Linux Audio

Check our new training course

Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Driver for Chrome OS EC Sensor hub FIFO.
   4 *
   5 * Copyright 2020 Google LLC
   6 */
   7
   8#include <linux/delay.h>
   9#include <linux/device.h>
  10#include <linux/iio/iio.h>
  11#include <linux/kernel.h>
  12#include <linux/module.h>
  13#include <linux/platform_data/cros_ec_commands.h>
  14#include <linux/platform_data/cros_ec_proto.h>
  15#include <linux/platform_data/cros_ec_sensorhub.h>
  16#include <linux/platform_device.h>
  17#include <linux/sort.h>
  18#include <linux/slab.h>
  19
  20#include "cros_ec_trace.h"
  21
  22/* Precision of fixed point for the m values from the filter */
  23#define M_PRECISION BIT(23)
  24
  25/* Only activate the filter once we have at least this many elements. */
  26#define TS_HISTORY_THRESHOLD 8
  27
  28/*
  29 * If we don't have any history entries for this long, empty the filter to
  30 * make sure there are no big discontinuities.
  31 */
  32#define TS_HISTORY_BORED_US 500000
  33
  34/* To measure by how much the filter is overshooting, if it happens. */
  35#define FUTURE_TS_ANALYTICS_COUNT_MAX 100
  36
  37static inline int
  38cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
  39			   struct cros_ec_sensors_ring_sample *sample)
  40{
  41	cros_ec_sensorhub_push_data_cb_t cb;
  42	int id = sample->sensor_id;
  43	struct iio_dev *indio_dev;
  44
  45	if (id >= sensorhub->sensor_num)
  46		return -EINVAL;
  47
  48	cb = sensorhub->push_data[id].push_data_cb;
  49	if (!cb)
  50		return 0;
  51
  52	indio_dev = sensorhub->push_data[id].indio_dev;
  53
  54	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
  55		return 0;
  56
  57	return cb(indio_dev, sample->vector, sample->timestamp);
  58}
  59
  60/**
  61 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
  62 *
  63 * @sensorhub : Sensor Hub object
  64 * @sensor_num : The sensor the caller is interested in.
  65 * @indio_dev : The iio device to use when a sample arrives.
  66 * @cb : The callback to call when a sample arrives.
  67 *
  68 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
  69 * from the EC.
  70 *
  71 * Return: 0 when callback is registered.
  72 *         EINVAL is the sensor number is invalid or the slot already used.
  73 */
  74int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
  75					 u8 sensor_num,
  76					 struct iio_dev *indio_dev,
  77					 cros_ec_sensorhub_push_data_cb_t cb)
  78{
  79	if (sensor_num >= sensorhub->sensor_num)
  80		return -EINVAL;
  81	if (sensorhub->push_data[sensor_num].indio_dev)
  82		return -EINVAL;
  83
  84	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
  85	sensorhub->push_data[sensor_num].push_data_cb = cb;
  86
  87	return 0;
  88}
  89EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
  90
  91void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
  92					    u8 sensor_num)
  93{
  94	sensorhub->push_data[sensor_num].indio_dev = NULL;
  95	sensorhub->push_data[sensor_num].push_data_cb = NULL;
  96}
  97EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
  98
  99/**
 100 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
 101 *					  for FIFO events.
 102 * @sensorhub: Sensor Hub object
 103 * @on: true when events are requested.
 104 *
 105 * To be called before sleeping or when noone is listening.
 106 * Return: 0 on success, or an error when we can not communicate with the EC.
 107 *
 108 */
 109int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
 110				       bool on)
 111{
 112	int ret, i;
 113
 114	mutex_lock(&sensorhub->cmd_lock);
 115	if (sensorhub->tight_timestamps)
 116		for (i = 0; i < sensorhub->sensor_num; i++)
 117			sensorhub->batch_state[i].last_len = 0;
 118
 119	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
 120	sensorhub->params->fifo_int_enable.enable = on;
 121
 122	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
 123	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
 124
 125	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
 126	mutex_unlock(&sensorhub->cmd_lock);
 127
 128	/* We expect to receive a payload of 4 bytes, ignore. */
 129	if (ret > 0)
 130		ret = 0;
 131
 132	return ret;
 133}
 134
 135static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
 136{
 137	s64 v1 = *(s64 *)pv1;
 138	s64 v2 = *(s64 *)pv2;
 139
 140	if (v1 > v2)
 141		return 1;
 142	else if (v1 < v2)
 143		return -1;
 144	else
 145		return 0;
 146}
 147
 148/*
 149 * cros_ec_sensor_ring_median: Gets median of an array of numbers
 150 *
 151 * For now it's implemented using an inefficient > O(n) sort then return
 152 * the middle element. A more optimal method would be something like
 153 * quickselect, but given that n = 64 we can probably live with it in the
 154 * name of clarity.
 155 *
 156 * Warning: the input array gets modified (sorted)!
 157 */
 158static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
 159{
 160	sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
 161	return array[length / 2];
 162}
 163
 164/*
 165 * IRQ Timestamp Filtering
 166 *
 167 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
 168 * we have to calculate it's timestamp in the AP timebase. There are 3 time
 169 * points:
 170 *   a - EC timebase, sensor event
 171 *   b - EC timebase, IRQ
 172 *   c - AP timebase, IRQ
 173 *   a' - what we want: sensor even in AP timebase
 174 *
 175 * While a and b are recorded at accurate times (due to the EC real time
 176 * nature); c is pretty untrustworthy, even though it's recorded the
 177 * first thing in ec_irq_handler(). There is a very good change we'll get
 178 * added lantency due to:
 179 *   other irqs
 180 *   ddrfreq
 181 *   cpuidle
 182 *
 183 * Normally a' = c - b + a, but if we do that naive math any jitter in c
 184 * will get coupled in a', which we don't want. We want a function
 185 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
 186 *
 187 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
 188 * The slope of the line won't be exactly 1, there will be some clock drift
 189 * between the 2 chips for various reasons (mechanical stress, temperature,
 190 * voltage). We need to extrapolate values for a future x, without trusting
 191 * recent y values too much.
 192 *
 193 * We use a median filter for the slope, then another median filter for the
 194 * y-intercept to calculate this function:
 195 *   dx[n] = x[n-1] - x[n]
 196 *   dy[n] = x[n-1] - x[n]
 197 *   m[n] = dy[n] / dx[n]
 198 *   median_m = median(m[n-k:n])
 199 *   error[i] = y[n-i] - median_m * x[n-i]
 200 *   median_error = median(error[:k])
 201 *   predicted_y = median_m * x + median_error
 202 *
 203 * Implementation differences from above:
 204 * - Redefined y to be actually c - b, this gives us a lot more precision
 205 * to do the math. (c-b)/b variations are more obvious than c/b variations.
 206 * - Since we don't have floating point, any operations involving slope are
 207 * done using fixed point math (*M_PRECISION)
 208 * - Since x and y grow with time, we keep zeroing the graph (relative to
 209 * the last sample), this way math involving *x[n-i] will not overflow
 210 * - EC timestamps are kept in us, it improves the slope calculation precision
 211 */
 212
 213/**
 214 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
 215 *
 216 * @state: Filter information.
 217 * @b: IRQ timestamp, EC timebase (us)
 218 * @c: IRQ timestamp, AP timebase (ns)
 219 *
 220 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
 221 * history.
 222 */
 223static void
 224cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
 225				     *state,
 226				     s64 b, s64 c)
 227{
 228	s64 x, y;
 229	s64 dx, dy;
 230	s64 m; /* stored as *M_PRECISION */
 231	s64 *m_history_copy = state->temp_buf;
 232	s64 *error = state->temp_buf;
 233	int i;
 234
 235	/* we trust b the most, that'll be our independent variable */
 236	x = b;
 237	/* y is the offset between AP and EC times, in ns */
 238	y = c - b * 1000;
 239
 240	dx = (state->x_history[0] + state->x_offset) - x;
 241	if (dx == 0)
 242		return; /* we already have this irq in the history */
 243	dy = (state->y_history[0] + state->y_offset) - y;
 244	m = div64_s64(dy * M_PRECISION, dx);
 245
 246	/* Empty filter if we haven't seen any action in a while. */
 247	if (-dx > TS_HISTORY_BORED_US)
 248		state->history_len = 0;
 249
 250	/* Move everything over, also update offset to all absolute coords .*/
 251	for (i = state->history_len - 1; i >= 1; i--) {
 252		state->x_history[i] = state->x_history[i - 1] + dx;
 253		state->y_history[i] = state->y_history[i - 1] + dy;
 254
 255		state->m_history[i] = state->m_history[i - 1];
 256		/*
 257		 * Also use the same loop to copy m_history for future
 258		 * median extraction.
 259		 */
 260		m_history_copy[i] = state->m_history[i - 1];
 261	}
 262
 263	/* Store the x and y, but remember offset is actually last sample. */
 264	state->x_offset = x;
 265	state->y_offset = y;
 266	state->x_history[0] = 0;
 267	state->y_history[0] = 0;
 268
 269	state->m_history[0] = m;
 270	m_history_copy[0] = m;
 271
 272	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
 273		state->history_len++;
 274
 275	/* Precalculate things for the filter. */
 276	if (state->history_len > TS_HISTORY_THRESHOLD) {
 277		state->median_m =
 278		    cros_ec_sensor_ring_median(m_history_copy,
 279					       state->history_len - 1);
 280
 281		/*
 282		 * Calculate y-intercepts as if m_median is the slope and
 283		 * points in the history are on the line. median_error will
 284		 * still be in the offset coordinate system.
 285		 */
 286		for (i = 0; i < state->history_len; i++)
 287			error[i] = state->y_history[i] -
 288				div_s64(state->median_m * state->x_history[i],
 289					M_PRECISION);
 290		state->median_error =
 291			cros_ec_sensor_ring_median(error, state->history_len);
 292	} else {
 293		state->median_m = 0;
 294		state->median_error = 0;
 295	}
 296	trace_cros_ec_sensorhub_filter(state, dx, dy);
 297}
 298
 299/**
 300 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
 301 *                                   timebase
 302 *
 303 * @state: filter information.
 304 * @x: any ec timestamp (us):
 305 *
 306 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
 307 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
 308 *                           should have happened on the AP, with low jitter
 309 *
 310 * Note: The filter will only activate once state->history_len goes
 311 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
 312 * transform.
 313 *
 314 * How to derive the formula, starting from:
 315 *   f(x) = median_m * x + median_error
 316 * That's the calculated AP - EC offset (at the x point in time)
 317 * Undo the coordinate system transform:
 318 *   f(x) = median_m * (x - x_offset) + median_error + y_offset
 319 * Remember to undo the "y = c - b * 1000" modification:
 320 *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
 321 *
 322 * Return: timestamp in AP timebase (ns)
 323 */
 324static s64
 325cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
 326			      s64 x)
 327{
 328	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
 329	       + state->median_error + state->y_offset + x * 1000;
 330}
 331
 332/*
 333 * Since a and b were originally 32 bit values from the EC,
 334 * they overflow relatively often, casting is not enough, so we need to
 335 * add an offset.
 336 */
 337static void
 338cros_ec_sensor_ring_fix_overflow(s64 *ts,
 339				 const s64 overflow_period,
 340				 struct cros_ec_sensors_ec_overflow_state
 341				 *state)
 342{
 343	s64 adjust;
 344
 345	*ts += state->offset;
 346	if (abs(state->last - *ts) > (overflow_period / 2)) {
 347		adjust = state->last > *ts ? overflow_period : -overflow_period;
 348		state->offset += adjust;
 349		*ts += adjust;
 350	}
 351	state->last = *ts;
 352}
 353
 354static void
 355cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
 356					     *sensorhub,
 357					     struct cros_ec_sensors_ring_sample
 358					     *sample)
 359{
 360	const u8 sensor_id = sample->sensor_id;
 361
 362	/* If this event is earlier than one we saw before... */
 363	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
 364	    sample->timestamp)
 365		/* mark it for spreading. */
 366		sample->timestamp =
 367			sensorhub->batch_state[sensor_id].last_ts;
 368	else
 369		sensorhub->batch_state[sensor_id].newest_sensor_event =
 370			sample->timestamp;
 371}
 372
 373/**
 374 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
 375 *
 376 * @sensorhub: Sensor Hub object.
 377 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
 378 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
 379 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
 380 * @in: incoming FIFO event from EC (includes a point, EC timebase).
 381 * @out: outgoing event to user space (includes a').
 382 *
 383 * Process one EC event, add it in the ring if necessary.
 384 *
 385 * Return: true if out event has been populated.
 386 */
 387static bool
 388cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
 389				const struct ec_response_motion_sense_fifo_info
 390				*fifo_info,
 391				const ktime_t fifo_timestamp,
 392				ktime_t *current_timestamp,
 393				struct ec_response_motion_sensor_data *in,
 394				struct cros_ec_sensors_ring_sample *out)
 395{
 396	const s64 now = cros_ec_get_time_ns();
 397	int axis, async_flags;
 398
 399	/* Do not populate the filter based on asynchronous events. */
 400	async_flags = in->flags &
 401		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
 402
 403	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
 404		s64 a = in->timestamp;
 405		s64 b = fifo_info->timestamp;
 406		s64 c = fifo_timestamp;
 407
 408		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
 409					  &sensorhub->overflow_a);
 410		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
 411					  &sensorhub->overflow_b);
 412
 413		if (sensorhub->tight_timestamps) {
 414			cros_ec_sensor_ring_ts_filter_update(
 415					&sensorhub->filter, b, c);
 416			*current_timestamp = cros_ec_sensor_ring_ts_filter(
 417					&sensorhub->filter, a);
 418		} else {
 419			s64 new_timestamp;
 420
 421			/*
 422			 * Disable filtering since we might add more jitter
 423			 * if b is in a random point in time.
 424			 */
 425			new_timestamp = c - b * 1000 + a * 1000;
 426			/*
 427			 * The timestamp can be stale if we had to use the fifo
 428			 * info timestamp.
 429			 */
 430			if (new_timestamp - *current_timestamp > 0)
 431				*current_timestamp = new_timestamp;
 432		}
 433		trace_cros_ec_sensorhub_timestamp(in->timestamp,
 434						  fifo_info->timestamp,
 435						  fifo_timestamp,
 436						  *current_timestamp,
 437						  now);
 438	}
 439
 440	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
 441		if (sensorhub->tight_timestamps) {
 442			sensorhub->batch_state[in->sensor_num].last_len = 0;
 443			sensorhub->batch_state[in->sensor_num].penul_len = 0;
 444		}
 445		/*
 446		 * ODR change is only useful for the sensor_ring, it does not
 447		 * convey information to clients.
 448		 */
 449		return false;
 450	}
 451
 452	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
 453		out->sensor_id = in->sensor_num;
 454		out->timestamp = *current_timestamp;
 455		out->flag = in->flags;
 456		if (sensorhub->tight_timestamps)
 457			sensorhub->batch_state[out->sensor_id].last_len = 0;
 458		/*
 459		 * No other payload information provided with
 460		 * flush ack.
 461		 */
 462		return true;
 463	}
 464
 465	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
 466		/* If we just have a timestamp, skip this entry. */
 467		return false;
 468
 469	/* Regular sample */
 470	out->sensor_id = in->sensor_num;
 471	trace_cros_ec_sensorhub_data(in->sensor_num,
 472				     fifo_info->timestamp,
 473				     fifo_timestamp,
 474				     *current_timestamp,
 475				     now);
 476
 477	if (*current_timestamp - now > 0) {
 478		/*
 479		 * This fix is needed to overcome the timestamp filter putting
 480		 * events in the future.
 481		 */
 482		sensorhub->future_timestamp_total_ns +=
 483			*current_timestamp - now;
 484		if (++sensorhub->future_timestamp_count ==
 485				FUTURE_TS_ANALYTICS_COUNT_MAX) {
 486			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
 487					sensorhub->future_timestamp_count);
 488			dev_warn_ratelimited(sensorhub->dev,
 489					     "100 timestamps in the future, %lldns shaved on average\n",
 490					     avg);
 491			sensorhub->future_timestamp_count = 0;
 492			sensorhub->future_timestamp_total_ns = 0;
 493		}
 494		out->timestamp = now;
 495	} else {
 496		out->timestamp = *current_timestamp;
 497	}
 498
 499	out->flag = in->flags;
 500	for (axis = 0; axis < 3; axis++)
 501		out->vector[axis] = in->data[axis];
 502
 503	if (sensorhub->tight_timestamps)
 504		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
 505	return true;
 506}
 507
 508/*
 509 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
 510 *                                 ringbuffer.
 511 *
 512 * This is the new spreading code, assumes every sample's timestamp
 513 * preceeds the sample. Run if tight_timestamps == true.
 514 *
 515 * Sometimes the EC receives only one interrupt (hence timestamp) for
 516 * a batch of samples. Only the first sample will have the correct
 517 * timestamp. So we must interpolate the other samples.
 518 * We use the previous batch timestamp and our current batch timestamp
 519 * as a way to calculate period, then spread the samples evenly.
 520 *
 521 * s0 int, 0ms
 522 * s1 int, 10ms
 523 * s2 int, 20ms
 524 * 30ms point goes by, no interrupt, previous one is still asserted
 525 * downloading s2 and s3
 526 * s3 sample, 20ms (incorrect timestamp)
 527 * s4 int, 40ms
 528 *
 529 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
 530 * has 2 samples in them, we adjust the timestamp of s3.
 531 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
 532 * been part of a bigger batch things would have gotten a little
 533 * more complicated.
 534 *
 535 * Note: we also assume another sensor sample doesn't break up a batch
 536 * in 2 or more partitions. Example, there can't ever be a sync sensor
 537 * in between S2 and S3. This simplifies the following code.
 538 */
 539static void
 540cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
 541			       unsigned long sensor_mask,
 542			       struct cros_ec_sensors_ring_sample *last_out)
 543{
 544	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
 545	int id;
 546
 547	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
 548		for (batch_start = sensorhub->ring; batch_start < last_out;
 549		     batch_start = next_batch_start) {
 550			/*
 551			 * For each batch (where all samples have the same
 552			 * timestamp).
 553			 */
 554			int batch_len, sample_idx;
 555			struct cros_ec_sensors_ring_sample *batch_end =
 556				batch_start;
 557			struct cros_ec_sensors_ring_sample *s;
 558			s64 batch_timestamp = batch_start->timestamp;
 559			s64 sample_period;
 560
 561			/*
 562			 * Skip over batches that start with the sensor types
 563			 * we're not looking at right now.
 564			 */
 565			if (batch_start->sensor_id != id) {
 566				next_batch_start = batch_start + 1;
 567				continue;
 568			}
 569
 570			/*
 571			 * Do not start a batch
 572			 * from a flush, as it happens asynchronously to the
 573			 * regular flow of events.
 574			 */
 575			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
 576				cros_sensorhub_send_sample(sensorhub,
 577							   batch_start);
 578				next_batch_start = batch_start + 1;
 579				continue;
 580			}
 581
 582			if (batch_start->timestamp <=
 583			    sensorhub->batch_state[id].last_ts) {
 584				batch_timestamp =
 585					sensorhub->batch_state[id].last_ts;
 586				batch_len = sensorhub->batch_state[id].last_len;
 587
 588				sample_idx = batch_len;
 589
 590				sensorhub->batch_state[id].last_ts =
 591				  sensorhub->batch_state[id].penul_ts;
 592				sensorhub->batch_state[id].last_len =
 593				  sensorhub->batch_state[id].penul_len;
 594			} else {
 595				/*
 596				 * Push first sample in the batch to the,
 597				 * kifo, it's guaranteed to be correct, the
 598				 * rest will follow later on.
 599				 */
 600				sample_idx = 1;
 601				batch_len = 1;
 602				cros_sensorhub_send_sample(sensorhub,
 603							   batch_start);
 604				batch_start++;
 605			}
 606
 607			/* Find all samples have the same timestamp. */
 608			for (s = batch_start; s < last_out; s++) {
 609				if (s->sensor_id != id)
 610					/*
 611					 * Skip over other sensor types that
 612					 * are interleaved, don't count them.
 613					 */
 614					continue;
 615				if (s->timestamp != batch_timestamp)
 616					/* we discovered the next batch */
 617					break;
 618				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
 619					/* break on flush packets */
 620					break;
 621				batch_end = s;
 622				batch_len++;
 623			}
 624
 625			if (batch_len == 1)
 626				goto done_with_this_batch;
 627
 628			/* Can we calculate period? */
 629			if (sensorhub->batch_state[id].last_len == 0) {
 630				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
 631					 id, batch_len - 1);
 632				goto done_with_this_batch;
 633				/*
 634				 * Note: we're dropping the rest of the samples
 635				 * in this batch since we have no idea where
 636				 * they're supposed to go without a period
 637				 * calculation.
 638				 */
 639			}
 640
 641			sample_period = div_s64(batch_timestamp -
 642				sensorhub->batch_state[id].last_ts,
 643				sensorhub->batch_state[id].last_len);
 644			dev_dbg(sensorhub->dev,
 645				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
 646				batch_len, id,
 647				sensorhub->batch_state[id].last_ts,
 648				sensorhub->batch_state[id].last_len,
 649				batch_timestamp,
 650				sample_period);
 651
 652			/*
 653			 * Adjust timestamps of the samples then push them to
 654			 * kfifo.
 655			 */
 656			for (s = batch_start; s <= batch_end; s++) {
 657				if (s->sensor_id != id)
 658					/*
 659					 * Skip over other sensor types that
 660					 * are interleaved, don't change them.
 661					 */
 662					continue;
 663
 664				s->timestamp = batch_timestamp +
 665					sample_period * sample_idx;
 666				sample_idx++;
 667
 668				cros_sensorhub_send_sample(sensorhub, s);
 669			}
 670
 671done_with_this_batch:
 672			sensorhub->batch_state[id].penul_ts =
 673				sensorhub->batch_state[id].last_ts;
 674			sensorhub->batch_state[id].penul_len =
 675				sensorhub->batch_state[id].last_len;
 676
 677			sensorhub->batch_state[id].last_ts =
 678				batch_timestamp;
 679			sensorhub->batch_state[id].last_len = batch_len;
 680
 681			next_batch_start = batch_end + 1;
 682		}
 683	}
 684}
 685
 686/*
 687 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
 688 * add to ringbuffer (legacy).
 689 *
 690 * Note: This assumes we're running old firmware, where timestamp
 691 * is inserted after its sample(s)e. There can be several samples between
 692 * timestamps, so several samples can have the same timestamp.
 693 *
 694 *                        timestamp | count
 695 *                        -----------------
 696 *          1st sample --> TS1      | 1
 697 *                         TS2      | 2
 698 *                         TS2      | 3
 699 *                         TS3      | 4
 700 *           last_out -->
 701 *
 702 *
 703 * We spread time for the samples using perod p = (current - TS1)/4.
 704 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
 705 *
 706 */
 707static void
 708cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
 709				      unsigned long sensor_mask,
 710				      s64 current_timestamp,
 711				      struct cros_ec_sensors_ring_sample
 712				      *last_out)
 713{
 714	struct cros_ec_sensors_ring_sample *out;
 715	int i;
 716
 717	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
 718		s64 timestamp;
 719		int count = 0;
 720		s64 time_period;
 721
 722		for (out = sensorhub->ring; out < last_out; out++) {
 723			if (out->sensor_id != i)
 724				continue;
 725
 726			/* Timestamp to start with */
 727			timestamp = out->timestamp;
 728			out++;
 729			count = 1;
 730			break;
 731		}
 732		for (; out < last_out; out++) {
 733			/* Find last sample. */
 734			if (out->sensor_id != i)
 735				continue;
 736			count++;
 737		}
 738		if (count == 0)
 739			continue;
 740
 741		/* Spread uniformly between the first and last samples. */
 742		time_period = div_s64(current_timestamp - timestamp, count);
 743
 744		for (out = sensorhub->ring; out < last_out; out++) {
 745			if (out->sensor_id != i)
 746				continue;
 747			timestamp += time_period;
 748			out->timestamp = timestamp;
 749		}
 750	}
 751
 752	/* Push the event into the kfifo */
 753	for (out = sensorhub->ring; out < last_out; out++)
 754		cros_sensorhub_send_sample(sensorhub, out);
 755}
 756
 757/**
 758 * cros_ec_sensorhub_ring_handler() - The trigger handler function
 759 *
 760 * @sensorhub: Sensor Hub object.
 761 *
 762 * Called by the notifier, process the EC sensor FIFO queue.
 763 */
 764static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
 765{
 766	struct ec_response_motion_sense_fifo_info *fifo_info =
 767		sensorhub->fifo_info;
 768	struct cros_ec_dev *ec = sensorhub->ec;
 769	ktime_t fifo_timestamp, current_timestamp;
 770	int i, j, number_data, ret;
 771	unsigned long sensor_mask = 0;
 772	struct ec_response_motion_sensor_data *in;
 773	struct cros_ec_sensors_ring_sample *out, *last_out;
 774
 775	mutex_lock(&sensorhub->cmd_lock);
 776
 777	/* Get FIFO information if there are lost vectors. */
 778	if (fifo_info->total_lost) {
 779		int fifo_info_length =
 780			sizeof(struct ec_response_motion_sense_fifo_info) +
 781			sizeof(u16) * sensorhub->sensor_num;
 782
 783		/* Need to retrieve the number of lost vectors per sensor */
 784		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
 785		sensorhub->msg->outsize = 1;
 786		sensorhub->msg->insize = fifo_info_length;
 787
 788		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
 789			goto error;
 790
 791		memcpy(fifo_info, &sensorhub->resp->fifo_info,
 792		       fifo_info_length);
 793
 794		/*
 795		 * Update collection time, will not be as precise as the
 796		 * non-error case.
 797		 */
 798		fifo_timestamp = cros_ec_get_time_ns();
 799	} else {
 800		fifo_timestamp = sensorhub->fifo_timestamp[
 801			CROS_EC_SENSOR_NEW_TS];
 802	}
 803
 804	if (fifo_info->count > sensorhub->fifo_size ||
 805	    fifo_info->size != sensorhub->fifo_size) {
 806		dev_warn(sensorhub->dev,
 807			 "Mismatch EC data: count %d, size %d - expected %d\n",
 808			 fifo_info->count, fifo_info->size,
 809			 sensorhub->fifo_size);
 810		goto error;
 811	}
 812
 813	/* Copy elements in the main fifo */
 814	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
 815	out = sensorhub->ring;
 816	for (i = 0; i < fifo_info->count; i += number_data) {
 817		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
 818		sensorhub->params->fifo_read.max_data_vector =
 819			fifo_info->count - i;
 820		sensorhub->msg->outsize =
 821			sizeof(struct ec_params_motion_sense);
 822		sensorhub->msg->insize =
 823			sizeof(sensorhub->resp->fifo_read) +
 824			sensorhub->params->fifo_read.max_data_vector *
 825			  sizeof(struct ec_response_motion_sensor_data);
 826		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
 827		if (ret < 0) {
 828			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
 829			break;
 830		}
 831		number_data = sensorhub->resp->fifo_read.number_data;
 832		if (number_data == 0) {
 833			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
 834			break;
 835		}
 836		if (number_data > fifo_info->count - i) {
 837			dev_warn(sensorhub->dev,
 838				 "Invalid EC data: too many entry received: %d, expected %d\n",
 839				 number_data, fifo_info->count - i);
 840			break;
 841		}
 842		if (out + number_data >
 843		    sensorhub->ring + fifo_info->count) {
 844			dev_warn(sensorhub->dev,
 845				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
 846				 i, out - sensorhub->ring, i + number_data,
 847				 fifo_info->count);
 848			break;
 849		}
 850
 851		for (in = sensorhub->resp->fifo_read.data, j = 0;
 852		     j < number_data; j++, in++) {
 853			if (cros_ec_sensor_ring_process_event(
 854						sensorhub, fifo_info,
 855						fifo_timestamp,
 856						&current_timestamp,
 857						in, out)) {
 858				sensor_mask |= BIT(in->sensor_num);
 859				out++;
 860			}
 861		}
 862	}
 863	mutex_unlock(&sensorhub->cmd_lock);
 864	last_out = out;
 865
 866	if (out == sensorhub->ring)
 867		/* Unexpected empty FIFO. */
 868		goto ring_handler_end;
 869
 870	/*
 871	 * Check if current_timestamp is ahead of the last sample. Normally,
 872	 * the EC appends a timestamp after the last sample, but if the AP
 873	 * is slow to respond to the IRQ, the EC may have added new samples.
 874	 * Use the FIFO info timestamp as last timestamp then.
 875	 */
 876	if (!sensorhub->tight_timestamps &&
 877	    (last_out - 1)->timestamp == current_timestamp)
 878		current_timestamp = fifo_timestamp;
 879
 880	/* Warn on lost samples. */
 881	if (fifo_info->total_lost)
 882		for (i = 0; i < sensorhub->sensor_num; i++) {
 883			if (fifo_info->lost[i]) {
 884				dev_warn_ratelimited(sensorhub->dev,
 885						     "Sensor %d: lost: %d out of %d\n",
 886						     i, fifo_info->lost[i],
 887						     fifo_info->total_lost);
 888				if (sensorhub->tight_timestamps)
 889					sensorhub->batch_state[i].last_len = 0;
 890			}
 891		}
 892
 893	/*
 894	 * Spread samples in case of batching, then add them to the
 895	 * ringbuffer.
 896	 */
 897	if (sensorhub->tight_timestamps)
 898		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
 899					       last_out);
 900	else
 901		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
 902						      current_timestamp,
 903						      last_out);
 904
 905ring_handler_end:
 906	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
 907	return;
 908
 909error:
 910	mutex_unlock(&sensorhub->cmd_lock);
 911}
 912
 913static int cros_ec_sensorhub_event(struct notifier_block *nb,
 914				   unsigned long queued_during_suspend,
 915				   void *_notify)
 916{
 917	struct cros_ec_sensorhub *sensorhub;
 918	struct cros_ec_device *ec_dev;
 919
 920	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
 921	ec_dev = sensorhub->ec->ec_dev;
 922
 923	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
 924		return NOTIFY_DONE;
 925
 926	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
 927		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
 928		return NOTIFY_DONE;
 929	}
 930
 931	if (queued_during_suspend)
 932		return NOTIFY_OK;
 933
 934	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
 935	       sizeof(*sensorhub->fifo_info));
 936	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
 937		ec_dev->last_event_time;
 938	cros_ec_sensorhub_ring_handler(sensorhub);
 939
 940	return NOTIFY_OK;
 941}
 942
 943/**
 944 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
 945 *				       supports it.
 946 *
 947 * @sensorhub : Sensor Hub object.
 948 *
 949 * Return: 0 on success.
 950 */
 951int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
 952{
 953	int fifo_info_length =
 954		sizeof(struct ec_response_motion_sense_fifo_info) +
 955		sizeof(u16) * sensorhub->sensor_num;
 956
 957	/* Allocate the array for lost events. */
 958	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
 959					    GFP_KERNEL);
 960	if (!sensorhub->fifo_info)
 961		return -ENOMEM;
 962
 963	/*
 964	 * Allocate the callback area based on the number of sensors.
 965	 * Add one for the sensor ring.
 966	 */
 967	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
 968			sensorhub->sensor_num,
 969			sizeof(*sensorhub->push_data),
 970			GFP_KERNEL);
 971	if (!sensorhub->push_data)
 972		return -ENOMEM;
 973
 974	sensorhub->tight_timestamps = cros_ec_check_features(
 975			sensorhub->ec,
 976			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
 977
 978	if (sensorhub->tight_timestamps) {
 979		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
 980				sensorhub->sensor_num,
 981				sizeof(*sensorhub->batch_state),
 982				GFP_KERNEL);
 983		if (!sensorhub->batch_state)
 984			return -ENOMEM;
 985	}
 986
 987	return 0;
 988}
 989
 990/**
 991 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
 992 *				  supports it.
 993 *
 994 * @sensorhub : Sensor Hub object.
 995 *
 996 * Return: 0 on success.
 997 */
 998int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
 999{
1000	struct cros_ec_dev *ec = sensorhub->ec;
1001	int ret;
1002	int fifo_info_length =
1003		sizeof(struct ec_response_motion_sense_fifo_info) +
1004		sizeof(u16) * sensorhub->sensor_num;
1005
1006	/* Retrieve FIFO information */
1007	sensorhub->msg->version = 2;
1008	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1009	sensorhub->msg->outsize = 1;
1010	sensorhub->msg->insize = fifo_info_length;
1011
1012	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1013	if (ret < 0)
1014		return ret;
1015
1016	/*
1017	 * Allocate the full fifo. We need to copy the whole FIFO to set
1018	 * timestamps properly.
1019	 */
1020	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1021	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1022				       sizeof(*sensorhub->ring), GFP_KERNEL);
1023	if (!sensorhub->ring)
1024		return -ENOMEM;
1025
1026	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1027		cros_ec_get_time_ns();
1028
1029	/* Register the notifier that will act as a top half interrupt. */
1030	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1031	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1032					       &sensorhub->notifier);
1033	if (ret < 0)
1034		return ret;
1035
1036	/* Start collection samples. */
1037	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1038}
1039
1040void cros_ec_sensorhub_ring_remove(void *arg)
1041{
1042	struct cros_ec_sensorhub *sensorhub = arg;
1043	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1044
1045	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
1046	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1047	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1048					   &sensorhub->notifier);
1049}