Loading...
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/time.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
58#include <linux/scatterlist.h>
59#include <linux/io.h>
60#include <linux/async.h>
61#include <linux/log2.h>
62#include <linux/slab.h>
63#include <linux/glob.h>
64#include <scsi/scsi.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
68#include <asm/byteorder.h>
69#include <linux/cdrom.h>
70#include <linux/ratelimit.h>
71#include <linux/pm_runtime.h>
72#include <linux/platform_device.h>
73
74#define CREATE_TRACE_POINTS
75#include <trace/events/libata.h>
76
77#include "libata.h"
78#include "libata-transport.h"
79
80/* debounce timing parameters in msecs { interval, duration, timeout } */
81const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
82const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
83const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
84
85const struct ata_port_operations ata_base_port_ops = {
86 .prereset = ata_std_prereset,
87 .postreset = ata_std_postreset,
88 .error_handler = ata_std_error_handler,
89 .sched_eh = ata_std_sched_eh,
90 .end_eh = ata_std_end_eh,
91};
92
93const struct ata_port_operations sata_port_ops = {
94 .inherits = &ata_base_port_ops,
95
96 .qc_defer = ata_std_qc_defer,
97 .hardreset = sata_std_hardreset,
98};
99
100static unsigned int ata_dev_init_params(struct ata_device *dev,
101 u16 heads, u16 sectors);
102static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
103static void ata_dev_xfermask(struct ata_device *dev);
104static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
105
106atomic_t ata_print_id = ATOMIC_INIT(0);
107
108struct ata_force_param {
109 const char *name;
110 unsigned int cbl;
111 int spd_limit;
112 unsigned long xfer_mask;
113 unsigned int horkage_on;
114 unsigned int horkage_off;
115 unsigned int lflags;
116};
117
118struct ata_force_ent {
119 int port;
120 int device;
121 struct ata_force_param param;
122};
123
124static struct ata_force_ent *ata_force_tbl;
125static int ata_force_tbl_size;
126
127static char ata_force_param_buf[PAGE_SIZE] __initdata;
128/* param_buf is thrown away after initialization, disallow read */
129module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
130MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
131
132static int atapi_enabled = 1;
133module_param(atapi_enabled, int, 0444);
134MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
135
136static int atapi_dmadir = 0;
137module_param(atapi_dmadir, int, 0444);
138MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
139
140int atapi_passthru16 = 1;
141module_param(atapi_passthru16, int, 0444);
142MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
143
144int libata_fua = 0;
145module_param_named(fua, libata_fua, int, 0444);
146MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
147
148static int ata_ignore_hpa;
149module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
150MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
151
152static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
153module_param_named(dma, libata_dma_mask, int, 0444);
154MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
155
156static int ata_probe_timeout;
157module_param(ata_probe_timeout, int, 0444);
158MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
159
160int libata_noacpi = 0;
161module_param_named(noacpi, libata_noacpi, int, 0444);
162MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
163
164int libata_allow_tpm = 0;
165module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
166MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
167
168static int atapi_an;
169module_param(atapi_an, int, 0444);
170MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
171
172MODULE_AUTHOR("Jeff Garzik");
173MODULE_DESCRIPTION("Library module for ATA devices");
174MODULE_LICENSE("GPL");
175MODULE_VERSION(DRV_VERSION);
176
177
178static bool ata_sstatus_online(u32 sstatus)
179{
180 return (sstatus & 0xf) == 0x3;
181}
182
183/**
184 * ata_link_next - link iteration helper
185 * @link: the previous link, NULL to start
186 * @ap: ATA port containing links to iterate
187 * @mode: iteration mode, one of ATA_LITER_*
188 *
189 * LOCKING:
190 * Host lock or EH context.
191 *
192 * RETURNS:
193 * Pointer to the next link.
194 */
195struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
196 enum ata_link_iter_mode mode)
197{
198 BUG_ON(mode != ATA_LITER_EDGE &&
199 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
200
201 /* NULL link indicates start of iteration */
202 if (!link)
203 switch (mode) {
204 case ATA_LITER_EDGE:
205 case ATA_LITER_PMP_FIRST:
206 if (sata_pmp_attached(ap))
207 return ap->pmp_link;
208 /* fall through */
209 case ATA_LITER_HOST_FIRST:
210 return &ap->link;
211 }
212
213 /* we just iterated over the host link, what's next? */
214 if (link == &ap->link)
215 switch (mode) {
216 case ATA_LITER_HOST_FIRST:
217 if (sata_pmp_attached(ap))
218 return ap->pmp_link;
219 /* fall through */
220 case ATA_LITER_PMP_FIRST:
221 if (unlikely(ap->slave_link))
222 return ap->slave_link;
223 /* fall through */
224 case ATA_LITER_EDGE:
225 return NULL;
226 }
227
228 /* slave_link excludes PMP */
229 if (unlikely(link == ap->slave_link))
230 return NULL;
231
232 /* we were over a PMP link */
233 if (++link < ap->pmp_link + ap->nr_pmp_links)
234 return link;
235
236 if (mode == ATA_LITER_PMP_FIRST)
237 return &ap->link;
238
239 return NULL;
240}
241
242/**
243 * ata_dev_next - device iteration helper
244 * @dev: the previous device, NULL to start
245 * @link: ATA link containing devices to iterate
246 * @mode: iteration mode, one of ATA_DITER_*
247 *
248 * LOCKING:
249 * Host lock or EH context.
250 *
251 * RETURNS:
252 * Pointer to the next device.
253 */
254struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
255 enum ata_dev_iter_mode mode)
256{
257 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
258 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
259
260 /* NULL dev indicates start of iteration */
261 if (!dev)
262 switch (mode) {
263 case ATA_DITER_ENABLED:
264 case ATA_DITER_ALL:
265 dev = link->device;
266 goto check;
267 case ATA_DITER_ENABLED_REVERSE:
268 case ATA_DITER_ALL_REVERSE:
269 dev = link->device + ata_link_max_devices(link) - 1;
270 goto check;
271 }
272
273 next:
274 /* move to the next one */
275 switch (mode) {
276 case ATA_DITER_ENABLED:
277 case ATA_DITER_ALL:
278 if (++dev < link->device + ata_link_max_devices(link))
279 goto check;
280 return NULL;
281 case ATA_DITER_ENABLED_REVERSE:
282 case ATA_DITER_ALL_REVERSE:
283 if (--dev >= link->device)
284 goto check;
285 return NULL;
286 }
287
288 check:
289 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
290 !ata_dev_enabled(dev))
291 goto next;
292 return dev;
293}
294
295/**
296 * ata_dev_phys_link - find physical link for a device
297 * @dev: ATA device to look up physical link for
298 *
299 * Look up physical link which @dev is attached to. Note that
300 * this is different from @dev->link only when @dev is on slave
301 * link. For all other cases, it's the same as @dev->link.
302 *
303 * LOCKING:
304 * Don't care.
305 *
306 * RETURNS:
307 * Pointer to the found physical link.
308 */
309struct ata_link *ata_dev_phys_link(struct ata_device *dev)
310{
311 struct ata_port *ap = dev->link->ap;
312
313 if (!ap->slave_link)
314 return dev->link;
315 if (!dev->devno)
316 return &ap->link;
317 return ap->slave_link;
318}
319
320/**
321 * ata_force_cbl - force cable type according to libata.force
322 * @ap: ATA port of interest
323 *
324 * Force cable type according to libata.force and whine about it.
325 * The last entry which has matching port number is used, so it
326 * can be specified as part of device force parameters. For
327 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
328 * same effect.
329 *
330 * LOCKING:
331 * EH context.
332 */
333void ata_force_cbl(struct ata_port *ap)
334{
335 int i;
336
337 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
338 const struct ata_force_ent *fe = &ata_force_tbl[i];
339
340 if (fe->port != -1 && fe->port != ap->print_id)
341 continue;
342
343 if (fe->param.cbl == ATA_CBL_NONE)
344 continue;
345
346 ap->cbl = fe->param.cbl;
347 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
348 return;
349 }
350}
351
352/**
353 * ata_force_link_limits - force link limits according to libata.force
354 * @link: ATA link of interest
355 *
356 * Force link flags and SATA spd limit according to libata.force
357 * and whine about it. When only the port part is specified
358 * (e.g. 1:), the limit applies to all links connected to both
359 * the host link and all fan-out ports connected via PMP. If the
360 * device part is specified as 0 (e.g. 1.00:), it specifies the
361 * first fan-out link not the host link. Device number 15 always
362 * points to the host link whether PMP is attached or not. If the
363 * controller has slave link, device number 16 points to it.
364 *
365 * LOCKING:
366 * EH context.
367 */
368static void ata_force_link_limits(struct ata_link *link)
369{
370 bool did_spd = false;
371 int linkno = link->pmp;
372 int i;
373
374 if (ata_is_host_link(link))
375 linkno += 15;
376
377 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
378 const struct ata_force_ent *fe = &ata_force_tbl[i];
379
380 if (fe->port != -1 && fe->port != link->ap->print_id)
381 continue;
382
383 if (fe->device != -1 && fe->device != linkno)
384 continue;
385
386 /* only honor the first spd limit */
387 if (!did_spd && fe->param.spd_limit) {
388 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
389 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
390 fe->param.name);
391 did_spd = true;
392 }
393
394 /* let lflags stack */
395 if (fe->param.lflags) {
396 link->flags |= fe->param.lflags;
397 ata_link_notice(link,
398 "FORCE: link flag 0x%x forced -> 0x%x\n",
399 fe->param.lflags, link->flags);
400 }
401 }
402}
403
404/**
405 * ata_force_xfermask - force xfermask according to libata.force
406 * @dev: ATA device of interest
407 *
408 * Force xfer_mask according to libata.force and whine about it.
409 * For consistency with link selection, device number 15 selects
410 * the first device connected to the host link.
411 *
412 * LOCKING:
413 * EH context.
414 */
415static void ata_force_xfermask(struct ata_device *dev)
416{
417 int devno = dev->link->pmp + dev->devno;
418 int alt_devno = devno;
419 int i;
420
421 /* allow n.15/16 for devices attached to host port */
422 if (ata_is_host_link(dev->link))
423 alt_devno += 15;
424
425 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
426 const struct ata_force_ent *fe = &ata_force_tbl[i];
427 unsigned long pio_mask, mwdma_mask, udma_mask;
428
429 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
430 continue;
431
432 if (fe->device != -1 && fe->device != devno &&
433 fe->device != alt_devno)
434 continue;
435
436 if (!fe->param.xfer_mask)
437 continue;
438
439 ata_unpack_xfermask(fe->param.xfer_mask,
440 &pio_mask, &mwdma_mask, &udma_mask);
441 if (udma_mask)
442 dev->udma_mask = udma_mask;
443 else if (mwdma_mask) {
444 dev->udma_mask = 0;
445 dev->mwdma_mask = mwdma_mask;
446 } else {
447 dev->udma_mask = 0;
448 dev->mwdma_mask = 0;
449 dev->pio_mask = pio_mask;
450 }
451
452 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
453 fe->param.name);
454 return;
455 }
456}
457
458/**
459 * ata_force_horkage - force horkage according to libata.force
460 * @dev: ATA device of interest
461 *
462 * Force horkage according to libata.force and whine about it.
463 * For consistency with link selection, device number 15 selects
464 * the first device connected to the host link.
465 *
466 * LOCKING:
467 * EH context.
468 */
469static void ata_force_horkage(struct ata_device *dev)
470{
471 int devno = dev->link->pmp + dev->devno;
472 int alt_devno = devno;
473 int i;
474
475 /* allow n.15/16 for devices attached to host port */
476 if (ata_is_host_link(dev->link))
477 alt_devno += 15;
478
479 for (i = 0; i < ata_force_tbl_size; i++) {
480 const struct ata_force_ent *fe = &ata_force_tbl[i];
481
482 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
483 continue;
484
485 if (fe->device != -1 && fe->device != devno &&
486 fe->device != alt_devno)
487 continue;
488
489 if (!(~dev->horkage & fe->param.horkage_on) &&
490 !(dev->horkage & fe->param.horkage_off))
491 continue;
492
493 dev->horkage |= fe->param.horkage_on;
494 dev->horkage &= ~fe->param.horkage_off;
495
496 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
497 fe->param.name);
498 }
499}
500
501/**
502 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
503 * @opcode: SCSI opcode
504 *
505 * Determine ATAPI command type from @opcode.
506 *
507 * LOCKING:
508 * None.
509 *
510 * RETURNS:
511 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
512 */
513int atapi_cmd_type(u8 opcode)
514{
515 switch (opcode) {
516 case GPCMD_READ_10:
517 case GPCMD_READ_12:
518 return ATAPI_READ;
519
520 case GPCMD_WRITE_10:
521 case GPCMD_WRITE_12:
522 case GPCMD_WRITE_AND_VERIFY_10:
523 return ATAPI_WRITE;
524
525 case GPCMD_READ_CD:
526 case GPCMD_READ_CD_MSF:
527 return ATAPI_READ_CD;
528
529 case ATA_16:
530 case ATA_12:
531 if (atapi_passthru16)
532 return ATAPI_PASS_THRU;
533 /* fall thru */
534 default:
535 return ATAPI_MISC;
536 }
537}
538
539/**
540 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
541 * @tf: Taskfile to convert
542 * @pmp: Port multiplier port
543 * @is_cmd: This FIS is for command
544 * @fis: Buffer into which data will output
545 *
546 * Converts a standard ATA taskfile to a Serial ATA
547 * FIS structure (Register - Host to Device).
548 *
549 * LOCKING:
550 * Inherited from caller.
551 */
552void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
553{
554 fis[0] = 0x27; /* Register - Host to Device FIS */
555 fis[1] = pmp & 0xf; /* Port multiplier number*/
556 if (is_cmd)
557 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
558
559 fis[2] = tf->command;
560 fis[3] = tf->feature;
561
562 fis[4] = tf->lbal;
563 fis[5] = tf->lbam;
564 fis[6] = tf->lbah;
565 fis[7] = tf->device;
566
567 fis[8] = tf->hob_lbal;
568 fis[9] = tf->hob_lbam;
569 fis[10] = tf->hob_lbah;
570 fis[11] = tf->hob_feature;
571
572 fis[12] = tf->nsect;
573 fis[13] = tf->hob_nsect;
574 fis[14] = 0;
575 fis[15] = tf->ctl;
576
577 fis[16] = tf->auxiliary & 0xff;
578 fis[17] = (tf->auxiliary >> 8) & 0xff;
579 fis[18] = (tf->auxiliary >> 16) & 0xff;
580 fis[19] = (tf->auxiliary >> 24) & 0xff;
581}
582
583/**
584 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
585 * @fis: Buffer from which data will be input
586 * @tf: Taskfile to output
587 *
588 * Converts a serial ATA FIS structure to a standard ATA taskfile.
589 *
590 * LOCKING:
591 * Inherited from caller.
592 */
593
594void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
595{
596 tf->command = fis[2]; /* status */
597 tf->feature = fis[3]; /* error */
598
599 tf->lbal = fis[4];
600 tf->lbam = fis[5];
601 tf->lbah = fis[6];
602 tf->device = fis[7];
603
604 tf->hob_lbal = fis[8];
605 tf->hob_lbam = fis[9];
606 tf->hob_lbah = fis[10];
607
608 tf->nsect = fis[12];
609 tf->hob_nsect = fis[13];
610}
611
612static const u8 ata_rw_cmds[] = {
613 /* pio multi */
614 ATA_CMD_READ_MULTI,
615 ATA_CMD_WRITE_MULTI,
616 ATA_CMD_READ_MULTI_EXT,
617 ATA_CMD_WRITE_MULTI_EXT,
618 0,
619 0,
620 0,
621 ATA_CMD_WRITE_MULTI_FUA_EXT,
622 /* pio */
623 ATA_CMD_PIO_READ,
624 ATA_CMD_PIO_WRITE,
625 ATA_CMD_PIO_READ_EXT,
626 ATA_CMD_PIO_WRITE_EXT,
627 0,
628 0,
629 0,
630 0,
631 /* dma */
632 ATA_CMD_READ,
633 ATA_CMD_WRITE,
634 ATA_CMD_READ_EXT,
635 ATA_CMD_WRITE_EXT,
636 0,
637 0,
638 0,
639 ATA_CMD_WRITE_FUA_EXT
640};
641
642/**
643 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
644 * @tf: command to examine and configure
645 * @dev: device tf belongs to
646 *
647 * Examine the device configuration and tf->flags to calculate
648 * the proper read/write commands and protocol to use.
649 *
650 * LOCKING:
651 * caller.
652 */
653static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
654{
655 u8 cmd;
656
657 int index, fua, lba48, write;
658
659 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
660 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
661 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
662
663 if (dev->flags & ATA_DFLAG_PIO) {
664 tf->protocol = ATA_PROT_PIO;
665 index = dev->multi_count ? 0 : 8;
666 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
667 /* Unable to use DMA due to host limitation */
668 tf->protocol = ATA_PROT_PIO;
669 index = dev->multi_count ? 0 : 8;
670 } else {
671 tf->protocol = ATA_PROT_DMA;
672 index = 16;
673 }
674
675 cmd = ata_rw_cmds[index + fua + lba48 + write];
676 if (cmd) {
677 tf->command = cmd;
678 return 0;
679 }
680 return -1;
681}
682
683/**
684 * ata_tf_read_block - Read block address from ATA taskfile
685 * @tf: ATA taskfile of interest
686 * @dev: ATA device @tf belongs to
687 *
688 * LOCKING:
689 * None.
690 *
691 * Read block address from @tf. This function can handle all
692 * three address formats - LBA, LBA48 and CHS. tf->protocol and
693 * flags select the address format to use.
694 *
695 * RETURNS:
696 * Block address read from @tf.
697 */
698u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
699{
700 u64 block = 0;
701
702 if (tf->flags & ATA_TFLAG_LBA) {
703 if (tf->flags & ATA_TFLAG_LBA48) {
704 block |= (u64)tf->hob_lbah << 40;
705 block |= (u64)tf->hob_lbam << 32;
706 block |= (u64)tf->hob_lbal << 24;
707 } else
708 block |= (tf->device & 0xf) << 24;
709
710 block |= tf->lbah << 16;
711 block |= tf->lbam << 8;
712 block |= tf->lbal;
713 } else {
714 u32 cyl, head, sect;
715
716 cyl = tf->lbam | (tf->lbah << 8);
717 head = tf->device & 0xf;
718 sect = tf->lbal;
719
720 if (!sect) {
721 ata_dev_warn(dev,
722 "device reported invalid CHS sector 0\n");
723 sect = 1; /* oh well */
724 }
725
726 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
727 }
728
729 return block;
730}
731
732/**
733 * ata_build_rw_tf - Build ATA taskfile for given read/write request
734 * @tf: Target ATA taskfile
735 * @dev: ATA device @tf belongs to
736 * @block: Block address
737 * @n_block: Number of blocks
738 * @tf_flags: RW/FUA etc...
739 * @tag: tag
740 *
741 * LOCKING:
742 * None.
743 *
744 * Build ATA taskfile @tf for read/write request described by
745 * @block, @n_block, @tf_flags and @tag on @dev.
746 *
747 * RETURNS:
748 *
749 * 0 on success, -ERANGE if the request is too large for @dev,
750 * -EINVAL if the request is invalid.
751 */
752int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
753 u64 block, u32 n_block, unsigned int tf_flags,
754 unsigned int tag)
755{
756 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
757 tf->flags |= tf_flags;
758
759 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
760 /* yay, NCQ */
761 if (!lba_48_ok(block, n_block))
762 return -ERANGE;
763
764 tf->protocol = ATA_PROT_NCQ;
765 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
766
767 if (tf->flags & ATA_TFLAG_WRITE)
768 tf->command = ATA_CMD_FPDMA_WRITE;
769 else
770 tf->command = ATA_CMD_FPDMA_READ;
771
772 tf->nsect = tag << 3;
773 tf->hob_feature = (n_block >> 8) & 0xff;
774 tf->feature = n_block & 0xff;
775
776 tf->hob_lbah = (block >> 40) & 0xff;
777 tf->hob_lbam = (block >> 32) & 0xff;
778 tf->hob_lbal = (block >> 24) & 0xff;
779 tf->lbah = (block >> 16) & 0xff;
780 tf->lbam = (block >> 8) & 0xff;
781 tf->lbal = block & 0xff;
782
783 tf->device = ATA_LBA;
784 if (tf->flags & ATA_TFLAG_FUA)
785 tf->device |= 1 << 7;
786 } else if (dev->flags & ATA_DFLAG_LBA) {
787 tf->flags |= ATA_TFLAG_LBA;
788
789 if (lba_28_ok(block, n_block)) {
790 /* use LBA28 */
791 tf->device |= (block >> 24) & 0xf;
792 } else if (lba_48_ok(block, n_block)) {
793 if (!(dev->flags & ATA_DFLAG_LBA48))
794 return -ERANGE;
795
796 /* use LBA48 */
797 tf->flags |= ATA_TFLAG_LBA48;
798
799 tf->hob_nsect = (n_block >> 8) & 0xff;
800
801 tf->hob_lbah = (block >> 40) & 0xff;
802 tf->hob_lbam = (block >> 32) & 0xff;
803 tf->hob_lbal = (block >> 24) & 0xff;
804 } else
805 /* request too large even for LBA48 */
806 return -ERANGE;
807
808 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
809 return -EINVAL;
810
811 tf->nsect = n_block & 0xff;
812
813 tf->lbah = (block >> 16) & 0xff;
814 tf->lbam = (block >> 8) & 0xff;
815 tf->lbal = block & 0xff;
816
817 tf->device |= ATA_LBA;
818 } else {
819 /* CHS */
820 u32 sect, head, cyl, track;
821
822 /* The request -may- be too large for CHS addressing. */
823 if (!lba_28_ok(block, n_block))
824 return -ERANGE;
825
826 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
827 return -EINVAL;
828
829 /* Convert LBA to CHS */
830 track = (u32)block / dev->sectors;
831 cyl = track / dev->heads;
832 head = track % dev->heads;
833 sect = (u32)block % dev->sectors + 1;
834
835 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
836 (u32)block, track, cyl, head, sect);
837
838 /* Check whether the converted CHS can fit.
839 Cylinder: 0-65535
840 Head: 0-15
841 Sector: 1-255*/
842 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
843 return -ERANGE;
844
845 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
846 tf->lbal = sect;
847 tf->lbam = cyl;
848 tf->lbah = cyl >> 8;
849 tf->device |= head;
850 }
851
852 return 0;
853}
854
855/**
856 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
857 * @pio_mask: pio_mask
858 * @mwdma_mask: mwdma_mask
859 * @udma_mask: udma_mask
860 *
861 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
862 * unsigned int xfer_mask.
863 *
864 * LOCKING:
865 * None.
866 *
867 * RETURNS:
868 * Packed xfer_mask.
869 */
870unsigned long ata_pack_xfermask(unsigned long pio_mask,
871 unsigned long mwdma_mask,
872 unsigned long udma_mask)
873{
874 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
875 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
876 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
877}
878
879/**
880 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
881 * @xfer_mask: xfer_mask to unpack
882 * @pio_mask: resulting pio_mask
883 * @mwdma_mask: resulting mwdma_mask
884 * @udma_mask: resulting udma_mask
885 *
886 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
887 * Any NULL distination masks will be ignored.
888 */
889void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
890 unsigned long *mwdma_mask, unsigned long *udma_mask)
891{
892 if (pio_mask)
893 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
894 if (mwdma_mask)
895 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
896 if (udma_mask)
897 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
898}
899
900static const struct ata_xfer_ent {
901 int shift, bits;
902 u8 base;
903} ata_xfer_tbl[] = {
904 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
905 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
906 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
907 { -1, },
908};
909
910/**
911 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
912 * @xfer_mask: xfer_mask of interest
913 *
914 * Return matching XFER_* value for @xfer_mask. Only the highest
915 * bit of @xfer_mask is considered.
916 *
917 * LOCKING:
918 * None.
919 *
920 * RETURNS:
921 * Matching XFER_* value, 0xff if no match found.
922 */
923u8 ata_xfer_mask2mode(unsigned long xfer_mask)
924{
925 int highbit = fls(xfer_mask) - 1;
926 const struct ata_xfer_ent *ent;
927
928 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
929 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
930 return ent->base + highbit - ent->shift;
931 return 0xff;
932}
933
934/**
935 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
936 * @xfer_mode: XFER_* of interest
937 *
938 * Return matching xfer_mask for @xfer_mode.
939 *
940 * LOCKING:
941 * None.
942 *
943 * RETURNS:
944 * Matching xfer_mask, 0 if no match found.
945 */
946unsigned long ata_xfer_mode2mask(u8 xfer_mode)
947{
948 const struct ata_xfer_ent *ent;
949
950 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
951 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
952 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
953 & ~((1 << ent->shift) - 1);
954 return 0;
955}
956
957/**
958 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
959 * @xfer_mode: XFER_* of interest
960 *
961 * Return matching xfer_shift for @xfer_mode.
962 *
963 * LOCKING:
964 * None.
965 *
966 * RETURNS:
967 * Matching xfer_shift, -1 if no match found.
968 */
969int ata_xfer_mode2shift(unsigned long xfer_mode)
970{
971 const struct ata_xfer_ent *ent;
972
973 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
974 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
975 return ent->shift;
976 return -1;
977}
978
979/**
980 * ata_mode_string - convert xfer_mask to string
981 * @xfer_mask: mask of bits supported; only highest bit counts.
982 *
983 * Determine string which represents the highest speed
984 * (highest bit in @modemask).
985 *
986 * LOCKING:
987 * None.
988 *
989 * RETURNS:
990 * Constant C string representing highest speed listed in
991 * @mode_mask, or the constant C string "<n/a>".
992 */
993const char *ata_mode_string(unsigned long xfer_mask)
994{
995 static const char * const xfer_mode_str[] = {
996 "PIO0",
997 "PIO1",
998 "PIO2",
999 "PIO3",
1000 "PIO4",
1001 "PIO5",
1002 "PIO6",
1003 "MWDMA0",
1004 "MWDMA1",
1005 "MWDMA2",
1006 "MWDMA3",
1007 "MWDMA4",
1008 "UDMA/16",
1009 "UDMA/25",
1010 "UDMA/33",
1011 "UDMA/44",
1012 "UDMA/66",
1013 "UDMA/100",
1014 "UDMA/133",
1015 "UDMA7",
1016 };
1017 int highbit;
1018
1019 highbit = fls(xfer_mask) - 1;
1020 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1021 return xfer_mode_str[highbit];
1022 return "<n/a>";
1023}
1024
1025const char *sata_spd_string(unsigned int spd)
1026{
1027 static const char * const spd_str[] = {
1028 "1.5 Gbps",
1029 "3.0 Gbps",
1030 "6.0 Gbps",
1031 };
1032
1033 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1034 return "<unknown>";
1035 return spd_str[spd - 1];
1036}
1037
1038/**
1039 * ata_dev_classify - determine device type based on ATA-spec signature
1040 * @tf: ATA taskfile register set for device to be identified
1041 *
1042 * Determine from taskfile register contents whether a device is
1043 * ATA or ATAPI, as per "Signature and persistence" section
1044 * of ATA/PI spec (volume 1, sect 5.14).
1045 *
1046 * LOCKING:
1047 * None.
1048 *
1049 * RETURNS:
1050 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1051 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1052 */
1053unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1054{
1055 /* Apple's open source Darwin code hints that some devices only
1056 * put a proper signature into the LBA mid/high registers,
1057 * So, we only check those. It's sufficient for uniqueness.
1058 *
1059 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1060 * signatures for ATA and ATAPI devices attached on SerialATA,
1061 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1062 * spec has never mentioned about using different signatures
1063 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1064 * Multiplier specification began to use 0x69/0x96 to identify
1065 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1066 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1067 * 0x69/0x96 shortly and described them as reserved for
1068 * SerialATA.
1069 *
1070 * We follow the current spec and consider that 0x69/0x96
1071 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1072 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1073 * SEMB signature. This is worked around in
1074 * ata_dev_read_id().
1075 */
1076 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1077 DPRINTK("found ATA device by sig\n");
1078 return ATA_DEV_ATA;
1079 }
1080
1081 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1082 DPRINTK("found ATAPI device by sig\n");
1083 return ATA_DEV_ATAPI;
1084 }
1085
1086 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1087 DPRINTK("found PMP device by sig\n");
1088 return ATA_DEV_PMP;
1089 }
1090
1091 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1092 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1093 return ATA_DEV_SEMB;
1094 }
1095
1096 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1097 DPRINTK("found ZAC device by sig\n");
1098 return ATA_DEV_ZAC;
1099 }
1100
1101 DPRINTK("unknown device\n");
1102 return ATA_DEV_UNKNOWN;
1103}
1104
1105/**
1106 * ata_id_string - Convert IDENTIFY DEVICE page into string
1107 * @id: IDENTIFY DEVICE results we will examine
1108 * @s: string into which data is output
1109 * @ofs: offset into identify device page
1110 * @len: length of string to return. must be an even number.
1111 *
1112 * The strings in the IDENTIFY DEVICE page are broken up into
1113 * 16-bit chunks. Run through the string, and output each
1114 * 8-bit chunk linearly, regardless of platform.
1115 *
1116 * LOCKING:
1117 * caller.
1118 */
1119
1120void ata_id_string(const u16 *id, unsigned char *s,
1121 unsigned int ofs, unsigned int len)
1122{
1123 unsigned int c;
1124
1125 BUG_ON(len & 1);
1126
1127 while (len > 0) {
1128 c = id[ofs] >> 8;
1129 *s = c;
1130 s++;
1131
1132 c = id[ofs] & 0xff;
1133 *s = c;
1134 s++;
1135
1136 ofs++;
1137 len -= 2;
1138 }
1139}
1140
1141/**
1142 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1143 * @id: IDENTIFY DEVICE results we will examine
1144 * @s: string into which data is output
1145 * @ofs: offset into identify device page
1146 * @len: length of string to return. must be an odd number.
1147 *
1148 * This function is identical to ata_id_string except that it
1149 * trims trailing spaces and terminates the resulting string with
1150 * null. @len must be actual maximum length (even number) + 1.
1151 *
1152 * LOCKING:
1153 * caller.
1154 */
1155void ata_id_c_string(const u16 *id, unsigned char *s,
1156 unsigned int ofs, unsigned int len)
1157{
1158 unsigned char *p;
1159
1160 ata_id_string(id, s, ofs, len - 1);
1161
1162 p = s + strnlen(s, len - 1);
1163 while (p > s && p[-1] == ' ')
1164 p--;
1165 *p = '\0';
1166}
1167
1168static u64 ata_id_n_sectors(const u16 *id)
1169{
1170 if (ata_id_has_lba(id)) {
1171 if (ata_id_has_lba48(id))
1172 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1173 else
1174 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1175 } else {
1176 if (ata_id_current_chs_valid(id))
1177 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1178 id[ATA_ID_CUR_SECTORS];
1179 else
1180 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1181 id[ATA_ID_SECTORS];
1182 }
1183}
1184
1185u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1186{
1187 u64 sectors = 0;
1188
1189 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1190 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1191 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1192 sectors |= (tf->lbah & 0xff) << 16;
1193 sectors |= (tf->lbam & 0xff) << 8;
1194 sectors |= (tf->lbal & 0xff);
1195
1196 return sectors;
1197}
1198
1199u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1200{
1201 u64 sectors = 0;
1202
1203 sectors |= (tf->device & 0x0f) << 24;
1204 sectors |= (tf->lbah & 0xff) << 16;
1205 sectors |= (tf->lbam & 0xff) << 8;
1206 sectors |= (tf->lbal & 0xff);
1207
1208 return sectors;
1209}
1210
1211/**
1212 * ata_read_native_max_address - Read native max address
1213 * @dev: target device
1214 * @max_sectors: out parameter for the result native max address
1215 *
1216 * Perform an LBA48 or LBA28 native size query upon the device in
1217 * question.
1218 *
1219 * RETURNS:
1220 * 0 on success, -EACCES if command is aborted by the drive.
1221 * -EIO on other errors.
1222 */
1223static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1224{
1225 unsigned int err_mask;
1226 struct ata_taskfile tf;
1227 int lba48 = ata_id_has_lba48(dev->id);
1228
1229 ata_tf_init(dev, &tf);
1230
1231 /* always clear all address registers */
1232 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1233
1234 if (lba48) {
1235 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1236 tf.flags |= ATA_TFLAG_LBA48;
1237 } else
1238 tf.command = ATA_CMD_READ_NATIVE_MAX;
1239
1240 tf.protocol |= ATA_PROT_NODATA;
1241 tf.device |= ATA_LBA;
1242
1243 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1244 if (err_mask) {
1245 ata_dev_warn(dev,
1246 "failed to read native max address (err_mask=0x%x)\n",
1247 err_mask);
1248 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1249 return -EACCES;
1250 return -EIO;
1251 }
1252
1253 if (lba48)
1254 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1255 else
1256 *max_sectors = ata_tf_to_lba(&tf) + 1;
1257 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1258 (*max_sectors)--;
1259 return 0;
1260}
1261
1262/**
1263 * ata_set_max_sectors - Set max sectors
1264 * @dev: target device
1265 * @new_sectors: new max sectors value to set for the device
1266 *
1267 * Set max sectors of @dev to @new_sectors.
1268 *
1269 * RETURNS:
1270 * 0 on success, -EACCES if command is aborted or denied (due to
1271 * previous non-volatile SET_MAX) by the drive. -EIO on other
1272 * errors.
1273 */
1274static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1275{
1276 unsigned int err_mask;
1277 struct ata_taskfile tf;
1278 int lba48 = ata_id_has_lba48(dev->id);
1279
1280 new_sectors--;
1281
1282 ata_tf_init(dev, &tf);
1283
1284 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1285
1286 if (lba48) {
1287 tf.command = ATA_CMD_SET_MAX_EXT;
1288 tf.flags |= ATA_TFLAG_LBA48;
1289
1290 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1291 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1292 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1293 } else {
1294 tf.command = ATA_CMD_SET_MAX;
1295
1296 tf.device |= (new_sectors >> 24) & 0xf;
1297 }
1298
1299 tf.protocol |= ATA_PROT_NODATA;
1300 tf.device |= ATA_LBA;
1301
1302 tf.lbal = (new_sectors >> 0) & 0xff;
1303 tf.lbam = (new_sectors >> 8) & 0xff;
1304 tf.lbah = (new_sectors >> 16) & 0xff;
1305
1306 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1307 if (err_mask) {
1308 ata_dev_warn(dev,
1309 "failed to set max address (err_mask=0x%x)\n",
1310 err_mask);
1311 if (err_mask == AC_ERR_DEV &&
1312 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1313 return -EACCES;
1314 return -EIO;
1315 }
1316
1317 return 0;
1318}
1319
1320/**
1321 * ata_hpa_resize - Resize a device with an HPA set
1322 * @dev: Device to resize
1323 *
1324 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1325 * it if required to the full size of the media. The caller must check
1326 * the drive has the HPA feature set enabled.
1327 *
1328 * RETURNS:
1329 * 0 on success, -errno on failure.
1330 */
1331static int ata_hpa_resize(struct ata_device *dev)
1332{
1333 struct ata_eh_context *ehc = &dev->link->eh_context;
1334 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1335 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1336 u64 sectors = ata_id_n_sectors(dev->id);
1337 u64 native_sectors;
1338 int rc;
1339
1340 /* do we need to do it? */
1341 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1342 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1343 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1344 return 0;
1345
1346 /* read native max address */
1347 rc = ata_read_native_max_address(dev, &native_sectors);
1348 if (rc) {
1349 /* If device aborted the command or HPA isn't going to
1350 * be unlocked, skip HPA resizing.
1351 */
1352 if (rc == -EACCES || !unlock_hpa) {
1353 ata_dev_warn(dev,
1354 "HPA support seems broken, skipping HPA handling\n");
1355 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1356
1357 /* we can continue if device aborted the command */
1358 if (rc == -EACCES)
1359 rc = 0;
1360 }
1361
1362 return rc;
1363 }
1364 dev->n_native_sectors = native_sectors;
1365
1366 /* nothing to do? */
1367 if (native_sectors <= sectors || !unlock_hpa) {
1368 if (!print_info || native_sectors == sectors)
1369 return 0;
1370
1371 if (native_sectors > sectors)
1372 ata_dev_info(dev,
1373 "HPA detected: current %llu, native %llu\n",
1374 (unsigned long long)sectors,
1375 (unsigned long long)native_sectors);
1376 else if (native_sectors < sectors)
1377 ata_dev_warn(dev,
1378 "native sectors (%llu) is smaller than sectors (%llu)\n",
1379 (unsigned long long)native_sectors,
1380 (unsigned long long)sectors);
1381 return 0;
1382 }
1383
1384 /* let's unlock HPA */
1385 rc = ata_set_max_sectors(dev, native_sectors);
1386 if (rc == -EACCES) {
1387 /* if device aborted the command, skip HPA resizing */
1388 ata_dev_warn(dev,
1389 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1390 (unsigned long long)sectors,
1391 (unsigned long long)native_sectors);
1392 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1393 return 0;
1394 } else if (rc)
1395 return rc;
1396
1397 /* re-read IDENTIFY data */
1398 rc = ata_dev_reread_id(dev, 0);
1399 if (rc) {
1400 ata_dev_err(dev,
1401 "failed to re-read IDENTIFY data after HPA resizing\n");
1402 return rc;
1403 }
1404
1405 if (print_info) {
1406 u64 new_sectors = ata_id_n_sectors(dev->id);
1407 ata_dev_info(dev,
1408 "HPA unlocked: %llu -> %llu, native %llu\n",
1409 (unsigned long long)sectors,
1410 (unsigned long long)new_sectors,
1411 (unsigned long long)native_sectors);
1412 }
1413
1414 return 0;
1415}
1416
1417/**
1418 * ata_dump_id - IDENTIFY DEVICE info debugging output
1419 * @id: IDENTIFY DEVICE page to dump
1420 *
1421 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1422 * page.
1423 *
1424 * LOCKING:
1425 * caller.
1426 */
1427
1428static inline void ata_dump_id(const u16 *id)
1429{
1430 DPRINTK("49==0x%04x "
1431 "53==0x%04x "
1432 "63==0x%04x "
1433 "64==0x%04x "
1434 "75==0x%04x \n",
1435 id[49],
1436 id[53],
1437 id[63],
1438 id[64],
1439 id[75]);
1440 DPRINTK("80==0x%04x "
1441 "81==0x%04x "
1442 "82==0x%04x "
1443 "83==0x%04x "
1444 "84==0x%04x \n",
1445 id[80],
1446 id[81],
1447 id[82],
1448 id[83],
1449 id[84]);
1450 DPRINTK("88==0x%04x "
1451 "93==0x%04x\n",
1452 id[88],
1453 id[93]);
1454}
1455
1456/**
1457 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1458 * @id: IDENTIFY data to compute xfer mask from
1459 *
1460 * Compute the xfermask for this device. This is not as trivial
1461 * as it seems if we must consider early devices correctly.
1462 *
1463 * FIXME: pre IDE drive timing (do we care ?).
1464 *
1465 * LOCKING:
1466 * None.
1467 *
1468 * RETURNS:
1469 * Computed xfermask
1470 */
1471unsigned long ata_id_xfermask(const u16 *id)
1472{
1473 unsigned long pio_mask, mwdma_mask, udma_mask;
1474
1475 /* Usual case. Word 53 indicates word 64 is valid */
1476 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1477 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1478 pio_mask <<= 3;
1479 pio_mask |= 0x7;
1480 } else {
1481 /* If word 64 isn't valid then Word 51 high byte holds
1482 * the PIO timing number for the maximum. Turn it into
1483 * a mask.
1484 */
1485 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1486 if (mode < 5) /* Valid PIO range */
1487 pio_mask = (2 << mode) - 1;
1488 else
1489 pio_mask = 1;
1490
1491 /* But wait.. there's more. Design your standards by
1492 * committee and you too can get a free iordy field to
1493 * process. However its the speeds not the modes that
1494 * are supported... Note drivers using the timing API
1495 * will get this right anyway
1496 */
1497 }
1498
1499 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1500
1501 if (ata_id_is_cfa(id)) {
1502 /*
1503 * Process compact flash extended modes
1504 */
1505 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1506 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1507
1508 if (pio)
1509 pio_mask |= (1 << 5);
1510 if (pio > 1)
1511 pio_mask |= (1 << 6);
1512 if (dma)
1513 mwdma_mask |= (1 << 3);
1514 if (dma > 1)
1515 mwdma_mask |= (1 << 4);
1516 }
1517
1518 udma_mask = 0;
1519 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1520 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1521
1522 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1523}
1524
1525static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1526{
1527 struct completion *waiting = qc->private_data;
1528
1529 complete(waiting);
1530}
1531
1532/**
1533 * ata_exec_internal_sg - execute libata internal command
1534 * @dev: Device to which the command is sent
1535 * @tf: Taskfile registers for the command and the result
1536 * @cdb: CDB for packet command
1537 * @dma_dir: Data transfer direction of the command
1538 * @sgl: sg list for the data buffer of the command
1539 * @n_elem: Number of sg entries
1540 * @timeout: Timeout in msecs (0 for default)
1541 *
1542 * Executes libata internal command with timeout. @tf contains
1543 * command on entry and result on return. Timeout and error
1544 * conditions are reported via return value. No recovery action
1545 * is taken after a command times out. It's caller's duty to
1546 * clean up after timeout.
1547 *
1548 * LOCKING:
1549 * None. Should be called with kernel context, might sleep.
1550 *
1551 * RETURNS:
1552 * Zero on success, AC_ERR_* mask on failure
1553 */
1554unsigned ata_exec_internal_sg(struct ata_device *dev,
1555 struct ata_taskfile *tf, const u8 *cdb,
1556 int dma_dir, struct scatterlist *sgl,
1557 unsigned int n_elem, unsigned long timeout)
1558{
1559 struct ata_link *link = dev->link;
1560 struct ata_port *ap = link->ap;
1561 u8 command = tf->command;
1562 int auto_timeout = 0;
1563 struct ata_queued_cmd *qc;
1564 unsigned int tag, preempted_tag;
1565 u32 preempted_sactive, preempted_qc_active;
1566 int preempted_nr_active_links;
1567 DECLARE_COMPLETION_ONSTACK(wait);
1568 unsigned long flags;
1569 unsigned int err_mask;
1570 int rc;
1571
1572 spin_lock_irqsave(ap->lock, flags);
1573
1574 /* no internal command while frozen */
1575 if (ap->pflags & ATA_PFLAG_FROZEN) {
1576 spin_unlock_irqrestore(ap->lock, flags);
1577 return AC_ERR_SYSTEM;
1578 }
1579
1580 /* initialize internal qc */
1581
1582 /* XXX: Tag 0 is used for drivers with legacy EH as some
1583 * drivers choke if any other tag is given. This breaks
1584 * ata_tag_internal() test for those drivers. Don't use new
1585 * EH stuff without converting to it.
1586 */
1587 if (ap->ops->error_handler)
1588 tag = ATA_TAG_INTERNAL;
1589 else
1590 tag = 0;
1591
1592 qc = __ata_qc_from_tag(ap, tag);
1593
1594 qc->tag = tag;
1595 qc->scsicmd = NULL;
1596 qc->ap = ap;
1597 qc->dev = dev;
1598 ata_qc_reinit(qc);
1599
1600 preempted_tag = link->active_tag;
1601 preempted_sactive = link->sactive;
1602 preempted_qc_active = ap->qc_active;
1603 preempted_nr_active_links = ap->nr_active_links;
1604 link->active_tag = ATA_TAG_POISON;
1605 link->sactive = 0;
1606 ap->qc_active = 0;
1607 ap->nr_active_links = 0;
1608
1609 /* prepare & issue qc */
1610 qc->tf = *tf;
1611 if (cdb)
1612 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1613
1614 /* some SATA bridges need us to indicate data xfer direction */
1615 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1616 dma_dir == DMA_FROM_DEVICE)
1617 qc->tf.feature |= ATAPI_DMADIR;
1618
1619 qc->flags |= ATA_QCFLAG_RESULT_TF;
1620 qc->dma_dir = dma_dir;
1621 if (dma_dir != DMA_NONE) {
1622 unsigned int i, buflen = 0;
1623 struct scatterlist *sg;
1624
1625 for_each_sg(sgl, sg, n_elem, i)
1626 buflen += sg->length;
1627
1628 ata_sg_init(qc, sgl, n_elem);
1629 qc->nbytes = buflen;
1630 }
1631
1632 qc->private_data = &wait;
1633 qc->complete_fn = ata_qc_complete_internal;
1634
1635 ata_qc_issue(qc);
1636
1637 spin_unlock_irqrestore(ap->lock, flags);
1638
1639 if (!timeout) {
1640 if (ata_probe_timeout)
1641 timeout = ata_probe_timeout * 1000;
1642 else {
1643 timeout = ata_internal_cmd_timeout(dev, command);
1644 auto_timeout = 1;
1645 }
1646 }
1647
1648 if (ap->ops->error_handler)
1649 ata_eh_release(ap);
1650
1651 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1652
1653 if (ap->ops->error_handler)
1654 ata_eh_acquire(ap);
1655
1656 ata_sff_flush_pio_task(ap);
1657
1658 if (!rc) {
1659 spin_lock_irqsave(ap->lock, flags);
1660
1661 /* We're racing with irq here. If we lose, the
1662 * following test prevents us from completing the qc
1663 * twice. If we win, the port is frozen and will be
1664 * cleaned up by ->post_internal_cmd().
1665 */
1666 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1667 qc->err_mask |= AC_ERR_TIMEOUT;
1668
1669 if (ap->ops->error_handler)
1670 ata_port_freeze(ap);
1671 else
1672 ata_qc_complete(qc);
1673
1674 if (ata_msg_warn(ap))
1675 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1676 command);
1677 }
1678
1679 spin_unlock_irqrestore(ap->lock, flags);
1680 }
1681
1682 /* do post_internal_cmd */
1683 if (ap->ops->post_internal_cmd)
1684 ap->ops->post_internal_cmd(qc);
1685
1686 /* perform minimal error analysis */
1687 if (qc->flags & ATA_QCFLAG_FAILED) {
1688 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1689 qc->err_mask |= AC_ERR_DEV;
1690
1691 if (!qc->err_mask)
1692 qc->err_mask |= AC_ERR_OTHER;
1693
1694 if (qc->err_mask & ~AC_ERR_OTHER)
1695 qc->err_mask &= ~AC_ERR_OTHER;
1696 }
1697
1698 /* finish up */
1699 spin_lock_irqsave(ap->lock, flags);
1700
1701 *tf = qc->result_tf;
1702 err_mask = qc->err_mask;
1703
1704 ata_qc_free(qc);
1705 link->active_tag = preempted_tag;
1706 link->sactive = preempted_sactive;
1707 ap->qc_active = preempted_qc_active;
1708 ap->nr_active_links = preempted_nr_active_links;
1709
1710 spin_unlock_irqrestore(ap->lock, flags);
1711
1712 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1713 ata_internal_cmd_timed_out(dev, command);
1714
1715 return err_mask;
1716}
1717
1718/**
1719 * ata_exec_internal - execute libata internal command
1720 * @dev: Device to which the command is sent
1721 * @tf: Taskfile registers for the command and the result
1722 * @cdb: CDB for packet command
1723 * @dma_dir: Data transfer direction of the command
1724 * @buf: Data buffer of the command
1725 * @buflen: Length of data buffer
1726 * @timeout: Timeout in msecs (0 for default)
1727 *
1728 * Wrapper around ata_exec_internal_sg() which takes simple
1729 * buffer instead of sg list.
1730 *
1731 * LOCKING:
1732 * None. Should be called with kernel context, might sleep.
1733 *
1734 * RETURNS:
1735 * Zero on success, AC_ERR_* mask on failure
1736 */
1737unsigned ata_exec_internal(struct ata_device *dev,
1738 struct ata_taskfile *tf, const u8 *cdb,
1739 int dma_dir, void *buf, unsigned int buflen,
1740 unsigned long timeout)
1741{
1742 struct scatterlist *psg = NULL, sg;
1743 unsigned int n_elem = 0;
1744
1745 if (dma_dir != DMA_NONE) {
1746 WARN_ON(!buf);
1747 sg_init_one(&sg, buf, buflen);
1748 psg = &sg;
1749 n_elem++;
1750 }
1751
1752 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1753 timeout);
1754}
1755
1756/**
1757 * ata_pio_need_iordy - check if iordy needed
1758 * @adev: ATA device
1759 *
1760 * Check if the current speed of the device requires IORDY. Used
1761 * by various controllers for chip configuration.
1762 */
1763unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1764{
1765 /* Don't set IORDY if we're preparing for reset. IORDY may
1766 * lead to controller lock up on certain controllers if the
1767 * port is not occupied. See bko#11703 for details.
1768 */
1769 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1770 return 0;
1771 /* Controller doesn't support IORDY. Probably a pointless
1772 * check as the caller should know this.
1773 */
1774 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1775 return 0;
1776 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1777 if (ata_id_is_cfa(adev->id)
1778 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1779 return 0;
1780 /* PIO3 and higher it is mandatory */
1781 if (adev->pio_mode > XFER_PIO_2)
1782 return 1;
1783 /* We turn it on when possible */
1784 if (ata_id_has_iordy(adev->id))
1785 return 1;
1786 return 0;
1787}
1788
1789/**
1790 * ata_pio_mask_no_iordy - Return the non IORDY mask
1791 * @adev: ATA device
1792 *
1793 * Compute the highest mode possible if we are not using iordy. Return
1794 * -1 if no iordy mode is available.
1795 */
1796static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1797{
1798 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1799 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1800 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1801 /* Is the speed faster than the drive allows non IORDY ? */
1802 if (pio) {
1803 /* This is cycle times not frequency - watch the logic! */
1804 if (pio > 240) /* PIO2 is 240nS per cycle */
1805 return 3 << ATA_SHIFT_PIO;
1806 return 7 << ATA_SHIFT_PIO;
1807 }
1808 }
1809 return 3 << ATA_SHIFT_PIO;
1810}
1811
1812/**
1813 * ata_do_dev_read_id - default ID read method
1814 * @dev: device
1815 * @tf: proposed taskfile
1816 * @id: data buffer
1817 *
1818 * Issue the identify taskfile and hand back the buffer containing
1819 * identify data. For some RAID controllers and for pre ATA devices
1820 * this function is wrapped or replaced by the driver
1821 */
1822unsigned int ata_do_dev_read_id(struct ata_device *dev,
1823 struct ata_taskfile *tf, u16 *id)
1824{
1825 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1826 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1827}
1828
1829/**
1830 * ata_dev_read_id - Read ID data from the specified device
1831 * @dev: target device
1832 * @p_class: pointer to class of the target device (may be changed)
1833 * @flags: ATA_READID_* flags
1834 * @id: buffer to read IDENTIFY data into
1835 *
1836 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1837 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1838 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1839 * for pre-ATA4 drives.
1840 *
1841 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1842 * now we abort if we hit that case.
1843 *
1844 * LOCKING:
1845 * Kernel thread context (may sleep)
1846 *
1847 * RETURNS:
1848 * 0 on success, -errno otherwise.
1849 */
1850int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1851 unsigned int flags, u16 *id)
1852{
1853 struct ata_port *ap = dev->link->ap;
1854 unsigned int class = *p_class;
1855 struct ata_taskfile tf;
1856 unsigned int err_mask = 0;
1857 const char *reason;
1858 bool is_semb = class == ATA_DEV_SEMB;
1859 int may_fallback = 1, tried_spinup = 0;
1860 int rc;
1861
1862 if (ata_msg_ctl(ap))
1863 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1864
1865retry:
1866 ata_tf_init(dev, &tf);
1867
1868 switch (class) {
1869 case ATA_DEV_SEMB:
1870 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1871 case ATA_DEV_ATA:
1872 case ATA_DEV_ZAC:
1873 tf.command = ATA_CMD_ID_ATA;
1874 break;
1875 case ATA_DEV_ATAPI:
1876 tf.command = ATA_CMD_ID_ATAPI;
1877 break;
1878 default:
1879 rc = -ENODEV;
1880 reason = "unsupported class";
1881 goto err_out;
1882 }
1883
1884 tf.protocol = ATA_PROT_PIO;
1885
1886 /* Some devices choke if TF registers contain garbage. Make
1887 * sure those are properly initialized.
1888 */
1889 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1890
1891 /* Device presence detection is unreliable on some
1892 * controllers. Always poll IDENTIFY if available.
1893 */
1894 tf.flags |= ATA_TFLAG_POLLING;
1895
1896 if (ap->ops->read_id)
1897 err_mask = ap->ops->read_id(dev, &tf, id);
1898 else
1899 err_mask = ata_do_dev_read_id(dev, &tf, id);
1900
1901 if (err_mask) {
1902 if (err_mask & AC_ERR_NODEV_HINT) {
1903 ata_dev_dbg(dev, "NODEV after polling detection\n");
1904 return -ENOENT;
1905 }
1906
1907 if (is_semb) {
1908 ata_dev_info(dev,
1909 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1910 /* SEMB is not supported yet */
1911 *p_class = ATA_DEV_SEMB_UNSUP;
1912 return 0;
1913 }
1914
1915 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1916 /* Device or controller might have reported
1917 * the wrong device class. Give a shot at the
1918 * other IDENTIFY if the current one is
1919 * aborted by the device.
1920 */
1921 if (may_fallback) {
1922 may_fallback = 0;
1923
1924 if (class == ATA_DEV_ATA)
1925 class = ATA_DEV_ATAPI;
1926 else
1927 class = ATA_DEV_ATA;
1928 goto retry;
1929 }
1930
1931 /* Control reaches here iff the device aborted
1932 * both flavors of IDENTIFYs which happens
1933 * sometimes with phantom devices.
1934 */
1935 ata_dev_dbg(dev,
1936 "both IDENTIFYs aborted, assuming NODEV\n");
1937 return -ENOENT;
1938 }
1939
1940 rc = -EIO;
1941 reason = "I/O error";
1942 goto err_out;
1943 }
1944
1945 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1946 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1947 "class=%d may_fallback=%d tried_spinup=%d\n",
1948 class, may_fallback, tried_spinup);
1949 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1950 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1951 }
1952
1953 /* Falling back doesn't make sense if ID data was read
1954 * successfully at least once.
1955 */
1956 may_fallback = 0;
1957
1958 swap_buf_le16(id, ATA_ID_WORDS);
1959
1960 /* sanity check */
1961 rc = -EINVAL;
1962 reason = "device reports invalid type";
1963
1964 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1965 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1966 goto err_out;
1967 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1968 ata_id_is_ata(id)) {
1969 ata_dev_dbg(dev,
1970 "host indicates ignore ATA devices, ignored\n");
1971 return -ENOENT;
1972 }
1973 } else {
1974 if (ata_id_is_ata(id))
1975 goto err_out;
1976 }
1977
1978 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1979 tried_spinup = 1;
1980 /*
1981 * Drive powered-up in standby mode, and requires a specific
1982 * SET_FEATURES spin-up subcommand before it will accept
1983 * anything other than the original IDENTIFY command.
1984 */
1985 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1986 if (err_mask && id[2] != 0x738c) {
1987 rc = -EIO;
1988 reason = "SPINUP failed";
1989 goto err_out;
1990 }
1991 /*
1992 * If the drive initially returned incomplete IDENTIFY info,
1993 * we now must reissue the IDENTIFY command.
1994 */
1995 if (id[2] == 0x37c8)
1996 goto retry;
1997 }
1998
1999 if ((flags & ATA_READID_POSTRESET) &&
2000 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2001 /*
2002 * The exact sequence expected by certain pre-ATA4 drives is:
2003 * SRST RESET
2004 * IDENTIFY (optional in early ATA)
2005 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2006 * anything else..
2007 * Some drives were very specific about that exact sequence.
2008 *
2009 * Note that ATA4 says lba is mandatory so the second check
2010 * should never trigger.
2011 */
2012 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2013 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2014 if (err_mask) {
2015 rc = -EIO;
2016 reason = "INIT_DEV_PARAMS failed";
2017 goto err_out;
2018 }
2019
2020 /* current CHS translation info (id[53-58]) might be
2021 * changed. reread the identify device info.
2022 */
2023 flags &= ~ATA_READID_POSTRESET;
2024 goto retry;
2025 }
2026 }
2027
2028 *p_class = class;
2029
2030 return 0;
2031
2032 err_out:
2033 if (ata_msg_warn(ap))
2034 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2035 reason, err_mask);
2036 return rc;
2037}
2038
2039static int ata_do_link_spd_horkage(struct ata_device *dev)
2040{
2041 struct ata_link *plink = ata_dev_phys_link(dev);
2042 u32 target, target_limit;
2043
2044 if (!sata_scr_valid(plink))
2045 return 0;
2046
2047 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2048 target = 1;
2049 else
2050 return 0;
2051
2052 target_limit = (1 << target) - 1;
2053
2054 /* if already on stricter limit, no need to push further */
2055 if (plink->sata_spd_limit <= target_limit)
2056 return 0;
2057
2058 plink->sata_spd_limit = target_limit;
2059
2060 /* Request another EH round by returning -EAGAIN if link is
2061 * going faster than the target speed. Forward progress is
2062 * guaranteed by setting sata_spd_limit to target_limit above.
2063 */
2064 if (plink->sata_spd > target) {
2065 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2066 sata_spd_string(target));
2067 return -EAGAIN;
2068 }
2069 return 0;
2070}
2071
2072static inline u8 ata_dev_knobble(struct ata_device *dev)
2073{
2074 struct ata_port *ap = dev->link->ap;
2075
2076 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2077 return 0;
2078
2079 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2080}
2081
2082static int ata_dev_config_ncq(struct ata_device *dev,
2083 char *desc, size_t desc_sz)
2084{
2085 struct ata_port *ap = dev->link->ap;
2086 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2087 unsigned int err_mask;
2088 char *aa_desc = "";
2089
2090 if (!ata_id_has_ncq(dev->id)) {
2091 desc[0] = '\0';
2092 return 0;
2093 }
2094 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2095 snprintf(desc, desc_sz, "NCQ (not used)");
2096 return 0;
2097 }
2098 if (ap->flags & ATA_FLAG_NCQ) {
2099 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2100 dev->flags |= ATA_DFLAG_NCQ;
2101 }
2102
2103 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2104 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2105 ata_id_has_fpdma_aa(dev->id)) {
2106 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2107 SATA_FPDMA_AA);
2108 if (err_mask) {
2109 ata_dev_err(dev,
2110 "failed to enable AA (error_mask=0x%x)\n",
2111 err_mask);
2112 if (err_mask != AC_ERR_DEV) {
2113 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2114 return -EIO;
2115 }
2116 } else
2117 aa_desc = ", AA";
2118 }
2119
2120 if (hdepth >= ddepth)
2121 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2122 else
2123 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2124 ddepth, aa_desc);
2125
2126 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2127 ata_id_has_ncq_send_and_recv(dev->id)) {
2128 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2129 0, ap->sector_buf, 1);
2130 if (err_mask) {
2131 ata_dev_dbg(dev,
2132 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2133 err_mask);
2134 } else {
2135 u8 *cmds = dev->ncq_send_recv_cmds;
2136
2137 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2138 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2139
2140 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2141 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2142 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2143 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2144 }
2145 }
2146 }
2147
2148 return 0;
2149}
2150
2151/**
2152 * ata_dev_configure - Configure the specified ATA/ATAPI device
2153 * @dev: Target device to configure
2154 *
2155 * Configure @dev according to @dev->id. Generic and low-level
2156 * driver specific fixups are also applied.
2157 *
2158 * LOCKING:
2159 * Kernel thread context (may sleep)
2160 *
2161 * RETURNS:
2162 * 0 on success, -errno otherwise
2163 */
2164int ata_dev_configure(struct ata_device *dev)
2165{
2166 struct ata_port *ap = dev->link->ap;
2167 struct ata_eh_context *ehc = &dev->link->eh_context;
2168 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2169 const u16 *id = dev->id;
2170 unsigned long xfer_mask;
2171 unsigned int err_mask;
2172 char revbuf[7]; /* XYZ-99\0 */
2173 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2174 char modelbuf[ATA_ID_PROD_LEN+1];
2175 int rc;
2176
2177 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2178 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2179 return 0;
2180 }
2181
2182 if (ata_msg_probe(ap))
2183 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2184
2185 /* set horkage */
2186 dev->horkage |= ata_dev_blacklisted(dev);
2187 ata_force_horkage(dev);
2188
2189 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2190 ata_dev_info(dev, "unsupported device, disabling\n");
2191 ata_dev_disable(dev);
2192 return 0;
2193 }
2194
2195 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2196 dev->class == ATA_DEV_ATAPI) {
2197 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2198 atapi_enabled ? "not supported with this driver"
2199 : "disabled");
2200 ata_dev_disable(dev);
2201 return 0;
2202 }
2203
2204 rc = ata_do_link_spd_horkage(dev);
2205 if (rc)
2206 return rc;
2207
2208 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2209 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2210 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2211 dev->horkage |= ATA_HORKAGE_NOLPM;
2212
2213 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2214 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2215 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2216 }
2217
2218 /* let ACPI work its magic */
2219 rc = ata_acpi_on_devcfg(dev);
2220 if (rc)
2221 return rc;
2222
2223 /* massage HPA, do it early as it might change IDENTIFY data */
2224 rc = ata_hpa_resize(dev);
2225 if (rc)
2226 return rc;
2227
2228 /* print device capabilities */
2229 if (ata_msg_probe(ap))
2230 ata_dev_dbg(dev,
2231 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2232 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2233 __func__,
2234 id[49], id[82], id[83], id[84],
2235 id[85], id[86], id[87], id[88]);
2236
2237 /* initialize to-be-configured parameters */
2238 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2239 dev->max_sectors = 0;
2240 dev->cdb_len = 0;
2241 dev->n_sectors = 0;
2242 dev->cylinders = 0;
2243 dev->heads = 0;
2244 dev->sectors = 0;
2245 dev->multi_count = 0;
2246
2247 /*
2248 * common ATA, ATAPI feature tests
2249 */
2250
2251 /* find max transfer mode; for printk only */
2252 xfer_mask = ata_id_xfermask(id);
2253
2254 if (ata_msg_probe(ap))
2255 ata_dump_id(id);
2256
2257 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2258 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2259 sizeof(fwrevbuf));
2260
2261 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2262 sizeof(modelbuf));
2263
2264 /* ATA-specific feature tests */
2265 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2266 if (ata_id_is_cfa(id)) {
2267 /* CPRM may make this media unusable */
2268 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2269 ata_dev_warn(dev,
2270 "supports DRM functions and may not be fully accessible\n");
2271 snprintf(revbuf, 7, "CFA");
2272 } else {
2273 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2274 /* Warn the user if the device has TPM extensions */
2275 if (ata_id_has_tpm(id))
2276 ata_dev_warn(dev,
2277 "supports DRM functions and may not be fully accessible\n");
2278 }
2279
2280 dev->n_sectors = ata_id_n_sectors(id);
2281
2282 /* get current R/W Multiple count setting */
2283 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2284 unsigned int max = dev->id[47] & 0xff;
2285 unsigned int cnt = dev->id[59] & 0xff;
2286 /* only recognize/allow powers of two here */
2287 if (is_power_of_2(max) && is_power_of_2(cnt))
2288 if (cnt <= max)
2289 dev->multi_count = cnt;
2290 }
2291
2292 if (ata_id_has_lba(id)) {
2293 const char *lba_desc;
2294 char ncq_desc[24];
2295
2296 lba_desc = "LBA";
2297 dev->flags |= ATA_DFLAG_LBA;
2298 if (ata_id_has_lba48(id)) {
2299 dev->flags |= ATA_DFLAG_LBA48;
2300 lba_desc = "LBA48";
2301
2302 if (dev->n_sectors >= (1UL << 28) &&
2303 ata_id_has_flush_ext(id))
2304 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2305 }
2306
2307 /* config NCQ */
2308 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2309 if (rc)
2310 return rc;
2311
2312 /* print device info to dmesg */
2313 if (ata_msg_drv(ap) && print_info) {
2314 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2315 revbuf, modelbuf, fwrevbuf,
2316 ata_mode_string(xfer_mask));
2317 ata_dev_info(dev,
2318 "%llu sectors, multi %u: %s %s\n",
2319 (unsigned long long)dev->n_sectors,
2320 dev->multi_count, lba_desc, ncq_desc);
2321 }
2322 } else {
2323 /* CHS */
2324
2325 /* Default translation */
2326 dev->cylinders = id[1];
2327 dev->heads = id[3];
2328 dev->sectors = id[6];
2329
2330 if (ata_id_current_chs_valid(id)) {
2331 /* Current CHS translation is valid. */
2332 dev->cylinders = id[54];
2333 dev->heads = id[55];
2334 dev->sectors = id[56];
2335 }
2336
2337 /* print device info to dmesg */
2338 if (ata_msg_drv(ap) && print_info) {
2339 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2340 revbuf, modelbuf, fwrevbuf,
2341 ata_mode_string(xfer_mask));
2342 ata_dev_info(dev,
2343 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2344 (unsigned long long)dev->n_sectors,
2345 dev->multi_count, dev->cylinders,
2346 dev->heads, dev->sectors);
2347 }
2348 }
2349
2350 /* Check and mark DevSlp capability. Get DevSlp timing variables
2351 * from SATA Settings page of Identify Device Data Log.
2352 */
2353 if (ata_id_has_devslp(dev->id)) {
2354 u8 *sata_setting = ap->sector_buf;
2355 int i, j;
2356
2357 dev->flags |= ATA_DFLAG_DEVSLP;
2358 err_mask = ata_read_log_page(dev,
2359 ATA_LOG_SATA_ID_DEV_DATA,
2360 ATA_LOG_SATA_SETTINGS,
2361 sata_setting,
2362 1);
2363 if (err_mask)
2364 ata_dev_dbg(dev,
2365 "failed to get Identify Device Data, Emask 0x%x\n",
2366 err_mask);
2367 else
2368 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2369 j = ATA_LOG_DEVSLP_OFFSET + i;
2370 dev->devslp_timing[i] = sata_setting[j];
2371 }
2372 }
2373
2374 dev->cdb_len = 16;
2375 }
2376
2377 /* ATAPI-specific feature tests */
2378 else if (dev->class == ATA_DEV_ATAPI) {
2379 const char *cdb_intr_string = "";
2380 const char *atapi_an_string = "";
2381 const char *dma_dir_string = "";
2382 u32 sntf;
2383
2384 rc = atapi_cdb_len(id);
2385 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2386 if (ata_msg_warn(ap))
2387 ata_dev_warn(dev, "unsupported CDB len\n");
2388 rc = -EINVAL;
2389 goto err_out_nosup;
2390 }
2391 dev->cdb_len = (unsigned int) rc;
2392
2393 /* Enable ATAPI AN if both the host and device have
2394 * the support. If PMP is attached, SNTF is required
2395 * to enable ATAPI AN to discern between PHY status
2396 * changed notifications and ATAPI ANs.
2397 */
2398 if (atapi_an &&
2399 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2400 (!sata_pmp_attached(ap) ||
2401 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2402 /* issue SET feature command to turn this on */
2403 err_mask = ata_dev_set_feature(dev,
2404 SETFEATURES_SATA_ENABLE, SATA_AN);
2405 if (err_mask)
2406 ata_dev_err(dev,
2407 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2408 err_mask);
2409 else {
2410 dev->flags |= ATA_DFLAG_AN;
2411 atapi_an_string = ", ATAPI AN";
2412 }
2413 }
2414
2415 if (ata_id_cdb_intr(dev->id)) {
2416 dev->flags |= ATA_DFLAG_CDB_INTR;
2417 cdb_intr_string = ", CDB intr";
2418 }
2419
2420 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2421 dev->flags |= ATA_DFLAG_DMADIR;
2422 dma_dir_string = ", DMADIR";
2423 }
2424
2425 if (ata_id_has_da(dev->id)) {
2426 dev->flags |= ATA_DFLAG_DA;
2427 zpodd_init(dev);
2428 }
2429
2430 /* print device info to dmesg */
2431 if (ata_msg_drv(ap) && print_info)
2432 ata_dev_info(dev,
2433 "ATAPI: %s, %s, max %s%s%s%s\n",
2434 modelbuf, fwrevbuf,
2435 ata_mode_string(xfer_mask),
2436 cdb_intr_string, atapi_an_string,
2437 dma_dir_string);
2438 }
2439
2440 /* determine max_sectors */
2441 dev->max_sectors = ATA_MAX_SECTORS;
2442 if (dev->flags & ATA_DFLAG_LBA48)
2443 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2444
2445 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2446 200 sectors */
2447 if (ata_dev_knobble(dev)) {
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_info(dev, "applying bridge limits\n");
2450 dev->udma_mask &= ATA_UDMA5;
2451 dev->max_sectors = ATA_MAX_SECTORS;
2452 }
2453
2454 if ((dev->class == ATA_DEV_ATAPI) &&
2455 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2456 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2457 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2458 }
2459
2460 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2461 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2462 dev->max_sectors);
2463
2464 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2465 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2466 dev->max_sectors);
2467
2468 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2469 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2470
2471 if (ap->ops->dev_config)
2472 ap->ops->dev_config(dev);
2473
2474 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2475 /* Let the user know. We don't want to disallow opens for
2476 rescue purposes, or in case the vendor is just a blithering
2477 idiot. Do this after the dev_config call as some controllers
2478 with buggy firmware may want to avoid reporting false device
2479 bugs */
2480
2481 if (print_info) {
2482 ata_dev_warn(dev,
2483"Drive reports diagnostics failure. This may indicate a drive\n");
2484 ata_dev_warn(dev,
2485"fault or invalid emulation. Contact drive vendor for information.\n");
2486 }
2487 }
2488
2489 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2490 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2491 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2492 }
2493
2494 return 0;
2495
2496err_out_nosup:
2497 if (ata_msg_probe(ap))
2498 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2499 return rc;
2500}
2501
2502/**
2503 * ata_cable_40wire - return 40 wire cable type
2504 * @ap: port
2505 *
2506 * Helper method for drivers which want to hardwire 40 wire cable
2507 * detection.
2508 */
2509
2510int ata_cable_40wire(struct ata_port *ap)
2511{
2512 return ATA_CBL_PATA40;
2513}
2514
2515/**
2516 * ata_cable_80wire - return 80 wire cable type
2517 * @ap: port
2518 *
2519 * Helper method for drivers which want to hardwire 80 wire cable
2520 * detection.
2521 */
2522
2523int ata_cable_80wire(struct ata_port *ap)
2524{
2525 return ATA_CBL_PATA80;
2526}
2527
2528/**
2529 * ata_cable_unknown - return unknown PATA cable.
2530 * @ap: port
2531 *
2532 * Helper method for drivers which have no PATA cable detection.
2533 */
2534
2535int ata_cable_unknown(struct ata_port *ap)
2536{
2537 return ATA_CBL_PATA_UNK;
2538}
2539
2540/**
2541 * ata_cable_ignore - return ignored PATA cable.
2542 * @ap: port
2543 *
2544 * Helper method for drivers which don't use cable type to limit
2545 * transfer mode.
2546 */
2547int ata_cable_ignore(struct ata_port *ap)
2548{
2549 return ATA_CBL_PATA_IGN;
2550}
2551
2552/**
2553 * ata_cable_sata - return SATA cable type
2554 * @ap: port
2555 *
2556 * Helper method for drivers which have SATA cables
2557 */
2558
2559int ata_cable_sata(struct ata_port *ap)
2560{
2561 return ATA_CBL_SATA;
2562}
2563
2564/**
2565 * ata_bus_probe - Reset and probe ATA bus
2566 * @ap: Bus to probe
2567 *
2568 * Master ATA bus probing function. Initiates a hardware-dependent
2569 * bus reset, then attempts to identify any devices found on
2570 * the bus.
2571 *
2572 * LOCKING:
2573 * PCI/etc. bus probe sem.
2574 *
2575 * RETURNS:
2576 * Zero on success, negative errno otherwise.
2577 */
2578
2579int ata_bus_probe(struct ata_port *ap)
2580{
2581 unsigned int classes[ATA_MAX_DEVICES];
2582 int tries[ATA_MAX_DEVICES];
2583 int rc;
2584 struct ata_device *dev;
2585
2586 ata_for_each_dev(dev, &ap->link, ALL)
2587 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2588
2589 retry:
2590 ata_for_each_dev(dev, &ap->link, ALL) {
2591 /* If we issue an SRST then an ATA drive (not ATAPI)
2592 * may change configuration and be in PIO0 timing. If
2593 * we do a hard reset (or are coming from power on)
2594 * this is true for ATA or ATAPI. Until we've set a
2595 * suitable controller mode we should not touch the
2596 * bus as we may be talking too fast.
2597 */
2598 dev->pio_mode = XFER_PIO_0;
2599 dev->dma_mode = 0xff;
2600
2601 /* If the controller has a pio mode setup function
2602 * then use it to set the chipset to rights. Don't
2603 * touch the DMA setup as that will be dealt with when
2604 * configuring devices.
2605 */
2606 if (ap->ops->set_piomode)
2607 ap->ops->set_piomode(ap, dev);
2608 }
2609
2610 /* reset and determine device classes */
2611 ap->ops->phy_reset(ap);
2612
2613 ata_for_each_dev(dev, &ap->link, ALL) {
2614 if (dev->class != ATA_DEV_UNKNOWN)
2615 classes[dev->devno] = dev->class;
2616 else
2617 classes[dev->devno] = ATA_DEV_NONE;
2618
2619 dev->class = ATA_DEV_UNKNOWN;
2620 }
2621
2622 /* read IDENTIFY page and configure devices. We have to do the identify
2623 specific sequence bass-ackwards so that PDIAG- is released by
2624 the slave device */
2625
2626 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2627 if (tries[dev->devno])
2628 dev->class = classes[dev->devno];
2629
2630 if (!ata_dev_enabled(dev))
2631 continue;
2632
2633 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2634 dev->id);
2635 if (rc)
2636 goto fail;
2637 }
2638
2639 /* Now ask for the cable type as PDIAG- should have been released */
2640 if (ap->ops->cable_detect)
2641 ap->cbl = ap->ops->cable_detect(ap);
2642
2643 /* We may have SATA bridge glue hiding here irrespective of
2644 * the reported cable types and sensed types. When SATA
2645 * drives indicate we have a bridge, we don't know which end
2646 * of the link the bridge is which is a problem.
2647 */
2648 ata_for_each_dev(dev, &ap->link, ENABLED)
2649 if (ata_id_is_sata(dev->id))
2650 ap->cbl = ATA_CBL_SATA;
2651
2652 /* After the identify sequence we can now set up the devices. We do
2653 this in the normal order so that the user doesn't get confused */
2654
2655 ata_for_each_dev(dev, &ap->link, ENABLED) {
2656 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2657 rc = ata_dev_configure(dev);
2658 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2659 if (rc)
2660 goto fail;
2661 }
2662
2663 /* configure transfer mode */
2664 rc = ata_set_mode(&ap->link, &dev);
2665 if (rc)
2666 goto fail;
2667
2668 ata_for_each_dev(dev, &ap->link, ENABLED)
2669 return 0;
2670
2671 return -ENODEV;
2672
2673 fail:
2674 tries[dev->devno]--;
2675
2676 switch (rc) {
2677 case -EINVAL:
2678 /* eeek, something went very wrong, give up */
2679 tries[dev->devno] = 0;
2680 break;
2681
2682 case -ENODEV:
2683 /* give it just one more chance */
2684 tries[dev->devno] = min(tries[dev->devno], 1);
2685 case -EIO:
2686 if (tries[dev->devno] == 1) {
2687 /* This is the last chance, better to slow
2688 * down than lose it.
2689 */
2690 sata_down_spd_limit(&ap->link, 0);
2691 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2692 }
2693 }
2694
2695 if (!tries[dev->devno])
2696 ata_dev_disable(dev);
2697
2698 goto retry;
2699}
2700
2701/**
2702 * sata_print_link_status - Print SATA link status
2703 * @link: SATA link to printk link status about
2704 *
2705 * This function prints link speed and status of a SATA link.
2706 *
2707 * LOCKING:
2708 * None.
2709 */
2710static void sata_print_link_status(struct ata_link *link)
2711{
2712 u32 sstatus, scontrol, tmp;
2713
2714 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2715 return;
2716 sata_scr_read(link, SCR_CONTROL, &scontrol);
2717
2718 if (ata_phys_link_online(link)) {
2719 tmp = (sstatus >> 4) & 0xf;
2720 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2721 sata_spd_string(tmp), sstatus, scontrol);
2722 } else {
2723 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2724 sstatus, scontrol);
2725 }
2726}
2727
2728/**
2729 * ata_dev_pair - return other device on cable
2730 * @adev: device
2731 *
2732 * Obtain the other device on the same cable, or if none is
2733 * present NULL is returned
2734 */
2735
2736struct ata_device *ata_dev_pair(struct ata_device *adev)
2737{
2738 struct ata_link *link = adev->link;
2739 struct ata_device *pair = &link->device[1 - adev->devno];
2740 if (!ata_dev_enabled(pair))
2741 return NULL;
2742 return pair;
2743}
2744
2745/**
2746 * sata_down_spd_limit - adjust SATA spd limit downward
2747 * @link: Link to adjust SATA spd limit for
2748 * @spd_limit: Additional limit
2749 *
2750 * Adjust SATA spd limit of @link downward. Note that this
2751 * function only adjusts the limit. The change must be applied
2752 * using sata_set_spd().
2753 *
2754 * If @spd_limit is non-zero, the speed is limited to equal to or
2755 * lower than @spd_limit if such speed is supported. If
2756 * @spd_limit is slower than any supported speed, only the lowest
2757 * supported speed is allowed.
2758 *
2759 * LOCKING:
2760 * Inherited from caller.
2761 *
2762 * RETURNS:
2763 * 0 on success, negative errno on failure
2764 */
2765int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2766{
2767 u32 sstatus, spd, mask;
2768 int rc, bit;
2769
2770 if (!sata_scr_valid(link))
2771 return -EOPNOTSUPP;
2772
2773 /* If SCR can be read, use it to determine the current SPD.
2774 * If not, use cached value in link->sata_spd.
2775 */
2776 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2777 if (rc == 0 && ata_sstatus_online(sstatus))
2778 spd = (sstatus >> 4) & 0xf;
2779 else
2780 spd = link->sata_spd;
2781
2782 mask = link->sata_spd_limit;
2783 if (mask <= 1)
2784 return -EINVAL;
2785
2786 /* unconditionally mask off the highest bit */
2787 bit = fls(mask) - 1;
2788 mask &= ~(1 << bit);
2789
2790 /* Mask off all speeds higher than or equal to the current
2791 * one. Force 1.5Gbps if current SPD is not available.
2792 */
2793 if (spd > 1)
2794 mask &= (1 << (spd - 1)) - 1;
2795 else
2796 mask &= 1;
2797
2798 /* were we already at the bottom? */
2799 if (!mask)
2800 return -EINVAL;
2801
2802 if (spd_limit) {
2803 if (mask & ((1 << spd_limit) - 1))
2804 mask &= (1 << spd_limit) - 1;
2805 else {
2806 bit = ffs(mask) - 1;
2807 mask = 1 << bit;
2808 }
2809 }
2810
2811 link->sata_spd_limit = mask;
2812
2813 ata_link_warn(link, "limiting SATA link speed to %s\n",
2814 sata_spd_string(fls(mask)));
2815
2816 return 0;
2817}
2818
2819static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2820{
2821 struct ata_link *host_link = &link->ap->link;
2822 u32 limit, target, spd;
2823
2824 limit = link->sata_spd_limit;
2825
2826 /* Don't configure downstream link faster than upstream link.
2827 * It doesn't speed up anything and some PMPs choke on such
2828 * configuration.
2829 */
2830 if (!ata_is_host_link(link) && host_link->sata_spd)
2831 limit &= (1 << host_link->sata_spd) - 1;
2832
2833 if (limit == UINT_MAX)
2834 target = 0;
2835 else
2836 target = fls(limit);
2837
2838 spd = (*scontrol >> 4) & 0xf;
2839 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2840
2841 return spd != target;
2842}
2843
2844/**
2845 * sata_set_spd_needed - is SATA spd configuration needed
2846 * @link: Link in question
2847 *
2848 * Test whether the spd limit in SControl matches
2849 * @link->sata_spd_limit. This function is used to determine
2850 * whether hardreset is necessary to apply SATA spd
2851 * configuration.
2852 *
2853 * LOCKING:
2854 * Inherited from caller.
2855 *
2856 * RETURNS:
2857 * 1 if SATA spd configuration is needed, 0 otherwise.
2858 */
2859static int sata_set_spd_needed(struct ata_link *link)
2860{
2861 u32 scontrol;
2862
2863 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2864 return 1;
2865
2866 return __sata_set_spd_needed(link, &scontrol);
2867}
2868
2869/**
2870 * sata_set_spd - set SATA spd according to spd limit
2871 * @link: Link to set SATA spd for
2872 *
2873 * Set SATA spd of @link according to sata_spd_limit.
2874 *
2875 * LOCKING:
2876 * Inherited from caller.
2877 *
2878 * RETURNS:
2879 * 0 if spd doesn't need to be changed, 1 if spd has been
2880 * changed. Negative errno if SCR registers are inaccessible.
2881 */
2882int sata_set_spd(struct ata_link *link)
2883{
2884 u32 scontrol;
2885 int rc;
2886
2887 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2888 return rc;
2889
2890 if (!__sata_set_spd_needed(link, &scontrol))
2891 return 0;
2892
2893 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2894 return rc;
2895
2896 return 1;
2897}
2898
2899/*
2900 * This mode timing computation functionality is ported over from
2901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2902 */
2903/*
2904 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2906 * for UDMA6, which is currently supported only by Maxtor drives.
2907 *
2908 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2909 */
2910
2911static const struct ata_timing ata_timing[] = {
2912/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2913 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2914 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2915 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2916 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2917 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2918 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2919 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2920
2921 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2922 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2923 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2924
2925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2926 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2927 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2928 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2929 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2930
2931/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2932 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2933 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2934 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2935 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2936 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2937 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2938 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2939
2940 { 0xFF }
2941};
2942
2943#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2944#define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2945
2946static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2947{
2948 q->setup = EZ(t->setup * 1000, T);
2949 q->act8b = EZ(t->act8b * 1000, T);
2950 q->rec8b = EZ(t->rec8b * 1000, T);
2951 q->cyc8b = EZ(t->cyc8b * 1000, T);
2952 q->active = EZ(t->active * 1000, T);
2953 q->recover = EZ(t->recover * 1000, T);
2954 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2955 q->cycle = EZ(t->cycle * 1000, T);
2956 q->udma = EZ(t->udma * 1000, UT);
2957}
2958
2959void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2960 struct ata_timing *m, unsigned int what)
2961{
2962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2968 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2969 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2970 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2971}
2972
2973const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2974{
2975 const struct ata_timing *t = ata_timing;
2976
2977 while (xfer_mode > t->mode)
2978 t++;
2979
2980 if (xfer_mode == t->mode)
2981 return t;
2982
2983 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2984 __func__, xfer_mode);
2985
2986 return NULL;
2987}
2988
2989int ata_timing_compute(struct ata_device *adev, unsigned short speed,
2990 struct ata_timing *t, int T, int UT)
2991{
2992 const u16 *id = adev->id;
2993 const struct ata_timing *s;
2994 struct ata_timing p;
2995
2996 /*
2997 * Find the mode.
2998 */
2999
3000 if (!(s = ata_timing_find_mode(speed)))
3001 return -EINVAL;
3002
3003 memcpy(t, s, sizeof(*s));
3004
3005 /*
3006 * If the drive is an EIDE drive, it can tell us it needs extended
3007 * PIO/MW_DMA cycle timing.
3008 */
3009
3010 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3011 memset(&p, 0, sizeof(p));
3012
3013 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3014 if (speed <= XFER_PIO_2)
3015 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3016 else if ((speed <= XFER_PIO_4) ||
3017 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3018 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3019 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3020 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3021
3022 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3023 }
3024
3025 /*
3026 * Convert the timing to bus clock counts.
3027 */
3028
3029 ata_timing_quantize(t, t, T, UT);
3030
3031 /*
3032 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3033 * S.M.A.R.T * and some other commands. We have to ensure that the
3034 * DMA cycle timing is slower/equal than the fastest PIO timing.
3035 */
3036
3037 if (speed > XFER_PIO_6) {
3038 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3039 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3040 }
3041
3042 /*
3043 * Lengthen active & recovery time so that cycle time is correct.
3044 */
3045
3046 if (t->act8b + t->rec8b < t->cyc8b) {
3047 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3048 t->rec8b = t->cyc8b - t->act8b;
3049 }
3050
3051 if (t->active + t->recover < t->cycle) {
3052 t->active += (t->cycle - (t->active + t->recover)) / 2;
3053 t->recover = t->cycle - t->active;
3054 }
3055
3056 /* In a few cases quantisation may produce enough errors to
3057 leave t->cycle too low for the sum of active and recovery
3058 if so we must correct this */
3059 if (t->active + t->recover > t->cycle)
3060 t->cycle = t->active + t->recover;
3061
3062 return 0;
3063}
3064
3065/**
3066 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3067 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3068 * @cycle: cycle duration in ns
3069 *
3070 * Return matching xfer mode for @cycle. The returned mode is of
3071 * the transfer type specified by @xfer_shift. If @cycle is too
3072 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3073 * than the fastest known mode, the fasted mode is returned.
3074 *
3075 * LOCKING:
3076 * None.
3077 *
3078 * RETURNS:
3079 * Matching xfer_mode, 0xff if no match found.
3080 */
3081u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3082{
3083 u8 base_mode = 0xff, last_mode = 0xff;
3084 const struct ata_xfer_ent *ent;
3085 const struct ata_timing *t;
3086
3087 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3088 if (ent->shift == xfer_shift)
3089 base_mode = ent->base;
3090
3091 for (t = ata_timing_find_mode(base_mode);
3092 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3093 unsigned short this_cycle;
3094
3095 switch (xfer_shift) {
3096 case ATA_SHIFT_PIO:
3097 case ATA_SHIFT_MWDMA:
3098 this_cycle = t->cycle;
3099 break;
3100 case ATA_SHIFT_UDMA:
3101 this_cycle = t->udma;
3102 break;
3103 default:
3104 return 0xff;
3105 }
3106
3107 if (cycle > this_cycle)
3108 break;
3109
3110 last_mode = t->mode;
3111 }
3112
3113 return last_mode;
3114}
3115
3116/**
3117 * ata_down_xfermask_limit - adjust dev xfer masks downward
3118 * @dev: Device to adjust xfer masks
3119 * @sel: ATA_DNXFER_* selector
3120 *
3121 * Adjust xfer masks of @dev downward. Note that this function
3122 * does not apply the change. Invoking ata_set_mode() afterwards
3123 * will apply the limit.
3124 *
3125 * LOCKING:
3126 * Inherited from caller.
3127 *
3128 * RETURNS:
3129 * 0 on success, negative errno on failure
3130 */
3131int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3132{
3133 char buf[32];
3134 unsigned long orig_mask, xfer_mask;
3135 unsigned long pio_mask, mwdma_mask, udma_mask;
3136 int quiet, highbit;
3137
3138 quiet = !!(sel & ATA_DNXFER_QUIET);
3139 sel &= ~ATA_DNXFER_QUIET;
3140
3141 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3142 dev->mwdma_mask,
3143 dev->udma_mask);
3144 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3145
3146 switch (sel) {
3147 case ATA_DNXFER_PIO:
3148 highbit = fls(pio_mask) - 1;
3149 pio_mask &= ~(1 << highbit);
3150 break;
3151
3152 case ATA_DNXFER_DMA:
3153 if (udma_mask) {
3154 highbit = fls(udma_mask) - 1;
3155 udma_mask &= ~(1 << highbit);
3156 if (!udma_mask)
3157 return -ENOENT;
3158 } else if (mwdma_mask) {
3159 highbit = fls(mwdma_mask) - 1;
3160 mwdma_mask &= ~(1 << highbit);
3161 if (!mwdma_mask)
3162 return -ENOENT;
3163 }
3164 break;
3165
3166 case ATA_DNXFER_40C:
3167 udma_mask &= ATA_UDMA_MASK_40C;
3168 break;
3169
3170 case ATA_DNXFER_FORCE_PIO0:
3171 pio_mask &= 1;
3172 case ATA_DNXFER_FORCE_PIO:
3173 mwdma_mask = 0;
3174 udma_mask = 0;
3175 break;
3176
3177 default:
3178 BUG();
3179 }
3180
3181 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3182
3183 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3184 return -ENOENT;
3185
3186 if (!quiet) {
3187 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3188 snprintf(buf, sizeof(buf), "%s:%s",
3189 ata_mode_string(xfer_mask),
3190 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3191 else
3192 snprintf(buf, sizeof(buf), "%s",
3193 ata_mode_string(xfer_mask));
3194
3195 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3196 }
3197
3198 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3199 &dev->udma_mask);
3200
3201 return 0;
3202}
3203
3204static int ata_dev_set_mode(struct ata_device *dev)
3205{
3206 struct ata_port *ap = dev->link->ap;
3207 struct ata_eh_context *ehc = &dev->link->eh_context;
3208 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3209 const char *dev_err_whine = "";
3210 int ign_dev_err = 0;
3211 unsigned int err_mask = 0;
3212 int rc;
3213
3214 dev->flags &= ~ATA_DFLAG_PIO;
3215 if (dev->xfer_shift == ATA_SHIFT_PIO)
3216 dev->flags |= ATA_DFLAG_PIO;
3217
3218 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3219 dev_err_whine = " (SET_XFERMODE skipped)";
3220 else {
3221 if (nosetxfer)
3222 ata_dev_warn(dev,
3223 "NOSETXFER but PATA detected - can't "
3224 "skip SETXFER, might malfunction\n");
3225 err_mask = ata_dev_set_xfermode(dev);
3226 }
3227
3228 if (err_mask & ~AC_ERR_DEV)
3229 goto fail;
3230
3231 /* revalidate */
3232 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3233 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3234 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3235 if (rc)
3236 return rc;
3237
3238 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3239 /* Old CFA may refuse this command, which is just fine */
3240 if (ata_id_is_cfa(dev->id))
3241 ign_dev_err = 1;
3242 /* Catch several broken garbage emulations plus some pre
3243 ATA devices */
3244 if (ata_id_major_version(dev->id) == 0 &&
3245 dev->pio_mode <= XFER_PIO_2)
3246 ign_dev_err = 1;
3247 /* Some very old devices and some bad newer ones fail
3248 any kind of SET_XFERMODE request but support PIO0-2
3249 timings and no IORDY */
3250 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3251 ign_dev_err = 1;
3252 }
3253 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3254 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3255 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3256 dev->dma_mode == XFER_MW_DMA_0 &&
3257 (dev->id[63] >> 8) & 1)
3258 ign_dev_err = 1;
3259
3260 /* if the device is actually configured correctly, ignore dev err */
3261 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3262 ign_dev_err = 1;
3263
3264 if (err_mask & AC_ERR_DEV) {
3265 if (!ign_dev_err)
3266 goto fail;
3267 else
3268 dev_err_whine = " (device error ignored)";
3269 }
3270
3271 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3272 dev->xfer_shift, (int)dev->xfer_mode);
3273
3274 ata_dev_info(dev, "configured for %s%s\n",
3275 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3276 dev_err_whine);
3277
3278 return 0;
3279
3280 fail:
3281 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3282 return -EIO;
3283}
3284
3285/**
3286 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3287 * @link: link on which timings will be programmed
3288 * @r_failed_dev: out parameter for failed device
3289 *
3290 * Standard implementation of the function used to tune and set
3291 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3292 * ata_dev_set_mode() fails, pointer to the failing device is
3293 * returned in @r_failed_dev.
3294 *
3295 * LOCKING:
3296 * PCI/etc. bus probe sem.
3297 *
3298 * RETURNS:
3299 * 0 on success, negative errno otherwise
3300 */
3301
3302int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3303{
3304 struct ata_port *ap = link->ap;
3305 struct ata_device *dev;
3306 int rc = 0, used_dma = 0, found = 0;
3307
3308 /* step 1: calculate xfer_mask */
3309 ata_for_each_dev(dev, link, ENABLED) {
3310 unsigned long pio_mask, dma_mask;
3311 unsigned int mode_mask;
3312
3313 mode_mask = ATA_DMA_MASK_ATA;
3314 if (dev->class == ATA_DEV_ATAPI)
3315 mode_mask = ATA_DMA_MASK_ATAPI;
3316 else if (ata_id_is_cfa(dev->id))
3317 mode_mask = ATA_DMA_MASK_CFA;
3318
3319 ata_dev_xfermask(dev);
3320 ata_force_xfermask(dev);
3321
3322 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3323
3324 if (libata_dma_mask & mode_mask)
3325 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3326 dev->udma_mask);
3327 else
3328 dma_mask = 0;
3329
3330 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3331 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3332
3333 found = 1;
3334 if (ata_dma_enabled(dev))
3335 used_dma = 1;
3336 }
3337 if (!found)
3338 goto out;
3339
3340 /* step 2: always set host PIO timings */
3341 ata_for_each_dev(dev, link, ENABLED) {
3342 if (dev->pio_mode == 0xff) {
3343 ata_dev_warn(dev, "no PIO support\n");
3344 rc = -EINVAL;
3345 goto out;
3346 }
3347
3348 dev->xfer_mode = dev->pio_mode;
3349 dev->xfer_shift = ATA_SHIFT_PIO;
3350 if (ap->ops->set_piomode)
3351 ap->ops->set_piomode(ap, dev);
3352 }
3353
3354 /* step 3: set host DMA timings */
3355 ata_for_each_dev(dev, link, ENABLED) {
3356 if (!ata_dma_enabled(dev))
3357 continue;
3358
3359 dev->xfer_mode = dev->dma_mode;
3360 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3361 if (ap->ops->set_dmamode)
3362 ap->ops->set_dmamode(ap, dev);
3363 }
3364
3365 /* step 4: update devices' xfer mode */
3366 ata_for_each_dev(dev, link, ENABLED) {
3367 rc = ata_dev_set_mode(dev);
3368 if (rc)
3369 goto out;
3370 }
3371
3372 /* Record simplex status. If we selected DMA then the other
3373 * host channels are not permitted to do so.
3374 */
3375 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3376 ap->host->simplex_claimed = ap;
3377
3378 out:
3379 if (rc)
3380 *r_failed_dev = dev;
3381 return rc;
3382}
3383
3384/**
3385 * ata_wait_ready - wait for link to become ready
3386 * @link: link to be waited on
3387 * @deadline: deadline jiffies for the operation
3388 * @check_ready: callback to check link readiness
3389 *
3390 * Wait for @link to become ready. @check_ready should return
3391 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3392 * link doesn't seem to be occupied, other errno for other error
3393 * conditions.
3394 *
3395 * Transient -ENODEV conditions are allowed for
3396 * ATA_TMOUT_FF_WAIT.
3397 *
3398 * LOCKING:
3399 * EH context.
3400 *
3401 * RETURNS:
3402 * 0 if @linke is ready before @deadline; otherwise, -errno.
3403 */
3404int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3405 int (*check_ready)(struct ata_link *link))
3406{
3407 unsigned long start = jiffies;
3408 unsigned long nodev_deadline;
3409 int warned = 0;
3410
3411 /* choose which 0xff timeout to use, read comment in libata.h */
3412 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3413 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3414 else
3415 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3416
3417 /* Slave readiness can't be tested separately from master. On
3418 * M/S emulation configuration, this function should be called
3419 * only on the master and it will handle both master and slave.
3420 */
3421 WARN_ON(link == link->ap->slave_link);
3422
3423 if (time_after(nodev_deadline, deadline))
3424 nodev_deadline = deadline;
3425
3426 while (1) {
3427 unsigned long now = jiffies;
3428 int ready, tmp;
3429
3430 ready = tmp = check_ready(link);
3431 if (ready > 0)
3432 return 0;
3433
3434 /*
3435 * -ENODEV could be transient. Ignore -ENODEV if link
3436 * is online. Also, some SATA devices take a long
3437 * time to clear 0xff after reset. Wait for
3438 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3439 * offline.
3440 *
3441 * Note that some PATA controllers (pata_ali) explode
3442 * if status register is read more than once when
3443 * there's no device attached.
3444 */
3445 if (ready == -ENODEV) {
3446 if (ata_link_online(link))
3447 ready = 0;
3448 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3449 !ata_link_offline(link) &&
3450 time_before(now, nodev_deadline))
3451 ready = 0;
3452 }
3453
3454 if (ready)
3455 return ready;
3456 if (time_after(now, deadline))
3457 return -EBUSY;
3458
3459 if (!warned && time_after(now, start + 5 * HZ) &&
3460 (deadline - now > 3 * HZ)) {
3461 ata_link_warn(link,
3462 "link is slow to respond, please be patient "
3463 "(ready=%d)\n", tmp);
3464 warned = 1;
3465 }
3466
3467 ata_msleep(link->ap, 50);
3468 }
3469}
3470
3471/**
3472 * ata_wait_after_reset - wait for link to become ready after reset
3473 * @link: link to be waited on
3474 * @deadline: deadline jiffies for the operation
3475 * @check_ready: callback to check link readiness
3476 *
3477 * Wait for @link to become ready after reset.
3478 *
3479 * LOCKING:
3480 * EH context.
3481 *
3482 * RETURNS:
3483 * 0 if @linke is ready before @deadline; otherwise, -errno.
3484 */
3485int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3486 int (*check_ready)(struct ata_link *link))
3487{
3488 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3489
3490 return ata_wait_ready(link, deadline, check_ready);
3491}
3492
3493/**
3494 * sata_link_debounce - debounce SATA phy status
3495 * @link: ATA link to debounce SATA phy status for
3496 * @params: timing parameters { interval, duratinon, timeout } in msec
3497 * @deadline: deadline jiffies for the operation
3498 *
3499 * Make sure SStatus of @link reaches stable state, determined by
3500 * holding the same value where DET is not 1 for @duration polled
3501 * every @interval, before @timeout. Timeout constraints the
3502 * beginning of the stable state. Because DET gets stuck at 1 on
3503 * some controllers after hot unplugging, this functions waits
3504 * until timeout then returns 0 if DET is stable at 1.
3505 *
3506 * @timeout is further limited by @deadline. The sooner of the
3507 * two is used.
3508 *
3509 * LOCKING:
3510 * Kernel thread context (may sleep)
3511 *
3512 * RETURNS:
3513 * 0 on success, -errno on failure.
3514 */
3515int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3516 unsigned long deadline)
3517{
3518 unsigned long interval = params[0];
3519 unsigned long duration = params[1];
3520 unsigned long last_jiffies, t;
3521 u32 last, cur;
3522 int rc;
3523
3524 t = ata_deadline(jiffies, params[2]);
3525 if (time_before(t, deadline))
3526 deadline = t;
3527
3528 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3529 return rc;
3530 cur &= 0xf;
3531
3532 last = cur;
3533 last_jiffies = jiffies;
3534
3535 while (1) {
3536 ata_msleep(link->ap, interval);
3537 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3538 return rc;
3539 cur &= 0xf;
3540
3541 /* DET stable? */
3542 if (cur == last) {
3543 if (cur == 1 && time_before(jiffies, deadline))
3544 continue;
3545 if (time_after(jiffies,
3546 ata_deadline(last_jiffies, duration)))
3547 return 0;
3548 continue;
3549 }
3550
3551 /* unstable, start over */
3552 last = cur;
3553 last_jiffies = jiffies;
3554
3555 /* Check deadline. If debouncing failed, return
3556 * -EPIPE to tell upper layer to lower link speed.
3557 */
3558 if (time_after(jiffies, deadline))
3559 return -EPIPE;
3560 }
3561}
3562
3563/**
3564 * sata_link_resume - resume SATA link
3565 * @link: ATA link to resume SATA
3566 * @params: timing parameters { interval, duratinon, timeout } in msec
3567 * @deadline: deadline jiffies for the operation
3568 *
3569 * Resume SATA phy @link and debounce it.
3570 *
3571 * LOCKING:
3572 * Kernel thread context (may sleep)
3573 *
3574 * RETURNS:
3575 * 0 on success, -errno on failure.
3576 */
3577int sata_link_resume(struct ata_link *link, const unsigned long *params,
3578 unsigned long deadline)
3579{
3580 int tries = ATA_LINK_RESUME_TRIES;
3581 u32 scontrol, serror;
3582 int rc;
3583
3584 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3585 return rc;
3586
3587 /*
3588 * Writes to SControl sometimes get ignored under certain
3589 * controllers (ata_piix SIDPR). Make sure DET actually is
3590 * cleared.
3591 */
3592 do {
3593 scontrol = (scontrol & 0x0f0) | 0x300;
3594 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3595 return rc;
3596 /*
3597 * Some PHYs react badly if SStatus is pounded
3598 * immediately after resuming. Delay 200ms before
3599 * debouncing.
3600 */
3601 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3602 ata_msleep(link->ap, 200);
3603
3604 /* is SControl restored correctly? */
3605 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3606 return rc;
3607 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3608
3609 if ((scontrol & 0xf0f) != 0x300) {
3610 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3611 scontrol);
3612 return 0;
3613 }
3614
3615 if (tries < ATA_LINK_RESUME_TRIES)
3616 ata_link_warn(link, "link resume succeeded after %d retries\n",
3617 ATA_LINK_RESUME_TRIES - tries);
3618
3619 if ((rc = sata_link_debounce(link, params, deadline)))
3620 return rc;
3621
3622 /* clear SError, some PHYs require this even for SRST to work */
3623 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3624 rc = sata_scr_write(link, SCR_ERROR, serror);
3625
3626 return rc != -EINVAL ? rc : 0;
3627}
3628
3629/**
3630 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3631 * @link: ATA link to manipulate SControl for
3632 * @policy: LPM policy to configure
3633 * @spm_wakeup: initiate LPM transition to active state
3634 *
3635 * Manipulate the IPM field of the SControl register of @link
3636 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3637 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3638 * the link. This function also clears PHYRDY_CHG before
3639 * returning.
3640 *
3641 * LOCKING:
3642 * EH context.
3643 *
3644 * RETURNS:
3645 * 0 on success, -errno otherwise.
3646 */
3647int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3648 bool spm_wakeup)
3649{
3650 struct ata_eh_context *ehc = &link->eh_context;
3651 bool woken_up = false;
3652 u32 scontrol;
3653 int rc;
3654
3655 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3656 if (rc)
3657 return rc;
3658
3659 switch (policy) {
3660 case ATA_LPM_MAX_POWER:
3661 /* disable all LPM transitions */
3662 scontrol |= (0x7 << 8);
3663 /* initiate transition to active state */
3664 if (spm_wakeup) {
3665 scontrol |= (0x4 << 12);
3666 woken_up = true;
3667 }
3668 break;
3669 case ATA_LPM_MED_POWER:
3670 /* allow LPM to PARTIAL */
3671 scontrol &= ~(0x1 << 8);
3672 scontrol |= (0x6 << 8);
3673 break;
3674 case ATA_LPM_MIN_POWER:
3675 if (ata_link_nr_enabled(link) > 0)
3676 /* no restrictions on LPM transitions */
3677 scontrol &= ~(0x7 << 8);
3678 else {
3679 /* empty port, power off */
3680 scontrol &= ~0xf;
3681 scontrol |= (0x1 << 2);
3682 }
3683 break;
3684 default:
3685 WARN_ON(1);
3686 }
3687
3688 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3689 if (rc)
3690 return rc;
3691
3692 /* give the link time to transit out of LPM state */
3693 if (woken_up)
3694 msleep(10);
3695
3696 /* clear PHYRDY_CHG from SError */
3697 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3698 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3699}
3700
3701/**
3702 * ata_std_prereset - prepare for reset
3703 * @link: ATA link to be reset
3704 * @deadline: deadline jiffies for the operation
3705 *
3706 * @link is about to be reset. Initialize it. Failure from
3707 * prereset makes libata abort whole reset sequence and give up
3708 * that port, so prereset should be best-effort. It does its
3709 * best to prepare for reset sequence but if things go wrong, it
3710 * should just whine, not fail.
3711 *
3712 * LOCKING:
3713 * Kernel thread context (may sleep)
3714 *
3715 * RETURNS:
3716 * 0 on success, -errno otherwise.
3717 */
3718int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3719{
3720 struct ata_port *ap = link->ap;
3721 struct ata_eh_context *ehc = &link->eh_context;
3722 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3723 int rc;
3724
3725 /* if we're about to do hardreset, nothing more to do */
3726 if (ehc->i.action & ATA_EH_HARDRESET)
3727 return 0;
3728
3729 /* if SATA, resume link */
3730 if (ap->flags & ATA_FLAG_SATA) {
3731 rc = sata_link_resume(link, timing, deadline);
3732 /* whine about phy resume failure but proceed */
3733 if (rc && rc != -EOPNOTSUPP)
3734 ata_link_warn(link,
3735 "failed to resume link for reset (errno=%d)\n",
3736 rc);
3737 }
3738
3739 /* no point in trying softreset on offline link */
3740 if (ata_phys_link_offline(link))
3741 ehc->i.action &= ~ATA_EH_SOFTRESET;
3742
3743 return 0;
3744}
3745
3746/**
3747 * sata_link_hardreset - reset link via SATA phy reset
3748 * @link: link to reset
3749 * @timing: timing parameters { interval, duratinon, timeout } in msec
3750 * @deadline: deadline jiffies for the operation
3751 * @online: optional out parameter indicating link onlineness
3752 * @check_ready: optional callback to check link readiness
3753 *
3754 * SATA phy-reset @link using DET bits of SControl register.
3755 * After hardreset, link readiness is waited upon using
3756 * ata_wait_ready() if @check_ready is specified. LLDs are
3757 * allowed to not specify @check_ready and wait itself after this
3758 * function returns. Device classification is LLD's
3759 * responsibility.
3760 *
3761 * *@online is set to one iff reset succeeded and @link is online
3762 * after reset.
3763 *
3764 * LOCKING:
3765 * Kernel thread context (may sleep)
3766 *
3767 * RETURNS:
3768 * 0 on success, -errno otherwise.
3769 */
3770int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3771 unsigned long deadline,
3772 bool *online, int (*check_ready)(struct ata_link *))
3773{
3774 u32 scontrol;
3775 int rc;
3776
3777 DPRINTK("ENTER\n");
3778
3779 if (online)
3780 *online = false;
3781
3782 if (sata_set_spd_needed(link)) {
3783 /* SATA spec says nothing about how to reconfigure
3784 * spd. To be on the safe side, turn off phy during
3785 * reconfiguration. This works for at least ICH7 AHCI
3786 * and Sil3124.
3787 */
3788 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3789 goto out;
3790
3791 scontrol = (scontrol & 0x0f0) | 0x304;
3792
3793 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3794 goto out;
3795
3796 sata_set_spd(link);
3797 }
3798
3799 /* issue phy wake/reset */
3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 goto out;
3802
3803 scontrol = (scontrol & 0x0f0) | 0x301;
3804
3805 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3806 goto out;
3807
3808 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3809 * 10.4.2 says at least 1 ms.
3810 */
3811 ata_msleep(link->ap, 1);
3812
3813 /* bring link back */
3814 rc = sata_link_resume(link, timing, deadline);
3815 if (rc)
3816 goto out;
3817 /* if link is offline nothing more to do */
3818 if (ata_phys_link_offline(link))
3819 goto out;
3820
3821 /* Link is online. From this point, -ENODEV too is an error. */
3822 if (online)
3823 *online = true;
3824
3825 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3826 /* If PMP is supported, we have to do follow-up SRST.
3827 * Some PMPs don't send D2H Reg FIS after hardreset if
3828 * the first port is empty. Wait only for
3829 * ATA_TMOUT_PMP_SRST_WAIT.
3830 */
3831 if (check_ready) {
3832 unsigned long pmp_deadline;
3833
3834 pmp_deadline = ata_deadline(jiffies,
3835 ATA_TMOUT_PMP_SRST_WAIT);
3836 if (time_after(pmp_deadline, deadline))
3837 pmp_deadline = deadline;
3838 ata_wait_ready(link, pmp_deadline, check_ready);
3839 }
3840 rc = -EAGAIN;
3841 goto out;
3842 }
3843
3844 rc = 0;
3845 if (check_ready)
3846 rc = ata_wait_ready(link, deadline, check_ready);
3847 out:
3848 if (rc && rc != -EAGAIN) {
3849 /* online is set iff link is online && reset succeeded */
3850 if (online)
3851 *online = false;
3852 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3853 }
3854 DPRINTK("EXIT, rc=%d\n", rc);
3855 return rc;
3856}
3857
3858/**
3859 * sata_std_hardreset - COMRESET w/o waiting or classification
3860 * @link: link to reset
3861 * @class: resulting class of attached device
3862 * @deadline: deadline jiffies for the operation
3863 *
3864 * Standard SATA COMRESET w/o waiting or classification.
3865 *
3866 * LOCKING:
3867 * Kernel thread context (may sleep)
3868 *
3869 * RETURNS:
3870 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3871 */
3872int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3873 unsigned long deadline)
3874{
3875 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3876 bool online;
3877 int rc;
3878
3879 /* do hardreset */
3880 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3881 return online ? -EAGAIN : rc;
3882}
3883
3884/**
3885 * ata_std_postreset - standard postreset callback
3886 * @link: the target ata_link
3887 * @classes: classes of attached devices
3888 *
3889 * This function is invoked after a successful reset. Note that
3890 * the device might have been reset more than once using
3891 * different reset methods before postreset is invoked.
3892 *
3893 * LOCKING:
3894 * Kernel thread context (may sleep)
3895 */
3896void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3897{
3898 u32 serror;
3899
3900 DPRINTK("ENTER\n");
3901
3902 /* reset complete, clear SError */
3903 if (!sata_scr_read(link, SCR_ERROR, &serror))
3904 sata_scr_write(link, SCR_ERROR, serror);
3905
3906 /* print link status */
3907 sata_print_link_status(link);
3908
3909 DPRINTK("EXIT\n");
3910}
3911
3912/**
3913 * ata_dev_same_device - Determine whether new ID matches configured device
3914 * @dev: device to compare against
3915 * @new_class: class of the new device
3916 * @new_id: IDENTIFY page of the new device
3917 *
3918 * Compare @new_class and @new_id against @dev and determine
3919 * whether @dev is the device indicated by @new_class and
3920 * @new_id.
3921 *
3922 * LOCKING:
3923 * None.
3924 *
3925 * RETURNS:
3926 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3927 */
3928static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3929 const u16 *new_id)
3930{
3931 const u16 *old_id = dev->id;
3932 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3933 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3934
3935 if (dev->class != new_class) {
3936 ata_dev_info(dev, "class mismatch %d != %d\n",
3937 dev->class, new_class);
3938 return 0;
3939 }
3940
3941 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3942 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3943 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3944 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3945
3946 if (strcmp(model[0], model[1])) {
3947 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3948 model[0], model[1]);
3949 return 0;
3950 }
3951
3952 if (strcmp(serial[0], serial[1])) {
3953 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3954 serial[0], serial[1]);
3955 return 0;
3956 }
3957
3958 return 1;
3959}
3960
3961/**
3962 * ata_dev_reread_id - Re-read IDENTIFY data
3963 * @dev: target ATA device
3964 * @readid_flags: read ID flags
3965 *
3966 * Re-read IDENTIFY page and make sure @dev is still attached to
3967 * the port.
3968 *
3969 * LOCKING:
3970 * Kernel thread context (may sleep)
3971 *
3972 * RETURNS:
3973 * 0 on success, negative errno otherwise
3974 */
3975int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3976{
3977 unsigned int class = dev->class;
3978 u16 *id = (void *)dev->link->ap->sector_buf;
3979 int rc;
3980
3981 /* read ID data */
3982 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3983 if (rc)
3984 return rc;
3985
3986 /* is the device still there? */
3987 if (!ata_dev_same_device(dev, class, id))
3988 return -ENODEV;
3989
3990 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
3991 return 0;
3992}
3993
3994/**
3995 * ata_dev_revalidate - Revalidate ATA device
3996 * @dev: device to revalidate
3997 * @new_class: new class code
3998 * @readid_flags: read ID flags
3999 *
4000 * Re-read IDENTIFY page, make sure @dev is still attached to the
4001 * port and reconfigure it according to the new IDENTIFY page.
4002 *
4003 * LOCKING:
4004 * Kernel thread context (may sleep)
4005 *
4006 * RETURNS:
4007 * 0 on success, negative errno otherwise
4008 */
4009int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4010 unsigned int readid_flags)
4011{
4012 u64 n_sectors = dev->n_sectors;
4013 u64 n_native_sectors = dev->n_native_sectors;
4014 int rc;
4015
4016 if (!ata_dev_enabled(dev))
4017 return -ENODEV;
4018
4019 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4020 if (ata_class_enabled(new_class) &&
4021 new_class != ATA_DEV_ATA &&
4022 new_class != ATA_DEV_ATAPI &&
4023 new_class != ATA_DEV_ZAC &&
4024 new_class != ATA_DEV_SEMB) {
4025 ata_dev_info(dev, "class mismatch %u != %u\n",
4026 dev->class, new_class);
4027 rc = -ENODEV;
4028 goto fail;
4029 }
4030
4031 /* re-read ID */
4032 rc = ata_dev_reread_id(dev, readid_flags);
4033 if (rc)
4034 goto fail;
4035
4036 /* configure device according to the new ID */
4037 rc = ata_dev_configure(dev);
4038 if (rc)
4039 goto fail;
4040
4041 /* verify n_sectors hasn't changed */
4042 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4043 dev->n_sectors == n_sectors)
4044 return 0;
4045
4046 /* n_sectors has changed */
4047 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4048 (unsigned long long)n_sectors,
4049 (unsigned long long)dev->n_sectors);
4050
4051 /*
4052 * Something could have caused HPA to be unlocked
4053 * involuntarily. If n_native_sectors hasn't changed and the
4054 * new size matches it, keep the device.
4055 */
4056 if (dev->n_native_sectors == n_native_sectors &&
4057 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4058 ata_dev_warn(dev,
4059 "new n_sectors matches native, probably "
4060 "late HPA unlock, n_sectors updated\n");
4061 /* use the larger n_sectors */
4062 return 0;
4063 }
4064
4065 /*
4066 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4067 * unlocking HPA in those cases.
4068 *
4069 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4070 */
4071 if (dev->n_native_sectors == n_native_sectors &&
4072 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4073 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4074 ata_dev_warn(dev,
4075 "old n_sectors matches native, probably "
4076 "late HPA lock, will try to unlock HPA\n");
4077 /* try unlocking HPA */
4078 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4079 rc = -EIO;
4080 } else
4081 rc = -ENODEV;
4082
4083 /* restore original n_[native_]sectors and fail */
4084 dev->n_native_sectors = n_native_sectors;
4085 dev->n_sectors = n_sectors;
4086 fail:
4087 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4088 return rc;
4089}
4090
4091struct ata_blacklist_entry {
4092 const char *model_num;
4093 const char *model_rev;
4094 unsigned long horkage;
4095};
4096
4097static const struct ata_blacklist_entry ata_device_blacklist [] = {
4098 /* Devices with DMA related problems under Linux */
4099 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4100 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4101 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4102 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4103 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4104 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4105 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4106 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4107 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4108 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4109 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4110 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4111 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4112 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4113 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4114 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4115 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4116 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4117 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4118 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4119 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4120 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4121 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4122 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4123 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4124 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4125 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4126 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4127 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4128 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4129 /* Odd clown on sil3726/4726 PMPs */
4130 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4131
4132 /* Weird ATAPI devices */
4133 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4134 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4135 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4136 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4137
4138 /*
4139 * Causes silent data corruption with higher max sects.
4140 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4141 */
4142 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4143
4144 /* Devices we expect to fail diagnostics */
4145
4146 /* Devices where NCQ should be avoided */
4147 /* NCQ is slow */
4148 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4149 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4150 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4151 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4152 /* NCQ is broken */
4153 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4154 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4155 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4156 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4157 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4158
4159 /* Seagate NCQ + FLUSH CACHE firmware bug */
4160 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4161 ATA_HORKAGE_FIRMWARE_WARN },
4162
4163 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4164 ATA_HORKAGE_FIRMWARE_WARN },
4165
4166 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4167 ATA_HORKAGE_FIRMWARE_WARN },
4168
4169 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4170 ATA_HORKAGE_FIRMWARE_WARN },
4171
4172 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4173 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4174 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4175 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4176
4177 /* Blacklist entries taken from Silicon Image 3124/3132
4178 Windows driver .inf file - also several Linux problem reports */
4179 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4180 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4181 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4182
4183 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4184 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4185
4186 /* devices which puke on READ_NATIVE_MAX */
4187 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4188 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4189 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4190 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4191
4192 /* this one allows HPA unlocking but fails IOs on the area */
4193 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4194
4195 /* Devices which report 1 sector over size HPA */
4196 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4197 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4198 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4199
4200 /* Devices which get the IVB wrong */
4201 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4202 /* Maybe we should just blacklist TSSTcorp... */
4203 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4204
4205 /* Devices that do not need bridging limits applied */
4206 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4207 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4208
4209 /* Devices which aren't very happy with higher link speeds */
4210 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4211 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4212
4213 /*
4214 * Devices which choke on SETXFER. Applies only if both the
4215 * device and controller are SATA.
4216 */
4217 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4218 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4219 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4220 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4221 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4222
4223 /* devices that don't properly handle queued TRIM commands */
4224 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4225 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4226 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4227 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4228 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4229 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4230 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4231 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4232 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4233 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4234 { "Samsung SSD 8*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4235 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4236 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4237 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4238
4239 /* devices that don't properly handle TRIM commands */
4240 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4241
4242 /*
4243 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4244 * (Return Zero After Trim) flags in the ATA Command Set are
4245 * unreliable in the sense that they only define what happens if
4246 * the device successfully executed the DSM TRIM command. TRIM
4247 * is only advisory, however, and the device is free to silently
4248 * ignore all or parts of the request.
4249 *
4250 * Whitelist drives that are known to reliably return zeroes
4251 * after TRIM.
4252 */
4253
4254 /*
4255 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4256 * that model before whitelisting all other intel SSDs.
4257 */
4258 { "INTEL*SSDSC2MH*", NULL, 0, },
4259
4260 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4261 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4262 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4263 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4264 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4265 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4266 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4267
4268 /*
4269 * Some WD SATA-I drives spin up and down erratically when the link
4270 * is put into the slumber mode. We don't have full list of the
4271 * affected devices. Disable LPM if the device matches one of the
4272 * known prefixes and is SATA-1. As a side effect LPM partial is
4273 * lost too.
4274 *
4275 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4276 */
4277 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4278 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4279 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4280 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4281 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4282 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4283 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4284
4285 /* End Marker */
4286 { }
4287};
4288
4289static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4290{
4291 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4292 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4293 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4294
4295 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4296 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4297
4298 while (ad->model_num) {
4299 if (glob_match(ad->model_num, model_num)) {
4300 if (ad->model_rev == NULL)
4301 return ad->horkage;
4302 if (glob_match(ad->model_rev, model_rev))
4303 return ad->horkage;
4304 }
4305 ad++;
4306 }
4307 return 0;
4308}
4309
4310static int ata_dma_blacklisted(const struct ata_device *dev)
4311{
4312 /* We don't support polling DMA.
4313 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4314 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4315 */
4316 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4317 (dev->flags & ATA_DFLAG_CDB_INTR))
4318 return 1;
4319 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4320}
4321
4322/**
4323 * ata_is_40wire - check drive side detection
4324 * @dev: device
4325 *
4326 * Perform drive side detection decoding, allowing for device vendors
4327 * who can't follow the documentation.
4328 */
4329
4330static int ata_is_40wire(struct ata_device *dev)
4331{
4332 if (dev->horkage & ATA_HORKAGE_IVB)
4333 return ata_drive_40wire_relaxed(dev->id);
4334 return ata_drive_40wire(dev->id);
4335}
4336
4337/**
4338 * cable_is_40wire - 40/80/SATA decider
4339 * @ap: port to consider
4340 *
4341 * This function encapsulates the policy for speed management
4342 * in one place. At the moment we don't cache the result but
4343 * there is a good case for setting ap->cbl to the result when
4344 * we are called with unknown cables (and figuring out if it
4345 * impacts hotplug at all).
4346 *
4347 * Return 1 if the cable appears to be 40 wire.
4348 */
4349
4350static int cable_is_40wire(struct ata_port *ap)
4351{
4352 struct ata_link *link;
4353 struct ata_device *dev;
4354
4355 /* If the controller thinks we are 40 wire, we are. */
4356 if (ap->cbl == ATA_CBL_PATA40)
4357 return 1;
4358
4359 /* If the controller thinks we are 80 wire, we are. */
4360 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4361 return 0;
4362
4363 /* If the system is known to be 40 wire short cable (eg
4364 * laptop), then we allow 80 wire modes even if the drive
4365 * isn't sure.
4366 */
4367 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4368 return 0;
4369
4370 /* If the controller doesn't know, we scan.
4371 *
4372 * Note: We look for all 40 wire detects at this point. Any
4373 * 80 wire detect is taken to be 80 wire cable because
4374 * - in many setups only the one drive (slave if present) will
4375 * give a valid detect
4376 * - if you have a non detect capable drive you don't want it
4377 * to colour the choice
4378 */
4379 ata_for_each_link(link, ap, EDGE) {
4380 ata_for_each_dev(dev, link, ENABLED) {
4381 if (!ata_is_40wire(dev))
4382 return 0;
4383 }
4384 }
4385 return 1;
4386}
4387
4388/**
4389 * ata_dev_xfermask - Compute supported xfermask of the given device
4390 * @dev: Device to compute xfermask for
4391 *
4392 * Compute supported xfermask of @dev and store it in
4393 * dev->*_mask. This function is responsible for applying all
4394 * known limits including host controller limits, device
4395 * blacklist, etc...
4396 *
4397 * LOCKING:
4398 * None.
4399 */
4400static void ata_dev_xfermask(struct ata_device *dev)
4401{
4402 struct ata_link *link = dev->link;
4403 struct ata_port *ap = link->ap;
4404 struct ata_host *host = ap->host;
4405 unsigned long xfer_mask;
4406
4407 /* controller modes available */
4408 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4409 ap->mwdma_mask, ap->udma_mask);
4410
4411 /* drive modes available */
4412 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4413 dev->mwdma_mask, dev->udma_mask);
4414 xfer_mask &= ata_id_xfermask(dev->id);
4415
4416 /*
4417 * CFA Advanced TrueIDE timings are not allowed on a shared
4418 * cable
4419 */
4420 if (ata_dev_pair(dev)) {
4421 /* No PIO5 or PIO6 */
4422 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4423 /* No MWDMA3 or MWDMA 4 */
4424 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4425 }
4426
4427 if (ata_dma_blacklisted(dev)) {
4428 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4429 ata_dev_warn(dev,
4430 "device is on DMA blacklist, disabling DMA\n");
4431 }
4432
4433 if ((host->flags & ATA_HOST_SIMPLEX) &&
4434 host->simplex_claimed && host->simplex_claimed != ap) {
4435 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4436 ata_dev_warn(dev,
4437 "simplex DMA is claimed by other device, disabling DMA\n");
4438 }
4439
4440 if (ap->flags & ATA_FLAG_NO_IORDY)
4441 xfer_mask &= ata_pio_mask_no_iordy(dev);
4442
4443 if (ap->ops->mode_filter)
4444 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4445
4446 /* Apply cable rule here. Don't apply it early because when
4447 * we handle hot plug the cable type can itself change.
4448 * Check this last so that we know if the transfer rate was
4449 * solely limited by the cable.
4450 * Unknown or 80 wire cables reported host side are checked
4451 * drive side as well. Cases where we know a 40wire cable
4452 * is used safely for 80 are not checked here.
4453 */
4454 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4455 /* UDMA/44 or higher would be available */
4456 if (cable_is_40wire(ap)) {
4457 ata_dev_warn(dev,
4458 "limited to UDMA/33 due to 40-wire cable\n");
4459 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4460 }
4461
4462 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4463 &dev->mwdma_mask, &dev->udma_mask);
4464}
4465
4466/**
4467 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4468 * @dev: Device to which command will be sent
4469 *
4470 * Issue SET FEATURES - XFER MODE command to device @dev
4471 * on port @ap.
4472 *
4473 * LOCKING:
4474 * PCI/etc. bus probe sem.
4475 *
4476 * RETURNS:
4477 * 0 on success, AC_ERR_* mask otherwise.
4478 */
4479
4480static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4481{
4482 struct ata_taskfile tf;
4483 unsigned int err_mask;
4484
4485 /* set up set-features taskfile */
4486 DPRINTK("set features - xfer mode\n");
4487
4488 /* Some controllers and ATAPI devices show flaky interrupt
4489 * behavior after setting xfer mode. Use polling instead.
4490 */
4491 ata_tf_init(dev, &tf);
4492 tf.command = ATA_CMD_SET_FEATURES;
4493 tf.feature = SETFEATURES_XFER;
4494 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4495 tf.protocol = ATA_PROT_NODATA;
4496 /* If we are using IORDY we must send the mode setting command */
4497 if (ata_pio_need_iordy(dev))
4498 tf.nsect = dev->xfer_mode;
4499 /* If the device has IORDY and the controller does not - turn it off */
4500 else if (ata_id_has_iordy(dev->id))
4501 tf.nsect = 0x01;
4502 else /* In the ancient relic department - skip all of this */
4503 return 0;
4504
4505 /* On some disks, this command causes spin-up, so we need longer timeout */
4506 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4507
4508 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4509 return err_mask;
4510}
4511
4512/**
4513 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4514 * @dev: Device to which command will be sent
4515 * @enable: Whether to enable or disable the feature
4516 * @feature: The sector count represents the feature to set
4517 *
4518 * Issue SET FEATURES - SATA FEATURES command to device @dev
4519 * on port @ap with sector count
4520 *
4521 * LOCKING:
4522 * PCI/etc. bus probe sem.
4523 *
4524 * RETURNS:
4525 * 0 on success, AC_ERR_* mask otherwise.
4526 */
4527unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4528{
4529 struct ata_taskfile tf;
4530 unsigned int err_mask;
4531
4532 /* set up set-features taskfile */
4533 DPRINTK("set features - SATA features\n");
4534
4535 ata_tf_init(dev, &tf);
4536 tf.command = ATA_CMD_SET_FEATURES;
4537 tf.feature = enable;
4538 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4539 tf.protocol = ATA_PROT_NODATA;
4540 tf.nsect = feature;
4541
4542 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4543
4544 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4545 return err_mask;
4546}
4547EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4548
4549/**
4550 * ata_dev_init_params - Issue INIT DEV PARAMS command
4551 * @dev: Device to which command will be sent
4552 * @heads: Number of heads (taskfile parameter)
4553 * @sectors: Number of sectors (taskfile parameter)
4554 *
4555 * LOCKING:
4556 * Kernel thread context (may sleep)
4557 *
4558 * RETURNS:
4559 * 0 on success, AC_ERR_* mask otherwise.
4560 */
4561static unsigned int ata_dev_init_params(struct ata_device *dev,
4562 u16 heads, u16 sectors)
4563{
4564 struct ata_taskfile tf;
4565 unsigned int err_mask;
4566
4567 /* Number of sectors per track 1-255. Number of heads 1-16 */
4568 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4569 return AC_ERR_INVALID;
4570
4571 /* set up init dev params taskfile */
4572 DPRINTK("init dev params \n");
4573
4574 ata_tf_init(dev, &tf);
4575 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4576 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4577 tf.protocol = ATA_PROT_NODATA;
4578 tf.nsect = sectors;
4579 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4580
4581 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4582 /* A clean abort indicates an original or just out of spec drive
4583 and we should continue as we issue the setup based on the
4584 drive reported working geometry */
4585 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4586 err_mask = 0;
4587
4588 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4589 return err_mask;
4590}
4591
4592/**
4593 * ata_sg_clean - Unmap DMA memory associated with command
4594 * @qc: Command containing DMA memory to be released
4595 *
4596 * Unmap all mapped DMA memory associated with this command.
4597 *
4598 * LOCKING:
4599 * spin_lock_irqsave(host lock)
4600 */
4601void ata_sg_clean(struct ata_queued_cmd *qc)
4602{
4603 struct ata_port *ap = qc->ap;
4604 struct scatterlist *sg = qc->sg;
4605 int dir = qc->dma_dir;
4606
4607 WARN_ON_ONCE(sg == NULL);
4608
4609 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4610
4611 if (qc->n_elem)
4612 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4613
4614 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4615 qc->sg = NULL;
4616}
4617
4618/**
4619 * atapi_check_dma - Check whether ATAPI DMA can be supported
4620 * @qc: Metadata associated with taskfile to check
4621 *
4622 * Allow low-level driver to filter ATA PACKET commands, returning
4623 * a status indicating whether or not it is OK to use DMA for the
4624 * supplied PACKET command.
4625 *
4626 * LOCKING:
4627 * spin_lock_irqsave(host lock)
4628 *
4629 * RETURNS: 0 when ATAPI DMA can be used
4630 * nonzero otherwise
4631 */
4632int atapi_check_dma(struct ata_queued_cmd *qc)
4633{
4634 struct ata_port *ap = qc->ap;
4635
4636 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4637 * few ATAPI devices choke on such DMA requests.
4638 */
4639 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4640 unlikely(qc->nbytes & 15))
4641 return 1;
4642
4643 if (ap->ops->check_atapi_dma)
4644 return ap->ops->check_atapi_dma(qc);
4645
4646 return 0;
4647}
4648
4649/**
4650 * ata_std_qc_defer - Check whether a qc needs to be deferred
4651 * @qc: ATA command in question
4652 *
4653 * Non-NCQ commands cannot run with any other command, NCQ or
4654 * not. As upper layer only knows the queue depth, we are
4655 * responsible for maintaining exclusion. This function checks
4656 * whether a new command @qc can be issued.
4657 *
4658 * LOCKING:
4659 * spin_lock_irqsave(host lock)
4660 *
4661 * RETURNS:
4662 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4663 */
4664int ata_std_qc_defer(struct ata_queued_cmd *qc)
4665{
4666 struct ata_link *link = qc->dev->link;
4667
4668 if (qc->tf.protocol == ATA_PROT_NCQ) {
4669 if (!ata_tag_valid(link->active_tag))
4670 return 0;
4671 } else {
4672 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4673 return 0;
4674 }
4675
4676 return ATA_DEFER_LINK;
4677}
4678
4679void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4680
4681/**
4682 * ata_sg_init - Associate command with scatter-gather table.
4683 * @qc: Command to be associated
4684 * @sg: Scatter-gather table.
4685 * @n_elem: Number of elements in s/g table.
4686 *
4687 * Initialize the data-related elements of queued_cmd @qc
4688 * to point to a scatter-gather table @sg, containing @n_elem
4689 * elements.
4690 *
4691 * LOCKING:
4692 * spin_lock_irqsave(host lock)
4693 */
4694void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4695 unsigned int n_elem)
4696{
4697 qc->sg = sg;
4698 qc->n_elem = n_elem;
4699 qc->cursg = qc->sg;
4700}
4701
4702/**
4703 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4704 * @qc: Command with scatter-gather table to be mapped.
4705 *
4706 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4707 *
4708 * LOCKING:
4709 * spin_lock_irqsave(host lock)
4710 *
4711 * RETURNS:
4712 * Zero on success, negative on error.
4713 *
4714 */
4715static int ata_sg_setup(struct ata_queued_cmd *qc)
4716{
4717 struct ata_port *ap = qc->ap;
4718 unsigned int n_elem;
4719
4720 VPRINTK("ENTER, ata%u\n", ap->print_id);
4721
4722 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4723 if (n_elem < 1)
4724 return -1;
4725
4726 DPRINTK("%d sg elements mapped\n", n_elem);
4727 qc->orig_n_elem = qc->n_elem;
4728 qc->n_elem = n_elem;
4729 qc->flags |= ATA_QCFLAG_DMAMAP;
4730
4731 return 0;
4732}
4733
4734/**
4735 * swap_buf_le16 - swap halves of 16-bit words in place
4736 * @buf: Buffer to swap
4737 * @buf_words: Number of 16-bit words in buffer.
4738 *
4739 * Swap halves of 16-bit words if needed to convert from
4740 * little-endian byte order to native cpu byte order, or
4741 * vice-versa.
4742 *
4743 * LOCKING:
4744 * Inherited from caller.
4745 */
4746void swap_buf_le16(u16 *buf, unsigned int buf_words)
4747{
4748#ifdef __BIG_ENDIAN
4749 unsigned int i;
4750
4751 for (i = 0; i < buf_words; i++)
4752 buf[i] = le16_to_cpu(buf[i]);
4753#endif /* __BIG_ENDIAN */
4754}
4755
4756/**
4757 * ata_qc_new_init - Request an available ATA command, and initialize it
4758 * @dev: Device from whom we request an available command structure
4759 * @tag: tag
4760 *
4761 * LOCKING:
4762 * None.
4763 */
4764
4765struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
4766{
4767 struct ata_port *ap = dev->link->ap;
4768 struct ata_queued_cmd *qc;
4769
4770 /* no command while frozen */
4771 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4772 return NULL;
4773
4774 /* libsas case */
4775 if (ap->flags & ATA_FLAG_SAS_HOST) {
4776 tag = ata_sas_allocate_tag(ap);
4777 if (tag < 0)
4778 return NULL;
4779 }
4780
4781 qc = __ata_qc_from_tag(ap, tag);
4782 qc->tag = tag;
4783 qc->scsicmd = NULL;
4784 qc->ap = ap;
4785 qc->dev = dev;
4786
4787 ata_qc_reinit(qc);
4788
4789 return qc;
4790}
4791
4792/**
4793 * ata_qc_free - free unused ata_queued_cmd
4794 * @qc: Command to complete
4795 *
4796 * Designed to free unused ata_queued_cmd object
4797 * in case something prevents using it.
4798 *
4799 * LOCKING:
4800 * spin_lock_irqsave(host lock)
4801 */
4802void ata_qc_free(struct ata_queued_cmd *qc)
4803{
4804 struct ata_port *ap;
4805 unsigned int tag;
4806
4807 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4808 ap = qc->ap;
4809
4810 qc->flags = 0;
4811 tag = qc->tag;
4812 if (likely(ata_tag_valid(tag))) {
4813 qc->tag = ATA_TAG_POISON;
4814 if (ap->flags & ATA_FLAG_SAS_HOST)
4815 ata_sas_free_tag(tag, ap);
4816 }
4817}
4818
4819void __ata_qc_complete(struct ata_queued_cmd *qc)
4820{
4821 struct ata_port *ap;
4822 struct ata_link *link;
4823
4824 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4825 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4826 ap = qc->ap;
4827 link = qc->dev->link;
4828
4829 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4830 ata_sg_clean(qc);
4831
4832 /* command should be marked inactive atomically with qc completion */
4833 if (qc->tf.protocol == ATA_PROT_NCQ) {
4834 link->sactive &= ~(1 << qc->tag);
4835 if (!link->sactive)
4836 ap->nr_active_links--;
4837 } else {
4838 link->active_tag = ATA_TAG_POISON;
4839 ap->nr_active_links--;
4840 }
4841
4842 /* clear exclusive status */
4843 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4844 ap->excl_link == link))
4845 ap->excl_link = NULL;
4846
4847 /* atapi: mark qc as inactive to prevent the interrupt handler
4848 * from completing the command twice later, before the error handler
4849 * is called. (when rc != 0 and atapi request sense is needed)
4850 */
4851 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4852 ap->qc_active &= ~(1 << qc->tag);
4853
4854 /* call completion callback */
4855 qc->complete_fn(qc);
4856}
4857
4858static void fill_result_tf(struct ata_queued_cmd *qc)
4859{
4860 struct ata_port *ap = qc->ap;
4861
4862 qc->result_tf.flags = qc->tf.flags;
4863 ap->ops->qc_fill_rtf(qc);
4864}
4865
4866static void ata_verify_xfer(struct ata_queued_cmd *qc)
4867{
4868 struct ata_device *dev = qc->dev;
4869
4870 if (ata_is_nodata(qc->tf.protocol))
4871 return;
4872
4873 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4874 return;
4875
4876 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4877}
4878
4879/**
4880 * ata_qc_complete - Complete an active ATA command
4881 * @qc: Command to complete
4882 *
4883 * Indicate to the mid and upper layers that an ATA command has
4884 * completed, with either an ok or not-ok status.
4885 *
4886 * Refrain from calling this function multiple times when
4887 * successfully completing multiple NCQ commands.
4888 * ata_qc_complete_multiple() should be used instead, which will
4889 * properly update IRQ expect state.
4890 *
4891 * LOCKING:
4892 * spin_lock_irqsave(host lock)
4893 */
4894void ata_qc_complete(struct ata_queued_cmd *qc)
4895{
4896 struct ata_port *ap = qc->ap;
4897
4898 /* XXX: New EH and old EH use different mechanisms to
4899 * synchronize EH with regular execution path.
4900 *
4901 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4902 * Normal execution path is responsible for not accessing a
4903 * failed qc. libata core enforces the rule by returning NULL
4904 * from ata_qc_from_tag() for failed qcs.
4905 *
4906 * Old EH depends on ata_qc_complete() nullifying completion
4907 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4908 * not synchronize with interrupt handler. Only PIO task is
4909 * taken care of.
4910 */
4911 if (ap->ops->error_handler) {
4912 struct ata_device *dev = qc->dev;
4913 struct ata_eh_info *ehi = &dev->link->eh_info;
4914
4915 if (unlikely(qc->err_mask))
4916 qc->flags |= ATA_QCFLAG_FAILED;
4917
4918 /*
4919 * Finish internal commands without any further processing
4920 * and always with the result TF filled.
4921 */
4922 if (unlikely(ata_tag_internal(qc->tag))) {
4923 fill_result_tf(qc);
4924 trace_ata_qc_complete_internal(qc);
4925 __ata_qc_complete(qc);
4926 return;
4927 }
4928
4929 /*
4930 * Non-internal qc has failed. Fill the result TF and
4931 * summon EH.
4932 */
4933 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4934 fill_result_tf(qc);
4935 trace_ata_qc_complete_failed(qc);
4936 ata_qc_schedule_eh(qc);
4937 return;
4938 }
4939
4940 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4941
4942 /* read result TF if requested */
4943 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4944 fill_result_tf(qc);
4945
4946 trace_ata_qc_complete_done(qc);
4947 /* Some commands need post-processing after successful
4948 * completion.
4949 */
4950 switch (qc->tf.command) {
4951 case ATA_CMD_SET_FEATURES:
4952 if (qc->tf.feature != SETFEATURES_WC_ON &&
4953 qc->tf.feature != SETFEATURES_WC_OFF)
4954 break;
4955 /* fall through */
4956 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
4957 case ATA_CMD_SET_MULTI: /* multi_count changed */
4958 /* revalidate device */
4959 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
4960 ata_port_schedule_eh(ap);
4961 break;
4962
4963 case ATA_CMD_SLEEP:
4964 dev->flags |= ATA_DFLAG_SLEEPING;
4965 break;
4966 }
4967
4968 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
4969 ata_verify_xfer(qc);
4970
4971 __ata_qc_complete(qc);
4972 } else {
4973 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4974 return;
4975
4976 /* read result TF if failed or requested */
4977 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4978 fill_result_tf(qc);
4979
4980 __ata_qc_complete(qc);
4981 }
4982}
4983
4984/**
4985 * ata_qc_complete_multiple - Complete multiple qcs successfully
4986 * @ap: port in question
4987 * @qc_active: new qc_active mask
4988 *
4989 * Complete in-flight commands. This functions is meant to be
4990 * called from low-level driver's interrupt routine to complete
4991 * requests normally. ap->qc_active and @qc_active is compared
4992 * and commands are completed accordingly.
4993 *
4994 * Always use this function when completing multiple NCQ commands
4995 * from IRQ handlers instead of calling ata_qc_complete()
4996 * multiple times to keep IRQ expect status properly in sync.
4997 *
4998 * LOCKING:
4999 * spin_lock_irqsave(host lock)
5000 *
5001 * RETURNS:
5002 * Number of completed commands on success, -errno otherwise.
5003 */
5004int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5005{
5006 int nr_done = 0;
5007 u32 done_mask;
5008
5009 done_mask = ap->qc_active ^ qc_active;
5010
5011 if (unlikely(done_mask & qc_active)) {
5012 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5013 ap->qc_active, qc_active);
5014 return -EINVAL;
5015 }
5016
5017 while (done_mask) {
5018 struct ata_queued_cmd *qc;
5019 unsigned int tag = __ffs(done_mask);
5020
5021 qc = ata_qc_from_tag(ap, tag);
5022 if (qc) {
5023 ata_qc_complete(qc);
5024 nr_done++;
5025 }
5026 done_mask &= ~(1 << tag);
5027 }
5028
5029 return nr_done;
5030}
5031
5032/**
5033 * ata_qc_issue - issue taskfile to device
5034 * @qc: command to issue to device
5035 *
5036 * Prepare an ATA command to submission to device.
5037 * This includes mapping the data into a DMA-able
5038 * area, filling in the S/G table, and finally
5039 * writing the taskfile to hardware, starting the command.
5040 *
5041 * LOCKING:
5042 * spin_lock_irqsave(host lock)
5043 */
5044void ata_qc_issue(struct ata_queued_cmd *qc)
5045{
5046 struct ata_port *ap = qc->ap;
5047 struct ata_link *link = qc->dev->link;
5048 u8 prot = qc->tf.protocol;
5049
5050 /* Make sure only one non-NCQ command is outstanding. The
5051 * check is skipped for old EH because it reuses active qc to
5052 * request ATAPI sense.
5053 */
5054 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5055
5056 if (ata_is_ncq(prot)) {
5057 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5058
5059 if (!link->sactive)
5060 ap->nr_active_links++;
5061 link->sactive |= 1 << qc->tag;
5062 } else {
5063 WARN_ON_ONCE(link->sactive);
5064
5065 ap->nr_active_links++;
5066 link->active_tag = qc->tag;
5067 }
5068
5069 qc->flags |= ATA_QCFLAG_ACTIVE;
5070 ap->qc_active |= 1 << qc->tag;
5071
5072 /*
5073 * We guarantee to LLDs that they will have at least one
5074 * non-zero sg if the command is a data command.
5075 */
5076 if (WARN_ON_ONCE(ata_is_data(prot) &&
5077 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5078 goto sys_err;
5079
5080 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5081 (ap->flags & ATA_FLAG_PIO_DMA)))
5082 if (ata_sg_setup(qc))
5083 goto sys_err;
5084
5085 /* if device is sleeping, schedule reset and abort the link */
5086 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5087 link->eh_info.action |= ATA_EH_RESET;
5088 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5089 ata_link_abort(link);
5090 return;
5091 }
5092
5093 ap->ops->qc_prep(qc);
5094 trace_ata_qc_issue(qc);
5095 qc->err_mask |= ap->ops->qc_issue(qc);
5096 if (unlikely(qc->err_mask))
5097 goto err;
5098 return;
5099
5100sys_err:
5101 qc->err_mask |= AC_ERR_SYSTEM;
5102err:
5103 ata_qc_complete(qc);
5104}
5105
5106/**
5107 * sata_scr_valid - test whether SCRs are accessible
5108 * @link: ATA link to test SCR accessibility for
5109 *
5110 * Test whether SCRs are accessible for @link.
5111 *
5112 * LOCKING:
5113 * None.
5114 *
5115 * RETURNS:
5116 * 1 if SCRs are accessible, 0 otherwise.
5117 */
5118int sata_scr_valid(struct ata_link *link)
5119{
5120 struct ata_port *ap = link->ap;
5121
5122 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5123}
5124
5125/**
5126 * sata_scr_read - read SCR register of the specified port
5127 * @link: ATA link to read SCR for
5128 * @reg: SCR to read
5129 * @val: Place to store read value
5130 *
5131 * Read SCR register @reg of @link into *@val. This function is
5132 * guaranteed to succeed if @link is ap->link, the cable type of
5133 * the port is SATA and the port implements ->scr_read.
5134 *
5135 * LOCKING:
5136 * None if @link is ap->link. Kernel thread context otherwise.
5137 *
5138 * RETURNS:
5139 * 0 on success, negative errno on failure.
5140 */
5141int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5142{
5143 if (ata_is_host_link(link)) {
5144 if (sata_scr_valid(link))
5145 return link->ap->ops->scr_read(link, reg, val);
5146 return -EOPNOTSUPP;
5147 }
5148
5149 return sata_pmp_scr_read(link, reg, val);
5150}
5151
5152/**
5153 * sata_scr_write - write SCR register of the specified port
5154 * @link: ATA link to write SCR for
5155 * @reg: SCR to write
5156 * @val: value to write
5157 *
5158 * Write @val to SCR register @reg of @link. This function is
5159 * guaranteed to succeed if @link is ap->link, the cable type of
5160 * the port is SATA and the port implements ->scr_read.
5161 *
5162 * LOCKING:
5163 * None if @link is ap->link. Kernel thread context otherwise.
5164 *
5165 * RETURNS:
5166 * 0 on success, negative errno on failure.
5167 */
5168int sata_scr_write(struct ata_link *link, int reg, u32 val)
5169{
5170 if (ata_is_host_link(link)) {
5171 if (sata_scr_valid(link))
5172 return link->ap->ops->scr_write(link, reg, val);
5173 return -EOPNOTSUPP;
5174 }
5175
5176 return sata_pmp_scr_write(link, reg, val);
5177}
5178
5179/**
5180 * sata_scr_write_flush - write SCR register of the specified port and flush
5181 * @link: ATA link to write SCR for
5182 * @reg: SCR to write
5183 * @val: value to write
5184 *
5185 * This function is identical to sata_scr_write() except that this
5186 * function performs flush after writing to the register.
5187 *
5188 * LOCKING:
5189 * None if @link is ap->link. Kernel thread context otherwise.
5190 *
5191 * RETURNS:
5192 * 0 on success, negative errno on failure.
5193 */
5194int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5195{
5196 if (ata_is_host_link(link)) {
5197 int rc;
5198
5199 if (sata_scr_valid(link)) {
5200 rc = link->ap->ops->scr_write(link, reg, val);
5201 if (rc == 0)
5202 rc = link->ap->ops->scr_read(link, reg, &val);
5203 return rc;
5204 }
5205 return -EOPNOTSUPP;
5206 }
5207
5208 return sata_pmp_scr_write(link, reg, val);
5209}
5210
5211/**
5212 * ata_phys_link_online - test whether the given link is online
5213 * @link: ATA link to test
5214 *
5215 * Test whether @link is online. Note that this function returns
5216 * 0 if online status of @link cannot be obtained, so
5217 * ata_link_online(link) != !ata_link_offline(link).
5218 *
5219 * LOCKING:
5220 * None.
5221 *
5222 * RETURNS:
5223 * True if the port online status is available and online.
5224 */
5225bool ata_phys_link_online(struct ata_link *link)
5226{
5227 u32 sstatus;
5228
5229 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5230 ata_sstatus_online(sstatus))
5231 return true;
5232 return false;
5233}
5234
5235/**
5236 * ata_phys_link_offline - test whether the given link is offline
5237 * @link: ATA link to test
5238 *
5239 * Test whether @link is offline. Note that this function
5240 * returns 0 if offline status of @link cannot be obtained, so
5241 * ata_link_online(link) != !ata_link_offline(link).
5242 *
5243 * LOCKING:
5244 * None.
5245 *
5246 * RETURNS:
5247 * True if the port offline status is available and offline.
5248 */
5249bool ata_phys_link_offline(struct ata_link *link)
5250{
5251 u32 sstatus;
5252
5253 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5254 !ata_sstatus_online(sstatus))
5255 return true;
5256 return false;
5257}
5258
5259/**
5260 * ata_link_online - test whether the given link is online
5261 * @link: ATA link to test
5262 *
5263 * Test whether @link is online. This is identical to
5264 * ata_phys_link_online() when there's no slave link. When
5265 * there's a slave link, this function should only be called on
5266 * the master link and will return true if any of M/S links is
5267 * online.
5268 *
5269 * LOCKING:
5270 * None.
5271 *
5272 * RETURNS:
5273 * True if the port online status is available and online.
5274 */
5275bool ata_link_online(struct ata_link *link)
5276{
5277 struct ata_link *slave = link->ap->slave_link;
5278
5279 WARN_ON(link == slave); /* shouldn't be called on slave link */
5280
5281 return ata_phys_link_online(link) ||
5282 (slave && ata_phys_link_online(slave));
5283}
5284
5285/**
5286 * ata_link_offline - test whether the given link is offline
5287 * @link: ATA link to test
5288 *
5289 * Test whether @link is offline. This is identical to
5290 * ata_phys_link_offline() when there's no slave link. When
5291 * there's a slave link, this function should only be called on
5292 * the master link and will return true if both M/S links are
5293 * offline.
5294 *
5295 * LOCKING:
5296 * None.
5297 *
5298 * RETURNS:
5299 * True if the port offline status is available and offline.
5300 */
5301bool ata_link_offline(struct ata_link *link)
5302{
5303 struct ata_link *slave = link->ap->slave_link;
5304
5305 WARN_ON(link == slave); /* shouldn't be called on slave link */
5306
5307 return ata_phys_link_offline(link) &&
5308 (!slave || ata_phys_link_offline(slave));
5309}
5310
5311#ifdef CONFIG_PM
5312static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5313 unsigned int action, unsigned int ehi_flags,
5314 bool async)
5315{
5316 struct ata_link *link;
5317 unsigned long flags;
5318
5319 /* Previous resume operation might still be in
5320 * progress. Wait for PM_PENDING to clear.
5321 */
5322 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5323 ata_port_wait_eh(ap);
5324 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5325 }
5326
5327 /* request PM ops to EH */
5328 spin_lock_irqsave(ap->lock, flags);
5329
5330 ap->pm_mesg = mesg;
5331 ap->pflags |= ATA_PFLAG_PM_PENDING;
5332 ata_for_each_link(link, ap, HOST_FIRST) {
5333 link->eh_info.action |= action;
5334 link->eh_info.flags |= ehi_flags;
5335 }
5336
5337 ata_port_schedule_eh(ap);
5338
5339 spin_unlock_irqrestore(ap->lock, flags);
5340
5341 if (!async) {
5342 ata_port_wait_eh(ap);
5343 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5344 }
5345}
5346
5347/*
5348 * On some hardware, device fails to respond after spun down for suspend. As
5349 * the device won't be used before being resumed, we don't need to touch the
5350 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5351 *
5352 * http://thread.gmane.org/gmane.linux.ide/46764
5353 */
5354static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5355 | ATA_EHI_NO_AUTOPSY
5356 | ATA_EHI_NO_RECOVERY;
5357
5358static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5359{
5360 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5361}
5362
5363static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5364{
5365 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5366}
5367
5368static int ata_port_pm_suspend(struct device *dev)
5369{
5370 struct ata_port *ap = to_ata_port(dev);
5371
5372 if (pm_runtime_suspended(dev))
5373 return 0;
5374
5375 ata_port_suspend(ap, PMSG_SUSPEND);
5376 return 0;
5377}
5378
5379static int ata_port_pm_freeze(struct device *dev)
5380{
5381 struct ata_port *ap = to_ata_port(dev);
5382
5383 if (pm_runtime_suspended(dev))
5384 return 0;
5385
5386 ata_port_suspend(ap, PMSG_FREEZE);
5387 return 0;
5388}
5389
5390static int ata_port_pm_poweroff(struct device *dev)
5391{
5392 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5393 return 0;
5394}
5395
5396static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5397 | ATA_EHI_QUIET;
5398
5399static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5400{
5401 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5402}
5403
5404static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5405{
5406 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5407}
5408
5409static int ata_port_pm_resume(struct device *dev)
5410{
5411 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5412 pm_runtime_disable(dev);
5413 pm_runtime_set_active(dev);
5414 pm_runtime_enable(dev);
5415 return 0;
5416}
5417
5418/*
5419 * For ODDs, the upper layer will poll for media change every few seconds,
5420 * which will make it enter and leave suspend state every few seconds. And
5421 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5422 * is very little and the ODD may malfunction after constantly being reset.
5423 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5424 * ODD is attached to the port.
5425 */
5426static int ata_port_runtime_idle(struct device *dev)
5427{
5428 struct ata_port *ap = to_ata_port(dev);
5429 struct ata_link *link;
5430 struct ata_device *adev;
5431
5432 ata_for_each_link(link, ap, HOST_FIRST) {
5433 ata_for_each_dev(adev, link, ENABLED)
5434 if (adev->class == ATA_DEV_ATAPI &&
5435 !zpodd_dev_enabled(adev))
5436 return -EBUSY;
5437 }
5438
5439 return 0;
5440}
5441
5442static int ata_port_runtime_suspend(struct device *dev)
5443{
5444 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5445 return 0;
5446}
5447
5448static int ata_port_runtime_resume(struct device *dev)
5449{
5450 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5451 return 0;
5452}
5453
5454static const struct dev_pm_ops ata_port_pm_ops = {
5455 .suspend = ata_port_pm_suspend,
5456 .resume = ata_port_pm_resume,
5457 .freeze = ata_port_pm_freeze,
5458 .thaw = ata_port_pm_resume,
5459 .poweroff = ata_port_pm_poweroff,
5460 .restore = ata_port_pm_resume,
5461
5462 .runtime_suspend = ata_port_runtime_suspend,
5463 .runtime_resume = ata_port_runtime_resume,
5464 .runtime_idle = ata_port_runtime_idle,
5465};
5466
5467/* sas ports don't participate in pm runtime management of ata_ports,
5468 * and need to resume ata devices at the domain level, not the per-port
5469 * level. sas suspend/resume is async to allow parallel port recovery
5470 * since sas has multiple ata_port instances per Scsi_Host.
5471 */
5472void ata_sas_port_suspend(struct ata_port *ap)
5473{
5474 ata_port_suspend_async(ap, PMSG_SUSPEND);
5475}
5476EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5477
5478void ata_sas_port_resume(struct ata_port *ap)
5479{
5480 ata_port_resume_async(ap, PMSG_RESUME);
5481}
5482EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5483
5484/**
5485 * ata_host_suspend - suspend host
5486 * @host: host to suspend
5487 * @mesg: PM message
5488 *
5489 * Suspend @host. Actual operation is performed by port suspend.
5490 */
5491int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5492{
5493 host->dev->power.power_state = mesg;
5494 return 0;
5495}
5496
5497/**
5498 * ata_host_resume - resume host
5499 * @host: host to resume
5500 *
5501 * Resume @host. Actual operation is performed by port resume.
5502 */
5503void ata_host_resume(struct ata_host *host)
5504{
5505 host->dev->power.power_state = PMSG_ON;
5506}
5507#endif
5508
5509struct device_type ata_port_type = {
5510 .name = "ata_port",
5511#ifdef CONFIG_PM
5512 .pm = &ata_port_pm_ops,
5513#endif
5514};
5515
5516/**
5517 * ata_dev_init - Initialize an ata_device structure
5518 * @dev: Device structure to initialize
5519 *
5520 * Initialize @dev in preparation for probing.
5521 *
5522 * LOCKING:
5523 * Inherited from caller.
5524 */
5525void ata_dev_init(struct ata_device *dev)
5526{
5527 struct ata_link *link = ata_dev_phys_link(dev);
5528 struct ata_port *ap = link->ap;
5529 unsigned long flags;
5530
5531 /* SATA spd limit is bound to the attached device, reset together */
5532 link->sata_spd_limit = link->hw_sata_spd_limit;
5533 link->sata_spd = 0;
5534
5535 /* High bits of dev->flags are used to record warm plug
5536 * requests which occur asynchronously. Synchronize using
5537 * host lock.
5538 */
5539 spin_lock_irqsave(ap->lock, flags);
5540 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5541 dev->horkage = 0;
5542 spin_unlock_irqrestore(ap->lock, flags);
5543
5544 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5545 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5546 dev->pio_mask = UINT_MAX;
5547 dev->mwdma_mask = UINT_MAX;
5548 dev->udma_mask = UINT_MAX;
5549}
5550
5551/**
5552 * ata_link_init - Initialize an ata_link structure
5553 * @ap: ATA port link is attached to
5554 * @link: Link structure to initialize
5555 * @pmp: Port multiplier port number
5556 *
5557 * Initialize @link.
5558 *
5559 * LOCKING:
5560 * Kernel thread context (may sleep)
5561 */
5562void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5563{
5564 int i;
5565
5566 /* clear everything except for devices */
5567 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5568 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5569
5570 link->ap = ap;
5571 link->pmp = pmp;
5572 link->active_tag = ATA_TAG_POISON;
5573 link->hw_sata_spd_limit = UINT_MAX;
5574
5575 /* can't use iterator, ap isn't initialized yet */
5576 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5577 struct ata_device *dev = &link->device[i];
5578
5579 dev->link = link;
5580 dev->devno = dev - link->device;
5581#ifdef CONFIG_ATA_ACPI
5582 dev->gtf_filter = ata_acpi_gtf_filter;
5583#endif
5584 ata_dev_init(dev);
5585 }
5586}
5587
5588/**
5589 * sata_link_init_spd - Initialize link->sata_spd_limit
5590 * @link: Link to configure sata_spd_limit for
5591 *
5592 * Initialize @link->[hw_]sata_spd_limit to the currently
5593 * configured value.
5594 *
5595 * LOCKING:
5596 * Kernel thread context (may sleep).
5597 *
5598 * RETURNS:
5599 * 0 on success, -errno on failure.
5600 */
5601int sata_link_init_spd(struct ata_link *link)
5602{
5603 u8 spd;
5604 int rc;
5605
5606 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5607 if (rc)
5608 return rc;
5609
5610 spd = (link->saved_scontrol >> 4) & 0xf;
5611 if (spd)
5612 link->hw_sata_spd_limit &= (1 << spd) - 1;
5613
5614 ata_force_link_limits(link);
5615
5616 link->sata_spd_limit = link->hw_sata_spd_limit;
5617
5618 return 0;
5619}
5620
5621/**
5622 * ata_port_alloc - allocate and initialize basic ATA port resources
5623 * @host: ATA host this allocated port belongs to
5624 *
5625 * Allocate and initialize basic ATA port resources.
5626 *
5627 * RETURNS:
5628 * Allocate ATA port on success, NULL on failure.
5629 *
5630 * LOCKING:
5631 * Inherited from calling layer (may sleep).
5632 */
5633struct ata_port *ata_port_alloc(struct ata_host *host)
5634{
5635 struct ata_port *ap;
5636
5637 DPRINTK("ENTER\n");
5638
5639 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5640 if (!ap)
5641 return NULL;
5642
5643 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5644 ap->lock = &host->lock;
5645 ap->print_id = -1;
5646 ap->local_port_no = -1;
5647 ap->host = host;
5648 ap->dev = host->dev;
5649
5650#if defined(ATA_VERBOSE_DEBUG)
5651 /* turn on all debugging levels */
5652 ap->msg_enable = 0x00FF;
5653#elif defined(ATA_DEBUG)
5654 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5655#else
5656 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5657#endif
5658
5659 mutex_init(&ap->scsi_scan_mutex);
5660 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5661 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5662 INIT_LIST_HEAD(&ap->eh_done_q);
5663 init_waitqueue_head(&ap->eh_wait_q);
5664 init_completion(&ap->park_req_pending);
5665 init_timer_deferrable(&ap->fastdrain_timer);
5666 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5667 ap->fastdrain_timer.data = (unsigned long)ap;
5668
5669 ap->cbl = ATA_CBL_NONE;
5670
5671 ata_link_init(ap, &ap->link, 0);
5672
5673#ifdef ATA_IRQ_TRAP
5674 ap->stats.unhandled_irq = 1;
5675 ap->stats.idle_irq = 1;
5676#endif
5677 ata_sff_port_init(ap);
5678
5679 return ap;
5680}
5681
5682static void ata_host_release(struct device *gendev, void *res)
5683{
5684 struct ata_host *host = dev_get_drvdata(gendev);
5685 int i;
5686
5687 for (i = 0; i < host->n_ports; i++) {
5688 struct ata_port *ap = host->ports[i];
5689
5690 if (!ap)
5691 continue;
5692
5693 if (ap->scsi_host)
5694 scsi_host_put(ap->scsi_host);
5695
5696 kfree(ap->pmp_link);
5697 kfree(ap->slave_link);
5698 kfree(ap);
5699 host->ports[i] = NULL;
5700 }
5701
5702 dev_set_drvdata(gendev, NULL);
5703}
5704
5705/**
5706 * ata_host_alloc - allocate and init basic ATA host resources
5707 * @dev: generic device this host is associated with
5708 * @max_ports: maximum number of ATA ports associated with this host
5709 *
5710 * Allocate and initialize basic ATA host resources. LLD calls
5711 * this function to allocate a host, initializes it fully and
5712 * attaches it using ata_host_register().
5713 *
5714 * @max_ports ports are allocated and host->n_ports is
5715 * initialized to @max_ports. The caller is allowed to decrease
5716 * host->n_ports before calling ata_host_register(). The unused
5717 * ports will be automatically freed on registration.
5718 *
5719 * RETURNS:
5720 * Allocate ATA host on success, NULL on failure.
5721 *
5722 * LOCKING:
5723 * Inherited from calling layer (may sleep).
5724 */
5725struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5726{
5727 struct ata_host *host;
5728 size_t sz;
5729 int i;
5730
5731 DPRINTK("ENTER\n");
5732
5733 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5734 return NULL;
5735
5736 /* alloc a container for our list of ATA ports (buses) */
5737 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5738 /* alloc a container for our list of ATA ports (buses) */
5739 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5740 if (!host)
5741 goto err_out;
5742
5743 devres_add(dev, host);
5744 dev_set_drvdata(dev, host);
5745
5746 spin_lock_init(&host->lock);
5747 mutex_init(&host->eh_mutex);
5748 host->dev = dev;
5749 host->n_ports = max_ports;
5750
5751 /* allocate ports bound to this host */
5752 for (i = 0; i < max_ports; i++) {
5753 struct ata_port *ap;
5754
5755 ap = ata_port_alloc(host);
5756 if (!ap)
5757 goto err_out;
5758
5759 ap->port_no = i;
5760 host->ports[i] = ap;
5761 }
5762
5763 devres_remove_group(dev, NULL);
5764 return host;
5765
5766 err_out:
5767 devres_release_group(dev, NULL);
5768 return NULL;
5769}
5770
5771/**
5772 * ata_host_alloc_pinfo - alloc host and init with port_info array
5773 * @dev: generic device this host is associated with
5774 * @ppi: array of ATA port_info to initialize host with
5775 * @n_ports: number of ATA ports attached to this host
5776 *
5777 * Allocate ATA host and initialize with info from @ppi. If NULL
5778 * terminated, @ppi may contain fewer entries than @n_ports. The
5779 * last entry will be used for the remaining ports.
5780 *
5781 * RETURNS:
5782 * Allocate ATA host on success, NULL on failure.
5783 *
5784 * LOCKING:
5785 * Inherited from calling layer (may sleep).
5786 */
5787struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5788 const struct ata_port_info * const * ppi,
5789 int n_ports)
5790{
5791 const struct ata_port_info *pi;
5792 struct ata_host *host;
5793 int i, j;
5794
5795 host = ata_host_alloc(dev, n_ports);
5796 if (!host)
5797 return NULL;
5798
5799 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5800 struct ata_port *ap = host->ports[i];
5801
5802 if (ppi[j])
5803 pi = ppi[j++];
5804
5805 ap->pio_mask = pi->pio_mask;
5806 ap->mwdma_mask = pi->mwdma_mask;
5807 ap->udma_mask = pi->udma_mask;
5808 ap->flags |= pi->flags;
5809 ap->link.flags |= pi->link_flags;
5810 ap->ops = pi->port_ops;
5811
5812 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5813 host->ops = pi->port_ops;
5814 }
5815
5816 return host;
5817}
5818
5819/**
5820 * ata_slave_link_init - initialize slave link
5821 * @ap: port to initialize slave link for
5822 *
5823 * Create and initialize slave link for @ap. This enables slave
5824 * link handling on the port.
5825 *
5826 * In libata, a port contains links and a link contains devices.
5827 * There is single host link but if a PMP is attached to it,
5828 * there can be multiple fan-out links. On SATA, there's usually
5829 * a single device connected to a link but PATA and SATA
5830 * controllers emulating TF based interface can have two - master
5831 * and slave.
5832 *
5833 * However, there are a few controllers which don't fit into this
5834 * abstraction too well - SATA controllers which emulate TF
5835 * interface with both master and slave devices but also have
5836 * separate SCR register sets for each device. These controllers
5837 * need separate links for physical link handling
5838 * (e.g. onlineness, link speed) but should be treated like a
5839 * traditional M/S controller for everything else (e.g. command
5840 * issue, softreset).
5841 *
5842 * slave_link is libata's way of handling this class of
5843 * controllers without impacting core layer too much. For
5844 * anything other than physical link handling, the default host
5845 * link is used for both master and slave. For physical link
5846 * handling, separate @ap->slave_link is used. All dirty details
5847 * are implemented inside libata core layer. From LLD's POV, the
5848 * only difference is that prereset, hardreset and postreset are
5849 * called once more for the slave link, so the reset sequence
5850 * looks like the following.
5851 *
5852 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5853 * softreset(M) -> postreset(M) -> postreset(S)
5854 *
5855 * Note that softreset is called only for the master. Softreset
5856 * resets both M/S by definition, so SRST on master should handle
5857 * both (the standard method will work just fine).
5858 *
5859 * LOCKING:
5860 * Should be called before host is registered.
5861 *
5862 * RETURNS:
5863 * 0 on success, -errno on failure.
5864 */
5865int ata_slave_link_init(struct ata_port *ap)
5866{
5867 struct ata_link *link;
5868
5869 WARN_ON(ap->slave_link);
5870 WARN_ON(ap->flags & ATA_FLAG_PMP);
5871
5872 link = kzalloc(sizeof(*link), GFP_KERNEL);
5873 if (!link)
5874 return -ENOMEM;
5875
5876 ata_link_init(ap, link, 1);
5877 ap->slave_link = link;
5878 return 0;
5879}
5880
5881static void ata_host_stop(struct device *gendev, void *res)
5882{
5883 struct ata_host *host = dev_get_drvdata(gendev);
5884 int i;
5885
5886 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5887
5888 for (i = 0; i < host->n_ports; i++) {
5889 struct ata_port *ap = host->ports[i];
5890
5891 if (ap->ops->port_stop)
5892 ap->ops->port_stop(ap);
5893 }
5894
5895 if (host->ops->host_stop)
5896 host->ops->host_stop(host);
5897}
5898
5899/**
5900 * ata_finalize_port_ops - finalize ata_port_operations
5901 * @ops: ata_port_operations to finalize
5902 *
5903 * An ata_port_operations can inherit from another ops and that
5904 * ops can again inherit from another. This can go on as many
5905 * times as necessary as long as there is no loop in the
5906 * inheritance chain.
5907 *
5908 * Ops tables are finalized when the host is started. NULL or
5909 * unspecified entries are inherited from the closet ancestor
5910 * which has the method and the entry is populated with it.
5911 * After finalization, the ops table directly points to all the
5912 * methods and ->inherits is no longer necessary and cleared.
5913 *
5914 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5915 *
5916 * LOCKING:
5917 * None.
5918 */
5919static void ata_finalize_port_ops(struct ata_port_operations *ops)
5920{
5921 static DEFINE_SPINLOCK(lock);
5922 const struct ata_port_operations *cur;
5923 void **begin = (void **)ops;
5924 void **end = (void **)&ops->inherits;
5925 void **pp;
5926
5927 if (!ops || !ops->inherits)
5928 return;
5929
5930 spin_lock(&lock);
5931
5932 for (cur = ops->inherits; cur; cur = cur->inherits) {
5933 void **inherit = (void **)cur;
5934
5935 for (pp = begin; pp < end; pp++, inherit++)
5936 if (!*pp)
5937 *pp = *inherit;
5938 }
5939
5940 for (pp = begin; pp < end; pp++)
5941 if (IS_ERR(*pp))
5942 *pp = NULL;
5943
5944 ops->inherits = NULL;
5945
5946 spin_unlock(&lock);
5947}
5948
5949/**
5950 * ata_host_start - start and freeze ports of an ATA host
5951 * @host: ATA host to start ports for
5952 *
5953 * Start and then freeze ports of @host. Started status is
5954 * recorded in host->flags, so this function can be called
5955 * multiple times. Ports are guaranteed to get started only
5956 * once. If host->ops isn't initialized yet, its set to the
5957 * first non-dummy port ops.
5958 *
5959 * LOCKING:
5960 * Inherited from calling layer (may sleep).
5961 *
5962 * RETURNS:
5963 * 0 if all ports are started successfully, -errno otherwise.
5964 */
5965int ata_host_start(struct ata_host *host)
5966{
5967 int have_stop = 0;
5968 void *start_dr = NULL;
5969 int i, rc;
5970
5971 if (host->flags & ATA_HOST_STARTED)
5972 return 0;
5973
5974 ata_finalize_port_ops(host->ops);
5975
5976 for (i = 0; i < host->n_ports; i++) {
5977 struct ata_port *ap = host->ports[i];
5978
5979 ata_finalize_port_ops(ap->ops);
5980
5981 if (!host->ops && !ata_port_is_dummy(ap))
5982 host->ops = ap->ops;
5983
5984 if (ap->ops->port_stop)
5985 have_stop = 1;
5986 }
5987
5988 if (host->ops->host_stop)
5989 have_stop = 1;
5990
5991 if (have_stop) {
5992 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5993 if (!start_dr)
5994 return -ENOMEM;
5995 }
5996
5997 for (i = 0; i < host->n_ports; i++) {
5998 struct ata_port *ap = host->ports[i];
5999
6000 if (ap->ops->port_start) {
6001 rc = ap->ops->port_start(ap);
6002 if (rc) {
6003 if (rc != -ENODEV)
6004 dev_err(host->dev,
6005 "failed to start port %d (errno=%d)\n",
6006 i, rc);
6007 goto err_out;
6008 }
6009 }
6010 ata_eh_freeze_port(ap);
6011 }
6012
6013 if (start_dr)
6014 devres_add(host->dev, start_dr);
6015 host->flags |= ATA_HOST_STARTED;
6016 return 0;
6017
6018 err_out:
6019 while (--i >= 0) {
6020 struct ata_port *ap = host->ports[i];
6021
6022 if (ap->ops->port_stop)
6023 ap->ops->port_stop(ap);
6024 }
6025 devres_free(start_dr);
6026 return rc;
6027}
6028
6029/**
6030 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6031 * @host: host to initialize
6032 * @dev: device host is attached to
6033 * @ops: port_ops
6034 *
6035 */
6036void ata_host_init(struct ata_host *host, struct device *dev,
6037 struct ata_port_operations *ops)
6038{
6039 spin_lock_init(&host->lock);
6040 mutex_init(&host->eh_mutex);
6041 host->n_tags = ATA_MAX_QUEUE - 1;
6042 host->dev = dev;
6043 host->ops = ops;
6044}
6045
6046void __ata_port_probe(struct ata_port *ap)
6047{
6048 struct ata_eh_info *ehi = &ap->link.eh_info;
6049 unsigned long flags;
6050
6051 /* kick EH for boot probing */
6052 spin_lock_irqsave(ap->lock, flags);
6053
6054 ehi->probe_mask |= ATA_ALL_DEVICES;
6055 ehi->action |= ATA_EH_RESET;
6056 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6057
6058 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6059 ap->pflags |= ATA_PFLAG_LOADING;
6060 ata_port_schedule_eh(ap);
6061
6062 spin_unlock_irqrestore(ap->lock, flags);
6063}
6064
6065int ata_port_probe(struct ata_port *ap)
6066{
6067 int rc = 0;
6068
6069 if (ap->ops->error_handler) {
6070 __ata_port_probe(ap);
6071 ata_port_wait_eh(ap);
6072 } else {
6073 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6074 rc = ata_bus_probe(ap);
6075 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6076 }
6077 return rc;
6078}
6079
6080
6081static void async_port_probe(void *data, async_cookie_t cookie)
6082{
6083 struct ata_port *ap = data;
6084
6085 /*
6086 * If we're not allowed to scan this host in parallel,
6087 * we need to wait until all previous scans have completed
6088 * before going further.
6089 * Jeff Garzik says this is only within a controller, so we
6090 * don't need to wait for port 0, only for later ports.
6091 */
6092 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6093 async_synchronize_cookie(cookie);
6094
6095 (void)ata_port_probe(ap);
6096
6097 /* in order to keep device order, we need to synchronize at this point */
6098 async_synchronize_cookie(cookie);
6099
6100 ata_scsi_scan_host(ap, 1);
6101}
6102
6103/**
6104 * ata_host_register - register initialized ATA host
6105 * @host: ATA host to register
6106 * @sht: template for SCSI host
6107 *
6108 * Register initialized ATA host. @host is allocated using
6109 * ata_host_alloc() and fully initialized by LLD. This function
6110 * starts ports, registers @host with ATA and SCSI layers and
6111 * probe registered devices.
6112 *
6113 * LOCKING:
6114 * Inherited from calling layer (may sleep).
6115 *
6116 * RETURNS:
6117 * 0 on success, -errno otherwise.
6118 */
6119int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6120{
6121 int i, rc;
6122
6123 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6124
6125 /* host must have been started */
6126 if (!(host->flags & ATA_HOST_STARTED)) {
6127 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6128 WARN_ON(1);
6129 return -EINVAL;
6130 }
6131
6132 /* Blow away unused ports. This happens when LLD can't
6133 * determine the exact number of ports to allocate at
6134 * allocation time.
6135 */
6136 for (i = host->n_ports; host->ports[i]; i++)
6137 kfree(host->ports[i]);
6138
6139 /* give ports names and add SCSI hosts */
6140 for (i = 0; i < host->n_ports; i++) {
6141 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6142 host->ports[i]->local_port_no = i + 1;
6143 }
6144
6145 /* Create associated sysfs transport objects */
6146 for (i = 0; i < host->n_ports; i++) {
6147 rc = ata_tport_add(host->dev,host->ports[i]);
6148 if (rc) {
6149 goto err_tadd;
6150 }
6151 }
6152
6153 rc = ata_scsi_add_hosts(host, sht);
6154 if (rc)
6155 goto err_tadd;
6156
6157 /* set cable, sata_spd_limit and report */
6158 for (i = 0; i < host->n_ports; i++) {
6159 struct ata_port *ap = host->ports[i];
6160 unsigned long xfer_mask;
6161
6162 /* set SATA cable type if still unset */
6163 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6164 ap->cbl = ATA_CBL_SATA;
6165
6166 /* init sata_spd_limit to the current value */
6167 sata_link_init_spd(&ap->link);
6168 if (ap->slave_link)
6169 sata_link_init_spd(ap->slave_link);
6170
6171 /* print per-port info to dmesg */
6172 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6173 ap->udma_mask);
6174
6175 if (!ata_port_is_dummy(ap)) {
6176 ata_port_info(ap, "%cATA max %s %s\n",
6177 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6178 ata_mode_string(xfer_mask),
6179 ap->link.eh_info.desc);
6180 ata_ehi_clear_desc(&ap->link.eh_info);
6181 } else
6182 ata_port_info(ap, "DUMMY\n");
6183 }
6184
6185 /* perform each probe asynchronously */
6186 for (i = 0; i < host->n_ports; i++) {
6187 struct ata_port *ap = host->ports[i];
6188 async_schedule(async_port_probe, ap);
6189 }
6190
6191 return 0;
6192
6193 err_tadd:
6194 while (--i >= 0) {
6195 ata_tport_delete(host->ports[i]);
6196 }
6197 return rc;
6198
6199}
6200
6201/**
6202 * ata_host_activate - start host, request IRQ and register it
6203 * @host: target ATA host
6204 * @irq: IRQ to request
6205 * @irq_handler: irq_handler used when requesting IRQ
6206 * @irq_flags: irq_flags used when requesting IRQ
6207 * @sht: scsi_host_template to use when registering the host
6208 *
6209 * After allocating an ATA host and initializing it, most libata
6210 * LLDs perform three steps to activate the host - start host,
6211 * request IRQ and register it. This helper takes necessasry
6212 * arguments and performs the three steps in one go.
6213 *
6214 * An invalid IRQ skips the IRQ registration and expects the host to
6215 * have set polling mode on the port. In this case, @irq_handler
6216 * should be NULL.
6217 *
6218 * LOCKING:
6219 * Inherited from calling layer (may sleep).
6220 *
6221 * RETURNS:
6222 * 0 on success, -errno otherwise.
6223 */
6224int ata_host_activate(struct ata_host *host, int irq,
6225 irq_handler_t irq_handler, unsigned long irq_flags,
6226 struct scsi_host_template *sht)
6227{
6228 int i, rc;
6229 char *irq_desc;
6230
6231 rc = ata_host_start(host);
6232 if (rc)
6233 return rc;
6234
6235 /* Special case for polling mode */
6236 if (!irq) {
6237 WARN_ON(irq_handler);
6238 return ata_host_register(host, sht);
6239 }
6240
6241 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6242 dev_driver_string(host->dev),
6243 dev_name(host->dev));
6244 if (!irq_desc)
6245 return -ENOMEM;
6246
6247 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6248 irq_desc, host);
6249 if (rc)
6250 return rc;
6251
6252 for (i = 0; i < host->n_ports; i++)
6253 ata_port_desc(host->ports[i], "irq %d", irq);
6254
6255 rc = ata_host_register(host, sht);
6256 /* if failed, just free the IRQ and leave ports alone */
6257 if (rc)
6258 devm_free_irq(host->dev, irq, host);
6259
6260 return rc;
6261}
6262
6263/**
6264 * ata_port_detach - Detach ATA port in prepration of device removal
6265 * @ap: ATA port to be detached
6266 *
6267 * Detach all ATA devices and the associated SCSI devices of @ap;
6268 * then, remove the associated SCSI host. @ap is guaranteed to
6269 * be quiescent on return from this function.
6270 *
6271 * LOCKING:
6272 * Kernel thread context (may sleep).
6273 */
6274static void ata_port_detach(struct ata_port *ap)
6275{
6276 unsigned long flags;
6277 struct ata_link *link;
6278 struct ata_device *dev;
6279
6280 if (!ap->ops->error_handler)
6281 goto skip_eh;
6282
6283 /* tell EH we're leaving & flush EH */
6284 spin_lock_irqsave(ap->lock, flags);
6285 ap->pflags |= ATA_PFLAG_UNLOADING;
6286 ata_port_schedule_eh(ap);
6287 spin_unlock_irqrestore(ap->lock, flags);
6288
6289 /* wait till EH commits suicide */
6290 ata_port_wait_eh(ap);
6291
6292 /* it better be dead now */
6293 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6294
6295 cancel_delayed_work_sync(&ap->hotplug_task);
6296
6297 skip_eh:
6298 /* clean up zpodd on port removal */
6299 ata_for_each_link(link, ap, HOST_FIRST) {
6300 ata_for_each_dev(dev, link, ALL) {
6301 if (zpodd_dev_enabled(dev))
6302 zpodd_exit(dev);
6303 }
6304 }
6305 if (ap->pmp_link) {
6306 int i;
6307 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6308 ata_tlink_delete(&ap->pmp_link[i]);
6309 }
6310 /* remove the associated SCSI host */
6311 scsi_remove_host(ap->scsi_host);
6312 ata_tport_delete(ap);
6313}
6314
6315/**
6316 * ata_host_detach - Detach all ports of an ATA host
6317 * @host: Host to detach
6318 *
6319 * Detach all ports of @host.
6320 *
6321 * LOCKING:
6322 * Kernel thread context (may sleep).
6323 */
6324void ata_host_detach(struct ata_host *host)
6325{
6326 int i;
6327
6328 for (i = 0; i < host->n_ports; i++)
6329 ata_port_detach(host->ports[i]);
6330
6331 /* the host is dead now, dissociate ACPI */
6332 ata_acpi_dissociate(host);
6333}
6334
6335#ifdef CONFIG_PCI
6336
6337/**
6338 * ata_pci_remove_one - PCI layer callback for device removal
6339 * @pdev: PCI device that was removed
6340 *
6341 * PCI layer indicates to libata via this hook that hot-unplug or
6342 * module unload event has occurred. Detach all ports. Resource
6343 * release is handled via devres.
6344 *
6345 * LOCKING:
6346 * Inherited from PCI layer (may sleep).
6347 */
6348void ata_pci_remove_one(struct pci_dev *pdev)
6349{
6350 struct ata_host *host = pci_get_drvdata(pdev);
6351
6352 ata_host_detach(host);
6353}
6354
6355/* move to PCI subsystem */
6356int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6357{
6358 unsigned long tmp = 0;
6359
6360 switch (bits->width) {
6361 case 1: {
6362 u8 tmp8 = 0;
6363 pci_read_config_byte(pdev, bits->reg, &tmp8);
6364 tmp = tmp8;
6365 break;
6366 }
6367 case 2: {
6368 u16 tmp16 = 0;
6369 pci_read_config_word(pdev, bits->reg, &tmp16);
6370 tmp = tmp16;
6371 break;
6372 }
6373 case 4: {
6374 u32 tmp32 = 0;
6375 pci_read_config_dword(pdev, bits->reg, &tmp32);
6376 tmp = tmp32;
6377 break;
6378 }
6379
6380 default:
6381 return -EINVAL;
6382 }
6383
6384 tmp &= bits->mask;
6385
6386 return (tmp == bits->val) ? 1 : 0;
6387}
6388
6389#ifdef CONFIG_PM
6390void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6391{
6392 pci_save_state(pdev);
6393 pci_disable_device(pdev);
6394
6395 if (mesg.event & PM_EVENT_SLEEP)
6396 pci_set_power_state(pdev, PCI_D3hot);
6397}
6398
6399int ata_pci_device_do_resume(struct pci_dev *pdev)
6400{
6401 int rc;
6402
6403 pci_set_power_state(pdev, PCI_D0);
6404 pci_restore_state(pdev);
6405
6406 rc = pcim_enable_device(pdev);
6407 if (rc) {
6408 dev_err(&pdev->dev,
6409 "failed to enable device after resume (%d)\n", rc);
6410 return rc;
6411 }
6412
6413 pci_set_master(pdev);
6414 return 0;
6415}
6416
6417int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6418{
6419 struct ata_host *host = pci_get_drvdata(pdev);
6420 int rc = 0;
6421
6422 rc = ata_host_suspend(host, mesg);
6423 if (rc)
6424 return rc;
6425
6426 ata_pci_device_do_suspend(pdev, mesg);
6427
6428 return 0;
6429}
6430
6431int ata_pci_device_resume(struct pci_dev *pdev)
6432{
6433 struct ata_host *host = pci_get_drvdata(pdev);
6434 int rc;
6435
6436 rc = ata_pci_device_do_resume(pdev);
6437 if (rc == 0)
6438 ata_host_resume(host);
6439 return rc;
6440}
6441#endif /* CONFIG_PM */
6442
6443#endif /* CONFIG_PCI */
6444
6445/**
6446 * ata_platform_remove_one - Platform layer callback for device removal
6447 * @pdev: Platform device that was removed
6448 *
6449 * Platform layer indicates to libata via this hook that hot-unplug or
6450 * module unload event has occurred. Detach all ports. Resource
6451 * release is handled via devres.
6452 *
6453 * LOCKING:
6454 * Inherited from platform layer (may sleep).
6455 */
6456int ata_platform_remove_one(struct platform_device *pdev)
6457{
6458 struct ata_host *host = platform_get_drvdata(pdev);
6459
6460 ata_host_detach(host);
6461
6462 return 0;
6463}
6464
6465static int __init ata_parse_force_one(char **cur,
6466 struct ata_force_ent *force_ent,
6467 const char **reason)
6468{
6469 static const struct ata_force_param force_tbl[] __initconst = {
6470 { "40c", .cbl = ATA_CBL_PATA40 },
6471 { "80c", .cbl = ATA_CBL_PATA80 },
6472 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6473 { "unk", .cbl = ATA_CBL_PATA_UNK },
6474 { "ign", .cbl = ATA_CBL_PATA_IGN },
6475 { "sata", .cbl = ATA_CBL_SATA },
6476 { "1.5Gbps", .spd_limit = 1 },
6477 { "3.0Gbps", .spd_limit = 2 },
6478 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6479 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6480 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6481 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6482 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6483 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6484 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6485 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6486 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6487 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6488 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6489 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6490 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6491 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6492 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6493 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6494 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6495 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6496 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6497 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6498 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6499 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6500 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6501 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6502 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6503 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6504 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6505 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6506 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6507 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6508 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6509 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6510 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6511 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6512 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6513 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6514 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6515 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6516 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6517 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6518 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6519 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6520 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6521 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6522 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6523 };
6524 char *start = *cur, *p = *cur;
6525 char *id, *val, *endp;
6526 const struct ata_force_param *match_fp = NULL;
6527 int nr_matches = 0, i;
6528
6529 /* find where this param ends and update *cur */
6530 while (*p != '\0' && *p != ',')
6531 p++;
6532
6533 if (*p == '\0')
6534 *cur = p;
6535 else
6536 *cur = p + 1;
6537
6538 *p = '\0';
6539
6540 /* parse */
6541 p = strchr(start, ':');
6542 if (!p) {
6543 val = strstrip(start);
6544 goto parse_val;
6545 }
6546 *p = '\0';
6547
6548 id = strstrip(start);
6549 val = strstrip(p + 1);
6550
6551 /* parse id */
6552 p = strchr(id, '.');
6553 if (p) {
6554 *p++ = '\0';
6555 force_ent->device = simple_strtoul(p, &endp, 10);
6556 if (p == endp || *endp != '\0') {
6557 *reason = "invalid device";
6558 return -EINVAL;
6559 }
6560 }
6561
6562 force_ent->port = simple_strtoul(id, &endp, 10);
6563 if (p == endp || *endp != '\0') {
6564 *reason = "invalid port/link";
6565 return -EINVAL;
6566 }
6567
6568 parse_val:
6569 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6570 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6571 const struct ata_force_param *fp = &force_tbl[i];
6572
6573 if (strncasecmp(val, fp->name, strlen(val)))
6574 continue;
6575
6576 nr_matches++;
6577 match_fp = fp;
6578
6579 if (strcasecmp(val, fp->name) == 0) {
6580 nr_matches = 1;
6581 break;
6582 }
6583 }
6584
6585 if (!nr_matches) {
6586 *reason = "unknown value";
6587 return -EINVAL;
6588 }
6589 if (nr_matches > 1) {
6590 *reason = "ambigious value";
6591 return -EINVAL;
6592 }
6593
6594 force_ent->param = *match_fp;
6595
6596 return 0;
6597}
6598
6599static void __init ata_parse_force_param(void)
6600{
6601 int idx = 0, size = 1;
6602 int last_port = -1, last_device = -1;
6603 char *p, *cur, *next;
6604
6605 /* calculate maximum number of params and allocate force_tbl */
6606 for (p = ata_force_param_buf; *p; p++)
6607 if (*p == ',')
6608 size++;
6609
6610 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6611 if (!ata_force_tbl) {
6612 printk(KERN_WARNING "ata: failed to extend force table, "
6613 "libata.force ignored\n");
6614 return;
6615 }
6616
6617 /* parse and populate the table */
6618 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6619 const char *reason = "";
6620 struct ata_force_ent te = { .port = -1, .device = -1 };
6621
6622 next = cur;
6623 if (ata_parse_force_one(&next, &te, &reason)) {
6624 printk(KERN_WARNING "ata: failed to parse force "
6625 "parameter \"%s\" (%s)\n",
6626 cur, reason);
6627 continue;
6628 }
6629
6630 if (te.port == -1) {
6631 te.port = last_port;
6632 te.device = last_device;
6633 }
6634
6635 ata_force_tbl[idx++] = te;
6636
6637 last_port = te.port;
6638 last_device = te.device;
6639 }
6640
6641 ata_force_tbl_size = idx;
6642}
6643
6644static int __init ata_init(void)
6645{
6646 int rc;
6647
6648 ata_parse_force_param();
6649
6650 rc = ata_sff_init();
6651 if (rc) {
6652 kfree(ata_force_tbl);
6653 return rc;
6654 }
6655
6656 libata_transport_init();
6657 ata_scsi_transport_template = ata_attach_transport();
6658 if (!ata_scsi_transport_template) {
6659 ata_sff_exit();
6660 rc = -ENOMEM;
6661 goto err_out;
6662 }
6663
6664 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6665 return 0;
6666
6667err_out:
6668 return rc;
6669}
6670
6671static void __exit ata_exit(void)
6672{
6673 ata_release_transport(ata_scsi_transport_template);
6674 libata_transport_exit();
6675 ata_sff_exit();
6676 kfree(ata_force_tbl);
6677}
6678
6679subsys_initcall(ata_init);
6680module_exit(ata_exit);
6681
6682static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6683
6684int ata_ratelimit(void)
6685{
6686 return __ratelimit(&ratelimit);
6687}
6688
6689/**
6690 * ata_msleep - ATA EH owner aware msleep
6691 * @ap: ATA port to attribute the sleep to
6692 * @msecs: duration to sleep in milliseconds
6693 *
6694 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6695 * ownership is released before going to sleep and reacquired
6696 * after the sleep is complete. IOW, other ports sharing the
6697 * @ap->host will be allowed to own the EH while this task is
6698 * sleeping.
6699 *
6700 * LOCKING:
6701 * Might sleep.
6702 */
6703void ata_msleep(struct ata_port *ap, unsigned int msecs)
6704{
6705 bool owns_eh = ap && ap->host->eh_owner == current;
6706
6707 if (owns_eh)
6708 ata_eh_release(ap);
6709
6710 if (msecs < 20) {
6711 unsigned long usecs = msecs * USEC_PER_MSEC;
6712 usleep_range(usecs, usecs + 50);
6713 } else {
6714 msleep(msecs);
6715 }
6716
6717 if (owns_eh)
6718 ata_eh_acquire(ap);
6719}
6720
6721/**
6722 * ata_wait_register - wait until register value changes
6723 * @ap: ATA port to wait register for, can be NULL
6724 * @reg: IO-mapped register
6725 * @mask: Mask to apply to read register value
6726 * @val: Wait condition
6727 * @interval: polling interval in milliseconds
6728 * @timeout: timeout in milliseconds
6729 *
6730 * Waiting for some bits of register to change is a common
6731 * operation for ATA controllers. This function reads 32bit LE
6732 * IO-mapped register @reg and tests for the following condition.
6733 *
6734 * (*@reg & mask) != val
6735 *
6736 * If the condition is met, it returns; otherwise, the process is
6737 * repeated after @interval_msec until timeout.
6738 *
6739 * LOCKING:
6740 * Kernel thread context (may sleep)
6741 *
6742 * RETURNS:
6743 * The final register value.
6744 */
6745u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6746 unsigned long interval, unsigned long timeout)
6747{
6748 unsigned long deadline;
6749 u32 tmp;
6750
6751 tmp = ioread32(reg);
6752
6753 /* Calculate timeout _after_ the first read to make sure
6754 * preceding writes reach the controller before starting to
6755 * eat away the timeout.
6756 */
6757 deadline = ata_deadline(jiffies, timeout);
6758
6759 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6760 ata_msleep(ap, interval);
6761 tmp = ioread32(reg);
6762 }
6763
6764 return tmp;
6765}
6766
6767/**
6768 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
6769 * @link: Link receiving the event
6770 *
6771 * Test whether the received PHY event has to be ignored or not.
6772 *
6773 * LOCKING:
6774 * None:
6775 *
6776 * RETURNS:
6777 * True if the event has to be ignored.
6778 */
6779bool sata_lpm_ignore_phy_events(struct ata_link *link)
6780{
6781 unsigned long lpm_timeout = link->last_lpm_change +
6782 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
6783
6784 /* if LPM is enabled, PHYRDY doesn't mean anything */
6785 if (link->lpm_policy > ATA_LPM_MAX_POWER)
6786 return true;
6787
6788 /* ignore the first PHY event after the LPM policy changed
6789 * as it is might be spurious
6790 */
6791 if ((link->flags & ATA_LFLAG_CHANGED) &&
6792 time_before(jiffies, lpm_timeout))
6793 return true;
6794
6795 return false;
6796}
6797EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
6798
6799/*
6800 * Dummy port_ops
6801 */
6802static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6803{
6804 return AC_ERR_SYSTEM;
6805}
6806
6807static void ata_dummy_error_handler(struct ata_port *ap)
6808{
6809 /* truly dummy */
6810}
6811
6812struct ata_port_operations ata_dummy_port_ops = {
6813 .qc_prep = ata_noop_qc_prep,
6814 .qc_issue = ata_dummy_qc_issue,
6815 .error_handler = ata_dummy_error_handler,
6816 .sched_eh = ata_std_sched_eh,
6817 .end_eh = ata_std_end_eh,
6818};
6819
6820const struct ata_port_info ata_dummy_port_info = {
6821 .port_ops = &ata_dummy_port_ops,
6822};
6823
6824/*
6825 * Utility print functions
6826 */
6827void ata_port_printk(const struct ata_port *ap, const char *level,
6828 const char *fmt, ...)
6829{
6830 struct va_format vaf;
6831 va_list args;
6832
6833 va_start(args, fmt);
6834
6835 vaf.fmt = fmt;
6836 vaf.va = &args;
6837
6838 printk("%sata%u: %pV", level, ap->print_id, &vaf);
6839
6840 va_end(args);
6841}
6842EXPORT_SYMBOL(ata_port_printk);
6843
6844void ata_link_printk(const struct ata_link *link, const char *level,
6845 const char *fmt, ...)
6846{
6847 struct va_format vaf;
6848 va_list args;
6849
6850 va_start(args, fmt);
6851
6852 vaf.fmt = fmt;
6853 vaf.va = &args;
6854
6855 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6856 printk("%sata%u.%02u: %pV",
6857 level, link->ap->print_id, link->pmp, &vaf);
6858 else
6859 printk("%sata%u: %pV",
6860 level, link->ap->print_id, &vaf);
6861
6862 va_end(args);
6863}
6864EXPORT_SYMBOL(ata_link_printk);
6865
6866void ata_dev_printk(const struct ata_device *dev, const char *level,
6867 const char *fmt, ...)
6868{
6869 struct va_format vaf;
6870 va_list args;
6871
6872 va_start(args, fmt);
6873
6874 vaf.fmt = fmt;
6875 vaf.va = &args;
6876
6877 printk("%sata%u.%02u: %pV",
6878 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6879 &vaf);
6880
6881 va_end(args);
6882}
6883EXPORT_SYMBOL(ata_dev_printk);
6884
6885void ata_print_version(const struct device *dev, const char *version)
6886{
6887 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6888}
6889EXPORT_SYMBOL(ata_print_version);
6890
6891/*
6892 * libata is essentially a library of internal helper functions for
6893 * low-level ATA host controller drivers. As such, the API/ABI is
6894 * likely to change as new drivers are added and updated.
6895 * Do not depend on ABI/API stability.
6896 */
6897EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6898EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6899EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6900EXPORT_SYMBOL_GPL(ata_base_port_ops);
6901EXPORT_SYMBOL_GPL(sata_port_ops);
6902EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6903EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6904EXPORT_SYMBOL_GPL(ata_link_next);
6905EXPORT_SYMBOL_GPL(ata_dev_next);
6906EXPORT_SYMBOL_GPL(ata_std_bios_param);
6907EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6908EXPORT_SYMBOL_GPL(ata_host_init);
6909EXPORT_SYMBOL_GPL(ata_host_alloc);
6910EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6911EXPORT_SYMBOL_GPL(ata_slave_link_init);
6912EXPORT_SYMBOL_GPL(ata_host_start);
6913EXPORT_SYMBOL_GPL(ata_host_register);
6914EXPORT_SYMBOL_GPL(ata_host_activate);
6915EXPORT_SYMBOL_GPL(ata_host_detach);
6916EXPORT_SYMBOL_GPL(ata_sg_init);
6917EXPORT_SYMBOL_GPL(ata_qc_complete);
6918EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6919EXPORT_SYMBOL_GPL(atapi_cmd_type);
6920EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6921EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6922EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6923EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6924EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6925EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6926EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6927EXPORT_SYMBOL_GPL(ata_mode_string);
6928EXPORT_SYMBOL_GPL(ata_id_xfermask);
6929EXPORT_SYMBOL_GPL(ata_do_set_mode);
6930EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6931EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6932EXPORT_SYMBOL_GPL(ata_dev_disable);
6933EXPORT_SYMBOL_GPL(sata_set_spd);
6934EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6935EXPORT_SYMBOL_GPL(sata_link_debounce);
6936EXPORT_SYMBOL_GPL(sata_link_resume);
6937EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6938EXPORT_SYMBOL_GPL(ata_std_prereset);
6939EXPORT_SYMBOL_GPL(sata_link_hardreset);
6940EXPORT_SYMBOL_GPL(sata_std_hardreset);
6941EXPORT_SYMBOL_GPL(ata_std_postreset);
6942EXPORT_SYMBOL_GPL(ata_dev_classify);
6943EXPORT_SYMBOL_GPL(ata_dev_pair);
6944EXPORT_SYMBOL_GPL(ata_ratelimit);
6945EXPORT_SYMBOL_GPL(ata_msleep);
6946EXPORT_SYMBOL_GPL(ata_wait_register);
6947EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6948EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6949EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6950EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6951EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6952EXPORT_SYMBOL_GPL(sata_scr_valid);
6953EXPORT_SYMBOL_GPL(sata_scr_read);
6954EXPORT_SYMBOL_GPL(sata_scr_write);
6955EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6956EXPORT_SYMBOL_GPL(ata_link_online);
6957EXPORT_SYMBOL_GPL(ata_link_offline);
6958#ifdef CONFIG_PM
6959EXPORT_SYMBOL_GPL(ata_host_suspend);
6960EXPORT_SYMBOL_GPL(ata_host_resume);
6961#endif /* CONFIG_PM */
6962EXPORT_SYMBOL_GPL(ata_id_string);
6963EXPORT_SYMBOL_GPL(ata_id_c_string);
6964EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6965EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6966
6967EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6968EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6969EXPORT_SYMBOL_GPL(ata_timing_compute);
6970EXPORT_SYMBOL_GPL(ata_timing_merge);
6971EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6972
6973#ifdef CONFIG_PCI
6974EXPORT_SYMBOL_GPL(pci_test_config_bits);
6975EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6976#ifdef CONFIG_PM
6977EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6978EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6979EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6980EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6981#endif /* CONFIG_PM */
6982#endif /* CONFIG_PCI */
6983
6984EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6985
6986EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6987EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6988EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6989EXPORT_SYMBOL_GPL(ata_port_desc);
6990#ifdef CONFIG_PCI
6991EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6992#endif /* CONFIG_PCI */
6993EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6994EXPORT_SYMBOL_GPL(ata_link_abort);
6995EXPORT_SYMBOL_GPL(ata_port_abort);
6996EXPORT_SYMBOL_GPL(ata_port_freeze);
6997EXPORT_SYMBOL_GPL(sata_async_notification);
6998EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6999EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7000EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7001EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7002EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7003EXPORT_SYMBOL_GPL(ata_do_eh);
7004EXPORT_SYMBOL_GPL(ata_std_error_handler);
7005
7006EXPORT_SYMBOL_GPL(ata_cable_40wire);
7007EXPORT_SYMBOL_GPL(ata_cable_80wire);
7008EXPORT_SYMBOL_GPL(ata_cable_unknown);
7009EXPORT_SYMBOL_GPL(ata_cable_ignore);
7010EXPORT_SYMBOL_GPL(ata_cable_sata);
1/*
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/driver-api/libata.rst
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
40 *
41 */
42
43#include <linux/kernel.h>
44#include <linux/module.h>
45#include <linux/pci.h>
46#include <linux/init.h>
47#include <linux/list.h>
48#include <linux/mm.h>
49#include <linux/spinlock.h>
50#include <linux/blkdev.h>
51#include <linux/delay.h>
52#include <linux/timer.h>
53#include <linux/time.h>
54#include <linux/interrupt.h>
55#include <linux/completion.h>
56#include <linux/suspend.h>
57#include <linux/workqueue.h>
58#include <linux/scatterlist.h>
59#include <linux/io.h>
60#include <linux/async.h>
61#include <linux/log2.h>
62#include <linux/slab.h>
63#include <linux/glob.h>
64#include <scsi/scsi.h>
65#include <scsi/scsi_cmnd.h>
66#include <scsi/scsi_host.h>
67#include <linux/libata.h>
68#include <asm/byteorder.h>
69#include <asm/unaligned.h>
70#include <linux/cdrom.h>
71#include <linux/ratelimit.h>
72#include <linux/leds.h>
73#include <linux/pm_runtime.h>
74#include <linux/platform_device.h>
75
76#define CREATE_TRACE_POINTS
77#include <trace/events/libata.h>
78
79#include "libata.h"
80#include "libata-transport.h"
81
82/* debounce timing parameters in msecs { interval, duration, timeout } */
83const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
84const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
85const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
86
87const struct ata_port_operations ata_base_port_ops = {
88 .prereset = ata_std_prereset,
89 .postreset = ata_std_postreset,
90 .error_handler = ata_std_error_handler,
91 .sched_eh = ata_std_sched_eh,
92 .end_eh = ata_std_end_eh,
93};
94
95const struct ata_port_operations sata_port_ops = {
96 .inherits = &ata_base_port_ops,
97
98 .qc_defer = ata_std_qc_defer,
99 .hardreset = sata_std_hardreset,
100};
101
102static unsigned int ata_dev_init_params(struct ata_device *dev,
103 u16 heads, u16 sectors);
104static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
105static void ata_dev_xfermask(struct ata_device *dev);
106static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
107
108atomic_t ata_print_id = ATOMIC_INIT(0);
109
110struct ata_force_param {
111 const char *name;
112 unsigned int cbl;
113 int spd_limit;
114 unsigned long xfer_mask;
115 unsigned int horkage_on;
116 unsigned int horkage_off;
117 unsigned int lflags;
118};
119
120struct ata_force_ent {
121 int port;
122 int device;
123 struct ata_force_param param;
124};
125
126static struct ata_force_ent *ata_force_tbl;
127static int ata_force_tbl_size;
128
129static char ata_force_param_buf[PAGE_SIZE] __initdata;
130/* param_buf is thrown away after initialization, disallow read */
131module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
132MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/admin-guide/kernel-parameters.rst for details)");
133
134static int atapi_enabled = 1;
135module_param(atapi_enabled, int, 0444);
136MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
137
138static int atapi_dmadir = 0;
139module_param(atapi_dmadir, int, 0444);
140MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
141
142int atapi_passthru16 = 1;
143module_param(atapi_passthru16, int, 0444);
144MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
145
146int libata_fua = 0;
147module_param_named(fua, libata_fua, int, 0444);
148MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
149
150static int ata_ignore_hpa;
151module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
152MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
153
154static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
155module_param_named(dma, libata_dma_mask, int, 0444);
156MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
157
158static int ata_probe_timeout;
159module_param(ata_probe_timeout, int, 0444);
160MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
161
162int libata_noacpi = 0;
163module_param_named(noacpi, libata_noacpi, int, 0444);
164MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
165
166int libata_allow_tpm = 0;
167module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
168MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
169
170static int atapi_an;
171module_param(atapi_an, int, 0444);
172MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
173
174MODULE_AUTHOR("Jeff Garzik");
175MODULE_DESCRIPTION("Library module for ATA devices");
176MODULE_LICENSE("GPL");
177MODULE_VERSION(DRV_VERSION);
178
179
180static bool ata_sstatus_online(u32 sstatus)
181{
182 return (sstatus & 0xf) == 0x3;
183}
184
185/**
186 * ata_link_next - link iteration helper
187 * @link: the previous link, NULL to start
188 * @ap: ATA port containing links to iterate
189 * @mode: iteration mode, one of ATA_LITER_*
190 *
191 * LOCKING:
192 * Host lock or EH context.
193 *
194 * RETURNS:
195 * Pointer to the next link.
196 */
197struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
198 enum ata_link_iter_mode mode)
199{
200 BUG_ON(mode != ATA_LITER_EDGE &&
201 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
202
203 /* NULL link indicates start of iteration */
204 if (!link)
205 switch (mode) {
206 case ATA_LITER_EDGE:
207 case ATA_LITER_PMP_FIRST:
208 if (sata_pmp_attached(ap))
209 return ap->pmp_link;
210 /* fall through */
211 case ATA_LITER_HOST_FIRST:
212 return &ap->link;
213 }
214
215 /* we just iterated over the host link, what's next? */
216 if (link == &ap->link)
217 switch (mode) {
218 case ATA_LITER_HOST_FIRST:
219 if (sata_pmp_attached(ap))
220 return ap->pmp_link;
221 /* fall through */
222 case ATA_LITER_PMP_FIRST:
223 if (unlikely(ap->slave_link))
224 return ap->slave_link;
225 /* fall through */
226 case ATA_LITER_EDGE:
227 return NULL;
228 }
229
230 /* slave_link excludes PMP */
231 if (unlikely(link == ap->slave_link))
232 return NULL;
233
234 /* we were over a PMP link */
235 if (++link < ap->pmp_link + ap->nr_pmp_links)
236 return link;
237
238 if (mode == ATA_LITER_PMP_FIRST)
239 return &ap->link;
240
241 return NULL;
242}
243
244/**
245 * ata_dev_next - device iteration helper
246 * @dev: the previous device, NULL to start
247 * @link: ATA link containing devices to iterate
248 * @mode: iteration mode, one of ATA_DITER_*
249 *
250 * LOCKING:
251 * Host lock or EH context.
252 *
253 * RETURNS:
254 * Pointer to the next device.
255 */
256struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
257 enum ata_dev_iter_mode mode)
258{
259 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
260 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
261
262 /* NULL dev indicates start of iteration */
263 if (!dev)
264 switch (mode) {
265 case ATA_DITER_ENABLED:
266 case ATA_DITER_ALL:
267 dev = link->device;
268 goto check;
269 case ATA_DITER_ENABLED_REVERSE:
270 case ATA_DITER_ALL_REVERSE:
271 dev = link->device + ata_link_max_devices(link) - 1;
272 goto check;
273 }
274
275 next:
276 /* move to the next one */
277 switch (mode) {
278 case ATA_DITER_ENABLED:
279 case ATA_DITER_ALL:
280 if (++dev < link->device + ata_link_max_devices(link))
281 goto check;
282 return NULL;
283 case ATA_DITER_ENABLED_REVERSE:
284 case ATA_DITER_ALL_REVERSE:
285 if (--dev >= link->device)
286 goto check;
287 return NULL;
288 }
289
290 check:
291 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
292 !ata_dev_enabled(dev))
293 goto next;
294 return dev;
295}
296
297/**
298 * ata_dev_phys_link - find physical link for a device
299 * @dev: ATA device to look up physical link for
300 *
301 * Look up physical link which @dev is attached to. Note that
302 * this is different from @dev->link only when @dev is on slave
303 * link. For all other cases, it's the same as @dev->link.
304 *
305 * LOCKING:
306 * Don't care.
307 *
308 * RETURNS:
309 * Pointer to the found physical link.
310 */
311struct ata_link *ata_dev_phys_link(struct ata_device *dev)
312{
313 struct ata_port *ap = dev->link->ap;
314
315 if (!ap->slave_link)
316 return dev->link;
317 if (!dev->devno)
318 return &ap->link;
319 return ap->slave_link;
320}
321
322/**
323 * ata_force_cbl - force cable type according to libata.force
324 * @ap: ATA port of interest
325 *
326 * Force cable type according to libata.force and whine about it.
327 * The last entry which has matching port number is used, so it
328 * can be specified as part of device force parameters. For
329 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
330 * same effect.
331 *
332 * LOCKING:
333 * EH context.
334 */
335void ata_force_cbl(struct ata_port *ap)
336{
337 int i;
338
339 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
340 const struct ata_force_ent *fe = &ata_force_tbl[i];
341
342 if (fe->port != -1 && fe->port != ap->print_id)
343 continue;
344
345 if (fe->param.cbl == ATA_CBL_NONE)
346 continue;
347
348 ap->cbl = fe->param.cbl;
349 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
350 return;
351 }
352}
353
354/**
355 * ata_force_link_limits - force link limits according to libata.force
356 * @link: ATA link of interest
357 *
358 * Force link flags and SATA spd limit according to libata.force
359 * and whine about it. When only the port part is specified
360 * (e.g. 1:), the limit applies to all links connected to both
361 * the host link and all fan-out ports connected via PMP. If the
362 * device part is specified as 0 (e.g. 1.00:), it specifies the
363 * first fan-out link not the host link. Device number 15 always
364 * points to the host link whether PMP is attached or not. If the
365 * controller has slave link, device number 16 points to it.
366 *
367 * LOCKING:
368 * EH context.
369 */
370static void ata_force_link_limits(struct ata_link *link)
371{
372 bool did_spd = false;
373 int linkno = link->pmp;
374 int i;
375
376 if (ata_is_host_link(link))
377 linkno += 15;
378
379 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
380 const struct ata_force_ent *fe = &ata_force_tbl[i];
381
382 if (fe->port != -1 && fe->port != link->ap->print_id)
383 continue;
384
385 if (fe->device != -1 && fe->device != linkno)
386 continue;
387
388 /* only honor the first spd limit */
389 if (!did_spd && fe->param.spd_limit) {
390 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
391 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
392 fe->param.name);
393 did_spd = true;
394 }
395
396 /* let lflags stack */
397 if (fe->param.lflags) {
398 link->flags |= fe->param.lflags;
399 ata_link_notice(link,
400 "FORCE: link flag 0x%x forced -> 0x%x\n",
401 fe->param.lflags, link->flags);
402 }
403 }
404}
405
406/**
407 * ata_force_xfermask - force xfermask according to libata.force
408 * @dev: ATA device of interest
409 *
410 * Force xfer_mask according to libata.force and whine about it.
411 * For consistency with link selection, device number 15 selects
412 * the first device connected to the host link.
413 *
414 * LOCKING:
415 * EH context.
416 */
417static void ata_force_xfermask(struct ata_device *dev)
418{
419 int devno = dev->link->pmp + dev->devno;
420 int alt_devno = devno;
421 int i;
422
423 /* allow n.15/16 for devices attached to host port */
424 if (ata_is_host_link(dev->link))
425 alt_devno += 15;
426
427 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
428 const struct ata_force_ent *fe = &ata_force_tbl[i];
429 unsigned long pio_mask, mwdma_mask, udma_mask;
430
431 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
432 continue;
433
434 if (fe->device != -1 && fe->device != devno &&
435 fe->device != alt_devno)
436 continue;
437
438 if (!fe->param.xfer_mask)
439 continue;
440
441 ata_unpack_xfermask(fe->param.xfer_mask,
442 &pio_mask, &mwdma_mask, &udma_mask);
443 if (udma_mask)
444 dev->udma_mask = udma_mask;
445 else if (mwdma_mask) {
446 dev->udma_mask = 0;
447 dev->mwdma_mask = mwdma_mask;
448 } else {
449 dev->udma_mask = 0;
450 dev->mwdma_mask = 0;
451 dev->pio_mask = pio_mask;
452 }
453
454 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
455 fe->param.name);
456 return;
457 }
458}
459
460/**
461 * ata_force_horkage - force horkage according to libata.force
462 * @dev: ATA device of interest
463 *
464 * Force horkage according to libata.force and whine about it.
465 * For consistency with link selection, device number 15 selects
466 * the first device connected to the host link.
467 *
468 * LOCKING:
469 * EH context.
470 */
471static void ata_force_horkage(struct ata_device *dev)
472{
473 int devno = dev->link->pmp + dev->devno;
474 int alt_devno = devno;
475 int i;
476
477 /* allow n.15/16 for devices attached to host port */
478 if (ata_is_host_link(dev->link))
479 alt_devno += 15;
480
481 for (i = 0; i < ata_force_tbl_size; i++) {
482 const struct ata_force_ent *fe = &ata_force_tbl[i];
483
484 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
485 continue;
486
487 if (fe->device != -1 && fe->device != devno &&
488 fe->device != alt_devno)
489 continue;
490
491 if (!(~dev->horkage & fe->param.horkage_on) &&
492 !(dev->horkage & fe->param.horkage_off))
493 continue;
494
495 dev->horkage |= fe->param.horkage_on;
496 dev->horkage &= ~fe->param.horkage_off;
497
498 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
499 fe->param.name);
500 }
501}
502
503/**
504 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
505 * @opcode: SCSI opcode
506 *
507 * Determine ATAPI command type from @opcode.
508 *
509 * LOCKING:
510 * None.
511 *
512 * RETURNS:
513 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
514 */
515int atapi_cmd_type(u8 opcode)
516{
517 switch (opcode) {
518 case GPCMD_READ_10:
519 case GPCMD_READ_12:
520 return ATAPI_READ;
521
522 case GPCMD_WRITE_10:
523 case GPCMD_WRITE_12:
524 case GPCMD_WRITE_AND_VERIFY_10:
525 return ATAPI_WRITE;
526
527 case GPCMD_READ_CD:
528 case GPCMD_READ_CD_MSF:
529 return ATAPI_READ_CD;
530
531 case ATA_16:
532 case ATA_12:
533 if (atapi_passthru16)
534 return ATAPI_PASS_THRU;
535 /* fall thru */
536 default:
537 return ATAPI_MISC;
538 }
539}
540
541/**
542 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
543 * @tf: Taskfile to convert
544 * @pmp: Port multiplier port
545 * @is_cmd: This FIS is for command
546 * @fis: Buffer into which data will output
547 *
548 * Converts a standard ATA taskfile to a Serial ATA
549 * FIS structure (Register - Host to Device).
550 *
551 * LOCKING:
552 * Inherited from caller.
553 */
554void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
555{
556 fis[0] = 0x27; /* Register - Host to Device FIS */
557 fis[1] = pmp & 0xf; /* Port multiplier number*/
558 if (is_cmd)
559 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
560
561 fis[2] = tf->command;
562 fis[3] = tf->feature;
563
564 fis[4] = tf->lbal;
565 fis[5] = tf->lbam;
566 fis[6] = tf->lbah;
567 fis[7] = tf->device;
568
569 fis[8] = tf->hob_lbal;
570 fis[9] = tf->hob_lbam;
571 fis[10] = tf->hob_lbah;
572 fis[11] = tf->hob_feature;
573
574 fis[12] = tf->nsect;
575 fis[13] = tf->hob_nsect;
576 fis[14] = 0;
577 fis[15] = tf->ctl;
578
579 fis[16] = tf->auxiliary & 0xff;
580 fis[17] = (tf->auxiliary >> 8) & 0xff;
581 fis[18] = (tf->auxiliary >> 16) & 0xff;
582 fis[19] = (tf->auxiliary >> 24) & 0xff;
583}
584
585/**
586 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
587 * @fis: Buffer from which data will be input
588 * @tf: Taskfile to output
589 *
590 * Converts a serial ATA FIS structure to a standard ATA taskfile.
591 *
592 * LOCKING:
593 * Inherited from caller.
594 */
595
596void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
597{
598 tf->command = fis[2]; /* status */
599 tf->feature = fis[3]; /* error */
600
601 tf->lbal = fis[4];
602 tf->lbam = fis[5];
603 tf->lbah = fis[6];
604 tf->device = fis[7];
605
606 tf->hob_lbal = fis[8];
607 tf->hob_lbam = fis[9];
608 tf->hob_lbah = fis[10];
609
610 tf->nsect = fis[12];
611 tf->hob_nsect = fis[13];
612}
613
614static const u8 ata_rw_cmds[] = {
615 /* pio multi */
616 ATA_CMD_READ_MULTI,
617 ATA_CMD_WRITE_MULTI,
618 ATA_CMD_READ_MULTI_EXT,
619 ATA_CMD_WRITE_MULTI_EXT,
620 0,
621 0,
622 0,
623 ATA_CMD_WRITE_MULTI_FUA_EXT,
624 /* pio */
625 ATA_CMD_PIO_READ,
626 ATA_CMD_PIO_WRITE,
627 ATA_CMD_PIO_READ_EXT,
628 ATA_CMD_PIO_WRITE_EXT,
629 0,
630 0,
631 0,
632 0,
633 /* dma */
634 ATA_CMD_READ,
635 ATA_CMD_WRITE,
636 ATA_CMD_READ_EXT,
637 ATA_CMD_WRITE_EXT,
638 0,
639 0,
640 0,
641 ATA_CMD_WRITE_FUA_EXT
642};
643
644/**
645 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
646 * @tf: command to examine and configure
647 * @dev: device tf belongs to
648 *
649 * Examine the device configuration and tf->flags to calculate
650 * the proper read/write commands and protocol to use.
651 *
652 * LOCKING:
653 * caller.
654 */
655static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
656{
657 u8 cmd;
658
659 int index, fua, lba48, write;
660
661 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
662 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
663 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
664
665 if (dev->flags & ATA_DFLAG_PIO) {
666 tf->protocol = ATA_PROT_PIO;
667 index = dev->multi_count ? 0 : 8;
668 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
669 /* Unable to use DMA due to host limitation */
670 tf->protocol = ATA_PROT_PIO;
671 index = dev->multi_count ? 0 : 8;
672 } else {
673 tf->protocol = ATA_PROT_DMA;
674 index = 16;
675 }
676
677 cmd = ata_rw_cmds[index + fua + lba48 + write];
678 if (cmd) {
679 tf->command = cmd;
680 return 0;
681 }
682 return -1;
683}
684
685/**
686 * ata_tf_read_block - Read block address from ATA taskfile
687 * @tf: ATA taskfile of interest
688 * @dev: ATA device @tf belongs to
689 *
690 * LOCKING:
691 * None.
692 *
693 * Read block address from @tf. This function can handle all
694 * three address formats - LBA, LBA48 and CHS. tf->protocol and
695 * flags select the address format to use.
696 *
697 * RETURNS:
698 * Block address read from @tf.
699 */
700u64 ata_tf_read_block(const struct ata_taskfile *tf, struct ata_device *dev)
701{
702 u64 block = 0;
703
704 if (tf->flags & ATA_TFLAG_LBA) {
705 if (tf->flags & ATA_TFLAG_LBA48) {
706 block |= (u64)tf->hob_lbah << 40;
707 block |= (u64)tf->hob_lbam << 32;
708 block |= (u64)tf->hob_lbal << 24;
709 } else
710 block |= (tf->device & 0xf) << 24;
711
712 block |= tf->lbah << 16;
713 block |= tf->lbam << 8;
714 block |= tf->lbal;
715 } else {
716 u32 cyl, head, sect;
717
718 cyl = tf->lbam | (tf->lbah << 8);
719 head = tf->device & 0xf;
720 sect = tf->lbal;
721
722 if (!sect) {
723 ata_dev_warn(dev,
724 "device reported invalid CHS sector 0\n");
725 return U64_MAX;
726 }
727
728 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
729 }
730
731 return block;
732}
733
734/**
735 * ata_build_rw_tf - Build ATA taskfile for given read/write request
736 * @tf: Target ATA taskfile
737 * @dev: ATA device @tf belongs to
738 * @block: Block address
739 * @n_block: Number of blocks
740 * @tf_flags: RW/FUA etc...
741 * @tag: tag
742 * @class: IO priority class
743 *
744 * LOCKING:
745 * None.
746 *
747 * Build ATA taskfile @tf for read/write request described by
748 * @block, @n_block, @tf_flags and @tag on @dev.
749 *
750 * RETURNS:
751 *
752 * 0 on success, -ERANGE if the request is too large for @dev,
753 * -EINVAL if the request is invalid.
754 */
755int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
756 u64 block, u32 n_block, unsigned int tf_flags,
757 unsigned int tag, int class)
758{
759 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
760 tf->flags |= tf_flags;
761
762 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
763 /* yay, NCQ */
764 if (!lba_48_ok(block, n_block))
765 return -ERANGE;
766
767 tf->protocol = ATA_PROT_NCQ;
768 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
769
770 if (tf->flags & ATA_TFLAG_WRITE)
771 tf->command = ATA_CMD_FPDMA_WRITE;
772 else
773 tf->command = ATA_CMD_FPDMA_READ;
774
775 tf->nsect = tag << 3;
776 tf->hob_feature = (n_block >> 8) & 0xff;
777 tf->feature = n_block & 0xff;
778
779 tf->hob_lbah = (block >> 40) & 0xff;
780 tf->hob_lbam = (block >> 32) & 0xff;
781 tf->hob_lbal = (block >> 24) & 0xff;
782 tf->lbah = (block >> 16) & 0xff;
783 tf->lbam = (block >> 8) & 0xff;
784 tf->lbal = block & 0xff;
785
786 tf->device = ATA_LBA;
787 if (tf->flags & ATA_TFLAG_FUA)
788 tf->device |= 1 << 7;
789
790 if (dev->flags & ATA_DFLAG_NCQ_PRIO) {
791 if (class == IOPRIO_CLASS_RT)
792 tf->hob_nsect |= ATA_PRIO_HIGH <<
793 ATA_SHIFT_PRIO;
794 }
795 } else if (dev->flags & ATA_DFLAG_LBA) {
796 tf->flags |= ATA_TFLAG_LBA;
797
798 if (lba_28_ok(block, n_block)) {
799 /* use LBA28 */
800 tf->device |= (block >> 24) & 0xf;
801 } else if (lba_48_ok(block, n_block)) {
802 if (!(dev->flags & ATA_DFLAG_LBA48))
803 return -ERANGE;
804
805 /* use LBA48 */
806 tf->flags |= ATA_TFLAG_LBA48;
807
808 tf->hob_nsect = (n_block >> 8) & 0xff;
809
810 tf->hob_lbah = (block >> 40) & 0xff;
811 tf->hob_lbam = (block >> 32) & 0xff;
812 tf->hob_lbal = (block >> 24) & 0xff;
813 } else
814 /* request too large even for LBA48 */
815 return -ERANGE;
816
817 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
818 return -EINVAL;
819
820 tf->nsect = n_block & 0xff;
821
822 tf->lbah = (block >> 16) & 0xff;
823 tf->lbam = (block >> 8) & 0xff;
824 tf->lbal = block & 0xff;
825
826 tf->device |= ATA_LBA;
827 } else {
828 /* CHS */
829 u32 sect, head, cyl, track;
830
831 /* The request -may- be too large for CHS addressing. */
832 if (!lba_28_ok(block, n_block))
833 return -ERANGE;
834
835 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
836 return -EINVAL;
837
838 /* Convert LBA to CHS */
839 track = (u32)block / dev->sectors;
840 cyl = track / dev->heads;
841 head = track % dev->heads;
842 sect = (u32)block % dev->sectors + 1;
843
844 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
845 (u32)block, track, cyl, head, sect);
846
847 /* Check whether the converted CHS can fit.
848 Cylinder: 0-65535
849 Head: 0-15
850 Sector: 1-255*/
851 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
852 return -ERANGE;
853
854 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
855 tf->lbal = sect;
856 tf->lbam = cyl;
857 tf->lbah = cyl >> 8;
858 tf->device |= head;
859 }
860
861 return 0;
862}
863
864/**
865 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
866 * @pio_mask: pio_mask
867 * @mwdma_mask: mwdma_mask
868 * @udma_mask: udma_mask
869 *
870 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
871 * unsigned int xfer_mask.
872 *
873 * LOCKING:
874 * None.
875 *
876 * RETURNS:
877 * Packed xfer_mask.
878 */
879unsigned long ata_pack_xfermask(unsigned long pio_mask,
880 unsigned long mwdma_mask,
881 unsigned long udma_mask)
882{
883 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
884 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
885 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
886}
887
888/**
889 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
890 * @xfer_mask: xfer_mask to unpack
891 * @pio_mask: resulting pio_mask
892 * @mwdma_mask: resulting mwdma_mask
893 * @udma_mask: resulting udma_mask
894 *
895 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
896 * Any NULL destination masks will be ignored.
897 */
898void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
899 unsigned long *mwdma_mask, unsigned long *udma_mask)
900{
901 if (pio_mask)
902 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
903 if (mwdma_mask)
904 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
905 if (udma_mask)
906 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
907}
908
909static const struct ata_xfer_ent {
910 int shift, bits;
911 u8 base;
912} ata_xfer_tbl[] = {
913 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
914 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
915 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
916 { -1, },
917};
918
919/**
920 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
921 * @xfer_mask: xfer_mask of interest
922 *
923 * Return matching XFER_* value for @xfer_mask. Only the highest
924 * bit of @xfer_mask is considered.
925 *
926 * LOCKING:
927 * None.
928 *
929 * RETURNS:
930 * Matching XFER_* value, 0xff if no match found.
931 */
932u8 ata_xfer_mask2mode(unsigned long xfer_mask)
933{
934 int highbit = fls(xfer_mask) - 1;
935 const struct ata_xfer_ent *ent;
936
937 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
938 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
939 return ent->base + highbit - ent->shift;
940 return 0xff;
941}
942
943/**
944 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
945 * @xfer_mode: XFER_* of interest
946 *
947 * Return matching xfer_mask for @xfer_mode.
948 *
949 * LOCKING:
950 * None.
951 *
952 * RETURNS:
953 * Matching xfer_mask, 0 if no match found.
954 */
955unsigned long ata_xfer_mode2mask(u8 xfer_mode)
956{
957 const struct ata_xfer_ent *ent;
958
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
962 & ~((1 << ent->shift) - 1);
963 return 0;
964}
965
966/**
967 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
968 * @xfer_mode: XFER_* of interest
969 *
970 * Return matching xfer_shift for @xfer_mode.
971 *
972 * LOCKING:
973 * None.
974 *
975 * RETURNS:
976 * Matching xfer_shift, -1 if no match found.
977 */
978int ata_xfer_mode2shift(unsigned long xfer_mode)
979{
980 const struct ata_xfer_ent *ent;
981
982 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
983 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
984 return ent->shift;
985 return -1;
986}
987
988/**
989 * ata_mode_string - convert xfer_mask to string
990 * @xfer_mask: mask of bits supported; only highest bit counts.
991 *
992 * Determine string which represents the highest speed
993 * (highest bit in @modemask).
994 *
995 * LOCKING:
996 * None.
997 *
998 * RETURNS:
999 * Constant C string representing highest speed listed in
1000 * @mode_mask, or the constant C string "<n/a>".
1001 */
1002const char *ata_mode_string(unsigned long xfer_mask)
1003{
1004 static const char * const xfer_mode_str[] = {
1005 "PIO0",
1006 "PIO1",
1007 "PIO2",
1008 "PIO3",
1009 "PIO4",
1010 "PIO5",
1011 "PIO6",
1012 "MWDMA0",
1013 "MWDMA1",
1014 "MWDMA2",
1015 "MWDMA3",
1016 "MWDMA4",
1017 "UDMA/16",
1018 "UDMA/25",
1019 "UDMA/33",
1020 "UDMA/44",
1021 "UDMA/66",
1022 "UDMA/100",
1023 "UDMA/133",
1024 "UDMA7",
1025 };
1026 int highbit;
1027
1028 highbit = fls(xfer_mask) - 1;
1029 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1030 return xfer_mode_str[highbit];
1031 return "<n/a>";
1032}
1033
1034const char *sata_spd_string(unsigned int spd)
1035{
1036 static const char * const spd_str[] = {
1037 "1.5 Gbps",
1038 "3.0 Gbps",
1039 "6.0 Gbps",
1040 };
1041
1042 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1043 return "<unknown>";
1044 return spd_str[spd - 1];
1045}
1046
1047/**
1048 * ata_dev_classify - determine device type based on ATA-spec signature
1049 * @tf: ATA taskfile register set for device to be identified
1050 *
1051 * Determine from taskfile register contents whether a device is
1052 * ATA or ATAPI, as per "Signature and persistence" section
1053 * of ATA/PI spec (volume 1, sect 5.14).
1054 *
1055 * LOCKING:
1056 * None.
1057 *
1058 * RETURNS:
1059 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP,
1060 * %ATA_DEV_ZAC, or %ATA_DEV_UNKNOWN the event of failure.
1061 */
1062unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1063{
1064 /* Apple's open source Darwin code hints that some devices only
1065 * put a proper signature into the LBA mid/high registers,
1066 * So, we only check those. It's sufficient for uniqueness.
1067 *
1068 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1069 * signatures for ATA and ATAPI devices attached on SerialATA,
1070 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1071 * spec has never mentioned about using different signatures
1072 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1073 * Multiplier specification began to use 0x69/0x96 to identify
1074 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1075 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1076 * 0x69/0x96 shortly and described them as reserved for
1077 * SerialATA.
1078 *
1079 * We follow the current spec and consider that 0x69/0x96
1080 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1081 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1082 * SEMB signature. This is worked around in
1083 * ata_dev_read_id().
1084 */
1085 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1086 DPRINTK("found ATA device by sig\n");
1087 return ATA_DEV_ATA;
1088 }
1089
1090 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1091 DPRINTK("found ATAPI device by sig\n");
1092 return ATA_DEV_ATAPI;
1093 }
1094
1095 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1096 DPRINTK("found PMP device by sig\n");
1097 return ATA_DEV_PMP;
1098 }
1099
1100 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1101 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1102 return ATA_DEV_SEMB;
1103 }
1104
1105 if ((tf->lbam == 0xcd) && (tf->lbah == 0xab)) {
1106 DPRINTK("found ZAC device by sig\n");
1107 return ATA_DEV_ZAC;
1108 }
1109
1110 DPRINTK("unknown device\n");
1111 return ATA_DEV_UNKNOWN;
1112}
1113
1114/**
1115 * ata_id_string - Convert IDENTIFY DEVICE page into string
1116 * @id: IDENTIFY DEVICE results we will examine
1117 * @s: string into which data is output
1118 * @ofs: offset into identify device page
1119 * @len: length of string to return. must be an even number.
1120 *
1121 * The strings in the IDENTIFY DEVICE page are broken up into
1122 * 16-bit chunks. Run through the string, and output each
1123 * 8-bit chunk linearly, regardless of platform.
1124 *
1125 * LOCKING:
1126 * caller.
1127 */
1128
1129void ata_id_string(const u16 *id, unsigned char *s,
1130 unsigned int ofs, unsigned int len)
1131{
1132 unsigned int c;
1133
1134 BUG_ON(len & 1);
1135
1136 while (len > 0) {
1137 c = id[ofs] >> 8;
1138 *s = c;
1139 s++;
1140
1141 c = id[ofs] & 0xff;
1142 *s = c;
1143 s++;
1144
1145 ofs++;
1146 len -= 2;
1147 }
1148}
1149
1150/**
1151 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1152 * @id: IDENTIFY DEVICE results we will examine
1153 * @s: string into which data is output
1154 * @ofs: offset into identify device page
1155 * @len: length of string to return. must be an odd number.
1156 *
1157 * This function is identical to ata_id_string except that it
1158 * trims trailing spaces and terminates the resulting string with
1159 * null. @len must be actual maximum length (even number) + 1.
1160 *
1161 * LOCKING:
1162 * caller.
1163 */
1164void ata_id_c_string(const u16 *id, unsigned char *s,
1165 unsigned int ofs, unsigned int len)
1166{
1167 unsigned char *p;
1168
1169 ata_id_string(id, s, ofs, len - 1);
1170
1171 p = s + strnlen(s, len - 1);
1172 while (p > s && p[-1] == ' ')
1173 p--;
1174 *p = '\0';
1175}
1176
1177static u64 ata_id_n_sectors(const u16 *id)
1178{
1179 if (ata_id_has_lba(id)) {
1180 if (ata_id_has_lba48(id))
1181 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1182 else
1183 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1184 } else {
1185 if (ata_id_current_chs_valid(id))
1186 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1187 id[ATA_ID_CUR_SECTORS];
1188 else
1189 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1190 id[ATA_ID_SECTORS];
1191 }
1192}
1193
1194u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1195{
1196 u64 sectors = 0;
1197
1198 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1199 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1200 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1201 sectors |= (tf->lbah & 0xff) << 16;
1202 sectors |= (tf->lbam & 0xff) << 8;
1203 sectors |= (tf->lbal & 0xff);
1204
1205 return sectors;
1206}
1207
1208u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1209{
1210 u64 sectors = 0;
1211
1212 sectors |= (tf->device & 0x0f) << 24;
1213 sectors |= (tf->lbah & 0xff) << 16;
1214 sectors |= (tf->lbam & 0xff) << 8;
1215 sectors |= (tf->lbal & 0xff);
1216
1217 return sectors;
1218}
1219
1220/**
1221 * ata_read_native_max_address - Read native max address
1222 * @dev: target device
1223 * @max_sectors: out parameter for the result native max address
1224 *
1225 * Perform an LBA48 or LBA28 native size query upon the device in
1226 * question.
1227 *
1228 * RETURNS:
1229 * 0 on success, -EACCES if command is aborted by the drive.
1230 * -EIO on other errors.
1231 */
1232static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1233{
1234 unsigned int err_mask;
1235 struct ata_taskfile tf;
1236 int lba48 = ata_id_has_lba48(dev->id);
1237
1238 ata_tf_init(dev, &tf);
1239
1240 /* always clear all address registers */
1241 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1242
1243 if (lba48) {
1244 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1245 tf.flags |= ATA_TFLAG_LBA48;
1246 } else
1247 tf.command = ATA_CMD_READ_NATIVE_MAX;
1248
1249 tf.protocol = ATA_PROT_NODATA;
1250 tf.device |= ATA_LBA;
1251
1252 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1253 if (err_mask) {
1254 ata_dev_warn(dev,
1255 "failed to read native max address (err_mask=0x%x)\n",
1256 err_mask);
1257 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1258 return -EACCES;
1259 return -EIO;
1260 }
1261
1262 if (lba48)
1263 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1264 else
1265 *max_sectors = ata_tf_to_lba(&tf) + 1;
1266 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1267 (*max_sectors)--;
1268 return 0;
1269}
1270
1271/**
1272 * ata_set_max_sectors - Set max sectors
1273 * @dev: target device
1274 * @new_sectors: new max sectors value to set for the device
1275 *
1276 * Set max sectors of @dev to @new_sectors.
1277 *
1278 * RETURNS:
1279 * 0 on success, -EACCES if command is aborted or denied (due to
1280 * previous non-volatile SET_MAX) by the drive. -EIO on other
1281 * errors.
1282 */
1283static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1284{
1285 unsigned int err_mask;
1286 struct ata_taskfile tf;
1287 int lba48 = ata_id_has_lba48(dev->id);
1288
1289 new_sectors--;
1290
1291 ata_tf_init(dev, &tf);
1292
1293 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1294
1295 if (lba48) {
1296 tf.command = ATA_CMD_SET_MAX_EXT;
1297 tf.flags |= ATA_TFLAG_LBA48;
1298
1299 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1300 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1301 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1302 } else {
1303 tf.command = ATA_CMD_SET_MAX;
1304
1305 tf.device |= (new_sectors >> 24) & 0xf;
1306 }
1307
1308 tf.protocol = ATA_PROT_NODATA;
1309 tf.device |= ATA_LBA;
1310
1311 tf.lbal = (new_sectors >> 0) & 0xff;
1312 tf.lbam = (new_sectors >> 8) & 0xff;
1313 tf.lbah = (new_sectors >> 16) & 0xff;
1314
1315 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1316 if (err_mask) {
1317 ata_dev_warn(dev,
1318 "failed to set max address (err_mask=0x%x)\n",
1319 err_mask);
1320 if (err_mask == AC_ERR_DEV &&
1321 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1322 return -EACCES;
1323 return -EIO;
1324 }
1325
1326 return 0;
1327}
1328
1329/**
1330 * ata_hpa_resize - Resize a device with an HPA set
1331 * @dev: Device to resize
1332 *
1333 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1334 * it if required to the full size of the media. The caller must check
1335 * the drive has the HPA feature set enabled.
1336 *
1337 * RETURNS:
1338 * 0 on success, -errno on failure.
1339 */
1340static int ata_hpa_resize(struct ata_device *dev)
1341{
1342 struct ata_eh_context *ehc = &dev->link->eh_context;
1343 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1344 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1345 u64 sectors = ata_id_n_sectors(dev->id);
1346 u64 native_sectors;
1347 int rc;
1348
1349 /* do we need to do it? */
1350 if ((dev->class != ATA_DEV_ATA && dev->class != ATA_DEV_ZAC) ||
1351 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1352 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1353 return 0;
1354
1355 /* read native max address */
1356 rc = ata_read_native_max_address(dev, &native_sectors);
1357 if (rc) {
1358 /* If device aborted the command or HPA isn't going to
1359 * be unlocked, skip HPA resizing.
1360 */
1361 if (rc == -EACCES || !unlock_hpa) {
1362 ata_dev_warn(dev,
1363 "HPA support seems broken, skipping HPA handling\n");
1364 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1365
1366 /* we can continue if device aborted the command */
1367 if (rc == -EACCES)
1368 rc = 0;
1369 }
1370
1371 return rc;
1372 }
1373 dev->n_native_sectors = native_sectors;
1374
1375 /* nothing to do? */
1376 if (native_sectors <= sectors || !unlock_hpa) {
1377 if (!print_info || native_sectors == sectors)
1378 return 0;
1379
1380 if (native_sectors > sectors)
1381 ata_dev_info(dev,
1382 "HPA detected: current %llu, native %llu\n",
1383 (unsigned long long)sectors,
1384 (unsigned long long)native_sectors);
1385 else if (native_sectors < sectors)
1386 ata_dev_warn(dev,
1387 "native sectors (%llu) is smaller than sectors (%llu)\n",
1388 (unsigned long long)native_sectors,
1389 (unsigned long long)sectors);
1390 return 0;
1391 }
1392
1393 /* let's unlock HPA */
1394 rc = ata_set_max_sectors(dev, native_sectors);
1395 if (rc == -EACCES) {
1396 /* if device aborted the command, skip HPA resizing */
1397 ata_dev_warn(dev,
1398 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)native_sectors);
1401 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1402 return 0;
1403 } else if (rc)
1404 return rc;
1405
1406 /* re-read IDENTIFY data */
1407 rc = ata_dev_reread_id(dev, 0);
1408 if (rc) {
1409 ata_dev_err(dev,
1410 "failed to re-read IDENTIFY data after HPA resizing\n");
1411 return rc;
1412 }
1413
1414 if (print_info) {
1415 u64 new_sectors = ata_id_n_sectors(dev->id);
1416 ata_dev_info(dev,
1417 "HPA unlocked: %llu -> %llu, native %llu\n",
1418 (unsigned long long)sectors,
1419 (unsigned long long)new_sectors,
1420 (unsigned long long)native_sectors);
1421 }
1422
1423 return 0;
1424}
1425
1426/**
1427 * ata_dump_id - IDENTIFY DEVICE info debugging output
1428 * @id: IDENTIFY DEVICE page to dump
1429 *
1430 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1431 * page.
1432 *
1433 * LOCKING:
1434 * caller.
1435 */
1436
1437static inline void ata_dump_id(const u16 *id)
1438{
1439 DPRINTK("49==0x%04x "
1440 "53==0x%04x "
1441 "63==0x%04x "
1442 "64==0x%04x "
1443 "75==0x%04x \n",
1444 id[49],
1445 id[53],
1446 id[63],
1447 id[64],
1448 id[75]);
1449 DPRINTK("80==0x%04x "
1450 "81==0x%04x "
1451 "82==0x%04x "
1452 "83==0x%04x "
1453 "84==0x%04x \n",
1454 id[80],
1455 id[81],
1456 id[82],
1457 id[83],
1458 id[84]);
1459 DPRINTK("88==0x%04x "
1460 "93==0x%04x\n",
1461 id[88],
1462 id[93]);
1463}
1464
1465/**
1466 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1467 * @id: IDENTIFY data to compute xfer mask from
1468 *
1469 * Compute the xfermask for this device. This is not as trivial
1470 * as it seems if we must consider early devices correctly.
1471 *
1472 * FIXME: pre IDE drive timing (do we care ?).
1473 *
1474 * LOCKING:
1475 * None.
1476 *
1477 * RETURNS:
1478 * Computed xfermask
1479 */
1480unsigned long ata_id_xfermask(const u16 *id)
1481{
1482 unsigned long pio_mask, mwdma_mask, udma_mask;
1483
1484 /* Usual case. Word 53 indicates word 64 is valid */
1485 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1486 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1487 pio_mask <<= 3;
1488 pio_mask |= 0x7;
1489 } else {
1490 /* If word 64 isn't valid then Word 51 high byte holds
1491 * the PIO timing number for the maximum. Turn it into
1492 * a mask.
1493 */
1494 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1495 if (mode < 5) /* Valid PIO range */
1496 pio_mask = (2 << mode) - 1;
1497 else
1498 pio_mask = 1;
1499
1500 /* But wait.. there's more. Design your standards by
1501 * committee and you too can get a free iordy field to
1502 * process. However its the speeds not the modes that
1503 * are supported... Note drivers using the timing API
1504 * will get this right anyway
1505 */
1506 }
1507
1508 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1509
1510 if (ata_id_is_cfa(id)) {
1511 /*
1512 * Process compact flash extended modes
1513 */
1514 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1515 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1516
1517 if (pio)
1518 pio_mask |= (1 << 5);
1519 if (pio > 1)
1520 pio_mask |= (1 << 6);
1521 if (dma)
1522 mwdma_mask |= (1 << 3);
1523 if (dma > 1)
1524 mwdma_mask |= (1 << 4);
1525 }
1526
1527 udma_mask = 0;
1528 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1529 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1530
1531 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1532}
1533
1534static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1535{
1536 struct completion *waiting = qc->private_data;
1537
1538 complete(waiting);
1539}
1540
1541/**
1542 * ata_exec_internal_sg - execute libata internal command
1543 * @dev: Device to which the command is sent
1544 * @tf: Taskfile registers for the command and the result
1545 * @cdb: CDB for packet command
1546 * @dma_dir: Data transfer direction of the command
1547 * @sgl: sg list for the data buffer of the command
1548 * @n_elem: Number of sg entries
1549 * @timeout: Timeout in msecs (0 for default)
1550 *
1551 * Executes libata internal command with timeout. @tf contains
1552 * command on entry and result on return. Timeout and error
1553 * conditions are reported via return value. No recovery action
1554 * is taken after a command times out. It's caller's duty to
1555 * clean up after timeout.
1556 *
1557 * LOCKING:
1558 * None. Should be called with kernel context, might sleep.
1559 *
1560 * RETURNS:
1561 * Zero on success, AC_ERR_* mask on failure
1562 */
1563unsigned ata_exec_internal_sg(struct ata_device *dev,
1564 struct ata_taskfile *tf, const u8 *cdb,
1565 int dma_dir, struct scatterlist *sgl,
1566 unsigned int n_elem, unsigned long timeout)
1567{
1568 struct ata_link *link = dev->link;
1569 struct ata_port *ap = link->ap;
1570 u8 command = tf->command;
1571 int auto_timeout = 0;
1572 struct ata_queued_cmd *qc;
1573 unsigned int tag, preempted_tag;
1574 u32 preempted_sactive, preempted_qc_active;
1575 int preempted_nr_active_links;
1576 DECLARE_COMPLETION_ONSTACK(wait);
1577 unsigned long flags;
1578 unsigned int err_mask;
1579 int rc;
1580
1581 spin_lock_irqsave(ap->lock, flags);
1582
1583 /* no internal command while frozen */
1584 if (ap->pflags & ATA_PFLAG_FROZEN) {
1585 spin_unlock_irqrestore(ap->lock, flags);
1586 return AC_ERR_SYSTEM;
1587 }
1588
1589 /* initialize internal qc */
1590
1591 /* XXX: Tag 0 is used for drivers with legacy EH as some
1592 * drivers choke if any other tag is given. This breaks
1593 * ata_tag_internal() test for those drivers. Don't use new
1594 * EH stuff without converting to it.
1595 */
1596 if (ap->ops->error_handler)
1597 tag = ATA_TAG_INTERNAL;
1598 else
1599 tag = 0;
1600
1601 qc = __ata_qc_from_tag(ap, tag);
1602
1603 qc->tag = tag;
1604 qc->scsicmd = NULL;
1605 qc->ap = ap;
1606 qc->dev = dev;
1607 ata_qc_reinit(qc);
1608
1609 preempted_tag = link->active_tag;
1610 preempted_sactive = link->sactive;
1611 preempted_qc_active = ap->qc_active;
1612 preempted_nr_active_links = ap->nr_active_links;
1613 link->active_tag = ATA_TAG_POISON;
1614 link->sactive = 0;
1615 ap->qc_active = 0;
1616 ap->nr_active_links = 0;
1617
1618 /* prepare & issue qc */
1619 qc->tf = *tf;
1620 if (cdb)
1621 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1622
1623 /* some SATA bridges need us to indicate data xfer direction */
1624 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1625 dma_dir == DMA_FROM_DEVICE)
1626 qc->tf.feature |= ATAPI_DMADIR;
1627
1628 qc->flags |= ATA_QCFLAG_RESULT_TF;
1629 qc->dma_dir = dma_dir;
1630 if (dma_dir != DMA_NONE) {
1631 unsigned int i, buflen = 0;
1632 struct scatterlist *sg;
1633
1634 for_each_sg(sgl, sg, n_elem, i)
1635 buflen += sg->length;
1636
1637 ata_sg_init(qc, sgl, n_elem);
1638 qc->nbytes = buflen;
1639 }
1640
1641 qc->private_data = &wait;
1642 qc->complete_fn = ata_qc_complete_internal;
1643
1644 ata_qc_issue(qc);
1645
1646 spin_unlock_irqrestore(ap->lock, flags);
1647
1648 if (!timeout) {
1649 if (ata_probe_timeout)
1650 timeout = ata_probe_timeout * 1000;
1651 else {
1652 timeout = ata_internal_cmd_timeout(dev, command);
1653 auto_timeout = 1;
1654 }
1655 }
1656
1657 if (ap->ops->error_handler)
1658 ata_eh_release(ap);
1659
1660 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1661
1662 if (ap->ops->error_handler)
1663 ata_eh_acquire(ap);
1664
1665 ata_sff_flush_pio_task(ap);
1666
1667 if (!rc) {
1668 spin_lock_irqsave(ap->lock, flags);
1669
1670 /* We're racing with irq here. If we lose, the
1671 * following test prevents us from completing the qc
1672 * twice. If we win, the port is frozen and will be
1673 * cleaned up by ->post_internal_cmd().
1674 */
1675 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1676 qc->err_mask |= AC_ERR_TIMEOUT;
1677
1678 if (ap->ops->error_handler)
1679 ata_port_freeze(ap);
1680 else
1681 ata_qc_complete(qc);
1682
1683 if (ata_msg_warn(ap))
1684 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1685 command);
1686 }
1687
1688 spin_unlock_irqrestore(ap->lock, flags);
1689 }
1690
1691 /* do post_internal_cmd */
1692 if (ap->ops->post_internal_cmd)
1693 ap->ops->post_internal_cmd(qc);
1694
1695 /* perform minimal error analysis */
1696 if (qc->flags & ATA_QCFLAG_FAILED) {
1697 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1698 qc->err_mask |= AC_ERR_DEV;
1699
1700 if (!qc->err_mask)
1701 qc->err_mask |= AC_ERR_OTHER;
1702
1703 if (qc->err_mask & ~AC_ERR_OTHER)
1704 qc->err_mask &= ~AC_ERR_OTHER;
1705 } else if (qc->tf.command == ATA_CMD_REQ_SENSE_DATA) {
1706 qc->result_tf.command |= ATA_SENSE;
1707 }
1708
1709 /* finish up */
1710 spin_lock_irqsave(ap->lock, flags);
1711
1712 *tf = qc->result_tf;
1713 err_mask = qc->err_mask;
1714
1715 ata_qc_free(qc);
1716 link->active_tag = preempted_tag;
1717 link->sactive = preempted_sactive;
1718 ap->qc_active = preempted_qc_active;
1719 ap->nr_active_links = preempted_nr_active_links;
1720
1721 spin_unlock_irqrestore(ap->lock, flags);
1722
1723 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1724 ata_internal_cmd_timed_out(dev, command);
1725
1726 return err_mask;
1727}
1728
1729/**
1730 * ata_exec_internal - execute libata internal command
1731 * @dev: Device to which the command is sent
1732 * @tf: Taskfile registers for the command and the result
1733 * @cdb: CDB for packet command
1734 * @dma_dir: Data transfer direction of the command
1735 * @buf: Data buffer of the command
1736 * @buflen: Length of data buffer
1737 * @timeout: Timeout in msecs (0 for default)
1738 *
1739 * Wrapper around ata_exec_internal_sg() which takes simple
1740 * buffer instead of sg list.
1741 *
1742 * LOCKING:
1743 * None. Should be called with kernel context, might sleep.
1744 *
1745 * RETURNS:
1746 * Zero on success, AC_ERR_* mask on failure
1747 */
1748unsigned ata_exec_internal(struct ata_device *dev,
1749 struct ata_taskfile *tf, const u8 *cdb,
1750 int dma_dir, void *buf, unsigned int buflen,
1751 unsigned long timeout)
1752{
1753 struct scatterlist *psg = NULL, sg;
1754 unsigned int n_elem = 0;
1755
1756 if (dma_dir != DMA_NONE) {
1757 WARN_ON(!buf);
1758 sg_init_one(&sg, buf, buflen);
1759 psg = &sg;
1760 n_elem++;
1761 }
1762
1763 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1764 timeout);
1765}
1766
1767/**
1768 * ata_pio_need_iordy - check if iordy needed
1769 * @adev: ATA device
1770 *
1771 * Check if the current speed of the device requires IORDY. Used
1772 * by various controllers for chip configuration.
1773 */
1774unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1775{
1776 /* Don't set IORDY if we're preparing for reset. IORDY may
1777 * lead to controller lock up on certain controllers if the
1778 * port is not occupied. See bko#11703 for details.
1779 */
1780 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1781 return 0;
1782 /* Controller doesn't support IORDY. Probably a pointless
1783 * check as the caller should know this.
1784 */
1785 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1786 return 0;
1787 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1788 if (ata_id_is_cfa(adev->id)
1789 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1790 return 0;
1791 /* PIO3 and higher it is mandatory */
1792 if (adev->pio_mode > XFER_PIO_2)
1793 return 1;
1794 /* We turn it on when possible */
1795 if (ata_id_has_iordy(adev->id))
1796 return 1;
1797 return 0;
1798}
1799
1800/**
1801 * ata_pio_mask_no_iordy - Return the non IORDY mask
1802 * @adev: ATA device
1803 *
1804 * Compute the highest mode possible if we are not using iordy. Return
1805 * -1 if no iordy mode is available.
1806 */
1807static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1808{
1809 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1810 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1811 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1812 /* Is the speed faster than the drive allows non IORDY ? */
1813 if (pio) {
1814 /* This is cycle times not frequency - watch the logic! */
1815 if (pio > 240) /* PIO2 is 240nS per cycle */
1816 return 3 << ATA_SHIFT_PIO;
1817 return 7 << ATA_SHIFT_PIO;
1818 }
1819 }
1820 return 3 << ATA_SHIFT_PIO;
1821}
1822
1823/**
1824 * ata_do_dev_read_id - default ID read method
1825 * @dev: device
1826 * @tf: proposed taskfile
1827 * @id: data buffer
1828 *
1829 * Issue the identify taskfile and hand back the buffer containing
1830 * identify data. For some RAID controllers and for pre ATA devices
1831 * this function is wrapped or replaced by the driver
1832 */
1833unsigned int ata_do_dev_read_id(struct ata_device *dev,
1834 struct ata_taskfile *tf, u16 *id)
1835{
1836 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1837 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1838}
1839
1840/**
1841 * ata_dev_read_id - Read ID data from the specified device
1842 * @dev: target device
1843 * @p_class: pointer to class of the target device (may be changed)
1844 * @flags: ATA_READID_* flags
1845 * @id: buffer to read IDENTIFY data into
1846 *
1847 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1848 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1849 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1850 * for pre-ATA4 drives.
1851 *
1852 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1853 * now we abort if we hit that case.
1854 *
1855 * LOCKING:
1856 * Kernel thread context (may sleep)
1857 *
1858 * RETURNS:
1859 * 0 on success, -errno otherwise.
1860 */
1861int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1862 unsigned int flags, u16 *id)
1863{
1864 struct ata_port *ap = dev->link->ap;
1865 unsigned int class = *p_class;
1866 struct ata_taskfile tf;
1867 unsigned int err_mask = 0;
1868 const char *reason;
1869 bool is_semb = class == ATA_DEV_SEMB;
1870 int may_fallback = 1, tried_spinup = 0;
1871 int rc;
1872
1873 if (ata_msg_ctl(ap))
1874 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1875
1876retry:
1877 ata_tf_init(dev, &tf);
1878
1879 switch (class) {
1880 case ATA_DEV_SEMB:
1881 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1882 /* fall through */
1883 case ATA_DEV_ATA:
1884 case ATA_DEV_ZAC:
1885 tf.command = ATA_CMD_ID_ATA;
1886 break;
1887 case ATA_DEV_ATAPI:
1888 tf.command = ATA_CMD_ID_ATAPI;
1889 break;
1890 default:
1891 rc = -ENODEV;
1892 reason = "unsupported class";
1893 goto err_out;
1894 }
1895
1896 tf.protocol = ATA_PROT_PIO;
1897
1898 /* Some devices choke if TF registers contain garbage. Make
1899 * sure those are properly initialized.
1900 */
1901 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1902
1903 /* Device presence detection is unreliable on some
1904 * controllers. Always poll IDENTIFY if available.
1905 */
1906 tf.flags |= ATA_TFLAG_POLLING;
1907
1908 if (ap->ops->read_id)
1909 err_mask = ap->ops->read_id(dev, &tf, id);
1910 else
1911 err_mask = ata_do_dev_read_id(dev, &tf, id);
1912
1913 if (err_mask) {
1914 if (err_mask & AC_ERR_NODEV_HINT) {
1915 ata_dev_dbg(dev, "NODEV after polling detection\n");
1916 return -ENOENT;
1917 }
1918
1919 if (is_semb) {
1920 ata_dev_info(dev,
1921 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1922 /* SEMB is not supported yet */
1923 *p_class = ATA_DEV_SEMB_UNSUP;
1924 return 0;
1925 }
1926
1927 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1928 /* Device or controller might have reported
1929 * the wrong device class. Give a shot at the
1930 * other IDENTIFY if the current one is
1931 * aborted by the device.
1932 */
1933 if (may_fallback) {
1934 may_fallback = 0;
1935
1936 if (class == ATA_DEV_ATA)
1937 class = ATA_DEV_ATAPI;
1938 else
1939 class = ATA_DEV_ATA;
1940 goto retry;
1941 }
1942
1943 /* Control reaches here iff the device aborted
1944 * both flavors of IDENTIFYs which happens
1945 * sometimes with phantom devices.
1946 */
1947 ata_dev_dbg(dev,
1948 "both IDENTIFYs aborted, assuming NODEV\n");
1949 return -ENOENT;
1950 }
1951
1952 rc = -EIO;
1953 reason = "I/O error";
1954 goto err_out;
1955 }
1956
1957 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1958 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1959 "class=%d may_fallback=%d tried_spinup=%d\n",
1960 class, may_fallback, tried_spinup);
1961 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1962 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1963 }
1964
1965 /* Falling back doesn't make sense if ID data was read
1966 * successfully at least once.
1967 */
1968 may_fallback = 0;
1969
1970 swap_buf_le16(id, ATA_ID_WORDS);
1971
1972 /* sanity check */
1973 rc = -EINVAL;
1974 reason = "device reports invalid type";
1975
1976 if (class == ATA_DEV_ATA || class == ATA_DEV_ZAC) {
1977 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1978 goto err_out;
1979 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1980 ata_id_is_ata(id)) {
1981 ata_dev_dbg(dev,
1982 "host indicates ignore ATA devices, ignored\n");
1983 return -ENOENT;
1984 }
1985 } else {
1986 if (ata_id_is_ata(id))
1987 goto err_out;
1988 }
1989
1990 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1991 tried_spinup = 1;
1992 /*
1993 * Drive powered-up in standby mode, and requires a specific
1994 * SET_FEATURES spin-up subcommand before it will accept
1995 * anything other than the original IDENTIFY command.
1996 */
1997 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
1998 if (err_mask && id[2] != 0x738c) {
1999 rc = -EIO;
2000 reason = "SPINUP failed";
2001 goto err_out;
2002 }
2003 /*
2004 * If the drive initially returned incomplete IDENTIFY info,
2005 * we now must reissue the IDENTIFY command.
2006 */
2007 if (id[2] == 0x37c8)
2008 goto retry;
2009 }
2010
2011 if ((flags & ATA_READID_POSTRESET) &&
2012 (class == ATA_DEV_ATA || class == ATA_DEV_ZAC)) {
2013 /*
2014 * The exact sequence expected by certain pre-ATA4 drives is:
2015 * SRST RESET
2016 * IDENTIFY (optional in early ATA)
2017 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2018 * anything else..
2019 * Some drives were very specific about that exact sequence.
2020 *
2021 * Note that ATA4 says lba is mandatory so the second check
2022 * should never trigger.
2023 */
2024 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2025 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2026 if (err_mask) {
2027 rc = -EIO;
2028 reason = "INIT_DEV_PARAMS failed";
2029 goto err_out;
2030 }
2031
2032 /* current CHS translation info (id[53-58]) might be
2033 * changed. reread the identify device info.
2034 */
2035 flags &= ~ATA_READID_POSTRESET;
2036 goto retry;
2037 }
2038 }
2039
2040 *p_class = class;
2041
2042 return 0;
2043
2044 err_out:
2045 if (ata_msg_warn(ap))
2046 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2047 reason, err_mask);
2048 return rc;
2049}
2050
2051/**
2052 * ata_read_log_page - read a specific log page
2053 * @dev: target device
2054 * @log: log to read
2055 * @page: page to read
2056 * @buf: buffer to store read page
2057 * @sectors: number of sectors to read
2058 *
2059 * Read log page using READ_LOG_EXT command.
2060 *
2061 * LOCKING:
2062 * Kernel thread context (may sleep).
2063 *
2064 * RETURNS:
2065 * 0 on success, AC_ERR_* mask otherwise.
2066 */
2067unsigned int ata_read_log_page(struct ata_device *dev, u8 log,
2068 u8 page, void *buf, unsigned int sectors)
2069{
2070 unsigned long ap_flags = dev->link->ap->flags;
2071 struct ata_taskfile tf;
2072 unsigned int err_mask;
2073 bool dma = false;
2074
2075 DPRINTK("read log page - log 0x%x, page 0x%x\n", log, page);
2076
2077 /*
2078 * Return error without actually issuing the command on controllers
2079 * which e.g. lockup on a read log page.
2080 */
2081 if (ap_flags & ATA_FLAG_NO_LOG_PAGE)
2082 return AC_ERR_DEV;
2083
2084retry:
2085 ata_tf_init(dev, &tf);
2086 if (dev->dma_mode && ata_id_has_read_log_dma_ext(dev->id) &&
2087 !(dev->horkage & ATA_HORKAGE_NO_DMA_LOG)) {
2088 tf.command = ATA_CMD_READ_LOG_DMA_EXT;
2089 tf.protocol = ATA_PROT_DMA;
2090 dma = true;
2091 } else {
2092 tf.command = ATA_CMD_READ_LOG_EXT;
2093 tf.protocol = ATA_PROT_PIO;
2094 dma = false;
2095 }
2096 tf.lbal = log;
2097 tf.lbam = page;
2098 tf.nsect = sectors;
2099 tf.hob_nsect = sectors >> 8;
2100 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_LBA48 | ATA_TFLAG_DEVICE;
2101
2102 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
2103 buf, sectors * ATA_SECT_SIZE, 0);
2104
2105 if (err_mask && dma) {
2106 dev->horkage |= ATA_HORKAGE_NO_DMA_LOG;
2107 ata_dev_warn(dev, "READ LOG DMA EXT failed, trying PIO\n");
2108 goto retry;
2109 }
2110
2111 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2112 return err_mask;
2113}
2114
2115static bool ata_log_supported(struct ata_device *dev, u8 log)
2116{
2117 struct ata_port *ap = dev->link->ap;
2118
2119 if (ata_read_log_page(dev, ATA_LOG_DIRECTORY, 0, ap->sector_buf, 1))
2120 return false;
2121 return get_unaligned_le16(&ap->sector_buf[log * 2]) ? true : false;
2122}
2123
2124static bool ata_identify_page_supported(struct ata_device *dev, u8 page)
2125{
2126 struct ata_port *ap = dev->link->ap;
2127 unsigned int err, i;
2128
2129 if (!ata_log_supported(dev, ATA_LOG_IDENTIFY_DEVICE)) {
2130 ata_dev_warn(dev, "ATA Identify Device Log not supported\n");
2131 return false;
2132 }
2133
2134 /*
2135 * Read IDENTIFY DEVICE data log, page 0, to figure out if the page is
2136 * supported.
2137 */
2138 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, 0, ap->sector_buf,
2139 1);
2140 if (err) {
2141 ata_dev_info(dev,
2142 "failed to get Device Identify Log Emask 0x%x\n",
2143 err);
2144 return false;
2145 }
2146
2147 for (i = 0; i < ap->sector_buf[8]; i++) {
2148 if (ap->sector_buf[9 + i] == page)
2149 return true;
2150 }
2151
2152 return false;
2153}
2154
2155static int ata_do_link_spd_horkage(struct ata_device *dev)
2156{
2157 struct ata_link *plink = ata_dev_phys_link(dev);
2158 u32 target, target_limit;
2159
2160 if (!sata_scr_valid(plink))
2161 return 0;
2162
2163 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2164 target = 1;
2165 else
2166 return 0;
2167
2168 target_limit = (1 << target) - 1;
2169
2170 /* if already on stricter limit, no need to push further */
2171 if (plink->sata_spd_limit <= target_limit)
2172 return 0;
2173
2174 plink->sata_spd_limit = target_limit;
2175
2176 /* Request another EH round by returning -EAGAIN if link is
2177 * going faster than the target speed. Forward progress is
2178 * guaranteed by setting sata_spd_limit to target_limit above.
2179 */
2180 if (plink->sata_spd > target) {
2181 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2182 sata_spd_string(target));
2183 return -EAGAIN;
2184 }
2185 return 0;
2186}
2187
2188static inline u8 ata_dev_knobble(struct ata_device *dev)
2189{
2190 struct ata_port *ap = dev->link->ap;
2191
2192 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2193 return 0;
2194
2195 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2196}
2197
2198static void ata_dev_config_ncq_send_recv(struct ata_device *dev)
2199{
2200 struct ata_port *ap = dev->link->ap;
2201 unsigned int err_mask;
2202
2203 if (!ata_log_supported(dev, ATA_LOG_NCQ_SEND_RECV)) {
2204 ata_dev_warn(dev, "NCQ Send/Recv Log not supported\n");
2205 return;
2206 }
2207 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2208 0, ap->sector_buf, 1);
2209 if (err_mask) {
2210 ata_dev_dbg(dev,
2211 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2212 err_mask);
2213 } else {
2214 u8 *cmds = dev->ncq_send_recv_cmds;
2215
2216 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2217 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2218
2219 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2220 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2221 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2222 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2223 }
2224 }
2225}
2226
2227static void ata_dev_config_ncq_non_data(struct ata_device *dev)
2228{
2229 struct ata_port *ap = dev->link->ap;
2230 unsigned int err_mask;
2231
2232 if (!ata_log_supported(dev, ATA_LOG_NCQ_NON_DATA)) {
2233 ata_dev_warn(dev,
2234 "NCQ Send/Recv Log not supported\n");
2235 return;
2236 }
2237 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_NON_DATA,
2238 0, ap->sector_buf, 1);
2239 if (err_mask) {
2240 ata_dev_dbg(dev,
2241 "failed to get NCQ Non-Data Log Emask 0x%x\n",
2242 err_mask);
2243 } else {
2244 u8 *cmds = dev->ncq_non_data_cmds;
2245
2246 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_NON_DATA_SIZE);
2247 }
2248}
2249
2250static void ata_dev_config_ncq_prio(struct ata_device *dev)
2251{
2252 struct ata_port *ap = dev->link->ap;
2253 unsigned int err_mask;
2254
2255 if (!(dev->flags & ATA_DFLAG_NCQ_PRIO_ENABLE)) {
2256 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2257 return;
2258 }
2259
2260 err_mask = ata_read_log_page(dev,
2261 ATA_LOG_IDENTIFY_DEVICE,
2262 ATA_LOG_SATA_SETTINGS,
2263 ap->sector_buf,
2264 1);
2265 if (err_mask) {
2266 ata_dev_dbg(dev,
2267 "failed to get Identify Device data, Emask 0x%x\n",
2268 err_mask);
2269 return;
2270 }
2271
2272 if (ap->sector_buf[ATA_LOG_NCQ_PRIO_OFFSET] & BIT(3)) {
2273 dev->flags |= ATA_DFLAG_NCQ_PRIO;
2274 } else {
2275 dev->flags &= ~ATA_DFLAG_NCQ_PRIO;
2276 ata_dev_dbg(dev, "SATA page does not support priority\n");
2277 }
2278
2279}
2280
2281static int ata_dev_config_ncq(struct ata_device *dev,
2282 char *desc, size_t desc_sz)
2283{
2284 struct ata_port *ap = dev->link->ap;
2285 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2286 unsigned int err_mask;
2287 char *aa_desc = "";
2288
2289 if (!ata_id_has_ncq(dev->id)) {
2290 desc[0] = '\0';
2291 return 0;
2292 }
2293 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2294 snprintf(desc, desc_sz, "NCQ (not used)");
2295 return 0;
2296 }
2297 if (ap->flags & ATA_FLAG_NCQ) {
2298 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2299 dev->flags |= ATA_DFLAG_NCQ;
2300 }
2301
2302 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2303 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2304 ata_id_has_fpdma_aa(dev->id)) {
2305 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2306 SATA_FPDMA_AA);
2307 if (err_mask) {
2308 ata_dev_err(dev,
2309 "failed to enable AA (error_mask=0x%x)\n",
2310 err_mask);
2311 if (err_mask != AC_ERR_DEV) {
2312 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2313 return -EIO;
2314 }
2315 } else
2316 aa_desc = ", AA";
2317 }
2318
2319 if (hdepth >= ddepth)
2320 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2321 else
2322 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2323 ddepth, aa_desc);
2324
2325 if ((ap->flags & ATA_FLAG_FPDMA_AUX)) {
2326 if (ata_id_has_ncq_send_and_recv(dev->id))
2327 ata_dev_config_ncq_send_recv(dev);
2328 if (ata_id_has_ncq_non_data(dev->id))
2329 ata_dev_config_ncq_non_data(dev);
2330 if (ata_id_has_ncq_prio(dev->id))
2331 ata_dev_config_ncq_prio(dev);
2332 }
2333
2334 return 0;
2335}
2336
2337static void ata_dev_config_sense_reporting(struct ata_device *dev)
2338{
2339 unsigned int err_mask;
2340
2341 if (!ata_id_has_sense_reporting(dev->id))
2342 return;
2343
2344 if (ata_id_sense_reporting_enabled(dev->id))
2345 return;
2346
2347 err_mask = ata_dev_set_feature(dev, SETFEATURE_SENSE_DATA, 0x1);
2348 if (err_mask) {
2349 ata_dev_dbg(dev,
2350 "failed to enable Sense Data Reporting, Emask 0x%x\n",
2351 err_mask);
2352 }
2353}
2354
2355static void ata_dev_config_zac(struct ata_device *dev)
2356{
2357 struct ata_port *ap = dev->link->ap;
2358 unsigned int err_mask;
2359 u8 *identify_buf = ap->sector_buf;
2360
2361 dev->zac_zones_optimal_open = U32_MAX;
2362 dev->zac_zones_optimal_nonseq = U32_MAX;
2363 dev->zac_zones_max_open = U32_MAX;
2364
2365 /*
2366 * Always set the 'ZAC' flag for Host-managed devices.
2367 */
2368 if (dev->class == ATA_DEV_ZAC)
2369 dev->flags |= ATA_DFLAG_ZAC;
2370 else if (ata_id_zoned_cap(dev->id) == 0x01)
2371 /*
2372 * Check for host-aware devices.
2373 */
2374 dev->flags |= ATA_DFLAG_ZAC;
2375
2376 if (!(dev->flags & ATA_DFLAG_ZAC))
2377 return;
2378
2379 if (!ata_identify_page_supported(dev, ATA_LOG_ZONED_INFORMATION)) {
2380 ata_dev_warn(dev,
2381 "ATA Zoned Information Log not supported\n");
2382 return;
2383 }
2384
2385 /*
2386 * Read IDENTIFY DEVICE data log, page 9 (Zoned-device information)
2387 */
2388 err_mask = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE,
2389 ATA_LOG_ZONED_INFORMATION,
2390 identify_buf, 1);
2391 if (!err_mask) {
2392 u64 zoned_cap, opt_open, opt_nonseq, max_open;
2393
2394 zoned_cap = get_unaligned_le64(&identify_buf[8]);
2395 if ((zoned_cap >> 63))
2396 dev->zac_zoned_cap = (zoned_cap & 1);
2397 opt_open = get_unaligned_le64(&identify_buf[24]);
2398 if ((opt_open >> 63))
2399 dev->zac_zones_optimal_open = (u32)opt_open;
2400 opt_nonseq = get_unaligned_le64(&identify_buf[32]);
2401 if ((opt_nonseq >> 63))
2402 dev->zac_zones_optimal_nonseq = (u32)opt_nonseq;
2403 max_open = get_unaligned_le64(&identify_buf[40]);
2404 if ((max_open >> 63))
2405 dev->zac_zones_max_open = (u32)max_open;
2406 }
2407}
2408
2409static void ata_dev_config_trusted(struct ata_device *dev)
2410{
2411 struct ata_port *ap = dev->link->ap;
2412 u64 trusted_cap;
2413 unsigned int err;
2414
2415 if (!ata_id_has_trusted(dev->id))
2416 return;
2417
2418 if (!ata_identify_page_supported(dev, ATA_LOG_SECURITY)) {
2419 ata_dev_warn(dev,
2420 "Security Log not supported\n");
2421 return;
2422 }
2423
2424 err = ata_read_log_page(dev, ATA_LOG_IDENTIFY_DEVICE, ATA_LOG_SECURITY,
2425 ap->sector_buf, 1);
2426 if (err) {
2427 ata_dev_dbg(dev,
2428 "failed to read Security Log, Emask 0x%x\n", err);
2429 return;
2430 }
2431
2432 trusted_cap = get_unaligned_le64(&ap->sector_buf[40]);
2433 if (!(trusted_cap & (1ULL << 63))) {
2434 ata_dev_dbg(dev,
2435 "Trusted Computing capability qword not valid!\n");
2436 return;
2437 }
2438
2439 if (trusted_cap & (1 << 0))
2440 dev->flags |= ATA_DFLAG_TRUSTED;
2441}
2442
2443/**
2444 * ata_dev_configure - Configure the specified ATA/ATAPI device
2445 * @dev: Target device to configure
2446 *
2447 * Configure @dev according to @dev->id. Generic and low-level
2448 * driver specific fixups are also applied.
2449 *
2450 * LOCKING:
2451 * Kernel thread context (may sleep)
2452 *
2453 * RETURNS:
2454 * 0 on success, -errno otherwise
2455 */
2456int ata_dev_configure(struct ata_device *dev)
2457{
2458 struct ata_port *ap = dev->link->ap;
2459 struct ata_eh_context *ehc = &dev->link->eh_context;
2460 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2461 const u16 *id = dev->id;
2462 unsigned long xfer_mask;
2463 unsigned int err_mask;
2464 char revbuf[7]; /* XYZ-99\0 */
2465 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2466 char modelbuf[ATA_ID_PROD_LEN+1];
2467 int rc;
2468
2469 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2470 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2471 return 0;
2472 }
2473
2474 if (ata_msg_probe(ap))
2475 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2476
2477 /* set horkage */
2478 dev->horkage |= ata_dev_blacklisted(dev);
2479 ata_force_horkage(dev);
2480
2481 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2482 ata_dev_info(dev, "unsupported device, disabling\n");
2483 ata_dev_disable(dev);
2484 return 0;
2485 }
2486
2487 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2488 dev->class == ATA_DEV_ATAPI) {
2489 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2490 atapi_enabled ? "not supported with this driver"
2491 : "disabled");
2492 ata_dev_disable(dev);
2493 return 0;
2494 }
2495
2496 rc = ata_do_link_spd_horkage(dev);
2497 if (rc)
2498 return rc;
2499
2500 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2501 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2502 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2503 dev->horkage |= ATA_HORKAGE_NOLPM;
2504
2505 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2506 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2507 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2508 }
2509
2510 /* let ACPI work its magic */
2511 rc = ata_acpi_on_devcfg(dev);
2512 if (rc)
2513 return rc;
2514
2515 /* massage HPA, do it early as it might change IDENTIFY data */
2516 rc = ata_hpa_resize(dev);
2517 if (rc)
2518 return rc;
2519
2520 /* print device capabilities */
2521 if (ata_msg_probe(ap))
2522 ata_dev_dbg(dev,
2523 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2524 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2525 __func__,
2526 id[49], id[82], id[83], id[84],
2527 id[85], id[86], id[87], id[88]);
2528
2529 /* initialize to-be-configured parameters */
2530 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2531 dev->max_sectors = 0;
2532 dev->cdb_len = 0;
2533 dev->n_sectors = 0;
2534 dev->cylinders = 0;
2535 dev->heads = 0;
2536 dev->sectors = 0;
2537 dev->multi_count = 0;
2538
2539 /*
2540 * common ATA, ATAPI feature tests
2541 */
2542
2543 /* find max transfer mode; for printk only */
2544 xfer_mask = ata_id_xfermask(id);
2545
2546 if (ata_msg_probe(ap))
2547 ata_dump_id(id);
2548
2549 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2550 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2551 sizeof(fwrevbuf));
2552
2553 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2554 sizeof(modelbuf));
2555
2556 /* ATA-specific feature tests */
2557 if (dev->class == ATA_DEV_ATA || dev->class == ATA_DEV_ZAC) {
2558 if (ata_id_is_cfa(id)) {
2559 /* CPRM may make this media unusable */
2560 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2561 ata_dev_warn(dev,
2562 "supports DRM functions and may not be fully accessible\n");
2563 snprintf(revbuf, 7, "CFA");
2564 } else {
2565 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2566 /* Warn the user if the device has TPM extensions */
2567 if (ata_id_has_tpm(id))
2568 ata_dev_warn(dev,
2569 "supports DRM functions and may not be fully accessible\n");
2570 }
2571
2572 dev->n_sectors = ata_id_n_sectors(id);
2573
2574 /* get current R/W Multiple count setting */
2575 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2576 unsigned int max = dev->id[47] & 0xff;
2577 unsigned int cnt = dev->id[59] & 0xff;
2578 /* only recognize/allow powers of two here */
2579 if (is_power_of_2(max) && is_power_of_2(cnt))
2580 if (cnt <= max)
2581 dev->multi_count = cnt;
2582 }
2583
2584 if (ata_id_has_lba(id)) {
2585 const char *lba_desc;
2586 char ncq_desc[24];
2587
2588 lba_desc = "LBA";
2589 dev->flags |= ATA_DFLAG_LBA;
2590 if (ata_id_has_lba48(id)) {
2591 dev->flags |= ATA_DFLAG_LBA48;
2592 lba_desc = "LBA48";
2593
2594 if (dev->n_sectors >= (1UL << 28) &&
2595 ata_id_has_flush_ext(id))
2596 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2597 }
2598
2599 /* config NCQ */
2600 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2601 if (rc)
2602 return rc;
2603
2604 /* print device info to dmesg */
2605 if (ata_msg_drv(ap) && print_info) {
2606 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2607 revbuf, modelbuf, fwrevbuf,
2608 ata_mode_string(xfer_mask));
2609 ata_dev_info(dev,
2610 "%llu sectors, multi %u: %s %s\n",
2611 (unsigned long long)dev->n_sectors,
2612 dev->multi_count, lba_desc, ncq_desc);
2613 }
2614 } else {
2615 /* CHS */
2616
2617 /* Default translation */
2618 dev->cylinders = id[1];
2619 dev->heads = id[3];
2620 dev->sectors = id[6];
2621
2622 if (ata_id_current_chs_valid(id)) {
2623 /* Current CHS translation is valid. */
2624 dev->cylinders = id[54];
2625 dev->heads = id[55];
2626 dev->sectors = id[56];
2627 }
2628
2629 /* print device info to dmesg */
2630 if (ata_msg_drv(ap) && print_info) {
2631 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2632 revbuf, modelbuf, fwrevbuf,
2633 ata_mode_string(xfer_mask));
2634 ata_dev_info(dev,
2635 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2636 (unsigned long long)dev->n_sectors,
2637 dev->multi_count, dev->cylinders,
2638 dev->heads, dev->sectors);
2639 }
2640 }
2641
2642 /* Check and mark DevSlp capability. Get DevSlp timing variables
2643 * from SATA Settings page of Identify Device Data Log.
2644 */
2645 if (ata_id_has_devslp(dev->id)) {
2646 u8 *sata_setting = ap->sector_buf;
2647 int i, j;
2648
2649 dev->flags |= ATA_DFLAG_DEVSLP;
2650 err_mask = ata_read_log_page(dev,
2651 ATA_LOG_IDENTIFY_DEVICE,
2652 ATA_LOG_SATA_SETTINGS,
2653 sata_setting,
2654 1);
2655 if (err_mask)
2656 ata_dev_dbg(dev,
2657 "failed to get Identify Device Data, Emask 0x%x\n",
2658 err_mask);
2659 else
2660 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2661 j = ATA_LOG_DEVSLP_OFFSET + i;
2662 dev->devslp_timing[i] = sata_setting[j];
2663 }
2664 }
2665 ata_dev_config_sense_reporting(dev);
2666 ata_dev_config_zac(dev);
2667 ata_dev_config_trusted(dev);
2668 dev->cdb_len = 32;
2669 }
2670
2671 /* ATAPI-specific feature tests */
2672 else if (dev->class == ATA_DEV_ATAPI) {
2673 const char *cdb_intr_string = "";
2674 const char *atapi_an_string = "";
2675 const char *dma_dir_string = "";
2676 u32 sntf;
2677
2678 rc = atapi_cdb_len(id);
2679 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2680 if (ata_msg_warn(ap))
2681 ata_dev_warn(dev, "unsupported CDB len\n");
2682 rc = -EINVAL;
2683 goto err_out_nosup;
2684 }
2685 dev->cdb_len = (unsigned int) rc;
2686
2687 /* Enable ATAPI AN if both the host and device have
2688 * the support. If PMP is attached, SNTF is required
2689 * to enable ATAPI AN to discern between PHY status
2690 * changed notifications and ATAPI ANs.
2691 */
2692 if (atapi_an &&
2693 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2694 (!sata_pmp_attached(ap) ||
2695 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2696 /* issue SET feature command to turn this on */
2697 err_mask = ata_dev_set_feature(dev,
2698 SETFEATURES_SATA_ENABLE, SATA_AN);
2699 if (err_mask)
2700 ata_dev_err(dev,
2701 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2702 err_mask);
2703 else {
2704 dev->flags |= ATA_DFLAG_AN;
2705 atapi_an_string = ", ATAPI AN";
2706 }
2707 }
2708
2709 if (ata_id_cdb_intr(dev->id)) {
2710 dev->flags |= ATA_DFLAG_CDB_INTR;
2711 cdb_intr_string = ", CDB intr";
2712 }
2713
2714 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2715 dev->flags |= ATA_DFLAG_DMADIR;
2716 dma_dir_string = ", DMADIR";
2717 }
2718
2719 if (ata_id_has_da(dev->id)) {
2720 dev->flags |= ATA_DFLAG_DA;
2721 zpodd_init(dev);
2722 }
2723
2724 /* print device info to dmesg */
2725 if (ata_msg_drv(ap) && print_info)
2726 ata_dev_info(dev,
2727 "ATAPI: %s, %s, max %s%s%s%s\n",
2728 modelbuf, fwrevbuf,
2729 ata_mode_string(xfer_mask),
2730 cdb_intr_string, atapi_an_string,
2731 dma_dir_string);
2732 }
2733
2734 /* determine max_sectors */
2735 dev->max_sectors = ATA_MAX_SECTORS;
2736 if (dev->flags & ATA_DFLAG_LBA48)
2737 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2738
2739 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2740 200 sectors */
2741 if (ata_dev_knobble(dev)) {
2742 if (ata_msg_drv(ap) && print_info)
2743 ata_dev_info(dev, "applying bridge limits\n");
2744 dev->udma_mask &= ATA_UDMA5;
2745 dev->max_sectors = ATA_MAX_SECTORS;
2746 }
2747
2748 if ((dev->class == ATA_DEV_ATAPI) &&
2749 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2750 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2751 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2752 }
2753
2754 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2755 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2756 dev->max_sectors);
2757
2758 if (dev->horkage & ATA_HORKAGE_MAX_SEC_1024)
2759 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_1024,
2760 dev->max_sectors);
2761
2762 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2763 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2764
2765 if (ap->ops->dev_config)
2766 ap->ops->dev_config(dev);
2767
2768 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2769 /* Let the user know. We don't want to disallow opens for
2770 rescue purposes, or in case the vendor is just a blithering
2771 idiot. Do this after the dev_config call as some controllers
2772 with buggy firmware may want to avoid reporting false device
2773 bugs */
2774
2775 if (print_info) {
2776 ata_dev_warn(dev,
2777"Drive reports diagnostics failure. This may indicate a drive\n");
2778 ata_dev_warn(dev,
2779"fault or invalid emulation. Contact drive vendor for information.\n");
2780 }
2781 }
2782
2783 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2784 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2785 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2786 }
2787
2788 return 0;
2789
2790err_out_nosup:
2791 if (ata_msg_probe(ap))
2792 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2793 return rc;
2794}
2795
2796/**
2797 * ata_cable_40wire - return 40 wire cable type
2798 * @ap: port
2799 *
2800 * Helper method for drivers which want to hardwire 40 wire cable
2801 * detection.
2802 */
2803
2804int ata_cable_40wire(struct ata_port *ap)
2805{
2806 return ATA_CBL_PATA40;
2807}
2808
2809/**
2810 * ata_cable_80wire - return 80 wire cable type
2811 * @ap: port
2812 *
2813 * Helper method for drivers which want to hardwire 80 wire cable
2814 * detection.
2815 */
2816
2817int ata_cable_80wire(struct ata_port *ap)
2818{
2819 return ATA_CBL_PATA80;
2820}
2821
2822/**
2823 * ata_cable_unknown - return unknown PATA cable.
2824 * @ap: port
2825 *
2826 * Helper method for drivers which have no PATA cable detection.
2827 */
2828
2829int ata_cable_unknown(struct ata_port *ap)
2830{
2831 return ATA_CBL_PATA_UNK;
2832}
2833
2834/**
2835 * ata_cable_ignore - return ignored PATA cable.
2836 * @ap: port
2837 *
2838 * Helper method for drivers which don't use cable type to limit
2839 * transfer mode.
2840 */
2841int ata_cable_ignore(struct ata_port *ap)
2842{
2843 return ATA_CBL_PATA_IGN;
2844}
2845
2846/**
2847 * ata_cable_sata - return SATA cable type
2848 * @ap: port
2849 *
2850 * Helper method for drivers which have SATA cables
2851 */
2852
2853int ata_cable_sata(struct ata_port *ap)
2854{
2855 return ATA_CBL_SATA;
2856}
2857
2858/**
2859 * ata_bus_probe - Reset and probe ATA bus
2860 * @ap: Bus to probe
2861 *
2862 * Master ATA bus probing function. Initiates a hardware-dependent
2863 * bus reset, then attempts to identify any devices found on
2864 * the bus.
2865 *
2866 * LOCKING:
2867 * PCI/etc. bus probe sem.
2868 *
2869 * RETURNS:
2870 * Zero on success, negative errno otherwise.
2871 */
2872
2873int ata_bus_probe(struct ata_port *ap)
2874{
2875 unsigned int classes[ATA_MAX_DEVICES];
2876 int tries[ATA_MAX_DEVICES];
2877 int rc;
2878 struct ata_device *dev;
2879
2880 ata_for_each_dev(dev, &ap->link, ALL)
2881 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2882
2883 retry:
2884 ata_for_each_dev(dev, &ap->link, ALL) {
2885 /* If we issue an SRST then an ATA drive (not ATAPI)
2886 * may change configuration and be in PIO0 timing. If
2887 * we do a hard reset (or are coming from power on)
2888 * this is true for ATA or ATAPI. Until we've set a
2889 * suitable controller mode we should not touch the
2890 * bus as we may be talking too fast.
2891 */
2892 dev->pio_mode = XFER_PIO_0;
2893 dev->dma_mode = 0xff;
2894
2895 /* If the controller has a pio mode setup function
2896 * then use it to set the chipset to rights. Don't
2897 * touch the DMA setup as that will be dealt with when
2898 * configuring devices.
2899 */
2900 if (ap->ops->set_piomode)
2901 ap->ops->set_piomode(ap, dev);
2902 }
2903
2904 /* reset and determine device classes */
2905 ap->ops->phy_reset(ap);
2906
2907 ata_for_each_dev(dev, &ap->link, ALL) {
2908 if (dev->class != ATA_DEV_UNKNOWN)
2909 classes[dev->devno] = dev->class;
2910 else
2911 classes[dev->devno] = ATA_DEV_NONE;
2912
2913 dev->class = ATA_DEV_UNKNOWN;
2914 }
2915
2916 /* read IDENTIFY page and configure devices. We have to do the identify
2917 specific sequence bass-ackwards so that PDIAG- is released by
2918 the slave device */
2919
2920 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2921 if (tries[dev->devno])
2922 dev->class = classes[dev->devno];
2923
2924 if (!ata_dev_enabled(dev))
2925 continue;
2926
2927 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2928 dev->id);
2929 if (rc)
2930 goto fail;
2931 }
2932
2933 /* Now ask for the cable type as PDIAG- should have been released */
2934 if (ap->ops->cable_detect)
2935 ap->cbl = ap->ops->cable_detect(ap);
2936
2937 /* We may have SATA bridge glue hiding here irrespective of
2938 * the reported cable types and sensed types. When SATA
2939 * drives indicate we have a bridge, we don't know which end
2940 * of the link the bridge is which is a problem.
2941 */
2942 ata_for_each_dev(dev, &ap->link, ENABLED)
2943 if (ata_id_is_sata(dev->id))
2944 ap->cbl = ATA_CBL_SATA;
2945
2946 /* After the identify sequence we can now set up the devices. We do
2947 this in the normal order so that the user doesn't get confused */
2948
2949 ata_for_each_dev(dev, &ap->link, ENABLED) {
2950 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2951 rc = ata_dev_configure(dev);
2952 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2953 if (rc)
2954 goto fail;
2955 }
2956
2957 /* configure transfer mode */
2958 rc = ata_set_mode(&ap->link, &dev);
2959 if (rc)
2960 goto fail;
2961
2962 ata_for_each_dev(dev, &ap->link, ENABLED)
2963 return 0;
2964
2965 return -ENODEV;
2966
2967 fail:
2968 tries[dev->devno]--;
2969
2970 switch (rc) {
2971 case -EINVAL:
2972 /* eeek, something went very wrong, give up */
2973 tries[dev->devno] = 0;
2974 break;
2975
2976 case -ENODEV:
2977 /* give it just one more chance */
2978 tries[dev->devno] = min(tries[dev->devno], 1);
2979 /* fall through */
2980 case -EIO:
2981 if (tries[dev->devno] == 1) {
2982 /* This is the last chance, better to slow
2983 * down than lose it.
2984 */
2985 sata_down_spd_limit(&ap->link, 0);
2986 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2987 }
2988 }
2989
2990 if (!tries[dev->devno])
2991 ata_dev_disable(dev);
2992
2993 goto retry;
2994}
2995
2996/**
2997 * sata_print_link_status - Print SATA link status
2998 * @link: SATA link to printk link status about
2999 *
3000 * This function prints link speed and status of a SATA link.
3001 *
3002 * LOCKING:
3003 * None.
3004 */
3005static void sata_print_link_status(struct ata_link *link)
3006{
3007 u32 sstatus, scontrol, tmp;
3008
3009 if (sata_scr_read(link, SCR_STATUS, &sstatus))
3010 return;
3011 sata_scr_read(link, SCR_CONTROL, &scontrol);
3012
3013 if (ata_phys_link_online(link)) {
3014 tmp = (sstatus >> 4) & 0xf;
3015 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
3016 sata_spd_string(tmp), sstatus, scontrol);
3017 } else {
3018 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
3019 sstatus, scontrol);
3020 }
3021}
3022
3023/**
3024 * ata_dev_pair - return other device on cable
3025 * @adev: device
3026 *
3027 * Obtain the other device on the same cable, or if none is
3028 * present NULL is returned
3029 */
3030
3031struct ata_device *ata_dev_pair(struct ata_device *adev)
3032{
3033 struct ata_link *link = adev->link;
3034 struct ata_device *pair = &link->device[1 - adev->devno];
3035 if (!ata_dev_enabled(pair))
3036 return NULL;
3037 return pair;
3038}
3039
3040/**
3041 * sata_down_spd_limit - adjust SATA spd limit downward
3042 * @link: Link to adjust SATA spd limit for
3043 * @spd_limit: Additional limit
3044 *
3045 * Adjust SATA spd limit of @link downward. Note that this
3046 * function only adjusts the limit. The change must be applied
3047 * using sata_set_spd().
3048 *
3049 * If @spd_limit is non-zero, the speed is limited to equal to or
3050 * lower than @spd_limit if such speed is supported. If
3051 * @spd_limit is slower than any supported speed, only the lowest
3052 * supported speed is allowed.
3053 *
3054 * LOCKING:
3055 * Inherited from caller.
3056 *
3057 * RETURNS:
3058 * 0 on success, negative errno on failure
3059 */
3060int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
3061{
3062 u32 sstatus, spd, mask;
3063 int rc, bit;
3064
3065 if (!sata_scr_valid(link))
3066 return -EOPNOTSUPP;
3067
3068 /* If SCR can be read, use it to determine the current SPD.
3069 * If not, use cached value in link->sata_spd.
3070 */
3071 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
3072 if (rc == 0 && ata_sstatus_online(sstatus))
3073 spd = (sstatus >> 4) & 0xf;
3074 else
3075 spd = link->sata_spd;
3076
3077 mask = link->sata_spd_limit;
3078 if (mask <= 1)
3079 return -EINVAL;
3080
3081 /* unconditionally mask off the highest bit */
3082 bit = fls(mask) - 1;
3083 mask &= ~(1 << bit);
3084
3085 /*
3086 * Mask off all speeds higher than or equal to the current one. At
3087 * this point, if current SPD is not available and we previously
3088 * recorded the link speed from SStatus, the driver has already
3089 * masked off the highest bit so mask should already be 1 or 0.
3090 * Otherwise, we should not force 1.5Gbps on a link where we have
3091 * not previously recorded speed from SStatus. Just return in this
3092 * case.
3093 */
3094 if (spd > 1)
3095 mask &= (1 << (spd - 1)) - 1;
3096 else
3097 return -EINVAL;
3098
3099 /* were we already at the bottom? */
3100 if (!mask)
3101 return -EINVAL;
3102
3103 if (spd_limit) {
3104 if (mask & ((1 << spd_limit) - 1))
3105 mask &= (1 << spd_limit) - 1;
3106 else {
3107 bit = ffs(mask) - 1;
3108 mask = 1 << bit;
3109 }
3110 }
3111
3112 link->sata_spd_limit = mask;
3113
3114 ata_link_warn(link, "limiting SATA link speed to %s\n",
3115 sata_spd_string(fls(mask)));
3116
3117 return 0;
3118}
3119
3120static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3121{
3122 struct ata_link *host_link = &link->ap->link;
3123 u32 limit, target, spd;
3124
3125 limit = link->sata_spd_limit;
3126
3127 /* Don't configure downstream link faster than upstream link.
3128 * It doesn't speed up anything and some PMPs choke on such
3129 * configuration.
3130 */
3131 if (!ata_is_host_link(link) && host_link->sata_spd)
3132 limit &= (1 << host_link->sata_spd) - 1;
3133
3134 if (limit == UINT_MAX)
3135 target = 0;
3136 else
3137 target = fls(limit);
3138
3139 spd = (*scontrol >> 4) & 0xf;
3140 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3141
3142 return spd != target;
3143}
3144
3145/**
3146 * sata_set_spd_needed - is SATA spd configuration needed
3147 * @link: Link in question
3148 *
3149 * Test whether the spd limit in SControl matches
3150 * @link->sata_spd_limit. This function is used to determine
3151 * whether hardreset is necessary to apply SATA spd
3152 * configuration.
3153 *
3154 * LOCKING:
3155 * Inherited from caller.
3156 *
3157 * RETURNS:
3158 * 1 if SATA spd configuration is needed, 0 otherwise.
3159 */
3160static int sata_set_spd_needed(struct ata_link *link)
3161{
3162 u32 scontrol;
3163
3164 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3165 return 1;
3166
3167 return __sata_set_spd_needed(link, &scontrol);
3168}
3169
3170/**
3171 * sata_set_spd - set SATA spd according to spd limit
3172 * @link: Link to set SATA spd for
3173 *
3174 * Set SATA spd of @link according to sata_spd_limit.
3175 *
3176 * LOCKING:
3177 * Inherited from caller.
3178 *
3179 * RETURNS:
3180 * 0 if spd doesn't need to be changed, 1 if spd has been
3181 * changed. Negative errno if SCR registers are inaccessible.
3182 */
3183int sata_set_spd(struct ata_link *link)
3184{
3185 u32 scontrol;
3186 int rc;
3187
3188 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3189 return rc;
3190
3191 if (!__sata_set_spd_needed(link, &scontrol))
3192 return 0;
3193
3194 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3195 return rc;
3196
3197 return 1;
3198}
3199
3200/*
3201 * This mode timing computation functionality is ported over from
3202 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3203 */
3204/*
3205 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3206 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3207 * for UDMA6, which is currently supported only by Maxtor drives.
3208 *
3209 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3210 */
3211
3212static const struct ata_timing ata_timing[] = {
3213/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3214 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3215 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3216 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3217 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3218 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3219 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3220 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3221
3222 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3223 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3224 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3225
3226 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3227 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3228 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3229 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3230 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3231
3232/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3233 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3234 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3235 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3236 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3237 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3238 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3239 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3240
3241 { 0xFF }
3242};
3243
3244#define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3245#define EZ(v, unit) ((v)?ENOUGH(((v) * 1000), unit):0)
3246
3247static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3248{
3249 q->setup = EZ(t->setup, T);
3250 q->act8b = EZ(t->act8b, T);
3251 q->rec8b = EZ(t->rec8b, T);
3252 q->cyc8b = EZ(t->cyc8b, T);
3253 q->active = EZ(t->active, T);
3254 q->recover = EZ(t->recover, T);
3255 q->dmack_hold = EZ(t->dmack_hold, T);
3256 q->cycle = EZ(t->cycle, T);
3257 q->udma = EZ(t->udma, UT);
3258}
3259
3260void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3261 struct ata_timing *m, unsigned int what)
3262{
3263 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3264 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3265 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3266 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3267 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3268 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3269 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3270 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3271 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3272}
3273
3274const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3275{
3276 const struct ata_timing *t = ata_timing;
3277
3278 while (xfer_mode > t->mode)
3279 t++;
3280
3281 if (xfer_mode == t->mode)
3282 return t;
3283
3284 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
3285 __func__, xfer_mode);
3286
3287 return NULL;
3288}
3289
3290int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3291 struct ata_timing *t, int T, int UT)
3292{
3293 const u16 *id = adev->id;
3294 const struct ata_timing *s;
3295 struct ata_timing p;
3296
3297 /*
3298 * Find the mode.
3299 */
3300
3301 if (!(s = ata_timing_find_mode(speed)))
3302 return -EINVAL;
3303
3304 memcpy(t, s, sizeof(*s));
3305
3306 /*
3307 * If the drive is an EIDE drive, it can tell us it needs extended
3308 * PIO/MW_DMA cycle timing.
3309 */
3310
3311 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3312 memset(&p, 0, sizeof(p));
3313
3314 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3315 if (speed <= XFER_PIO_2)
3316 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3317 else if ((speed <= XFER_PIO_4) ||
3318 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3319 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3320 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3321 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3322
3323 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3324 }
3325
3326 /*
3327 * Convert the timing to bus clock counts.
3328 */
3329
3330 ata_timing_quantize(t, t, T, UT);
3331
3332 /*
3333 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3334 * S.M.A.R.T * and some other commands. We have to ensure that the
3335 * DMA cycle timing is slower/equal than the fastest PIO timing.
3336 */
3337
3338 if (speed > XFER_PIO_6) {
3339 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3340 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3341 }
3342
3343 /*
3344 * Lengthen active & recovery time so that cycle time is correct.
3345 */
3346
3347 if (t->act8b + t->rec8b < t->cyc8b) {
3348 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3349 t->rec8b = t->cyc8b - t->act8b;
3350 }
3351
3352 if (t->active + t->recover < t->cycle) {
3353 t->active += (t->cycle - (t->active + t->recover)) / 2;
3354 t->recover = t->cycle - t->active;
3355 }
3356
3357 /* In a few cases quantisation may produce enough errors to
3358 leave t->cycle too low for the sum of active and recovery
3359 if so we must correct this */
3360 if (t->active + t->recover > t->cycle)
3361 t->cycle = t->active + t->recover;
3362
3363 return 0;
3364}
3365
3366/**
3367 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3368 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3369 * @cycle: cycle duration in ns
3370 *
3371 * Return matching xfer mode for @cycle. The returned mode is of
3372 * the transfer type specified by @xfer_shift. If @cycle is too
3373 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3374 * than the fastest known mode, the fasted mode is returned.
3375 *
3376 * LOCKING:
3377 * None.
3378 *
3379 * RETURNS:
3380 * Matching xfer_mode, 0xff if no match found.
3381 */
3382u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3383{
3384 u8 base_mode = 0xff, last_mode = 0xff;
3385 const struct ata_xfer_ent *ent;
3386 const struct ata_timing *t;
3387
3388 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3389 if (ent->shift == xfer_shift)
3390 base_mode = ent->base;
3391
3392 for (t = ata_timing_find_mode(base_mode);
3393 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3394 unsigned short this_cycle;
3395
3396 switch (xfer_shift) {
3397 case ATA_SHIFT_PIO:
3398 case ATA_SHIFT_MWDMA:
3399 this_cycle = t->cycle;
3400 break;
3401 case ATA_SHIFT_UDMA:
3402 this_cycle = t->udma;
3403 break;
3404 default:
3405 return 0xff;
3406 }
3407
3408 if (cycle > this_cycle)
3409 break;
3410
3411 last_mode = t->mode;
3412 }
3413
3414 return last_mode;
3415}
3416
3417/**
3418 * ata_down_xfermask_limit - adjust dev xfer masks downward
3419 * @dev: Device to adjust xfer masks
3420 * @sel: ATA_DNXFER_* selector
3421 *
3422 * Adjust xfer masks of @dev downward. Note that this function
3423 * does not apply the change. Invoking ata_set_mode() afterwards
3424 * will apply the limit.
3425 *
3426 * LOCKING:
3427 * Inherited from caller.
3428 *
3429 * RETURNS:
3430 * 0 on success, negative errno on failure
3431 */
3432int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3433{
3434 char buf[32];
3435 unsigned long orig_mask, xfer_mask;
3436 unsigned long pio_mask, mwdma_mask, udma_mask;
3437 int quiet, highbit;
3438
3439 quiet = !!(sel & ATA_DNXFER_QUIET);
3440 sel &= ~ATA_DNXFER_QUIET;
3441
3442 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3443 dev->mwdma_mask,
3444 dev->udma_mask);
3445 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3446
3447 switch (sel) {
3448 case ATA_DNXFER_PIO:
3449 highbit = fls(pio_mask) - 1;
3450 pio_mask &= ~(1 << highbit);
3451 break;
3452
3453 case ATA_DNXFER_DMA:
3454 if (udma_mask) {
3455 highbit = fls(udma_mask) - 1;
3456 udma_mask &= ~(1 << highbit);
3457 if (!udma_mask)
3458 return -ENOENT;
3459 } else if (mwdma_mask) {
3460 highbit = fls(mwdma_mask) - 1;
3461 mwdma_mask &= ~(1 << highbit);
3462 if (!mwdma_mask)
3463 return -ENOENT;
3464 }
3465 break;
3466
3467 case ATA_DNXFER_40C:
3468 udma_mask &= ATA_UDMA_MASK_40C;
3469 break;
3470
3471 case ATA_DNXFER_FORCE_PIO0:
3472 pio_mask &= 1;
3473 /* fall through */
3474 case ATA_DNXFER_FORCE_PIO:
3475 mwdma_mask = 0;
3476 udma_mask = 0;
3477 break;
3478
3479 default:
3480 BUG();
3481 }
3482
3483 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3484
3485 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3486 return -ENOENT;
3487
3488 if (!quiet) {
3489 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3490 snprintf(buf, sizeof(buf), "%s:%s",
3491 ata_mode_string(xfer_mask),
3492 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3493 else
3494 snprintf(buf, sizeof(buf), "%s",
3495 ata_mode_string(xfer_mask));
3496
3497 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3498 }
3499
3500 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3501 &dev->udma_mask);
3502
3503 return 0;
3504}
3505
3506static int ata_dev_set_mode(struct ata_device *dev)
3507{
3508 struct ata_port *ap = dev->link->ap;
3509 struct ata_eh_context *ehc = &dev->link->eh_context;
3510 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3511 const char *dev_err_whine = "";
3512 int ign_dev_err = 0;
3513 unsigned int err_mask = 0;
3514 int rc;
3515
3516 dev->flags &= ~ATA_DFLAG_PIO;
3517 if (dev->xfer_shift == ATA_SHIFT_PIO)
3518 dev->flags |= ATA_DFLAG_PIO;
3519
3520 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3521 dev_err_whine = " (SET_XFERMODE skipped)";
3522 else {
3523 if (nosetxfer)
3524 ata_dev_warn(dev,
3525 "NOSETXFER but PATA detected - can't "
3526 "skip SETXFER, might malfunction\n");
3527 err_mask = ata_dev_set_xfermode(dev);
3528 }
3529
3530 if (err_mask & ~AC_ERR_DEV)
3531 goto fail;
3532
3533 /* revalidate */
3534 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3535 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3536 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3537 if (rc)
3538 return rc;
3539
3540 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3541 /* Old CFA may refuse this command, which is just fine */
3542 if (ata_id_is_cfa(dev->id))
3543 ign_dev_err = 1;
3544 /* Catch several broken garbage emulations plus some pre
3545 ATA devices */
3546 if (ata_id_major_version(dev->id) == 0 &&
3547 dev->pio_mode <= XFER_PIO_2)
3548 ign_dev_err = 1;
3549 /* Some very old devices and some bad newer ones fail
3550 any kind of SET_XFERMODE request but support PIO0-2
3551 timings and no IORDY */
3552 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3553 ign_dev_err = 1;
3554 }
3555 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3556 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3557 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3558 dev->dma_mode == XFER_MW_DMA_0 &&
3559 (dev->id[63] >> 8) & 1)
3560 ign_dev_err = 1;
3561
3562 /* if the device is actually configured correctly, ignore dev err */
3563 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3564 ign_dev_err = 1;
3565
3566 if (err_mask & AC_ERR_DEV) {
3567 if (!ign_dev_err)
3568 goto fail;
3569 else
3570 dev_err_whine = " (device error ignored)";
3571 }
3572
3573 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3574 dev->xfer_shift, (int)dev->xfer_mode);
3575
3576 ata_dev_info(dev, "configured for %s%s\n",
3577 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3578 dev_err_whine);
3579
3580 return 0;
3581
3582 fail:
3583 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3584 return -EIO;
3585}
3586
3587/**
3588 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3589 * @link: link on which timings will be programmed
3590 * @r_failed_dev: out parameter for failed device
3591 *
3592 * Standard implementation of the function used to tune and set
3593 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3594 * ata_dev_set_mode() fails, pointer to the failing device is
3595 * returned in @r_failed_dev.
3596 *
3597 * LOCKING:
3598 * PCI/etc. bus probe sem.
3599 *
3600 * RETURNS:
3601 * 0 on success, negative errno otherwise
3602 */
3603
3604int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3605{
3606 struct ata_port *ap = link->ap;
3607 struct ata_device *dev;
3608 int rc = 0, used_dma = 0, found = 0;
3609
3610 /* step 1: calculate xfer_mask */
3611 ata_for_each_dev(dev, link, ENABLED) {
3612 unsigned long pio_mask, dma_mask;
3613 unsigned int mode_mask;
3614
3615 mode_mask = ATA_DMA_MASK_ATA;
3616 if (dev->class == ATA_DEV_ATAPI)
3617 mode_mask = ATA_DMA_MASK_ATAPI;
3618 else if (ata_id_is_cfa(dev->id))
3619 mode_mask = ATA_DMA_MASK_CFA;
3620
3621 ata_dev_xfermask(dev);
3622 ata_force_xfermask(dev);
3623
3624 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3625
3626 if (libata_dma_mask & mode_mask)
3627 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3628 dev->udma_mask);
3629 else
3630 dma_mask = 0;
3631
3632 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3633 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3634
3635 found = 1;
3636 if (ata_dma_enabled(dev))
3637 used_dma = 1;
3638 }
3639 if (!found)
3640 goto out;
3641
3642 /* step 2: always set host PIO timings */
3643 ata_for_each_dev(dev, link, ENABLED) {
3644 if (dev->pio_mode == 0xff) {
3645 ata_dev_warn(dev, "no PIO support\n");
3646 rc = -EINVAL;
3647 goto out;
3648 }
3649
3650 dev->xfer_mode = dev->pio_mode;
3651 dev->xfer_shift = ATA_SHIFT_PIO;
3652 if (ap->ops->set_piomode)
3653 ap->ops->set_piomode(ap, dev);
3654 }
3655
3656 /* step 3: set host DMA timings */
3657 ata_for_each_dev(dev, link, ENABLED) {
3658 if (!ata_dma_enabled(dev))
3659 continue;
3660
3661 dev->xfer_mode = dev->dma_mode;
3662 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3663 if (ap->ops->set_dmamode)
3664 ap->ops->set_dmamode(ap, dev);
3665 }
3666
3667 /* step 4: update devices' xfer mode */
3668 ata_for_each_dev(dev, link, ENABLED) {
3669 rc = ata_dev_set_mode(dev);
3670 if (rc)
3671 goto out;
3672 }
3673
3674 /* Record simplex status. If we selected DMA then the other
3675 * host channels are not permitted to do so.
3676 */
3677 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3678 ap->host->simplex_claimed = ap;
3679
3680 out:
3681 if (rc)
3682 *r_failed_dev = dev;
3683 return rc;
3684}
3685
3686/**
3687 * ata_wait_ready - wait for link to become ready
3688 * @link: link to be waited on
3689 * @deadline: deadline jiffies for the operation
3690 * @check_ready: callback to check link readiness
3691 *
3692 * Wait for @link to become ready. @check_ready should return
3693 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3694 * link doesn't seem to be occupied, other errno for other error
3695 * conditions.
3696 *
3697 * Transient -ENODEV conditions are allowed for
3698 * ATA_TMOUT_FF_WAIT.
3699 *
3700 * LOCKING:
3701 * EH context.
3702 *
3703 * RETURNS:
3704 * 0 if @link is ready before @deadline; otherwise, -errno.
3705 */
3706int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3707 int (*check_ready)(struct ata_link *link))
3708{
3709 unsigned long start = jiffies;
3710 unsigned long nodev_deadline;
3711 int warned = 0;
3712
3713 /* choose which 0xff timeout to use, read comment in libata.h */
3714 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3715 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3716 else
3717 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3718
3719 /* Slave readiness can't be tested separately from master. On
3720 * M/S emulation configuration, this function should be called
3721 * only on the master and it will handle both master and slave.
3722 */
3723 WARN_ON(link == link->ap->slave_link);
3724
3725 if (time_after(nodev_deadline, deadline))
3726 nodev_deadline = deadline;
3727
3728 while (1) {
3729 unsigned long now = jiffies;
3730 int ready, tmp;
3731
3732 ready = tmp = check_ready(link);
3733 if (ready > 0)
3734 return 0;
3735
3736 /*
3737 * -ENODEV could be transient. Ignore -ENODEV if link
3738 * is online. Also, some SATA devices take a long
3739 * time to clear 0xff after reset. Wait for
3740 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3741 * offline.
3742 *
3743 * Note that some PATA controllers (pata_ali) explode
3744 * if status register is read more than once when
3745 * there's no device attached.
3746 */
3747 if (ready == -ENODEV) {
3748 if (ata_link_online(link))
3749 ready = 0;
3750 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3751 !ata_link_offline(link) &&
3752 time_before(now, nodev_deadline))
3753 ready = 0;
3754 }
3755
3756 if (ready)
3757 return ready;
3758 if (time_after(now, deadline))
3759 return -EBUSY;
3760
3761 if (!warned && time_after(now, start + 5 * HZ) &&
3762 (deadline - now > 3 * HZ)) {
3763 ata_link_warn(link,
3764 "link is slow to respond, please be patient "
3765 "(ready=%d)\n", tmp);
3766 warned = 1;
3767 }
3768
3769 ata_msleep(link->ap, 50);
3770 }
3771}
3772
3773/**
3774 * ata_wait_after_reset - wait for link to become ready after reset
3775 * @link: link to be waited on
3776 * @deadline: deadline jiffies for the operation
3777 * @check_ready: callback to check link readiness
3778 *
3779 * Wait for @link to become ready after reset.
3780 *
3781 * LOCKING:
3782 * EH context.
3783 *
3784 * RETURNS:
3785 * 0 if @link is ready before @deadline; otherwise, -errno.
3786 */
3787int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3788 int (*check_ready)(struct ata_link *link))
3789{
3790 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3791
3792 return ata_wait_ready(link, deadline, check_ready);
3793}
3794
3795/**
3796 * sata_link_debounce - debounce SATA phy status
3797 * @link: ATA link to debounce SATA phy status for
3798 * @params: timing parameters { interval, duration, timeout } in msec
3799 * @deadline: deadline jiffies for the operation
3800 *
3801 * Make sure SStatus of @link reaches stable state, determined by
3802 * holding the same value where DET is not 1 for @duration polled
3803 * every @interval, before @timeout. Timeout constraints the
3804 * beginning of the stable state. Because DET gets stuck at 1 on
3805 * some controllers after hot unplugging, this functions waits
3806 * until timeout then returns 0 if DET is stable at 1.
3807 *
3808 * @timeout is further limited by @deadline. The sooner of the
3809 * two is used.
3810 *
3811 * LOCKING:
3812 * Kernel thread context (may sleep)
3813 *
3814 * RETURNS:
3815 * 0 on success, -errno on failure.
3816 */
3817int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3818 unsigned long deadline)
3819{
3820 unsigned long interval = params[0];
3821 unsigned long duration = params[1];
3822 unsigned long last_jiffies, t;
3823 u32 last, cur;
3824 int rc;
3825
3826 t = ata_deadline(jiffies, params[2]);
3827 if (time_before(t, deadline))
3828 deadline = t;
3829
3830 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3831 return rc;
3832 cur &= 0xf;
3833
3834 last = cur;
3835 last_jiffies = jiffies;
3836
3837 while (1) {
3838 ata_msleep(link->ap, interval);
3839 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3840 return rc;
3841 cur &= 0xf;
3842
3843 /* DET stable? */
3844 if (cur == last) {
3845 if (cur == 1 && time_before(jiffies, deadline))
3846 continue;
3847 if (time_after(jiffies,
3848 ata_deadline(last_jiffies, duration)))
3849 return 0;
3850 continue;
3851 }
3852
3853 /* unstable, start over */
3854 last = cur;
3855 last_jiffies = jiffies;
3856
3857 /* Check deadline. If debouncing failed, return
3858 * -EPIPE to tell upper layer to lower link speed.
3859 */
3860 if (time_after(jiffies, deadline))
3861 return -EPIPE;
3862 }
3863}
3864
3865/**
3866 * sata_link_resume - resume SATA link
3867 * @link: ATA link to resume SATA
3868 * @params: timing parameters { interval, duration, timeout } in msec
3869 * @deadline: deadline jiffies for the operation
3870 *
3871 * Resume SATA phy @link and debounce it.
3872 *
3873 * LOCKING:
3874 * Kernel thread context (may sleep)
3875 *
3876 * RETURNS:
3877 * 0 on success, -errno on failure.
3878 */
3879int sata_link_resume(struct ata_link *link, const unsigned long *params,
3880 unsigned long deadline)
3881{
3882 int tries = ATA_LINK_RESUME_TRIES;
3883 u32 scontrol, serror;
3884 int rc;
3885
3886 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3887 return rc;
3888
3889 /*
3890 * Writes to SControl sometimes get ignored under certain
3891 * controllers (ata_piix SIDPR). Make sure DET actually is
3892 * cleared.
3893 */
3894 do {
3895 scontrol = (scontrol & 0x0f0) | 0x300;
3896 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3897 return rc;
3898 /*
3899 * Some PHYs react badly if SStatus is pounded
3900 * immediately after resuming. Delay 200ms before
3901 * debouncing.
3902 */
3903 if (!(link->flags & ATA_LFLAG_NO_DB_DELAY))
3904 ata_msleep(link->ap, 200);
3905
3906 /* is SControl restored correctly? */
3907 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3908 return rc;
3909 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3910
3911 if ((scontrol & 0xf0f) != 0x300) {
3912 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3913 scontrol);
3914 return 0;
3915 }
3916
3917 if (tries < ATA_LINK_RESUME_TRIES)
3918 ata_link_warn(link, "link resume succeeded after %d retries\n",
3919 ATA_LINK_RESUME_TRIES - tries);
3920
3921 if ((rc = sata_link_debounce(link, params, deadline)))
3922 return rc;
3923
3924 /* clear SError, some PHYs require this even for SRST to work */
3925 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3926 rc = sata_scr_write(link, SCR_ERROR, serror);
3927
3928 return rc != -EINVAL ? rc : 0;
3929}
3930
3931/**
3932 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3933 * @link: ATA link to manipulate SControl for
3934 * @policy: LPM policy to configure
3935 * @spm_wakeup: initiate LPM transition to active state
3936 *
3937 * Manipulate the IPM field of the SControl register of @link
3938 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3939 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3940 * the link. This function also clears PHYRDY_CHG before
3941 * returning.
3942 *
3943 * LOCKING:
3944 * EH context.
3945 *
3946 * RETURNS:
3947 * 0 on success, -errno otherwise.
3948 */
3949int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3950 bool spm_wakeup)
3951{
3952 struct ata_eh_context *ehc = &link->eh_context;
3953 bool woken_up = false;
3954 u32 scontrol;
3955 int rc;
3956
3957 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3958 if (rc)
3959 return rc;
3960
3961 switch (policy) {
3962 case ATA_LPM_MAX_POWER:
3963 /* disable all LPM transitions */
3964 scontrol |= (0x7 << 8);
3965 /* initiate transition to active state */
3966 if (spm_wakeup) {
3967 scontrol |= (0x4 << 12);
3968 woken_up = true;
3969 }
3970 break;
3971 case ATA_LPM_MED_POWER:
3972 /* allow LPM to PARTIAL */
3973 scontrol &= ~(0x1 << 8);
3974 scontrol |= (0x6 << 8);
3975 break;
3976 case ATA_LPM_MED_POWER_WITH_DIPM:
3977 case ATA_LPM_MIN_POWER:
3978 if (ata_link_nr_enabled(link) > 0)
3979 /* no restrictions on LPM transitions */
3980 scontrol &= ~(0x7 << 8);
3981 else {
3982 /* empty port, power off */
3983 scontrol &= ~0xf;
3984 scontrol |= (0x1 << 2);
3985 }
3986 break;
3987 default:
3988 WARN_ON(1);
3989 }
3990
3991 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3992 if (rc)
3993 return rc;
3994
3995 /* give the link time to transit out of LPM state */
3996 if (woken_up)
3997 msleep(10);
3998
3999 /* clear PHYRDY_CHG from SError */
4000 ehc->i.serror &= ~SERR_PHYRDY_CHG;
4001 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
4002}
4003
4004/**
4005 * ata_std_prereset - prepare for reset
4006 * @link: ATA link to be reset
4007 * @deadline: deadline jiffies for the operation
4008 *
4009 * @link is about to be reset. Initialize it. Failure from
4010 * prereset makes libata abort whole reset sequence and give up
4011 * that port, so prereset should be best-effort. It does its
4012 * best to prepare for reset sequence but if things go wrong, it
4013 * should just whine, not fail.
4014 *
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4017 *
4018 * RETURNS:
4019 * 0 on success, -errno otherwise.
4020 */
4021int ata_std_prereset(struct ata_link *link, unsigned long deadline)
4022{
4023 struct ata_port *ap = link->ap;
4024 struct ata_eh_context *ehc = &link->eh_context;
4025 const unsigned long *timing = sata_ehc_deb_timing(ehc);
4026 int rc;
4027
4028 /* if we're about to do hardreset, nothing more to do */
4029 if (ehc->i.action & ATA_EH_HARDRESET)
4030 return 0;
4031
4032 /* if SATA, resume link */
4033 if (ap->flags & ATA_FLAG_SATA) {
4034 rc = sata_link_resume(link, timing, deadline);
4035 /* whine about phy resume failure but proceed */
4036 if (rc && rc != -EOPNOTSUPP)
4037 ata_link_warn(link,
4038 "failed to resume link for reset (errno=%d)\n",
4039 rc);
4040 }
4041
4042 /* no point in trying softreset on offline link */
4043 if (ata_phys_link_offline(link))
4044 ehc->i.action &= ~ATA_EH_SOFTRESET;
4045
4046 return 0;
4047}
4048
4049/**
4050 * sata_link_hardreset - reset link via SATA phy reset
4051 * @link: link to reset
4052 * @timing: timing parameters { interval, duration, timeout } in msec
4053 * @deadline: deadline jiffies for the operation
4054 * @online: optional out parameter indicating link onlineness
4055 * @check_ready: optional callback to check link readiness
4056 *
4057 * SATA phy-reset @link using DET bits of SControl register.
4058 * After hardreset, link readiness is waited upon using
4059 * ata_wait_ready() if @check_ready is specified. LLDs are
4060 * allowed to not specify @check_ready and wait itself after this
4061 * function returns. Device classification is LLD's
4062 * responsibility.
4063 *
4064 * *@online is set to one iff reset succeeded and @link is online
4065 * after reset.
4066 *
4067 * LOCKING:
4068 * Kernel thread context (may sleep)
4069 *
4070 * RETURNS:
4071 * 0 on success, -errno otherwise.
4072 */
4073int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
4074 unsigned long deadline,
4075 bool *online, int (*check_ready)(struct ata_link *))
4076{
4077 u32 scontrol;
4078 int rc;
4079
4080 DPRINTK("ENTER\n");
4081
4082 if (online)
4083 *online = false;
4084
4085 if (sata_set_spd_needed(link)) {
4086 /* SATA spec says nothing about how to reconfigure
4087 * spd. To be on the safe side, turn off phy during
4088 * reconfiguration. This works for at least ICH7 AHCI
4089 * and Sil3124.
4090 */
4091 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4092 goto out;
4093
4094 scontrol = (scontrol & 0x0f0) | 0x304;
4095
4096 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
4097 goto out;
4098
4099 sata_set_spd(link);
4100 }
4101
4102 /* issue phy wake/reset */
4103 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
4104 goto out;
4105
4106 scontrol = (scontrol & 0x0f0) | 0x301;
4107
4108 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
4109 goto out;
4110
4111 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
4112 * 10.4.2 says at least 1 ms.
4113 */
4114 ata_msleep(link->ap, 1);
4115
4116 /* bring link back */
4117 rc = sata_link_resume(link, timing, deadline);
4118 if (rc)
4119 goto out;
4120 /* if link is offline nothing more to do */
4121 if (ata_phys_link_offline(link))
4122 goto out;
4123
4124 /* Link is online. From this point, -ENODEV too is an error. */
4125 if (online)
4126 *online = true;
4127
4128 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
4129 /* If PMP is supported, we have to do follow-up SRST.
4130 * Some PMPs don't send D2H Reg FIS after hardreset if
4131 * the first port is empty. Wait only for
4132 * ATA_TMOUT_PMP_SRST_WAIT.
4133 */
4134 if (check_ready) {
4135 unsigned long pmp_deadline;
4136
4137 pmp_deadline = ata_deadline(jiffies,
4138 ATA_TMOUT_PMP_SRST_WAIT);
4139 if (time_after(pmp_deadline, deadline))
4140 pmp_deadline = deadline;
4141 ata_wait_ready(link, pmp_deadline, check_ready);
4142 }
4143 rc = -EAGAIN;
4144 goto out;
4145 }
4146
4147 rc = 0;
4148 if (check_ready)
4149 rc = ata_wait_ready(link, deadline, check_ready);
4150 out:
4151 if (rc && rc != -EAGAIN) {
4152 /* online is set iff link is online && reset succeeded */
4153 if (online)
4154 *online = false;
4155 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
4156 }
4157 DPRINTK("EXIT, rc=%d\n", rc);
4158 return rc;
4159}
4160
4161/**
4162 * sata_std_hardreset - COMRESET w/o waiting or classification
4163 * @link: link to reset
4164 * @class: resulting class of attached device
4165 * @deadline: deadline jiffies for the operation
4166 *
4167 * Standard SATA COMRESET w/o waiting or classification.
4168 *
4169 * LOCKING:
4170 * Kernel thread context (may sleep)
4171 *
4172 * RETURNS:
4173 * 0 if link offline, -EAGAIN if link online, -errno on errors.
4174 */
4175int sata_std_hardreset(struct ata_link *link, unsigned int *class,
4176 unsigned long deadline)
4177{
4178 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
4179 bool online;
4180 int rc;
4181
4182 /* do hardreset */
4183 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
4184 return online ? -EAGAIN : rc;
4185}
4186
4187/**
4188 * ata_std_postreset - standard postreset callback
4189 * @link: the target ata_link
4190 * @classes: classes of attached devices
4191 *
4192 * This function is invoked after a successful reset. Note that
4193 * the device might have been reset more than once using
4194 * different reset methods before postreset is invoked.
4195 *
4196 * LOCKING:
4197 * Kernel thread context (may sleep)
4198 */
4199void ata_std_postreset(struct ata_link *link, unsigned int *classes)
4200{
4201 u32 serror;
4202
4203 DPRINTK("ENTER\n");
4204
4205 /* reset complete, clear SError */
4206 if (!sata_scr_read(link, SCR_ERROR, &serror))
4207 sata_scr_write(link, SCR_ERROR, serror);
4208
4209 /* print link status */
4210 sata_print_link_status(link);
4211
4212 DPRINTK("EXIT\n");
4213}
4214
4215/**
4216 * ata_dev_same_device - Determine whether new ID matches configured device
4217 * @dev: device to compare against
4218 * @new_class: class of the new device
4219 * @new_id: IDENTIFY page of the new device
4220 *
4221 * Compare @new_class and @new_id against @dev and determine
4222 * whether @dev is the device indicated by @new_class and
4223 * @new_id.
4224 *
4225 * LOCKING:
4226 * None.
4227 *
4228 * RETURNS:
4229 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4230 */
4231static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4232 const u16 *new_id)
4233{
4234 const u16 *old_id = dev->id;
4235 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4236 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4237
4238 if (dev->class != new_class) {
4239 ata_dev_info(dev, "class mismatch %d != %d\n",
4240 dev->class, new_class);
4241 return 0;
4242 }
4243
4244 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4245 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4246 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4247 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4248
4249 if (strcmp(model[0], model[1])) {
4250 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
4251 model[0], model[1]);
4252 return 0;
4253 }
4254
4255 if (strcmp(serial[0], serial[1])) {
4256 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
4257 serial[0], serial[1]);
4258 return 0;
4259 }
4260
4261 return 1;
4262}
4263
4264/**
4265 * ata_dev_reread_id - Re-read IDENTIFY data
4266 * @dev: target ATA device
4267 * @readid_flags: read ID flags
4268 *
4269 * Re-read IDENTIFY page and make sure @dev is still attached to
4270 * the port.
4271 *
4272 * LOCKING:
4273 * Kernel thread context (may sleep)
4274 *
4275 * RETURNS:
4276 * 0 on success, negative errno otherwise
4277 */
4278int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4279{
4280 unsigned int class = dev->class;
4281 u16 *id = (void *)dev->link->ap->sector_buf;
4282 int rc;
4283
4284 /* read ID data */
4285 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4286 if (rc)
4287 return rc;
4288
4289 /* is the device still there? */
4290 if (!ata_dev_same_device(dev, class, id))
4291 return -ENODEV;
4292
4293 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4294 return 0;
4295}
4296
4297/**
4298 * ata_dev_revalidate - Revalidate ATA device
4299 * @dev: device to revalidate
4300 * @new_class: new class code
4301 * @readid_flags: read ID flags
4302 *
4303 * Re-read IDENTIFY page, make sure @dev is still attached to the
4304 * port and reconfigure it according to the new IDENTIFY page.
4305 *
4306 * LOCKING:
4307 * Kernel thread context (may sleep)
4308 *
4309 * RETURNS:
4310 * 0 on success, negative errno otherwise
4311 */
4312int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4313 unsigned int readid_flags)
4314{
4315 u64 n_sectors = dev->n_sectors;
4316 u64 n_native_sectors = dev->n_native_sectors;
4317 int rc;
4318
4319 if (!ata_dev_enabled(dev))
4320 return -ENODEV;
4321
4322 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4323 if (ata_class_enabled(new_class) &&
4324 new_class != ATA_DEV_ATA &&
4325 new_class != ATA_DEV_ATAPI &&
4326 new_class != ATA_DEV_ZAC &&
4327 new_class != ATA_DEV_SEMB) {
4328 ata_dev_info(dev, "class mismatch %u != %u\n",
4329 dev->class, new_class);
4330 rc = -ENODEV;
4331 goto fail;
4332 }
4333
4334 /* re-read ID */
4335 rc = ata_dev_reread_id(dev, readid_flags);
4336 if (rc)
4337 goto fail;
4338
4339 /* configure device according to the new ID */
4340 rc = ata_dev_configure(dev);
4341 if (rc)
4342 goto fail;
4343
4344 /* verify n_sectors hasn't changed */
4345 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4346 dev->n_sectors == n_sectors)
4347 return 0;
4348
4349 /* n_sectors has changed */
4350 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4351 (unsigned long long)n_sectors,
4352 (unsigned long long)dev->n_sectors);
4353
4354 /*
4355 * Something could have caused HPA to be unlocked
4356 * involuntarily. If n_native_sectors hasn't changed and the
4357 * new size matches it, keep the device.
4358 */
4359 if (dev->n_native_sectors == n_native_sectors &&
4360 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4361 ata_dev_warn(dev,
4362 "new n_sectors matches native, probably "
4363 "late HPA unlock, n_sectors updated\n");
4364 /* use the larger n_sectors */
4365 return 0;
4366 }
4367
4368 /*
4369 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4370 * unlocking HPA in those cases.
4371 *
4372 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4373 */
4374 if (dev->n_native_sectors == n_native_sectors &&
4375 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4376 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4377 ata_dev_warn(dev,
4378 "old n_sectors matches native, probably "
4379 "late HPA lock, will try to unlock HPA\n");
4380 /* try unlocking HPA */
4381 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4382 rc = -EIO;
4383 } else
4384 rc = -ENODEV;
4385
4386 /* restore original n_[native_]sectors and fail */
4387 dev->n_native_sectors = n_native_sectors;
4388 dev->n_sectors = n_sectors;
4389 fail:
4390 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4391 return rc;
4392}
4393
4394struct ata_blacklist_entry {
4395 const char *model_num;
4396 const char *model_rev;
4397 unsigned long horkage;
4398};
4399
4400static const struct ata_blacklist_entry ata_device_blacklist [] = {
4401 /* Devices with DMA related problems under Linux */
4402 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4403 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4404 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4405 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4406 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4407 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4408 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4409 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4410 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4411 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4412 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4413 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4414 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4415 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4416 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4417 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4418 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4419 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4420 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4421 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4422 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4423 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4424 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4425 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4426 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4427 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4428 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4429 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4430 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4431 { "VRFDFC22048UCHC-TE*", NULL, ATA_HORKAGE_NODMA },
4432 /* Odd clown on sil3726/4726 PMPs */
4433 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4434
4435 /* Weird ATAPI devices */
4436 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4437 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4438 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4439 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4440
4441 /*
4442 * Causes silent data corruption with higher max sects.
4443 * http://lkml.kernel.org/g/x49wpy40ysk.fsf@segfault.boston.devel.redhat.com
4444 */
4445 { "ST380013AS", "3.20", ATA_HORKAGE_MAX_SEC_1024 },
4446
4447 /*
4448 * These devices time out with higher max sects.
4449 * https://bugzilla.kernel.org/show_bug.cgi?id=121671
4450 */
4451 { "LITEON CX1-JB*-HP", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4452 { "LITEON EP1-*", NULL, ATA_HORKAGE_MAX_SEC_1024 },
4453
4454 /* Devices we expect to fail diagnostics */
4455
4456 /* Devices where NCQ should be avoided */
4457 /* NCQ is slow */
4458 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4459 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4460 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4461 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4462 /* NCQ is broken */
4463 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4464 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4465 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4466 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4467 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4468
4469 /* Seagate NCQ + FLUSH CACHE firmware bug */
4470 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4471 ATA_HORKAGE_FIRMWARE_WARN },
4472
4473 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4474 ATA_HORKAGE_FIRMWARE_WARN },
4475
4476 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4477 ATA_HORKAGE_FIRMWARE_WARN },
4478
4479 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4480 ATA_HORKAGE_FIRMWARE_WARN },
4481
4482 /* drives which fail FPDMA_AA activation (some may freeze afterwards) */
4483 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4484 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4485 { "VB0250EAVER", "HPG7", ATA_HORKAGE_BROKEN_FPDMA_AA },
4486
4487 /* Blacklist entries taken from Silicon Image 3124/3132
4488 Windows driver .inf file - also several Linux problem reports */
4489 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4490 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4491 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4492
4493 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4494 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4495
4496 /* Some Sandisk SSDs lock up hard with NCQ enabled. Reported on
4497 SD7SN6S256G and SD8SN8U256G */
4498 { "SanDisk SD[78]SN*G", NULL, ATA_HORKAGE_NONCQ, },
4499
4500 /* devices which puke on READ_NATIVE_MAX */
4501 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4502 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4503 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4504 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4505
4506 /* this one allows HPA unlocking but fails IOs on the area */
4507 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4508
4509 /* Devices which report 1 sector over size HPA */
4510 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4511 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4512 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4513
4514 /* Devices which get the IVB wrong */
4515 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4516 /* Maybe we should just blacklist TSSTcorp... */
4517 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4518
4519 /* Devices that do not need bridging limits applied */
4520 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4521 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4522
4523 /* Devices which aren't very happy with higher link speeds */
4524 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4525 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4526
4527 /*
4528 * Devices which choke on SETXFER. Applies only if both the
4529 * device and controller are SATA.
4530 */
4531 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4532 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4533 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4534 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4535 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4536
4537 /* Crucial BX100 SSD 500GB has broken LPM support */
4538 { "CT500BX100SSD1", NULL, ATA_HORKAGE_NOLPM },
4539
4540 /* 512GB MX100 with MU01 firmware has both queued TRIM and LPM issues */
4541 { "Crucial_CT512MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4542 ATA_HORKAGE_ZERO_AFTER_TRIM |
4543 ATA_HORKAGE_NOLPM, },
4544 /* 512GB MX100 with newer firmware has only LPM issues */
4545 { "Crucial_CT512MX100*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM |
4546 ATA_HORKAGE_NOLPM, },
4547
4548 /* 480GB+ M500 SSDs have both queued TRIM and LPM issues */
4549 { "Crucial_CT480M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4550 ATA_HORKAGE_ZERO_AFTER_TRIM |
4551 ATA_HORKAGE_NOLPM, },
4552 { "Crucial_CT960M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4553 ATA_HORKAGE_ZERO_AFTER_TRIM |
4554 ATA_HORKAGE_NOLPM, },
4555
4556 /* These specific Samsung models/firmware-revs do not handle LPM well */
4557 { "SAMSUNG MZMPC128HBFU-000MV", "CXM14M1Q", ATA_HORKAGE_NOLPM, },
4558 { "SAMSUNG SSD PM830 mSATA *", "CXM13D1Q", ATA_HORKAGE_NOLPM, },
4559
4560 /* Sandisk devices which are known to not handle LPM well */
4561 { "SanDisk SD7UB3Q*G1001", NULL, ATA_HORKAGE_NOLPM, },
4562
4563 /* devices that don't properly handle queued TRIM commands */
4564 { "Micron_M500IT_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4565 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4566 { "Micron_M500_*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4567 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4568 { "Crucial_CT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4569 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4570 { "Micron_M5[15]0_*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4571 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4572 { "Crucial_CT*M550*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4573 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4574 { "Crucial_CT*MX100*", "MU01", ATA_HORKAGE_NO_NCQ_TRIM |
4575 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4576 { "Samsung SSD 840*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4577 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4578 { "Samsung SSD 850*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4579 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4580 { "FCCT*M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM |
4581 ATA_HORKAGE_ZERO_AFTER_TRIM, },
4582
4583 /* devices that don't properly handle TRIM commands */
4584 { "SuperSSpeed S238*", NULL, ATA_HORKAGE_NOTRIM, },
4585
4586 /*
4587 * As defined, the DRAT (Deterministic Read After Trim) and RZAT
4588 * (Return Zero After Trim) flags in the ATA Command Set are
4589 * unreliable in the sense that they only define what happens if
4590 * the device successfully executed the DSM TRIM command. TRIM
4591 * is only advisory, however, and the device is free to silently
4592 * ignore all or parts of the request.
4593 *
4594 * Whitelist drives that are known to reliably return zeroes
4595 * after TRIM.
4596 */
4597
4598 /*
4599 * The intel 510 drive has buggy DRAT/RZAT. Explicitly exclude
4600 * that model before whitelisting all other intel SSDs.
4601 */
4602 { "INTEL*SSDSC2MH*", NULL, 0, },
4603
4604 { "Micron*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4605 { "Crucial*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4606 { "INTEL*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4607 { "SSD*INTEL*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4608 { "Samsung*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4609 { "SAMSUNG*SSD*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4610 { "ST[1248][0248]0[FH]*", NULL, ATA_HORKAGE_ZERO_AFTER_TRIM, },
4611
4612 /*
4613 * Some WD SATA-I drives spin up and down erratically when the link
4614 * is put into the slumber mode. We don't have full list of the
4615 * affected devices. Disable LPM if the device matches one of the
4616 * known prefixes and is SATA-1. As a side effect LPM partial is
4617 * lost too.
4618 *
4619 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4620 */
4621 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4622 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4623 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4624 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4625 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4626 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4627 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4628
4629 /* End Marker */
4630 { }
4631};
4632
4633static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4634{
4635 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4636 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4637 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4638
4639 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4640 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4641
4642 while (ad->model_num) {
4643 if (glob_match(ad->model_num, model_num)) {
4644 if (ad->model_rev == NULL)
4645 return ad->horkage;
4646 if (glob_match(ad->model_rev, model_rev))
4647 return ad->horkage;
4648 }
4649 ad++;
4650 }
4651 return 0;
4652}
4653
4654static int ata_dma_blacklisted(const struct ata_device *dev)
4655{
4656 /* We don't support polling DMA.
4657 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4658 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4659 */
4660 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4661 (dev->flags & ATA_DFLAG_CDB_INTR))
4662 return 1;
4663 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4664}
4665
4666/**
4667 * ata_is_40wire - check drive side detection
4668 * @dev: device
4669 *
4670 * Perform drive side detection decoding, allowing for device vendors
4671 * who can't follow the documentation.
4672 */
4673
4674static int ata_is_40wire(struct ata_device *dev)
4675{
4676 if (dev->horkage & ATA_HORKAGE_IVB)
4677 return ata_drive_40wire_relaxed(dev->id);
4678 return ata_drive_40wire(dev->id);
4679}
4680
4681/**
4682 * cable_is_40wire - 40/80/SATA decider
4683 * @ap: port to consider
4684 *
4685 * This function encapsulates the policy for speed management
4686 * in one place. At the moment we don't cache the result but
4687 * there is a good case for setting ap->cbl to the result when
4688 * we are called with unknown cables (and figuring out if it
4689 * impacts hotplug at all).
4690 *
4691 * Return 1 if the cable appears to be 40 wire.
4692 */
4693
4694static int cable_is_40wire(struct ata_port *ap)
4695{
4696 struct ata_link *link;
4697 struct ata_device *dev;
4698
4699 /* If the controller thinks we are 40 wire, we are. */
4700 if (ap->cbl == ATA_CBL_PATA40)
4701 return 1;
4702
4703 /* If the controller thinks we are 80 wire, we are. */
4704 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4705 return 0;
4706
4707 /* If the system is known to be 40 wire short cable (eg
4708 * laptop), then we allow 80 wire modes even if the drive
4709 * isn't sure.
4710 */
4711 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4712 return 0;
4713
4714 /* If the controller doesn't know, we scan.
4715 *
4716 * Note: We look for all 40 wire detects at this point. Any
4717 * 80 wire detect is taken to be 80 wire cable because
4718 * - in many setups only the one drive (slave if present) will
4719 * give a valid detect
4720 * - if you have a non detect capable drive you don't want it
4721 * to colour the choice
4722 */
4723 ata_for_each_link(link, ap, EDGE) {
4724 ata_for_each_dev(dev, link, ENABLED) {
4725 if (!ata_is_40wire(dev))
4726 return 0;
4727 }
4728 }
4729 return 1;
4730}
4731
4732/**
4733 * ata_dev_xfermask - Compute supported xfermask of the given device
4734 * @dev: Device to compute xfermask for
4735 *
4736 * Compute supported xfermask of @dev and store it in
4737 * dev->*_mask. This function is responsible for applying all
4738 * known limits including host controller limits, device
4739 * blacklist, etc...
4740 *
4741 * LOCKING:
4742 * None.
4743 */
4744static void ata_dev_xfermask(struct ata_device *dev)
4745{
4746 struct ata_link *link = dev->link;
4747 struct ata_port *ap = link->ap;
4748 struct ata_host *host = ap->host;
4749 unsigned long xfer_mask;
4750
4751 /* controller modes available */
4752 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4753 ap->mwdma_mask, ap->udma_mask);
4754
4755 /* drive modes available */
4756 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4757 dev->mwdma_mask, dev->udma_mask);
4758 xfer_mask &= ata_id_xfermask(dev->id);
4759
4760 /*
4761 * CFA Advanced TrueIDE timings are not allowed on a shared
4762 * cable
4763 */
4764 if (ata_dev_pair(dev)) {
4765 /* No PIO5 or PIO6 */
4766 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4767 /* No MWDMA3 or MWDMA 4 */
4768 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4769 }
4770
4771 if (ata_dma_blacklisted(dev)) {
4772 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4773 ata_dev_warn(dev,
4774 "device is on DMA blacklist, disabling DMA\n");
4775 }
4776
4777 if ((host->flags & ATA_HOST_SIMPLEX) &&
4778 host->simplex_claimed && host->simplex_claimed != ap) {
4779 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4780 ata_dev_warn(dev,
4781 "simplex DMA is claimed by other device, disabling DMA\n");
4782 }
4783
4784 if (ap->flags & ATA_FLAG_NO_IORDY)
4785 xfer_mask &= ata_pio_mask_no_iordy(dev);
4786
4787 if (ap->ops->mode_filter)
4788 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4789
4790 /* Apply cable rule here. Don't apply it early because when
4791 * we handle hot plug the cable type can itself change.
4792 * Check this last so that we know if the transfer rate was
4793 * solely limited by the cable.
4794 * Unknown or 80 wire cables reported host side are checked
4795 * drive side as well. Cases where we know a 40wire cable
4796 * is used safely for 80 are not checked here.
4797 */
4798 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4799 /* UDMA/44 or higher would be available */
4800 if (cable_is_40wire(ap)) {
4801 ata_dev_warn(dev,
4802 "limited to UDMA/33 due to 40-wire cable\n");
4803 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4804 }
4805
4806 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4807 &dev->mwdma_mask, &dev->udma_mask);
4808}
4809
4810/**
4811 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4812 * @dev: Device to which command will be sent
4813 *
4814 * Issue SET FEATURES - XFER MODE command to device @dev
4815 * on port @ap.
4816 *
4817 * LOCKING:
4818 * PCI/etc. bus probe sem.
4819 *
4820 * RETURNS:
4821 * 0 on success, AC_ERR_* mask otherwise.
4822 */
4823
4824static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4825{
4826 struct ata_taskfile tf;
4827 unsigned int err_mask;
4828
4829 /* set up set-features taskfile */
4830 DPRINTK("set features - xfer mode\n");
4831
4832 /* Some controllers and ATAPI devices show flaky interrupt
4833 * behavior after setting xfer mode. Use polling instead.
4834 */
4835 ata_tf_init(dev, &tf);
4836 tf.command = ATA_CMD_SET_FEATURES;
4837 tf.feature = SETFEATURES_XFER;
4838 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4839 tf.protocol = ATA_PROT_NODATA;
4840 /* If we are using IORDY we must send the mode setting command */
4841 if (ata_pio_need_iordy(dev))
4842 tf.nsect = dev->xfer_mode;
4843 /* If the device has IORDY and the controller does not - turn it off */
4844 else if (ata_id_has_iordy(dev->id))
4845 tf.nsect = 0x01;
4846 else /* In the ancient relic department - skip all of this */
4847 return 0;
4848
4849 /* On some disks, this command causes spin-up, so we need longer timeout */
4850 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 15000);
4851
4852 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4853 return err_mask;
4854}
4855
4856/**
4857 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4858 * @dev: Device to which command will be sent
4859 * @enable: Whether to enable or disable the feature
4860 * @feature: The sector count represents the feature to set
4861 *
4862 * Issue SET FEATURES - SATA FEATURES command to device @dev
4863 * on port @ap with sector count
4864 *
4865 * LOCKING:
4866 * PCI/etc. bus probe sem.
4867 *
4868 * RETURNS:
4869 * 0 on success, AC_ERR_* mask otherwise.
4870 */
4871unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4872{
4873 struct ata_taskfile tf;
4874 unsigned int err_mask;
4875 unsigned long timeout = 0;
4876
4877 /* set up set-features taskfile */
4878 DPRINTK("set features - SATA features\n");
4879
4880 ata_tf_init(dev, &tf);
4881 tf.command = ATA_CMD_SET_FEATURES;
4882 tf.feature = enable;
4883 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4884 tf.protocol = ATA_PROT_NODATA;
4885 tf.nsect = feature;
4886
4887 if (enable == SETFEATURES_SPINUP)
4888 timeout = ata_probe_timeout ?
4889 ata_probe_timeout * 1000 : SETFEATURES_SPINUP_TIMEOUT;
4890 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, timeout);
4891
4892 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4893 return err_mask;
4894}
4895EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4896
4897/**
4898 * ata_dev_init_params - Issue INIT DEV PARAMS command
4899 * @dev: Device to which command will be sent
4900 * @heads: Number of heads (taskfile parameter)
4901 * @sectors: Number of sectors (taskfile parameter)
4902 *
4903 * LOCKING:
4904 * Kernel thread context (may sleep)
4905 *
4906 * RETURNS:
4907 * 0 on success, AC_ERR_* mask otherwise.
4908 */
4909static unsigned int ata_dev_init_params(struct ata_device *dev,
4910 u16 heads, u16 sectors)
4911{
4912 struct ata_taskfile tf;
4913 unsigned int err_mask;
4914
4915 /* Number of sectors per track 1-255. Number of heads 1-16 */
4916 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4917 return AC_ERR_INVALID;
4918
4919 /* set up init dev params taskfile */
4920 DPRINTK("init dev params \n");
4921
4922 ata_tf_init(dev, &tf);
4923 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4924 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4925 tf.protocol = ATA_PROT_NODATA;
4926 tf.nsect = sectors;
4927 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4928
4929 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4930 /* A clean abort indicates an original or just out of spec drive
4931 and we should continue as we issue the setup based on the
4932 drive reported working geometry */
4933 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4934 err_mask = 0;
4935
4936 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4937 return err_mask;
4938}
4939
4940/**
4941 * atapi_check_dma - Check whether ATAPI DMA can be supported
4942 * @qc: Metadata associated with taskfile to check
4943 *
4944 * Allow low-level driver to filter ATA PACKET commands, returning
4945 * a status indicating whether or not it is OK to use DMA for the
4946 * supplied PACKET command.
4947 *
4948 * LOCKING:
4949 * spin_lock_irqsave(host lock)
4950 *
4951 * RETURNS: 0 when ATAPI DMA can be used
4952 * nonzero otherwise
4953 */
4954int atapi_check_dma(struct ata_queued_cmd *qc)
4955{
4956 struct ata_port *ap = qc->ap;
4957
4958 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4959 * few ATAPI devices choke on such DMA requests.
4960 */
4961 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4962 unlikely(qc->nbytes & 15))
4963 return 1;
4964
4965 if (ap->ops->check_atapi_dma)
4966 return ap->ops->check_atapi_dma(qc);
4967
4968 return 0;
4969}
4970
4971/**
4972 * ata_std_qc_defer - Check whether a qc needs to be deferred
4973 * @qc: ATA command in question
4974 *
4975 * Non-NCQ commands cannot run with any other command, NCQ or
4976 * not. As upper layer only knows the queue depth, we are
4977 * responsible for maintaining exclusion. This function checks
4978 * whether a new command @qc can be issued.
4979 *
4980 * LOCKING:
4981 * spin_lock_irqsave(host lock)
4982 *
4983 * RETURNS:
4984 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4985 */
4986int ata_std_qc_defer(struct ata_queued_cmd *qc)
4987{
4988 struct ata_link *link = qc->dev->link;
4989
4990 if (ata_is_ncq(qc->tf.protocol)) {
4991 if (!ata_tag_valid(link->active_tag))
4992 return 0;
4993 } else {
4994 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4995 return 0;
4996 }
4997
4998 return ATA_DEFER_LINK;
4999}
5000
5001void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
5002
5003/**
5004 * ata_sg_init - Associate command with scatter-gather table.
5005 * @qc: Command to be associated
5006 * @sg: Scatter-gather table.
5007 * @n_elem: Number of elements in s/g table.
5008 *
5009 * Initialize the data-related elements of queued_cmd @qc
5010 * to point to a scatter-gather table @sg, containing @n_elem
5011 * elements.
5012 *
5013 * LOCKING:
5014 * spin_lock_irqsave(host lock)
5015 */
5016void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
5017 unsigned int n_elem)
5018{
5019 qc->sg = sg;
5020 qc->n_elem = n_elem;
5021 qc->cursg = qc->sg;
5022}
5023
5024#ifdef CONFIG_HAS_DMA
5025
5026/**
5027 * ata_sg_clean - Unmap DMA memory associated with command
5028 * @qc: Command containing DMA memory to be released
5029 *
5030 * Unmap all mapped DMA memory associated with this command.
5031 *
5032 * LOCKING:
5033 * spin_lock_irqsave(host lock)
5034 */
5035static void ata_sg_clean(struct ata_queued_cmd *qc)
5036{
5037 struct ata_port *ap = qc->ap;
5038 struct scatterlist *sg = qc->sg;
5039 int dir = qc->dma_dir;
5040
5041 WARN_ON_ONCE(sg == NULL);
5042
5043 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
5044
5045 if (qc->n_elem)
5046 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
5047
5048 qc->flags &= ~ATA_QCFLAG_DMAMAP;
5049 qc->sg = NULL;
5050}
5051
5052/**
5053 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
5054 * @qc: Command with scatter-gather table to be mapped.
5055 *
5056 * DMA-map the scatter-gather table associated with queued_cmd @qc.
5057 *
5058 * LOCKING:
5059 * spin_lock_irqsave(host lock)
5060 *
5061 * RETURNS:
5062 * Zero on success, negative on error.
5063 *
5064 */
5065static int ata_sg_setup(struct ata_queued_cmd *qc)
5066{
5067 struct ata_port *ap = qc->ap;
5068 unsigned int n_elem;
5069
5070 VPRINTK("ENTER, ata%u\n", ap->print_id);
5071
5072 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
5073 if (n_elem < 1)
5074 return -1;
5075
5076 DPRINTK("%d sg elements mapped\n", n_elem);
5077 qc->orig_n_elem = qc->n_elem;
5078 qc->n_elem = n_elem;
5079 qc->flags |= ATA_QCFLAG_DMAMAP;
5080
5081 return 0;
5082}
5083
5084#else /* !CONFIG_HAS_DMA */
5085
5086static inline void ata_sg_clean(struct ata_queued_cmd *qc) {}
5087static inline int ata_sg_setup(struct ata_queued_cmd *qc) { return -1; }
5088
5089#endif /* !CONFIG_HAS_DMA */
5090
5091/**
5092 * swap_buf_le16 - swap halves of 16-bit words in place
5093 * @buf: Buffer to swap
5094 * @buf_words: Number of 16-bit words in buffer.
5095 *
5096 * Swap halves of 16-bit words if needed to convert from
5097 * little-endian byte order to native cpu byte order, or
5098 * vice-versa.
5099 *
5100 * LOCKING:
5101 * Inherited from caller.
5102 */
5103void swap_buf_le16(u16 *buf, unsigned int buf_words)
5104{
5105#ifdef __BIG_ENDIAN
5106 unsigned int i;
5107
5108 for (i = 0; i < buf_words; i++)
5109 buf[i] = le16_to_cpu(buf[i]);
5110#endif /* __BIG_ENDIAN */
5111}
5112
5113/**
5114 * ata_qc_new_init - Request an available ATA command, and initialize it
5115 * @dev: Device from whom we request an available command structure
5116 * @tag: tag
5117 *
5118 * LOCKING:
5119 * None.
5120 */
5121
5122struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev, int tag)
5123{
5124 struct ata_port *ap = dev->link->ap;
5125 struct ata_queued_cmd *qc;
5126
5127 /* no command while frozen */
5128 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
5129 return NULL;
5130
5131 /* libsas case */
5132 if (ap->flags & ATA_FLAG_SAS_HOST) {
5133 tag = ata_sas_allocate_tag(ap);
5134 if (tag < 0)
5135 return NULL;
5136 }
5137
5138 qc = __ata_qc_from_tag(ap, tag);
5139 qc->tag = tag;
5140 qc->scsicmd = NULL;
5141 qc->ap = ap;
5142 qc->dev = dev;
5143
5144 ata_qc_reinit(qc);
5145
5146 return qc;
5147}
5148
5149/**
5150 * ata_qc_free - free unused ata_queued_cmd
5151 * @qc: Command to complete
5152 *
5153 * Designed to free unused ata_queued_cmd object
5154 * in case something prevents using it.
5155 *
5156 * LOCKING:
5157 * spin_lock_irqsave(host lock)
5158 */
5159void ata_qc_free(struct ata_queued_cmd *qc)
5160{
5161 struct ata_port *ap;
5162 unsigned int tag;
5163
5164 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5165 ap = qc->ap;
5166
5167 qc->flags = 0;
5168 tag = qc->tag;
5169 if (likely(ata_tag_valid(tag))) {
5170 qc->tag = ATA_TAG_POISON;
5171 if (ap->flags & ATA_FLAG_SAS_HOST)
5172 ata_sas_free_tag(tag, ap);
5173 }
5174}
5175
5176void __ata_qc_complete(struct ata_queued_cmd *qc)
5177{
5178 struct ata_port *ap;
5179 struct ata_link *link;
5180
5181 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
5182 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
5183 ap = qc->ap;
5184 link = qc->dev->link;
5185
5186 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
5187 ata_sg_clean(qc);
5188
5189 /* command should be marked inactive atomically with qc completion */
5190 if (ata_is_ncq(qc->tf.protocol)) {
5191 link->sactive &= ~(1 << qc->tag);
5192 if (!link->sactive)
5193 ap->nr_active_links--;
5194 } else {
5195 link->active_tag = ATA_TAG_POISON;
5196 ap->nr_active_links--;
5197 }
5198
5199 /* clear exclusive status */
5200 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
5201 ap->excl_link == link))
5202 ap->excl_link = NULL;
5203
5204 /* atapi: mark qc as inactive to prevent the interrupt handler
5205 * from completing the command twice later, before the error handler
5206 * is called. (when rc != 0 and atapi request sense is needed)
5207 */
5208 qc->flags &= ~ATA_QCFLAG_ACTIVE;
5209 ap->qc_active &= ~(1 << qc->tag);
5210
5211 /* call completion callback */
5212 qc->complete_fn(qc);
5213}
5214
5215static void fill_result_tf(struct ata_queued_cmd *qc)
5216{
5217 struct ata_port *ap = qc->ap;
5218
5219 qc->result_tf.flags = qc->tf.flags;
5220 ap->ops->qc_fill_rtf(qc);
5221}
5222
5223static void ata_verify_xfer(struct ata_queued_cmd *qc)
5224{
5225 struct ata_device *dev = qc->dev;
5226
5227 if (!ata_is_data(qc->tf.protocol))
5228 return;
5229
5230 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
5231 return;
5232
5233 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
5234}
5235
5236/**
5237 * ata_qc_complete - Complete an active ATA command
5238 * @qc: Command to complete
5239 *
5240 * Indicate to the mid and upper layers that an ATA command has
5241 * completed, with either an ok or not-ok status.
5242 *
5243 * Refrain from calling this function multiple times when
5244 * successfully completing multiple NCQ commands.
5245 * ata_qc_complete_multiple() should be used instead, which will
5246 * properly update IRQ expect state.
5247 *
5248 * LOCKING:
5249 * spin_lock_irqsave(host lock)
5250 */
5251void ata_qc_complete(struct ata_queued_cmd *qc)
5252{
5253 struct ata_port *ap = qc->ap;
5254
5255 /* Trigger the LED (if available) */
5256 ledtrig_disk_activity(!!(qc->tf.flags & ATA_TFLAG_WRITE));
5257
5258 /* XXX: New EH and old EH use different mechanisms to
5259 * synchronize EH with regular execution path.
5260 *
5261 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5262 * Normal execution path is responsible for not accessing a
5263 * failed qc. libata core enforces the rule by returning NULL
5264 * from ata_qc_from_tag() for failed qcs.
5265 *
5266 * Old EH depends on ata_qc_complete() nullifying completion
5267 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5268 * not synchronize with interrupt handler. Only PIO task is
5269 * taken care of.
5270 */
5271 if (ap->ops->error_handler) {
5272 struct ata_device *dev = qc->dev;
5273 struct ata_eh_info *ehi = &dev->link->eh_info;
5274
5275 if (unlikely(qc->err_mask))
5276 qc->flags |= ATA_QCFLAG_FAILED;
5277
5278 /*
5279 * Finish internal commands without any further processing
5280 * and always with the result TF filled.
5281 */
5282 if (unlikely(ata_tag_internal(qc->tag))) {
5283 fill_result_tf(qc);
5284 trace_ata_qc_complete_internal(qc);
5285 __ata_qc_complete(qc);
5286 return;
5287 }
5288
5289 /*
5290 * Non-internal qc has failed. Fill the result TF and
5291 * summon EH.
5292 */
5293 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5294 fill_result_tf(qc);
5295 trace_ata_qc_complete_failed(qc);
5296 ata_qc_schedule_eh(qc);
5297 return;
5298 }
5299
5300 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5301
5302 /* read result TF if requested */
5303 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5304 fill_result_tf(qc);
5305
5306 trace_ata_qc_complete_done(qc);
5307 /* Some commands need post-processing after successful
5308 * completion.
5309 */
5310 switch (qc->tf.command) {
5311 case ATA_CMD_SET_FEATURES:
5312 if (qc->tf.feature != SETFEATURES_WC_ON &&
5313 qc->tf.feature != SETFEATURES_WC_OFF &&
5314 qc->tf.feature != SETFEATURES_RA_ON &&
5315 qc->tf.feature != SETFEATURES_RA_OFF)
5316 break;
5317 /* fall through */
5318 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5319 case ATA_CMD_SET_MULTI: /* multi_count changed */
5320 /* revalidate device */
5321 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5322 ata_port_schedule_eh(ap);
5323 break;
5324
5325 case ATA_CMD_SLEEP:
5326 dev->flags |= ATA_DFLAG_SLEEPING;
5327 break;
5328 }
5329
5330 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5331 ata_verify_xfer(qc);
5332
5333 __ata_qc_complete(qc);
5334 } else {
5335 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5336 return;
5337
5338 /* read result TF if failed or requested */
5339 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5340 fill_result_tf(qc);
5341
5342 __ata_qc_complete(qc);
5343 }
5344}
5345
5346/**
5347 * ata_qc_complete_multiple - Complete multiple qcs successfully
5348 * @ap: port in question
5349 * @qc_active: new qc_active mask
5350 *
5351 * Complete in-flight commands. This functions is meant to be
5352 * called from low-level driver's interrupt routine to complete
5353 * requests normally. ap->qc_active and @qc_active is compared
5354 * and commands are completed accordingly.
5355 *
5356 * Always use this function when completing multiple NCQ commands
5357 * from IRQ handlers instead of calling ata_qc_complete()
5358 * multiple times to keep IRQ expect status properly in sync.
5359 *
5360 * LOCKING:
5361 * spin_lock_irqsave(host lock)
5362 *
5363 * RETURNS:
5364 * Number of completed commands on success, -errno otherwise.
5365 */
5366int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5367{
5368 int nr_done = 0;
5369 u32 done_mask;
5370
5371 done_mask = ap->qc_active ^ qc_active;
5372
5373 if (unlikely(done_mask & qc_active)) {
5374 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5375 ap->qc_active, qc_active);
5376 return -EINVAL;
5377 }
5378
5379 while (done_mask) {
5380 struct ata_queued_cmd *qc;
5381 unsigned int tag = __ffs(done_mask);
5382
5383 qc = ata_qc_from_tag(ap, tag);
5384 if (qc) {
5385 ata_qc_complete(qc);
5386 nr_done++;
5387 }
5388 done_mask &= ~(1 << tag);
5389 }
5390
5391 return nr_done;
5392}
5393
5394/**
5395 * ata_qc_issue - issue taskfile to device
5396 * @qc: command to issue to device
5397 *
5398 * Prepare an ATA command to submission to device.
5399 * This includes mapping the data into a DMA-able
5400 * area, filling in the S/G table, and finally
5401 * writing the taskfile to hardware, starting the command.
5402 *
5403 * LOCKING:
5404 * spin_lock_irqsave(host lock)
5405 */
5406void ata_qc_issue(struct ata_queued_cmd *qc)
5407{
5408 struct ata_port *ap = qc->ap;
5409 struct ata_link *link = qc->dev->link;
5410 u8 prot = qc->tf.protocol;
5411
5412 /* Make sure only one non-NCQ command is outstanding. The
5413 * check is skipped for old EH because it reuses active qc to
5414 * request ATAPI sense.
5415 */
5416 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5417
5418 if (ata_is_ncq(prot)) {
5419 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5420
5421 if (!link->sactive)
5422 ap->nr_active_links++;
5423 link->sactive |= 1 << qc->tag;
5424 } else {
5425 WARN_ON_ONCE(link->sactive);
5426
5427 ap->nr_active_links++;
5428 link->active_tag = qc->tag;
5429 }
5430
5431 qc->flags |= ATA_QCFLAG_ACTIVE;
5432 ap->qc_active |= 1 << qc->tag;
5433
5434 /*
5435 * We guarantee to LLDs that they will have at least one
5436 * non-zero sg if the command is a data command.
5437 */
5438 if (ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes))
5439 goto sys_err;
5440
5441 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5442 (ap->flags & ATA_FLAG_PIO_DMA)))
5443 if (ata_sg_setup(qc))
5444 goto sys_err;
5445
5446 /* if device is sleeping, schedule reset and abort the link */
5447 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5448 link->eh_info.action |= ATA_EH_RESET;
5449 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5450 ata_link_abort(link);
5451 return;
5452 }
5453
5454 ap->ops->qc_prep(qc);
5455 trace_ata_qc_issue(qc);
5456 qc->err_mask |= ap->ops->qc_issue(qc);
5457 if (unlikely(qc->err_mask))
5458 goto err;
5459 return;
5460
5461sys_err:
5462 qc->err_mask |= AC_ERR_SYSTEM;
5463err:
5464 ata_qc_complete(qc);
5465}
5466
5467/**
5468 * sata_scr_valid - test whether SCRs are accessible
5469 * @link: ATA link to test SCR accessibility for
5470 *
5471 * Test whether SCRs are accessible for @link.
5472 *
5473 * LOCKING:
5474 * None.
5475 *
5476 * RETURNS:
5477 * 1 if SCRs are accessible, 0 otherwise.
5478 */
5479int sata_scr_valid(struct ata_link *link)
5480{
5481 struct ata_port *ap = link->ap;
5482
5483 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5484}
5485
5486/**
5487 * sata_scr_read - read SCR register of the specified port
5488 * @link: ATA link to read SCR for
5489 * @reg: SCR to read
5490 * @val: Place to store read value
5491 *
5492 * Read SCR register @reg of @link into *@val. This function is
5493 * guaranteed to succeed if @link is ap->link, the cable type of
5494 * the port is SATA and the port implements ->scr_read.
5495 *
5496 * LOCKING:
5497 * None if @link is ap->link. Kernel thread context otherwise.
5498 *
5499 * RETURNS:
5500 * 0 on success, negative errno on failure.
5501 */
5502int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5503{
5504 if (ata_is_host_link(link)) {
5505 if (sata_scr_valid(link))
5506 return link->ap->ops->scr_read(link, reg, val);
5507 return -EOPNOTSUPP;
5508 }
5509
5510 return sata_pmp_scr_read(link, reg, val);
5511}
5512
5513/**
5514 * sata_scr_write - write SCR register of the specified port
5515 * @link: ATA link to write SCR for
5516 * @reg: SCR to write
5517 * @val: value to write
5518 *
5519 * Write @val to SCR register @reg of @link. This function is
5520 * guaranteed to succeed if @link is ap->link, the cable type of
5521 * the port is SATA and the port implements ->scr_read.
5522 *
5523 * LOCKING:
5524 * None if @link is ap->link. Kernel thread context otherwise.
5525 *
5526 * RETURNS:
5527 * 0 on success, negative errno on failure.
5528 */
5529int sata_scr_write(struct ata_link *link, int reg, u32 val)
5530{
5531 if (ata_is_host_link(link)) {
5532 if (sata_scr_valid(link))
5533 return link->ap->ops->scr_write(link, reg, val);
5534 return -EOPNOTSUPP;
5535 }
5536
5537 return sata_pmp_scr_write(link, reg, val);
5538}
5539
5540/**
5541 * sata_scr_write_flush - write SCR register of the specified port and flush
5542 * @link: ATA link to write SCR for
5543 * @reg: SCR to write
5544 * @val: value to write
5545 *
5546 * This function is identical to sata_scr_write() except that this
5547 * function performs flush after writing to the register.
5548 *
5549 * LOCKING:
5550 * None if @link is ap->link. Kernel thread context otherwise.
5551 *
5552 * RETURNS:
5553 * 0 on success, negative errno on failure.
5554 */
5555int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5556{
5557 if (ata_is_host_link(link)) {
5558 int rc;
5559
5560 if (sata_scr_valid(link)) {
5561 rc = link->ap->ops->scr_write(link, reg, val);
5562 if (rc == 0)
5563 rc = link->ap->ops->scr_read(link, reg, &val);
5564 return rc;
5565 }
5566 return -EOPNOTSUPP;
5567 }
5568
5569 return sata_pmp_scr_write(link, reg, val);
5570}
5571
5572/**
5573 * ata_phys_link_online - test whether the given link is online
5574 * @link: ATA link to test
5575 *
5576 * Test whether @link is online. Note that this function returns
5577 * 0 if online status of @link cannot be obtained, so
5578 * ata_link_online(link) != !ata_link_offline(link).
5579 *
5580 * LOCKING:
5581 * None.
5582 *
5583 * RETURNS:
5584 * True if the port online status is available and online.
5585 */
5586bool ata_phys_link_online(struct ata_link *link)
5587{
5588 u32 sstatus;
5589
5590 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5591 ata_sstatus_online(sstatus))
5592 return true;
5593 return false;
5594}
5595
5596/**
5597 * ata_phys_link_offline - test whether the given link is offline
5598 * @link: ATA link to test
5599 *
5600 * Test whether @link is offline. Note that this function
5601 * returns 0 if offline status of @link cannot be obtained, so
5602 * ata_link_online(link) != !ata_link_offline(link).
5603 *
5604 * LOCKING:
5605 * None.
5606 *
5607 * RETURNS:
5608 * True if the port offline status is available and offline.
5609 */
5610bool ata_phys_link_offline(struct ata_link *link)
5611{
5612 u32 sstatus;
5613
5614 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5615 !ata_sstatus_online(sstatus))
5616 return true;
5617 return false;
5618}
5619
5620/**
5621 * ata_link_online - test whether the given link is online
5622 * @link: ATA link to test
5623 *
5624 * Test whether @link is online. This is identical to
5625 * ata_phys_link_online() when there's no slave link. When
5626 * there's a slave link, this function should only be called on
5627 * the master link and will return true if any of M/S links is
5628 * online.
5629 *
5630 * LOCKING:
5631 * None.
5632 *
5633 * RETURNS:
5634 * True if the port online status is available and online.
5635 */
5636bool ata_link_online(struct ata_link *link)
5637{
5638 struct ata_link *slave = link->ap->slave_link;
5639
5640 WARN_ON(link == slave); /* shouldn't be called on slave link */
5641
5642 return ata_phys_link_online(link) ||
5643 (slave && ata_phys_link_online(slave));
5644}
5645
5646/**
5647 * ata_link_offline - test whether the given link is offline
5648 * @link: ATA link to test
5649 *
5650 * Test whether @link is offline. This is identical to
5651 * ata_phys_link_offline() when there's no slave link. When
5652 * there's a slave link, this function should only be called on
5653 * the master link and will return true if both M/S links are
5654 * offline.
5655 *
5656 * LOCKING:
5657 * None.
5658 *
5659 * RETURNS:
5660 * True if the port offline status is available and offline.
5661 */
5662bool ata_link_offline(struct ata_link *link)
5663{
5664 struct ata_link *slave = link->ap->slave_link;
5665
5666 WARN_ON(link == slave); /* shouldn't be called on slave link */
5667
5668 return ata_phys_link_offline(link) &&
5669 (!slave || ata_phys_link_offline(slave));
5670}
5671
5672#ifdef CONFIG_PM
5673static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5674 unsigned int action, unsigned int ehi_flags,
5675 bool async)
5676{
5677 struct ata_link *link;
5678 unsigned long flags;
5679
5680 /* Previous resume operation might still be in
5681 * progress. Wait for PM_PENDING to clear.
5682 */
5683 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5684 ata_port_wait_eh(ap);
5685 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5686 }
5687
5688 /* request PM ops to EH */
5689 spin_lock_irqsave(ap->lock, flags);
5690
5691 ap->pm_mesg = mesg;
5692 ap->pflags |= ATA_PFLAG_PM_PENDING;
5693 ata_for_each_link(link, ap, HOST_FIRST) {
5694 link->eh_info.action |= action;
5695 link->eh_info.flags |= ehi_flags;
5696 }
5697
5698 ata_port_schedule_eh(ap);
5699
5700 spin_unlock_irqrestore(ap->lock, flags);
5701
5702 if (!async) {
5703 ata_port_wait_eh(ap);
5704 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5705 }
5706}
5707
5708/*
5709 * On some hardware, device fails to respond after spun down for suspend. As
5710 * the device won't be used before being resumed, we don't need to touch the
5711 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5712 *
5713 * http://thread.gmane.org/gmane.linux.ide/46764
5714 */
5715static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5716 | ATA_EHI_NO_AUTOPSY
5717 | ATA_EHI_NO_RECOVERY;
5718
5719static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5720{
5721 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5722}
5723
5724static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5725{
5726 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5727}
5728
5729static int ata_port_pm_suspend(struct device *dev)
5730{
5731 struct ata_port *ap = to_ata_port(dev);
5732
5733 if (pm_runtime_suspended(dev))
5734 return 0;
5735
5736 ata_port_suspend(ap, PMSG_SUSPEND);
5737 return 0;
5738}
5739
5740static int ata_port_pm_freeze(struct device *dev)
5741{
5742 struct ata_port *ap = to_ata_port(dev);
5743
5744 if (pm_runtime_suspended(dev))
5745 return 0;
5746
5747 ata_port_suspend(ap, PMSG_FREEZE);
5748 return 0;
5749}
5750
5751static int ata_port_pm_poweroff(struct device *dev)
5752{
5753 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5754 return 0;
5755}
5756
5757static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5758 | ATA_EHI_QUIET;
5759
5760static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5761{
5762 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5763}
5764
5765static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5766{
5767 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5768}
5769
5770static int ata_port_pm_resume(struct device *dev)
5771{
5772 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5773 pm_runtime_disable(dev);
5774 pm_runtime_set_active(dev);
5775 pm_runtime_enable(dev);
5776 return 0;
5777}
5778
5779/*
5780 * For ODDs, the upper layer will poll for media change every few seconds,
5781 * which will make it enter and leave suspend state every few seconds. And
5782 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5783 * is very little and the ODD may malfunction after constantly being reset.
5784 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5785 * ODD is attached to the port.
5786 */
5787static int ata_port_runtime_idle(struct device *dev)
5788{
5789 struct ata_port *ap = to_ata_port(dev);
5790 struct ata_link *link;
5791 struct ata_device *adev;
5792
5793 ata_for_each_link(link, ap, HOST_FIRST) {
5794 ata_for_each_dev(adev, link, ENABLED)
5795 if (adev->class == ATA_DEV_ATAPI &&
5796 !zpodd_dev_enabled(adev))
5797 return -EBUSY;
5798 }
5799
5800 return 0;
5801}
5802
5803static int ata_port_runtime_suspend(struct device *dev)
5804{
5805 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5806 return 0;
5807}
5808
5809static int ata_port_runtime_resume(struct device *dev)
5810{
5811 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5812 return 0;
5813}
5814
5815static const struct dev_pm_ops ata_port_pm_ops = {
5816 .suspend = ata_port_pm_suspend,
5817 .resume = ata_port_pm_resume,
5818 .freeze = ata_port_pm_freeze,
5819 .thaw = ata_port_pm_resume,
5820 .poweroff = ata_port_pm_poweroff,
5821 .restore = ata_port_pm_resume,
5822
5823 .runtime_suspend = ata_port_runtime_suspend,
5824 .runtime_resume = ata_port_runtime_resume,
5825 .runtime_idle = ata_port_runtime_idle,
5826};
5827
5828/* sas ports don't participate in pm runtime management of ata_ports,
5829 * and need to resume ata devices at the domain level, not the per-port
5830 * level. sas suspend/resume is async to allow parallel port recovery
5831 * since sas has multiple ata_port instances per Scsi_Host.
5832 */
5833void ata_sas_port_suspend(struct ata_port *ap)
5834{
5835 ata_port_suspend_async(ap, PMSG_SUSPEND);
5836}
5837EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5838
5839void ata_sas_port_resume(struct ata_port *ap)
5840{
5841 ata_port_resume_async(ap, PMSG_RESUME);
5842}
5843EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5844
5845/**
5846 * ata_host_suspend - suspend host
5847 * @host: host to suspend
5848 * @mesg: PM message
5849 *
5850 * Suspend @host. Actual operation is performed by port suspend.
5851 */
5852int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5853{
5854 host->dev->power.power_state = mesg;
5855 return 0;
5856}
5857
5858/**
5859 * ata_host_resume - resume host
5860 * @host: host to resume
5861 *
5862 * Resume @host. Actual operation is performed by port resume.
5863 */
5864void ata_host_resume(struct ata_host *host)
5865{
5866 host->dev->power.power_state = PMSG_ON;
5867}
5868#endif
5869
5870const struct device_type ata_port_type = {
5871 .name = "ata_port",
5872#ifdef CONFIG_PM
5873 .pm = &ata_port_pm_ops,
5874#endif
5875};
5876
5877/**
5878 * ata_dev_init - Initialize an ata_device structure
5879 * @dev: Device structure to initialize
5880 *
5881 * Initialize @dev in preparation for probing.
5882 *
5883 * LOCKING:
5884 * Inherited from caller.
5885 */
5886void ata_dev_init(struct ata_device *dev)
5887{
5888 struct ata_link *link = ata_dev_phys_link(dev);
5889 struct ata_port *ap = link->ap;
5890 unsigned long flags;
5891
5892 /* SATA spd limit is bound to the attached device, reset together */
5893 link->sata_spd_limit = link->hw_sata_spd_limit;
5894 link->sata_spd = 0;
5895
5896 /* High bits of dev->flags are used to record warm plug
5897 * requests which occur asynchronously. Synchronize using
5898 * host lock.
5899 */
5900 spin_lock_irqsave(ap->lock, flags);
5901 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5902 dev->horkage = 0;
5903 spin_unlock_irqrestore(ap->lock, flags);
5904
5905 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5906 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5907 dev->pio_mask = UINT_MAX;
5908 dev->mwdma_mask = UINT_MAX;
5909 dev->udma_mask = UINT_MAX;
5910}
5911
5912/**
5913 * ata_link_init - Initialize an ata_link structure
5914 * @ap: ATA port link is attached to
5915 * @link: Link structure to initialize
5916 * @pmp: Port multiplier port number
5917 *
5918 * Initialize @link.
5919 *
5920 * LOCKING:
5921 * Kernel thread context (may sleep)
5922 */
5923void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5924{
5925 int i;
5926
5927 /* clear everything except for devices */
5928 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5929 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5930
5931 link->ap = ap;
5932 link->pmp = pmp;
5933 link->active_tag = ATA_TAG_POISON;
5934 link->hw_sata_spd_limit = UINT_MAX;
5935
5936 /* can't use iterator, ap isn't initialized yet */
5937 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5938 struct ata_device *dev = &link->device[i];
5939
5940 dev->link = link;
5941 dev->devno = dev - link->device;
5942#ifdef CONFIG_ATA_ACPI
5943 dev->gtf_filter = ata_acpi_gtf_filter;
5944#endif
5945 ata_dev_init(dev);
5946 }
5947}
5948
5949/**
5950 * sata_link_init_spd - Initialize link->sata_spd_limit
5951 * @link: Link to configure sata_spd_limit for
5952 *
5953 * Initialize @link->[hw_]sata_spd_limit to the currently
5954 * configured value.
5955 *
5956 * LOCKING:
5957 * Kernel thread context (may sleep).
5958 *
5959 * RETURNS:
5960 * 0 on success, -errno on failure.
5961 */
5962int sata_link_init_spd(struct ata_link *link)
5963{
5964 u8 spd;
5965 int rc;
5966
5967 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5968 if (rc)
5969 return rc;
5970
5971 spd = (link->saved_scontrol >> 4) & 0xf;
5972 if (spd)
5973 link->hw_sata_spd_limit &= (1 << spd) - 1;
5974
5975 ata_force_link_limits(link);
5976
5977 link->sata_spd_limit = link->hw_sata_spd_limit;
5978
5979 return 0;
5980}
5981
5982/**
5983 * ata_port_alloc - allocate and initialize basic ATA port resources
5984 * @host: ATA host this allocated port belongs to
5985 *
5986 * Allocate and initialize basic ATA port resources.
5987 *
5988 * RETURNS:
5989 * Allocate ATA port on success, NULL on failure.
5990 *
5991 * LOCKING:
5992 * Inherited from calling layer (may sleep).
5993 */
5994struct ata_port *ata_port_alloc(struct ata_host *host)
5995{
5996 struct ata_port *ap;
5997
5998 DPRINTK("ENTER\n");
5999
6000 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
6001 if (!ap)
6002 return NULL;
6003
6004 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
6005 ap->lock = &host->lock;
6006 ap->print_id = -1;
6007 ap->local_port_no = -1;
6008 ap->host = host;
6009 ap->dev = host->dev;
6010
6011#if defined(ATA_VERBOSE_DEBUG)
6012 /* turn on all debugging levels */
6013 ap->msg_enable = 0x00FF;
6014#elif defined(ATA_DEBUG)
6015 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
6016#else
6017 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
6018#endif
6019
6020 mutex_init(&ap->scsi_scan_mutex);
6021 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
6022 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
6023 INIT_LIST_HEAD(&ap->eh_done_q);
6024 init_waitqueue_head(&ap->eh_wait_q);
6025 init_completion(&ap->park_req_pending);
6026 timer_setup(&ap->fastdrain_timer, ata_eh_fastdrain_timerfn,
6027 TIMER_DEFERRABLE);
6028
6029 ap->cbl = ATA_CBL_NONE;
6030
6031 ata_link_init(ap, &ap->link, 0);
6032
6033#ifdef ATA_IRQ_TRAP
6034 ap->stats.unhandled_irq = 1;
6035 ap->stats.idle_irq = 1;
6036#endif
6037 ata_sff_port_init(ap);
6038
6039 return ap;
6040}
6041
6042static void ata_devres_release(struct device *gendev, void *res)
6043{
6044 struct ata_host *host = dev_get_drvdata(gendev);
6045 int i;
6046
6047 for (i = 0; i < host->n_ports; i++) {
6048 struct ata_port *ap = host->ports[i];
6049
6050 if (!ap)
6051 continue;
6052
6053 if (ap->scsi_host)
6054 scsi_host_put(ap->scsi_host);
6055
6056 }
6057
6058 dev_set_drvdata(gendev, NULL);
6059 ata_host_put(host);
6060}
6061
6062static void ata_host_release(struct kref *kref)
6063{
6064 struct ata_host *host = container_of(kref, struct ata_host, kref);
6065 int i;
6066
6067 for (i = 0; i < host->n_ports; i++) {
6068 struct ata_port *ap = host->ports[i];
6069
6070 kfree(ap->pmp_link);
6071 kfree(ap->slave_link);
6072 kfree(ap);
6073 host->ports[i] = NULL;
6074 }
6075 kfree(host);
6076}
6077
6078void ata_host_get(struct ata_host *host)
6079{
6080 kref_get(&host->kref);
6081}
6082
6083void ata_host_put(struct ata_host *host)
6084{
6085 kref_put(&host->kref, ata_host_release);
6086}
6087
6088/**
6089 * ata_host_alloc - allocate and init basic ATA host resources
6090 * @dev: generic device this host is associated with
6091 * @max_ports: maximum number of ATA ports associated with this host
6092 *
6093 * Allocate and initialize basic ATA host resources. LLD calls
6094 * this function to allocate a host, initializes it fully and
6095 * attaches it using ata_host_register().
6096 *
6097 * @max_ports ports are allocated and host->n_ports is
6098 * initialized to @max_ports. The caller is allowed to decrease
6099 * host->n_ports before calling ata_host_register(). The unused
6100 * ports will be automatically freed on registration.
6101 *
6102 * RETURNS:
6103 * Allocate ATA host on success, NULL on failure.
6104 *
6105 * LOCKING:
6106 * Inherited from calling layer (may sleep).
6107 */
6108struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
6109{
6110 struct ata_host *host;
6111 size_t sz;
6112 int i;
6113 void *dr;
6114
6115 DPRINTK("ENTER\n");
6116
6117 /* alloc a container for our list of ATA ports (buses) */
6118 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
6119 host = kzalloc(sz, GFP_KERNEL);
6120 if (!host)
6121 return NULL;
6122
6123 if (!devres_open_group(dev, NULL, GFP_KERNEL))
6124 goto err_free;
6125
6126 dr = devres_alloc(ata_devres_release, 0, GFP_KERNEL);
6127 if (!dr)
6128 goto err_out;
6129
6130 devres_add(dev, dr);
6131 dev_set_drvdata(dev, host);
6132
6133 spin_lock_init(&host->lock);
6134 mutex_init(&host->eh_mutex);
6135 host->dev = dev;
6136 host->n_ports = max_ports;
6137 kref_init(&host->kref);
6138
6139 /* allocate ports bound to this host */
6140 for (i = 0; i < max_ports; i++) {
6141 struct ata_port *ap;
6142
6143 ap = ata_port_alloc(host);
6144 if (!ap)
6145 goto err_out;
6146
6147 ap->port_no = i;
6148 host->ports[i] = ap;
6149 }
6150
6151 devres_remove_group(dev, NULL);
6152 return host;
6153
6154 err_out:
6155 devres_release_group(dev, NULL);
6156 err_free:
6157 kfree(host);
6158 return NULL;
6159}
6160
6161/**
6162 * ata_host_alloc_pinfo - alloc host and init with port_info array
6163 * @dev: generic device this host is associated with
6164 * @ppi: array of ATA port_info to initialize host with
6165 * @n_ports: number of ATA ports attached to this host
6166 *
6167 * Allocate ATA host and initialize with info from @ppi. If NULL
6168 * terminated, @ppi may contain fewer entries than @n_ports. The
6169 * last entry will be used for the remaining ports.
6170 *
6171 * RETURNS:
6172 * Allocate ATA host on success, NULL on failure.
6173 *
6174 * LOCKING:
6175 * Inherited from calling layer (may sleep).
6176 */
6177struct ata_host *ata_host_alloc_pinfo(struct device *dev,
6178 const struct ata_port_info * const * ppi,
6179 int n_ports)
6180{
6181 const struct ata_port_info *pi;
6182 struct ata_host *host;
6183 int i, j;
6184
6185 host = ata_host_alloc(dev, n_ports);
6186 if (!host)
6187 return NULL;
6188
6189 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
6190 struct ata_port *ap = host->ports[i];
6191
6192 if (ppi[j])
6193 pi = ppi[j++];
6194
6195 ap->pio_mask = pi->pio_mask;
6196 ap->mwdma_mask = pi->mwdma_mask;
6197 ap->udma_mask = pi->udma_mask;
6198 ap->flags |= pi->flags;
6199 ap->link.flags |= pi->link_flags;
6200 ap->ops = pi->port_ops;
6201
6202 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
6203 host->ops = pi->port_ops;
6204 }
6205
6206 return host;
6207}
6208
6209/**
6210 * ata_slave_link_init - initialize slave link
6211 * @ap: port to initialize slave link for
6212 *
6213 * Create and initialize slave link for @ap. This enables slave
6214 * link handling on the port.
6215 *
6216 * In libata, a port contains links and a link contains devices.
6217 * There is single host link but if a PMP is attached to it,
6218 * there can be multiple fan-out links. On SATA, there's usually
6219 * a single device connected to a link but PATA and SATA
6220 * controllers emulating TF based interface can have two - master
6221 * and slave.
6222 *
6223 * However, there are a few controllers which don't fit into this
6224 * abstraction too well - SATA controllers which emulate TF
6225 * interface with both master and slave devices but also have
6226 * separate SCR register sets for each device. These controllers
6227 * need separate links for physical link handling
6228 * (e.g. onlineness, link speed) but should be treated like a
6229 * traditional M/S controller for everything else (e.g. command
6230 * issue, softreset).
6231 *
6232 * slave_link is libata's way of handling this class of
6233 * controllers without impacting core layer too much. For
6234 * anything other than physical link handling, the default host
6235 * link is used for both master and slave. For physical link
6236 * handling, separate @ap->slave_link is used. All dirty details
6237 * are implemented inside libata core layer. From LLD's POV, the
6238 * only difference is that prereset, hardreset and postreset are
6239 * called once more for the slave link, so the reset sequence
6240 * looks like the following.
6241 *
6242 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
6243 * softreset(M) -> postreset(M) -> postreset(S)
6244 *
6245 * Note that softreset is called only for the master. Softreset
6246 * resets both M/S by definition, so SRST on master should handle
6247 * both (the standard method will work just fine).
6248 *
6249 * LOCKING:
6250 * Should be called before host is registered.
6251 *
6252 * RETURNS:
6253 * 0 on success, -errno on failure.
6254 */
6255int ata_slave_link_init(struct ata_port *ap)
6256{
6257 struct ata_link *link;
6258
6259 WARN_ON(ap->slave_link);
6260 WARN_ON(ap->flags & ATA_FLAG_PMP);
6261
6262 link = kzalloc(sizeof(*link), GFP_KERNEL);
6263 if (!link)
6264 return -ENOMEM;
6265
6266 ata_link_init(ap, link, 1);
6267 ap->slave_link = link;
6268 return 0;
6269}
6270
6271static void ata_host_stop(struct device *gendev, void *res)
6272{
6273 struct ata_host *host = dev_get_drvdata(gendev);
6274 int i;
6275
6276 WARN_ON(!(host->flags & ATA_HOST_STARTED));
6277
6278 for (i = 0; i < host->n_ports; i++) {
6279 struct ata_port *ap = host->ports[i];
6280
6281 if (ap->ops->port_stop)
6282 ap->ops->port_stop(ap);
6283 }
6284
6285 if (host->ops->host_stop)
6286 host->ops->host_stop(host);
6287}
6288
6289/**
6290 * ata_finalize_port_ops - finalize ata_port_operations
6291 * @ops: ata_port_operations to finalize
6292 *
6293 * An ata_port_operations can inherit from another ops and that
6294 * ops can again inherit from another. This can go on as many
6295 * times as necessary as long as there is no loop in the
6296 * inheritance chain.
6297 *
6298 * Ops tables are finalized when the host is started. NULL or
6299 * unspecified entries are inherited from the closet ancestor
6300 * which has the method and the entry is populated with it.
6301 * After finalization, the ops table directly points to all the
6302 * methods and ->inherits is no longer necessary and cleared.
6303 *
6304 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
6305 *
6306 * LOCKING:
6307 * None.
6308 */
6309static void ata_finalize_port_ops(struct ata_port_operations *ops)
6310{
6311 static DEFINE_SPINLOCK(lock);
6312 const struct ata_port_operations *cur;
6313 void **begin = (void **)ops;
6314 void **end = (void **)&ops->inherits;
6315 void **pp;
6316
6317 if (!ops || !ops->inherits)
6318 return;
6319
6320 spin_lock(&lock);
6321
6322 for (cur = ops->inherits; cur; cur = cur->inherits) {
6323 void **inherit = (void **)cur;
6324
6325 for (pp = begin; pp < end; pp++, inherit++)
6326 if (!*pp)
6327 *pp = *inherit;
6328 }
6329
6330 for (pp = begin; pp < end; pp++)
6331 if (IS_ERR(*pp))
6332 *pp = NULL;
6333
6334 ops->inherits = NULL;
6335
6336 spin_unlock(&lock);
6337}
6338
6339/**
6340 * ata_host_start - start and freeze ports of an ATA host
6341 * @host: ATA host to start ports for
6342 *
6343 * Start and then freeze ports of @host. Started status is
6344 * recorded in host->flags, so this function can be called
6345 * multiple times. Ports are guaranteed to get started only
6346 * once. If host->ops isn't initialized yet, its set to the
6347 * first non-dummy port ops.
6348 *
6349 * LOCKING:
6350 * Inherited from calling layer (may sleep).
6351 *
6352 * RETURNS:
6353 * 0 if all ports are started successfully, -errno otherwise.
6354 */
6355int ata_host_start(struct ata_host *host)
6356{
6357 int have_stop = 0;
6358 void *start_dr = NULL;
6359 int i, rc;
6360
6361 if (host->flags & ATA_HOST_STARTED)
6362 return 0;
6363
6364 ata_finalize_port_ops(host->ops);
6365
6366 for (i = 0; i < host->n_ports; i++) {
6367 struct ata_port *ap = host->ports[i];
6368
6369 ata_finalize_port_ops(ap->ops);
6370
6371 if (!host->ops && !ata_port_is_dummy(ap))
6372 host->ops = ap->ops;
6373
6374 if (ap->ops->port_stop)
6375 have_stop = 1;
6376 }
6377
6378 if (host->ops->host_stop)
6379 have_stop = 1;
6380
6381 if (have_stop) {
6382 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6383 if (!start_dr)
6384 return -ENOMEM;
6385 }
6386
6387 for (i = 0; i < host->n_ports; i++) {
6388 struct ata_port *ap = host->ports[i];
6389
6390 if (ap->ops->port_start) {
6391 rc = ap->ops->port_start(ap);
6392 if (rc) {
6393 if (rc != -ENODEV)
6394 dev_err(host->dev,
6395 "failed to start port %d (errno=%d)\n",
6396 i, rc);
6397 goto err_out;
6398 }
6399 }
6400 ata_eh_freeze_port(ap);
6401 }
6402
6403 if (start_dr)
6404 devres_add(host->dev, start_dr);
6405 host->flags |= ATA_HOST_STARTED;
6406 return 0;
6407
6408 err_out:
6409 while (--i >= 0) {
6410 struct ata_port *ap = host->ports[i];
6411
6412 if (ap->ops->port_stop)
6413 ap->ops->port_stop(ap);
6414 }
6415 devres_free(start_dr);
6416 return rc;
6417}
6418
6419/**
6420 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6421 * @host: host to initialize
6422 * @dev: device host is attached to
6423 * @ops: port_ops
6424 *
6425 */
6426void ata_host_init(struct ata_host *host, struct device *dev,
6427 struct ata_port_operations *ops)
6428{
6429 spin_lock_init(&host->lock);
6430 mutex_init(&host->eh_mutex);
6431 host->n_tags = ATA_MAX_QUEUE - 1;
6432 host->dev = dev;
6433 host->ops = ops;
6434}
6435
6436void __ata_port_probe(struct ata_port *ap)
6437{
6438 struct ata_eh_info *ehi = &ap->link.eh_info;
6439 unsigned long flags;
6440
6441 /* kick EH for boot probing */
6442 spin_lock_irqsave(ap->lock, flags);
6443
6444 ehi->probe_mask |= ATA_ALL_DEVICES;
6445 ehi->action |= ATA_EH_RESET;
6446 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6447
6448 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6449 ap->pflags |= ATA_PFLAG_LOADING;
6450 ata_port_schedule_eh(ap);
6451
6452 spin_unlock_irqrestore(ap->lock, flags);
6453}
6454
6455int ata_port_probe(struct ata_port *ap)
6456{
6457 int rc = 0;
6458
6459 if (ap->ops->error_handler) {
6460 __ata_port_probe(ap);
6461 ata_port_wait_eh(ap);
6462 } else {
6463 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6464 rc = ata_bus_probe(ap);
6465 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6466 }
6467 return rc;
6468}
6469
6470
6471static void async_port_probe(void *data, async_cookie_t cookie)
6472{
6473 struct ata_port *ap = data;
6474
6475 /*
6476 * If we're not allowed to scan this host in parallel,
6477 * we need to wait until all previous scans have completed
6478 * before going further.
6479 * Jeff Garzik says this is only within a controller, so we
6480 * don't need to wait for port 0, only for later ports.
6481 */
6482 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6483 async_synchronize_cookie(cookie);
6484
6485 (void)ata_port_probe(ap);
6486
6487 /* in order to keep device order, we need to synchronize at this point */
6488 async_synchronize_cookie(cookie);
6489
6490 ata_scsi_scan_host(ap, 1);
6491}
6492
6493/**
6494 * ata_host_register - register initialized ATA host
6495 * @host: ATA host to register
6496 * @sht: template for SCSI host
6497 *
6498 * Register initialized ATA host. @host is allocated using
6499 * ata_host_alloc() and fully initialized by LLD. This function
6500 * starts ports, registers @host with ATA and SCSI layers and
6501 * probe registered devices.
6502 *
6503 * LOCKING:
6504 * Inherited from calling layer (may sleep).
6505 *
6506 * RETURNS:
6507 * 0 on success, -errno otherwise.
6508 */
6509int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6510{
6511 int i, rc;
6512
6513 host->n_tags = clamp(sht->can_queue, 1, ATA_MAX_QUEUE - 1);
6514
6515 /* host must have been started */
6516 if (!(host->flags & ATA_HOST_STARTED)) {
6517 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6518 WARN_ON(1);
6519 return -EINVAL;
6520 }
6521
6522 /* Blow away unused ports. This happens when LLD can't
6523 * determine the exact number of ports to allocate at
6524 * allocation time.
6525 */
6526 for (i = host->n_ports; host->ports[i]; i++)
6527 kfree(host->ports[i]);
6528
6529 /* give ports names and add SCSI hosts */
6530 for (i = 0; i < host->n_ports; i++) {
6531 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6532 host->ports[i]->local_port_no = i + 1;
6533 }
6534
6535 /* Create associated sysfs transport objects */
6536 for (i = 0; i < host->n_ports; i++) {
6537 rc = ata_tport_add(host->dev,host->ports[i]);
6538 if (rc) {
6539 goto err_tadd;
6540 }
6541 }
6542
6543 rc = ata_scsi_add_hosts(host, sht);
6544 if (rc)
6545 goto err_tadd;
6546
6547 /* set cable, sata_spd_limit and report */
6548 for (i = 0; i < host->n_ports; i++) {
6549 struct ata_port *ap = host->ports[i];
6550 unsigned long xfer_mask;
6551
6552 /* set SATA cable type if still unset */
6553 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6554 ap->cbl = ATA_CBL_SATA;
6555
6556 /* init sata_spd_limit to the current value */
6557 sata_link_init_spd(&ap->link);
6558 if (ap->slave_link)
6559 sata_link_init_spd(ap->slave_link);
6560
6561 /* print per-port info to dmesg */
6562 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6563 ap->udma_mask);
6564
6565 if (!ata_port_is_dummy(ap)) {
6566 ata_port_info(ap, "%cATA max %s %s\n",
6567 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6568 ata_mode_string(xfer_mask),
6569 ap->link.eh_info.desc);
6570 ata_ehi_clear_desc(&ap->link.eh_info);
6571 } else
6572 ata_port_info(ap, "DUMMY\n");
6573 }
6574
6575 /* perform each probe asynchronously */
6576 for (i = 0; i < host->n_ports; i++) {
6577 struct ata_port *ap = host->ports[i];
6578 async_schedule(async_port_probe, ap);
6579 }
6580
6581 return 0;
6582
6583 err_tadd:
6584 while (--i >= 0) {
6585 ata_tport_delete(host->ports[i]);
6586 }
6587 return rc;
6588
6589}
6590
6591/**
6592 * ata_host_activate - start host, request IRQ and register it
6593 * @host: target ATA host
6594 * @irq: IRQ to request
6595 * @irq_handler: irq_handler used when requesting IRQ
6596 * @irq_flags: irq_flags used when requesting IRQ
6597 * @sht: scsi_host_template to use when registering the host
6598 *
6599 * After allocating an ATA host and initializing it, most libata
6600 * LLDs perform three steps to activate the host - start host,
6601 * request IRQ and register it. This helper takes necessary
6602 * arguments and performs the three steps in one go.
6603 *
6604 * An invalid IRQ skips the IRQ registration and expects the host to
6605 * have set polling mode on the port. In this case, @irq_handler
6606 * should be NULL.
6607 *
6608 * LOCKING:
6609 * Inherited from calling layer (may sleep).
6610 *
6611 * RETURNS:
6612 * 0 on success, -errno otherwise.
6613 */
6614int ata_host_activate(struct ata_host *host, int irq,
6615 irq_handler_t irq_handler, unsigned long irq_flags,
6616 struct scsi_host_template *sht)
6617{
6618 int i, rc;
6619 char *irq_desc;
6620
6621 rc = ata_host_start(host);
6622 if (rc)
6623 return rc;
6624
6625 /* Special case for polling mode */
6626 if (!irq) {
6627 WARN_ON(irq_handler);
6628 return ata_host_register(host, sht);
6629 }
6630
6631 irq_desc = devm_kasprintf(host->dev, GFP_KERNEL, "%s[%s]",
6632 dev_driver_string(host->dev),
6633 dev_name(host->dev));
6634 if (!irq_desc)
6635 return -ENOMEM;
6636
6637 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6638 irq_desc, host);
6639 if (rc)
6640 return rc;
6641
6642 for (i = 0; i < host->n_ports; i++)
6643 ata_port_desc(host->ports[i], "irq %d", irq);
6644
6645 rc = ata_host_register(host, sht);
6646 /* if failed, just free the IRQ and leave ports alone */
6647 if (rc)
6648 devm_free_irq(host->dev, irq, host);
6649
6650 return rc;
6651}
6652
6653/**
6654 * ata_port_detach - Detach ATA port in preparation of device removal
6655 * @ap: ATA port to be detached
6656 *
6657 * Detach all ATA devices and the associated SCSI devices of @ap;
6658 * then, remove the associated SCSI host. @ap is guaranteed to
6659 * be quiescent on return from this function.
6660 *
6661 * LOCKING:
6662 * Kernel thread context (may sleep).
6663 */
6664static void ata_port_detach(struct ata_port *ap)
6665{
6666 unsigned long flags;
6667 struct ata_link *link;
6668 struct ata_device *dev;
6669
6670 if (!ap->ops->error_handler)
6671 goto skip_eh;
6672
6673 /* tell EH we're leaving & flush EH */
6674 spin_lock_irqsave(ap->lock, flags);
6675 ap->pflags |= ATA_PFLAG_UNLOADING;
6676 ata_port_schedule_eh(ap);
6677 spin_unlock_irqrestore(ap->lock, flags);
6678
6679 /* wait till EH commits suicide */
6680 ata_port_wait_eh(ap);
6681
6682 /* it better be dead now */
6683 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6684
6685 cancel_delayed_work_sync(&ap->hotplug_task);
6686
6687 skip_eh:
6688 /* clean up zpodd on port removal */
6689 ata_for_each_link(link, ap, HOST_FIRST) {
6690 ata_for_each_dev(dev, link, ALL) {
6691 if (zpodd_dev_enabled(dev))
6692 zpodd_exit(dev);
6693 }
6694 }
6695 if (ap->pmp_link) {
6696 int i;
6697 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6698 ata_tlink_delete(&ap->pmp_link[i]);
6699 }
6700 /* remove the associated SCSI host */
6701 scsi_remove_host(ap->scsi_host);
6702 ata_tport_delete(ap);
6703}
6704
6705/**
6706 * ata_host_detach - Detach all ports of an ATA host
6707 * @host: Host to detach
6708 *
6709 * Detach all ports of @host.
6710 *
6711 * LOCKING:
6712 * Kernel thread context (may sleep).
6713 */
6714void ata_host_detach(struct ata_host *host)
6715{
6716 int i;
6717
6718 for (i = 0; i < host->n_ports; i++)
6719 ata_port_detach(host->ports[i]);
6720
6721 /* the host is dead now, dissociate ACPI */
6722 ata_acpi_dissociate(host);
6723}
6724
6725#ifdef CONFIG_PCI
6726
6727/**
6728 * ata_pci_remove_one - PCI layer callback for device removal
6729 * @pdev: PCI device that was removed
6730 *
6731 * PCI layer indicates to libata via this hook that hot-unplug or
6732 * module unload event has occurred. Detach all ports. Resource
6733 * release is handled via devres.
6734 *
6735 * LOCKING:
6736 * Inherited from PCI layer (may sleep).
6737 */
6738void ata_pci_remove_one(struct pci_dev *pdev)
6739{
6740 struct ata_host *host = pci_get_drvdata(pdev);
6741
6742 ata_host_detach(host);
6743}
6744
6745/* move to PCI subsystem */
6746int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6747{
6748 unsigned long tmp = 0;
6749
6750 switch (bits->width) {
6751 case 1: {
6752 u8 tmp8 = 0;
6753 pci_read_config_byte(pdev, bits->reg, &tmp8);
6754 tmp = tmp8;
6755 break;
6756 }
6757 case 2: {
6758 u16 tmp16 = 0;
6759 pci_read_config_word(pdev, bits->reg, &tmp16);
6760 tmp = tmp16;
6761 break;
6762 }
6763 case 4: {
6764 u32 tmp32 = 0;
6765 pci_read_config_dword(pdev, bits->reg, &tmp32);
6766 tmp = tmp32;
6767 break;
6768 }
6769
6770 default:
6771 return -EINVAL;
6772 }
6773
6774 tmp &= bits->mask;
6775
6776 return (tmp == bits->val) ? 1 : 0;
6777}
6778
6779#ifdef CONFIG_PM
6780void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6781{
6782 pci_save_state(pdev);
6783 pci_disable_device(pdev);
6784
6785 if (mesg.event & PM_EVENT_SLEEP)
6786 pci_set_power_state(pdev, PCI_D3hot);
6787}
6788
6789int ata_pci_device_do_resume(struct pci_dev *pdev)
6790{
6791 int rc;
6792
6793 pci_set_power_state(pdev, PCI_D0);
6794 pci_restore_state(pdev);
6795
6796 rc = pcim_enable_device(pdev);
6797 if (rc) {
6798 dev_err(&pdev->dev,
6799 "failed to enable device after resume (%d)\n", rc);
6800 return rc;
6801 }
6802
6803 pci_set_master(pdev);
6804 return 0;
6805}
6806
6807int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6808{
6809 struct ata_host *host = pci_get_drvdata(pdev);
6810 int rc = 0;
6811
6812 rc = ata_host_suspend(host, mesg);
6813 if (rc)
6814 return rc;
6815
6816 ata_pci_device_do_suspend(pdev, mesg);
6817
6818 return 0;
6819}
6820
6821int ata_pci_device_resume(struct pci_dev *pdev)
6822{
6823 struct ata_host *host = pci_get_drvdata(pdev);
6824 int rc;
6825
6826 rc = ata_pci_device_do_resume(pdev);
6827 if (rc == 0)
6828 ata_host_resume(host);
6829 return rc;
6830}
6831#endif /* CONFIG_PM */
6832
6833#endif /* CONFIG_PCI */
6834
6835/**
6836 * ata_platform_remove_one - Platform layer callback for device removal
6837 * @pdev: Platform device that was removed
6838 *
6839 * Platform layer indicates to libata via this hook that hot-unplug or
6840 * module unload event has occurred. Detach all ports. Resource
6841 * release is handled via devres.
6842 *
6843 * LOCKING:
6844 * Inherited from platform layer (may sleep).
6845 */
6846int ata_platform_remove_one(struct platform_device *pdev)
6847{
6848 struct ata_host *host = platform_get_drvdata(pdev);
6849
6850 ata_host_detach(host);
6851
6852 return 0;
6853}
6854
6855static int __init ata_parse_force_one(char **cur,
6856 struct ata_force_ent *force_ent,
6857 const char **reason)
6858{
6859 static const struct ata_force_param force_tbl[] __initconst = {
6860 { "40c", .cbl = ATA_CBL_PATA40 },
6861 { "80c", .cbl = ATA_CBL_PATA80 },
6862 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6863 { "unk", .cbl = ATA_CBL_PATA_UNK },
6864 { "ign", .cbl = ATA_CBL_PATA_IGN },
6865 { "sata", .cbl = ATA_CBL_SATA },
6866 { "1.5Gbps", .spd_limit = 1 },
6867 { "3.0Gbps", .spd_limit = 2 },
6868 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6869 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6870 { "noncqtrim", .horkage_on = ATA_HORKAGE_NO_NCQ_TRIM },
6871 { "ncqtrim", .horkage_off = ATA_HORKAGE_NO_NCQ_TRIM },
6872 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6873 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6874 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6875 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6876 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6877 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6878 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6879 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6880 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6881 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6882 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6883 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6884 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6885 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6886 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6887 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6888 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6889 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6890 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6891 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6892 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6893 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6894 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6895 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6896 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6897 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6898 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6899 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6900 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6901 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6902 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6903 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6904 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6905 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6906 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6907 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6908 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6909 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6910 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6911 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6912 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6913 };
6914 char *start = *cur, *p = *cur;
6915 char *id, *val, *endp;
6916 const struct ata_force_param *match_fp = NULL;
6917 int nr_matches = 0, i;
6918
6919 /* find where this param ends and update *cur */
6920 while (*p != '\0' && *p != ',')
6921 p++;
6922
6923 if (*p == '\0')
6924 *cur = p;
6925 else
6926 *cur = p + 1;
6927
6928 *p = '\0';
6929
6930 /* parse */
6931 p = strchr(start, ':');
6932 if (!p) {
6933 val = strstrip(start);
6934 goto parse_val;
6935 }
6936 *p = '\0';
6937
6938 id = strstrip(start);
6939 val = strstrip(p + 1);
6940
6941 /* parse id */
6942 p = strchr(id, '.');
6943 if (p) {
6944 *p++ = '\0';
6945 force_ent->device = simple_strtoul(p, &endp, 10);
6946 if (p == endp || *endp != '\0') {
6947 *reason = "invalid device";
6948 return -EINVAL;
6949 }
6950 }
6951
6952 force_ent->port = simple_strtoul(id, &endp, 10);
6953 if (id == endp || *endp != '\0') {
6954 *reason = "invalid port/link";
6955 return -EINVAL;
6956 }
6957
6958 parse_val:
6959 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6960 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6961 const struct ata_force_param *fp = &force_tbl[i];
6962
6963 if (strncasecmp(val, fp->name, strlen(val)))
6964 continue;
6965
6966 nr_matches++;
6967 match_fp = fp;
6968
6969 if (strcasecmp(val, fp->name) == 0) {
6970 nr_matches = 1;
6971 break;
6972 }
6973 }
6974
6975 if (!nr_matches) {
6976 *reason = "unknown value";
6977 return -EINVAL;
6978 }
6979 if (nr_matches > 1) {
6980 *reason = "ambiguous value";
6981 return -EINVAL;
6982 }
6983
6984 force_ent->param = *match_fp;
6985
6986 return 0;
6987}
6988
6989static void __init ata_parse_force_param(void)
6990{
6991 int idx = 0, size = 1;
6992 int last_port = -1, last_device = -1;
6993 char *p, *cur, *next;
6994
6995 /* calculate maximum number of params and allocate force_tbl */
6996 for (p = ata_force_param_buf; *p; p++)
6997 if (*p == ',')
6998 size++;
6999
7000 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
7001 if (!ata_force_tbl) {
7002 printk(KERN_WARNING "ata: failed to extend force table, "
7003 "libata.force ignored\n");
7004 return;
7005 }
7006
7007 /* parse and populate the table */
7008 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
7009 const char *reason = "";
7010 struct ata_force_ent te = { .port = -1, .device = -1 };
7011
7012 next = cur;
7013 if (ata_parse_force_one(&next, &te, &reason)) {
7014 printk(KERN_WARNING "ata: failed to parse force "
7015 "parameter \"%s\" (%s)\n",
7016 cur, reason);
7017 continue;
7018 }
7019
7020 if (te.port == -1) {
7021 te.port = last_port;
7022 te.device = last_device;
7023 }
7024
7025 ata_force_tbl[idx++] = te;
7026
7027 last_port = te.port;
7028 last_device = te.device;
7029 }
7030
7031 ata_force_tbl_size = idx;
7032}
7033
7034static int __init ata_init(void)
7035{
7036 int rc;
7037
7038 ata_parse_force_param();
7039
7040 rc = ata_sff_init();
7041 if (rc) {
7042 kfree(ata_force_tbl);
7043 return rc;
7044 }
7045
7046 libata_transport_init();
7047 ata_scsi_transport_template = ata_attach_transport();
7048 if (!ata_scsi_transport_template) {
7049 ata_sff_exit();
7050 rc = -ENOMEM;
7051 goto err_out;
7052 }
7053
7054 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
7055 return 0;
7056
7057err_out:
7058 return rc;
7059}
7060
7061static void __exit ata_exit(void)
7062{
7063 ata_release_transport(ata_scsi_transport_template);
7064 libata_transport_exit();
7065 ata_sff_exit();
7066 kfree(ata_force_tbl);
7067}
7068
7069subsys_initcall(ata_init);
7070module_exit(ata_exit);
7071
7072static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
7073
7074int ata_ratelimit(void)
7075{
7076 return __ratelimit(&ratelimit);
7077}
7078
7079/**
7080 * ata_msleep - ATA EH owner aware msleep
7081 * @ap: ATA port to attribute the sleep to
7082 * @msecs: duration to sleep in milliseconds
7083 *
7084 * Sleeps @msecs. If the current task is owner of @ap's EH, the
7085 * ownership is released before going to sleep and reacquired
7086 * after the sleep is complete. IOW, other ports sharing the
7087 * @ap->host will be allowed to own the EH while this task is
7088 * sleeping.
7089 *
7090 * LOCKING:
7091 * Might sleep.
7092 */
7093void ata_msleep(struct ata_port *ap, unsigned int msecs)
7094{
7095 bool owns_eh = ap && ap->host->eh_owner == current;
7096
7097 if (owns_eh)
7098 ata_eh_release(ap);
7099
7100 if (msecs < 20) {
7101 unsigned long usecs = msecs * USEC_PER_MSEC;
7102 usleep_range(usecs, usecs + 50);
7103 } else {
7104 msleep(msecs);
7105 }
7106
7107 if (owns_eh)
7108 ata_eh_acquire(ap);
7109}
7110
7111/**
7112 * ata_wait_register - wait until register value changes
7113 * @ap: ATA port to wait register for, can be NULL
7114 * @reg: IO-mapped register
7115 * @mask: Mask to apply to read register value
7116 * @val: Wait condition
7117 * @interval: polling interval in milliseconds
7118 * @timeout: timeout in milliseconds
7119 *
7120 * Waiting for some bits of register to change is a common
7121 * operation for ATA controllers. This function reads 32bit LE
7122 * IO-mapped register @reg and tests for the following condition.
7123 *
7124 * (*@reg & mask) != val
7125 *
7126 * If the condition is met, it returns; otherwise, the process is
7127 * repeated after @interval_msec until timeout.
7128 *
7129 * LOCKING:
7130 * Kernel thread context (may sleep)
7131 *
7132 * RETURNS:
7133 * The final register value.
7134 */
7135u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
7136 unsigned long interval, unsigned long timeout)
7137{
7138 unsigned long deadline;
7139 u32 tmp;
7140
7141 tmp = ioread32(reg);
7142
7143 /* Calculate timeout _after_ the first read to make sure
7144 * preceding writes reach the controller before starting to
7145 * eat away the timeout.
7146 */
7147 deadline = ata_deadline(jiffies, timeout);
7148
7149 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
7150 ata_msleep(ap, interval);
7151 tmp = ioread32(reg);
7152 }
7153
7154 return tmp;
7155}
7156
7157/**
7158 * sata_lpm_ignore_phy_events - test if PHY event should be ignored
7159 * @link: Link receiving the event
7160 *
7161 * Test whether the received PHY event has to be ignored or not.
7162 *
7163 * LOCKING:
7164 * None:
7165 *
7166 * RETURNS:
7167 * True if the event has to be ignored.
7168 */
7169bool sata_lpm_ignore_phy_events(struct ata_link *link)
7170{
7171 unsigned long lpm_timeout = link->last_lpm_change +
7172 msecs_to_jiffies(ATA_TMOUT_SPURIOUS_PHY);
7173
7174 /* if LPM is enabled, PHYRDY doesn't mean anything */
7175 if (link->lpm_policy > ATA_LPM_MAX_POWER)
7176 return true;
7177
7178 /* ignore the first PHY event after the LPM policy changed
7179 * as it is might be spurious
7180 */
7181 if ((link->flags & ATA_LFLAG_CHANGED) &&
7182 time_before(jiffies, lpm_timeout))
7183 return true;
7184
7185 return false;
7186}
7187EXPORT_SYMBOL_GPL(sata_lpm_ignore_phy_events);
7188
7189/*
7190 * Dummy port_ops
7191 */
7192static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
7193{
7194 return AC_ERR_SYSTEM;
7195}
7196
7197static void ata_dummy_error_handler(struct ata_port *ap)
7198{
7199 /* truly dummy */
7200}
7201
7202struct ata_port_operations ata_dummy_port_ops = {
7203 .qc_prep = ata_noop_qc_prep,
7204 .qc_issue = ata_dummy_qc_issue,
7205 .error_handler = ata_dummy_error_handler,
7206 .sched_eh = ata_std_sched_eh,
7207 .end_eh = ata_std_end_eh,
7208};
7209
7210const struct ata_port_info ata_dummy_port_info = {
7211 .port_ops = &ata_dummy_port_ops,
7212};
7213
7214/*
7215 * Utility print functions
7216 */
7217void ata_port_printk(const struct ata_port *ap, const char *level,
7218 const char *fmt, ...)
7219{
7220 struct va_format vaf;
7221 va_list args;
7222
7223 va_start(args, fmt);
7224
7225 vaf.fmt = fmt;
7226 vaf.va = &args;
7227
7228 printk("%sata%u: %pV", level, ap->print_id, &vaf);
7229
7230 va_end(args);
7231}
7232EXPORT_SYMBOL(ata_port_printk);
7233
7234void ata_link_printk(const struct ata_link *link, const char *level,
7235 const char *fmt, ...)
7236{
7237 struct va_format vaf;
7238 va_list args;
7239
7240 va_start(args, fmt);
7241
7242 vaf.fmt = fmt;
7243 vaf.va = &args;
7244
7245 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
7246 printk("%sata%u.%02u: %pV",
7247 level, link->ap->print_id, link->pmp, &vaf);
7248 else
7249 printk("%sata%u: %pV",
7250 level, link->ap->print_id, &vaf);
7251
7252 va_end(args);
7253}
7254EXPORT_SYMBOL(ata_link_printk);
7255
7256void ata_dev_printk(const struct ata_device *dev, const char *level,
7257 const char *fmt, ...)
7258{
7259 struct va_format vaf;
7260 va_list args;
7261
7262 va_start(args, fmt);
7263
7264 vaf.fmt = fmt;
7265 vaf.va = &args;
7266
7267 printk("%sata%u.%02u: %pV",
7268 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
7269 &vaf);
7270
7271 va_end(args);
7272}
7273EXPORT_SYMBOL(ata_dev_printk);
7274
7275void ata_print_version(const struct device *dev, const char *version)
7276{
7277 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
7278}
7279EXPORT_SYMBOL(ata_print_version);
7280
7281/*
7282 * libata is essentially a library of internal helper functions for
7283 * low-level ATA host controller drivers. As such, the API/ABI is
7284 * likely to change as new drivers are added and updated.
7285 * Do not depend on ABI/API stability.
7286 */
7287EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
7288EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
7289EXPORT_SYMBOL_GPL(sata_deb_timing_long);
7290EXPORT_SYMBOL_GPL(ata_base_port_ops);
7291EXPORT_SYMBOL_GPL(sata_port_ops);
7292EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
7293EXPORT_SYMBOL_GPL(ata_dummy_port_info);
7294EXPORT_SYMBOL_GPL(ata_link_next);
7295EXPORT_SYMBOL_GPL(ata_dev_next);
7296EXPORT_SYMBOL_GPL(ata_std_bios_param);
7297EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
7298EXPORT_SYMBOL_GPL(ata_host_init);
7299EXPORT_SYMBOL_GPL(ata_host_alloc);
7300EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
7301EXPORT_SYMBOL_GPL(ata_slave_link_init);
7302EXPORT_SYMBOL_GPL(ata_host_start);
7303EXPORT_SYMBOL_GPL(ata_host_register);
7304EXPORT_SYMBOL_GPL(ata_host_activate);
7305EXPORT_SYMBOL_GPL(ata_host_detach);
7306EXPORT_SYMBOL_GPL(ata_sg_init);
7307EXPORT_SYMBOL_GPL(ata_qc_complete);
7308EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
7309EXPORT_SYMBOL_GPL(atapi_cmd_type);
7310EXPORT_SYMBOL_GPL(ata_tf_to_fis);
7311EXPORT_SYMBOL_GPL(ata_tf_from_fis);
7312EXPORT_SYMBOL_GPL(ata_pack_xfermask);
7313EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
7314EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
7315EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
7316EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
7317EXPORT_SYMBOL_GPL(ata_mode_string);
7318EXPORT_SYMBOL_GPL(ata_id_xfermask);
7319EXPORT_SYMBOL_GPL(ata_do_set_mode);
7320EXPORT_SYMBOL_GPL(ata_std_qc_defer);
7321EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
7322EXPORT_SYMBOL_GPL(ata_dev_disable);
7323EXPORT_SYMBOL_GPL(sata_set_spd);
7324EXPORT_SYMBOL_GPL(ata_wait_after_reset);
7325EXPORT_SYMBOL_GPL(sata_link_debounce);
7326EXPORT_SYMBOL_GPL(sata_link_resume);
7327EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
7328EXPORT_SYMBOL_GPL(ata_std_prereset);
7329EXPORT_SYMBOL_GPL(sata_link_hardreset);
7330EXPORT_SYMBOL_GPL(sata_std_hardreset);
7331EXPORT_SYMBOL_GPL(ata_std_postreset);
7332EXPORT_SYMBOL_GPL(ata_dev_classify);
7333EXPORT_SYMBOL_GPL(ata_dev_pair);
7334EXPORT_SYMBOL_GPL(ata_ratelimit);
7335EXPORT_SYMBOL_GPL(ata_msleep);
7336EXPORT_SYMBOL_GPL(ata_wait_register);
7337EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
7338EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
7339EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
7340EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
7341EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
7342EXPORT_SYMBOL_GPL(sata_scr_valid);
7343EXPORT_SYMBOL_GPL(sata_scr_read);
7344EXPORT_SYMBOL_GPL(sata_scr_write);
7345EXPORT_SYMBOL_GPL(sata_scr_write_flush);
7346EXPORT_SYMBOL_GPL(ata_link_online);
7347EXPORT_SYMBOL_GPL(ata_link_offline);
7348#ifdef CONFIG_PM
7349EXPORT_SYMBOL_GPL(ata_host_suspend);
7350EXPORT_SYMBOL_GPL(ata_host_resume);
7351#endif /* CONFIG_PM */
7352EXPORT_SYMBOL_GPL(ata_id_string);
7353EXPORT_SYMBOL_GPL(ata_id_c_string);
7354EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
7355EXPORT_SYMBOL_GPL(ata_scsi_simulate);
7356
7357EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
7358EXPORT_SYMBOL_GPL(ata_timing_find_mode);
7359EXPORT_SYMBOL_GPL(ata_timing_compute);
7360EXPORT_SYMBOL_GPL(ata_timing_merge);
7361EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
7362
7363#ifdef CONFIG_PCI
7364EXPORT_SYMBOL_GPL(pci_test_config_bits);
7365EXPORT_SYMBOL_GPL(ata_pci_remove_one);
7366#ifdef CONFIG_PM
7367EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
7368EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
7369EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
7370EXPORT_SYMBOL_GPL(ata_pci_device_resume);
7371#endif /* CONFIG_PM */
7372#endif /* CONFIG_PCI */
7373
7374EXPORT_SYMBOL_GPL(ata_platform_remove_one);
7375
7376EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
7377EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
7378EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
7379EXPORT_SYMBOL_GPL(ata_port_desc);
7380#ifdef CONFIG_PCI
7381EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
7382#endif /* CONFIG_PCI */
7383EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
7384EXPORT_SYMBOL_GPL(ata_link_abort);
7385EXPORT_SYMBOL_GPL(ata_port_abort);
7386EXPORT_SYMBOL_GPL(ata_port_freeze);
7387EXPORT_SYMBOL_GPL(sata_async_notification);
7388EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
7389EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
7390EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7391EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7392EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7393EXPORT_SYMBOL_GPL(ata_do_eh);
7394EXPORT_SYMBOL_GPL(ata_std_error_handler);
7395
7396EXPORT_SYMBOL_GPL(ata_cable_40wire);
7397EXPORT_SYMBOL_GPL(ata_cable_80wire);
7398EXPORT_SYMBOL_GPL(ata_cable_unknown);
7399EXPORT_SYMBOL_GPL(ata_cable_ignore);
7400EXPORT_SYMBOL_GPL(ata_cable_sata);