dev))
1005		return -EINVAL;
1006
1007	if (cmd == SIOCSHWTSTAMP)
1008		return gfar_hwtstamp_set(dev, rq);
1009	if (cmd == SIOCGHWTSTAMP)
1010		return gfar_hwtstamp_get(dev, rq);
1011
1012	if (!priv->phydev)
1013		return -ENODEV;
1014
1015	return phy_mii_ioctl(priv->phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019				   u32 class)
1020{
1021	u32 rqfpr = FPR_FILER_MASK;
1022	u32 rqfcr = 0x0;
1023
1024	rqfar--;
1025	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026	priv->ftp_rqfpr[rqfar] = rqfpr;
1027	priv->ftp_rqfcr[rqfar] = rqfcr;
1028	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030	rqfar--;
1031	rqfcr = RQFCR_CMP_NOMATCH;
1032	priv->ftp_rqfpr[rqfar] = rqfpr;
1033	priv->ftp_rqfcr[rqfar] = rqfcr;
1034	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036	rqfar--;
1037	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038	rqfpr = class;
1039	priv->ftp_rqfcr[rqfar] = rqfcr;
1040	priv->ftp_rqfpr[rqfar] = rqfpr;
1041	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043	rqfar--;
1044	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045	rqfpr = class;
1046	priv->ftp_rqfcr[rqfar] = rqfcr;
1047	priv->ftp_rqfpr[rqfar] = rqfpr;
1048	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050	return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055	int i = 0x0;
1056	u32 rqfar = MAX_FILER_IDX;
1057	u32 rqfcr = 0x0;
1058	u32 rqfpr = FPR_FILER_MASK;
1059
1060	/* Default rule */
1061	rqfcr = RQFCR_CMP_MATCH;
1062	priv->ftp_rqfcr[rqfar] = rqfcr;
1063	priv->ftp_rqfpr[rqfar] = rqfpr;
1064	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073	/* cur_filer_idx indicated the first non-masked rule */
1074	priv->cur_filer_idx = rqfar;
1075
1076	/* Rest are masked rules */
1077	rqfcr = RQFCR_CMP_NOMATCH;
1078	for (i = 0; i < rqfar; i++) {
1079		priv->ftp_rqfcr[i] = rqfcr;
1080		priv->ftp_rqfpr[i] = rqfpr;
1081		gfar_write_filer(priv, i, rqfcr, rqfpr);
1082	}
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088	unsigned int pvr = mfspr(SPRN_PVR);
1089	unsigned int svr = mfspr(SPRN_SVR);
1090	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091	unsigned int rev = svr & 0xffff;
1092
1093	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1094	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096		priv->errata |= GFAR_ERRATA_74;
1097
1098	/* MPC8313 and MPC837x all rev */
1099	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101		priv->errata |= GFAR_ERRATA_76;
1102
1103	/* MPC8313 Rev < 2.0 */
1104	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105		priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110	unsigned int svr = mfspr(SPRN_SVR);
1111
1112	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113		priv->errata |= GFAR_ERRATA_12;
1114	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124	struct device *dev = &priv->ofdev->dev;
1125
1126	/* no plans to fix */
1127	priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131		__gfar_detect_errata_85xx(priv);
1132	else /* non-mpc85xx parts, i.e. e300 core based */
1133		__gfar_detect_errata_83xx(priv);
1134#endif
1135
1136	if (priv->errata)
1137		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138			 priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144	u32 tempval;
1145
1146	/* Reset MAC layer */
1147	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149	/* We need to delay at least 3 TX clocks */
1150	udelay(3);
1151
1152	/* the soft reset bit is not self-resetting, so we need to
1153	 * clear it before resuming normal operation
1154	 */
1155	gfar_write(&regs->maccfg1, 0);
1156
1157	udelay(3);
1158
1159	gfar_rx_offload_en(priv);
1160
1161	/* Initialize the max receive frame/buffer lengths */
1162	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165	/* Initialize the Minimum Frame Length Register */
1166	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168	/* Initialize MACCFG2. */
1169	tempval = MACCFG2_INIT_SETTINGS;
1170
1171	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174	 */
1175	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178	gfar_write(&regs->maccfg2, tempval);
1179
1180	/* Clear mac addr hash registers */
1181	gfar_write(&regs->igaddr0, 0);
1182	gfar_write(&regs->igaddr1, 0);
1183	gfar_write(&regs->igaddr2, 0);
1184	gfar_write(&regs->igaddr3, 0);
1185	gfar_write(&regs->igaddr4, 0);
1186	gfar_write(&regs->igaddr5, 0);
1187	gfar_write(&regs->igaddr6, 0);
1188	gfar_write(&regs->igaddr7, 0);
1189
1190	gfar_write(&regs->gaddr0, 0);
1191	gfar_write(&regs->gaddr1, 0);
1192	gfar_write(&regs->gaddr2, 0);
1193	gfar_write(&regs->gaddr3, 0);
1194	gfar_write(&regs->gaddr4, 0);
1195	gfar_write(&regs->gaddr5, 0);
1196	gfar_write(&regs->gaddr6, 0);
1197	gfar_write(&regs->gaddr7, 0);
1198
1199	if (priv->extended_hash)
1200		gfar_clear_exact_match(priv->ndev);
1201
1202	gfar_mac_rx_config(priv);
1203
1204	gfar_mac_tx_config(priv);
1205
1206	gfar_set_mac_address(priv->ndev);
1207
1208	gfar_set_multi(priv->ndev);
1209
1210	/* clear ievent and imask before configuring coalescing */
1211	gfar_ints_disable(priv);
1212
1213	/* Configure the coalescing support */
1214	gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220	u32 attrs;
1221
1222	/* Stop the DMA engine now, in case it was running before
1223	 * (The firmware could have used it, and left it running).
1224	 */
1225	gfar_halt(priv);
1226
1227	gfar_mac_reset(priv);
1228
1229	/* Zero out the rmon mib registers if it has them */
1230	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233		/* Mask off the CAM interrupts */
1234		gfar_write(&regs->rmon.cam1, 0xffffffff);
1235		gfar_write(&regs->rmon.cam2, 0xffffffff);
1236	}
1237
1238	/* Initialize ECNTRL */
1239	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241	/* Set the extraction length and index */
1242	attrs = ATTRELI_EL(priv->rx_stash_size) |
1243		ATTRELI_EI(priv->rx_stash_index);
1244
1245	gfar_write(&regs->attreli, attrs);
1246
1247	/* Start with defaults, and add stashing
1248	 * depending on driver parameters
1249	 */
1250	attrs = ATTR_INIT_SETTINGS;
1251
1252	if (priv->bd_stash_en)
1253		attrs |= ATTR_BDSTASH;
1254
1255	if (priv->rx_stash_size != 0)
1256		attrs |= ATTR_BUFSTASH;
1257
1258	gfar_write(&regs->attr, attrs);
1259
1260	/* FIFO configs */
1261	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265	/* Program the interrupt steering regs, only for MG devices */
1266	if (priv->num_grps > 1)
1267		gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275		priv->extended_hash = 1;
1276		priv->hash_width = 9;
1277
1278		priv->hash_regs[0] = &regs->igaddr0;
1279		priv->hash_regs[1] = &regs->igaddr1;
1280		priv->hash_regs[2] = &regs->igaddr2;
1281		priv->hash_regs[3] = &regs->igaddr3;
1282		priv->hash_regs[4] = &regs->igaddr4;
1283		priv->hash_regs[5] = &regs->igaddr5;
1284		priv->hash_regs[6] = &regs->igaddr6;
1285		priv->hash_regs[7] = &regs->igaddr7;
1286		priv->hash_regs[8] = &regs->gaddr0;
1287		priv->hash_regs[9] = &regs->gaddr1;
1288		priv->hash_regs[10] = &regs->gaddr2;
1289		priv->hash_regs[11] = &regs->gaddr3;
1290		priv->hash_regs[12] = &regs->gaddr4;
1291		priv->hash_regs[13] = &regs->gaddr5;
1292		priv->hash_regs[14] = &regs->gaddr6;
1293		priv->hash_regs[15] = &regs->gaddr7;
1294
1295	} else {
1296		priv->extended_hash = 0;
1297		priv->hash_width = 8;
1298
1299		priv->hash_regs[0] = &regs->gaddr0;
1300		priv->hash_regs[1] = &regs->gaddr1;
1301		priv->hash_regs[2] = &regs->gaddr2;
1302		priv->hash_regs[3] = &regs->gaddr3;
1303		priv->hash_regs[4] = &regs->gaddr4;
1304		priv->hash_regs[5] = &regs->gaddr5;
1305		priv->hash_regs[6] = &regs->gaddr6;
1306		priv->hash_regs[7] = &regs->gaddr7;
1307	}
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
 
1315	struct net_device *dev = NULL;
1316	struct gfar_private *priv = NULL;
1317	int err = 0, i;
1318
1319	err = gfar_of_init(ofdev, &dev);
1320
1321	if (err)
1322		return err;
1323
1324	priv = netdev_priv(dev);
1325	priv->ndev = dev;
1326	priv->ofdev = ofdev;
1327	priv->dev = &ofdev->dev;
1328	SET_NETDEV_DEV(dev, &ofdev->dev);
1329
1330	INIT_WORK(&priv->reset_task, gfar_reset_task);
1331
1332	platform_set_drvdata(ofdev, priv);
1333
1334	gfar_detect_errata(priv);
1335
1336	/* Set the dev->base_addr to the gfar reg region */
1337	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1338
1339	/* Fill in the dev structure */
1340	dev->watchdog_timeo = TX_TIMEOUT;
 
1341	dev->mtu = 1500;
 
 
1342	dev->netdev_ops = &gfar_netdev_ops;
1343	dev->ethtool_ops = &gfar_ethtool_ops;
1344
1345	/* Register for napi ...We are registering NAPI for each grp */
1346	for (i = 0; i < priv->num_grps; i++) {
1347		if (priv->poll_mode == GFAR_SQ_POLLING) {
1348			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1349				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1350			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1351				       gfar_poll_tx_sq, 2);
1352		} else {
1353			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1354				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1355			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1356				       gfar_poll_tx, 2);
1357		}
1358	}
1359
1360	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1361		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1362				   NETIF_F_RXCSUM;
1363		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1364				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1365	}
1366
1367	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1368		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1369				    NETIF_F_HW_VLAN_CTAG_RX;
1370		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1371	}
1372
1373	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1374
1375	gfar_init_addr_hash_table(priv);
1376
1377	/* Insert receive time stamps into padding alignment bytes */
1378	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1379		priv->padding = 8;
1380
1381	if (dev->features & NETIF_F_IP_CSUM ||
1382	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383		dev->needed_headroom = GMAC_FCB_LEN;
1384
1385	/* Initializing some of the rx/tx queue level parameters */
1386	for (i = 0; i < priv->num_tx_queues; i++) {
1387		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1388		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1389		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1390		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1391	}
1392
1393	for (i = 0; i < priv->num_rx_queues; i++) {
1394		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1395		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1396		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1397	}
1398
1399	/* Always enable rx filer if available */
1400	priv->rx_filer_enable =
1401	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1402	/* Enable most messages by default */
1403	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1404	/* use pritority h/w tx queue scheduling for single queue devices */
1405	if (priv->num_tx_queues == 1)
1406		priv->prio_sched_en = 1;
1407
1408	set_bit(GFAR_DOWN, &priv->state);
1409
1410	gfar_hw_init(priv);
1411
1412	/* Carrier starts down, phylib will bring it up */
1413	netif_carrier_off(dev);
1414
1415	err = register_netdev(dev);
1416
1417	if (err) {
1418		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1419		goto register_fail;
1420	}
1421
1422	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1423		priv->wol_supported |= GFAR_WOL_MAGIC;
1424
1425	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1426	    priv->rx_filer_enable)
1427		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1428
1429	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1430
1431	/* fill out IRQ number and name fields */
1432	for (i = 0; i < priv->num_grps; i++) {
1433		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1434		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1435			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1436				dev->name, "_g", '0' + i, "_tx");
1437			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1438				dev->name, "_g", '0' + i, "_rx");
1439			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1440				dev->name, "_g", '0' + i, "_er");
1441		} else
1442			strcpy(gfar_irq(grp, TX)->name, dev->name);
1443	}
1444
1445	/* Initialize the filer table */
1446	gfar_init_filer_table(priv);
1447
1448	/* Print out the device info */
1449	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1450
1451	/* Even more device info helps when determining which kernel
1452	 * provided which set of benchmarks.
1453	 */
1454	netdev_info(dev, "Running with NAPI enabled\n");
1455	for (i = 0; i < priv->num_rx_queues; i++)
1456		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1457			    i, priv->rx_queue[i]->rx_ring_size);
1458	for (i = 0; i < priv->num_tx_queues; i++)
1459		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1460			    i, priv->tx_queue[i]->tx_ring_size);
1461
1462	return 0;
1463
1464register_fail:
 
 
1465	unmap_group_regs(priv);
1466	gfar_free_rx_queues(priv);
1467	gfar_free_tx_queues(priv);
1468	of_node_put(priv->phy_node);
1469	of_node_put(priv->tbi_node);
1470	free_gfar_dev(priv);
1471	return err;
1472}
1473
1474static int gfar_remove(struct platform_device *ofdev)
1475{
1476	struct gfar_private *priv = platform_get_drvdata(ofdev);
 
1477
1478	of_node_put(priv->phy_node);
1479	of_node_put(priv->tbi_node);
1480
1481	unregister_netdev(priv->ndev);
 
 
 
 
1482	unmap_group_regs(priv);
1483	gfar_free_rx_queues(priv);
1484	gfar_free_tx_queues(priv);
1485	free_gfar_dev(priv);
1486
1487	return 0;
1488}
1489
1490#ifdef CONFIG_PM
1491
1492static void __gfar_filer_disable(struct gfar_private *priv)
1493{
1494	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1495	u32 temp;
1496
1497	temp = gfar_read(&regs->rctrl);
1498	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1499	gfar_write(&regs->rctrl, temp);
1500}
1501
1502static void __gfar_filer_enable(struct gfar_private *priv)
1503{
1504	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1505	u32 temp;
1506
1507	temp = gfar_read(&regs->rctrl);
1508	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1509	gfar_write(&regs->rctrl, temp);
1510}
1511
1512/* Filer rules implementing wol capabilities */
1513static void gfar_filer_config_wol(struct gfar_private *priv)
1514{
1515	unsigned int i;
1516	u32 rqfcr;
1517
1518	__gfar_filer_disable(priv);
1519
1520	/* clear the filer table, reject any packet by default */
1521	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1522	for (i = 0; i <= MAX_FILER_IDX; i++)
1523		gfar_write_filer(priv, i, rqfcr, 0);
1524
1525	i = 0;
1526	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1527		/* unicast packet, accept it */
1528		struct net_device *ndev = priv->ndev;
1529		/* get the default rx queue index */
1530		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1531		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1532				    (ndev->dev_addr[1] << 8) |
1533				     ndev->dev_addr[2];
1534
1535		rqfcr = (qindex << 10) | RQFCR_AND |
1536			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1537
1538		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1539
1540		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1541				(ndev->dev_addr[4] << 8) |
1542				 ndev->dev_addr[5];
1543		rqfcr = (qindex << 10) | RQFCR_GPI |
1544			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1545		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1546	}
1547
1548	__gfar_filer_enable(priv);
1549}
1550
1551static void gfar_filer_restore_table(struct gfar_private *priv)
1552{
1553	u32 rqfcr, rqfpr;
1554	unsigned int i;
1555
1556	__gfar_filer_disable(priv);
1557
1558	for (i = 0; i <= MAX_FILER_IDX; i++) {
1559		rqfcr = priv->ftp_rqfcr[i];
1560		rqfpr = priv->ftp_rqfpr[i];
1561		gfar_write_filer(priv, i, rqfcr, rqfpr);
1562	}
1563
1564	__gfar_filer_enable(priv);
1565}
1566
1567/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1568static void gfar_start_wol_filer(struct gfar_private *priv)
1569{
1570	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1571	u32 tempval;
1572	int i = 0;
1573
1574	/* Enable Rx hw queues */
1575	gfar_write(&regs->rqueue, priv->rqueue);
1576
1577	/* Initialize DMACTRL to have WWR and WOP */
1578	tempval = gfar_read(&regs->dmactrl);
1579	tempval |= DMACTRL_INIT_SETTINGS;
1580	gfar_write(&regs->dmactrl, tempval);
1581
1582	/* Make sure we aren't stopped */
1583	tempval = gfar_read(&regs->dmactrl);
1584	tempval &= ~DMACTRL_GRS;
1585	gfar_write(&regs->dmactrl, tempval);
1586
1587	for (i = 0; i < priv->num_grps; i++) {
1588		regs = priv->gfargrp[i].regs;
1589		/* Clear RHLT, so that the DMA starts polling now */
1590		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1591		/* enable the Filer General Purpose Interrupt */
1592		gfar_write(&regs->imask, IMASK_FGPI);
1593	}
1594
1595	/* Enable Rx DMA */
1596	tempval = gfar_read(&regs->maccfg1);
1597	tempval |= MACCFG1_RX_EN;
1598	gfar_write(&regs->maccfg1, tempval);
1599}
1600
1601static int gfar_suspend(struct device *dev)
1602{
1603	struct gfar_private *priv = dev_get_drvdata(dev);
1604	struct net_device *ndev = priv->ndev;
1605	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1606	u32 tempval;
1607	u16 wol = priv->wol_opts;
1608
1609	if (!netif_running(ndev))
1610		return 0;
1611
1612	disable_napi(priv);
1613	netif_tx_lock(ndev);
1614	netif_device_detach(ndev);
1615	netif_tx_unlock(ndev);
1616
1617	gfar_halt(priv);
1618
1619	if (wol & GFAR_WOL_MAGIC) {
1620		/* Enable interrupt on Magic Packet */
1621		gfar_write(&regs->imask, IMASK_MAG);
1622
1623		/* Enable Magic Packet mode */
1624		tempval = gfar_read(&regs->maccfg2);
1625		tempval |= MACCFG2_MPEN;
1626		gfar_write(&regs->maccfg2, tempval);
1627
1628		/* re-enable the Rx block */
1629		tempval = gfar_read(&regs->maccfg1);
1630		tempval |= MACCFG1_RX_EN;
1631		gfar_write(&regs->maccfg1, tempval);
1632
1633	} else if (wol & GFAR_WOL_FILER_UCAST) {
1634		gfar_filer_config_wol(priv);
1635		gfar_start_wol_filer(priv);
1636
1637	} else {
1638		phy_stop(priv->phydev);
1639	}
1640
1641	return 0;
1642}
1643
1644static int gfar_resume(struct device *dev)
1645{
1646	struct gfar_private *priv = dev_get_drvdata(dev);
1647	struct net_device *ndev = priv->ndev;
1648	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1649	u32 tempval;
1650	u16 wol = priv->wol_opts;
1651
1652	if (!netif_running(ndev))
1653		return 0;
1654
1655	if (wol & GFAR_WOL_MAGIC) {
1656		/* Disable Magic Packet mode */
1657		tempval = gfar_read(&regs->maccfg2);
1658		tempval &= ~MACCFG2_MPEN;
1659		gfar_write(&regs->maccfg2, tempval);
1660
1661	} else if (wol & GFAR_WOL_FILER_UCAST) {
1662		/* need to stop rx only, tx is already down */
1663		gfar_halt(priv);
1664		gfar_filer_restore_table(priv);
1665
1666	} else {
1667		phy_start(priv->phydev);
1668	}
1669
1670	gfar_start(priv);
1671
1672	netif_device_attach(ndev);
1673	enable_napi(priv);
1674
1675	return 0;
1676}
1677
1678static int gfar_restore(struct device *dev)
1679{
1680	struct gfar_private *priv = dev_get_drvdata(dev);
1681	struct net_device *ndev = priv->ndev;
1682
1683	if (!netif_running(ndev)) {
1684		netif_device_attach(ndev);
1685
1686		return 0;
1687	}
1688
1689	gfar_init_bds(ndev);
1690
1691	gfar_mac_reset(priv);
1692
1693	gfar_init_tx_rx_base(priv);
1694
1695	gfar_start(priv);
1696
1697	priv->oldlink = 0;
1698	priv->oldspeed = 0;
1699	priv->oldduplex = -1;
1700
1701	if (priv->phydev)
1702		phy_start(priv->phydev);
1703
1704	netif_device_attach(ndev);
1705	enable_napi(priv);
1706
1707	return 0;
1708}
1709
1710static struct dev_pm_ops gfar_pm_ops = {
1711	.suspend = gfar_suspend,
1712	.resume = gfar_resume,
1713	.freeze = gfar_suspend,
1714	.thaw = gfar_resume,
1715	.restore = gfar_restore,
1716};
1717
1718#define GFAR_PM_OPS (&gfar_pm_ops)
1719
1720#else
1721
1722#define GFAR_PM_OPS NULL
1723
1724#endif
1725
1726/* Reads the controller's registers to determine what interface
1727 * connects it to the PHY.
1728 */
1729static phy_interface_t gfar_get_interface(struct net_device *dev)
1730{
1731	struct gfar_private *priv = netdev_priv(dev);
1732	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1733	u32 ecntrl;
1734
1735	ecntrl = gfar_read(&regs->ecntrl);
1736
1737	if (ecntrl & ECNTRL_SGMII_MODE)
1738		return PHY_INTERFACE_MODE_SGMII;
1739
1740	if (ecntrl & ECNTRL_TBI_MODE) {
1741		if (ecntrl & ECNTRL_REDUCED_MODE)
1742			return PHY_INTERFACE_MODE_RTBI;
1743		else
1744			return PHY_INTERFACE_MODE_TBI;
1745	}
1746
1747	if (ecntrl & ECNTRL_REDUCED_MODE) {
1748		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1749			return PHY_INTERFACE_MODE_RMII;
1750		}
1751		else {
1752			phy_interface_t interface = priv->interface;
1753
1754			/* This isn't autodetected right now, so it must
1755			 * be set by the device tree or platform code.
1756			 */
1757			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1758				return PHY_INTERFACE_MODE_RGMII_ID;
1759
1760			return PHY_INTERFACE_MODE_RGMII;
1761		}
1762	}
1763
1764	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1765		return PHY_INTERFACE_MODE_GMII;
1766
1767	return PHY_INTERFACE_MODE_MII;
1768}
1769
1770
1771/* Initializes driver's PHY state, and attaches to the PHY.
1772 * Returns 0 on success.
1773 */
1774static int init_phy(struct net_device *dev)
1775{
1776	struct gfar_private *priv = netdev_priv(dev);
1777	uint gigabit_support =
1778		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1779		GFAR_SUPPORTED_GBIT : 0;
1780	phy_interface_t interface;
 
1781
1782	priv->oldlink = 0;
1783	priv->oldspeed = 0;
1784	priv->oldduplex = -1;
1785
1786	interface = gfar_get_interface(dev);
1787
1788	priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1789				      interface);
1790	if (!priv->phydev) {
1791		dev_err(&dev->dev, "could not attach to PHY\n");
1792		return -ENODEV;
1793	}
1794
1795	if (interface == PHY_INTERFACE_MODE_SGMII)
1796		gfar_configure_serdes(dev);
1797
1798	/* Remove any features not supported by the controller */
1799	priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1800	priv->phydev->advertising = priv->phydev->supported;
1801
1802	/* Add support for flow control, but don't advertise it by default */
1803	priv->phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1804
1805	return 0;
1806}
1807
1808/* Initialize TBI PHY interface for communicating with the
1809 * SERDES lynx PHY on the chip.  We communicate with this PHY
1810 * through the MDIO bus on each controller, treating it as a
1811 * "normal" PHY at the address found in the TBIPA register.  We assume
1812 * that the TBIPA register is valid.  Either the MDIO bus code will set
1813 * it to a value that doesn't conflict with other PHYs on the bus, or the
1814 * value doesn't matter, as there are no other PHYs on the bus.
1815 */
1816static void gfar_configure_serdes(struct net_device *dev)
1817{
1818	struct gfar_private *priv = netdev_priv(dev);
1819	struct phy_device *tbiphy;
1820
1821	if (!priv->tbi_node) {
1822		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1823				    "device tree specify a tbi-handle\n");
1824		return;
1825	}
1826
1827	tbiphy = of_phy_find_device(priv->tbi_node);
1828	if (!tbiphy) {
1829		dev_err(&dev->dev, "error: Could not get TBI device\n");
1830		return;
1831	}
1832
1833	/* If the link is already up, we must already be ok, and don't need to
1834	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1835	 * everything for us?  Resetting it takes the link down and requires
1836	 * several seconds for it to come back.
1837	 */
1838	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1839		put_device(&tbiphy->mdio.dev);
1840		return;
1841	}
1842
1843	/* Single clk mode, mii mode off(for serdes communication) */
1844	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1845
1846	phy_write(tbiphy, MII_ADVERTISE,
1847		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1848		  ADVERTISE_1000XPSE_ASYM);
1849
1850	phy_write(tbiphy, MII_BMCR,
1851		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1852		  BMCR_SPEED1000);
1853
1854	put_device(&tbiphy->mdio.dev);
1855}
1856
1857static int __gfar_is_rx_idle(struct gfar_private *priv)
1858{
1859	u32 res;
1860
1861	/* Normaly TSEC should not hang on GRS commands, so we should
1862	 * actually wait for IEVENT_GRSC flag.
1863	 */
1864	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1865		return 0;
1866
1867	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1868	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1869	 * and the Rx can be safely reset.
1870	 */
1871	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1872	res &= 0x7f807f80;
1873	if ((res & 0xffff) == (res >> 16))
1874		return 1;
1875
1876	return 0;
1877}
1878
1879/* Halt the receive and transmit queues */
1880static void gfar_halt_nodisable(struct gfar_private *priv)
1881{
1882	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1883	u32 tempval;
1884	unsigned int timeout;
1885	int stopped;
1886
1887	gfar_ints_disable(priv);
1888
1889	if (gfar_is_dma_stopped(priv))
1890		return;
1891
1892	/* Stop the DMA, and wait for it to stop */
1893	tempval = gfar_read(&regs->dmactrl);
1894	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1895	gfar_write(&regs->dmactrl, tempval);
1896
1897retry:
1898	timeout = 1000;
1899	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1900		cpu_relax();
1901		timeout--;
1902	}
1903
1904	if (!timeout)
1905		stopped = gfar_is_dma_stopped(priv);
1906
1907	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1908	    !__gfar_is_rx_idle(priv))
1909		goto retry;
1910}
1911
1912/* Halt the receive and transmit queues */
1913void gfar_halt(struct gfar_private *priv)
1914{
1915	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1916	u32 tempval;
1917
1918	/* Dissable the Rx/Tx hw queues */
1919	gfar_write(&regs->rqueue, 0);
1920	gfar_write(&regs->tqueue, 0);
1921
1922	mdelay(10);
1923
1924	gfar_halt_nodisable(priv);
1925
1926	/* Disable Rx/Tx DMA */
1927	tempval = gfar_read(&regs->maccfg1);
1928	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1929	gfar_write(&regs->maccfg1, tempval);
1930}
1931
1932void stop_gfar(struct net_device *dev)
1933{
1934	struct gfar_private *priv = netdev_priv(dev);
1935
1936	netif_tx_stop_all_queues(dev);
1937
1938	smp_mb__before_atomic();
1939	set_bit(GFAR_DOWN, &priv->state);
1940	smp_mb__after_atomic();
1941
1942	disable_napi(priv);
1943
1944	/* disable ints and gracefully shut down Rx/Tx DMA */
1945	gfar_halt(priv);
1946
1947	phy_stop(priv->phydev);
1948
1949	free_skb_resources(priv);
1950}
1951
1952static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1953{
1954	struct txbd8 *txbdp;
1955	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1956	int i, j;
1957
1958	txbdp = tx_queue->tx_bd_base;
1959
1960	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1961		if (!tx_queue->tx_skbuff[i])
1962			continue;
1963
1964		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1965				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1966		txbdp->lstatus = 0;
1967		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1968		     j++) {
1969			txbdp++;
1970			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1971				       be16_to_cpu(txbdp->length),
1972				       DMA_TO_DEVICE);
1973		}
1974		txbdp++;
1975		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1976		tx_queue->tx_skbuff[i] = NULL;
1977	}
1978	kfree(tx_queue->tx_skbuff);
1979	tx_queue->tx_skbuff = NULL;
1980}
1981
1982static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1983{
1984	int i;
1985
1986	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1987
1988	if (rx_queue->skb)
1989		dev_kfree_skb(rx_queue->skb);
1990
1991	for (i = 0; i < rx_queue->rx_ring_size; i++) {
1992		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
1993
1994		rxbdp->lstatus = 0;
1995		rxbdp->bufPtr = 0;
1996		rxbdp++;
1997
1998		if (!rxb->page)
1999			continue;
2000
2001		dma_unmap_single(rx_queue->dev, rxb->dma,
2002				 PAGE_SIZE, DMA_FROM_DEVICE);
2003		__free_page(rxb->page);
2004
2005		rxb->page = NULL;
2006	}
2007
2008	kfree(rx_queue->rx_buff);
2009	rx_queue->rx_buff = NULL;
2010}
2011
2012/* If there are any tx skbs or rx skbs still around, free them.
2013 * Then free tx_skbuff and rx_skbuff
2014 */
2015static void free_skb_resources(struct gfar_private *priv)
2016{
2017	struct gfar_priv_tx_q *tx_queue = NULL;
2018	struct gfar_priv_rx_q *rx_queue = NULL;
2019	int i;
2020
2021	/* Go through all the buffer descriptors and free their data buffers */
2022	for (i = 0; i < priv->num_tx_queues; i++) {
2023		struct netdev_queue *txq;
2024
2025		tx_queue = priv->tx_queue[i];
2026		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2027		if (tx_queue->tx_skbuff)
2028			free_skb_tx_queue(tx_queue);
2029		netdev_tx_reset_queue(txq);
2030	}
2031
2032	for (i = 0; i < priv->num_rx_queues; i++) {
2033		rx_queue = priv->rx_queue[i];
2034		if (rx_queue->rx_buff)
2035			free_skb_rx_queue(rx_queue);
2036	}
2037
2038	dma_free_coherent(priv->dev,
2039			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2040			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2041			  priv->tx_queue[0]->tx_bd_base,
2042			  priv->tx_queue[0]->tx_bd_dma_base);
2043}
2044
2045void gfar_start(struct gfar_private *priv)
2046{
2047	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2048	u32 tempval;
2049	int i = 0;
2050
2051	/* Enable Rx/Tx hw queues */
2052	gfar_write(&regs->rqueue, priv->rqueue);
2053	gfar_write(&regs->tqueue, priv->tqueue);
2054
2055	/* Initialize DMACTRL to have WWR and WOP */
2056	tempval = gfar_read(&regs->dmactrl);
2057	tempval |= DMACTRL_INIT_SETTINGS;
2058	gfar_write(&regs->dmactrl, tempval);
2059
2060	/* Make sure we aren't stopped */
2061	tempval = gfar_read(&regs->dmactrl);
2062	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2063	gfar_write(&regs->dmactrl, tempval);
2064
2065	for (i = 0; i < priv->num_grps; i++) {
2066		regs = priv->gfargrp[i].regs;
2067		/* Clear THLT/RHLT, so that the DMA starts polling now */
2068		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2069		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2070	}
2071
2072	/* Enable Rx/Tx DMA */
2073	tempval = gfar_read(&regs->maccfg1);
2074	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2075	gfar_write(&regs->maccfg1, tempval);
2076
2077	gfar_ints_enable(priv);
2078
2079	priv->ndev->trans_start = jiffies; /* prevent tx timeout */
2080}
2081
2082static void free_grp_irqs(struct gfar_priv_grp *grp)
2083{
2084	free_irq(gfar_irq(grp, TX)->irq, grp);
2085	free_irq(gfar_irq(grp, RX)->irq, grp);
2086	free_irq(gfar_irq(grp, ER)->irq, grp);
2087}
2088
2089static int register_grp_irqs(struct gfar_priv_grp *grp)
2090{
2091	struct gfar_private *priv = grp->priv;
2092	struct net_device *dev = priv->ndev;
2093	int err;
2094
2095	/* If the device has multiple interrupts, register for
2096	 * them.  Otherwise, only register for the one
2097	 */
2098	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2099		/* Install our interrupt handlers for Error,
2100		 * Transmit, and Receive
2101		 */
2102		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2103				  gfar_irq(grp, ER)->name, grp);
2104		if (err < 0) {
2105			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2106				  gfar_irq(grp, ER)->irq);
2107
2108			goto err_irq_fail;
2109		}
2110		enable_irq_wake(gfar_irq(grp, ER)->irq);
2111
2112		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2113				  gfar_irq(grp, TX)->name, grp);
2114		if (err < 0) {
2115			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2116				  gfar_irq(grp, TX)->irq);
2117			goto tx_irq_fail;
2118		}
2119		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2120				  gfar_irq(grp, RX)->name, grp);
2121		if (err < 0) {
2122			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2123				  gfar_irq(grp, RX)->irq);
2124			goto rx_irq_fail;
2125		}
2126		enable_irq_wake(gfar_irq(grp, RX)->irq);
2127
2128	} else {
2129		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2130				  gfar_irq(grp, TX)->name, grp);
2131		if (err < 0) {
2132			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2133				  gfar_irq(grp, TX)->irq);
2134			goto err_irq_fail;
2135		}
2136		enable_irq_wake(gfar_irq(grp, TX)->irq);
2137	}
2138
2139	return 0;
2140
2141rx_irq_fail:
2142	free_irq(gfar_irq(grp, TX)->irq, grp);
2143tx_irq_fail:
2144	free_irq(gfar_irq(grp, ER)->irq, grp);
2145err_irq_fail:
2146	return err;
2147
2148}
2149
2150static void gfar_free_irq(struct gfar_private *priv)
2151{
2152	int i;
2153
2154	/* Free the IRQs */
2155	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2156		for (i = 0; i < priv->num_grps; i++)
2157			free_grp_irqs(&priv->gfargrp[i]);
2158	} else {
2159		for (i = 0; i < priv->num_grps; i++)
2160			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2161				 &priv->gfargrp[i]);
2162	}
2163}
2164
2165static int gfar_request_irq(struct gfar_private *priv)
2166{
2167	int err, i, j;
2168
2169	for (i = 0; i < priv->num_grps; i++) {
2170		err = register_grp_irqs(&priv->gfargrp[i]);
2171		if (err) {
2172			for (j = 0; j < i; j++)
2173				free_grp_irqs(&priv->gfargrp[j]);
2174			return err;
2175		}
2176	}
2177
2178	return 0;
2179}
2180
2181/* Bring the controller up and running */
2182int startup_gfar(struct net_device *ndev)
2183{
2184	struct gfar_private *priv = netdev_priv(ndev);
2185	int err;
2186
2187	gfar_mac_reset(priv);
2188
2189	err = gfar_alloc_skb_resources(ndev);
2190	if (err)
2191		return err;
2192
2193	gfar_init_tx_rx_base(priv);
2194
2195	smp_mb__before_atomic();
2196	clear_bit(GFAR_DOWN, &priv->state);
2197	smp_mb__after_atomic();
2198
2199	/* Start Rx/Tx DMA and enable the interrupts */
2200	gfar_start(priv);
2201
2202	/* force link state update after mac reset */
2203	priv->oldlink = 0;
2204	priv->oldspeed = 0;
2205	priv->oldduplex = -1;
2206
2207	phy_start(priv->phydev);
2208
2209	enable_napi(priv);
2210
2211	netif_tx_wake_all_queues(ndev);
2212
2213	return 0;
2214}
2215
2216/* Called when something needs to use the ethernet device
2217 * Returns 0 for success.
2218 */
2219static int gfar_enet_open(struct net_device *dev)
2220{
2221	struct gfar_private *priv = netdev_priv(dev);
2222	int err;
2223
2224	err = init_phy(dev);
2225	if (err)
2226		return err;
2227
2228	err = gfar_request_irq(priv);
2229	if (err)
2230		return err;
2231
2232	err = startup_gfar(dev);
2233	if (err)
2234		return err;
2235
2236	return err;
2237}
2238
2239static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2240{
2241	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2242
2243	memset(fcb, 0, GMAC_FCB_LEN);
2244
2245	return fcb;
2246}
2247
2248static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2249				    int fcb_length)
2250{
2251	/* If we're here, it's a IP packet with a TCP or UDP
2252	 * payload.  We set it to checksum, using a pseudo-header
2253	 * we provide
2254	 */
2255	u8 flags = TXFCB_DEFAULT;
2256
2257	/* Tell the controller what the protocol is
2258	 * And provide the already calculated phcs
2259	 */
2260	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2261		flags |= TXFCB_UDP;
2262		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2263	} else
2264		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2265
2266	/* l3os is the distance between the start of the
2267	 * frame (skb->data) and the start of the IP hdr.
2268	 * l4os is the distance between the start of the
2269	 * l3 hdr and the l4 hdr
2270	 */
2271	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2272	fcb->l4os = skb_network_header_len(skb);
2273
2274	fcb->flags = flags;
2275}
2276
2277void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2278{
2279	fcb->flags |= TXFCB_VLN;
2280	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2281}
2282
2283static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2284				      struct txbd8 *base, int ring_size)
2285{
2286	struct txbd8 *new_bd = bdp + stride;
2287
2288	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2289}
2290
2291static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2292				      int ring_size)
2293{
2294	return skip_txbd(bdp, 1, base, ring_size);
2295}
2296
2297/* eTSEC12: csum generation not supported for some fcb offsets */
2298static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2299				       unsigned long fcb_addr)
2300{
2301	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2302	       (fcb_addr % 0x20) > 0x18);
2303}
2304
2305/* eTSEC76: csum generation for frames larger than 2500 may
2306 * cause excess delays before start of transmission
2307 */
2308static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2309				       unsigned int len)
2310{
2311	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2312	       (len > 2500));
2313}
2314
2315/* This is called by the kernel when a frame is ready for transmission.
2316 * It is pointed to by the dev->hard_start_xmit function pointer
2317 */
2318static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2319{
2320	struct gfar_private *priv = netdev_priv(dev);
2321	struct gfar_priv_tx_q *tx_queue = NULL;
2322	struct netdev_queue *txq;
2323	struct gfar __iomem *regs = NULL;
2324	struct txfcb *fcb = NULL;
2325	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2326	u32 lstatus;
2327	skb_frag_t *frag;
2328	int i, rq = 0;
2329	int do_tstamp, do_csum, do_vlan;
2330	u32 bufaddr;
2331	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2332
2333	rq = skb->queue_mapping;
2334	tx_queue = priv->tx_queue[rq];
2335	txq = netdev_get_tx_queue(dev, rq);
2336	base = tx_queue->tx_bd_base;
2337	regs = tx_queue->grp->regs;
2338
2339	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2340	do_vlan = skb_vlan_tag_present(skb);
2341	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2342		    priv->hwts_tx_en;
2343
2344	if (do_csum || do_vlan)
2345		fcb_len = GMAC_FCB_LEN;
2346
2347	/* check if time stamp should be generated */
2348	if (unlikely(do_tstamp))
2349		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2350
2351	/* make space for additional header when fcb is needed */
2352	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2353		struct sk_buff *skb_new;
2354
2355		skb_new = skb_realloc_headroom(skb, fcb_len);
2356		if (!skb_new) {
2357			dev->stats.tx_errors++;
2358			dev_kfree_skb_any(skb);
2359			return NETDEV_TX_OK;
2360		}
2361
2362		if (skb->sk)
2363			skb_set_owner_w(skb_new, skb->sk);
2364		dev_consume_skb_any(skb);
2365		skb = skb_new;
2366	}
2367
2368	/* total number of fragments in the SKB */
2369	nr_frags = skb_shinfo(skb)->nr_frags;
2370
2371	/* calculate the required number of TxBDs for this skb */
2372	if (unlikely(do_tstamp))
2373		nr_txbds = nr_frags + 2;
2374	else
2375		nr_txbds = nr_frags + 1;
2376
2377	/* check if there is space to queue this packet */
2378	if (nr_txbds > tx_queue->num_txbdfree) {
2379		/* no space, stop the queue */
2380		netif_tx_stop_queue(txq);
2381		dev->stats.tx_fifo_errors++;
2382		return NETDEV_TX_BUSY;
2383	}
2384
2385	/* Update transmit stats */
2386	bytes_sent = skb->len;
2387	tx_queue->stats.tx_bytes += bytes_sent;
2388	/* keep Tx bytes on wire for BQL accounting */
2389	GFAR_CB(skb)->bytes_sent = bytes_sent;
2390	tx_queue->stats.tx_packets++;
2391
2392	txbdp = txbdp_start = tx_queue->cur_tx;
2393	lstatus = be32_to_cpu(txbdp->lstatus);
2394
2395	/* Add TxPAL between FCB and frame if required */
2396	if (unlikely(do_tstamp)) {
2397		skb_push(skb, GMAC_TXPAL_LEN);
2398		memset(skb->data, 0, GMAC_TXPAL_LEN);
2399	}
2400
2401	/* Add TxFCB if required */
2402	if (fcb_len) {
2403		fcb = gfar_add_fcb(skb);
2404		lstatus |= BD_LFLAG(TXBD_TOE);
2405	}
2406
2407	/* Set up checksumming */
2408	if (do_csum) {
2409		gfar_tx_checksum(skb, fcb, fcb_len);
2410
2411		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2412		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2413			__skb_pull(skb, GMAC_FCB_LEN);
2414			skb_checksum_help(skb);
2415			if (do_vlan || do_tstamp) {
2416				/* put back a new fcb for vlan/tstamp TOE */
2417				fcb = gfar_add_fcb(skb);
2418			} else {
2419				/* Tx TOE not used */
2420				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2421				fcb = NULL;
2422			}
2423		}
2424	}
2425
2426	if (do_vlan)
2427		gfar_tx_vlan(skb, fcb);
2428
2429	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2430				 DMA_TO_DEVICE);
2431	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2432		goto dma_map_err;
2433
2434	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2435
2436	/* Time stamp insertion requires one additional TxBD */
2437	if (unlikely(do_tstamp))
2438		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2439						 tx_queue->tx_ring_size);
2440
2441	if (likely(!nr_frags)) {
2442		lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
 
2443	} else {
2444		u32 lstatus_start = lstatus;
2445
2446		/* Place the fragment addresses and lengths into the TxBDs */
2447		frag = &skb_shinfo(skb)->frags[0];
2448		for (i = 0; i < nr_frags; i++, frag++) {
2449			unsigned int size;
2450
2451			/* Point at the next BD, wrapping as needed */
2452			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2453
2454			size = skb_frag_size(frag);
2455
2456			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2457				  BD_LFLAG(TXBD_READY);
2458
2459			/* Handle the last BD specially */
2460			if (i == nr_frags - 1)
2461				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2462
2463			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2464						   size, DMA_TO_DEVICE);
2465			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2466				goto dma_map_err;
2467
2468			/* set the TxBD length and buffer pointer */
2469			txbdp->bufPtr = cpu_to_be32(bufaddr);
2470			txbdp->lstatus = cpu_to_be32(lstatus);
2471		}
2472
2473		lstatus = lstatus_start;
2474	}
2475
2476	/* If time stamping is requested one additional TxBD must be set up. The
2477	 * first TxBD points to the FCB and must have a data length of
2478	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2479	 * the full frame length.
2480	 */
2481	if (unlikely(do_tstamp)) {
2482		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2483
2484		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2485		bufaddr += fcb_len;
2486
2487		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2488			      (skb_headlen(skb) - fcb_len);
2489		if (!nr_frags)
2490			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2491
2492		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2493		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2494		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2495
2496		/* Setup tx hardware time stamping */
2497		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2498		fcb->ptp = 1;
2499	} else {
2500		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2501	}
2502
2503	netdev_tx_sent_queue(txq, bytes_sent);
2504
2505	gfar_wmb();
2506
2507	txbdp_start->lstatus = cpu_to_be32(lstatus);
2508
2509	gfar_wmb(); /* force lstatus write before tx_skbuff */
2510
2511	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2512
2513	/* Update the current skb pointer to the next entry we will use
2514	 * (wrapping if necessary)
2515	 */
2516	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2517			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2518
2519	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2520
2521	/* We can work in parallel with gfar_clean_tx_ring(), except
2522	 * when modifying num_txbdfree. Note that we didn't grab the lock
2523	 * when we were reading the num_txbdfree and checking for available
2524	 * space, that's because outside of this function it can only grow.
2525	 */
2526	spin_lock_bh(&tx_queue->txlock);
2527	/* reduce TxBD free count */
2528	tx_queue->num_txbdfree -= (nr_txbds);
2529	spin_unlock_bh(&tx_queue->txlock);
2530
2531	/* If the next BD still needs to be cleaned up, then the bds
2532	 * are full.  We need to tell the kernel to stop sending us stuff.
2533	 */
2534	if (!tx_queue->num_txbdfree) {
2535		netif_tx_stop_queue(txq);
2536
2537		dev->stats.tx_fifo_errors++;
2538	}
2539
2540	/* Tell the DMA to go go go */
2541	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2542
2543	return NETDEV_TX_OK;
2544
2545dma_map_err:
2546	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2547	if (do_tstamp)
2548		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2549	for (i = 0; i < nr_frags; i++) {
2550		lstatus = be32_to_cpu(txbdp->lstatus);
2551		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2552			break;
2553
2554		lstatus &= ~BD_LFLAG(TXBD_READY);
2555		txbdp->lstatus = cpu_to_be32(lstatus);
2556		bufaddr = be32_to_cpu(txbdp->bufPtr);
2557		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2558			       DMA_TO_DEVICE);
2559		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2560	}
2561	gfar_wmb();
2562	dev_kfree_skb_any(skb);
2563	return NETDEV_TX_OK;
2564}
2565
2566/* Stops the kernel queue, and halts the controller */
2567static int gfar_close(struct net_device *dev)
2568{
2569	struct gfar_private *priv = netdev_priv(dev);
2570
2571	cancel_work_sync(&priv->reset_task);
2572	stop_gfar(dev);
2573
2574	/* Disconnect from the PHY */
2575	phy_disconnect(priv->phydev);
2576	priv->phydev = NULL;
2577
2578	gfar_free_irq(priv);
2579
2580	return 0;
2581}
2582
2583/* Changes the mac address if the controller is not running. */
2584static int gfar_set_mac_address(struct net_device *dev)
2585{
2586	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2587
2588	return 0;
2589}
2590
2591static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2592{
2593	struct gfar_private *priv = netdev_priv(dev);
2594	int frame_size = new_mtu + ETH_HLEN;
2595
2596	if ((frame_size < 64) || (frame_size > GFAR_JUMBO_FRAME_SIZE)) {
2597		netif_err(priv, drv, dev, "Invalid MTU setting\n");
2598		return -EINVAL;
2599	}
2600
2601	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2602		cpu_relax();
2603
2604	if (dev->flags & IFF_UP)
2605		stop_gfar(dev);
2606
2607	dev->mtu = new_mtu;
2608
2609	if (dev->flags & IFF_UP)
2610		startup_gfar(dev);
2611
2612	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2613
2614	return 0;
2615}
2616
2617void reset_gfar(struct net_device *ndev)
2618{
2619	struct gfar_private *priv = netdev_priv(ndev);
2620
2621	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2622		cpu_relax();
2623
2624	stop_gfar(ndev);
2625	startup_gfar(ndev);
2626
2627	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2628}
2629
2630/* gfar_reset_task gets scheduled when a packet has not been
2631 * transmitted after a set amount of time.
2632 * For now, assume that clearing out all the structures, and
2633 * starting over will fix the problem.
2634 */
2635static void gfar_reset_task(struct work_struct *work)
2636{
2637	struct gfar_private *priv = container_of(work, struct gfar_private,
2638						 reset_task);
2639	reset_gfar(priv->ndev);
2640}
2641
2642static void gfar_timeout(struct net_device *dev)
2643{
2644	struct gfar_private *priv = netdev_priv(dev);
2645
2646	dev->stats.tx_errors++;
2647	schedule_work(&priv->reset_task);
2648}
2649
2650/* Interrupt Handler for Transmit complete */
2651static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2652{
2653	struct net_device *dev = tx_queue->dev;
2654	struct netdev_queue *txq;
2655	struct gfar_private *priv = netdev_priv(dev);
2656	struct txbd8 *bdp, *next = NULL;
2657	struct txbd8 *lbdp = NULL;
2658	struct txbd8 *base = tx_queue->tx_bd_base;
2659	struct sk_buff *skb;
2660	int skb_dirtytx;
2661	int tx_ring_size = tx_queue->tx_ring_size;
2662	int frags = 0, nr_txbds = 0;
2663	int i;
2664	int howmany = 0;
2665	int tqi = tx_queue->qindex;
2666	unsigned int bytes_sent = 0;
2667	u32 lstatus;
2668	size_t buflen;
2669
2670	txq = netdev_get_tx_queue(dev, tqi);
2671	bdp = tx_queue->dirty_tx;
2672	skb_dirtytx = tx_queue->skb_dirtytx;
2673
2674	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2675
2676		frags = skb_shinfo(skb)->nr_frags;
2677
2678		/* When time stamping, one additional TxBD must be freed.
2679		 * Also, we need to dma_unmap_single() the TxPAL.
2680		 */
2681		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2682			nr_txbds = frags + 2;
2683		else
2684			nr_txbds = frags + 1;
2685
2686		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2687
2688		lstatus = be32_to_cpu(lbdp->lstatus);
2689
2690		/* Only clean completed frames */
2691		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2692		    (lstatus & BD_LENGTH_MASK))
2693			break;
2694
2695		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2696			next = next_txbd(bdp, base, tx_ring_size);
2697			buflen = be16_to_cpu(next->length) +
2698				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2699		} else
2700			buflen = be16_to_cpu(bdp->length);
2701
2702		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2703				 buflen, DMA_TO_DEVICE);
2704
2705		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2706			struct skb_shared_hwtstamps shhwtstamps;
2707			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2708					  ~0x7UL);
2709
2710			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2711			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2712			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2713			skb_tstamp_tx(skb, &shhwtstamps);
2714			gfar_clear_txbd_status(bdp);
2715			bdp = next;
2716		}
2717
2718		gfar_clear_txbd_status(bdp);
2719		bdp = next_txbd(bdp, base, tx_ring_size);
2720
2721		for (i = 0; i < frags; i++) {
2722			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2723				       be16_to_cpu(bdp->length),
2724				       DMA_TO_DEVICE);
2725			gfar_clear_txbd_status(bdp);
2726			bdp = next_txbd(bdp, base, tx_ring_size);
2727		}
2728
2729		bytes_sent += GFAR_CB(skb)->bytes_sent;
2730
2731		dev_kfree_skb_any(skb);
2732
2733		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2734
2735		skb_dirtytx = (skb_dirtytx + 1) &
2736			      TX_RING_MOD_MASK(tx_ring_size);
2737
2738		howmany++;
2739		spin_lock(&tx_queue->txlock);
2740		tx_queue->num_txbdfree += nr_txbds;
2741		spin_unlock(&tx_queue->txlock);
2742	}
2743
2744	/* If we freed a buffer, we can restart transmission, if necessary */
2745	if (tx_queue->num_txbdfree &&
2746	    netif_tx_queue_stopped(txq) &&
2747	    !(test_bit(GFAR_DOWN, &priv->state)))
2748		netif_wake_subqueue(priv->ndev, tqi);
2749
2750	/* Update dirty indicators */
2751	tx_queue->skb_dirtytx = skb_dirtytx;
2752	tx_queue->dirty_tx = bdp;
2753
2754	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2755}
2756
2757static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2758{
2759	struct page *page;
2760	dma_addr_t addr;
2761
2762	page = dev_alloc_page();
2763	if (unlikely(!page))
2764		return false;
2765
2766	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2767	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2768		__free_page(page);
2769
2770		return false;
2771	}
2772
2773	rxb->dma = addr;
2774	rxb->page = page;
2775	rxb->page_offset = 0;
2776
2777	return true;
2778}
2779
2780static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2781{
2782	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2783	struct gfar_extra_stats *estats = &priv->extra_stats;
2784
2785	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2786	atomic64_inc(&estats->rx_alloc_err);
2787}
2788
2789static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2790				int alloc_cnt)
2791{
2792	struct rxbd8 *bdp;
2793	struct gfar_rx_buff *rxb;
2794	int i;
2795
2796	i = rx_queue->next_to_use;
2797	bdp = &rx_queue->rx_bd_base[i];
2798	rxb = &rx_queue->rx_buff[i];
2799
2800	while (alloc_cnt--) {
2801		/* try reuse page */
2802		if (unlikely(!rxb->page)) {
2803			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2804				gfar_rx_alloc_err(rx_queue);
2805				break;
2806			}
2807		}
2808
2809		/* Setup the new RxBD */
2810		gfar_init_rxbdp(rx_queue, bdp,
2811				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2812
2813		/* Update to the next pointer */
2814		bdp++;
2815		rxb++;
2816
2817		if (unlikely(++i == rx_queue->rx_ring_size)) {
2818			i = 0;
2819			bdp = rx_queue->rx_bd_base;
2820			rxb = rx_queue->rx_buff;
2821		}
2822	}
2823
2824	rx_queue->next_to_use = i;
2825	rx_queue->next_to_alloc = i;
2826}
2827
2828static void count_errors(u32 lstatus, struct net_device *ndev)
2829{
2830	struct gfar_private *priv = netdev_priv(ndev);
2831	struct net_device_stats *stats = &ndev->stats;
2832	struct gfar_extra_stats *estats = &priv->extra_stats;
2833
2834	/* If the packet was truncated, none of the other errors matter */
2835	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2836		stats->rx_length_errors++;
2837
2838		atomic64_inc(&estats->rx_trunc);
2839
2840		return;
2841	}
2842	/* Count the errors, if there were any */
2843	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2844		stats->rx_length_errors++;
2845
2846		if (lstatus & BD_LFLAG(RXBD_LARGE))
2847			atomic64_inc(&estats->rx_large);
2848		else
2849			atomic64_inc(&estats->rx_short);
2850	}
2851	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2852		stats->rx_frame_errors++;
2853		atomic64_inc(&estats->rx_nonoctet);
2854	}
2855	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2856		atomic64_inc(&estats->rx_crcerr);
2857		stats->rx_crc_errors++;
2858	}
2859	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2860		atomic64_inc(&estats->rx_overrun);
2861		stats->rx_over_errors++;
2862	}
2863}
2864
2865irqreturn_t gfar_receive(int irq, void *grp_id)
2866{
2867	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2868	unsigned long flags;
2869	u32 imask, ievent;
2870
2871	ievent = gfar_read(&grp->regs->ievent);
2872
2873	if (unlikely(ievent & IEVENT_FGPI)) {
2874		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2875		return IRQ_HANDLED;
2876	}
2877
2878	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2879		spin_lock_irqsave(&grp->grplock, flags);
2880		imask = gfar_read(&grp->regs->imask);
2881		imask &= IMASK_RX_DISABLED;
2882		gfar_write(&grp->regs->imask, imask);
2883		spin_unlock_irqrestore(&grp->grplock, flags);
2884		__napi_schedule(&grp->napi_rx);
2885	} else {
2886		/* Clear IEVENT, so interrupts aren't called again
2887		 * because of the packets that have already arrived.
2888		 */
2889		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2890	}
2891
2892	return IRQ_HANDLED;
2893}
2894
2895/* Interrupt Handler for Transmit complete */
2896static irqreturn_t gfar_transmit(int irq, void *grp_id)
2897{
2898	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2899	unsigned long flags;
2900	u32 imask;
2901
2902	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2903		spin_lock_irqsave(&grp->grplock, flags);
2904		imask = gfar_read(&grp->regs->imask);
2905		imask &= IMASK_TX_DISABLED;
2906		gfar_write(&grp->regs->imask, imask);
2907		spin_unlock_irqrestore(&grp->grplock, flags);
2908		__napi_schedule(&grp->napi_tx);
2909	} else {
2910		/* Clear IEVENT, so interrupts aren't called again
2911		 * because of the packets that have already arrived.
2912		 */
2913		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2914	}
2915
2916	return IRQ_HANDLED;
2917}
2918
2919static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2920			     struct sk_buff *skb, bool first)
2921{
2922	unsigned int size = lstatus & BD_LENGTH_MASK;
2923	struct page *page = rxb->page;
 
2924
2925	/* Remove the FCS from the packet length */
2926	if (likely(lstatus & BD_LFLAG(RXBD_LAST)))
2927		size -= ETH_FCS_LEN;
2928
2929	if (likely(first))
2930		skb_put(skb, size);
2931	else
2932		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2933				rxb->page_offset + RXBUF_ALIGNMENT,
2934				size, GFAR_RXB_TRUESIZE);
 
 
 
 
 
 
 
2935
2936	/* try reuse page */
2937	if (unlikely(page_count(page) != 1))
2938		return false;
2939
2940	/* change offset to the other half */
2941	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2942
2943	page_ref_inc(page);
2944
2945	return true;
2946}
2947
2948static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2949			       struct gfar_rx_buff *old_rxb)
2950{
2951	struct gfar_rx_buff *new_rxb;
2952	u16 nta = rxq->next_to_alloc;
2953
2954	new_rxb = &rxq->rx_buff[nta];
2955
2956	/* find next buf that can reuse a page */
2957	nta++;
2958	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2959
2960	/* copy page reference */
2961	*new_rxb = *old_rxb;
2962
2963	/* sync for use by the device */
2964	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2965					 old_rxb->page_offset,
2966					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2967}
2968
2969static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2970					    u32 lstatus, struct sk_buff *skb)
2971{
2972	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2973	struct page *page = rxb->page;
2974	bool first = false;
2975
2976	if (likely(!skb)) {
2977		void *buff_addr = page_address(page) + rxb->page_offset;
2978
2979		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2980		if (unlikely(!skb)) {
2981			gfar_rx_alloc_err(rx_queue);
2982			return NULL;
2983		}
2984		skb_reserve(skb, RXBUF_ALIGNMENT);
2985		first = true;
2986	}
2987
2988	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
2989				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2990
2991	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
2992		/* reuse the free half of the page */
2993		gfar_reuse_rx_page(rx_queue, rxb);
2994	} else {
2995		/* page cannot be reused, unmap it */
2996		dma_unmap_page(rx_queue->dev, rxb->dma,
2997			       PAGE_SIZE, DMA_FROM_DEVICE);
2998	}
2999
3000	/* clear rxb content */
3001	rxb->page = NULL;
3002
3003	return skb;
3004}
3005
3006static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3007{
3008	/* If valid headers were found, and valid sums
3009	 * were verified, then we tell the kernel that no
3010	 * checksumming is necessary.  Otherwise, it is [FIXME]
3011	 */
3012	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3013	    (RXFCB_CIP | RXFCB_CTU))
3014		skb->ip_summed = CHECKSUM_UNNECESSARY;
3015	else
3016		skb_checksum_none_assert(skb);
3017}
3018
3019/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3020static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3021{
3022	struct gfar_private *priv = netdev_priv(ndev);
3023	struct rxfcb *fcb = NULL;
3024
3025	/* fcb is at the beginning if exists */
3026	fcb = (struct rxfcb *)skb->data;
3027
3028	/* Remove the FCB from the skb
3029	 * Remove the padded bytes, if there are any
3030	 */
3031	if (priv->uses_rxfcb)
3032		skb_pull(skb, GMAC_FCB_LEN);
3033
3034	/* Get receive timestamp from the skb */
3035	if (priv->hwts_rx_en) {
3036		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3037		u64 *ns = (u64 *) skb->data;
3038
3039		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3040		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3041	}
3042
3043	if (priv->padding)
3044		skb_pull(skb, priv->padding);
3045
3046	if (ndev->features & NETIF_F_RXCSUM)
3047		gfar_rx_checksum(skb, fcb);
3048
3049	/* Tell the skb what kind of packet this is */
3050	skb->protocol = eth_type_trans(skb, ndev);
3051
3052	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3053	 * Even if vlan rx accel is disabled, on some chips
3054	 * RXFCB_VLN is pseudo randomly set.
3055	 */
3056	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3057	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3058		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3059				       be16_to_cpu(fcb->vlctl));
3060}
3061
3062/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3063 * until the budget/quota has been reached. Returns the number
3064 * of frames handled
3065 */
3066int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3067{
3068	struct net_device *ndev = rx_queue->ndev;
3069	struct gfar_private *priv = netdev_priv(ndev);
3070	struct rxbd8 *bdp;
3071	int i, howmany = 0;
3072	struct sk_buff *skb = rx_queue->skb;
3073	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3074	unsigned int total_bytes = 0, total_pkts = 0;
3075
3076	/* Get the first full descriptor */
3077	i = rx_queue->next_to_clean;
3078
3079	while (rx_work_limit--) {
3080		u32 lstatus;
3081
3082		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3083			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3084			cleaned_cnt = 0;
3085		}
3086
3087		bdp = &rx_queue->rx_bd_base[i];
3088		lstatus = be32_to_cpu(bdp->lstatus);
3089		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3090			break;
3091
3092		/* order rx buffer descriptor reads */
3093		rmb();
3094
3095		/* fetch next to clean buffer from the ring */
3096		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3097		if (unlikely(!skb))
3098			break;
3099
3100		cleaned_cnt++;
3101		howmany++;
3102
3103		if (unlikely(++i == rx_queue->rx_ring_size))
3104			i = 0;
3105
3106		rx_queue->next_to_clean = i;
3107
3108		/* fetch next buffer if not the last in frame */
3109		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3110			continue;
3111
3112		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3113			count_errors(lstatus, ndev);
3114
3115			/* discard faulty buffer */
3116			dev_kfree_skb(skb);
3117			skb = NULL;
3118			rx_queue->stats.rx_dropped++;
3119			continue;
3120		}
3121
3122		/* Increment the number of packets */
3123		total_pkts++;
3124		total_bytes += skb->len;
3125
3126		skb_record_rx_queue(skb, rx_queue->qindex);
3127
3128		gfar_process_frame(ndev, skb);
3129
3130		/* Send the packet up the stack */
3131		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3132
3133		skb = NULL;
3134	}
3135
3136	/* Store incomplete frames for completion */
3137	rx_queue->skb = skb;
3138
3139	rx_queue->stats.rx_packets += total_pkts;
3140	rx_queue->stats.rx_bytes += total_bytes;
3141
3142	if (cleaned_cnt)
3143		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3144
3145	/* Update Last Free RxBD pointer for LFC */
3146	if (unlikely(priv->tx_actual_en)) {
3147		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3148
3149		gfar_write(rx_queue->rfbptr, bdp_dma);
3150	}
3151
3152	return howmany;
3153}
3154
3155static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3156{
3157	struct gfar_priv_grp *gfargrp =
3158		container_of(napi, struct gfar_priv_grp, napi_rx);
3159	struct gfar __iomem *regs = gfargrp->regs;
3160	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3161	int work_done = 0;
3162
3163	/* Clear IEVENT, so interrupts aren't called again
3164	 * because of the packets that have already arrived
3165	 */
3166	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3167
3168	work_done = gfar_clean_rx_ring(rx_queue, budget);
3169
3170	if (work_done < budget) {
3171		u32 imask;
3172		napi_complete(napi);
3173		/* Clear the halt bit in RSTAT */
3174		gfar_write(&regs->rstat, gfargrp->rstat);
3175
3176		spin_lock_irq(&gfargrp->grplock);
3177		imask = gfar_read(&regs->imask);
3178		imask |= IMASK_RX_DEFAULT;
3179		gfar_write(&regs->imask, imask);
3180		spin_unlock_irq(&gfargrp->grplock);
3181	}
3182
3183	return work_done;
3184}
3185
3186static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3187{
3188	struct gfar_priv_grp *gfargrp =
3189		container_of(napi, struct gfar_priv_grp, napi_tx);
3190	struct gfar __iomem *regs = gfargrp->regs;
3191	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3192	u32 imask;
3193
3194	/* Clear IEVENT, so interrupts aren't called again
3195	 * because of the packets that have already arrived
3196	 */
3197	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3198
3199	/* run Tx cleanup to completion */
3200	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3201		gfar_clean_tx_ring(tx_queue);
3202
3203	napi_complete(napi);
3204
3205	spin_lock_irq(&gfargrp->grplock);
3206	imask = gfar_read(&regs->imask);
3207	imask |= IMASK_TX_DEFAULT;
3208	gfar_write(&regs->imask, imask);
3209	spin_unlock_irq(&gfargrp->grplock);
3210
3211	return 0;
3212}
3213
3214static int gfar_poll_rx(struct napi_struct *napi, int budget)
3215{
3216	struct gfar_priv_grp *gfargrp =
3217		container_of(napi, struct gfar_priv_grp, napi_rx);
3218	struct gfar_private *priv = gfargrp->priv;
3219	struct gfar __iomem *regs = gfargrp->regs;
3220	struct gfar_priv_rx_q *rx_queue = NULL;
3221	int work_done = 0, work_done_per_q = 0;
3222	int i, budget_per_q = 0;
3223	unsigned long rstat_rxf;
3224	int num_act_queues;
3225
3226	/* Clear IEVENT, so interrupts aren't called again
3227	 * because of the packets that have already arrived
3228	 */
3229	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3230
3231	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3232
3233	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3234	if (num_act_queues)
3235		budget_per_q = budget/num_act_queues;
3236
3237	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3238		/* skip queue if not active */
3239		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3240			continue;
3241
3242		rx_queue = priv->rx_queue[i];
3243		work_done_per_q =
3244			gfar_clean_rx_ring(rx_queue, budget_per_q);
3245		work_done += work_done_per_q;
3246
3247		/* finished processing this queue */
3248		if (work_done_per_q < budget_per_q) {
3249			/* clear active queue hw indication */
3250			gfar_write(&regs->rstat,
3251				   RSTAT_CLEAR_RXF0 >> i);
3252			num_act_queues--;
3253
3254			if (!num_act_queues)
3255				break;
3256		}
3257	}
3258
3259	if (!num_act_queues) {
3260		u32 imask;
3261		napi_complete(napi);
3262
3263		/* Clear the halt bit in RSTAT */
3264		gfar_write(&regs->rstat, gfargrp->rstat);
3265
3266		spin_lock_irq(&gfargrp->grplock);
3267		imask = gfar_read(&regs->imask);
3268		imask |= IMASK_RX_DEFAULT;
3269		gfar_write(&regs->imask, imask);
3270		spin_unlock_irq(&gfargrp->grplock);
3271	}
3272
3273	return work_done;
3274}
3275
3276static int gfar_poll_tx(struct napi_struct *napi, int budget)
3277{
3278	struct gfar_priv_grp *gfargrp =
3279		container_of(napi, struct gfar_priv_grp, napi_tx);
3280	struct gfar_private *priv = gfargrp->priv;
3281	struct gfar __iomem *regs = gfargrp->regs;
3282	struct gfar_priv_tx_q *tx_queue = NULL;
3283	int has_tx_work = 0;
3284	int i;
3285
3286	/* Clear IEVENT, so interrupts aren't called again
3287	 * because of the packets that have already arrived
3288	 */
3289	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3290
3291	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3292		tx_queue = priv->tx_queue[i];
3293		/* run Tx cleanup to completion */
3294		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3295			gfar_clean_tx_ring(tx_queue);
3296			has_tx_work = 1;
3297		}
3298	}
3299
3300	if (!has_tx_work) {
3301		u32 imask;
3302		napi_complete(napi);
3303
3304		spin_lock_irq(&gfargrp->grplock);
3305		imask = gfar_read(&regs->imask);
3306		imask |= IMASK_TX_DEFAULT;
3307		gfar_write(&regs->imask, imask);
3308		spin_unlock_irq(&gfargrp->grplock);
3309	}
3310
3311	return 0;
3312}
3313
3314
3315#ifdef CONFIG_NET_POLL_CONTROLLER
3316/* Polling 'interrupt' - used by things like netconsole to send skbs
3317 * without having to re-enable interrupts. It's not called while
3318 * the interrupt routine is executing.
3319 */
3320static void gfar_netpoll(struct net_device *dev)
3321{
3322	struct gfar_private *priv = netdev_priv(dev);
3323	int i;
3324
3325	/* If the device has multiple interrupts, run tx/rx */
3326	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3327		for (i = 0; i < priv->num_grps; i++) {
3328			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3329
3330			disable_irq(gfar_irq(grp, TX)->irq);
3331			disable_irq(gfar_irq(grp, RX)->irq);
3332			disable_irq(gfar_irq(grp, ER)->irq);
3333			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3334			enable_irq(gfar_irq(grp, ER)->irq);
3335			enable_irq(gfar_irq(grp, RX)->irq);
3336			enable_irq(gfar_irq(grp, TX)->irq);
3337		}
3338	} else {
3339		for (i = 0; i < priv->num_grps; i++) {
3340			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3341
3342			disable_irq(gfar_irq(grp, TX)->irq);
3343			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3344			enable_irq(gfar_irq(grp, TX)->irq);
3345		}
3346	}
3347}
3348#endif
3349
3350/* The interrupt handler for devices with one interrupt */
3351static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3352{
3353	struct gfar_priv_grp *gfargrp = grp_id;
3354
3355	/* Save ievent for future reference */
3356	u32 events = gfar_read(&gfargrp->regs->ievent);
3357
3358	/* Check for reception */
3359	if (events & IEVENT_RX_MASK)
3360		gfar_receive(irq, grp_id);
3361
3362	/* Check for transmit completion */
3363	if (events & IEVENT_TX_MASK)
3364		gfar_transmit(irq, grp_id);
3365
3366	/* Check for errors */
3367	if (events & IEVENT_ERR_MASK)
3368		gfar_error(irq, grp_id);
3369
3370	return IRQ_HANDLED;
3371}
3372
3373/* Called every time the controller might need to be made
3374 * aware of new link state.  The PHY code conveys this
3375 * information through variables in the phydev structure, and this
3376 * function converts those variables into the appropriate
3377 * register values, and can bring down the device if needed.
3378 */
3379static void adjust_link(struct net_device *dev)
3380{
3381	struct gfar_private *priv = netdev_priv(dev);
3382	struct phy_device *phydev = priv->phydev;
3383
3384	if (unlikely(phydev->link != priv->oldlink ||
3385		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3386				       phydev->speed != priv->oldspeed))))
3387		gfar_update_link_state(priv);
3388}
3389
3390/* Update the hash table based on the current list of multicast
3391 * addresses we subscribe to.  Also, change the promiscuity of
3392 * the device based on the flags (this function is called
3393 * whenever dev->flags is changed
3394 */
3395static void gfar_set_multi(struct net_device *dev)
3396{
3397	struct netdev_hw_addr *ha;
3398	struct gfar_private *priv = netdev_priv(dev);
3399	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3400	u32 tempval;
3401
3402	if (dev->flags & IFF_PROMISC) {
3403		/* Set RCTRL to PROM */
3404		tempval = gfar_read(&regs->rctrl);
3405		tempval |= RCTRL_PROM;
3406		gfar_write(&regs->rctrl, tempval);
3407	} else {
3408		/* Set RCTRL to not PROM */
3409		tempval = gfar_read(&regs->rctrl);
3410		tempval &= ~(RCTRL_PROM);
3411		gfar_write(&regs->rctrl, tempval);
3412	}
3413
3414	if (dev->flags & IFF_ALLMULTI) {
3415		/* Set the hash to rx all multicast frames */
3416		gfar_write(&regs->igaddr0, 0xffffffff);
3417		gfar_write(&regs->igaddr1, 0xffffffff);
3418		gfar_write(&regs->igaddr2, 0xffffffff);
3419		gfar_write(&regs->igaddr3, 0xffffffff);
3420		gfar_write(&regs->igaddr4, 0xffffffff);
3421		gfar_write(&regs->igaddr5, 0xffffffff);
3422		gfar_write(&regs->igaddr6, 0xffffffff);
3423		gfar_write(&regs->igaddr7, 0xffffffff);
3424		gfar_write(&regs->gaddr0, 0xffffffff);
3425		gfar_write(&regs->gaddr1, 0xffffffff);
3426		gfar_write(&regs->gaddr2, 0xffffffff);
3427		gfar_write(&regs->gaddr3, 0xffffffff);
3428		gfar_write(&regs->gaddr4, 0xffffffff);
3429		gfar_write(&regs->gaddr5, 0xffffffff);
3430		gfar_write(&regs->gaddr6, 0xffffffff);
3431		gfar_write(&regs->gaddr7, 0xffffffff);
3432	} else {
3433		int em_num;
3434		int idx;
3435
3436		/* zero out the hash */
3437		gfar_write(&regs->igaddr0, 0x0);
3438		gfar_write(&regs->igaddr1, 0x0);
3439		gfar_write(&regs->igaddr2, 0x0);
3440		gfar_write(&regs->igaddr3, 0x0);
3441		gfar_write(&regs->igaddr4, 0x0);
3442		gfar_write(&regs->igaddr5, 0x0);
3443		gfar_write(&regs->igaddr6, 0x0);
3444		gfar_write(&regs->igaddr7, 0x0);
3445		gfar_write(&regs->gaddr0, 0x0);
3446		gfar_write(&regs->gaddr1, 0x0);
3447		gfar_write(&regs->gaddr2, 0x0);
3448		gfar_write(&regs->gaddr3, 0x0);
3449		gfar_write(&regs->gaddr4, 0x0);
3450		gfar_write(&regs->gaddr5, 0x0);
3451		gfar_write(&regs->gaddr6, 0x0);
3452		gfar_write(&regs->gaddr7, 0x0);
3453
3454		/* If we have extended hash tables, we need to
3455		 * clear the exact match registers to prepare for
3456		 * setting them
3457		 */
3458		if (priv->extended_hash) {
3459			em_num = GFAR_EM_NUM + 1;
3460			gfar_clear_exact_match(dev);
3461			idx = 1;
3462		} else {
3463			idx = 0;
3464			em_num = 0;
3465		}
3466
3467		if (netdev_mc_empty(dev))
3468			return;
3469
3470		/* Parse the list, and set the appropriate bits */
3471		netdev_for_each_mc_addr(ha, dev) {
3472			if (idx < em_num) {
3473				gfar_set_mac_for_addr(dev, idx, ha->addr);
3474				idx++;
3475			} else
3476				gfar_set_hash_for_addr(dev, ha->addr);
3477		}
3478	}
3479}
3480
3481
3482/* Clears each of the exact match registers to zero, so they
3483 * don't interfere with normal reception
3484 */
3485static void gfar_clear_exact_match(struct net_device *dev)
3486{
3487	int idx;
3488	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3489
3490	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3491		gfar_set_mac_for_addr(dev, idx, zero_arr);
3492}
3493
3494/* Set the appropriate hash bit for the given addr */
3495/* The algorithm works like so:
3496 * 1) Take the Destination Address (ie the multicast address), and
3497 * do a CRC on it (little endian), and reverse the bits of the
3498 * result.
3499 * 2) Use the 8 most significant bits as a hash into a 256-entry
3500 * table.  The table is controlled through 8 32-bit registers:
3501 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3502 * gaddr7.  This means that the 3 most significant bits in the
3503 * hash index which gaddr register to use, and the 5 other bits
3504 * indicate which bit (assuming an IBM numbering scheme, which
3505 * for PowerPC (tm) is usually the case) in the register holds
3506 * the entry.
3507 */
3508static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3509{
3510	u32 tempval;
3511	struct gfar_private *priv = netdev_priv(dev);
3512	u32 result = ether_crc(ETH_ALEN, addr);
3513	int width = priv->hash_width;
3514	u8 whichbit = (result >> (32 - width)) & 0x1f;
3515	u8 whichreg = result >> (32 - width + 5);
3516	u32 value = (1 << (31-whichbit));
3517
3518	tempval = gfar_read(priv->hash_regs[whichreg]);
3519	tempval |= value;
3520	gfar_write(priv->hash_regs[whichreg], tempval);
3521}
3522
3523
3524/* There are multiple MAC Address register pairs on some controllers
3525 * This function sets the numth pair to a given address
3526 */
3527static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3528				  const u8 *addr)
3529{
3530	struct gfar_private *priv = netdev_priv(dev);
3531	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3532	u32 tempval;
3533	u32 __iomem *macptr = &regs->macstnaddr1;
3534
3535	macptr += num*2;
3536
3537	/* For a station address of 0x12345678ABCD in transmission
3538	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3539	 * MACnADDR2 is set to 0x34120000.
3540	 */
3541	tempval = (addr[5] << 24) | (addr[4] << 16) |
3542		  (addr[3] << 8)  |  addr[2];
3543
3544	gfar_write(macptr, tempval);
3545
3546	tempval = (addr[1] << 24) | (addr[0] << 16);
3547
3548	gfar_write(macptr+1, tempval);
3549}
3550
3551/* GFAR error interrupt handler */
3552static irqreturn_t gfar_error(int irq, void *grp_id)
3553{
3554	struct gfar_priv_grp *gfargrp = grp_id;
3555	struct gfar __iomem *regs = gfargrp->regs;
3556	struct gfar_private *priv= gfargrp->priv;
3557	struct net_device *dev = priv->ndev;
3558
3559	/* Save ievent for future reference */
3560	u32 events = gfar_read(&regs->ievent);
3561
3562	/* Clear IEVENT */
3563	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3564
3565	/* Magic Packet is not an error. */
3566	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3567	    (events & IEVENT_MAG))
3568		events &= ~IEVENT_MAG;
3569
3570	/* Hmm... */
3571	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3572		netdev_dbg(dev,
3573			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3574			   events, gfar_read(&regs->imask));
3575
3576	/* Update the error counters */
3577	if (events & IEVENT_TXE) {
3578		dev->stats.tx_errors++;
3579
3580		if (events & IEVENT_LC)
3581			dev->stats.tx_window_errors++;
3582		if (events & IEVENT_CRL)
3583			dev->stats.tx_aborted_errors++;
3584		if (events & IEVENT_XFUN) {
3585			netif_dbg(priv, tx_err, dev,
3586				  "TX FIFO underrun, packet dropped\n");
3587			dev->stats.tx_dropped++;
3588			atomic64_inc(&priv->extra_stats.tx_underrun);
3589
3590			schedule_work(&priv->reset_task);
3591		}
3592		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3593	}
3594	if (events & IEVENT_BSY) {
3595		dev->stats.rx_over_errors++;
3596		atomic64_inc(&priv->extra_stats.rx_bsy);
3597
3598		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3599			  gfar_read(&regs->rstat));
3600	}
3601	if (events & IEVENT_BABR) {
3602		dev->stats.rx_errors++;
3603		atomic64_inc(&priv->extra_stats.rx_babr);
3604
3605		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3606	}
3607	if (events & IEVENT_EBERR) {
3608		atomic64_inc(&priv->extra_stats.eberr);
3609		netif_dbg(priv, rx_err, dev, "bus error\n");
3610	}
3611	if (events & IEVENT_RXC)
3612		netif_dbg(priv, rx_status, dev, "control frame\n");
3613
3614	if (events & IEVENT_BABT) {
3615		atomic64_inc(&priv->extra_stats.tx_babt);
3616		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3617	}
3618	return IRQ_HANDLED;
3619}
3620
3621static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3622{
3623	struct phy_device *phydev = priv->phydev;
 
3624	u32 val = 0;
3625
3626	if (!phydev->duplex)
3627		return val;
3628
3629	if (!priv->pause_aneg_en) {
3630		if (priv->tx_pause_en)
3631			val |= MACCFG1_TX_FLOW;
3632		if (priv->rx_pause_en)
3633			val |= MACCFG1_RX_FLOW;
3634	} else {
3635		u16 lcl_adv, rmt_adv;
3636		u8 flowctrl;
3637		/* get link partner capabilities */
3638		rmt_adv = 0;
3639		if (phydev->pause)
3640			rmt_adv = LPA_PAUSE_CAP;
3641		if (phydev->asym_pause)
3642			rmt_adv |= LPA_PAUSE_ASYM;
3643
3644		lcl_adv = 0;
3645		if (phydev->advertising & ADVERTISED_Pause)
3646			lcl_adv |= ADVERTISE_PAUSE_CAP;
3647		if (phydev->advertising & ADVERTISED_Asym_Pause)
3648			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3649
3650		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3651		if (flowctrl & FLOW_CTRL_TX)
3652			val |= MACCFG1_TX_FLOW;
3653		if (flowctrl & FLOW_CTRL_RX)
3654			val |= MACCFG1_RX_FLOW;
3655	}
3656
3657	return val;
3658}
3659
3660static noinline void gfar_update_link_state(struct gfar_private *priv)
3661{
3662	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3663	struct phy_device *phydev = priv->phydev;
 
3664	struct gfar_priv_rx_q *rx_queue = NULL;
3665	int i;
3666
3667	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3668		return;
3669
3670	if (phydev->link) {
3671		u32 tempval1 = gfar_read(&regs->maccfg1);
3672		u32 tempval = gfar_read(&regs->maccfg2);
3673		u32 ecntrl = gfar_read(&regs->ecntrl);
3674		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3675
3676		if (phydev->duplex != priv->oldduplex) {
3677			if (!(phydev->duplex))
3678				tempval &= ~(MACCFG2_FULL_DUPLEX);
3679			else
3680				tempval |= MACCFG2_FULL_DUPLEX;
3681
3682			priv->oldduplex = phydev->duplex;
3683		}
3684
3685		if (phydev->speed != priv->oldspeed) {
3686			switch (phydev->speed) {
3687			case 1000:
3688				tempval =
3689				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3690
3691				ecntrl &= ~(ECNTRL_R100);
3692				break;
3693			case 100:
3694			case 10:
3695				tempval =
3696				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3697
3698				/* Reduced mode distinguishes
3699				 * between 10 and 100
3700				 */
3701				if (phydev->speed == SPEED_100)
3702					ecntrl |= ECNTRL_R100;
3703				else
3704					ecntrl &= ~(ECNTRL_R100);
3705				break;
3706			default:
3707				netif_warn(priv, link, priv->ndev,
3708					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3709					   phydev->speed);
3710				break;
3711			}
3712
3713			priv->oldspeed = phydev->speed;
3714		}
3715
3716		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3717		tempval1 |= gfar_get_flowctrl_cfg(priv);
3718
3719		/* Turn last free buffer recording on */
3720		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3721			for (i = 0; i < priv->num_rx_queues; i++) {
3722				u32 bdp_dma;
3723
3724				rx_queue = priv->rx_queue[i];
3725				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3726				gfar_write(rx_queue->rfbptr, bdp_dma);
3727			}
3728
3729			priv->tx_actual_en = 1;
3730		}
3731
3732		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3733			priv->tx_actual_en = 0;
3734
3735		gfar_write(&regs->maccfg1, tempval1);
3736		gfar_write(&regs->maccfg2, tempval);
3737		gfar_write(&regs->ecntrl, ecntrl);
3738
3739		if (!priv->oldlink)
3740			priv->oldlink = 1;
3741
3742	} else if (priv->oldlink) {
3743		priv->oldlink = 0;
3744		priv->oldspeed = 0;
3745		priv->oldduplex = -1;
3746	}
3747
3748	if (netif_msg_link(priv))
3749		phy_print_status(phydev);
3750}
3751
3752static const struct of_device_id gfar_match[] =
3753{
3754	{
3755		.type = "network",
3756		.compatible = "gianfar",
3757	},
3758	{
3759		.compatible = "fsl,etsec2",
3760	},
3761	{},
3762};
3763MODULE_DEVICE_TABLE(of, gfar_match);
3764
3765/* Structure for a device driver */
3766static struct platform_driver gfar_driver = {
3767	.driver = {
3768		.name = "fsl-gianfar",
3769		.pm = GFAR_PM_OPS,
3770		.of_match_table = gfar_match,
3771	},
3772	.probe = gfar_probe,
3773	.remove = gfar_remove,
3774};
3775
3776module_platform_driver(gfar_driver);
v4.10.11
   1/* drivers/net/ethernet/freescale/gianfar.c
   2 *
   3 * Gianfar Ethernet Driver
   4 * This driver is designed for the non-CPM ethernet controllers
   5 * on the 85xx and 83xx family of integrated processors
   6 * Based on 8260_io/fcc_enet.c
   7 *
   8 * Author: Andy Fleming
   9 * Maintainer: Kumar Gala
  10 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
  11 *
  12 * Copyright 2002-2009, 2011-2013 Freescale Semiconductor, Inc.
  13 * Copyright 2007 MontaVista Software, Inc.
  14 *
  15 * This program is free software; you can redistribute  it and/or modify it
  16 * under  the terms of  the GNU General  Public License as published by the
  17 * Free Software Foundation;  either version 2 of the  License, or (at your
  18 * option) any later version.
  19 *
  20 *  Gianfar:  AKA Lambda Draconis, "Dragon"
  21 *  RA 11 31 24.2
  22 *  Dec +69 19 52
  23 *  V 3.84
  24 *  B-V +1.62
  25 *
  26 *  Theory of operation
  27 *
  28 *  The driver is initialized through of_device. Configuration information
  29 *  is therefore conveyed through an OF-style device tree.
  30 *
  31 *  The Gianfar Ethernet Controller uses a ring of buffer
  32 *  descriptors.  The beginning is indicated by a register
  33 *  pointing to the physical address of the start of the ring.
  34 *  The end is determined by a "wrap" bit being set in the
  35 *  last descriptor of the ring.
  36 *
  37 *  When a packet is received, the RXF bit in the
  38 *  IEVENT register is set, triggering an interrupt when the
  39 *  corresponding bit in the IMASK register is also set (if
  40 *  interrupt coalescing is active, then the interrupt may not
  41 *  happen immediately, but will wait until either a set number
  42 *  of frames or amount of time have passed).  In NAPI, the
  43 *  interrupt handler will signal there is work to be done, and
  44 *  exit. This method will start at the last known empty
  45 *  descriptor, and process every subsequent descriptor until there
  46 *  are none left with data (NAPI will stop after a set number of
  47 *  packets to give time to other tasks, but will eventually
  48 *  process all the packets).  The data arrives inside a
  49 *  pre-allocated skb, and so after the skb is passed up to the
  50 *  stack, a new skb must be allocated, and the address field in
  51 *  the buffer descriptor must be updated to indicate this new
  52 *  skb.
  53 *
  54 *  When the kernel requests that a packet be transmitted, the
  55 *  driver starts where it left off last time, and points the
  56 *  descriptor at the buffer which was passed in.  The driver
  57 *  then informs the DMA engine that there are packets ready to
  58 *  be transmitted.  Once the controller is finished transmitting
  59 *  the packet, an interrupt may be triggered (under the same
  60 *  conditions as for reception, but depending on the TXF bit).
  61 *  The driver then cleans up the buffer.
  62 */
  63
  64#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  65#define DEBUG
  66
  67#include <linux/kernel.h>
  68#include <linux/string.h>
  69#include <linux/errno.h>
  70#include <linux/unistd.h>
  71#include <linux/slab.h>
  72#include <linux/interrupt.h>
  73#include <linux/delay.h>
  74#include <linux/netdevice.h>
  75#include <linux/etherdevice.h>
  76#include <linux/skbuff.h>
  77#include <linux/if_vlan.h>
  78#include <linux/spinlock.h>
  79#include <linux/mm.h>
  80#include <linux/of_address.h>
  81#include <linux/of_irq.h>
  82#include <linux/of_mdio.h>
  83#include <linux/of_platform.h>
  84#include <linux/ip.h>
  85#include <linux/tcp.h>
  86#include <linux/udp.h>
  87#include <linux/in.h>
  88#include <linux/net_tstamp.h>
  89
  90#include <asm/io.h>
  91#ifdef CONFIG_PPC
  92#include <asm/reg.h>
  93#include <asm/mpc85xx.h>
  94#endif
  95#include <asm/irq.h>
  96#include <linux/uaccess.h>
  97#include <linux/module.h>
  98#include <linux/dma-mapping.h>
  99#include <linux/crc32.h>
 100#include <linux/mii.h>
 101#include <linux/phy.h>
 102#include <linux/phy_fixed.h>
 103#include <linux/of.h>
 104#include <linux/of_net.h>
 105#include <linux/of_address.h>
 106#include <linux/of_irq.h>
 107
 108#include "gianfar.h"
 109
 110#define TX_TIMEOUT      (5*HZ)
 111
 112const char gfar_driver_version[] = "2.0";
 113
 114static int gfar_enet_open(struct net_device *dev);
 115static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
 116static void gfar_reset_task(struct work_struct *work);
 117static void gfar_timeout(struct net_device *dev);
 118static int gfar_close(struct net_device *dev);
 119static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
 120				int alloc_cnt);
 121static int gfar_set_mac_address(struct net_device *dev);
 122static int gfar_change_mtu(struct net_device *dev, int new_mtu);
 123static irqreturn_t gfar_error(int irq, void *dev_id);
 124static irqreturn_t gfar_transmit(int irq, void *dev_id);
 125static irqreturn_t gfar_interrupt(int irq, void *dev_id);
 126static void adjust_link(struct net_device *dev);
 127static noinline void gfar_update_link_state(struct gfar_private *priv);
 128static int init_phy(struct net_device *dev);
 129static int gfar_probe(struct platform_device *ofdev);
 130static int gfar_remove(struct platform_device *ofdev);
 131static void free_skb_resources(struct gfar_private *priv);
 132static void gfar_set_multi(struct net_device *dev);
 133static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
 134static void gfar_configure_serdes(struct net_device *dev);
 135static int gfar_poll_rx(struct napi_struct *napi, int budget);
 136static int gfar_poll_tx(struct napi_struct *napi, int budget);
 137static int gfar_poll_rx_sq(struct napi_struct *napi, int budget);
 138static int gfar_poll_tx_sq(struct napi_struct *napi, int budget);
 139#ifdef CONFIG_NET_POLL_CONTROLLER
 140static void gfar_netpoll(struct net_device *dev);
 141#endif
 142int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
 143static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
 144static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb);
 145static void gfar_halt_nodisable(struct gfar_private *priv);
 146static void gfar_clear_exact_match(struct net_device *dev);
 147static void gfar_set_mac_for_addr(struct net_device *dev, int num,
 148				  const u8 *addr);
 149static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 150
 151MODULE_AUTHOR("Freescale Semiconductor, Inc");
 152MODULE_DESCRIPTION("Gianfar Ethernet Driver");
 153MODULE_LICENSE("GPL");
 154
 155static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
 156			    dma_addr_t buf)
 157{
 158	u32 lstatus;
 159
 160	bdp->bufPtr = cpu_to_be32(buf);
 161
 162	lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
 163	if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
 164		lstatus |= BD_LFLAG(RXBD_WRAP);
 165
 166	gfar_wmb();
 167
 168	bdp->lstatus = cpu_to_be32(lstatus);
 169}
 170
 171static void gfar_init_bds(struct net_device *ndev)
 172{
 173	struct gfar_private *priv = netdev_priv(ndev);
 174	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 175	struct gfar_priv_tx_q *tx_queue = NULL;
 176	struct gfar_priv_rx_q *rx_queue = NULL;
 177	struct txbd8 *txbdp;
 178	u32 __iomem *rfbptr;
 179	int i, j;
 180
 181	for (i = 0; i < priv->num_tx_queues; i++) {
 182		tx_queue = priv->tx_queue[i];
 183		/* Initialize some variables in our dev structure */
 184		tx_queue->num_txbdfree = tx_queue->tx_ring_size;
 185		tx_queue->dirty_tx = tx_queue->tx_bd_base;
 186		tx_queue->cur_tx = tx_queue->tx_bd_base;
 187		tx_queue->skb_curtx = 0;
 188		tx_queue->skb_dirtytx = 0;
 189
 190		/* Initialize Transmit Descriptor Ring */
 191		txbdp = tx_queue->tx_bd_base;
 192		for (j = 0; j < tx_queue->tx_ring_size; j++) {
 193			txbdp->lstatus = 0;
 194			txbdp->bufPtr = 0;
 195			txbdp++;
 196		}
 197
 198		/* Set the last descriptor in the ring to indicate wrap */
 199		txbdp--;
 200		txbdp->status = cpu_to_be16(be16_to_cpu(txbdp->status) |
 201					    TXBD_WRAP);
 202	}
 203
 204	rfbptr = &regs->rfbptr0;
 205	for (i = 0; i < priv->num_rx_queues; i++) {
 206		rx_queue = priv->rx_queue[i];
 207
 208		rx_queue->next_to_clean = 0;
 209		rx_queue->next_to_use = 0;
 210		rx_queue->next_to_alloc = 0;
 211
 212		/* make sure next_to_clean != next_to_use after this
 213		 * by leaving at least 1 unused descriptor
 214		 */
 215		gfar_alloc_rx_buffs(rx_queue, gfar_rxbd_unused(rx_queue));
 216
 217		rx_queue->rfbptr = rfbptr;
 218		rfbptr += 2;
 219	}
 220}
 221
 222static int gfar_alloc_skb_resources(struct net_device *ndev)
 223{
 224	void *vaddr;
 225	dma_addr_t addr;
 226	int i, j;
 227	struct gfar_private *priv = netdev_priv(ndev);
 228	struct device *dev = priv->dev;
 229	struct gfar_priv_tx_q *tx_queue = NULL;
 230	struct gfar_priv_rx_q *rx_queue = NULL;
 231
 232	priv->total_tx_ring_size = 0;
 233	for (i = 0; i < priv->num_tx_queues; i++)
 234		priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
 235
 236	priv->total_rx_ring_size = 0;
 237	for (i = 0; i < priv->num_rx_queues; i++)
 238		priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
 239
 240	/* Allocate memory for the buffer descriptors */
 241	vaddr = dma_alloc_coherent(dev,
 242				   (priv->total_tx_ring_size *
 243				    sizeof(struct txbd8)) +
 244				   (priv->total_rx_ring_size *
 245				    sizeof(struct rxbd8)),
 246				   &addr, GFP_KERNEL);
 247	if (!vaddr)
 248		return -ENOMEM;
 249
 250	for (i = 0; i < priv->num_tx_queues; i++) {
 251		tx_queue = priv->tx_queue[i];
 252		tx_queue->tx_bd_base = vaddr;
 253		tx_queue->tx_bd_dma_base = addr;
 254		tx_queue->dev = ndev;
 255		/* enet DMA only understands physical addresses */
 256		addr  += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 257		vaddr += sizeof(struct txbd8) * tx_queue->tx_ring_size;
 258	}
 259
 260	/* Start the rx descriptor ring where the tx ring leaves off */
 261	for (i = 0; i < priv->num_rx_queues; i++) {
 262		rx_queue = priv->rx_queue[i];
 263		rx_queue->rx_bd_base = vaddr;
 264		rx_queue->rx_bd_dma_base = addr;
 265		rx_queue->ndev = ndev;
 266		rx_queue->dev = dev;
 267		addr  += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 268		vaddr += sizeof(struct rxbd8) * rx_queue->rx_ring_size;
 269	}
 270
 271	/* Setup the skbuff rings */
 272	for (i = 0; i < priv->num_tx_queues; i++) {
 273		tx_queue = priv->tx_queue[i];
 274		tx_queue->tx_skbuff =
 275			kmalloc_array(tx_queue->tx_ring_size,
 276				      sizeof(*tx_queue->tx_skbuff),
 277				      GFP_KERNEL);
 278		if (!tx_queue->tx_skbuff)
 279			goto cleanup;
 280
 281		for (j = 0; j < tx_queue->tx_ring_size; j++)
 282			tx_queue->tx_skbuff[j] = NULL;
 283	}
 284
 285	for (i = 0; i < priv->num_rx_queues; i++) {
 286		rx_queue = priv->rx_queue[i];
 287		rx_queue->rx_buff = kcalloc(rx_queue->rx_ring_size,
 288					    sizeof(*rx_queue->rx_buff),
 289					    GFP_KERNEL);
 290		if (!rx_queue->rx_buff)
 291			goto cleanup;
 292	}
 293
 294	gfar_init_bds(ndev);
 295
 296	return 0;
 297
 298cleanup:
 299	free_skb_resources(priv);
 300	return -ENOMEM;
 301}
 302
 303static void gfar_init_tx_rx_base(struct gfar_private *priv)
 304{
 305	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 306	u32 __iomem *baddr;
 307	int i;
 308
 309	baddr = &regs->tbase0;
 310	for (i = 0; i < priv->num_tx_queues; i++) {
 311		gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
 312		baddr += 2;
 313	}
 314
 315	baddr = &regs->rbase0;
 316	for (i = 0; i < priv->num_rx_queues; i++) {
 317		gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
 318		baddr += 2;
 319	}
 320}
 321
 322static void gfar_init_rqprm(struct gfar_private *priv)
 323{
 324	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 325	u32 __iomem *baddr;
 326	int i;
 327
 328	baddr = &regs->rqprm0;
 329	for (i = 0; i < priv->num_rx_queues; i++) {
 330		gfar_write(baddr, priv->rx_queue[i]->rx_ring_size |
 331			   (DEFAULT_RX_LFC_THR << FBTHR_SHIFT));
 332		baddr++;
 333	}
 334}
 335
 336static void gfar_rx_offload_en(struct gfar_private *priv)
 337{
 338	/* set this when rx hw offload (TOE) functions are being used */
 339	priv->uses_rxfcb = 0;
 340
 341	if (priv->ndev->features & (NETIF_F_RXCSUM | NETIF_F_HW_VLAN_CTAG_RX))
 342		priv->uses_rxfcb = 1;
 343
 344	if (priv->hwts_rx_en || priv->rx_filer_enable)
 345		priv->uses_rxfcb = 1;
 346}
 347
 348static void gfar_mac_rx_config(struct gfar_private *priv)
 349{
 350	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 351	u32 rctrl = 0;
 352
 353	if (priv->rx_filer_enable) {
 354		rctrl |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
 355		/* Program the RIR0 reg with the required distribution */
 356		if (priv->poll_mode == GFAR_SQ_POLLING)
 357			gfar_write(&regs->rir0, DEFAULT_2RXQ_RIR0);
 358		else /* GFAR_MQ_POLLING */
 359			gfar_write(&regs->rir0, DEFAULT_8RXQ_RIR0);
 360	}
 361
 362	/* Restore PROMISC mode */
 363	if (priv->ndev->flags & IFF_PROMISC)
 364		rctrl |= RCTRL_PROM;
 365
 366	if (priv->ndev->features & NETIF_F_RXCSUM)
 367		rctrl |= RCTRL_CHECKSUMMING;
 368
 369	if (priv->extended_hash)
 370		rctrl |= RCTRL_EXTHASH | RCTRL_EMEN;
 371
 372	if (priv->padding) {
 373		rctrl &= ~RCTRL_PAL_MASK;
 374		rctrl |= RCTRL_PADDING(priv->padding);
 375	}
 376
 377	/* Enable HW time stamping if requested from user space */
 378	if (priv->hwts_rx_en)
 379		rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
 380
 381	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_RX)
 382		rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
 383
 384	/* Clear the LFC bit */
 385	gfar_write(&regs->rctrl, rctrl);
 386	/* Init flow control threshold values */
 387	gfar_init_rqprm(priv);
 388	gfar_write(&regs->ptv, DEFAULT_LFC_PTVVAL);
 389	rctrl |= RCTRL_LFC;
 390
 391	/* Init rctrl based on our settings */
 392	gfar_write(&regs->rctrl, rctrl);
 393}
 394
 395static void gfar_mac_tx_config(struct gfar_private *priv)
 396{
 397	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 398	u32 tctrl = 0;
 399
 400	if (priv->ndev->features & NETIF_F_IP_CSUM)
 401		tctrl |= TCTRL_INIT_CSUM;
 402
 403	if (priv->prio_sched_en)
 404		tctrl |= TCTRL_TXSCHED_PRIO;
 405	else {
 406		tctrl |= TCTRL_TXSCHED_WRRS;
 407		gfar_write(&regs->tr03wt, DEFAULT_WRRS_WEIGHT);
 408		gfar_write(&regs->tr47wt, DEFAULT_WRRS_WEIGHT);
 409	}
 410
 411	if (priv->ndev->features & NETIF_F_HW_VLAN_CTAG_TX)
 412		tctrl |= TCTRL_VLINS;
 413
 414	gfar_write(&regs->tctrl, tctrl);
 415}
 416
 417static void gfar_configure_coalescing(struct gfar_private *priv,
 418			       unsigned long tx_mask, unsigned long rx_mask)
 419{
 420	struct gfar __iomem *regs = priv->gfargrp[0].regs;
 421	u32 __iomem *baddr;
 422
 423	if (priv->mode == MQ_MG_MODE) {
 424		int i = 0;
 425
 426		baddr = &regs->txic0;
 427		for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
 428			gfar_write(baddr + i, 0);
 429			if (likely(priv->tx_queue[i]->txcoalescing))
 430				gfar_write(baddr + i, priv->tx_queue[i]->txic);
 431		}
 432
 433		baddr = &regs->rxic0;
 434		for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
 435			gfar_write(baddr + i, 0);
 436			if (likely(priv->rx_queue[i]->rxcoalescing))
 437				gfar_write(baddr + i, priv->rx_queue[i]->rxic);
 438		}
 439	} else {
 440		/* Backward compatible case -- even if we enable
 441		 * multiple queues, there's only single reg to program
 442		 */
 443		gfar_write(&regs->txic, 0);
 444		if (likely(priv->tx_queue[0]->txcoalescing))
 445			gfar_write(&regs->txic, priv->tx_queue[0]->txic);
 446
 447		gfar_write(&regs->rxic, 0);
 448		if (unlikely(priv->rx_queue[0]->rxcoalescing))
 449			gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
 450	}
 451}
 452
 453void gfar_configure_coalescing_all(struct gfar_private *priv)
 454{
 455	gfar_configure_coalescing(priv, 0xFF, 0xFF);
 456}
 457
 458static struct net_device_stats *gfar_get_stats(struct net_device *dev)
 459{
 460	struct gfar_private *priv = netdev_priv(dev);
 461	unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
 462	unsigned long tx_packets = 0, tx_bytes = 0;
 463	int i;
 464
 465	for (i = 0; i < priv->num_rx_queues; i++) {
 466		rx_packets += priv->rx_queue[i]->stats.rx_packets;
 467		rx_bytes   += priv->rx_queue[i]->stats.rx_bytes;
 468		rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
 469	}
 470
 471	dev->stats.rx_packets = rx_packets;
 472	dev->stats.rx_bytes   = rx_bytes;
 473	dev->stats.rx_dropped = rx_dropped;
 474
 475	for (i = 0; i < priv->num_tx_queues; i++) {
 476		tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
 477		tx_packets += priv->tx_queue[i]->stats.tx_packets;
 478	}
 479
 480	dev->stats.tx_bytes   = tx_bytes;
 481	dev->stats.tx_packets = tx_packets;
 482
 483	return &dev->stats;
 484}
 485
 486static int gfar_set_mac_addr(struct net_device *dev, void *p)
 487{
 488	eth_mac_addr(dev, p);
 489
 490	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
 491
 492	return 0;
 493}
 494
 495static const struct net_device_ops gfar_netdev_ops = {
 496	.ndo_open = gfar_enet_open,
 497	.ndo_start_xmit = gfar_start_xmit,
 498	.ndo_stop = gfar_close,
 499	.ndo_change_mtu = gfar_change_mtu,
 500	.ndo_set_features = gfar_set_features,
 501	.ndo_set_rx_mode = gfar_set_multi,
 502	.ndo_tx_timeout = gfar_timeout,
 503	.ndo_do_ioctl = gfar_ioctl,
 504	.ndo_get_stats = gfar_get_stats,
 505	.ndo_set_mac_address = gfar_set_mac_addr,
 506	.ndo_validate_addr = eth_validate_addr,
 507#ifdef CONFIG_NET_POLL_CONTROLLER
 508	.ndo_poll_controller = gfar_netpoll,
 509#endif
 510};
 511
 512static void gfar_ints_disable(struct gfar_private *priv)
 513{
 514	int i;
 515	for (i = 0; i < priv->num_grps; i++) {
 516		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 517		/* Clear IEVENT */
 518		gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
 519
 520		/* Initialize IMASK */
 521		gfar_write(&regs->imask, IMASK_INIT_CLEAR);
 522	}
 523}
 524
 525static void gfar_ints_enable(struct gfar_private *priv)
 526{
 527	int i;
 528	for (i = 0; i < priv->num_grps; i++) {
 529		struct gfar __iomem *regs = priv->gfargrp[i].regs;
 530		/* Unmask the interrupts we look for */
 531		gfar_write(&regs->imask, IMASK_DEFAULT);
 532	}
 533}
 534
 535static int gfar_alloc_tx_queues(struct gfar_private *priv)
 536{
 537	int i;
 538
 539	for (i = 0; i < priv->num_tx_queues; i++) {
 540		priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
 541					    GFP_KERNEL);
 542		if (!priv->tx_queue[i])
 543			return -ENOMEM;
 544
 545		priv->tx_queue[i]->tx_skbuff = NULL;
 546		priv->tx_queue[i]->qindex = i;
 547		priv->tx_queue[i]->dev = priv->ndev;
 548		spin_lock_init(&(priv->tx_queue[i]->txlock));
 549	}
 550	return 0;
 551}
 552
 553static int gfar_alloc_rx_queues(struct gfar_private *priv)
 554{
 555	int i;
 556
 557	for (i = 0; i < priv->num_rx_queues; i++) {
 558		priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
 559					    GFP_KERNEL);
 560		if (!priv->rx_queue[i])
 561			return -ENOMEM;
 562
 563		priv->rx_queue[i]->qindex = i;
 564		priv->rx_queue[i]->ndev = priv->ndev;
 565	}
 566	return 0;
 567}
 568
 569static void gfar_free_tx_queues(struct gfar_private *priv)
 570{
 571	int i;
 572
 573	for (i = 0; i < priv->num_tx_queues; i++)
 574		kfree(priv->tx_queue[i]);
 575}
 576
 577static void gfar_free_rx_queues(struct gfar_private *priv)
 578{
 579	int i;
 580
 581	for (i = 0; i < priv->num_rx_queues; i++)
 582		kfree(priv->rx_queue[i]);
 583}
 584
 585static void unmap_group_regs(struct gfar_private *priv)
 586{
 587	int i;
 588
 589	for (i = 0; i < MAXGROUPS; i++)
 590		if (priv->gfargrp[i].regs)
 591			iounmap(priv->gfargrp[i].regs);
 592}
 593
 594static void free_gfar_dev(struct gfar_private *priv)
 595{
 596	int i, j;
 597
 598	for (i = 0; i < priv->num_grps; i++)
 599		for (j = 0; j < GFAR_NUM_IRQS; j++) {
 600			kfree(priv->gfargrp[i].irqinfo[j]);
 601			priv->gfargrp[i].irqinfo[j] = NULL;
 602		}
 603
 604	free_netdev(priv->ndev);
 605}
 606
 607static void disable_napi(struct gfar_private *priv)
 608{
 609	int i;
 610
 611	for (i = 0; i < priv->num_grps; i++) {
 612		napi_disable(&priv->gfargrp[i].napi_rx);
 613		napi_disable(&priv->gfargrp[i].napi_tx);
 614	}
 615}
 616
 617static void enable_napi(struct gfar_private *priv)
 618{
 619	int i;
 620
 621	for (i = 0; i < priv->num_grps; i++) {
 622		napi_enable(&priv->gfargrp[i].napi_rx);
 623		napi_enable(&priv->gfargrp[i].napi_tx);
 624	}
 625}
 626
 627static int gfar_parse_group(struct device_node *np,
 628			    struct gfar_private *priv, const char *model)
 629{
 630	struct gfar_priv_grp *grp = &priv->gfargrp[priv->num_grps];
 631	int i;
 632
 633	for (i = 0; i < GFAR_NUM_IRQS; i++) {
 634		grp->irqinfo[i] = kzalloc(sizeof(struct gfar_irqinfo),
 635					  GFP_KERNEL);
 636		if (!grp->irqinfo[i])
 637			return -ENOMEM;
 638	}
 639
 640	grp->regs = of_iomap(np, 0);
 641	if (!grp->regs)
 642		return -ENOMEM;
 643
 644	gfar_irq(grp, TX)->irq = irq_of_parse_and_map(np, 0);
 645
 646	/* If we aren't the FEC we have multiple interrupts */
 647	if (model && strcasecmp(model, "FEC")) {
 648		gfar_irq(grp, RX)->irq = irq_of_parse_and_map(np, 1);
 649		gfar_irq(grp, ER)->irq = irq_of_parse_and_map(np, 2);
 650		if (!gfar_irq(grp, TX)->irq ||
 651		    !gfar_irq(grp, RX)->irq ||
 652		    !gfar_irq(grp, ER)->irq)
 653			return -EINVAL;
 654	}
 655
 656	grp->priv = priv;
 657	spin_lock_init(&grp->grplock);
 658	if (priv->mode == MQ_MG_MODE) {
 659		u32 rxq_mask, txq_mask;
 660		int ret;
 661
 662		grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 663		grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 664
 665		ret = of_property_read_u32(np, "fsl,rx-bit-map", &rxq_mask);
 666		if (!ret) {
 667			grp->rx_bit_map = rxq_mask ?
 668			rxq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 669		}
 670
 671		ret = of_property_read_u32(np, "fsl,tx-bit-map", &txq_mask);
 672		if (!ret) {
 673			grp->tx_bit_map = txq_mask ?
 674			txq_mask : (DEFAULT_MAPPING >> priv->num_grps);
 675		}
 676
 677		if (priv->poll_mode == GFAR_SQ_POLLING) {
 678			/* One Q per interrupt group: Q0 to G0, Q1 to G1 */
 679			grp->rx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 680			grp->tx_bit_map = (DEFAULT_MAPPING >> priv->num_grps);
 681		}
 682	} else {
 683		grp->rx_bit_map = 0xFF;
 684		grp->tx_bit_map = 0xFF;
 685	}
 686
 687	/* bit_map's MSB is q0 (from q0 to q7) but, for_each_set_bit parses
 688	 * right to left, so we need to revert the 8 bits to get the q index
 689	 */
 690	grp->rx_bit_map = bitrev8(grp->rx_bit_map);
 691	grp->tx_bit_map = bitrev8(grp->tx_bit_map);
 692
 693	/* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
 694	 * also assign queues to groups
 695	 */
 696	for_each_set_bit(i, &grp->rx_bit_map, priv->num_rx_queues) {
 697		if (!grp->rx_queue)
 698			grp->rx_queue = priv->rx_queue[i];
 699		grp->num_rx_queues++;
 700		grp->rstat |= (RSTAT_CLEAR_RHALT >> i);
 701		priv->rqueue |= ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
 702		priv->rx_queue[i]->grp = grp;
 703	}
 704
 705	for_each_set_bit(i, &grp->tx_bit_map, priv->num_tx_queues) {
 706		if (!grp->tx_queue)
 707			grp->tx_queue = priv->tx_queue[i];
 708		grp->num_tx_queues++;
 709		grp->tstat |= (TSTAT_CLEAR_THALT >> i);
 710		priv->tqueue |= (TQUEUE_EN0 >> i);
 711		priv->tx_queue[i]->grp = grp;
 712	}
 713
 714	priv->num_grps++;
 715
 716	return 0;
 717}
 718
 719static int gfar_of_group_count(struct device_node *np)
 720{
 721	struct device_node *child;
 722	int num = 0;
 723
 724	for_each_available_child_of_node(np, child)
 725		if (!of_node_cmp(child->name, "queue-group"))
 726			num++;
 727
 728	return num;
 729}
 730
 731static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
 732{
 733	const char *model;
 734	const char *ctype;
 735	const void *mac_addr;
 736	int err = 0, i;
 737	struct net_device *dev = NULL;
 738	struct gfar_private *priv = NULL;
 739	struct device_node *np = ofdev->dev.of_node;
 740	struct device_node *child = NULL;
 741	u32 stash_len = 0;
 742	u32 stash_idx = 0;
 743	unsigned int num_tx_qs, num_rx_qs;
 744	unsigned short mode, poll_mode;
 745
 746	if (!np)
 747		return -ENODEV;
 748
 749	if (of_device_is_compatible(np, "fsl,etsec2")) {
 750		mode = MQ_MG_MODE;
 751		poll_mode = GFAR_SQ_POLLING;
 752	} else {
 753		mode = SQ_SG_MODE;
 754		poll_mode = GFAR_SQ_POLLING;
 755	}
 756
 757	if (mode == SQ_SG_MODE) {
 758		num_tx_qs = 1;
 759		num_rx_qs = 1;
 760	} else { /* MQ_MG_MODE */
 761		/* get the actual number of supported groups */
 762		unsigned int num_grps = gfar_of_group_count(np);
 763
 764		if (num_grps == 0 || num_grps > MAXGROUPS) {
 765			dev_err(&ofdev->dev, "Invalid # of int groups(%d)\n",
 766				num_grps);
 767			pr_err("Cannot do alloc_etherdev, aborting\n");
 768			return -EINVAL;
 769		}
 770
 771		if (poll_mode == GFAR_SQ_POLLING) {
 772			num_tx_qs = num_grps; /* one txq per int group */
 773			num_rx_qs = num_grps; /* one rxq per int group */
 774		} else { /* GFAR_MQ_POLLING */
 775			u32 tx_queues, rx_queues;
 776			int ret;
 777
 778			/* parse the num of HW tx and rx queues */
 779			ret = of_property_read_u32(np, "fsl,num_tx_queues",
 780						   &tx_queues);
 781			num_tx_qs = ret ? 1 : tx_queues;
 782
 783			ret = of_property_read_u32(np, "fsl,num_rx_queues",
 784						   &rx_queues);
 785			num_rx_qs = ret ? 1 : rx_queues;
 786		}
 787	}
 788
 789	if (num_tx_qs > MAX_TX_QS) {
 790		pr_err("num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
 791		       num_tx_qs, MAX_TX_QS);
 792		pr_err("Cannot do alloc_etherdev, aborting\n");
 793		return -EINVAL;
 794	}
 795
 796	if (num_rx_qs > MAX_RX_QS) {
 797		pr_err("num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
 798		       num_rx_qs, MAX_RX_QS);
 799		pr_err("Cannot do alloc_etherdev, aborting\n");
 800		return -EINVAL;
 801	}
 802
 803	*pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
 804	dev = *pdev;
 805	if (NULL == dev)
 806		return -ENOMEM;
 807
 808	priv = netdev_priv(dev);
 809	priv->ndev = dev;
 810
 811	priv->mode = mode;
 812	priv->poll_mode = poll_mode;
 813
 814	priv->num_tx_queues = num_tx_qs;
 815	netif_set_real_num_rx_queues(dev, num_rx_qs);
 816	priv->num_rx_queues = num_rx_qs;
 817
 818	err = gfar_alloc_tx_queues(priv);
 819	if (err)
 820		goto tx_alloc_failed;
 821
 822	err = gfar_alloc_rx_queues(priv);
 823	if (err)
 824		goto rx_alloc_failed;
 825
 826	err = of_property_read_string(np, "model", &model);
 827	if (err) {
 828		pr_err("Device model property missing, aborting\n");
 829		goto rx_alloc_failed;
 830	}
 831
 832	/* Init Rx queue filer rule set linked list */
 833	INIT_LIST_HEAD(&priv->rx_list.list);
 834	priv->rx_list.count = 0;
 835	mutex_init(&priv->rx_queue_access);
 836
 837	for (i = 0; i < MAXGROUPS; i++)
 838		priv->gfargrp[i].regs = NULL;
 839
 840	/* Parse and initialize group specific information */
 841	if (priv->mode == MQ_MG_MODE) {
 842		for_each_available_child_of_node(np, child) {
 843			if (of_node_cmp(child->name, "queue-group"))
 844				continue;
 845
 846			err = gfar_parse_group(child, priv, model);
 847			if (err)
 848				goto err_grp_init;
 849		}
 850	} else { /* SQ_SG_MODE */
 851		err = gfar_parse_group(np, priv, model);
 852		if (err)
 853			goto err_grp_init;
 854	}
 855
 856	if (of_property_read_bool(np, "bd-stash")) {
 857		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
 858		priv->bd_stash_en = 1;
 859	}
 860
 861	err = of_property_read_u32(np, "rx-stash-len", &stash_len);
 862
 863	if (err == 0)
 864		priv->rx_stash_size = stash_len;
 865
 866	err = of_property_read_u32(np, "rx-stash-idx", &stash_idx);
 867
 868	if (err == 0)
 869		priv->rx_stash_index = stash_idx;
 870
 871	if (stash_len || stash_idx)
 872		priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
 873
 874	mac_addr = of_get_mac_address(np);
 875
 876	if (mac_addr)
 877		memcpy(dev->dev_addr, mac_addr, ETH_ALEN);
 878
 879	if (model && !strcasecmp(model, "TSEC"))
 880		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 881				     FSL_GIANFAR_DEV_HAS_COALESCE |
 882				     FSL_GIANFAR_DEV_HAS_RMON |
 883				     FSL_GIANFAR_DEV_HAS_MULTI_INTR;
 884
 885	if (model && !strcasecmp(model, "eTSEC"))
 886		priv->device_flags |= FSL_GIANFAR_DEV_HAS_GIGABIT |
 887				     FSL_GIANFAR_DEV_HAS_COALESCE |
 888				     FSL_GIANFAR_DEV_HAS_RMON |
 889				     FSL_GIANFAR_DEV_HAS_MULTI_INTR |
 890				     FSL_GIANFAR_DEV_HAS_CSUM |
 891				     FSL_GIANFAR_DEV_HAS_VLAN |
 892				     FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
 893				     FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
 894				     FSL_GIANFAR_DEV_HAS_TIMER |
 895				     FSL_GIANFAR_DEV_HAS_RX_FILER;
 896
 897	err = of_property_read_string(np, "phy-connection-type", &ctype);
 898
 899	/* We only care about rgmii-id.  The rest are autodetected */
 900	if (err == 0 && !strcmp(ctype, "rgmii-id"))
 901		priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
 902	else
 903		priv->interface = PHY_INTERFACE_MODE_MII;
 904
 905	if (of_find_property(np, "fsl,magic-packet", NULL))
 906		priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
 907
 908	if (of_get_property(np, "fsl,wake-on-filer", NULL))
 909		priv->device_flags |= FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER;
 910
 911	priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
 912
 913	/* In the case of a fixed PHY, the DT node associated
 914	 * to the PHY is the Ethernet MAC DT node.
 915	 */
 916	if (!priv->phy_node && of_phy_is_fixed_link(np)) {
 917		err = of_phy_register_fixed_link(np);
 918		if (err)
 919			goto err_grp_init;
 920
 921		priv->phy_node = of_node_get(np);
 922	}
 923
 924	/* Find the TBI PHY.  If it's not there, we don't support SGMII */
 925	priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
 926
 927	return 0;
 928
 929err_grp_init:
 930	unmap_group_regs(priv);
 931rx_alloc_failed:
 932	gfar_free_rx_queues(priv);
 933tx_alloc_failed:
 934	gfar_free_tx_queues(priv);
 935	free_gfar_dev(priv);
 936	return err;
 937}
 938
 939static int gfar_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
 940{
 941	struct hwtstamp_config config;
 942	struct gfar_private *priv = netdev_priv(netdev);
 943
 944	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
 945		return -EFAULT;
 946
 947	/* reserved for future extensions */
 948	if (config.flags)
 949		return -EINVAL;
 950
 951	switch (config.tx_type) {
 952	case HWTSTAMP_TX_OFF:
 953		priv->hwts_tx_en = 0;
 954		break;
 955	case HWTSTAMP_TX_ON:
 956		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 957			return -ERANGE;
 958		priv->hwts_tx_en = 1;
 959		break;
 960	default:
 961		return -ERANGE;
 962	}
 963
 964	switch (config.rx_filter) {
 965	case HWTSTAMP_FILTER_NONE:
 966		if (priv->hwts_rx_en) {
 967			priv->hwts_rx_en = 0;
 968			reset_gfar(netdev);
 969		}
 970		break;
 971	default:
 972		if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
 973			return -ERANGE;
 974		if (!priv->hwts_rx_en) {
 975			priv->hwts_rx_en = 1;
 976			reset_gfar(netdev);
 977		}
 978		config.rx_filter = HWTSTAMP_FILTER_ALL;
 979		break;
 980	}
 981
 982	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 983		-EFAULT : 0;
 984}
 985
 986static int gfar_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
 987{
 988	struct hwtstamp_config config;
 989	struct gfar_private *priv = netdev_priv(netdev);
 990
 991	config.flags = 0;
 992	config.tx_type = priv->hwts_tx_en ? HWTSTAMP_TX_ON : HWTSTAMP_TX_OFF;
 993	config.rx_filter = (priv->hwts_rx_en ?
 994			    HWTSTAMP_FILTER_ALL : HWTSTAMP_FILTER_NONE);
 995
 996	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
 997		-EFAULT : 0;
 998}
 999
1000static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1001{
1002	struct phy_device *phydev = dev->phydev;
1003
1004	if (!netif_running(dev))
1005		return -EINVAL;
1006
1007	if (cmd == SIOCSHWTSTAMP)
1008		return gfar_hwtstamp_set(dev, rq);
1009	if (cmd == SIOCGHWTSTAMP)
1010		return gfar_hwtstamp_get(dev, rq);
1011
1012	if (!phydev)
1013		return -ENODEV;
1014
1015	return phy_mii_ioctl(phydev, rq, cmd);
1016}
1017
1018static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
1019				   u32 class)
1020{
1021	u32 rqfpr = FPR_FILER_MASK;
1022	u32 rqfcr = 0x0;
1023
1024	rqfar--;
1025	rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
1026	priv->ftp_rqfpr[rqfar] = rqfpr;
1027	priv->ftp_rqfcr[rqfar] = rqfcr;
1028	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1029
1030	rqfar--;
1031	rqfcr = RQFCR_CMP_NOMATCH;
1032	priv->ftp_rqfpr[rqfar] = rqfpr;
1033	priv->ftp_rqfcr[rqfar] = rqfcr;
1034	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1035
1036	rqfar--;
1037	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
1038	rqfpr = class;
1039	priv->ftp_rqfcr[rqfar] = rqfcr;
1040	priv->ftp_rqfpr[rqfar] = rqfpr;
1041	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1042
1043	rqfar--;
1044	rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
1045	rqfpr = class;
1046	priv->ftp_rqfcr[rqfar] = rqfcr;
1047	priv->ftp_rqfpr[rqfar] = rqfpr;
1048	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1049
1050	return rqfar;
1051}
1052
1053static void gfar_init_filer_table(struct gfar_private *priv)
1054{
1055	int i = 0x0;
1056	u32 rqfar = MAX_FILER_IDX;
1057	u32 rqfcr = 0x0;
1058	u32 rqfpr = FPR_FILER_MASK;
1059
1060	/* Default rule */
1061	rqfcr = RQFCR_CMP_MATCH;
1062	priv->ftp_rqfcr[rqfar] = rqfcr;
1063	priv->ftp_rqfpr[rqfar] = rqfpr;
1064	gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
1065
1066	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
1067	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
1068	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
1069	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
1070	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
1071	rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
1072
1073	/* cur_filer_idx indicated the first non-masked rule */
1074	priv->cur_filer_idx = rqfar;
1075
1076	/* Rest are masked rules */
1077	rqfcr = RQFCR_CMP_NOMATCH;
1078	for (i = 0; i < rqfar; i++) {
1079		priv->ftp_rqfcr[i] = rqfcr;
1080		priv->ftp_rqfpr[i] = rqfpr;
1081		gfar_write_filer(priv, i, rqfcr, rqfpr);
1082	}
1083}
1084
1085#ifdef CONFIG_PPC
1086static void __gfar_detect_errata_83xx(struct gfar_private *priv)
1087{
1088	unsigned int pvr = mfspr(SPRN_PVR);
1089	unsigned int svr = mfspr(SPRN_SVR);
1090	unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
1091	unsigned int rev = svr & 0xffff;
1092
1093	/* MPC8313 Rev 2.0 and higher; All MPC837x */
1094	if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
1095	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1096		priv->errata |= GFAR_ERRATA_74;
1097
1098	/* MPC8313 and MPC837x all rev */
1099	if ((pvr == 0x80850010 && mod == 0x80b0) ||
1100	    (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
1101		priv->errata |= GFAR_ERRATA_76;
1102
1103	/* MPC8313 Rev < 2.0 */
1104	if (pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020)
1105		priv->errata |= GFAR_ERRATA_12;
1106}
1107
1108static void __gfar_detect_errata_85xx(struct gfar_private *priv)
1109{
1110	unsigned int svr = mfspr(SPRN_SVR);
1111
1112	if ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) == 0x20))
1113		priv->errata |= GFAR_ERRATA_12;
1114	/* P2020/P1010 Rev 1; MPC8548 Rev 2 */
1115	if (((SVR_SOC_VER(svr) == SVR_P2020) && (SVR_REV(svr) < 0x20)) ||
1116	    ((SVR_SOC_VER(svr) == SVR_P2010) && (SVR_REV(svr) < 0x20)) ||
1117	    ((SVR_SOC_VER(svr) == SVR_8548) && (SVR_REV(svr) < 0x31)))
1118		priv->errata |= GFAR_ERRATA_76; /* aka eTSEC 20 */
1119}
1120#endif
1121
1122static void gfar_detect_errata(struct gfar_private *priv)
1123{
1124	struct device *dev = &priv->ofdev->dev;
1125
1126	/* no plans to fix */
1127	priv->errata |= GFAR_ERRATA_A002;
1128
1129#ifdef CONFIG_PPC
1130	if (pvr_version_is(PVR_VER_E500V1) || pvr_version_is(PVR_VER_E500V2))
1131		__gfar_detect_errata_85xx(priv);
1132	else /* non-mpc85xx parts, i.e. e300 core based */
1133		__gfar_detect_errata_83xx(priv);
1134#endif
1135
1136	if (priv->errata)
1137		dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
1138			 priv->errata);
1139}
1140
1141void gfar_mac_reset(struct gfar_private *priv)
1142{
1143	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1144	u32 tempval;
1145
1146	/* Reset MAC layer */
1147	gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1148
1149	/* We need to delay at least 3 TX clocks */
1150	udelay(3);
1151
1152	/* the soft reset bit is not self-resetting, so we need to
1153	 * clear it before resuming normal operation
1154	 */
1155	gfar_write(&regs->maccfg1, 0);
1156
1157	udelay(3);
1158
1159	gfar_rx_offload_en(priv);
1160
1161	/* Initialize the max receive frame/buffer lengths */
1162	gfar_write(&regs->maxfrm, GFAR_JUMBO_FRAME_SIZE);
1163	gfar_write(&regs->mrblr, GFAR_RXB_SIZE);
1164
1165	/* Initialize the Minimum Frame Length Register */
1166	gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1167
1168	/* Initialize MACCFG2. */
1169	tempval = MACCFG2_INIT_SETTINGS;
1170
1171	/* eTSEC74 erratum: Rx frames of length MAXFRM or MAXFRM-1
1172	 * are marked as truncated.  Avoid this by MACCFG2[Huge Frame]=1,
1173	 * and by checking RxBD[LG] and discarding larger than MAXFRM.
1174	 */
1175	if (gfar_has_errata(priv, GFAR_ERRATA_74))
1176		tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1177
1178	gfar_write(&regs->maccfg2, tempval);
1179
1180	/* Clear mac addr hash registers */
1181	gfar_write(&regs->igaddr0, 0);
1182	gfar_write(&regs->igaddr1, 0);
1183	gfar_write(&regs->igaddr2, 0);
1184	gfar_write(&regs->igaddr3, 0);
1185	gfar_write(&regs->igaddr4, 0);
1186	gfar_write(&regs->igaddr5, 0);
1187	gfar_write(&regs->igaddr6, 0);
1188	gfar_write(&regs->igaddr7, 0);
1189
1190	gfar_write(&regs->gaddr0, 0);
1191	gfar_write(&regs->gaddr1, 0);
1192	gfar_write(&regs->gaddr2, 0);
1193	gfar_write(&regs->gaddr3, 0);
1194	gfar_write(&regs->gaddr4, 0);
1195	gfar_write(&regs->gaddr5, 0);
1196	gfar_write(&regs->gaddr6, 0);
1197	gfar_write(&regs->gaddr7, 0);
1198
1199	if (priv->extended_hash)
1200		gfar_clear_exact_match(priv->ndev);
1201
1202	gfar_mac_rx_config(priv);
1203
1204	gfar_mac_tx_config(priv);
1205
1206	gfar_set_mac_address(priv->ndev);
1207
1208	gfar_set_multi(priv->ndev);
1209
1210	/* clear ievent and imask before configuring coalescing */
1211	gfar_ints_disable(priv);
1212
1213	/* Configure the coalescing support */
1214	gfar_configure_coalescing_all(priv);
1215}
1216
1217static void gfar_hw_init(struct gfar_private *priv)
1218{
1219	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1220	u32 attrs;
1221
1222	/* Stop the DMA engine now, in case it was running before
1223	 * (The firmware could have used it, and left it running).
1224	 */
1225	gfar_halt(priv);
1226
1227	gfar_mac_reset(priv);
1228
1229	/* Zero out the rmon mib registers if it has them */
1230	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1231		memset_io(&(regs->rmon), 0, sizeof(struct rmon_mib));
1232
1233		/* Mask off the CAM interrupts */
1234		gfar_write(&regs->rmon.cam1, 0xffffffff);
1235		gfar_write(&regs->rmon.cam2, 0xffffffff);
1236	}
1237
1238	/* Initialize ECNTRL */
1239	gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1240
1241	/* Set the extraction length and index */
1242	attrs = ATTRELI_EL(priv->rx_stash_size) |
1243		ATTRELI_EI(priv->rx_stash_index);
1244
1245	gfar_write(&regs->attreli, attrs);
1246
1247	/* Start with defaults, and add stashing
1248	 * depending on driver parameters
1249	 */
1250	attrs = ATTR_INIT_SETTINGS;
1251
1252	if (priv->bd_stash_en)
1253		attrs |= ATTR_BDSTASH;
1254
1255	if (priv->rx_stash_size != 0)
1256		attrs |= ATTR_BUFSTASH;
1257
1258	gfar_write(&regs->attr, attrs);
1259
1260	/* FIFO configs */
1261	gfar_write(&regs->fifo_tx_thr, DEFAULT_FIFO_TX_THR);
1262	gfar_write(&regs->fifo_tx_starve, DEFAULT_FIFO_TX_STARVE);
1263	gfar_write(&regs->fifo_tx_starve_shutoff, DEFAULT_FIFO_TX_STARVE_OFF);
1264
1265	/* Program the interrupt steering regs, only for MG devices */
1266	if (priv->num_grps > 1)
1267		gfar_write_isrg(priv);
1268}
1269
1270static void gfar_init_addr_hash_table(struct gfar_private *priv)
1271{
1272	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1273
1274	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1275		priv->extended_hash = 1;
1276		priv->hash_width = 9;
1277
1278		priv->hash_regs[0] = &regs->igaddr0;
1279		priv->hash_regs[1] = &regs->igaddr1;
1280		priv->hash_regs[2] = &regs->igaddr2;
1281		priv->hash_regs[3] = &regs->igaddr3;
1282		priv->hash_regs[4] = &regs->igaddr4;
1283		priv->hash_regs[5] = &regs->igaddr5;
1284		priv->hash_regs[6] = &regs->igaddr6;
1285		priv->hash_regs[7] = &regs->igaddr7;
1286		priv->hash_regs[8] = &regs->gaddr0;
1287		priv->hash_regs[9] = &regs->gaddr1;
1288		priv->hash_regs[10] = &regs->gaddr2;
1289		priv->hash_regs[11] = &regs->gaddr3;
1290		priv->hash_regs[12] = &regs->gaddr4;
1291		priv->hash_regs[13] = &regs->gaddr5;
1292		priv->hash_regs[14] = &regs->gaddr6;
1293		priv->hash_regs[15] = &regs->gaddr7;
1294
1295	} else {
1296		priv->extended_hash = 0;
1297		priv->hash_width = 8;
1298
1299		priv->hash_regs[0] = &regs->gaddr0;
1300		priv->hash_regs[1] = &regs->gaddr1;
1301		priv->hash_regs[2] = &regs->gaddr2;
1302		priv->hash_regs[3] = &regs->gaddr3;
1303		priv->hash_regs[4] = &regs->gaddr4;
1304		priv->hash_regs[5] = &regs->gaddr5;
1305		priv->hash_regs[6] = &regs->gaddr6;
1306		priv->hash_regs[7] = &regs->gaddr7;
1307	}
1308}
1309
1310/* Set up the ethernet device structure, private data,
1311 * and anything else we need before we start
1312 */
1313static int gfar_probe(struct platform_device *ofdev)
1314{
1315	struct device_node *np = ofdev->dev.of_node;
1316	struct net_device *dev = NULL;
1317	struct gfar_private *priv = NULL;
1318	int err = 0, i;
1319
1320	err = gfar_of_init(ofdev, &dev);
1321
1322	if (err)
1323		return err;
1324
1325	priv = netdev_priv(dev);
1326	priv->ndev = dev;
1327	priv->ofdev = ofdev;
1328	priv->dev = &ofdev->dev;
1329	SET_NETDEV_DEV(dev, &ofdev->dev);
1330
1331	INIT_WORK(&priv->reset_task, gfar_reset_task);
1332
1333	platform_set_drvdata(ofdev, priv);
1334
1335	gfar_detect_errata(priv);
1336
1337	/* Set the dev->base_addr to the gfar reg region */
1338	dev->base_addr = (unsigned long) priv->gfargrp[0].regs;
1339
1340	/* Fill in the dev structure */
1341	dev->watchdog_timeo = TX_TIMEOUT;
1342	/* MTU range: 50 - 9586 */
1343	dev->mtu = 1500;
1344	dev->min_mtu = 50;
1345	dev->max_mtu = GFAR_JUMBO_FRAME_SIZE - ETH_HLEN;
1346	dev->netdev_ops = &gfar_netdev_ops;
1347	dev->ethtool_ops = &gfar_ethtool_ops;
1348
1349	/* Register for napi ...We are registering NAPI for each grp */
1350	for (i = 0; i < priv->num_grps; i++) {
1351		if (priv->poll_mode == GFAR_SQ_POLLING) {
1352			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1353				       gfar_poll_rx_sq, GFAR_DEV_WEIGHT);
1354			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1355				       gfar_poll_tx_sq, 2);
1356		} else {
1357			netif_napi_add(dev, &priv->gfargrp[i].napi_rx,
1358				       gfar_poll_rx, GFAR_DEV_WEIGHT);
1359			netif_tx_napi_add(dev, &priv->gfargrp[i].napi_tx,
1360				       gfar_poll_tx, 2);
1361		}
1362	}
1363
1364	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1365		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1366				   NETIF_F_RXCSUM;
1367		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1368				 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1369	}
1370
1371	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN) {
1372		dev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX |
1373				    NETIF_F_HW_VLAN_CTAG_RX;
1374		dev->features |= NETIF_F_HW_VLAN_CTAG_RX;
1375	}
1376
1377	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1378
1379	gfar_init_addr_hash_table(priv);
1380
1381	/* Insert receive time stamps into padding alignment bytes */
1382	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1383		priv->padding = 8;
1384
1385	if (dev->features & NETIF_F_IP_CSUM ||
1386	    priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1387		dev->needed_headroom = GMAC_FCB_LEN;
1388
1389	/* Initializing some of the rx/tx queue level parameters */
1390	for (i = 0; i < priv->num_tx_queues; i++) {
1391		priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1392		priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1393		priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1394		priv->tx_queue[i]->txic = DEFAULT_TXIC;
1395	}
1396
1397	for (i = 0; i < priv->num_rx_queues; i++) {
1398		priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1399		priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1400		priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1401	}
1402
1403	/* Always enable rx filer if available */
1404	priv->rx_filer_enable =
1405	    (priv->device_flags & FSL_GIANFAR_DEV_HAS_RX_FILER) ? 1 : 0;
1406	/* Enable most messages by default */
1407	priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1408	/* use pritority h/w tx queue scheduling for single queue devices */
1409	if (priv->num_tx_queues == 1)
1410		priv->prio_sched_en = 1;
1411
1412	set_bit(GFAR_DOWN, &priv->state);
1413
1414	gfar_hw_init(priv);
1415
1416	/* Carrier starts down, phylib will bring it up */
1417	netif_carrier_off(dev);
1418
1419	err = register_netdev(dev);
1420
1421	if (err) {
1422		pr_err("%s: Cannot register net device, aborting\n", dev->name);
1423		goto register_fail;
1424	}
1425
1426	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET)
1427		priv->wol_supported |= GFAR_WOL_MAGIC;
1428
1429	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_WAKE_ON_FILER) &&
1430	    priv->rx_filer_enable)
1431		priv->wol_supported |= GFAR_WOL_FILER_UCAST;
1432
1433	device_set_wakeup_capable(&ofdev->dev, priv->wol_supported);
1434
1435	/* fill out IRQ number and name fields */
1436	for (i = 0; i < priv->num_grps; i++) {
1437		struct gfar_priv_grp *grp = &priv->gfargrp[i];
1438		if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1439			sprintf(gfar_irq(grp, TX)->name, "%s%s%c%s",
1440				dev->name, "_g", '0' + i, "_tx");
1441			sprintf(gfar_irq(grp, RX)->name, "%s%s%c%s",
1442				dev->name, "_g", '0' + i, "_rx");
1443			sprintf(gfar_irq(grp, ER)->name, "%s%s%c%s",
1444				dev->name, "_g", '0' + i, "_er");
1445		} else
1446			strcpy(gfar_irq(grp, TX)->name, dev->name);
1447	}
1448
1449	/* Initialize the filer table */
1450	gfar_init_filer_table(priv);
1451
1452	/* Print out the device info */
1453	netdev_info(dev, "mac: %pM\n", dev->dev_addr);
1454
1455	/* Even more device info helps when determining which kernel
1456	 * provided which set of benchmarks.
1457	 */
1458	netdev_info(dev, "Running with NAPI enabled\n");
1459	for (i = 0; i < priv->num_rx_queues; i++)
1460		netdev_info(dev, "RX BD ring size for Q[%d]: %d\n",
1461			    i, priv->rx_queue[i]->rx_ring_size);
1462	for (i = 0; i < priv->num_tx_queues; i++)
1463		netdev_info(dev, "TX BD ring size for Q[%d]: %d\n",
1464			    i, priv->tx_queue[i]->tx_ring_size);
1465
1466	return 0;
1467
1468register_fail:
1469	if (of_phy_is_fixed_link(np))
1470		of_phy_deregister_fixed_link(np);
1471	unmap_group_regs(priv);
1472	gfar_free_rx_queues(priv);
1473	gfar_free_tx_queues(priv);
1474	of_node_put(priv->phy_node);
1475	of_node_put(priv->tbi_node);
1476	free_gfar_dev(priv);
1477	return err;
1478}
1479
1480static int gfar_remove(struct platform_device *ofdev)
1481{
1482	struct gfar_private *priv = platform_get_drvdata(ofdev);
1483	struct device_node *np = ofdev->dev.of_node;
1484
1485	of_node_put(priv->phy_node);
1486	of_node_put(priv->tbi_node);
1487
1488	unregister_netdev(priv->ndev);
1489
1490	if (of_phy_is_fixed_link(np))
1491		of_phy_deregister_fixed_link(np);
1492
1493	unmap_group_regs(priv);
1494	gfar_free_rx_queues(priv);
1495	gfar_free_tx_queues(priv);
1496	free_gfar_dev(priv);
1497
1498	return 0;
1499}
1500
1501#ifdef CONFIG_PM
1502
1503static void __gfar_filer_disable(struct gfar_private *priv)
1504{
1505	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1506	u32 temp;
1507
1508	temp = gfar_read(&regs->rctrl);
1509	temp &= ~(RCTRL_FILREN | RCTRL_PRSDEP_INIT);
1510	gfar_write(&regs->rctrl, temp);
1511}
1512
1513static void __gfar_filer_enable(struct gfar_private *priv)
1514{
1515	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1516	u32 temp;
1517
1518	temp = gfar_read(&regs->rctrl);
1519	temp |= RCTRL_FILREN | RCTRL_PRSDEP_INIT;
1520	gfar_write(&regs->rctrl, temp);
1521}
1522
1523/* Filer rules implementing wol capabilities */
1524static void gfar_filer_config_wol(struct gfar_private *priv)
1525{
1526	unsigned int i;
1527	u32 rqfcr;
1528
1529	__gfar_filer_disable(priv);
1530
1531	/* clear the filer table, reject any packet by default */
1532	rqfcr = RQFCR_RJE | RQFCR_CMP_MATCH;
1533	for (i = 0; i <= MAX_FILER_IDX; i++)
1534		gfar_write_filer(priv, i, rqfcr, 0);
1535
1536	i = 0;
1537	if (priv->wol_opts & GFAR_WOL_FILER_UCAST) {
1538		/* unicast packet, accept it */
1539		struct net_device *ndev = priv->ndev;
1540		/* get the default rx queue index */
1541		u8 qindex = (u8)priv->gfargrp[0].rx_queue->qindex;
1542		u32 dest_mac_addr = (ndev->dev_addr[0] << 16) |
1543				    (ndev->dev_addr[1] << 8) |
1544				     ndev->dev_addr[2];
1545
1546		rqfcr = (qindex << 10) | RQFCR_AND |
1547			RQFCR_CMP_EXACT | RQFCR_PID_DAH;
1548
1549		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1550
1551		dest_mac_addr = (ndev->dev_addr[3] << 16) |
1552				(ndev->dev_addr[4] << 8) |
1553				 ndev->dev_addr[5];
1554		rqfcr = (qindex << 10) | RQFCR_GPI |
1555			RQFCR_CMP_EXACT | RQFCR_PID_DAL;
1556		gfar_write_filer(priv, i++, rqfcr, dest_mac_addr);
1557	}
1558
1559	__gfar_filer_enable(priv);
1560}
1561
1562static void gfar_filer_restore_table(struct gfar_private *priv)
1563{
1564	u32 rqfcr, rqfpr;
1565	unsigned int i;
1566
1567	__gfar_filer_disable(priv);
1568
1569	for (i = 0; i <= MAX_FILER_IDX; i++) {
1570		rqfcr = priv->ftp_rqfcr[i];
1571		rqfpr = priv->ftp_rqfpr[i];
1572		gfar_write_filer(priv, i, rqfcr, rqfpr);
1573	}
1574
1575	__gfar_filer_enable(priv);
1576}
1577
1578/* gfar_start() for Rx only and with the FGPI filer interrupt enabled */
1579static void gfar_start_wol_filer(struct gfar_private *priv)
1580{
1581	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1582	u32 tempval;
1583	int i = 0;
1584
1585	/* Enable Rx hw queues */
1586	gfar_write(&regs->rqueue, priv->rqueue);
1587
1588	/* Initialize DMACTRL to have WWR and WOP */
1589	tempval = gfar_read(&regs->dmactrl);
1590	tempval |= DMACTRL_INIT_SETTINGS;
1591	gfar_write(&regs->dmactrl, tempval);
1592
1593	/* Make sure we aren't stopped */
1594	tempval = gfar_read(&regs->dmactrl);
1595	tempval &= ~DMACTRL_GRS;
1596	gfar_write(&regs->dmactrl, tempval);
1597
1598	for (i = 0; i < priv->num_grps; i++) {
1599		regs = priv->gfargrp[i].regs;
1600		/* Clear RHLT, so that the DMA starts polling now */
1601		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1602		/* enable the Filer General Purpose Interrupt */
1603		gfar_write(&regs->imask, IMASK_FGPI);
1604	}
1605
1606	/* Enable Rx DMA */
1607	tempval = gfar_read(&regs->maccfg1);
1608	tempval |= MACCFG1_RX_EN;
1609	gfar_write(&regs->maccfg1, tempval);
1610}
1611
1612static int gfar_suspend(struct device *dev)
1613{
1614	struct gfar_private *priv = dev_get_drvdata(dev);
1615	struct net_device *ndev = priv->ndev;
1616	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1617	u32 tempval;
1618	u16 wol = priv->wol_opts;
1619
1620	if (!netif_running(ndev))
1621		return 0;
1622
1623	disable_napi(priv);
1624	netif_tx_lock(ndev);
1625	netif_device_detach(ndev);
1626	netif_tx_unlock(ndev);
1627
1628	gfar_halt(priv);
1629
1630	if (wol & GFAR_WOL_MAGIC) {
1631		/* Enable interrupt on Magic Packet */
1632		gfar_write(&regs->imask, IMASK_MAG);
1633
1634		/* Enable Magic Packet mode */
1635		tempval = gfar_read(&regs->maccfg2);
1636		tempval |= MACCFG2_MPEN;
1637		gfar_write(&regs->maccfg2, tempval);
1638
1639		/* re-enable the Rx block */
1640		tempval = gfar_read(&regs->maccfg1);
1641		tempval |= MACCFG1_RX_EN;
1642		gfar_write(&regs->maccfg1, tempval);
1643
1644	} else if (wol & GFAR_WOL_FILER_UCAST) {
1645		gfar_filer_config_wol(priv);
1646		gfar_start_wol_filer(priv);
1647
1648	} else {
1649		phy_stop(ndev->phydev);
1650	}
1651
1652	return 0;
1653}
1654
1655static int gfar_resume(struct device *dev)
1656{
1657	struct gfar_private *priv = dev_get_drvdata(dev);
1658	struct net_device *ndev = priv->ndev;
1659	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1660	u32 tempval;
1661	u16 wol = priv->wol_opts;
1662
1663	if (!netif_running(ndev))
1664		return 0;
1665
1666	if (wol & GFAR_WOL_MAGIC) {
1667		/* Disable Magic Packet mode */
1668		tempval = gfar_read(&regs->maccfg2);
1669		tempval &= ~MACCFG2_MPEN;
1670		gfar_write(&regs->maccfg2, tempval);
1671
1672	} else if (wol & GFAR_WOL_FILER_UCAST) {
1673		/* need to stop rx only, tx is already down */
1674		gfar_halt(priv);
1675		gfar_filer_restore_table(priv);
1676
1677	} else {
1678		phy_start(ndev->phydev);
1679	}
1680
1681	gfar_start(priv);
1682
1683	netif_device_attach(ndev);
1684	enable_napi(priv);
1685
1686	return 0;
1687}
1688
1689static int gfar_restore(struct device *dev)
1690{
1691	struct gfar_private *priv = dev_get_drvdata(dev);
1692	struct net_device *ndev = priv->ndev;
1693
1694	if (!netif_running(ndev)) {
1695		netif_device_attach(ndev);
1696
1697		return 0;
1698	}
1699
1700	gfar_init_bds(ndev);
1701
1702	gfar_mac_reset(priv);
1703
1704	gfar_init_tx_rx_base(priv);
1705
1706	gfar_start(priv);
1707
1708	priv->oldlink = 0;
1709	priv->oldspeed = 0;
1710	priv->oldduplex = -1;
1711
1712	if (ndev->phydev)
1713		phy_start(ndev->phydev);
1714
1715	netif_device_attach(ndev);
1716	enable_napi(priv);
1717
1718	return 0;
1719}
1720
1721static struct dev_pm_ops gfar_pm_ops = {
1722	.suspend = gfar_suspend,
1723	.resume = gfar_resume,
1724	.freeze = gfar_suspend,
1725	.thaw = gfar_resume,
1726	.restore = gfar_restore,
1727};
1728
1729#define GFAR_PM_OPS (&gfar_pm_ops)
1730
1731#else
1732
1733#define GFAR_PM_OPS NULL
1734
1735#endif
1736
1737/* Reads the controller's registers to determine what interface
1738 * connects it to the PHY.
1739 */
1740static phy_interface_t gfar_get_interface(struct net_device *dev)
1741{
1742	struct gfar_private *priv = netdev_priv(dev);
1743	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1744	u32 ecntrl;
1745
1746	ecntrl = gfar_read(&regs->ecntrl);
1747
1748	if (ecntrl & ECNTRL_SGMII_MODE)
1749		return PHY_INTERFACE_MODE_SGMII;
1750
1751	if (ecntrl & ECNTRL_TBI_MODE) {
1752		if (ecntrl & ECNTRL_REDUCED_MODE)
1753			return PHY_INTERFACE_MODE_RTBI;
1754		else
1755			return PHY_INTERFACE_MODE_TBI;
1756	}
1757
1758	if (ecntrl & ECNTRL_REDUCED_MODE) {
1759		if (ecntrl & ECNTRL_REDUCED_MII_MODE) {
1760			return PHY_INTERFACE_MODE_RMII;
1761		}
1762		else {
1763			phy_interface_t interface = priv->interface;
1764
1765			/* This isn't autodetected right now, so it must
1766			 * be set by the device tree or platform code.
1767			 */
1768			if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1769				return PHY_INTERFACE_MODE_RGMII_ID;
1770
1771			return PHY_INTERFACE_MODE_RGMII;
1772		}
1773	}
1774
1775	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1776		return PHY_INTERFACE_MODE_GMII;
1777
1778	return PHY_INTERFACE_MODE_MII;
1779}
1780
1781
1782/* Initializes driver's PHY state, and attaches to the PHY.
1783 * Returns 0 on success.
1784 */
1785static int init_phy(struct net_device *dev)
1786{
1787	struct gfar_private *priv = netdev_priv(dev);
1788	uint gigabit_support =
1789		priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1790		GFAR_SUPPORTED_GBIT : 0;
1791	phy_interface_t interface;
1792	struct phy_device *phydev;
1793
1794	priv->oldlink = 0;
1795	priv->oldspeed = 0;
1796	priv->oldduplex = -1;
1797
1798	interface = gfar_get_interface(dev);
1799
1800	phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1801				interface);
1802	if (!phydev) {
1803		dev_err(&dev->dev, "could not attach to PHY\n");
1804		return -ENODEV;
1805	}
1806
1807	if (interface == PHY_INTERFACE_MODE_SGMII)
1808		gfar_configure_serdes(dev);
1809
1810	/* Remove any features not supported by the controller */
1811	phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1812	phydev->advertising = phydev->supported;
1813
1814	/* Add support for flow control, but don't advertise it by default */
1815	phydev->supported |= (SUPPORTED_Pause | SUPPORTED_Asym_Pause);
1816
1817	return 0;
1818}
1819
1820/* Initialize TBI PHY interface for communicating with the
1821 * SERDES lynx PHY on the chip.  We communicate with this PHY
1822 * through the MDIO bus on each controller, treating it as a
1823 * "normal" PHY at the address found in the TBIPA register.  We assume
1824 * that the TBIPA register is valid.  Either the MDIO bus code will set
1825 * it to a value that doesn't conflict with other PHYs on the bus, or the
1826 * value doesn't matter, as there are no other PHYs on the bus.
1827 */
1828static void gfar_configure_serdes(struct net_device *dev)
1829{
1830	struct gfar_private *priv = netdev_priv(dev);
1831	struct phy_device *tbiphy;
1832
1833	if (!priv->tbi_node) {
1834		dev_warn(&dev->dev, "error: SGMII mode requires that the "
1835				    "device tree specify a tbi-handle\n");
1836		return;
1837	}
1838
1839	tbiphy = of_phy_find_device(priv->tbi_node);
1840	if (!tbiphy) {
1841		dev_err(&dev->dev, "error: Could not get TBI device\n");
1842		return;
1843	}
1844
1845	/* If the link is already up, we must already be ok, and don't need to
1846	 * configure and reset the TBI<->SerDes link.  Maybe U-Boot configured
1847	 * everything for us?  Resetting it takes the link down and requires
1848	 * several seconds for it to come back.
1849	 */
1850	if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS) {
1851		put_device(&tbiphy->mdio.dev);
1852		return;
1853	}
1854
1855	/* Single clk mode, mii mode off(for serdes communication) */
1856	phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1857
1858	phy_write(tbiphy, MII_ADVERTISE,
1859		  ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1860		  ADVERTISE_1000XPSE_ASYM);
1861
1862	phy_write(tbiphy, MII_BMCR,
1863		  BMCR_ANENABLE | BMCR_ANRESTART | BMCR_FULLDPLX |
1864		  BMCR_SPEED1000);
1865
1866	put_device(&tbiphy->mdio.dev);
1867}
1868
1869static int __gfar_is_rx_idle(struct gfar_private *priv)
1870{
1871	u32 res;
1872
1873	/* Normaly TSEC should not hang on GRS commands, so we should
1874	 * actually wait for IEVENT_GRSC flag.
1875	 */
1876	if (!gfar_has_errata(priv, GFAR_ERRATA_A002))
1877		return 0;
1878
1879	/* Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1880	 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1881	 * and the Rx can be safely reset.
1882	 */
1883	res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1884	res &= 0x7f807f80;
1885	if ((res & 0xffff) == (res >> 16))
1886		return 1;
1887
1888	return 0;
1889}
1890
1891/* Halt the receive and transmit queues */
1892static void gfar_halt_nodisable(struct gfar_private *priv)
1893{
1894	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1895	u32 tempval;
1896	unsigned int timeout;
1897	int stopped;
1898
1899	gfar_ints_disable(priv);
1900
1901	if (gfar_is_dma_stopped(priv))
1902		return;
1903
1904	/* Stop the DMA, and wait for it to stop */
1905	tempval = gfar_read(&regs->dmactrl);
1906	tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1907	gfar_write(&regs->dmactrl, tempval);
1908
1909retry:
1910	timeout = 1000;
1911	while (!(stopped = gfar_is_dma_stopped(priv)) && timeout) {
1912		cpu_relax();
1913		timeout--;
1914	}
1915
1916	if (!timeout)
1917		stopped = gfar_is_dma_stopped(priv);
1918
1919	if (!stopped && !gfar_is_rx_dma_stopped(priv) &&
1920	    !__gfar_is_rx_idle(priv))
1921		goto retry;
1922}
1923
1924/* Halt the receive and transmit queues */
1925void gfar_halt(struct gfar_private *priv)
1926{
1927	struct gfar __iomem *regs = priv->gfargrp[0].regs;
1928	u32 tempval;
1929
1930	/* Dissable the Rx/Tx hw queues */
1931	gfar_write(&regs->rqueue, 0);
1932	gfar_write(&regs->tqueue, 0);
1933
1934	mdelay(10);
1935
1936	gfar_halt_nodisable(priv);
1937
1938	/* Disable Rx/Tx DMA */
1939	tempval = gfar_read(&regs->maccfg1);
1940	tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1941	gfar_write(&regs->maccfg1, tempval);
1942}
1943
1944void stop_gfar(struct net_device *dev)
1945{
1946	struct gfar_private *priv = netdev_priv(dev);
1947
1948	netif_tx_stop_all_queues(dev);
1949
1950	smp_mb__before_atomic();
1951	set_bit(GFAR_DOWN, &priv->state);
1952	smp_mb__after_atomic();
1953
1954	disable_napi(priv);
1955
1956	/* disable ints and gracefully shut down Rx/Tx DMA */
1957	gfar_halt(priv);
1958
1959	phy_stop(dev->phydev);
1960
1961	free_skb_resources(priv);
1962}
1963
1964static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1965{
1966	struct txbd8 *txbdp;
1967	struct gfar_private *priv = netdev_priv(tx_queue->dev);
1968	int i, j;
1969
1970	txbdp = tx_queue->tx_bd_base;
1971
1972	for (i = 0; i < tx_queue->tx_ring_size; i++) {
1973		if (!tx_queue->tx_skbuff[i])
1974			continue;
1975
1976		dma_unmap_single(priv->dev, be32_to_cpu(txbdp->bufPtr),
1977				 be16_to_cpu(txbdp->length), DMA_TO_DEVICE);
1978		txbdp->lstatus = 0;
1979		for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1980		     j++) {
1981			txbdp++;
1982			dma_unmap_page(priv->dev, be32_to_cpu(txbdp->bufPtr),
1983				       be16_to_cpu(txbdp->length),
1984				       DMA_TO_DEVICE);
1985		}
1986		txbdp++;
1987		dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1988		tx_queue->tx_skbuff[i] = NULL;
1989	}
1990	kfree(tx_queue->tx_skbuff);
1991	tx_queue->tx_skbuff = NULL;
1992}
1993
1994static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1995{
1996	int i;
1997
1998	struct rxbd8 *rxbdp = rx_queue->rx_bd_base;
1999
2000	if (rx_queue->skb)
2001		dev_kfree_skb(rx_queue->skb);
2002
2003	for (i = 0; i < rx_queue->rx_ring_size; i++) {
2004		struct	gfar_rx_buff *rxb = &rx_queue->rx_buff[i];
2005
2006		rxbdp->lstatus = 0;
2007		rxbdp->bufPtr = 0;
2008		rxbdp++;
2009
2010		if (!rxb->page)
2011			continue;
2012
2013		dma_unmap_page(rx_queue->dev, rxb->dma,
2014			       PAGE_SIZE, DMA_FROM_DEVICE);
2015		__free_page(rxb->page);
2016
2017		rxb->page = NULL;
2018	}
2019
2020	kfree(rx_queue->rx_buff);
2021	rx_queue->rx_buff = NULL;
2022}
2023
2024/* If there are any tx skbs or rx skbs still around, free them.
2025 * Then free tx_skbuff and rx_skbuff
2026 */
2027static void free_skb_resources(struct gfar_private *priv)
2028{
2029	struct gfar_priv_tx_q *tx_queue = NULL;
2030	struct gfar_priv_rx_q *rx_queue = NULL;
2031	int i;
2032
2033	/* Go through all the buffer descriptors and free their data buffers */
2034	for (i = 0; i < priv->num_tx_queues; i++) {
2035		struct netdev_queue *txq;
2036
2037		tx_queue = priv->tx_queue[i];
2038		txq = netdev_get_tx_queue(tx_queue->dev, tx_queue->qindex);
2039		if (tx_queue->tx_skbuff)
2040			free_skb_tx_queue(tx_queue);
2041		netdev_tx_reset_queue(txq);
2042	}
2043
2044	for (i = 0; i < priv->num_rx_queues; i++) {
2045		rx_queue = priv->rx_queue[i];
2046		if (rx_queue->rx_buff)
2047			free_skb_rx_queue(rx_queue);
2048	}
2049
2050	dma_free_coherent(priv->dev,
2051			  sizeof(struct txbd8) * priv->total_tx_ring_size +
2052			  sizeof(struct rxbd8) * priv->total_rx_ring_size,
2053			  priv->tx_queue[0]->tx_bd_base,
2054			  priv->tx_queue[0]->tx_bd_dma_base);
2055}
2056
2057void gfar_start(struct gfar_private *priv)
2058{
2059	struct gfar __iomem *regs = priv->gfargrp[0].regs;
2060	u32 tempval;
2061	int i = 0;
2062
2063	/* Enable Rx/Tx hw queues */
2064	gfar_write(&regs->rqueue, priv->rqueue);
2065	gfar_write(&regs->tqueue, priv->tqueue);
2066
2067	/* Initialize DMACTRL to have WWR and WOP */
2068	tempval = gfar_read(&regs->dmactrl);
2069	tempval |= DMACTRL_INIT_SETTINGS;
2070	gfar_write(&regs->dmactrl, tempval);
2071
2072	/* Make sure we aren't stopped */
2073	tempval = gfar_read(&regs->dmactrl);
2074	tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
2075	gfar_write(&regs->dmactrl, tempval);
2076
2077	for (i = 0; i < priv->num_grps; i++) {
2078		regs = priv->gfargrp[i].regs;
2079		/* Clear THLT/RHLT, so that the DMA starts polling now */
2080		gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
2081		gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
2082	}
2083
2084	/* Enable Rx/Tx DMA */
2085	tempval = gfar_read(&regs->maccfg1);
2086	tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
2087	gfar_write(&regs->maccfg1, tempval);
2088
2089	gfar_ints_enable(priv);
2090
2091	netif_trans_update(priv->ndev); /* prevent tx timeout */
2092}
2093
2094static void free_grp_irqs(struct gfar_priv_grp *grp)
2095{
2096	free_irq(gfar_irq(grp, TX)->irq, grp);
2097	free_irq(gfar_irq(grp, RX)->irq, grp);
2098	free_irq(gfar_irq(grp, ER)->irq, grp);
2099}
2100
2101static int register_grp_irqs(struct gfar_priv_grp *grp)
2102{
2103	struct gfar_private *priv = grp->priv;
2104	struct net_device *dev = priv->ndev;
2105	int err;
2106
2107	/* If the device has multiple interrupts, register for
2108	 * them.  Otherwise, only register for the one
2109	 */
2110	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2111		/* Install our interrupt handlers for Error,
2112		 * Transmit, and Receive
2113		 */
2114		err = request_irq(gfar_irq(grp, ER)->irq, gfar_error, 0,
2115				  gfar_irq(grp, ER)->name, grp);
2116		if (err < 0) {
2117			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2118				  gfar_irq(grp, ER)->irq);
2119
2120			goto err_irq_fail;
2121		}
2122		enable_irq_wake(gfar_irq(grp, ER)->irq);
2123
2124		err = request_irq(gfar_irq(grp, TX)->irq, gfar_transmit, 0,
2125				  gfar_irq(grp, TX)->name, grp);
2126		if (err < 0) {
2127			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2128				  gfar_irq(grp, TX)->irq);
2129			goto tx_irq_fail;
2130		}
2131		err = request_irq(gfar_irq(grp, RX)->irq, gfar_receive, 0,
2132				  gfar_irq(grp, RX)->name, grp);
2133		if (err < 0) {
2134			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2135				  gfar_irq(grp, RX)->irq);
2136			goto rx_irq_fail;
2137		}
2138		enable_irq_wake(gfar_irq(grp, RX)->irq);
2139
2140	} else {
2141		err = request_irq(gfar_irq(grp, TX)->irq, gfar_interrupt, 0,
2142				  gfar_irq(grp, TX)->name, grp);
2143		if (err < 0) {
2144			netif_err(priv, intr, dev, "Can't get IRQ %d\n",
2145				  gfar_irq(grp, TX)->irq);
2146			goto err_irq_fail;
2147		}
2148		enable_irq_wake(gfar_irq(grp, TX)->irq);
2149	}
2150
2151	return 0;
2152
2153rx_irq_fail:
2154	free_irq(gfar_irq(grp, TX)->irq, grp);
2155tx_irq_fail:
2156	free_irq(gfar_irq(grp, ER)->irq, grp);
2157err_irq_fail:
2158	return err;
2159
2160}
2161
2162static void gfar_free_irq(struct gfar_private *priv)
2163{
2164	int i;
2165
2166	/* Free the IRQs */
2167	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2168		for (i = 0; i < priv->num_grps; i++)
2169			free_grp_irqs(&priv->gfargrp[i]);
2170	} else {
2171		for (i = 0; i < priv->num_grps; i++)
2172			free_irq(gfar_irq(&priv->gfargrp[i], TX)->irq,
2173				 &priv->gfargrp[i]);
2174	}
2175}
2176
2177static int gfar_request_irq(struct gfar_private *priv)
2178{
2179	int err, i, j;
2180
2181	for (i = 0; i < priv->num_grps; i++) {
2182		err = register_grp_irqs(&priv->gfargrp[i]);
2183		if (err) {
2184			for (j = 0; j < i; j++)
2185				free_grp_irqs(&priv->gfargrp[j]);
2186			return err;
2187		}
2188	}
2189
2190	return 0;
2191}
2192
2193/* Bring the controller up and running */
2194int startup_gfar(struct net_device *ndev)
2195{
2196	struct gfar_private *priv = netdev_priv(ndev);
2197	int err;
2198
2199	gfar_mac_reset(priv);
2200
2201	err = gfar_alloc_skb_resources(ndev);
2202	if (err)
2203		return err;
2204
2205	gfar_init_tx_rx_base(priv);
2206
2207	smp_mb__before_atomic();
2208	clear_bit(GFAR_DOWN, &priv->state);
2209	smp_mb__after_atomic();
2210
2211	/* Start Rx/Tx DMA and enable the interrupts */
2212	gfar_start(priv);
2213
2214	/* force link state update after mac reset */
2215	priv->oldlink = 0;
2216	priv->oldspeed = 0;
2217	priv->oldduplex = -1;
2218
2219	phy_start(ndev->phydev);
2220
2221	enable_napi(priv);
2222
2223	netif_tx_wake_all_queues(ndev);
2224
2225	return 0;
2226}
2227
2228/* Called when something needs to use the ethernet device
2229 * Returns 0 for success.
2230 */
2231static int gfar_enet_open(struct net_device *dev)
2232{
2233	struct gfar_private *priv = netdev_priv(dev);
2234	int err;
2235
2236	err = init_phy(dev);
2237	if (err)
2238		return err;
2239
2240	err = gfar_request_irq(priv);
2241	if (err)
2242		return err;
2243
2244	err = startup_gfar(dev);
2245	if (err)
2246		return err;
2247
2248	return err;
2249}
2250
2251static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
2252{
2253	struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
2254
2255	memset(fcb, 0, GMAC_FCB_LEN);
2256
2257	return fcb;
2258}
2259
2260static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb,
2261				    int fcb_length)
2262{
2263	/* If we're here, it's a IP packet with a TCP or UDP
2264	 * payload.  We set it to checksum, using a pseudo-header
2265	 * we provide
2266	 */
2267	u8 flags = TXFCB_DEFAULT;
2268
2269	/* Tell the controller what the protocol is
2270	 * And provide the already calculated phcs
2271	 */
2272	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2273		flags |= TXFCB_UDP;
2274		fcb->phcs = (__force __be16)(udp_hdr(skb)->check);
2275	} else
2276		fcb->phcs = (__force __be16)(tcp_hdr(skb)->check);
2277
2278	/* l3os is the distance between the start of the
2279	 * frame (skb->data) and the start of the IP hdr.
2280	 * l4os is the distance between the start of the
2281	 * l3 hdr and the l4 hdr
2282	 */
2283	fcb->l3os = (u8)(skb_network_offset(skb) - fcb_length);
2284	fcb->l4os = skb_network_header_len(skb);
2285
2286	fcb->flags = flags;
2287}
2288
2289static inline void gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2290{
2291	fcb->flags |= TXFCB_VLN;
2292	fcb->vlctl = cpu_to_be16(skb_vlan_tag_get(skb));
2293}
2294
2295static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2296				      struct txbd8 *base, int ring_size)
2297{
2298	struct txbd8 *new_bd = bdp + stride;
2299
2300	return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2301}
2302
2303static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2304				      int ring_size)
2305{
2306	return skip_txbd(bdp, 1, base, ring_size);
2307}
2308
2309/* eTSEC12: csum generation not supported for some fcb offsets */
2310static inline bool gfar_csum_errata_12(struct gfar_private *priv,
2311				       unsigned long fcb_addr)
2312{
2313	return (gfar_has_errata(priv, GFAR_ERRATA_12) &&
2314	       (fcb_addr % 0x20) > 0x18);
2315}
2316
2317/* eTSEC76: csum generation for frames larger than 2500 may
2318 * cause excess delays before start of transmission
2319 */
2320static inline bool gfar_csum_errata_76(struct gfar_private *priv,
2321				       unsigned int len)
2322{
2323	return (gfar_has_errata(priv, GFAR_ERRATA_76) &&
2324	       (len > 2500));
2325}
2326
2327/* This is called by the kernel when a frame is ready for transmission.
2328 * It is pointed to by the dev->hard_start_xmit function pointer
2329 */
2330static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2331{
2332	struct gfar_private *priv = netdev_priv(dev);
2333	struct gfar_priv_tx_q *tx_queue = NULL;
2334	struct netdev_queue *txq;
2335	struct gfar __iomem *regs = NULL;
2336	struct txfcb *fcb = NULL;
2337	struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2338	u32 lstatus;
2339	skb_frag_t *frag;
2340	int i, rq = 0;
2341	int do_tstamp, do_csum, do_vlan;
2342	u32 bufaddr;
2343	unsigned int nr_frags, nr_txbds, bytes_sent, fcb_len = 0;
2344
2345	rq = skb->queue_mapping;
2346	tx_queue = priv->tx_queue[rq];
2347	txq = netdev_get_tx_queue(dev, rq);
2348	base = tx_queue->tx_bd_base;
2349	regs = tx_queue->grp->regs;
2350
2351	do_csum = (CHECKSUM_PARTIAL == skb->ip_summed);
2352	do_vlan = skb_vlan_tag_present(skb);
2353	do_tstamp = (skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
2354		    priv->hwts_tx_en;
2355
2356	if (do_csum || do_vlan)
2357		fcb_len = GMAC_FCB_LEN;
2358
2359	/* check if time stamp should be generated */
2360	if (unlikely(do_tstamp))
2361		fcb_len = GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2362
2363	/* make space for additional header when fcb is needed */
2364	if (fcb_len && unlikely(skb_headroom(skb) < fcb_len)) {
2365		struct sk_buff *skb_new;
2366
2367		skb_new = skb_realloc_headroom(skb, fcb_len);
2368		if (!skb_new) {
2369			dev->stats.tx_errors++;
2370			dev_kfree_skb_any(skb);
2371			return NETDEV_TX_OK;
2372		}
2373
2374		if (skb->sk)
2375			skb_set_owner_w(skb_new, skb->sk);
2376		dev_consume_skb_any(skb);
2377		skb = skb_new;
2378	}
2379
2380	/* total number of fragments in the SKB */
2381	nr_frags = skb_shinfo(skb)->nr_frags;
2382
2383	/* calculate the required number of TxBDs for this skb */
2384	if (unlikely(do_tstamp))
2385		nr_txbds = nr_frags + 2;
2386	else
2387		nr_txbds = nr_frags + 1;
2388
2389	/* check if there is space to queue this packet */
2390	if (nr_txbds > tx_queue->num_txbdfree) {
2391		/* no space, stop the queue */
2392		netif_tx_stop_queue(txq);
2393		dev->stats.tx_fifo_errors++;
2394		return NETDEV_TX_BUSY;
2395	}
2396
2397	/* Update transmit stats */
2398	bytes_sent = skb->len;
2399	tx_queue->stats.tx_bytes += bytes_sent;
2400	/* keep Tx bytes on wire for BQL accounting */
2401	GFAR_CB(skb)->bytes_sent = bytes_sent;
2402	tx_queue->stats.tx_packets++;
2403
2404	txbdp = txbdp_start = tx_queue->cur_tx;
2405	lstatus = be32_to_cpu(txbdp->lstatus);
2406
2407	/* Add TxPAL between FCB and frame if required */
2408	if (unlikely(do_tstamp)) {
2409		skb_push(skb, GMAC_TXPAL_LEN);
2410		memset(skb->data, 0, GMAC_TXPAL_LEN);
2411	}
2412
2413	/* Add TxFCB if required */
2414	if (fcb_len) {
2415		fcb = gfar_add_fcb(skb);
2416		lstatus |= BD_LFLAG(TXBD_TOE);
2417	}
2418
2419	/* Set up checksumming */
2420	if (do_csum) {
2421		gfar_tx_checksum(skb, fcb, fcb_len);
2422
2423		if (unlikely(gfar_csum_errata_12(priv, (unsigned long)fcb)) ||
2424		    unlikely(gfar_csum_errata_76(priv, skb->len))) {
2425			__skb_pull(skb, GMAC_FCB_LEN);
2426			skb_checksum_help(skb);
2427			if (do_vlan || do_tstamp) {
2428				/* put back a new fcb for vlan/tstamp TOE */
2429				fcb = gfar_add_fcb(skb);
2430			} else {
2431				/* Tx TOE not used */
2432				lstatus &= ~(BD_LFLAG(TXBD_TOE));
2433				fcb = NULL;
2434			}
2435		}
2436	}
2437
2438	if (do_vlan)
2439		gfar_tx_vlan(skb, fcb);
2440
2441	bufaddr = dma_map_single(priv->dev, skb->data, skb_headlen(skb),
2442				 DMA_TO_DEVICE);
2443	if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2444		goto dma_map_err;
2445
2446	txbdp_start->bufPtr = cpu_to_be32(bufaddr);
2447
2448	/* Time stamp insertion requires one additional TxBD */
2449	if (unlikely(do_tstamp))
2450		txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2451						 tx_queue->tx_ring_size);
2452
2453	if (likely(!nr_frags)) {
2454		if (likely(!do_tstamp))
2455			lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2456	} else {
2457		u32 lstatus_start = lstatus;
2458
2459		/* Place the fragment addresses and lengths into the TxBDs */
2460		frag = &skb_shinfo(skb)->frags[0];
2461		for (i = 0; i < nr_frags; i++, frag++) {
2462			unsigned int size;
2463
2464			/* Point at the next BD, wrapping as needed */
2465			txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2466
2467			size = skb_frag_size(frag);
2468
2469			lstatus = be32_to_cpu(txbdp->lstatus) | size |
2470				  BD_LFLAG(TXBD_READY);
2471
2472			/* Handle the last BD specially */
2473			if (i == nr_frags - 1)
2474				lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2475
2476			bufaddr = skb_frag_dma_map(priv->dev, frag, 0,
2477						   size, DMA_TO_DEVICE);
2478			if (unlikely(dma_mapping_error(priv->dev, bufaddr)))
2479				goto dma_map_err;
2480
2481			/* set the TxBD length and buffer pointer */
2482			txbdp->bufPtr = cpu_to_be32(bufaddr);
2483			txbdp->lstatus = cpu_to_be32(lstatus);
2484		}
2485
2486		lstatus = lstatus_start;
2487	}
2488
2489	/* If time stamping is requested one additional TxBD must be set up. The
2490	 * first TxBD points to the FCB and must have a data length of
2491	 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2492	 * the full frame length.
2493	 */
2494	if (unlikely(do_tstamp)) {
2495		u32 lstatus_ts = be32_to_cpu(txbdp_tstamp->lstatus);
2496
2497		bufaddr = be32_to_cpu(txbdp_start->bufPtr);
2498		bufaddr += fcb_len;
2499
2500		lstatus_ts |= BD_LFLAG(TXBD_READY) |
2501			      (skb_headlen(skb) - fcb_len);
2502		if (!nr_frags)
2503			lstatus_ts |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2504
2505		txbdp_tstamp->bufPtr = cpu_to_be32(bufaddr);
2506		txbdp_tstamp->lstatus = cpu_to_be32(lstatus_ts);
2507		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2508
2509		/* Setup tx hardware time stamping */
2510		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2511		fcb->ptp = 1;
2512	} else {
2513		lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2514	}
2515
2516	netdev_tx_sent_queue(txq, bytes_sent);
2517
2518	gfar_wmb();
2519
2520	txbdp_start->lstatus = cpu_to_be32(lstatus);
2521
2522	gfar_wmb(); /* force lstatus write before tx_skbuff */
2523
2524	tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2525
2526	/* Update the current skb pointer to the next entry we will use
2527	 * (wrapping if necessary)
2528	 */
2529	tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2530			      TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2531
2532	tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2533
2534	/* We can work in parallel with gfar_clean_tx_ring(), except
2535	 * when modifying num_txbdfree. Note that we didn't grab the lock
2536	 * when we were reading the num_txbdfree and checking for available
2537	 * space, that's because outside of this function it can only grow.
2538	 */
2539	spin_lock_bh(&tx_queue->txlock);
2540	/* reduce TxBD free count */
2541	tx_queue->num_txbdfree -= (nr_txbds);
2542	spin_unlock_bh(&tx_queue->txlock);
2543
2544	/* If the next BD still needs to be cleaned up, then the bds
2545	 * are full.  We need to tell the kernel to stop sending us stuff.
2546	 */
2547	if (!tx_queue->num_txbdfree) {
2548		netif_tx_stop_queue(txq);
2549
2550		dev->stats.tx_fifo_errors++;
2551	}
2552
2553	/* Tell the DMA to go go go */
2554	gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2555
2556	return NETDEV_TX_OK;
2557
2558dma_map_err:
2559	txbdp = next_txbd(txbdp_start, base, tx_queue->tx_ring_size);
2560	if (do_tstamp)
2561		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2562	for (i = 0; i < nr_frags; i++) {
2563		lstatus = be32_to_cpu(txbdp->lstatus);
2564		if (!(lstatus & BD_LFLAG(TXBD_READY)))
2565			break;
2566
2567		lstatus &= ~BD_LFLAG(TXBD_READY);
2568		txbdp->lstatus = cpu_to_be32(lstatus);
2569		bufaddr = be32_to_cpu(txbdp->bufPtr);
2570		dma_unmap_page(priv->dev, bufaddr, be16_to_cpu(txbdp->length),
2571			       DMA_TO_DEVICE);
2572		txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2573	}
2574	gfar_wmb();
2575	dev_kfree_skb_any(skb);
2576	return NETDEV_TX_OK;
2577}
2578
2579/* Stops the kernel queue, and halts the controller */
2580static int gfar_close(struct net_device *dev)
2581{
2582	struct gfar_private *priv = netdev_priv(dev);
2583
2584	cancel_work_sync(&priv->reset_task);
2585	stop_gfar(dev);
2586
2587	/* Disconnect from the PHY */
2588	phy_disconnect(dev->phydev);
 
2589
2590	gfar_free_irq(priv);
2591
2592	return 0;
2593}
2594
2595/* Changes the mac address if the controller is not running. */
2596static int gfar_set_mac_address(struct net_device *dev)
2597{
2598	gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2599
2600	return 0;
2601}
2602
2603static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2604{
2605	struct gfar_private *priv = netdev_priv(dev);
 
 
 
 
 
 
2606
2607	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2608		cpu_relax();
2609
2610	if (dev->flags & IFF_UP)
2611		stop_gfar(dev);
2612
2613	dev->mtu = new_mtu;
2614
2615	if (dev->flags & IFF_UP)
2616		startup_gfar(dev);
2617
2618	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2619
2620	return 0;
2621}
2622
2623void reset_gfar(struct net_device *ndev)
2624{
2625	struct gfar_private *priv = netdev_priv(ndev);
2626
2627	while (test_and_set_bit_lock(GFAR_RESETTING, &priv->state))
2628		cpu_relax();
2629
2630	stop_gfar(ndev);
2631	startup_gfar(ndev);
2632
2633	clear_bit_unlock(GFAR_RESETTING, &priv->state);
2634}
2635
2636/* gfar_reset_task gets scheduled when a packet has not been
2637 * transmitted after a set amount of time.
2638 * For now, assume that clearing out all the structures, and
2639 * starting over will fix the problem.
2640 */
2641static void gfar_reset_task(struct work_struct *work)
2642{
2643	struct gfar_private *priv = container_of(work, struct gfar_private,
2644						 reset_task);
2645	reset_gfar(priv->ndev);
2646}
2647
2648static void gfar_timeout(struct net_device *dev)
2649{
2650	struct gfar_private *priv = netdev_priv(dev);
2651
2652	dev->stats.tx_errors++;
2653	schedule_work(&priv->reset_task);
2654}
2655
2656/* Interrupt Handler for Transmit complete */
2657static void gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2658{
2659	struct net_device *dev = tx_queue->dev;
2660	struct netdev_queue *txq;
2661	struct gfar_private *priv = netdev_priv(dev);
2662	struct txbd8 *bdp, *next = NULL;
2663	struct txbd8 *lbdp = NULL;
2664	struct txbd8 *base = tx_queue->tx_bd_base;
2665	struct sk_buff *skb;
2666	int skb_dirtytx;
2667	int tx_ring_size = tx_queue->tx_ring_size;
2668	int frags = 0, nr_txbds = 0;
2669	int i;
2670	int howmany = 0;
2671	int tqi = tx_queue->qindex;
2672	unsigned int bytes_sent = 0;
2673	u32 lstatus;
2674	size_t buflen;
2675
2676	txq = netdev_get_tx_queue(dev, tqi);
2677	bdp = tx_queue->dirty_tx;
2678	skb_dirtytx = tx_queue->skb_dirtytx;
2679
2680	while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2681
2682		frags = skb_shinfo(skb)->nr_frags;
2683
2684		/* When time stamping, one additional TxBD must be freed.
2685		 * Also, we need to dma_unmap_single() the TxPAL.
2686		 */
2687		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2688			nr_txbds = frags + 2;
2689		else
2690			nr_txbds = frags + 1;
2691
2692		lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2693
2694		lstatus = be32_to_cpu(lbdp->lstatus);
2695
2696		/* Only clean completed frames */
2697		if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2698		    (lstatus & BD_LENGTH_MASK))
2699			break;
2700
2701		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2702			next = next_txbd(bdp, base, tx_ring_size);
2703			buflen = be16_to_cpu(next->length) +
2704				 GMAC_FCB_LEN + GMAC_TXPAL_LEN;
2705		} else
2706			buflen = be16_to_cpu(bdp->length);
2707
2708		dma_unmap_single(priv->dev, be32_to_cpu(bdp->bufPtr),
2709				 buflen, DMA_TO_DEVICE);
2710
2711		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2712			struct skb_shared_hwtstamps shhwtstamps;
2713			u64 *ns = (u64 *)(((uintptr_t)skb->data + 0x10) &
2714					  ~0x7UL);
2715
2716			memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2717			shhwtstamps.hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
2718			skb_pull(skb, GMAC_FCB_LEN + GMAC_TXPAL_LEN);
2719			skb_tstamp_tx(skb, &shhwtstamps);
2720			gfar_clear_txbd_status(bdp);
2721			bdp = next;
2722		}
2723
2724		gfar_clear_txbd_status(bdp);
2725		bdp = next_txbd(bdp, base, tx_ring_size);
2726
2727		for (i = 0; i < frags; i++) {
2728			dma_unmap_page(priv->dev, be32_to_cpu(bdp->bufPtr),
2729				       be16_to_cpu(bdp->length),
2730				       DMA_TO_DEVICE);
2731			gfar_clear_txbd_status(bdp);
2732			bdp = next_txbd(bdp, base, tx_ring_size);
2733		}
2734
2735		bytes_sent += GFAR_CB(skb)->bytes_sent;
2736
2737		dev_kfree_skb_any(skb);
2738
2739		tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2740
2741		skb_dirtytx = (skb_dirtytx + 1) &
2742			      TX_RING_MOD_MASK(tx_ring_size);
2743
2744		howmany++;
2745		spin_lock(&tx_queue->txlock);
2746		tx_queue->num_txbdfree += nr_txbds;
2747		spin_unlock(&tx_queue->txlock);
2748	}
2749
2750	/* If we freed a buffer, we can restart transmission, if necessary */
2751	if (tx_queue->num_txbdfree &&
2752	    netif_tx_queue_stopped(txq) &&
2753	    !(test_bit(GFAR_DOWN, &priv->state)))
2754		netif_wake_subqueue(priv->ndev, tqi);
2755
2756	/* Update dirty indicators */
2757	tx_queue->skb_dirtytx = skb_dirtytx;
2758	tx_queue->dirty_tx = bdp;
2759
2760	netdev_tx_completed_queue(txq, howmany, bytes_sent);
2761}
2762
2763static bool gfar_new_page(struct gfar_priv_rx_q *rxq, struct gfar_rx_buff *rxb)
2764{
2765	struct page *page;
2766	dma_addr_t addr;
2767
2768	page = dev_alloc_page();
2769	if (unlikely(!page))
2770		return false;
2771
2772	addr = dma_map_page(rxq->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
2773	if (unlikely(dma_mapping_error(rxq->dev, addr))) {
2774		__free_page(page);
2775
2776		return false;
2777	}
2778
2779	rxb->dma = addr;
2780	rxb->page = page;
2781	rxb->page_offset = 0;
2782
2783	return true;
2784}
2785
2786static void gfar_rx_alloc_err(struct gfar_priv_rx_q *rx_queue)
2787{
2788	struct gfar_private *priv = netdev_priv(rx_queue->ndev);
2789	struct gfar_extra_stats *estats = &priv->extra_stats;
2790
2791	netdev_err(rx_queue->ndev, "Can't alloc RX buffers\n");
2792	atomic64_inc(&estats->rx_alloc_err);
2793}
2794
2795static void gfar_alloc_rx_buffs(struct gfar_priv_rx_q *rx_queue,
2796				int alloc_cnt)
2797{
2798	struct rxbd8 *bdp;
2799	struct gfar_rx_buff *rxb;
2800	int i;
2801
2802	i = rx_queue->next_to_use;
2803	bdp = &rx_queue->rx_bd_base[i];
2804	rxb = &rx_queue->rx_buff[i];
2805
2806	while (alloc_cnt--) {
2807		/* try reuse page */
2808		if (unlikely(!rxb->page)) {
2809			if (unlikely(!gfar_new_page(rx_queue, rxb))) {
2810				gfar_rx_alloc_err(rx_queue);
2811				break;
2812			}
2813		}
2814
2815		/* Setup the new RxBD */
2816		gfar_init_rxbdp(rx_queue, bdp,
2817				rxb->dma + rxb->page_offset + RXBUF_ALIGNMENT);
2818
2819		/* Update to the next pointer */
2820		bdp++;
2821		rxb++;
2822
2823		if (unlikely(++i == rx_queue->rx_ring_size)) {
2824			i = 0;
2825			bdp = rx_queue->rx_bd_base;
2826			rxb = rx_queue->rx_buff;
2827		}
2828	}
2829
2830	rx_queue->next_to_use = i;
2831	rx_queue->next_to_alloc = i;
2832}
2833
2834static void count_errors(u32 lstatus, struct net_device *ndev)
2835{
2836	struct gfar_private *priv = netdev_priv(ndev);
2837	struct net_device_stats *stats = &ndev->stats;
2838	struct gfar_extra_stats *estats = &priv->extra_stats;
2839
2840	/* If the packet was truncated, none of the other errors matter */
2841	if (lstatus & BD_LFLAG(RXBD_TRUNCATED)) {
2842		stats->rx_length_errors++;
2843
2844		atomic64_inc(&estats->rx_trunc);
2845
2846		return;
2847	}
2848	/* Count the errors, if there were any */
2849	if (lstatus & BD_LFLAG(RXBD_LARGE | RXBD_SHORT)) {
2850		stats->rx_length_errors++;
2851
2852		if (lstatus & BD_LFLAG(RXBD_LARGE))
2853			atomic64_inc(&estats->rx_large);
2854		else
2855			atomic64_inc(&estats->rx_short);
2856	}
2857	if (lstatus & BD_LFLAG(RXBD_NONOCTET)) {
2858		stats->rx_frame_errors++;
2859		atomic64_inc(&estats->rx_nonoctet);
2860	}
2861	if (lstatus & BD_LFLAG(RXBD_CRCERR)) {
2862		atomic64_inc(&estats->rx_crcerr);
2863		stats->rx_crc_errors++;
2864	}
2865	if (lstatus & BD_LFLAG(RXBD_OVERRUN)) {
2866		atomic64_inc(&estats->rx_overrun);
2867		stats->rx_over_errors++;
2868	}
2869}
2870
2871irqreturn_t gfar_receive(int irq, void *grp_id)
2872{
2873	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2874	unsigned long flags;
2875	u32 imask, ievent;
2876
2877	ievent = gfar_read(&grp->regs->ievent);
2878
2879	if (unlikely(ievent & IEVENT_FGPI)) {
2880		gfar_write(&grp->regs->ievent, IEVENT_FGPI);
2881		return IRQ_HANDLED;
2882	}
2883
2884	if (likely(napi_schedule_prep(&grp->napi_rx))) {
2885		spin_lock_irqsave(&grp->grplock, flags);
2886		imask = gfar_read(&grp->regs->imask);
2887		imask &= IMASK_RX_DISABLED;
2888		gfar_write(&grp->regs->imask, imask);
2889		spin_unlock_irqrestore(&grp->grplock, flags);
2890		__napi_schedule(&grp->napi_rx);
2891	} else {
2892		/* Clear IEVENT, so interrupts aren't called again
2893		 * because of the packets that have already arrived.
2894		 */
2895		gfar_write(&grp->regs->ievent, IEVENT_RX_MASK);
2896	}
2897
2898	return IRQ_HANDLED;
2899}
2900
2901/* Interrupt Handler for Transmit complete */
2902static irqreturn_t gfar_transmit(int irq, void *grp_id)
2903{
2904	struct gfar_priv_grp *grp = (struct gfar_priv_grp *)grp_id;
2905	unsigned long flags;
2906	u32 imask;
2907
2908	if (likely(napi_schedule_prep(&grp->napi_tx))) {
2909		spin_lock_irqsave(&grp->grplock, flags);
2910		imask = gfar_read(&grp->regs->imask);
2911		imask &= IMASK_TX_DISABLED;
2912		gfar_write(&grp->regs->imask, imask);
2913		spin_unlock_irqrestore(&grp->grplock, flags);
2914		__napi_schedule(&grp->napi_tx);
2915	} else {
2916		/* Clear IEVENT, so interrupts aren't called again
2917		 * because of the packets that have already arrived.
2918		 */
2919		gfar_write(&grp->regs->ievent, IEVENT_TX_MASK);
2920	}
2921
2922	return IRQ_HANDLED;
2923}
2924
2925static bool gfar_add_rx_frag(struct gfar_rx_buff *rxb, u32 lstatus,
2926			     struct sk_buff *skb, bool first)
2927{
2928	unsigned int size = lstatus & BD_LENGTH_MASK;
2929	struct page *page = rxb->page;
2930	bool last = !!(lstatus & BD_LFLAG(RXBD_LAST));
2931
2932	/* Remove the FCS from the packet length */
2933	if (last)
2934		size -= ETH_FCS_LEN;
2935
2936	if (likely(first)) {
2937		skb_put(skb, size);
2938	} else {
2939		/* the last fragments' length contains the full frame length */
2940		if (last)
2941			size -= skb->len;
2942
2943		/* in case the last fragment consisted only of the FCS */
2944		if (size > 0)
2945			skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
2946					rxb->page_offset + RXBUF_ALIGNMENT,
2947					size, GFAR_RXB_TRUESIZE);
2948	}
2949
2950	/* try reuse page */
2951	if (unlikely(page_count(page) != 1 || page_is_pfmemalloc(page)))
2952		return false;
2953
2954	/* change offset to the other half */
2955	rxb->page_offset ^= GFAR_RXB_TRUESIZE;
2956
2957	page_ref_inc(page);
2958
2959	return true;
2960}
2961
2962static void gfar_reuse_rx_page(struct gfar_priv_rx_q *rxq,
2963			       struct gfar_rx_buff *old_rxb)
2964{
2965	struct gfar_rx_buff *new_rxb;
2966	u16 nta = rxq->next_to_alloc;
2967
2968	new_rxb = &rxq->rx_buff[nta];
2969
2970	/* find next buf that can reuse a page */
2971	nta++;
2972	rxq->next_to_alloc = (nta < rxq->rx_ring_size) ? nta : 0;
2973
2974	/* copy page reference */
2975	*new_rxb = *old_rxb;
2976
2977	/* sync for use by the device */
2978	dma_sync_single_range_for_device(rxq->dev, old_rxb->dma,
2979					 old_rxb->page_offset,
2980					 GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
2981}
2982
2983static struct sk_buff *gfar_get_next_rxbuff(struct gfar_priv_rx_q *rx_queue,
2984					    u32 lstatus, struct sk_buff *skb)
2985{
2986	struct gfar_rx_buff *rxb = &rx_queue->rx_buff[rx_queue->next_to_clean];
2987	struct page *page = rxb->page;
2988	bool first = false;
2989
2990	if (likely(!skb)) {
2991		void *buff_addr = page_address(page) + rxb->page_offset;
2992
2993		skb = build_skb(buff_addr, GFAR_SKBFRAG_SIZE);
2994		if (unlikely(!skb)) {
2995			gfar_rx_alloc_err(rx_queue);
2996			return NULL;
2997		}
2998		skb_reserve(skb, RXBUF_ALIGNMENT);
2999		first = true;
3000	}
3001
3002	dma_sync_single_range_for_cpu(rx_queue->dev, rxb->dma, rxb->page_offset,
3003				      GFAR_RXB_TRUESIZE, DMA_FROM_DEVICE);
3004
3005	if (gfar_add_rx_frag(rxb, lstatus, skb, first)) {
3006		/* reuse the free half of the page */
3007		gfar_reuse_rx_page(rx_queue, rxb);
3008	} else {
3009		/* page cannot be reused, unmap it */
3010		dma_unmap_page(rx_queue->dev, rxb->dma,
3011			       PAGE_SIZE, DMA_FROM_DEVICE);
3012	}
3013
3014	/* clear rxb content */
3015	rxb->page = NULL;
3016
3017	return skb;
3018}
3019
3020static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
3021{
3022	/* If valid headers were found, and valid sums
3023	 * were verified, then we tell the kernel that no
3024	 * checksumming is necessary.  Otherwise, it is [FIXME]
3025	 */
3026	if ((be16_to_cpu(fcb->flags) & RXFCB_CSUM_MASK) ==
3027	    (RXFCB_CIP | RXFCB_CTU))
3028		skb->ip_summed = CHECKSUM_UNNECESSARY;
3029	else
3030		skb_checksum_none_assert(skb);
3031}
3032
3033/* gfar_process_frame() -- handle one incoming packet if skb isn't NULL. */
3034static void gfar_process_frame(struct net_device *ndev, struct sk_buff *skb)
3035{
3036	struct gfar_private *priv = netdev_priv(ndev);
3037	struct rxfcb *fcb = NULL;
3038
3039	/* fcb is at the beginning if exists */
3040	fcb = (struct rxfcb *)skb->data;
3041
3042	/* Remove the FCB from the skb
3043	 * Remove the padded bytes, if there are any
3044	 */
3045	if (priv->uses_rxfcb)
3046		skb_pull(skb, GMAC_FCB_LEN);
3047
3048	/* Get receive timestamp from the skb */
3049	if (priv->hwts_rx_en) {
3050		struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
3051		u64 *ns = (u64 *) skb->data;
3052
3053		memset(shhwtstamps, 0, sizeof(*shhwtstamps));
3054		shhwtstamps->hwtstamp = ns_to_ktime(be64_to_cpu(*ns));
3055	}
3056
3057	if (priv->padding)
3058		skb_pull(skb, priv->padding);
3059
3060	if (ndev->features & NETIF_F_RXCSUM)
3061		gfar_rx_checksum(skb, fcb);
3062
3063	/* Tell the skb what kind of packet this is */
3064	skb->protocol = eth_type_trans(skb, ndev);
3065
3066	/* There's need to check for NETIF_F_HW_VLAN_CTAG_RX here.
3067	 * Even if vlan rx accel is disabled, on some chips
3068	 * RXFCB_VLN is pseudo randomly set.
3069	 */
3070	if (ndev->features & NETIF_F_HW_VLAN_CTAG_RX &&
3071	    be16_to_cpu(fcb->flags) & RXFCB_VLN)
3072		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
3073				       be16_to_cpu(fcb->vlctl));
3074}
3075
3076/* gfar_clean_rx_ring() -- Processes each frame in the rx ring
3077 * until the budget/quota has been reached. Returns the number
3078 * of frames handled
3079 */
3080int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
3081{
3082	struct net_device *ndev = rx_queue->ndev;
3083	struct gfar_private *priv = netdev_priv(ndev);
3084	struct rxbd8 *bdp;
3085	int i, howmany = 0;
3086	struct sk_buff *skb = rx_queue->skb;
3087	int cleaned_cnt = gfar_rxbd_unused(rx_queue);
3088	unsigned int total_bytes = 0, total_pkts = 0;
3089
3090	/* Get the first full descriptor */
3091	i = rx_queue->next_to_clean;
3092
3093	while (rx_work_limit--) {
3094		u32 lstatus;
3095
3096		if (cleaned_cnt >= GFAR_RX_BUFF_ALLOC) {
3097			gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3098			cleaned_cnt = 0;
3099		}
3100
3101		bdp = &rx_queue->rx_bd_base[i];
3102		lstatus = be32_to_cpu(bdp->lstatus);
3103		if (lstatus & BD_LFLAG(RXBD_EMPTY))
3104			break;
3105
3106		/* order rx buffer descriptor reads */
3107		rmb();
3108
3109		/* fetch next to clean buffer from the ring */
3110		skb = gfar_get_next_rxbuff(rx_queue, lstatus, skb);
3111		if (unlikely(!skb))
3112			break;
3113
3114		cleaned_cnt++;
3115		howmany++;
3116
3117		if (unlikely(++i == rx_queue->rx_ring_size))
3118			i = 0;
3119
3120		rx_queue->next_to_clean = i;
3121
3122		/* fetch next buffer if not the last in frame */
3123		if (!(lstatus & BD_LFLAG(RXBD_LAST)))
3124			continue;
3125
3126		if (unlikely(lstatus & BD_LFLAG(RXBD_ERR))) {
3127			count_errors(lstatus, ndev);
3128
3129			/* discard faulty buffer */
3130			dev_kfree_skb(skb);
3131			skb = NULL;
3132			rx_queue->stats.rx_dropped++;
3133			continue;
3134		}
3135
3136		/* Increment the number of packets */
3137		total_pkts++;
3138		total_bytes += skb->len;
3139
3140		skb_record_rx_queue(skb, rx_queue->qindex);
3141
3142		gfar_process_frame(ndev, skb);
3143
3144		/* Send the packet up the stack */
3145		napi_gro_receive(&rx_queue->grp->napi_rx, skb);
3146
3147		skb = NULL;
3148	}
3149
3150	/* Store incomplete frames for completion */
3151	rx_queue->skb = skb;
3152
3153	rx_queue->stats.rx_packets += total_pkts;
3154	rx_queue->stats.rx_bytes += total_bytes;
3155
3156	if (cleaned_cnt)
3157		gfar_alloc_rx_buffs(rx_queue, cleaned_cnt);
3158
3159	/* Update Last Free RxBD pointer for LFC */
3160	if (unlikely(priv->tx_actual_en)) {
3161		u32 bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3162
3163		gfar_write(rx_queue->rfbptr, bdp_dma);
3164	}
3165
3166	return howmany;
3167}
3168
3169static int gfar_poll_rx_sq(struct napi_struct *napi, int budget)
3170{
3171	struct gfar_priv_grp *gfargrp =
3172		container_of(napi, struct gfar_priv_grp, napi_rx);
3173	struct gfar __iomem *regs = gfargrp->regs;
3174	struct gfar_priv_rx_q *rx_queue = gfargrp->rx_queue;
3175	int work_done = 0;
3176
3177	/* Clear IEVENT, so interrupts aren't called again
3178	 * because of the packets that have already arrived
3179	 */
3180	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3181
3182	work_done = gfar_clean_rx_ring(rx_queue, budget);
3183
3184	if (work_done < budget) {
3185		u32 imask;
3186		napi_complete(napi);
3187		/* Clear the halt bit in RSTAT */
3188		gfar_write(&regs->rstat, gfargrp->rstat);
3189
3190		spin_lock_irq(&gfargrp->grplock);
3191		imask = gfar_read(&regs->imask);
3192		imask |= IMASK_RX_DEFAULT;
3193		gfar_write(&regs->imask, imask);
3194		spin_unlock_irq(&gfargrp->grplock);
3195	}
3196
3197	return work_done;
3198}
3199
3200static int gfar_poll_tx_sq(struct napi_struct *napi, int budget)
3201{
3202	struct gfar_priv_grp *gfargrp =
3203		container_of(napi, struct gfar_priv_grp, napi_tx);
3204	struct gfar __iomem *regs = gfargrp->regs;
3205	struct gfar_priv_tx_q *tx_queue = gfargrp->tx_queue;
3206	u32 imask;
3207
3208	/* Clear IEVENT, so interrupts aren't called again
3209	 * because of the packets that have already arrived
3210	 */
3211	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3212
3213	/* run Tx cleanup to completion */
3214	if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx])
3215		gfar_clean_tx_ring(tx_queue);
3216
3217	napi_complete(napi);
3218
3219	spin_lock_irq(&gfargrp->grplock);
3220	imask = gfar_read(&regs->imask);
3221	imask |= IMASK_TX_DEFAULT;
3222	gfar_write(&regs->imask, imask);
3223	spin_unlock_irq(&gfargrp->grplock);
3224
3225	return 0;
3226}
3227
3228static int gfar_poll_rx(struct napi_struct *napi, int budget)
3229{
3230	struct gfar_priv_grp *gfargrp =
3231		container_of(napi, struct gfar_priv_grp, napi_rx);
3232	struct gfar_private *priv = gfargrp->priv;
3233	struct gfar __iomem *regs = gfargrp->regs;
3234	struct gfar_priv_rx_q *rx_queue = NULL;
3235	int work_done = 0, work_done_per_q = 0;
3236	int i, budget_per_q = 0;
3237	unsigned long rstat_rxf;
3238	int num_act_queues;
3239
3240	/* Clear IEVENT, so interrupts aren't called again
3241	 * because of the packets that have already arrived
3242	 */
3243	gfar_write(&regs->ievent, IEVENT_RX_MASK);
3244
3245	rstat_rxf = gfar_read(&regs->rstat) & RSTAT_RXF_MASK;
3246
3247	num_act_queues = bitmap_weight(&rstat_rxf, MAX_RX_QS);
3248	if (num_act_queues)
3249		budget_per_q = budget/num_act_queues;
3250
3251	for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
3252		/* skip queue if not active */
3253		if (!(rstat_rxf & (RSTAT_CLEAR_RXF0 >> i)))
3254			continue;
3255
3256		rx_queue = priv->rx_queue[i];
3257		work_done_per_q =
3258			gfar_clean_rx_ring(rx_queue, budget_per_q);
3259		work_done += work_done_per_q;
3260
3261		/* finished processing this queue */
3262		if (work_done_per_q < budget_per_q) {
3263			/* clear active queue hw indication */
3264			gfar_write(&regs->rstat,
3265				   RSTAT_CLEAR_RXF0 >> i);
3266			num_act_queues--;
3267
3268			if (!num_act_queues)
3269				break;
3270		}
3271	}
3272
3273	if (!num_act_queues) {
3274		u32 imask;
3275		napi_complete(napi);
3276
3277		/* Clear the halt bit in RSTAT */
3278		gfar_write(&regs->rstat, gfargrp->rstat);
3279
3280		spin_lock_irq(&gfargrp->grplock);
3281		imask = gfar_read(&regs->imask);
3282		imask |= IMASK_RX_DEFAULT;
3283		gfar_write(&regs->imask, imask);
3284		spin_unlock_irq(&gfargrp->grplock);
3285	}
3286
3287	return work_done;
3288}
3289
3290static int gfar_poll_tx(struct napi_struct *napi, int budget)
3291{
3292	struct gfar_priv_grp *gfargrp =
3293		container_of(napi, struct gfar_priv_grp, napi_tx);
3294	struct gfar_private *priv = gfargrp->priv;
3295	struct gfar __iomem *regs = gfargrp->regs;
3296	struct gfar_priv_tx_q *tx_queue = NULL;
3297	int has_tx_work = 0;
3298	int i;
3299
3300	/* Clear IEVENT, so interrupts aren't called again
3301	 * because of the packets that have already arrived
3302	 */
3303	gfar_write(&regs->ievent, IEVENT_TX_MASK);
3304
3305	for_each_set_bit(i, &gfargrp->tx_bit_map, priv->num_tx_queues) {
3306		tx_queue = priv->tx_queue[i];
3307		/* run Tx cleanup to completion */
3308		if (tx_queue->tx_skbuff[tx_queue->skb_dirtytx]) {
3309			gfar_clean_tx_ring(tx_queue);
3310			has_tx_work = 1;
3311		}
3312	}
3313
3314	if (!has_tx_work) {
3315		u32 imask;
3316		napi_complete(napi);
3317
3318		spin_lock_irq(&gfargrp->grplock);
3319		imask = gfar_read(&regs->imask);
3320		imask |= IMASK_TX_DEFAULT;
3321		gfar_write(&regs->imask, imask);
3322		spin_unlock_irq(&gfargrp->grplock);
3323	}
3324
3325	return 0;
3326}
3327
3328
3329#ifdef CONFIG_NET_POLL_CONTROLLER
3330/* Polling 'interrupt' - used by things like netconsole to send skbs
3331 * without having to re-enable interrupts. It's not called while
3332 * the interrupt routine is executing.
3333 */
3334static void gfar_netpoll(struct net_device *dev)
3335{
3336	struct gfar_private *priv = netdev_priv(dev);
3337	int i;
3338
3339	/* If the device has multiple interrupts, run tx/rx */
3340	if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
3341		for (i = 0; i < priv->num_grps; i++) {
3342			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3343
3344			disable_irq(gfar_irq(grp, TX)->irq);
3345			disable_irq(gfar_irq(grp, RX)->irq);
3346			disable_irq(gfar_irq(grp, ER)->irq);
3347			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3348			enable_irq(gfar_irq(grp, ER)->irq);
3349			enable_irq(gfar_irq(grp, RX)->irq);
3350			enable_irq(gfar_irq(grp, TX)->irq);
3351		}
3352	} else {
3353		for (i = 0; i < priv->num_grps; i++) {
3354			struct gfar_priv_grp *grp = &priv->gfargrp[i];
3355
3356			disable_irq(gfar_irq(grp, TX)->irq);
3357			gfar_interrupt(gfar_irq(grp, TX)->irq, grp);
3358			enable_irq(gfar_irq(grp, TX)->irq);
3359		}
3360	}
3361}
3362#endif
3363
3364/* The interrupt handler for devices with one interrupt */
3365static irqreturn_t gfar_interrupt(int irq, void *grp_id)
3366{
3367	struct gfar_priv_grp *gfargrp = grp_id;
3368
3369	/* Save ievent for future reference */
3370	u32 events = gfar_read(&gfargrp->regs->ievent);
3371
3372	/* Check for reception */
3373	if (events & IEVENT_RX_MASK)
3374		gfar_receive(irq, grp_id);
3375
3376	/* Check for transmit completion */
3377	if (events & IEVENT_TX_MASK)
3378		gfar_transmit(irq, grp_id);
3379
3380	/* Check for errors */
3381	if (events & IEVENT_ERR_MASK)
3382		gfar_error(irq, grp_id);
3383
3384	return IRQ_HANDLED;
3385}
3386
3387/* Called every time the controller might need to be made
3388 * aware of new link state.  The PHY code conveys this
3389 * information through variables in the phydev structure, and this
3390 * function converts those variables into the appropriate
3391 * register values, and can bring down the device if needed.
3392 */
3393static void adjust_link(struct net_device *dev)
3394{
3395	struct gfar_private *priv = netdev_priv(dev);
3396	struct phy_device *phydev = dev->phydev;
3397
3398	if (unlikely(phydev->link != priv->oldlink ||
3399		     (phydev->link && (phydev->duplex != priv->oldduplex ||
3400				       phydev->speed != priv->oldspeed))))
3401		gfar_update_link_state(priv);
3402}
3403
3404/* Update the hash table based on the current list of multicast
3405 * addresses we subscribe to.  Also, change the promiscuity of
3406 * the device based on the flags (this function is called
3407 * whenever dev->flags is changed
3408 */
3409static void gfar_set_multi(struct net_device *dev)
3410{
3411	struct netdev_hw_addr *ha;
3412	struct gfar_private *priv = netdev_priv(dev);
3413	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3414	u32 tempval;
3415
3416	if (dev->flags & IFF_PROMISC) {
3417		/* Set RCTRL to PROM */
3418		tempval = gfar_read(&regs->rctrl);
3419		tempval |= RCTRL_PROM;
3420		gfar_write(&regs->rctrl, tempval);
3421	} else {
3422		/* Set RCTRL to not PROM */
3423		tempval = gfar_read(&regs->rctrl);
3424		tempval &= ~(RCTRL_PROM);
3425		gfar_write(&regs->rctrl, tempval);
3426	}
3427
3428	if (dev->flags & IFF_ALLMULTI) {
3429		/* Set the hash to rx all multicast frames */
3430		gfar_write(&regs->igaddr0, 0xffffffff);
3431		gfar_write(&regs->igaddr1, 0xffffffff);
3432		gfar_write(&regs->igaddr2, 0xffffffff);
3433		gfar_write(&regs->igaddr3, 0xffffffff);
3434		gfar_write(&regs->igaddr4, 0xffffffff);
3435		gfar_write(&regs->igaddr5, 0xffffffff);
3436		gfar_write(&regs->igaddr6, 0xffffffff);
3437		gfar_write(&regs->igaddr7, 0xffffffff);
3438		gfar_write(&regs->gaddr0, 0xffffffff);
3439		gfar_write(&regs->gaddr1, 0xffffffff);
3440		gfar_write(&regs->gaddr2, 0xffffffff);
3441		gfar_write(&regs->gaddr3, 0xffffffff);
3442		gfar_write(&regs->gaddr4, 0xffffffff);
3443		gfar_write(&regs->gaddr5, 0xffffffff);
3444		gfar_write(&regs->gaddr6, 0xffffffff);
3445		gfar_write(&regs->gaddr7, 0xffffffff);
3446	} else {
3447		int em_num;
3448		int idx;
3449
3450		/* zero out the hash */
3451		gfar_write(&regs->igaddr0, 0x0);
3452		gfar_write(&regs->igaddr1, 0x0);
3453		gfar_write(&regs->igaddr2, 0x0);
3454		gfar_write(&regs->igaddr3, 0x0);
3455		gfar_write(&regs->igaddr4, 0x0);
3456		gfar_write(&regs->igaddr5, 0x0);
3457		gfar_write(&regs->igaddr6, 0x0);
3458		gfar_write(&regs->igaddr7, 0x0);
3459		gfar_write(&regs->gaddr0, 0x0);
3460		gfar_write(&regs->gaddr1, 0x0);
3461		gfar_write(&regs->gaddr2, 0x0);
3462		gfar_write(&regs->gaddr3, 0x0);
3463		gfar_write(&regs->gaddr4, 0x0);
3464		gfar_write(&regs->gaddr5, 0x0);
3465		gfar_write(&regs->gaddr6, 0x0);
3466		gfar_write(&regs->gaddr7, 0x0);
3467
3468		/* If we have extended hash tables, we need to
3469		 * clear the exact match registers to prepare for
3470		 * setting them
3471		 */
3472		if (priv->extended_hash) {
3473			em_num = GFAR_EM_NUM + 1;
3474			gfar_clear_exact_match(dev);
3475			idx = 1;
3476		} else {
3477			idx = 0;
3478			em_num = 0;
3479		}
3480
3481		if (netdev_mc_empty(dev))
3482			return;
3483
3484		/* Parse the list, and set the appropriate bits */
3485		netdev_for_each_mc_addr(ha, dev) {
3486			if (idx < em_num) {
3487				gfar_set_mac_for_addr(dev, idx, ha->addr);
3488				idx++;
3489			} else
3490				gfar_set_hash_for_addr(dev, ha->addr);
3491		}
3492	}
3493}
3494
3495
3496/* Clears each of the exact match registers to zero, so they
3497 * don't interfere with normal reception
3498 */
3499static void gfar_clear_exact_match(struct net_device *dev)
3500{
3501	int idx;
3502	static const u8 zero_arr[ETH_ALEN] = {0, 0, 0, 0, 0, 0};
3503
3504	for (idx = 1; idx < GFAR_EM_NUM + 1; idx++)
3505		gfar_set_mac_for_addr(dev, idx, zero_arr);
3506}
3507
3508/* Set the appropriate hash bit for the given addr */
3509/* The algorithm works like so:
3510 * 1) Take the Destination Address (ie the multicast address), and
3511 * do a CRC on it (little endian), and reverse the bits of the
3512 * result.
3513 * 2) Use the 8 most significant bits as a hash into a 256-entry
3514 * table.  The table is controlled through 8 32-bit registers:
3515 * gaddr0-7.  gaddr0's MSB is entry 0, and gaddr7's LSB is
3516 * gaddr7.  This means that the 3 most significant bits in the
3517 * hash index which gaddr register to use, and the 5 other bits
3518 * indicate which bit (assuming an IBM numbering scheme, which
3519 * for PowerPC (tm) is usually the case) in the register holds
3520 * the entry.
3521 */
3522static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3523{
3524	u32 tempval;
3525	struct gfar_private *priv = netdev_priv(dev);
3526	u32 result = ether_crc(ETH_ALEN, addr);
3527	int width = priv->hash_width;
3528	u8 whichbit = (result >> (32 - width)) & 0x1f;
3529	u8 whichreg = result >> (32 - width + 5);
3530	u32 value = (1 << (31-whichbit));
3531
3532	tempval = gfar_read(priv->hash_regs[whichreg]);
3533	tempval |= value;
3534	gfar_write(priv->hash_regs[whichreg], tempval);
3535}
3536
3537
3538/* There are multiple MAC Address register pairs on some controllers
3539 * This function sets the numth pair to a given address
3540 */
3541static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3542				  const u8 *addr)
3543{
3544	struct gfar_private *priv = netdev_priv(dev);
3545	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3546	u32 tempval;
3547	u32 __iomem *macptr = &regs->macstnaddr1;
3548
3549	macptr += num*2;
3550
3551	/* For a station address of 0x12345678ABCD in transmission
3552	 * order (BE), MACnADDR1 is set to 0xCDAB7856 and
3553	 * MACnADDR2 is set to 0x34120000.
3554	 */
3555	tempval = (addr[5] << 24) | (addr[4] << 16) |
3556		  (addr[3] << 8)  |  addr[2];
3557
3558	gfar_write(macptr, tempval);
3559
3560	tempval = (addr[1] << 24) | (addr[0] << 16);
3561
3562	gfar_write(macptr+1, tempval);
3563}
3564
3565/* GFAR error interrupt handler */
3566static irqreturn_t gfar_error(int irq, void *grp_id)
3567{
3568	struct gfar_priv_grp *gfargrp = grp_id;
3569	struct gfar __iomem *regs = gfargrp->regs;
3570	struct gfar_private *priv= gfargrp->priv;
3571	struct net_device *dev = priv->ndev;
3572
3573	/* Save ievent for future reference */
3574	u32 events = gfar_read(&regs->ievent);
3575
3576	/* Clear IEVENT */
3577	gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3578
3579	/* Magic Packet is not an error. */
3580	if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3581	    (events & IEVENT_MAG))
3582		events &= ~IEVENT_MAG;
3583
3584	/* Hmm... */
3585	if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3586		netdev_dbg(dev,
3587			   "error interrupt (ievent=0x%08x imask=0x%08x)\n",
3588			   events, gfar_read(&regs->imask));
3589
3590	/* Update the error counters */
3591	if (events & IEVENT_TXE) {
3592		dev->stats.tx_errors++;
3593
3594		if (events & IEVENT_LC)
3595			dev->stats.tx_window_errors++;
3596		if (events & IEVENT_CRL)
3597			dev->stats.tx_aborted_errors++;
3598		if (events & IEVENT_XFUN) {
3599			netif_dbg(priv, tx_err, dev,
3600				  "TX FIFO underrun, packet dropped\n");
3601			dev->stats.tx_dropped++;
3602			atomic64_inc(&priv->extra_stats.tx_underrun);
3603
3604			schedule_work(&priv->reset_task);
3605		}
3606		netif_dbg(priv, tx_err, dev, "Transmit Error\n");
3607	}
3608	if (events & IEVENT_BSY) {
3609		dev->stats.rx_over_errors++;
3610		atomic64_inc(&priv->extra_stats.rx_bsy);
3611
3612		netif_dbg(priv, rx_err, dev, "busy error (rstat: %x)\n",
3613			  gfar_read(&regs->rstat));
3614	}
3615	if (events & IEVENT_BABR) {
3616		dev->stats.rx_errors++;
3617		atomic64_inc(&priv->extra_stats.rx_babr);
3618
3619		netif_dbg(priv, rx_err, dev, "babbling RX error\n");
3620	}
3621	if (events & IEVENT_EBERR) {
3622		atomic64_inc(&priv->extra_stats.eberr);
3623		netif_dbg(priv, rx_err, dev, "bus error\n");
3624	}
3625	if (events & IEVENT_RXC)
3626		netif_dbg(priv, rx_status, dev, "control frame\n");
3627
3628	if (events & IEVENT_BABT) {
3629		atomic64_inc(&priv->extra_stats.tx_babt);
3630		netif_dbg(priv, tx_err, dev, "babbling TX error\n");
3631	}
3632	return IRQ_HANDLED;
3633}
3634
3635static u32 gfar_get_flowctrl_cfg(struct gfar_private *priv)
3636{
3637	struct net_device *ndev = priv->ndev;
3638	struct phy_device *phydev = ndev->phydev;
3639	u32 val = 0;
3640
3641	if (!phydev->duplex)
3642		return val;
3643
3644	if (!priv->pause_aneg_en) {
3645		if (priv->tx_pause_en)
3646			val |= MACCFG1_TX_FLOW;
3647		if (priv->rx_pause_en)
3648			val |= MACCFG1_RX_FLOW;
3649	} else {
3650		u16 lcl_adv, rmt_adv;
3651		u8 flowctrl;
3652		/* get link partner capabilities */
3653		rmt_adv = 0;
3654		if (phydev->pause)
3655			rmt_adv = LPA_PAUSE_CAP;
3656		if (phydev->asym_pause)
3657			rmt_adv |= LPA_PAUSE_ASYM;
3658
3659		lcl_adv = 0;
3660		if (phydev->advertising & ADVERTISED_Pause)
3661			lcl_adv |= ADVERTISE_PAUSE_CAP;
3662		if (phydev->advertising & ADVERTISED_Asym_Pause)
3663			lcl_adv |= ADVERTISE_PAUSE_ASYM;
3664
3665		flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
3666		if (flowctrl & FLOW_CTRL_TX)
3667			val |= MACCFG1_TX_FLOW;
3668		if (flowctrl & FLOW_CTRL_RX)
3669			val |= MACCFG1_RX_FLOW;
3670	}
3671
3672	return val;
3673}
3674
3675static noinline void gfar_update_link_state(struct gfar_private *priv)
3676{
3677	struct gfar __iomem *regs = priv->gfargrp[0].regs;
3678	struct net_device *ndev = priv->ndev;
3679	struct phy_device *phydev = ndev->phydev;
3680	struct gfar_priv_rx_q *rx_queue = NULL;
3681	int i;
3682
3683	if (unlikely(test_bit(GFAR_RESETTING, &priv->state)))
3684		return;
3685
3686	if (phydev->link) {
3687		u32 tempval1 = gfar_read(&regs->maccfg1);
3688		u32 tempval = gfar_read(&regs->maccfg2);
3689		u32 ecntrl = gfar_read(&regs->ecntrl);
3690		u32 tx_flow_oldval = (tempval & MACCFG1_TX_FLOW);
3691
3692		if (phydev->duplex != priv->oldduplex) {
3693			if (!(phydev->duplex))
3694				tempval &= ~(MACCFG2_FULL_DUPLEX);
3695			else
3696				tempval |= MACCFG2_FULL_DUPLEX;
3697
3698			priv->oldduplex = phydev->duplex;
3699		}
3700
3701		if (phydev->speed != priv->oldspeed) {
3702			switch (phydev->speed) {
3703			case 1000:
3704				tempval =
3705				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
3706
3707				ecntrl &= ~(ECNTRL_R100);
3708				break;
3709			case 100:
3710			case 10:
3711				tempval =
3712				    ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
3713
3714				/* Reduced mode distinguishes
3715				 * between 10 and 100
3716				 */
3717				if (phydev->speed == SPEED_100)
3718					ecntrl |= ECNTRL_R100;
3719				else
3720					ecntrl &= ~(ECNTRL_R100);
3721				break;
3722			default:
3723				netif_warn(priv, link, priv->ndev,
3724					   "Ack!  Speed (%d) is not 10/100/1000!\n",
3725					   phydev->speed);
3726				break;
3727			}
3728
3729			priv->oldspeed = phydev->speed;
3730		}
3731
3732		tempval1 &= ~(MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
3733		tempval1 |= gfar_get_flowctrl_cfg(priv);
3734
3735		/* Turn last free buffer recording on */
3736		if ((tempval1 & MACCFG1_TX_FLOW) && !tx_flow_oldval) {
3737			for (i = 0; i < priv->num_rx_queues; i++) {
3738				u32 bdp_dma;
3739
3740				rx_queue = priv->rx_queue[i];
3741				bdp_dma = gfar_rxbd_dma_lastfree(rx_queue);
3742				gfar_write(rx_queue->rfbptr, bdp_dma);
3743			}
3744
3745			priv->tx_actual_en = 1;
3746		}
3747
3748		if (unlikely(!(tempval1 & MACCFG1_TX_FLOW) && tx_flow_oldval))
3749			priv->tx_actual_en = 0;
3750
3751		gfar_write(&regs->maccfg1, tempval1);
3752		gfar_write(&regs->maccfg2, tempval);
3753		gfar_write(&regs->ecntrl, ecntrl);
3754
3755		if (!priv->oldlink)
3756			priv->oldlink = 1;
3757
3758	} else if (priv->oldlink) {
3759		priv->oldlink = 0;
3760		priv->oldspeed = 0;
3761		priv->oldduplex = -1;
3762	}
3763
3764	if (netif_msg_link(priv))
3765		phy_print_status(phydev);
3766}
3767
3768static const struct of_device_id gfar_match[] =
3769{
3770	{
3771		.type = "network",
3772		.compatible = "gianfar",
3773	},
3774	{
3775		.compatible = "fsl,etsec2",
3776	},
3777	{},
3778};
3779MODULE_DEVICE_TABLE(of, gfar_match);
3780
3781/* Structure for a device driver */
3782static struct platform_driver gfar_driver = {
3783	.driver = {
3784		.name = "fsl-gianfar",
3785		.pm = GFAR_PM_OPS,
3786		.of_match_table = gfar_match,
3787	},
3788	.probe = gfar_probe,
3789	.remove = gfar_remove,
3790};
3791
3792module_platform_driver(gfar_driver);