Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
 16
 17/* # of pages to perform synchronous readahead before building free nids */
 18#define FREE_NID_PAGES 4
 
 19
 20#define DEF_RA_NID_PAGES	4	/* # of nid pages to be readaheaded */
 21
 22/* maximum readahead size for node during getting data blocks */
 23#define MAX_RA_NODE		128
 24
 25/* control the memory footprint threshold (10MB per 1GB ram) */
 26#define DEF_RAM_THRESHOLD	10
 27
 28/* control dirty nats ratio threshold (default: 10% over max nid count) */
 29#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 
 
 30
 31/* vector size for gang look-up from nat cache that consists of radix tree */
 32#define NATVEC_SIZE	64
 33#define SETVEC_SIZE	32
 34
 35/* return value for read_node_page */
 36#define LOCKED_PAGE	1
 37
 38/* For flag in struct node_info */
 39enum {
 40	IS_CHECKPOINTED,	/* is it checkpointed before? */
 41	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 42	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 43	IS_DIRTY,		/* this nat entry is dirty? */
 
 44};
 45
 46/*
 47 * For node information
 48 */
 49struct node_info {
 50	nid_t nid;		/* node id */
 51	nid_t ino;		/* inode number of the node's owner */
 52	block_t	blk_addr;	/* block address of the node */
 53	unsigned char version;	/* version of the node */
 54	unsigned char flag;	/* for node information bits */
 55};
 56
 57struct nat_entry {
 58	struct list_head list;	/* for clean or dirty nat list */
 59	struct node_info ni;	/* in-memory node information */
 60};
 61
 62#define nat_get_nid(nat)		(nat->ni.nid)
 63#define nat_set_nid(nat, n)		(nat->ni.nid = n)
 64#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
 65#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
 66#define nat_get_ino(nat)		(nat->ni.ino)
 67#define nat_set_ino(nat, i)		(nat->ni.ino = i)
 68#define nat_get_version(nat)		(nat->ni.version)
 69#define nat_set_version(nat, v)		(nat->ni.version = v)
 70
 71#define inc_node_version(version)	(++version)
 72
 73static inline void copy_node_info(struct node_info *dst,
 74						struct node_info *src)
 75{
 76	dst->nid = src->nid;
 77	dst->ino = src->ino;
 78	dst->blk_addr = src->blk_addr;
 79	dst->version = src->version;
 80	/* should not copy flag here */
 81}
 82
 83static inline void set_nat_flag(struct nat_entry *ne,
 84				unsigned int type, bool set)
 85{
 86	unsigned char mask = 0x01 << type;
 87	if (set)
 88		ne->ni.flag |= mask;
 89	else
 90		ne->ni.flag &= ~mask;
 91}
 92
 93static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 94{
 95	unsigned char mask = 0x01 << type;
 96	return ne->ni.flag & mask;
 97}
 98
 99static inline void nat_reset_flag(struct nat_entry *ne)
100{
101	/* these states can be set only after checkpoint was done */
102	set_nat_flag(ne, IS_CHECKPOINTED, true);
103	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
104	set_nat_flag(ne, HAS_LAST_FSYNC, true);
105}
106
107static inline void node_info_from_raw_nat(struct node_info *ni,
108						struct f2fs_nat_entry *raw_ne)
109{
110	ni->ino = le32_to_cpu(raw_ne->ino);
111	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
112	ni->version = raw_ne->version;
113}
114
115static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
116						struct node_info *ni)
117{
118	raw_ne->ino = cpu_to_le32(ni->ino);
119	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
120	raw_ne->version = ni->version;
121}
122
123static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
124{
125	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
126					NM_I(sbi)->dirty_nats_ratio / 100;
127}
128
 
 
 
 
 
 
 
 
 
 
129enum mem_type {
130	FREE_NIDS,	/* indicates the free nid list */
131	NAT_ENTRIES,	/* indicates the cached nat entry */
132	DIRTY_DENTS,	/* indicates dirty dentry pages */
133	INO_ENTRIES,	/* indicates inode entries */
134	EXTENT_CACHE,	/* indicates extent cache */
 
135	BASE_CHECK,	/* check kernel status */
136};
137
138struct nat_entry_set {
139	struct list_head set_list;	/* link with other nat sets */
140	struct list_head entry_list;	/* link with dirty nat entries */
141	nid_t set;			/* set number*/
142	unsigned int entry_cnt;		/* the # of nat entries in set */
143};
144
145/*
146 * For free nid mangement
147 */
148enum nid_state {
149	NID_NEW,	/* newly added to free nid list */
150	NID_ALLOC	/* it is allocated */
151};
152
153struct free_nid {
154	struct list_head list;	/* for free node id list */
155	nid_t nid;		/* node id */
156	int state;		/* in use or not: NID_NEW or NID_ALLOC */
157};
158
159static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
160{
161	struct f2fs_nm_info *nm_i = NM_I(sbi);
162	struct free_nid *fnid;
163
164	spin_lock(&nm_i->free_nid_list_lock);
165	if (nm_i->fcnt <= 0) {
166		spin_unlock(&nm_i->free_nid_list_lock);
167		return;
168	}
169	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
170	*nid = fnid->nid;
171	spin_unlock(&nm_i->free_nid_list_lock);
172}
173
174/*
175 * inline functions
176 */
177static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
178{
179	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 
 
 
 
 
180	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
181}
182
183static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
184{
185	struct f2fs_nm_info *nm_i = NM_I(sbi);
186	pgoff_t block_off;
187	pgoff_t block_addr;
188	int seg_off;
189
 
 
 
 
 
190	block_off = NAT_BLOCK_OFFSET(start);
191	seg_off = block_off >> sbi->log_blocks_per_seg;
192
193	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
194		(seg_off << sbi->log_blocks_per_seg << 1) +
195		(block_off & (sbi->blocks_per_seg - 1)));
196
197	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
198		block_addr += sbi->blocks_per_seg;
199
200	return block_addr;
201}
202
203static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
204						pgoff_t block_addr)
205{
206	struct f2fs_nm_info *nm_i = NM_I(sbi);
207
208	block_addr -= nm_i->nat_blkaddr;
209	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
210		block_addr -= sbi->blocks_per_seg;
211	else
212		block_addr += sbi->blocks_per_seg;
213
214	return block_addr + nm_i->nat_blkaddr;
215}
216
217static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
218{
219	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
220
221	f2fs_change_bit(block_off, nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222}
223
224static inline void fill_node_footer(struct page *page, nid_t nid,
225				nid_t ino, unsigned int ofs, bool reset)
226{
227	struct f2fs_node *rn = F2FS_NODE(page);
228	unsigned int old_flag = 0;
229
230	if (reset)
231		memset(rn, 0, sizeof(*rn));
232	else
233		old_flag = le32_to_cpu(rn->footer.flag);
234
235	rn->footer.nid = cpu_to_le32(nid);
236	rn->footer.ino = cpu_to_le32(ino);
237
238	/* should remain old flag bits such as COLD_BIT_SHIFT */
239	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
240					(old_flag & OFFSET_BIT_MASK));
241}
242
243static inline void copy_node_footer(struct page *dst, struct page *src)
244{
245	struct f2fs_node *src_rn = F2FS_NODE(src);
246	struct f2fs_node *dst_rn = F2FS_NODE(dst);
247	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
248}
249
250static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
251{
252	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
253	struct f2fs_node *rn = F2FS_NODE(page);
 
254
255	rn->footer.cp_ver = ckpt->checkpoint_ver;
256	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
257}
258
259static inline nid_t ino_of_node(struct page *node_page)
260{
261	struct f2fs_node *rn = F2FS_NODE(node_page);
262	return le32_to_cpu(rn->footer.ino);
263}
264
265static inline nid_t nid_of_node(struct page *node_page)
266{
267	struct f2fs_node *rn = F2FS_NODE(node_page);
268	return le32_to_cpu(rn->footer.nid);
269}
270
271static inline unsigned int ofs_of_node(struct page *node_page)
272{
273	struct f2fs_node *rn = F2FS_NODE(node_page);
274	unsigned flag = le32_to_cpu(rn->footer.flag);
275	return flag >> OFFSET_BIT_SHIFT;
276}
277
278static inline unsigned long long cpver_of_node(struct page *node_page)
279{
280	struct f2fs_node *rn = F2FS_NODE(node_page);
281	return le64_to_cpu(rn->footer.cp_ver);
282}
283
284static inline block_t next_blkaddr_of_node(struct page *node_page)
285{
286	struct f2fs_node *rn = F2FS_NODE(node_page);
287	return le32_to_cpu(rn->footer.next_blkaddr);
288}
289
290/*
291 * f2fs assigns the following node offsets described as (num).
292 * N = NIDS_PER_BLOCK
293 *
294 *  Inode block (0)
295 *    |- direct node (1)
296 *    |- direct node (2)
297 *    |- indirect node (3)
298 *    |            `- direct node (4 => 4 + N - 1)
299 *    |- indirect node (4 + N)
300 *    |            `- direct node (5 + N => 5 + 2N - 1)
301 *    `- double indirect node (5 + 2N)
302 *                 `- indirect node (6 + 2N)
303 *                       `- direct node
304 *                 ......
305 *                 `- indirect node ((6 + 2N) + x(N + 1))
306 *                       `- direct node
307 *                 ......
308 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
309 *                       `- direct node
310 */
311static inline bool IS_DNODE(struct page *node_page)
312{
313	unsigned int ofs = ofs_of_node(node_page);
314
315	if (f2fs_has_xattr_block(ofs))
316		return false;
317
318	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
319			ofs == 5 + 2 * NIDS_PER_BLOCK)
320		return false;
321	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
322		ofs -= 6 + 2 * NIDS_PER_BLOCK;
323		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
324			return false;
325	}
326	return true;
327}
328
329static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
330{
331	struct f2fs_node *rn = F2FS_NODE(p);
332
333	f2fs_wait_on_page_writeback(p, NODE, true);
334
335	if (i)
336		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
337	else
338		rn->in.nid[off] = cpu_to_le32(nid);
339	return set_page_dirty(p);
340}
341
342static inline nid_t get_nid(struct page *p, int off, bool i)
343{
344	struct f2fs_node *rn = F2FS_NODE(p);
345
346	if (i)
347		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
348	return le32_to_cpu(rn->in.nid[off]);
349}
350
351/*
352 * Coldness identification:
353 *  - Mark cold files in f2fs_inode_info
354 *  - Mark cold node blocks in their node footer
355 *  - Mark cold data pages in page cache
356 */
357static inline int is_cold_data(struct page *page)
358{
359	return PageChecked(page);
360}
361
362static inline void set_cold_data(struct page *page)
363{
364	SetPageChecked(page);
365}
366
367static inline void clear_cold_data(struct page *page)
368{
369	ClearPageChecked(page);
370}
371
372static inline int is_node(struct page *page, int type)
373{
374	struct f2fs_node *rn = F2FS_NODE(page);
375	return le32_to_cpu(rn->footer.flag) & (1 << type);
376}
377
378#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
379#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
380#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
381
382static inline int is_inline_node(struct page *page)
383{
384	return PageChecked(page);
385}
386
387static inline void set_inline_node(struct page *page)
388{
389	SetPageChecked(page);
390}
391
392static inline void clear_inline_node(struct page *page)
393{
394	ClearPageChecked(page);
395}
396
397static inline void set_cold_node(struct inode *inode, struct page *page)
398{
399	struct f2fs_node *rn = F2FS_NODE(page);
400	unsigned int flag = le32_to_cpu(rn->footer.flag);
401
402	if (S_ISDIR(inode->i_mode))
403		flag &= ~(0x1 << COLD_BIT_SHIFT);
404	else
405		flag |= (0x1 << COLD_BIT_SHIFT);
406	rn->footer.flag = cpu_to_le32(flag);
407}
408
409static inline void set_mark(struct page *page, int mark, int type)
410{
411	struct f2fs_node *rn = F2FS_NODE(page);
412	unsigned int flag = le32_to_cpu(rn->footer.flag);
413	if (mark)
414		flag |= (0x1 << type);
415	else
416		flag &= ~(0x1 << type);
417	rn->footer.flag = cpu_to_le32(flag);
 
 
 
 
418}
419#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
420#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v5.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 19
 20/* maximum readahead size for node during getting data blocks */
 21#define MAX_RA_NODE		128
 22
 23/* control the memory footprint threshold (10MB per 1GB ram) */
 24#define DEF_RAM_THRESHOLD	1
 25
 26/* control dirty nats ratio threshold (default: 10% over max nid count) */
 27#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 28/* control total # of nats */
 29#define DEF_NAT_CACHE_THRESHOLD			100000
 30
 31/* vector size for gang look-up from nat cache that consists of radix tree */
 32#define NATVEC_SIZE	64
 33#define SETVEC_SIZE	32
 34
 35/* return value for read_node_page */
 36#define LOCKED_PAGE	1
 37
 38/* For flag in struct node_info */
 39enum {
 40	IS_CHECKPOINTED,	/* is it checkpointed before? */
 41	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 42	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 43	IS_DIRTY,		/* this nat entry is dirty? */
 44	IS_PREALLOC,		/* nat entry is preallocated */
 45};
 46
 47/*
 48 * For node information
 49 */
 50struct node_info {
 51	nid_t nid;		/* node id */
 52	nid_t ino;		/* inode number of the node's owner */
 53	block_t	blk_addr;	/* block address of the node */
 54	unsigned char version;	/* version of the node */
 55	unsigned char flag;	/* for node information bits */
 56};
 57
 58struct nat_entry {
 59	struct list_head list;	/* for clean or dirty nat list */
 60	struct node_info ni;	/* in-memory node information */
 61};
 62
 63#define nat_get_nid(nat)		((nat)->ni.nid)
 64#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 65#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 66#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 67#define nat_get_ino(nat)		((nat)->ni.ino)
 68#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 69#define nat_get_version(nat)		((nat)->ni.version)
 70#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 71
 72#define inc_node_version(version)	(++(version))
 73
 74static inline void copy_node_info(struct node_info *dst,
 75						struct node_info *src)
 76{
 77	dst->nid = src->nid;
 78	dst->ino = src->ino;
 79	dst->blk_addr = src->blk_addr;
 80	dst->version = src->version;
 81	/* should not copy flag here */
 82}
 83
 84static inline void set_nat_flag(struct nat_entry *ne,
 85				unsigned int type, bool set)
 86{
 87	unsigned char mask = 0x01 << type;
 88	if (set)
 89		ne->ni.flag |= mask;
 90	else
 91		ne->ni.flag &= ~mask;
 92}
 93
 94static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 95{
 96	unsigned char mask = 0x01 << type;
 97	return ne->ni.flag & mask;
 98}
 99
100static inline void nat_reset_flag(struct nat_entry *ne)
101{
102	/* these states can be set only after checkpoint was done */
103	set_nat_flag(ne, IS_CHECKPOINTED, true);
104	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
105	set_nat_flag(ne, HAS_LAST_FSYNC, true);
106}
107
108static inline void node_info_from_raw_nat(struct node_info *ni,
109						struct f2fs_nat_entry *raw_ne)
110{
111	ni->ino = le32_to_cpu(raw_ne->ino);
112	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
113	ni->version = raw_ne->version;
114}
115
116static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
117						struct node_info *ni)
118{
119	raw_ne->ino = cpu_to_le32(ni->ino);
120	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
121	raw_ne->version = ni->version;
122}
123
124static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
125{
126	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
127					NM_I(sbi)->dirty_nats_ratio / 100;
128}
129
130static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
131{
132	return NM_I(sbi)->nat_cnt >= DEF_NAT_CACHE_THRESHOLD;
133}
134
135static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
136{
137	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
138}
139
140enum mem_type {
141	FREE_NIDS,	/* indicates the free nid list */
142	NAT_ENTRIES,	/* indicates the cached nat entry */
143	DIRTY_DENTS,	/* indicates dirty dentry pages */
144	INO_ENTRIES,	/* indicates inode entries */
145	EXTENT_CACHE,	/* indicates extent cache */
146	INMEM_PAGES,	/* indicates inmemory pages */
147	BASE_CHECK,	/* check kernel status */
148};
149
150struct nat_entry_set {
151	struct list_head set_list;	/* link with other nat sets */
152	struct list_head entry_list;	/* link with dirty nat entries */
153	nid_t set;			/* set number*/
154	unsigned int entry_cnt;		/* the # of nat entries in set */
155};
156
 
 
 
 
 
 
 
 
157struct free_nid {
158	struct list_head list;	/* for free node id list */
159	nid_t nid;		/* node id */
160	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
161};
162
163static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
164{
165	struct f2fs_nm_info *nm_i = NM_I(sbi);
166	struct free_nid *fnid;
167
168	spin_lock(&nm_i->nid_list_lock);
169	if (nm_i->nid_cnt[FREE_NID] <= 0) {
170		spin_unlock(&nm_i->nid_list_lock);
171		return;
172	}
173	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
174	*nid = fnid->nid;
175	spin_unlock(&nm_i->nid_list_lock);
176}
177
178/*
179 * inline functions
180 */
181static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
182{
183	struct f2fs_nm_info *nm_i = NM_I(sbi);
184
185#ifdef CONFIG_F2FS_CHECK_FS
186	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
187						nm_i->bitmap_size))
188		f2fs_bug_on(sbi, 1);
189#endif
190	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
191}
192
193static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
194{
195	struct f2fs_nm_info *nm_i = NM_I(sbi);
196	pgoff_t block_off;
197	pgoff_t block_addr;
 
198
199	/*
200	 * block_off = segment_off * 512 + off_in_segment
201	 * OLD = (segment_off * 512) * 2 + off_in_segment
202	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
203	 */
204	block_off = NAT_BLOCK_OFFSET(start);
 
205
206	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
207		(block_off << 1) -
208		(block_off & (sbi->blocks_per_seg - 1)));
209
210	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
211		block_addr += sbi->blocks_per_seg;
212
213	return block_addr;
214}
215
216static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
217						pgoff_t block_addr)
218{
219	struct f2fs_nm_info *nm_i = NM_I(sbi);
220
221	block_addr -= nm_i->nat_blkaddr;
222	block_addr ^= 1 << sbi->log_blocks_per_seg;
 
 
 
 
223	return block_addr + nm_i->nat_blkaddr;
224}
225
226static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
227{
228	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
229
230	f2fs_change_bit(block_off, nm_i->nat_bitmap);
231#ifdef CONFIG_F2FS_CHECK_FS
232	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
233#endif
234}
235
236static inline nid_t ino_of_node(struct page *node_page)
237{
238	struct f2fs_node *rn = F2FS_NODE(node_page);
239	return le32_to_cpu(rn->footer.ino);
240}
241
242static inline nid_t nid_of_node(struct page *node_page)
243{
244	struct f2fs_node *rn = F2FS_NODE(node_page);
245	return le32_to_cpu(rn->footer.nid);
246}
247
248static inline unsigned int ofs_of_node(struct page *node_page)
249{
250	struct f2fs_node *rn = F2FS_NODE(node_page);
251	unsigned flag = le32_to_cpu(rn->footer.flag);
252	return flag >> OFFSET_BIT_SHIFT;
253}
254
255static inline __u64 cpver_of_node(struct page *node_page)
256{
257	struct f2fs_node *rn = F2FS_NODE(node_page);
258	return le64_to_cpu(rn->footer.cp_ver);
259}
260
261static inline block_t next_blkaddr_of_node(struct page *node_page)
262{
263	struct f2fs_node *rn = F2FS_NODE(node_page);
264	return le32_to_cpu(rn->footer.next_blkaddr);
265}
266
267static inline void fill_node_footer(struct page *page, nid_t nid,
268				nid_t ino, unsigned int ofs, bool reset)
269{
270	struct f2fs_node *rn = F2FS_NODE(page);
271	unsigned int old_flag = 0;
272
273	if (reset)
274		memset(rn, 0, sizeof(*rn));
275	else
276		old_flag = le32_to_cpu(rn->footer.flag);
277
278	rn->footer.nid = cpu_to_le32(nid);
279	rn->footer.ino = cpu_to_le32(ino);
280
281	/* should remain old flag bits such as COLD_BIT_SHIFT */
282	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
283					(old_flag & OFFSET_BIT_MASK));
284}
285
286static inline void copy_node_footer(struct page *dst, struct page *src)
287{
288	struct f2fs_node *src_rn = F2FS_NODE(src);
289	struct f2fs_node *dst_rn = F2FS_NODE(dst);
290	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
291}
292
293static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
294{
295	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
296	struct f2fs_node *rn = F2FS_NODE(page);
297	__u64 cp_ver = cur_cp_version(ckpt);
298
299	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
300		cp_ver |= (cur_cp_crc(ckpt) << 32);
 
301
302	rn->footer.cp_ver = cpu_to_le64(cp_ver);
303	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 
 
304}
305
306static inline bool is_recoverable_dnode(struct page *page)
307{
308	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
309	__u64 cp_ver = cur_cp_version(ckpt);
 
310
311	/* Don't care crc part, if fsck.f2fs sets it. */
312	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
313		return (cp_ver << 32) == (cpver_of_node(page) << 32);
 
 
 
314
315	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
316		cp_ver |= (cur_cp_crc(ckpt) << 32);
 
 
 
317
318	return cp_ver == cpver_of_node(page);
 
 
 
319}
320
321/*
322 * f2fs assigns the following node offsets described as (num).
323 * N = NIDS_PER_BLOCK
324 *
325 *  Inode block (0)
326 *    |- direct node (1)
327 *    |- direct node (2)
328 *    |- indirect node (3)
329 *    |            `- direct node (4 => 4 + N - 1)
330 *    |- indirect node (4 + N)
331 *    |            `- direct node (5 + N => 5 + 2N - 1)
332 *    `- double indirect node (5 + 2N)
333 *                 `- indirect node (6 + 2N)
334 *                       `- direct node
335 *                 ......
336 *                 `- indirect node ((6 + 2N) + x(N + 1))
337 *                       `- direct node
338 *                 ......
339 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
340 *                       `- direct node
341 */
342static inline bool IS_DNODE(struct page *node_page)
343{
344	unsigned int ofs = ofs_of_node(node_page);
345
346	if (f2fs_has_xattr_block(ofs))
347		return true;
348
349	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
350			ofs == 5 + 2 * NIDS_PER_BLOCK)
351		return false;
352	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
353		ofs -= 6 + 2 * NIDS_PER_BLOCK;
354		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
355			return false;
356	}
357	return true;
358}
359
360static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
361{
362	struct f2fs_node *rn = F2FS_NODE(p);
363
364	f2fs_wait_on_page_writeback(p, NODE, true, true);
365
366	if (i)
367		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
368	else
369		rn->in.nid[off] = cpu_to_le32(nid);
370	return set_page_dirty(p);
371}
372
373static inline nid_t get_nid(struct page *p, int off, bool i)
374{
375	struct f2fs_node *rn = F2FS_NODE(p);
376
377	if (i)
378		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
379	return le32_to_cpu(rn->in.nid[off]);
380}
381
382/*
383 * Coldness identification:
384 *  - Mark cold files in f2fs_inode_info
385 *  - Mark cold node blocks in their node footer
386 *  - Mark cold data pages in page cache
387 */
388static inline int is_cold_data(struct page *page)
389{
390	return PageChecked(page);
391}
392
393static inline void set_cold_data(struct page *page)
394{
395	SetPageChecked(page);
396}
397
398static inline void clear_cold_data(struct page *page)
399{
400	ClearPageChecked(page);
401}
402
403static inline int is_node(struct page *page, int type)
404{
405	struct f2fs_node *rn = F2FS_NODE(page);
406	return le32_to_cpu(rn->footer.flag) & (1 << type);
407}
408
409#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
410#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
411#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
412
413static inline int is_inline_node(struct page *page)
414{
415	return PageChecked(page);
416}
417
418static inline void set_inline_node(struct page *page)
419{
420	SetPageChecked(page);
421}
422
423static inline void clear_inline_node(struct page *page)
424{
425	ClearPageChecked(page);
426}
427
428static inline void set_cold_node(struct page *page, bool is_dir)
429{
430	struct f2fs_node *rn = F2FS_NODE(page);
431	unsigned int flag = le32_to_cpu(rn->footer.flag);
432
433	if (is_dir)
434		flag &= ~(0x1 << COLD_BIT_SHIFT);
435	else
436		flag |= (0x1 << COLD_BIT_SHIFT);
437	rn->footer.flag = cpu_to_le32(flag);
438}
439
440static inline void set_mark(struct page *page, int mark, int type)
441{
442	struct f2fs_node *rn = F2FS_NODE(page);
443	unsigned int flag = le32_to_cpu(rn->footer.flag);
444	if (mark)
445		flag |= (0x1 << type);
446	else
447		flag &= ~(0x1 << type);
448	rn->footer.flag = cpu_to_le32(flag);
449
450#ifdef CONFIG_F2FS_CHECK_FS
451	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
452#endif
453}
454#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
455#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)