Loading...
1/*
2 * fs/f2fs/node.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11/* start node id of a node block dedicated to the given node id */
12#define START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
13
14/* node block offset on the NAT area dedicated to the given start node id */
15#define NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
16
17/* # of pages to perform synchronous readahead before building free nids */
18#define FREE_NID_PAGES 4
19
20#define DEF_RA_NID_PAGES 4 /* # of nid pages to be readaheaded */
21
22/* maximum readahead size for node during getting data blocks */
23#define MAX_RA_NODE 128
24
25/* control the memory footprint threshold (10MB per 1GB ram) */
26#define DEF_RAM_THRESHOLD 10
27
28/* control dirty nats ratio threshold (default: 10% over max nid count) */
29#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
30
31/* vector size for gang look-up from nat cache that consists of radix tree */
32#define NATVEC_SIZE 64
33#define SETVEC_SIZE 32
34
35/* return value for read_node_page */
36#define LOCKED_PAGE 1
37
38/* For flag in struct node_info */
39enum {
40 IS_CHECKPOINTED, /* is it checkpointed before? */
41 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
42 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
43 IS_DIRTY, /* this nat entry is dirty? */
44};
45
46/*
47 * For node information
48 */
49struct node_info {
50 nid_t nid; /* node id */
51 nid_t ino; /* inode number of the node's owner */
52 block_t blk_addr; /* block address of the node */
53 unsigned char version; /* version of the node */
54 unsigned char flag; /* for node information bits */
55};
56
57struct nat_entry {
58 struct list_head list; /* for clean or dirty nat list */
59 struct node_info ni; /* in-memory node information */
60};
61
62#define nat_get_nid(nat) (nat->ni.nid)
63#define nat_set_nid(nat, n) (nat->ni.nid = n)
64#define nat_get_blkaddr(nat) (nat->ni.blk_addr)
65#define nat_set_blkaddr(nat, b) (nat->ni.blk_addr = b)
66#define nat_get_ino(nat) (nat->ni.ino)
67#define nat_set_ino(nat, i) (nat->ni.ino = i)
68#define nat_get_version(nat) (nat->ni.version)
69#define nat_set_version(nat, v) (nat->ni.version = v)
70
71#define inc_node_version(version) (++version)
72
73static inline void copy_node_info(struct node_info *dst,
74 struct node_info *src)
75{
76 dst->nid = src->nid;
77 dst->ino = src->ino;
78 dst->blk_addr = src->blk_addr;
79 dst->version = src->version;
80 /* should not copy flag here */
81}
82
83static inline void set_nat_flag(struct nat_entry *ne,
84 unsigned int type, bool set)
85{
86 unsigned char mask = 0x01 << type;
87 if (set)
88 ne->ni.flag |= mask;
89 else
90 ne->ni.flag &= ~mask;
91}
92
93static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
94{
95 unsigned char mask = 0x01 << type;
96 return ne->ni.flag & mask;
97}
98
99static inline void nat_reset_flag(struct nat_entry *ne)
100{
101 /* these states can be set only after checkpoint was done */
102 set_nat_flag(ne, IS_CHECKPOINTED, true);
103 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
104 set_nat_flag(ne, HAS_LAST_FSYNC, true);
105}
106
107static inline void node_info_from_raw_nat(struct node_info *ni,
108 struct f2fs_nat_entry *raw_ne)
109{
110 ni->ino = le32_to_cpu(raw_ne->ino);
111 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
112 ni->version = raw_ne->version;
113}
114
115static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
116 struct node_info *ni)
117{
118 raw_ne->ino = cpu_to_le32(ni->ino);
119 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
120 raw_ne->version = ni->version;
121}
122
123static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
124{
125 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
126 NM_I(sbi)->dirty_nats_ratio / 100;
127}
128
129enum mem_type {
130 FREE_NIDS, /* indicates the free nid list */
131 NAT_ENTRIES, /* indicates the cached nat entry */
132 DIRTY_DENTS, /* indicates dirty dentry pages */
133 INO_ENTRIES, /* indicates inode entries */
134 EXTENT_CACHE, /* indicates extent cache */
135 BASE_CHECK, /* check kernel status */
136};
137
138struct nat_entry_set {
139 struct list_head set_list; /* link with other nat sets */
140 struct list_head entry_list; /* link with dirty nat entries */
141 nid_t set; /* set number*/
142 unsigned int entry_cnt; /* the # of nat entries in set */
143};
144
145/*
146 * For free nid mangement
147 */
148enum nid_state {
149 NID_NEW, /* newly added to free nid list */
150 NID_ALLOC /* it is allocated */
151};
152
153struct free_nid {
154 struct list_head list; /* for free node id list */
155 nid_t nid; /* node id */
156 int state; /* in use or not: NID_NEW or NID_ALLOC */
157};
158
159static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
160{
161 struct f2fs_nm_info *nm_i = NM_I(sbi);
162 struct free_nid *fnid;
163
164 spin_lock(&nm_i->free_nid_list_lock);
165 if (nm_i->fcnt <= 0) {
166 spin_unlock(&nm_i->free_nid_list_lock);
167 return;
168 }
169 fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
170 *nid = fnid->nid;
171 spin_unlock(&nm_i->free_nid_list_lock);
172}
173
174/*
175 * inline functions
176 */
177static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
178{
179 struct f2fs_nm_info *nm_i = NM_I(sbi);
180 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
181}
182
183static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
184{
185 struct f2fs_nm_info *nm_i = NM_I(sbi);
186 pgoff_t block_off;
187 pgoff_t block_addr;
188 int seg_off;
189
190 block_off = NAT_BLOCK_OFFSET(start);
191 seg_off = block_off >> sbi->log_blocks_per_seg;
192
193 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
194 (seg_off << sbi->log_blocks_per_seg << 1) +
195 (block_off & (sbi->blocks_per_seg - 1)));
196
197 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
198 block_addr += sbi->blocks_per_seg;
199
200 return block_addr;
201}
202
203static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
204 pgoff_t block_addr)
205{
206 struct f2fs_nm_info *nm_i = NM_I(sbi);
207
208 block_addr -= nm_i->nat_blkaddr;
209 if ((block_addr >> sbi->log_blocks_per_seg) % 2)
210 block_addr -= sbi->blocks_per_seg;
211 else
212 block_addr += sbi->blocks_per_seg;
213
214 return block_addr + nm_i->nat_blkaddr;
215}
216
217static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
218{
219 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
220
221 f2fs_change_bit(block_off, nm_i->nat_bitmap);
222}
223
224static inline void fill_node_footer(struct page *page, nid_t nid,
225 nid_t ino, unsigned int ofs, bool reset)
226{
227 struct f2fs_node *rn = F2FS_NODE(page);
228 unsigned int old_flag = 0;
229
230 if (reset)
231 memset(rn, 0, sizeof(*rn));
232 else
233 old_flag = le32_to_cpu(rn->footer.flag);
234
235 rn->footer.nid = cpu_to_le32(nid);
236 rn->footer.ino = cpu_to_le32(ino);
237
238 /* should remain old flag bits such as COLD_BIT_SHIFT */
239 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
240 (old_flag & OFFSET_BIT_MASK));
241}
242
243static inline void copy_node_footer(struct page *dst, struct page *src)
244{
245 struct f2fs_node *src_rn = F2FS_NODE(src);
246 struct f2fs_node *dst_rn = F2FS_NODE(dst);
247 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
248}
249
250static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
251{
252 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
253 struct f2fs_node *rn = F2FS_NODE(page);
254
255 rn->footer.cp_ver = ckpt->checkpoint_ver;
256 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
257}
258
259static inline nid_t ino_of_node(struct page *node_page)
260{
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 return le32_to_cpu(rn->footer.ino);
263}
264
265static inline nid_t nid_of_node(struct page *node_page)
266{
267 struct f2fs_node *rn = F2FS_NODE(node_page);
268 return le32_to_cpu(rn->footer.nid);
269}
270
271static inline unsigned int ofs_of_node(struct page *node_page)
272{
273 struct f2fs_node *rn = F2FS_NODE(node_page);
274 unsigned flag = le32_to_cpu(rn->footer.flag);
275 return flag >> OFFSET_BIT_SHIFT;
276}
277
278static inline unsigned long long cpver_of_node(struct page *node_page)
279{
280 struct f2fs_node *rn = F2FS_NODE(node_page);
281 return le64_to_cpu(rn->footer.cp_ver);
282}
283
284static inline block_t next_blkaddr_of_node(struct page *node_page)
285{
286 struct f2fs_node *rn = F2FS_NODE(node_page);
287 return le32_to_cpu(rn->footer.next_blkaddr);
288}
289
290/*
291 * f2fs assigns the following node offsets described as (num).
292 * N = NIDS_PER_BLOCK
293 *
294 * Inode block (0)
295 * |- direct node (1)
296 * |- direct node (2)
297 * |- indirect node (3)
298 * | `- direct node (4 => 4 + N - 1)
299 * |- indirect node (4 + N)
300 * | `- direct node (5 + N => 5 + 2N - 1)
301 * `- double indirect node (5 + 2N)
302 * `- indirect node (6 + 2N)
303 * `- direct node
304 * ......
305 * `- indirect node ((6 + 2N) + x(N + 1))
306 * `- direct node
307 * ......
308 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
309 * `- direct node
310 */
311static inline bool IS_DNODE(struct page *node_page)
312{
313 unsigned int ofs = ofs_of_node(node_page);
314
315 if (f2fs_has_xattr_block(ofs))
316 return false;
317
318 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
319 ofs == 5 + 2 * NIDS_PER_BLOCK)
320 return false;
321 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
322 ofs -= 6 + 2 * NIDS_PER_BLOCK;
323 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
324 return false;
325 }
326 return true;
327}
328
329static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
330{
331 struct f2fs_node *rn = F2FS_NODE(p);
332
333 f2fs_wait_on_page_writeback(p, NODE, true);
334
335 if (i)
336 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
337 else
338 rn->in.nid[off] = cpu_to_le32(nid);
339 return set_page_dirty(p);
340}
341
342static inline nid_t get_nid(struct page *p, int off, bool i)
343{
344 struct f2fs_node *rn = F2FS_NODE(p);
345
346 if (i)
347 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
348 return le32_to_cpu(rn->in.nid[off]);
349}
350
351/*
352 * Coldness identification:
353 * - Mark cold files in f2fs_inode_info
354 * - Mark cold node blocks in their node footer
355 * - Mark cold data pages in page cache
356 */
357static inline int is_cold_data(struct page *page)
358{
359 return PageChecked(page);
360}
361
362static inline void set_cold_data(struct page *page)
363{
364 SetPageChecked(page);
365}
366
367static inline void clear_cold_data(struct page *page)
368{
369 ClearPageChecked(page);
370}
371
372static inline int is_node(struct page *page, int type)
373{
374 struct f2fs_node *rn = F2FS_NODE(page);
375 return le32_to_cpu(rn->footer.flag) & (1 << type);
376}
377
378#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
379#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
380#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
381
382static inline int is_inline_node(struct page *page)
383{
384 return PageChecked(page);
385}
386
387static inline void set_inline_node(struct page *page)
388{
389 SetPageChecked(page);
390}
391
392static inline void clear_inline_node(struct page *page)
393{
394 ClearPageChecked(page);
395}
396
397static inline void set_cold_node(struct inode *inode, struct page *page)
398{
399 struct f2fs_node *rn = F2FS_NODE(page);
400 unsigned int flag = le32_to_cpu(rn->footer.flag);
401
402 if (S_ISDIR(inode->i_mode))
403 flag &= ~(0x1 << COLD_BIT_SHIFT);
404 else
405 flag |= (0x1 << COLD_BIT_SHIFT);
406 rn->footer.flag = cpu_to_le32(flag);
407}
408
409static inline void set_mark(struct page *page, int mark, int type)
410{
411 struct f2fs_node *rn = F2FS_NODE(page);
412 unsigned int flag = le32_to_cpu(rn->footer.flag);
413 if (mark)
414 flag |= (0x1 << type);
415 else
416 flag &= ~(0x1 << type);
417 rn->footer.flag = cpu_to_le32(flag);
418}
419#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
420#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* vector size for gang look-up from nat cache that consists of radix tree */
35#define NATVEC_SIZE 64
36#define SETVEC_SIZE 32
37
38/* return value for read_node_page */
39#define LOCKED_PAGE 1
40
41/* For flag in struct node_info */
42enum {
43 IS_CHECKPOINTED, /* is it checkpointed before? */
44 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
45 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
46 IS_DIRTY, /* this nat entry is dirty? */
47 IS_PREALLOC, /* nat entry is preallocated */
48};
49
50/*
51 * For node information
52 */
53struct node_info {
54 nid_t nid; /* node id */
55 nid_t ino; /* inode number of the node's owner */
56 block_t blk_addr; /* block address of the node */
57 unsigned char version; /* version of the node */
58 unsigned char flag; /* for node information bits */
59};
60
61struct nat_entry {
62 struct list_head list; /* for clean or dirty nat list */
63 struct node_info ni; /* in-memory node information */
64};
65
66#define nat_get_nid(nat) ((nat)->ni.nid)
67#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
68#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
69#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
70#define nat_get_ino(nat) ((nat)->ni.ino)
71#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
72#define nat_get_version(nat) ((nat)->ni.version)
73#define nat_set_version(nat, v) ((nat)->ni.version = (v))
74
75#define inc_node_version(version) (++(version))
76
77static inline void copy_node_info(struct node_info *dst,
78 struct node_info *src)
79{
80 dst->nid = src->nid;
81 dst->ino = src->ino;
82 dst->blk_addr = src->blk_addr;
83 dst->version = src->version;
84 /* should not copy flag here */
85}
86
87static inline void set_nat_flag(struct nat_entry *ne,
88 unsigned int type, bool set)
89{
90 unsigned char mask = 0x01 << type;
91 if (set)
92 ne->ni.flag |= mask;
93 else
94 ne->ni.flag &= ~mask;
95}
96
97static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
98{
99 unsigned char mask = 0x01 << type;
100 return ne->ni.flag & mask;
101}
102
103static inline void nat_reset_flag(struct nat_entry *ne)
104{
105 /* these states can be set only after checkpoint was done */
106 set_nat_flag(ne, IS_CHECKPOINTED, true);
107 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
108 set_nat_flag(ne, HAS_LAST_FSYNC, true);
109}
110
111static inline void node_info_from_raw_nat(struct node_info *ni,
112 struct f2fs_nat_entry *raw_ne)
113{
114 ni->ino = le32_to_cpu(raw_ne->ino);
115 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
116 ni->version = raw_ne->version;
117}
118
119static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
120 struct node_info *ni)
121{
122 raw_ne->ino = cpu_to_le32(ni->ino);
123 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
124 raw_ne->version = ni->version;
125}
126
127static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
128{
129 return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
130 NM_I(sbi)->dirty_nats_ratio / 100;
131}
132
133static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
134{
135 return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
136}
137
138static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
139{
140 return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
141}
142
143enum mem_type {
144 FREE_NIDS, /* indicates the free nid list */
145 NAT_ENTRIES, /* indicates the cached nat entry */
146 DIRTY_DENTS, /* indicates dirty dentry pages */
147 INO_ENTRIES, /* indicates inode entries */
148 EXTENT_CACHE, /* indicates extent cache */
149 INMEM_PAGES, /* indicates inmemory pages */
150 BASE_CHECK, /* check kernel status */
151};
152
153struct nat_entry_set {
154 struct list_head set_list; /* link with other nat sets */
155 struct list_head entry_list; /* link with dirty nat entries */
156 nid_t set; /* set number*/
157 unsigned int entry_cnt; /* the # of nat entries in set */
158};
159
160struct free_nid {
161 struct list_head list; /* for free node id list */
162 nid_t nid; /* node id */
163 int state; /* in use or not: FREE_NID or PREALLOC_NID */
164};
165
166static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
167{
168 struct f2fs_nm_info *nm_i = NM_I(sbi);
169 struct free_nid *fnid;
170
171 spin_lock(&nm_i->nid_list_lock);
172 if (nm_i->nid_cnt[FREE_NID] <= 0) {
173 spin_unlock(&nm_i->nid_list_lock);
174 return;
175 }
176 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
177 *nid = fnid->nid;
178 spin_unlock(&nm_i->nid_list_lock);
179}
180
181/*
182 * inline functions
183 */
184static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
185{
186 struct f2fs_nm_info *nm_i = NM_I(sbi);
187
188#ifdef CONFIG_F2FS_CHECK_FS
189 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
190 nm_i->bitmap_size))
191 f2fs_bug_on(sbi, 1);
192#endif
193 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
194}
195
196static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
197{
198 struct f2fs_nm_info *nm_i = NM_I(sbi);
199 pgoff_t block_off;
200 pgoff_t block_addr;
201
202 /*
203 * block_off = segment_off * 512 + off_in_segment
204 * OLD = (segment_off * 512) * 2 + off_in_segment
205 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
206 */
207 block_off = NAT_BLOCK_OFFSET(start);
208
209 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
210 (block_off << 1) -
211 (block_off & (sbi->blocks_per_seg - 1)));
212
213 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
214 block_addr += sbi->blocks_per_seg;
215
216 return block_addr;
217}
218
219static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
220 pgoff_t block_addr)
221{
222 struct f2fs_nm_info *nm_i = NM_I(sbi);
223
224 block_addr -= nm_i->nat_blkaddr;
225 block_addr ^= 1 << sbi->log_blocks_per_seg;
226 return block_addr + nm_i->nat_blkaddr;
227}
228
229static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
230{
231 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
232
233 f2fs_change_bit(block_off, nm_i->nat_bitmap);
234#ifdef CONFIG_F2FS_CHECK_FS
235 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
236#endif
237}
238
239static inline nid_t ino_of_node(struct page *node_page)
240{
241 struct f2fs_node *rn = F2FS_NODE(node_page);
242 return le32_to_cpu(rn->footer.ino);
243}
244
245static inline nid_t nid_of_node(struct page *node_page)
246{
247 struct f2fs_node *rn = F2FS_NODE(node_page);
248 return le32_to_cpu(rn->footer.nid);
249}
250
251static inline unsigned int ofs_of_node(struct page *node_page)
252{
253 struct f2fs_node *rn = F2FS_NODE(node_page);
254 unsigned flag = le32_to_cpu(rn->footer.flag);
255 return flag >> OFFSET_BIT_SHIFT;
256}
257
258static inline __u64 cpver_of_node(struct page *node_page)
259{
260 struct f2fs_node *rn = F2FS_NODE(node_page);
261 return le64_to_cpu(rn->footer.cp_ver);
262}
263
264static inline block_t next_blkaddr_of_node(struct page *node_page)
265{
266 struct f2fs_node *rn = F2FS_NODE(node_page);
267 return le32_to_cpu(rn->footer.next_blkaddr);
268}
269
270static inline void fill_node_footer(struct page *page, nid_t nid,
271 nid_t ino, unsigned int ofs, bool reset)
272{
273 struct f2fs_node *rn = F2FS_NODE(page);
274 unsigned int old_flag = 0;
275
276 if (reset)
277 memset(rn, 0, sizeof(*rn));
278 else
279 old_flag = le32_to_cpu(rn->footer.flag);
280
281 rn->footer.nid = cpu_to_le32(nid);
282 rn->footer.ino = cpu_to_le32(ino);
283
284 /* should remain old flag bits such as COLD_BIT_SHIFT */
285 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
286 (old_flag & OFFSET_BIT_MASK));
287}
288
289static inline void copy_node_footer(struct page *dst, struct page *src)
290{
291 struct f2fs_node *src_rn = F2FS_NODE(src);
292 struct f2fs_node *dst_rn = F2FS_NODE(dst);
293 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
294}
295
296static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
297{
298 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
299 struct f2fs_node *rn = F2FS_NODE(page);
300 __u64 cp_ver = cur_cp_version(ckpt);
301
302 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
303 cp_ver |= (cur_cp_crc(ckpt) << 32);
304
305 rn->footer.cp_ver = cpu_to_le64(cp_ver);
306 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
307}
308
309static inline bool is_recoverable_dnode(struct page *page)
310{
311 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
312 __u64 cp_ver = cur_cp_version(ckpt);
313
314 /* Don't care crc part, if fsck.f2fs sets it. */
315 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
316 return (cp_ver << 32) == (cpver_of_node(page) << 32);
317
318 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
319 cp_ver |= (cur_cp_crc(ckpt) << 32);
320
321 return cp_ver == cpver_of_node(page);
322}
323
324/*
325 * f2fs assigns the following node offsets described as (num).
326 * N = NIDS_PER_BLOCK
327 *
328 * Inode block (0)
329 * |- direct node (1)
330 * |- direct node (2)
331 * |- indirect node (3)
332 * | `- direct node (4 => 4 + N - 1)
333 * |- indirect node (4 + N)
334 * | `- direct node (5 + N => 5 + 2N - 1)
335 * `- double indirect node (5 + 2N)
336 * `- indirect node (6 + 2N)
337 * `- direct node
338 * ......
339 * `- indirect node ((6 + 2N) + x(N + 1))
340 * `- direct node
341 * ......
342 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
343 * `- direct node
344 */
345static inline bool IS_DNODE(struct page *node_page)
346{
347 unsigned int ofs = ofs_of_node(node_page);
348
349 if (f2fs_has_xattr_block(ofs))
350 return true;
351
352 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
353 ofs == 5 + 2 * NIDS_PER_BLOCK)
354 return false;
355 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
356 ofs -= 6 + 2 * NIDS_PER_BLOCK;
357 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
358 return false;
359 }
360 return true;
361}
362
363static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
364{
365 struct f2fs_node *rn = F2FS_NODE(p);
366
367 f2fs_wait_on_page_writeback(p, NODE, true, true);
368
369 if (i)
370 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
371 else
372 rn->in.nid[off] = cpu_to_le32(nid);
373 return set_page_dirty(p);
374}
375
376static inline nid_t get_nid(struct page *p, int off, bool i)
377{
378 struct f2fs_node *rn = F2FS_NODE(p);
379
380 if (i)
381 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
382 return le32_to_cpu(rn->in.nid[off]);
383}
384
385/*
386 * Coldness identification:
387 * - Mark cold files in f2fs_inode_info
388 * - Mark cold node blocks in their node footer
389 * - Mark cold data pages in page cache
390 */
391static inline int is_cold_data(struct page *page)
392{
393 return PageChecked(page);
394}
395
396static inline void set_cold_data(struct page *page)
397{
398 SetPageChecked(page);
399}
400
401static inline void clear_cold_data(struct page *page)
402{
403 ClearPageChecked(page);
404}
405
406static inline int is_node(struct page *page, int type)
407{
408 struct f2fs_node *rn = F2FS_NODE(page);
409 return le32_to_cpu(rn->footer.flag) & (1 << type);
410}
411
412#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
413#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
414#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
415
416static inline int is_inline_node(struct page *page)
417{
418 return PageChecked(page);
419}
420
421static inline void set_inline_node(struct page *page)
422{
423 SetPageChecked(page);
424}
425
426static inline void clear_inline_node(struct page *page)
427{
428 ClearPageChecked(page);
429}
430
431static inline void set_cold_node(struct page *page, bool is_dir)
432{
433 struct f2fs_node *rn = F2FS_NODE(page);
434 unsigned int flag = le32_to_cpu(rn->footer.flag);
435
436 if (is_dir)
437 flag &= ~(0x1 << COLD_BIT_SHIFT);
438 else
439 flag |= (0x1 << COLD_BIT_SHIFT);
440 rn->footer.flag = cpu_to_le32(flag);
441}
442
443static inline void set_mark(struct page *page, int mark, int type)
444{
445 struct f2fs_node *rn = F2FS_NODE(page);
446 unsigned int flag = le32_to_cpu(rn->footer.flag);
447 if (mark)
448 flag |= (0x1 << type);
449 else
450 flag &= ~(0x1 << type);
451 rn->footer.flag = cpu_to_le32(flag);
452
453#ifdef CONFIG_F2FS_CHECK_FS
454 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
455#endif
456}
457#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
458#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)