Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  libata-core.c - helper library for ATA
   3 *
   4 *  Maintained by:  Tejun Heo <tj@kernel.org>
   5 *    		    Please ALWAYS copy linux-ide@vger.kernel.org
   6 *		    on emails.
   7 *
   8 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   9 *  Copyright 2003-2004 Jeff Garzik
  10 *
  11 *
  12 *  This program is free software; you can redistribute it and/or modify
  13 *  it under the terms of the GNU General Public License as published by
  14 *  the Free Software Foundation; either version 2, or (at your option)
  15 *  any later version.
  16 *
  17 *  This program is distributed in the hope that it will be useful,
  18 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  19 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  20 *  GNU General Public License for more details.
  21 *
  22 *  You should have received a copy of the GNU General Public License
  23 *  along with this program; see the file COPYING.  If not, write to
  24 *  the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
  25 *
  26 *
  27 *  libata documentation is available via 'make {ps|pdf}docs',
  28 *  as Documentation/DocBook/libata.*
  29 *
  30 *  Hardware documentation available from http://www.t13.org/ and
  31 *  http://www.sata-io.org/
  32 *
  33 *  Standards documents from:
  34 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  35 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  36 *	http://www.sata-io.org (SATA)
  37 *	http://www.compactflash.org (CF)
  38 *	http://www.qic.org (QIC157 - Tape and DSC)
  39 *	http://www.ce-ata.org (CE-ATA: not supported)
  40 *
 
 
 
 
  41 */
  42
  43#include <linux/kernel.h>
  44#include <linux/module.h>
  45#include <linux/pci.h>
  46#include <linux/init.h>
  47#include <linux/list.h>
  48#include <linux/mm.h>
  49#include <linux/spinlock.h>
  50#include <linux/blkdev.h>
  51#include <linux/delay.h>
  52#include <linux/timer.h>
  53#include <linux/time.h>
  54#include <linux/interrupt.h>
  55#include <linux/completion.h>
  56#include <linux/suspend.h>
  57#include <linux/workqueue.h>
  58#include <linux/scatterlist.h>
  59#include <linux/io.h>
  60#include <linux/async.h>
  61#include <linux/log2.h>
  62#include <linux/slab.h>
  63#include <linux/glob.h>
  64#include <scsi/scsi.h>
  65#include <scsi/scsi_cmnd.h>
  66#include <scsi/scsi_host.h>
  67#include <linux/libata.h>
  68#include <asm/byteorder.h>
 
  69#include <linux/cdrom.h>
  70#include <linux/ratelimit.h>
 
  71#include <linux/pm_runtime.h>
  72#include <linux/platform_device.h>
 
  73
  74#define CREATE_TRACE_POINTS
  75#include <trace/events/libata.h>
  76
  77#include "libata.h"
  78#include "libata-transport.h"
  79
  80/* debounce timing parameters in msecs { interval, duration, timeout } */
  81const unsigned long sata_deb_timing_normal[]		= {   5,  100, 2000 };
  82const unsigned long sata_deb_timing_hotplug[]		= {  25,  500, 2000 };
  83const unsigned long sata_deb_timing_long[]		= { 100, 2000, 5000 };
  84
  85const struct ata_port_operations ata_base_port_ops = {
  86	.prereset		= ata_std_prereset,
  87	.postreset		= ata_std_postreset,
  88	.error_handler		= ata_std_error_handler,
  89	.sched_eh		= ata_std_sched_eh,
  90	.end_eh			= ata_std_end_eh,
  91};
  92
  93const struct ata_port_operations sata_port_ops = {
  94	.inherits		= &ata_base_port_ops,
  95
  96	.qc_defer		= ata_std_qc_defer,
  97	.hardreset		= sata_std_hardreset,
  98};
 
  99
 100static unsigned int ata_dev_init_params(struct ata_device *dev,
 101					u16 heads, u16 sectors);
 102static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
 103static void ata_dev_xfermask(struct ata_device *dev);
 104static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
 105
 106atomic_t ata_print_id = ATOMIC_INIT(0);
 107
 
 108struct ata_force_param {
 109	const char	*name;
 110	unsigned int	cbl;
 111	int		spd_limit;
 112	unsigned long	xfer_mask;
 113	unsigned int	horkage_on;
 114	unsigned int	horkage_off;
 115	unsigned int	lflags;
 116};
 117
 118struct ata_force_ent {
 119	int			port;
 120	int			device;
 121	struct ata_force_param	param;
 122};
 123
 124static struct ata_force_ent *ata_force_tbl;
 125static int ata_force_tbl_size;
 126
 127static char ata_force_param_buf[PAGE_SIZE] __initdata;
 128/* param_buf is thrown away after initialization, disallow read */
 129module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 130MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
 
 131
 132static int atapi_enabled = 1;
 133module_param(atapi_enabled, int, 0444);
 134MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 135
 136static int atapi_dmadir = 0;
 137module_param(atapi_dmadir, int, 0444);
 138MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 139
 140int atapi_passthru16 = 1;
 141module_param(atapi_passthru16, int, 0444);
 142MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 143
 144int libata_fua = 0;
 145module_param_named(fua, libata_fua, int, 0444);
 146MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 147
 148static int ata_ignore_hpa;
 149module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 150MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 151
 152static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 153module_param_named(dma, libata_dma_mask, int, 0444);
 154MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 155
 156static int ata_probe_timeout;
 157module_param(ata_probe_timeout, int, 0444);
 158MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 159
 160int libata_noacpi = 0;
 161module_param_named(noacpi, libata_noacpi, int, 0444);
 162MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 163
 164int libata_allow_tpm = 0;
 165module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 166MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 167
 168static int atapi_an;
 169module_param(atapi_an, int, 0444);
 170MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 171
 172MODULE_AUTHOR("Jeff Garzik");
 173MODULE_DESCRIPTION("Library module for ATA devices");
 174MODULE_LICENSE("GPL");
 175MODULE_VERSION(DRV_VERSION);
 176
 177
 178static bool ata_sstatus_online(u32 sstatus)
 179{
 180	return (sstatus & 0xf) == 0x3;
 181}
 182
 183/**
 184 *	ata_link_next - link iteration helper
 185 *	@link: the previous link, NULL to start
 186 *	@ap: ATA port containing links to iterate
 187 *	@mode: iteration mode, one of ATA_LITER_*
 188 *
 189 *	LOCKING:
 190 *	Host lock or EH context.
 191 *
 192 *	RETURNS:
 193 *	Pointer to the next link.
 194 */
 195struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 196			       enum ata_link_iter_mode mode)
 197{
 198	BUG_ON(mode != ATA_LITER_EDGE &&
 199	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 200
 201	/* NULL link indicates start of iteration */
 202	if (!link)
 203		switch (mode) {
 204		case ATA_LITER_EDGE:
 205		case ATA_LITER_PMP_FIRST:
 206			if (sata_pmp_attached(ap))
 207				return ap->pmp_link;
 208			/* fall through */
 209		case ATA_LITER_HOST_FIRST:
 210			return &ap->link;
 211		}
 212
 213	/* we just iterated over the host link, what's next? */
 214	if (link == &ap->link)
 215		switch (mode) {
 216		case ATA_LITER_HOST_FIRST:
 217			if (sata_pmp_attached(ap))
 218				return ap->pmp_link;
 219			/* fall through */
 220		case ATA_LITER_PMP_FIRST:
 221			if (unlikely(ap->slave_link))
 222				return ap->slave_link;
 223			/* fall through */
 224		case ATA_LITER_EDGE:
 225			return NULL;
 226		}
 227
 228	/* slave_link excludes PMP */
 229	if (unlikely(link == ap->slave_link))
 230		return NULL;
 231
 232	/* we were over a PMP link */
 233	if (++link < ap->pmp_link + ap->nr_pmp_links)
 234		return link;
 235
 236	if (mode == ATA_LITER_PMP_FIRST)
 237		return &ap->link;
 238
 239	return NULL;
 240}
 
 241
 242/**
 243 *	ata_dev_next - device iteration helper
 244 *	@dev: the previous device, NULL to start
 245 *	@link: ATA link containing devices to iterate
 246 *	@mode: iteration mode, one of ATA_DITER_*
 247 *
 248 *	LOCKING:
 249 *	Host lock or EH context.
 250 *
 251 *	RETURNS:
 252 *	Pointer to the next device.
 253 */
 254struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 255				enum ata_dev_iter_mode mode)
 256{
 257	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 258	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 259
 260	/* NULL dev indicates start of iteration */
 261	if (!dev)
 262		switch (mode) {
 263		case ATA_DITER_ENABLED:
 264		case ATA_DITER_ALL:
 265			dev = link->device;
 266			goto check;
 267		case ATA_DITER_ENABLED_REVERSE:
 268		case ATA_DITER_ALL_REVERSE:
 269			dev = link->device + ata_link_max_devices(link) - 1;
 270			goto check;
 271		}
 272
 273 next:
 274	/* move to the next one */
 275	switch (mode) {
 276	case ATA_DITER_ENABLED:
 277	case ATA_DITER_ALL:
 278		if (++dev < link->device + ata_link_max_devices(link))
 279			goto check;
 280		return NULL;
 281	case ATA_DITER_ENABLED_REVERSE:
 282	case ATA_DITER_ALL_REVERSE:
 283		if (--dev >= link->device)
 284			goto check;
 285		return NULL;
 286	}
 287
 288 check:
 289	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 290	    !ata_dev_enabled(dev))
 291		goto next;
 292	return dev;
 293}
 
 294
 295/**
 296 *	ata_dev_phys_link - find physical link for a device
 297 *	@dev: ATA device to look up physical link for
 298 *
 299 *	Look up physical link which @dev is attached to.  Note that
 300 *	this is different from @dev->link only when @dev is on slave
 301 *	link.  For all other cases, it's the same as @dev->link.
 302 *
 303 *	LOCKING:
 304 *	Don't care.
 305 *
 306 *	RETURNS:
 307 *	Pointer to the found physical link.
 308 */
 309struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 310{
 311	struct ata_port *ap = dev->link->ap;
 312
 313	if (!ap->slave_link)
 314		return dev->link;
 315	if (!dev->devno)
 316		return &ap->link;
 317	return ap->slave_link;
 318}
 319
 
 320/**
 321 *	ata_force_cbl - force cable type according to libata.force
 322 *	@ap: ATA port of interest
 323 *
 324 *	Force cable type according to libata.force and whine about it.
 325 *	The last entry which has matching port number is used, so it
 326 *	can be specified as part of device force parameters.  For
 327 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 328 *	same effect.
 329 *
 330 *	LOCKING:
 331 *	EH context.
 332 */
 333void ata_force_cbl(struct ata_port *ap)
 334{
 335	int i;
 336
 337	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 338		const struct ata_force_ent *fe = &ata_force_tbl[i];
 339
 340		if (fe->port != -1 && fe->port != ap->print_id)
 341			continue;
 342
 343		if (fe->param.cbl == ATA_CBL_NONE)
 344			continue;
 345
 346		ap->cbl = fe->param.cbl;
 347		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 348		return;
 349	}
 350}
 351
 352/**
 353 *	ata_force_link_limits - force link limits according to libata.force
 354 *	@link: ATA link of interest
 355 *
 356 *	Force link flags and SATA spd limit according to libata.force
 357 *	and whine about it.  When only the port part is specified
 358 *	(e.g. 1:), the limit applies to all links connected to both
 359 *	the host link and all fan-out ports connected via PMP.  If the
 360 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 361 *	first fan-out link not the host link.  Device number 15 always
 362 *	points to the host link whether PMP is attached or not.  If the
 363 *	controller has slave link, device number 16 points to it.
 364 *
 365 *	LOCKING:
 366 *	EH context.
 367 */
 368static void ata_force_link_limits(struct ata_link *link)
 369{
 370	bool did_spd = false;
 371	int linkno = link->pmp;
 372	int i;
 373
 374	if (ata_is_host_link(link))
 375		linkno += 15;
 376
 377	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 378		const struct ata_force_ent *fe = &ata_force_tbl[i];
 379
 380		if (fe->port != -1 && fe->port != link->ap->print_id)
 381			continue;
 382
 383		if (fe->device != -1 && fe->device != linkno)
 384			continue;
 385
 386		/* only honor the first spd limit */
 387		if (!did_spd && fe->param.spd_limit) {
 388			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 389			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 390					fe->param.name);
 391			did_spd = true;
 392		}
 393
 394		/* let lflags stack */
 395		if (fe->param.lflags) {
 396			link->flags |= fe->param.lflags;
 397			ata_link_notice(link,
 398					"FORCE: link flag 0x%x forced -> 0x%x\n",
 399					fe->param.lflags, link->flags);
 400		}
 401	}
 402}
 403
 404/**
 405 *	ata_force_xfermask - force xfermask according to libata.force
 406 *	@dev: ATA device of interest
 407 *
 408 *	Force xfer_mask according to libata.force and whine about it.
 409 *	For consistency with link selection, device number 15 selects
 410 *	the first device connected to the host link.
 411 *
 412 *	LOCKING:
 413 *	EH context.
 414 */
 415static void ata_force_xfermask(struct ata_device *dev)
 416{
 417	int devno = dev->link->pmp + dev->devno;
 418	int alt_devno = devno;
 419	int i;
 420
 421	/* allow n.15/16 for devices attached to host port */
 422	if (ata_is_host_link(dev->link))
 423		alt_devno += 15;
 424
 425	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 426		const struct ata_force_ent *fe = &ata_force_tbl[i];
 427		unsigned long pio_mask, mwdma_mask, udma_mask;
 428
 429		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 430			continue;
 431
 432		if (fe->device != -1 && fe->device != devno &&
 433		    fe->device != alt_devno)
 434			continue;
 435
 436		if (!fe->param.xfer_mask)
 437			continue;
 438
 439		ata_unpack_xfermask(fe->param.xfer_mask,
 440				    &pio_mask, &mwdma_mask, &udma_mask);
 441		if (udma_mask)
 442			dev->udma_mask = udma_mask;
 443		else if (mwdma_mask) {
 444			dev->udma_mask = 0;
 445			dev->mwdma_mask = mwdma_mask;
 446		} else {
 447			dev->udma_mask = 0;
 448			dev->mwdma_mask = 0;
 449			dev->pio_mask = pio_mask;
 450		}
 451
 452		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 453			       fe->param.name);
 454		return;
 455	}
 456}
 457
 458/**
 459 *	ata_force_horkage - force horkage according to libata.force
 460 *	@dev: ATA device of interest
 461 *
 462 *	Force horkage according to libata.force and whine about it.
 463 *	For consistency with link selection, device number 15 selects
 464 *	the first device connected to the host link.
 465 *
 466 *	LOCKING:
 467 *	EH context.
 468 */
 469static void ata_force_horkage(struct ata_device *dev)
 470{
 471	int devno = dev->link->pmp + dev->devno;
 472	int alt_devno = devno;
 473	int i;
 474
 475	/* allow n.15/16 for devices attached to host port */
 476	if (ata_is_host_link(dev->link))
 477		alt_devno += 15;
 478
 479	for (i = 0; i < ata_force_tbl_size; i++) {
 480		const struct ata_force_ent *fe = &ata_force_tbl[i];
 481
 482		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 483			continue;
 484
 485		if (fe->device != -1 && fe->device != devno &&
 486		    fe->device != alt_devno)
 487			continue;
 488
 489		if (!(~dev->horkage & fe->param.horkage_on) &&
 490		    !(dev->horkage & fe->param.horkage_off))
 491			continue;
 492
 493		dev->horkage |= fe->param.horkage_on;
 494		dev->horkage &= ~fe->param.horkage_off;
 495
 496		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 497			       fe->param.name);
 498	}
 499}
 
 
 
 
 
 500
 501/**
 502 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 503 *	@opcode: SCSI opcode
 504 *
 505 *	Determine ATAPI command type from @opcode.
 506 *
 507 *	LOCKING:
 508 *	None.
 509 *
 510 *	RETURNS:
 511 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 512 */
 513int atapi_cmd_type(u8 opcode)
 514{
 515	switch (opcode) {
 516	case GPCMD_READ_10:
 517	case GPCMD_READ_12:
 518		return ATAPI_READ;
 519
 520	case GPCMD_WRITE_10:
 521	case GPCMD_WRITE_12:
 522	case GPCMD_WRITE_AND_VERIFY_10:
 523		return ATAPI_WRITE;
 524
 525	case GPCMD_READ_CD:
 526	case GPCMD_READ_CD_MSF:
 527		return ATAPI_READ_CD;
 528
 529	case ATA_16:
 530	case ATA_12:
 531		if (atapi_passthru16)
 532			return ATAPI_PASS_THRU;
 533		/* fall thru */
 534	default:
 535		return ATAPI_MISC;
 536	}
 537}
 538
 539/**
 540 *	ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
 541 *	@tf: Taskfile to convert
 542 *	@pmp: Port multiplier port
 543 *	@is_cmd: This FIS is for command
 544 *	@fis: Buffer into which data will output
 545 *
 546 *	Converts a standard ATA taskfile to a Serial ATA
 547 *	FIS structure (Register - Host to Device).
 548 *
 549 *	LOCKING:
 550 *	Inherited from caller.
 551 */
 552void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
 553{
 554	fis[0] = 0x27;			/* Register - Host to Device FIS */
 555	fis[1] = pmp & 0xf;		/* Port multiplier number*/
 556	if (is_cmd)
 557		fis[1] |= (1 << 7);	/* bit 7 indicates Command FIS */
 558
 559	fis[2] = tf->command;
 560	fis[3] = tf->feature;
 561
 562	fis[4] = tf->lbal;
 563	fis[5] = tf->lbam;
 564	fis[6] = tf->lbah;
 565	fis[7] = tf->device;
 566
 567	fis[8] = tf->hob_lbal;
 568	fis[9] = tf->hob_lbam;
 569	fis[10] = tf->hob_lbah;
 570	fis[11] = tf->hob_feature;
 571
 572	fis[12] = tf->nsect;
 573	fis[13] = tf->hob_nsect;
 574	fis[14] = 0;
 575	fis[15] = tf->ctl;
 576
 577	fis[16] = tf->auxiliary & 0xff;
 578	fis[17] = (tf->auxiliary >> 8) & 0xff;
 579	fis[18] = (tf->auxiliary >> 16) & 0xff;
 580	fis[19] = (tf->auxiliary >> 24) & 0xff;
 581}
 582
 583/**
 584 *	ata_tf_from_fis - Convert SATA FIS to ATA taskfile
 585 *	@fis: Buffer from which data will be input
 586 *	@tf: Taskfile to output
 587 *
 588 *	Converts a serial ATA FIS structure to a standard ATA taskfile.
 589 *
 590 *	LOCKING:
 591 *	Inherited from caller.
 592 */
 593
 594void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
 595{
 596	tf->command	= fis[2];	/* status */
 597	tf->feature	= fis[3];	/* error */
 598
 599	tf->lbal	= fis[4];
 600	tf->lbam	= fis[5];
 601	tf->lbah	= fis[6];
 602	tf->device	= fis[7];
 603
 604	tf->hob_lbal	= fis[8];
 605	tf->hob_lbam	= fis[9];
 606	tf->hob_lbah	= fis[10];
 607
 608	tf->nsect	= fis[12];
 609	tf->hob_nsect	= fis[13];
 610}
 611
 612static const u8 ata_rw_cmds[] = {
 613	/* pio multi */
 614	ATA_CMD_READ_MULTI,
 615	ATA_CMD_WRITE_MULTI,
 616	ATA_CMD_READ_MULTI_EXT,
 617	ATA_CMD_WRITE_MULTI_EXT,
 618	0,
 619	0,
 620	0,
 621	ATA_CMD_WRITE_MULTI_FUA_EXT,
 622	/* pio */
 623	ATA_CMD_PIO_READ,
 624	ATA_CMD_PIO_WRITE,
 625	ATA_CMD_PIO_READ_EXT,
 626	ATA_CMD_PIO_WRITE_EXT,
 627	0,
 628	0,
 629	0,
 630	0,
 631	/* dma */
 632	ATA_CMD_READ,
 633	ATA_CMD_WRITE,
 634	ATA_CMD_READ_EXT,
 635	ATA_CMD_WRITE_EXT,
 636	0,
 637	0,
 638	0,
 639	ATA_CMD_WRITE_FUA_EXT
 640};
 641
 642/**
 643 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 644 *	@tf: command to examine and configure
 645 *	@dev: device tf belongs to
 646 *
 647 *	Examine the device configuration and tf->flags to calculate
 648 *	the proper read/write commands and protocol to use.
 649 *
 650 *	LOCKING:
 651 *	caller.
 652 */
 653static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 654{
 655	u8 cmd;
 656
 657	int index, fua, lba48, write;
 658
 659	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 660	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 661	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 662
 663	if (dev->flags & ATA_DFLAG_PIO) {
 664		tf->protocol = ATA_PROT_PIO;
 665		index = dev->multi_count ? 0 : 8;
 666	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 667		/* Unable to use DMA due to host limitation */
 668		tf->protocol = ATA_PROT_PIO;
 669		index = dev->multi_count ? 0 : 8;
 670	} else {
 671		tf->protocol = ATA_PROT_DMA;
 672		index = 16;
 673	}
 674
 675	cmd = ata_rw_cmds[index + fua + lba48 + write];
 676	if (cmd) {
 677		tf->command = cmd;
 678		return 0;
 679	}
 680	return -1;
 681}
 682
 683/**
 684 *	ata_tf_read_block - Read block address from ATA taskfile
 685 *	@tf: ATA taskfile of interest
 686 *	@dev: ATA device @tf belongs to
 687 *
 688 *	LOCKING:
 689 *	None.
 690 *
 691 *	Read block address from @tf.  This function can handle all
 692 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 693 *	flags select the address format to use.
 694 *
 695 *	RETURNS:
 696 *	Block address read from @tf.
 697 */
 698u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
 699{
 700	u64 block = 0;
 701
 702	if (tf->flags & ATA_TFLAG_LBA) {
 703		if (tf->flags & ATA_TFLAG_LBA48) {
 704			block |= (u64)tf->hob_lbah << 40;
 705			block |= (u64)tf->hob_lbam << 32;
 706			block |= (u64)tf->hob_lbal << 24;
 707		} else
 708			block |= (tf->device & 0xf) << 24;
 709
 710		block |= tf->lbah << 16;
 711		block |= tf->lbam << 8;
 712		block |= tf->lbal;
 713	} else {
 714		u32 cyl, head, sect;
 715
 716		cyl = tf->lbam | (tf->lbah << 8);
 717		head = tf->device & 0xf;
 718		sect = tf->lbal;
 719
 720		if (!sect) {
 721			ata_dev_warn(dev,
 722				     "device reported invalid CHS sector 0\n");
 723			sect = 1; /* oh well */
 724		}
 725
 726		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 727	}
 728
 729	return block;
 730}
 731
 732/**
 733 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 734 *	@tf: Target ATA taskfile
 735 *	@dev: ATA device @tf belongs to
 736 *	@block: Block address
 737 *	@n_block: Number of blocks
 738 *	@tf_flags: RW/FUA etc...
 739 *	@tag: tag
 
 740 *
 741 *	LOCKING:
 742 *	None.
 743 *
 744 *	Build ATA taskfile @tf for read/write request described by
 745 *	@block, @n_block, @tf_flags and @tag on @dev.
 746 *
 747 *	RETURNS:
 748 *
 749 *	0 on success, -ERANGE if the request is too large for @dev,
 750 *	-EINVAL if the request is invalid.
 751 */
 752int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 753		    u64 block, u32 n_block, unsigned int tf_flags,
 754		    unsigned int tag)
 755{
 756	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 757	tf->flags |= tf_flags;
 758
 759	if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
 760		/* yay, NCQ */
 761		if (!lba_48_ok(block, n_block))
 762			return -ERANGE;
 763
 764		tf->protocol = ATA_PROT_NCQ;
 765		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 766
 767		if (tf->flags & ATA_TFLAG_WRITE)
 768			tf->command = ATA_CMD_FPDMA_WRITE;
 769		else
 770			tf->command = ATA_CMD_FPDMA_READ;
 771
 772		tf->nsect = tag << 3;
 773		tf->hob_feature = (n_block >> 8) & 0xff;
 774		tf->feature = n_block & 0xff;
 775
 776		tf->hob_lbah = (block >> 40) & 0xff;
 777		tf->hob_lbam = (block >> 32) & 0xff;
 778		tf->hob_lbal = (block >> 24) & 0xff;
 779		tf->lbah = (block >> 16) & 0xff;
 780		tf->lbam = (block >> 8) & 0xff;
 781		tf->lbal = block & 0xff;
 782
 783		tf->device = ATA_LBA;
 784		if (tf->flags & ATA_TFLAG_FUA)
 785			tf->device |= 1 << 7;
 
 
 
 
 
 
 786	} else if (dev->flags & ATA_DFLAG_LBA) {
 787		tf->flags |= ATA_TFLAG_LBA;
 788
 789		if (lba_28_ok(block, n_block)) {
 790			/* use LBA28 */
 791			tf->device |= (block >> 24) & 0xf;
 792		} else if (lba_48_ok(block, n_block)) {
 793			if (!(dev->flags & ATA_DFLAG_LBA48))
 794				return -ERANGE;
 795
 796			/* use LBA48 */
 797			tf->flags |= ATA_TFLAG_LBA48;
 798
 799			tf->hob_nsect = (n_block >> 8) & 0xff;
 800
 801			tf->hob_lbah = (block >> 40) & 0xff;
 802			tf->hob_lbam = (block >> 32) & 0xff;
 803			tf->hob_lbal = (block >> 24) & 0xff;
 804		} else
 805			/* request too large even for LBA48 */
 806			return -ERANGE;
 807
 808		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 809			return -EINVAL;
 810
 811		tf->nsect = n_block & 0xff;
 812
 813		tf->lbah = (block >> 16) & 0xff;
 814		tf->lbam = (block >> 8) & 0xff;
 815		tf->lbal = block & 0xff;
 816
 817		tf->device |= ATA_LBA;
 818	} else {
 819		/* CHS */
 820		u32 sect, head, cyl, track;
 821
 822		/* The request -may- be too large for CHS addressing. */
 823		if (!lba_28_ok(block, n_block))
 824			return -ERANGE;
 825
 826		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 827			return -EINVAL;
 828
 829		/* Convert LBA to CHS */
 830		track = (u32)block / dev->sectors;
 831		cyl   = track / dev->heads;
 832		head  = track % dev->heads;
 833		sect  = (u32)block % dev->sectors + 1;
 834
 835		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 836			(u32)block, track, cyl, head, sect);
 837
 838		/* Check whether the converted CHS can fit.
 839		   Cylinder: 0-65535
 840		   Head: 0-15
 841		   Sector: 1-255*/
 842		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 843			return -ERANGE;
 844
 845		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 846		tf->lbal = sect;
 847		tf->lbam = cyl;
 848		tf->lbah = cyl >> 8;
 849		tf->device |= head;
 850	}
 851
 852	return 0;
 853}
 854
 855/**
 856 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 857 *	@pio_mask: pio_mask
 858 *	@mwdma_mask: mwdma_mask
 859 *	@udma_mask: udma_mask
 860 *
 861 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 862 *	unsigned int xfer_mask.
 863 *
 864 *	LOCKING:
 865 *	None.
 866 *
 867 *	RETURNS:
 868 *	Packed xfer_mask.
 869 */
 870unsigned long ata_pack_xfermask(unsigned long pio_mask,
 871				unsigned long mwdma_mask,
 872				unsigned long udma_mask)
 873{
 874	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 875		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 876		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 877}
 
 878
 879/**
 880 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 881 *	@xfer_mask: xfer_mask to unpack
 882 *	@pio_mask: resulting pio_mask
 883 *	@mwdma_mask: resulting mwdma_mask
 884 *	@udma_mask: resulting udma_mask
 885 *
 886 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 887 *	Any NULL distination masks will be ignored.
 888 */
 889void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 890			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 891{
 892	if (pio_mask)
 893		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 894	if (mwdma_mask)
 895		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 896	if (udma_mask)
 897		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 898}
 899
 900static const struct ata_xfer_ent {
 901	int shift, bits;
 902	u8 base;
 903} ata_xfer_tbl[] = {
 904	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 905	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 906	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 907	{ -1, },
 908};
 909
 910/**
 911 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 912 *	@xfer_mask: xfer_mask of interest
 913 *
 914 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 915 *	bit of @xfer_mask is considered.
 916 *
 917 *	LOCKING:
 918 *	None.
 919 *
 920 *	RETURNS:
 921 *	Matching XFER_* value, 0xff if no match found.
 922 */
 923u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 924{
 925	int highbit = fls(xfer_mask) - 1;
 926	const struct ata_xfer_ent *ent;
 927
 928	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 929		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 930			return ent->base + highbit - ent->shift;
 931	return 0xff;
 932}
 
 933
 934/**
 935 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 936 *	@xfer_mode: XFER_* of interest
 937 *
 938 *	Return matching xfer_mask for @xfer_mode.
 939 *
 940 *	LOCKING:
 941 *	None.
 942 *
 943 *	RETURNS:
 944 *	Matching xfer_mask, 0 if no match found.
 945 */
 946unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 947{
 948	const struct ata_xfer_ent *ent;
 949
 950	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 951		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 952			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 953				& ~((1 << ent->shift) - 1);
 954	return 0;
 955}
 
 956
 957/**
 958 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 959 *	@xfer_mode: XFER_* of interest
 960 *
 961 *	Return matching xfer_shift for @xfer_mode.
 962 *
 963 *	LOCKING:
 964 *	None.
 965 *
 966 *	RETURNS:
 967 *	Matching xfer_shift, -1 if no match found.
 968 */
 969int ata_xfer_mode2shift(unsigned long xfer_mode)
 970{
 971	const struct ata_xfer_ent *ent;
 972
 973	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 974		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 975			return ent->shift;
 976	return -1;
 977}
 
 978
 979/**
 980 *	ata_mode_string - convert xfer_mask to string
 981 *	@xfer_mask: mask of bits supported; only highest bit counts.
 982 *
 983 *	Determine string which represents the highest speed
 984 *	(highest bit in @modemask).
 985 *
 986 *	LOCKING:
 987 *	None.
 988 *
 989 *	RETURNS:
 990 *	Constant C string representing highest speed listed in
 991 *	@mode_mask, or the constant C string "<n/a>".
 992 */
 993const char *ata_mode_string(unsigned long xfer_mask)
 994{
 995	static const char * const xfer_mode_str[] = {
 996		"PIO0",
 997		"PIO1",
 998		"PIO2",
 999		"PIO3",
1000		"PIO4",
1001		"PIO5",
1002		"PIO6",
1003		"MWDMA0",
1004		"MWDMA1",
1005		"MWDMA2",
1006		"MWDMA3",
1007		"MWDMA4",
1008		"UDMA/16",
1009		"UDMA/25",
1010		"UDMA/33",
1011		"UDMA/44",
1012		"UDMA/66",
1013		"UDMA/100",
1014		"UDMA/133",
1015		"UDMA7",
1016	};
1017	int highbit;
1018
1019	highbit = fls(xfer_mask) - 1;
1020	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1021		return xfer_mode_str[highbit];
1022	return "<n/a>";
1023}
 
1024
1025const char *sata_spd_string(unsigned int spd)
1026{
1027	static const char * const spd_str[] = {
1028		"1.5 Gbps",
1029		"3.0 Gbps",
1030		"6.0 Gbps",
1031	};
1032
1033	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1034		return "<unknown>";
1035	return spd_str[spd - 1];
1036}
1037
1038/**
1039 *	ata_dev_classify - determine device type based on ATA-spec signature
1040 *	@tf: ATA taskfile register set for device to be identified
1041 *
1042 *	Determine from taskfile register contents whether a device is
1043 *	ATA or ATAPI, as per "Signature and persistence" section
1044 *	of ATA/PI spec (volume 1, sect 5.14).
1045 *
1046 *	LOCKING:
1047 *	None.
1048 *
1049 *	RETURNS:
1050 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1051 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1052 */
1053unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1054{
1055	/* Apple's open source Darwin code hints that some devices only
1056	 * put a proper signature into the LBA mid/high registers,
1057	 * So, we only check those.  It's sufficient for uniqueness.
1058	 *
1059	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1060	 * signatures for ATA and ATAPI devices attached on SerialATA,
1061	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
1062	 * spec has never mentioned about using different signatures
1063	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
1064	 * Multiplier specification began to use 0x69/0x96 to identify
1065	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1066	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1067	 * 0x69/0x96 shortly and described them as reserved for
1068	 * SerialATA.
1069	 *
1070	 * We follow the current spec and consider that 0x69/0x96
1071	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1072	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1073	 * SEMB signature.  This is worked around in
1074	 * ata_dev_read_id().
1075	 */
1076	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1077		DPRINTK("found ATA device by sig\n");
1078		return ATA_DEV_ATA;
1079	}
1080
1081	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1082		DPRINTK("found ATAPI device by sig\n");
1083		return ATA_DEV_ATAPI;
1084	}
1085
1086	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1087		DPRINTK("found PMP device by sig\n");
1088		return ATA_DEV_PMP;
1089	}
1090
1091	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1092		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1093		return ATA_DEV_SEMB;
1094	}
1095
1096	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1097		DPRINTK("found ZAC device by sig\n");
1098		return ATA_DEV_ZAC;
1099	}
1100
1101	DPRINTK("unknown device\n");
1102	return ATA_DEV_UNKNOWN;
1103}
 
1104
1105/**
1106 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1107 *	@id: IDENTIFY DEVICE results we will examine
1108 *	@s: string into which data is output
1109 *	@ofs: offset into identify device page
1110 *	@len: length of string to return. must be an even number.
1111 *
1112 *	The strings in the IDENTIFY DEVICE page are broken up into
1113 *	16-bit chunks.  Run through the string, and output each
1114 *	8-bit chunk linearly, regardless of platform.
1115 *
1116 *	LOCKING:
1117 *	caller.
1118 */
1119
1120void ata_id_string(const u16 *id, unsigned char *s,
1121		   unsigned int ofs, unsigned int len)
1122{
1123	unsigned int c;
1124
1125	BUG_ON(len & 1);
1126
1127	while (len > 0) {
1128		c = id[ofs] >> 8;
1129		*s = c;
1130		s++;
1131
1132		c = id[ofs] & 0xff;
1133		*s = c;
1134		s++;
1135
1136		ofs++;
1137		len -= 2;
1138	}
1139}
 
1140
1141/**
1142 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1143 *	@id: IDENTIFY DEVICE results we will examine
1144 *	@s: string into which data is output
1145 *	@ofs: offset into identify device page
1146 *	@len: length of string to return. must be an odd number.
1147 *
1148 *	This function is identical to ata_id_string except that it
1149 *	trims trailing spaces and terminates the resulting string with
1150 *	null.  @len must be actual maximum length (even number) + 1.
1151 *
1152 *	LOCKING:
1153 *	caller.
1154 */
1155void ata_id_c_string(const u16 *id, unsigned char *s,
1156		     unsigned int ofs, unsigned int len)
1157{
1158	unsigned char *p;
1159
1160	ata_id_string(id, s, ofs, len - 1);
1161
1162	p = s + strnlen(s, len - 1);
1163	while (p > s && p[-1] == ' ')
1164		p--;
1165	*p = '\0';
1166}
 
1167
1168static u64 ata_id_n_sectors(const u16 *id)
1169{
1170	if (ata_id_has_lba(id)) {
1171		if (ata_id_has_lba48(id))
1172			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1173		else
1174			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1175	} else {
1176		if (ata_id_current_chs_valid(id))
1177			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1178			       id[ATA_ID_CUR_SECTORS];
1179		else
1180			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1181			       id[ATA_ID_SECTORS];
1182	}
1183}
1184
1185u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1186{
1187	u64 sectors = 0;
1188
1189	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1190	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1191	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1192	sectors |= (tf->lbah & 0xff) << 16;
1193	sectors |= (tf->lbam & 0xff) << 8;
1194	sectors |= (tf->lbal & 0xff);
1195
1196	return sectors;
1197}
1198
1199u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1200{
1201	u64 sectors = 0;
1202
1203	sectors |= (tf->device & 0x0f) << 24;
1204	sectors |= (tf->lbah & 0xff) << 16;
1205	sectors |= (tf->lbam & 0xff) << 8;
1206	sectors |= (tf->lbal & 0xff);
1207
1208	return sectors;
1209}
1210
1211/**
1212 *	ata_read_native_max_address - Read native max address
1213 *	@dev: target device
1214 *	@max_sectors: out parameter for the result native max address
1215 *
1216 *	Perform an LBA48 or LBA28 native size query upon the device in
1217 *	question.
1218 *
1219 *	RETURNS:
1220 *	0 on success, -EACCES if command is aborted by the drive.
1221 *	-EIO on other errors.
1222 */
1223static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1224{
1225	unsigned int err_mask;
1226	struct ata_taskfile tf;
1227	int lba48 = ata_id_has_lba48(dev->id);
1228
1229	ata_tf_init(dev, &tf);
1230
1231	/* always clear all address registers */
1232	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1233
1234	if (lba48) {
1235		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1236		tf.flags |= ATA_TFLAG_LBA48;
1237	} else
1238		tf.command = ATA_CMD_READ_NATIVE_MAX;
1239
1240	tf.protocol |= ATA_PROT_NODATA;
1241	tf.device |= ATA_LBA;
1242
1243	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1244	if (err_mask) {
1245		ata_dev_warn(dev,
1246			     "failed to read native max address (err_mask=0x%x)\n",
1247			     err_mask);
1248		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1249			return -EACCES;
1250		return -EIO;
1251	}
1252
1253	if (lba48)
1254		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1255	else
1256		*max_sectors = ata_tf_to_lba(&tf) + 1;
1257	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1258		(*max_sectors)--;
1259	return 0;
1260}
1261
1262/**
1263 *	ata_set_max_sectors - Set max sectors
1264 *	@dev: target device
1265 *	@new_sectors: new max sectors value to set for the device
1266 *
1267 *	Set max sectors of @dev to @new_sectors.
1268 *
1269 *	RETURNS:
1270 *	0 on success, -EACCES if command is aborted or denied (due to
1271 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1272 *	errors.
1273 */
1274static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1275{
1276	unsigned int err_mask;
1277	struct ata_taskfile tf;
1278	int lba48 = ata_id_has_lba48(dev->id);
1279
1280	new_sectors--;
1281
1282	ata_tf_init(dev, &tf);
1283
1284	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1285
1286	if (lba48) {
1287		tf.command = ATA_CMD_SET_MAX_EXT;
1288		tf.flags |= ATA_TFLAG_LBA48;
1289
1290		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1291		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1292		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1293	} else {
1294		tf.command = ATA_CMD_SET_MAX;
1295
1296		tf.device |= (new_sectors >> 24) & 0xf;
1297	}
1298
1299	tf.protocol |= ATA_PROT_NODATA;
1300	tf.device |= ATA_LBA;
1301
1302	tf.lbal = (new_sectors >> 0) & 0xff;
1303	tf.lbam = (new_sectors >> 8) & 0xff;
1304	tf.lbah = (new_sectors >> 16) & 0xff;
1305
1306	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1307	if (err_mask) {
1308		ata_dev_warn(dev,
1309			     "failed to set max address (err_mask=0x%x)\n",
1310			     err_mask);
1311		if (err_mask == AC_ERR_DEV &&
1312		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1313			return -EACCES;
1314		return -EIO;
1315	}
1316
1317	return 0;
1318}
1319
1320/**
1321 *	ata_hpa_resize		-	Resize a device with an HPA set
1322 *	@dev: Device to resize
1323 *
1324 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1325 *	it if required to the full size of the media. The caller must check
1326 *	the drive has the HPA feature set enabled.
1327 *
1328 *	RETURNS:
1329 *	0 on success, -errno on failure.
1330 */
1331static int ata_hpa_resize(struct ata_device *dev)
1332{
1333	struct ata_eh_context *ehc = &dev->link->eh_context;
1334	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1335	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1336	u64 sectors = ata_id_n_sectors(dev->id);
1337	u64 native_sectors;
1338	int rc;
1339
1340	/* do we need to do it? */
1341	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1342	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1343	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1344		return 0;
1345
1346	/* read native max address */
1347	rc = ata_read_native_max_address(dev, &native_sectors);
1348	if (rc) {
1349		/* If device aborted the command or HPA isn't going to
1350		 * be unlocked, skip HPA resizing.
1351		 */
1352		if (rc == -EACCES || !unlock_hpa) {
1353			ata_dev_warn(dev,
1354				     "HPA support seems broken, skipping HPA handling\n");
1355			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1356
1357			/* we can continue if device aborted the command */
1358			if (rc == -EACCES)
1359				rc = 0;
1360		}
1361
1362		return rc;
1363	}
1364	dev->n_native_sectors = native_sectors;
1365
1366	/* nothing to do? */
1367	if (native_sectors <= sectors || !unlock_hpa) {
1368		if (!print_info || native_sectors == sectors)
1369			return 0;
1370
1371		if (native_sectors > sectors)
1372			ata_dev_info(dev,
1373				"HPA detected: current %llu, native %llu\n",
1374				(unsigned long long)sectors,
1375				(unsigned long long)native_sectors);
1376		else if (native_sectors < sectors)
1377			ata_dev_warn(dev,
1378				"native sectors (%llu) is smaller than sectors (%llu)\n",
1379				(unsigned long long)native_sectors,
1380				(unsigned long long)sectors);
1381		return 0;
1382	}
1383
1384	/* let's unlock HPA */
1385	rc = ata_set_max_sectors(dev, native_sectors);
1386	if (rc == -EACCES) {
1387		/* if device aborted the command, skip HPA resizing */
1388		ata_dev_warn(dev,
1389			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1390			     (unsigned long long)sectors,
1391			     (unsigned long long)native_sectors);
1392		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1393		return 0;
1394	} else if (rc)
1395		return rc;
1396
1397	/* re-read IDENTIFY data */
1398	rc = ata_dev_reread_id(dev, 0);
1399	if (rc) {
1400		ata_dev_err(dev,
1401			    "failed to re-read IDENTIFY data after HPA resizing\n");
1402		return rc;
1403	}
1404
1405	if (print_info) {
1406		u64 new_sectors = ata_id_n_sectors(dev->id);
1407		ata_dev_info(dev,
1408			"HPA unlocked: %llu -> %llu, native %llu\n",
1409			(unsigned long long)sectors,
1410			(unsigned long long)new_sectors,
1411			(unsigned long long)native_sectors);
1412	}
1413
1414	return 0;
1415}
1416
1417/**
1418 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1419 *	@id: IDENTIFY DEVICE page to dump
1420 *
1421 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 *	page.
1423 *
1424 *	LOCKING:
1425 *	caller.
1426 */
1427
1428static inline void ata_dump_id(const u16 *id)
1429{
1430	DPRINTK("49==0x%04x  "
1431		"53==0x%04x  "
1432		"63==0x%04x  "
1433		"64==0x%04x  "
1434		"75==0x%04x  \n",
1435		id[49],
1436		id[53],
1437		id[63],
1438		id[64],
1439		id[75]);
1440	DPRINTK("80==0x%04x  "
1441		"81==0x%04x  "
1442		"82==0x%04x  "
1443		"83==0x%04x  "
1444		"84==0x%04x  \n",
1445		id[80],
1446		id[81],
1447		id[82],
1448		id[83],
1449		id[84]);
1450	DPRINTK("88==0x%04x  "
1451		"93==0x%04x\n",
1452		id[88],
1453		id[93]);
1454}
1455
1456/**
1457 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 *	@id: IDENTIFY data to compute xfer mask from
1459 *
1460 *	Compute the xfermask for this device. This is not as trivial
1461 *	as it seems if we must consider early devices correctly.
1462 *
1463 *	FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 *	LOCKING:
1466 *	None.
1467 *
1468 *	RETURNS:
1469 *	Computed xfermask
1470 */
1471unsigned long ata_id_xfermask(const u16 *id)
1472{
1473	unsigned long pio_mask, mwdma_mask, udma_mask;
1474
1475	/* Usual case. Word 53 indicates word 64 is valid */
1476	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478		pio_mask <<= 3;
1479		pio_mask |= 0x7;
1480	} else {
1481		/* If word 64 isn't valid then Word 51 high byte holds
1482		 * the PIO timing number for the maximum. Turn it into
1483		 * a mask.
1484		 */
1485		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1486		if (mode < 5)	/* Valid PIO range */
1487			pio_mask = (2 << mode) - 1;
1488		else
1489			pio_mask = 1;
1490
1491		/* But wait.. there's more. Design your standards by
1492		 * committee and you too can get a free iordy field to
1493		 * process. However its the speeds not the modes that
1494		 * are supported... Note drivers using the timing API
1495		 * will get this right anyway
1496		 */
1497	}
1498
1499	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1500
1501	if (ata_id_is_cfa(id)) {
1502		/*
1503		 *	Process compact flash extended modes
1504		 */
1505		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1506		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1507
1508		if (pio)
1509			pio_mask |= (1 << 5);
1510		if (pio > 1)
1511			pio_mask |= (1 << 6);
1512		if (dma)
1513			mwdma_mask |= (1 << 3);
1514		if (dma > 1)
1515			mwdma_mask |= (1 << 4);
1516	}
1517
1518	udma_mask = 0;
1519	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1521
1522	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523}
 
1524
1525static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1526{
1527	struct completion *waiting = qc->private_data;
1528
1529	complete(waiting);
1530}
1531
1532/**
1533 *	ata_exec_internal_sg - execute libata internal command
1534 *	@dev: Device to which the command is sent
1535 *	@tf: Taskfile registers for the command and the result
1536 *	@cdb: CDB for packet command
1537 *	@dma_dir: Data transfer direction of the command
1538 *	@sgl: sg list for the data buffer of the command
1539 *	@n_elem: Number of sg entries
1540 *	@timeout: Timeout in msecs (0 for default)
1541 *
1542 *	Executes libata internal command with timeout.  @tf contains
1543 *	command on entry and result on return.  Timeout and error
1544 *	conditions are reported via return value.  No recovery action
1545 *	is taken after a command times out.  It's caller's duty to
1546 *	clean up after timeout.
1547 *
1548 *	LOCKING:
1549 *	None.  Should be called with kernel context, might sleep.
1550 *
1551 *	RETURNS:
1552 *	Zero on success, AC_ERR_* mask on failure
1553 */
1554unsigned ata_exec_internal_sg(struct ata_device *dev,
1555			      struct ata_taskfile *tf, const u8 *cdb,
1556			      int dma_dir, struct scatterlist *sgl,
1557			      unsigned int n_elem, unsigned long timeout)
1558{
1559	struct ata_link *link = dev->link;
1560	struct ata_port *ap = link->ap;
1561	u8 command = tf->command;
1562	int auto_timeout = 0;
1563	struct ata_queued_cmd *qc;
1564	unsigned int tag, preempted_tag;
1565	u32 preempted_sactive, preempted_qc_active;
 
1566	int preempted_nr_active_links;
1567	DECLARE_COMPLETION_ONSTACK(wait);
1568	unsigned long flags;
1569	unsigned int err_mask;
1570	int rc;
1571
1572	spin_lock_irqsave(ap->lock, flags);
1573
1574	/* no internal command while frozen */
1575	if (ap->pflags & ATA_PFLAG_FROZEN) {
1576		spin_unlock_irqrestore(ap->lock, flags);
1577		return AC_ERR_SYSTEM;
1578	}
1579
1580	/* initialize internal qc */
 
1581
1582	/* XXX: Tag 0 is used for drivers with legacy EH as some
1583	 * drivers choke if any other tag is given.  This breaks
1584	 * ata_tag_internal() test for those drivers.  Don't use new
1585	 * EH stuff without converting to it.
1586	 */
1587	if (ap->ops->error_handler)
1588		tag = ATA_TAG_INTERNAL;
1589	else
1590		tag = 0;
1591
1592	qc = __ata_qc_from_tag(ap, tag);
1593
1594	qc->tag = tag;
1595	qc->scsicmd = NULL;
1596	qc->ap = ap;
1597	qc->dev = dev;
1598	ata_qc_reinit(qc);
1599
1600	preempted_tag = link->active_tag;
1601	preempted_sactive = link->sactive;
1602	preempted_qc_active = ap->qc_active;
1603	preempted_nr_active_links = ap->nr_active_links;
1604	link->active_tag = ATA_TAG_POISON;
1605	link->sactive = 0;
1606	ap->qc_active = 0;
1607	ap->nr_active_links = 0;
1608
1609	/* prepare & issue qc */
1610	qc->tf = *tf;
1611	if (cdb)
1612		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1613
1614	/* some SATA bridges need us to indicate data xfer direction */
1615	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616	    dma_dir == DMA_FROM_DEVICE)
1617		qc->tf.feature |= ATAPI_DMADIR;
1618
1619	qc->flags |= ATA_QCFLAG_RESULT_TF;
1620	qc->dma_dir = dma_dir;
1621	if (dma_dir != DMA_NONE) {
1622		unsigned int i, buflen = 0;
1623		struct scatterlist *sg;
1624
1625		for_each_sg(sgl, sg, n_elem, i)
1626			buflen += sg->length;
1627
1628		ata_sg_init(qc, sgl, n_elem);
1629		qc->nbytes = buflen;
1630	}
1631
1632	qc->private_data = &wait;
1633	qc->complete_fn = ata_qc_complete_internal;
1634
1635	ata_qc_issue(qc);
1636
1637	spin_unlock_irqrestore(ap->lock, flags);
1638
1639	if (!timeout) {
1640		if (ata_probe_timeout)
1641			timeout = ata_probe_timeout * 1000;
1642		else {
1643			timeout = ata_internal_cmd_timeout(dev, command);
1644			auto_timeout = 1;
1645		}
1646	}
1647
1648	if (ap->ops->error_handler)
1649		ata_eh_release(ap);
1650
1651	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1652
1653	if (ap->ops->error_handler)
1654		ata_eh_acquire(ap);
1655
1656	ata_sff_flush_pio_task(ap);
1657
1658	if (!rc) {
1659		spin_lock_irqsave(ap->lock, flags);
1660
1661		/* We're racing with irq here.  If we lose, the
1662		 * following test prevents us from completing the qc
1663		 * twice.  If we win, the port is frozen and will be
1664		 * cleaned up by ->post_internal_cmd().
1665		 */
1666		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1667			qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669			if (ap->ops->error_handler)
1670				ata_port_freeze(ap);
1671			else
1672				ata_qc_complete(qc);
1673
1674			if (ata_msg_warn(ap))
1675				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676					     command);
1677		}
1678
1679		spin_unlock_irqrestore(ap->lock, flags);
1680	}
1681
1682	/* do post_internal_cmd */
1683	if (ap->ops->post_internal_cmd)
1684		ap->ops->post_internal_cmd(qc);
1685
1686	/* perform minimal error analysis */
1687	if (qc->flags & ATA_QCFLAG_FAILED) {
1688		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689			qc->err_mask |= AC_ERR_DEV;
1690
1691		if (!qc->err_mask)
1692			qc->err_mask |= AC_ERR_OTHER;
1693
1694		if (qc->err_mask & ~AC_ERR_OTHER)
1695			qc->err_mask &= ~AC_ERR_OTHER;
 
 
1696	}
1697
1698	/* finish up */
1699	spin_lock_irqsave(ap->lock, flags);
1700
1701	*tf = qc->result_tf;
1702	err_mask = qc->err_mask;
1703
1704	ata_qc_free(qc);
1705	link->active_tag = preempted_tag;
1706	link->sactive = preempted_sactive;
1707	ap->qc_active = preempted_qc_active;
1708	ap->nr_active_links = preempted_nr_active_links;
1709
1710	spin_unlock_irqrestore(ap->lock, flags);
1711
1712	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1713		ata_internal_cmd_timed_out(dev, command);
1714
1715	return err_mask;
1716}
1717
1718/**
1719 *	ata_exec_internal - execute libata internal command
1720 *	@dev: Device to which the command is sent
1721 *	@tf: Taskfile registers for the command and the result
1722 *	@cdb: CDB for packet command
1723 *	@dma_dir: Data transfer direction of the command
1724 *	@buf: Data buffer of the command
1725 *	@buflen: Length of data buffer
1726 *	@timeout: Timeout in msecs (0 for default)
1727 *
1728 *	Wrapper around ata_exec_internal_sg() which takes simple
1729 *	buffer instead of sg list.
1730 *
1731 *	LOCKING:
1732 *	None.  Should be called with kernel context, might sleep.
1733 *
1734 *	RETURNS:
1735 *	Zero on success, AC_ERR_* mask on failure
1736 */
1737unsigned ata_exec_internal(struct ata_device *dev,
1738			   struct ata_taskfile *tf, const u8 *cdb,
1739			   int dma_dir, void *buf, unsigned int buflen,
1740			   unsigned long timeout)
1741{
1742	struct scatterlist *psg = NULL, sg;
1743	unsigned int n_elem = 0;
1744
1745	if (dma_dir != DMA_NONE) {
1746		WARN_ON(!buf);
1747		sg_init_one(&sg, buf, buflen);
1748		psg = &sg;
1749		n_elem++;
1750	}
1751
1752	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1753				    timeout);
1754}
1755
1756/**
1757 *	ata_pio_need_iordy	-	check if iordy needed
1758 *	@adev: ATA device
1759 *
1760 *	Check if the current speed of the device requires IORDY. Used
1761 *	by various controllers for chip configuration.
1762 */
1763unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1764{
1765	/* Don't set IORDY if we're preparing for reset.  IORDY may
1766	 * lead to controller lock up on certain controllers if the
1767	 * port is not occupied.  See bko#11703 for details.
1768	 */
1769	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1770		return 0;
1771	/* Controller doesn't support IORDY.  Probably a pointless
1772	 * check as the caller should know this.
1773	 */
1774	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1775		return 0;
1776	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1777	if (ata_id_is_cfa(adev->id)
1778	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1779		return 0;
1780	/* PIO3 and higher it is mandatory */
1781	if (adev->pio_mode > XFER_PIO_2)
1782		return 1;
1783	/* We turn it on when possible */
1784	if (ata_id_has_iordy(adev->id))
1785		return 1;
1786	return 0;
1787}
 
1788
1789/**
1790 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1791 *	@adev: ATA device
1792 *
1793 *	Compute the highest mode possible if we are not using iordy. Return
1794 *	-1 if no iordy mode is available.
1795 */
1796static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1797{
1798	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1799	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1800		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1801		/* Is the speed faster than the drive allows non IORDY ? */
1802		if (pio) {
1803			/* This is cycle times not frequency - watch the logic! */
1804			if (pio > 240)	/* PIO2 is 240nS per cycle */
1805				return 3 << ATA_SHIFT_PIO;
1806			return 7 << ATA_SHIFT_PIO;
1807		}
1808	}
1809	return 3 << ATA_SHIFT_PIO;
1810}
1811
1812/**
1813 *	ata_do_dev_read_id		-	default ID read method
1814 *	@dev: device
1815 *	@tf: proposed taskfile
1816 *	@id: data buffer
1817 *
1818 *	Issue the identify taskfile and hand back the buffer containing
1819 *	identify data. For some RAID controllers and for pre ATA devices
1820 *	this function is wrapped or replaced by the driver
1821 */
1822unsigned int ata_do_dev_read_id(struct ata_device *dev,
1823					struct ata_taskfile *tf, u16 *id)
1824{
1825	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1826				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1827}
 
1828
1829/**
1830 *	ata_dev_read_id - Read ID data from the specified device
1831 *	@dev: target device
1832 *	@p_class: pointer to class of the target device (may be changed)
1833 *	@flags: ATA_READID_* flags
1834 *	@id: buffer to read IDENTIFY data into
1835 *
1836 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1837 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1838 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1839 *	for pre-ATA4 drives.
1840 *
1841 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1842 *	now we abort if we hit that case.
1843 *
1844 *	LOCKING:
1845 *	Kernel thread context (may sleep)
1846 *
1847 *	RETURNS:
1848 *	0 on success, -errno otherwise.
1849 */
1850int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1851		    unsigned int flags, u16 *id)
1852{
1853	struct ata_port *ap = dev->link->ap;
1854	unsigned int class = *p_class;
1855	struct ata_taskfile tf;
1856	unsigned int err_mask = 0;
1857	const char *reason;
1858	bool is_semb = class == ATA_DEV_SEMB;
1859	int may_fallback = 1, tried_spinup = 0;
1860	int rc;
1861
1862	if (ata_msg_ctl(ap))
1863		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1864
1865retry:
1866	ata_tf_init(dev, &tf);
1867
1868	switch (class) {
1869	case ATA_DEV_SEMB:
1870		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
 
1871	case ATA_DEV_ATA:
1872	case ATA_DEV_ZAC:
1873		tf.command = ATA_CMD_ID_ATA;
1874		break;
1875	case ATA_DEV_ATAPI:
1876		tf.command = ATA_CMD_ID_ATAPI;
1877		break;
1878	default:
1879		rc = -ENODEV;
1880		reason = "unsupported class";
1881		goto err_out;
1882	}
1883
1884	tf.protocol = ATA_PROT_PIO;
1885
1886	/* Some devices choke if TF registers contain garbage.  Make
1887	 * sure those are properly initialized.
1888	 */
1889	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1890
1891	/* Device presence detection is unreliable on some
1892	 * controllers.  Always poll IDENTIFY if available.
1893	 */
1894	tf.flags |= ATA_TFLAG_POLLING;
1895
1896	if (ap->ops->read_id)
1897		err_mask = ap->ops->read_id(dev, &tf, id);
1898	else
1899		err_mask = ata_do_dev_read_id(dev, &tf, id);
1900
1901	if (err_mask) {
1902		if (err_mask & AC_ERR_NODEV_HINT) {
1903			ata_dev_dbg(dev, "NODEV after polling detection\n");
1904			return -ENOENT;
1905		}
1906
1907		if (is_semb) {
1908			ata_dev_info(dev,
1909		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1910			/* SEMB is not supported yet */
1911			*p_class = ATA_DEV_SEMB_UNSUP;
1912			return 0;
1913		}
1914
1915		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1916			/* Device or controller might have reported
1917			 * the wrong device class.  Give a shot at the
1918			 * other IDENTIFY if the current one is
1919			 * aborted by the device.
1920			 */
1921			if (may_fallback) {
1922				may_fallback = 0;
1923
1924				if (class == ATA_DEV_ATA)
1925					class = ATA_DEV_ATAPI;
1926				else
1927					class = ATA_DEV_ATA;
1928				goto retry;
1929			}
1930
1931			/* Control reaches here iff the device aborted
1932			 * both flavors of IDENTIFYs which happens
1933			 * sometimes with phantom devices.
1934			 */
1935			ata_dev_dbg(dev,
1936				    "both IDENTIFYs aborted, assuming NODEV\n");
1937			return -ENOENT;
1938		}
1939
1940		rc = -EIO;
1941		reason = "I/O error";
1942		goto err_out;
1943	}
1944
1945	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1946		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1947			    "class=%d may_fallback=%d tried_spinup=%d\n",
1948			    class, may_fallback, tried_spinup);
1949		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1950			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1951	}
1952
1953	/* Falling back doesn't make sense if ID data was read
1954	 * successfully at least once.
1955	 */
1956	may_fallback = 0;
1957
1958	swap_buf_le16(id, ATA_ID_WORDS);
1959
1960	/* sanity check */
1961	rc = -EINVAL;
1962	reason = "device reports invalid type";
1963
1964	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1965		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1966			goto err_out;
1967		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1968							ata_id_is_ata(id)) {
1969			ata_dev_dbg(dev,
1970				"host indicates ignore ATA devices, ignored\n");
1971			return -ENOENT;
1972		}
1973	} else {
1974		if (ata_id_is_ata(id))
1975			goto err_out;
1976	}
1977
1978	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1979		tried_spinup = 1;
1980		/*
1981		 * Drive powered-up in standby mode, and requires a specific
1982		 * SET_FEATURES spin-up subcommand before it will accept
1983		 * anything other than the original IDENTIFY command.
1984		 */
1985		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1986		if (err_mask && id[2] != 0x738c) {
1987			rc = -EIO;
1988			reason = "SPINUP failed";
1989			goto err_out;
1990		}
1991		/*
1992		 * If the drive initially returned incomplete IDENTIFY info,
1993		 * we now must reissue the IDENTIFY command.
1994		 */
1995		if (id[2] == 0x37c8)
1996			goto retry;
1997	}
1998
1999	if ((flags & ATA_READID_POSTRESET) &&
2000	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2001		/*
2002		 * The exact sequence expected by certain pre-ATA4 drives is:
2003		 * SRST RESET
2004		 * IDENTIFY (optional in early ATA)
2005		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2006		 * anything else..
2007		 * Some drives were very specific about that exact sequence.
2008		 *
2009		 * Note that ATA4 says lba is mandatory so the second check
2010		 * should never trigger.
2011		 */
2012		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2013			err_mask = ata_dev_init_params(dev, id[3], id[6]);
2014			if (err_mask) {
2015				rc = -EIO;
2016				reason = "INIT_DEV_PARAMS failed";
2017				goto err_out;
2018			}
2019
2020			/* current CHS translation info (id[53-58]) might be
2021			 * changed. reread the identify device info.
2022			 */
2023			flags &= ~ATA_READID_POSTRESET;
2024			goto retry;
2025		}
2026	}
2027
2028	*p_class = class;
2029
2030	return 0;
2031
2032 err_out:
2033	if (ata_msg_warn(ap))
2034		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2035			     reason, err_mask);
2036	return rc;
2037}
2038
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2039static int ata_do_link_spd_horkage(struct ata_device *dev)
2040{
2041	struct ata_link *plink = ata_dev_phys_link(dev);
2042	u32 target, target_limit;
2043
2044	if (!sata_scr_valid(plink))
2045		return 0;
2046
2047	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2048		target = 1;
2049	else
2050		return 0;
2051
2052	target_limit = (1 << target) - 1;
2053
2054	/* if already on stricter limit, no need to push further */
2055	if (plink->sata_spd_limit <= target_limit)
2056		return 0;
2057
2058	plink->sata_spd_limit = target_limit;
2059
2060	/* Request another EH round by returning -EAGAIN if link is
2061	 * going faster than the target speed.  Forward progress is
2062	 * guaranteed by setting sata_spd_limit to target_limit above.
2063	 */
2064	if (plink->sata_spd > target) {
2065		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2066			     sata_spd_string(target));
2067		return -EAGAIN;
2068	}
2069	return 0;
2070}
2071
2072static inline u8 ata_dev_knobble(struct ata_device *dev)
2073{
2074	struct ata_port *ap = dev->link->ap;
2075
2076	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2077		return 0;
2078
2079	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2080}
2081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082static int ata_dev_config_ncq(struct ata_device *dev,
2083			       char *desc, size_t desc_sz)
2084{
2085	struct ata_port *ap = dev->link->ap;
2086	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2087	unsigned int err_mask;
2088	char *aa_desc = "";
2089
2090	if (!ata_id_has_ncq(dev->id)) {
2091		desc[0] = '\0';
2092		return 0;
2093	}
 
 
2094	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2095		snprintf(desc, desc_sz, "NCQ (not used)");
2096		return 0;
2097	}
2098	if (ap->flags & ATA_FLAG_NCQ) {
2099		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2100		dev->flags |= ATA_DFLAG_NCQ;
2101	}
2102
2103	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2104		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2105		ata_id_has_fpdma_aa(dev->id)) {
2106		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2107			SATA_FPDMA_AA);
2108		if (err_mask) {
2109			ata_dev_err(dev,
2110				    "failed to enable AA (error_mask=0x%x)\n",
2111				    err_mask);
2112			if (err_mask != AC_ERR_DEV) {
2113				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2114				return -EIO;
2115			}
2116		} else
2117			aa_desc = ", AA";
2118	}
2119
2120	if (hdepth >= ddepth)
2121		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2122	else
2123		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2124			ddepth, aa_desc);
2125
2126	if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2127	    ata_id_has_ncq_send_and_recv(dev->id)) {
2128		err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129					     0, ap->sector_buf, 1);
2130		if (err_mask) {
2131			ata_dev_dbg(dev,
2132				    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133				    err_mask);
2134		} else {
2135			u8 *cmds = dev->ncq_send_recv_cmds;
 
2136
2137			dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138			memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
 
2139
2140			if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141				ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142				cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143					~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144			}
2145		}
 
 
 
 
 
2146	}
 
2147
2148	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2149}
2150
2151/**
2152 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2153 *	@dev: Target device to configure
2154 *
2155 *	Configure @dev according to @dev->id.  Generic and low-level
2156 *	driver specific fixups are also applied.
2157 *
2158 *	LOCKING:
2159 *	Kernel thread context (may sleep)
2160 *
2161 *	RETURNS:
2162 *	0 on success, -errno otherwise
2163 */
2164int ata_dev_configure(struct ata_device *dev)
2165{
2166	struct ata_port *ap = dev->link->ap;
2167	struct ata_eh_context *ehc = &dev->link->eh_context;
2168	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2169	const u16 *id = dev->id;
2170	unsigned long xfer_mask;
2171	unsigned int err_mask;
2172	char revbuf[7];		/* XYZ-99\0 */
2173	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2174	char modelbuf[ATA_ID_PROD_LEN+1];
2175	int rc;
2176
2177	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2178		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2179		return 0;
2180	}
2181
2182	if (ata_msg_probe(ap))
2183		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2184
2185	/* set horkage */
2186	dev->horkage |= ata_dev_blacklisted(dev);
2187	ata_force_horkage(dev);
2188
2189	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2190		ata_dev_info(dev, "unsupported device, disabling\n");
2191		ata_dev_disable(dev);
2192		return 0;
2193	}
2194
2195	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2196	    dev->class == ATA_DEV_ATAPI) {
2197		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2198			     atapi_enabled ? "not supported with this driver"
2199			     : "disabled");
2200		ata_dev_disable(dev);
2201		return 0;
2202	}
2203
2204	rc = ata_do_link_spd_horkage(dev);
2205	if (rc)
2206		return rc;
2207
2208	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2209	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2210	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2211		dev->horkage |= ATA_HORKAGE_NOLPM;
2212
 
 
 
2213	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2214		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2215		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2216	}
2217
2218	/* let ACPI work its magic */
2219	rc = ata_acpi_on_devcfg(dev);
2220	if (rc)
2221		return rc;
2222
2223	/* massage HPA, do it early as it might change IDENTIFY data */
2224	rc = ata_hpa_resize(dev);
2225	if (rc)
2226		return rc;
2227
2228	/* print device capabilities */
2229	if (ata_msg_probe(ap))
2230		ata_dev_dbg(dev,
2231			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2232			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2233			    __func__,
2234			    id[49], id[82], id[83], id[84],
2235			    id[85], id[86], id[87], id[88]);
2236
2237	/* initialize to-be-configured parameters */
2238	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2239	dev->max_sectors = 0;
2240	dev->cdb_len = 0;
2241	dev->n_sectors = 0;
2242	dev->cylinders = 0;
2243	dev->heads = 0;
2244	dev->sectors = 0;
2245	dev->multi_count = 0;
2246
2247	/*
2248	 * common ATA, ATAPI feature tests
2249	 */
2250
2251	/* find max transfer mode; for printk only */
2252	xfer_mask = ata_id_xfermask(id);
2253
2254	if (ata_msg_probe(ap))
2255		ata_dump_id(id);
2256
2257	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2258	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2259			sizeof(fwrevbuf));
2260
2261	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2262			sizeof(modelbuf));
2263
2264	/* ATA-specific feature tests */
2265	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2266		if (ata_id_is_cfa(id)) {
2267			/* CPRM may make this media unusable */
2268			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2269				ata_dev_warn(dev,
2270	"supports DRM functions and may not be fully accessible\n");
2271			snprintf(revbuf, 7, "CFA");
2272		} else {
2273			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2274			/* Warn the user if the device has TPM extensions */
2275			if (ata_id_has_tpm(id))
2276				ata_dev_warn(dev,
2277	"supports DRM functions and may not be fully accessible\n");
2278		}
2279
2280		dev->n_sectors = ata_id_n_sectors(id);
2281
2282		/* get current R/W Multiple count setting */
2283		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2284			unsigned int max = dev->id[47] & 0xff;
2285			unsigned int cnt = dev->id[59] & 0xff;
2286			/* only recognize/allow powers of two here */
2287			if (is_power_of_2(max) && is_power_of_2(cnt))
2288				if (cnt <= max)
2289					dev->multi_count = cnt;
2290		}
2291
2292		if (ata_id_has_lba(id)) {
2293			const char *lba_desc;
2294			char ncq_desc[24];
2295
2296			lba_desc = "LBA";
2297			dev->flags |= ATA_DFLAG_LBA;
2298			if (ata_id_has_lba48(id)) {
2299				dev->flags |= ATA_DFLAG_LBA48;
2300				lba_desc = "LBA48";
2301
2302				if (dev->n_sectors >= (1UL << 28) &&
2303				    ata_id_has_flush_ext(id))
2304					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2305			}
2306
2307			/* config NCQ */
2308			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2309			if (rc)
2310				return rc;
2311
2312			/* print device info to dmesg */
2313			if (ata_msg_drv(ap) && print_info) {
2314				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2315					     revbuf, modelbuf, fwrevbuf,
2316					     ata_mode_string(xfer_mask));
2317				ata_dev_info(dev,
2318					     "%llu sectors, multi %u: %s %s\n",
2319					(unsigned long long)dev->n_sectors,
2320					dev->multi_count, lba_desc, ncq_desc);
2321			}
2322		} else {
2323			/* CHS */
2324
2325			/* Default translation */
2326			dev->cylinders	= id[1];
2327			dev->heads	= id[3];
2328			dev->sectors	= id[6];
2329
2330			if (ata_id_current_chs_valid(id)) {
2331				/* Current CHS translation is valid. */
2332				dev->cylinders = id[54];
2333				dev->heads     = id[55];
2334				dev->sectors   = id[56];
2335			}
2336
2337			/* print device info to dmesg */
2338			if (ata_msg_drv(ap) && print_info) {
2339				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340					     revbuf,	modelbuf, fwrevbuf,
2341					     ata_mode_string(xfer_mask));
2342				ata_dev_info(dev,
2343					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2344					     (unsigned long long)dev->n_sectors,
2345					     dev->multi_count, dev->cylinders,
2346					     dev->heads, dev->sectors);
2347			}
2348		}
2349
2350		/* Check and mark DevSlp capability. Get DevSlp timing variables
2351		 * from SATA Settings page of Identify Device Data Log.
2352		 */
2353		if (ata_id_has_devslp(dev->id)) {
2354			u8 *sata_setting = ap->sector_buf;
2355			int i, j;
2356
2357			dev->flags |= ATA_DFLAG_DEVSLP;
2358			err_mask = ata_read_log_page(dev,
2359						     ATA_LOG_SATA_ID_DEV_DATA,
2360						     ATA_LOG_SATA_SETTINGS,
2361						     sata_setting,
2362						     1);
2363			if (err_mask)
2364				ata_dev_dbg(dev,
2365					    "failed to get Identify Device Data, Emask 0x%x\n",
2366					    err_mask);
2367			else
2368				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2369					j = ATA_LOG_DEVSLP_OFFSET + i;
2370					dev->devslp_timing[i] = sata_setting[j];
2371				}
2372		}
2373
2374		dev->cdb_len = 16;
 
 
2375	}
2376
2377	/* ATAPI-specific feature tests */
2378	else if (dev->class == ATA_DEV_ATAPI) {
2379		const char *cdb_intr_string = "";
2380		const char *atapi_an_string = "";
2381		const char *dma_dir_string = "";
2382		u32 sntf;
2383
2384		rc = atapi_cdb_len(id);
2385		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2386			if (ata_msg_warn(ap))
2387				ata_dev_warn(dev, "unsupported CDB len\n");
2388			rc = -EINVAL;
2389			goto err_out_nosup;
2390		}
2391		dev->cdb_len = (unsigned int) rc;
2392
2393		/* Enable ATAPI AN if both the host and device have
2394		 * the support.  If PMP is attached, SNTF is required
2395		 * to enable ATAPI AN to discern between PHY status
2396		 * changed notifications and ATAPI ANs.
2397		 */
2398		if (atapi_an &&
2399		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2400		    (!sata_pmp_attached(ap) ||
2401		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2402			/* issue SET feature command to turn this on */
2403			err_mask = ata_dev_set_feature(dev,
2404					SETFEATURES_SATA_ENABLE, SATA_AN);
2405			if (err_mask)
2406				ata_dev_err(dev,
2407					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2408					    err_mask);
2409			else {
2410				dev->flags |= ATA_DFLAG_AN;
2411				atapi_an_string = ", ATAPI AN";
2412			}
2413		}
2414
2415		if (ata_id_cdb_intr(dev->id)) {
2416			dev->flags |= ATA_DFLAG_CDB_INTR;
2417			cdb_intr_string = ", CDB intr";
2418		}
2419
2420		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2421			dev->flags |= ATA_DFLAG_DMADIR;
2422			dma_dir_string = ", DMADIR";
2423		}
2424
2425		if (ata_id_has_da(dev->id)) {
2426			dev->flags |= ATA_DFLAG_DA;
2427			zpodd_init(dev);
2428		}
2429
2430		/* print device info to dmesg */
2431		if (ata_msg_drv(ap) && print_info)
2432			ata_dev_info(dev,
2433				     "ATAPI: %s, %s, max %s%s%s%s\n",
2434				     modelbuf, fwrevbuf,
2435				     ata_mode_string(xfer_mask),
2436				     cdb_intr_string, atapi_an_string,
2437				     dma_dir_string);
2438	}
2439
2440	/* determine max_sectors */
2441	dev->max_sectors = ATA_MAX_SECTORS;
2442	if (dev->flags & ATA_DFLAG_LBA48)
2443		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
2445	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2446	   200 sectors */
2447	if (ata_dev_knobble(dev)) {
2448		if (ata_msg_drv(ap) && print_info)
2449			ata_dev_info(dev, "applying bridge limits\n");
2450		dev->udma_mask &= ATA_UDMA5;
2451		dev->max_sectors = ATA_MAX_SECTORS;
2452	}
2453
2454	if ((dev->class == ATA_DEV_ATAPI) &&
2455	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2456		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2457		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2458	}
2459
2460	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2461		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2462					 dev->max_sectors);
2463
2464	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2465		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2466					 dev->max_sectors);
2467
2468	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2469		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2470
2471	if (ap->ops->dev_config)
2472		ap->ops->dev_config(dev);
2473
2474	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2475		/* Let the user know. We don't want to disallow opens for
2476		   rescue purposes, or in case the vendor is just a blithering
2477		   idiot. Do this after the dev_config call as some controllers
2478		   with buggy firmware may want to avoid reporting false device
2479		   bugs */
2480
2481		if (print_info) {
2482			ata_dev_warn(dev,
2483"Drive reports diagnostics failure. This may indicate a drive\n");
2484			ata_dev_warn(dev,
2485"fault or invalid emulation. Contact drive vendor for information.\n");
2486		}
2487	}
2488
2489	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2490		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2491		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2492	}
2493
2494	return 0;
2495
2496err_out_nosup:
2497	if (ata_msg_probe(ap))
2498		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2499	return rc;
2500}
2501
2502/**
2503 *	ata_cable_40wire	-	return 40 wire cable type
2504 *	@ap: port
2505 *
2506 *	Helper method for drivers which want to hardwire 40 wire cable
2507 *	detection.
2508 */
2509
2510int ata_cable_40wire(struct ata_port *ap)
2511{
2512	return ATA_CBL_PATA40;
2513}
 
2514
2515/**
2516 *	ata_cable_80wire	-	return 80 wire cable type
2517 *	@ap: port
2518 *
2519 *	Helper method for drivers which want to hardwire 80 wire cable
2520 *	detection.
2521 */
2522
2523int ata_cable_80wire(struct ata_port *ap)
2524{
2525	return ATA_CBL_PATA80;
2526}
 
2527
2528/**
2529 *	ata_cable_unknown	-	return unknown PATA cable.
2530 *	@ap: port
2531 *
2532 *	Helper method for drivers which have no PATA cable detection.
2533 */
2534
2535int ata_cable_unknown(struct ata_port *ap)
2536{
2537	return ATA_CBL_PATA_UNK;
2538}
 
2539
2540/**
2541 *	ata_cable_ignore	-	return ignored PATA cable.
2542 *	@ap: port
2543 *
2544 *	Helper method for drivers which don't use cable type to limit
2545 *	transfer mode.
2546 */
2547int ata_cable_ignore(struct ata_port *ap)
2548{
2549	return ATA_CBL_PATA_IGN;
2550}
 
2551
2552/**
2553 *	ata_cable_sata	-	return SATA cable type
2554 *	@ap: port
2555 *
2556 *	Helper method for drivers which have SATA cables
2557 */
2558
2559int ata_cable_sata(struct ata_port *ap)
2560{
2561	return ATA_CBL_SATA;
2562}
 
2563
2564/**
2565 *	ata_bus_probe - Reset and probe ATA bus
2566 *	@ap: Bus to probe
2567 *
2568 *	Master ATA bus probing function.  Initiates a hardware-dependent
2569 *	bus reset, then attempts to identify any devices found on
2570 *	the bus.
2571 *
2572 *	LOCKING:
2573 *	PCI/etc. bus probe sem.
2574 *
2575 *	RETURNS:
2576 *	Zero on success, negative errno otherwise.
2577 */
2578
2579int ata_bus_probe(struct ata_port *ap)
2580{
2581	unsigned int classes[ATA_MAX_DEVICES];
2582	int tries[ATA_MAX_DEVICES];
2583	int rc;
2584	struct ata_device *dev;
2585
2586	ata_for_each_dev(dev, &ap->link, ALL)
2587		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2588
2589 retry:
2590	ata_for_each_dev(dev, &ap->link, ALL) {
2591		/* If we issue an SRST then an ATA drive (not ATAPI)
2592		 * may change configuration and be in PIO0 timing. If
2593		 * we do a hard reset (or are coming from power on)
2594		 * this is true for ATA or ATAPI. Until we've set a
2595		 * suitable controller mode we should not touch the
2596		 * bus as we may be talking too fast.
2597		 */
2598		dev->pio_mode = XFER_PIO_0;
2599		dev->dma_mode = 0xff;
2600
2601		/* If the controller has a pio mode setup function
2602		 * then use it to set the chipset to rights. Don't
2603		 * touch the DMA setup as that will be dealt with when
2604		 * configuring devices.
2605		 */
2606		if (ap->ops->set_piomode)
2607			ap->ops->set_piomode(ap, dev);
2608	}
2609
2610	/* reset and determine device classes */
2611	ap->ops->phy_reset(ap);
2612
2613	ata_for_each_dev(dev, &ap->link, ALL) {
2614		if (dev->class != ATA_DEV_UNKNOWN)
2615			classes[dev->devno] = dev->class;
2616		else
2617			classes[dev->devno] = ATA_DEV_NONE;
2618
2619		dev->class = ATA_DEV_UNKNOWN;
2620	}
2621
2622	/* read IDENTIFY page and configure devices. We have to do the identify
2623	   specific sequence bass-ackwards so that PDIAG- is released by
2624	   the slave device */
2625
2626	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2627		if (tries[dev->devno])
2628			dev->class = classes[dev->devno];
2629
2630		if (!ata_dev_enabled(dev))
2631			continue;
2632
2633		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2634				     dev->id);
2635		if (rc)
2636			goto fail;
2637	}
2638
2639	/* Now ask for the cable type as PDIAG- should have been released */
2640	if (ap->ops->cable_detect)
2641		ap->cbl = ap->ops->cable_detect(ap);
2642
2643	/* We may have SATA bridge glue hiding here irrespective of
2644	 * the reported cable types and sensed types.  When SATA
2645	 * drives indicate we have a bridge, we don't know which end
2646	 * of the link the bridge is which is a problem.
2647	 */
2648	ata_for_each_dev(dev, &ap->link, ENABLED)
2649		if (ata_id_is_sata(dev->id))
2650			ap->cbl = ATA_CBL_SATA;
2651
2652	/* After the identify sequence we can now set up the devices. We do
2653	   this in the normal order so that the user doesn't get confused */
2654
2655	ata_for_each_dev(dev, &ap->link, ENABLED) {
2656		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2657		rc = ata_dev_configure(dev);
2658		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2659		if (rc)
2660			goto fail;
2661	}
2662
2663	/* configure transfer mode */
2664	rc = ata_set_mode(&ap->link, &dev);
2665	if (rc)
2666		goto fail;
2667
2668	ata_for_each_dev(dev, &ap->link, ENABLED)
2669		return 0;
2670
2671	return -ENODEV;
2672
2673 fail:
2674	tries[dev->devno]--;
2675
2676	switch (rc) {
2677	case -EINVAL:
2678		/* eeek, something went very wrong, give up */
2679		tries[dev->devno] = 0;
2680		break;
2681
2682	case -ENODEV:
2683		/* give it just one more chance */
2684		tries[dev->devno] = min(tries[dev->devno], 1);
 
2685	case -EIO:
2686		if (tries[dev->devno] == 1) {
2687			/* This is the last chance, better to slow
2688			 * down than lose it.
2689			 */
2690			sata_down_spd_limit(&ap->link, 0);
2691			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2692		}
2693	}
2694
2695	if (!tries[dev->devno])
2696		ata_dev_disable(dev);
2697
2698	goto retry;
2699}
2700
2701/**
2702 *	sata_print_link_status - Print SATA link status
2703 *	@link: SATA link to printk link status about
2704 *
2705 *	This function prints link speed and status of a SATA link.
2706 *
2707 *	LOCKING:
2708 *	None.
2709 */
2710static void sata_print_link_status(struct ata_link *link)
2711{
2712	u32 sstatus, scontrol, tmp;
2713
2714	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2715		return;
2716	sata_scr_read(link, SCR_CONTROL, &scontrol);
2717
2718	if (ata_phys_link_online(link)) {
2719		tmp = (sstatus >> 4) & 0xf;
2720		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2721			      sata_spd_string(tmp), sstatus, scontrol);
2722	} else {
2723		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2724			      sstatus, scontrol);
2725	}
2726}
2727
2728/**
2729 *	ata_dev_pair		-	return other device on cable
2730 *	@adev: device
2731 *
2732 *	Obtain the other device on the same cable, or if none is
2733 *	present NULL is returned
2734 */
2735
2736struct ata_device *ata_dev_pair(struct ata_device *adev)
2737{
2738	struct ata_link *link = adev->link;
2739	struct ata_device *pair = &link->device[1 - adev->devno];
2740	if (!ata_dev_enabled(pair))
2741		return NULL;
2742	return pair;
2743}
 
2744
2745/**
2746 *	sata_down_spd_limit - adjust SATA spd limit downward
2747 *	@link: Link to adjust SATA spd limit for
2748 *	@spd_limit: Additional limit
2749 *
2750 *	Adjust SATA spd limit of @link downward.  Note that this
2751 *	function only adjusts the limit.  The change must be applied
2752 *	using sata_set_spd().
2753 *
2754 *	If @spd_limit is non-zero, the speed is limited to equal to or
2755 *	lower than @spd_limit if such speed is supported.  If
2756 *	@spd_limit is slower than any supported speed, only the lowest
2757 *	supported speed is allowed.
2758 *
2759 *	LOCKING:
2760 *	Inherited from caller.
2761 *
2762 *	RETURNS:
2763 *	0 on success, negative errno on failure
2764 */
2765int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2766{
2767	u32 sstatus, spd, mask;
2768	int rc, bit;
2769
2770	if (!sata_scr_valid(link))
2771		return -EOPNOTSUPP;
2772
2773	/* If SCR can be read, use it to determine the current SPD.
2774	 * If not, use cached value in link->sata_spd.
2775	 */
2776	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2777	if (rc == 0 && ata_sstatus_online(sstatus))
2778		spd = (sstatus >> 4) & 0xf;
2779	else
2780		spd = link->sata_spd;
2781
2782	mask = link->sata_spd_limit;
2783	if (mask <= 1)
2784		return -EINVAL;
2785
2786	/* unconditionally mask off the highest bit */
2787	bit = fls(mask) - 1;
2788	mask &= ~(1 << bit);
2789
2790	/* Mask off all speeds higher than or equal to the current
2791	 * one.  Force 1.5Gbps if current SPD is not available.
 
 
 
 
 
 
2792	 */
2793	if (spd > 1)
2794		mask &= (1 << (spd - 1)) - 1;
2795	else
2796		mask &= 1;
2797
2798	/* were we already at the bottom? */
2799	if (!mask)
2800		return -EINVAL;
2801
2802	if (spd_limit) {
2803		if (mask & ((1 << spd_limit) - 1))
2804			mask &= (1 << spd_limit) - 1;
2805		else {
2806			bit = ffs(mask) - 1;
2807			mask = 1 << bit;
2808		}
2809	}
2810
2811	link->sata_spd_limit = mask;
2812
2813	ata_link_warn(link, "limiting SATA link speed to %s\n",
2814		      sata_spd_string(fls(mask)));
2815
2816	return 0;
2817}
2818
2819static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2820{
2821	struct ata_link *host_link = &link->ap->link;
2822	u32 limit, target, spd;
2823
2824	limit = link->sata_spd_limit;
2825
2826	/* Don't configure downstream link faster than upstream link.
2827	 * It doesn't speed up anything and some PMPs choke on such
2828	 * configuration.
2829	 */
2830	if (!ata_is_host_link(link) && host_link->sata_spd)
2831		limit &= (1 << host_link->sata_spd) - 1;
2832
2833	if (limit == UINT_MAX)
2834		target = 0;
2835	else
2836		target = fls(limit);
2837
2838	spd = (*scontrol >> 4) & 0xf;
2839	*scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2840
2841	return spd != target;
2842}
2843
2844/**
2845 *	sata_set_spd_needed - is SATA spd configuration needed
2846 *	@link: Link in question
2847 *
2848 *	Test whether the spd limit in SControl matches
2849 *	@link->sata_spd_limit.  This function is used to determine
2850 *	whether hardreset is necessary to apply SATA spd
2851 *	configuration.
2852 *
2853 *	LOCKING:
2854 *	Inherited from caller.
2855 *
2856 *	RETURNS:
2857 *	1 if SATA spd configuration is needed, 0 otherwise.
2858 */
2859static int sata_set_spd_needed(struct ata_link *link)
2860{
2861	u32 scontrol;
2862
2863	if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2864		return 1;
2865
2866	return __sata_set_spd_needed(link, &scontrol);
2867}
2868
2869/**
2870 *	sata_set_spd - set SATA spd according to spd limit
2871 *	@link: Link to set SATA spd for
2872 *
2873 *	Set SATA spd of @link according to sata_spd_limit.
2874 *
2875 *	LOCKING:
2876 *	Inherited from caller.
2877 *
2878 *	RETURNS:
2879 *	0 if spd doesn't need to be changed, 1 if spd has been
2880 *	changed.  Negative errno if SCR registers are inaccessible.
2881 */
2882int sata_set_spd(struct ata_link *link)
2883{
2884	u32 scontrol;
2885	int rc;
2886
2887	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2888		return rc;
2889
2890	if (!__sata_set_spd_needed(link, &scontrol))
2891		return 0;
2892
2893	if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2894		return rc;
2895
2896	return 1;
2897}
2898
2899/*
2900 * This mode timing computation functionality is ported over from
2901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2902 */
2903/*
2904 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2906 * for UDMA6, which is currently supported only by Maxtor drives.
2907 *
2908 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2909 */
2910
2911static const struct ata_timing ata_timing[] = {
2912/*	{ XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0,  960,   0 }, */
2913	{ XFER_PIO_0,     70, 290, 240, 600, 165, 150, 0,  600,   0 },
2914	{ XFER_PIO_1,     50, 290,  93, 383, 125, 100, 0,  383,   0 },
2915	{ XFER_PIO_2,     30, 290,  40, 330, 100,  90, 0,  240,   0 },
2916	{ XFER_PIO_3,     30,  80,  70, 180,  80,  70, 0,  180,   0 },
2917	{ XFER_PIO_4,     25,  70,  25, 120,  70,  25, 0,  120,   0 },
2918	{ XFER_PIO_5,     15,  65,  25, 100,  65,  25, 0,  100,   0 },
2919	{ XFER_PIO_6,     10,  55,  20,  80,  55,  20, 0,   80,   0 },
2920
2921	{ XFER_SW_DMA_0, 120,   0,   0,   0, 480, 480, 50, 960,   0 },
2922	{ XFER_SW_DMA_1,  90,   0,   0,   0, 240, 240, 30, 480,   0 },
2923	{ XFER_SW_DMA_2,  60,   0,   0,   0, 120, 120, 20, 240,   0 },
2924
2925	{ XFER_MW_DMA_0,  60,   0,   0,   0, 215, 215, 20, 480,   0 },
2926	{ XFER_MW_DMA_1,  45,   0,   0,   0,  80,  50, 5,  150,   0 },
2927	{ XFER_MW_DMA_2,  25,   0,   0,   0,  70,  25, 5,  120,   0 },
2928	{ XFER_MW_DMA_3,  25,   0,   0,   0,  65,  25, 5,  100,   0 },
2929	{ XFER_MW_DMA_4,  25,   0,   0,   0,  55,  20, 5,   80,   0 },
2930
2931/*	{ XFER_UDMA_SLOW,  0,   0,   0,   0,   0,   0, 0,    0, 150 }, */
2932	{ XFER_UDMA_0,     0,   0,   0,   0,   0,   0, 0,    0, 120 },
2933	{ XFER_UDMA_1,     0,   0,   0,   0,   0,   0, 0,    0,  80 },
2934	{ XFER_UDMA_2,     0,   0,   0,   0,   0,   0, 0,    0,  60 },
2935	{ XFER_UDMA_3,     0,   0,   0,   0,   0,   0, 0,    0,  45 },
2936	{ XFER_UDMA_4,     0,   0,   0,   0,   0,   0, 0,    0,  30 },
2937	{ XFER_UDMA_5,     0,   0,   0,   0,   0,   0, 0,    0,  20 },
2938	{ XFER_UDMA_6,     0,   0,   0,   0,   0,   0, 0,    0,  15 },
2939
2940	{ 0xFF }
2941};
2942
2943#define ENOUGH(v, unit)		(((v)-1)/(unit)+1)
2944#define EZ(v, unit)		((v)?ENOUGH(v, unit):0)
2945
2946static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2947{
2948	q->setup	= EZ(t->setup      * 1000,  T);
2949	q->act8b	= EZ(t->act8b      * 1000,  T);
2950	q->rec8b	= EZ(t->rec8b      * 1000,  T);
2951	q->cyc8b	= EZ(t->cyc8b      * 1000,  T);
2952	q->active	= EZ(t->active     * 1000,  T);
2953	q->recover	= EZ(t->recover    * 1000,  T);
2954	q->dmack_hold	= EZ(t->dmack_hold * 1000,  T);
2955	q->cycle	= EZ(t->cycle      * 1000,  T);
2956	q->udma		= EZ(t->udma       * 1000, UT);
2957}
2958
2959void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2960		      struct ata_timing *m, unsigned int what)
2961{
2962	if (what & ATA_TIMING_SETUP  ) m->setup   = max(a->setup,   b->setup);
2963	if (what & ATA_TIMING_ACT8B  ) m->act8b   = max(a->act8b,   b->act8b);
2964	if (what & ATA_TIMING_REC8B  ) m->rec8b   = max(a->rec8b,   b->rec8b);
2965	if (what & ATA_TIMING_CYC8B  ) m->cyc8b   = max(a->cyc8b,   b->cyc8b);
2966	if (what & ATA_TIMING_ACTIVE ) m->active  = max(a->active,  b->active);
2967	if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2968	if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2969	if (what & ATA_TIMING_CYCLE  ) m->cycle   = max(a->cycle,   b->cycle);
2970	if (what & ATA_TIMING_UDMA   ) m->udma    = max(a->udma,    b->udma);
2971}
2972
2973const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2974{
2975	const struct ata_timing *t = ata_timing;
2976
2977	while (xfer_mode > t->mode)
2978		t++;
2979
2980	if (xfer_mode == t->mode)
2981		return t;
2982
2983	WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2984			__func__, xfer_mode);
2985
2986	return NULL;
2987}
2988
2989int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2990		       struct ata_timing *t, int T, int UT)
2991{
2992	const u16 *id = adev->id;
2993	const struct ata_timing *s;
2994	struct ata_timing p;
2995
2996	/*
2997	 * Find the mode.
2998	 */
2999
3000	if (!(s = ata_timing_find_mode(speed)))
3001		return -EINVAL;
3002
3003	memcpy(t, s, sizeof(*s));
3004
3005	/*
3006	 * If the drive is an EIDE drive, it can tell us it needs extended
3007	 * PIO/MW_DMA cycle timing.
3008	 */
3009
3010	if (id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE drive */
3011		memset(&p, 0, sizeof(p));
3012
3013		if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3014			if (speed <= XFER_PIO_2)
3015				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3016			else if ((speed <= XFER_PIO_4) ||
3017				 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3018				p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3019		} else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3020			p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3021
3022		ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3023	}
3024
3025	/*
3026	 * Convert the timing to bus clock counts.
3027	 */
3028
3029	ata_timing_quantize(t, t, T, UT);
3030
3031	/*
3032	 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3033	 * S.M.A.R.T * and some other commands. We have to ensure that the
3034	 * DMA cycle timing is slower/equal than the fastest PIO timing.
3035	 */
3036
3037	if (speed > XFER_PIO_6) {
3038		ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3039		ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3040	}
3041
3042	/*
3043	 * Lengthen active & recovery time so that cycle time is correct.
3044	 */
3045
3046	if (t->act8b + t->rec8b < t->cyc8b) {
3047		t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3048		t->rec8b = t->cyc8b - t->act8b;
3049	}
3050
3051	if (t->active + t->recover < t->cycle) {
3052		t->active += (t->cycle - (t->active + t->recover)) / 2;
3053		t->recover = t->cycle - t->active;
3054	}
3055
3056	/* In a few cases quantisation may produce enough errors to
3057	   leave t->cycle too low for the sum of active and recovery
3058	   if so we must correct this */
3059	if (t->active + t->recover > t->cycle)
3060		t->cycle = t->active + t->recover;
3061
3062	return 0;
3063}
3064
3065/**
3066 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3067 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3068 *	@cycle: cycle duration in ns
3069 *
3070 *	Return matching xfer mode for @cycle.  The returned mode is of
3071 *	the transfer type specified by @xfer_shift.  If @cycle is too
3072 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3073 *	than the fastest known mode, the fasted mode is returned.
3074 *
3075 *	LOCKING:
3076 *	None.
3077 *
3078 *	RETURNS:
3079 *	Matching xfer_mode, 0xff if no match found.
3080 */
3081u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3082{
3083	u8 base_mode = 0xff, last_mode = 0xff;
3084	const struct ata_xfer_ent *ent;
3085	const struct ata_timing *t;
3086
3087	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3088		if (ent->shift == xfer_shift)
3089			base_mode = ent->base;
3090
3091	for (t = ata_timing_find_mode(base_mode);
3092	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3093		unsigned short this_cycle;
3094
3095		switch (xfer_shift) {
3096		case ATA_SHIFT_PIO:
3097		case ATA_SHIFT_MWDMA:
3098			this_cycle = t->cycle;
3099			break;
3100		case ATA_SHIFT_UDMA:
3101			this_cycle = t->udma;
3102			break;
3103		default:
3104			return 0xff;
3105		}
3106
3107		if (cycle > this_cycle)
3108			break;
3109
3110		last_mode = t->mode;
3111	}
3112
3113	return last_mode;
3114}
 
3115
3116/**
3117 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3118 *	@dev: Device to adjust xfer masks
3119 *	@sel: ATA_DNXFER_* selector
3120 *
3121 *	Adjust xfer masks of @dev downward.  Note that this function
3122 *	does not apply the change.  Invoking ata_set_mode() afterwards
3123 *	will apply the limit.
3124 *
3125 *	LOCKING:
3126 *	Inherited from caller.
3127 *
3128 *	RETURNS:
3129 *	0 on success, negative errno on failure
3130 */
3131int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3132{
3133	char buf[32];
3134	unsigned long orig_mask, xfer_mask;
3135	unsigned long pio_mask, mwdma_mask, udma_mask;
3136	int quiet, highbit;
3137
3138	quiet = !!(sel & ATA_DNXFER_QUIET);
3139	sel &= ~ATA_DNXFER_QUIET;
3140
3141	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3142						  dev->mwdma_mask,
3143						  dev->udma_mask);
3144	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3145
3146	switch (sel) {
3147	case ATA_DNXFER_PIO:
3148		highbit = fls(pio_mask) - 1;
3149		pio_mask &= ~(1 << highbit);
3150		break;
3151
3152	case ATA_DNXFER_DMA:
3153		if (udma_mask) {
3154			highbit = fls(udma_mask) - 1;
3155			udma_mask &= ~(1 << highbit);
3156			if (!udma_mask)
3157				return -ENOENT;
3158		} else if (mwdma_mask) {
3159			highbit = fls(mwdma_mask) - 1;
3160			mwdma_mask &= ~(1 << highbit);
3161			if (!mwdma_mask)
3162				return -ENOENT;
3163		}
3164		break;
3165
3166	case ATA_DNXFER_40C:
3167		udma_mask &= ATA_UDMA_MASK_40C;
3168		break;
3169
3170	case ATA_DNXFER_FORCE_PIO0:
3171		pio_mask &= 1;
 
3172	case ATA_DNXFER_FORCE_PIO:
3173		mwdma_mask = 0;
3174		udma_mask = 0;
3175		break;
3176
3177	default:
3178		BUG();
3179	}
3180
3181	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3182
3183	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3184		return -ENOENT;
3185
3186	if (!quiet) {
3187		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3188			snprintf(buf, sizeof(buf), "%s:%s",
3189				 ata_mode_string(xfer_mask),
3190				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3191		else
3192			snprintf(buf, sizeof(buf), "%s",
3193				 ata_mode_string(xfer_mask));
3194
3195		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3196	}
3197
3198	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3199			    &dev->udma_mask);
3200
3201	return 0;
3202}
3203
3204static int ata_dev_set_mode(struct ata_device *dev)
3205{
3206	struct ata_port *ap = dev->link->ap;
3207	struct ata_eh_context *ehc = &dev->link->eh_context;
3208	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3209	const char *dev_err_whine = "";
3210	int ign_dev_err = 0;
3211	unsigned int err_mask = 0;
3212	int rc;
3213
3214	dev->flags &= ~ATA_DFLAG_PIO;
3215	if (dev->xfer_shift == ATA_SHIFT_PIO)
3216		dev->flags |= ATA_DFLAG_PIO;
3217
3218	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3219		dev_err_whine = " (SET_XFERMODE skipped)";
3220	else {
3221		if (nosetxfer)
3222			ata_dev_warn(dev,
3223				     "NOSETXFER but PATA detected - can't "
3224				     "skip SETXFER, might malfunction\n");
3225		err_mask = ata_dev_set_xfermode(dev);
3226	}
3227
3228	if (err_mask & ~AC_ERR_DEV)
3229		goto fail;
3230
3231	/* revalidate */
3232	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3233	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3234	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3235	if (rc)
3236		return rc;
3237
3238	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3239		/* Old CFA may refuse this command, which is just fine */
3240		if (ata_id_is_cfa(dev->id))
3241			ign_dev_err = 1;
3242		/* Catch several broken garbage emulations plus some pre
3243		   ATA devices */
3244		if (ata_id_major_version(dev->id) == 0 &&
3245					dev->pio_mode <= XFER_PIO_2)
3246			ign_dev_err = 1;
3247		/* Some very old devices and some bad newer ones fail
3248		   any kind of SET_XFERMODE request but support PIO0-2
3249		   timings and no IORDY */
3250		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3251			ign_dev_err = 1;
3252	}
3253	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3254	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3255	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3256	    dev->dma_mode == XFER_MW_DMA_0 &&
3257	    (dev->id[63] >> 8) & 1)
3258		ign_dev_err = 1;
3259
3260	/* if the device is actually configured correctly, ignore dev err */
3261	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3262		ign_dev_err = 1;
3263
3264	if (err_mask & AC_ERR_DEV) {
3265		if (!ign_dev_err)
3266			goto fail;
3267		else
3268			dev_err_whine = " (device error ignored)";
3269	}
3270
3271	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3272		dev->xfer_shift, (int)dev->xfer_mode);
3273
3274	ata_dev_info(dev, "configured for %s%s\n",
3275		     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3276		     dev_err_whine);
 
 
3277
3278	return 0;
3279
3280 fail:
3281	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3282	return -EIO;
3283}
3284
3285/**
3286 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3287 *	@link: link on which timings will be programmed
3288 *	@r_failed_dev: out parameter for failed device
3289 *
3290 *	Standard implementation of the function used to tune and set
3291 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3292 *	ata_dev_set_mode() fails, pointer to the failing device is
3293 *	returned in @r_failed_dev.
3294 *
3295 *	LOCKING:
3296 *	PCI/etc. bus probe sem.
3297 *
3298 *	RETURNS:
3299 *	0 on success, negative errno otherwise
3300 */
3301
3302int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3303{
3304	struct ata_port *ap = link->ap;
3305	struct ata_device *dev;
3306	int rc = 0, used_dma = 0, found = 0;
3307
3308	/* step 1: calculate xfer_mask */
3309	ata_for_each_dev(dev, link, ENABLED) {
3310		unsigned long pio_mask, dma_mask;
3311		unsigned int mode_mask;
3312
3313		mode_mask = ATA_DMA_MASK_ATA;
3314		if (dev->class == ATA_DEV_ATAPI)
3315			mode_mask = ATA_DMA_MASK_ATAPI;
3316		else if (ata_id_is_cfa(dev->id))
3317			mode_mask = ATA_DMA_MASK_CFA;
3318
3319		ata_dev_xfermask(dev);
3320		ata_force_xfermask(dev);
3321
3322		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3323
3324		if (libata_dma_mask & mode_mask)
3325			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3326						     dev->udma_mask);
3327		else
3328			dma_mask = 0;
3329
3330		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3331		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3332
3333		found = 1;
3334		if (ata_dma_enabled(dev))
3335			used_dma = 1;
3336	}
3337	if (!found)
3338		goto out;
3339
3340	/* step 2: always set host PIO timings */
3341	ata_for_each_dev(dev, link, ENABLED) {
3342		if (dev->pio_mode == 0xff) {
3343			ata_dev_warn(dev, "no PIO support\n");
3344			rc = -EINVAL;
3345			goto out;
3346		}
3347
3348		dev->xfer_mode = dev->pio_mode;
3349		dev->xfer_shift = ATA_SHIFT_PIO;
3350		if (ap->ops->set_piomode)
3351			ap->ops->set_piomode(ap, dev);
3352	}
3353
3354	/* step 3: set host DMA timings */
3355	ata_for_each_dev(dev, link, ENABLED) {
3356		if (!ata_dma_enabled(dev))
3357			continue;
3358
3359		dev->xfer_mode = dev->dma_mode;
3360		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3361		if (ap->ops->set_dmamode)
3362			ap->ops->set_dmamode(ap, dev);
3363	}
3364
3365	/* step 4: update devices' xfer mode */
3366	ata_for_each_dev(dev, link, ENABLED) {
3367		rc = ata_dev_set_mode(dev);
3368		if (rc)
3369			goto out;
3370	}
3371
3372	/* Record simplex status. If we selected DMA then the other
3373	 * host channels are not permitted to do so.
3374	 */
3375	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3376		ap->host->simplex_claimed = ap;
3377
3378 out:
3379	if (rc)
3380		*r_failed_dev = dev;
3381	return rc;
3382}
 
3383
3384/**
3385 *	ata_wait_ready - wait for link to become ready
3386 *	@link: link to be waited on
3387 *	@deadline: deadline jiffies for the operation
3388 *	@check_ready: callback to check link readiness
3389 *
3390 *	Wait for @link to become ready.  @check_ready should return
3391 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3392 *	link doesn't seem to be occupied, other errno for other error
3393 *	conditions.
3394 *
3395 *	Transient -ENODEV conditions are allowed for
3396 *	ATA_TMOUT_FF_WAIT.
3397 *
3398 *	LOCKING:
3399 *	EH context.
3400 *
3401 *	RETURNS:
3402 *	0 if @linke is ready before @deadline; otherwise, -errno.
3403 */
3404int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3405		   int (*check_ready)(struct ata_link *link))
3406{
3407	unsigned long start = jiffies;
3408	unsigned long nodev_deadline;
3409	int warned = 0;
3410
3411	/* choose which 0xff timeout to use, read comment in libata.h */
3412	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3413		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3414	else
3415		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3416
3417	/* Slave readiness can't be tested separately from master.  On
3418	 * M/S emulation configuration, this function should be called
3419	 * only on the master and it will handle both master and slave.
3420	 */
3421	WARN_ON(link == link->ap->slave_link);
3422
3423	if (time_after(nodev_deadline, deadline))
3424		nodev_deadline = deadline;
3425
3426	while (1) {
3427		unsigned long now = jiffies;
3428		int ready, tmp;
3429
3430		ready = tmp = check_ready(link);
3431		if (ready > 0)
3432			return 0;
3433
3434		/*
3435		 * -ENODEV could be transient.  Ignore -ENODEV if link
3436		 * is online.  Also, some SATA devices take a long
3437		 * time to clear 0xff after reset.  Wait for
3438		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3439		 * offline.
3440		 *
3441		 * Note that some PATA controllers (pata_ali) explode
3442		 * if status register is read more than once when
3443		 * there's no device attached.
3444		 */
3445		if (ready == -ENODEV) {
3446			if (ata_link_online(link))
3447				ready = 0;
3448			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3449				 !ata_link_offline(link) &&
3450				 time_before(now, nodev_deadline))
3451				ready = 0;
3452		}
3453
3454		if (ready)
3455			return ready;
3456		if (time_after(now, deadline))
3457			return -EBUSY;
3458
3459		if (!warned && time_after(now, start + 5 * HZ) &&
3460		    (deadline - now > 3 * HZ)) {
3461			ata_link_warn(link,
3462				"link is slow to respond, please be patient "
3463				"(ready=%d)\n", tmp);
3464			warned = 1;
3465		}
3466
3467		ata_msleep(link->ap, 50);
3468	}
3469}
3470
3471/**
3472 *	ata_wait_after_reset - wait for link to become ready after reset
3473 *	@link: link to be waited on
3474 *	@deadline: deadline jiffies for the operation
3475 *	@check_ready: callback to check link readiness
3476 *
3477 *	Wait for @link to become ready after reset.
3478 *
3479 *	LOCKING:
3480 *	EH context.
3481 *
3482 *	RETURNS:
3483 *	0 if @linke is ready before @deadline; otherwise, -errno.
3484 */
3485int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3486				int (*check_ready)(struct ata_link *link))
3487{
3488	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3489
3490	return ata_wait_ready(link, deadline, check_ready);
3491}
3492
3493/**
3494 *	sata_link_debounce - debounce SATA phy status
3495 *	@link: ATA link to debounce SATA phy status for
3496 *	@params: timing parameters { interval, duratinon, timeout } in msec
3497 *	@deadline: deadline jiffies for the operation
3498 *
3499 *	Make sure SStatus of @link reaches stable state, determined by
3500 *	holding the same value where DET is not 1 for @duration polled
3501 *	every @interval, before @timeout.  Timeout constraints the
3502 *	beginning of the stable state.  Because DET gets stuck at 1 on
3503 *	some controllers after hot unplugging, this functions waits
3504 *	until timeout then returns 0 if DET is stable at 1.
3505 *
3506 *	@timeout is further limited by @deadline.  The sooner of the
3507 *	two is used.
3508 *
3509 *	LOCKING:
3510 *	Kernel thread context (may sleep)
3511 *
3512 *	RETURNS:
3513 *	0 on success, -errno on failure.
3514 */
3515int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3516		       unsigned long deadline)
3517{
3518	unsigned long interval = params[0];
3519	unsigned long duration = params[1];
3520	unsigned long last_jiffies, t;
3521	u32 last, cur;
3522	int rc;
3523
3524	t = ata_deadline(jiffies, params[2]);
3525	if (time_before(t, deadline))
3526		deadline = t;
3527
3528	if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3529		return rc;
3530	cur &= 0xf;
3531
3532	last = cur;
3533	last_jiffies = jiffies;
3534
3535	while (1) {
3536		ata_msleep(link->ap, interval);
3537		if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3538			return rc;
3539		cur &= 0xf;
3540
3541		/* DET stable? */
3542		if (cur == last) {
3543			if (cur == 1 && time_before(jiffies, deadline))
3544				continue;
3545			if (time_after(jiffies,
3546				       ata_deadline(last_jiffies, duration)))
3547				return 0;
3548			continue;
3549		}
3550
3551		/* unstable, start over */
3552		last = cur;
3553		last_jiffies = jiffies;
3554
3555		/* Check deadline.  If debouncing failed, return
3556		 * -EPIPE to tell upper layer to lower link speed.
3557		 */
3558		if (time_after(jiffies, deadline))
3559			return -EPIPE;
3560	}
3561}
3562
3563/**
3564 *	sata_link_resume - resume SATA link
3565 *	@link: ATA link to resume SATA
3566 *	@params: timing parameters { interval, duratinon, timeout } in msec
3567 *	@deadline: deadline jiffies for the operation
3568 *
3569 *	Resume SATA phy @link and debounce it.
3570 *
3571 *	LOCKING:
3572 *	Kernel thread context (may sleep)
3573 *
3574 *	RETURNS:
3575 *	0 on success, -errno on failure.
3576 */
3577int sata_link_resume(struct ata_link *link, const unsigned long *params,
3578		     unsigned long deadline)
3579{
3580	int tries = ATA_LINK_RESUME_TRIES;
3581	u32 scontrol, serror;
3582	int rc;
3583
3584	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3585		return rc;
3586
3587	/*
3588	 * Writes to SControl sometimes get ignored under certain
3589	 * controllers (ata_piix SIDPR).  Make sure DET actually is
3590	 * cleared.
3591	 */
3592	do {
3593		scontrol = (scontrol & 0x0f0) | 0x300;
3594		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3595			return rc;
3596		/*
3597		 * Some PHYs react badly if SStatus is pounded
3598		 * immediately after resuming.  Delay 200ms before
3599		 * debouncing.
3600		 */
3601		if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3602			ata_msleep(link->ap, 200);
3603
3604		/* is SControl restored correctly? */
3605		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606			return rc;
3607	} while ((scontrol & 0xf0f) != 0x300 && --tries);
3608
3609	if ((scontrol & 0xf0f) != 0x300) {
3610		ata_link_warn(link, "failed to resume link (SControl %X)\n",
3611			     scontrol);
3612		return 0;
3613	}
3614
3615	if (tries < ATA_LINK_RESUME_TRIES)
3616		ata_link_warn(link, "link resume succeeded after %d retries\n",
3617			      ATA_LINK_RESUME_TRIES - tries);
3618
3619	if ((rc = sata_link_debounce(link, params, deadline)))
3620		return rc;
3621
3622	/* clear SError, some PHYs require this even for SRST to work */
3623	if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3624		rc = sata_scr_write(link, SCR_ERROR, serror);
3625
3626	return rc != -EINVAL ? rc : 0;
3627}
3628
3629/**
3630 *	sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3631 *	@link: ATA link to manipulate SControl for
3632 *	@policy: LPM policy to configure
3633 *	@spm_wakeup: initiate LPM transition to active state
3634 *
3635 *	Manipulate the IPM field of the SControl register of @link
3636 *	according to @policy.  If @policy is ATA_LPM_MAX_POWER and
3637 *	@spm_wakeup is %true, the SPM field is manipulated to wake up
3638 *	the link.  This function also clears PHYRDY_CHG before
3639 *	returning.
3640 *
3641 *	LOCKING:
3642 *	EH context.
3643 *
3644 *	RETURNS:
3645 *	0 on success, -errno otherwise.
3646 */
3647int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3648		      bool spm_wakeup)
3649{
3650	struct ata_eh_context *ehc = &link->eh_context;
3651	bool woken_up = false;
3652	u32 scontrol;
3653	int rc;
3654
3655	rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3656	if (rc)
3657		return rc;
3658
3659	switch (policy) {
3660	case ATA_LPM_MAX_POWER:
3661		/* disable all LPM transitions */
3662		scontrol |= (0x7 << 8);
3663		/* initiate transition to active state */
3664		if (spm_wakeup) {
3665			scontrol |= (0x4 << 12);
3666			woken_up = true;
3667		}
3668		break;
3669	case ATA_LPM_MED_POWER:
3670		/* allow LPM to PARTIAL */
3671		scontrol &= ~(0x1 << 8);
3672		scontrol |= (0x6 << 8);
3673		break;
3674	case ATA_LPM_MIN_POWER:
3675		if (ata_link_nr_enabled(link) > 0)
3676			/* no restrictions on LPM transitions */
3677			scontrol &= ~(0x7 << 8);
3678		else {
3679			/* empty port, power off */
3680			scontrol &= ~0xf;
3681			scontrol |= (0x1 << 2);
3682		}
3683		break;
3684	default:
3685		WARN_ON(1);
3686	}
3687
3688	rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3689	if (rc)
3690		return rc;
3691
3692	/* give the link time to transit out of LPM state */
3693	if (woken_up)
3694		msleep(10);
3695
3696	/* clear PHYRDY_CHG from SError */
3697	ehc->i.serror &= ~SERR_PHYRDY_CHG;
3698	return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3699}
3700
3701/**
3702 *	ata_std_prereset - prepare for reset
3703 *	@link: ATA link to be reset
3704 *	@deadline: deadline jiffies for the operation
3705 *
3706 *	@link is about to be reset.  Initialize it.  Failure from
3707 *	prereset makes libata abort whole reset sequence and give up
3708 *	that port, so prereset should be best-effort.  It does its
3709 *	best to prepare for reset sequence but if things go wrong, it
3710 *	should just whine, not fail.
3711 *
3712 *	LOCKING:
3713 *	Kernel thread context (may sleep)
3714 *
3715 *	RETURNS:
3716 *	0 on success, -errno otherwise.
3717 */
3718int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3719{
3720	struct ata_port *ap = link->ap;
3721	struct ata_eh_context *ehc = &link->eh_context;
3722	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3723	int rc;
3724
3725	/* if we're about to do hardreset, nothing more to do */
3726	if (ehc->i.action & ATA_EH_HARDRESET)
3727		return 0;
3728
3729	/* if SATA, resume link */
3730	if (ap->flags & ATA_FLAG_SATA) {
3731		rc = sata_link_resume(link, timing, deadline);
3732		/* whine about phy resume failure but proceed */
3733		if (rc && rc != -EOPNOTSUPP)
3734			ata_link_warn(link,
3735				      "failed to resume link for reset (errno=%d)\n",
3736				      rc);
3737	}
3738
3739	/* no point in trying softreset on offline link */
3740	if (ata_phys_link_offline(link))
3741		ehc->i.action &= ~ATA_EH_SOFTRESET;
3742
3743	return 0;
3744}
3745
3746/**
3747 *	sata_link_hardreset - reset link via SATA phy reset
3748 *	@link: link to reset
3749 *	@timing: timing parameters { interval, duratinon, timeout } in msec
3750 *	@deadline: deadline jiffies for the operation
3751 *	@online: optional out parameter indicating link onlineness
3752 *	@check_ready: optional callback to check link readiness
3753 *
3754 *	SATA phy-reset @link using DET bits of SControl register.
3755 *	After hardreset, link readiness is waited upon using
3756 *	ata_wait_ready() if @check_ready is specified.  LLDs are
3757 *	allowed to not specify @check_ready and wait itself after this
3758 *	function returns.  Device classification is LLD's
3759 *	responsibility.
3760 *
3761 *	*@online is set to one iff reset succeeded and @link is online
3762 *	after reset.
3763 *
3764 *	LOCKING:
3765 *	Kernel thread context (may sleep)
3766 *
3767 *	RETURNS:
3768 *	0 on success, -errno otherwise.
3769 */
3770int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3771			unsigned long deadline,
3772			bool *online, int (*check_ready)(struct ata_link *))
3773{
3774	u32 scontrol;
3775	int rc;
3776
3777	DPRINTK("ENTER\n");
3778
3779	if (online)
3780		*online = false;
3781
3782	if (sata_set_spd_needed(link)) {
3783		/* SATA spec says nothing about how to reconfigure
3784		 * spd.  To be on the safe side, turn off phy during
3785		 * reconfiguration.  This works for at least ICH7 AHCI
3786		 * and Sil3124.
3787		 */
3788		if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3789			goto out;
3790
3791		scontrol = (scontrol & 0x0f0) | 0x304;
3792
3793		if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3794			goto out;
3795
3796		sata_set_spd(link);
3797	}
3798
3799	/* issue phy wake/reset */
3800	if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801		goto out;
3802
3803	scontrol = (scontrol & 0x0f0) | 0x301;
3804
3805	if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3806		goto out;
3807
3808	/* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3809	 * 10.4.2 says at least 1 ms.
3810	 */
3811	ata_msleep(link->ap, 1);
3812
3813	/* bring link back */
3814	rc = sata_link_resume(link, timing, deadline);
3815	if (rc)
3816		goto out;
3817	/* if link is offline nothing more to do */
3818	if (ata_phys_link_offline(link))
3819		goto out;
3820
3821	/* Link is online.  From this point, -ENODEV too is an error. */
3822	if (online)
3823		*online = true;
3824
3825	if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3826		/* If PMP is supported, we have to do follow-up SRST.
3827		 * Some PMPs don't send D2H Reg FIS after hardreset if
3828		 * the first port is empty.  Wait only for
3829		 * ATA_TMOUT_PMP_SRST_WAIT.
3830		 */
3831		if (check_ready) {
3832			unsigned long pmp_deadline;
3833
3834			pmp_deadline = ata_deadline(jiffies,
3835						    ATA_TMOUT_PMP_SRST_WAIT);
3836			if (time_after(pmp_deadline, deadline))
3837				pmp_deadline = deadline;
3838			ata_wait_ready(link, pmp_deadline, check_ready);
3839		}
3840		rc = -EAGAIN;
3841		goto out;
3842	}
3843
3844	rc = 0;
3845	if (check_ready)
3846		rc = ata_wait_ready(link, deadline, check_ready);
3847 out:
3848	if (rc && rc != -EAGAIN) {
3849		/* online is set iff link is online && reset succeeded */
3850		if (online)
3851			*online = false;
3852		ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3853	}
3854	DPRINTK("EXIT, rc=%d\n", rc);
3855	return rc;
3856}
3857
3858/**
3859 *	sata_std_hardreset - COMRESET w/o waiting or classification
3860 *	@link: link to reset
3861 *	@class: resulting class of attached device
3862 *	@deadline: deadline jiffies for the operation
3863 *
3864 *	Standard SATA COMRESET w/o waiting or classification.
3865 *
3866 *	LOCKING:
3867 *	Kernel thread context (may sleep)
3868 *
3869 *	RETURNS:
3870 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3871 */
3872int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3873		       unsigned long deadline)
3874{
3875	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3876	bool online;
3877	int rc;
3878
3879	/* do hardreset */
3880	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3881	return online ? -EAGAIN : rc;
3882}
 
3883
3884/**
3885 *	ata_std_postreset - standard postreset callback
3886 *	@link: the target ata_link
3887 *	@classes: classes of attached devices
3888 *
3889 *	This function is invoked after a successful reset.  Note that
3890 *	the device might have been reset more than once using
3891 *	different reset methods before postreset is invoked.
3892 *
3893 *	LOCKING:
3894 *	Kernel thread context (may sleep)
3895 */
3896void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3897{
3898	u32 serror;
3899
3900	DPRINTK("ENTER\n");
3901
3902	/* reset complete, clear SError */
3903	if (!sata_scr_read(link, SCR_ERROR, &serror))
3904		sata_scr_write(link, SCR_ERROR, serror);
3905
3906	/* print link status */
3907	sata_print_link_status(link);
3908
3909	DPRINTK("EXIT\n");
3910}
 
3911
3912/**
3913 *	ata_dev_same_device - Determine whether new ID matches configured device
3914 *	@dev: device to compare against
3915 *	@new_class: class of the new device
3916 *	@new_id: IDENTIFY page of the new device
3917 *
3918 *	Compare @new_class and @new_id against @dev and determine
3919 *	whether @dev is the device indicated by @new_class and
3920 *	@new_id.
3921 *
3922 *	LOCKING:
3923 *	None.
3924 *
3925 *	RETURNS:
3926 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3927 */
3928static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3929			       const u16 *new_id)
3930{
3931	const u16 *old_id = dev->id;
3932	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3933	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3934
3935	if (dev->class != new_class) {
3936		ata_dev_info(dev, "class mismatch %d != %d\n",
3937			     dev->class, new_class);
3938		return 0;
3939	}
3940
3941	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3942	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3943	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3944	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3945
3946	if (strcmp(model[0], model[1])) {
3947		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3948			     model[0], model[1]);
3949		return 0;
3950	}
3951
3952	if (strcmp(serial[0], serial[1])) {
3953		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3954			     serial[0], serial[1]);
3955		return 0;
3956	}
3957
3958	return 1;
3959}
3960
3961/**
3962 *	ata_dev_reread_id - Re-read IDENTIFY data
3963 *	@dev: target ATA device
3964 *	@readid_flags: read ID flags
3965 *
3966 *	Re-read IDENTIFY page and make sure @dev is still attached to
3967 *	the port.
3968 *
3969 *	LOCKING:
3970 *	Kernel thread context (may sleep)
3971 *
3972 *	RETURNS:
3973 *	0 on success, negative errno otherwise
3974 */
3975int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3976{
3977	unsigned int class = dev->class;
3978	u16 *id = (void *)dev->link->ap->sector_buf;
3979	int rc;
3980
3981	/* read ID data */
3982	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3983	if (rc)
3984		return rc;
3985
3986	/* is the device still there? */
3987	if (!ata_dev_same_device(dev, class, id))
3988		return -ENODEV;
3989
3990	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3991	return 0;
3992}
3993
3994/**
3995 *	ata_dev_revalidate - Revalidate ATA device
3996 *	@dev: device to revalidate
3997 *	@new_class: new class code
3998 *	@readid_flags: read ID flags
3999 *
4000 *	Re-read IDENTIFY page, make sure @dev is still attached to the
4001 *	port and reconfigure it according to the new IDENTIFY page.
4002 *
4003 *	LOCKING:
4004 *	Kernel thread context (may sleep)
4005 *
4006 *	RETURNS:
4007 *	0 on success, negative errno otherwise
4008 */
4009int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4010		       unsigned int readid_flags)
4011{
4012	u64 n_sectors = dev->n_sectors;
4013	u64 n_native_sectors = dev->n_native_sectors;
4014	int rc;
4015
4016	if (!ata_dev_enabled(dev))
4017		return -ENODEV;
4018
4019	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4020	if (ata_class_enabled(new_class) &&
4021	    new_class != ATA_DEV_ATA &&
4022	    new_class != ATA_DEV_ATAPI &&
4023	    new_class != ATA_DEV_ZAC &&
4024	    new_class != ATA_DEV_SEMB) {
4025		ata_dev_info(dev, "class mismatch %u != %u\n",
4026			     dev->class, new_class);
4027		rc = -ENODEV;
4028		goto fail;
4029	}
4030
4031	/* re-read ID */
4032	rc = ata_dev_reread_id(dev, readid_flags);
4033	if (rc)
4034		goto fail;
4035
4036	/* configure device according to the new ID */
4037	rc = ata_dev_configure(dev);
4038	if (rc)
4039		goto fail;
4040
4041	/* verify n_sectors hasn't changed */
4042	if (dev->class != ATA_DEV_ATA || !n_sectors ||
4043	    dev->n_sectors == n_sectors)
4044		return 0;
4045
4046	/* n_sectors has changed */
4047	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4048		     (unsigned long long)n_sectors,
4049		     (unsigned long long)dev->n_sectors);
4050
4051	/*
4052	 * Something could have caused HPA to be unlocked
4053	 * involuntarily.  If n_native_sectors hasn't changed and the
4054	 * new size matches it, keep the device.
4055	 */
4056	if (dev->n_native_sectors == n_native_sectors &&
4057	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4058		ata_dev_warn(dev,
4059			     "new n_sectors matches native, probably "
4060			     "late HPA unlock, n_sectors updated\n");
4061		/* use the larger n_sectors */
4062		return 0;
4063	}
4064
4065	/*
4066	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
4067	 * unlocking HPA in those cases.
4068	 *
4069	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4070	 */
4071	if (dev->n_native_sectors == n_native_sectors &&
4072	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4073	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4074		ata_dev_warn(dev,
4075			     "old n_sectors matches native, probably "
4076			     "late HPA lock, will try to unlock HPA\n");
4077		/* try unlocking HPA */
4078		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4079		rc = -EIO;
4080	} else
4081		rc = -ENODEV;
4082
4083	/* restore original n_[native_]sectors and fail */
4084	dev->n_native_sectors = n_native_sectors;
4085	dev->n_sectors = n_sectors;
4086 fail:
4087	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4088	return rc;
4089}
4090
4091struct ata_blacklist_entry {
4092	const char *model_num;
4093	const char *model_rev;
4094	unsigned long horkage;
4095};
4096
4097static const struct ata_blacklist_entry ata_device_blacklist [] = {
4098	/* Devices with DMA related problems under Linux */
4099	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
4100	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
4101	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
4102	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
4103	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
4104	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
4105	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
4106	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
4107	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
4108	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
4109	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
4110	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
4111	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
4112	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
4113	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
4114	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
4115	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
4116	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
4117	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
4118	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
4119	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
4120	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
4121	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
4122	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
4123	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4124	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
4125	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
4126	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
4127	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
4128	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
4129	/* Odd clown on sil3726/4726 PMPs */
4130	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
4131
4132	/* Weird ATAPI devices */
4133	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
4134	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
4135	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4136	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
4137
4138	/*
4139	 * Causes silent data corruption with higher max sects.
4140	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4141	 */
4142	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
4143
 
 
 
 
 
 
 
4144	/* Devices we expect to fail diagnostics */
4145
4146	/* Devices where NCQ should be avoided */
4147	/* NCQ is slow */
4148	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
4149	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
4150	/* http://thread.gmane.org/gmane.linux.ide/14907 */
4151	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
4152	/* NCQ is broken */
4153	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
4154	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
4155	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
4156	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
4157	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
4158
4159	/* Seagate NCQ + FLUSH CACHE firmware bug */
4160	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4161						ATA_HORKAGE_FIRMWARE_WARN },
4162
4163	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4164						ATA_HORKAGE_FIRMWARE_WARN },
4165
4166	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4167						ATA_HORKAGE_FIRMWARE_WARN },
4168
4169	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
4170						ATA_HORKAGE_FIRMWARE_WARN },
4171
4172	/* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4173	{ "ST1000LM024 HN-M101MBB", "2AR10001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
4174	{ "ST1000LM024 HN-M101MBB", "2BA30001",	ATA_HORKAGE_BROKEN_FPDMA_AA },
 
4175	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
4176
4177	/* Blacklist entries taken from Silicon Image 3124/3132
4178	   Windows driver .inf file - also several Linux problem reports */
4179	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
4180	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
4181	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
4182
4183	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4184	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
4185
 
 
 
4186	/* devices which puke on READ_NATIVE_MAX */
4187	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
4188	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4189	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4190	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
4191
4192	/* this one allows HPA unlocking but fails IOs on the area */
4193	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
4194
4195	/* Devices which report 1 sector over size HPA */
4196	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4197	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4198	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
4199
4200	/* Devices which get the IVB wrong */
4201	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4202	/* Maybe we should just blacklist TSSTcorp... */
4203	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
4204
4205	/* Devices that do not need bridging limits applied */
4206	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4207	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
4208
4209	/* Devices which aren't very happy with higher link speeds */
4210	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
4211	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
4212
4213	/*
4214	 * Devices which choke on SETXFER.  Applies only if both the
4215	 * device and controller are SATA.
4216	 */
4217	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
4218	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
4219	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
4220	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
4221	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
4222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4223	/* devices that don't properly handle queued TRIM commands */
 
 
4224	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4225						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4226	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4227						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4228	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4229						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4231						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
4233						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234	{ "Samsung SSD 8*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
 
 
4235						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4236	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
4237						ATA_HORKAGE_ZERO_AFTER_TRIM, },
4238
4239	/* devices that don't properly handle TRIM commands */
4240	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
4241
4242	/*
4243	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4244	 * (Return Zero After Trim) flags in the ATA Command Set are
4245	 * unreliable in the sense that they only define what happens if
4246	 * the device successfully executed the DSM TRIM command. TRIM
4247	 * is only advisory, however, and the device is free to silently
4248	 * ignore all or parts of the request.
4249	 *
4250	 * Whitelist drives that are known to reliably return zeroes
4251	 * after TRIM.
4252	 */
4253
4254	/*
4255	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4256	 * that model before whitelisting all other intel SSDs.
4257	 */
4258	{ "INTEL*SSDSC2MH*",		NULL,	0, },
4259
4260	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4265	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
 
4266	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
4267
4268	/*
4269	 * Some WD SATA-I drives spin up and down erratically when the link
4270	 * is put into the slumber mode.  We don't have full list of the
4271	 * affected devices.  Disable LPM if the device matches one of the
4272	 * known prefixes and is SATA-1.  As a side effect LPM partial is
4273	 * lost too.
4274	 *
4275	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4276	 */
4277	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4278	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4279	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4280	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4281	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4282	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4283	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4284
4285	/* End Marker */
4286	{ }
4287};
4288
4289static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4290{
4291	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4292	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4293	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4294
4295	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4296	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4297
4298	while (ad->model_num) {
4299		if (glob_match(ad->model_num, model_num)) {
4300			if (ad->model_rev == NULL)
4301				return ad->horkage;
4302			if (glob_match(ad->model_rev, model_rev))
4303				return ad->horkage;
4304		}
4305		ad++;
4306	}
4307	return 0;
4308}
4309
4310static int ata_dma_blacklisted(const struct ata_device *dev)
4311{
4312	/* We don't support polling DMA.
4313	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4314	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4315	 */
4316	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4317	    (dev->flags & ATA_DFLAG_CDB_INTR))
4318		return 1;
4319	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4320}
4321
4322/**
4323 *	ata_is_40wire		-	check drive side detection
4324 *	@dev: device
4325 *
4326 *	Perform drive side detection decoding, allowing for device vendors
4327 *	who can't follow the documentation.
4328 */
4329
4330static int ata_is_40wire(struct ata_device *dev)
4331{
4332	if (dev->horkage & ATA_HORKAGE_IVB)
4333		return ata_drive_40wire_relaxed(dev->id);
4334	return ata_drive_40wire(dev->id);
4335}
4336
4337/**
4338 *	cable_is_40wire		-	40/80/SATA decider
4339 *	@ap: port to consider
4340 *
4341 *	This function encapsulates the policy for speed management
4342 *	in one place. At the moment we don't cache the result but
4343 *	there is a good case for setting ap->cbl to the result when
4344 *	we are called with unknown cables (and figuring out if it
4345 *	impacts hotplug at all).
4346 *
4347 *	Return 1 if the cable appears to be 40 wire.
4348 */
4349
4350static int cable_is_40wire(struct ata_port *ap)
4351{
4352	struct ata_link *link;
4353	struct ata_device *dev;
4354
4355	/* If the controller thinks we are 40 wire, we are. */
4356	if (ap->cbl == ATA_CBL_PATA40)
4357		return 1;
4358
4359	/* If the controller thinks we are 80 wire, we are. */
4360	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4361		return 0;
4362
4363	/* If the system is known to be 40 wire short cable (eg
4364	 * laptop), then we allow 80 wire modes even if the drive
4365	 * isn't sure.
4366	 */
4367	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4368		return 0;
4369
4370	/* If the controller doesn't know, we scan.
4371	 *
4372	 * Note: We look for all 40 wire detects at this point.  Any
4373	 *       80 wire detect is taken to be 80 wire cable because
4374	 * - in many setups only the one drive (slave if present) will
4375	 *   give a valid detect
4376	 * - if you have a non detect capable drive you don't want it
4377	 *   to colour the choice
4378	 */
4379	ata_for_each_link(link, ap, EDGE) {
4380		ata_for_each_dev(dev, link, ENABLED) {
4381			if (!ata_is_40wire(dev))
4382				return 0;
4383		}
4384	}
4385	return 1;
4386}
4387
4388/**
4389 *	ata_dev_xfermask - Compute supported xfermask of the given device
4390 *	@dev: Device to compute xfermask for
4391 *
4392 *	Compute supported xfermask of @dev and store it in
4393 *	dev->*_mask.  This function is responsible for applying all
4394 *	known limits including host controller limits, device
4395 *	blacklist, etc...
4396 *
4397 *	LOCKING:
4398 *	None.
4399 */
4400static void ata_dev_xfermask(struct ata_device *dev)
4401{
4402	struct ata_link *link = dev->link;
4403	struct ata_port *ap = link->ap;
4404	struct ata_host *host = ap->host;
4405	unsigned long xfer_mask;
4406
4407	/* controller modes available */
4408	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4409				      ap->mwdma_mask, ap->udma_mask);
4410
4411	/* drive modes available */
4412	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4413				       dev->mwdma_mask, dev->udma_mask);
4414	xfer_mask &= ata_id_xfermask(dev->id);
4415
4416	/*
4417	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4418	 *	cable
4419	 */
4420	if (ata_dev_pair(dev)) {
4421		/* No PIO5 or PIO6 */
4422		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4423		/* No MWDMA3 or MWDMA 4 */
4424		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4425	}
4426
4427	if (ata_dma_blacklisted(dev)) {
4428		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4429		ata_dev_warn(dev,
4430			     "device is on DMA blacklist, disabling DMA\n");
4431	}
4432
4433	if ((host->flags & ATA_HOST_SIMPLEX) &&
4434	    host->simplex_claimed && host->simplex_claimed != ap) {
4435		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4436		ata_dev_warn(dev,
4437			     "simplex DMA is claimed by other device, disabling DMA\n");
4438	}
4439
4440	if (ap->flags & ATA_FLAG_NO_IORDY)
4441		xfer_mask &= ata_pio_mask_no_iordy(dev);
4442
4443	if (ap->ops->mode_filter)
4444		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4445
4446	/* Apply cable rule here.  Don't apply it early because when
4447	 * we handle hot plug the cable type can itself change.
4448	 * Check this last so that we know if the transfer rate was
4449	 * solely limited by the cable.
4450	 * Unknown or 80 wire cables reported host side are checked
4451	 * drive side as well. Cases where we know a 40wire cable
4452	 * is used safely for 80 are not checked here.
4453	 */
4454	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4455		/* UDMA/44 or higher would be available */
4456		if (cable_is_40wire(ap)) {
4457			ata_dev_warn(dev,
4458				     "limited to UDMA/33 due to 40-wire cable\n");
4459			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4460		}
4461
4462	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4463			    &dev->mwdma_mask, &dev->udma_mask);
4464}
4465
4466/**
4467 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4468 *	@dev: Device to which command will be sent
4469 *
4470 *	Issue SET FEATURES - XFER MODE command to device @dev
4471 *	on port @ap.
4472 *
4473 *	LOCKING:
4474 *	PCI/etc. bus probe sem.
4475 *
4476 *	RETURNS:
4477 *	0 on success, AC_ERR_* mask otherwise.
4478 */
4479
4480static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4481{
4482	struct ata_taskfile tf;
4483	unsigned int err_mask;
4484
4485	/* set up set-features taskfile */
4486	DPRINTK("set features - xfer mode\n");
4487
4488	/* Some controllers and ATAPI devices show flaky interrupt
4489	 * behavior after setting xfer mode.  Use polling instead.
4490	 */
4491	ata_tf_init(dev, &tf);
4492	tf.command = ATA_CMD_SET_FEATURES;
4493	tf.feature = SETFEATURES_XFER;
4494	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4495	tf.protocol = ATA_PROT_NODATA;
4496	/* If we are using IORDY we must send the mode setting command */
4497	if (ata_pio_need_iordy(dev))
4498		tf.nsect = dev->xfer_mode;
4499	/* If the device has IORDY and the controller does not - turn it off */
4500 	else if (ata_id_has_iordy(dev->id))
4501		tf.nsect = 0x01;
4502	else /* In the ancient relic department - skip all of this */
4503		return 0;
4504
4505	/* On some disks, this command causes spin-up, so we need longer timeout */
4506	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4507
4508	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509	return err_mask;
4510}
4511
4512/**
4513 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4514 *	@dev: Device to which command will be sent
4515 *	@enable: Whether to enable or disable the feature
4516 *	@feature: The sector count represents the feature to set
4517 *
4518 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4519 *	on port @ap with sector count
4520 *
4521 *	LOCKING:
4522 *	PCI/etc. bus probe sem.
4523 *
4524 *	RETURNS:
4525 *	0 on success, AC_ERR_* mask otherwise.
4526 */
4527unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4528{
4529	struct ata_taskfile tf;
4530	unsigned int err_mask;
 
4531
4532	/* set up set-features taskfile */
4533	DPRINTK("set features - SATA features\n");
4534
4535	ata_tf_init(dev, &tf);
4536	tf.command = ATA_CMD_SET_FEATURES;
4537	tf.feature = enable;
4538	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4539	tf.protocol = ATA_PROT_NODATA;
4540	tf.nsect = feature;
4541
4542	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
 
 
 
4543
4544	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4545	return err_mask;
4546}
4547EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4548
4549/**
4550 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4551 *	@dev: Device to which command will be sent
4552 *	@heads: Number of heads (taskfile parameter)
4553 *	@sectors: Number of sectors (taskfile parameter)
4554 *
4555 *	LOCKING:
4556 *	Kernel thread context (may sleep)
4557 *
4558 *	RETURNS:
4559 *	0 on success, AC_ERR_* mask otherwise.
4560 */
4561static unsigned int ata_dev_init_params(struct ata_device *dev,
4562					u16 heads, u16 sectors)
4563{
4564	struct ata_taskfile tf;
4565	unsigned int err_mask;
4566
4567	/* Number of sectors per track 1-255. Number of heads 1-16 */
4568	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4569		return AC_ERR_INVALID;
4570
4571	/* set up init dev params taskfile */
4572	DPRINTK("init dev params \n");
4573
4574	ata_tf_init(dev, &tf);
4575	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4576	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4577	tf.protocol = ATA_PROT_NODATA;
4578	tf.nsect = sectors;
4579	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4580
4581	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4582	/* A clean abort indicates an original or just out of spec drive
4583	   and we should continue as we issue the setup based on the
4584	   drive reported working geometry */
4585	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4586		err_mask = 0;
4587
4588	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4589	return err_mask;
4590}
4591
4592/**
4593 *	ata_sg_clean - Unmap DMA memory associated with command
4594 *	@qc: Command containing DMA memory to be released
4595 *
4596 *	Unmap all mapped DMA memory associated with this command.
4597 *
4598 *	LOCKING:
4599 *	spin_lock_irqsave(host lock)
4600 */
4601void ata_sg_clean(struct ata_queued_cmd *qc)
4602{
4603	struct ata_port *ap = qc->ap;
4604	struct scatterlist *sg = qc->sg;
4605	int dir = qc->dma_dir;
4606
4607	WARN_ON_ONCE(sg == NULL);
4608
4609	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4610
4611	if (qc->n_elem)
4612		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4613
4614	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615	qc->sg = NULL;
4616}
4617
4618/**
4619 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4620 *	@qc: Metadata associated with taskfile to check
4621 *
4622 *	Allow low-level driver to filter ATA PACKET commands, returning
4623 *	a status indicating whether or not it is OK to use DMA for the
4624 *	supplied PACKET command.
4625 *
4626 *	LOCKING:
4627 *	spin_lock_irqsave(host lock)
4628 *
4629 *	RETURNS: 0 when ATAPI DMA can be used
4630 *               nonzero otherwise
4631 */
4632int atapi_check_dma(struct ata_queued_cmd *qc)
4633{
4634	struct ata_port *ap = qc->ap;
4635
4636	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4637	 * few ATAPI devices choke on such DMA requests.
4638	 */
4639	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4640	    unlikely(qc->nbytes & 15))
4641		return 1;
4642
4643	if (ap->ops->check_atapi_dma)
4644		return ap->ops->check_atapi_dma(qc);
4645
4646	return 0;
4647}
4648
4649/**
4650 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4651 *	@qc: ATA command in question
4652 *
4653 *	Non-NCQ commands cannot run with any other command, NCQ or
4654 *	not.  As upper layer only knows the queue depth, we are
4655 *	responsible for maintaining exclusion.  This function checks
4656 *	whether a new command @qc can be issued.
4657 *
4658 *	LOCKING:
4659 *	spin_lock_irqsave(host lock)
4660 *
4661 *	RETURNS:
4662 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4663 */
4664int ata_std_qc_defer(struct ata_queued_cmd *qc)
4665{
4666	struct ata_link *link = qc->dev->link;
4667
4668	if (qc->tf.protocol == ATA_PROT_NCQ) {
4669		if (!ata_tag_valid(link->active_tag))
4670			return 0;
4671	} else {
4672		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4673			return 0;
4674	}
4675
4676	return ATA_DEFER_LINK;
4677}
 
4678
4679void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
 
 
 
 
4680
4681/**
4682 *	ata_sg_init - Associate command with scatter-gather table.
4683 *	@qc: Command to be associated
4684 *	@sg: Scatter-gather table.
4685 *	@n_elem: Number of elements in s/g table.
4686 *
4687 *	Initialize the data-related elements of queued_cmd @qc
4688 *	to point to a scatter-gather table @sg, containing @n_elem
4689 *	elements.
4690 *
4691 *	LOCKING:
4692 *	spin_lock_irqsave(host lock)
4693 */
4694void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4695		 unsigned int n_elem)
4696{
4697	qc->sg = sg;
4698	qc->n_elem = n_elem;
4699	qc->cursg = qc->sg;
4700}
4701
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4702/**
4703 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4704 *	@qc: Command with scatter-gather table to be mapped.
4705 *
4706 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4707 *
4708 *	LOCKING:
4709 *	spin_lock_irqsave(host lock)
4710 *
4711 *	RETURNS:
4712 *	Zero on success, negative on error.
4713 *
4714 */
4715static int ata_sg_setup(struct ata_queued_cmd *qc)
4716{
4717	struct ata_port *ap = qc->ap;
4718	unsigned int n_elem;
4719
4720	VPRINTK("ENTER, ata%u\n", ap->print_id);
4721
4722	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4723	if (n_elem < 1)
4724		return -1;
4725
4726	DPRINTK("%d sg elements mapped\n", n_elem);
4727	qc->orig_n_elem = qc->n_elem;
4728	qc->n_elem = n_elem;
4729	qc->flags |= ATA_QCFLAG_DMAMAP;
4730
4731	return 0;
4732}
4733
 
 
 
 
 
 
 
4734/**
4735 *	swap_buf_le16 - swap halves of 16-bit words in place
4736 *	@buf:  Buffer to swap
4737 *	@buf_words:  Number of 16-bit words in buffer.
4738 *
4739 *	Swap halves of 16-bit words if needed to convert from
4740 *	little-endian byte order to native cpu byte order, or
4741 *	vice-versa.
4742 *
4743 *	LOCKING:
4744 *	Inherited from caller.
4745 */
4746void swap_buf_le16(u16 *buf, unsigned int buf_words)
4747{
4748#ifdef __BIG_ENDIAN
4749	unsigned int i;
4750
4751	for (i = 0; i < buf_words; i++)
4752		buf[i] = le16_to_cpu(buf[i]);
4753#endif /* __BIG_ENDIAN */
4754}
4755
4756/**
4757 *	ata_qc_new_init - Request an available ATA command, and initialize it
4758 *	@dev: Device from whom we request an available command structure
4759 *	@tag: tag
4760 *
4761 *	LOCKING:
4762 *	None.
4763 */
4764
4765struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4766{
4767	struct ata_port *ap = dev->link->ap;
4768	struct ata_queued_cmd *qc;
4769
4770	/* no command while frozen */
4771	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4772		return NULL;
4773
4774	/* libsas case */
4775	if (ap->flags & ATA_FLAG_SAS_HOST) {
4776		tag = ata_sas_allocate_tag(ap);
4777		if (tag < 0)
4778			return NULL;
4779	}
4780
4781	qc = __ata_qc_from_tag(ap, tag);
4782	qc->tag = tag;
4783	qc->scsicmd = NULL;
4784	qc->ap = ap;
4785	qc->dev = dev;
4786
4787	ata_qc_reinit(qc);
4788
4789	return qc;
4790}
4791
4792/**
4793 *	ata_qc_free - free unused ata_queued_cmd
4794 *	@qc: Command to complete
4795 *
4796 *	Designed to free unused ata_queued_cmd object
4797 *	in case something prevents using it.
4798 *
4799 *	LOCKING:
4800 *	spin_lock_irqsave(host lock)
4801 */
4802void ata_qc_free(struct ata_queued_cmd *qc)
4803{
4804	struct ata_port *ap;
4805	unsigned int tag;
4806
4807	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4808	ap = qc->ap;
4809
4810	qc->flags = 0;
4811	tag = qc->tag;
4812	if (likely(ata_tag_valid(tag))) {
4813		qc->tag = ATA_TAG_POISON;
4814		if (ap->flags & ATA_FLAG_SAS_HOST)
4815			ata_sas_free_tag(tag, ap);
4816	}
4817}
4818
4819void __ata_qc_complete(struct ata_queued_cmd *qc)
4820{
4821	struct ata_port *ap;
4822	struct ata_link *link;
4823
4824	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4825	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4826	ap = qc->ap;
4827	link = qc->dev->link;
4828
4829	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4830		ata_sg_clean(qc);
4831
4832	/* command should be marked inactive atomically with qc completion */
4833	if (qc->tf.protocol == ATA_PROT_NCQ) {
4834		link->sactive &= ~(1 << qc->tag);
4835		if (!link->sactive)
4836			ap->nr_active_links--;
4837	} else {
4838		link->active_tag = ATA_TAG_POISON;
4839		ap->nr_active_links--;
4840	}
4841
4842	/* clear exclusive status */
4843	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4844		     ap->excl_link == link))
4845		ap->excl_link = NULL;
4846
4847	/* atapi: mark qc as inactive to prevent the interrupt handler
4848	 * from completing the command twice later, before the error handler
4849	 * is called. (when rc != 0 and atapi request sense is needed)
4850	 */
4851	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4852	ap->qc_active &= ~(1 << qc->tag);
4853
4854	/* call completion callback */
4855	qc->complete_fn(qc);
4856}
4857
4858static void fill_result_tf(struct ata_queued_cmd *qc)
4859{
4860	struct ata_port *ap = qc->ap;
4861
4862	qc->result_tf.flags = qc->tf.flags;
4863	ap->ops->qc_fill_rtf(qc);
4864}
4865
4866static void ata_verify_xfer(struct ata_queued_cmd *qc)
4867{
4868	struct ata_device *dev = qc->dev;
4869
4870	if (ata_is_nodata(qc->tf.protocol))
4871		return;
4872
4873	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4874		return;
4875
4876	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4877}
4878
4879/**
4880 *	ata_qc_complete - Complete an active ATA command
4881 *	@qc: Command to complete
4882 *
4883 *	Indicate to the mid and upper layers that an ATA command has
4884 *	completed, with either an ok or not-ok status.
4885 *
4886 *	Refrain from calling this function multiple times when
4887 *	successfully completing multiple NCQ commands.
4888 *	ata_qc_complete_multiple() should be used instead, which will
4889 *	properly update IRQ expect state.
4890 *
4891 *	LOCKING:
4892 *	spin_lock_irqsave(host lock)
4893 */
4894void ata_qc_complete(struct ata_queued_cmd *qc)
4895{
4896	struct ata_port *ap = qc->ap;
4897
 
 
 
4898	/* XXX: New EH and old EH use different mechanisms to
4899	 * synchronize EH with regular execution path.
4900	 *
4901	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4902	 * Normal execution path is responsible for not accessing a
4903	 * failed qc.  libata core enforces the rule by returning NULL
4904	 * from ata_qc_from_tag() for failed qcs.
4905	 *
4906	 * Old EH depends on ata_qc_complete() nullifying completion
4907	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4908	 * not synchronize with interrupt handler.  Only PIO task is
4909	 * taken care of.
4910	 */
4911	if (ap->ops->error_handler) {
4912		struct ata_device *dev = qc->dev;
4913		struct ata_eh_info *ehi = &dev->link->eh_info;
4914
4915		if (unlikely(qc->err_mask))
4916			qc->flags |= ATA_QCFLAG_FAILED;
4917
4918		/*
4919		 * Finish internal commands without any further processing
4920		 * and always with the result TF filled.
4921		 */
4922		if (unlikely(ata_tag_internal(qc->tag))) {
4923			fill_result_tf(qc);
4924			trace_ata_qc_complete_internal(qc);
4925			__ata_qc_complete(qc);
4926			return;
4927		}
4928
4929		/*
4930		 * Non-internal qc has failed.  Fill the result TF and
4931		 * summon EH.
4932		 */
4933		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4934			fill_result_tf(qc);
4935			trace_ata_qc_complete_failed(qc);
4936			ata_qc_schedule_eh(qc);
4937			return;
4938		}
4939
4940		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4941
4942		/* read result TF if requested */
4943		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4944			fill_result_tf(qc);
4945
4946		trace_ata_qc_complete_done(qc);
4947		/* Some commands need post-processing after successful
4948		 * completion.
4949		 */
4950		switch (qc->tf.command) {
4951		case ATA_CMD_SET_FEATURES:
4952			if (qc->tf.feature != SETFEATURES_WC_ON &&
4953			    qc->tf.feature != SETFEATURES_WC_OFF)
 
 
4954				break;
4955			/* fall through */
4956		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4957		case ATA_CMD_SET_MULTI: /* multi_count changed */
4958			/* revalidate device */
4959			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4960			ata_port_schedule_eh(ap);
4961			break;
4962
4963		case ATA_CMD_SLEEP:
4964			dev->flags |= ATA_DFLAG_SLEEPING;
4965			break;
4966		}
4967
4968		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4969			ata_verify_xfer(qc);
4970
4971		__ata_qc_complete(qc);
4972	} else {
4973		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4974			return;
4975
4976		/* read result TF if failed or requested */
4977		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4978			fill_result_tf(qc);
4979
4980		__ata_qc_complete(qc);
4981	}
4982}
 
4983
4984/**
4985 *	ata_qc_complete_multiple - Complete multiple qcs successfully
4986 *	@ap: port in question
4987 *	@qc_active: new qc_active mask
4988 *
4989 *	Complete in-flight commands.  This functions is meant to be
4990 *	called from low-level driver's interrupt routine to complete
4991 *	requests normally.  ap->qc_active and @qc_active is compared
4992 *	and commands are completed accordingly.
4993 *
4994 *	Always use this function when completing multiple NCQ commands
4995 *	from IRQ handlers instead of calling ata_qc_complete()
4996 *	multiple times to keep IRQ expect status properly in sync.
4997 *
4998 *	LOCKING:
4999 *	spin_lock_irqsave(host lock)
5000 *
5001 *	RETURNS:
5002 *	Number of completed commands on success, -errno otherwise.
5003 */
5004int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5005{
5006	int nr_done = 0;
5007	u32 done_mask;
5008
5009	done_mask = ap->qc_active ^ qc_active;
5010
5011	if (unlikely(done_mask & qc_active)) {
5012		ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5013			     ap->qc_active, qc_active);
5014		return -EINVAL;
5015	}
5016
5017	while (done_mask) {
5018		struct ata_queued_cmd *qc;
5019		unsigned int tag = __ffs(done_mask);
5020
5021		qc = ata_qc_from_tag(ap, tag);
5022		if (qc) {
5023			ata_qc_complete(qc);
5024			nr_done++;
5025		}
5026		done_mask &= ~(1 << tag);
5027	}
5028
5029	return nr_done;
5030}
 
5031
5032/**
5033 *	ata_qc_issue - issue taskfile to device
5034 *	@qc: command to issue to device
5035 *
5036 *	Prepare an ATA command to submission to device.
5037 *	This includes mapping the data into a DMA-able
5038 *	area, filling in the S/G table, and finally
5039 *	writing the taskfile to hardware, starting the command.
5040 *
5041 *	LOCKING:
5042 *	spin_lock_irqsave(host lock)
5043 */
5044void ata_qc_issue(struct ata_queued_cmd *qc)
5045{
5046	struct ata_port *ap = qc->ap;
5047	struct ata_link *link = qc->dev->link;
5048	u8 prot = qc->tf.protocol;
5049
5050	/* Make sure only one non-NCQ command is outstanding.  The
5051	 * check is skipped for old EH because it reuses active qc to
5052	 * request ATAPI sense.
5053	 */
5054	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5055
5056	if (ata_is_ncq(prot)) {
5057		WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5058
5059		if (!link->sactive)
5060			ap->nr_active_links++;
5061		link->sactive |= 1 << qc->tag;
5062	} else {
5063		WARN_ON_ONCE(link->sactive);
5064
5065		ap->nr_active_links++;
5066		link->active_tag = qc->tag;
5067	}
5068
5069	qc->flags |= ATA_QCFLAG_ACTIVE;
5070	ap->qc_active |= 1 << qc->tag;
5071
5072	/*
5073	 * We guarantee to LLDs that they will have at least one
5074	 * non-zero sg if the command is a data command.
5075	 */
5076	if (WARN_ON_ONCE(ata_is_data(prot) &&
5077			 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5078		goto sys_err;
5079
5080	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5081				 (ap->flags & ATA_FLAG_PIO_DMA)))
5082		if (ata_sg_setup(qc))
5083			goto sys_err;
5084
5085	/* if device is sleeping, schedule reset and abort the link */
5086	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5087		link->eh_info.action |= ATA_EH_RESET;
5088		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5089		ata_link_abort(link);
5090		return;
5091	}
5092
5093	ap->ops->qc_prep(qc);
 
 
5094	trace_ata_qc_issue(qc);
5095	qc->err_mask |= ap->ops->qc_issue(qc);
5096	if (unlikely(qc->err_mask))
5097		goto err;
5098	return;
5099
5100sys_err:
5101	qc->err_mask |= AC_ERR_SYSTEM;
5102err:
5103	ata_qc_complete(qc);
5104}
5105
5106/**
5107 *	sata_scr_valid - test whether SCRs are accessible
5108 *	@link: ATA link to test SCR accessibility for
5109 *
5110 *	Test whether SCRs are accessible for @link.
5111 *
5112 *	LOCKING:
5113 *	None.
5114 *
5115 *	RETURNS:
5116 *	1 if SCRs are accessible, 0 otherwise.
5117 */
5118int sata_scr_valid(struct ata_link *link)
5119{
5120	struct ata_port *ap = link->ap;
5121
5122	return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5123}
5124
5125/**
5126 *	sata_scr_read - read SCR register of the specified port
5127 *	@link: ATA link to read SCR for
5128 *	@reg: SCR to read
5129 *	@val: Place to store read value
5130 *
5131 *	Read SCR register @reg of @link into *@val.  This function is
5132 *	guaranteed to succeed if @link is ap->link, the cable type of
5133 *	the port is SATA and the port implements ->scr_read.
5134 *
5135 *	LOCKING:
5136 *	None if @link is ap->link.  Kernel thread context otherwise.
5137 *
5138 *	RETURNS:
5139 *	0 on success, negative errno on failure.
5140 */
5141int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5142{
5143	if (ata_is_host_link(link)) {
5144		if (sata_scr_valid(link))
5145			return link->ap->ops->scr_read(link, reg, val);
5146		return -EOPNOTSUPP;
5147	}
5148
5149	return sata_pmp_scr_read(link, reg, val);
5150}
5151
5152/**
5153 *	sata_scr_write - write SCR register of the specified port
5154 *	@link: ATA link to write SCR for
5155 *	@reg: SCR to write
5156 *	@val: value to write
5157 *
5158 *	Write @val to SCR register @reg of @link.  This function is
5159 *	guaranteed to succeed if @link is ap->link, the cable type of
5160 *	the port is SATA and the port implements ->scr_read.
5161 *
5162 *	LOCKING:
5163 *	None if @link is ap->link.  Kernel thread context otherwise.
5164 *
5165 *	RETURNS:
5166 *	0 on success, negative errno on failure.
5167 */
5168int sata_scr_write(struct ata_link *link, int reg, u32 val)
5169{
5170	if (ata_is_host_link(link)) {
5171		if (sata_scr_valid(link))
5172			return link->ap->ops->scr_write(link, reg, val);
5173		return -EOPNOTSUPP;
5174	}
5175
5176	return sata_pmp_scr_write(link, reg, val);
5177}
5178
5179/**
5180 *	sata_scr_write_flush - write SCR register of the specified port and flush
5181 *	@link: ATA link to write SCR for
5182 *	@reg: SCR to write
5183 *	@val: value to write
5184 *
5185 *	This function is identical to sata_scr_write() except that this
5186 *	function performs flush after writing to the register.
5187 *
5188 *	LOCKING:
5189 *	None if @link is ap->link.  Kernel thread context otherwise.
5190 *
5191 *	RETURNS:
5192 *	0 on success, negative errno on failure.
5193 */
5194int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5195{
5196	if (ata_is_host_link(link)) {
5197		int rc;
5198
5199		if (sata_scr_valid(link)) {
5200			rc = link->ap->ops->scr_write(link, reg, val);
5201			if (rc == 0)
5202				rc = link->ap->ops->scr_read(link, reg, &val);
5203			return rc;
5204		}
5205		return -EOPNOTSUPP;
5206	}
5207
5208	return sata_pmp_scr_write(link, reg, val);
5209}
5210
5211/**
5212 *	ata_phys_link_online - test whether the given link is online
5213 *	@link: ATA link to test
5214 *
5215 *	Test whether @link is online.  Note that this function returns
5216 *	0 if online status of @link cannot be obtained, so
5217 *	ata_link_online(link) != !ata_link_offline(link).
5218 *
5219 *	LOCKING:
5220 *	None.
5221 *
5222 *	RETURNS:
5223 *	True if the port online status is available and online.
5224 */
5225bool ata_phys_link_online(struct ata_link *link)
5226{
5227	u32 sstatus;
5228
5229	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5230	    ata_sstatus_online(sstatus))
5231		return true;
5232	return false;
5233}
5234
5235/**
5236 *	ata_phys_link_offline - test whether the given link is offline
5237 *	@link: ATA link to test
5238 *
5239 *	Test whether @link is offline.  Note that this function
5240 *	returns 0 if offline status of @link cannot be obtained, so
5241 *	ata_link_online(link) != !ata_link_offline(link).
5242 *
5243 *	LOCKING:
5244 *	None.
5245 *
5246 *	RETURNS:
5247 *	True if the port offline status is available and offline.
5248 */
5249bool ata_phys_link_offline(struct ata_link *link)
5250{
5251	u32 sstatus;
5252
5253	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5254	    !ata_sstatus_online(sstatus))
5255		return true;
5256	return false;
5257}
5258
5259/**
5260 *	ata_link_online - test whether the given link is online
5261 *	@link: ATA link to test
5262 *
5263 *	Test whether @link is online.  This is identical to
5264 *	ata_phys_link_online() when there's no slave link.  When
5265 *	there's a slave link, this function should only be called on
5266 *	the master link and will return true if any of M/S links is
5267 *	online.
5268 *
5269 *	LOCKING:
5270 *	None.
5271 *
5272 *	RETURNS:
5273 *	True if the port online status is available and online.
5274 */
5275bool ata_link_online(struct ata_link *link)
5276{
5277	struct ata_link *slave = link->ap->slave_link;
5278
5279	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5280
5281	return ata_phys_link_online(link) ||
5282		(slave && ata_phys_link_online(slave));
5283}
 
5284
5285/**
5286 *	ata_link_offline - test whether the given link is offline
5287 *	@link: ATA link to test
5288 *
5289 *	Test whether @link is offline.  This is identical to
5290 *	ata_phys_link_offline() when there's no slave link.  When
5291 *	there's a slave link, this function should only be called on
5292 *	the master link and will return true if both M/S links are
5293 *	offline.
5294 *
5295 *	LOCKING:
5296 *	None.
5297 *
5298 *	RETURNS:
5299 *	True if the port offline status is available and offline.
5300 */
5301bool ata_link_offline(struct ata_link *link)
5302{
5303	struct ata_link *slave = link->ap->slave_link;
5304
5305	WARN_ON(link == slave);	/* shouldn't be called on slave link */
5306
5307	return ata_phys_link_offline(link) &&
5308		(!slave || ata_phys_link_offline(slave));
5309}
 
5310
5311#ifdef CONFIG_PM
5312static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5313				unsigned int action, unsigned int ehi_flags,
5314				bool async)
5315{
5316	struct ata_link *link;
5317	unsigned long flags;
5318
5319	/* Previous resume operation might still be in
5320	 * progress.  Wait for PM_PENDING to clear.
5321	 */
5322	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5323		ata_port_wait_eh(ap);
5324		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5325	}
5326
5327	/* request PM ops to EH */
5328	spin_lock_irqsave(ap->lock, flags);
5329
5330	ap->pm_mesg = mesg;
5331	ap->pflags |= ATA_PFLAG_PM_PENDING;
5332	ata_for_each_link(link, ap, HOST_FIRST) {
5333		link->eh_info.action |= action;
5334		link->eh_info.flags |= ehi_flags;
5335	}
5336
5337	ata_port_schedule_eh(ap);
5338
5339	spin_unlock_irqrestore(ap->lock, flags);
5340
5341	if (!async) {
5342		ata_port_wait_eh(ap);
5343		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5344	}
5345}
5346
5347/*
5348 * On some hardware, device fails to respond after spun down for suspend.  As
5349 * the device won't be used before being resumed, we don't need to touch the
5350 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
5351 *
5352 * http://thread.gmane.org/gmane.linux.ide/46764
5353 */
5354static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5355						 | ATA_EHI_NO_AUTOPSY
5356						 | ATA_EHI_NO_RECOVERY;
5357
5358static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5359{
5360	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5361}
5362
5363static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5364{
5365	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5366}
5367
5368static int ata_port_pm_suspend(struct device *dev)
5369{
5370	struct ata_port *ap = to_ata_port(dev);
5371
5372	if (pm_runtime_suspended(dev))
5373		return 0;
5374
5375	ata_port_suspend(ap, PMSG_SUSPEND);
5376	return 0;
5377}
5378
5379static int ata_port_pm_freeze(struct device *dev)
5380{
5381	struct ata_port *ap = to_ata_port(dev);
5382
5383	if (pm_runtime_suspended(dev))
5384		return 0;
5385
5386	ata_port_suspend(ap, PMSG_FREEZE);
5387	return 0;
5388}
5389
5390static int ata_port_pm_poweroff(struct device *dev)
5391{
5392	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5393	return 0;
5394}
5395
5396static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5397						| ATA_EHI_QUIET;
5398
5399static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5400{
5401	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5402}
5403
5404static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5405{
5406	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5407}
5408
5409static int ata_port_pm_resume(struct device *dev)
5410{
5411	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5412	pm_runtime_disable(dev);
5413	pm_runtime_set_active(dev);
5414	pm_runtime_enable(dev);
5415	return 0;
5416}
5417
5418/*
5419 * For ODDs, the upper layer will poll for media change every few seconds,
5420 * which will make it enter and leave suspend state every few seconds. And
5421 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5422 * is very little and the ODD may malfunction after constantly being reset.
5423 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5424 * ODD is attached to the port.
5425 */
5426static int ata_port_runtime_idle(struct device *dev)
5427{
5428	struct ata_port *ap = to_ata_port(dev);
5429	struct ata_link *link;
5430	struct ata_device *adev;
5431
5432	ata_for_each_link(link, ap, HOST_FIRST) {
5433		ata_for_each_dev(adev, link, ENABLED)
5434			if (adev->class == ATA_DEV_ATAPI &&
5435			    !zpodd_dev_enabled(adev))
5436				return -EBUSY;
5437	}
5438
5439	return 0;
5440}
5441
5442static int ata_port_runtime_suspend(struct device *dev)
5443{
5444	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5445	return 0;
5446}
5447
5448static int ata_port_runtime_resume(struct device *dev)
5449{
5450	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5451	return 0;
5452}
5453
5454static const struct dev_pm_ops ata_port_pm_ops = {
5455	.suspend = ata_port_pm_suspend,
5456	.resume = ata_port_pm_resume,
5457	.freeze = ata_port_pm_freeze,
5458	.thaw = ata_port_pm_resume,
5459	.poweroff = ata_port_pm_poweroff,
5460	.restore = ata_port_pm_resume,
5461
5462	.runtime_suspend = ata_port_runtime_suspend,
5463	.runtime_resume = ata_port_runtime_resume,
5464	.runtime_idle = ata_port_runtime_idle,
5465};
5466
5467/* sas ports don't participate in pm runtime management of ata_ports,
5468 * and need to resume ata devices at the domain level, not the per-port
5469 * level. sas suspend/resume is async to allow parallel port recovery
5470 * since sas has multiple ata_port instances per Scsi_Host.
5471 */
5472void ata_sas_port_suspend(struct ata_port *ap)
5473{
5474	ata_port_suspend_async(ap, PMSG_SUSPEND);
5475}
5476EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5477
5478void ata_sas_port_resume(struct ata_port *ap)
5479{
5480	ata_port_resume_async(ap, PMSG_RESUME);
5481}
5482EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5483
5484/**
5485 *	ata_host_suspend - suspend host
5486 *	@host: host to suspend
5487 *	@mesg: PM message
5488 *
5489 *	Suspend @host.  Actual operation is performed by port suspend.
5490 */
5491int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5492{
5493	host->dev->power.power_state = mesg;
5494	return 0;
5495}
 
5496
5497/**
5498 *	ata_host_resume - resume host
5499 *	@host: host to resume
5500 *
5501 *	Resume @host.  Actual operation is performed by port resume.
5502 */
5503void ata_host_resume(struct ata_host *host)
5504{
5505	host->dev->power.power_state = PMSG_ON;
5506}
 
5507#endif
5508
5509struct device_type ata_port_type = {
5510	.name = "ata_port",
5511#ifdef CONFIG_PM
5512	.pm = &ata_port_pm_ops,
5513#endif
5514};
5515
5516/**
5517 *	ata_dev_init - Initialize an ata_device structure
5518 *	@dev: Device structure to initialize
5519 *
5520 *	Initialize @dev in preparation for probing.
5521 *
5522 *	LOCKING:
5523 *	Inherited from caller.
5524 */
5525void ata_dev_init(struct ata_device *dev)
5526{
5527	struct ata_link *link = ata_dev_phys_link(dev);
5528	struct ata_port *ap = link->ap;
5529	unsigned long flags;
5530
5531	/* SATA spd limit is bound to the attached device, reset together */
5532	link->sata_spd_limit = link->hw_sata_spd_limit;
5533	link->sata_spd = 0;
5534
5535	/* High bits of dev->flags are used to record warm plug
5536	 * requests which occur asynchronously.  Synchronize using
5537	 * host lock.
5538	 */
5539	spin_lock_irqsave(ap->lock, flags);
5540	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5541	dev->horkage = 0;
5542	spin_unlock_irqrestore(ap->lock, flags);
5543
5544	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5545	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5546	dev->pio_mask = UINT_MAX;
5547	dev->mwdma_mask = UINT_MAX;
5548	dev->udma_mask = UINT_MAX;
5549}
5550
5551/**
5552 *	ata_link_init - Initialize an ata_link structure
5553 *	@ap: ATA port link is attached to
5554 *	@link: Link structure to initialize
5555 *	@pmp: Port multiplier port number
5556 *
5557 *	Initialize @link.
5558 *
5559 *	LOCKING:
5560 *	Kernel thread context (may sleep)
5561 */
5562void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5563{
5564	int i;
5565
5566	/* clear everything except for devices */
5567	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5568	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5569
5570	link->ap = ap;
5571	link->pmp = pmp;
5572	link->active_tag = ATA_TAG_POISON;
5573	link->hw_sata_spd_limit = UINT_MAX;
5574
5575	/* can't use iterator, ap isn't initialized yet */
5576	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5577		struct ata_device *dev = &link->device[i];
5578
5579		dev->link = link;
5580		dev->devno = dev - link->device;
5581#ifdef CONFIG_ATA_ACPI
5582		dev->gtf_filter = ata_acpi_gtf_filter;
5583#endif
5584		ata_dev_init(dev);
5585	}
5586}
5587
5588/**
5589 *	sata_link_init_spd - Initialize link->sata_spd_limit
5590 *	@link: Link to configure sata_spd_limit for
5591 *
5592 *	Initialize @link->[hw_]sata_spd_limit to the currently
5593 *	configured value.
5594 *
5595 *	LOCKING:
5596 *	Kernel thread context (may sleep).
5597 *
5598 *	RETURNS:
5599 *	0 on success, -errno on failure.
5600 */
5601int sata_link_init_spd(struct ata_link *link)
5602{
5603	u8 spd;
5604	int rc;
5605
5606	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5607	if (rc)
5608		return rc;
5609
5610	spd = (link->saved_scontrol >> 4) & 0xf;
5611	if (spd)
5612		link->hw_sata_spd_limit &= (1 << spd) - 1;
5613
5614	ata_force_link_limits(link);
5615
5616	link->sata_spd_limit = link->hw_sata_spd_limit;
5617
5618	return 0;
5619}
5620
5621/**
5622 *	ata_port_alloc - allocate and initialize basic ATA port resources
5623 *	@host: ATA host this allocated port belongs to
5624 *
5625 *	Allocate and initialize basic ATA port resources.
5626 *
5627 *	RETURNS:
5628 *	Allocate ATA port on success, NULL on failure.
5629 *
5630 *	LOCKING:
5631 *	Inherited from calling layer (may sleep).
5632 */
5633struct ata_port *ata_port_alloc(struct ata_host *host)
5634{
5635	struct ata_port *ap;
5636
5637	DPRINTK("ENTER\n");
5638
5639	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5640	if (!ap)
5641		return NULL;
5642
5643	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5644	ap->lock = &host->lock;
5645	ap->print_id = -1;
5646	ap->local_port_no = -1;
5647	ap->host = host;
5648	ap->dev = host->dev;
5649
5650#if defined(ATA_VERBOSE_DEBUG)
5651	/* turn on all debugging levels */
5652	ap->msg_enable = 0x00FF;
5653#elif defined(ATA_DEBUG)
5654	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5655#else
5656	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5657#endif
5658
5659	mutex_init(&ap->scsi_scan_mutex);
5660	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5661	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5662	INIT_LIST_HEAD(&ap->eh_done_q);
5663	init_waitqueue_head(&ap->eh_wait_q);
5664	init_completion(&ap->park_req_pending);
5665	init_timer_deferrable(&ap->fastdrain_timer);
5666	ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5667	ap->fastdrain_timer.data = (unsigned long)ap;
5668
5669	ap->cbl = ATA_CBL_NONE;
5670
5671	ata_link_init(ap, &ap->link, 0);
5672
5673#ifdef ATA_IRQ_TRAP
5674	ap->stats.unhandled_irq = 1;
5675	ap->stats.idle_irq = 1;
5676#endif
5677	ata_sff_port_init(ap);
5678
5679	return ap;
5680}
5681
5682static void ata_host_release(struct device *gendev, void *res)
5683{
5684	struct ata_host *host = dev_get_drvdata(gendev);
5685	int i;
5686
5687	for (i = 0; i < host->n_ports; i++) {
5688		struct ata_port *ap = host->ports[i];
5689
5690		if (!ap)
5691			continue;
5692
5693		if (ap->scsi_host)
5694			scsi_host_put(ap->scsi_host);
5695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5696		kfree(ap->pmp_link);
5697		kfree(ap->slave_link);
5698		kfree(ap);
5699		host->ports[i] = NULL;
5700	}
 
 
5701
5702	dev_set_drvdata(gendev, NULL);
 
 
 
 
 
 
 
5703}
 
5704
5705/**
5706 *	ata_host_alloc - allocate and init basic ATA host resources
5707 *	@dev: generic device this host is associated with
5708 *	@max_ports: maximum number of ATA ports associated with this host
5709 *
5710 *	Allocate and initialize basic ATA host resources.  LLD calls
5711 *	this function to allocate a host, initializes it fully and
5712 *	attaches it using ata_host_register().
5713 *
5714 *	@max_ports ports are allocated and host->n_ports is
5715 *	initialized to @max_ports.  The caller is allowed to decrease
5716 *	host->n_ports before calling ata_host_register().  The unused
5717 *	ports will be automatically freed on registration.
5718 *
5719 *	RETURNS:
5720 *	Allocate ATA host on success, NULL on failure.
5721 *
5722 *	LOCKING:
5723 *	Inherited from calling layer (may sleep).
5724 */
5725struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5726{
5727	struct ata_host *host;
5728	size_t sz;
5729	int i;
 
5730
5731	DPRINTK("ENTER\n");
5732
5733	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5734		return NULL;
5735
5736	/* alloc a container for our list of ATA ports (buses) */
5737	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5738	/* alloc a container for our list of ATA ports (buses) */
5739	host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5740	if (!host)
 
 
 
 
 
 
 
5741		goto err_out;
5742
5743	devres_add(dev, host);
5744	dev_set_drvdata(dev, host);
5745
5746	spin_lock_init(&host->lock);
5747	mutex_init(&host->eh_mutex);
5748	host->dev = dev;
5749	host->n_ports = max_ports;
 
5750
5751	/* allocate ports bound to this host */
5752	for (i = 0; i < max_ports; i++) {
5753		struct ata_port *ap;
5754
5755		ap = ata_port_alloc(host);
5756		if (!ap)
5757			goto err_out;
5758
5759		ap->port_no = i;
5760		host->ports[i] = ap;
5761	}
5762
5763	devres_remove_group(dev, NULL);
5764	return host;
5765
5766 err_out:
5767	devres_release_group(dev, NULL);
 
 
5768	return NULL;
5769}
 
5770
5771/**
5772 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5773 *	@dev: generic device this host is associated with
5774 *	@ppi: array of ATA port_info to initialize host with
5775 *	@n_ports: number of ATA ports attached to this host
5776 *
5777 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5778 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5779 *	last entry will be used for the remaining ports.
5780 *
5781 *	RETURNS:
5782 *	Allocate ATA host on success, NULL on failure.
5783 *
5784 *	LOCKING:
5785 *	Inherited from calling layer (may sleep).
5786 */
5787struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5788				      const struct ata_port_info * const * ppi,
5789				      int n_ports)
5790{
5791	const struct ata_port_info *pi;
5792	struct ata_host *host;
5793	int i, j;
5794
5795	host = ata_host_alloc(dev, n_ports);
5796	if (!host)
5797		return NULL;
5798
5799	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5800		struct ata_port *ap = host->ports[i];
5801
5802		if (ppi[j])
5803			pi = ppi[j++];
5804
5805		ap->pio_mask = pi->pio_mask;
5806		ap->mwdma_mask = pi->mwdma_mask;
5807		ap->udma_mask = pi->udma_mask;
5808		ap->flags |= pi->flags;
5809		ap->link.flags |= pi->link_flags;
5810		ap->ops = pi->port_ops;
5811
5812		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5813			host->ops = pi->port_ops;
5814	}
5815
5816	return host;
5817}
5818
5819/**
5820 *	ata_slave_link_init - initialize slave link
5821 *	@ap: port to initialize slave link for
5822 *
5823 *	Create and initialize slave link for @ap.  This enables slave
5824 *	link handling on the port.
5825 *
5826 *	In libata, a port contains links and a link contains devices.
5827 *	There is single host link but if a PMP is attached to it,
5828 *	there can be multiple fan-out links.  On SATA, there's usually
5829 *	a single device connected to a link but PATA and SATA
5830 *	controllers emulating TF based interface can have two - master
5831 *	and slave.
5832 *
5833 *	However, there are a few controllers which don't fit into this
5834 *	abstraction too well - SATA controllers which emulate TF
5835 *	interface with both master and slave devices but also have
5836 *	separate SCR register sets for each device.  These controllers
5837 *	need separate links for physical link handling
5838 *	(e.g. onlineness, link speed) but should be treated like a
5839 *	traditional M/S controller for everything else (e.g. command
5840 *	issue, softreset).
5841 *
5842 *	slave_link is libata's way of handling this class of
5843 *	controllers without impacting core layer too much.  For
5844 *	anything other than physical link handling, the default host
5845 *	link is used for both master and slave.  For physical link
5846 *	handling, separate @ap->slave_link is used.  All dirty details
5847 *	are implemented inside libata core layer.  From LLD's POV, the
5848 *	only difference is that prereset, hardreset and postreset are
5849 *	called once more for the slave link, so the reset sequence
5850 *	looks like the following.
5851 *
5852 *	prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5853 *	softreset(M) -> postreset(M) -> postreset(S)
5854 *
5855 *	Note that softreset is called only for the master.  Softreset
5856 *	resets both M/S by definition, so SRST on master should handle
5857 *	both (the standard method will work just fine).
5858 *
5859 *	LOCKING:
5860 *	Should be called before host is registered.
5861 *
5862 *	RETURNS:
5863 *	0 on success, -errno on failure.
5864 */
5865int ata_slave_link_init(struct ata_port *ap)
5866{
5867	struct ata_link *link;
5868
5869	WARN_ON(ap->slave_link);
5870	WARN_ON(ap->flags & ATA_FLAG_PMP);
5871
5872	link = kzalloc(sizeof(*link), GFP_KERNEL);
5873	if (!link)
5874		return -ENOMEM;
5875
5876	ata_link_init(ap, link, 1);
5877	ap->slave_link = link;
5878	return 0;
5879}
5880
5881static void ata_host_stop(struct device *gendev, void *res)
5882{
5883	struct ata_host *host = dev_get_drvdata(gendev);
5884	int i;
5885
5886	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5887
5888	for (i = 0; i < host->n_ports; i++) {
5889		struct ata_port *ap = host->ports[i];
5890
5891		if (ap->ops->port_stop)
5892			ap->ops->port_stop(ap);
5893	}
5894
5895	if (host->ops->host_stop)
5896		host->ops->host_stop(host);
5897}
5898
5899/**
5900 *	ata_finalize_port_ops - finalize ata_port_operations
5901 *	@ops: ata_port_operations to finalize
5902 *
5903 *	An ata_port_operations can inherit from another ops and that
5904 *	ops can again inherit from another.  This can go on as many
5905 *	times as necessary as long as there is no loop in the
5906 *	inheritance chain.
5907 *
5908 *	Ops tables are finalized when the host is started.  NULL or
5909 *	unspecified entries are inherited from the closet ancestor
5910 *	which has the method and the entry is populated with it.
5911 *	After finalization, the ops table directly points to all the
5912 *	methods and ->inherits is no longer necessary and cleared.
5913 *
5914 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5915 *
5916 *	LOCKING:
5917 *	None.
5918 */
5919static void ata_finalize_port_ops(struct ata_port_operations *ops)
5920{
5921	static DEFINE_SPINLOCK(lock);
5922	const struct ata_port_operations *cur;
5923	void **begin = (void **)ops;
5924	void **end = (void **)&ops->inherits;
5925	void **pp;
5926
5927	if (!ops || !ops->inherits)
5928		return;
5929
5930	spin_lock(&lock);
5931
5932	for (cur = ops->inherits; cur; cur = cur->inherits) {
5933		void **inherit = (void **)cur;
5934
5935		for (pp = begin; pp < end; pp++, inherit++)
5936			if (!*pp)
5937				*pp = *inherit;
5938	}
5939
5940	for (pp = begin; pp < end; pp++)
5941		if (IS_ERR(*pp))
5942			*pp = NULL;
5943
5944	ops->inherits = NULL;
5945
5946	spin_unlock(&lock);
5947}
5948
5949/**
5950 *	ata_host_start - start and freeze ports of an ATA host
5951 *	@host: ATA host to start ports for
5952 *
5953 *	Start and then freeze ports of @host.  Started status is
5954 *	recorded in host->flags, so this function can be called
5955 *	multiple times.  Ports are guaranteed to get started only
5956 *	once.  If host->ops isn't initialized yet, its set to the
5957 *	first non-dummy port ops.
5958 *
5959 *	LOCKING:
5960 *	Inherited from calling layer (may sleep).
5961 *
5962 *	RETURNS:
5963 *	0 if all ports are started successfully, -errno otherwise.
5964 */
5965int ata_host_start(struct ata_host *host)
5966{
5967	int have_stop = 0;
5968	void *start_dr = NULL;
5969	int i, rc;
5970
5971	if (host->flags & ATA_HOST_STARTED)
5972		return 0;
5973
5974	ata_finalize_port_ops(host->ops);
5975
5976	for (i = 0; i < host->n_ports; i++) {
5977		struct ata_port *ap = host->ports[i];
5978
5979		ata_finalize_port_ops(ap->ops);
5980
5981		if (!host->ops && !ata_port_is_dummy(ap))
5982			host->ops = ap->ops;
5983
5984		if (ap->ops->port_stop)
5985			have_stop = 1;
5986	}
5987
5988	if (host->ops->host_stop)
5989		have_stop = 1;
5990
5991	if (have_stop) {
5992		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5993		if (!start_dr)
5994			return -ENOMEM;
5995	}
5996
5997	for (i = 0; i < host->n_ports; i++) {
5998		struct ata_port *ap = host->ports[i];
5999
6000		if (ap->ops->port_start) {
6001			rc = ap->ops->port_start(ap);
6002			if (rc) {
6003				if (rc != -ENODEV)
6004					dev_err(host->dev,
6005						"failed to start port %d (errno=%d)\n",
6006						i, rc);
6007				goto err_out;
6008			}
6009		}
6010		ata_eh_freeze_port(ap);
6011	}
6012
6013	if (start_dr)
6014		devres_add(host->dev, start_dr);
6015	host->flags |= ATA_HOST_STARTED;
6016	return 0;
6017
6018 err_out:
6019	while (--i >= 0) {
6020		struct ata_port *ap = host->ports[i];
6021
6022		if (ap->ops->port_stop)
6023			ap->ops->port_stop(ap);
6024	}
6025	devres_free(start_dr);
6026	return rc;
6027}
 
6028
6029/**
6030 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6031 *	@host:	host to initialize
6032 *	@dev:	device host is attached to
6033 *	@ops:	port_ops
6034 *
6035 */
6036void ata_host_init(struct ata_host *host, struct device *dev,
6037		   struct ata_port_operations *ops)
6038{
6039	spin_lock_init(&host->lock);
6040	mutex_init(&host->eh_mutex);
6041	host->n_tags = ATA_MAX_QUEUE - 1;
6042	host->dev = dev;
6043	host->ops = ops;
 
6044}
 
6045
6046void __ata_port_probe(struct ata_port *ap)
6047{
6048	struct ata_eh_info *ehi = &ap->link.eh_info;
6049	unsigned long flags;
6050
6051	/* kick EH for boot probing */
6052	spin_lock_irqsave(ap->lock, flags);
6053
6054	ehi->probe_mask |= ATA_ALL_DEVICES;
6055	ehi->action |= ATA_EH_RESET;
6056	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6057
6058	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6059	ap->pflags |= ATA_PFLAG_LOADING;
6060	ata_port_schedule_eh(ap);
6061
6062	spin_unlock_irqrestore(ap->lock, flags);
6063}
6064
6065int ata_port_probe(struct ata_port *ap)
6066{
6067	int rc = 0;
6068
6069	if (ap->ops->error_handler) {
6070		__ata_port_probe(ap);
6071		ata_port_wait_eh(ap);
6072	} else {
6073		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6074		rc = ata_bus_probe(ap);
6075		DPRINTK("ata%u: bus probe end\n", ap->print_id);
6076	}
6077	return rc;
6078}
6079
6080
6081static void async_port_probe(void *data, async_cookie_t cookie)
6082{
6083	struct ata_port *ap = data;
6084
6085	/*
6086	 * If we're not allowed to scan this host in parallel,
6087	 * we need to wait until all previous scans have completed
6088	 * before going further.
6089	 * Jeff Garzik says this is only within a controller, so we
6090	 * don't need to wait for port 0, only for later ports.
6091	 */
6092	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6093		async_synchronize_cookie(cookie);
6094
6095	(void)ata_port_probe(ap);
6096
6097	/* in order to keep device order, we need to synchronize at this point */
6098	async_synchronize_cookie(cookie);
6099
6100	ata_scsi_scan_host(ap, 1);
6101}
6102
6103/**
6104 *	ata_host_register - register initialized ATA host
6105 *	@host: ATA host to register
6106 *	@sht: template for SCSI host
6107 *
6108 *	Register initialized ATA host.  @host is allocated using
6109 *	ata_host_alloc() and fully initialized by LLD.  This function
6110 *	starts ports, registers @host with ATA and SCSI layers and
6111 *	probe registered devices.
6112 *
6113 *	LOCKING:
6114 *	Inherited from calling layer (may sleep).
6115 *
6116 *	RETURNS:
6117 *	0 on success, -errno otherwise.
6118 */
6119int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6120{
6121	int i, rc;
6122
6123	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6124
6125	/* host must have been started */
6126	if (!(host->flags & ATA_HOST_STARTED)) {
6127		dev_err(host->dev, "BUG: trying to register unstarted host\n");
6128		WARN_ON(1);
6129		return -EINVAL;
6130	}
6131
6132	/* Blow away unused ports.  This happens when LLD can't
6133	 * determine the exact number of ports to allocate at
6134	 * allocation time.
6135	 */
6136	for (i = host->n_ports; host->ports[i]; i++)
6137		kfree(host->ports[i]);
6138
6139	/* give ports names and add SCSI hosts */
6140	for (i = 0; i < host->n_ports; i++) {
6141		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6142		host->ports[i]->local_port_no = i + 1;
6143	}
6144
6145	/* Create associated sysfs transport objects  */
6146	for (i = 0; i < host->n_ports; i++) {
6147		rc = ata_tport_add(host->dev,host->ports[i]);
6148		if (rc) {
6149			goto err_tadd;
6150		}
6151	}
6152
6153	rc = ata_scsi_add_hosts(host, sht);
6154	if (rc)
6155		goto err_tadd;
6156
6157	/* set cable, sata_spd_limit and report */
6158	for (i = 0; i < host->n_ports; i++) {
6159		struct ata_port *ap = host->ports[i];
6160		unsigned long xfer_mask;
6161
6162		/* set SATA cable type if still unset */
6163		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6164			ap->cbl = ATA_CBL_SATA;
6165
6166		/* init sata_spd_limit to the current value */
6167		sata_link_init_spd(&ap->link);
6168		if (ap->slave_link)
6169			sata_link_init_spd(ap->slave_link);
6170
6171		/* print per-port info to dmesg */
6172		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6173					      ap->udma_mask);
6174
6175		if (!ata_port_is_dummy(ap)) {
6176			ata_port_info(ap, "%cATA max %s %s\n",
6177				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6178				      ata_mode_string(xfer_mask),
6179				      ap->link.eh_info.desc);
6180			ata_ehi_clear_desc(&ap->link.eh_info);
6181		} else
6182			ata_port_info(ap, "DUMMY\n");
6183	}
6184
6185	/* perform each probe asynchronously */
6186	for (i = 0; i < host->n_ports; i++) {
6187		struct ata_port *ap = host->ports[i];
6188		async_schedule(async_port_probe, ap);
6189	}
6190
6191	return 0;
6192
6193 err_tadd:
6194	while (--i >= 0) {
6195		ata_tport_delete(host->ports[i]);
6196	}
6197	return rc;
6198
6199}
 
6200
6201/**
6202 *	ata_host_activate - start host, request IRQ and register it
6203 *	@host: target ATA host
6204 *	@irq: IRQ to request
6205 *	@irq_handler: irq_handler used when requesting IRQ
6206 *	@irq_flags: irq_flags used when requesting IRQ
6207 *	@sht: scsi_host_template to use when registering the host
6208 *
6209 *	After allocating an ATA host and initializing it, most libata
6210 *	LLDs perform three steps to activate the host - start host,
6211 *	request IRQ and register it.  This helper takes necessasry
6212 *	arguments and performs the three steps in one go.
6213 *
6214 *	An invalid IRQ skips the IRQ registration and expects the host to
6215 *	have set polling mode on the port. In this case, @irq_handler
6216 *	should be NULL.
6217 *
6218 *	LOCKING:
6219 *	Inherited from calling layer (may sleep).
6220 *
6221 *	RETURNS:
6222 *	0 on success, -errno otherwise.
6223 */
6224int ata_host_activate(struct ata_host *host, int irq,
6225		      irq_handler_t irq_handler, unsigned long irq_flags,
6226		      struct scsi_host_template *sht)
6227{
6228	int i, rc;
6229	char *irq_desc;
6230
6231	rc = ata_host_start(host);
6232	if (rc)
6233		return rc;
6234
6235	/* Special case for polling mode */
6236	if (!irq) {
6237		WARN_ON(irq_handler);
6238		return ata_host_register(host, sht);
6239	}
6240
6241	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6242				  dev_driver_string(host->dev),
6243				  dev_name(host->dev));
6244	if (!irq_desc)
6245		return -ENOMEM;
6246
6247	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6248			      irq_desc, host);
6249	if (rc)
6250		return rc;
6251
6252	for (i = 0; i < host->n_ports; i++)
6253		ata_port_desc(host->ports[i], "irq %d", irq);
6254
6255	rc = ata_host_register(host, sht);
6256	/* if failed, just free the IRQ and leave ports alone */
6257	if (rc)
6258		devm_free_irq(host->dev, irq, host);
6259
6260	return rc;
6261}
 
6262
6263/**
6264 *	ata_port_detach - Detach ATA port in prepration of device removal
6265 *	@ap: ATA port to be detached
6266 *
6267 *	Detach all ATA devices and the associated SCSI devices of @ap;
6268 *	then, remove the associated SCSI host.  @ap is guaranteed to
6269 *	be quiescent on return from this function.
6270 *
6271 *	LOCKING:
6272 *	Kernel thread context (may sleep).
6273 */
6274static void ata_port_detach(struct ata_port *ap)
6275{
6276	unsigned long flags;
6277	struct ata_link *link;
6278	struct ata_device *dev;
6279
6280	if (!ap->ops->error_handler)
6281		goto skip_eh;
6282
6283	/* tell EH we're leaving & flush EH */
6284	spin_lock_irqsave(ap->lock, flags);
6285	ap->pflags |= ATA_PFLAG_UNLOADING;
6286	ata_port_schedule_eh(ap);
6287	spin_unlock_irqrestore(ap->lock, flags);
6288
6289	/* wait till EH commits suicide */
6290	ata_port_wait_eh(ap);
6291
6292	/* it better be dead now */
6293	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6294
6295	cancel_delayed_work_sync(&ap->hotplug_task);
6296
6297 skip_eh:
6298	/* clean up zpodd on port removal */
6299	ata_for_each_link(link, ap, HOST_FIRST) {
6300		ata_for_each_dev(dev, link, ALL) {
6301			if (zpodd_dev_enabled(dev))
6302				zpodd_exit(dev);
6303		}
6304	}
6305	if (ap->pmp_link) {
6306		int i;
6307		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6308			ata_tlink_delete(&ap->pmp_link[i]);
6309	}
6310	/* remove the associated SCSI host */
6311	scsi_remove_host(ap->scsi_host);
6312	ata_tport_delete(ap);
6313}
6314
6315/**
6316 *	ata_host_detach - Detach all ports of an ATA host
6317 *	@host: Host to detach
6318 *
6319 *	Detach all ports of @host.
6320 *
6321 *	LOCKING:
6322 *	Kernel thread context (may sleep).
6323 */
6324void ata_host_detach(struct ata_host *host)
6325{
6326	int i;
6327
6328	for (i = 0; i < host->n_ports; i++)
 
 
6329		ata_port_detach(host->ports[i]);
 
6330
6331	/* the host is dead now, dissociate ACPI */
6332	ata_acpi_dissociate(host);
6333}
 
6334
6335#ifdef CONFIG_PCI
6336
6337/**
6338 *	ata_pci_remove_one - PCI layer callback for device removal
6339 *	@pdev: PCI device that was removed
6340 *
6341 *	PCI layer indicates to libata via this hook that hot-unplug or
6342 *	module unload event has occurred.  Detach all ports.  Resource
6343 *	release is handled via devres.
6344 *
6345 *	LOCKING:
6346 *	Inherited from PCI layer (may sleep).
6347 */
6348void ata_pci_remove_one(struct pci_dev *pdev)
6349{
6350	struct ata_host *host = pci_get_drvdata(pdev);
6351
6352	ata_host_detach(host);
6353}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6354
6355/* move to PCI subsystem */
6356int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6357{
6358	unsigned long tmp = 0;
6359
6360	switch (bits->width) {
6361	case 1: {
6362		u8 tmp8 = 0;
6363		pci_read_config_byte(pdev, bits->reg, &tmp8);
6364		tmp = tmp8;
6365		break;
6366	}
6367	case 2: {
6368		u16 tmp16 = 0;
6369		pci_read_config_word(pdev, bits->reg, &tmp16);
6370		tmp = tmp16;
6371		break;
6372	}
6373	case 4: {
6374		u32 tmp32 = 0;
6375		pci_read_config_dword(pdev, bits->reg, &tmp32);
6376		tmp = tmp32;
6377		break;
6378	}
6379
6380	default:
6381		return -EINVAL;
6382	}
6383
6384	tmp &= bits->mask;
6385
6386	return (tmp == bits->val) ? 1 : 0;
6387}
 
6388
6389#ifdef CONFIG_PM
6390void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6391{
6392	pci_save_state(pdev);
6393	pci_disable_device(pdev);
6394
6395	if (mesg.event & PM_EVENT_SLEEP)
6396		pci_set_power_state(pdev, PCI_D3hot);
6397}
 
6398
6399int ata_pci_device_do_resume(struct pci_dev *pdev)
6400{
6401	int rc;
6402
6403	pci_set_power_state(pdev, PCI_D0);
6404	pci_restore_state(pdev);
6405
6406	rc = pcim_enable_device(pdev);
6407	if (rc) {
6408		dev_err(&pdev->dev,
6409			"failed to enable device after resume (%d)\n", rc);
6410		return rc;
6411	}
6412
6413	pci_set_master(pdev);
6414	return 0;
6415}
 
6416
6417int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6418{
6419	struct ata_host *host = pci_get_drvdata(pdev);
6420	int rc = 0;
6421
6422	rc = ata_host_suspend(host, mesg);
6423	if (rc)
6424		return rc;
6425
6426	ata_pci_device_do_suspend(pdev, mesg);
6427
6428	return 0;
6429}
 
6430
6431int ata_pci_device_resume(struct pci_dev *pdev)
6432{
6433	struct ata_host *host = pci_get_drvdata(pdev);
6434	int rc;
6435
6436	rc = ata_pci_device_do_resume(pdev);
6437	if (rc == 0)
6438		ata_host_resume(host);
6439	return rc;
6440}
 
6441#endif /* CONFIG_PM */
6442
6443#endif /* CONFIG_PCI */
6444
6445/**
6446 *	ata_platform_remove_one - Platform layer callback for device removal
6447 *	@pdev: Platform device that was removed
6448 *
6449 *	Platform layer indicates to libata via this hook that hot-unplug or
6450 *	module unload event has occurred.  Detach all ports.  Resource
6451 *	release is handled via devres.
6452 *
6453 *	LOCKING:
6454 *	Inherited from platform layer (may sleep).
6455 */
6456int ata_platform_remove_one(struct platform_device *pdev)
6457{
6458	struct ata_host *host = platform_get_drvdata(pdev);
6459
6460	ata_host_detach(host);
6461
6462	return 0;
6463}
 
6464
 
6465static int __init ata_parse_force_one(char **cur,
6466				      struct ata_force_ent *force_ent,
6467				      const char **reason)
6468{
6469	static const struct ata_force_param force_tbl[] __initconst = {
6470		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6471		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6472		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6473		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6474		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6475		{ "sata",	.cbl		= ATA_CBL_SATA },
6476		{ "1.5Gbps",	.spd_limit	= 1 },
6477		{ "3.0Gbps",	.spd_limit	= 2 },
6478		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6479		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6480		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6481		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6482		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6483		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6484		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6485		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6486		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6487		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6488		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6489		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6490		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6491		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6492		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6493		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6494		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6495		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6496		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6497		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6498		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6499		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6500		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6501		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6502		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6503		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6504		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6505		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6506		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6507		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6508		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6509		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6510		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6511		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6512		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6513		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6514		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6515		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6516		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6517		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6518		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6519		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6520		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6521		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6522		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6523	};
6524	char *start = *cur, *p = *cur;
6525	char *id, *val, *endp;
6526	const struct ata_force_param *match_fp = NULL;
6527	int nr_matches = 0, i;
6528
6529	/* find where this param ends and update *cur */
6530	while (*p != '\0' && *p != ',')
6531		p++;
6532
6533	if (*p == '\0')
6534		*cur = p;
6535	else
6536		*cur = p + 1;
6537
6538	*p = '\0';
6539
6540	/* parse */
6541	p = strchr(start, ':');
6542	if (!p) {
6543		val = strstrip(start);
6544		goto parse_val;
6545	}
6546	*p = '\0';
6547
6548	id = strstrip(start);
6549	val = strstrip(p + 1);
6550
6551	/* parse id */
6552	p = strchr(id, '.');
6553	if (p) {
6554		*p++ = '\0';
6555		force_ent->device = simple_strtoul(p, &endp, 10);
6556		if (p == endp || *endp != '\0') {
6557			*reason = "invalid device";
6558			return -EINVAL;
6559		}
6560	}
6561
6562	force_ent->port = simple_strtoul(id, &endp, 10);
6563	if (p == endp || *endp != '\0') {
6564		*reason = "invalid port/link";
6565		return -EINVAL;
6566	}
6567
6568 parse_val:
6569	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6570	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6571		const struct ata_force_param *fp = &force_tbl[i];
6572
6573		if (strncasecmp(val, fp->name, strlen(val)))
6574			continue;
6575
6576		nr_matches++;
6577		match_fp = fp;
6578
6579		if (strcasecmp(val, fp->name) == 0) {
6580			nr_matches = 1;
6581			break;
6582		}
6583	}
6584
6585	if (!nr_matches) {
6586		*reason = "unknown value";
6587		return -EINVAL;
6588	}
6589	if (nr_matches > 1) {
6590		*reason = "ambigious value";
6591		return -EINVAL;
6592	}
6593
6594	force_ent->param = *match_fp;
6595
6596	return 0;
6597}
6598
6599static void __init ata_parse_force_param(void)
6600{
6601	int idx = 0, size = 1;
6602	int last_port = -1, last_device = -1;
6603	char *p, *cur, *next;
6604
6605	/* calculate maximum number of params and allocate force_tbl */
6606	for (p = ata_force_param_buf; *p; p++)
6607		if (*p == ',')
6608			size++;
6609
6610	ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6611	if (!ata_force_tbl) {
6612		printk(KERN_WARNING "ata: failed to extend force table, "
6613		       "libata.force ignored\n");
6614		return;
6615	}
6616
6617	/* parse and populate the table */
6618	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6619		const char *reason = "";
6620		struct ata_force_ent te = { .port = -1, .device = -1 };
6621
6622		next = cur;
6623		if (ata_parse_force_one(&next, &te, &reason)) {
6624			printk(KERN_WARNING "ata: failed to parse force "
6625			       "parameter \"%s\" (%s)\n",
6626			       cur, reason);
6627			continue;
6628		}
6629
6630		if (te.port == -1) {
6631			te.port = last_port;
6632			te.device = last_device;
6633		}
6634
6635		ata_force_tbl[idx++] = te;
6636
6637		last_port = te.port;
6638		last_device = te.device;
6639	}
6640
6641	ata_force_tbl_size = idx;
6642}
6643
 
 
 
 
 
 
 
 
 
6644static int __init ata_init(void)
6645{
6646	int rc;
6647
6648	ata_parse_force_param();
6649
6650	rc = ata_sff_init();
6651	if (rc) {
6652		kfree(ata_force_tbl);
6653		return rc;
6654	}
6655
6656	libata_transport_init();
6657	ata_scsi_transport_template = ata_attach_transport();
6658	if (!ata_scsi_transport_template) {
6659		ata_sff_exit();
6660		rc = -ENOMEM;
6661		goto err_out;
6662	}
6663
6664	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6665	return 0;
6666
6667err_out:
6668	return rc;
6669}
6670
6671static void __exit ata_exit(void)
6672{
6673	ata_release_transport(ata_scsi_transport_template);
6674	libata_transport_exit();
6675	ata_sff_exit();
6676	kfree(ata_force_tbl);
6677}
6678
6679subsys_initcall(ata_init);
6680module_exit(ata_exit);
6681
6682static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6683
6684int ata_ratelimit(void)
6685{
6686	return __ratelimit(&ratelimit);
6687}
 
6688
6689/**
6690 *	ata_msleep - ATA EH owner aware msleep
6691 *	@ap: ATA port to attribute the sleep to
6692 *	@msecs: duration to sleep in milliseconds
6693 *
6694 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6695 *	ownership is released before going to sleep and reacquired
6696 *	after the sleep is complete.  IOW, other ports sharing the
6697 *	@ap->host will be allowed to own the EH while this task is
6698 *	sleeping.
6699 *
6700 *	LOCKING:
6701 *	Might sleep.
6702 */
6703void ata_msleep(struct ata_port *ap, unsigned int msecs)
6704{
6705	bool owns_eh = ap && ap->host->eh_owner == current;
6706
6707	if (owns_eh)
6708		ata_eh_release(ap);
6709
6710	if (msecs < 20) {
6711		unsigned long usecs = msecs * USEC_PER_MSEC;
6712		usleep_range(usecs, usecs + 50);
6713	} else {
6714		msleep(msecs);
6715	}
6716
6717	if (owns_eh)
6718		ata_eh_acquire(ap);
6719}
 
6720
6721/**
6722 *	ata_wait_register - wait until register value changes
6723 *	@ap: ATA port to wait register for, can be NULL
6724 *	@reg: IO-mapped register
6725 *	@mask: Mask to apply to read register value
6726 *	@val: Wait condition
6727 *	@interval: polling interval in milliseconds
6728 *	@timeout: timeout in milliseconds
6729 *
6730 *	Waiting for some bits of register to change is a common
6731 *	operation for ATA controllers.  This function reads 32bit LE
6732 *	IO-mapped register @reg and tests for the following condition.
6733 *
6734 *	(*@reg & mask) != val
6735 *
6736 *	If the condition is met, it returns; otherwise, the process is
6737 *	repeated after @interval_msec until timeout.
6738 *
6739 *	LOCKING:
6740 *	Kernel thread context (may sleep)
6741 *
6742 *	RETURNS:
6743 *	The final register value.
6744 */
6745u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6746		      unsigned long interval, unsigned long timeout)
6747{
6748	unsigned long deadline;
6749	u32 tmp;
6750
6751	tmp = ioread32(reg);
6752
6753	/* Calculate timeout _after_ the first read to make sure
6754	 * preceding writes reach the controller before starting to
6755	 * eat away the timeout.
6756	 */
6757	deadline = ata_deadline(jiffies, timeout);
6758
6759	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6760		ata_msleep(ap, interval);
6761		tmp = ioread32(reg);
6762	}
6763
6764	return tmp;
6765}
6766
6767/**
6768 *	sata_lpm_ignore_phy_events - test if PHY event should be ignored
6769 *	@link: Link receiving the event
6770 *
6771 *	Test whether the received PHY event has to be ignored or not.
6772 *
6773 *	LOCKING:
6774 *	None:
6775 *
6776 *	RETURNS:
6777 *	True if the event has to be ignored.
6778 */
6779bool sata_lpm_ignore_phy_events(struct ata_link *link)
6780{
6781	unsigned long lpm_timeout = link->last_lpm_change +
6782				    msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6783
6784	/* if LPM is enabled, PHYRDY doesn't mean anything */
6785	if (link->lpm_policy > ATA_LPM_MAX_POWER)
6786		return true;
6787
6788	/* ignore the first PHY event after the LPM policy changed
6789	 * as it is might be spurious
6790	 */
6791	if ((link->flags & ATA_LFLAG_CHANGED) &&
6792	    time_before(jiffies, lpm_timeout))
6793		return true;
6794
6795	return false;
6796}
6797EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6798
6799/*
6800 * Dummy port_ops
6801 */
6802static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6803{
6804	return AC_ERR_SYSTEM;
6805}
6806
6807static void ata_dummy_error_handler(struct ata_port *ap)
6808{
6809	/* truly dummy */
6810}
6811
6812struct ata_port_operations ata_dummy_port_ops = {
6813	.qc_prep		= ata_noop_qc_prep,
6814	.qc_issue		= ata_dummy_qc_issue,
6815	.error_handler		= ata_dummy_error_handler,
6816	.sched_eh		= ata_std_sched_eh,
6817	.end_eh			= ata_std_end_eh,
6818};
 
6819
6820const struct ata_port_info ata_dummy_port_info = {
6821	.port_ops		= &ata_dummy_port_ops,
6822};
 
6823
6824/*
6825 * Utility print functions
6826 */
6827void ata_port_printk(const struct ata_port *ap, const char *level,
6828		     const char *fmt, ...)
6829{
6830	struct va_format vaf;
6831	va_list args;
6832
6833	va_start(args, fmt);
6834
6835	vaf.fmt = fmt;
6836	vaf.va = &args;
6837
6838	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6839
6840	va_end(args);
6841}
6842EXPORT_SYMBOL(ata_port_printk);
6843
6844void ata_link_printk(const struct ata_link *link, const char *level,
6845		     const char *fmt, ...)
6846{
6847	struct va_format vaf;
6848	va_list args;
6849
6850	va_start(args, fmt);
6851
6852	vaf.fmt = fmt;
6853	vaf.va = &args;
6854
6855	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6856		printk("%sata%u.%02u: %pV",
6857		       level, link->ap->print_id, link->pmp, &vaf);
6858	else
6859		printk("%sata%u: %pV",
6860		       level, link->ap->print_id, &vaf);
6861
6862	va_end(args);
6863}
6864EXPORT_SYMBOL(ata_link_printk);
6865
6866void ata_dev_printk(const struct ata_device *dev, const char *level,
6867		    const char *fmt, ...)
6868{
6869	struct va_format vaf;
6870	va_list args;
6871
6872	va_start(args, fmt);
6873
6874	vaf.fmt = fmt;
6875	vaf.va = &args;
6876
6877	printk("%sata%u.%02u: %pV",
6878	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6879	       &vaf);
6880
6881	va_end(args);
6882}
6883EXPORT_SYMBOL(ata_dev_printk);
6884
6885void ata_print_version(const struct device *dev, const char *version)
6886{
6887	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6888}
6889EXPORT_SYMBOL(ata_print_version);
6890
6891/*
6892 * libata is essentially a library of internal helper functions for
6893 * low-level ATA host controller drivers.  As such, the API/ABI is
6894 * likely to change as new drivers are added and updated.
6895 * Do not depend on ABI/API stability.
6896 */
6897EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6898EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6899EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6900EXPORT_SYMBOL_GPL(ata_base_port_ops);
6901EXPORT_SYMBOL_GPL(sata_port_ops);
6902EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6903EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6904EXPORT_SYMBOL_GPL(ata_link_next);
6905EXPORT_SYMBOL_GPL(ata_dev_next);
6906EXPORT_SYMBOL_GPL(ata_std_bios_param);
6907EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6908EXPORT_SYMBOL_GPL(ata_host_init);
6909EXPORT_SYMBOL_GPL(ata_host_alloc);
6910EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6911EXPORT_SYMBOL_GPL(ata_slave_link_init);
6912EXPORT_SYMBOL_GPL(ata_host_start);
6913EXPORT_SYMBOL_GPL(ata_host_register);
6914EXPORT_SYMBOL_GPL(ata_host_activate);
6915EXPORT_SYMBOL_GPL(ata_host_detach);
6916EXPORT_SYMBOL_GPL(ata_sg_init);
6917EXPORT_SYMBOL_GPL(ata_qc_complete);
6918EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6919EXPORT_SYMBOL_GPL(atapi_cmd_type);
6920EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6921EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6922EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6923EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6924EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6925EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6926EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6927EXPORT_SYMBOL_GPL(ata_mode_string);
6928EXPORT_SYMBOL_GPL(ata_id_xfermask);
6929EXPORT_SYMBOL_GPL(ata_do_set_mode);
6930EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6931EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6932EXPORT_SYMBOL_GPL(ata_dev_disable);
6933EXPORT_SYMBOL_GPL(sata_set_spd);
6934EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6935EXPORT_SYMBOL_GPL(sata_link_debounce);
6936EXPORT_SYMBOL_GPL(sata_link_resume);
6937EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6938EXPORT_SYMBOL_GPL(ata_std_prereset);
6939EXPORT_SYMBOL_GPL(sata_link_hardreset);
6940EXPORT_SYMBOL_GPL(sata_std_hardreset);
6941EXPORT_SYMBOL_GPL(ata_std_postreset);
6942EXPORT_SYMBOL_GPL(ata_dev_classify);
6943EXPORT_SYMBOL_GPL(ata_dev_pair);
6944EXPORT_SYMBOL_GPL(ata_ratelimit);
6945EXPORT_SYMBOL_GPL(ata_msleep);
6946EXPORT_SYMBOL_GPL(ata_wait_register);
6947EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6948EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6949EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6950EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6951EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6952EXPORT_SYMBOL_GPL(sata_scr_valid);
6953EXPORT_SYMBOL_GPL(sata_scr_read);
6954EXPORT_SYMBOL_GPL(sata_scr_write);
6955EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6956EXPORT_SYMBOL_GPL(ata_link_online);
6957EXPORT_SYMBOL_GPL(ata_link_offline);
6958#ifdef CONFIG_PM
6959EXPORT_SYMBOL_GPL(ata_host_suspend);
6960EXPORT_SYMBOL_GPL(ata_host_resume);
6961#endif /* CONFIG_PM */
6962EXPORT_SYMBOL_GPL(ata_id_string);
6963EXPORT_SYMBOL_GPL(ata_id_c_string);
6964EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6965EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6966
6967EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6968EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6969EXPORT_SYMBOL_GPL(ata_timing_compute);
6970EXPORT_SYMBOL_GPL(ata_timing_merge);
6971EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6972
6973#ifdef CONFIG_PCI
6974EXPORT_SYMBOL_GPL(pci_test_config_bits);
6975EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6976#ifdef CONFIG_PM
6977EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6978EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6979EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6980EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6981#endif /* CONFIG_PM */
6982#endif /* CONFIG_PCI */
6983
6984EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6985
6986EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6987EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6988EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6989EXPORT_SYMBOL_GPL(ata_port_desc);
6990#ifdef CONFIG_PCI
6991EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6992#endif /* CONFIG_PCI */
6993EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6994EXPORT_SYMBOL_GPL(ata_link_abort);
6995EXPORT_SYMBOL_GPL(ata_port_abort);
6996EXPORT_SYMBOL_GPL(ata_port_freeze);
6997EXPORT_SYMBOL_GPL(sata_async_notification);
6998EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6999EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7000EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7001EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7002EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7003EXPORT_SYMBOL_GPL(ata_do_eh);
7004EXPORT_SYMBOL_GPL(ata_std_error_handler);
7005
7006EXPORT_SYMBOL_GPL(ata_cable_40wire);
7007EXPORT_SYMBOL_GPL(ata_cable_80wire);
7008EXPORT_SYMBOL_GPL(ata_cable_unknown);
7009EXPORT_SYMBOL_GPL(ata_cable_ignore);
7010EXPORT_SYMBOL_GPL(ata_cable_sata);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  libata-core.c - helper library for ATA
   4 *
 
 
 
 
   5 *  Copyright 2003-2004 Red Hat, Inc.  All rights reserved.
   6 *  Copyright 2003-2004 Jeff Garzik
   7 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   8 *  libata documentation is available via 'make {ps|pdf}docs',
   9 *  as Documentation/driver-api/libata.rst
  10 *
  11 *  Hardware documentation available from http://www.t13.org/ and
  12 *  http://www.sata-io.org/
  13 *
  14 *  Standards documents from:
  15 *	http://www.t13.org (ATA standards, PCI DMA IDE spec)
  16 *	http://www.t10.org (SCSI MMC - for ATAPI MMC)
  17 *	http://www.sata-io.org (SATA)
  18 *	http://www.compactflash.org (CF)
  19 *	http://www.qic.org (QIC157 - Tape and DSC)
  20 *	http://www.ce-ata.org (CE-ATA: not supported)
  21 *
  22 * libata is essentially a library of internal helper functions for
  23 * low-level ATA host controller drivers.  As such, the API/ABI is
  24 * likely to change as new drivers are added and updated.
  25 * Do not depend on ABI/API stability.
  26 */
  27
  28#include <linux/kernel.h>
  29#include <linux/module.h>
  30#include <linux/pci.h>
  31#include <linux/init.h>
  32#include <linux/list.h>
  33#include <linux/mm.h>
  34#include <linux/spinlock.h>
  35#include <linux/blkdev.h>
  36#include <linux/delay.h>
  37#include <linux/timer.h>
  38#include <linux/time.h>
  39#include <linux/interrupt.h>
  40#include <linux/completion.h>
  41#include <linux/suspend.h>
  42#include <linux/workqueue.h>
  43#include <linux/scatterlist.h>
  44#include <linux/io.h>
 
  45#include <linux/log2.h>
  46#include <linux/slab.h>
  47#include <linux/glob.h>
  48#include <scsi/scsi.h>
  49#include <scsi/scsi_cmnd.h>
  50#include <scsi/scsi_host.h>
  51#include <linux/libata.h>
  52#include <asm/byteorder.h>
  53#include <asm/unaligned.h>
  54#include <linux/cdrom.h>
  55#include <linux/ratelimit.h>
  56#include <linux/leds.h>
  57#include <linux/pm_runtime.h>
  58#include <linux/platform_device.h>
  59#include <asm/setup.h>
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/libata.h>
  63
  64#include "libata.h"
  65#include "libata-transport.h"
  66
 
 
 
 
 
  67const struct ata_port_operations ata_base_port_ops = {
  68	.prereset		= ata_std_prereset,
  69	.postreset		= ata_std_postreset,
  70	.error_handler		= ata_std_error_handler,
  71	.sched_eh		= ata_std_sched_eh,
  72	.end_eh			= ata_std_end_eh,
  73};
  74
  75const struct ata_port_operations sata_port_ops = {
  76	.inherits		= &ata_base_port_ops,
  77
  78	.qc_defer		= ata_std_qc_defer,
  79	.hardreset		= sata_std_hardreset,
  80};
  81EXPORT_SYMBOL_GPL(sata_port_ops);
  82
  83static unsigned int ata_dev_init_params(struct ata_device *dev,
  84					u16 heads, u16 sectors);
  85static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
  86static void ata_dev_xfermask(struct ata_device *dev);
  87static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
  88
  89atomic_t ata_print_id = ATOMIC_INIT(0);
  90
  91#ifdef CONFIG_ATA_FORCE
  92struct ata_force_param {
  93	const char	*name;
  94	u8		cbl;
  95	u8		spd_limit;
  96	unsigned long	xfer_mask;
  97	unsigned int	horkage_on;
  98	unsigned int	horkage_off;
  99	u16		lflags;
 100};
 101
 102struct ata_force_ent {
 103	int			port;
 104	int			device;
 105	struct ata_force_param	param;
 106};
 107
 108static struct ata_force_ent *ata_force_tbl;
 109static int ata_force_tbl_size;
 110
 111static char ata_force_param_buf[COMMAND_LINE_SIZE] __initdata;
 112/* param_buf is thrown away after initialization, disallow read */
 113module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
 114MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
 115#endif
 116
 117static int atapi_enabled = 1;
 118module_param(atapi_enabled, int, 0444);
 119MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
 120
 121static int atapi_dmadir = 0;
 122module_param(atapi_dmadir, int, 0444);
 123MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
 124
 125int atapi_passthru16 = 1;
 126module_param(atapi_passthru16, int, 0444);
 127MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
 128
 129int libata_fua = 0;
 130module_param_named(fua, libata_fua, int, 0444);
 131MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
 132
 133static int ata_ignore_hpa;
 134module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
 135MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
 136
 137static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
 138module_param_named(dma, libata_dma_mask, int, 0444);
 139MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
 140
 141static int ata_probe_timeout;
 142module_param(ata_probe_timeout, int, 0444);
 143MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
 144
 145int libata_noacpi = 0;
 146module_param_named(noacpi, libata_noacpi, int, 0444);
 147MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
 148
 149int libata_allow_tpm = 0;
 150module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
 151MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
 152
 153static int atapi_an;
 154module_param(atapi_an, int, 0444);
 155MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
 156
 157MODULE_AUTHOR("Jeff Garzik");
 158MODULE_DESCRIPTION("Library module for ATA devices");
 159MODULE_LICENSE("GPL");
 160MODULE_VERSION(DRV_VERSION);
 161
 162
 163static bool ata_sstatus_online(u32 sstatus)
 164{
 165	return (sstatus & 0xf) == 0x3;
 166}
 167
 168/**
 169 *	ata_link_next - link iteration helper
 170 *	@link: the previous link, NULL to start
 171 *	@ap: ATA port containing links to iterate
 172 *	@mode: iteration mode, one of ATA_LITER_*
 173 *
 174 *	LOCKING:
 175 *	Host lock or EH context.
 176 *
 177 *	RETURNS:
 178 *	Pointer to the next link.
 179 */
 180struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
 181			       enum ata_link_iter_mode mode)
 182{
 183	BUG_ON(mode != ATA_LITER_EDGE &&
 184	       mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
 185
 186	/* NULL link indicates start of iteration */
 187	if (!link)
 188		switch (mode) {
 189		case ATA_LITER_EDGE:
 190		case ATA_LITER_PMP_FIRST:
 191			if (sata_pmp_attached(ap))
 192				return ap->pmp_link;
 193			fallthrough;
 194		case ATA_LITER_HOST_FIRST:
 195			return &ap->link;
 196		}
 197
 198	/* we just iterated over the host link, what's next? */
 199	if (link == &ap->link)
 200		switch (mode) {
 201		case ATA_LITER_HOST_FIRST:
 202			if (sata_pmp_attached(ap))
 203				return ap->pmp_link;
 204			fallthrough;
 205		case ATA_LITER_PMP_FIRST:
 206			if (unlikely(ap->slave_link))
 207				return ap->slave_link;
 208			fallthrough;
 209		case ATA_LITER_EDGE:
 210			return NULL;
 211		}
 212
 213	/* slave_link excludes PMP */
 214	if (unlikely(link == ap->slave_link))
 215		return NULL;
 216
 217	/* we were over a PMP link */
 218	if (++link < ap->pmp_link + ap->nr_pmp_links)
 219		return link;
 220
 221	if (mode == ATA_LITER_PMP_FIRST)
 222		return &ap->link;
 223
 224	return NULL;
 225}
 226EXPORT_SYMBOL_GPL(ata_link_next);
 227
 228/**
 229 *	ata_dev_next - device iteration helper
 230 *	@dev: the previous device, NULL to start
 231 *	@link: ATA link containing devices to iterate
 232 *	@mode: iteration mode, one of ATA_DITER_*
 233 *
 234 *	LOCKING:
 235 *	Host lock or EH context.
 236 *
 237 *	RETURNS:
 238 *	Pointer to the next device.
 239 */
 240struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
 241				enum ata_dev_iter_mode mode)
 242{
 243	BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
 244	       mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
 245
 246	/* NULL dev indicates start of iteration */
 247	if (!dev)
 248		switch (mode) {
 249		case ATA_DITER_ENABLED:
 250		case ATA_DITER_ALL:
 251			dev = link->device;
 252			goto check;
 253		case ATA_DITER_ENABLED_REVERSE:
 254		case ATA_DITER_ALL_REVERSE:
 255			dev = link->device + ata_link_max_devices(link) - 1;
 256			goto check;
 257		}
 258
 259 next:
 260	/* move to the next one */
 261	switch (mode) {
 262	case ATA_DITER_ENABLED:
 263	case ATA_DITER_ALL:
 264		if (++dev < link->device + ata_link_max_devices(link))
 265			goto check;
 266		return NULL;
 267	case ATA_DITER_ENABLED_REVERSE:
 268	case ATA_DITER_ALL_REVERSE:
 269		if (--dev >= link->device)
 270			goto check;
 271		return NULL;
 272	}
 273
 274 check:
 275	if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
 276	    !ata_dev_enabled(dev))
 277		goto next;
 278	return dev;
 279}
 280EXPORT_SYMBOL_GPL(ata_dev_next);
 281
 282/**
 283 *	ata_dev_phys_link - find physical link for a device
 284 *	@dev: ATA device to look up physical link for
 285 *
 286 *	Look up physical link which @dev is attached to.  Note that
 287 *	this is different from @dev->link only when @dev is on slave
 288 *	link.  For all other cases, it's the same as @dev->link.
 289 *
 290 *	LOCKING:
 291 *	Don't care.
 292 *
 293 *	RETURNS:
 294 *	Pointer to the found physical link.
 295 */
 296struct ata_link *ata_dev_phys_link(struct ata_device *dev)
 297{
 298	struct ata_port *ap = dev->link->ap;
 299
 300	if (!ap->slave_link)
 301		return dev->link;
 302	if (!dev->devno)
 303		return &ap->link;
 304	return ap->slave_link;
 305}
 306
 307#ifdef CONFIG_ATA_FORCE
 308/**
 309 *	ata_force_cbl - force cable type according to libata.force
 310 *	@ap: ATA port of interest
 311 *
 312 *	Force cable type according to libata.force and whine about it.
 313 *	The last entry which has matching port number is used, so it
 314 *	can be specified as part of device force parameters.  For
 315 *	example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
 316 *	same effect.
 317 *
 318 *	LOCKING:
 319 *	EH context.
 320 */
 321void ata_force_cbl(struct ata_port *ap)
 322{
 323	int i;
 324
 325	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 326		const struct ata_force_ent *fe = &ata_force_tbl[i];
 327
 328		if (fe->port != -1 && fe->port != ap->print_id)
 329			continue;
 330
 331		if (fe->param.cbl == ATA_CBL_NONE)
 332			continue;
 333
 334		ap->cbl = fe->param.cbl;
 335		ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
 336		return;
 337	}
 338}
 339
 340/**
 341 *	ata_force_link_limits - force link limits according to libata.force
 342 *	@link: ATA link of interest
 343 *
 344 *	Force link flags and SATA spd limit according to libata.force
 345 *	and whine about it.  When only the port part is specified
 346 *	(e.g. 1:), the limit applies to all links connected to both
 347 *	the host link and all fan-out ports connected via PMP.  If the
 348 *	device part is specified as 0 (e.g. 1.00:), it specifies the
 349 *	first fan-out link not the host link.  Device number 15 always
 350 *	points to the host link whether PMP is attached or not.  If the
 351 *	controller has slave link, device number 16 points to it.
 352 *
 353 *	LOCKING:
 354 *	EH context.
 355 */
 356static void ata_force_link_limits(struct ata_link *link)
 357{
 358	bool did_spd = false;
 359	int linkno = link->pmp;
 360	int i;
 361
 362	if (ata_is_host_link(link))
 363		linkno += 15;
 364
 365	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 366		const struct ata_force_ent *fe = &ata_force_tbl[i];
 367
 368		if (fe->port != -1 && fe->port != link->ap->print_id)
 369			continue;
 370
 371		if (fe->device != -1 && fe->device != linkno)
 372			continue;
 373
 374		/* only honor the first spd limit */
 375		if (!did_spd && fe->param.spd_limit) {
 376			link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
 377			ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
 378					fe->param.name);
 379			did_spd = true;
 380		}
 381
 382		/* let lflags stack */
 383		if (fe->param.lflags) {
 384			link->flags |= fe->param.lflags;
 385			ata_link_notice(link,
 386					"FORCE: link flag 0x%x forced -> 0x%x\n",
 387					fe->param.lflags, link->flags);
 388		}
 389	}
 390}
 391
 392/**
 393 *	ata_force_xfermask - force xfermask according to libata.force
 394 *	@dev: ATA device of interest
 395 *
 396 *	Force xfer_mask according to libata.force and whine about it.
 397 *	For consistency with link selection, device number 15 selects
 398 *	the first device connected to the host link.
 399 *
 400 *	LOCKING:
 401 *	EH context.
 402 */
 403static void ata_force_xfermask(struct ata_device *dev)
 404{
 405	int devno = dev->link->pmp + dev->devno;
 406	int alt_devno = devno;
 407	int i;
 408
 409	/* allow n.15/16 for devices attached to host port */
 410	if (ata_is_host_link(dev->link))
 411		alt_devno += 15;
 412
 413	for (i = ata_force_tbl_size - 1; i >= 0; i--) {
 414		const struct ata_force_ent *fe = &ata_force_tbl[i];
 415		unsigned long pio_mask, mwdma_mask, udma_mask;
 416
 417		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 418			continue;
 419
 420		if (fe->device != -1 && fe->device != devno &&
 421		    fe->device != alt_devno)
 422			continue;
 423
 424		if (!fe->param.xfer_mask)
 425			continue;
 426
 427		ata_unpack_xfermask(fe->param.xfer_mask,
 428				    &pio_mask, &mwdma_mask, &udma_mask);
 429		if (udma_mask)
 430			dev->udma_mask = udma_mask;
 431		else if (mwdma_mask) {
 432			dev->udma_mask = 0;
 433			dev->mwdma_mask = mwdma_mask;
 434		} else {
 435			dev->udma_mask = 0;
 436			dev->mwdma_mask = 0;
 437			dev->pio_mask = pio_mask;
 438		}
 439
 440		ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
 441			       fe->param.name);
 442		return;
 443	}
 444}
 445
 446/**
 447 *	ata_force_horkage - force horkage according to libata.force
 448 *	@dev: ATA device of interest
 449 *
 450 *	Force horkage according to libata.force and whine about it.
 451 *	For consistency with link selection, device number 15 selects
 452 *	the first device connected to the host link.
 453 *
 454 *	LOCKING:
 455 *	EH context.
 456 */
 457static void ata_force_horkage(struct ata_device *dev)
 458{
 459	int devno = dev->link->pmp + dev->devno;
 460	int alt_devno = devno;
 461	int i;
 462
 463	/* allow n.15/16 for devices attached to host port */
 464	if (ata_is_host_link(dev->link))
 465		alt_devno += 15;
 466
 467	for (i = 0; i < ata_force_tbl_size; i++) {
 468		const struct ata_force_ent *fe = &ata_force_tbl[i];
 469
 470		if (fe->port != -1 && fe->port != dev->link->ap->print_id)
 471			continue;
 472
 473		if (fe->device != -1 && fe->device != devno &&
 474		    fe->device != alt_devno)
 475			continue;
 476
 477		if (!(~dev->horkage & fe->param.horkage_on) &&
 478		    !(dev->horkage & fe->param.horkage_off))
 479			continue;
 480
 481		dev->horkage |= fe->param.horkage_on;
 482		dev->horkage &= ~fe->param.horkage_off;
 483
 484		ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
 485			       fe->param.name);
 486	}
 487}
 488#else
 489static inline void ata_force_link_limits(struct ata_link *link) { }
 490static inline void ata_force_xfermask(struct ata_device *dev) { }
 491static inline void ata_force_horkage(struct ata_device *dev) { }
 492#endif
 493
 494/**
 495 *	atapi_cmd_type - Determine ATAPI command type from SCSI opcode
 496 *	@opcode: SCSI opcode
 497 *
 498 *	Determine ATAPI command type from @opcode.
 499 *
 500 *	LOCKING:
 501 *	None.
 502 *
 503 *	RETURNS:
 504 *	ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
 505 */
 506int atapi_cmd_type(u8 opcode)
 507{
 508	switch (opcode) {
 509	case GPCMD_READ_10:
 510	case GPCMD_READ_12:
 511		return ATAPI_READ;
 512
 513	case GPCMD_WRITE_10:
 514	case GPCMD_WRITE_12:
 515	case GPCMD_WRITE_AND_VERIFY_10:
 516		return ATAPI_WRITE;
 517
 518	case GPCMD_READ_CD:
 519	case GPCMD_READ_CD_MSF:
 520		return ATAPI_READ_CD;
 521
 522	case ATA_16:
 523	case ATA_12:
 524		if (atapi_passthru16)
 525			return ATAPI_PASS_THRU;
 526		fallthrough;
 527	default:
 528		return ATAPI_MISC;
 529	}
 530}
 531EXPORT_SYMBOL_GPL(atapi_cmd_type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 532
 533static const u8 ata_rw_cmds[] = {
 534	/* pio multi */
 535	ATA_CMD_READ_MULTI,
 536	ATA_CMD_WRITE_MULTI,
 537	ATA_CMD_READ_MULTI_EXT,
 538	ATA_CMD_WRITE_MULTI_EXT,
 539	0,
 540	0,
 541	0,
 542	ATA_CMD_WRITE_MULTI_FUA_EXT,
 543	/* pio */
 544	ATA_CMD_PIO_READ,
 545	ATA_CMD_PIO_WRITE,
 546	ATA_CMD_PIO_READ_EXT,
 547	ATA_CMD_PIO_WRITE_EXT,
 548	0,
 549	0,
 550	0,
 551	0,
 552	/* dma */
 553	ATA_CMD_READ,
 554	ATA_CMD_WRITE,
 555	ATA_CMD_READ_EXT,
 556	ATA_CMD_WRITE_EXT,
 557	0,
 558	0,
 559	0,
 560	ATA_CMD_WRITE_FUA_EXT
 561};
 562
 563/**
 564 *	ata_rwcmd_protocol - set taskfile r/w commands and protocol
 565 *	@tf: command to examine and configure
 566 *	@dev: device tf belongs to
 567 *
 568 *	Examine the device configuration and tf->flags to calculate
 569 *	the proper read/write commands and protocol to use.
 570 *
 571 *	LOCKING:
 572 *	caller.
 573 */
 574static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
 575{
 576	u8 cmd;
 577
 578	int index, fua, lba48, write;
 579
 580	fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
 581	lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
 582	write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
 583
 584	if (dev->flags & ATA_DFLAG_PIO) {
 585		tf->protocol = ATA_PROT_PIO;
 586		index = dev->multi_count ? 0 : 8;
 587	} else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
 588		/* Unable to use DMA due to host limitation */
 589		tf->protocol = ATA_PROT_PIO;
 590		index = dev->multi_count ? 0 : 8;
 591	} else {
 592		tf->protocol = ATA_PROT_DMA;
 593		index = 16;
 594	}
 595
 596	cmd = ata_rw_cmds[index + fua + lba48 + write];
 597	if (cmd) {
 598		tf->command = cmd;
 599		return 0;
 600	}
 601	return -1;
 602}
 603
 604/**
 605 *	ata_tf_read_block - Read block address from ATA taskfile
 606 *	@tf: ATA taskfile of interest
 607 *	@dev: ATA device @tf belongs to
 608 *
 609 *	LOCKING:
 610 *	None.
 611 *
 612 *	Read block address from @tf.  This function can handle all
 613 *	three address formats - LBA, LBA48 and CHS.  tf->protocol and
 614 *	flags select the address format to use.
 615 *
 616 *	RETURNS:
 617 *	Block address read from @tf.
 618 */
 619u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
 620{
 621	u64 block = 0;
 622
 623	if (tf->flags & ATA_TFLAG_LBA) {
 624		if (tf->flags & ATA_TFLAG_LBA48) {
 625			block |= (u64)tf->hob_lbah << 40;
 626			block |= (u64)tf->hob_lbam << 32;
 627			block |= (u64)tf->hob_lbal << 24;
 628		} else
 629			block |= (tf->device & 0xf) << 24;
 630
 631		block |= tf->lbah << 16;
 632		block |= tf->lbam << 8;
 633		block |= tf->lbal;
 634	} else {
 635		u32 cyl, head, sect;
 636
 637		cyl = tf->lbam | (tf->lbah << 8);
 638		head = tf->device & 0xf;
 639		sect = tf->lbal;
 640
 641		if (!sect) {
 642			ata_dev_warn(dev,
 643				     "device reported invalid CHS sector 0\n");
 644			return U64_MAX;
 645		}
 646
 647		block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
 648	}
 649
 650	return block;
 651}
 652
 653/**
 654 *	ata_build_rw_tf - Build ATA taskfile for given read/write request
 655 *	@tf: Target ATA taskfile
 656 *	@dev: ATA device @tf belongs to
 657 *	@block: Block address
 658 *	@n_block: Number of blocks
 659 *	@tf_flags: RW/FUA etc...
 660 *	@tag: tag
 661 *	@class: IO priority class
 662 *
 663 *	LOCKING:
 664 *	None.
 665 *
 666 *	Build ATA taskfile @tf for read/write request described by
 667 *	@block, @n_block, @tf_flags and @tag on @dev.
 668 *
 669 *	RETURNS:
 670 *
 671 *	0 on success, -ERANGE if the request is too large for @dev,
 672 *	-EINVAL if the request is invalid.
 673 */
 674int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
 675		    u64 block, u32 n_block, unsigned int tf_flags,
 676		    unsigned int tag, int class)
 677{
 678	tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
 679	tf->flags |= tf_flags;
 680
 681	if (ata_ncq_enabled(dev) && !ata_tag_internal(tag)) {
 682		/* yay, NCQ */
 683		if (!lba_48_ok(block, n_block))
 684			return -ERANGE;
 685
 686		tf->protocol = ATA_PROT_NCQ;
 687		tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
 688
 689		if (tf->flags & ATA_TFLAG_WRITE)
 690			tf->command = ATA_CMD_FPDMA_WRITE;
 691		else
 692			tf->command = ATA_CMD_FPDMA_READ;
 693
 694		tf->nsect = tag << 3;
 695		tf->hob_feature = (n_block >> 8) & 0xff;
 696		tf->feature = n_block & 0xff;
 697
 698		tf->hob_lbah = (block >> 40) & 0xff;
 699		tf->hob_lbam = (block >> 32) & 0xff;
 700		tf->hob_lbal = (block >> 24) & 0xff;
 701		tf->lbah = (block >> 16) & 0xff;
 702		tf->lbam = (block >> 8) & 0xff;
 703		tf->lbal = block & 0xff;
 704
 705		tf->device = ATA_LBA;
 706		if (tf->flags & ATA_TFLAG_FUA)
 707			tf->device |= 1 << 7;
 708
 709		if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
 710			if (class == IOPRIO_CLASS_RT)
 711				tf->hob_nsect |= ATA_PRIO_HIGH <<
 712						 ATA_SHIFT_PRIO;
 713		}
 714	} else if (dev->flags & ATA_DFLAG_LBA) {
 715		tf->flags |= ATA_TFLAG_LBA;
 716
 717		if (lba_28_ok(block, n_block)) {
 718			/* use LBA28 */
 719			tf->device |= (block >> 24) & 0xf;
 720		} else if (lba_48_ok(block, n_block)) {
 721			if (!(dev->flags & ATA_DFLAG_LBA48))
 722				return -ERANGE;
 723
 724			/* use LBA48 */
 725			tf->flags |= ATA_TFLAG_LBA48;
 726
 727			tf->hob_nsect = (n_block >> 8) & 0xff;
 728
 729			tf->hob_lbah = (block >> 40) & 0xff;
 730			tf->hob_lbam = (block >> 32) & 0xff;
 731			tf->hob_lbal = (block >> 24) & 0xff;
 732		} else
 733			/* request too large even for LBA48 */
 734			return -ERANGE;
 735
 736		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 737			return -EINVAL;
 738
 739		tf->nsect = n_block & 0xff;
 740
 741		tf->lbah = (block >> 16) & 0xff;
 742		tf->lbam = (block >> 8) & 0xff;
 743		tf->lbal = block & 0xff;
 744
 745		tf->device |= ATA_LBA;
 746	} else {
 747		/* CHS */
 748		u32 sect, head, cyl, track;
 749
 750		/* The request -may- be too large for CHS addressing. */
 751		if (!lba_28_ok(block, n_block))
 752			return -ERANGE;
 753
 754		if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
 755			return -EINVAL;
 756
 757		/* Convert LBA to CHS */
 758		track = (u32)block / dev->sectors;
 759		cyl   = track / dev->heads;
 760		head  = track % dev->heads;
 761		sect  = (u32)block % dev->sectors + 1;
 762
 763		DPRINTK("block %u track %u cyl %u head %u sect %u\n",
 764			(u32)block, track, cyl, head, sect);
 765
 766		/* Check whether the converted CHS can fit.
 767		   Cylinder: 0-65535
 768		   Head: 0-15
 769		   Sector: 1-255*/
 770		if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
 771			return -ERANGE;
 772
 773		tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
 774		tf->lbal = sect;
 775		tf->lbam = cyl;
 776		tf->lbah = cyl >> 8;
 777		tf->device |= head;
 778	}
 779
 780	return 0;
 781}
 782
 783/**
 784 *	ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
 785 *	@pio_mask: pio_mask
 786 *	@mwdma_mask: mwdma_mask
 787 *	@udma_mask: udma_mask
 788 *
 789 *	Pack @pio_mask, @mwdma_mask and @udma_mask into a single
 790 *	unsigned int xfer_mask.
 791 *
 792 *	LOCKING:
 793 *	None.
 794 *
 795 *	RETURNS:
 796 *	Packed xfer_mask.
 797 */
 798unsigned long ata_pack_xfermask(unsigned long pio_mask,
 799				unsigned long mwdma_mask,
 800				unsigned long udma_mask)
 801{
 802	return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
 803		((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
 804		((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
 805}
 806EXPORT_SYMBOL_GPL(ata_pack_xfermask);
 807
 808/**
 809 *	ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
 810 *	@xfer_mask: xfer_mask to unpack
 811 *	@pio_mask: resulting pio_mask
 812 *	@mwdma_mask: resulting mwdma_mask
 813 *	@udma_mask: resulting udma_mask
 814 *
 815 *	Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
 816 *	Any NULL destination masks will be ignored.
 817 */
 818void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
 819			 unsigned long *mwdma_mask, unsigned long *udma_mask)
 820{
 821	if (pio_mask)
 822		*pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
 823	if (mwdma_mask)
 824		*mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
 825	if (udma_mask)
 826		*udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
 827}
 828
 829static const struct ata_xfer_ent {
 830	int shift, bits;
 831	u8 base;
 832} ata_xfer_tbl[] = {
 833	{ ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
 834	{ ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
 835	{ ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
 836	{ -1, },
 837};
 838
 839/**
 840 *	ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
 841 *	@xfer_mask: xfer_mask of interest
 842 *
 843 *	Return matching XFER_* value for @xfer_mask.  Only the highest
 844 *	bit of @xfer_mask is considered.
 845 *
 846 *	LOCKING:
 847 *	None.
 848 *
 849 *	RETURNS:
 850 *	Matching XFER_* value, 0xff if no match found.
 851 */
 852u8 ata_xfer_mask2mode(unsigned long xfer_mask)
 853{
 854	int highbit = fls(xfer_mask) - 1;
 855	const struct ata_xfer_ent *ent;
 856
 857	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 858		if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
 859			return ent->base + highbit - ent->shift;
 860	return 0xff;
 861}
 862EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
 863
 864/**
 865 *	ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
 866 *	@xfer_mode: XFER_* of interest
 867 *
 868 *	Return matching xfer_mask for @xfer_mode.
 869 *
 870 *	LOCKING:
 871 *	None.
 872 *
 873 *	RETURNS:
 874 *	Matching xfer_mask, 0 if no match found.
 875 */
 876unsigned long ata_xfer_mode2mask(u8 xfer_mode)
 877{
 878	const struct ata_xfer_ent *ent;
 879
 880	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 881		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 882			return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
 883				& ~((1 << ent->shift) - 1);
 884	return 0;
 885}
 886EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
 887
 888/**
 889 *	ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
 890 *	@xfer_mode: XFER_* of interest
 891 *
 892 *	Return matching xfer_shift for @xfer_mode.
 893 *
 894 *	LOCKING:
 895 *	None.
 896 *
 897 *	RETURNS:
 898 *	Matching xfer_shift, -1 if no match found.
 899 */
 900int ata_xfer_mode2shift(unsigned long xfer_mode)
 901{
 902	const struct ata_xfer_ent *ent;
 903
 904	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
 905		if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
 906			return ent->shift;
 907	return -1;
 908}
 909EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
 910
 911/**
 912 *	ata_mode_string - convert xfer_mask to string
 913 *	@xfer_mask: mask of bits supported; only highest bit counts.
 914 *
 915 *	Determine string which represents the highest speed
 916 *	(highest bit in @modemask).
 917 *
 918 *	LOCKING:
 919 *	None.
 920 *
 921 *	RETURNS:
 922 *	Constant C string representing highest speed listed in
 923 *	@mode_mask, or the constant C string "<n/a>".
 924 */
 925const char *ata_mode_string(unsigned long xfer_mask)
 926{
 927	static const char * const xfer_mode_str[] = {
 928		"PIO0",
 929		"PIO1",
 930		"PIO2",
 931		"PIO3",
 932		"PIO4",
 933		"PIO5",
 934		"PIO6",
 935		"MWDMA0",
 936		"MWDMA1",
 937		"MWDMA2",
 938		"MWDMA3",
 939		"MWDMA4",
 940		"UDMA/16",
 941		"UDMA/25",
 942		"UDMA/33",
 943		"UDMA/44",
 944		"UDMA/66",
 945		"UDMA/100",
 946		"UDMA/133",
 947		"UDMA7",
 948	};
 949	int highbit;
 950
 951	highbit = fls(xfer_mask) - 1;
 952	if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
 953		return xfer_mode_str[highbit];
 954	return "<n/a>";
 955}
 956EXPORT_SYMBOL_GPL(ata_mode_string);
 957
 958const char *sata_spd_string(unsigned int spd)
 959{
 960	static const char * const spd_str[] = {
 961		"1.5 Gbps",
 962		"3.0 Gbps",
 963		"6.0 Gbps",
 964	};
 965
 966	if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
 967		return "<unknown>";
 968	return spd_str[spd - 1];
 969}
 970
 971/**
 972 *	ata_dev_classify - determine device type based on ATA-spec signature
 973 *	@tf: ATA taskfile register set for device to be identified
 974 *
 975 *	Determine from taskfile register contents whether a device is
 976 *	ATA or ATAPI, as per "Signature and persistence" section
 977 *	of ATA/PI spec (volume 1, sect 5.14).
 978 *
 979 *	LOCKING:
 980 *	None.
 981 *
 982 *	RETURNS:
 983 *	Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
 984 *	%ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
 985 */
 986unsigned int ata_dev_classify(const struct ata_taskfile *tf)
 987{
 988	/* Apple's open source Darwin code hints that some devices only
 989	 * put a proper signature into the LBA mid/high registers,
 990	 * So, we only check those.  It's sufficient for uniqueness.
 991	 *
 992	 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
 993	 * signatures for ATA and ATAPI devices attached on SerialATA,
 994	 * 0x3c/0xc3 and 0x69/0x96 respectively.  However, SerialATA
 995	 * spec has never mentioned about using different signatures
 996	 * for ATA/ATAPI devices.  Then, Serial ATA II: Port
 997	 * Multiplier specification began to use 0x69/0x96 to identify
 998	 * port multpliers and 0x3c/0xc3 to identify SEMB device.
 999	 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1000	 * 0x69/0x96 shortly and described them as reserved for
1001	 * SerialATA.
1002	 *
1003	 * We follow the current spec and consider that 0x69/0x96
1004	 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1005	 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1006	 * SEMB signature.  This is worked around in
1007	 * ata_dev_read_id().
1008	 */
1009	if ((tf->lbam == 0) && (tf->lbah == 0)) {
1010		DPRINTK("found ATA device by sig\n");
1011		return ATA_DEV_ATA;
1012	}
1013
1014	if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1015		DPRINTK("found ATAPI device by sig\n");
1016		return ATA_DEV_ATAPI;
1017	}
1018
1019	if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1020		DPRINTK("found PMP device by sig\n");
1021		return ATA_DEV_PMP;
1022	}
1023
1024	if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1025		DPRINTK("found SEMB device by sig (could be ATA device)\n");
1026		return ATA_DEV_SEMB;
1027	}
1028
1029	if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1030		DPRINTK("found ZAC device by sig\n");
1031		return ATA_DEV_ZAC;
1032	}
1033
1034	DPRINTK("unknown device\n");
1035	return ATA_DEV_UNKNOWN;
1036}
1037EXPORT_SYMBOL_GPL(ata_dev_classify);
1038
1039/**
1040 *	ata_id_string - Convert IDENTIFY DEVICE page into string
1041 *	@id: IDENTIFY DEVICE results we will examine
1042 *	@s: string into which data is output
1043 *	@ofs: offset into identify device page
1044 *	@len: length of string to return. must be an even number.
1045 *
1046 *	The strings in the IDENTIFY DEVICE page are broken up into
1047 *	16-bit chunks.  Run through the string, and output each
1048 *	8-bit chunk linearly, regardless of platform.
1049 *
1050 *	LOCKING:
1051 *	caller.
1052 */
1053
1054void ata_id_string(const u16 *id, unsigned char *s,
1055		   unsigned int ofs, unsigned int len)
1056{
1057	unsigned int c;
1058
1059	BUG_ON(len & 1);
1060
1061	while (len > 0) {
1062		c = id[ofs] >> 8;
1063		*s = c;
1064		s++;
1065
1066		c = id[ofs] & 0xff;
1067		*s = c;
1068		s++;
1069
1070		ofs++;
1071		len -= 2;
1072	}
1073}
1074EXPORT_SYMBOL_GPL(ata_id_string);
1075
1076/**
1077 *	ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1078 *	@id: IDENTIFY DEVICE results we will examine
1079 *	@s: string into which data is output
1080 *	@ofs: offset into identify device page
1081 *	@len: length of string to return. must be an odd number.
1082 *
1083 *	This function is identical to ata_id_string except that it
1084 *	trims trailing spaces and terminates the resulting string with
1085 *	null.  @len must be actual maximum length (even number) + 1.
1086 *
1087 *	LOCKING:
1088 *	caller.
1089 */
1090void ata_id_c_string(const u16 *id, unsigned char *s,
1091		     unsigned int ofs, unsigned int len)
1092{
1093	unsigned char *p;
1094
1095	ata_id_string(id, s, ofs, len - 1);
1096
1097	p = s + strnlen(s, len - 1);
1098	while (p > s && p[-1] == ' ')
1099		p--;
1100	*p = '\0';
1101}
1102EXPORT_SYMBOL_GPL(ata_id_c_string);
1103
1104static u64 ata_id_n_sectors(const u16 *id)
1105{
1106	if (ata_id_has_lba(id)) {
1107		if (ata_id_has_lba48(id))
1108			return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1109		else
1110			return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1111	} else {
1112		if (ata_id_current_chs_valid(id))
1113			return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1114			       id[ATA_ID_CUR_SECTORS];
1115		else
1116			return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1117			       id[ATA_ID_SECTORS];
1118	}
1119}
1120
1121u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1122{
1123	u64 sectors = 0;
1124
1125	sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1126	sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1127	sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1128	sectors |= (tf->lbah & 0xff) << 16;
1129	sectors |= (tf->lbam & 0xff) << 8;
1130	sectors |= (tf->lbal & 0xff);
1131
1132	return sectors;
1133}
1134
1135u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1136{
1137	u64 sectors = 0;
1138
1139	sectors |= (tf->device & 0x0f) << 24;
1140	sectors |= (tf->lbah & 0xff) << 16;
1141	sectors |= (tf->lbam & 0xff) << 8;
1142	sectors |= (tf->lbal & 0xff);
1143
1144	return sectors;
1145}
1146
1147/**
1148 *	ata_read_native_max_address - Read native max address
1149 *	@dev: target device
1150 *	@max_sectors: out parameter for the result native max address
1151 *
1152 *	Perform an LBA48 or LBA28 native size query upon the device in
1153 *	question.
1154 *
1155 *	RETURNS:
1156 *	0 on success, -EACCES if command is aborted by the drive.
1157 *	-EIO on other errors.
1158 */
1159static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1160{
1161	unsigned int err_mask;
1162	struct ata_taskfile tf;
1163	int lba48 = ata_id_has_lba48(dev->id);
1164
1165	ata_tf_init(dev, &tf);
1166
1167	/* always clear all address registers */
1168	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1169
1170	if (lba48) {
1171		tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1172		tf.flags |= ATA_TFLAG_LBA48;
1173	} else
1174		tf.command = ATA_CMD_READ_NATIVE_MAX;
1175
1176	tf.protocol = ATA_PROT_NODATA;
1177	tf.device |= ATA_LBA;
1178
1179	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1180	if (err_mask) {
1181		ata_dev_warn(dev,
1182			     "failed to read native max address (err_mask=0x%x)\n",
1183			     err_mask);
1184		if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1185			return -EACCES;
1186		return -EIO;
1187	}
1188
1189	if (lba48)
1190		*max_sectors = ata_tf_to_lba48(&tf) + 1;
1191	else
1192		*max_sectors = ata_tf_to_lba(&tf) + 1;
1193	if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1194		(*max_sectors)--;
1195	return 0;
1196}
1197
1198/**
1199 *	ata_set_max_sectors - Set max sectors
1200 *	@dev: target device
1201 *	@new_sectors: new max sectors value to set for the device
1202 *
1203 *	Set max sectors of @dev to @new_sectors.
1204 *
1205 *	RETURNS:
1206 *	0 on success, -EACCES if command is aborted or denied (due to
1207 *	previous non-volatile SET_MAX) by the drive.  -EIO on other
1208 *	errors.
1209 */
1210static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1211{
1212	unsigned int err_mask;
1213	struct ata_taskfile tf;
1214	int lba48 = ata_id_has_lba48(dev->id);
1215
1216	new_sectors--;
1217
1218	ata_tf_init(dev, &tf);
1219
1220	tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1221
1222	if (lba48) {
1223		tf.command = ATA_CMD_SET_MAX_EXT;
1224		tf.flags |= ATA_TFLAG_LBA48;
1225
1226		tf.hob_lbal = (new_sectors >> 24) & 0xff;
1227		tf.hob_lbam = (new_sectors >> 32) & 0xff;
1228		tf.hob_lbah = (new_sectors >> 40) & 0xff;
1229	} else {
1230		tf.command = ATA_CMD_SET_MAX;
1231
1232		tf.device |= (new_sectors >> 24) & 0xf;
1233	}
1234
1235	tf.protocol = ATA_PROT_NODATA;
1236	tf.device |= ATA_LBA;
1237
1238	tf.lbal = (new_sectors >> 0) & 0xff;
1239	tf.lbam = (new_sectors >> 8) & 0xff;
1240	tf.lbah = (new_sectors >> 16) & 0xff;
1241
1242	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1243	if (err_mask) {
1244		ata_dev_warn(dev,
1245			     "failed to set max address (err_mask=0x%x)\n",
1246			     err_mask);
1247		if (err_mask == AC_ERR_DEV &&
1248		    (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1249			return -EACCES;
1250		return -EIO;
1251	}
1252
1253	return 0;
1254}
1255
1256/**
1257 *	ata_hpa_resize		-	Resize a device with an HPA set
1258 *	@dev: Device to resize
1259 *
1260 *	Read the size of an LBA28 or LBA48 disk with HPA features and resize
1261 *	it if required to the full size of the media. The caller must check
1262 *	the drive has the HPA feature set enabled.
1263 *
1264 *	RETURNS:
1265 *	0 on success, -errno on failure.
1266 */
1267static int ata_hpa_resize(struct ata_device *dev)
1268{
1269	struct ata_eh_context *ehc = &dev->link->eh_context;
1270	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1271	bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1272	u64 sectors = ata_id_n_sectors(dev->id);
1273	u64 native_sectors;
1274	int rc;
1275
1276	/* do we need to do it? */
1277	if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1278	    !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1279	    (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1280		return 0;
1281
1282	/* read native max address */
1283	rc = ata_read_native_max_address(dev, &native_sectors);
1284	if (rc) {
1285		/* If device aborted the command or HPA isn't going to
1286		 * be unlocked, skip HPA resizing.
1287		 */
1288		if (rc == -EACCES || !unlock_hpa) {
1289			ata_dev_warn(dev,
1290				     "HPA support seems broken, skipping HPA handling\n");
1291			dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1292
1293			/* we can continue if device aborted the command */
1294			if (rc == -EACCES)
1295				rc = 0;
1296		}
1297
1298		return rc;
1299	}
1300	dev->n_native_sectors = native_sectors;
1301
1302	/* nothing to do? */
1303	if (native_sectors <= sectors || !unlock_hpa) {
1304		if (!print_info || native_sectors == sectors)
1305			return 0;
1306
1307		if (native_sectors > sectors)
1308			ata_dev_info(dev,
1309				"HPA detected: current %llu, native %llu\n",
1310				(unsigned long long)sectors,
1311				(unsigned long long)native_sectors);
1312		else if (native_sectors < sectors)
1313			ata_dev_warn(dev,
1314				"native sectors (%llu) is smaller than sectors (%llu)\n",
1315				(unsigned long long)native_sectors,
1316				(unsigned long long)sectors);
1317		return 0;
1318	}
1319
1320	/* let's unlock HPA */
1321	rc = ata_set_max_sectors(dev, native_sectors);
1322	if (rc == -EACCES) {
1323		/* if device aborted the command, skip HPA resizing */
1324		ata_dev_warn(dev,
1325			     "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1326			     (unsigned long long)sectors,
1327			     (unsigned long long)native_sectors);
1328		dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1329		return 0;
1330	} else if (rc)
1331		return rc;
1332
1333	/* re-read IDENTIFY data */
1334	rc = ata_dev_reread_id(dev, 0);
1335	if (rc) {
1336		ata_dev_err(dev,
1337			    "failed to re-read IDENTIFY data after HPA resizing\n");
1338		return rc;
1339	}
1340
1341	if (print_info) {
1342		u64 new_sectors = ata_id_n_sectors(dev->id);
1343		ata_dev_info(dev,
1344			"HPA unlocked: %llu -> %llu, native %llu\n",
1345			(unsigned long long)sectors,
1346			(unsigned long long)new_sectors,
1347			(unsigned long long)native_sectors);
1348	}
1349
1350	return 0;
1351}
1352
1353/**
1354 *	ata_dump_id - IDENTIFY DEVICE info debugging output
1355 *	@id: IDENTIFY DEVICE page to dump
1356 *
1357 *	Dump selected 16-bit words from the given IDENTIFY DEVICE
1358 *	page.
1359 *
1360 *	LOCKING:
1361 *	caller.
1362 */
1363
1364static inline void ata_dump_id(const u16 *id)
1365{
1366	DPRINTK("49==0x%04x  "
1367		"53==0x%04x  "
1368		"63==0x%04x  "
1369		"64==0x%04x  "
1370		"75==0x%04x  \n",
1371		id[49],
1372		id[53],
1373		id[63],
1374		id[64],
1375		id[75]);
1376	DPRINTK("80==0x%04x  "
1377		"81==0x%04x  "
1378		"82==0x%04x  "
1379		"83==0x%04x  "
1380		"84==0x%04x  \n",
1381		id[80],
1382		id[81],
1383		id[82],
1384		id[83],
1385		id[84]);
1386	DPRINTK("88==0x%04x  "
1387		"93==0x%04x\n",
1388		id[88],
1389		id[93]);
1390}
1391
1392/**
1393 *	ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1394 *	@id: IDENTIFY data to compute xfer mask from
1395 *
1396 *	Compute the xfermask for this device. This is not as trivial
1397 *	as it seems if we must consider early devices correctly.
1398 *
1399 *	FIXME: pre IDE drive timing (do we care ?).
1400 *
1401 *	LOCKING:
1402 *	None.
1403 *
1404 *	RETURNS:
1405 *	Computed xfermask
1406 */
1407unsigned long ata_id_xfermask(const u16 *id)
1408{
1409	unsigned long pio_mask, mwdma_mask, udma_mask;
1410
1411	/* Usual case. Word 53 indicates word 64 is valid */
1412	if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1413		pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1414		pio_mask <<= 3;
1415		pio_mask |= 0x7;
1416	} else {
1417		/* If word 64 isn't valid then Word 51 high byte holds
1418		 * the PIO timing number for the maximum. Turn it into
1419		 * a mask.
1420		 */
1421		u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1422		if (mode < 5)	/* Valid PIO range */
1423			pio_mask = (2 << mode) - 1;
1424		else
1425			pio_mask = 1;
1426
1427		/* But wait.. there's more. Design your standards by
1428		 * committee and you too can get a free iordy field to
1429		 * process. However its the speeds not the modes that
1430		 * are supported... Note drivers using the timing API
1431		 * will get this right anyway
1432		 */
1433	}
1434
1435	mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1436
1437	if (ata_id_is_cfa(id)) {
1438		/*
1439		 *	Process compact flash extended modes
1440		 */
1441		int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1442		int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1443
1444		if (pio)
1445			pio_mask |= (1 << 5);
1446		if (pio > 1)
1447			pio_mask |= (1 << 6);
1448		if (dma)
1449			mwdma_mask |= (1 << 3);
1450		if (dma > 1)
1451			mwdma_mask |= (1 << 4);
1452	}
1453
1454	udma_mask = 0;
1455	if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1456		udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1457
1458	return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1459}
1460EXPORT_SYMBOL_GPL(ata_id_xfermask);
1461
1462static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1463{
1464	struct completion *waiting = qc->private_data;
1465
1466	complete(waiting);
1467}
1468
1469/**
1470 *	ata_exec_internal_sg - execute libata internal command
1471 *	@dev: Device to which the command is sent
1472 *	@tf: Taskfile registers for the command and the result
1473 *	@cdb: CDB for packet command
1474 *	@dma_dir: Data transfer direction of the command
1475 *	@sgl: sg list for the data buffer of the command
1476 *	@n_elem: Number of sg entries
1477 *	@timeout: Timeout in msecs (0 for default)
1478 *
1479 *	Executes libata internal command with timeout.  @tf contains
1480 *	command on entry and result on return.  Timeout and error
1481 *	conditions are reported via return value.  No recovery action
1482 *	is taken after a command times out.  It's caller's duty to
1483 *	clean up after timeout.
1484 *
1485 *	LOCKING:
1486 *	None.  Should be called with kernel context, might sleep.
1487 *
1488 *	RETURNS:
1489 *	Zero on success, AC_ERR_* mask on failure
1490 */
1491unsigned ata_exec_internal_sg(struct ata_device *dev,
1492			      struct ata_taskfile *tf, const u8 *cdb,
1493			      int dma_dir, struct scatterlist *sgl,
1494			      unsigned int n_elem, unsigned long timeout)
1495{
1496	struct ata_link *link = dev->link;
1497	struct ata_port *ap = link->ap;
1498	u8 command = tf->command;
1499	int auto_timeout = 0;
1500	struct ata_queued_cmd *qc;
1501	unsigned int preempted_tag;
1502	u32 preempted_sactive;
1503	u64 preempted_qc_active;
1504	int preempted_nr_active_links;
1505	DECLARE_COMPLETION_ONSTACK(wait);
1506	unsigned long flags;
1507	unsigned int err_mask;
1508	int rc;
1509
1510	spin_lock_irqsave(ap->lock, flags);
1511
1512	/* no internal command while frozen */
1513	if (ap->pflags & ATA_PFLAG_FROZEN) {
1514		spin_unlock_irqrestore(ap->lock, flags);
1515		return AC_ERR_SYSTEM;
1516	}
1517
1518	/* initialize internal qc */
1519	qc = __ata_qc_from_tag(ap, ATA_TAG_INTERNAL);
1520
1521	qc->tag = ATA_TAG_INTERNAL;
1522	qc->hw_tag = 0;
 
 
 
 
 
 
 
 
 
 
 
1523	qc->scsicmd = NULL;
1524	qc->ap = ap;
1525	qc->dev = dev;
1526	ata_qc_reinit(qc);
1527
1528	preempted_tag = link->active_tag;
1529	preempted_sactive = link->sactive;
1530	preempted_qc_active = ap->qc_active;
1531	preempted_nr_active_links = ap->nr_active_links;
1532	link->active_tag = ATA_TAG_POISON;
1533	link->sactive = 0;
1534	ap->qc_active = 0;
1535	ap->nr_active_links = 0;
1536
1537	/* prepare & issue qc */
1538	qc->tf = *tf;
1539	if (cdb)
1540		memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1541
1542	/* some SATA bridges need us to indicate data xfer direction */
1543	if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1544	    dma_dir == DMA_FROM_DEVICE)
1545		qc->tf.feature |= ATAPI_DMADIR;
1546
1547	qc->flags |= ATA_QCFLAG_RESULT_TF;
1548	qc->dma_dir = dma_dir;
1549	if (dma_dir != DMA_NONE) {
1550		unsigned int i, buflen = 0;
1551		struct scatterlist *sg;
1552
1553		for_each_sg(sgl, sg, n_elem, i)
1554			buflen += sg->length;
1555
1556		ata_sg_init(qc, sgl, n_elem);
1557		qc->nbytes = buflen;
1558	}
1559
1560	qc->private_data = &wait;
1561	qc->complete_fn = ata_qc_complete_internal;
1562
1563	ata_qc_issue(qc);
1564
1565	spin_unlock_irqrestore(ap->lock, flags);
1566
1567	if (!timeout) {
1568		if (ata_probe_timeout)
1569			timeout = ata_probe_timeout * 1000;
1570		else {
1571			timeout = ata_internal_cmd_timeout(dev, command);
1572			auto_timeout = 1;
1573		}
1574	}
1575
1576	if (ap->ops->error_handler)
1577		ata_eh_release(ap);
1578
1579	rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1580
1581	if (ap->ops->error_handler)
1582		ata_eh_acquire(ap);
1583
1584	ata_sff_flush_pio_task(ap);
1585
1586	if (!rc) {
1587		spin_lock_irqsave(ap->lock, flags);
1588
1589		/* We're racing with irq here.  If we lose, the
1590		 * following test prevents us from completing the qc
1591		 * twice.  If we win, the port is frozen and will be
1592		 * cleaned up by ->post_internal_cmd().
1593		 */
1594		if (qc->flags & ATA_QCFLAG_ACTIVE) {
1595			qc->err_mask |= AC_ERR_TIMEOUT;
1596
1597			if (ap->ops->error_handler)
1598				ata_port_freeze(ap);
1599			else
1600				ata_qc_complete(qc);
1601
1602			if (ata_msg_warn(ap))
1603				ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1604					     command);
1605		}
1606
1607		spin_unlock_irqrestore(ap->lock, flags);
1608	}
1609
1610	/* do post_internal_cmd */
1611	if (ap->ops->post_internal_cmd)
1612		ap->ops->post_internal_cmd(qc);
1613
1614	/* perform minimal error analysis */
1615	if (qc->flags & ATA_QCFLAG_FAILED) {
1616		if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1617			qc->err_mask |= AC_ERR_DEV;
1618
1619		if (!qc->err_mask)
1620			qc->err_mask |= AC_ERR_OTHER;
1621
1622		if (qc->err_mask & ~AC_ERR_OTHER)
1623			qc->err_mask &= ~AC_ERR_OTHER;
1624	} else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1625		qc->result_tf.command |= ATA_SENSE;
1626	}
1627
1628	/* finish up */
1629	spin_lock_irqsave(ap->lock, flags);
1630
1631	*tf = qc->result_tf;
1632	err_mask = qc->err_mask;
1633
1634	ata_qc_free(qc);
1635	link->active_tag = preempted_tag;
1636	link->sactive = preempted_sactive;
1637	ap->qc_active = preempted_qc_active;
1638	ap->nr_active_links = preempted_nr_active_links;
1639
1640	spin_unlock_irqrestore(ap->lock, flags);
1641
1642	if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1643		ata_internal_cmd_timed_out(dev, command);
1644
1645	return err_mask;
1646}
1647
1648/**
1649 *	ata_exec_internal - execute libata internal command
1650 *	@dev: Device to which the command is sent
1651 *	@tf: Taskfile registers for the command and the result
1652 *	@cdb: CDB for packet command
1653 *	@dma_dir: Data transfer direction of the command
1654 *	@buf: Data buffer of the command
1655 *	@buflen: Length of data buffer
1656 *	@timeout: Timeout in msecs (0 for default)
1657 *
1658 *	Wrapper around ata_exec_internal_sg() which takes simple
1659 *	buffer instead of sg list.
1660 *
1661 *	LOCKING:
1662 *	None.  Should be called with kernel context, might sleep.
1663 *
1664 *	RETURNS:
1665 *	Zero on success, AC_ERR_* mask on failure
1666 */
1667unsigned ata_exec_internal(struct ata_device *dev,
1668			   struct ata_taskfile *tf, const u8 *cdb,
1669			   int dma_dir, void *buf, unsigned int buflen,
1670			   unsigned long timeout)
1671{
1672	struct scatterlist *psg = NULL, sg;
1673	unsigned int n_elem = 0;
1674
1675	if (dma_dir != DMA_NONE) {
1676		WARN_ON(!buf);
1677		sg_init_one(&sg, buf, buflen);
1678		psg = &sg;
1679		n_elem++;
1680	}
1681
1682	return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1683				    timeout);
1684}
1685
1686/**
1687 *	ata_pio_need_iordy	-	check if iordy needed
1688 *	@adev: ATA device
1689 *
1690 *	Check if the current speed of the device requires IORDY. Used
1691 *	by various controllers for chip configuration.
1692 */
1693unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1694{
1695	/* Don't set IORDY if we're preparing for reset.  IORDY may
1696	 * lead to controller lock up on certain controllers if the
1697	 * port is not occupied.  See bko#11703 for details.
1698	 */
1699	if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1700		return 0;
1701	/* Controller doesn't support IORDY.  Probably a pointless
1702	 * check as the caller should know this.
1703	 */
1704	if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1705		return 0;
1706	/* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6.  */
1707	if (ata_id_is_cfa(adev->id)
1708	    && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1709		return 0;
1710	/* PIO3 and higher it is mandatory */
1711	if (adev->pio_mode > XFER_PIO_2)
1712		return 1;
1713	/* We turn it on when possible */
1714	if (ata_id_has_iordy(adev->id))
1715		return 1;
1716	return 0;
1717}
1718EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
1719
1720/**
1721 *	ata_pio_mask_no_iordy	-	Return the non IORDY mask
1722 *	@adev: ATA device
1723 *
1724 *	Compute the highest mode possible if we are not using iordy. Return
1725 *	-1 if no iordy mode is available.
1726 */
1727static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1728{
1729	/* If we have no drive specific rule, then PIO 2 is non IORDY */
1730	if (adev->id[ATA_ID_FIELD_VALID] & 2) {	/* EIDE */
1731		u16 pio = adev->id[ATA_ID_EIDE_PIO];
1732		/* Is the speed faster than the drive allows non IORDY ? */
1733		if (pio) {
1734			/* This is cycle times not frequency - watch the logic! */
1735			if (pio > 240)	/* PIO2 is 240nS per cycle */
1736				return 3 << ATA_SHIFT_PIO;
1737			return 7 << ATA_SHIFT_PIO;
1738		}
1739	}
1740	return 3 << ATA_SHIFT_PIO;
1741}
1742
1743/**
1744 *	ata_do_dev_read_id		-	default ID read method
1745 *	@dev: device
1746 *	@tf: proposed taskfile
1747 *	@id: data buffer
1748 *
1749 *	Issue the identify taskfile and hand back the buffer containing
1750 *	identify data. For some RAID controllers and for pre ATA devices
1751 *	this function is wrapped or replaced by the driver
1752 */
1753unsigned int ata_do_dev_read_id(struct ata_device *dev,
1754					struct ata_taskfile *tf, u16 *id)
1755{
1756	return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1757				     id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1758}
1759EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
1760
1761/**
1762 *	ata_dev_read_id - Read ID data from the specified device
1763 *	@dev: target device
1764 *	@p_class: pointer to class of the target device (may be changed)
1765 *	@flags: ATA_READID_* flags
1766 *	@id: buffer to read IDENTIFY data into
1767 *
1768 *	Read ID data from the specified device.  ATA_CMD_ID_ATA is
1769 *	performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1770 *	devices.  This function also issues ATA_CMD_INIT_DEV_PARAMS
1771 *	for pre-ATA4 drives.
1772 *
1773 *	FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1774 *	now we abort if we hit that case.
1775 *
1776 *	LOCKING:
1777 *	Kernel thread context (may sleep)
1778 *
1779 *	RETURNS:
1780 *	0 on success, -errno otherwise.
1781 */
1782int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1783		    unsigned int flags, u16 *id)
1784{
1785	struct ata_port *ap = dev->link->ap;
1786	unsigned int class = *p_class;
1787	struct ata_taskfile tf;
1788	unsigned int err_mask = 0;
1789	const char *reason;
1790	bool is_semb = class == ATA_DEV_SEMB;
1791	int may_fallback = 1, tried_spinup = 0;
1792	int rc;
1793
1794	if (ata_msg_ctl(ap))
1795		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1796
1797retry:
1798	ata_tf_init(dev, &tf);
1799
1800	switch (class) {
1801	case ATA_DEV_SEMB:
1802		class = ATA_DEV_ATA;	/* some hard drives report SEMB sig */
1803		fallthrough;
1804	case ATA_DEV_ATA:
1805	case ATA_DEV_ZAC:
1806		tf.command = ATA_CMD_ID_ATA;
1807		break;
1808	case ATA_DEV_ATAPI:
1809		tf.command = ATA_CMD_ID_ATAPI;
1810		break;
1811	default:
1812		rc = -ENODEV;
1813		reason = "unsupported class";
1814		goto err_out;
1815	}
1816
1817	tf.protocol = ATA_PROT_PIO;
1818
1819	/* Some devices choke if TF registers contain garbage.  Make
1820	 * sure those are properly initialized.
1821	 */
1822	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1823
1824	/* Device presence detection is unreliable on some
1825	 * controllers.  Always poll IDENTIFY if available.
1826	 */
1827	tf.flags |= ATA_TFLAG_POLLING;
1828
1829	if (ap->ops->read_id)
1830		err_mask = ap->ops->read_id(dev, &tf, id);
1831	else
1832		err_mask = ata_do_dev_read_id(dev, &tf, id);
1833
1834	if (err_mask) {
1835		if (err_mask & AC_ERR_NODEV_HINT) {
1836			ata_dev_dbg(dev, "NODEV after polling detection\n");
1837			return -ENOENT;
1838		}
1839
1840		if (is_semb) {
1841			ata_dev_info(dev,
1842		     "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1843			/* SEMB is not supported yet */
1844			*p_class = ATA_DEV_SEMB_UNSUP;
1845			return 0;
1846		}
1847
1848		if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1849			/* Device or controller might have reported
1850			 * the wrong device class.  Give a shot at the
1851			 * other IDENTIFY if the current one is
1852			 * aborted by the device.
1853			 */
1854			if (may_fallback) {
1855				may_fallback = 0;
1856
1857				if (class == ATA_DEV_ATA)
1858					class = ATA_DEV_ATAPI;
1859				else
1860					class = ATA_DEV_ATA;
1861				goto retry;
1862			}
1863
1864			/* Control reaches here iff the device aborted
1865			 * both flavors of IDENTIFYs which happens
1866			 * sometimes with phantom devices.
1867			 */
1868			ata_dev_dbg(dev,
1869				    "both IDENTIFYs aborted, assuming NODEV\n");
1870			return -ENOENT;
1871		}
1872
1873		rc = -EIO;
1874		reason = "I/O error";
1875		goto err_out;
1876	}
1877
1878	if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1879		ata_dev_dbg(dev, "dumping IDENTIFY data, "
1880			    "class=%d may_fallback=%d tried_spinup=%d\n",
1881			    class, may_fallback, tried_spinup);
1882		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1883			       16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1884	}
1885
1886	/* Falling back doesn't make sense if ID data was read
1887	 * successfully at least once.
1888	 */
1889	may_fallback = 0;
1890
1891	swap_buf_le16(id, ATA_ID_WORDS);
1892
1893	/* sanity check */
1894	rc = -EINVAL;
1895	reason = "device reports invalid type";
1896
1897	if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1898		if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1899			goto err_out;
1900		if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1901							ata_id_is_ata(id)) {
1902			ata_dev_dbg(dev,
1903				"host indicates ignore ATA devices, ignored\n");
1904			return -ENOENT;
1905		}
1906	} else {
1907		if (ata_id_is_ata(id))
1908			goto err_out;
1909	}
1910
1911	if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1912		tried_spinup = 1;
1913		/*
1914		 * Drive powered-up in standby mode, and requires a specific
1915		 * SET_FEATURES spin-up subcommand before it will accept
1916		 * anything other than the original IDENTIFY command.
1917		 */
1918		err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1919		if (err_mask && id[2] != 0x738c) {
1920			rc = -EIO;
1921			reason = "SPINUP failed";
1922			goto err_out;
1923		}
1924		/*
1925		 * If the drive initially returned incomplete IDENTIFY info,
1926		 * we now must reissue the IDENTIFY command.
1927		 */
1928		if (id[2] == 0x37c8)
1929			goto retry;
1930	}
1931
1932	if ((flags & ATA_READID_POSTRESET) &&
1933	    (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
1934		/*
1935		 * The exact sequence expected by certain pre-ATA4 drives is:
1936		 * SRST RESET
1937		 * IDENTIFY (optional in early ATA)
1938		 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
1939		 * anything else..
1940		 * Some drives were very specific about that exact sequence.
1941		 *
1942		 * Note that ATA4 says lba is mandatory so the second check
1943		 * should never trigger.
1944		 */
1945		if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1946			err_mask = ata_dev_init_params(dev, id[3], id[6]);
1947			if (err_mask) {
1948				rc = -EIO;
1949				reason = "INIT_DEV_PARAMS failed";
1950				goto err_out;
1951			}
1952
1953			/* current CHS translation info (id[53-58]) might be
1954			 * changed. reread the identify device info.
1955			 */
1956			flags &= ~ATA_READID_POSTRESET;
1957			goto retry;
1958		}
1959	}
1960
1961	*p_class = class;
1962
1963	return 0;
1964
1965 err_out:
1966	if (ata_msg_warn(ap))
1967		ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
1968			     reason, err_mask);
1969	return rc;
1970}
1971
1972/**
1973 *	ata_read_log_page - read a specific log page
1974 *	@dev: target device
1975 *	@log: log to read
1976 *	@page: page to read
1977 *	@buf: buffer to store read page
1978 *	@sectors: number of sectors to read
1979 *
1980 *	Read log page using READ_LOG_EXT command.
1981 *
1982 *	LOCKING:
1983 *	Kernel thread context (may sleep).
1984 *
1985 *	RETURNS:
1986 *	0 on success, AC_ERR_* mask otherwise.
1987 */
1988unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
1989			       u8 page, void *buf, unsigned int sectors)
1990{
1991	unsigned long ap_flags = dev->link->ap->flags;
1992	struct ata_taskfile tf;
1993	unsigned int err_mask;
1994	bool dma = false;
1995
1996	DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
1997
1998	/*
1999	 * Return error without actually issuing the command on controllers
2000	 * which e.g. lockup on a read log page.
2001	 */
2002	if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2003		return AC_ERR_DEV;
2004
2005retry:
2006	ata_tf_init(dev, &tf);
2007	if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2008	    !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2009		tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2010		tf.protocol = ATA_PROT_DMA;
2011		dma = true;
2012	} else {
2013		tf.command = ATA_CMD_READ_LOG_EXT;
2014		tf.protocol = ATA_PROT_PIO;
2015		dma = false;
2016	}
2017	tf.lbal = log;
2018	tf.lbam = page;
2019	tf.nsect = sectors;
2020	tf.hob_nsect = sectors >> 8;
2021	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2022
2023	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2024				     buf, sectors * ATA_SECT_SIZE, 0);
2025
2026	if (err_mask && dma) {
2027		dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2028		ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2029		goto retry;
2030	}
2031
2032	DPRINTK("EXIT, err_mask=%x\n", err_mask);
2033	return err_mask;
2034}
2035
2036static bool ata_log_supported(struct ata_device *dev, u8 log)
2037{
2038	struct ata_port *ap = dev->link->ap;
2039
2040	if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2041		return false;
2042	return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2043}
2044
2045static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2046{
2047	struct ata_port *ap = dev->link->ap;
2048	unsigned int err, i;
2049
2050	if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2051		ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2052		return false;
2053	}
2054
2055	/*
2056	 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2057	 * supported.
2058	 */
2059	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2060				1);
2061	if (err) {
2062		ata_dev_info(dev,
2063			     "failed to get Device Identify Log Emask 0x%x\n",
2064			     err);
2065		return false;
2066	}
2067
2068	for (i = 0; i < ap->sector_buf[8]; i++) {
2069		if (ap->sector_buf[9 + i] == page)
2070			return true;
2071	}
2072
2073	return false;
2074}
2075
2076static int ata_do_link_spd_horkage(struct ata_device *dev)
2077{
2078	struct ata_link *plink = ata_dev_phys_link(dev);
2079	u32 target, target_limit;
2080
2081	if (!sata_scr_valid(plink))
2082		return 0;
2083
2084	if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2085		target = 1;
2086	else
2087		return 0;
2088
2089	target_limit = (1 << target) - 1;
2090
2091	/* if already on stricter limit, no need to push further */
2092	if (plink->sata_spd_limit <= target_limit)
2093		return 0;
2094
2095	plink->sata_spd_limit = target_limit;
2096
2097	/* Request another EH round by returning -EAGAIN if link is
2098	 * going faster than the target speed.  Forward progress is
2099	 * guaranteed by setting sata_spd_limit to target_limit above.
2100	 */
2101	if (plink->sata_spd > target) {
2102		ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2103			     sata_spd_string(target));
2104		return -EAGAIN;
2105	}
2106	return 0;
2107}
2108
2109static inline u8 ata_dev_knobble(struct ata_device *dev)
2110{
2111	struct ata_port *ap = dev->link->ap;
2112
2113	if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2114		return 0;
2115
2116	return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2117}
2118
2119static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2120{
2121	struct ata_port *ap = dev->link->ap;
2122	unsigned int err_mask;
2123
2124	if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2125		ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2126		return;
2127	}
2128	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129				     0, ap->sector_buf, 1);
2130	if (err_mask) {
2131		ata_dev_dbg(dev,
2132			    "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133			    err_mask);
2134	} else {
2135		u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137		dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140		if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141			ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142			cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143				~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144		}
2145	}
2146}
2147
2148static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2149{
2150	struct ata_port *ap = dev->link->ap;
2151	unsigned int err_mask;
2152
2153	if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2154		ata_dev_warn(dev,
2155			     "NCQ Send/Recv Log not supported\n");
2156		return;
2157	}
2158	err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2159				     0, ap->sector_buf, 1);
2160	if (err_mask) {
2161		ata_dev_dbg(dev,
2162			    "failed to get NCQ Non-Data Log Emask 0x%x\n",
2163			    err_mask);
2164	} else {
2165		u8 *cmds = dev->ncq_non_data_cmds;
2166
2167		memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2168	}
2169}
2170
2171static void ata_dev_config_ncq_prio(struct ata_device *dev)
2172{
2173	struct ata_port *ap = dev->link->ap;
2174	unsigned int err_mask;
2175
2176	if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2177		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2178		return;
2179	}
2180
2181	err_mask = ata_read_log_page(dev,
2182				     ATA_LOG_IDENTIFY_DEVICE,
2183				     ATA_LOG_SATA_SETTINGS,
2184				     ap->sector_buf,
2185				     1);
2186	if (err_mask) {
2187		ata_dev_dbg(dev,
2188			    "failed to get Identify Device data, Emask 0x%x\n",
2189			    err_mask);
2190		return;
2191	}
2192
2193	if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2194		dev->flags |= ATA_DFLAG_NCQ_PRIO;
2195	} else {
2196		dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2197		ata_dev_dbg(dev, "SATA page does not support priority\n");
2198	}
2199
2200}
2201
2202static int ata_dev_config_ncq(struct ata_device *dev,
2203			       char *desc, size_t desc_sz)
2204{
2205	struct ata_port *ap = dev->link->ap;
2206	int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2207	unsigned int err_mask;
2208	char *aa_desc = "";
2209
2210	if (!ata_id_has_ncq(dev->id)) {
2211		desc[0] = '\0';
2212		return 0;
2213	}
2214	if (!IS_ENABLED(CONFIG_SATA_HOST))
2215		return 0;
2216	if (dev->horkage & ATA_HORKAGE_NONCQ) {
2217		snprintf(desc, desc_sz, "NCQ (not used)");
2218		return 0;
2219	}
2220	if (ap->flags & ATA_FLAG_NCQ) {
2221		hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE);
2222		dev->flags |= ATA_DFLAG_NCQ;
2223	}
2224
2225	if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2226		(ap->flags & ATA_FLAG_FPDMA_AA) &&
2227		ata_id_has_fpdma_aa(dev->id)) {
2228		err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2229			SATA_FPDMA_AA);
2230		if (err_mask) {
2231			ata_dev_err(dev,
2232				    "failed to enable AA (error_mask=0x%x)\n",
2233				    err_mask);
2234			if (err_mask != AC_ERR_DEV) {
2235				dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2236				return -EIO;
2237			}
2238		} else
2239			aa_desc = ", AA";
2240	}
2241
2242	if (hdepth >= ddepth)
2243		snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2244	else
2245		snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2246			ddepth, aa_desc);
2247
2248	if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2249		if (ata_id_has_ncq_send_and_recv(dev->id))
2250			ata_dev_config_ncq_send_recv(dev);
2251		if (ata_id_has_ncq_non_data(dev->id))
2252			ata_dev_config_ncq_non_data(dev);
2253		if (ata_id_has_ncq_prio(dev->id))
2254			ata_dev_config_ncq_prio(dev);
2255	}
2256
2257	return 0;
2258}
2259
2260static void ata_dev_config_sense_reporting(struct ata_device *dev)
2261{
2262	unsigned int err_mask;
2263
2264	if (!ata_id_has_sense_reporting(dev->id))
2265		return;
2266
2267	if (ata_id_sense_reporting_enabled(dev->id))
2268		return;
2269
2270	err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2271	if (err_mask) {
2272		ata_dev_dbg(dev,
2273			    "failed to enable Sense Data Reporting, Emask 0x%x\n",
2274			    err_mask);
2275	}
2276}
2277
2278static void ata_dev_config_zac(struct ata_device *dev)
2279{
2280	struct ata_port *ap = dev->link->ap;
2281	unsigned int err_mask;
2282	u8 *identify_buf = ap->sector_buf;
2283
2284	dev->zac_zones_optimal_open = U32_MAX;
2285	dev->zac_zones_optimal_nonseq = U32_MAX;
2286	dev->zac_zones_max_open = U32_MAX;
2287
2288	/*
2289	 * Always set the 'ZAC' flag for Host-managed devices.
2290	 */
2291	if (dev->class == ATA_DEV_ZAC)
2292		dev->flags |= ATA_DFLAG_ZAC;
2293	else if (ata_id_zoned_cap(dev->id) == 0x01)
2294		/*
2295		 * Check for host-aware devices.
2296		 */
2297		dev->flags |= ATA_DFLAG_ZAC;
2298
2299	if (!(dev->flags & ATA_DFLAG_ZAC))
2300		return;
2301
2302	if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2303		ata_dev_warn(dev,
2304			     "ATA Zoned Information Log not supported\n");
2305		return;
2306	}
2307
2308	/*
2309	 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2310	 */
2311	err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2312				     ATA_LOG_ZONED_INFORMATION,
2313				     identify_buf, 1);
2314	if (!err_mask) {
2315		u64 zoned_cap, opt_open, opt_nonseq, max_open;
2316
2317		zoned_cap = get_unaligned_le64(&identify_buf[8]);
2318		if ((zoned_cap >> 63))
2319			dev->zac_zoned_cap = (zoned_cap & 1);
2320		opt_open = get_unaligned_le64(&identify_buf[24]);
2321		if ((opt_open >> 63))
2322			dev->zac_zones_optimal_open = (u32)opt_open;
2323		opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2324		if ((opt_nonseq >> 63))
2325			dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2326		max_open = get_unaligned_le64(&identify_buf[40]);
2327		if ((max_open >> 63))
2328			dev->zac_zones_max_open = (u32)max_open;
2329	}
2330}
2331
2332static void ata_dev_config_trusted(struct ata_device *dev)
2333{
2334	struct ata_port *ap = dev->link->ap;
2335	u64 trusted_cap;
2336	unsigned int err;
2337
2338	if (!ata_id_has_trusted(dev->id))
2339		return;
2340
2341	if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2342		ata_dev_warn(dev,
2343			     "Security Log not supported\n");
2344		return;
2345	}
2346
2347	err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2348			ap->sector_buf, 1);
2349	if (err) {
2350		ata_dev_dbg(dev,
2351			    "failed to read Security Log, Emask 0x%x\n", err);
2352		return;
2353	}
2354
2355	trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2356	if (!(trusted_cap & (1ULL << 63))) {
2357		ata_dev_dbg(dev,
2358			    "Trusted Computing capability qword not valid!\n");
2359		return;
2360	}
2361
2362	if (trusted_cap & (1 << 0))
2363		dev->flags |= ATA_DFLAG_TRUSTED;
2364}
2365
2366/**
2367 *	ata_dev_configure - Configure the specified ATA/ATAPI device
2368 *	@dev: Target device to configure
2369 *
2370 *	Configure @dev according to @dev->id.  Generic and low-level
2371 *	driver specific fixups are also applied.
2372 *
2373 *	LOCKING:
2374 *	Kernel thread context (may sleep)
2375 *
2376 *	RETURNS:
2377 *	0 on success, -errno otherwise
2378 */
2379int ata_dev_configure(struct ata_device *dev)
2380{
2381	struct ata_port *ap = dev->link->ap;
2382	struct ata_eh_context *ehc = &dev->link->eh_context;
2383	int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2384	const u16 *id = dev->id;
2385	unsigned long xfer_mask;
2386	unsigned int err_mask;
2387	char revbuf[7];		/* XYZ-99\0 */
2388	char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2389	char modelbuf[ATA_ID_PROD_LEN+1];
2390	int rc;
2391
2392	if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2393		ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2394		return 0;
2395	}
2396
2397	if (ata_msg_probe(ap))
2398		ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2399
2400	/* set horkage */
2401	dev->horkage |= ata_dev_blacklisted(dev);
2402	ata_force_horkage(dev);
2403
2404	if (dev->horkage & ATA_HORKAGE_DISABLE) {
2405		ata_dev_info(dev, "unsupported device, disabling\n");
2406		ata_dev_disable(dev);
2407		return 0;
2408	}
2409
2410	if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2411	    dev->class == ATA_DEV_ATAPI) {
2412		ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2413			     atapi_enabled ? "not supported with this driver"
2414			     : "disabled");
2415		ata_dev_disable(dev);
2416		return 0;
2417	}
2418
2419	rc = ata_do_link_spd_horkage(dev);
2420	if (rc)
2421		return rc;
2422
2423	/* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2424	if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2425	    (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2426		dev->horkage |= ATA_HORKAGE_NOLPM;
2427
2428	if (ap->flags & ATA_FLAG_NO_LPM)
2429		dev->horkage |= ATA_HORKAGE_NOLPM;
2430
2431	if (dev->horkage & ATA_HORKAGE_NOLPM) {
2432		ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2433		dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2434	}
2435
2436	/* let ACPI work its magic */
2437	rc = ata_acpi_on_devcfg(dev);
2438	if (rc)
2439		return rc;
2440
2441	/* massage HPA, do it early as it might change IDENTIFY data */
2442	rc = ata_hpa_resize(dev);
2443	if (rc)
2444		return rc;
2445
2446	/* print device capabilities */
2447	if (ata_msg_probe(ap))
2448		ata_dev_dbg(dev,
2449			    "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2450			    "85:%04x 86:%04x 87:%04x 88:%04x\n",
2451			    __func__,
2452			    id[49], id[82], id[83], id[84],
2453			    id[85], id[86], id[87], id[88]);
2454
2455	/* initialize to-be-configured parameters */
2456	dev->flags &= ~ATA_DFLAG_CFG_MASK;
2457	dev->max_sectors = 0;
2458	dev->cdb_len = 0;
2459	dev->n_sectors = 0;
2460	dev->cylinders = 0;
2461	dev->heads = 0;
2462	dev->sectors = 0;
2463	dev->multi_count = 0;
2464
2465	/*
2466	 * common ATA, ATAPI feature tests
2467	 */
2468
2469	/* find max transfer mode; for printk only */
2470	xfer_mask = ata_id_xfermask(id);
2471
2472	if (ata_msg_probe(ap))
2473		ata_dump_id(id);
2474
2475	/* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2476	ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2477			sizeof(fwrevbuf));
2478
2479	ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2480			sizeof(modelbuf));
2481
2482	/* ATA-specific feature tests */
2483	if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2484		if (ata_id_is_cfa(id)) {
2485			/* CPRM may make this media unusable */
2486			if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2487				ata_dev_warn(dev,
2488	"supports DRM functions and may not be fully accessible\n");
2489			snprintf(revbuf, 7, "CFA");
2490		} else {
2491			snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2492			/* Warn the user if the device has TPM extensions */
2493			if (ata_id_has_tpm(id))
2494				ata_dev_warn(dev,
2495	"supports DRM functions and may not be fully accessible\n");
2496		}
2497
2498		dev->n_sectors = ata_id_n_sectors(id);
2499
2500		/* get current R/W Multiple count setting */
2501		if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2502			unsigned int max = dev->id[47] & 0xff;
2503			unsigned int cnt = dev->id[59] & 0xff;
2504			/* only recognize/allow powers of two here */
2505			if (is_power_of_2(max) && is_power_of_2(cnt))
2506				if (cnt <= max)
2507					dev->multi_count = cnt;
2508		}
2509
2510		if (ata_id_has_lba(id)) {
2511			const char *lba_desc;
2512			char ncq_desc[24];
2513
2514			lba_desc = "LBA";
2515			dev->flags |= ATA_DFLAG_LBA;
2516			if (ata_id_has_lba48(id)) {
2517				dev->flags |= ATA_DFLAG_LBA48;
2518				lba_desc = "LBA48";
2519
2520				if (dev->n_sectors >= (1UL << 28) &&
2521				    ata_id_has_flush_ext(id))
2522					dev->flags |= ATA_DFLAG_FLUSH_EXT;
2523			}
2524
2525			/* config NCQ */
2526			rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2527			if (rc)
2528				return rc;
2529
2530			/* print device info to dmesg */
2531			if (ata_msg_drv(ap) && print_info) {
2532				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2533					     revbuf, modelbuf, fwrevbuf,
2534					     ata_mode_string(xfer_mask));
2535				ata_dev_info(dev,
2536					     "%llu sectors, multi %u: %s %s\n",
2537					(unsigned long long)dev->n_sectors,
2538					dev->multi_count, lba_desc, ncq_desc);
2539			}
2540		} else {
2541			/* CHS */
2542
2543			/* Default translation */
2544			dev->cylinders	= id[1];
2545			dev->heads	= id[3];
2546			dev->sectors	= id[6];
2547
2548			if (ata_id_current_chs_valid(id)) {
2549				/* Current CHS translation is valid. */
2550				dev->cylinders = id[54];
2551				dev->heads     = id[55];
2552				dev->sectors   = id[56];
2553			}
2554
2555			/* print device info to dmesg */
2556			if (ata_msg_drv(ap) && print_info) {
2557				ata_dev_info(dev, "%s: %s, %s, max %s\n",
2558					     revbuf,	modelbuf, fwrevbuf,
2559					     ata_mode_string(xfer_mask));
2560				ata_dev_info(dev,
2561					     "%llu sectors, multi %u, CHS %u/%u/%u\n",
2562					     (unsigned long long)dev->n_sectors,
2563					     dev->multi_count, dev->cylinders,
2564					     dev->heads, dev->sectors);
2565			}
2566		}
2567
2568		/* Check and mark DevSlp capability. Get DevSlp timing variables
2569		 * from SATA Settings page of Identify Device Data Log.
2570		 */
2571		if (ata_id_has_devslp(dev->id)) {
2572			u8 *sata_setting = ap->sector_buf;
2573			int i, j;
2574
2575			dev->flags |= ATA_DFLAG_DEVSLP;
2576			err_mask = ata_read_log_page(dev,
2577						     ATA_LOG_IDENTIFY_DEVICE,
2578						     ATA_LOG_SATA_SETTINGS,
2579						     sata_setting,
2580						     1);
2581			if (err_mask)
2582				ata_dev_dbg(dev,
2583					    "failed to get Identify Device Data, Emask 0x%x\n",
2584					    err_mask);
2585			else
2586				for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2587					j = ATA_LOG_DEVSLP_OFFSET + i;
2588					dev->devslp_timing[i] = sata_setting[j];
2589				}
2590		}
2591		ata_dev_config_sense_reporting(dev);
2592		ata_dev_config_zac(dev);
2593		ata_dev_config_trusted(dev);
2594		dev->cdb_len = 32;
2595	}
2596
2597	/* ATAPI-specific feature tests */
2598	else if (dev->class == ATA_DEV_ATAPI) {
2599		const char *cdb_intr_string = "";
2600		const char *atapi_an_string = "";
2601		const char *dma_dir_string = "";
2602		u32 sntf;
2603
2604		rc = atapi_cdb_len(id);
2605		if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2606			if (ata_msg_warn(ap))
2607				ata_dev_warn(dev, "unsupported CDB len\n");
2608			rc = -EINVAL;
2609			goto err_out_nosup;
2610		}
2611		dev->cdb_len = (unsigned int) rc;
2612
2613		/* Enable ATAPI AN if both the host and device have
2614		 * the support.  If PMP is attached, SNTF is required
2615		 * to enable ATAPI AN to discern between PHY status
2616		 * changed notifications and ATAPI ANs.
2617		 */
2618		if (atapi_an &&
2619		    (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2620		    (!sata_pmp_attached(ap) ||
2621		     sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2622			/* issue SET feature command to turn this on */
2623			err_mask = ata_dev_set_feature(dev,
2624					SETFEATURES_SATA_ENABLE, SATA_AN);
2625			if (err_mask)
2626				ata_dev_err(dev,
2627					    "failed to enable ATAPI AN (err_mask=0x%x)\n",
2628					    err_mask);
2629			else {
2630				dev->flags |= ATA_DFLAG_AN;
2631				atapi_an_string = ", ATAPI AN";
2632			}
2633		}
2634
2635		if (ata_id_cdb_intr(dev->id)) {
2636			dev->flags |= ATA_DFLAG_CDB_INTR;
2637			cdb_intr_string = ", CDB intr";
2638		}
2639
2640		if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2641			dev->flags |= ATA_DFLAG_DMADIR;
2642			dma_dir_string = ", DMADIR";
2643		}
2644
2645		if (ata_id_has_da(dev->id)) {
2646			dev->flags |= ATA_DFLAG_DA;
2647			zpodd_init(dev);
2648		}
2649
2650		/* print device info to dmesg */
2651		if (ata_msg_drv(ap) && print_info)
2652			ata_dev_info(dev,
2653				     "ATAPI: %s, %s, max %s%s%s%s\n",
2654				     modelbuf, fwrevbuf,
2655				     ata_mode_string(xfer_mask),
2656				     cdb_intr_string, atapi_an_string,
2657				     dma_dir_string);
2658	}
2659
2660	/* determine max_sectors */
2661	dev->max_sectors = ATA_MAX_SECTORS;
2662	if (dev->flags & ATA_DFLAG_LBA48)
2663		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2664
2665	/* Limit PATA drive on SATA cable bridge transfers to udma5,
2666	   200 sectors */
2667	if (ata_dev_knobble(dev)) {
2668		if (ata_msg_drv(ap) && print_info)
2669			ata_dev_info(dev, "applying bridge limits\n");
2670		dev->udma_mask &= ATA_UDMA5;
2671		dev->max_sectors = ATA_MAX_SECTORS;
2672	}
2673
2674	if ((dev->class == ATA_DEV_ATAPI) &&
2675	    (atapi_command_packet_set(id) == TYPE_TAPE)) {
2676		dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2677		dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2678	}
2679
2680	if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2681		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2682					 dev->max_sectors);
2683
2684	if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2685		dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2686					 dev->max_sectors);
2687
2688	if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2689		dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2690
2691	if (ap->ops->dev_config)
2692		ap->ops->dev_config(dev);
2693
2694	if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2695		/* Let the user know. We don't want to disallow opens for
2696		   rescue purposes, or in case the vendor is just a blithering
2697		   idiot. Do this after the dev_config call as some controllers
2698		   with buggy firmware may want to avoid reporting false device
2699		   bugs */
2700
2701		if (print_info) {
2702			ata_dev_warn(dev,
2703"Drive reports diagnostics failure. This may indicate a drive\n");
2704			ata_dev_warn(dev,
2705"fault or invalid emulation. Contact drive vendor for information.\n");
2706		}
2707	}
2708
2709	if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2710		ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2711		ata_dev_warn(dev, "         contact the vendor or visit http://ata.wiki.kernel.org\n");
2712	}
2713
2714	return 0;
2715
2716err_out_nosup:
2717	if (ata_msg_probe(ap))
2718		ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2719	return rc;
2720}
2721
2722/**
2723 *	ata_cable_40wire	-	return 40 wire cable type
2724 *	@ap: port
2725 *
2726 *	Helper method for drivers which want to hardwire 40 wire cable
2727 *	detection.
2728 */
2729
2730int ata_cable_40wire(struct ata_port *ap)
2731{
2732	return ATA_CBL_PATA40;
2733}
2734EXPORT_SYMBOL_GPL(ata_cable_40wire);
2735
2736/**
2737 *	ata_cable_80wire	-	return 80 wire cable type
2738 *	@ap: port
2739 *
2740 *	Helper method for drivers which want to hardwire 80 wire cable
2741 *	detection.
2742 */
2743
2744int ata_cable_80wire(struct ata_port *ap)
2745{
2746	return ATA_CBL_PATA80;
2747}
2748EXPORT_SYMBOL_GPL(ata_cable_80wire);
2749
2750/**
2751 *	ata_cable_unknown	-	return unknown PATA cable.
2752 *	@ap: port
2753 *
2754 *	Helper method for drivers which have no PATA cable detection.
2755 */
2756
2757int ata_cable_unknown(struct ata_port *ap)
2758{
2759	return ATA_CBL_PATA_UNK;
2760}
2761EXPORT_SYMBOL_GPL(ata_cable_unknown);
2762
2763/**
2764 *	ata_cable_ignore	-	return ignored PATA cable.
2765 *	@ap: port
2766 *
2767 *	Helper method for drivers which don't use cable type to limit
2768 *	transfer mode.
2769 */
2770int ata_cable_ignore(struct ata_port *ap)
2771{
2772	return ATA_CBL_PATA_IGN;
2773}
2774EXPORT_SYMBOL_GPL(ata_cable_ignore);
2775
2776/**
2777 *	ata_cable_sata	-	return SATA cable type
2778 *	@ap: port
2779 *
2780 *	Helper method for drivers which have SATA cables
2781 */
2782
2783int ata_cable_sata(struct ata_port *ap)
2784{
2785	return ATA_CBL_SATA;
2786}
2787EXPORT_SYMBOL_GPL(ata_cable_sata);
2788
2789/**
2790 *	ata_bus_probe - Reset and probe ATA bus
2791 *	@ap: Bus to probe
2792 *
2793 *	Master ATA bus probing function.  Initiates a hardware-dependent
2794 *	bus reset, then attempts to identify any devices found on
2795 *	the bus.
2796 *
2797 *	LOCKING:
2798 *	PCI/etc. bus probe sem.
2799 *
2800 *	RETURNS:
2801 *	Zero on success, negative errno otherwise.
2802 */
2803
2804int ata_bus_probe(struct ata_port *ap)
2805{
2806	unsigned int classes[ATA_MAX_DEVICES];
2807	int tries[ATA_MAX_DEVICES];
2808	int rc;
2809	struct ata_device *dev;
2810
2811	ata_for_each_dev(dev, &ap->link, ALL)
2812		tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2813
2814 retry:
2815	ata_for_each_dev(dev, &ap->link, ALL) {
2816		/* If we issue an SRST then an ATA drive (not ATAPI)
2817		 * may change configuration and be in PIO0 timing. If
2818		 * we do a hard reset (or are coming from power on)
2819		 * this is true for ATA or ATAPI. Until we've set a
2820		 * suitable controller mode we should not touch the
2821		 * bus as we may be talking too fast.
2822		 */
2823		dev->pio_mode = XFER_PIO_0;
2824		dev->dma_mode = 0xff;
2825
2826		/* If the controller has a pio mode setup function
2827		 * then use it to set the chipset to rights. Don't
2828		 * touch the DMA setup as that will be dealt with when
2829		 * configuring devices.
2830		 */
2831		if (ap->ops->set_piomode)
2832			ap->ops->set_piomode(ap, dev);
2833	}
2834
2835	/* reset and determine device classes */
2836	ap->ops->phy_reset(ap);
2837
2838	ata_for_each_dev(dev, &ap->link, ALL) {
2839		if (dev->class != ATA_DEV_UNKNOWN)
2840			classes[dev->devno] = dev->class;
2841		else
2842			classes[dev->devno] = ATA_DEV_NONE;
2843
2844		dev->class = ATA_DEV_UNKNOWN;
2845	}
2846
2847	/* read IDENTIFY page and configure devices. We have to do the identify
2848	   specific sequence bass-ackwards so that PDIAG- is released by
2849	   the slave device */
2850
2851	ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2852		if (tries[dev->devno])
2853			dev->class = classes[dev->devno];
2854
2855		if (!ata_dev_enabled(dev))
2856			continue;
2857
2858		rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2859				     dev->id);
2860		if (rc)
2861			goto fail;
2862	}
2863
2864	/* Now ask for the cable type as PDIAG- should have been released */
2865	if (ap->ops->cable_detect)
2866		ap->cbl = ap->ops->cable_detect(ap);
2867
2868	/* We may have SATA bridge glue hiding here irrespective of
2869	 * the reported cable types and sensed types.  When SATA
2870	 * drives indicate we have a bridge, we don't know which end
2871	 * of the link the bridge is which is a problem.
2872	 */
2873	ata_for_each_dev(dev, &ap->link, ENABLED)
2874		if (ata_id_is_sata(dev->id))
2875			ap->cbl = ATA_CBL_SATA;
2876
2877	/* After the identify sequence we can now set up the devices. We do
2878	   this in the normal order so that the user doesn't get confused */
2879
2880	ata_for_each_dev(dev, &ap->link, ENABLED) {
2881		ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2882		rc = ata_dev_configure(dev);
2883		ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2884		if (rc)
2885			goto fail;
2886	}
2887
2888	/* configure transfer mode */
2889	rc = ata_set_mode(&ap->link, &dev);
2890	if (rc)
2891		goto fail;
2892
2893	ata_for_each_dev(dev, &ap->link, ENABLED)
2894		return 0;
2895
2896	return -ENODEV;
2897
2898 fail:
2899	tries[dev->devno]--;
2900
2901	switch (rc) {
2902	case -EINVAL:
2903		/* eeek, something went very wrong, give up */
2904		tries[dev->devno] = 0;
2905		break;
2906
2907	case -ENODEV:
2908		/* give it just one more chance */
2909		tries[dev->devno] = min(tries[dev->devno], 1);
2910		fallthrough;
2911	case -EIO:
2912		if (tries[dev->devno] == 1) {
2913			/* This is the last chance, better to slow
2914			 * down than lose it.
2915			 */
2916			sata_down_spd_limit(&ap->link, 0);
2917			ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2918		}
2919	}
2920
2921	if (!tries[dev->devno])
2922		ata_dev_disable(dev);
2923
2924	goto retry;
2925}
2926
2927/**
2928 *	sata_print_link_status - Print SATA link status
2929 *	@link: SATA link to printk link status about
2930 *
2931 *	This function prints link speed and status of a SATA link.
2932 *
2933 *	LOCKING:
2934 *	None.
2935 */
2936static void sata_print_link_status(struct ata_link *link)
2937{
2938	u32 sstatus, scontrol, tmp;
2939
2940	if (sata_scr_read(link, SCR_STATUS, &sstatus))
2941		return;
2942	sata_scr_read(link, SCR_CONTROL, &scontrol);
2943
2944	if (ata_phys_link_online(link)) {
2945		tmp = (sstatus >> 4) & 0xf;
2946		ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2947			      sata_spd_string(tmp), sstatus, scontrol);
2948	} else {
2949		ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2950			      sstatus, scontrol);
2951	}
2952}
2953
2954/**
2955 *	ata_dev_pair		-	return other device on cable
2956 *	@adev: device
2957 *
2958 *	Obtain the other device on the same cable, or if none is
2959 *	present NULL is returned
2960 */
2961
2962struct ata_device *ata_dev_pair(struct ata_device *adev)
2963{
2964	struct ata_link *link = adev->link;
2965	struct ata_device *pair = &link->device[1 - adev->devno];
2966	if (!ata_dev_enabled(pair))
2967		return NULL;
2968	return pair;
2969}
2970EXPORT_SYMBOL_GPL(ata_dev_pair);
2971
2972/**
2973 *	sata_down_spd_limit - adjust SATA spd limit downward
2974 *	@link: Link to adjust SATA spd limit for
2975 *	@spd_limit: Additional limit
2976 *
2977 *	Adjust SATA spd limit of @link downward.  Note that this
2978 *	function only adjusts the limit.  The change must be applied
2979 *	using sata_set_spd().
2980 *
2981 *	If @spd_limit is non-zero, the speed is limited to equal to or
2982 *	lower than @spd_limit if such speed is supported.  If
2983 *	@spd_limit is slower than any supported speed, only the lowest
2984 *	supported speed is allowed.
2985 *
2986 *	LOCKING:
2987 *	Inherited from caller.
2988 *
2989 *	RETURNS:
2990 *	0 on success, negative errno on failure
2991 */
2992int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2993{
2994	u32 sstatus, spd, mask;
2995	int rc, bit;
2996
2997	if (!sata_scr_valid(link))
2998		return -EOPNOTSUPP;
2999
3000	/* If SCR can be read, use it to determine the current SPD.
3001	 * If not, use cached value in link->sata_spd.
3002	 */
3003	rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3004	if (rc == 0 && ata_sstatus_online(sstatus))
3005		spd = (sstatus >> 4) & 0xf;
3006	else
3007		spd = link->sata_spd;
3008
3009	mask = link->sata_spd_limit;
3010	if (mask <= 1)
3011		return -EINVAL;
3012
3013	/* unconditionally mask off the highest bit */
3014	bit = fls(mask) - 1;
3015	mask &= ~(1 << bit);
3016
3017	/*
3018	 * Mask off all speeds higher than or equal to the current one.  At
3019	 * this point, if current SPD is not available and we previously
3020	 * recorded the link speed from SStatus, the driver has already
3021	 * masked off the highest bit so mask should already be 1 or 0.
3022	 * Otherwise, we should not force 1.5Gbps on a link where we have
3023	 * not previously recorded speed from SStatus.  Just return in this
3024	 * case.
3025	 */
3026	if (spd > 1)
3027		mask &= (1 << (spd - 1)) - 1;
3028	else
3029		return -EINVAL;
3030
3031	/* were we already at the bottom? */
3032	if (!mask)
3033		return -EINVAL;
3034
3035	if (spd_limit) {
3036		if (mask & ((1 << spd_limit) - 1))
3037			mask &= (1 << spd_limit) - 1;
3038		else {
3039			bit = ffs(mask) - 1;
3040			mask = 1 << bit;
3041		}
3042	}
3043
3044	link->sata_spd_limit = mask;
3045
3046	ata_link_warn(link, "limiting SATA link speed to %s\n",
3047		      sata_spd_string(fls(mask)));
3048
3049	return 0;
3050}
3051
3052#ifdef CONFIG_ATA_ACPI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053/**
3054 *	ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3055 *	@xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3056 *	@cycle: cycle duration in ns
3057 *
3058 *	Return matching xfer mode for @cycle.  The returned mode is of
3059 *	the transfer type specified by @xfer_shift.  If @cycle is too
3060 *	slow for @xfer_shift, 0xff is returned.  If @cycle is faster
3061 *	than the fastest known mode, the fasted mode is returned.
3062 *
3063 *	LOCKING:
3064 *	None.
3065 *
3066 *	RETURNS:
3067 *	Matching xfer_mode, 0xff if no match found.
3068 */
3069u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3070{
3071	u8 base_mode = 0xff, last_mode = 0xff;
3072	const struct ata_xfer_ent *ent;
3073	const struct ata_timing *t;
3074
3075	for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3076		if (ent->shift == xfer_shift)
3077			base_mode = ent->base;
3078
3079	for (t = ata_timing_find_mode(base_mode);
3080	     t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3081		unsigned short this_cycle;
3082
3083		switch (xfer_shift) {
3084		case ATA_SHIFT_PIO:
3085		case ATA_SHIFT_MWDMA:
3086			this_cycle = t->cycle;
3087			break;
3088		case ATA_SHIFT_UDMA:
3089			this_cycle = t->udma;
3090			break;
3091		default:
3092			return 0xff;
3093		}
3094
3095		if (cycle > this_cycle)
3096			break;
3097
3098		last_mode = t->mode;
3099	}
3100
3101	return last_mode;
3102}
3103#endif
3104
3105/**
3106 *	ata_down_xfermask_limit - adjust dev xfer masks downward
3107 *	@dev: Device to adjust xfer masks
3108 *	@sel: ATA_DNXFER_* selector
3109 *
3110 *	Adjust xfer masks of @dev downward.  Note that this function
3111 *	does not apply the change.  Invoking ata_set_mode() afterwards
3112 *	will apply the limit.
3113 *
3114 *	LOCKING:
3115 *	Inherited from caller.
3116 *
3117 *	RETURNS:
3118 *	0 on success, negative errno on failure
3119 */
3120int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3121{
3122	char buf[32];
3123	unsigned long orig_mask, xfer_mask;
3124	unsigned long pio_mask, mwdma_mask, udma_mask;
3125	int quiet, highbit;
3126
3127	quiet = !!(sel & ATA_DNXFER_QUIET);
3128	sel &= ~ATA_DNXFER_QUIET;
3129
3130	xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3131						  dev->mwdma_mask,
3132						  dev->udma_mask);
3133	ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3134
3135	switch (sel) {
3136	case ATA_DNXFER_PIO:
3137		highbit = fls(pio_mask) - 1;
3138		pio_mask &= ~(1 << highbit);
3139		break;
3140
3141	case ATA_DNXFER_DMA:
3142		if (udma_mask) {
3143			highbit = fls(udma_mask) - 1;
3144			udma_mask &= ~(1 << highbit);
3145			if (!udma_mask)
3146				return -ENOENT;
3147		} else if (mwdma_mask) {
3148			highbit = fls(mwdma_mask) - 1;
3149			mwdma_mask &= ~(1 << highbit);
3150			if (!mwdma_mask)
3151				return -ENOENT;
3152		}
3153		break;
3154
3155	case ATA_DNXFER_40C:
3156		udma_mask &= ATA_UDMA_MASK_40C;
3157		break;
3158
3159	case ATA_DNXFER_FORCE_PIO0:
3160		pio_mask &= 1;
3161		fallthrough;
3162	case ATA_DNXFER_FORCE_PIO:
3163		mwdma_mask = 0;
3164		udma_mask = 0;
3165		break;
3166
3167	default:
3168		BUG();
3169	}
3170
3171	xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3172
3173	if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3174		return -ENOENT;
3175
3176	if (!quiet) {
3177		if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3178			snprintf(buf, sizeof(buf), "%s:%s",
3179				 ata_mode_string(xfer_mask),
3180				 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3181		else
3182			snprintf(buf, sizeof(buf), "%s",
3183				 ata_mode_string(xfer_mask));
3184
3185		ata_dev_warn(dev, "limiting speed to %s\n", buf);
3186	}
3187
3188	ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3189			    &dev->udma_mask);
3190
3191	return 0;
3192}
3193
3194static int ata_dev_set_mode(struct ata_device *dev)
3195{
3196	struct ata_port *ap = dev->link->ap;
3197	struct ata_eh_context *ehc = &dev->link->eh_context;
3198	const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3199	const char *dev_err_whine = "";
3200	int ign_dev_err = 0;
3201	unsigned int err_mask = 0;
3202	int rc;
3203
3204	dev->flags &= ~ATA_DFLAG_PIO;
3205	if (dev->xfer_shift == ATA_SHIFT_PIO)
3206		dev->flags |= ATA_DFLAG_PIO;
3207
3208	if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3209		dev_err_whine = " (SET_XFERMODE skipped)";
3210	else {
3211		if (nosetxfer)
3212			ata_dev_warn(dev,
3213				     "NOSETXFER but PATA detected - can't "
3214				     "skip SETXFER, might malfunction\n");
3215		err_mask = ata_dev_set_xfermode(dev);
3216	}
3217
3218	if (err_mask & ~AC_ERR_DEV)
3219		goto fail;
3220
3221	/* revalidate */
3222	ehc->i.flags |= ATA_EHI_POST_SETMODE;
3223	rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3224	ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3225	if (rc)
3226		return rc;
3227
3228	if (dev->xfer_shift == ATA_SHIFT_PIO) {
3229		/* Old CFA may refuse this command, which is just fine */
3230		if (ata_id_is_cfa(dev->id))
3231			ign_dev_err = 1;
3232		/* Catch several broken garbage emulations plus some pre
3233		   ATA devices */
3234		if (ata_id_major_version(dev->id) == 0 &&
3235					dev->pio_mode <= XFER_PIO_2)
3236			ign_dev_err = 1;
3237		/* Some very old devices and some bad newer ones fail
3238		   any kind of SET_XFERMODE request but support PIO0-2
3239		   timings and no IORDY */
3240		if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3241			ign_dev_err = 1;
3242	}
3243	/* Early MWDMA devices do DMA but don't allow DMA mode setting.
3244	   Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3245	if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3246	    dev->dma_mode == XFER_MW_DMA_0 &&
3247	    (dev->id[63] >> 8) & 1)
3248		ign_dev_err = 1;
3249
3250	/* if the device is actually configured correctly, ignore dev err */
3251	if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3252		ign_dev_err = 1;
3253
3254	if (err_mask & AC_ERR_DEV) {
3255		if (!ign_dev_err)
3256			goto fail;
3257		else
3258			dev_err_whine = " (device error ignored)";
3259	}
3260
3261	DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3262		dev->xfer_shift, (int)dev->xfer_mode);
3263
3264	if (!(ehc->i.flags & ATA_EHI_QUIET) ||
3265	    ehc->i.flags & ATA_EHI_DID_HARDRESET)
3266		ata_dev_info(dev, "configured for %s%s\n",
3267			     ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3268			     dev_err_whine);
3269
3270	return 0;
3271
3272 fail:
3273	ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3274	return -EIO;
3275}
3276
3277/**
3278 *	ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3279 *	@link: link on which timings will be programmed
3280 *	@r_failed_dev: out parameter for failed device
3281 *
3282 *	Standard implementation of the function used to tune and set
3283 *	ATA device disk transfer mode (PIO3, UDMA6, etc.).  If
3284 *	ata_dev_set_mode() fails, pointer to the failing device is
3285 *	returned in @r_failed_dev.
3286 *
3287 *	LOCKING:
3288 *	PCI/etc. bus probe sem.
3289 *
3290 *	RETURNS:
3291 *	0 on success, negative errno otherwise
3292 */
3293
3294int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3295{
3296	struct ata_port *ap = link->ap;
3297	struct ata_device *dev;
3298	int rc = 0, used_dma = 0, found = 0;
3299
3300	/* step 1: calculate xfer_mask */
3301	ata_for_each_dev(dev, link, ENABLED) {
3302		unsigned long pio_mask, dma_mask;
3303		unsigned int mode_mask;
3304
3305		mode_mask = ATA_DMA_MASK_ATA;
3306		if (dev->class == ATA_DEV_ATAPI)
3307			mode_mask = ATA_DMA_MASK_ATAPI;
3308		else if (ata_id_is_cfa(dev->id))
3309			mode_mask = ATA_DMA_MASK_CFA;
3310
3311		ata_dev_xfermask(dev);
3312		ata_force_xfermask(dev);
3313
3314		pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3315
3316		if (libata_dma_mask & mode_mask)
3317			dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3318						     dev->udma_mask);
3319		else
3320			dma_mask = 0;
3321
3322		dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3323		dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3324
3325		found = 1;
3326		if (ata_dma_enabled(dev))
3327			used_dma = 1;
3328	}
3329	if (!found)
3330		goto out;
3331
3332	/* step 2: always set host PIO timings */
3333	ata_for_each_dev(dev, link, ENABLED) {
3334		if (dev->pio_mode == 0xff) {
3335			ata_dev_warn(dev, "no PIO support\n");
3336			rc = -EINVAL;
3337			goto out;
3338		}
3339
3340		dev->xfer_mode = dev->pio_mode;
3341		dev->xfer_shift = ATA_SHIFT_PIO;
3342		if (ap->ops->set_piomode)
3343			ap->ops->set_piomode(ap, dev);
3344	}
3345
3346	/* step 3: set host DMA timings */
3347	ata_for_each_dev(dev, link, ENABLED) {
3348		if (!ata_dma_enabled(dev))
3349			continue;
3350
3351		dev->xfer_mode = dev->dma_mode;
3352		dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3353		if (ap->ops->set_dmamode)
3354			ap->ops->set_dmamode(ap, dev);
3355	}
3356
3357	/* step 4: update devices' xfer mode */
3358	ata_for_each_dev(dev, link, ENABLED) {
3359		rc = ata_dev_set_mode(dev);
3360		if (rc)
3361			goto out;
3362	}
3363
3364	/* Record simplex status. If we selected DMA then the other
3365	 * host channels are not permitted to do so.
3366	 */
3367	if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3368		ap->host->simplex_claimed = ap;
3369
3370 out:
3371	if (rc)
3372		*r_failed_dev = dev;
3373	return rc;
3374}
3375EXPORT_SYMBOL_GPL(ata_do_set_mode);
3376
3377/**
3378 *	ata_wait_ready - wait for link to become ready
3379 *	@link: link to be waited on
3380 *	@deadline: deadline jiffies for the operation
3381 *	@check_ready: callback to check link readiness
3382 *
3383 *	Wait for @link to become ready.  @check_ready should return
3384 *	positive number if @link is ready, 0 if it isn't, -ENODEV if
3385 *	link doesn't seem to be occupied, other errno for other error
3386 *	conditions.
3387 *
3388 *	Transient -ENODEV conditions are allowed for
3389 *	ATA_TMOUT_FF_WAIT.
3390 *
3391 *	LOCKING:
3392 *	EH context.
3393 *
3394 *	RETURNS:
3395 *	0 if @link is ready before @deadline; otherwise, -errno.
3396 */
3397int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3398		   int (*check_ready)(struct ata_link *link))
3399{
3400	unsigned long start = jiffies;
3401	unsigned long nodev_deadline;
3402	int warned = 0;
3403
3404	/* choose which 0xff timeout to use, read comment in libata.h */
3405	if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3406		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3407	else
3408		nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3409
3410	/* Slave readiness can't be tested separately from master.  On
3411	 * M/S emulation configuration, this function should be called
3412	 * only on the master and it will handle both master and slave.
3413	 */
3414	WARN_ON(link == link->ap->slave_link);
3415
3416	if (time_after(nodev_deadline, deadline))
3417		nodev_deadline = deadline;
3418
3419	while (1) {
3420		unsigned long now = jiffies;
3421		int ready, tmp;
3422
3423		ready = tmp = check_ready(link);
3424		if (ready > 0)
3425			return 0;
3426
3427		/*
3428		 * -ENODEV could be transient.  Ignore -ENODEV if link
3429		 * is online.  Also, some SATA devices take a long
3430		 * time to clear 0xff after reset.  Wait for
3431		 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3432		 * offline.
3433		 *
3434		 * Note that some PATA controllers (pata_ali) explode
3435		 * if status register is read more than once when
3436		 * there's no device attached.
3437		 */
3438		if (ready == -ENODEV) {
3439			if (ata_link_online(link))
3440				ready = 0;
3441			else if ((link->ap->flags & ATA_FLAG_SATA) &&
3442				 !ata_link_offline(link) &&
3443				 time_before(now, nodev_deadline))
3444				ready = 0;
3445		}
3446
3447		if (ready)
3448			return ready;
3449		if (time_after(now, deadline))
3450			return -EBUSY;
3451
3452		if (!warned && time_after(now, start + 5 * HZ) &&
3453		    (deadline - now > 3 * HZ)) {
3454			ata_link_warn(link,
3455				"link is slow to respond, please be patient "
3456				"(ready=%d)\n", tmp);
3457			warned = 1;
3458		}
3459
3460		ata_msleep(link->ap, 50);
3461	}
3462}
3463
3464/**
3465 *	ata_wait_after_reset - wait for link to become ready after reset
3466 *	@link: link to be waited on
3467 *	@deadline: deadline jiffies for the operation
3468 *	@check_ready: callback to check link readiness
3469 *
3470 *	Wait for @link to become ready after reset.
3471 *
3472 *	LOCKING:
3473 *	EH context.
3474 *
3475 *	RETURNS:
3476 *	0 if @link is ready before @deadline; otherwise, -errno.
3477 */
3478int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3479				int (*check_ready)(struct ata_link *link))
3480{
3481	ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3482
3483	return ata_wait_ready(link, deadline, check_ready);
3484}
3485EXPORT_SYMBOL_GPL(ata_wait_after_reset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3486
3487/**
3488 *	ata_std_prereset - prepare for reset
3489 *	@link: ATA link to be reset
3490 *	@deadline: deadline jiffies for the operation
3491 *
3492 *	@link is about to be reset.  Initialize it.  Failure from
3493 *	prereset makes libata abort whole reset sequence and give up
3494 *	that port, so prereset should be best-effort.  It does its
3495 *	best to prepare for reset sequence but if things go wrong, it
3496 *	should just whine, not fail.
3497 *
3498 *	LOCKING:
3499 *	Kernel thread context (may sleep)
3500 *
3501 *	RETURNS:
3502 *	0 on success, -errno otherwise.
3503 */
3504int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3505{
3506	struct ata_port *ap = link->ap;
3507	struct ata_eh_context *ehc = &link->eh_context;
3508	const unsigned long *timing = sata_ehc_deb_timing(ehc);
3509	int rc;
3510
3511	/* if we're about to do hardreset, nothing more to do */
3512	if (ehc->i.action & ATA_EH_HARDRESET)
3513		return 0;
3514
3515	/* if SATA, resume link */
3516	if (ap->flags & ATA_FLAG_SATA) {
3517		rc = sata_link_resume(link, timing, deadline);
3518		/* whine about phy resume failure but proceed */
3519		if (rc && rc != -EOPNOTSUPP)
3520			ata_link_warn(link,
3521				      "failed to resume link for reset (errno=%d)\n",
3522				      rc);
3523	}
3524
3525	/* no point in trying softreset on offline link */
3526	if (ata_phys_link_offline(link))
3527		ehc->i.action &= ~ATA_EH_SOFTRESET;
3528
3529	return 0;
3530}
3531EXPORT_SYMBOL_GPL(ata_std_prereset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3532
3533/**
3534 *	sata_std_hardreset - COMRESET w/o waiting or classification
3535 *	@link: link to reset
3536 *	@class: resulting class of attached device
3537 *	@deadline: deadline jiffies for the operation
3538 *
3539 *	Standard SATA COMRESET w/o waiting or classification.
3540 *
3541 *	LOCKING:
3542 *	Kernel thread context (may sleep)
3543 *
3544 *	RETURNS:
3545 *	0 if link offline, -EAGAIN if link online, -errno on errors.
3546 */
3547int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3548		       unsigned long deadline)
3549{
3550	const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3551	bool online;
3552	int rc;
3553
3554	/* do hardreset */
3555	rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3556	return online ? -EAGAIN : rc;
3557}
3558EXPORT_SYMBOL_GPL(sata_std_hardreset);
3559
3560/**
3561 *	ata_std_postreset - standard postreset callback
3562 *	@link: the target ata_link
3563 *	@classes: classes of attached devices
3564 *
3565 *	This function is invoked after a successful reset.  Note that
3566 *	the device might have been reset more than once using
3567 *	different reset methods before postreset is invoked.
3568 *
3569 *	LOCKING:
3570 *	Kernel thread context (may sleep)
3571 */
3572void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3573{
3574	u32 serror;
3575
3576	DPRINTK("ENTER\n");
3577
3578	/* reset complete, clear SError */
3579	if (!sata_scr_read(link, SCR_ERROR, &serror))
3580		sata_scr_write(link, SCR_ERROR, serror);
3581
3582	/* print link status */
3583	sata_print_link_status(link);
3584
3585	DPRINTK("EXIT\n");
3586}
3587EXPORT_SYMBOL_GPL(ata_std_postreset);
3588
3589/**
3590 *	ata_dev_same_device - Determine whether new ID matches configured device
3591 *	@dev: device to compare against
3592 *	@new_class: class of the new device
3593 *	@new_id: IDENTIFY page of the new device
3594 *
3595 *	Compare @new_class and @new_id against @dev and determine
3596 *	whether @dev is the device indicated by @new_class and
3597 *	@new_id.
3598 *
3599 *	LOCKING:
3600 *	None.
3601 *
3602 *	RETURNS:
3603 *	1 if @dev matches @new_class and @new_id, 0 otherwise.
3604 */
3605static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3606			       const u16 *new_id)
3607{
3608	const u16 *old_id = dev->id;
3609	unsigned char model[2][ATA_ID_PROD_LEN + 1];
3610	unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3611
3612	if (dev->class != new_class) {
3613		ata_dev_info(dev, "class mismatch %d != %d\n",
3614			     dev->class, new_class);
3615		return 0;
3616	}
3617
3618	ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3619	ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3620	ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3621	ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3622
3623	if (strcmp(model[0], model[1])) {
3624		ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3625			     model[0], model[1]);
3626		return 0;
3627	}
3628
3629	if (strcmp(serial[0], serial[1])) {
3630		ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3631			     serial[0], serial[1]);
3632		return 0;
3633	}
3634
3635	return 1;
3636}
3637
3638/**
3639 *	ata_dev_reread_id - Re-read IDENTIFY data
3640 *	@dev: target ATA device
3641 *	@readid_flags: read ID flags
3642 *
3643 *	Re-read IDENTIFY page and make sure @dev is still attached to
3644 *	the port.
3645 *
3646 *	LOCKING:
3647 *	Kernel thread context (may sleep)
3648 *
3649 *	RETURNS:
3650 *	0 on success, negative errno otherwise
3651 */
3652int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3653{
3654	unsigned int class = dev->class;
3655	u16 *id = (void *)dev->link->ap->sector_buf;
3656	int rc;
3657
3658	/* read ID data */
3659	rc = ata_dev_read_id(dev, &class, readid_flags, id);
3660	if (rc)
3661		return rc;
3662
3663	/* is the device still there? */
3664	if (!ata_dev_same_device(dev, class, id))
3665		return -ENODEV;
3666
3667	memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3668	return 0;
3669}
3670
3671/**
3672 *	ata_dev_revalidate - Revalidate ATA device
3673 *	@dev: device to revalidate
3674 *	@new_class: new class code
3675 *	@readid_flags: read ID flags
3676 *
3677 *	Re-read IDENTIFY page, make sure @dev is still attached to the
3678 *	port and reconfigure it according to the new IDENTIFY page.
3679 *
3680 *	LOCKING:
3681 *	Kernel thread context (may sleep)
3682 *
3683 *	RETURNS:
3684 *	0 on success, negative errno otherwise
3685 */
3686int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
3687		       unsigned int readid_flags)
3688{
3689	u64 n_sectors = dev->n_sectors;
3690	u64 n_native_sectors = dev->n_native_sectors;
3691	int rc;
3692
3693	if (!ata_dev_enabled(dev))
3694		return -ENODEV;
3695
3696	/* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
3697	if (ata_class_enabled(new_class) &&
3698	    new_class != ATA_DEV_ATA &&
3699	    new_class != ATA_DEV_ATAPI &&
3700	    new_class != ATA_DEV_ZAC &&
3701	    new_class != ATA_DEV_SEMB) {
3702		ata_dev_info(dev, "class mismatch %u != %u\n",
3703			     dev->class, new_class);
3704		rc = -ENODEV;
3705		goto fail;
3706	}
3707
3708	/* re-read ID */
3709	rc = ata_dev_reread_id(dev, readid_flags);
3710	if (rc)
3711		goto fail;
3712
3713	/* configure device according to the new ID */
3714	rc = ata_dev_configure(dev);
3715	if (rc)
3716		goto fail;
3717
3718	/* verify n_sectors hasn't changed */
3719	if (dev->class != ATA_DEV_ATA || !n_sectors ||
3720	    dev->n_sectors == n_sectors)
3721		return 0;
3722
3723	/* n_sectors has changed */
3724	ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
3725		     (unsigned long long)n_sectors,
3726		     (unsigned long long)dev->n_sectors);
3727
3728	/*
3729	 * Something could have caused HPA to be unlocked
3730	 * involuntarily.  If n_native_sectors hasn't changed and the
3731	 * new size matches it, keep the device.
3732	 */
3733	if (dev->n_native_sectors == n_native_sectors &&
3734	    dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
3735		ata_dev_warn(dev,
3736			     "new n_sectors matches native, probably "
3737			     "late HPA unlock, n_sectors updated\n");
3738		/* use the larger n_sectors */
3739		return 0;
3740	}
3741
3742	/*
3743	 * Some BIOSes boot w/o HPA but resume w/ HPA locked.  Try
3744	 * unlocking HPA in those cases.
3745	 *
3746	 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
3747	 */
3748	if (dev->n_native_sectors == n_native_sectors &&
3749	    dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
3750	    !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
3751		ata_dev_warn(dev,
3752			     "old n_sectors matches native, probably "
3753			     "late HPA lock, will try to unlock HPA\n");
3754		/* try unlocking HPA */
3755		dev->flags |= ATA_DFLAG_UNLOCK_HPA;
3756		rc = -EIO;
3757	} else
3758		rc = -ENODEV;
3759
3760	/* restore original n_[native_]sectors and fail */
3761	dev->n_native_sectors = n_native_sectors;
3762	dev->n_sectors = n_sectors;
3763 fail:
3764	ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
3765	return rc;
3766}
3767
3768struct ata_blacklist_entry {
3769	const char *model_num;
3770	const char *model_rev;
3771	unsigned long horkage;
3772};
3773
3774static const struct ata_blacklist_entry ata_device_blacklist [] = {
3775	/* Devices with DMA related problems under Linux */
3776	{ "WDC AC11000H",	NULL,		ATA_HORKAGE_NODMA },
3777	{ "WDC AC22100H",	NULL,		ATA_HORKAGE_NODMA },
3778	{ "WDC AC32500H",	NULL,		ATA_HORKAGE_NODMA },
3779	{ "WDC AC33100H",	NULL,		ATA_HORKAGE_NODMA },
3780	{ "WDC AC31600H",	NULL,		ATA_HORKAGE_NODMA },
3781	{ "WDC AC32100H",	"24.09P07",	ATA_HORKAGE_NODMA },
3782	{ "WDC AC23200L",	"21.10N21",	ATA_HORKAGE_NODMA },
3783	{ "Compaq CRD-8241B", 	NULL,		ATA_HORKAGE_NODMA },
3784	{ "CRD-8400B",		NULL, 		ATA_HORKAGE_NODMA },
3785	{ "CRD-848[02]B",	NULL,		ATA_HORKAGE_NODMA },
3786	{ "CRD-84",		NULL,		ATA_HORKAGE_NODMA },
3787	{ "SanDisk SDP3B",	NULL,		ATA_HORKAGE_NODMA },
3788	{ "SanDisk SDP3B-64",	NULL,		ATA_HORKAGE_NODMA },
3789	{ "SANYO CD-ROM CRD",	NULL,		ATA_HORKAGE_NODMA },
3790	{ "HITACHI CDR-8",	NULL,		ATA_HORKAGE_NODMA },
3791	{ "HITACHI CDR-8[34]35",NULL,		ATA_HORKAGE_NODMA },
3792	{ "Toshiba CD-ROM XM-6202B", NULL,	ATA_HORKAGE_NODMA },
3793	{ "TOSHIBA CD-ROM XM-1702BC", NULL,	ATA_HORKAGE_NODMA },
3794	{ "CD-532E-A", 		NULL,		ATA_HORKAGE_NODMA },
3795	{ "E-IDE CD-ROM CR-840",NULL,		ATA_HORKAGE_NODMA },
3796	{ "CD-ROM Drive/F5A",	NULL,		ATA_HORKAGE_NODMA },
3797	{ "WPI CDD-820", 	NULL,		ATA_HORKAGE_NODMA },
3798	{ "SAMSUNG CD-ROM SC-148C", NULL,	ATA_HORKAGE_NODMA },
3799	{ "SAMSUNG CD-ROM SC",	NULL,		ATA_HORKAGE_NODMA },
3800	{ "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
3801	{ "_NEC DV5800A", 	NULL,		ATA_HORKAGE_NODMA },
3802	{ "SAMSUNG CD-ROM SN-124", "N001",	ATA_HORKAGE_NODMA },
3803	{ "Seagate STT20000A", NULL,		ATA_HORKAGE_NODMA },
3804	{ " 2GB ATA Flash Disk", "ADMA428M",	ATA_HORKAGE_NODMA },
3805	{ "VRFDFC22048UCHC-TE*", NULL,		ATA_HORKAGE_NODMA },
3806	/* Odd clown on sil3726/4726 PMPs */
3807	{ "Config  Disk",	NULL,		ATA_HORKAGE_DISABLE },
3808
3809	/* Weird ATAPI devices */
3810	{ "TORiSAN DVD-ROM DRD-N216", NULL,	ATA_HORKAGE_MAX_SEC_128 },
3811	{ "QUANTUM DAT    DAT72-000", NULL,	ATA_HORKAGE_ATAPI_MOD16_DMA },
3812	{ "Slimtype DVD A  DS8A8SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3813	{ "Slimtype DVD A  DS8A9SH", NULL,	ATA_HORKAGE_MAX_SEC_LBA48 },
3814
3815	/*
3816	 * Causes silent data corruption with higher max sects.
3817	 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
3818	 */
3819	{ "ST380013AS",		"3.20",		ATA_HORKAGE_MAX_SEC_1024 },
3820
3821	/*
3822	 * These devices time out with higher max sects.
3823	 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
3824	 */
3825	{ "LITEON CX1-JB*-HP",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3826	{ "LITEON EP1-*",	NULL,		ATA_HORKAGE_MAX_SEC_1024 },
3827
3828	/* Devices we expect to fail diagnostics */
3829
3830	/* Devices where NCQ should be avoided */
3831	/* NCQ is slow */
3832	{ "WDC WD740ADFD-00",	NULL,		ATA_HORKAGE_NONCQ },
3833	{ "WDC WD740ADFD-00NLR1", NULL,		ATA_HORKAGE_NONCQ, },
3834	/* http://thread.gmane.org/gmane.linux.ide/14907 */
3835	{ "FUJITSU MHT2060BH",	NULL,		ATA_HORKAGE_NONCQ },
3836	/* NCQ is broken */
3837	{ "Maxtor *",		"BANC*",	ATA_HORKAGE_NONCQ },
3838	{ "Maxtor 7V300F0",	"VA111630",	ATA_HORKAGE_NONCQ },
3839	{ "ST380817AS",		"3.42",		ATA_HORKAGE_NONCQ },
3840	{ "ST3160023AS",	"3.42",		ATA_HORKAGE_NONCQ },
3841	{ "OCZ CORE_SSD",	"02.10104",	ATA_HORKAGE_NONCQ },
3842
3843	/* Seagate NCQ + FLUSH CACHE firmware bug */
3844	{ "ST31500341AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3845						ATA_HORKAGE_FIRMWARE_WARN },
3846
3847	{ "ST31000333AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3848						ATA_HORKAGE_FIRMWARE_WARN },
3849
3850	{ "ST3640[36]23AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3851						ATA_HORKAGE_FIRMWARE_WARN },
3852
3853	{ "ST3320[68]13AS",	"SD1[5-9]",	ATA_HORKAGE_NONCQ |
3854						ATA_HORKAGE_FIRMWARE_WARN },
3855
3856	/* drives which fail FPDMA_AA activation (some may freeze afterwards)
3857	   the ST disks also have LPM issues */
3858	{ "ST1000LM024 HN-M101MBB", NULL,	ATA_HORKAGE_BROKEN_FPDMA_AA |
3859						ATA_HORKAGE_NOLPM, },
3860	{ "VB0250EAVER",	"HPG7",		ATA_HORKAGE_BROKEN_FPDMA_AA },
3861
3862	/* Blacklist entries taken from Silicon Image 3124/3132
3863	   Windows driver .inf file - also several Linux problem reports */
3864	{ "HTS541060G9SA00",    "MB3OC60D",     ATA_HORKAGE_NONCQ, },
3865	{ "HTS541080G9SA00",    "MB4OC60D",     ATA_HORKAGE_NONCQ, },
3866	{ "HTS541010G9SA00",    "MBZOC60D",     ATA_HORKAGE_NONCQ, },
3867
3868	/* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
3869	{ "C300-CTFDDAC128MAG",	"0001",		ATA_HORKAGE_NONCQ, },
3870
3871	/* Sandisk SD7/8/9s lock up hard on large trims */
3872	{ "SanDisk SD[789]*",	NULL,		ATA_HORKAGE_MAX_TRIM_128M, },
3873
3874	/* devices which puke on READ_NATIVE_MAX */
3875	{ "HDS724040KLSA80",	"KFAOA20N",	ATA_HORKAGE_BROKEN_HPA, },
3876	{ "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
3877	{ "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
3878	{ "MAXTOR 6L080L4",	"A93.0500",	ATA_HORKAGE_BROKEN_HPA },
3879
3880	/* this one allows HPA unlocking but fails IOs on the area */
3881	{ "OCZ-VERTEX",		    "1.30",	ATA_HORKAGE_BROKEN_HPA },
3882
3883	/* Devices which report 1 sector over size HPA */
3884	{ "ST340823A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3885	{ "ST320413A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3886	{ "ST310211A",		NULL,		ATA_HORKAGE_HPA_SIZE, },
3887
3888	/* Devices which get the IVB wrong */
3889	{ "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
3890	/* Maybe we should just blacklist TSSTcorp... */
3891	{ "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]",  ATA_HORKAGE_IVB, },
3892
3893	/* Devices that do not need bridging limits applied */
3894	{ "MTRON MSP-SATA*",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3895	{ "BUFFALO HD-QSU2/R5",		NULL,	ATA_HORKAGE_BRIDGE_OK, },
3896
3897	/* Devices which aren't very happy with higher link speeds */
3898	{ "WD My Book",			NULL,	ATA_HORKAGE_1_5_GBPS, },
3899	{ "Seagate FreeAgent GoFlex",	NULL,	ATA_HORKAGE_1_5_GBPS, },
3900
3901	/*
3902	 * Devices which choke on SETXFER.  Applies only if both the
3903	 * device and controller are SATA.
3904	 */
3905	{ "PIONEER DVD-RW  DVRTD08",	NULL,	ATA_HORKAGE_NOSETXFER },
3906	{ "PIONEER DVD-RW  DVRTD08A",	NULL,	ATA_HORKAGE_NOSETXFER },
3907	{ "PIONEER DVD-RW  DVR-215",	NULL,	ATA_HORKAGE_NOSETXFER },
3908	{ "PIONEER DVD-RW  DVR-212D",	NULL,	ATA_HORKAGE_NOSETXFER },
3909	{ "PIONEER DVD-RW  DVR-216D",	NULL,	ATA_HORKAGE_NOSETXFER },
3910
3911	/* Crucial BX100 SSD 500GB has broken LPM support */
3912	{ "CT500BX100SSD1",		NULL,	ATA_HORKAGE_NOLPM },
3913
3914	/* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
3915	{ "Crucial_CT512MX100*",	"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3916						ATA_HORKAGE_ZERO_AFTER_TRIM |
3917						ATA_HORKAGE_NOLPM, },
3918	/* 512GB MX100 with newer firmware has only LPM issues */
3919	{ "Crucial_CT512MX100*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM |
3920						ATA_HORKAGE_NOLPM, },
3921
3922	/* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
3923	{ "Crucial_CT480M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3924						ATA_HORKAGE_ZERO_AFTER_TRIM |
3925						ATA_HORKAGE_NOLPM, },
3926	{ "Crucial_CT960M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3927						ATA_HORKAGE_ZERO_AFTER_TRIM |
3928						ATA_HORKAGE_NOLPM, },
3929
3930	/* These specific Samsung models/firmware-revs do not handle LPM well */
3931	{ "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
3932	{ "SAMSUNG SSD PM830 mSATA *",  "CXM13D1Q", ATA_HORKAGE_NOLPM, },
3933	{ "SAMSUNG MZ7TD256HAFV-000L9", NULL,       ATA_HORKAGE_NOLPM, },
3934	{ "SAMSUNG MZ7TE512HMHP-000L1", "EXT06L0Q", ATA_HORKAGE_NOLPM, },
3935
3936	/* devices that don't properly handle queued TRIM commands */
3937	{ "Micron_M500IT_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3938						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3939	{ "Micron_M500_*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3940						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3941	{ "Crucial_CT*M500*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3942						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3943	{ "Micron_M5[15]0_*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3944						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3945	{ "Crucial_CT*M550*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3946						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3947	{ "Crucial_CT*MX100*",		"MU01",	ATA_HORKAGE_NO_NCQ_TRIM |
3948						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3949	{ "Samsung SSD 840*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3950						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3951	{ "Samsung SSD 850*",		NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3952						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3953	{ "FCCT*M500*",			NULL,	ATA_HORKAGE_NO_NCQ_TRIM |
3954						ATA_HORKAGE_ZERO_AFTER_TRIM, },
3955
3956	/* devices that don't properly handle TRIM commands */
3957	{ "SuperSSpeed S238*",		NULL,	ATA_HORKAGE_NOTRIM, },
3958
3959	/*
3960	 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
3961	 * (Return Zero After Trim) flags in the ATA Command Set are
3962	 * unreliable in the sense that they only define what happens if
3963	 * the device successfully executed the DSM TRIM command. TRIM
3964	 * is only advisory, however, and the device is free to silently
3965	 * ignore all or parts of the request.
3966	 *
3967	 * Whitelist drives that are known to reliably return zeroes
3968	 * after TRIM.
3969	 */
3970
3971	/*
3972	 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
3973	 * that model before whitelisting all other intel SSDs.
3974	 */
3975	{ "INTEL*SSDSC2MH*",		NULL,	0, },
3976
3977	{ "Micron*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3978	{ "Crucial*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3979	{ "INTEL*SSD*", 		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3980	{ "SSD*INTEL*",			NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3981	{ "Samsung*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3982	{ "SAMSUNG*SSD*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3983	{ "SAMSUNG*MZ7KM*",		NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3984	{ "ST[1248][0248]0[FH]*",	NULL,	ATA_HORKAGE_ZERO_AFTER_TRIM, },
3985
3986	/*
3987	 * Some WD SATA-I drives spin up and down erratically when the link
3988	 * is put into the slumber mode.  We don't have full list of the
3989	 * affected devices.  Disable LPM if the device matches one of the
3990	 * known prefixes and is SATA-1.  As a side effect LPM partial is
3991	 * lost too.
3992	 *
3993	 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
3994	 */
3995	{ "WDC WD800JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3996	{ "WDC WD1200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3997	{ "WDC WD1600JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3998	{ "WDC WD2000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
3999	{ "WDC WD2500JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4000	{ "WDC WD3000JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4001	{ "WDC WD3200JD-*",		NULL,	ATA_HORKAGE_WD_BROKEN_LPM },
4002
4003	/* End Marker */
4004	{ }
4005};
4006
4007static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4008{
4009	unsigned char model_num[ATA_ID_PROD_LEN + 1];
4010	unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4011	const struct ata_blacklist_entry *ad = ata_device_blacklist;
4012
4013	ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4014	ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4015
4016	while (ad->model_num) {
4017		if (glob_match(ad->model_num, model_num)) {
4018			if (ad->model_rev == NULL)
4019				return ad->horkage;
4020			if (glob_match(ad->model_rev, model_rev))
4021				return ad->horkage;
4022		}
4023		ad++;
4024	}
4025	return 0;
4026}
4027
4028static int ata_dma_blacklisted(const struct ata_device *dev)
4029{
4030	/* We don't support polling DMA.
4031	 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4032	 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4033	 */
4034	if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4035	    (dev->flags & ATA_DFLAG_CDB_INTR))
4036		return 1;
4037	return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4038}
4039
4040/**
4041 *	ata_is_40wire		-	check drive side detection
4042 *	@dev: device
4043 *
4044 *	Perform drive side detection decoding, allowing for device vendors
4045 *	who can't follow the documentation.
4046 */
4047
4048static int ata_is_40wire(struct ata_device *dev)
4049{
4050	if (dev->horkage & ATA_HORKAGE_IVB)
4051		return ata_drive_40wire_relaxed(dev->id);
4052	return ata_drive_40wire(dev->id);
4053}
4054
4055/**
4056 *	cable_is_40wire		-	40/80/SATA decider
4057 *	@ap: port to consider
4058 *
4059 *	This function encapsulates the policy for speed management
4060 *	in one place. At the moment we don't cache the result but
4061 *	there is a good case for setting ap->cbl to the result when
4062 *	we are called with unknown cables (and figuring out if it
4063 *	impacts hotplug at all).
4064 *
4065 *	Return 1 if the cable appears to be 40 wire.
4066 */
4067
4068static int cable_is_40wire(struct ata_port *ap)
4069{
4070	struct ata_link *link;
4071	struct ata_device *dev;
4072
4073	/* If the controller thinks we are 40 wire, we are. */
4074	if (ap->cbl == ATA_CBL_PATA40)
4075		return 1;
4076
4077	/* If the controller thinks we are 80 wire, we are. */
4078	if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4079		return 0;
4080
4081	/* If the system is known to be 40 wire short cable (eg
4082	 * laptop), then we allow 80 wire modes even if the drive
4083	 * isn't sure.
4084	 */
4085	if (ap->cbl == ATA_CBL_PATA40_SHORT)
4086		return 0;
4087
4088	/* If the controller doesn't know, we scan.
4089	 *
4090	 * Note: We look for all 40 wire detects at this point.  Any
4091	 *       80 wire detect is taken to be 80 wire cable because
4092	 * - in many setups only the one drive (slave if present) will
4093	 *   give a valid detect
4094	 * - if you have a non detect capable drive you don't want it
4095	 *   to colour the choice
4096	 */
4097	ata_for_each_link(link, ap, EDGE) {
4098		ata_for_each_dev(dev, link, ENABLED) {
4099			if (!ata_is_40wire(dev))
4100				return 0;
4101		}
4102	}
4103	return 1;
4104}
4105
4106/**
4107 *	ata_dev_xfermask - Compute supported xfermask of the given device
4108 *	@dev: Device to compute xfermask for
4109 *
4110 *	Compute supported xfermask of @dev and store it in
4111 *	dev->*_mask.  This function is responsible for applying all
4112 *	known limits including host controller limits, device
4113 *	blacklist, etc...
4114 *
4115 *	LOCKING:
4116 *	None.
4117 */
4118static void ata_dev_xfermask(struct ata_device *dev)
4119{
4120	struct ata_link *link = dev->link;
4121	struct ata_port *ap = link->ap;
4122	struct ata_host *host = ap->host;
4123	unsigned long xfer_mask;
4124
4125	/* controller modes available */
4126	xfer_mask = ata_pack_xfermask(ap->pio_mask,
4127				      ap->mwdma_mask, ap->udma_mask);
4128
4129	/* drive modes available */
4130	xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4131				       dev->mwdma_mask, dev->udma_mask);
4132	xfer_mask &= ata_id_xfermask(dev->id);
4133
4134	/*
4135	 *	CFA Advanced TrueIDE timings are not allowed on a shared
4136	 *	cable
4137	 */
4138	if (ata_dev_pair(dev)) {
4139		/* No PIO5 or PIO6 */
4140		xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4141		/* No MWDMA3 or MWDMA 4 */
4142		xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4143	}
4144
4145	if (ata_dma_blacklisted(dev)) {
4146		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4147		ata_dev_warn(dev,
4148			     "device is on DMA blacklist, disabling DMA\n");
4149	}
4150
4151	if ((host->flags & ATA_HOST_SIMPLEX) &&
4152	    host->simplex_claimed && host->simplex_claimed != ap) {
4153		xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4154		ata_dev_warn(dev,
4155			     "simplex DMA is claimed by other device, disabling DMA\n");
4156	}
4157
4158	if (ap->flags & ATA_FLAG_NO_IORDY)
4159		xfer_mask &= ata_pio_mask_no_iordy(dev);
4160
4161	if (ap->ops->mode_filter)
4162		xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4163
4164	/* Apply cable rule here.  Don't apply it early because when
4165	 * we handle hot plug the cable type can itself change.
4166	 * Check this last so that we know if the transfer rate was
4167	 * solely limited by the cable.
4168	 * Unknown or 80 wire cables reported host side are checked
4169	 * drive side as well. Cases where we know a 40wire cable
4170	 * is used safely for 80 are not checked here.
4171	 */
4172	if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4173		/* UDMA/44 or higher would be available */
4174		if (cable_is_40wire(ap)) {
4175			ata_dev_warn(dev,
4176				     "limited to UDMA/33 due to 40-wire cable\n");
4177			xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4178		}
4179
4180	ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4181			    &dev->mwdma_mask, &dev->udma_mask);
4182}
4183
4184/**
4185 *	ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4186 *	@dev: Device to which command will be sent
4187 *
4188 *	Issue SET FEATURES - XFER MODE command to device @dev
4189 *	on port @ap.
4190 *
4191 *	LOCKING:
4192 *	PCI/etc. bus probe sem.
4193 *
4194 *	RETURNS:
4195 *	0 on success, AC_ERR_* mask otherwise.
4196 */
4197
4198static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4199{
4200	struct ata_taskfile tf;
4201	unsigned int err_mask;
4202
4203	/* set up set-features taskfile */
4204	DPRINTK("set features - xfer mode\n");
4205
4206	/* Some controllers and ATAPI devices show flaky interrupt
4207	 * behavior after setting xfer mode.  Use polling instead.
4208	 */
4209	ata_tf_init(dev, &tf);
4210	tf.command = ATA_CMD_SET_FEATURES;
4211	tf.feature = SETFEATURES_XFER;
4212	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4213	tf.protocol = ATA_PROT_NODATA;
4214	/* If we are using IORDY we must send the mode setting command */
4215	if (ata_pio_need_iordy(dev))
4216		tf.nsect = dev->xfer_mode;
4217	/* If the device has IORDY and the controller does not - turn it off */
4218 	else if (ata_id_has_iordy(dev->id))
4219		tf.nsect = 0x01;
4220	else /* In the ancient relic department - skip all of this */
4221		return 0;
4222
4223	/* On some disks, this command causes spin-up, so we need longer timeout */
4224	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4225
4226	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4227	return err_mask;
4228}
4229
4230/**
4231 *	ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4232 *	@dev: Device to which command will be sent
4233 *	@enable: Whether to enable or disable the feature
4234 *	@feature: The sector count represents the feature to set
4235 *
4236 *	Issue SET FEATURES - SATA FEATURES command to device @dev
4237 *	on port @ap with sector count
4238 *
4239 *	LOCKING:
4240 *	PCI/etc. bus probe sem.
4241 *
4242 *	RETURNS:
4243 *	0 on success, AC_ERR_* mask otherwise.
4244 */
4245unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4246{
4247	struct ata_taskfile tf;
4248	unsigned int err_mask;
4249	unsigned long timeout = 0;
4250
4251	/* set up set-features taskfile */
4252	DPRINTK("set features - SATA features\n");
4253
4254	ata_tf_init(dev, &tf);
4255	tf.command = ATA_CMD_SET_FEATURES;
4256	tf.feature = enable;
4257	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4258	tf.protocol = ATA_PROT_NODATA;
4259	tf.nsect = feature;
4260
4261	if (enable == SETFEATURES_SPINUP)
4262		timeout = ata_probe_timeout ?
4263			  ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4264	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4265
4266	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4267	return err_mask;
4268}
4269EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4270
4271/**
4272 *	ata_dev_init_params - Issue INIT DEV PARAMS command
4273 *	@dev: Device to which command will be sent
4274 *	@heads: Number of heads (taskfile parameter)
4275 *	@sectors: Number of sectors (taskfile parameter)
4276 *
4277 *	LOCKING:
4278 *	Kernel thread context (may sleep)
4279 *
4280 *	RETURNS:
4281 *	0 on success, AC_ERR_* mask otherwise.
4282 */
4283static unsigned int ata_dev_init_params(struct ata_device *dev,
4284					u16 heads, u16 sectors)
4285{
4286	struct ata_taskfile tf;
4287	unsigned int err_mask;
4288
4289	/* Number of sectors per track 1-255. Number of heads 1-16 */
4290	if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4291		return AC_ERR_INVALID;
4292
4293	/* set up init dev params taskfile */
4294	DPRINTK("init dev params \n");
4295
4296	ata_tf_init(dev, &tf);
4297	tf.command = ATA_CMD_INIT_DEV_PARAMS;
4298	tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4299	tf.protocol = ATA_PROT_NODATA;
4300	tf.nsect = sectors;
4301	tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4302
4303	err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4304	/* A clean abort indicates an original or just out of spec drive
4305	   and we should continue as we issue the setup based on the
4306	   drive reported working geometry */
4307	if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4308		err_mask = 0;
4309
4310	DPRINTK("EXIT, err_mask=%x\n", err_mask);
4311	return err_mask;
4312}
4313
4314/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4315 *	atapi_check_dma - Check whether ATAPI DMA can be supported
4316 *	@qc: Metadata associated with taskfile to check
4317 *
4318 *	Allow low-level driver to filter ATA PACKET commands, returning
4319 *	a status indicating whether or not it is OK to use DMA for the
4320 *	supplied PACKET command.
4321 *
4322 *	LOCKING:
4323 *	spin_lock_irqsave(host lock)
4324 *
4325 *	RETURNS: 0 when ATAPI DMA can be used
4326 *               nonzero otherwise
4327 */
4328int atapi_check_dma(struct ata_queued_cmd *qc)
4329{
4330	struct ata_port *ap = qc->ap;
4331
4332	/* Don't allow DMA if it isn't multiple of 16 bytes.  Quite a
4333	 * few ATAPI devices choke on such DMA requests.
4334	 */
4335	if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4336	    unlikely(qc->nbytes & 15))
4337		return 1;
4338
4339	if (ap->ops->check_atapi_dma)
4340		return ap->ops->check_atapi_dma(qc);
4341
4342	return 0;
4343}
4344
4345/**
4346 *	ata_std_qc_defer - Check whether a qc needs to be deferred
4347 *	@qc: ATA command in question
4348 *
4349 *	Non-NCQ commands cannot run with any other command, NCQ or
4350 *	not.  As upper layer only knows the queue depth, we are
4351 *	responsible for maintaining exclusion.  This function checks
4352 *	whether a new command @qc can be issued.
4353 *
4354 *	LOCKING:
4355 *	spin_lock_irqsave(host lock)
4356 *
4357 *	RETURNS:
4358 *	ATA_DEFER_* if deferring is needed, 0 otherwise.
4359 */
4360int ata_std_qc_defer(struct ata_queued_cmd *qc)
4361{
4362	struct ata_link *link = qc->dev->link;
4363
4364	if (ata_is_ncq(qc->tf.protocol)) {
4365		if (!ata_tag_valid(link->active_tag))
4366			return 0;
4367	} else {
4368		if (!ata_tag_valid(link->active_tag) && !link->sactive)
4369			return 0;
4370	}
4371
4372	return ATA_DEFER_LINK;
4373}
4374EXPORT_SYMBOL_GPL(ata_std_qc_defer);
4375
4376enum ata_completion_errors ata_noop_qc_prep(struct ata_queued_cmd *qc)
4377{
4378	return AC_ERR_OK;
4379}
4380EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
4381
4382/**
4383 *	ata_sg_init - Associate command with scatter-gather table.
4384 *	@qc: Command to be associated
4385 *	@sg: Scatter-gather table.
4386 *	@n_elem: Number of elements in s/g table.
4387 *
4388 *	Initialize the data-related elements of queued_cmd @qc
4389 *	to point to a scatter-gather table @sg, containing @n_elem
4390 *	elements.
4391 *
4392 *	LOCKING:
4393 *	spin_lock_irqsave(host lock)
4394 */
4395void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4396		 unsigned int n_elem)
4397{
4398	qc->sg = sg;
4399	qc->n_elem = n_elem;
4400	qc->cursg = qc->sg;
4401}
4402
4403#ifdef CONFIG_HAS_DMA
4404
4405/**
4406 *	ata_sg_clean - Unmap DMA memory associated with command
4407 *	@qc: Command containing DMA memory to be released
4408 *
4409 *	Unmap all mapped DMA memory associated with this command.
4410 *
4411 *	LOCKING:
4412 *	spin_lock_irqsave(host lock)
4413 */
4414static void ata_sg_clean(struct ata_queued_cmd *qc)
4415{
4416	struct ata_port *ap = qc->ap;
4417	struct scatterlist *sg = qc->sg;
4418	int dir = qc->dma_dir;
4419
4420	WARN_ON_ONCE(sg == NULL);
4421
4422	VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4423
4424	if (qc->n_elem)
4425		dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4426
4427	qc->flags &= ~ATA_QCFLAG_DMAMAP;
4428	qc->sg = NULL;
4429}
4430
4431/**
4432 *	ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4433 *	@qc: Command with scatter-gather table to be mapped.
4434 *
4435 *	DMA-map the scatter-gather table associated with queued_cmd @qc.
4436 *
4437 *	LOCKING:
4438 *	spin_lock_irqsave(host lock)
4439 *
4440 *	RETURNS:
4441 *	Zero on success, negative on error.
4442 *
4443 */
4444static int ata_sg_setup(struct ata_queued_cmd *qc)
4445{
4446	struct ata_port *ap = qc->ap;
4447	unsigned int n_elem;
4448
4449	VPRINTK("ENTER, ata%u\n", ap->print_id);
4450
4451	n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4452	if (n_elem < 1)
4453		return -1;
4454
4455	VPRINTK("%d sg elements mapped\n", n_elem);
4456	qc->orig_n_elem = qc->n_elem;
4457	qc->n_elem = n_elem;
4458	qc->flags |= ATA_QCFLAG_DMAMAP;
4459
4460	return 0;
4461}
4462
4463#else /* !CONFIG_HAS_DMA */
4464
4465static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
4466static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
4467
4468#endif /* !CONFIG_HAS_DMA */
4469
4470/**
4471 *	swap_buf_le16 - swap halves of 16-bit words in place
4472 *	@buf:  Buffer to swap
4473 *	@buf_words:  Number of 16-bit words in buffer.
4474 *
4475 *	Swap halves of 16-bit words if needed to convert from
4476 *	little-endian byte order to native cpu byte order, or
4477 *	vice-versa.
4478 *
4479 *	LOCKING:
4480 *	Inherited from caller.
4481 */
4482void swap_buf_le16(u16 *buf, unsigned int buf_words)
4483{
4484#ifdef __BIG_ENDIAN
4485	unsigned int i;
4486
4487	for (i = 0; i < buf_words; i++)
4488		buf[i] = le16_to_cpu(buf[i]);
4489#endif /* __BIG_ENDIAN */
4490}
4491
4492/**
4493 *	ata_qc_new_init - Request an available ATA command, and initialize it
4494 *	@dev: Device from whom we request an available command structure
4495 *	@tag: tag
4496 *
4497 *	LOCKING:
4498 *	None.
4499 */
4500
4501struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4502{
4503	struct ata_port *ap = dev->link->ap;
4504	struct ata_queued_cmd *qc;
4505
4506	/* no command while frozen */
4507	if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4508		return NULL;
4509
4510	/* libsas case */
4511	if (ap->flags & ATA_FLAG_SAS_HOST) {
4512		tag = ata_sas_allocate_tag(ap);
4513		if (tag < 0)
4514			return NULL;
4515	}
4516
4517	qc = __ata_qc_from_tag(ap, tag);
4518	qc->tag = qc->hw_tag = tag;
4519	qc->scsicmd = NULL;
4520	qc->ap = ap;
4521	qc->dev = dev;
4522
4523	ata_qc_reinit(qc);
4524
4525	return qc;
4526}
4527
4528/**
4529 *	ata_qc_free - free unused ata_queued_cmd
4530 *	@qc: Command to complete
4531 *
4532 *	Designed to free unused ata_queued_cmd object
4533 *	in case something prevents using it.
4534 *
4535 *	LOCKING:
4536 *	spin_lock_irqsave(host lock)
4537 */
4538void ata_qc_free(struct ata_queued_cmd *qc)
4539{
4540	struct ata_port *ap;
4541	unsigned int tag;
4542
4543	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4544	ap = qc->ap;
4545
4546	qc->flags = 0;
4547	tag = qc->tag;
4548	if (ata_tag_valid(tag)) {
4549		qc->tag = ATA_TAG_POISON;
4550		if (ap->flags & ATA_FLAG_SAS_HOST)
4551			ata_sas_free_tag(tag, ap);
4552	}
4553}
4554
4555void __ata_qc_complete(struct ata_queued_cmd *qc)
4556{
4557	struct ata_port *ap;
4558	struct ata_link *link;
4559
4560	WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4561	WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4562	ap = qc->ap;
4563	link = qc->dev->link;
4564
4565	if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4566		ata_sg_clean(qc);
4567
4568	/* command should be marked inactive atomically with qc completion */
4569	if (ata_is_ncq(qc->tf.protocol)) {
4570		link->sactive &= ~(1 << qc->hw_tag);
4571		if (!link->sactive)
4572			ap->nr_active_links--;
4573	} else {
4574		link->active_tag = ATA_TAG_POISON;
4575		ap->nr_active_links--;
4576	}
4577
4578	/* clear exclusive status */
4579	if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4580		     ap->excl_link == link))
4581		ap->excl_link = NULL;
4582
4583	/* atapi: mark qc as inactive to prevent the interrupt handler
4584	 * from completing the command twice later, before the error handler
4585	 * is called. (when rc != 0 and atapi request sense is needed)
4586	 */
4587	qc->flags &= ~ATA_QCFLAG_ACTIVE;
4588	ap->qc_active &= ~(1ULL << qc->tag);
4589
4590	/* call completion callback */
4591	qc->complete_fn(qc);
4592}
4593
4594static void fill_result_tf(struct ata_queued_cmd *qc)
4595{
4596	struct ata_port *ap = qc->ap;
4597
4598	qc->result_tf.flags = qc->tf.flags;
4599	ap->ops->qc_fill_rtf(qc);
4600}
4601
4602static void ata_verify_xfer(struct ata_queued_cmd *qc)
4603{
4604	struct ata_device *dev = qc->dev;
4605
4606	if (!ata_is_data(qc->tf.protocol))
4607		return;
4608
4609	if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4610		return;
4611
4612	dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4613}
4614
4615/**
4616 *	ata_qc_complete - Complete an active ATA command
4617 *	@qc: Command to complete
4618 *
4619 *	Indicate to the mid and upper layers that an ATA command has
4620 *	completed, with either an ok or not-ok status.
4621 *
4622 *	Refrain from calling this function multiple times when
4623 *	successfully completing multiple NCQ commands.
4624 *	ata_qc_complete_multiple() should be used instead, which will
4625 *	properly update IRQ expect state.
4626 *
4627 *	LOCKING:
4628 *	spin_lock_irqsave(host lock)
4629 */
4630void ata_qc_complete(struct ata_queued_cmd *qc)
4631{
4632	struct ata_port *ap = qc->ap;
4633
4634	/* Trigger the LED (if available) */
4635	ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
4636
4637	/* XXX: New EH and old EH use different mechanisms to
4638	 * synchronize EH with regular execution path.
4639	 *
4640	 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4641	 * Normal execution path is responsible for not accessing a
4642	 * failed qc.  libata core enforces the rule by returning NULL
4643	 * from ata_qc_from_tag() for failed qcs.
4644	 *
4645	 * Old EH depends on ata_qc_complete() nullifying completion
4646	 * requests if ATA_QCFLAG_EH_SCHEDULED is set.  Old EH does
4647	 * not synchronize with interrupt handler.  Only PIO task is
4648	 * taken care of.
4649	 */
4650	if (ap->ops->error_handler) {
4651		struct ata_device *dev = qc->dev;
4652		struct ata_eh_info *ehi = &dev->link->eh_info;
4653
4654		if (unlikely(qc->err_mask))
4655			qc->flags |= ATA_QCFLAG_FAILED;
4656
4657		/*
4658		 * Finish internal commands without any further processing
4659		 * and always with the result TF filled.
4660		 */
4661		if (unlikely(ata_tag_internal(qc->tag))) {
4662			fill_result_tf(qc);
4663			trace_ata_qc_complete_internal(qc);
4664			__ata_qc_complete(qc);
4665			return;
4666		}
4667
4668		/*
4669		 * Non-internal qc has failed.  Fill the result TF and
4670		 * summon EH.
4671		 */
4672		if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4673			fill_result_tf(qc);
4674			trace_ata_qc_complete_failed(qc);
4675			ata_qc_schedule_eh(qc);
4676			return;
4677		}
4678
4679		WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4680
4681		/* read result TF if requested */
4682		if (qc->flags & ATA_QCFLAG_RESULT_TF)
4683			fill_result_tf(qc);
4684
4685		trace_ata_qc_complete_done(qc);
4686		/* Some commands need post-processing after successful
4687		 * completion.
4688		 */
4689		switch (qc->tf.command) {
4690		case ATA_CMD_SET_FEATURES:
4691			if (qc->tf.feature != SETFEATURES_WC_ON &&
4692			    qc->tf.feature != SETFEATURES_WC_OFF &&
4693			    qc->tf.feature != SETFEATURES_RA_ON &&
4694			    qc->tf.feature != SETFEATURES_RA_OFF)
4695				break;
4696			fallthrough;
4697		case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4698		case ATA_CMD_SET_MULTI: /* multi_count changed */
4699			/* revalidate device */
4700			ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4701			ata_port_schedule_eh(ap);
4702			break;
4703
4704		case ATA_CMD_SLEEP:
4705			dev->flags |= ATA_DFLAG_SLEEPING;
4706			break;
4707		}
4708
4709		if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4710			ata_verify_xfer(qc);
4711
4712		__ata_qc_complete(qc);
4713	} else {
4714		if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4715			return;
4716
4717		/* read result TF if failed or requested */
4718		if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4719			fill_result_tf(qc);
4720
4721		__ata_qc_complete(qc);
4722	}
4723}
4724EXPORT_SYMBOL_GPL(ata_qc_complete);
4725
4726/**
4727 *	ata_qc_get_active - get bitmask of active qcs
4728 *	@ap: port in question
 
 
 
 
 
 
 
 
 
 
4729 *
4730 *	LOCKING:
4731 *	spin_lock_irqsave(host lock)
4732 *
4733 *	RETURNS:
4734 *	Bitmask of active qcs
4735 */
4736u64 ata_qc_get_active(struct ata_port *ap)
4737{
4738	u64 qc_active = ap->qc_active;
 
4739
4740	/* ATA_TAG_INTERNAL is sent to hw as tag 0 */
4741	if (qc_active & (1ULL << ATA_TAG_INTERNAL)) {
4742		qc_active |= (1 << 0);
4743		qc_active &= ~(1ULL << ATA_TAG_INTERNAL);
 
 
4744	}
4745
4746	return qc_active;
 
 
 
 
 
 
 
 
 
 
 
 
4747}
4748EXPORT_SYMBOL_GPL(ata_qc_get_active);
4749
4750/**
4751 *	ata_qc_issue - issue taskfile to device
4752 *	@qc: command to issue to device
4753 *
4754 *	Prepare an ATA command to submission to device.
4755 *	This includes mapping the data into a DMA-able
4756 *	area, filling in the S/G table, and finally
4757 *	writing the taskfile to hardware, starting the command.
4758 *
4759 *	LOCKING:
4760 *	spin_lock_irqsave(host lock)
4761 */
4762void ata_qc_issue(struct ata_queued_cmd *qc)
4763{
4764	struct ata_port *ap = qc->ap;
4765	struct ata_link *link = qc->dev->link;
4766	u8 prot = qc->tf.protocol;
4767
4768	/* Make sure only one non-NCQ command is outstanding.  The
4769	 * check is skipped for old EH because it reuses active qc to
4770	 * request ATAPI sense.
4771	 */
4772	WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
4773
4774	if (ata_is_ncq(prot)) {
4775		WARN_ON_ONCE(link->sactive & (1 << qc->hw_tag));
4776
4777		if (!link->sactive)
4778			ap->nr_active_links++;
4779		link->sactive |= 1 << qc->hw_tag;
4780	} else {
4781		WARN_ON_ONCE(link->sactive);
4782
4783		ap->nr_active_links++;
4784		link->active_tag = qc->tag;
4785	}
4786
4787	qc->flags |= ATA_QCFLAG_ACTIVE;
4788	ap->qc_active |= 1ULL << qc->tag;
4789
4790	/*
4791	 * We guarantee to LLDs that they will have at least one
4792	 * non-zero sg if the command is a data command.
4793	 */
4794	if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
 
4795		goto sys_err;
4796
4797	if (ata_is_dma(prot) || (ata_is_pio(prot) &&
4798				 (ap->flags & ATA_FLAG_PIO_DMA)))
4799		if (ata_sg_setup(qc))
4800			goto sys_err;
4801
4802	/* if device is sleeping, schedule reset and abort the link */
4803	if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
4804		link->eh_info.action |= ATA_EH_RESET;
4805		ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
4806		ata_link_abort(link);
4807		return;
4808	}
4809
4810	qc->err_mask |= ap->ops->qc_prep(qc);
4811	if (unlikely(qc->err_mask))
4812		goto err;
4813	trace_ata_qc_issue(qc);
4814	qc->err_mask |= ap->ops->qc_issue(qc);
4815	if (unlikely(qc->err_mask))
4816		goto err;
4817	return;
4818
4819sys_err:
4820	qc->err_mask |= AC_ERR_SYSTEM;
4821err:
4822	ata_qc_complete(qc);
4823}
4824
4825/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826 *	ata_phys_link_online - test whether the given link is online
4827 *	@link: ATA link to test
4828 *
4829 *	Test whether @link is online.  Note that this function returns
4830 *	0 if online status of @link cannot be obtained, so
4831 *	ata_link_online(link) != !ata_link_offline(link).
4832 *
4833 *	LOCKING:
4834 *	None.
4835 *
4836 *	RETURNS:
4837 *	True if the port online status is available and online.
4838 */
4839bool ata_phys_link_online(struct ata_link *link)
4840{
4841	u32 sstatus;
4842
4843	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4844	    ata_sstatus_online(sstatus))
4845		return true;
4846	return false;
4847}
4848
4849/**
4850 *	ata_phys_link_offline - test whether the given link is offline
4851 *	@link: ATA link to test
4852 *
4853 *	Test whether @link is offline.  Note that this function
4854 *	returns 0 if offline status of @link cannot be obtained, so
4855 *	ata_link_online(link) != !ata_link_offline(link).
4856 *
4857 *	LOCKING:
4858 *	None.
4859 *
4860 *	RETURNS:
4861 *	True if the port offline status is available and offline.
4862 */
4863bool ata_phys_link_offline(struct ata_link *link)
4864{
4865	u32 sstatus;
4866
4867	if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
4868	    !ata_sstatus_online(sstatus))
4869		return true;
4870	return false;
4871}
4872
4873/**
4874 *	ata_link_online - test whether the given link is online
4875 *	@link: ATA link to test
4876 *
4877 *	Test whether @link is online.  This is identical to
4878 *	ata_phys_link_online() when there's no slave link.  When
4879 *	there's a slave link, this function should only be called on
4880 *	the master link and will return true if any of M/S links is
4881 *	online.
4882 *
4883 *	LOCKING:
4884 *	None.
4885 *
4886 *	RETURNS:
4887 *	True if the port online status is available and online.
4888 */
4889bool ata_link_online(struct ata_link *link)
4890{
4891	struct ata_link *slave = link->ap->slave_link;
4892
4893	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4894
4895	return ata_phys_link_online(link) ||
4896		(slave && ata_phys_link_online(slave));
4897}
4898EXPORT_SYMBOL_GPL(ata_link_online);
4899
4900/**
4901 *	ata_link_offline - test whether the given link is offline
4902 *	@link: ATA link to test
4903 *
4904 *	Test whether @link is offline.  This is identical to
4905 *	ata_phys_link_offline() when there's no slave link.  When
4906 *	there's a slave link, this function should only be called on
4907 *	the master link and will return true if both M/S links are
4908 *	offline.
4909 *
4910 *	LOCKING:
4911 *	None.
4912 *
4913 *	RETURNS:
4914 *	True if the port offline status is available and offline.
4915 */
4916bool ata_link_offline(struct ata_link *link)
4917{
4918	struct ata_link *slave = link->ap->slave_link;
4919
4920	WARN_ON(link == slave);	/* shouldn't be called on slave link */
4921
4922	return ata_phys_link_offline(link) &&
4923		(!slave || ata_phys_link_offline(slave));
4924}
4925EXPORT_SYMBOL_GPL(ata_link_offline);
4926
4927#ifdef CONFIG_PM
4928static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
4929				unsigned int action, unsigned int ehi_flags,
4930				bool async)
4931{
4932	struct ata_link *link;
4933	unsigned long flags;
4934
4935	/* Previous resume operation might still be in
4936	 * progress.  Wait for PM_PENDING to clear.
4937	 */
4938	if (ap->pflags & ATA_PFLAG_PM_PENDING) {
4939		ata_port_wait_eh(ap);
4940		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4941	}
4942
4943	/* request PM ops to EH */
4944	spin_lock_irqsave(ap->lock, flags);
4945
4946	ap->pm_mesg = mesg;
4947	ap->pflags |= ATA_PFLAG_PM_PENDING;
4948	ata_for_each_link(link, ap, HOST_FIRST) {
4949		link->eh_info.action |= action;
4950		link->eh_info.flags |= ehi_flags;
4951	}
4952
4953	ata_port_schedule_eh(ap);
4954
4955	spin_unlock_irqrestore(ap->lock, flags);
4956
4957	if (!async) {
4958		ata_port_wait_eh(ap);
4959		WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
4960	}
4961}
4962
4963/*
4964 * On some hardware, device fails to respond after spun down for suspend.  As
4965 * the device won't be used before being resumed, we don't need to touch the
4966 * device.  Ask EH to skip the usual stuff and proceed directly to suspend.
4967 *
4968 * http://thread.gmane.org/gmane.linux.ide/46764
4969 */
4970static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
4971						 | ATA_EHI_NO_AUTOPSY
4972						 | ATA_EHI_NO_RECOVERY;
4973
4974static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
4975{
4976	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
4977}
4978
4979static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
4980{
4981	ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
4982}
4983
4984static int ata_port_pm_suspend(struct device *dev)
4985{
4986	struct ata_port *ap = to_ata_port(dev);
4987
4988	if (pm_runtime_suspended(dev))
4989		return 0;
4990
4991	ata_port_suspend(ap, PMSG_SUSPEND);
4992	return 0;
4993}
4994
4995static int ata_port_pm_freeze(struct device *dev)
4996{
4997	struct ata_port *ap = to_ata_port(dev);
4998
4999	if (pm_runtime_suspended(dev))
5000		return 0;
5001
5002	ata_port_suspend(ap, PMSG_FREEZE);
5003	return 0;
5004}
5005
5006static int ata_port_pm_poweroff(struct device *dev)
5007{
5008	ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5009	return 0;
5010}
5011
5012static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5013						| ATA_EHI_QUIET;
5014
5015static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5016{
5017	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5018}
5019
5020static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5021{
5022	ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5023}
5024
5025static int ata_port_pm_resume(struct device *dev)
5026{
5027	ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5028	pm_runtime_disable(dev);
5029	pm_runtime_set_active(dev);
5030	pm_runtime_enable(dev);
5031	return 0;
5032}
5033
5034/*
5035 * For ODDs, the upper layer will poll for media change every few seconds,
5036 * which will make it enter and leave suspend state every few seconds. And
5037 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5038 * is very little and the ODD may malfunction after constantly being reset.
5039 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5040 * ODD is attached to the port.
5041 */
5042static int ata_port_runtime_idle(struct device *dev)
5043{
5044	struct ata_port *ap = to_ata_port(dev);
5045	struct ata_link *link;
5046	struct ata_device *adev;
5047
5048	ata_for_each_link(link, ap, HOST_FIRST) {
5049		ata_for_each_dev(adev, link, ENABLED)
5050			if (adev->class == ATA_DEV_ATAPI &&
5051			    !zpodd_dev_enabled(adev))
5052				return -EBUSY;
5053	}
5054
5055	return 0;
5056}
5057
5058static int ata_port_runtime_suspend(struct device *dev)
5059{
5060	ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5061	return 0;
5062}
5063
5064static int ata_port_runtime_resume(struct device *dev)
5065{
5066	ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5067	return 0;
5068}
5069
5070static const struct dev_pm_ops ata_port_pm_ops = {
5071	.suspend = ata_port_pm_suspend,
5072	.resume = ata_port_pm_resume,
5073	.freeze = ata_port_pm_freeze,
5074	.thaw = ata_port_pm_resume,
5075	.poweroff = ata_port_pm_poweroff,
5076	.restore = ata_port_pm_resume,
5077
5078	.runtime_suspend = ata_port_runtime_suspend,
5079	.runtime_resume = ata_port_runtime_resume,
5080	.runtime_idle = ata_port_runtime_idle,
5081};
5082
5083/* sas ports don't participate in pm runtime management of ata_ports,
5084 * and need to resume ata devices at the domain level, not the per-port
5085 * level. sas suspend/resume is async to allow parallel port recovery
5086 * since sas has multiple ata_port instances per Scsi_Host.
5087 */
5088void ata_sas_port_suspend(struct ata_port *ap)
5089{
5090	ata_port_suspend_async(ap, PMSG_SUSPEND);
5091}
5092EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5093
5094void ata_sas_port_resume(struct ata_port *ap)
5095{
5096	ata_port_resume_async(ap, PMSG_RESUME);
5097}
5098EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5099
5100/**
5101 *	ata_host_suspend - suspend host
5102 *	@host: host to suspend
5103 *	@mesg: PM message
5104 *
5105 *	Suspend @host.  Actual operation is performed by port suspend.
5106 */
5107int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5108{
5109	host->dev->power.power_state = mesg;
5110	return 0;
5111}
5112EXPORT_SYMBOL_GPL(ata_host_suspend);
5113
5114/**
5115 *	ata_host_resume - resume host
5116 *	@host: host to resume
5117 *
5118 *	Resume @host.  Actual operation is performed by port resume.
5119 */
5120void ata_host_resume(struct ata_host *host)
5121{
5122	host->dev->power.power_state = PMSG_ON;
5123}
5124EXPORT_SYMBOL_GPL(ata_host_resume);
5125#endif
5126
5127const struct device_type ata_port_type = {
5128	.name = "ata_port",
5129#ifdef CONFIG_PM
5130	.pm = &ata_port_pm_ops,
5131#endif
5132};
5133
5134/**
5135 *	ata_dev_init - Initialize an ata_device structure
5136 *	@dev: Device structure to initialize
5137 *
5138 *	Initialize @dev in preparation for probing.
5139 *
5140 *	LOCKING:
5141 *	Inherited from caller.
5142 */
5143void ata_dev_init(struct ata_device *dev)
5144{
5145	struct ata_link *link = ata_dev_phys_link(dev);
5146	struct ata_port *ap = link->ap;
5147	unsigned long flags;
5148
5149	/* SATA spd limit is bound to the attached device, reset together */
5150	link->sata_spd_limit = link->hw_sata_spd_limit;
5151	link->sata_spd = 0;
5152
5153	/* High bits of dev->flags are used to record warm plug
5154	 * requests which occur asynchronously.  Synchronize using
5155	 * host lock.
5156	 */
5157	spin_lock_irqsave(ap->lock, flags);
5158	dev->flags &= ~ATA_DFLAG_INIT_MASK;
5159	dev->horkage = 0;
5160	spin_unlock_irqrestore(ap->lock, flags);
5161
5162	memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5163	       ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5164	dev->pio_mask = UINT_MAX;
5165	dev->mwdma_mask = UINT_MAX;
5166	dev->udma_mask = UINT_MAX;
5167}
5168
5169/**
5170 *	ata_link_init - Initialize an ata_link structure
5171 *	@ap: ATA port link is attached to
5172 *	@link: Link structure to initialize
5173 *	@pmp: Port multiplier port number
5174 *
5175 *	Initialize @link.
5176 *
5177 *	LOCKING:
5178 *	Kernel thread context (may sleep)
5179 */
5180void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5181{
5182	int i;
5183
5184	/* clear everything except for devices */
5185	memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5186	       ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5187
5188	link->ap = ap;
5189	link->pmp = pmp;
5190	link->active_tag = ATA_TAG_POISON;
5191	link->hw_sata_spd_limit = UINT_MAX;
5192
5193	/* can't use iterator, ap isn't initialized yet */
5194	for (i = 0; i < ATA_MAX_DEVICES; i++) {
5195		struct ata_device *dev = &link->device[i];
5196
5197		dev->link = link;
5198		dev->devno = dev - link->device;
5199#ifdef CONFIG_ATA_ACPI
5200		dev->gtf_filter = ata_acpi_gtf_filter;
5201#endif
5202		ata_dev_init(dev);
5203	}
5204}
5205
5206/**
5207 *	sata_link_init_spd - Initialize link->sata_spd_limit
5208 *	@link: Link to configure sata_spd_limit for
5209 *
5210 *	Initialize ``link->[hw_]sata_spd_limit`` to the currently
5211 *	configured value.
5212 *
5213 *	LOCKING:
5214 *	Kernel thread context (may sleep).
5215 *
5216 *	RETURNS:
5217 *	0 on success, -errno on failure.
5218 */
5219int sata_link_init_spd(struct ata_link *link)
5220{
5221	u8 spd;
5222	int rc;
5223
5224	rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5225	if (rc)
5226		return rc;
5227
5228	spd = (link->saved_scontrol >> 4) & 0xf;
5229	if (spd)
5230		link->hw_sata_spd_limit &= (1 << spd) - 1;
5231
5232	ata_force_link_limits(link);
5233
5234	link->sata_spd_limit = link->hw_sata_spd_limit;
5235
5236	return 0;
5237}
5238
5239/**
5240 *	ata_port_alloc - allocate and initialize basic ATA port resources
5241 *	@host: ATA host this allocated port belongs to
5242 *
5243 *	Allocate and initialize basic ATA port resources.
5244 *
5245 *	RETURNS:
5246 *	Allocate ATA port on success, NULL on failure.
5247 *
5248 *	LOCKING:
5249 *	Inherited from calling layer (may sleep).
5250 */
5251struct ata_port *ata_port_alloc(struct ata_host *host)
5252{
5253	struct ata_port *ap;
5254
5255	DPRINTK("ENTER\n");
5256
5257	ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5258	if (!ap)
5259		return NULL;
5260
5261	ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5262	ap->lock = &host->lock;
5263	ap->print_id = -1;
5264	ap->local_port_no = -1;
5265	ap->host = host;
5266	ap->dev = host->dev;
5267
5268#if defined(ATA_VERBOSE_DEBUG)
5269	/* turn on all debugging levels */
5270	ap->msg_enable = 0x00FF;
5271#elif defined(ATA_DEBUG)
5272	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5273#else
5274	ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5275#endif
5276
5277	mutex_init(&ap->scsi_scan_mutex);
5278	INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5279	INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5280	INIT_LIST_HEAD(&ap->eh_done_q);
5281	init_waitqueue_head(&ap->eh_wait_q);
5282	init_completion(&ap->park_req_pending);
5283	timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
5284		    TIMER_DEFERRABLE);
 
5285
5286	ap->cbl = ATA_CBL_NONE;
5287
5288	ata_link_init(ap, &ap->link, 0);
5289
5290#ifdef ATA_IRQ_TRAP
5291	ap->stats.unhandled_irq = 1;
5292	ap->stats.idle_irq = 1;
5293#endif
5294	ata_sff_port_init(ap);
5295
5296	return ap;
5297}
5298
5299static void ata_devres_release(struct device *gendev, void *res)
5300{
5301	struct ata_host *host = dev_get_drvdata(gendev);
5302	int i;
5303
5304	for (i = 0; i < host->n_ports; i++) {
5305		struct ata_port *ap = host->ports[i];
5306
5307		if (!ap)
5308			continue;
5309
5310		if (ap->scsi_host)
5311			scsi_host_put(ap->scsi_host);
5312
5313	}
5314
5315	dev_set_drvdata(gendev, NULL);
5316	ata_host_put(host);
5317}
5318
5319static void ata_host_release(struct kref *kref)
5320{
5321	struct ata_host *host = container_of(kref, struct ata_host, kref);
5322	int i;
5323
5324	for (i = 0; i < host->n_ports; i++) {
5325		struct ata_port *ap = host->ports[i];
5326
5327		kfree(ap->pmp_link);
5328		kfree(ap->slave_link);
5329		kfree(ap);
5330		host->ports[i] = NULL;
5331	}
5332	kfree(host);
5333}
5334
5335void ata_host_get(struct ata_host *host)
5336{
5337	kref_get(&host->kref);
5338}
5339
5340void ata_host_put(struct ata_host *host)
5341{
5342	kref_put(&host->kref, ata_host_release);
5343}
5344EXPORT_SYMBOL_GPL(ata_host_put);
5345
5346/**
5347 *	ata_host_alloc - allocate and init basic ATA host resources
5348 *	@dev: generic device this host is associated with
5349 *	@max_ports: maximum number of ATA ports associated with this host
5350 *
5351 *	Allocate and initialize basic ATA host resources.  LLD calls
5352 *	this function to allocate a host, initializes it fully and
5353 *	attaches it using ata_host_register().
5354 *
5355 *	@max_ports ports are allocated and host->n_ports is
5356 *	initialized to @max_ports.  The caller is allowed to decrease
5357 *	host->n_ports before calling ata_host_register().  The unused
5358 *	ports will be automatically freed on registration.
5359 *
5360 *	RETURNS:
5361 *	Allocate ATA host on success, NULL on failure.
5362 *
5363 *	LOCKING:
5364 *	Inherited from calling layer (may sleep).
5365 */
5366struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5367{
5368	struct ata_host *host;
5369	size_t sz;
5370	int i;
5371	void *dr;
5372
5373	DPRINTK("ENTER\n");
5374
 
 
 
5375	/* alloc a container for our list of ATA ports (buses) */
5376	sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5377	host = kzalloc(sz, GFP_KERNEL);
 
5378	if (!host)
5379		return NULL;
5380
5381	if (!devres_open_group(dev, NULL, GFP_KERNEL))
5382		goto err_free;
5383
5384	dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
5385	if (!dr)
5386		goto err_out;
5387
5388	devres_add(dev, dr);
5389	dev_set_drvdata(dev, host);
5390
5391	spin_lock_init(&host->lock);
5392	mutex_init(&host->eh_mutex);
5393	host->dev = dev;
5394	host->n_ports = max_ports;
5395	kref_init(&host->kref);
5396
5397	/* allocate ports bound to this host */
5398	for (i = 0; i < max_ports; i++) {
5399		struct ata_port *ap;
5400
5401		ap = ata_port_alloc(host);
5402		if (!ap)
5403			goto err_out;
5404
5405		ap->port_no = i;
5406		host->ports[i] = ap;
5407	}
5408
5409	devres_remove_group(dev, NULL);
5410	return host;
5411
5412 err_out:
5413	devres_release_group(dev, NULL);
5414 err_free:
5415	kfree(host);
5416	return NULL;
5417}
5418EXPORT_SYMBOL_GPL(ata_host_alloc);
5419
5420/**
5421 *	ata_host_alloc_pinfo - alloc host and init with port_info array
5422 *	@dev: generic device this host is associated with
5423 *	@ppi: array of ATA port_info to initialize host with
5424 *	@n_ports: number of ATA ports attached to this host
5425 *
5426 *	Allocate ATA host and initialize with info from @ppi.  If NULL
5427 *	terminated, @ppi may contain fewer entries than @n_ports.  The
5428 *	last entry will be used for the remaining ports.
5429 *
5430 *	RETURNS:
5431 *	Allocate ATA host on success, NULL on failure.
5432 *
5433 *	LOCKING:
5434 *	Inherited from calling layer (may sleep).
5435 */
5436struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5437				      const struct ata_port_info * const * ppi,
5438				      int n_ports)
5439{
5440	const struct ata_port_info *pi;
5441	struct ata_host *host;
5442	int i, j;
5443
5444	host = ata_host_alloc(dev, n_ports);
5445	if (!host)
5446		return NULL;
5447
5448	for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5449		struct ata_port *ap = host->ports[i];
5450
5451		if (ppi[j])
5452			pi = ppi[j++];
5453
5454		ap->pio_mask = pi->pio_mask;
5455		ap->mwdma_mask = pi->mwdma_mask;
5456		ap->udma_mask = pi->udma_mask;
5457		ap->flags |= pi->flags;
5458		ap->link.flags |= pi->link_flags;
5459		ap->ops = pi->port_ops;
5460
5461		if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5462			host->ops = pi->port_ops;
5463	}
5464
5465	return host;
5466}
5467EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5468
5469static void ata_host_stop(struct device *gendev, void *res)
5470{
5471	struct ata_host *host = dev_get_drvdata(gendev);
5472	int i;
5473
5474	WARN_ON(!(host->flags & ATA_HOST_STARTED));
5475
5476	for (i = 0; i < host->n_ports; i++) {
5477		struct ata_port *ap = host->ports[i];
5478
5479		if (ap->ops->port_stop)
5480			ap->ops->port_stop(ap);
5481	}
5482
5483	if (host->ops->host_stop)
5484		host->ops->host_stop(host);
5485}
5486
5487/**
5488 *	ata_finalize_port_ops - finalize ata_port_operations
5489 *	@ops: ata_port_operations to finalize
5490 *
5491 *	An ata_port_operations can inherit from another ops and that
5492 *	ops can again inherit from another.  This can go on as many
5493 *	times as necessary as long as there is no loop in the
5494 *	inheritance chain.
5495 *
5496 *	Ops tables are finalized when the host is started.  NULL or
5497 *	unspecified entries are inherited from the closet ancestor
5498 *	which has the method and the entry is populated with it.
5499 *	After finalization, the ops table directly points to all the
5500 *	methods and ->inherits is no longer necessary and cleared.
5501 *
5502 *	Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5503 *
5504 *	LOCKING:
5505 *	None.
5506 */
5507static void ata_finalize_port_ops(struct ata_port_operations *ops)
5508{
5509	static DEFINE_SPINLOCK(lock);
5510	const struct ata_port_operations *cur;
5511	void **begin = (void **)ops;
5512	void **end = (void **)&ops->inherits;
5513	void **pp;
5514
5515	if (!ops || !ops->inherits)
5516		return;
5517
5518	spin_lock(&lock);
5519
5520	for (cur = ops->inherits; cur; cur = cur->inherits) {
5521		void **inherit = (void **)cur;
5522
5523		for (pp = begin; pp < end; pp++, inherit++)
5524			if (!*pp)
5525				*pp = *inherit;
5526	}
5527
5528	for (pp = begin; pp < end; pp++)
5529		if (IS_ERR(*pp))
5530			*pp = NULL;
5531
5532	ops->inherits = NULL;
5533
5534	spin_unlock(&lock);
5535}
5536
5537/**
5538 *	ata_host_start - start and freeze ports of an ATA host
5539 *	@host: ATA host to start ports for
5540 *
5541 *	Start and then freeze ports of @host.  Started status is
5542 *	recorded in host->flags, so this function can be called
5543 *	multiple times.  Ports are guaranteed to get started only
5544 *	once.  If host->ops isn't initialized yet, its set to the
5545 *	first non-dummy port ops.
5546 *
5547 *	LOCKING:
5548 *	Inherited from calling layer (may sleep).
5549 *
5550 *	RETURNS:
5551 *	0 if all ports are started successfully, -errno otherwise.
5552 */
5553int ata_host_start(struct ata_host *host)
5554{
5555	int have_stop = 0;
5556	void *start_dr = NULL;
5557	int i, rc;
5558
5559	if (host->flags & ATA_HOST_STARTED)
5560		return 0;
5561
5562	ata_finalize_port_ops(host->ops);
5563
5564	for (i = 0; i < host->n_ports; i++) {
5565		struct ata_port *ap = host->ports[i];
5566
5567		ata_finalize_port_ops(ap->ops);
5568
5569		if (!host->ops && !ata_port_is_dummy(ap))
5570			host->ops = ap->ops;
5571
5572		if (ap->ops->port_stop)
5573			have_stop = 1;
5574	}
5575
5576	if (host->ops->host_stop)
5577		have_stop = 1;
5578
5579	if (have_stop) {
5580		start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5581		if (!start_dr)
5582			return -ENOMEM;
5583	}
5584
5585	for (i = 0; i < host->n_ports; i++) {
5586		struct ata_port *ap = host->ports[i];
5587
5588		if (ap->ops->port_start) {
5589			rc = ap->ops->port_start(ap);
5590			if (rc) {
5591				if (rc != -ENODEV)
5592					dev_err(host->dev,
5593						"failed to start port %d (errno=%d)\n",
5594						i, rc);
5595				goto err_out;
5596			}
5597		}
5598		ata_eh_freeze_port(ap);
5599	}
5600
5601	if (start_dr)
5602		devres_add(host->dev, start_dr);
5603	host->flags |= ATA_HOST_STARTED;
5604	return 0;
5605
5606 err_out:
5607	while (--i >= 0) {
5608		struct ata_port *ap = host->ports[i];
5609
5610		if (ap->ops->port_stop)
5611			ap->ops->port_stop(ap);
5612	}
5613	devres_free(start_dr);
5614	return rc;
5615}
5616EXPORT_SYMBOL_GPL(ata_host_start);
5617
5618/**
5619 *	ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
5620 *	@host:	host to initialize
5621 *	@dev:	device host is attached to
5622 *	@ops:	port_ops
5623 *
5624 */
5625void ata_host_init(struct ata_host *host, struct device *dev,
5626		   struct ata_port_operations *ops)
5627{
5628	spin_lock_init(&host->lock);
5629	mutex_init(&host->eh_mutex);
5630	host->n_tags = ATA_MAX_QUEUE;
5631	host->dev = dev;
5632	host->ops = ops;
5633	kref_init(&host->kref);
5634}
5635EXPORT_SYMBOL_GPL(ata_host_init);
5636
5637void __ata_port_probe(struct ata_port *ap)
5638{
5639	struct ata_eh_info *ehi = &ap->link.eh_info;
5640	unsigned long flags;
5641
5642	/* kick EH for boot probing */
5643	spin_lock_irqsave(ap->lock, flags);
5644
5645	ehi->probe_mask |= ATA_ALL_DEVICES;
5646	ehi->action |= ATA_EH_RESET;
5647	ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
5648
5649	ap->pflags &= ~ATA_PFLAG_INITIALIZING;
5650	ap->pflags |= ATA_PFLAG_LOADING;
5651	ata_port_schedule_eh(ap);
5652
5653	spin_unlock_irqrestore(ap->lock, flags);
5654}
5655
5656int ata_port_probe(struct ata_port *ap)
5657{
5658	int rc = 0;
5659
5660	if (ap->ops->error_handler) {
5661		__ata_port_probe(ap);
5662		ata_port_wait_eh(ap);
5663	} else {
5664		DPRINTK("ata%u: bus probe begin\n", ap->print_id);
5665		rc = ata_bus_probe(ap);
5666		DPRINTK("ata%u: bus probe end\n", ap->print_id);
5667	}
5668	return rc;
5669}
5670
5671
5672static void async_port_probe(void *data, async_cookie_t cookie)
5673{
5674	struct ata_port *ap = data;
5675
5676	/*
5677	 * If we're not allowed to scan this host in parallel,
5678	 * we need to wait until all previous scans have completed
5679	 * before going further.
5680	 * Jeff Garzik says this is only within a controller, so we
5681	 * don't need to wait for port 0, only for later ports.
5682	 */
5683	if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
5684		async_synchronize_cookie(cookie);
5685
5686	(void)ata_port_probe(ap);
5687
5688	/* in order to keep device order, we need to synchronize at this point */
5689	async_synchronize_cookie(cookie);
5690
5691	ata_scsi_scan_host(ap, 1);
5692}
5693
5694/**
5695 *	ata_host_register - register initialized ATA host
5696 *	@host: ATA host to register
5697 *	@sht: template for SCSI host
5698 *
5699 *	Register initialized ATA host.  @host is allocated using
5700 *	ata_host_alloc() and fully initialized by LLD.  This function
5701 *	starts ports, registers @host with ATA and SCSI layers and
5702 *	probe registered devices.
5703 *
5704 *	LOCKING:
5705 *	Inherited from calling layer (may sleep).
5706 *
5707 *	RETURNS:
5708 *	0 on success, -errno otherwise.
5709 */
5710int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
5711{
5712	int i, rc;
5713
5714	host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE);
5715
5716	/* host must have been started */
5717	if (!(host->flags & ATA_HOST_STARTED)) {
5718		dev_err(host->dev, "BUG: trying to register unstarted host\n");
5719		WARN_ON(1);
5720		return -EINVAL;
5721	}
5722
5723	/* Blow away unused ports.  This happens when LLD can't
5724	 * determine the exact number of ports to allocate at
5725	 * allocation time.
5726	 */
5727	for (i = host->n_ports; host->ports[i]; i++)
5728		kfree(host->ports[i]);
5729
5730	/* give ports names and add SCSI hosts */
5731	for (i = 0; i < host->n_ports; i++) {
5732		host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
5733		host->ports[i]->local_port_no = i + 1;
5734	}
5735
5736	/* Create associated sysfs transport objects  */
5737	for (i = 0; i < host->n_ports; i++) {
5738		rc = ata_tport_add(host->dev,host->ports[i]);
5739		if (rc) {
5740			goto err_tadd;
5741		}
5742	}
5743
5744	rc = ata_scsi_add_hosts(host, sht);
5745	if (rc)
5746		goto err_tadd;
5747
5748	/* set cable, sata_spd_limit and report */
5749	for (i = 0; i < host->n_ports; i++) {
5750		struct ata_port *ap = host->ports[i];
5751		unsigned long xfer_mask;
5752
5753		/* set SATA cable type if still unset */
5754		if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
5755			ap->cbl = ATA_CBL_SATA;
5756
5757		/* init sata_spd_limit to the current value */
5758		sata_link_init_spd(&ap->link);
5759		if (ap->slave_link)
5760			sata_link_init_spd(ap->slave_link);
5761
5762		/* print per-port info to dmesg */
5763		xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
5764					      ap->udma_mask);
5765
5766		if (!ata_port_is_dummy(ap)) {
5767			ata_port_info(ap, "%cATA max %s %s\n",
5768				      (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
5769				      ata_mode_string(xfer_mask),
5770				      ap->link.eh_info.desc);
5771			ata_ehi_clear_desc(&ap->link.eh_info);
5772		} else
5773			ata_port_info(ap, "DUMMY\n");
5774	}
5775
5776	/* perform each probe asynchronously */
5777	for (i = 0; i < host->n_ports; i++) {
5778		struct ata_port *ap = host->ports[i];
5779		ap->cookie = async_schedule(async_port_probe, ap);
5780	}
5781
5782	return 0;
5783
5784 err_tadd:
5785	while (--i >= 0) {
5786		ata_tport_delete(host->ports[i]);
5787	}
5788	return rc;
5789
5790}
5791EXPORT_SYMBOL_GPL(ata_host_register);
5792
5793/**
5794 *	ata_host_activate - start host, request IRQ and register it
5795 *	@host: target ATA host
5796 *	@irq: IRQ to request
5797 *	@irq_handler: irq_handler used when requesting IRQ
5798 *	@irq_flags: irq_flags used when requesting IRQ
5799 *	@sht: scsi_host_template to use when registering the host
5800 *
5801 *	After allocating an ATA host and initializing it, most libata
5802 *	LLDs perform three steps to activate the host - start host,
5803 *	request IRQ and register it.  This helper takes necessary
5804 *	arguments and performs the three steps in one go.
5805 *
5806 *	An invalid IRQ skips the IRQ registration and expects the host to
5807 *	have set polling mode on the port. In this case, @irq_handler
5808 *	should be NULL.
5809 *
5810 *	LOCKING:
5811 *	Inherited from calling layer (may sleep).
5812 *
5813 *	RETURNS:
5814 *	0 on success, -errno otherwise.
5815 */
5816int ata_host_activate(struct ata_host *host, int irq,
5817		      irq_handler_t irq_handler, unsigned long irq_flags,
5818		      struct scsi_host_template *sht)
5819{
5820	int i, rc;
5821	char *irq_desc;
5822
5823	rc = ata_host_start(host);
5824	if (rc)
5825		return rc;
5826
5827	/* Special case for polling mode */
5828	if (!irq) {
5829		WARN_ON(irq_handler);
5830		return ata_host_register(host, sht);
5831	}
5832
5833	irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
5834				  dev_driver_string(host->dev),
5835				  dev_name(host->dev));
5836	if (!irq_desc)
5837		return -ENOMEM;
5838
5839	rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
5840			      irq_desc, host);
5841	if (rc)
5842		return rc;
5843
5844	for (i = 0; i < host->n_ports; i++)
5845		ata_port_desc(host->ports[i], "irq %d", irq);
5846
5847	rc = ata_host_register(host, sht);
5848	/* if failed, just free the IRQ and leave ports alone */
5849	if (rc)
5850		devm_free_irq(host->dev, irq, host);
5851
5852	return rc;
5853}
5854EXPORT_SYMBOL_GPL(ata_host_activate);
5855
5856/**
5857 *	ata_port_detach - Detach ATA port in preparation of device removal
5858 *	@ap: ATA port to be detached
5859 *
5860 *	Detach all ATA devices and the associated SCSI devices of @ap;
5861 *	then, remove the associated SCSI host.  @ap is guaranteed to
5862 *	be quiescent on return from this function.
5863 *
5864 *	LOCKING:
5865 *	Kernel thread context (may sleep).
5866 */
5867static void ata_port_detach(struct ata_port *ap)
5868{
5869	unsigned long flags;
5870	struct ata_link *link;
5871	struct ata_device *dev;
5872
5873	if (!ap->ops->error_handler)
5874		goto skip_eh;
5875
5876	/* tell EH we're leaving & flush EH */
5877	spin_lock_irqsave(ap->lock, flags);
5878	ap->pflags |= ATA_PFLAG_UNLOADING;
5879	ata_port_schedule_eh(ap);
5880	spin_unlock_irqrestore(ap->lock, flags);
5881
5882	/* wait till EH commits suicide */
5883	ata_port_wait_eh(ap);
5884
5885	/* it better be dead now */
5886	WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
5887
5888	cancel_delayed_work_sync(&ap->hotplug_task);
5889
5890 skip_eh:
5891	/* clean up zpodd on port removal */
5892	ata_for_each_link(link, ap, HOST_FIRST) {
5893		ata_for_each_dev(dev, link, ALL) {
5894			if (zpodd_dev_enabled(dev))
5895				zpodd_exit(dev);
5896		}
5897	}
5898	if (ap->pmp_link) {
5899		int i;
5900		for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
5901			ata_tlink_delete(&ap->pmp_link[i]);
5902	}
5903	/* remove the associated SCSI host */
5904	scsi_remove_host(ap->scsi_host);
5905	ata_tport_delete(ap);
5906}
5907
5908/**
5909 *	ata_host_detach - Detach all ports of an ATA host
5910 *	@host: Host to detach
5911 *
5912 *	Detach all ports of @host.
5913 *
5914 *	LOCKING:
5915 *	Kernel thread context (may sleep).
5916 */
5917void ata_host_detach(struct ata_host *host)
5918{
5919	int i;
5920
5921	for (i = 0; i < host->n_ports; i++) {
5922		/* Ensure ata_port probe has completed */
5923		async_synchronize_cookie(host->ports[i]->cookie + 1);
5924		ata_port_detach(host->ports[i]);
5925	}
5926
5927	/* the host is dead now, dissociate ACPI */
5928	ata_acpi_dissociate(host);
5929}
5930EXPORT_SYMBOL_GPL(ata_host_detach);
5931
5932#ifdef CONFIG_PCI
5933
5934/**
5935 *	ata_pci_remove_one - PCI layer callback for device removal
5936 *	@pdev: PCI device that was removed
5937 *
5938 *	PCI layer indicates to libata via this hook that hot-unplug or
5939 *	module unload event has occurred.  Detach all ports.  Resource
5940 *	release is handled via devres.
5941 *
5942 *	LOCKING:
5943 *	Inherited from PCI layer (may sleep).
5944 */
5945void ata_pci_remove_one(struct pci_dev *pdev)
5946{
5947	struct ata_host *host = pci_get_drvdata(pdev);
5948
5949	ata_host_detach(host);
5950}
5951EXPORT_SYMBOL_GPL(ata_pci_remove_one);
5952
5953void ata_pci_shutdown_one(struct pci_dev *pdev)
5954{
5955	struct ata_host *host = pci_get_drvdata(pdev);
5956	int i;
5957
5958	for (i = 0; i < host->n_ports; i++) {
5959		struct ata_port *ap = host->ports[i];
5960
5961		ap->pflags |= ATA_PFLAG_FROZEN;
5962
5963		/* Disable port interrupts */
5964		if (ap->ops->freeze)
5965			ap->ops->freeze(ap);
5966
5967		/* Stop the port DMA engines */
5968		if (ap->ops->port_stop)
5969			ap->ops->port_stop(ap);
5970	}
5971}
5972EXPORT_SYMBOL_GPL(ata_pci_shutdown_one);
5973
5974/* move to PCI subsystem */
5975int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
5976{
5977	unsigned long tmp = 0;
5978
5979	switch (bits->width) {
5980	case 1: {
5981		u8 tmp8 = 0;
5982		pci_read_config_byte(pdev, bits->reg, &tmp8);
5983		tmp = tmp8;
5984		break;
5985	}
5986	case 2: {
5987		u16 tmp16 = 0;
5988		pci_read_config_word(pdev, bits->reg, &tmp16);
5989		tmp = tmp16;
5990		break;
5991	}
5992	case 4: {
5993		u32 tmp32 = 0;
5994		pci_read_config_dword(pdev, bits->reg, &tmp32);
5995		tmp = tmp32;
5996		break;
5997	}
5998
5999	default:
6000		return -EINVAL;
6001	}
6002
6003	tmp &= bits->mask;
6004
6005	return (tmp == bits->val) ? 1 : 0;
6006}
6007EXPORT_SYMBOL_GPL(pci_test_config_bits);
6008
6009#ifdef CONFIG_PM
6010void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6011{
6012	pci_save_state(pdev);
6013	pci_disable_device(pdev);
6014
6015	if (mesg.event & PM_EVENT_SLEEP)
6016		pci_set_power_state(pdev, PCI_D3hot);
6017}
6018EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6019
6020int ata_pci_device_do_resume(struct pci_dev *pdev)
6021{
6022	int rc;
6023
6024	pci_set_power_state(pdev, PCI_D0);
6025	pci_restore_state(pdev);
6026
6027	rc = pcim_enable_device(pdev);
6028	if (rc) {
6029		dev_err(&pdev->dev,
6030			"failed to enable device after resume (%d)\n", rc);
6031		return rc;
6032	}
6033
6034	pci_set_master(pdev);
6035	return 0;
6036}
6037EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6038
6039int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6040{
6041	struct ata_host *host = pci_get_drvdata(pdev);
6042	int rc = 0;
6043
6044	rc = ata_host_suspend(host, mesg);
6045	if (rc)
6046		return rc;
6047
6048	ata_pci_device_do_suspend(pdev, mesg);
6049
6050	return 0;
6051}
6052EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6053
6054int ata_pci_device_resume(struct pci_dev *pdev)
6055{
6056	struct ata_host *host = pci_get_drvdata(pdev);
6057	int rc;
6058
6059	rc = ata_pci_device_do_resume(pdev);
6060	if (rc == 0)
6061		ata_host_resume(host);
6062	return rc;
6063}
6064EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6065#endif /* CONFIG_PM */
 
6066#endif /* CONFIG_PCI */
6067
6068/**
6069 *	ata_platform_remove_one - Platform layer callback for device removal
6070 *	@pdev: Platform device that was removed
6071 *
6072 *	Platform layer indicates to libata via this hook that hot-unplug or
6073 *	module unload event has occurred.  Detach all ports.  Resource
6074 *	release is handled via devres.
6075 *
6076 *	LOCKING:
6077 *	Inherited from platform layer (may sleep).
6078 */
6079int ata_platform_remove_one(struct platform_device *pdev)
6080{
6081	struct ata_host *host = platform_get_drvdata(pdev);
6082
6083	ata_host_detach(host);
6084
6085	return 0;
6086}
6087EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6088
6089#ifdef CONFIG_ATA_FORCE
6090static int __init ata_parse_force_one(char **cur,
6091				      struct ata_force_ent *force_ent,
6092				      const char **reason)
6093{
6094	static const struct ata_force_param force_tbl[] __initconst = {
6095		{ "40c",	.cbl		= ATA_CBL_PATA40 },
6096		{ "80c",	.cbl		= ATA_CBL_PATA80 },
6097		{ "short40c",	.cbl		= ATA_CBL_PATA40_SHORT },
6098		{ "unk",	.cbl		= ATA_CBL_PATA_UNK },
6099		{ "ign",	.cbl		= ATA_CBL_PATA_IGN },
6100		{ "sata",	.cbl		= ATA_CBL_SATA },
6101		{ "1.5Gbps",	.spd_limit	= 1 },
6102		{ "3.0Gbps",	.spd_limit	= 2 },
6103		{ "noncq",	.horkage_on	= ATA_HORKAGE_NONCQ },
6104		{ "ncq",	.horkage_off	= ATA_HORKAGE_NONCQ },
6105		{ "noncqtrim",	.horkage_on	= ATA_HORKAGE_NO_NCQ_TRIM },
6106		{ "ncqtrim",	.horkage_off	= ATA_HORKAGE_NO_NCQ_TRIM },
6107		{ "dump_id",	.horkage_on	= ATA_HORKAGE_DUMP_ID },
6108		{ "pio0",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 0) },
6109		{ "pio1",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 1) },
6110		{ "pio2",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 2) },
6111		{ "pio3",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 3) },
6112		{ "pio4",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 4) },
6113		{ "pio5",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 5) },
6114		{ "pio6",	.xfer_mask	= 1 << (ATA_SHIFT_PIO + 6) },
6115		{ "mwdma0",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 0) },
6116		{ "mwdma1",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 1) },
6117		{ "mwdma2",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 2) },
6118		{ "mwdma3",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 3) },
6119		{ "mwdma4",	.xfer_mask	= 1 << (ATA_SHIFT_MWDMA + 4) },
6120		{ "udma0",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6121		{ "udma16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6122		{ "udma/16",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 0) },
6123		{ "udma1",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6124		{ "udma25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6125		{ "udma/25",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 1) },
6126		{ "udma2",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6127		{ "udma33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6128		{ "udma/33",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 2) },
6129		{ "udma3",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6130		{ "udma44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6131		{ "udma/44",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 3) },
6132		{ "udma4",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6133		{ "udma66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6134		{ "udma/66",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 4) },
6135		{ "udma5",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6136		{ "udma100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6137		{ "udma/100",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 5) },
6138		{ "udma6",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6139		{ "udma133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6140		{ "udma/133",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 6) },
6141		{ "udma7",	.xfer_mask	= 1 << (ATA_SHIFT_UDMA + 7) },
6142		{ "nohrst",	.lflags		= ATA_LFLAG_NO_HRST },
6143		{ "nosrst",	.lflags		= ATA_LFLAG_NO_SRST },
6144		{ "norst",	.lflags		= ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6145		{ "rstonce",	.lflags		= ATA_LFLAG_RST_ONCE },
6146		{ "atapi_dmadir", .horkage_on	= ATA_HORKAGE_ATAPI_DMADIR },
6147		{ "disable",	.horkage_on	= ATA_HORKAGE_DISABLE },
6148	};
6149	char *start = *cur, *p = *cur;
6150	char *id, *val, *endp;
6151	const struct ata_force_param *match_fp = NULL;
6152	int nr_matches = 0, i;
6153
6154	/* find where this param ends and update *cur */
6155	while (*p != '\0' && *p != ',')
6156		p++;
6157
6158	if (*p == '\0')
6159		*cur = p;
6160	else
6161		*cur = p + 1;
6162
6163	*p = '\0';
6164
6165	/* parse */
6166	p = strchr(start, ':');
6167	if (!p) {
6168		val = strstrip(start);
6169		goto parse_val;
6170	}
6171	*p = '\0';
6172
6173	id = strstrip(start);
6174	val = strstrip(p + 1);
6175
6176	/* parse id */
6177	p = strchr(id, '.');
6178	if (p) {
6179		*p++ = '\0';
6180		force_ent->device = simple_strtoul(p, &endp, 10);
6181		if (p == endp || *endp != '\0') {
6182			*reason = "invalid device";
6183			return -EINVAL;
6184		}
6185	}
6186
6187	force_ent->port = simple_strtoul(id, &endp, 10);
6188	if (id == endp || *endp != '\0') {
6189		*reason = "invalid port/link";
6190		return -EINVAL;
6191	}
6192
6193 parse_val:
6194	/* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6195	for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6196		const struct ata_force_param *fp = &force_tbl[i];
6197
6198		if (strncasecmp(val, fp->name, strlen(val)))
6199			continue;
6200
6201		nr_matches++;
6202		match_fp = fp;
6203
6204		if (strcasecmp(val, fp->name) == 0) {
6205			nr_matches = 1;
6206			break;
6207		}
6208	}
6209
6210	if (!nr_matches) {
6211		*reason = "unknown value";
6212		return -EINVAL;
6213	}
6214	if (nr_matches > 1) {
6215		*reason = "ambiguous value";
6216		return -EINVAL;
6217	}
6218
6219	force_ent->param = *match_fp;
6220
6221	return 0;
6222}
6223
6224static void __init ata_parse_force_param(void)
6225{
6226	int idx = 0, size = 1;
6227	int last_port = -1, last_device = -1;
6228	char *p, *cur, *next;
6229
6230	/* calculate maximum number of params and allocate force_tbl */
6231	for (p = ata_force_param_buf; *p; p++)
6232		if (*p == ',')
6233			size++;
6234
6235	ata_force_tbl = kcalloc(size, sizeof(ata_force_tbl[0]), GFP_KERNEL);
6236	if (!ata_force_tbl) {
6237		printk(KERN_WARNING "ata: failed to extend force table, "
6238		       "libata.force ignored\n");
6239		return;
6240	}
6241
6242	/* parse and populate the table */
6243	for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6244		const char *reason = "";
6245		struct ata_force_ent te = { .port = -1, .device = -1 };
6246
6247		next = cur;
6248		if (ata_parse_force_one(&next, &te, &reason)) {
6249			printk(KERN_WARNING "ata: failed to parse force "
6250			       "parameter \"%s\" (%s)\n",
6251			       cur, reason);
6252			continue;
6253		}
6254
6255		if (te.port == -1) {
6256			te.port = last_port;
6257			te.device = last_device;
6258		}
6259
6260		ata_force_tbl[idx++] = te;
6261
6262		last_port = te.port;
6263		last_device = te.device;
6264	}
6265
6266	ata_force_tbl_size = idx;
6267}
6268
6269static void ata_free_force_param(void)
6270{
6271	kfree(ata_force_tbl);
6272}
6273#else
6274static inline void ata_parse_force_param(void) { }
6275static inline void ata_free_force_param(void) { }
6276#endif
6277
6278static int __init ata_init(void)
6279{
6280	int rc;
6281
6282	ata_parse_force_param();
6283
6284	rc = ata_sff_init();
6285	if (rc) {
6286		ata_free_force_param();
6287		return rc;
6288	}
6289
6290	libata_transport_init();
6291	ata_scsi_transport_template = ata_attach_transport();
6292	if (!ata_scsi_transport_template) {
6293		ata_sff_exit();
6294		rc = -ENOMEM;
6295		goto err_out;
6296	}
6297
6298	printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6299	return 0;
6300
6301err_out:
6302	return rc;
6303}
6304
6305static void __exit ata_exit(void)
6306{
6307	ata_release_transport(ata_scsi_transport_template);
6308	libata_transport_exit();
6309	ata_sff_exit();
6310	ata_free_force_param();
6311}
6312
6313subsys_initcall(ata_init);
6314module_exit(ata_exit);
6315
6316static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6317
6318int ata_ratelimit(void)
6319{
6320	return __ratelimit(&ratelimit);
6321}
6322EXPORT_SYMBOL_GPL(ata_ratelimit);
6323
6324/**
6325 *	ata_msleep - ATA EH owner aware msleep
6326 *	@ap: ATA port to attribute the sleep to
6327 *	@msecs: duration to sleep in milliseconds
6328 *
6329 *	Sleeps @msecs.  If the current task is owner of @ap's EH, the
6330 *	ownership is released before going to sleep and reacquired
6331 *	after the sleep is complete.  IOW, other ports sharing the
6332 *	@ap->host will be allowed to own the EH while this task is
6333 *	sleeping.
6334 *
6335 *	LOCKING:
6336 *	Might sleep.
6337 */
6338void ata_msleep(struct ata_port *ap, unsigned int msecs)
6339{
6340	bool owns_eh = ap && ap->host->eh_owner == current;
6341
6342	if (owns_eh)
6343		ata_eh_release(ap);
6344
6345	if (msecs < 20) {
6346		unsigned long usecs = msecs * USEC_PER_MSEC;
6347		usleep_range(usecs, usecs + 50);
6348	} else {
6349		msleep(msecs);
6350	}
6351
6352	if (owns_eh)
6353		ata_eh_acquire(ap);
6354}
6355EXPORT_SYMBOL_GPL(ata_msleep);
6356
6357/**
6358 *	ata_wait_register - wait until register value changes
6359 *	@ap: ATA port to wait register for, can be NULL
6360 *	@reg: IO-mapped register
6361 *	@mask: Mask to apply to read register value
6362 *	@val: Wait condition
6363 *	@interval: polling interval in milliseconds
6364 *	@timeout: timeout in milliseconds
6365 *
6366 *	Waiting for some bits of register to change is a common
6367 *	operation for ATA controllers.  This function reads 32bit LE
6368 *	IO-mapped register @reg and tests for the following condition.
6369 *
6370 *	(*@reg & mask) != val
6371 *
6372 *	If the condition is met, it returns; otherwise, the process is
6373 *	repeated after @interval_msec until timeout.
6374 *
6375 *	LOCKING:
6376 *	Kernel thread context (may sleep)
6377 *
6378 *	RETURNS:
6379 *	The final register value.
6380 */
6381u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6382		      unsigned long interval, unsigned long timeout)
6383{
6384	unsigned long deadline;
6385	u32 tmp;
6386
6387	tmp = ioread32(reg);
6388
6389	/* Calculate timeout _after_ the first read to make sure
6390	 * preceding writes reach the controller before starting to
6391	 * eat away the timeout.
6392	 */
6393	deadline = ata_deadline(jiffies, timeout);
6394
6395	while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6396		ata_msleep(ap, interval);
6397		tmp = ioread32(reg);
6398	}
6399
6400	return tmp;
6401}
6402EXPORT_SYMBOL_GPL(ata_wait_register);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6403
6404/*
6405 * Dummy port_ops
6406 */
6407static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6408{
6409	return AC_ERR_SYSTEM;
6410}
6411
6412static void ata_dummy_error_handler(struct ata_port *ap)
6413{
6414	/* truly dummy */
6415}
6416
6417struct ata_port_operations ata_dummy_port_ops = {
6418	.qc_prep		= ata_noop_qc_prep,
6419	.qc_issue		= ata_dummy_qc_issue,
6420	.error_handler		= ata_dummy_error_handler,
6421	.sched_eh		= ata_std_sched_eh,
6422	.end_eh			= ata_std_end_eh,
6423};
6424EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6425
6426const struct ata_port_info ata_dummy_port_info = {
6427	.port_ops		= &ata_dummy_port_ops,
6428};
6429EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6430
6431/*
6432 * Utility print functions
6433 */
6434void ata_port_printk(const struct ata_port *ap, const char *level,
6435		     const char *fmt, ...)
6436{
6437	struct va_format vaf;
6438	va_list args;
6439
6440	va_start(args, fmt);
6441
6442	vaf.fmt = fmt;
6443	vaf.va = &args;
6444
6445	printk("%sata%u: %pV", level, ap->print_id, &vaf);
6446
6447	va_end(args);
6448}
6449EXPORT_SYMBOL(ata_port_printk);
6450
6451void ata_link_printk(const struct ata_link *link, const char *level,
6452		     const char *fmt, ...)
6453{
6454	struct va_format vaf;
6455	va_list args;
6456
6457	va_start(args, fmt);
6458
6459	vaf.fmt = fmt;
6460	vaf.va = &args;
6461
6462	if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6463		printk("%sata%u.%02u: %pV",
6464		       level, link->ap->print_id, link->pmp, &vaf);
6465	else
6466		printk("%sata%u: %pV",
6467		       level, link->ap->print_id, &vaf);
6468
6469	va_end(args);
6470}
6471EXPORT_SYMBOL(ata_link_printk);
6472
6473void ata_dev_printk(const struct ata_device *dev, const char *level,
6474		    const char *fmt, ...)
6475{
6476	struct va_format vaf;
6477	va_list args;
6478
6479	va_start(args, fmt);
6480
6481	vaf.fmt = fmt;
6482	vaf.va = &args;
6483
6484	printk("%sata%u.%02u: %pV",
6485	       level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6486	       &vaf);
6487
6488	va_end(args);
6489}
6490EXPORT_SYMBOL(ata_dev_printk);
6491
6492void ata_print_version(const struct device *dev, const char *version)
6493{
6494	dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6495}
6496EXPORT_SYMBOL(ata_print_version);