Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * fs/f2fs/node.h
  3 *
  4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5 *             http://www.samsung.com/
  6 *
  7 * This program is free software; you can redistribute it and/or modify
  8 * it under the terms of the GNU General Public License version 2 as
  9 * published by the Free Software Foundation.
 10 */
 11/* start node id of a node block dedicated to the given node id */
 12#define	START_NID(nid) ((nid / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 13
 14/* node block offset on the NAT area dedicated to the given start node id */
 15#define	NAT_BLOCK_OFFSET(start_nid) (start_nid / NAT_ENTRY_PER_BLOCK)
 16
 17/* # of pages to perform synchronous readahead before building free nids */
 18#define FREE_NID_PAGES 4
 
 
 
 
 19
 20#define DEF_RA_NID_PAGES	4	/* # of nid pages to be readaheaded */
 21
 22/* maximum readahead size for node during getting data blocks */
 23#define MAX_RA_NODE		128
 24
 25/* control the memory footprint threshold (10MB per 1GB ram) */
 26#define DEF_RAM_THRESHOLD	10
 27
 28/* control dirty nats ratio threshold (default: 10% over max nid count) */
 29#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 
 
 30
 31/* vector size for gang look-up from nat cache that consists of radix tree */
 32#define NATVEC_SIZE	64
 33#define SETVEC_SIZE	32
 34
 35/* return value for read_node_page */
 36#define LOCKED_PAGE	1
 37
 
 
 
 38/* For flag in struct node_info */
 39enum {
 40	IS_CHECKPOINTED,	/* is it checkpointed before? */
 41	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 42	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 43	IS_DIRTY,		/* this nat entry is dirty? */
 
 44};
 45
 46/*
 47 * For node information
 48 */
 49struct node_info {
 50	nid_t nid;		/* node id */
 51	nid_t ino;		/* inode number of the node's owner */
 52	block_t	blk_addr;	/* block address of the node */
 53	unsigned char version;	/* version of the node */
 54	unsigned char flag;	/* for node information bits */
 55};
 56
 57struct nat_entry {
 58	struct list_head list;	/* for clean or dirty nat list */
 59	struct node_info ni;	/* in-memory node information */
 60};
 61
 62#define nat_get_nid(nat)		(nat->ni.nid)
 63#define nat_set_nid(nat, n)		(nat->ni.nid = n)
 64#define nat_get_blkaddr(nat)		(nat->ni.blk_addr)
 65#define nat_set_blkaddr(nat, b)		(nat->ni.blk_addr = b)
 66#define nat_get_ino(nat)		(nat->ni.ino)
 67#define nat_set_ino(nat, i)		(nat->ni.ino = i)
 68#define nat_get_version(nat)		(nat->ni.version)
 69#define nat_set_version(nat, v)		(nat->ni.version = v)
 70
 71#define inc_node_version(version)	(++version)
 72
 73static inline void copy_node_info(struct node_info *dst,
 74						struct node_info *src)
 75{
 76	dst->nid = src->nid;
 77	dst->ino = src->ino;
 78	dst->blk_addr = src->blk_addr;
 79	dst->version = src->version;
 80	/* should not copy flag here */
 81}
 82
 83static inline void set_nat_flag(struct nat_entry *ne,
 84				unsigned int type, bool set)
 85{
 86	unsigned char mask = 0x01 << type;
 87	if (set)
 88		ne->ni.flag |= mask;
 89	else
 90		ne->ni.flag &= ~mask;
 91}
 92
 93static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
 94{
 95	unsigned char mask = 0x01 << type;
 96	return ne->ni.flag & mask;
 97}
 98
 99static inline void nat_reset_flag(struct nat_entry *ne)
100{
101	/* these states can be set only after checkpoint was done */
102	set_nat_flag(ne, IS_CHECKPOINTED, true);
103	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
104	set_nat_flag(ne, HAS_LAST_FSYNC, true);
105}
106
107static inline void node_info_from_raw_nat(struct node_info *ni,
108						struct f2fs_nat_entry *raw_ne)
109{
110	ni->ino = le32_to_cpu(raw_ne->ino);
111	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
112	ni->version = raw_ne->version;
113}
114
115static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
116						struct node_info *ni)
117{
118	raw_ne->ino = cpu_to_le32(ni->ino);
119	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
120	raw_ne->version = ni->version;
121}
122
123static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
124{
125	return NM_I(sbi)->dirty_nat_cnt >= NM_I(sbi)->max_nid *
126					NM_I(sbi)->dirty_nats_ratio / 100;
127}
128
 
 
 
 
 
 
 
 
 
 
129enum mem_type {
130	FREE_NIDS,	/* indicates the free nid list */
131	NAT_ENTRIES,	/* indicates the cached nat entry */
132	DIRTY_DENTS,	/* indicates dirty dentry pages */
133	INO_ENTRIES,	/* indicates inode entries */
134	EXTENT_CACHE,	/* indicates extent cache */
 
 
 
135	BASE_CHECK,	/* check kernel status */
136};
137
138struct nat_entry_set {
139	struct list_head set_list;	/* link with other nat sets */
140	struct list_head entry_list;	/* link with dirty nat entries */
141	nid_t set;			/* set number*/
142	unsigned int entry_cnt;		/* the # of nat entries in set */
143};
144
145/*
146 * For free nid mangement
147 */
148enum nid_state {
149	NID_NEW,	/* newly added to free nid list */
150	NID_ALLOC	/* it is allocated */
151};
152
153struct free_nid {
154	struct list_head list;	/* for free node id list */
155	nid_t nid;		/* node id */
156	int state;		/* in use or not: NID_NEW or NID_ALLOC */
157};
158
159static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
160{
161	struct f2fs_nm_info *nm_i = NM_I(sbi);
162	struct free_nid *fnid;
163
164	spin_lock(&nm_i->free_nid_list_lock);
165	if (nm_i->fcnt <= 0) {
166		spin_unlock(&nm_i->free_nid_list_lock);
167		return;
168	}
169	fnid = list_entry(nm_i->free_nid_list.next, struct free_nid, list);
170	*nid = fnid->nid;
171	spin_unlock(&nm_i->free_nid_list_lock);
172}
173
174/*
175 * inline functions
176 */
177static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
178{
179	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 
 
 
 
 
180	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
181}
182
183static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
184{
185	struct f2fs_nm_info *nm_i = NM_I(sbi);
186	pgoff_t block_off;
187	pgoff_t block_addr;
188	int seg_off;
189
 
 
 
 
 
190	block_off = NAT_BLOCK_OFFSET(start);
191	seg_off = block_off >> sbi->log_blocks_per_seg;
192
193	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
194		(seg_off << sbi->log_blocks_per_seg << 1) +
195		(block_off & (sbi->blocks_per_seg - 1)));
196
197	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
198		block_addr += sbi->blocks_per_seg;
199
200	return block_addr;
201}
202
203static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
204						pgoff_t block_addr)
205{
206	struct f2fs_nm_info *nm_i = NM_I(sbi);
207
208	block_addr -= nm_i->nat_blkaddr;
209	if ((block_addr >> sbi->log_blocks_per_seg) % 2)
210		block_addr -= sbi->blocks_per_seg;
211	else
212		block_addr += sbi->blocks_per_seg;
213
214	return block_addr + nm_i->nat_blkaddr;
215}
216
217static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
218{
219	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
220
221	f2fs_change_bit(block_off, nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222}
223
224static inline void fill_node_footer(struct page *page, nid_t nid,
225				nid_t ino, unsigned int ofs, bool reset)
226{
227	struct f2fs_node *rn = F2FS_NODE(page);
228	unsigned int old_flag = 0;
229
230	if (reset)
231		memset(rn, 0, sizeof(*rn));
232	else
233		old_flag = le32_to_cpu(rn->footer.flag);
234
235	rn->footer.nid = cpu_to_le32(nid);
236	rn->footer.ino = cpu_to_le32(ino);
237
238	/* should remain old flag bits such as COLD_BIT_SHIFT */
239	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
240					(old_flag & OFFSET_BIT_MASK));
241}
242
243static inline void copy_node_footer(struct page *dst, struct page *src)
244{
245	struct f2fs_node *src_rn = F2FS_NODE(src);
246	struct f2fs_node *dst_rn = F2FS_NODE(dst);
247	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
248}
249
250static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
251{
252	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
253	struct f2fs_node *rn = F2FS_NODE(page);
 
254
255	rn->footer.cp_ver = ckpt->checkpoint_ver;
256	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
257}
258
259static inline nid_t ino_of_node(struct page *node_page)
260{
261	struct f2fs_node *rn = F2FS_NODE(node_page);
262	return le32_to_cpu(rn->footer.ino);
263}
264
265static inline nid_t nid_of_node(struct page *node_page)
266{
267	struct f2fs_node *rn = F2FS_NODE(node_page);
268	return le32_to_cpu(rn->footer.nid);
269}
270
271static inline unsigned int ofs_of_node(struct page *node_page)
272{
273	struct f2fs_node *rn = F2FS_NODE(node_page);
274	unsigned flag = le32_to_cpu(rn->footer.flag);
275	return flag >> OFFSET_BIT_SHIFT;
276}
277
278static inline unsigned long long cpver_of_node(struct page *node_page)
279{
280	struct f2fs_node *rn = F2FS_NODE(node_page);
281	return le64_to_cpu(rn->footer.cp_ver);
282}
283
284static inline block_t next_blkaddr_of_node(struct page *node_page)
285{
286	struct f2fs_node *rn = F2FS_NODE(node_page);
287	return le32_to_cpu(rn->footer.next_blkaddr);
288}
289
290/*
291 * f2fs assigns the following node offsets described as (num).
292 * N = NIDS_PER_BLOCK
293 *
294 *  Inode block (0)
295 *    |- direct node (1)
296 *    |- direct node (2)
297 *    |- indirect node (3)
298 *    |            `- direct node (4 => 4 + N - 1)
299 *    |- indirect node (4 + N)
300 *    |            `- direct node (5 + N => 5 + 2N - 1)
301 *    `- double indirect node (5 + 2N)
302 *                 `- indirect node (6 + 2N)
303 *                       `- direct node
304 *                 ......
305 *                 `- indirect node ((6 + 2N) + x(N + 1))
306 *                       `- direct node
307 *                 ......
308 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
309 *                       `- direct node
310 */
311static inline bool IS_DNODE(struct page *node_page)
312{
313	unsigned int ofs = ofs_of_node(node_page);
314
315	if (f2fs_has_xattr_block(ofs))
316		return false;
317
318	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
319			ofs == 5 + 2 * NIDS_PER_BLOCK)
320		return false;
321	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
322		ofs -= 6 + 2 * NIDS_PER_BLOCK;
323		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
324			return false;
325	}
326	return true;
327}
328
329static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
330{
331	struct f2fs_node *rn = F2FS_NODE(p);
332
333	f2fs_wait_on_page_writeback(p, NODE, true);
334
335	if (i)
336		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
337	else
338		rn->in.nid[off] = cpu_to_le32(nid);
339	return set_page_dirty(p);
340}
341
342static inline nid_t get_nid(struct page *p, int off, bool i)
343{
344	struct f2fs_node *rn = F2FS_NODE(p);
345
346	if (i)
347		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
348	return le32_to_cpu(rn->in.nid[off]);
349}
350
351/*
352 * Coldness identification:
353 *  - Mark cold files in f2fs_inode_info
354 *  - Mark cold node blocks in their node footer
355 *  - Mark cold data pages in page cache
356 */
357static inline int is_cold_data(struct page *page)
358{
359	return PageChecked(page);
360}
361
362static inline void set_cold_data(struct page *page)
363{
364	SetPageChecked(page);
365}
366
367static inline void clear_cold_data(struct page *page)
368{
369	ClearPageChecked(page);
370}
371
372static inline int is_node(struct page *page, int type)
373{
374	struct f2fs_node *rn = F2FS_NODE(page);
375	return le32_to_cpu(rn->footer.flag) & (1 << type);
376}
377
378#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
379#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
380#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
381
382static inline int is_inline_node(struct page *page)
383{
384	return PageChecked(page);
385}
386
387static inline void set_inline_node(struct page *page)
388{
389	SetPageChecked(page);
390}
391
392static inline void clear_inline_node(struct page *page)
393{
394	ClearPageChecked(page);
395}
396
397static inline void set_cold_node(struct inode *inode, struct page *page)
398{
399	struct f2fs_node *rn = F2FS_NODE(page);
400	unsigned int flag = le32_to_cpu(rn->footer.flag);
401
402	if (S_ISDIR(inode->i_mode))
403		flag &= ~(0x1 << COLD_BIT_SHIFT);
404	else
405		flag |= (0x1 << COLD_BIT_SHIFT);
406	rn->footer.flag = cpu_to_le32(flag);
407}
408
409static inline void set_mark(struct page *page, int mark, int type)
410{
411	struct f2fs_node *rn = F2FS_NODE(page);
412	unsigned int flag = le32_to_cpu(rn->footer.flag);
413	if (mark)
414		flag |= (0x1 << type);
415	else
416		flag &= ~(0x1 << type);
417	rn->footer.flag = cpu_to_le32(flag);
 
 
 
 
418}
419#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
420#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)
v5.14.15
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * fs/f2fs/node.h
  4 *
  5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  6 *             http://www.samsung.com/
 
 
 
 
  7 */
  8/* start node id of a node block dedicated to the given node id */
  9#define	START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
 10
 11/* node block offset on the NAT area dedicated to the given start node id */
 12#define	NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
 13
 14/* # of pages to perform synchronous readahead before building free nids */
 15#define FREE_NID_PAGES	8
 16#define MAX_FREE_NIDS	(NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
 17
 18/* size of free nid batch when shrinking */
 19#define SHRINK_NID_BATCH_SIZE	8
 20
 21#define DEF_RA_NID_PAGES	0	/* # of nid pages to be readaheaded */
 22
 23/* maximum readahead size for node during getting data blocks */
 24#define MAX_RA_NODE		128
 25
 26/* control the memory footprint threshold (10MB per 1GB ram) */
 27#define DEF_RAM_THRESHOLD	1
 28
 29/* control dirty nats ratio threshold (default: 10% over max nid count) */
 30#define DEF_DIRTY_NAT_RATIO_THRESHOLD		10
 31/* control total # of nats */
 32#define DEF_NAT_CACHE_THRESHOLD			100000
 33
 34/* vector size for gang look-up from nat cache that consists of radix tree */
 35#define NATVEC_SIZE	64
 36#define SETVEC_SIZE	32
 37
 38/* return value for read_node_page */
 39#define LOCKED_PAGE	1
 40
 41/* check pinned file's alignment status of physical blocks */
 42#define FILE_NOT_ALIGNED	1
 43
 44/* For flag in struct node_info */
 45enum {
 46	IS_CHECKPOINTED,	/* is it checkpointed before? */
 47	HAS_FSYNCED_INODE,	/* is the inode fsynced before? */
 48	HAS_LAST_FSYNC,		/* has the latest node fsync mark? */
 49	IS_DIRTY,		/* this nat entry is dirty? */
 50	IS_PREALLOC,		/* nat entry is preallocated */
 51};
 52
 53/*
 54 * For node information
 55 */
 56struct node_info {
 57	nid_t nid;		/* node id */
 58	nid_t ino;		/* inode number of the node's owner */
 59	block_t	blk_addr;	/* block address of the node */
 60	unsigned char version;	/* version of the node */
 61	unsigned char flag;	/* for node information bits */
 62};
 63
 64struct nat_entry {
 65	struct list_head list;	/* for clean or dirty nat list */
 66	struct node_info ni;	/* in-memory node information */
 67};
 68
 69#define nat_get_nid(nat)		((nat)->ni.nid)
 70#define nat_set_nid(nat, n)		((nat)->ni.nid = (n))
 71#define nat_get_blkaddr(nat)		((nat)->ni.blk_addr)
 72#define nat_set_blkaddr(nat, b)		((nat)->ni.blk_addr = (b))
 73#define nat_get_ino(nat)		((nat)->ni.ino)
 74#define nat_set_ino(nat, i)		((nat)->ni.ino = (i))
 75#define nat_get_version(nat)		((nat)->ni.version)
 76#define nat_set_version(nat, v)		((nat)->ni.version = (v))
 77
 78#define inc_node_version(version)	(++(version))
 79
 80static inline void copy_node_info(struct node_info *dst,
 81						struct node_info *src)
 82{
 83	dst->nid = src->nid;
 84	dst->ino = src->ino;
 85	dst->blk_addr = src->blk_addr;
 86	dst->version = src->version;
 87	/* should not copy flag here */
 88}
 89
 90static inline void set_nat_flag(struct nat_entry *ne,
 91				unsigned int type, bool set)
 92{
 93	unsigned char mask = 0x01 << type;
 94	if (set)
 95		ne->ni.flag |= mask;
 96	else
 97		ne->ni.flag &= ~mask;
 98}
 99
100static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
101{
102	unsigned char mask = 0x01 << type;
103	return ne->ni.flag & mask;
104}
105
106static inline void nat_reset_flag(struct nat_entry *ne)
107{
108	/* these states can be set only after checkpoint was done */
109	set_nat_flag(ne, IS_CHECKPOINTED, true);
110	set_nat_flag(ne, HAS_FSYNCED_INODE, false);
111	set_nat_flag(ne, HAS_LAST_FSYNC, true);
112}
113
114static inline void node_info_from_raw_nat(struct node_info *ni,
115						struct f2fs_nat_entry *raw_ne)
116{
117	ni->ino = le32_to_cpu(raw_ne->ino);
118	ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
119	ni->version = raw_ne->version;
120}
121
122static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
123						struct node_info *ni)
124{
125	raw_ne->ino = cpu_to_le32(ni->ino);
126	raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
127	raw_ne->version = ni->version;
128}
129
130static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
131{
132	return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
133					NM_I(sbi)->dirty_nats_ratio / 100;
134}
135
136static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
137{
138	return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
139}
140
141static inline bool excess_dirty_nodes(struct f2fs_sb_info *sbi)
142{
143	return get_pages(sbi, F2FS_DIRTY_NODES) >= sbi->blocks_per_seg * 8;
144}
145
146enum mem_type {
147	FREE_NIDS,	/* indicates the free nid list */
148	NAT_ENTRIES,	/* indicates the cached nat entry */
149	DIRTY_DENTS,	/* indicates dirty dentry pages */
150	INO_ENTRIES,	/* indicates inode entries */
151	EXTENT_CACHE,	/* indicates extent cache */
152	INMEM_PAGES,	/* indicates inmemory pages */
153	DISCARD_CACHE,	/* indicates memory of cached discard cmds */
154	COMPRESS_PAGE,	/* indicates memory of cached compressed pages */
155	BASE_CHECK,	/* check kernel status */
156};
157
158struct nat_entry_set {
159	struct list_head set_list;	/* link with other nat sets */
160	struct list_head entry_list;	/* link with dirty nat entries */
161	nid_t set;			/* set number*/
162	unsigned int entry_cnt;		/* the # of nat entries in set */
163};
164
 
 
 
 
 
 
 
 
165struct free_nid {
166	struct list_head list;	/* for free node id list */
167	nid_t nid;		/* node id */
168	int state;		/* in use or not: FREE_NID or PREALLOC_NID */
169};
170
171static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
172{
173	struct f2fs_nm_info *nm_i = NM_I(sbi);
174	struct free_nid *fnid;
175
176	spin_lock(&nm_i->nid_list_lock);
177	if (nm_i->nid_cnt[FREE_NID] <= 0) {
178		spin_unlock(&nm_i->nid_list_lock);
179		return;
180	}
181	fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
182	*nid = fnid->nid;
183	spin_unlock(&nm_i->nid_list_lock);
184}
185
186/*
187 * inline functions
188 */
189static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
190{
191	struct f2fs_nm_info *nm_i = NM_I(sbi);
192
193#ifdef CONFIG_F2FS_CHECK_FS
194	if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
195						nm_i->bitmap_size))
196		f2fs_bug_on(sbi, 1);
197#endif
198	memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
199}
200
201static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
202{
203	struct f2fs_nm_info *nm_i = NM_I(sbi);
204	pgoff_t block_off;
205	pgoff_t block_addr;
 
206
207	/*
208	 * block_off = segment_off * 512 + off_in_segment
209	 * OLD = (segment_off * 512) * 2 + off_in_segment
210	 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
211	 */
212	block_off = NAT_BLOCK_OFFSET(start);
 
213
214	block_addr = (pgoff_t)(nm_i->nat_blkaddr +
215		(block_off << 1) -
216		(block_off & (sbi->blocks_per_seg - 1)));
217
218	if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
219		block_addr += sbi->blocks_per_seg;
220
221	return block_addr;
222}
223
224static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
225						pgoff_t block_addr)
226{
227	struct f2fs_nm_info *nm_i = NM_I(sbi);
228
229	block_addr -= nm_i->nat_blkaddr;
230	block_addr ^= 1 << sbi->log_blocks_per_seg;
 
 
 
 
231	return block_addr + nm_i->nat_blkaddr;
232}
233
234static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
235{
236	unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
237
238	f2fs_change_bit(block_off, nm_i->nat_bitmap);
239#ifdef CONFIG_F2FS_CHECK_FS
240	f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
241#endif
242}
243
244static inline nid_t ino_of_node(struct page *node_page)
245{
246	struct f2fs_node *rn = F2FS_NODE(node_page);
247	return le32_to_cpu(rn->footer.ino);
248}
249
250static inline nid_t nid_of_node(struct page *node_page)
251{
252	struct f2fs_node *rn = F2FS_NODE(node_page);
253	return le32_to_cpu(rn->footer.nid);
254}
255
256static inline unsigned int ofs_of_node(struct page *node_page)
257{
258	struct f2fs_node *rn = F2FS_NODE(node_page);
259	unsigned flag = le32_to_cpu(rn->footer.flag);
260	return flag >> OFFSET_BIT_SHIFT;
261}
262
263static inline __u64 cpver_of_node(struct page *node_page)
264{
265	struct f2fs_node *rn = F2FS_NODE(node_page);
266	return le64_to_cpu(rn->footer.cp_ver);
267}
268
269static inline block_t next_blkaddr_of_node(struct page *node_page)
270{
271	struct f2fs_node *rn = F2FS_NODE(node_page);
272	return le32_to_cpu(rn->footer.next_blkaddr);
273}
274
275static inline void fill_node_footer(struct page *page, nid_t nid,
276				nid_t ino, unsigned int ofs, bool reset)
277{
278	struct f2fs_node *rn = F2FS_NODE(page);
279	unsigned int old_flag = 0;
280
281	if (reset)
282		memset(rn, 0, sizeof(*rn));
283	else
284		old_flag = le32_to_cpu(rn->footer.flag);
285
286	rn->footer.nid = cpu_to_le32(nid);
287	rn->footer.ino = cpu_to_le32(ino);
288
289	/* should remain old flag bits such as COLD_BIT_SHIFT */
290	rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
291					(old_flag & OFFSET_BIT_MASK));
292}
293
294static inline void copy_node_footer(struct page *dst, struct page *src)
295{
296	struct f2fs_node *src_rn = F2FS_NODE(src);
297	struct f2fs_node *dst_rn = F2FS_NODE(dst);
298	memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
299}
300
301static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
302{
303	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
304	struct f2fs_node *rn = F2FS_NODE(page);
305	__u64 cp_ver = cur_cp_version(ckpt);
306
307	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
308		cp_ver |= (cur_cp_crc(ckpt) << 32);
 
309
310	rn->footer.cp_ver = cpu_to_le64(cp_ver);
311	rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
 
 
312}
313
314static inline bool is_recoverable_dnode(struct page *page)
315{
316	struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
317	__u64 cp_ver = cur_cp_version(ckpt);
 
318
319	/* Don't care crc part, if fsck.f2fs sets it. */
320	if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
321		return (cp_ver << 32) == (cpver_of_node(page) << 32);
 
 
 
322
323	if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
324		cp_ver |= (cur_cp_crc(ckpt) << 32);
 
 
 
325
326	return cp_ver == cpver_of_node(page);
 
 
 
327}
328
329/*
330 * f2fs assigns the following node offsets described as (num).
331 * N = NIDS_PER_BLOCK
332 *
333 *  Inode block (0)
334 *    |- direct node (1)
335 *    |- direct node (2)
336 *    |- indirect node (3)
337 *    |            `- direct node (4 => 4 + N - 1)
338 *    |- indirect node (4 + N)
339 *    |            `- direct node (5 + N => 5 + 2N - 1)
340 *    `- double indirect node (5 + 2N)
341 *                 `- indirect node (6 + 2N)
342 *                       `- direct node
343 *                 ......
344 *                 `- indirect node ((6 + 2N) + x(N + 1))
345 *                       `- direct node
346 *                 ......
347 *                 `- indirect node ((6 + 2N) + (N - 1)(N + 1))
348 *                       `- direct node
349 */
350static inline bool IS_DNODE(struct page *node_page)
351{
352	unsigned int ofs = ofs_of_node(node_page);
353
354	if (f2fs_has_xattr_block(ofs))
355		return true;
356
357	if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
358			ofs == 5 + 2 * NIDS_PER_BLOCK)
359		return false;
360	if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
361		ofs -= 6 + 2 * NIDS_PER_BLOCK;
362		if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
363			return false;
364	}
365	return true;
366}
367
368static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
369{
370	struct f2fs_node *rn = F2FS_NODE(p);
371
372	f2fs_wait_on_page_writeback(p, NODE, true, true);
373
374	if (i)
375		rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
376	else
377		rn->in.nid[off] = cpu_to_le32(nid);
378	return set_page_dirty(p);
379}
380
381static inline nid_t get_nid(struct page *p, int off, bool i)
382{
383	struct f2fs_node *rn = F2FS_NODE(p);
384
385	if (i)
386		return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
387	return le32_to_cpu(rn->in.nid[off]);
388}
389
390/*
391 * Coldness identification:
392 *  - Mark cold files in f2fs_inode_info
393 *  - Mark cold node blocks in their node footer
394 *  - Mark cold data pages in page cache
395 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
396
397static inline int is_node(struct page *page, int type)
398{
399	struct f2fs_node *rn = F2FS_NODE(page);
400	return le32_to_cpu(rn->footer.flag) & (1 << type);
401}
402
403#define is_cold_node(page)	is_node(page, COLD_BIT_SHIFT)
404#define is_fsync_dnode(page)	is_node(page, FSYNC_BIT_SHIFT)
405#define is_dent_dnode(page)	is_node(page, DENT_BIT_SHIFT)
406
407static inline void set_cold_node(struct page *page, bool is_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408{
409	struct f2fs_node *rn = F2FS_NODE(page);
410	unsigned int flag = le32_to_cpu(rn->footer.flag);
411
412	if (is_dir)
413		flag &= ~(0x1 << COLD_BIT_SHIFT);
414	else
415		flag |= (0x1 << COLD_BIT_SHIFT);
416	rn->footer.flag = cpu_to_le32(flag);
417}
418
419static inline void set_mark(struct page *page, int mark, int type)
420{
421	struct f2fs_node *rn = F2FS_NODE(page);
422	unsigned int flag = le32_to_cpu(rn->footer.flag);
423	if (mark)
424		flag |= (0x1 << type);
425	else
426		flag &= ~(0x1 << type);
427	rn->footer.flag = cpu_to_le32(flag);
428
429#ifdef CONFIG_F2FS_CHECK_FS
430	f2fs_inode_chksum_set(F2FS_P_SB(page), page);
431#endif
432}
433#define set_dentry_mark(page, mark)	set_mark(page, mark, DENT_BIT_SHIFT)
434#define set_fsync_mark(page, mark)	set_mark(page, mark, FSYNC_BIT_SHIFT)