Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Chrome OS EC Sensor hub FIFO.
   4 *
   5 * Copyright 2020 Google LLC
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/device.h>
  10#include <linux/iio/iio.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/platform_data/cros_ec_commands.h>
  14#include <linux/platform_data/cros_ec_proto.h>
  15#include <linux/platform_data/cros_ec_sensorhub.h>
  16#include <linux/platform_device.h>
  17#include <linux/sort.h>
  18#include <linux/slab.h>
  19
  20/* Precision of fixed point for the m values from the filter */
  21#define M_PRECISION BIT(23)
  22
  23/* Only activate the filter once we have at least this many elements. */
  24#define TS_HISTORY_THRESHOLD 8
  25
  26/*
  27 * If we don't have any history entries for this long, empty the filter to
  28 * make sure there are no big discontinuities.
  29 */
  30#define TS_HISTORY_BORED_US 500000
  31
  32/* To measure by how much the filter is overshooting, if it happens. */
  33#define FUTURE_TS_ANALYTICS_COUNT_MAX 100
  34
  35static inline int
  36cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
  37			   struct cros_ec_sensors_ring_sample *sample)
  38{
  39	cros_ec_sensorhub_push_data_cb_t cb;
  40	int id = sample->sensor_id;
  41	struct iio_dev *indio_dev;
  42
  43	if (id >= sensorhub->sensor_num)
  44		return -EINVAL;
  45
  46	cb = sensorhub->push_data[id].push_data_cb;
  47	if (!cb)
  48		return 0;
  49
  50	indio_dev = sensorhub->push_data[id].indio_dev;
  51
  52	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
  53		return 0;
  54
  55	return cb(indio_dev, sample->vector, sample->timestamp);
  56}
  57
  58/**
  59 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
  60 *
  61 * @sensorhub : Sensor Hub object
  62 * @sensor_num : The sensor the caller is interested in.
  63 * @indio_dev : The iio device to use when a sample arrives.
  64 * @cb : The callback to call when a sample arrives.
  65 *
  66 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
  67 * from the EC.
  68 *
  69 * Return: 0 when callback is registered.
  70 *         EINVAL is the sensor number is invalid or the slot already used.
  71 */
  72int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
  73					 u8 sensor_num,
  74					 struct iio_dev *indio_dev,
  75					 cros_ec_sensorhub_push_data_cb_t cb)
  76{
  77	if (sensor_num >= sensorhub->sensor_num)
  78		return -EINVAL;
  79	if (sensorhub->push_data[sensor_num].indio_dev)
  80		return -EINVAL;
  81
  82	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
  83	sensorhub->push_data[sensor_num].push_data_cb = cb;
  84
  85	return 0;
  86}
  87EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
  88
  89void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
  90					    u8 sensor_num)
  91{
  92	sensorhub->push_data[sensor_num].indio_dev = NULL;
  93	sensorhub->push_data[sensor_num].push_data_cb = NULL;
  94}
  95EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
  96
  97/**
  98 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
  99 *					  for FIFO events.
 100 * @sensorhub: Sensor Hub object
 101 * @on: true when events are requested.
 102 *
 103 * To be called before sleeping or when noone is listening.
 104 * Return: 0 on success, or an error when we can not communicate with the EC.
 105 *
 106 */
 107int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
 108				       bool on)
 109{
 110	int ret, i;
 111
 112	mutex_lock(&sensorhub->cmd_lock);
 113	if (sensorhub->tight_timestamps)
 114		for (i = 0; i < sensorhub->sensor_num; i++)
 115			sensorhub->batch_state[i].last_len = 0;
 116
 117	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
 118	sensorhub->params->fifo_int_enable.enable = on;
 119
 120	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
 121	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
 122
 123	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
 124	mutex_unlock(&sensorhub->cmd_lock);
 125
 126	/* We expect to receive a payload of 4 bytes, ignore. */
 127	if (ret > 0)
 128		ret = 0;
 129
 130	return ret;
 131}
 132
 133static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
 134{
 135	s64 v1 = *(s64 *)pv1;
 136	s64 v2 = *(s64 *)pv2;
 137
 138	if (v1 > v2)
 139		return 1;
 140	else if (v1 < v2)
 141		return -1;
 142	else
 143		return 0;
 144}
 145
 146/*
 147 * cros_ec_sensor_ring_median: Gets median of an array of numbers
 148 *
 149 * For now it's implemented using an inefficient > O(n) sort then return
 150 * the middle element. A more optimal method would be something like
 151 * quickselect, but given that n = 64 we can probably live with it in the
 152 * name of clarity.
 153 *
 154 * Warning: the input array gets modified (sorted)!
 155 */
 156static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
 157{
 158	sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
 159	return array[length / 2];
 160}
 161
 162/*
 163 * IRQ Timestamp Filtering
 164 *
 165 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
 166 * we have to calculate it's timestamp in the AP timebase. There are 3 time
 167 * points:
 168 *   a - EC timebase, sensor event
 169 *   b - EC timebase, IRQ
 170 *   c - AP timebase, IRQ
 171 *   a' - what we want: sensor even in AP timebase
 172 *
 173 * While a and b are recorded at accurate times (due to the EC real time
 174 * nature); c is pretty untrustworthy, even though it's recorded the
 175 * first thing in ec_irq_handler(). There is a very good change we'll get
 176 * added lantency due to:
 177 *   other irqs
 178 *   ddrfreq
 179 *   cpuidle
 180 *
 181 * Normally a' = c - b + a, but if we do that naive math any jitter in c
 182 * will get coupled in a', which we don't want. We want a function
 183 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
 184 *
 185 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
 186 * The slope of the line won't be exactly 1, there will be some clock drift
 187 * between the 2 chips for various reasons (mechanical stress, temperature,
 188 * voltage). We need to extrapolate values for a future x, without trusting
 189 * recent y values too much.
 190 *
 191 * We use a median filter for the slope, then another median filter for the
 192 * y-intercept to calculate this function:
 193 *   dx[n] = x[n-1] - x[n]
 194 *   dy[n] = x[n-1] - x[n]
 195 *   m[n] = dy[n] / dx[n]
 196 *   median_m = median(m[n-k:n])
 197 *   error[i] = y[n-i] - median_m * x[n-i]
 198 *   median_error = median(error[:k])
 199 *   predicted_y = median_m * x + median_error
 200 *
 201 * Implementation differences from above:
 202 * - Redefined y to be actually c - b, this gives us a lot more precision
 203 * to do the math. (c-b)/b variations are more obvious than c/b variations.
 204 * - Since we don't have floating point, any operations involving slope are
 205 * done using fixed point math (*M_PRECISION)
 206 * - Since x and y grow with time, we keep zeroing the graph (relative to
 207 * the last sample), this way math involving *x[n-i] will not overflow
 208 * - EC timestamps are kept in us, it improves the slope calculation precision
 209 */
 210
 211/**
 212 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
 213 *
 214 * @state: Filter information.
 215 * @b: IRQ timestamp, EC timebase (us)
 216 * @c: IRQ timestamp, AP timebase (ns)
 217 *
 218 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
 219 * history.
 220 */
 221static void
 222cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
 223				     *state,
 224				     s64 b, s64 c)
 225{
 226	s64 x, y;
 227	s64 dx, dy;
 228	s64 m; /* stored as *M_PRECISION */
 229	s64 *m_history_copy = state->temp_buf;
 230	s64 *error = state->temp_buf;
 231	int i;
 232
 233	/* we trust b the most, that'll be our independent variable */
 234	x = b;
 235	/* y is the offset between AP and EC times, in ns */
 236	y = c - b * 1000;
 237
 238	dx = (state->x_history[0] + state->x_offset) - x;
 239	if (dx == 0)
 240		return; /* we already have this irq in the history */
 241	dy = (state->y_history[0] + state->y_offset) - y;
 242	m = div64_s64(dy * M_PRECISION, dx);
 243
 244	/* Empty filter if we haven't seen any action in a while. */
 245	if (-dx > TS_HISTORY_BORED_US)
 246		state->history_len = 0;
 247
 248	/* Move everything over, also update offset to all absolute coords .*/
 249	for (i = state->history_len - 1; i >= 1; i--) {
 250		state->x_history[i] = state->x_history[i - 1] + dx;
 251		state->y_history[i] = state->y_history[i - 1] + dy;
 252
 253		state->m_history[i] = state->m_history[i - 1];
 254		/*
 255		 * Also use the same loop to copy m_history for future
 256		 * median extraction.
 257		 */
 258		m_history_copy[i] = state->m_history[i - 1];
 259	}
 260
 261	/* Store the x and y, but remember offset is actually last sample. */
 262	state->x_offset = x;
 263	state->y_offset = y;
 264	state->x_history[0] = 0;
 265	state->y_history[0] = 0;
 266
 267	state->m_history[0] = m;
 268	m_history_copy[0] = m;
 269
 270	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
 271		state->history_len++;
 272
 273	/* Precalculate things for the filter. */
 274	if (state->history_len > TS_HISTORY_THRESHOLD) {
 275		state->median_m =
 276		    cros_ec_sensor_ring_median(m_history_copy,
 277					       state->history_len - 1);
 278
 279		/*
 280		 * Calculate y-intercepts as if m_median is the slope and
 281		 * points in the history are on the line. median_error will
 282		 * still be in the offset coordinate system.
 283		 */
 284		for (i = 0; i < state->history_len; i++)
 285			error[i] = state->y_history[i] -
 286				div_s64(state->median_m * state->x_history[i],
 287					M_PRECISION);
 288		state->median_error =
 289			cros_ec_sensor_ring_median(error, state->history_len);
 290	} else {
 291		state->median_m = 0;
 292		state->median_error = 0;
 293	}
 294}
 295
 296/**
 297 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
 298 *                                   timebase
 299 *
 300 * @state: filter information.
 301 * @x: any ec timestamp (us):
 302 *
 303 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
 304 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
 305 *                           should have happened on the AP, with low jitter
 306 *
 307 * Note: The filter will only activate once state->history_len goes
 308 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
 309 * transform.
 310 *
 311 * How to derive the formula, starting from:
 312 *   f(x) = median_m * x + median_error
 313 * That's the calculated AP - EC offset (at the x point in time)
 314 * Undo the coordinate system transform:
 315 *   f(x) = median_m * (x - x_offset) + median_error + y_offset
 316 * Remember to undo the "y = c - b * 1000" modification:
 317 *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
 318 *
 319 * Return: timestamp in AP timebase (ns)
 320 */
 321static s64
 322cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
 323			      s64 x)
 324{
 325	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
 326	       + state->median_error + state->y_offset + x * 1000;
 327}
 328
 329/*
 330 * Since a and b were originally 32 bit values from the EC,
 331 * they overflow relatively often, casting is not enough, so we need to
 332 * add an offset.
 333 */
 334static void
 335cros_ec_sensor_ring_fix_overflow(s64 *ts,
 336				 const s64 overflow_period,
 337				 struct cros_ec_sensors_ec_overflow_state
 338				 *state)
 339{
 340	s64 adjust;
 341
 342	*ts += state->offset;
 343	if (abs(state->last - *ts) > (overflow_period / 2)) {
 344		adjust = state->last > *ts ? overflow_period : -overflow_period;
 345		state->offset += adjust;
 346		*ts += adjust;
 347	}
 348	state->last = *ts;
 349}
 350
 351static void
 352cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
 353					     *sensorhub,
 354					     struct cros_ec_sensors_ring_sample
 355					     *sample)
 356{
 357	const u8 sensor_id = sample->sensor_id;
 358
 359	/* If this event is earlier than one we saw before... */
 360	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
 361	    sample->timestamp)
 362		/* mark it for spreading. */
 363		sample->timestamp =
 364			sensorhub->batch_state[sensor_id].last_ts;
 365	else
 366		sensorhub->batch_state[sensor_id].newest_sensor_event =
 367			sample->timestamp;
 368}
 369
 370/**
 371 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
 372 *
 373 * @sensorhub: Sensor Hub object.
 374 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
 375 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
 376 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
 377 * @in: incoming FIFO event from EC (includes a point, EC timebase).
 378 * @out: outgoing event to user space (includes a').
 379 *
 380 * Process one EC event, add it in the ring if necessary.
 381 *
 382 * Return: true if out event has been populated.
 383 */
 384static bool
 385cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
 386				const struct ec_response_motion_sense_fifo_info
 387				*fifo_info,
 388				const ktime_t fifo_timestamp,
 389				ktime_t *current_timestamp,
 390				struct ec_response_motion_sensor_data *in,
 391				struct cros_ec_sensors_ring_sample *out)
 392{
 393	const s64 now = cros_ec_get_time_ns();
 394	int axis, async_flags;
 395
 396	/* Do not populate the filter based on asynchronous events. */
 397	async_flags = in->flags &
 398		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
 399
 400	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
 401		s64 a = in->timestamp;
 402		s64 b = fifo_info->timestamp;
 403		s64 c = fifo_timestamp;
 404
 405		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
 406					  &sensorhub->overflow_a);
 407		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
 408					  &sensorhub->overflow_b);
 409
 410		if (sensorhub->tight_timestamps) {
 411			cros_ec_sensor_ring_ts_filter_update(
 412					&sensorhub->filter, b, c);
 413			*current_timestamp = cros_ec_sensor_ring_ts_filter(
 414					&sensorhub->filter, a);
 415		} else {
 416			s64 new_timestamp;
 417
 418			/*
 419			 * Disable filtering since we might add more jitter
 420			 * if b is in a random point in time.
 421			 */
 422			new_timestamp = c - b * 1000 + a * 1000;
 423			/*
 424			 * The timestamp can be stale if we had to use the fifo
 425			 * info timestamp.
 426			 */
 427			if (new_timestamp - *current_timestamp > 0)
 428				*current_timestamp = new_timestamp;
 429		}
 430	}
 431
 432	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
 433		if (sensorhub->tight_timestamps) {
 434			sensorhub->batch_state[in->sensor_num].last_len = 0;
 435			sensorhub->batch_state[in->sensor_num].penul_len = 0;
 436		}
 437		/*
 438		 * ODR change is only useful for the sensor_ring, it does not
 439		 * convey information to clients.
 440		 */
 441		return false;
 442	}
 443
 444	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
 445		out->sensor_id = in->sensor_num;
 446		out->timestamp = *current_timestamp;
 447		out->flag = in->flags;
 448		if (sensorhub->tight_timestamps)
 449			sensorhub->batch_state[out->sensor_id].last_len = 0;
 450		/*
 451		 * No other payload information provided with
 452		 * flush ack.
 453		 */
 454		return true;
 455	}
 456
 457	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
 458		/* If we just have a timestamp, skip this entry. */
 459		return false;
 460
 461	/* Regular sample */
 462	out->sensor_id = in->sensor_num;
 463	if (*current_timestamp - now > 0) {
 464		/*
 465		 * This fix is needed to overcome the timestamp filter putting
 466		 * events in the future.
 467		 */
 468		sensorhub->future_timestamp_total_ns +=
 469			*current_timestamp - now;
 470		if (++sensorhub->future_timestamp_count ==
 471				FUTURE_TS_ANALYTICS_COUNT_MAX) {
 472			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
 473					sensorhub->future_timestamp_count);
 474			dev_warn_ratelimited(sensorhub->dev,
 475					     "100 timestamps in the future, %lldns shaved on average\n",
 476					     avg);
 477			sensorhub->future_timestamp_count = 0;
 478			sensorhub->future_timestamp_total_ns = 0;
 479		}
 480		out->timestamp = now;
 481	} else {
 482		out->timestamp = *current_timestamp;
 483	}
 484
 485	out->flag = in->flags;
 486	for (axis = 0; axis < 3; axis++)
 487		out->vector[axis] = in->data[axis];
 488
 489	if (sensorhub->tight_timestamps)
 490		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
 491	return true;
 492}
 493
 494/*
 495 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
 496 *                                 ringbuffer.
 497 *
 498 * This is the new spreading code, assumes every sample's timestamp
 499 * preceeds the sample. Run if tight_timestamps == true.
 500 *
 501 * Sometimes the EC receives only one interrupt (hence timestamp) for
 502 * a batch of samples. Only the first sample will have the correct
 503 * timestamp. So we must interpolate the other samples.
 504 * We use the previous batch timestamp and our current batch timestamp
 505 * as a way to calculate period, then spread the samples evenly.
 506 *
 507 * s0 int, 0ms
 508 * s1 int, 10ms
 509 * s2 int, 20ms
 510 * 30ms point goes by, no interrupt, previous one is still asserted
 511 * downloading s2 and s3
 512 * s3 sample, 20ms (incorrect timestamp)
 513 * s4 int, 40ms
 514 *
 515 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
 516 * has 2 samples in them, we adjust the timestamp of s3.
 517 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
 518 * been part of a bigger batch things would have gotten a little
 519 * more complicated.
 520 *
 521 * Note: we also assume another sensor sample doesn't break up a batch
 522 * in 2 or more partitions. Example, there can't ever be a sync sensor
 523 * in between S2 and S3. This simplifies the following code.
 524 */
 525static void
 526cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
 527			       unsigned long sensor_mask,
 528			       struct cros_ec_sensors_ring_sample *last_out)
 529{
 530	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
 531	int id;
 532
 533	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
 534		for (batch_start = sensorhub->ring; batch_start < last_out;
 535		     batch_start = next_batch_start) {
 536			/*
 537			 * For each batch (where all samples have the same
 538			 * timestamp).
 539			 */
 540			int batch_len, sample_idx;
 541			struct cros_ec_sensors_ring_sample *batch_end =
 542				batch_start;
 543			struct cros_ec_sensors_ring_sample *s;
 544			s64 batch_timestamp = batch_start->timestamp;
 545			s64 sample_period;
 546
 547			/*
 548			 * Skip over batches that start with the sensor types
 549			 * we're not looking at right now.
 550			 */
 551			if (batch_start->sensor_id != id) {
 552				next_batch_start = batch_start + 1;
 553				continue;
 554			}
 555
 556			/*
 557			 * Do not start a batch
 558			 * from a flush, as it happens asynchronously to the
 559			 * regular flow of events.
 560			 */
 561			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
 562				cros_sensorhub_send_sample(sensorhub,
 563							   batch_start);
 564				next_batch_start = batch_start + 1;
 565				continue;
 566			}
 567
 568			if (batch_start->timestamp <=
 569			    sensorhub->batch_state[id].last_ts) {
 570				batch_timestamp =
 571					sensorhub->batch_state[id].last_ts;
 572				batch_len = sensorhub->batch_state[id].last_len;
 573
 574				sample_idx = batch_len;
 575
 576				sensorhub->batch_state[id].last_ts =
 577				  sensorhub->batch_state[id].penul_ts;
 578				sensorhub->batch_state[id].last_len =
 579				  sensorhub->batch_state[id].penul_len;
 580			} else {
 581				/*
 582				 * Push first sample in the batch to the,
 583				 * kifo, it's guaranteed to be correct, the
 584				 * rest will follow later on.
 585				 */
 586				sample_idx = 1;
 587				batch_len = 1;
 588				cros_sensorhub_send_sample(sensorhub,
 589							   batch_start);
 590				batch_start++;
 591			}
 592
 593			/* Find all samples have the same timestamp. */
 594			for (s = batch_start; s < last_out; s++) {
 595				if (s->sensor_id != id)
 596					/*
 597					 * Skip over other sensor types that
 598					 * are interleaved, don't count them.
 599					 */
 600					continue;
 601				if (s->timestamp != batch_timestamp)
 602					/* we discovered the next batch */
 603					break;
 604				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
 605					/* break on flush packets */
 606					break;
 607				batch_end = s;
 608				batch_len++;
 609			}
 610
 611			if (batch_len == 1)
 612				goto done_with_this_batch;
 613
 614			/* Can we calculate period? */
 615			if (sensorhub->batch_state[id].last_len == 0) {
 616				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
 617					 id, batch_len - 1);
 618				goto done_with_this_batch;
 619				/*
 620				 * Note: we're dropping the rest of the samples
 621				 * in this batch since we have no idea where
 622				 * they're supposed to go without a period
 623				 * calculation.
 624				 */
 625			}
 626
 627			sample_period = div_s64(batch_timestamp -
 628				sensorhub->batch_state[id].last_ts,
 629				sensorhub->batch_state[id].last_len);
 630			dev_dbg(sensorhub->dev,
 631				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
 632				batch_len, id,
 633				sensorhub->batch_state[id].last_ts,
 634				sensorhub->batch_state[id].last_len,
 635				batch_timestamp,
 636				sample_period);
 637
 638			/*
 639			 * Adjust timestamps of the samples then push them to
 640			 * kfifo.
 641			 */
 642			for (s = batch_start; s <= batch_end; s++) {
 643				if (s->sensor_id != id)
 644					/*
 645					 * Skip over other sensor types that
 646					 * are interleaved, don't change them.
 647					 */
 648					continue;
 649
 650				s->timestamp = batch_timestamp +
 651					sample_period * sample_idx;
 652				sample_idx++;
 653
 654				cros_sensorhub_send_sample(sensorhub, s);
 655			}
 656
 657done_with_this_batch:
 658			sensorhub->batch_state[id].penul_ts =
 659				sensorhub->batch_state[id].last_ts;
 660			sensorhub->batch_state[id].penul_len =
 661				sensorhub->batch_state[id].last_len;
 662
 663			sensorhub->batch_state[id].last_ts =
 664				batch_timestamp;
 665			sensorhub->batch_state[id].last_len = batch_len;
 666
 667			next_batch_start = batch_end + 1;
 668		}
 669	}
 670}
 671
 672/*
 673 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
 674 * add to ringbuffer (legacy).
 675 *
 676 * Note: This assumes we're running old firmware, where timestamp
 677 * is inserted after its sample(s)e. There can be several samples between
 678 * timestamps, so several samples can have the same timestamp.
 679 *
 680 *                        timestamp | count
 681 *                        -----------------
 682 *          1st sample --> TS1      | 1
 683 *                         TS2      | 2
 684 *                         TS2      | 3
 685 *                         TS3      | 4
 686 *           last_out -->
 687 *
 688 *
 689 * We spread time for the samples using perod p = (current - TS1)/4.
 690 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
 691 *
 692 */
 693static void
 694cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
 695				      unsigned long sensor_mask,
 696				      s64 current_timestamp,
 697				      struct cros_ec_sensors_ring_sample
 698				      *last_out)
 699{
 700	struct cros_ec_sensors_ring_sample *out;
 701	int i;
 702
 703	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
 704		s64 timestamp;
 705		int count = 0;
 706		s64 time_period;
 707
 708		for (out = sensorhub->ring; out < last_out; out++) {
 709			if (out->sensor_id != i)
 710				continue;
 711
 712			/* Timestamp to start with */
 713			timestamp = out->timestamp;
 714			out++;
 715			count = 1;
 716			break;
 717		}
 718		for (; out < last_out; out++) {
 719			/* Find last sample. */
 720			if (out->sensor_id != i)
 721				continue;
 722			count++;
 723		}
 724		if (count == 0)
 725			continue;
 726
 727		/* Spread uniformly between the first and last samples. */
 728		time_period = div_s64(current_timestamp - timestamp, count);
 729
 730		for (out = sensorhub->ring; out < last_out; out++) {
 731			if (out->sensor_id != i)
 732				continue;
 733			timestamp += time_period;
 734			out->timestamp = timestamp;
 735		}
 736	}
 737
 738	/* Push the event into the kfifo */
 739	for (out = sensorhub->ring; out < last_out; out++)
 740		cros_sensorhub_send_sample(sensorhub, out);
 741}
 742
 743/**
 744 * cros_ec_sensorhub_ring_handler() - The trigger handler function
 745 *
 746 * @sensorhub: Sensor Hub object.
 747 *
 748 * Called by the notifier, process the EC sensor FIFO queue.
 749 */
 750static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
 751{
 752	struct ec_response_motion_sense_fifo_info *fifo_info =
 753		sensorhub->fifo_info;
 754	struct cros_ec_dev *ec = sensorhub->ec;
 755	ktime_t fifo_timestamp, current_timestamp;
 756	int i, j, number_data, ret;
 757	unsigned long sensor_mask = 0;
 758	struct ec_response_motion_sensor_data *in;
 759	struct cros_ec_sensors_ring_sample *out, *last_out;
 760
 761	mutex_lock(&sensorhub->cmd_lock);
 762
 763	/* Get FIFO information if there are lost vectors. */
 764	if (fifo_info->total_lost) {
 765		int fifo_info_length =
 766			sizeof(struct ec_response_motion_sense_fifo_info) +
 767			sizeof(u16) * sensorhub->sensor_num;
 768
 769		/* Need to retrieve the number of lost vectors per sensor */
 770		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
 771		sensorhub->msg->outsize = 1;
 772		sensorhub->msg->insize = fifo_info_length;
 773
 774		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
 775			goto error;
 776
 777		memcpy(fifo_info, &sensorhub->resp->fifo_info,
 778		       fifo_info_length);
 779
 780		/*
 781		 * Update collection time, will not be as precise as the
 782		 * non-error case.
 783		 */
 784		fifo_timestamp = cros_ec_get_time_ns();
 785	} else {
 786		fifo_timestamp = sensorhub->fifo_timestamp[
 787			CROS_EC_SENSOR_NEW_TS];
 788	}
 789
 790	if (fifo_info->count > sensorhub->fifo_size ||
 791	    fifo_info->size != sensorhub->fifo_size) {
 792		dev_warn(sensorhub->dev,
 793			 "Mismatch EC data: count %d, size %d - expected %d\n",
 794			 fifo_info->count, fifo_info->size,
 795			 sensorhub->fifo_size);
 796		goto error;
 797	}
 798
 799	/* Copy elements in the main fifo */
 800	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
 801	out = sensorhub->ring;
 802	for (i = 0; i < fifo_info->count; i += number_data) {
 803		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
 804		sensorhub->params->fifo_read.max_data_vector =
 805			fifo_info->count - i;
 806		sensorhub->msg->outsize =
 807			sizeof(struct ec_params_motion_sense);
 808		sensorhub->msg->insize =
 809			sizeof(sensorhub->resp->fifo_read) +
 810			sensorhub->params->fifo_read.max_data_vector *
 811			  sizeof(struct ec_response_motion_sensor_data);
 812		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
 813		if (ret < 0) {
 814			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
 815			break;
 816		}
 817		number_data = sensorhub->resp->fifo_read.number_data;
 818		if (number_data == 0) {
 819			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
 820			break;
 821		}
 822		if (number_data > fifo_info->count - i) {
 823			dev_warn(sensorhub->dev,
 824				 "Invalid EC data: too many entry received: %d, expected %d\n",
 825				 number_data, fifo_info->count - i);
 826			break;
 827		}
 828		if (out + number_data >
 829		    sensorhub->ring + fifo_info->count) {
 830			dev_warn(sensorhub->dev,
 831				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
 832				 i, out - sensorhub->ring, i + number_data,
 833				 fifo_info->count);
 834			break;
 835		}
 836
 837		for (in = sensorhub->resp->fifo_read.data, j = 0;
 838		     j < number_data; j++, in++) {
 839			if (cros_ec_sensor_ring_process_event(
 840						sensorhub, fifo_info,
 841						fifo_timestamp,
 842						&current_timestamp,
 843						in, out)) {
 844				sensor_mask |= BIT(in->sensor_num);
 845				out++;
 846			}
 847		}
 848	}
 849	mutex_unlock(&sensorhub->cmd_lock);
 850	last_out = out;
 851
 852	if (out == sensorhub->ring)
 853		/* Unexpected empty FIFO. */
 854		goto ring_handler_end;
 855
 856	/*
 857	 * Check if current_timestamp is ahead of the last sample. Normally,
 858	 * the EC appends a timestamp after the last sample, but if the AP
 859	 * is slow to respond to the IRQ, the EC may have added new samples.
 860	 * Use the FIFO info timestamp as last timestamp then.
 861	 */
 862	if (!sensorhub->tight_timestamps &&
 863	    (last_out - 1)->timestamp == current_timestamp)
 864		current_timestamp = fifo_timestamp;
 865
 866	/* Warn on lost samples. */
 867	if (fifo_info->total_lost)
 868		for (i = 0; i < sensorhub->sensor_num; i++) {
 869			if (fifo_info->lost[i]) {
 870				dev_warn_ratelimited(sensorhub->dev,
 871						     "Sensor %d: lost: %d out of %d\n",
 872						     i, fifo_info->lost[i],
 873						     fifo_info->total_lost);
 874				if (sensorhub->tight_timestamps)
 875					sensorhub->batch_state[i].last_len = 0;
 876			}
 877		}
 878
 879	/*
 880	 * Spread samples in case of batching, then add them to the
 881	 * ringbuffer.
 882	 */
 883	if (sensorhub->tight_timestamps)
 884		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
 885					       last_out);
 886	else
 887		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
 888						      current_timestamp,
 889						      last_out);
 890
 891ring_handler_end:
 892	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
 893	return;
 894
 895error:
 896	mutex_unlock(&sensorhub->cmd_lock);
 897}
 898
 899static int cros_ec_sensorhub_event(struct notifier_block *nb,
 900				   unsigned long queued_during_suspend,
 901				   void *_notify)
 902{
 903	struct cros_ec_sensorhub *sensorhub;
 904	struct cros_ec_device *ec_dev;
 905
 906	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
 907	ec_dev = sensorhub->ec->ec_dev;
 908
 909	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
 910		return NOTIFY_DONE;
 911
 912	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
 913		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
 914		return NOTIFY_DONE;
 915	}
 916
 917	if (queued_during_suspend)
 918		return NOTIFY_OK;
 919
 920	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
 921	       sizeof(*sensorhub->fifo_info));
 922	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
 923		ec_dev->last_event_time;
 924	cros_ec_sensorhub_ring_handler(sensorhub);
 925
 926	return NOTIFY_OK;
 927}
 928
 929/**
 930 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
 931 *				       supports it.
 932 *
 933 * @sensorhub : Sensor Hub object.
 934 *
 935 * Return: 0 on success.
 936 */
 937int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
 938{
 939	int fifo_info_length =
 940		sizeof(struct ec_response_motion_sense_fifo_info) +
 941		sizeof(u16) * sensorhub->sensor_num;
 942
 943	/* Allocate the array for lost events. */
 944	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
 945					    GFP_KERNEL);
 946	if (!sensorhub->fifo_info)
 947		return -ENOMEM;
 948
 949	/*
 950	 * Allocate the callback area based on the number of sensors.
 951	 * Add one for the sensor ring.
 952	 */
 953	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
 954			sensorhub->sensor_num,
 955			sizeof(*sensorhub->push_data),
 956			GFP_KERNEL);
 957	if (!sensorhub->push_data)
 958		return -ENOMEM;
 959
 960	sensorhub->tight_timestamps = cros_ec_check_features(
 961			sensorhub->ec,
 962			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
 963
 964	if (sensorhub->tight_timestamps) {
 965		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
 966				sensorhub->sensor_num,
 967				sizeof(*sensorhub->batch_state),
 968				GFP_KERNEL);
 969		if (!sensorhub->batch_state)
 970			return -ENOMEM;
 971	}
 972
 973	return 0;
 974}
 975
 976/**
 977 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
 978 *				  supports it.
 979 *
 980 * @sensorhub : Sensor Hub object.
 981 *
 982 * Return: 0 on success.
 983 */
 984int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
 985{
 986	struct cros_ec_dev *ec = sensorhub->ec;
 987	int ret;
 988	int fifo_info_length =
 989		sizeof(struct ec_response_motion_sense_fifo_info) +
 990		sizeof(u16) * sensorhub->sensor_num;
 991
 992	/* Retrieve FIFO information */
 993	sensorhub->msg->version = 2;
 994	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
 995	sensorhub->msg->outsize = 1;
 996	sensorhub->msg->insize = fifo_info_length;
 997
 998	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
 999	if (ret < 0)
1000		return ret;
1001
1002	/*
1003	 * Allocate the full fifo. We need to copy the whole FIFO to set
1004	 * timestamps properly.
1005	 */
1006	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1007	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1008				       sizeof(*sensorhub->ring), GFP_KERNEL);
1009	if (!sensorhub->ring)
1010		return -ENOMEM;
1011
1012	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1013		cros_ec_get_time_ns();
1014
1015	/* Register the notifier that will act as a top half interrupt. */
1016	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1017	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1018					       &sensorhub->notifier);
1019	if (ret < 0)
1020		return ret;
1021
1022	/* Start collection samples. */
1023	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1024}
1025
1026void cros_ec_sensorhub_ring_remove(void *arg)
1027{
1028	struct cros_ec_sensorhub *sensorhub = arg;
1029	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1030
1031	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
1032	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1033	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1034					   &sensorhub->notifier);
1035}