Linux Audio

Check our new training course

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for Chrome OS EC Sensor hub FIFO.
 *
 * Copyright 2020 Google LLC
 */

#include <linux/delay.h>
#include <linux/device.h>
#include <linux/iio/iio.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/cros_ec_commands.h>
#include <linux/platform_data/cros_ec_proto.h>
#include <linux/platform_data/cros_ec_sensorhub.h>
#include <linux/platform_device.h>
#include <linux/sort.h>
#include <linux/slab.h>

#define CREATE_TRACE_POINTS
#include "cros_ec_sensorhub_trace.h"

/* Precision of fixed point for the m values from the filter */
#define M_PRECISION BIT(23)

/* Only activate the filter once we have at least this many elements. */
#define TS_HISTORY_THRESHOLD 8

/*
 * If we don't have any history entries for this long, empty the filter to
 * make sure there are no big discontinuities.
 */
#define TS_HISTORY_BORED_US 500000

/* To measure by how much the filter is overshooting, if it happens. */
#define FUTURE_TS_ANALYTICS_COUNT_MAX 100

static inline int
cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
			   struct cros_ec_sensors_ring_sample *sample)
{
	cros_ec_sensorhub_push_data_cb_t cb;
	int id = sample->sensor_id;
	struct iio_dev *indio_dev;

	if (id >= sensorhub->sensor_num)
		return -EINVAL;

	cb = sensorhub->push_data[id].push_data_cb;
	if (!cb)
		return 0;

	indio_dev = sensorhub->push_data[id].indio_dev;

	if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
		return 0;

	return cb(indio_dev, sample->vector, sample->timestamp);
}

/**
 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
 *
 * @sensorhub : Sensor Hub object
 * @sensor_num : The sensor the caller is interested in.
 * @indio_dev : The iio device to use when a sample arrives.
 * @cb : The callback to call when a sample arrives.
 *
 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
 * from the EC.
 *
 * Return: 0 when callback is registered.
 *         EINVAL is the sensor number is invalid or the slot already used.
 */
int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
					 u8 sensor_num,
					 struct iio_dev *indio_dev,
					 cros_ec_sensorhub_push_data_cb_t cb)
{
	if (sensor_num >= sensorhub->sensor_num)
		return -EINVAL;
	if (sensorhub->push_data[sensor_num].indio_dev)
		return -EINVAL;

	sensorhub->push_data[sensor_num].indio_dev = indio_dev;
	sensorhub->push_data[sensor_num].push_data_cb = cb;

	return 0;
}
EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);

void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
					    u8 sensor_num)
{
	sensorhub->push_data[sensor_num].indio_dev = NULL;
	sensorhub->push_data[sensor_num].push_data_cb = NULL;
}
EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);

/**
 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
 *					  for FIFO events.
 * @sensorhub: Sensor Hub object
 * @on: true when events are requested.
 *
 * To be called before sleeping or when no one is listening.
 * Return: 0 on success, or an error when we can not communicate with the EC.
 *
 */
int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
				       bool on)
{
	int ret, i;

	mutex_lock(&sensorhub->cmd_lock);
	if (sensorhub->tight_timestamps)
		for (i = 0; i < sensorhub->sensor_num; i++)
			sensorhub->batch_state[i].last_len = 0;

	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
	sensorhub->params->fifo_int_enable.enable = on;

	sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
	sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);

	ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
	mutex_unlock(&sensorhub->cmd_lock);

	/* We expect to receive a payload of 4 bytes, ignore. */
	if (ret > 0)
		ret = 0;

	return ret;
}

static void cros_ec_sensor_ring_median_swap(s64 *a, s64 *b)
{
	s64 tmp = *a;
	*a = *b;
	*b = tmp;
}

/*
 * cros_ec_sensor_ring_median: Gets median of an array of numbers
 *
 * It's implemented using the quickselect algorithm, which achieves an
 * average time complexity of O(n) the middle element. In the worst case,
 * the runtime of quickselect could regress to O(n^2). To mitigate this,
 * algorithms like median-of-medians exist, which can guarantee O(n) even
 * in the worst case. However, these algorithms come with a higher
 * overhead and are more complex to implement, making quickselect a
 * pragmatic choice for our use case.
 *
 * Warning: the input array gets modified!
 */
static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
{
	int lo = 0;
	int hi = length - 1;

	while (lo <= hi) {
		int mid = lo + (hi - lo) / 2;
		int pivot, i;

		if (array[lo] > array[mid])
			cros_ec_sensor_ring_median_swap(&array[lo], &array[mid]);
		if (array[lo] > array[hi])
			cros_ec_sensor_ring_median_swap(&array[lo], &array[hi]);
		if (array[mid] < array[hi])
			cros_ec_sensor_ring_median_swap(&array[mid], &array[hi]);

		pivot = array[hi];
		i = lo - 1;

		for (int j = lo; j < hi; j++)
			if (array[j] < pivot)
				cros_ec_sensor_ring_median_swap(&array[++i], &array[j]);

		/* The pivot's index corresponds to i+1. */
		cros_ec_sensor_ring_median_swap(&array[i + 1], &array[hi]);
		if (i + 1 == length / 2)
			return array[i + 1];
		if (i + 1 > length / 2)
			hi = i;
		else
			lo = i + 2;
	}

	/* Should never reach here. */
	return -1;
}

/*
 * IRQ Timestamp Filtering
 *
 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
 * we have to calculate it's timestamp in the AP timebase. There are 3 time
 * points:
 *   a - EC timebase, sensor event
 *   b - EC timebase, IRQ
 *   c - AP timebase, IRQ
 *   a' - what we want: sensor even in AP timebase
 *
 * While a and b are recorded at accurate times (due to the EC real time
 * nature); c is pretty untrustworthy, even though it's recorded the
 * first thing in ec_irq_handler(). There is a very good chance we'll get
 * added latency due to:
 *   other irqs
 *   ddrfreq
 *   cpuidle
 *
 * Normally a' = c - b + a, but if we do that naive math any jitter in c
 * will get coupled in a', which we don't want. We want a function
 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
 *
 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
 * The slope of the line won't be exactly 1, there will be some clock drift
 * between the 2 chips for various reasons (mechanical stress, temperature,
 * voltage). We need to extrapolate values for a future x, without trusting
 * recent y values too much.
 *
 * We use a median filter for the slope, then another median filter for the
 * y-intercept to calculate this function:
 *   dx[n] = x[n-1] - x[n]
 *   dy[n] = x[n-1] - x[n]
 *   m[n] = dy[n] / dx[n]
 *   median_m = median(m[n-k:n])
 *   error[i] = y[n-i] - median_m * x[n-i]
 *   median_error = median(error[:k])
 *   predicted_y = median_m * x + median_error
 *
 * Implementation differences from above:
 * - Redefined y to be actually c - b, this gives us a lot more precision
 * to do the math. (c-b)/b variations are more obvious than c/b variations.
 * - Since we don't have floating point, any operations involving slope are
 * done using fixed point math (*M_PRECISION)
 * - Since x and y grow with time, we keep zeroing the graph (relative to
 * the last sample), this way math involving *x[n-i] will not overflow
 * - EC timestamps are kept in us, it improves the slope calculation precision
 */

/**
 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
 *
 * @state: Filter information.
 * @b: IRQ timestamp, EC timebase (us)
 * @c: IRQ timestamp, AP timebase (ns)
 *
 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
 * history.
 */
static void
cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
				     *state,
				     s64 b, s64 c)
{
	s64 x, y;
	s64 dx, dy;
	s64 m; /* stored as *M_PRECISION */
	s64 *m_history_copy = state->temp_buf;
	s64 *error = state->temp_buf;
	int i;

	/* we trust b the most, that'll be our independent variable */
	x = b;
	/* y is the offset between AP and EC times, in ns */
	y = c - b * 1000;

	dx = (state->x_history[0] + state->x_offset) - x;
	if (dx == 0)
		return; /* we already have this irq in the history */
	dy = (state->y_history[0] + state->y_offset) - y;
	m = div64_s64(dy * M_PRECISION, dx);

	/* Empty filter if we haven't seen any action in a while. */
	if (-dx > TS_HISTORY_BORED_US)
		state->history_len = 0;

	/* Move everything over, also update offset to all absolute coords .*/
	for (i = state->history_len - 1; i >= 1; i--) {
		state->x_history[i] = state->x_history[i - 1] + dx;
		state->y_history[i] = state->y_history[i - 1] + dy;

		state->m_history[i] = state->m_history[i - 1];
		/*
		 * Also use the same loop to copy m_history for future
		 * median extraction.
		 */
		m_history_copy[i] = state->m_history[i - 1];
	}

	/* Store the x and y, but remember offset is actually last sample. */
	state->x_offset = x;
	state->y_offset = y;
	state->x_history[0] = 0;
	state->y_history[0] = 0;

	state->m_history[0] = m;
	m_history_copy[0] = m;

	if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
		state->history_len++;

	/* Precalculate things for the filter. */
	if (state->history_len > TS_HISTORY_THRESHOLD) {
		state->median_m =
		    cros_ec_sensor_ring_median(m_history_copy,
					       state->history_len - 1);

		/*
		 * Calculate y-intercepts as if m_median is the slope and
		 * points in the history are on the line. median_error will
		 * still be in the offset coordinate system.
		 */
		for (i = 0; i < state->history_len; i++)
			error[i] = state->y_history[i] -
				div_s64(state->median_m * state->x_history[i],
					M_PRECISION);
		state->median_error =
			cros_ec_sensor_ring_median(error, state->history_len);
	} else {
		state->median_m = 0;
		state->median_error = 0;
	}
	trace_cros_ec_sensorhub_filter(state, dx, dy);
}

/**
 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
 *                                   timebase
 *
 * @state: filter information.
 * @x: any ec timestamp (us):
 *
 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
 *                           should have happened on the AP, with low jitter
 *
 * Note: The filter will only activate once state->history_len goes
 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
 * transform.
 *
 * How to derive the formula, starting from:
 *   f(x) = median_m * x + median_error
 * That's the calculated AP - EC offset (at the x point in time)
 * Undo the coordinate system transform:
 *   f(x) = median_m * (x - x_offset) + median_error + y_offset
 * Remember to undo the "y = c - b * 1000" modification:
 *   f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
 *
 * Return: timestamp in AP timebase (ns)
 */
static s64
cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
			      s64 x)
{
	return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
	       + state->median_error + state->y_offset + x * 1000;
}

/*
 * Since a and b were originally 32 bit values from the EC,
 * they overflow relatively often, casting is not enough, so we need to
 * add an offset.
 */
static void
cros_ec_sensor_ring_fix_overflow(s64 *ts,
				 const s64 overflow_period,
				 struct cros_ec_sensors_ec_overflow_state
				 *state)
{
	s64 adjust;

	*ts += state->offset;
	if (abs(state->last - *ts) > (overflow_period / 2)) {
		adjust = state->last > *ts ? overflow_period : -overflow_period;
		state->offset += adjust;
		*ts += adjust;
	}
	state->last = *ts;
}

static void
cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
					     *sensorhub,
					     struct cros_ec_sensors_ring_sample
					     *sample)
{
	const u8 sensor_id = sample->sensor_id;

	/* If this event is earlier than one we saw before... */
	if (sensorhub->batch_state[sensor_id].newest_sensor_event >
	    sample->timestamp)
		/* mark it for spreading. */
		sample->timestamp =
			sensorhub->batch_state[sensor_id].last_ts;
	else
		sensorhub->batch_state[sensor_id].newest_sensor_event =
			sample->timestamp;
}

/**
 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
 *
 * @sensorhub: Sensor Hub object.
 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
 * @in: incoming FIFO event from EC (includes a point, EC timebase).
 * @out: outgoing event to user space (includes a').
 *
 * Process one EC event, add it in the ring if necessary.
 *
 * Return: true if out event has been populated.
 */
static bool
cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
				const struct ec_response_motion_sense_fifo_info
				*fifo_info,
				const ktime_t fifo_timestamp,
				ktime_t *current_timestamp,
				struct ec_response_motion_sensor_data *in,
				struct cros_ec_sensors_ring_sample *out)
{
	const s64 now = cros_ec_get_time_ns();
	int axis, async_flags;

	/* Do not populate the filter based on asynchronous events. */
	async_flags = in->flags &
		(MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);

	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
		s64 a = in->timestamp;
		s64 b = fifo_info->timestamp;
		s64 c = fifo_timestamp;

		cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
					  &sensorhub->overflow_a);
		cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
					  &sensorhub->overflow_b);

		if (sensorhub->tight_timestamps) {
			cros_ec_sensor_ring_ts_filter_update(
					&sensorhub->filter, b, c);
			*current_timestamp = cros_ec_sensor_ring_ts_filter(
					&sensorhub->filter, a);
		} else {
			s64 new_timestamp;

			/*
			 * Disable filtering since we might add more jitter
			 * if b is in a random point in time.
			 */
			new_timestamp = c - b * 1000 + a * 1000;
			/*
			 * The timestamp can be stale if we had to use the fifo
			 * info timestamp.
			 */
			if (new_timestamp - *current_timestamp > 0)
				*current_timestamp = new_timestamp;
		}
		trace_cros_ec_sensorhub_timestamp(in->timestamp,
						  fifo_info->timestamp,
						  fifo_timestamp,
						  *current_timestamp,
						  now);
	}

	if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
		if (sensorhub->tight_timestamps) {
			sensorhub->batch_state[in->sensor_num].last_len = 0;
			sensorhub->batch_state[in->sensor_num].penul_len = 0;
		}
		/*
		 * ODR change is only useful for the sensor_ring, it does not
		 * convey information to clients.
		 */
		return false;
	}

	if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
		out->sensor_id = in->sensor_num;
		out->timestamp = *current_timestamp;
		out->flag = in->flags;
		if (sensorhub->tight_timestamps)
			sensorhub->batch_state[out->sensor_id].last_len = 0;
		/*
		 * No other payload information provided with
		 * flush ack.
		 */
		return true;
	}

	if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
		/* If we just have a timestamp, skip this entry. */
		return false;

	/* Regular sample */
	out->sensor_id = in->sensor_num;
	trace_cros_ec_sensorhub_data(in->sensor_num,
				     fifo_info->timestamp,
				     fifo_timestamp,
				     *current_timestamp,
				     now);

	if (*current_timestamp - now > 0) {
		/*
		 * This fix is needed to overcome the timestamp filter putting
		 * events in the future.
		 */
		sensorhub->future_timestamp_total_ns +=
			*current_timestamp - now;
		if (++sensorhub->future_timestamp_count ==
				FUTURE_TS_ANALYTICS_COUNT_MAX) {
			s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
					sensorhub->future_timestamp_count);
			dev_warn_ratelimited(sensorhub->dev,
					     "100 timestamps in the future, %lldns shaved on average\n",
					     avg);
			sensorhub->future_timestamp_count = 0;
			sensorhub->future_timestamp_total_ns = 0;
		}
		out->timestamp = now;
	} else {
		out->timestamp = *current_timestamp;
	}

	out->flag = in->flags;
	for (axis = 0; axis < 3; axis++)
		out->vector[axis] = in->data[axis];

	if (sensorhub->tight_timestamps)
		cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
	return true;
}

/*
 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
 *                                 ringbuffer.
 *
 * This is the new spreading code, assumes every sample's timestamp
 * precedes the sample. Run if tight_timestamps == true.
 *
 * Sometimes the EC receives only one interrupt (hence timestamp) for
 * a batch of samples. Only the first sample will have the correct
 * timestamp. So we must interpolate the other samples.
 * We use the previous batch timestamp and our current batch timestamp
 * as a way to calculate period, then spread the samples evenly.
 *
 * s0 int, 0ms
 * s1 int, 10ms
 * s2 int, 20ms
 * 30ms point goes by, no interrupt, previous one is still asserted
 * downloading s2 and s3
 * s3 sample, 20ms (incorrect timestamp)
 * s4 int, 40ms
 *
 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
 * has 2 samples in them, we adjust the timestamp of s3.
 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
 * been part of a bigger batch things would have gotten a little
 * more complicated.
 *
 * Note: we also assume another sensor sample doesn't break up a batch
 * in 2 or more partitions. Example, there can't ever be a sync sensor
 * in between S2 and S3. This simplifies the following code.
 */
static void
cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
			       unsigned long sensor_mask,
			       struct cros_ec_sensors_ring_sample *last_out)
{
	struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
	int id;

	for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
		for (batch_start = sensorhub->ring; batch_start < last_out;
		     batch_start = next_batch_start) {
			/*
			 * For each batch (where all samples have the same
			 * timestamp).
			 */
			int batch_len, sample_idx;
			struct cros_ec_sensors_ring_sample *batch_end =
				batch_start;
			struct cros_ec_sensors_ring_sample *s;
			s64 batch_timestamp = batch_start->timestamp;
			s64 sample_period;

			/*
			 * Skip over batches that start with the sensor types
			 * we're not looking at right now.
			 */
			if (batch_start->sensor_id != id) {
				next_batch_start = batch_start + 1;
				continue;
			}

			/*
			 * Do not start a batch
			 * from a flush, as it happens asynchronously to the
			 * regular flow of events.
			 */
			if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
				cros_sensorhub_send_sample(sensorhub,
							   batch_start);
				next_batch_start = batch_start + 1;
				continue;
			}

			if (batch_start->timestamp <=
			    sensorhub->batch_state[id].last_ts) {
				batch_timestamp =
					sensorhub->batch_state[id].last_ts;
				batch_len = sensorhub->batch_state[id].last_len;

				sample_idx = batch_len;

				sensorhub->batch_state[id].last_ts =
				  sensorhub->batch_state[id].penul_ts;
				sensorhub->batch_state[id].last_len =
				  sensorhub->batch_state[id].penul_len;
			} else {
				/*
				 * Push first sample in the batch to the,
				 * kfifo, it's guaranteed to be correct, the
				 * rest will follow later on.
				 */
				sample_idx = 1;
				batch_len = 1;
				cros_sensorhub_send_sample(sensorhub,
							   batch_start);
				batch_start++;
			}

			/* Find all samples have the same timestamp. */
			for (s = batch_start; s < last_out; s++) {
				if (s->sensor_id != id)
					/*
					 * Skip over other sensor types that
					 * are interleaved, don't count them.
					 */
					continue;
				if (s->timestamp != batch_timestamp)
					/* we discovered the next batch */
					break;
				if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
					/* break on flush packets */
					break;
				batch_end = s;
				batch_len++;
			}

			if (batch_len == 1)
				goto done_with_this_batch;

			/* Can we calculate period? */
			if (sensorhub->batch_state[id].last_len == 0) {
				dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
					 id, batch_len - 1);
				goto done_with_this_batch;
				/*
				 * Note: we're dropping the rest of the samples
				 * in this batch since we have no idea where
				 * they're supposed to go without a period
				 * calculation.
				 */
			}

			sample_period = div_s64(batch_timestamp -
				sensorhub->batch_state[id].last_ts,
				sensorhub->batch_state[id].last_len);
			dev_dbg(sensorhub->dev,
				"Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
				batch_len, id,
				sensorhub->batch_state[id].last_ts,
				sensorhub->batch_state[id].last_len,
				batch_timestamp,
				sample_period);

			/*
			 * Adjust timestamps of the samples then push them to
			 * kfifo.
			 */
			for (s = batch_start; s <= batch_end; s++) {
				if (s->sensor_id != id)
					/*
					 * Skip over other sensor types that
					 * are interleaved, don't change them.
					 */
					continue;

				s->timestamp = batch_timestamp +
					sample_period * sample_idx;
				sample_idx++;

				cros_sensorhub_send_sample(sensorhub, s);
			}

done_with_this_batch:
			sensorhub->batch_state[id].penul_ts =
				sensorhub->batch_state[id].last_ts;
			sensorhub->batch_state[id].penul_len =
				sensorhub->batch_state[id].last_len;

			sensorhub->batch_state[id].last_ts =
				batch_timestamp;
			sensorhub->batch_state[id].last_len = batch_len;

			next_batch_start = batch_end + 1;
		}
	}
}

/*
 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
 * add to ringbuffer (legacy).
 *
 * Note: This assumes we're running old firmware, where timestamp
 * is inserted after its sample(s)e. There can be several samples between
 * timestamps, so several samples can have the same timestamp.
 *
 *                        timestamp | count
 *                        -----------------
 *          1st sample --> TS1      | 1
 *                         TS2      | 2
 *                         TS2      | 3
 *                         TS3      | 4
 *           last_out -->
 *
 *
 * We spread time for the samples using period p = (current - TS1)/4.
 * between TS1 and TS2: [TS1+p/4, TS1+2p/4, TS1+3p/4, current_timestamp].
 *
 */
static void
cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
				      unsigned long sensor_mask,
				      s64 current_timestamp,
				      struct cros_ec_sensors_ring_sample
				      *last_out)
{
	struct cros_ec_sensors_ring_sample *out;
	int i;

	for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
		s64 timestamp;
		int count = 0;
		s64 time_period;

		for (out = sensorhub->ring; out < last_out; out++) {
			if (out->sensor_id != i)
				continue;

			/* Timestamp to start with */
			timestamp = out->timestamp;
			out++;
			count = 1;
			break;
		}
		for (; out < last_out; out++) {
			/* Find last sample. */
			if (out->sensor_id != i)
				continue;
			count++;
		}
		if (count == 0)
			continue;

		/* Spread uniformly between the first and last samples. */
		time_period = div_s64(current_timestamp - timestamp, count);

		for (out = sensorhub->ring; out < last_out; out++) {
			if (out->sensor_id != i)
				continue;
			timestamp += time_period;
			out->timestamp = timestamp;
		}
	}

	/* Push the event into the kfifo */
	for (out = sensorhub->ring; out < last_out; out++)
		cros_sensorhub_send_sample(sensorhub, out);
}

/**
 * cros_ec_sensorhub_ring_handler() - The trigger handler function
 *
 * @sensorhub: Sensor Hub object.
 *
 * Called by the notifier, process the EC sensor FIFO queue.
 */
static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
{
	struct ec_response_motion_sense_fifo_info *fifo_info =
		sensorhub->fifo_info;
	struct cros_ec_dev *ec = sensorhub->ec;
	ktime_t fifo_timestamp, current_timestamp;
	int i, j, number_data, ret;
	unsigned long sensor_mask = 0;
	struct ec_response_motion_sensor_data *in;
	struct cros_ec_sensors_ring_sample *out, *last_out;

	mutex_lock(&sensorhub->cmd_lock);

	/* Get FIFO information if there are lost vectors. */
	if (fifo_info->total_lost) {
		int fifo_info_length =
			sizeof(struct ec_response_motion_sense_fifo_info) +
			sizeof(u16) * sensorhub->sensor_num;

		/* Need to retrieve the number of lost vectors per sensor */
		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
		sensorhub->msg->outsize = 1;
		sensorhub->msg->insize = fifo_info_length;

		if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
			goto error;

		memcpy(fifo_info, &sensorhub->resp->fifo_info,
		       fifo_info_length);

		/*
		 * Update collection time, will not be as precise as the
		 * non-error case.
		 */
		fifo_timestamp = cros_ec_get_time_ns();
	} else {
		fifo_timestamp = sensorhub->fifo_timestamp[
			CROS_EC_SENSOR_NEW_TS];
	}

	if (fifo_info->count > sensorhub->fifo_size ||
	    fifo_info->size != sensorhub->fifo_size) {
		dev_warn(sensorhub->dev,
			 "Mismatch EC data: count %d, size %d - expected %d\n",
			 fifo_info->count, fifo_info->size,
			 sensorhub->fifo_size);
		goto error;
	}

	/* Copy elements in the main fifo */
	current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
	out = sensorhub->ring;
	for (i = 0; i < fifo_info->count; i += number_data) {
		sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
		sensorhub->params->fifo_read.max_data_vector =
			fifo_info->count - i;
		sensorhub->msg->outsize =
			sizeof(struct ec_params_motion_sense);
		sensorhub->msg->insize =
			sizeof(sensorhub->resp->fifo_read) +
			sensorhub->params->fifo_read.max_data_vector *
			  sizeof(struct ec_response_motion_sensor_data);
		ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
		if (ret < 0) {
			dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
			break;
		}
		number_data = sensorhub->resp->fifo_read.number_data;
		if (number_data == 0) {
			dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
			break;
		}
		if (number_data > fifo_info->count - i) {
			dev_warn(sensorhub->dev,
				 "Invalid EC data: too many entry received: %d, expected %d\n",
				 number_data, fifo_info->count - i);
			break;
		}
		if (out + number_data >
		    sensorhub->ring + fifo_info->count) {
			dev_warn(sensorhub->dev,
				 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
				 i, out - sensorhub->ring, i + number_data,
				 fifo_info->count);
			break;
		}

		for (in = sensorhub->resp->fifo_read.data, j = 0;
		     j < number_data; j++, in++) {
			if (cros_ec_sensor_ring_process_event(
						sensorhub, fifo_info,
						fifo_timestamp,
						&current_timestamp,
						in, out)) {
				sensor_mask |= BIT(in->sensor_num);
				out++;
			}
		}
	}
	mutex_unlock(&sensorhub->cmd_lock);
	last_out = out;

	if (out == sensorhub->ring)
		/* Unexpected empty FIFO. */
		goto ring_handler_end;

	/*
	 * Check if current_timestamp is ahead of the last sample. Normally,
	 * the EC appends a timestamp after the last sample, but if the AP
	 * is slow to respond to the IRQ, the EC may have added new samples.
	 * Use the FIFO info timestamp as last timestamp then.
	 */
	if (!sensorhub->tight_timestamps &&
	    (last_out - 1)->timestamp == current_timestamp)
		current_timestamp = fifo_timestamp;

	/* Warn on lost samples. */
	if (fifo_info->total_lost)
		for (i = 0; i < sensorhub->sensor_num; i++) {
			if (fifo_info->lost[i]) {
				dev_warn_ratelimited(sensorhub->dev,
						     "Sensor %d: lost: %d out of %d\n",
						     i, fifo_info->lost[i],
						     fifo_info->total_lost);
				if (sensorhub->tight_timestamps)
					sensorhub->batch_state[i].last_len = 0;
			}
		}

	/*
	 * Spread samples in case of batching, then add them to the
	 * ringbuffer.
	 */
	if (sensorhub->tight_timestamps)
		cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
					       last_out);
	else
		cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
						      current_timestamp,
						      last_out);

ring_handler_end:
	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
	return;

error:
	mutex_unlock(&sensorhub->cmd_lock);
}

static int cros_ec_sensorhub_event(struct notifier_block *nb,
				   unsigned long queued_during_suspend,
				   void *_notify)
{
	struct cros_ec_sensorhub *sensorhub;
	struct cros_ec_device *ec_dev;

	sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
	ec_dev = sensorhub->ec->ec_dev;

	if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
		return NOTIFY_DONE;

	if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
		dev_warn(ec_dev->dev, "Invalid fifo info size\n");
		return NOTIFY_DONE;
	}

	if (queued_during_suspend)
		return NOTIFY_OK;

	memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
	       sizeof(*sensorhub->fifo_info));
	sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
		ec_dev->last_event_time;
	cros_ec_sensorhub_ring_handler(sensorhub);

	return NOTIFY_OK;
}

/**
 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
 *				       supports it.
 *
 * @sensorhub : Sensor Hub object.
 *
 * Return: 0 on success.
 */
int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
{
	int fifo_info_length =
		sizeof(struct ec_response_motion_sense_fifo_info) +
		sizeof(u16) * sensorhub->sensor_num;

	/* Allocate the array for lost events. */
	sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
					    GFP_KERNEL);
	if (!sensorhub->fifo_info)
		return -ENOMEM;

	/*
	 * Allocate the callback area based on the number of sensors.
	 * Add one for the sensor ring.
	 */
	sensorhub->push_data = devm_kcalloc(sensorhub->dev,
			sensorhub->sensor_num,
			sizeof(*sensorhub->push_data),
			GFP_KERNEL);
	if (!sensorhub->push_data)
		return -ENOMEM;

	sensorhub->tight_timestamps = cros_ec_check_features(
			sensorhub->ec,
			EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);

	if (sensorhub->tight_timestamps) {
		sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
				sensorhub->sensor_num,
				sizeof(*sensorhub->batch_state),
				GFP_KERNEL);
		if (!sensorhub->batch_state)
			return -ENOMEM;
	}

	return 0;
}

/**
 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
 *				  supports it.
 *
 * @sensorhub : Sensor Hub object.
 *
 * Return: 0 on success.
 */
int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
{
	struct cros_ec_dev *ec = sensorhub->ec;
	int ret;
	int fifo_info_length =
		sizeof(struct ec_response_motion_sense_fifo_info) +
		sizeof(u16) * sensorhub->sensor_num;

	/* Retrieve FIFO information */
	sensorhub->msg->version = 2;
	sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
	sensorhub->msg->outsize = 1;
	sensorhub->msg->insize = fifo_info_length;

	ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
	if (ret < 0)
		return ret;

	/*
	 * Allocate the full fifo. We need to copy the whole FIFO to set
	 * timestamps properly.
	 */
	sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
	sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
				       sizeof(*sensorhub->ring), GFP_KERNEL);
	if (!sensorhub->ring)
		return -ENOMEM;

	sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
		cros_ec_get_time_ns();

	/* Register the notifier that will act as a top half interrupt. */
	sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
	ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
					       &sensorhub->notifier);
	if (ret < 0)
		return ret;

	/* Start collection samples. */
	return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
}

void cros_ec_sensorhub_ring_remove(void *arg)
{
	struct cros_ec_sensorhub *sensorhub = arg;
	struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;

	/* Disable the ring, prevent EC interrupt to the AP for nothing. */
	cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
	blocking_notifier_chain_unregister(&ec_dev->event_notifier,
					   &sensorhub->notifier);
}