Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75int selinux_policycap_alwaysnetwork;
  76
  77static DEFINE_RWLOCK(policy_rwlock);
  78
  79static struct sidtab sidtab;
  80struct policydb policydb;
  81int ss_initialized;
  82
  83/*
  84 * The largest sequence number that has been used when
  85 * providing an access decision to the access vector cache.
  86 * The sequence number only changes when a policy change
  87 * occurs.
  88 */
  89static u32 latest_granting;
 
  90
  91/* Forward declaration. */
  92static int context_struct_to_string(struct context *context, char **scontext,
 
 
  93				    u32 *scontext_len);
  94
  95static void context_struct_compute_av(struct context *scontext,
  96					struct context *tcontext,
  97					u16 tclass,
  98					struct av_decision *avd,
  99					struct extended_perms *xperms);
 100
 101struct selinux_mapping {
 102	u16 value; /* policy value */
 103	unsigned num_perms;
 104	u32 perms[sizeof(u32) * 8];
 105};
 106
 107static struct selinux_mapping *current_mapping;
 108static u16 current_mapping_size;
 109
 110static int selinux_set_mapping(struct policydb *pol,
 111			       struct security_class_mapping *map,
 112			       struct selinux_mapping **out_map_p,
 113			       u16 *out_map_size)
 114{
 115	struct selinux_mapping *out_map = NULL;
 116	size_t size = sizeof(struct selinux_mapping);
 117	u16 i, j;
 118	unsigned k;
 119	bool print_unknown_handle = false;
 120
 121	/* Find number of classes in the input mapping */
 122	if (!map)
 123		return -EINVAL;
 124	i = 0;
 125	while (map[i].name)
 126		i++;
 127
 128	/* Allocate space for the class records, plus one for class zero */
 129	out_map = kcalloc(++i, size, GFP_ATOMIC);
 130	if (!out_map)
 131		return -ENOMEM;
 132
 133	/* Store the raw class and permission values */
 134	j = 0;
 135	while (map[j].name) {
 136		struct security_class_mapping *p_in = map + (j++);
 137		struct selinux_mapping *p_out = out_map + j;
 138
 139		/* An empty class string skips ahead */
 140		if (!strcmp(p_in->name, "")) {
 141			p_out->num_perms = 0;
 142			continue;
 143		}
 144
 145		p_out->value = string_to_security_class(pol, p_in->name);
 146		if (!p_out->value) {
 147			printk(KERN_INFO
 148			       "SELinux:  Class %s not defined in policy.\n",
 149			       p_in->name);
 150			if (pol->reject_unknown)
 151				goto err;
 152			p_out->num_perms = 0;
 153			print_unknown_handle = true;
 154			continue;
 155		}
 156
 157		k = 0;
 158		while (p_in->perms && p_in->perms[k]) {
 159			/* An empty permission string skips ahead */
 160			if (!*p_in->perms[k]) {
 161				k++;
 162				continue;
 163			}
 164			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 165							    p_in->perms[k]);
 166			if (!p_out->perms[k]) {
 167				printk(KERN_INFO
 168				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 169				       p_in->perms[k], p_in->name);
 170				if (pol->reject_unknown)
 171					goto err;
 172				print_unknown_handle = true;
 173			}
 174
 175			k++;
 176		}
 177		p_out->num_perms = k;
 178	}
 179
 180	if (print_unknown_handle)
 181		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 182		       pol->allow_unknown ? "allowed" : "denied");
 183
 184	*out_map_p = out_map;
 185	*out_map_size = i;
 186	return 0;
 187err:
 188	kfree(out_map);
 
 189	return -EINVAL;
 190}
 191
 192/*
 193 * Get real, policy values from mapped values
 194 */
 195
 196static u16 unmap_class(u16 tclass)
 197{
 198	if (tclass < current_mapping_size)
 199		return current_mapping[tclass].value;
 200
 201	return tclass;
 202}
 203
 204/*
 205 * Get kernel value for class from its policy value
 206 */
 207static u16 map_class(u16 pol_value)
 208{
 209	u16 i;
 210
 211	for (i = 1; i < current_mapping_size; i++) {
 212		if (current_mapping[i].value == pol_value)
 213			return i;
 214	}
 215
 216	return SECCLASS_NULL;
 217}
 218
 219static void map_decision(u16 tclass, struct av_decision *avd,
 
 220			 int allow_unknown)
 221{
 222	if (tclass < current_mapping_size) {
 223		unsigned i, n = current_mapping[tclass].num_perms;
 
 224		u32 result;
 225
 226		for (i = 0, result = 0; i < n; i++) {
 227			if (avd->allowed & current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229			if (allow_unknown && !current_mapping[tclass].perms[i])
 230				result |= 1<<i;
 231		}
 232		avd->allowed = result;
 233
 234		for (i = 0, result = 0; i < n; i++)
 235			if (avd->auditallow & current_mapping[tclass].perms[i])
 236				result |= 1<<i;
 237		avd->auditallow = result;
 238
 239		for (i = 0, result = 0; i < n; i++) {
 240			if (avd->auditdeny & current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242			if (!allow_unknown && !current_mapping[tclass].perms[i])
 243				result |= 1<<i;
 244		}
 245		/*
 246		 * In case the kernel has a bug and requests a permission
 247		 * between num_perms and the maximum permission number, we
 248		 * should audit that denial
 249		 */
 250		for (; i < (sizeof(u32)*8); i++)
 251			result |= 1<<i;
 252		avd->auditdeny = result;
 253	}
 254}
 255
 256int security_mls_enabled(void)
 257{
 258	return policydb.mls_enabled;
 
 
 259}
 260
 261/*
 262 * Return the boolean value of a constraint expression
 263 * when it is applied to the specified source and target
 264 * security contexts.
 265 *
 266 * xcontext is a special beast...  It is used by the validatetrans rules
 267 * only.  For these rules, scontext is the context before the transition,
 268 * tcontext is the context after the transition, and xcontext is the context
 269 * of the process performing the transition.  All other callers of
 270 * constraint_expr_eval should pass in NULL for xcontext.
 271 */
 272static int constraint_expr_eval(struct context *scontext,
 
 273				struct context *tcontext,
 274				struct context *xcontext,
 275				struct constraint_expr *cexpr)
 276{
 277	u32 val1, val2;
 278	struct context *c;
 279	struct role_datum *r1, *r2;
 280	struct mls_level *l1, *l2;
 281	struct constraint_expr *e;
 282	int s[CEXPR_MAXDEPTH];
 283	int sp = -1;
 284
 285	for (e = cexpr; e; e = e->next) {
 286		switch (e->expr_type) {
 287		case CEXPR_NOT:
 288			BUG_ON(sp < 0);
 289			s[sp] = !s[sp];
 290			break;
 291		case CEXPR_AND:
 292			BUG_ON(sp < 1);
 293			sp--;
 294			s[sp] &= s[sp + 1];
 295			break;
 296		case CEXPR_OR:
 297			BUG_ON(sp < 1);
 298			sp--;
 299			s[sp] |= s[sp + 1];
 300			break;
 301		case CEXPR_ATTR:
 302			if (sp == (CEXPR_MAXDEPTH - 1))
 303				return 0;
 304			switch (e->attr) {
 305			case CEXPR_USER:
 306				val1 = scontext->user;
 307				val2 = tcontext->user;
 308				break;
 309			case CEXPR_TYPE:
 310				val1 = scontext->type;
 311				val2 = tcontext->type;
 312				break;
 313			case CEXPR_ROLE:
 314				val1 = scontext->role;
 315				val2 = tcontext->role;
 316				r1 = policydb.role_val_to_struct[val1 - 1];
 317				r2 = policydb.role_val_to_struct[val2 - 1];
 318				switch (e->op) {
 319				case CEXPR_DOM:
 320					s[++sp] = ebitmap_get_bit(&r1->dominates,
 321								  val2 - 1);
 322					continue;
 323				case CEXPR_DOMBY:
 324					s[++sp] = ebitmap_get_bit(&r2->dominates,
 325								  val1 - 1);
 326					continue;
 327				case CEXPR_INCOMP:
 328					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 329								    val2 - 1) &&
 330						   !ebitmap_get_bit(&r2->dominates,
 331								    val1 - 1));
 332					continue;
 333				default:
 334					break;
 335				}
 336				break;
 337			case CEXPR_L1L2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[0]);
 340				goto mls_ops;
 341			case CEXPR_L1H2:
 342				l1 = &(scontext->range.level[0]);
 343				l2 = &(tcontext->range.level[1]);
 344				goto mls_ops;
 345			case CEXPR_H1L2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[0]);
 348				goto mls_ops;
 349			case CEXPR_H1H2:
 350				l1 = &(scontext->range.level[1]);
 351				l2 = &(tcontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L1H1:
 354				l1 = &(scontext->range.level[0]);
 355				l2 = &(scontext->range.level[1]);
 356				goto mls_ops;
 357			case CEXPR_L2H2:
 358				l1 = &(tcontext->range.level[0]);
 359				l2 = &(tcontext->range.level[1]);
 360				goto mls_ops;
 361mls_ops:
 362			switch (e->op) {
 363			case CEXPR_EQ:
 364				s[++sp] = mls_level_eq(l1, l2);
 365				continue;
 366			case CEXPR_NEQ:
 367				s[++sp] = !mls_level_eq(l1, l2);
 368				continue;
 369			case CEXPR_DOM:
 370				s[++sp] = mls_level_dom(l1, l2);
 371				continue;
 372			case CEXPR_DOMBY:
 373				s[++sp] = mls_level_dom(l2, l1);
 374				continue;
 375			case CEXPR_INCOMP:
 376				s[++sp] = mls_level_incomp(l2, l1);
 377				continue;
 378			default:
 379				BUG();
 380				return 0;
 381			}
 382			break;
 383			default:
 384				BUG();
 385				return 0;
 386			}
 387
 388			switch (e->op) {
 389			case CEXPR_EQ:
 390				s[++sp] = (val1 == val2);
 391				break;
 392			case CEXPR_NEQ:
 393				s[++sp] = (val1 != val2);
 394				break;
 395			default:
 396				BUG();
 397				return 0;
 398			}
 399			break;
 400		case CEXPR_NAMES:
 401			if (sp == (CEXPR_MAXDEPTH-1))
 402				return 0;
 403			c = scontext;
 404			if (e->attr & CEXPR_TARGET)
 405				c = tcontext;
 406			else if (e->attr & CEXPR_XTARGET) {
 407				c = xcontext;
 408				if (!c) {
 409					BUG();
 410					return 0;
 411				}
 412			}
 413			if (e->attr & CEXPR_USER)
 414				val1 = c->user;
 415			else if (e->attr & CEXPR_ROLE)
 416				val1 = c->role;
 417			else if (e->attr & CEXPR_TYPE)
 418				val1 = c->type;
 419			else {
 420				BUG();
 421				return 0;
 422			}
 423
 424			switch (e->op) {
 425			case CEXPR_EQ:
 426				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 427				break;
 428			case CEXPR_NEQ:
 429				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 430				break;
 431			default:
 432				BUG();
 433				return 0;
 434			}
 435			break;
 436		default:
 437			BUG();
 438			return 0;
 439		}
 440	}
 441
 442	BUG_ON(sp != 0);
 443	return s[0];
 444}
 445
 446/*
 447 * security_dump_masked_av - dumps masked permissions during
 448 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 449 */
 450static int dump_masked_av_helper(void *k, void *d, void *args)
 451{
 452	struct perm_datum *pdatum = d;
 453	char **permission_names = args;
 454
 455	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 456
 457	permission_names[pdatum->value - 1] = (char *)k;
 458
 459	return 0;
 460}
 461
 462static void security_dump_masked_av(struct context *scontext,
 
 463				    struct context *tcontext,
 464				    u16 tclass,
 465				    u32 permissions,
 466				    const char *reason)
 467{
 468	struct common_datum *common_dat;
 469	struct class_datum *tclass_dat;
 470	struct audit_buffer *ab;
 471	char *tclass_name;
 472	char *scontext_name = NULL;
 473	char *tcontext_name = NULL;
 474	char *permission_names[32];
 475	int index;
 476	u32 length;
 477	bool need_comma = false;
 478
 479	if (!permissions)
 480		return;
 481
 482	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 483	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 484	common_dat = tclass_dat->comdatum;
 485
 486	/* init permission_names */
 487	if (common_dat &&
 488	    hashtab_map(common_dat->permissions.table,
 489			dump_masked_av_helper, permission_names) < 0)
 490		goto out;
 491
 492	if (hashtab_map(tclass_dat->permissions.table,
 493			dump_masked_av_helper, permission_names) < 0)
 494		goto out;
 495
 496	/* get scontext/tcontext in text form */
 497	if (context_struct_to_string(scontext,
 498				     &scontext_name, &length) < 0)
 499		goto out;
 500
 501	if (context_struct_to_string(tcontext,
 502				     &tcontext_name, &length) < 0)
 503		goto out;
 504
 505	/* audit a message */
 506	ab = audit_log_start(current->audit_context,
 507			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 508	if (!ab)
 509		goto out;
 510
 511	audit_log_format(ab, "op=security_compute_av reason=%s "
 512			 "scontext=%s tcontext=%s tclass=%s perms=",
 513			 reason, scontext_name, tcontext_name, tclass_name);
 514
 515	for (index = 0; index < 32; index++) {
 516		u32 mask = (1 << index);
 517
 518		if ((mask & permissions) == 0)
 519			continue;
 520
 521		audit_log_format(ab, "%s%s",
 522				 need_comma ? "," : "",
 523				 permission_names[index]
 524				 ? permission_names[index] : "????");
 525		need_comma = true;
 526	}
 527	audit_log_end(ab);
 528out:
 529	/* release scontext/tcontext */
 530	kfree(tcontext_name);
 531	kfree(scontext_name);
 532
 533	return;
 534}
 535
 536/*
 537 * security_boundary_permission - drops violated permissions
 538 * on boundary constraint.
 539 */
 540static void type_attribute_bounds_av(struct context *scontext,
 
 541				     struct context *tcontext,
 542				     u16 tclass,
 543				     struct av_decision *avd)
 544{
 545	struct context lo_scontext;
 546	struct context lo_tcontext;
 547	struct av_decision lo_avd;
 548	struct type_datum *source;
 549	struct type_datum *target;
 550	u32 masked = 0;
 551
 552	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 553				    scontext->type - 1);
 554	BUG_ON(!source);
 555
 556	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 557				    tcontext->type - 1);
 558	BUG_ON(!target);
 559
 560	if (source->bounds) {
 561		memset(&lo_avd, 0, sizeof(lo_avd));
 562
 563		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 564		lo_scontext.type = source->bounds;
 565
 566		context_struct_compute_av(&lo_scontext,
 567					  tcontext,
 568					  tclass,
 569					  &lo_avd,
 570					  NULL);
 571		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 572			return;		/* no masked permission */
 573		masked = ~lo_avd.allowed & avd->allowed;
 574	}
 575
 576	if (target->bounds) {
 577		memset(&lo_avd, 0, sizeof(lo_avd));
 578
 579		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 580		lo_tcontext.type = target->bounds;
 581
 582		context_struct_compute_av(scontext,
 583					  &lo_tcontext,
 584					  tclass,
 585					  &lo_avd,
 586					  NULL);
 587		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 588			return;		/* no masked permission */
 589		masked = ~lo_avd.allowed & avd->allowed;
 590	}
 591
 592	if (source->bounds && target->bounds) {
 593		memset(&lo_avd, 0, sizeof(lo_avd));
 594		/*
 595		 * lo_scontext and lo_tcontext are already
 596		 * set up.
 597		 */
 598
 599		context_struct_compute_av(&lo_scontext,
 600					  &lo_tcontext,
 601					  tclass,
 602					  &lo_avd,
 603					  NULL);
 604		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 605			return;		/* no masked permission */
 606		masked = ~lo_avd.allowed & avd->allowed;
 607	}
 608
 609	if (masked) {
 610		/* mask violated permissions */
 611		avd->allowed &= ~masked;
 612
 613		/* audit masked permissions */
 614		security_dump_masked_av(scontext, tcontext,
 615					tclass, masked, "bounds");
 616	}
 617}
 618
 619/*
 620 * flag which drivers have permissions
 621 * only looking for ioctl based extended permssions
 622 */
 623void services_compute_xperms_drivers(
 624		struct extended_perms *xperms,
 625		struct avtab_node *node)
 626{
 627	unsigned int i;
 628
 629	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 630		/* if one or more driver has all permissions allowed */
 631		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 632			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 633	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 634		/* if allowing permissions within a driver */
 635		security_xperm_set(xperms->drivers.p,
 636					node->datum.u.xperms->driver);
 637	}
 638
 639	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 640	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 641		xperms->len = 1;
 642}
 643
 644/*
 645 * Compute access vectors and extended permissions based on a context
 646 * structure pair for the permissions in a particular class.
 647 */
 648static void context_struct_compute_av(struct context *scontext,
 649					struct context *tcontext,
 650					u16 tclass,
 651					struct av_decision *avd,
 652					struct extended_perms *xperms)
 
 653{
 654	struct constraint_node *constraint;
 655	struct role_allow *ra;
 656	struct avtab_key avkey;
 657	struct avtab_node *node;
 658	struct class_datum *tclass_datum;
 659	struct ebitmap *sattr, *tattr;
 660	struct ebitmap_node *snode, *tnode;
 661	unsigned int i, j;
 662
 663	avd->allowed = 0;
 664	avd->auditallow = 0;
 665	avd->auditdeny = 0xffffffff;
 666	if (xperms) {
 667		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 668		xperms->len = 0;
 669	}
 670
 671	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 672		if (printk_ratelimit())
 673			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 674		return;
 675	}
 676
 677	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 678
 679	/*
 680	 * If a specific type enforcement rule was defined for
 681	 * this permission check, then use it.
 682	 */
 683	avkey.target_class = tclass;
 684	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 685	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 686	BUG_ON(!sattr);
 687	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 688	BUG_ON(!tattr);
 689	ebitmap_for_each_positive_bit(sattr, snode, i) {
 690		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 691			avkey.source_type = i + 1;
 692			avkey.target_type = j + 1;
 693			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 694			     node;
 695			     node = avtab_search_node_next(node, avkey.specified)) {
 696				if (node->key.specified == AVTAB_ALLOWED)
 697					avd->allowed |= node->datum.u.data;
 698				else if (node->key.specified == AVTAB_AUDITALLOW)
 699					avd->auditallow |= node->datum.u.data;
 700				else if (node->key.specified == AVTAB_AUDITDENY)
 701					avd->auditdeny &= node->datum.u.data;
 702				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 703					services_compute_xperms_drivers(xperms, node);
 704			}
 705
 706			/* Check conditional av table for additional permissions */
 707			cond_compute_av(&policydb.te_cond_avtab, &avkey,
 708					avd, xperms);
 709
 710		}
 711	}
 712
 713	/*
 714	 * Remove any permissions prohibited by a constraint (this includes
 715	 * the MLS policy).
 716	 */
 717	constraint = tclass_datum->constraints;
 718	while (constraint) {
 719		if ((constraint->permissions & (avd->allowed)) &&
 720		    !constraint_expr_eval(scontext, tcontext, NULL,
 721					  constraint->expr)) {
 722			avd->allowed &= ~(constraint->permissions);
 723		}
 724		constraint = constraint->next;
 725	}
 726
 727	/*
 728	 * If checking process transition permission and the
 729	 * role is changing, then check the (current_role, new_role)
 730	 * pair.
 731	 */
 732	if (tclass == policydb.process_class &&
 733	    (avd->allowed & policydb.process_trans_perms) &&
 734	    scontext->role != tcontext->role) {
 735		for (ra = policydb.role_allow; ra; ra = ra->next) {
 736			if (scontext->role == ra->role &&
 737			    tcontext->role == ra->new_role)
 738				break;
 739		}
 740		if (!ra)
 741			avd->allowed &= ~policydb.process_trans_perms;
 742	}
 743
 744	/*
 745	 * If the given source and target types have boundary
 746	 * constraint, lazy checks have to mask any violated
 747	 * permission and notice it to userspace via audit.
 748	 */
 749	type_attribute_bounds_av(scontext, tcontext,
 750				 tclass, avd);
 751}
 752
 753static int security_validtrans_handle_fail(struct context *ocontext,
 
 754					   struct context *ncontext,
 755					   struct context *tcontext,
 756					   u16 tclass)
 757{
 
 758	char *o = NULL, *n = NULL, *t = NULL;
 759	u32 olen, nlen, tlen;
 760
 761	if (context_struct_to_string(ocontext, &o, &olen))
 762		goto out;
 763	if (context_struct_to_string(ncontext, &n, &nlen))
 764		goto out;
 765	if (context_struct_to_string(tcontext, &t, &tlen))
 766		goto out;
 767	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 768		  "op=security_validate_transition seresult=denied"
 769		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 770		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 771out:
 772	kfree(o);
 773	kfree(n);
 774	kfree(t);
 775
 776	if (!selinux_enforcing)
 777		return 0;
 778	return -EPERM;
 779}
 780
 781static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 
 782					  u16 orig_tclass, bool user)
 783{
 
 
 784	struct context *ocontext;
 785	struct context *ncontext;
 786	struct context *tcontext;
 787	struct class_datum *tclass_datum;
 788	struct constraint_node *constraint;
 789	u16 tclass;
 790	int rc = 0;
 791
 792	if (!ss_initialized)
 
 793		return 0;
 794
 795	read_lock(&policy_rwlock);
 
 
 
 796
 797	if (!user)
 798		tclass = unmap_class(orig_tclass);
 799	else
 800		tclass = orig_tclass;
 801
 802	if (!tclass || tclass > policydb.p_classes.nprim) {
 803		rc = -EINVAL;
 804		goto out;
 805	}
 806	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 807
 808	ocontext = sidtab_search(&sidtab, oldsid);
 809	if (!ocontext) {
 810		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 811			__func__, oldsid);
 812		rc = -EINVAL;
 813		goto out;
 814	}
 815
 816	ncontext = sidtab_search(&sidtab, newsid);
 817	if (!ncontext) {
 818		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 819			__func__, newsid);
 820		rc = -EINVAL;
 821		goto out;
 822	}
 823
 824	tcontext = sidtab_search(&sidtab, tasksid);
 825	if (!tcontext) {
 826		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 827			__func__, tasksid);
 828		rc = -EINVAL;
 829		goto out;
 830	}
 831
 832	constraint = tclass_datum->validatetrans;
 833	while (constraint) {
 834		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 835					  constraint->expr)) {
 836			if (user)
 837				rc = -EPERM;
 838			else
 839				rc = security_validtrans_handle_fail(ocontext,
 
 840								     ncontext,
 841								     tcontext,
 842								     tclass);
 843			goto out;
 844		}
 845		constraint = constraint->next;
 846	}
 847
 848out:
 849	read_unlock(&policy_rwlock);
 850	return rc;
 851}
 852
 853int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 854					u16 tclass)
 
 855{
 856	return security_compute_validatetrans(oldsid, newsid, tasksid,
 857						tclass, true);
 858}
 859
 860int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 
 861				 u16 orig_tclass)
 862{
 863	return security_compute_validatetrans(oldsid, newsid, tasksid,
 864						orig_tclass, false);
 865}
 866
 867/*
 868 * security_bounded_transition - check whether the given
 869 * transition is directed to bounded, or not.
 870 * It returns 0, if @newsid is bounded by @oldsid.
 871 * Otherwise, it returns error code.
 872 *
 873 * @oldsid : current security identifier
 874 * @newsid : destinated security identifier
 875 */
 876int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 877{
 
 
 878	struct context *old_context, *new_context;
 879	struct type_datum *type;
 880	int index;
 881	int rc;
 882
 883	read_lock(&policy_rwlock);
 
 
 
 
 
 
 884
 885	rc = -EINVAL;
 886	old_context = sidtab_search(&sidtab, old_sid);
 887	if (!old_context) {
 888		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 889		       __func__, old_sid);
 890		goto out;
 891	}
 892
 893	rc = -EINVAL;
 894	new_context = sidtab_search(&sidtab, new_sid);
 895	if (!new_context) {
 896		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 897		       __func__, new_sid);
 898		goto out;
 899	}
 900
 901	rc = 0;
 902	/* type/domain unchanged */
 903	if (old_context->type == new_context->type)
 904		goto out;
 905
 906	index = new_context->type;
 907	while (true) {
 908		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 909					  index - 1);
 910		BUG_ON(!type);
 911
 912		/* not bounded anymore */
 913		rc = -EPERM;
 914		if (!type->bounds)
 915			break;
 916
 917		/* @newsid is bounded by @oldsid */
 918		rc = 0;
 919		if (type->bounds == old_context->type)
 920			break;
 921
 922		index = type->bounds;
 923	}
 924
 925	if (rc) {
 926		char *old_name = NULL;
 927		char *new_name = NULL;
 928		u32 length;
 929
 930		if (!context_struct_to_string(old_context,
 931					      &old_name, &length) &&
 932		    !context_struct_to_string(new_context,
 933					      &new_name, &length)) {
 934			audit_log(current->audit_context,
 935				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 936				  "op=security_bounded_transition "
 937				  "seresult=denied "
 938				  "oldcontext=%s newcontext=%s",
 939				  old_name, new_name);
 940		}
 941		kfree(new_name);
 942		kfree(old_name);
 943	}
 944out:
 945	read_unlock(&policy_rwlock);
 946
 947	return rc;
 948}
 949
 950static void avd_init(struct av_decision *avd)
 951{
 952	avd->allowed = 0;
 953	avd->auditallow = 0;
 954	avd->auditdeny = 0xffffffff;
 955	avd->seqno = latest_granting;
 956	avd->flags = 0;
 957}
 958
 959void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 960					struct avtab_node *node)
 961{
 962	unsigned int i;
 963
 964	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 965		if (xpermd->driver != node->datum.u.xperms->driver)
 966			return;
 967	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 968		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 969					xpermd->driver))
 970			return;
 971	} else {
 972		BUG();
 973	}
 974
 975	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 976		xpermd->used |= XPERMS_ALLOWED;
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 978			memset(xpermd->allowed->p, 0xff,
 979					sizeof(xpermd->allowed->p));
 980		}
 981		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 982			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 983				xpermd->allowed->p[i] |=
 984					node->datum.u.xperms->perms.p[i];
 985		}
 986	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 987		xpermd->used |= XPERMS_AUDITALLOW;
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 989			memset(xpermd->auditallow->p, 0xff,
 990					sizeof(xpermd->auditallow->p));
 991		}
 992		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 993			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 994				xpermd->auditallow->p[i] |=
 995					node->datum.u.xperms->perms.p[i];
 996		}
 997	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 998		xpermd->used |= XPERMS_DONTAUDIT;
 999		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
1000			memset(xpermd->dontaudit->p, 0xff,
1001					sizeof(xpermd->dontaudit->p));
1002		}
1003		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
1004			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
1005				xpermd->dontaudit->p[i] |=
1006					node->datum.u.xperms->perms.p[i];
1007		}
1008	} else {
1009		BUG();
1010	}
1011}
1012
1013void security_compute_xperms_decision(u32 ssid,
1014				u32 tsid,
1015				u16 orig_tclass,
1016				u8 driver,
1017				struct extended_perms_decision *xpermd)
 
1018{
 
 
1019	u16 tclass;
1020	struct context *scontext, *tcontext;
1021	struct avtab_key avkey;
1022	struct avtab_node *node;
1023	struct ebitmap *sattr, *tattr;
1024	struct ebitmap_node *snode, *tnode;
1025	unsigned int i, j;
1026
1027	xpermd->driver = driver;
1028	xpermd->used = 0;
1029	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1030	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1031	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1032
1033	read_lock(&policy_rwlock);
1034	if (!ss_initialized)
1035		goto allow;
1036
1037	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1038	if (!scontext) {
1039		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1040		       __func__, ssid);
1041		goto out;
1042	}
1043
1044	tcontext = sidtab_search(&sidtab, tsid);
1045	if (!tcontext) {
1046		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1047		       __func__, tsid);
1048		goto out;
1049	}
1050
1051	tclass = unmap_class(orig_tclass);
1052	if (unlikely(orig_tclass && !tclass)) {
1053		if (policydb.allow_unknown)
1054			goto allow;
1055		goto out;
1056	}
1057
1058
1059	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
1060		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1061		goto out;
1062	}
1063
1064	avkey.target_class = tclass;
1065	avkey.specified = AVTAB_XPERMS;
1066	sattr = flex_array_get(policydb.type_attr_map_array,
1067				scontext->type - 1);
1068	BUG_ON(!sattr);
1069	tattr = flex_array_get(policydb.type_attr_map_array,
1070				tcontext->type - 1);
1071	BUG_ON(!tattr);
1072	ebitmap_for_each_positive_bit(sattr, snode, i) {
1073		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1074			avkey.source_type = i + 1;
1075			avkey.target_type = j + 1;
1076			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
1077			     node;
1078			     node = avtab_search_node_next(node, avkey.specified))
1079				services_compute_xperms_decision(xpermd, node);
1080
1081			cond_compute_xperms(&policydb.te_cond_avtab,
1082						&avkey, xpermd);
1083		}
1084	}
1085out:
1086	read_unlock(&policy_rwlock);
1087	return;
1088allow:
1089	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1090	goto out;
1091}
1092
1093/**
1094 * security_compute_av - Compute access vector decisions.
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(u32 ssid,
 
1105			 u32 tsid,
1106			 u16 orig_tclass,
1107			 struct av_decision *avd,
1108			 struct extended_perms *xperms)
1109{
 
 
1110	u16 tclass;
1111	struct context *scontext = NULL, *tcontext = NULL;
1112
1113	read_lock(&policy_rwlock);
1114	avd_init(avd);
1115	xperms->len = 0;
1116	if (!ss_initialized)
1117		goto allow;
1118
1119	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1120	if (!scontext) {
1121		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1122		       __func__, ssid);
1123		goto out;
1124	}
1125
1126	/* permissive domain? */
1127	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1128		avd->flags |= AVD_FLAGS_PERMISSIVE;
1129
1130	tcontext = sidtab_search(&sidtab, tsid);
1131	if (!tcontext) {
1132		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1133		       __func__, tsid);
1134		goto out;
1135	}
1136
1137	tclass = unmap_class(orig_tclass);
1138	if (unlikely(orig_tclass && !tclass)) {
1139		if (policydb.allow_unknown)
1140			goto allow;
1141		goto out;
1142	}
1143	context_struct_compute_av(scontext, tcontext, tclass, avd, xperms);
1144	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
1145out:
1146	read_unlock(&policy_rwlock);
1147	return;
1148allow:
1149	avd->allowed = 0xffffffff;
1150	goto out;
1151}
1152
1153void security_compute_av_user(u32 ssid,
 
1154			      u32 tsid,
1155			      u16 tclass,
1156			      struct av_decision *avd)
1157{
 
 
1158	struct context *scontext = NULL, *tcontext = NULL;
1159
1160	read_lock(&policy_rwlock);
1161	avd_init(avd);
1162	if (!ss_initialized)
1163		goto allow;
1164
1165	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1166	if (!scontext) {
1167		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1168		       __func__, ssid);
1169		goto out;
1170	}
1171
1172	/* permissive domain? */
1173	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
1174		avd->flags |= AVD_FLAGS_PERMISSIVE;
1175
1176	tcontext = sidtab_search(&sidtab, tsid);
1177	if (!tcontext) {
1178		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1179		       __func__, tsid);
1180		goto out;
1181	}
1182
1183	if (unlikely(!tclass)) {
1184		if (policydb.allow_unknown)
1185			goto allow;
1186		goto out;
1187	}
1188
1189	context_struct_compute_av(scontext, tcontext, tclass, avd, NULL);
 
1190 out:
1191	read_unlock(&policy_rwlock);
1192	return;
1193allow:
1194	avd->allowed = 0xffffffff;
1195	goto out;
1196}
1197
1198/*
1199 * Write the security context string representation of
1200 * the context structure `context' into a dynamically
1201 * allocated string of the correct size.  Set `*scontext'
1202 * to point to this string and set `*scontext_len' to
1203 * the length of the string.
1204 */
1205static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1206{
1207	char *scontextp;
1208
1209	if (scontext)
1210		*scontext = NULL;
1211	*scontext_len = 0;
1212
1213	if (context->len) {
1214		*scontext_len = context->len;
1215		if (scontext) {
1216			*scontext = kstrdup(context->str, GFP_ATOMIC);
1217			if (!(*scontext))
1218				return -ENOMEM;
1219		}
1220		return 0;
1221	}
1222
1223	/* Compute the size of the context. */
1224	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1225	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1226	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1227	*scontext_len += mls_compute_context_len(context);
1228
1229	if (!scontext)
1230		return 0;
1231
1232	/* Allocate space for the context; caller must free this space. */
1233	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1234	if (!scontextp)
1235		return -ENOMEM;
1236	*scontext = scontextp;
1237
1238	/*
1239	 * Copy the user name, role name and type name into the context.
1240	 */
1241	scontextp += sprintf(scontextp, "%s:%s:%s",
1242		sym_name(&policydb, SYM_USERS, context->user - 1),
1243		sym_name(&policydb, SYM_ROLES, context->role - 1),
1244		sym_name(&policydb, SYM_TYPES, context->type - 1));
1245
1246	mls_sid_to_context(context, &scontextp);
1247
1248	*scontextp = 0;
1249
1250	return 0;
1251}
1252
1253#include "initial_sid_to_string.h"
1254
1255const char *security_get_initial_sid_context(u32 sid)
1256{
1257	if (unlikely(sid > SECINITSID_NUM))
1258		return NULL;
1259	return initial_sid_to_string[sid];
1260}
1261
1262static int security_sid_to_context_core(u32 sid, char **scontext,
1263					u32 *scontext_len, int force)
 
 
1264{
 
 
1265	struct context *context;
1266	int rc = 0;
1267
1268	if (scontext)
1269		*scontext = NULL;
1270	*scontext_len  = 0;
1271
1272	if (!ss_initialized) {
1273		if (sid <= SECINITSID_NUM) {
1274			char *scontextp;
1275
1276			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1277			if (!scontext)
1278				goto out;
1279			scontextp = kmemdup(initial_sid_to_string[sid],
1280					    *scontext_len, GFP_ATOMIC);
1281			if (!scontextp) {
1282				rc = -ENOMEM;
1283				goto out;
1284			}
1285			*scontext = scontextp;
1286			goto out;
1287		}
1288		printk(KERN_ERR "SELinux: %s:  called before initial "
1289		       "load_policy on unknown SID %d\n", __func__, sid);
1290		rc = -EINVAL;
1291		goto out;
1292	}
1293	read_lock(&policy_rwlock);
 
 
1294	if (force)
1295		context = sidtab_search_force(&sidtab, sid);
1296	else
1297		context = sidtab_search(&sidtab, sid);
1298	if (!context) {
1299		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1300			__func__, sid);
1301		rc = -EINVAL;
1302		goto out_unlock;
1303	}
1304	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
1305out_unlock:
1306	read_unlock(&policy_rwlock);
1307out:
1308	return rc;
1309
1310}
1311
1312/**
1313 * security_sid_to_context - Obtain a context for a given SID.
1314 * @sid: security identifier, SID
1315 * @scontext: security context
1316 * @scontext_len: length in bytes
1317 *
1318 * Write the string representation of the context associated with @sid
1319 * into a dynamically allocated string of the correct size.  Set @scontext
1320 * to point to this string and set @scontext_len to the length of the string.
1321 */
1322int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
1323{
1324	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1325}
1326
1327int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328{
1329	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1330}
1331
1332/*
1333 * Caveat:  Mutates scontext.
1334 */
1335static int string_to_context_struct(struct policydb *pol,
1336				    struct sidtab *sidtabp,
1337				    char *scontext,
1338				    u32 scontext_len,
1339				    struct context *ctx,
1340				    u32 def_sid)
1341{
1342	struct role_datum *role;
1343	struct type_datum *typdatum;
1344	struct user_datum *usrdatum;
1345	char *scontextp, *p, oldc;
1346	int rc = 0;
1347
1348	context_init(ctx);
1349
1350	/* Parse the security context. */
1351
1352	rc = -EINVAL;
1353	scontextp = (char *) scontext;
1354
1355	/* Extract the user. */
1356	p = scontextp;
1357	while (*p && *p != ':')
1358		p++;
1359
1360	if (*p == 0)
1361		goto out;
1362
1363	*p++ = 0;
1364
1365	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1366	if (!usrdatum)
1367		goto out;
1368
1369	ctx->user = usrdatum->value;
1370
1371	/* Extract role. */
1372	scontextp = p;
1373	while (*p && *p != ':')
1374		p++;
1375
1376	if (*p == 0)
1377		goto out;
1378
1379	*p++ = 0;
1380
1381	role = hashtab_search(pol->p_roles.table, scontextp);
1382	if (!role)
1383		goto out;
1384	ctx->role = role->value;
1385
1386	/* Extract type. */
1387	scontextp = p;
1388	while (*p && *p != ':')
1389		p++;
1390	oldc = *p;
1391	*p++ = 0;
1392
1393	typdatum = hashtab_search(pol->p_types.table, scontextp);
1394	if (!typdatum || typdatum->attribute)
1395		goto out;
1396
1397	ctx->type = typdatum->value;
1398
1399	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1400	if (rc)
1401		goto out;
1402
1403	rc = -EINVAL;
1404	if ((p - scontext) < scontext_len)
1405		goto out;
1406
1407	/* Check the validity of the new context. */
 
1408	if (!policydb_context_isvalid(pol, ctx))
1409		goto out;
1410	rc = 0;
1411out:
1412	if (rc)
1413		context_destroy(ctx);
1414	return rc;
1415}
1416
1417static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1418					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1419					int force)
1420{
 
 
1421	char *scontext2, *str = NULL;
1422	struct context context;
1423	int rc = 0;
1424
1425	/* An empty security context is never valid. */
1426	if (!scontext_len)
1427		return -EINVAL;
1428
1429	if (!ss_initialized) {
 
 
 
 
 
1430		int i;
1431
1432		for (i = 1; i < SECINITSID_NUM; i++) {
1433			if (!strcmp(initial_sid_to_string[i], scontext)) {
1434				*sid = i;
1435				return 0;
1436			}
1437		}
1438		*sid = SECINITSID_KERNEL;
1439		return 0;
1440	}
1441	*sid = SECSID_NULL;
1442
1443	/* Copy the string so that we can modify the copy as we parse it. */
1444	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1445	if (!scontext2)
1446		return -ENOMEM;
1447	memcpy(scontext2, scontext, scontext_len);
1448	scontext2[scontext_len] = 0;
1449
1450	if (force) {
1451		/* Save another copy for storing in uninterpreted form */
1452		rc = -ENOMEM;
1453		str = kstrdup(scontext2, gfp_flags);
1454		if (!str)
1455			goto out;
1456	}
1457
1458	read_lock(&policy_rwlock);
1459	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1460				      scontext_len, &context, def_sid);
 
1461	if (rc == -EINVAL && force) {
1462		context.str = str;
1463		context.len = scontext_len;
1464		str = NULL;
1465	} else if (rc)
1466		goto out_unlock;
1467	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1468	context_destroy(&context);
1469out_unlock:
1470	read_unlock(&policy_rwlock);
1471out:
1472	kfree(scontext2);
1473	kfree(str);
1474	return rc;
1475}
1476
1477/**
1478 * security_context_to_sid - Obtain a SID for a given security context.
1479 * @scontext: security context
1480 * @scontext_len: length in bytes
1481 * @sid: security identifier, SID
1482 * @gfp: context for the allocation
1483 *
1484 * Obtains a SID associated with the security context that
1485 * has the string representation specified by @scontext.
1486 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1487 * memory is available, or 0 on success.
1488 */
1489int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
 
1490			    gfp_t gfp)
1491{
1492	return security_context_to_sid_core(scontext, scontext_len,
1493					    sid, SECSID_NULL, gfp, 0);
1494}
1495
1496int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
 
1497{
1498	return security_context_to_sid(scontext, strlen(scontext), sid, gfp);
 
1499}
1500
1501/**
1502 * security_context_to_sid_default - Obtain a SID for a given security context,
1503 * falling back to specified default if needed.
1504 *
1505 * @scontext: security context
1506 * @scontext_len: length in bytes
1507 * @sid: security identifier, SID
1508 * @def_sid: default SID to assign on error
1509 *
1510 * Obtains a SID associated with the security context that
1511 * has the string representation specified by @scontext.
1512 * The default SID is passed to the MLS layer to be used to allow
1513 * kernel labeling of the MLS field if the MLS field is not present
1514 * (for upgrading to MLS without full relabel).
1515 * Implicitly forces adding of the context even if it cannot be mapped yet.
1516 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1517 * memory is available, or 0 on success.
1518 */
1519int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1520				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1521{
1522	return security_context_to_sid_core(scontext, scontext_len,
1523					    sid, def_sid, gfp_flags, 1);
1524}
1525
1526int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1527				  u32 *sid)
1528{
1529	return security_context_to_sid_core(scontext, scontext_len,
1530					    sid, SECSID_NULL, GFP_KERNEL, 1);
1531}
1532
1533static int compute_sid_handle_invalid_context(
 
1534	struct context *scontext,
1535	struct context *tcontext,
1536	u16 tclass,
1537	struct context *newcontext)
1538{
 
1539	char *s = NULL, *t = NULL, *n = NULL;
1540	u32 slen, tlen, nlen;
 
1541
1542	if (context_struct_to_string(scontext, &s, &slen))
1543		goto out;
1544	if (context_struct_to_string(tcontext, &t, &tlen))
1545		goto out;
1546	if (context_struct_to_string(newcontext, &n, &nlen))
1547		goto out;
1548	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1549		  "op=security_compute_sid invalid_context=%s"
1550		  " scontext=%s"
1551		  " tcontext=%s"
1552		  " tclass=%s",
1553		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
1554out:
1555	kfree(s);
1556	kfree(t);
1557	kfree(n);
1558	if (!selinux_enforcing)
1559		return 0;
1560	return -EACCES;
1561}
1562
1563static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1564				  u32 stype, u32 ttype, u16 tclass,
1565				  const char *objname)
1566{
1567	struct filename_trans ft;
1568	struct filename_trans_datum *otype;
1569
1570	/*
1571	 * Most filename trans rules are going to live in specific directories
1572	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1573	 * if the ttype does not contain any rules.
1574	 */
1575	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1576		return;
1577
1578	ft.stype = stype;
1579	ft.ttype = ttype;
1580	ft.tclass = tclass;
1581	ft.name = objname;
1582
1583	otype = hashtab_search(p->filename_trans, &ft);
1584	if (otype)
1585		newcontext->type = otype->otype;
1586}
1587
1588static int security_compute_sid(u32 ssid,
 
1589				u32 tsid,
1590				u16 orig_tclass,
1591				u32 specified,
1592				const char *objname,
1593				u32 *out_sid,
1594				bool kern)
1595{
 
 
1596	struct class_datum *cladatum = NULL;
1597	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1598	struct role_trans *roletr = NULL;
1599	struct avtab_key avkey;
1600	struct avtab_datum *avdatum;
1601	struct avtab_node *node;
1602	u16 tclass;
1603	int rc = 0;
1604	bool sock;
1605
1606	if (!ss_initialized) {
1607		switch (orig_tclass) {
1608		case SECCLASS_PROCESS: /* kernel value */
1609			*out_sid = ssid;
1610			break;
1611		default:
1612			*out_sid = tsid;
1613			break;
1614		}
1615		goto out;
1616	}
1617
1618	context_init(&newcontext);
1619
1620	read_lock(&policy_rwlock);
1621
1622	if (kern) {
1623		tclass = unmap_class(orig_tclass);
1624		sock = security_is_socket_class(orig_tclass);
1625	} else {
1626		tclass = orig_tclass;
1627		sock = security_is_socket_class(map_class(tclass));
 
1628	}
1629
1630	scontext = sidtab_search(&sidtab, ssid);
 
 
 
1631	if (!scontext) {
1632		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1633		       __func__, ssid);
1634		rc = -EINVAL;
1635		goto out_unlock;
1636	}
1637	tcontext = sidtab_search(&sidtab, tsid);
1638	if (!tcontext) {
1639		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1640		       __func__, tsid);
1641		rc = -EINVAL;
1642		goto out_unlock;
1643	}
1644
1645	if (tclass && tclass <= policydb.p_classes.nprim)
1646		cladatum = policydb.class_val_to_struct[tclass - 1];
1647
1648	/* Set the user identity. */
1649	switch (specified) {
1650	case AVTAB_TRANSITION:
1651	case AVTAB_CHANGE:
1652		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1653			newcontext.user = tcontext->user;
1654		} else {
1655			/* notice this gets both DEFAULT_SOURCE and unset */
1656			/* Use the process user identity. */
1657			newcontext.user = scontext->user;
1658		}
1659		break;
1660	case AVTAB_MEMBER:
1661		/* Use the related object owner. */
1662		newcontext.user = tcontext->user;
1663		break;
1664	}
1665
1666	/* Set the role to default values. */
1667	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1668		newcontext.role = scontext->role;
1669	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1670		newcontext.role = tcontext->role;
1671	} else {
1672		if ((tclass == policydb.process_class) || (sock == true))
1673			newcontext.role = scontext->role;
1674		else
1675			newcontext.role = OBJECT_R_VAL;
1676	}
1677
1678	/* Set the type to default values. */
1679	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1680		newcontext.type = scontext->type;
1681	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1682		newcontext.type = tcontext->type;
1683	} else {
1684		if ((tclass == policydb.process_class) || (sock == true)) {
1685			/* Use the type of process. */
1686			newcontext.type = scontext->type;
1687		} else {
1688			/* Use the type of the related object. */
1689			newcontext.type = tcontext->type;
1690		}
1691	}
1692
1693	/* Look for a type transition/member/change rule. */
1694	avkey.source_type = scontext->type;
1695	avkey.target_type = tcontext->type;
1696	avkey.target_class = tclass;
1697	avkey.specified = specified;
1698	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1699
1700	/* If no permanent rule, also check for enabled conditional rules */
1701	if (!avdatum) {
1702		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1703		for (; node; node = avtab_search_node_next(node, specified)) {
1704			if (node->key.specified & AVTAB_ENABLED) {
1705				avdatum = &node->datum;
1706				break;
1707			}
1708		}
1709	}
1710
1711	if (avdatum) {
1712		/* Use the type from the type transition/member/change rule. */
1713		newcontext.type = avdatum->u.data;
1714	}
1715
1716	/* if we have a objname this is a file trans check so check those rules */
1717	if (objname)
1718		filename_compute_type(&policydb, &newcontext, scontext->type,
1719				      tcontext->type, tclass, objname);
1720
1721	/* Check for class-specific changes. */
1722	if (specified & AVTAB_TRANSITION) {
1723		/* Look for a role transition rule. */
1724		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
 
1725			if ((roletr->role == scontext->role) &&
1726			    (roletr->type == tcontext->type) &&
1727			    (roletr->tclass == tclass)) {
1728				/* Use the role transition rule. */
1729				newcontext.role = roletr->new_role;
1730				break;
1731			}
1732		}
1733	}
1734
1735	/* Set the MLS attributes.
1736	   This is done last because it may allocate memory. */
1737	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1738			     &newcontext, sock);
1739	if (rc)
1740		goto out_unlock;
1741
1742	/* Check the validity of the context. */
1743	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1744		rc = compute_sid_handle_invalid_context(scontext,
1745							tcontext,
1746							tclass,
1747							&newcontext);
1748		if (rc)
1749			goto out_unlock;
1750	}
1751	/* Obtain the sid for the context. */
1752	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1753out_unlock:
1754	read_unlock(&policy_rwlock);
1755	context_destroy(&newcontext);
1756out:
1757	return rc;
1758}
1759
1760/**
1761 * security_transition_sid - Compute the SID for a new subject/object.
1762 * @ssid: source security identifier
1763 * @tsid: target security identifier
1764 * @tclass: target security class
1765 * @out_sid: security identifier for new subject/object
1766 *
1767 * Compute a SID to use for labeling a new subject or object in the
1768 * class @tclass based on a SID pair (@ssid, @tsid).
1769 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1770 * if insufficient memory is available, or %0 if the new SID was
1771 * computed successfully.
1772 */
1773int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1774			    const struct qstr *qstr, u32 *out_sid)
1775{
1776	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1777				    qstr ? qstr->name : NULL, out_sid, true);
1778}
1779
1780int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1781				 const char *objname, u32 *out_sid)
1782{
1783	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1784				    objname, out_sid, false);
1785}
1786
1787/**
1788 * security_member_sid - Compute the SID for member selection.
1789 * @ssid: source security identifier
1790 * @tsid: target security identifier
1791 * @tclass: target security class
1792 * @out_sid: security identifier for selected member
1793 *
1794 * Compute a SID to use when selecting a member of a polyinstantiated
1795 * object of class @tclass based on a SID pair (@ssid, @tsid).
1796 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1797 * if insufficient memory is available, or %0 if the SID was
1798 * computed successfully.
1799 */
1800int security_member_sid(u32 ssid,
 
1801			u32 tsid,
1802			u16 tclass,
1803			u32 *out_sid)
1804{
1805	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1806				    out_sid, false);
1807}
1808
1809/**
1810 * security_change_sid - Compute the SID for object relabeling.
1811 * @ssid: source security identifier
1812 * @tsid: target security identifier
1813 * @tclass: target security class
1814 * @out_sid: security identifier for selected member
1815 *
1816 * Compute a SID to use for relabeling an object of class @tclass
1817 * based on a SID pair (@ssid, @tsid).
1818 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1819 * if insufficient memory is available, or %0 if the SID was
1820 * computed successfully.
1821 */
1822int security_change_sid(u32 ssid,
 
1823			u32 tsid,
1824			u16 tclass,
1825			u32 *out_sid)
1826{
1827	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1828				    out_sid, false);
1829}
1830
1831/* Clone the SID into the new SID table. */
1832static int clone_sid(u32 sid,
1833		     struct context *context,
1834		     void *arg)
1835{
1836	struct sidtab *s = arg;
1837
1838	if (sid > SECINITSID_NUM)
1839		return sidtab_insert(s, sid, context);
1840	else
1841		return 0;
1842}
1843
1844static inline int convert_context_handle_invalid_context(struct context *context)
1845{
 
1846	char *s;
1847	u32 len;
1848
1849	if (selinux_enforcing)
1850		return -EINVAL;
1851
1852	if (!context_struct_to_string(context, &s, &len)) {
1853		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1854		kfree(s);
1855	}
1856	return 0;
1857}
1858
1859struct convert_context_args {
 
1860	struct policydb *oldp;
1861	struct policydb *newp;
1862};
1863
1864/*
1865 * Convert the values in the security context
1866 * structure `c' from the values specified
1867 * in the policy `p->oldp' to the values specified
1868 * in the policy `p->newp'.  Verify that the
1869 * context is valid under the new policy.
 
1870 */
1871static int convert_context(u32 key,
1872			   struct context *c,
1873			   void *p)
1874{
1875	struct convert_context_args *args;
1876	struct context oldc;
1877	struct ocontext *oc;
1878	struct mls_range *range;
1879	struct role_datum *role;
1880	struct type_datum *typdatum;
1881	struct user_datum *usrdatum;
1882	char *s;
1883	u32 len;
1884	int rc = 0;
1885
1886	if (key <= SECINITSID_NUM)
1887		goto out;
1888
1889	args = p;
1890
1891	if (c->str) {
1892		struct context ctx;
1893
1894		rc = -ENOMEM;
1895		s = kstrdup(c->str, GFP_KERNEL);
1896		if (!s)
1897			goto out;
1898
1899		rc = string_to_context_struct(args->newp, NULL, s,
1900					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901		kfree(s);
1902		if (!rc) {
1903			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1904			       c->str);
1905			/* Replace string with mapped representation. */
1906			kfree(c->str);
1907			memcpy(c, &ctx, sizeof(*c));
1908			goto out;
1909		} else if (rc == -EINVAL) {
1910			/* Retain string representation for later mapping. */
1911			rc = 0;
1912			goto out;
1913		} else {
1914			/* Other error condition, e.g. ENOMEM. */
1915			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1916			       c->str, -rc);
1917			goto out;
1918		}
 
 
 
1919	}
1920
1921	rc = context_cpy(&oldc, c);
1922	if (rc)
1923		goto out;
1924
1925	/* Convert the user. */
1926	rc = -EINVAL;
1927	usrdatum = hashtab_search(args->newp->p_users.table,
1928				  sym_name(args->oldp, SYM_USERS, c->user - 1));
 
1929	if (!usrdatum)
1930		goto bad;
1931	c->user = usrdatum->value;
1932
1933	/* Convert the role. */
1934	rc = -EINVAL;
1935	role = hashtab_search(args->newp->p_roles.table,
1936			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1937	if (!role)
1938		goto bad;
1939	c->role = role->value;
1940
1941	/* Convert the type. */
1942	rc = -EINVAL;
1943	typdatum = hashtab_search(args->newp->p_types.table,
1944				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
 
1945	if (!typdatum)
1946		goto bad;
1947	c->type = typdatum->value;
1948
1949	/* Convert the MLS fields if dealing with MLS policies */
1950	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1951		rc = mls_convert_context(args->oldp, args->newp, c);
1952		if (rc)
1953			goto bad;
1954	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1955		/*
1956		 * Switching between MLS and non-MLS policy:
1957		 * free any storage used by the MLS fields in the
1958		 * context for all existing entries in the sidtab.
1959		 */
1960		mls_context_destroy(c);
1961	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1962		/*
1963		 * Switching between non-MLS and MLS policy:
1964		 * ensure that the MLS fields of the context for all
1965		 * existing entries in the sidtab are filled in with a
1966		 * suitable default value, likely taken from one of the
1967		 * initial SIDs.
1968		 */
1969		oc = args->newp->ocontexts[OCON_ISID];
1970		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1971			oc = oc->next;
1972		rc = -EINVAL;
1973		if (!oc) {
1974			printk(KERN_ERR "SELinux:  unable to look up"
1975				" the initial SIDs list\n");
1976			goto bad;
1977		}
1978		range = &oc->context[0].range;
1979		rc = mls_range_set(c, range);
1980		if (rc)
1981			goto bad;
1982	}
1983
1984	/* Check the validity of the new context. */
1985	if (!policydb_context_isvalid(args->newp, c)) {
1986		rc = convert_context_handle_invalid_context(&oldc);
1987		if (rc)
1988			goto bad;
1989	}
1990
1991	context_destroy(&oldc);
1992
1993	rc = 0;
1994out:
1995	return rc;
1996bad:
1997	/* Map old representation to string and save it. */
1998	rc = context_struct_to_string(&oldc, &s, &len);
1999	if (rc)
2000		return rc;
2001	context_destroy(&oldc);
2002	context_destroy(c);
2003	c->str = s;
2004	c->len = len;
2005	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
2006	       c->str);
2007	rc = 0;
2008	goto out;
2009}
2010
2011static void security_load_policycaps(void)
2012{
2013	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
2014						  POLICYDB_CAPABILITY_NETPEER);
2015	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
2016						  POLICYDB_CAPABILITY_OPENPERM);
2017	selinux_policycap_alwaysnetwork = ebitmap_get_bit(&policydb.policycaps,
2018						  POLICYDB_CAPABILITY_ALWAYSNETWORK);
 
 
 
 
 
 
 
 
 
 
 
2019}
2020
2021static int security_preserve_bools(struct policydb *p);
 
2022
2023/**
2024 * security_load_policy - Load a security policy configuration.
2025 * @data: binary policy data
2026 * @len: length of data in bytes
2027 *
2028 * Load a new set of security policy configuration data,
2029 * validate it and convert the SID table as necessary.
2030 * This function will flush the access vector cache after
2031 * loading the new policy.
2032 */
2033int security_load_policy(void *data, size_t len)
2034{
 
 
2035	struct policydb *oldpolicydb, *newpolicydb;
2036	struct sidtab oldsidtab, newsidtab;
2037	struct selinux_mapping *oldmap, *map = NULL;
 
2038	struct convert_context_args args;
2039	u32 seqno;
2040	u16 map_size;
2041	int rc = 0;
2042	struct policy_file file = { data, len }, *fp = &file;
2043
2044	oldpolicydb = kzalloc(2 * sizeof(*oldpolicydb), GFP_KERNEL);
2045	if (!oldpolicydb) {
2046		rc = -ENOMEM;
2047		goto out;
2048	}
2049	newpolicydb = oldpolicydb + 1;
2050
2051	if (!ss_initialized) {
2052		avtab_cache_init();
2053		rc = policydb_read(&policydb, fp);
 
 
 
 
 
 
 
2054		if (rc) {
2055			avtab_cache_destroy();
2056			goto out;
2057		}
2058
2059		policydb.len = len;
2060		rc = selinux_set_mapping(&policydb, secclass_map,
2061					 &current_mapping,
2062					 &current_mapping_size);
2063		if (rc) {
2064			policydb_destroy(&policydb);
2065			avtab_cache_destroy();
2066			goto out;
2067		}
2068
2069		rc = policydb_load_isids(&policydb, &sidtab);
2070		if (rc) {
2071			policydb_destroy(&policydb);
2072			avtab_cache_destroy();
2073			goto out;
2074		}
2075
2076		security_load_policycaps();
2077		ss_initialized = 1;
2078		seqno = ++latest_granting;
 
2079		selinux_complete_init();
2080		avc_ss_reset(seqno);
2081		selnl_notify_policyload(seqno);
2082		selinux_status_update_policyload(seqno);
2083		selinux_netlbl_cache_invalidate();
2084		selinux_xfrm_notify_policyload();
2085		goto out;
2086	}
2087
2088#if 0
2089	sidtab_hash_eval(&sidtab, "sids");
2090#endif
2091
2092	rc = policydb_read(newpolicydb, fp);
2093	if (rc)
 
2094		goto out;
 
2095
2096	newpolicydb->len = len;
2097	/* If switching between different policy types, log MLS status */
2098	if (policydb.mls_enabled && !newpolicydb->mls_enabled)
2099		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
2100	else if (!policydb.mls_enabled && newpolicydb->mls_enabled)
2101		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
2102
2103	rc = policydb_load_isids(newpolicydb, &newsidtab);
2104	if (rc) {
2105		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
2106		policydb_destroy(newpolicydb);
 
2107		goto out;
2108	}
2109
2110	rc = selinux_set_mapping(newpolicydb, secclass_map, &map, &map_size);
2111	if (rc)
2112		goto err;
2113
2114	rc = security_preserve_bools(newpolicydb);
2115	if (rc) {
2116		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
2117		goto err;
2118	}
2119
2120	/* Clone the SID table. */
2121	sidtab_shutdown(&sidtab);
2122
2123	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
2124	if (rc)
2125		goto err;
2126
2127	/*
2128	 * Convert the internal representations of contexts
2129	 * in the new SID table.
2130	 */
2131	args.oldp = &policydb;
 
2132	args.newp = newpolicydb;
2133	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
2134	if (rc) {
2135		printk(KERN_ERR "SELinux:  unable to convert the internal"
2136			" representation of contexts in the new SID"
2137			" table\n");
2138		goto err;
2139	}
2140
2141	/* Save the old policydb and SID table to free later. */
2142	memcpy(oldpolicydb, &policydb, sizeof(policydb));
2143	sidtab_set(&oldsidtab, &sidtab);
2144
2145	/* Install the new policydb and SID table. */
2146	write_lock_irq(&policy_rwlock);
2147	memcpy(&policydb, newpolicydb, sizeof(policydb));
2148	sidtab_set(&sidtab, &newsidtab);
2149	security_load_policycaps();
2150	oldmap = current_mapping;
2151	current_mapping = map;
2152	current_mapping_size = map_size;
2153	seqno = ++latest_granting;
2154	write_unlock_irq(&policy_rwlock);
2155
2156	/* Free the old policydb and SID table. */
2157	policydb_destroy(oldpolicydb);
2158	sidtab_destroy(&oldsidtab);
2159	kfree(oldmap);
 
2160
2161	avc_ss_reset(seqno);
2162	selnl_notify_policyload(seqno);
2163	selinux_status_update_policyload(seqno);
2164	selinux_netlbl_cache_invalidate();
2165	selinux_xfrm_notify_policyload();
2166
2167	rc = 0;
2168	goto out;
2169
2170err:
2171	kfree(map);
2172	sidtab_destroy(&newsidtab);
 
2173	policydb_destroy(newpolicydb);
2174
2175out:
2176	kfree(oldpolicydb);
2177	return rc;
2178}
2179
2180size_t security_policydb_len(void)
2181{
 
2182	size_t len;
2183
2184	read_lock(&policy_rwlock);
2185	len = policydb.len;
2186	read_unlock(&policy_rwlock);
2187
2188	return len;
2189}
2190
2191/**
2192 * security_port_sid - Obtain the SID for a port.
2193 * @protocol: protocol number
2194 * @port: port number
2195 * @out_sid: security identifier
2196 */
2197int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
2198{
 
 
2199	struct ocontext *c;
2200	int rc = 0;
2201
2202	read_lock(&policy_rwlock);
 
 
 
2203
2204	c = policydb.ocontexts[OCON_PORT];
2205	while (c) {
2206		if (c->u.port.protocol == protocol &&
2207		    c->u.port.low_port <= port &&
2208		    c->u.port.high_port >= port)
2209			break;
2210		c = c->next;
2211	}
2212
2213	if (c) {
2214		if (!c->sid[0]) {
2215			rc = sidtab_context_to_sid(&sidtab,
2216						   &c->context[0],
2217						   &c->sid[0]);
2218			if (rc)
2219				goto out;
2220		}
2221		*out_sid = c->sid[0];
2222	} else {
2223		*out_sid = SECINITSID_PORT;
2224	}
2225
2226out:
2227	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2228	return rc;
2229}
2230
2231/**
2232 * security_netif_sid - Obtain the SID for a network interface.
2233 * @name: interface name
2234 * @if_sid: interface SID
2235 */
2236int security_netif_sid(char *name, u32 *if_sid)
 
2237{
 
 
2238	int rc = 0;
2239	struct ocontext *c;
2240
2241	read_lock(&policy_rwlock);
 
 
 
2242
2243	c = policydb.ocontexts[OCON_NETIF];
2244	while (c) {
2245		if (strcmp(name, c->u.name) == 0)
2246			break;
2247		c = c->next;
2248	}
2249
2250	if (c) {
2251		if (!c->sid[0] || !c->sid[1]) {
2252			rc = sidtab_context_to_sid(&sidtab,
2253						  &c->context[0],
2254						  &c->sid[0]);
2255			if (rc)
2256				goto out;
2257			rc = sidtab_context_to_sid(&sidtab,
2258						   &c->context[1],
2259						   &c->sid[1]);
2260			if (rc)
2261				goto out;
2262		}
2263		*if_sid = c->sid[0];
2264	} else
2265		*if_sid = SECINITSID_NETIF;
2266
2267out:
2268	read_unlock(&policy_rwlock);
2269	return rc;
2270}
2271
2272static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2273{
2274	int i, fail = 0;
2275
2276	for (i = 0; i < 4; i++)
2277		if (addr[i] != (input[i] & mask[i])) {
2278			fail = 1;
2279			break;
2280		}
2281
2282	return !fail;
2283}
2284
2285/**
2286 * security_node_sid - Obtain the SID for a node (host).
2287 * @domain: communication domain aka address family
2288 * @addrp: address
2289 * @addrlen: address length in bytes
2290 * @out_sid: security identifier
2291 */
2292int security_node_sid(u16 domain,
 
2293		      void *addrp,
2294		      u32 addrlen,
2295		      u32 *out_sid)
2296{
 
 
2297	int rc;
2298	struct ocontext *c;
2299
2300	read_lock(&policy_rwlock);
 
 
 
2301
2302	switch (domain) {
2303	case AF_INET: {
2304		u32 addr;
2305
2306		rc = -EINVAL;
2307		if (addrlen != sizeof(u32))
2308			goto out;
2309
2310		addr = *((u32 *)addrp);
2311
2312		c = policydb.ocontexts[OCON_NODE];
2313		while (c) {
2314			if (c->u.node.addr == (addr & c->u.node.mask))
2315				break;
2316			c = c->next;
2317		}
2318		break;
2319	}
2320
2321	case AF_INET6:
2322		rc = -EINVAL;
2323		if (addrlen != sizeof(u64) * 2)
2324			goto out;
2325		c = policydb.ocontexts[OCON_NODE6];
2326		while (c) {
2327			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2328						c->u.node6.mask))
2329				break;
2330			c = c->next;
2331		}
2332		break;
2333
2334	default:
2335		rc = 0;
2336		*out_sid = SECINITSID_NODE;
2337		goto out;
2338	}
2339
2340	if (c) {
2341		if (!c->sid[0]) {
2342			rc = sidtab_context_to_sid(&sidtab,
2343						   &c->context[0],
2344						   &c->sid[0]);
2345			if (rc)
2346				goto out;
2347		}
2348		*out_sid = c->sid[0];
2349	} else {
2350		*out_sid = SECINITSID_NODE;
2351	}
2352
2353	rc = 0;
2354out:
2355	read_unlock(&policy_rwlock);
2356	return rc;
2357}
2358
2359#define SIDS_NEL 25
2360
2361/**
2362 * security_get_user_sids - Obtain reachable SIDs for a user.
2363 * @fromsid: starting SID
2364 * @username: username
2365 * @sids: array of reachable SIDs for user
2366 * @nel: number of elements in @sids
2367 *
2368 * Generate the set of SIDs for legal security contexts
2369 * for a given user that can be reached by @fromsid.
2370 * Set *@sids to point to a dynamically allocated
2371 * array containing the set of SIDs.  Set *@nel to the
2372 * number of elements in the array.
2373 */
2374
2375int security_get_user_sids(u32 fromsid,
 
2376			   char *username,
2377			   u32 **sids,
2378			   u32 *nel)
2379{
 
 
2380	struct context *fromcon, usercon;
2381	u32 *mysids = NULL, *mysids2, sid;
2382	u32 mynel = 0, maxnel = SIDS_NEL;
2383	struct user_datum *user;
2384	struct role_datum *role;
2385	struct ebitmap_node *rnode, *tnode;
2386	int rc = 0, i, j;
2387
2388	*sids = NULL;
2389	*nel = 0;
2390
2391	if (!ss_initialized)
2392		goto out;
2393
2394	read_lock(&policy_rwlock);
 
 
 
2395
2396	context_init(&usercon);
2397
2398	rc = -EINVAL;
2399	fromcon = sidtab_search(&sidtab, fromsid);
2400	if (!fromcon)
2401		goto out_unlock;
2402
2403	rc = -EINVAL;
2404	user = hashtab_search(policydb.p_users.table, username);
2405	if (!user)
2406		goto out_unlock;
2407
2408	usercon.user = user->value;
2409
2410	rc = -ENOMEM;
2411	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2412	if (!mysids)
2413		goto out_unlock;
2414
2415	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2416		role = policydb.role_val_to_struct[i];
2417		usercon.role = i + 1;
2418		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2419			usercon.type = j + 1;
2420
2421			if (mls_setup_user_range(fromcon, user, &usercon))
 
2422				continue;
2423
2424			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2425			if (rc)
2426				goto out_unlock;
2427			if (mynel < maxnel) {
2428				mysids[mynel++] = sid;
2429			} else {
2430				rc = -ENOMEM;
2431				maxnel += SIDS_NEL;
2432				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2433				if (!mysids2)
2434					goto out_unlock;
2435				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2436				kfree(mysids);
2437				mysids = mysids2;
2438				mysids[mynel++] = sid;
2439			}
2440		}
2441	}
2442	rc = 0;
2443out_unlock:
2444	read_unlock(&policy_rwlock);
2445	if (rc || !mynel) {
2446		kfree(mysids);
2447		goto out;
2448	}
2449
2450	rc = -ENOMEM;
2451	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2452	if (!mysids2) {
2453		kfree(mysids);
2454		goto out;
2455	}
2456	for (i = 0, j = 0; i < mynel; i++) {
2457		struct av_decision dummy_avd;
2458		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2459					  SECCLASS_PROCESS, /* kernel value */
2460					  PROCESS__TRANSITION, AVC_STRICT,
2461					  &dummy_avd);
2462		if (!rc)
2463			mysids2[j++] = mysids[i];
2464		cond_resched();
2465	}
2466	rc = 0;
2467	kfree(mysids);
2468	*sids = mysids2;
2469	*nel = j;
2470out:
2471	return rc;
2472}
2473
2474/**
2475 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2476 * @fstype: filesystem type
2477 * @path: path from root of mount
2478 * @sclass: file security class
2479 * @sid: SID for path
2480 *
2481 * Obtain a SID to use for a file in a filesystem that
2482 * cannot support xattr or use a fixed labeling behavior like
2483 * transition SIDs or task SIDs.
2484 *
2485 * The caller must acquire the policy_rwlock before calling this function.
2486 */
2487static inline int __security_genfs_sid(const char *fstype,
 
2488				       char *path,
2489				       u16 orig_sclass,
2490				       u32 *sid)
2491{
 
 
2492	int len;
2493	u16 sclass;
2494	struct genfs *genfs;
2495	struct ocontext *c;
2496	int rc, cmp = 0;
2497
2498	while (path[0] == '/' && path[1] == '/')
2499		path++;
2500
2501	sclass = unmap_class(orig_sclass);
2502	*sid = SECINITSID_UNLABELED;
2503
2504	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2505		cmp = strcmp(fstype, genfs->fstype);
2506		if (cmp <= 0)
2507			break;
2508	}
2509
2510	rc = -ENOENT;
2511	if (!genfs || cmp)
2512		goto out;
2513
2514	for (c = genfs->head; c; c = c->next) {
2515		len = strlen(c->u.name);
2516		if ((!c->v.sclass || sclass == c->v.sclass) &&
2517		    (strncmp(c->u.name, path, len) == 0))
2518			break;
2519	}
2520
2521	rc = -ENOENT;
2522	if (!c)
2523		goto out;
2524
2525	if (!c->sid[0]) {
2526		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2527		if (rc)
2528			goto out;
2529	}
2530
2531	*sid = c->sid[0];
2532	rc = 0;
2533out:
2534	return rc;
2535}
2536
2537/**
2538 * security_genfs_sid - Obtain a SID for a file in a filesystem
2539 * @fstype: filesystem type
2540 * @path: path from root of mount
2541 * @sclass: file security class
2542 * @sid: SID for path
2543 *
2544 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2545 * it afterward.
2546 */
2547int security_genfs_sid(const char *fstype,
 
2548		       char *path,
2549		       u16 orig_sclass,
2550		       u32 *sid)
2551{
2552	int retval;
2553
2554	read_lock(&policy_rwlock);
2555	retval = __security_genfs_sid(fstype, path, orig_sclass, sid);
2556	read_unlock(&policy_rwlock);
2557	return retval;
2558}
2559
2560/**
2561 * security_fs_use - Determine how to handle labeling for a filesystem.
2562 * @sb: superblock in question
2563 */
2564int security_fs_use(struct super_block *sb)
2565{
 
 
2566	int rc = 0;
2567	struct ocontext *c;
2568	struct superblock_security_struct *sbsec = sb->s_security;
2569	const char *fstype = sb->s_type->name;
2570
2571	read_lock(&policy_rwlock);
 
 
 
2572
2573	c = policydb.ocontexts[OCON_FSUSE];
2574	while (c) {
2575		if (strcmp(fstype, c->u.name) == 0)
2576			break;
2577		c = c->next;
2578	}
2579
2580	if (c) {
2581		sbsec->behavior = c->v.behavior;
2582		if (!c->sid[0]) {
2583			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2584						   &c->sid[0]);
2585			if (rc)
2586				goto out;
2587		}
2588		sbsec->sid = c->sid[0];
2589	} else {
2590		rc = __security_genfs_sid(fstype, "/", SECCLASS_DIR,
2591					  &sbsec->sid);
2592		if (rc) {
2593			sbsec->behavior = SECURITY_FS_USE_NONE;
2594			rc = 0;
2595		} else {
2596			sbsec->behavior = SECURITY_FS_USE_GENFS;
2597		}
2598	}
2599
2600out:
2601	read_unlock(&policy_rwlock);
2602	return rc;
2603}
2604
2605int security_get_bools(int *len, char ***names, int **values)
 
2606{
 
2607	int i, rc;
2608
2609	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2610	*names = NULL;
2611	*values = NULL;
2612
2613	rc = 0;
2614	*len = policydb.p_bools.nprim;
2615	if (!*len)
2616		goto out;
2617
2618	rc = -ENOMEM;
2619	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2620	if (!*names)
2621		goto err;
2622
2623	rc = -ENOMEM;
2624	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2625	if (!*values)
2626		goto err;
2627
2628	for (i = 0; i < *len; i++) {
2629		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2630
2631		rc = -ENOMEM;
2632		(*names)[i] = kstrdup(sym_name(&policydb, SYM_BOOLS, i), GFP_ATOMIC);
 
2633		if (!(*names)[i])
2634			goto err;
2635	}
2636	rc = 0;
2637out:
2638	read_unlock(&policy_rwlock);
2639	return rc;
2640err:
2641	if (*names) {
2642		for (i = 0; i < *len; i++)
2643			kfree((*names)[i]);
2644	}
2645	kfree(*values);
2646	goto out;
2647}
2648
2649
2650int security_set_bools(int len, int *values)
2651{
 
2652	int i, rc;
2653	int lenp, seqno = 0;
2654	struct cond_node *cur;
2655
2656	write_lock_irq(&policy_rwlock);
 
 
2657
2658	rc = -EFAULT;
2659	lenp = policydb.p_bools.nprim;
2660	if (len != lenp)
2661		goto out;
2662
2663	for (i = 0; i < len; i++) {
2664		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2665			audit_log(current->audit_context, GFP_ATOMIC,
2666				AUDIT_MAC_CONFIG_CHANGE,
2667				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2668				sym_name(&policydb, SYM_BOOLS, i),
2669				!!values[i],
2670				policydb.bool_val_to_struct[i]->state,
2671				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2672				audit_get_sessionid(current));
2673		}
2674		if (values[i])
2675			policydb.bool_val_to_struct[i]->state = 1;
2676		else
2677			policydb.bool_val_to_struct[i]->state = 0;
2678	}
2679
2680	for (cur = policydb.cond_list; cur; cur = cur->next) {
2681		rc = evaluate_cond_node(&policydb, cur);
2682		if (rc)
2683			goto out;
2684	}
2685
2686	seqno = ++latest_granting;
2687	rc = 0;
2688out:
2689	write_unlock_irq(&policy_rwlock);
2690	if (!rc) {
2691		avc_ss_reset(seqno);
2692		selnl_notify_policyload(seqno);
2693		selinux_status_update_policyload(seqno);
2694		selinux_xfrm_notify_policyload();
2695	}
2696	return rc;
2697}
2698
2699int security_get_bool_value(int bool)
 
2700{
 
2701	int rc;
2702	int len;
2703
2704	read_lock(&policy_rwlock);
 
 
2705
2706	rc = -EFAULT;
2707	len = policydb.p_bools.nprim;
2708	if (bool >= len)
2709		goto out;
2710
2711	rc = policydb.bool_val_to_struct[bool]->state;
2712out:
2713	read_unlock(&policy_rwlock);
2714	return rc;
2715}
2716
2717static int security_preserve_bools(struct policydb *p)
 
2718{
2719	int rc, nbools = 0, *bvalues = NULL, i;
2720	char **bnames = NULL;
2721	struct cond_bool_datum *booldatum;
2722	struct cond_node *cur;
2723
2724	rc = security_get_bools(&nbools, &bnames, &bvalues);
2725	if (rc)
2726		goto out;
2727	for (i = 0; i < nbools; i++) {
2728		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2729		if (booldatum)
2730			booldatum->state = bvalues[i];
2731	}
2732	for (cur = p->cond_list; cur; cur = cur->next) {
2733		rc = evaluate_cond_node(p, cur);
2734		if (rc)
2735			goto out;
2736	}
2737
2738out:
2739	if (bnames) {
2740		for (i = 0; i < nbools; i++)
2741			kfree(bnames[i]);
2742	}
2743	kfree(bnames);
2744	kfree(bvalues);
2745	return rc;
2746}
2747
2748/*
2749 * security_sid_mls_copy() - computes a new sid based on the given
2750 * sid and the mls portion of mls_sid.
2751 */
2752int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2753{
 
 
2754	struct context *context1;
2755	struct context *context2;
2756	struct context newcon;
2757	char *s;
2758	u32 len;
2759	int rc;
2760
2761	rc = 0;
2762	if (!ss_initialized || !policydb.mls_enabled) {
2763		*new_sid = sid;
2764		goto out;
2765	}
2766
2767	context_init(&newcon);
2768
2769	read_lock(&policy_rwlock);
2770
2771	rc = -EINVAL;
2772	context1 = sidtab_search(&sidtab, sid);
2773	if (!context1) {
2774		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2775			__func__, sid);
2776		goto out_unlock;
2777	}
2778
2779	rc = -EINVAL;
2780	context2 = sidtab_search(&sidtab, mls_sid);
2781	if (!context2) {
2782		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2783			__func__, mls_sid);
2784		goto out_unlock;
2785	}
2786
2787	newcon.user = context1->user;
2788	newcon.role = context1->role;
2789	newcon.type = context1->type;
2790	rc = mls_context_cpy(&newcon, context2);
2791	if (rc)
2792		goto out_unlock;
2793
2794	/* Check the validity of the new context. */
2795	if (!policydb_context_isvalid(&policydb, &newcon)) {
2796		rc = convert_context_handle_invalid_context(&newcon);
2797		if (rc) {
2798			if (!context_struct_to_string(&newcon, &s, &len)) {
2799				audit_log(current->audit_context,
2800					  GFP_ATOMIC, AUDIT_SELINUX_ERR,
2801					  "op=security_sid_mls_copy "
2802					  "invalid_context=%s", s);
 
 
 
 
 
 
 
2803				kfree(s);
2804			}
2805			goto out_unlock;
2806		}
2807	}
2808
2809	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2810out_unlock:
2811	read_unlock(&policy_rwlock);
2812	context_destroy(&newcon);
2813out:
2814	return rc;
2815}
2816
2817/**
2818 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2819 * @nlbl_sid: NetLabel SID
2820 * @nlbl_type: NetLabel labeling protocol type
2821 * @xfrm_sid: XFRM SID
2822 *
2823 * Description:
2824 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2825 * resolved into a single SID it is returned via @peer_sid and the function
2826 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2827 * returns a negative value.  A table summarizing the behavior is below:
2828 *
2829 *                                 | function return |      @sid
2830 *   ------------------------------+-----------------+-----------------
2831 *   no peer labels                |        0        |    SECSID_NULL
2832 *   single peer label             |        0        |    <peer_label>
2833 *   multiple, consistent labels   |        0        |    <peer_label>
2834 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2835 *
2836 */
2837int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2838				 u32 xfrm_sid,
2839				 u32 *peer_sid)
2840{
 
 
2841	int rc;
2842	struct context *nlbl_ctx;
2843	struct context *xfrm_ctx;
2844
2845	*peer_sid = SECSID_NULL;
2846
2847	/* handle the common (which also happens to be the set of easy) cases
2848	 * right away, these two if statements catch everything involving a
2849	 * single or absent peer SID/label */
2850	if (xfrm_sid == SECSID_NULL) {
2851		*peer_sid = nlbl_sid;
2852		return 0;
2853	}
2854	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2855	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2856	 * is present */
2857	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2858		*peer_sid = xfrm_sid;
2859		return 0;
2860	}
2861
2862	/* we don't need to check ss_initialized here since the only way both
 
2863	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2864	 * security server was initialized and ss_initialized was true */
2865	if (!policydb.mls_enabled)
 
2866		return 0;
2867
2868	read_lock(&policy_rwlock);
2869
2870	rc = -EINVAL;
2871	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2872	if (!nlbl_ctx) {
2873		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2874		       __func__, nlbl_sid);
2875		goto out;
2876	}
2877	rc = -EINVAL;
2878	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2879	if (!xfrm_ctx) {
2880		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2881		       __func__, xfrm_sid);
2882		goto out;
2883	}
2884	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2885	if (rc)
2886		goto out;
2887
2888	/* at present NetLabel SIDs/labels really only carry MLS
2889	 * information so if the MLS portion of the NetLabel SID
2890	 * matches the MLS portion of the labeled XFRM SID/label
2891	 * then pass along the XFRM SID as it is the most
2892	 * expressive */
2893	*peer_sid = xfrm_sid;
2894out:
2895	read_unlock(&policy_rwlock);
2896	return rc;
2897}
2898
2899static int get_classes_callback(void *k, void *d, void *args)
2900{
2901	struct class_datum *datum = d;
2902	char *name = k, **classes = args;
2903	int value = datum->value - 1;
2904
2905	classes[value] = kstrdup(name, GFP_ATOMIC);
2906	if (!classes[value])
2907		return -ENOMEM;
2908
2909	return 0;
2910}
2911
2912int security_get_classes(char ***classes, int *nclasses)
 
2913{
 
2914	int rc;
2915
2916	read_lock(&policy_rwlock);
 
 
 
 
 
 
2917
2918	rc = -ENOMEM;
2919	*nclasses = policydb.p_classes.nprim;
2920	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2921	if (!*classes)
2922		goto out;
2923
2924	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2925			*classes);
2926	if (rc) {
2927		int i;
2928		for (i = 0; i < *nclasses; i++)
2929			kfree((*classes)[i]);
2930		kfree(*classes);
2931	}
2932
2933out:
2934	read_unlock(&policy_rwlock);
2935	return rc;
2936}
2937
2938static int get_permissions_callback(void *k, void *d, void *args)
2939{
2940	struct perm_datum *datum = d;
2941	char *name = k, **perms = args;
2942	int value = datum->value - 1;
2943
2944	perms[value] = kstrdup(name, GFP_ATOMIC);
2945	if (!perms[value])
2946		return -ENOMEM;
2947
2948	return 0;
2949}
2950
2951int security_get_permissions(char *class, char ***perms, int *nperms)
 
2952{
 
2953	int rc, i;
2954	struct class_datum *match;
2955
2956	read_lock(&policy_rwlock);
2957
2958	rc = -EINVAL;
2959	match = hashtab_search(policydb.p_classes.table, class);
2960	if (!match) {
2961		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2962			__func__, class);
2963		goto out;
2964	}
2965
2966	rc = -ENOMEM;
2967	*nperms = match->permissions.nprim;
2968	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2969	if (!*perms)
2970		goto out;
2971
2972	if (match->comdatum) {
2973		rc = hashtab_map(match->comdatum->permissions.table,
2974				get_permissions_callback, *perms);
2975		if (rc)
2976			goto err;
2977	}
2978
2979	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2980			*perms);
2981	if (rc)
2982		goto err;
2983
2984out:
2985	read_unlock(&policy_rwlock);
2986	return rc;
2987
2988err:
2989	read_unlock(&policy_rwlock);
2990	for (i = 0; i < *nperms; i++)
2991		kfree((*perms)[i]);
2992	kfree(*perms);
2993	return rc;
2994}
2995
2996int security_get_reject_unknown(void)
2997{
2998	return policydb.reject_unknown;
2999}
3000
3001int security_get_allow_unknown(void)
3002{
3003	return policydb.allow_unknown;
3004}
3005
3006/**
3007 * security_policycap_supported - Check for a specific policy capability
3008 * @req_cap: capability
3009 *
3010 * Description:
3011 * This function queries the currently loaded policy to see if it supports the
3012 * capability specified by @req_cap.  Returns true (1) if the capability is
3013 * supported, false (0) if it isn't supported.
3014 *
3015 */
3016int security_policycap_supported(unsigned int req_cap)
 
3017{
 
3018	int rc;
3019
3020	read_lock(&policy_rwlock);
3021	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
3022	read_unlock(&policy_rwlock);
3023
3024	return rc;
3025}
3026
3027struct selinux_audit_rule {
3028	u32 au_seqno;
3029	struct context au_ctxt;
3030};
3031
3032void selinux_audit_rule_free(void *vrule)
3033{
3034	struct selinux_audit_rule *rule = vrule;
3035
3036	if (rule) {
3037		context_destroy(&rule->au_ctxt);
3038		kfree(rule);
3039	}
3040}
3041
3042int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3043{
 
 
3044	struct selinux_audit_rule *tmprule;
3045	struct role_datum *roledatum;
3046	struct type_datum *typedatum;
3047	struct user_datum *userdatum;
3048	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3049	int rc = 0;
3050
3051	*rule = NULL;
3052
3053	if (!ss_initialized)
3054		return -EOPNOTSUPP;
3055
3056	switch (field) {
3057	case AUDIT_SUBJ_USER:
3058	case AUDIT_SUBJ_ROLE:
3059	case AUDIT_SUBJ_TYPE:
3060	case AUDIT_OBJ_USER:
3061	case AUDIT_OBJ_ROLE:
3062	case AUDIT_OBJ_TYPE:
3063		/* only 'equals' and 'not equals' fit user, role, and type */
3064		if (op != Audit_equal && op != Audit_not_equal)
3065			return -EINVAL;
3066		break;
3067	case AUDIT_SUBJ_SEN:
3068	case AUDIT_SUBJ_CLR:
3069	case AUDIT_OBJ_LEV_LOW:
3070	case AUDIT_OBJ_LEV_HIGH:
3071		/* we do not allow a range, indicated by the presence of '-' */
3072		if (strchr(rulestr, '-'))
3073			return -EINVAL;
3074		break;
3075	default:
3076		/* only the above fields are valid */
3077		return -EINVAL;
3078	}
3079
3080	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3081	if (!tmprule)
3082		return -ENOMEM;
3083
3084	context_init(&tmprule->au_ctxt);
3085
3086	read_lock(&policy_rwlock);
3087
3088	tmprule->au_seqno = latest_granting;
3089
3090	switch (field) {
3091	case AUDIT_SUBJ_USER:
3092	case AUDIT_OBJ_USER:
3093		rc = -EINVAL;
3094		userdatum = hashtab_search(policydb.p_users.table, rulestr);
3095		if (!userdatum)
3096			goto out;
3097		tmprule->au_ctxt.user = userdatum->value;
3098		break;
3099	case AUDIT_SUBJ_ROLE:
3100	case AUDIT_OBJ_ROLE:
3101		rc = -EINVAL;
3102		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
3103		if (!roledatum)
3104			goto out;
3105		tmprule->au_ctxt.role = roledatum->value;
3106		break;
3107	case AUDIT_SUBJ_TYPE:
3108	case AUDIT_OBJ_TYPE:
3109		rc = -EINVAL;
3110		typedatum = hashtab_search(policydb.p_types.table, rulestr);
3111		if (!typedatum)
3112			goto out;
3113		tmprule->au_ctxt.type = typedatum->value;
3114		break;
3115	case AUDIT_SUBJ_SEN:
3116	case AUDIT_SUBJ_CLR:
3117	case AUDIT_OBJ_LEV_LOW:
3118	case AUDIT_OBJ_LEV_HIGH:
3119		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
3120		if (rc)
3121			goto out;
3122		break;
3123	}
3124	rc = 0;
3125out:
3126	read_unlock(&policy_rwlock);
3127
3128	if (rc) {
3129		selinux_audit_rule_free(tmprule);
3130		tmprule = NULL;
3131	}
3132
3133	*rule = tmprule;
3134
3135	return rc;
3136}
3137
3138/* Check to see if the rule contains any selinux fields */
3139int selinux_audit_rule_known(struct audit_krule *rule)
3140{
3141	int i;
3142
3143	for (i = 0; i < rule->field_count; i++) {
3144		struct audit_field *f = &rule->fields[i];
3145		switch (f->type) {
3146		case AUDIT_SUBJ_USER:
3147		case AUDIT_SUBJ_ROLE:
3148		case AUDIT_SUBJ_TYPE:
3149		case AUDIT_SUBJ_SEN:
3150		case AUDIT_SUBJ_CLR:
3151		case AUDIT_OBJ_USER:
3152		case AUDIT_OBJ_ROLE:
3153		case AUDIT_OBJ_TYPE:
3154		case AUDIT_OBJ_LEV_LOW:
3155		case AUDIT_OBJ_LEV_HIGH:
3156			return 1;
3157		}
3158	}
3159
3160	return 0;
3161}
3162
3163int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
3164			     struct audit_context *actx)
3165{
 
3166	struct context *ctxt;
3167	struct mls_level *level;
3168	struct selinux_audit_rule *rule = vrule;
3169	int match = 0;
3170
3171	if (unlikely(!rule)) {
3172		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3173		return -ENOENT;
3174	}
3175
3176	read_lock(&policy_rwlock);
3177
3178	if (rule->au_seqno < latest_granting) {
3179		match = -ESTALE;
3180		goto out;
3181	}
3182
3183	ctxt = sidtab_search(&sidtab, sid);
3184	if (unlikely(!ctxt)) {
3185		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3186			  sid);
3187		match = -ENOENT;
3188		goto out;
3189	}
3190
3191	/* a field/op pair that is not caught here will simply fall through
3192	   without a match */
3193	switch (field) {
3194	case AUDIT_SUBJ_USER:
3195	case AUDIT_OBJ_USER:
3196		switch (op) {
3197		case Audit_equal:
3198			match = (ctxt->user == rule->au_ctxt.user);
3199			break;
3200		case Audit_not_equal:
3201			match = (ctxt->user != rule->au_ctxt.user);
3202			break;
3203		}
3204		break;
3205	case AUDIT_SUBJ_ROLE:
3206	case AUDIT_OBJ_ROLE:
3207		switch (op) {
3208		case Audit_equal:
3209			match = (ctxt->role == rule->au_ctxt.role);
3210			break;
3211		case Audit_not_equal:
3212			match = (ctxt->role != rule->au_ctxt.role);
3213			break;
3214		}
3215		break;
3216	case AUDIT_SUBJ_TYPE:
3217	case AUDIT_OBJ_TYPE:
3218		switch (op) {
3219		case Audit_equal:
3220			match = (ctxt->type == rule->au_ctxt.type);
3221			break;
3222		case Audit_not_equal:
3223			match = (ctxt->type != rule->au_ctxt.type);
3224			break;
3225		}
3226		break;
3227	case AUDIT_SUBJ_SEN:
3228	case AUDIT_SUBJ_CLR:
3229	case AUDIT_OBJ_LEV_LOW:
3230	case AUDIT_OBJ_LEV_HIGH:
3231		level = ((field == AUDIT_SUBJ_SEN ||
3232			  field == AUDIT_OBJ_LEV_LOW) ?
3233			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3234		switch (op) {
3235		case Audit_equal:
3236			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3237					     level);
3238			break;
3239		case Audit_not_equal:
3240			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3241					      level);
3242			break;
3243		case Audit_lt:
3244			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3245					       level) &&
3246				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3247					       level));
3248			break;
3249		case Audit_le:
3250			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3251					      level);
3252			break;
3253		case Audit_gt:
3254			match = (mls_level_dom(level,
3255					      &rule->au_ctxt.range.level[0]) &&
3256				 !mls_level_eq(level,
3257					       &rule->au_ctxt.range.level[0]));
3258			break;
3259		case Audit_ge:
3260			match = mls_level_dom(level,
3261					      &rule->au_ctxt.range.level[0]);
3262			break;
3263		}
3264	}
3265
3266out:
3267	read_unlock(&policy_rwlock);
3268	return match;
3269}
3270
3271static int (*aurule_callback)(void) = audit_update_lsm_rules;
3272
3273static int aurule_avc_callback(u32 event)
3274{
3275	int err = 0;
3276
3277	if (event == AVC_CALLBACK_RESET && aurule_callback)
3278		err = aurule_callback();
3279	return err;
3280}
3281
3282static int __init aurule_init(void)
3283{
3284	int err;
3285
3286	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3287	if (err)
3288		panic("avc_add_callback() failed, error %d\n", err);
3289
3290	return err;
3291}
3292__initcall(aurule_init);
3293
3294#ifdef CONFIG_NETLABEL
3295/**
3296 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3297 * @secattr: the NetLabel packet security attributes
3298 * @sid: the SELinux SID
3299 *
3300 * Description:
3301 * Attempt to cache the context in @ctx, which was derived from the packet in
3302 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3303 * already been initialized.
3304 *
3305 */
3306static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3307				      u32 sid)
3308{
3309	u32 *sid_cache;
3310
3311	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3312	if (sid_cache == NULL)
3313		return;
3314	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3315	if (secattr->cache == NULL) {
3316		kfree(sid_cache);
3317		return;
3318	}
3319
3320	*sid_cache = sid;
3321	secattr->cache->free = kfree;
3322	secattr->cache->data = sid_cache;
3323	secattr->flags |= NETLBL_SECATTR_CACHE;
3324}
3325
3326/**
3327 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3328 * @secattr: the NetLabel packet security attributes
3329 * @sid: the SELinux SID
3330 *
3331 * Description:
3332 * Convert the given NetLabel security attributes in @secattr into a
3333 * SELinux SID.  If the @secattr field does not contain a full SELinux
3334 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3335 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3336 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3337 * conversion for future lookups.  Returns zero on success, negative values on
3338 * failure.
3339 *
3340 */
3341int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3342				   u32 *sid)
3343{
 
 
3344	int rc;
3345	struct context *ctx;
3346	struct context ctx_new;
3347
3348	if (!ss_initialized) {
3349		*sid = SECSID_NULL;
3350		return 0;
3351	}
3352
3353	read_lock(&policy_rwlock);
3354
3355	if (secattr->flags & NETLBL_SECATTR_CACHE)
3356		*sid = *(u32 *)secattr->cache->data;
3357	else if (secattr->flags & NETLBL_SECATTR_SECID)
3358		*sid = secattr->attr.secid;
3359	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3360		rc = -EIDRM;
3361		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3362		if (ctx == NULL)
3363			goto out;
3364
3365		context_init(&ctx_new);
3366		ctx_new.user = ctx->user;
3367		ctx_new.role = ctx->role;
3368		ctx_new.type = ctx->type;
3369		mls_import_netlbl_lvl(&ctx_new, secattr);
3370		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3371			rc = mls_import_netlbl_cat(&ctx_new, secattr);
3372			if (rc)
3373				goto out;
3374		}
3375		rc = -EIDRM;
3376		if (!mls_context_isvalid(&policydb, &ctx_new))
3377			goto out_free;
3378
3379		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3380		if (rc)
3381			goto out_free;
3382
3383		security_netlbl_cache_add(secattr, *sid);
3384
3385		ebitmap_destroy(&ctx_new.range.level[0].cat);
3386	} else
3387		*sid = SECSID_NULL;
3388
3389	read_unlock(&policy_rwlock);
3390	return 0;
3391out_free:
3392	ebitmap_destroy(&ctx_new.range.level[0].cat);
3393out:
3394	read_unlock(&policy_rwlock);
3395	return rc;
3396}
3397
3398/**
3399 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3400 * @sid: the SELinux SID
3401 * @secattr: the NetLabel packet security attributes
3402 *
3403 * Description:
3404 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3405 * Returns zero on success, negative values on failure.
3406 *
3407 */
3408int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3409{
 
3410	int rc;
3411	struct context *ctx;
3412
3413	if (!ss_initialized)
3414		return 0;
3415
3416	read_lock(&policy_rwlock);
3417
3418	rc = -ENOENT;
3419	ctx = sidtab_search(&sidtab, sid);
3420	if (ctx == NULL)
3421		goto out;
3422
3423	rc = -ENOMEM;
3424	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3425				  GFP_ATOMIC);
3426	if (secattr->domain == NULL)
3427		goto out;
3428
3429	secattr->attr.secid = sid;
3430	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3431	mls_export_netlbl_lvl(ctx, secattr);
3432	rc = mls_export_netlbl_cat(ctx, secattr);
3433out:
3434	read_unlock(&policy_rwlock);
3435	return rc;
3436}
3437#endif /* CONFIG_NETLABEL */
3438
3439/**
3440 * security_read_policy - read the policy.
3441 * @data: binary policy data
3442 * @len: length of data in bytes
3443 *
3444 */
3445int security_read_policy(void **data, size_t *len)
 
3446{
 
3447	int rc;
3448	struct policy_file fp;
3449
3450	if (!ss_initialized)
3451		return -EINVAL;
3452
3453	*len = security_policydb_len();
3454
3455	*data = vmalloc_user(*len);
3456	if (!*data)
3457		return -ENOMEM;
3458
3459	fp.data = *data;
3460	fp.len = *len;
3461
3462	read_lock(&policy_rwlock);
3463	rc = policydb_write(&policydb, &fp);
3464	read_unlock(&policy_rwlock);
3465
3466	if (rc)
3467		return rc;
3468
3469	*len = (unsigned long)fp.data - (unsigned long)*data;
3470	return 0;
3471
3472}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
  49#include <linux/mutex.h>
 
 
  50#include <linux/vmalloc.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68
  69/* Policy capability names */
  70const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  71	"network_peer_controls",
  72	"open_perms",
  73	"extended_socket_class",
  74	"always_check_network",
  75	"cgroup_seclabel",
  76	"nnp_nosuid_transition"
  77};
  78
  79static struct selinux_ss selinux_ss;
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	mutex_init(&selinux_ss.status_lock);
  85	*ss = &selinux_ss;
  86}
  87
  88/* Forward declaration. */
  89static int context_struct_to_string(struct policydb *policydb,
  90				    struct context *context,
  91				    char **scontext,
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct policydb *policydb,
  95				      struct context *scontext,
  96				      struct context *tcontext,
  97				      u16 tclass,
  98				      struct av_decision *avd,
  99				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
 100
 101static int selinux_set_mapping(struct policydb *pol,
 102			       struct security_class_mapping *map,
 103			       struct selinux_map *out_map)
 
 104{
 
 
 105	u16 i, j;
 106	unsigned k;
 107	bool print_unknown_handle = false;
 108
 109	/* Find number of classes in the input mapping */
 110	if (!map)
 111		return -EINVAL;
 112	i = 0;
 113	while (map[i].name)
 114		i++;
 115
 116	/* Allocate space for the class records, plus one for class zero */
 117	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 118	if (!out_map->mapping)
 119		return -ENOMEM;
 120
 121	/* Store the raw class and permission values */
 122	j = 0;
 123	while (map[j].name) {
 124		struct security_class_mapping *p_in = map + (j++);
 125		struct selinux_mapping *p_out = out_map->mapping + j;
 126
 127		/* An empty class string skips ahead */
 128		if (!strcmp(p_in->name, "")) {
 129			p_out->num_perms = 0;
 130			continue;
 131		}
 132
 133		p_out->value = string_to_security_class(pol, p_in->name);
 134		if (!p_out->value) {
 135			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 136			       p_in->name);
 137			if (pol->reject_unknown)
 138				goto err;
 139			p_out->num_perms = 0;
 140			print_unknown_handle = true;
 141			continue;
 142		}
 143
 144		k = 0;
 145		while (p_in->perms[k]) {
 146			/* An empty permission string skips ahead */
 147			if (!*p_in->perms[k]) {
 148				k++;
 149				continue;
 150			}
 151			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 152							    p_in->perms[k]);
 153			if (!p_out->perms[k]) {
 154				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 155				       p_in->perms[k], p_in->name);
 156				if (pol->reject_unknown)
 157					goto err;
 158				print_unknown_handle = true;
 159			}
 160
 161			k++;
 162		}
 163		p_out->num_perms = k;
 164	}
 165
 166	if (print_unknown_handle)
 167		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 168		       pol->allow_unknown ? "allowed" : "denied");
 169
 170	out_map->size = i;
 
 171	return 0;
 172err:
 173	kfree(out_map->mapping);
 174	out_map->mapping = NULL;
 175	return -EINVAL;
 176}
 177
 178/*
 179 * Get real, policy values from mapped values
 180 */
 181
 182static u16 unmap_class(struct selinux_map *map, u16 tclass)
 183{
 184	if (tclass < map->size)
 185		return map->mapping[tclass].value;
 186
 187	return tclass;
 188}
 189
 190/*
 191 * Get kernel value for class from its policy value
 192 */
 193static u16 map_class(struct selinux_map *map, u16 pol_value)
 194{
 195	u16 i;
 196
 197	for (i = 1; i < map->size; i++) {
 198		if (map->mapping[i].value == pol_value)
 199			return i;
 200	}
 201
 202	return SECCLASS_NULL;
 203}
 204
 205static void map_decision(struct selinux_map *map,
 206			 u16 tclass, struct av_decision *avd,
 207			 int allow_unknown)
 208{
 209	if (tclass < map->size) {
 210		struct selinux_mapping *mapping = &map->mapping[tclass];
 211		unsigned int i, n = mapping->num_perms;
 212		u32 result;
 213
 214		for (i = 0, result = 0; i < n; i++) {
 215			if (avd->allowed & mapping->perms[i])
 216				result |= 1<<i;
 217			if (allow_unknown && !mapping->perms[i])
 218				result |= 1<<i;
 219		}
 220		avd->allowed = result;
 221
 222		for (i = 0, result = 0; i < n; i++)
 223			if (avd->auditallow & mapping->perms[i])
 224				result |= 1<<i;
 225		avd->auditallow = result;
 226
 227		for (i = 0, result = 0; i < n; i++) {
 228			if (avd->auditdeny & mapping->perms[i])
 229				result |= 1<<i;
 230			if (!allow_unknown && !mapping->perms[i])
 231				result |= 1<<i;
 232		}
 233		/*
 234		 * In case the kernel has a bug and requests a permission
 235		 * between num_perms and the maximum permission number, we
 236		 * should audit that denial
 237		 */
 238		for (; i < (sizeof(u32)*8); i++)
 239			result |= 1<<i;
 240		avd->auditdeny = result;
 241	}
 242}
 243
 244int security_mls_enabled(struct selinux_state *state)
 245{
 246	struct policydb *p = &state->ss->policydb;
 247
 248	return p->mls_enabled;
 249}
 250
 251/*
 252 * Return the boolean value of a constraint expression
 253 * when it is applied to the specified source and target
 254 * security contexts.
 255 *
 256 * xcontext is a special beast...  It is used by the validatetrans rules
 257 * only.  For these rules, scontext is the context before the transition,
 258 * tcontext is the context after the transition, and xcontext is the context
 259 * of the process performing the transition.  All other callers of
 260 * constraint_expr_eval should pass in NULL for xcontext.
 261 */
 262static int constraint_expr_eval(struct policydb *policydb,
 263				struct context *scontext,
 264				struct context *tcontext,
 265				struct context *xcontext,
 266				struct constraint_expr *cexpr)
 267{
 268	u32 val1, val2;
 269	struct context *c;
 270	struct role_datum *r1, *r2;
 271	struct mls_level *l1, *l2;
 272	struct constraint_expr *e;
 273	int s[CEXPR_MAXDEPTH];
 274	int sp = -1;
 275
 276	for (e = cexpr; e; e = e->next) {
 277		switch (e->expr_type) {
 278		case CEXPR_NOT:
 279			BUG_ON(sp < 0);
 280			s[sp] = !s[sp];
 281			break;
 282		case CEXPR_AND:
 283			BUG_ON(sp < 1);
 284			sp--;
 285			s[sp] &= s[sp + 1];
 286			break;
 287		case CEXPR_OR:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] |= s[sp + 1];
 291			break;
 292		case CEXPR_ATTR:
 293			if (sp == (CEXPR_MAXDEPTH - 1))
 294				return 0;
 295			switch (e->attr) {
 296			case CEXPR_USER:
 297				val1 = scontext->user;
 298				val2 = tcontext->user;
 299				break;
 300			case CEXPR_TYPE:
 301				val1 = scontext->type;
 302				val2 = tcontext->type;
 303				break;
 304			case CEXPR_ROLE:
 305				val1 = scontext->role;
 306				val2 = tcontext->role;
 307				r1 = policydb->role_val_to_struct[val1 - 1];
 308				r2 = policydb->role_val_to_struct[val2 - 1];
 309				switch (e->op) {
 310				case CEXPR_DOM:
 311					s[++sp] = ebitmap_get_bit(&r1->dominates,
 312								  val2 - 1);
 313					continue;
 314				case CEXPR_DOMBY:
 315					s[++sp] = ebitmap_get_bit(&r2->dominates,
 316								  val1 - 1);
 317					continue;
 318				case CEXPR_INCOMP:
 319					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 320								    val2 - 1) &&
 321						   !ebitmap_get_bit(&r2->dominates,
 322								    val1 - 1));
 323					continue;
 324				default:
 325					break;
 326				}
 327				break;
 328			case CEXPR_L1L2:
 329				l1 = &(scontext->range.level[0]);
 330				l2 = &(tcontext->range.level[0]);
 331				goto mls_ops;
 332			case CEXPR_L1H2:
 333				l1 = &(scontext->range.level[0]);
 334				l2 = &(tcontext->range.level[1]);
 335				goto mls_ops;
 336			case CEXPR_H1L2:
 337				l1 = &(scontext->range.level[1]);
 338				l2 = &(tcontext->range.level[0]);
 339				goto mls_ops;
 340			case CEXPR_H1H2:
 341				l1 = &(scontext->range.level[1]);
 342				l2 = &(tcontext->range.level[1]);
 343				goto mls_ops;
 344			case CEXPR_L1H1:
 345				l1 = &(scontext->range.level[0]);
 346				l2 = &(scontext->range.level[1]);
 347				goto mls_ops;
 348			case CEXPR_L2H2:
 349				l1 = &(tcontext->range.level[0]);
 350				l2 = &(tcontext->range.level[1]);
 351				goto mls_ops;
 352mls_ops:
 353			switch (e->op) {
 354			case CEXPR_EQ:
 355				s[++sp] = mls_level_eq(l1, l2);
 356				continue;
 357			case CEXPR_NEQ:
 358				s[++sp] = !mls_level_eq(l1, l2);
 359				continue;
 360			case CEXPR_DOM:
 361				s[++sp] = mls_level_dom(l1, l2);
 362				continue;
 363			case CEXPR_DOMBY:
 364				s[++sp] = mls_level_dom(l2, l1);
 365				continue;
 366			case CEXPR_INCOMP:
 367				s[++sp] = mls_level_incomp(l2, l1);
 368				continue;
 369			default:
 370				BUG();
 371				return 0;
 372			}
 373			break;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378
 379			switch (e->op) {
 380			case CEXPR_EQ:
 381				s[++sp] = (val1 == val2);
 382				break;
 383			case CEXPR_NEQ:
 384				s[++sp] = (val1 != val2);
 385				break;
 386			default:
 387				BUG();
 388				return 0;
 389			}
 390			break;
 391		case CEXPR_NAMES:
 392			if (sp == (CEXPR_MAXDEPTH-1))
 393				return 0;
 394			c = scontext;
 395			if (e->attr & CEXPR_TARGET)
 396				c = tcontext;
 397			else if (e->attr & CEXPR_XTARGET) {
 398				c = xcontext;
 399				if (!c) {
 400					BUG();
 401					return 0;
 402				}
 403			}
 404			if (e->attr & CEXPR_USER)
 405				val1 = c->user;
 406			else if (e->attr & CEXPR_ROLE)
 407				val1 = c->role;
 408			else if (e->attr & CEXPR_TYPE)
 409				val1 = c->type;
 410			else {
 411				BUG();
 412				return 0;
 413			}
 414
 415			switch (e->op) {
 416			case CEXPR_EQ:
 417				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 418				break;
 419			case CEXPR_NEQ:
 420				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 421				break;
 422			default:
 423				BUG();
 424				return 0;
 425			}
 426			break;
 427		default:
 428			BUG();
 429			return 0;
 430		}
 431	}
 432
 433	BUG_ON(sp != 0);
 434	return s[0];
 435}
 436
 437/*
 438 * security_dump_masked_av - dumps masked permissions during
 439 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 440 */
 441static int dump_masked_av_helper(void *k, void *d, void *args)
 442{
 443	struct perm_datum *pdatum = d;
 444	char **permission_names = args;
 445
 446	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 447
 448	permission_names[pdatum->value - 1] = (char *)k;
 449
 450	return 0;
 451}
 452
 453static void security_dump_masked_av(struct policydb *policydb,
 454				    struct context *scontext,
 455				    struct context *tcontext,
 456				    u16 tclass,
 457				    u32 permissions,
 458				    const char *reason)
 459{
 460	struct common_datum *common_dat;
 461	struct class_datum *tclass_dat;
 462	struct audit_buffer *ab;
 463	char *tclass_name;
 464	char *scontext_name = NULL;
 465	char *tcontext_name = NULL;
 466	char *permission_names[32];
 467	int index;
 468	u32 length;
 469	bool need_comma = false;
 470
 471	if (!permissions)
 472		return;
 473
 474	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 475	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 476	common_dat = tclass_dat->comdatum;
 477
 478	/* init permission_names */
 479	if (common_dat &&
 480	    hashtab_map(common_dat->permissions.table,
 481			dump_masked_av_helper, permission_names) < 0)
 482		goto out;
 483
 484	if (hashtab_map(tclass_dat->permissions.table,
 485			dump_masked_av_helper, permission_names) < 0)
 486		goto out;
 487
 488	/* get scontext/tcontext in text form */
 489	if (context_struct_to_string(policydb, scontext,
 490				     &scontext_name, &length) < 0)
 491		goto out;
 492
 493	if (context_struct_to_string(policydb, tcontext,
 494				     &tcontext_name, &length) < 0)
 495		goto out;
 496
 497	/* audit a message */
 498	ab = audit_log_start(audit_context(),
 499			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 500	if (!ab)
 501		goto out;
 502
 503	audit_log_format(ab, "op=security_compute_av reason=%s "
 504			 "scontext=%s tcontext=%s tclass=%s perms=",
 505			 reason, scontext_name, tcontext_name, tclass_name);
 506
 507	for (index = 0; index < 32; index++) {
 508		u32 mask = (1 << index);
 509
 510		if ((mask & permissions) == 0)
 511			continue;
 512
 513		audit_log_format(ab, "%s%s",
 514				 need_comma ? "," : "",
 515				 permission_names[index]
 516				 ? permission_names[index] : "????");
 517		need_comma = true;
 518	}
 519	audit_log_end(ab);
 520out:
 521	/* release scontext/tcontext */
 522	kfree(tcontext_name);
 523	kfree(scontext_name);
 524
 525	return;
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 
 558
 559	if (target->bounds) {
 
 
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 
 
 
 
 
 
 
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 605	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 606		xperms->len = 1;
 607}
 608
 609/*
 610 * Compute access vectors and extended permissions based on a context
 611 * structure pair for the permissions in a particular class.
 612 */
 613static void context_struct_compute_av(struct policydb *policydb,
 614				      struct context *scontext,
 615				      struct context *tcontext,
 616				      u16 tclass,
 617				      struct av_decision *avd,
 618				      struct extended_perms *xperms)
 619{
 620	struct constraint_node *constraint;
 621	struct role_allow *ra;
 622	struct avtab_key avkey;
 623	struct avtab_node *node;
 624	struct class_datum *tclass_datum;
 625	struct ebitmap *sattr, *tattr;
 626	struct ebitmap_node *snode, *tnode;
 627	unsigned int i, j;
 628
 629	avd->allowed = 0;
 630	avd->auditallow = 0;
 631	avd->auditdeny = 0xffffffff;
 632	if (xperms) {
 633		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 634		xperms->len = 0;
 635	}
 636
 637	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 638		if (printk_ratelimit())
 639			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 640		return;
 641	}
 642
 643	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 644
 645	/*
 646	 * If a specific type enforcement rule was defined for
 647	 * this permission check, then use it.
 648	 */
 649	avkey.target_class = tclass;
 650	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 651	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 652	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 653	ebitmap_for_each_positive_bit(sattr, snode, i) {
 654		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 655			avkey.source_type = i + 1;
 656			avkey.target_type = j + 1;
 657			for (node = avtab_search_node(&policydb->te_avtab,
 658						      &avkey);
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.u.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.u.data;
 667				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 668					services_compute_xperms_drivers(xperms, node);
 669			}
 670
 671			/* Check conditional av table for additional permissions */
 672			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 673					avd, xperms);
 674
 675		}
 676	}
 677
 678	/*
 679	 * Remove any permissions prohibited by a constraint (this includes
 680	 * the MLS policy).
 681	 */
 682	constraint = tclass_datum->constraints;
 683	while (constraint) {
 684		if ((constraint->permissions & (avd->allowed)) &&
 685		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 686					  constraint->expr)) {
 687			avd->allowed &= ~(constraint->permissions);
 688		}
 689		constraint = constraint->next;
 690	}
 691
 692	/*
 693	 * If checking process transition permission and the
 694	 * role is changing, then check the (current_role, new_role)
 695	 * pair.
 696	 */
 697	if (tclass == policydb->process_class &&
 698	    (avd->allowed & policydb->process_trans_perms) &&
 699	    scontext->role != tcontext->role) {
 700		for (ra = policydb->role_allow; ra; ra = ra->next) {
 701			if (scontext->role == ra->role &&
 702			    tcontext->role == ra->new_role)
 703				break;
 704		}
 705		if (!ra)
 706			avd->allowed &= ~policydb->process_trans_perms;
 707	}
 708
 709	/*
 710	 * If the given source and target types have boundary
 711	 * constraint, lazy checks have to mask any violated
 712	 * permission and notice it to userspace via audit.
 713	 */
 714	type_attribute_bounds_av(policydb, scontext, tcontext,
 715				 tclass, avd);
 716}
 717
 718static int security_validtrans_handle_fail(struct selinux_state *state,
 719					   struct context *ocontext,
 720					   struct context *ncontext,
 721					   struct context *tcontext,
 722					   u16 tclass)
 723{
 724	struct policydb *p = &state->ss->policydb;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (context_struct_to_string(p, ocontext, &o, &olen))
 729		goto out;
 730	if (context_struct_to_string(p, ncontext, &n, &nlen))
 731		goto out;
 732	if (context_struct_to_string(p, tcontext, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct policydb *policydb;
 753	struct sidtab *sidtab;
 754	struct context *ocontext;
 755	struct context *ncontext;
 756	struct context *tcontext;
 757	struct class_datum *tclass_datum;
 758	struct constraint_node *constraint;
 759	u16 tclass;
 760	int rc = 0;
 761
 762
 763	if (!state->initialized)
 764		return 0;
 765
 766	read_lock(&state->ss->policy_rwlock);
 767
 768	policydb = &state->ss->policydb;
 769	sidtab = state->ss->sidtab;
 770
 771	if (!user)
 772		tclass = unmap_class(&state->ss->map, orig_tclass);
 773	else
 774		tclass = orig_tclass;
 775
 776	if (!tclass || tclass > policydb->p_classes.nprim) {
 777		rc = -EINVAL;
 778		goto out;
 779	}
 780	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 781
 782	ocontext = sidtab_search(sidtab, oldsid);
 783	if (!ocontext) {
 784		pr_err("SELinux: %s:  unrecognized SID %d\n",
 785			__func__, oldsid);
 786		rc = -EINVAL;
 787		goto out;
 788	}
 789
 790	ncontext = sidtab_search(sidtab, newsid);
 791	if (!ncontext) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, newsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	tcontext = sidtab_search(sidtab, tasksid);
 799	if (!tcontext) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, tasksid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	constraint = tclass_datum->validatetrans;
 807	while (constraint) {
 808		if (!constraint_expr_eval(policydb, ocontext, ncontext,
 809					  tcontext, constraint->expr)) {
 810			if (user)
 811				rc = -EPERM;
 812			else
 813				rc = security_validtrans_handle_fail(state,
 814								     ocontext,
 815								     ncontext,
 816								     tcontext,
 817								     tclass);
 818			goto out;
 819		}
 820		constraint = constraint->next;
 821	}
 822
 823out:
 824	read_unlock(&state->ss->policy_rwlock);
 825	return rc;
 826}
 827
 828int security_validate_transition_user(struct selinux_state *state,
 829				      u32 oldsid, u32 newsid, u32 tasksid,
 830				      u16 tclass)
 831{
 832	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 833					      tclass, true);
 834}
 835
 836int security_validate_transition(struct selinux_state *state,
 837				 u32 oldsid, u32 newsid, u32 tasksid,
 838				 u16 orig_tclass)
 839{
 840	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 841					      orig_tclass, false);
 842}
 843
 844/*
 845 * security_bounded_transition - check whether the given
 846 * transition is directed to bounded, or not.
 847 * It returns 0, if @newsid is bounded by @oldsid.
 848 * Otherwise, it returns error code.
 849 *
 850 * @oldsid : current security identifier
 851 * @newsid : destinated security identifier
 852 */
 853int security_bounded_transition(struct selinux_state *state,
 854				u32 old_sid, u32 new_sid)
 855{
 856	struct policydb *policydb;
 857	struct sidtab *sidtab;
 858	struct context *old_context, *new_context;
 859	struct type_datum *type;
 860	int index;
 861	int rc;
 862
 863	if (!state->initialized)
 864		return 0;
 865
 866	read_lock(&state->ss->policy_rwlock);
 867
 868	policydb = &state->ss->policydb;
 869	sidtab = state->ss->sidtab;
 870
 871	rc = -EINVAL;
 872	old_context = sidtab_search(sidtab, old_sid);
 873	if (!old_context) {
 874		pr_err("SELinux: %s: unrecognized SID %u\n",
 875		       __func__, old_sid);
 876		goto out;
 877	}
 878
 879	rc = -EINVAL;
 880	new_context = sidtab_search(sidtab, new_sid);
 881	if (!new_context) {
 882		pr_err("SELinux: %s: unrecognized SID %u\n",
 883		       __func__, new_sid);
 884		goto out;
 885	}
 886
 887	rc = 0;
 888	/* type/domain unchanged */
 889	if (old_context->type == new_context->type)
 890		goto out;
 891
 892	index = new_context->type;
 893	while (true) {
 894		type = policydb->type_val_to_struct[index - 1];
 
 895		BUG_ON(!type);
 896
 897		/* not bounded anymore */
 898		rc = -EPERM;
 899		if (!type->bounds)
 900			break;
 901
 902		/* @newsid is bounded by @oldsid */
 903		rc = 0;
 904		if (type->bounds == old_context->type)
 905			break;
 906
 907		index = type->bounds;
 908	}
 909
 910	if (rc) {
 911		char *old_name = NULL;
 912		char *new_name = NULL;
 913		u32 length;
 914
 915		if (!context_struct_to_string(policydb, old_context,
 916					      &old_name, &length) &&
 917		    !context_struct_to_string(policydb, new_context,
 918					      &new_name, &length)) {
 919			audit_log(audit_context(),
 920				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 921				  "op=security_bounded_transition "
 922				  "seresult=denied "
 923				  "oldcontext=%s newcontext=%s",
 924				  old_name, new_name);
 925		}
 926		kfree(new_name);
 927		kfree(old_name);
 928	}
 929out:
 930	read_unlock(&state->ss->policy_rwlock);
 931
 932	return rc;
 933}
 934
 935static void avd_init(struct selinux_state *state, struct av_decision *avd)
 936{
 937	avd->allowed = 0;
 938	avd->auditallow = 0;
 939	avd->auditdeny = 0xffffffff;
 940	avd->seqno = state->ss->latest_granting;
 941	avd->flags = 0;
 942}
 943
 944void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 945					struct avtab_node *node)
 946{
 947	unsigned int i;
 948
 949	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 950		if (xpermd->driver != node->datum.u.xperms->driver)
 951			return;
 952	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 953		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 954					xpermd->driver))
 955			return;
 956	} else {
 957		BUG();
 958	}
 959
 960	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 961		xpermd->used |= XPERMS_ALLOWED;
 962		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 963			memset(xpermd->allowed->p, 0xff,
 964					sizeof(xpermd->allowed->p));
 965		}
 966		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 967			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 968				xpermd->allowed->p[i] |=
 969					node->datum.u.xperms->perms.p[i];
 970		}
 971	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 972		xpermd->used |= XPERMS_AUDITALLOW;
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 974			memset(xpermd->auditallow->p, 0xff,
 975					sizeof(xpermd->auditallow->p));
 976		}
 977		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 978			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 979				xpermd->auditallow->p[i] |=
 980					node->datum.u.xperms->perms.p[i];
 981		}
 982	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 983		xpermd->used |= XPERMS_DONTAUDIT;
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 985			memset(xpermd->dontaudit->p, 0xff,
 986					sizeof(xpermd->dontaudit->p));
 987		}
 988		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 989			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 990				xpermd->dontaudit->p[i] |=
 991					node->datum.u.xperms->perms.p[i];
 992		}
 993	} else {
 994		BUG();
 995	}
 996}
 997
 998void security_compute_xperms_decision(struct selinux_state *state,
 999				      u32 ssid,
1000				      u32 tsid,
1001				      u16 orig_tclass,
1002				      u8 driver,
1003				      struct extended_perms_decision *xpermd)
1004{
1005	struct policydb *policydb;
1006	struct sidtab *sidtab;
1007	u16 tclass;
1008	struct context *scontext, *tcontext;
1009	struct avtab_key avkey;
1010	struct avtab_node *node;
1011	struct ebitmap *sattr, *tattr;
1012	struct ebitmap_node *snode, *tnode;
1013	unsigned int i, j;
1014
1015	xpermd->driver = driver;
1016	xpermd->used = 0;
1017	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1018	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1019	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1020
1021	read_lock(&state->ss->policy_rwlock);
1022	if (!state->initialized)
1023		goto allow;
1024
1025	policydb = &state->ss->policydb;
1026	sidtab = state->ss->sidtab;
1027
1028	scontext = sidtab_search(sidtab, ssid);
1029	if (!scontext) {
1030		pr_err("SELinux: %s:  unrecognized SID %d\n",
1031		       __func__, ssid);
1032		goto out;
1033	}
1034
1035	tcontext = sidtab_search(sidtab, tsid);
1036	if (!tcontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, tsid);
1039		goto out;
1040	}
1041
1042	tclass = unmap_class(&state->ss->map, orig_tclass);
1043	if (unlikely(orig_tclass && !tclass)) {
1044		if (policydb->allow_unknown)
1045			goto allow;
1046		goto out;
1047	}
1048
1049
1050	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1051		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1052		goto out;
1053	}
1054
1055	avkey.target_class = tclass;
1056	avkey.specified = AVTAB_XPERMS;
1057	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1058	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 
 
1059	ebitmap_for_each_positive_bit(sattr, snode, i) {
1060		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1061			avkey.source_type = i + 1;
1062			avkey.target_type = j + 1;
1063			for (node = avtab_search_node(&policydb->te_avtab,
1064						      &avkey);
1065			     node;
1066			     node = avtab_search_node_next(node, avkey.specified))
1067				services_compute_xperms_decision(xpermd, node);
1068
1069			cond_compute_xperms(&policydb->te_cond_avtab,
1070						&avkey, xpermd);
1071		}
1072	}
1073out:
1074	read_unlock(&state->ss->policy_rwlock);
1075	return;
1076allow:
1077	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1078	goto out;
1079}
1080
1081/**
1082 * security_compute_av - Compute access vector decisions.
1083 * @ssid: source security identifier
1084 * @tsid: target security identifier
1085 * @tclass: target security class
1086 * @avd: access vector decisions
1087 * @xperms: extended permissions
1088 *
1089 * Compute a set of access vector decisions based on the
1090 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1091 */
1092void security_compute_av(struct selinux_state *state,
1093			 u32 ssid,
1094			 u32 tsid,
1095			 u16 orig_tclass,
1096			 struct av_decision *avd,
1097			 struct extended_perms *xperms)
1098{
1099	struct policydb *policydb;
1100	struct sidtab *sidtab;
1101	u16 tclass;
1102	struct context *scontext = NULL, *tcontext = NULL;
1103
1104	read_lock(&state->ss->policy_rwlock);
1105	avd_init(state, avd);
1106	xperms->len = 0;
1107	if (!state->initialized)
1108		goto allow;
1109
1110	policydb = &state->ss->policydb;
1111	sidtab = state->ss->sidtab;
1112
1113	scontext = sidtab_search(sidtab, ssid);
1114	if (!scontext) {
1115		pr_err("SELinux: %s:  unrecognized SID %d\n",
1116		       __func__, ssid);
1117		goto out;
1118	}
1119
1120	/* permissive domain? */
1121	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1122		avd->flags |= AVD_FLAGS_PERMISSIVE;
1123
1124	tcontext = sidtab_search(sidtab, tsid);
1125	if (!tcontext) {
1126		pr_err("SELinux: %s:  unrecognized SID %d\n",
1127		       __func__, tsid);
1128		goto out;
1129	}
1130
1131	tclass = unmap_class(&state->ss->map, orig_tclass);
1132	if (unlikely(orig_tclass && !tclass)) {
1133		if (policydb->allow_unknown)
1134			goto allow;
1135		goto out;
1136	}
1137	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1138				  xperms);
1139	map_decision(&state->ss->map, orig_tclass, avd,
1140		     policydb->allow_unknown);
1141out:
1142	read_unlock(&state->ss->policy_rwlock);
1143	return;
1144allow:
1145	avd->allowed = 0xffffffff;
1146	goto out;
1147}
1148
1149void security_compute_av_user(struct selinux_state *state,
1150			      u32 ssid,
1151			      u32 tsid,
1152			      u16 tclass,
1153			      struct av_decision *avd)
1154{
1155	struct policydb *policydb;
1156	struct sidtab *sidtab;
1157	struct context *scontext = NULL, *tcontext = NULL;
1158
1159	read_lock(&state->ss->policy_rwlock);
1160	avd_init(state, avd);
1161	if (!state->initialized)
1162		goto allow;
1163
1164	policydb = &state->ss->policydb;
1165	sidtab = state->ss->sidtab;
1166
1167	scontext = sidtab_search(sidtab, ssid);
1168	if (!scontext) {
1169		pr_err("SELinux: %s:  unrecognized SID %d\n",
1170		       __func__, ssid);
1171		goto out;
1172	}
1173
1174	/* permissive domain? */
1175	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1176		avd->flags |= AVD_FLAGS_PERMISSIVE;
1177
1178	tcontext = sidtab_search(sidtab, tsid);
1179	if (!tcontext) {
1180		pr_err("SELinux: %s:  unrecognized SID %d\n",
1181		       __func__, tsid);
1182		goto out;
1183	}
1184
1185	if (unlikely(!tclass)) {
1186		if (policydb->allow_unknown)
1187			goto allow;
1188		goto out;
1189	}
1190
1191	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1192				  NULL);
1193 out:
1194	read_unlock(&state->ss->policy_rwlock);
1195	return;
1196allow:
1197	avd->allowed = 0xffffffff;
1198	goto out;
1199}
1200
1201/*
1202 * Write the security context string representation of
1203 * the context structure `context' into a dynamically
1204 * allocated string of the correct size.  Set `*scontext'
1205 * to point to this string and set `*scontext_len' to
1206 * the length of the string.
1207 */
1208static int context_struct_to_string(struct policydb *p,
1209				    struct context *context,
1210				    char **scontext, u32 *scontext_len)
1211{
1212	char *scontextp;
1213
1214	if (scontext)
1215		*scontext = NULL;
1216	*scontext_len = 0;
1217
1218	if (context->len) {
1219		*scontext_len = context->len;
1220		if (scontext) {
1221			*scontext = kstrdup(context->str, GFP_ATOMIC);
1222			if (!(*scontext))
1223				return -ENOMEM;
1224		}
1225		return 0;
1226	}
1227
1228	/* Compute the size of the context. */
1229	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1230	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1231	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1232	*scontext_len += mls_compute_context_len(p, context);
1233
1234	if (!scontext)
1235		return 0;
1236
1237	/* Allocate space for the context; caller must free this space. */
1238	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1239	if (!scontextp)
1240		return -ENOMEM;
1241	*scontext = scontextp;
1242
1243	/*
1244	 * Copy the user name, role name and type name into the context.
1245	 */
1246	scontextp += sprintf(scontextp, "%s:%s:%s",
1247		sym_name(p, SYM_USERS, context->user - 1),
1248		sym_name(p, SYM_ROLES, context->role - 1),
1249		sym_name(p, SYM_TYPES, context->type - 1));
1250
1251	mls_sid_to_context(p, context, &scontextp);
1252
1253	*scontextp = 0;
1254
1255	return 0;
1256}
1257
1258#include "initial_sid_to_string.h"
1259
1260const char *security_get_initial_sid_context(u32 sid)
1261{
1262	if (unlikely(sid > SECINITSID_NUM))
1263		return NULL;
1264	return initial_sid_to_string[sid];
1265}
1266
1267static int security_sid_to_context_core(struct selinux_state *state,
1268					u32 sid, char **scontext,
1269					u32 *scontext_len, int force,
1270					int only_invalid)
1271{
1272	struct policydb *policydb;
1273	struct sidtab *sidtab;
1274	struct context *context;
1275	int rc = 0;
1276
1277	if (scontext)
1278		*scontext = NULL;
1279	*scontext_len  = 0;
1280
1281	if (!state->initialized) {
1282		if (sid <= SECINITSID_NUM) {
1283			char *scontextp;
1284
1285			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
1286			if (!scontext)
1287				goto out;
1288			scontextp = kmemdup(initial_sid_to_string[sid],
1289					    *scontext_len, GFP_ATOMIC);
1290			if (!scontextp) {
1291				rc = -ENOMEM;
1292				goto out;
1293			}
1294			*scontext = scontextp;
1295			goto out;
1296		}
1297		pr_err("SELinux: %s:  called before initial "
1298		       "load_policy on unknown SID %d\n", __func__, sid);
1299		rc = -EINVAL;
1300		goto out;
1301	}
1302	read_lock(&state->ss->policy_rwlock);
1303	policydb = &state->ss->policydb;
1304	sidtab = state->ss->sidtab;
1305	if (force)
1306		context = sidtab_search_force(sidtab, sid);
1307	else
1308		context = sidtab_search(sidtab, sid);
1309	if (!context) {
1310		pr_err("SELinux: %s:  unrecognized SID %d\n",
1311			__func__, sid);
1312		rc = -EINVAL;
1313		goto out_unlock;
1314	}
1315	if (only_invalid && !context->len)
1316		rc = 0;
1317	else
1318		rc = context_struct_to_string(policydb, context, scontext,
1319					      scontext_len);
1320out_unlock:
1321	read_unlock(&state->ss->policy_rwlock);
1322out:
1323	return rc;
1324
1325}
1326
1327/**
1328 * security_sid_to_context - Obtain a context for a given SID.
1329 * @sid: security identifier, SID
1330 * @scontext: security context
1331 * @scontext_len: length in bytes
1332 *
1333 * Write the string representation of the context associated with @sid
1334 * into a dynamically allocated string of the correct size.  Set @scontext
1335 * to point to this string and set @scontext_len to the length of the string.
1336 */
1337int security_sid_to_context(struct selinux_state *state,
1338			    u32 sid, char **scontext, u32 *scontext_len)
1339{
1340	return security_sid_to_context_core(state, sid, scontext,
1341					    scontext_len, 0, 0);
1342}
1343
1344int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1345				  char **scontext, u32 *scontext_len)
1346{
1347	return security_sid_to_context_core(state, sid, scontext,
1348					    scontext_len, 1, 0);
1349}
1350
1351/**
1352 * security_sid_to_context_inval - Obtain a context for a given SID if it
1353 *                                 is invalid.
1354 * @sid: security identifier, SID
1355 * @scontext: security context
1356 * @scontext_len: length in bytes
1357 *
1358 * Write the string representation of the context associated with @sid
1359 * into a dynamically allocated string of the correct size, but only if the
1360 * context is invalid in the current policy.  Set @scontext to point to
1361 * this string (or NULL if the context is valid) and set @scontext_len to
1362 * the length of the string (or 0 if the context is valid).
1363 */
1364int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1365				  char **scontext, u32 *scontext_len)
1366{
1367	return security_sid_to_context_core(state, sid, scontext,
1368					    scontext_len, 1, 1);
1369}
1370
1371/*
1372 * Caveat:  Mutates scontext.
1373 */
1374static int string_to_context_struct(struct policydb *pol,
1375				    struct sidtab *sidtabp,
1376				    char *scontext,
 
1377				    struct context *ctx,
1378				    u32 def_sid)
1379{
1380	struct role_datum *role;
1381	struct type_datum *typdatum;
1382	struct user_datum *usrdatum;
1383	char *scontextp, *p, oldc;
1384	int rc = 0;
1385
1386	context_init(ctx);
1387
1388	/* Parse the security context. */
1389
1390	rc = -EINVAL;
1391	scontextp = (char *) scontext;
1392
1393	/* Extract the user. */
1394	p = scontextp;
1395	while (*p && *p != ':')
1396		p++;
1397
1398	if (*p == 0)
1399		goto out;
1400
1401	*p++ = 0;
1402
1403	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1404	if (!usrdatum)
1405		goto out;
1406
1407	ctx->user = usrdatum->value;
1408
1409	/* Extract role. */
1410	scontextp = p;
1411	while (*p && *p != ':')
1412		p++;
1413
1414	if (*p == 0)
1415		goto out;
1416
1417	*p++ = 0;
1418
1419	role = hashtab_search(pol->p_roles.table, scontextp);
1420	if (!role)
1421		goto out;
1422	ctx->role = role->value;
1423
1424	/* Extract type. */
1425	scontextp = p;
1426	while (*p && *p != ':')
1427		p++;
1428	oldc = *p;
1429	*p++ = 0;
1430
1431	typdatum = hashtab_search(pol->p_types.table, scontextp);
1432	if (!typdatum || typdatum->attribute)
1433		goto out;
1434
1435	ctx->type = typdatum->value;
1436
1437	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1438	if (rc)
1439		goto out;
1440
 
 
 
 
1441	/* Check the validity of the new context. */
1442	rc = -EINVAL;
1443	if (!policydb_context_isvalid(pol, ctx))
1444		goto out;
1445	rc = 0;
1446out:
1447	if (rc)
1448		context_destroy(ctx);
1449	return rc;
1450}
1451
1452static int security_context_to_sid_core(struct selinux_state *state,
1453					const char *scontext, u32 scontext_len,
1454					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1455					int force)
1456{
1457	struct policydb *policydb;
1458	struct sidtab *sidtab;
1459	char *scontext2, *str = NULL;
1460	struct context context;
1461	int rc = 0;
1462
1463	/* An empty security context is never valid. */
1464	if (!scontext_len)
1465		return -EINVAL;
1466
1467	/* Copy the string to allow changes and ensure a NUL terminator */
1468	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1469	if (!scontext2)
1470		return -ENOMEM;
1471
1472	if (!state->initialized) {
1473		int i;
1474
1475		for (i = 1; i < SECINITSID_NUM; i++) {
1476			if (!strcmp(initial_sid_to_string[i], scontext2)) {
1477				*sid = i;
1478				goto out;
1479			}
1480		}
1481		*sid = SECINITSID_KERNEL;
1482		goto out;
1483	}
1484	*sid = SECSID_NULL;
1485
 
 
 
 
 
 
 
1486	if (force) {
1487		/* Save another copy for storing in uninterpreted form */
1488		rc = -ENOMEM;
1489		str = kstrdup(scontext2, gfp_flags);
1490		if (!str)
1491			goto out;
1492	}
1493	read_lock(&state->ss->policy_rwlock);
1494	policydb = &state->ss->policydb;
1495	sidtab = state->ss->sidtab;
1496	rc = string_to_context_struct(policydb, sidtab, scontext2,
1497				      &context, def_sid);
1498	if (rc == -EINVAL && force) {
1499		context.str = str;
1500		context.len = strlen(str) + 1;
1501		str = NULL;
1502	} else if (rc)
1503		goto out_unlock;
1504	rc = sidtab_context_to_sid(sidtab, &context, sid);
1505	context_destroy(&context);
1506out_unlock:
1507	read_unlock(&state->ss->policy_rwlock);
1508out:
1509	kfree(scontext2);
1510	kfree(str);
1511	return rc;
1512}
1513
1514/**
1515 * security_context_to_sid - Obtain a SID for a given security context.
1516 * @scontext: security context
1517 * @scontext_len: length in bytes
1518 * @sid: security identifier, SID
1519 * @gfp: context for the allocation
1520 *
1521 * Obtains a SID associated with the security context that
1522 * has the string representation specified by @scontext.
1523 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1524 * memory is available, or 0 on success.
1525 */
1526int security_context_to_sid(struct selinux_state *state,
1527			    const char *scontext, u32 scontext_len, u32 *sid,
1528			    gfp_t gfp)
1529{
1530	return security_context_to_sid_core(state, scontext, scontext_len,
1531					    sid, SECSID_NULL, gfp, 0);
1532}
1533
1534int security_context_str_to_sid(struct selinux_state *state,
1535				const char *scontext, u32 *sid, gfp_t gfp)
1536{
1537	return security_context_to_sid(state, scontext, strlen(scontext),
1538				       sid, gfp);
1539}
1540
1541/**
1542 * security_context_to_sid_default - Obtain a SID for a given security context,
1543 * falling back to specified default if needed.
1544 *
1545 * @scontext: security context
1546 * @scontext_len: length in bytes
1547 * @sid: security identifier, SID
1548 * @def_sid: default SID to assign on error
1549 *
1550 * Obtains a SID associated with the security context that
1551 * has the string representation specified by @scontext.
1552 * The default SID is passed to the MLS layer to be used to allow
1553 * kernel labeling of the MLS field if the MLS field is not present
1554 * (for upgrading to MLS without full relabel).
1555 * Implicitly forces adding of the context even if it cannot be mapped yet.
1556 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1557 * memory is available, or 0 on success.
1558 */
1559int security_context_to_sid_default(struct selinux_state *state,
1560				    const char *scontext, u32 scontext_len,
1561				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1562{
1563	return security_context_to_sid_core(state, scontext, scontext_len,
1564					    sid, def_sid, gfp_flags, 1);
1565}
1566
1567int security_context_to_sid_force(struct selinux_state *state,
1568				  const char *scontext, u32 scontext_len,
1569				  u32 *sid)
1570{
1571	return security_context_to_sid_core(state, scontext, scontext_len,
1572					    sid, SECSID_NULL, GFP_KERNEL, 1);
1573}
1574
1575static int compute_sid_handle_invalid_context(
1576	struct selinux_state *state,
1577	struct context *scontext,
1578	struct context *tcontext,
1579	u16 tclass,
1580	struct context *newcontext)
1581{
1582	struct policydb *policydb = &state->ss->policydb;
1583	char *s = NULL, *t = NULL, *n = NULL;
1584	u32 slen, tlen, nlen;
1585	struct audit_buffer *ab;
1586
1587	if (context_struct_to_string(policydb, scontext, &s, &slen))
1588		goto out;
1589	if (context_struct_to_string(policydb, tcontext, &t, &tlen))
1590		goto out;
1591	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1592		goto out;
1593	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1594	audit_log_format(ab,
1595			 "op=security_compute_sid invalid_context=");
1596	/* no need to record the NUL with untrusted strings */
1597	audit_log_n_untrustedstring(ab, n, nlen - 1);
1598	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1599			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1600	audit_log_end(ab);
1601out:
1602	kfree(s);
1603	kfree(t);
1604	kfree(n);
1605	if (!enforcing_enabled(state))
1606		return 0;
1607	return -EACCES;
1608}
1609
1610static void filename_compute_type(struct policydb *policydb,
1611				  struct context *newcontext,
1612				  u32 stype, u32 ttype, u16 tclass,
1613				  const char *objname)
1614{
1615	struct filename_trans ft;
1616	struct filename_trans_datum *otype;
1617
1618	/*
1619	 * Most filename trans rules are going to live in specific directories
1620	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1621	 * if the ttype does not contain any rules.
1622	 */
1623	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1624		return;
1625
1626	ft.stype = stype;
1627	ft.ttype = ttype;
1628	ft.tclass = tclass;
1629	ft.name = objname;
1630
1631	otype = hashtab_search(policydb->filename_trans, &ft);
1632	if (otype)
1633		newcontext->type = otype->otype;
1634}
1635
1636static int security_compute_sid(struct selinux_state *state,
1637				u32 ssid,
1638				u32 tsid,
1639				u16 orig_tclass,
1640				u32 specified,
1641				const char *objname,
1642				u32 *out_sid,
1643				bool kern)
1644{
1645	struct policydb *policydb;
1646	struct sidtab *sidtab;
1647	struct class_datum *cladatum = NULL;
1648	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1649	struct role_trans *roletr = NULL;
1650	struct avtab_key avkey;
1651	struct avtab_datum *avdatum;
1652	struct avtab_node *node;
1653	u16 tclass;
1654	int rc = 0;
1655	bool sock;
1656
1657	if (!state->initialized) {
1658		switch (orig_tclass) {
1659		case SECCLASS_PROCESS: /* kernel value */
1660			*out_sid = ssid;
1661			break;
1662		default:
1663			*out_sid = tsid;
1664			break;
1665		}
1666		goto out;
1667	}
1668
1669	context_init(&newcontext);
1670
1671	read_lock(&state->ss->policy_rwlock);
1672
1673	if (kern) {
1674		tclass = unmap_class(&state->ss->map, orig_tclass);
1675		sock = security_is_socket_class(orig_tclass);
1676	} else {
1677		tclass = orig_tclass;
1678		sock = security_is_socket_class(map_class(&state->ss->map,
1679							  tclass));
1680	}
1681
1682	policydb = &state->ss->policydb;
1683	sidtab = state->ss->sidtab;
1684
1685	scontext = sidtab_search(sidtab, ssid);
1686	if (!scontext) {
1687		pr_err("SELinux: %s:  unrecognized SID %d\n",
1688		       __func__, ssid);
1689		rc = -EINVAL;
1690		goto out_unlock;
1691	}
1692	tcontext = sidtab_search(sidtab, tsid);
1693	if (!tcontext) {
1694		pr_err("SELinux: %s:  unrecognized SID %d\n",
1695		       __func__, tsid);
1696		rc = -EINVAL;
1697		goto out_unlock;
1698	}
1699
1700	if (tclass && tclass <= policydb->p_classes.nprim)
1701		cladatum = policydb->class_val_to_struct[tclass - 1];
1702
1703	/* Set the user identity. */
1704	switch (specified) {
1705	case AVTAB_TRANSITION:
1706	case AVTAB_CHANGE:
1707		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1708			newcontext.user = tcontext->user;
1709		} else {
1710			/* notice this gets both DEFAULT_SOURCE and unset */
1711			/* Use the process user identity. */
1712			newcontext.user = scontext->user;
1713		}
1714		break;
1715	case AVTAB_MEMBER:
1716		/* Use the related object owner. */
1717		newcontext.user = tcontext->user;
1718		break;
1719	}
1720
1721	/* Set the role to default values. */
1722	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1723		newcontext.role = scontext->role;
1724	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1725		newcontext.role = tcontext->role;
1726	} else {
1727		if ((tclass == policydb->process_class) || (sock == true))
1728			newcontext.role = scontext->role;
1729		else
1730			newcontext.role = OBJECT_R_VAL;
1731	}
1732
1733	/* Set the type to default values. */
1734	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1735		newcontext.type = scontext->type;
1736	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1737		newcontext.type = tcontext->type;
1738	} else {
1739		if ((tclass == policydb->process_class) || (sock == true)) {
1740			/* Use the type of process. */
1741			newcontext.type = scontext->type;
1742		} else {
1743			/* Use the type of the related object. */
1744			newcontext.type = tcontext->type;
1745		}
1746	}
1747
1748	/* Look for a type transition/member/change rule. */
1749	avkey.source_type = scontext->type;
1750	avkey.target_type = tcontext->type;
1751	avkey.target_class = tclass;
1752	avkey.specified = specified;
1753	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1754
1755	/* If no permanent rule, also check for enabled conditional rules */
1756	if (!avdatum) {
1757		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1758		for (; node; node = avtab_search_node_next(node, specified)) {
1759			if (node->key.specified & AVTAB_ENABLED) {
1760				avdatum = &node->datum;
1761				break;
1762			}
1763		}
1764	}
1765
1766	if (avdatum) {
1767		/* Use the type from the type transition/member/change rule. */
1768		newcontext.type = avdatum->u.data;
1769	}
1770
1771	/* if we have a objname this is a file trans check so check those rules */
1772	if (objname)
1773		filename_compute_type(policydb, &newcontext, scontext->type,
1774				      tcontext->type, tclass, objname);
1775
1776	/* Check for class-specific changes. */
1777	if (specified & AVTAB_TRANSITION) {
1778		/* Look for a role transition rule. */
1779		for (roletr = policydb->role_tr; roletr;
1780		     roletr = roletr->next) {
1781			if ((roletr->role == scontext->role) &&
1782			    (roletr->type == tcontext->type) &&
1783			    (roletr->tclass == tclass)) {
1784				/* Use the role transition rule. */
1785				newcontext.role = roletr->new_role;
1786				break;
1787			}
1788		}
1789	}
1790
1791	/* Set the MLS attributes.
1792	   This is done last because it may allocate memory. */
1793	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1794			     &newcontext, sock);
1795	if (rc)
1796		goto out_unlock;
1797
1798	/* Check the validity of the context. */
1799	if (!policydb_context_isvalid(policydb, &newcontext)) {
1800		rc = compute_sid_handle_invalid_context(state, scontext,
1801							tcontext,
1802							tclass,
1803							&newcontext);
1804		if (rc)
1805			goto out_unlock;
1806	}
1807	/* Obtain the sid for the context. */
1808	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1809out_unlock:
1810	read_unlock(&state->ss->policy_rwlock);
1811	context_destroy(&newcontext);
1812out:
1813	return rc;
1814}
1815
1816/**
1817 * security_transition_sid - Compute the SID for a new subject/object.
1818 * @ssid: source security identifier
1819 * @tsid: target security identifier
1820 * @tclass: target security class
1821 * @out_sid: security identifier for new subject/object
1822 *
1823 * Compute a SID to use for labeling a new subject or object in the
1824 * class @tclass based on a SID pair (@ssid, @tsid).
1825 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1826 * if insufficient memory is available, or %0 if the new SID was
1827 * computed successfully.
1828 */
1829int security_transition_sid(struct selinux_state *state,
1830			    u32 ssid, u32 tsid, u16 tclass,
1831			    const struct qstr *qstr, u32 *out_sid)
1832{
1833	return security_compute_sid(state, ssid, tsid, tclass,
1834				    AVTAB_TRANSITION,
1835				    qstr ? qstr->name : NULL, out_sid, true);
1836}
1837
1838int security_transition_sid_user(struct selinux_state *state,
1839				 u32 ssid, u32 tsid, u16 tclass,
1840				 const char *objname, u32 *out_sid)
1841{
1842	return security_compute_sid(state, ssid, tsid, tclass,
1843				    AVTAB_TRANSITION,
1844				    objname, out_sid, false);
1845}
1846
1847/**
1848 * security_member_sid - Compute the SID for member selection.
1849 * @ssid: source security identifier
1850 * @tsid: target security identifier
1851 * @tclass: target security class
1852 * @out_sid: security identifier for selected member
1853 *
1854 * Compute a SID to use when selecting a member of a polyinstantiated
1855 * object of class @tclass based on a SID pair (@ssid, @tsid).
1856 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1857 * if insufficient memory is available, or %0 if the SID was
1858 * computed successfully.
1859 */
1860int security_member_sid(struct selinux_state *state,
1861			u32 ssid,
1862			u32 tsid,
1863			u16 tclass,
1864			u32 *out_sid)
1865{
1866	return security_compute_sid(state, ssid, tsid, tclass,
1867				    AVTAB_MEMBER, NULL,
1868				    out_sid, false);
1869}
1870
1871/**
1872 * security_change_sid - Compute the SID for object relabeling.
1873 * @ssid: source security identifier
1874 * @tsid: target security identifier
1875 * @tclass: target security class
1876 * @out_sid: security identifier for selected member
1877 *
1878 * Compute a SID to use for relabeling an object of class @tclass
1879 * based on a SID pair (@ssid, @tsid).
1880 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1881 * if insufficient memory is available, or %0 if the SID was
1882 * computed successfully.
1883 */
1884int security_change_sid(struct selinux_state *state,
1885			u32 ssid,
1886			u32 tsid,
1887			u16 tclass,
1888			u32 *out_sid)
1889{
1890	return security_compute_sid(state,
1891				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1892				    out_sid, false);
1893}
1894
1895static inline int convert_context_handle_invalid_context(
1896	struct selinux_state *state,
1897	struct context *context)
 
 
 
 
 
 
 
 
 
 
 
1898{
1899	struct policydb *policydb = &state->ss->policydb;
1900	char *s;
1901	u32 len;
1902
1903	if (enforcing_enabled(state))
1904		return -EINVAL;
1905
1906	if (!context_struct_to_string(policydb, context, &s, &len)) {
1907		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1908			s);
1909		kfree(s);
1910	}
1911	return 0;
1912}
1913
1914struct convert_context_args {
1915	struct selinux_state *state;
1916	struct policydb *oldp;
1917	struct policydb *newp;
1918};
1919
1920/*
1921 * Convert the values in the security context
1922 * structure `oldc' from the values specified
1923 * in the policy `p->oldp' to the values specified
1924 * in the policy `p->newp', storing the new context
1925 * in `newc'.  Verify that the context is valid
1926 * under the new policy.
1927 */
1928static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
1929{
1930	struct convert_context_args *args;
 
1931	struct ocontext *oc;
 
1932	struct role_datum *role;
1933	struct type_datum *typdatum;
1934	struct user_datum *usrdatum;
1935	char *s;
1936	u32 len;
1937	int rc;
 
 
 
1938
1939	args = p;
1940
1941	if (oldc->str) {
1942		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
1943		if (!s)
1944			return -ENOMEM;
1945
1946		rc = string_to_context_struct(args->newp, NULL, s,
1947					      newc, SECSID_NULL);
1948		if (rc == -EINVAL) {
1949			/*
1950			 * Retain string representation for later mapping.
1951			 *
1952			 * IMPORTANT: We need to copy the contents of oldc->str
1953			 * back into s again because string_to_context_struct()
1954			 * may have garbled it.
1955			 */
1956			memcpy(s, oldc->str, oldc->len);
1957			context_init(newc);
1958			newc->str = s;
1959			newc->len = oldc->len;
1960			return 0;
1961		}
1962		kfree(s);
1963		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
1964			/* Other error condition, e.g. ENOMEM. */
1965			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
1966			       oldc->str, -rc);
1967			return rc;
1968		}
1969		pr_info("SELinux:  Context %s became valid (mapped).\n",
1970			oldc->str);
1971		return 0;
1972	}
1973
1974	context_init(newc);
 
 
1975
1976	/* Convert the user. */
1977	rc = -EINVAL;
1978	usrdatum = hashtab_search(args->newp->p_users.table,
1979				  sym_name(args->oldp,
1980					   SYM_USERS, oldc->user - 1));
1981	if (!usrdatum)
1982		goto bad;
1983	newc->user = usrdatum->value;
1984
1985	/* Convert the role. */
1986	rc = -EINVAL;
1987	role = hashtab_search(args->newp->p_roles.table,
1988			      sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
1989	if (!role)
1990		goto bad;
1991	newc->role = role->value;
1992
1993	/* Convert the type. */
1994	rc = -EINVAL;
1995	typdatum = hashtab_search(args->newp->p_types.table,
1996				  sym_name(args->oldp,
1997					   SYM_TYPES, oldc->type - 1));
1998	if (!typdatum)
1999		goto bad;
2000	newc->type = typdatum->value;
2001
2002	/* Convert the MLS fields if dealing with MLS policies */
2003	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2004		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2005		if (rc)
2006			goto bad;
 
 
 
 
 
 
 
2007	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2008		/*
2009		 * Switching between non-MLS and MLS policy:
2010		 * ensure that the MLS fields of the context for all
2011		 * existing entries in the sidtab are filled in with a
2012		 * suitable default value, likely taken from one of the
2013		 * initial SIDs.
2014		 */
2015		oc = args->newp->ocontexts[OCON_ISID];
2016		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2017			oc = oc->next;
2018		rc = -EINVAL;
2019		if (!oc) {
2020			pr_err("SELinux:  unable to look up"
2021				" the initial SIDs list\n");
2022			goto bad;
2023		}
2024		rc = mls_range_set(newc, &oc->context[0].range);
 
2025		if (rc)
2026			goto bad;
2027	}
2028
2029	/* Check the validity of the new context. */
2030	if (!policydb_context_isvalid(args->newp, newc)) {
2031		rc = convert_context_handle_invalid_context(args->state, oldc);
2032		if (rc)
2033			goto bad;
2034	}
2035
2036	return 0;
 
 
 
 
2037bad:
2038	/* Map old representation to string and save it. */
2039	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2040	if (rc)
2041		return rc;
2042	context_destroy(newc);
2043	newc->str = s;
2044	newc->len = len;
2045	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2046		newc->str);
2047	return 0;
 
 
2048}
2049
2050static void security_load_policycaps(struct selinux_state *state)
2051{
2052	struct policydb *p = &state->ss->policydb;
2053	unsigned int i;
2054	struct ebitmap_node *node;
2055
2056	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2057		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2058
2059	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2060		pr_info("SELinux:  policy capability %s=%d\n",
2061			selinux_policycap_names[i],
2062			ebitmap_get_bit(&p->policycaps, i));
2063
2064	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2065		if (i >= ARRAY_SIZE(selinux_policycap_names))
2066			pr_info("SELinux:  unknown policy capability %u\n",
2067				i);
2068	}
2069}
2070
2071static int security_preserve_bools(struct selinux_state *state,
2072				   struct policydb *newpolicydb);
2073
2074/**
2075 * security_load_policy - Load a security policy configuration.
2076 * @data: binary policy data
2077 * @len: length of data in bytes
2078 *
2079 * Load a new set of security policy configuration data,
2080 * validate it and convert the SID table as necessary.
2081 * This function will flush the access vector cache after
2082 * loading the new policy.
2083 */
2084int security_load_policy(struct selinux_state *state, void *data, size_t len)
2085{
2086	struct policydb *policydb;
2087	struct sidtab *oldsidtab, *newsidtab;
2088	struct policydb *oldpolicydb, *newpolicydb;
2089	struct selinux_mapping *oldmapping;
2090	struct selinux_map newmap;
2091	struct sidtab_convert_params convert_params;
2092	struct convert_context_args args;
2093	u32 seqno;
 
2094	int rc = 0;
2095	struct policy_file file = { data, len }, *fp = &file;
2096
2097	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2098	if (!oldpolicydb) {
2099		rc = -ENOMEM;
2100		goto out;
2101	}
2102	newpolicydb = oldpolicydb + 1;
2103
2104	policydb = &state->ss->policydb;
2105
2106	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2107	if (!newsidtab) {
2108		rc = -ENOMEM;
2109		goto out;
2110	}
2111
2112	if (!state->initialized) {
2113		rc = policydb_read(policydb, fp);
2114		if (rc) {
2115			kfree(newsidtab);
2116			goto out;
2117		}
2118
2119		policydb->len = len;
2120		rc = selinux_set_mapping(policydb, secclass_map,
2121					 &state->ss->map);
 
2122		if (rc) {
2123			kfree(newsidtab);
2124			policydb_destroy(policydb);
2125			goto out;
2126		}
2127
2128		rc = policydb_load_isids(policydb, newsidtab);
2129		if (rc) {
2130			kfree(newsidtab);
2131			policydb_destroy(policydb);
2132			goto out;
2133		}
2134
2135		state->ss->sidtab = newsidtab;
2136		security_load_policycaps(state);
2137		state->initialized = 1;
2138		seqno = ++state->ss->latest_granting;
2139		selinux_complete_init();
2140		avc_ss_reset(state->avc, seqno);
2141		selnl_notify_policyload(seqno);
2142		selinux_status_update_policyload(state, seqno);
2143		selinux_netlbl_cache_invalidate();
2144		selinux_xfrm_notify_policyload();
2145		goto out;
2146	}
2147
 
 
 
 
2148	rc = policydb_read(newpolicydb, fp);
2149	if (rc) {
2150		kfree(newsidtab);
2151		goto out;
2152	}
2153
2154	newpolicydb->len = len;
2155	/* If switching between different policy types, log MLS status */
2156	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2157		pr_info("SELinux: Disabling MLS support...\n");
2158	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2159		pr_info("SELinux: Enabling MLS support...\n");
2160
2161	rc = policydb_load_isids(newpolicydb, newsidtab);
2162	if (rc) {
2163		pr_err("SELinux:  unable to load the initial SIDs\n");
2164		policydb_destroy(newpolicydb);
2165		kfree(newsidtab);
2166		goto out;
2167	}
2168
2169	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2170	if (rc)
2171		goto err;
2172
2173	rc = security_preserve_bools(state, newpolicydb);
2174	if (rc) {
2175		pr_err("SELinux:  unable to preserve booleans\n");
2176		goto err;
2177	}
2178
2179	oldsidtab = state->ss->sidtab;
 
 
 
 
 
2180
2181	/*
2182	 * Convert the internal representations of contexts
2183	 * in the new SID table.
2184	 */
2185	args.state = state;
2186	args.oldp = policydb;
2187	args.newp = newpolicydb;
2188
2189	convert_params.func = convert_context;
2190	convert_params.args = &args;
2191	convert_params.target = newsidtab;
2192
2193	rc = sidtab_convert(oldsidtab, &convert_params);
2194	if (rc) {
2195		pr_err("SELinux:  unable to convert the internal"
2196			" representation of contexts in the new SID"
2197			" table\n");
2198		goto err;
2199	}
2200
2201	/* Save the old policydb and SID table to free later. */
2202	memcpy(oldpolicydb, policydb, sizeof(*policydb));
 
2203
2204	/* Install the new policydb and SID table. */
2205	write_lock_irq(&state->ss->policy_rwlock);
2206	memcpy(policydb, newpolicydb, sizeof(*policydb));
2207	state->ss->sidtab = newsidtab;
2208	security_load_policycaps(state);
2209	oldmapping = state->ss->map.mapping;
2210	state->ss->map.mapping = newmap.mapping;
2211	state->ss->map.size = newmap.size;
2212	seqno = ++state->ss->latest_granting;
2213	write_unlock_irq(&state->ss->policy_rwlock);
2214
2215	/* Free the old policydb and SID table. */
2216	policydb_destroy(oldpolicydb);
2217	sidtab_destroy(oldsidtab);
2218	kfree(oldsidtab);
2219	kfree(oldmapping);
2220
2221	avc_ss_reset(state->avc, seqno);
2222	selnl_notify_policyload(seqno);
2223	selinux_status_update_policyload(state, seqno);
2224	selinux_netlbl_cache_invalidate();
2225	selinux_xfrm_notify_policyload();
2226
2227	rc = 0;
2228	goto out;
2229
2230err:
2231	kfree(newmap.mapping);
2232	sidtab_destroy(newsidtab);
2233	kfree(newsidtab);
2234	policydb_destroy(newpolicydb);
2235
2236out:
2237	kfree(oldpolicydb);
2238	return rc;
2239}
2240
2241size_t security_policydb_len(struct selinux_state *state)
2242{
2243	struct policydb *p = &state->ss->policydb;
2244	size_t len;
2245
2246	read_lock(&state->ss->policy_rwlock);
2247	len = p->len;
2248	read_unlock(&state->ss->policy_rwlock);
2249
2250	return len;
2251}
2252
2253/**
2254 * security_port_sid - Obtain the SID for a port.
2255 * @protocol: protocol number
2256 * @port: port number
2257 * @out_sid: security identifier
2258 */
2259int security_port_sid(struct selinux_state *state,
2260		      u8 protocol, u16 port, u32 *out_sid)
2261{
2262	struct policydb *policydb;
2263	struct sidtab *sidtab;
2264	struct ocontext *c;
2265	int rc = 0;
2266
2267	read_lock(&state->ss->policy_rwlock);
2268
2269	policydb = &state->ss->policydb;
2270	sidtab = state->ss->sidtab;
2271
2272	c = policydb->ocontexts[OCON_PORT];
2273	while (c) {
2274		if (c->u.port.protocol == protocol &&
2275		    c->u.port.low_port <= port &&
2276		    c->u.port.high_port >= port)
2277			break;
2278		c = c->next;
2279	}
2280
2281	if (c) {
2282		if (!c->sid[0]) {
2283			rc = sidtab_context_to_sid(sidtab,
2284						   &c->context[0],
2285						   &c->sid[0]);
2286			if (rc)
2287				goto out;
2288		}
2289		*out_sid = c->sid[0];
2290	} else {
2291		*out_sid = SECINITSID_PORT;
2292	}
2293
2294out:
2295	read_unlock(&state->ss->policy_rwlock);
2296	return rc;
2297}
2298
2299/**
2300 * security_pkey_sid - Obtain the SID for a pkey.
2301 * @subnet_prefix: Subnet Prefix
2302 * @pkey_num: pkey number
2303 * @out_sid: security identifier
2304 */
2305int security_ib_pkey_sid(struct selinux_state *state,
2306			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2307{
2308	struct policydb *policydb;
2309	struct sidtab *sidtab;
2310	struct ocontext *c;
2311	int rc = 0;
2312
2313	read_lock(&state->ss->policy_rwlock);
2314
2315	policydb = &state->ss->policydb;
2316	sidtab = state->ss->sidtab;
2317
2318	c = policydb->ocontexts[OCON_IBPKEY];
2319	while (c) {
2320		if (c->u.ibpkey.low_pkey <= pkey_num &&
2321		    c->u.ibpkey.high_pkey >= pkey_num &&
2322		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2323			break;
2324
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab,
2331						   &c->context[0],
2332						   &c->sid[0]);
2333			if (rc)
2334				goto out;
2335		}
2336		*out_sid = c->sid[0];
2337	} else
2338		*out_sid = SECINITSID_UNLABELED;
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2347 * @dev_name: device name
2348 * @port: port number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_endport_sid(struct selinux_state *state,
2352			    const char *dev_name, u8 port_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBENDPORT];
2365	while (c) {
2366		if (c->u.ibendport.port == port_num &&
2367		    !strncmp(c->u.ibendport.dev_name,
2368			     dev_name,
2369			     IB_DEVICE_NAME_MAX))
2370			break;
2371
2372		c = c->next;
2373	}
2374
2375	if (c) {
2376		if (!c->sid[0]) {
2377			rc = sidtab_context_to_sid(sidtab,
2378						   &c->context[0],
2379						   &c->sid[0]);
2380			if (rc)
2381				goto out;
2382		}
2383		*out_sid = c->sid[0];
2384	} else
2385		*out_sid = SECINITSID_UNLABELED;
2386
2387out:
2388	read_unlock(&state->ss->policy_rwlock);
2389	return rc;
2390}
2391
2392/**
2393 * security_netif_sid - Obtain the SID for a network interface.
2394 * @name: interface name
2395 * @if_sid: interface SID
2396 */
2397int security_netif_sid(struct selinux_state *state,
2398		       char *name, u32 *if_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	int rc = 0;
2403	struct ocontext *c;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_NETIF];
2411	while (c) {
2412		if (strcmp(name, c->u.name) == 0)
2413			break;
2414		c = c->next;
2415	}
2416
2417	if (c) {
2418		if (!c->sid[0] || !c->sid[1]) {
2419			rc = sidtab_context_to_sid(sidtab,
2420						  &c->context[0],
2421						  &c->sid[0]);
2422			if (rc)
2423				goto out;
2424			rc = sidtab_context_to_sid(sidtab,
2425						   &c->context[1],
2426						   &c->sid[1]);
2427			if (rc)
2428				goto out;
2429		}
2430		*if_sid = c->sid[0];
2431	} else
2432		*if_sid = SECINITSID_NETIF;
2433
2434out:
2435	read_unlock(&state->ss->policy_rwlock);
2436	return rc;
2437}
2438
2439static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2440{
2441	int i, fail = 0;
2442
2443	for (i = 0; i < 4; i++)
2444		if (addr[i] != (input[i] & mask[i])) {
2445			fail = 1;
2446			break;
2447		}
2448
2449	return !fail;
2450}
2451
2452/**
2453 * security_node_sid - Obtain the SID for a node (host).
2454 * @domain: communication domain aka address family
2455 * @addrp: address
2456 * @addrlen: address length in bytes
2457 * @out_sid: security identifier
2458 */
2459int security_node_sid(struct selinux_state *state,
2460		      u16 domain,
2461		      void *addrp,
2462		      u32 addrlen,
2463		      u32 *out_sid)
2464{
2465	struct policydb *policydb;
2466	struct sidtab *sidtab;
2467	int rc;
2468	struct ocontext *c;
2469
2470	read_lock(&state->ss->policy_rwlock);
2471
2472	policydb = &state->ss->policydb;
2473	sidtab = state->ss->sidtab;
2474
2475	switch (domain) {
2476	case AF_INET: {
2477		u32 addr;
2478
2479		rc = -EINVAL;
2480		if (addrlen != sizeof(u32))
2481			goto out;
2482
2483		addr = *((u32 *)addrp);
2484
2485		c = policydb->ocontexts[OCON_NODE];
2486		while (c) {
2487			if (c->u.node.addr == (addr & c->u.node.mask))
2488				break;
2489			c = c->next;
2490		}
2491		break;
2492	}
2493
2494	case AF_INET6:
2495		rc = -EINVAL;
2496		if (addrlen != sizeof(u64) * 2)
2497			goto out;
2498		c = policydb->ocontexts[OCON_NODE6];
2499		while (c) {
2500			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2501						c->u.node6.mask))
2502				break;
2503			c = c->next;
2504		}
2505		break;
2506
2507	default:
2508		rc = 0;
2509		*out_sid = SECINITSID_NODE;
2510		goto out;
2511	}
2512
2513	if (c) {
2514		if (!c->sid[0]) {
2515			rc = sidtab_context_to_sid(sidtab,
2516						   &c->context[0],
2517						   &c->sid[0]);
2518			if (rc)
2519				goto out;
2520		}
2521		*out_sid = c->sid[0];
2522	} else {
2523		*out_sid = SECINITSID_NODE;
2524	}
2525
2526	rc = 0;
2527out:
2528	read_unlock(&state->ss->policy_rwlock);
2529	return rc;
2530}
2531
2532#define SIDS_NEL 25
2533
2534/**
2535 * security_get_user_sids - Obtain reachable SIDs for a user.
2536 * @fromsid: starting SID
2537 * @username: username
2538 * @sids: array of reachable SIDs for user
2539 * @nel: number of elements in @sids
2540 *
2541 * Generate the set of SIDs for legal security contexts
2542 * for a given user that can be reached by @fromsid.
2543 * Set *@sids to point to a dynamically allocated
2544 * array containing the set of SIDs.  Set *@nel to the
2545 * number of elements in the array.
2546 */
2547
2548int security_get_user_sids(struct selinux_state *state,
2549			   u32 fromsid,
2550			   char *username,
2551			   u32 **sids,
2552			   u32 *nel)
2553{
2554	struct policydb *policydb;
2555	struct sidtab *sidtab;
2556	struct context *fromcon, usercon;
2557	u32 *mysids = NULL, *mysids2, sid;
2558	u32 mynel = 0, maxnel = SIDS_NEL;
2559	struct user_datum *user;
2560	struct role_datum *role;
2561	struct ebitmap_node *rnode, *tnode;
2562	int rc = 0, i, j;
2563
2564	*sids = NULL;
2565	*nel = 0;
2566
2567	if (!state->initialized)
2568		goto out;
2569
2570	read_lock(&state->ss->policy_rwlock);
2571
2572	policydb = &state->ss->policydb;
2573	sidtab = state->ss->sidtab;
2574
2575	context_init(&usercon);
2576
2577	rc = -EINVAL;
2578	fromcon = sidtab_search(sidtab, fromsid);
2579	if (!fromcon)
2580		goto out_unlock;
2581
2582	rc = -EINVAL;
2583	user = hashtab_search(policydb->p_users.table, username);
2584	if (!user)
2585		goto out_unlock;
2586
2587	usercon.user = user->value;
2588
2589	rc = -ENOMEM;
2590	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2591	if (!mysids)
2592		goto out_unlock;
2593
2594	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2595		role = policydb->role_val_to_struct[i];
2596		usercon.role = i + 1;
2597		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2598			usercon.type = j + 1;
2599
2600			if (mls_setup_user_range(policydb, fromcon, user,
2601						 &usercon))
2602				continue;
2603
2604			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2605			if (rc)
2606				goto out_unlock;
2607			if (mynel < maxnel) {
2608				mysids[mynel++] = sid;
2609			} else {
2610				rc = -ENOMEM;
2611				maxnel += SIDS_NEL;
2612				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2613				if (!mysids2)
2614					goto out_unlock;
2615				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2616				kfree(mysids);
2617				mysids = mysids2;
2618				mysids[mynel++] = sid;
2619			}
2620		}
2621	}
2622	rc = 0;
2623out_unlock:
2624	read_unlock(&state->ss->policy_rwlock);
2625	if (rc || !mynel) {
2626		kfree(mysids);
2627		goto out;
2628	}
2629
2630	rc = -ENOMEM;
2631	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2632	if (!mysids2) {
2633		kfree(mysids);
2634		goto out;
2635	}
2636	for (i = 0, j = 0; i < mynel; i++) {
2637		struct av_decision dummy_avd;
2638		rc = avc_has_perm_noaudit(state,
2639					  fromsid, mysids[i],
2640					  SECCLASS_PROCESS, /* kernel value */
2641					  PROCESS__TRANSITION, AVC_STRICT,
2642					  &dummy_avd);
2643		if (!rc)
2644			mysids2[j++] = mysids[i];
2645		cond_resched();
2646	}
2647	rc = 0;
2648	kfree(mysids);
2649	*sids = mysids2;
2650	*nel = j;
2651out:
2652	return rc;
2653}
2654
2655/**
2656 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2657 * @fstype: filesystem type
2658 * @path: path from root of mount
2659 * @sclass: file security class
2660 * @sid: SID for path
2661 *
2662 * Obtain a SID to use for a file in a filesystem that
2663 * cannot support xattr or use a fixed labeling behavior like
2664 * transition SIDs or task SIDs.
2665 *
2666 * The caller must acquire the policy_rwlock before calling this function.
2667 */
2668static inline int __security_genfs_sid(struct selinux_state *state,
2669				       const char *fstype,
2670				       char *path,
2671				       u16 orig_sclass,
2672				       u32 *sid)
2673{
2674	struct policydb *policydb = &state->ss->policydb;
2675	struct sidtab *sidtab = state->ss->sidtab;
2676	int len;
2677	u16 sclass;
2678	struct genfs *genfs;
2679	struct ocontext *c;
2680	int rc, cmp = 0;
2681
2682	while (path[0] == '/' && path[1] == '/')
2683		path++;
2684
2685	sclass = unmap_class(&state->ss->map, orig_sclass);
2686	*sid = SECINITSID_UNLABELED;
2687
2688	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2689		cmp = strcmp(fstype, genfs->fstype);
2690		if (cmp <= 0)
2691			break;
2692	}
2693
2694	rc = -ENOENT;
2695	if (!genfs || cmp)
2696		goto out;
2697
2698	for (c = genfs->head; c; c = c->next) {
2699		len = strlen(c->u.name);
2700		if ((!c->v.sclass || sclass == c->v.sclass) &&
2701		    (strncmp(c->u.name, path, len) == 0))
2702			break;
2703	}
2704
2705	rc = -ENOENT;
2706	if (!c)
2707		goto out;
2708
2709	if (!c->sid[0]) {
2710		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2711		if (rc)
2712			goto out;
2713	}
2714
2715	*sid = c->sid[0];
2716	rc = 0;
2717out:
2718	return rc;
2719}
2720
2721/**
2722 * security_genfs_sid - Obtain a SID for a file in a filesystem
2723 * @fstype: filesystem type
2724 * @path: path from root of mount
2725 * @sclass: file security class
2726 * @sid: SID for path
2727 *
2728 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2729 * it afterward.
2730 */
2731int security_genfs_sid(struct selinux_state *state,
2732		       const char *fstype,
2733		       char *path,
2734		       u16 orig_sclass,
2735		       u32 *sid)
2736{
2737	int retval;
2738
2739	read_lock(&state->ss->policy_rwlock);
2740	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2741	read_unlock(&state->ss->policy_rwlock);
2742	return retval;
2743}
2744
2745/**
2746 * security_fs_use - Determine how to handle labeling for a filesystem.
2747 * @sb: superblock in question
2748 */
2749int security_fs_use(struct selinux_state *state, struct super_block *sb)
2750{
2751	struct policydb *policydb;
2752	struct sidtab *sidtab;
2753	int rc = 0;
2754	struct ocontext *c;
2755	struct superblock_security_struct *sbsec = sb->s_security;
2756	const char *fstype = sb->s_type->name;
2757
2758	read_lock(&state->ss->policy_rwlock);
2759
2760	policydb = &state->ss->policydb;
2761	sidtab = state->ss->sidtab;
2762
2763	c = policydb->ocontexts[OCON_FSUSE];
2764	while (c) {
2765		if (strcmp(fstype, c->u.name) == 0)
2766			break;
2767		c = c->next;
2768	}
2769
2770	if (c) {
2771		sbsec->behavior = c->v.behavior;
2772		if (!c->sid[0]) {
2773			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2774						   &c->sid[0]);
2775			if (rc)
2776				goto out;
2777		}
2778		sbsec->sid = c->sid[0];
2779	} else {
2780		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2781					  &sbsec->sid);
2782		if (rc) {
2783			sbsec->behavior = SECURITY_FS_USE_NONE;
2784			rc = 0;
2785		} else {
2786			sbsec->behavior = SECURITY_FS_USE_GENFS;
2787		}
2788	}
2789
2790out:
2791	read_unlock(&state->ss->policy_rwlock);
2792	return rc;
2793}
2794
2795int security_get_bools(struct selinux_state *state,
2796		       int *len, char ***names, int **values)
2797{
2798	struct policydb *policydb;
2799	int i, rc;
2800
2801	if (!state->initialized) {
2802		*len = 0;
2803		*names = NULL;
2804		*values = NULL;
2805		return 0;
2806	}
2807
2808	read_lock(&state->ss->policy_rwlock);
2809
2810	policydb = &state->ss->policydb;
2811
2812	*names = NULL;
2813	*values = NULL;
2814
2815	rc = 0;
2816	*len = policydb->p_bools.nprim;
2817	if (!*len)
2818		goto out;
2819
2820	rc = -ENOMEM;
2821	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2822	if (!*names)
2823		goto err;
2824
2825	rc = -ENOMEM;
2826	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2827	if (!*values)
2828		goto err;
2829
2830	for (i = 0; i < *len; i++) {
2831		(*values)[i] = policydb->bool_val_to_struct[i]->state;
2832
2833		rc = -ENOMEM;
2834		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2835				      GFP_ATOMIC);
2836		if (!(*names)[i])
2837			goto err;
2838	}
2839	rc = 0;
2840out:
2841	read_unlock(&state->ss->policy_rwlock);
2842	return rc;
2843err:
2844	if (*names) {
2845		for (i = 0; i < *len; i++)
2846			kfree((*names)[i]);
2847	}
2848	kfree(*values);
2849	goto out;
2850}
2851
2852
2853int security_set_bools(struct selinux_state *state, int len, int *values)
2854{
2855	struct policydb *policydb;
2856	int i, rc;
2857	int lenp, seqno = 0;
2858	struct cond_node *cur;
2859
2860	write_lock_irq(&state->ss->policy_rwlock);
2861
2862	policydb = &state->ss->policydb;
2863
2864	rc = -EFAULT;
2865	lenp = policydb->p_bools.nprim;
2866	if (len != lenp)
2867		goto out;
2868
2869	for (i = 0; i < len; i++) {
2870		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2871			audit_log(audit_context(), GFP_ATOMIC,
2872				AUDIT_MAC_CONFIG_CHANGE,
2873				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2874				sym_name(policydb, SYM_BOOLS, i),
2875				!!values[i],
2876				policydb->bool_val_to_struct[i]->state,
2877				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2878				audit_get_sessionid(current));
2879		}
2880		if (values[i])
2881			policydb->bool_val_to_struct[i]->state = 1;
2882		else
2883			policydb->bool_val_to_struct[i]->state = 0;
2884	}
2885
2886	for (cur = policydb->cond_list; cur; cur = cur->next) {
2887		rc = evaluate_cond_node(policydb, cur);
2888		if (rc)
2889			goto out;
2890	}
2891
2892	seqno = ++state->ss->latest_granting;
2893	rc = 0;
2894out:
2895	write_unlock_irq(&state->ss->policy_rwlock);
2896	if (!rc) {
2897		avc_ss_reset(state->avc, seqno);
2898		selnl_notify_policyload(seqno);
2899		selinux_status_update_policyload(state, seqno);
2900		selinux_xfrm_notify_policyload();
2901	}
2902	return rc;
2903}
2904
2905int security_get_bool_value(struct selinux_state *state,
2906			    int index)
2907{
2908	struct policydb *policydb;
2909	int rc;
2910	int len;
2911
2912	read_lock(&state->ss->policy_rwlock);
2913
2914	policydb = &state->ss->policydb;
2915
2916	rc = -EFAULT;
2917	len = policydb->p_bools.nprim;
2918	if (index >= len)
2919		goto out;
2920
2921	rc = policydb->bool_val_to_struct[index]->state;
2922out:
2923	read_unlock(&state->ss->policy_rwlock);
2924	return rc;
2925}
2926
2927static int security_preserve_bools(struct selinux_state *state,
2928				   struct policydb *policydb)
2929{
2930	int rc, nbools = 0, *bvalues = NULL, i;
2931	char **bnames = NULL;
2932	struct cond_bool_datum *booldatum;
2933	struct cond_node *cur;
2934
2935	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2936	if (rc)
2937		goto out;
2938	for (i = 0; i < nbools; i++) {
2939		booldatum = hashtab_search(policydb->p_bools.table, bnames[i]);
2940		if (booldatum)
2941			booldatum->state = bvalues[i];
2942	}
2943	for (cur = policydb->cond_list; cur; cur = cur->next) {
2944		rc = evaluate_cond_node(policydb, cur);
2945		if (rc)
2946			goto out;
2947	}
2948
2949out:
2950	if (bnames) {
2951		for (i = 0; i < nbools; i++)
2952			kfree(bnames[i]);
2953	}
2954	kfree(bnames);
2955	kfree(bvalues);
2956	return rc;
2957}
2958
2959/*
2960 * security_sid_mls_copy() - computes a new sid based on the given
2961 * sid and the mls portion of mls_sid.
2962 */
2963int security_sid_mls_copy(struct selinux_state *state,
2964			  u32 sid, u32 mls_sid, u32 *new_sid)
2965{
2966	struct policydb *policydb = &state->ss->policydb;
2967	struct sidtab *sidtab = state->ss->sidtab;
2968	struct context *context1;
2969	struct context *context2;
2970	struct context newcon;
2971	char *s;
2972	u32 len;
2973	int rc;
2974
2975	rc = 0;
2976	if (!state->initialized || !policydb->mls_enabled) {
2977		*new_sid = sid;
2978		goto out;
2979	}
2980
2981	context_init(&newcon);
2982
2983	read_lock(&state->ss->policy_rwlock);
2984
2985	rc = -EINVAL;
2986	context1 = sidtab_search(sidtab, sid);
2987	if (!context1) {
2988		pr_err("SELinux: %s:  unrecognized SID %d\n",
2989			__func__, sid);
2990		goto out_unlock;
2991	}
2992
2993	rc = -EINVAL;
2994	context2 = sidtab_search(sidtab, mls_sid);
2995	if (!context2) {
2996		pr_err("SELinux: %s:  unrecognized SID %d\n",
2997			__func__, mls_sid);
2998		goto out_unlock;
2999	}
3000
3001	newcon.user = context1->user;
3002	newcon.role = context1->role;
3003	newcon.type = context1->type;
3004	rc = mls_context_cpy(&newcon, context2);
3005	if (rc)
3006		goto out_unlock;
3007
3008	/* Check the validity of the new context. */
3009	if (!policydb_context_isvalid(policydb, &newcon)) {
3010		rc = convert_context_handle_invalid_context(state, &newcon);
3011		if (rc) {
3012			if (!context_struct_to_string(policydb, &newcon, &s,
3013						      &len)) {
3014				struct audit_buffer *ab;
3015
3016				ab = audit_log_start(audit_context(),
3017						     GFP_ATOMIC,
3018						     AUDIT_SELINUX_ERR);
3019				audit_log_format(ab,
3020						 "op=security_sid_mls_copy invalid_context=");
3021				/* don't record NUL with untrusted strings */
3022				audit_log_n_untrustedstring(ab, s, len - 1);
3023				audit_log_end(ab);
3024				kfree(s);
3025			}
3026			goto out_unlock;
3027		}
3028	}
3029
3030	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3031out_unlock:
3032	read_unlock(&state->ss->policy_rwlock);
3033	context_destroy(&newcon);
3034out:
3035	return rc;
3036}
3037
3038/**
3039 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3040 * @nlbl_sid: NetLabel SID
3041 * @nlbl_type: NetLabel labeling protocol type
3042 * @xfrm_sid: XFRM SID
3043 *
3044 * Description:
3045 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3046 * resolved into a single SID it is returned via @peer_sid and the function
3047 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3048 * returns a negative value.  A table summarizing the behavior is below:
3049 *
3050 *                                 | function return |      @sid
3051 *   ------------------------------+-----------------+-----------------
3052 *   no peer labels                |        0        |    SECSID_NULL
3053 *   single peer label             |        0        |    <peer_label>
3054 *   multiple, consistent labels   |        0        |    <peer_label>
3055 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3056 *
3057 */
3058int security_net_peersid_resolve(struct selinux_state *state,
3059				 u32 nlbl_sid, u32 nlbl_type,
3060				 u32 xfrm_sid,
3061				 u32 *peer_sid)
3062{
3063	struct policydb *policydb = &state->ss->policydb;
3064	struct sidtab *sidtab = state->ss->sidtab;
3065	int rc;
3066	struct context *nlbl_ctx;
3067	struct context *xfrm_ctx;
3068
3069	*peer_sid = SECSID_NULL;
3070
3071	/* handle the common (which also happens to be the set of easy) cases
3072	 * right away, these two if statements catch everything involving a
3073	 * single or absent peer SID/label */
3074	if (xfrm_sid == SECSID_NULL) {
3075		*peer_sid = nlbl_sid;
3076		return 0;
3077	}
3078	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3079	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3080	 * is present */
3081	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3082		*peer_sid = xfrm_sid;
3083		return 0;
3084	}
3085
3086	/*
3087	 * We don't need to check initialized here since the only way both
3088	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3089	 * security server was initialized and state->initialized was true.
3090	 */
3091	if (!policydb->mls_enabled)
3092		return 0;
3093
3094	read_lock(&state->ss->policy_rwlock);
3095
3096	rc = -EINVAL;
3097	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3098	if (!nlbl_ctx) {
3099		pr_err("SELinux: %s:  unrecognized SID %d\n",
3100		       __func__, nlbl_sid);
3101		goto out;
3102	}
3103	rc = -EINVAL;
3104	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3105	if (!xfrm_ctx) {
3106		pr_err("SELinux: %s:  unrecognized SID %d\n",
3107		       __func__, xfrm_sid);
3108		goto out;
3109	}
3110	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3111	if (rc)
3112		goto out;
3113
3114	/* at present NetLabel SIDs/labels really only carry MLS
3115	 * information so if the MLS portion of the NetLabel SID
3116	 * matches the MLS portion of the labeled XFRM SID/label
3117	 * then pass along the XFRM SID as it is the most
3118	 * expressive */
3119	*peer_sid = xfrm_sid;
3120out:
3121	read_unlock(&state->ss->policy_rwlock);
3122	return rc;
3123}
3124
3125static int get_classes_callback(void *k, void *d, void *args)
3126{
3127	struct class_datum *datum = d;
3128	char *name = k, **classes = args;
3129	int value = datum->value - 1;
3130
3131	classes[value] = kstrdup(name, GFP_ATOMIC);
3132	if (!classes[value])
3133		return -ENOMEM;
3134
3135	return 0;
3136}
3137
3138int security_get_classes(struct selinux_state *state,
3139			 char ***classes, int *nclasses)
3140{
3141	struct policydb *policydb = &state->ss->policydb;
3142	int rc;
3143
3144	if (!state->initialized) {
3145		*nclasses = 0;
3146		*classes = NULL;
3147		return 0;
3148	}
3149
3150	read_lock(&state->ss->policy_rwlock);
3151
3152	rc = -ENOMEM;
3153	*nclasses = policydb->p_classes.nprim;
3154	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3155	if (!*classes)
3156		goto out;
3157
3158	rc = hashtab_map(policydb->p_classes.table, get_classes_callback,
3159			*classes);
3160	if (rc) {
3161		int i;
3162		for (i = 0; i < *nclasses; i++)
3163			kfree((*classes)[i]);
3164		kfree(*classes);
3165	}
3166
3167out:
3168	read_unlock(&state->ss->policy_rwlock);
3169	return rc;
3170}
3171
3172static int get_permissions_callback(void *k, void *d, void *args)
3173{
3174	struct perm_datum *datum = d;
3175	char *name = k, **perms = args;
3176	int value = datum->value - 1;
3177
3178	perms[value] = kstrdup(name, GFP_ATOMIC);
3179	if (!perms[value])
3180		return -ENOMEM;
3181
3182	return 0;
3183}
3184
3185int security_get_permissions(struct selinux_state *state,
3186			     char *class, char ***perms, int *nperms)
3187{
3188	struct policydb *policydb = &state->ss->policydb;
3189	int rc, i;
3190	struct class_datum *match;
3191
3192	read_lock(&state->ss->policy_rwlock);
3193
3194	rc = -EINVAL;
3195	match = hashtab_search(policydb->p_classes.table, class);
3196	if (!match) {
3197		pr_err("SELinux: %s:  unrecognized class %s\n",
3198			__func__, class);
3199		goto out;
3200	}
3201
3202	rc = -ENOMEM;
3203	*nperms = match->permissions.nprim;
3204	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3205	if (!*perms)
3206		goto out;
3207
3208	if (match->comdatum) {
3209		rc = hashtab_map(match->comdatum->permissions.table,
3210				get_permissions_callback, *perms);
3211		if (rc)
3212			goto err;
3213	}
3214
3215	rc = hashtab_map(match->permissions.table, get_permissions_callback,
3216			*perms);
3217	if (rc)
3218		goto err;
3219
3220out:
3221	read_unlock(&state->ss->policy_rwlock);
3222	return rc;
3223
3224err:
3225	read_unlock(&state->ss->policy_rwlock);
3226	for (i = 0; i < *nperms; i++)
3227		kfree((*perms)[i]);
3228	kfree(*perms);
3229	return rc;
3230}
3231
3232int security_get_reject_unknown(struct selinux_state *state)
3233{
3234	return state->ss->policydb.reject_unknown;
3235}
3236
3237int security_get_allow_unknown(struct selinux_state *state)
3238{
3239	return state->ss->policydb.allow_unknown;
3240}
3241
3242/**
3243 * security_policycap_supported - Check for a specific policy capability
3244 * @req_cap: capability
3245 *
3246 * Description:
3247 * This function queries the currently loaded policy to see if it supports the
3248 * capability specified by @req_cap.  Returns true (1) if the capability is
3249 * supported, false (0) if it isn't supported.
3250 *
3251 */
3252int security_policycap_supported(struct selinux_state *state,
3253				 unsigned int req_cap)
3254{
3255	struct policydb *policydb = &state->ss->policydb;
3256	int rc;
3257
3258	read_lock(&state->ss->policy_rwlock);
3259	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3260	read_unlock(&state->ss->policy_rwlock);
3261
3262	return rc;
3263}
3264
3265struct selinux_audit_rule {
3266	u32 au_seqno;
3267	struct context au_ctxt;
3268};
3269
3270void selinux_audit_rule_free(void *vrule)
3271{
3272	struct selinux_audit_rule *rule = vrule;
3273
3274	if (rule) {
3275		context_destroy(&rule->au_ctxt);
3276		kfree(rule);
3277	}
3278}
3279
3280int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3281{
3282	struct selinux_state *state = &selinux_state;
3283	struct policydb *policydb = &state->ss->policydb;
3284	struct selinux_audit_rule *tmprule;
3285	struct role_datum *roledatum;
3286	struct type_datum *typedatum;
3287	struct user_datum *userdatum;
3288	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3289	int rc = 0;
3290
3291	*rule = NULL;
3292
3293	if (!state->initialized)
3294		return -EOPNOTSUPP;
3295
3296	switch (field) {
3297	case AUDIT_SUBJ_USER:
3298	case AUDIT_SUBJ_ROLE:
3299	case AUDIT_SUBJ_TYPE:
3300	case AUDIT_OBJ_USER:
3301	case AUDIT_OBJ_ROLE:
3302	case AUDIT_OBJ_TYPE:
3303		/* only 'equals' and 'not equals' fit user, role, and type */
3304		if (op != Audit_equal && op != Audit_not_equal)
3305			return -EINVAL;
3306		break;
3307	case AUDIT_SUBJ_SEN:
3308	case AUDIT_SUBJ_CLR:
3309	case AUDIT_OBJ_LEV_LOW:
3310	case AUDIT_OBJ_LEV_HIGH:
3311		/* we do not allow a range, indicated by the presence of '-' */
3312		if (strchr(rulestr, '-'))
3313			return -EINVAL;
3314		break;
3315	default:
3316		/* only the above fields are valid */
3317		return -EINVAL;
3318	}
3319
3320	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3321	if (!tmprule)
3322		return -ENOMEM;
3323
3324	context_init(&tmprule->au_ctxt);
3325
3326	read_lock(&state->ss->policy_rwlock);
3327
3328	tmprule->au_seqno = state->ss->latest_granting;
3329
3330	switch (field) {
3331	case AUDIT_SUBJ_USER:
3332	case AUDIT_OBJ_USER:
3333		rc = -EINVAL;
3334		userdatum = hashtab_search(policydb->p_users.table, rulestr);
3335		if (!userdatum)
3336			goto out;
3337		tmprule->au_ctxt.user = userdatum->value;
3338		break;
3339	case AUDIT_SUBJ_ROLE:
3340	case AUDIT_OBJ_ROLE:
3341		rc = -EINVAL;
3342		roledatum = hashtab_search(policydb->p_roles.table, rulestr);
3343		if (!roledatum)
3344			goto out;
3345		tmprule->au_ctxt.role = roledatum->value;
3346		break;
3347	case AUDIT_SUBJ_TYPE:
3348	case AUDIT_OBJ_TYPE:
3349		rc = -EINVAL;
3350		typedatum = hashtab_search(policydb->p_types.table, rulestr);
3351		if (!typedatum)
3352			goto out;
3353		tmprule->au_ctxt.type = typedatum->value;
3354		break;
3355	case AUDIT_SUBJ_SEN:
3356	case AUDIT_SUBJ_CLR:
3357	case AUDIT_OBJ_LEV_LOW:
3358	case AUDIT_OBJ_LEV_HIGH:
3359		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3360				     GFP_ATOMIC);
3361		if (rc)
3362			goto out;
3363		break;
3364	}
3365	rc = 0;
3366out:
3367	read_unlock(&state->ss->policy_rwlock);
3368
3369	if (rc) {
3370		selinux_audit_rule_free(tmprule);
3371		tmprule = NULL;
3372	}
3373
3374	*rule = tmprule;
3375
3376	return rc;
3377}
3378
3379/* Check to see if the rule contains any selinux fields */
3380int selinux_audit_rule_known(struct audit_krule *rule)
3381{
3382	int i;
3383
3384	for (i = 0; i < rule->field_count; i++) {
3385		struct audit_field *f = &rule->fields[i];
3386		switch (f->type) {
3387		case AUDIT_SUBJ_USER:
3388		case AUDIT_SUBJ_ROLE:
3389		case AUDIT_SUBJ_TYPE:
3390		case AUDIT_SUBJ_SEN:
3391		case AUDIT_SUBJ_CLR:
3392		case AUDIT_OBJ_USER:
3393		case AUDIT_OBJ_ROLE:
3394		case AUDIT_OBJ_TYPE:
3395		case AUDIT_OBJ_LEV_LOW:
3396		case AUDIT_OBJ_LEV_HIGH:
3397			return 1;
3398		}
3399	}
3400
3401	return 0;
3402}
3403
3404int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3405{
3406	struct selinux_state *state = &selinux_state;
3407	struct context *ctxt;
3408	struct mls_level *level;
3409	struct selinux_audit_rule *rule = vrule;
3410	int match = 0;
3411
3412	if (unlikely(!rule)) {
3413		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
3414		return -ENOENT;
3415	}
3416
3417	read_lock(&state->ss->policy_rwlock);
3418
3419	if (rule->au_seqno < state->ss->latest_granting) {
3420		match = -ESTALE;
3421		goto out;
3422	}
3423
3424	ctxt = sidtab_search(state->ss->sidtab, sid);
3425	if (unlikely(!ctxt)) {
3426		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3427			  sid);
3428		match = -ENOENT;
3429		goto out;
3430	}
3431
3432	/* a field/op pair that is not caught here will simply fall through
3433	   without a match */
3434	switch (field) {
3435	case AUDIT_SUBJ_USER:
3436	case AUDIT_OBJ_USER:
3437		switch (op) {
3438		case Audit_equal:
3439			match = (ctxt->user == rule->au_ctxt.user);
3440			break;
3441		case Audit_not_equal:
3442			match = (ctxt->user != rule->au_ctxt.user);
3443			break;
3444		}
3445		break;
3446	case AUDIT_SUBJ_ROLE:
3447	case AUDIT_OBJ_ROLE:
3448		switch (op) {
3449		case Audit_equal:
3450			match = (ctxt->role == rule->au_ctxt.role);
3451			break;
3452		case Audit_not_equal:
3453			match = (ctxt->role != rule->au_ctxt.role);
3454			break;
3455		}
3456		break;
3457	case AUDIT_SUBJ_TYPE:
3458	case AUDIT_OBJ_TYPE:
3459		switch (op) {
3460		case Audit_equal:
3461			match = (ctxt->type == rule->au_ctxt.type);
3462			break;
3463		case Audit_not_equal:
3464			match = (ctxt->type != rule->au_ctxt.type);
3465			break;
3466		}
3467		break;
3468	case AUDIT_SUBJ_SEN:
3469	case AUDIT_SUBJ_CLR:
3470	case AUDIT_OBJ_LEV_LOW:
3471	case AUDIT_OBJ_LEV_HIGH:
3472		level = ((field == AUDIT_SUBJ_SEN ||
3473			  field == AUDIT_OBJ_LEV_LOW) ?
3474			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3475		switch (op) {
3476		case Audit_equal:
3477			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3478					     level);
3479			break;
3480		case Audit_not_equal:
3481			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3482					      level);
3483			break;
3484		case Audit_lt:
3485			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3486					       level) &&
3487				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3488					       level));
3489			break;
3490		case Audit_le:
3491			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3492					      level);
3493			break;
3494		case Audit_gt:
3495			match = (mls_level_dom(level,
3496					      &rule->au_ctxt.range.level[0]) &&
3497				 !mls_level_eq(level,
3498					       &rule->au_ctxt.range.level[0]));
3499			break;
3500		case Audit_ge:
3501			match = mls_level_dom(level,
3502					      &rule->au_ctxt.range.level[0]);
3503			break;
3504		}
3505	}
3506
3507out:
3508	read_unlock(&state->ss->policy_rwlock);
3509	return match;
3510}
3511
3512static int (*aurule_callback)(void) = audit_update_lsm_rules;
3513
3514static int aurule_avc_callback(u32 event)
3515{
3516	int err = 0;
3517
3518	if (event == AVC_CALLBACK_RESET && aurule_callback)
3519		err = aurule_callback();
3520	return err;
3521}
3522
3523static int __init aurule_init(void)
3524{
3525	int err;
3526
3527	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3528	if (err)
3529		panic("avc_add_callback() failed, error %d\n", err);
3530
3531	return err;
3532}
3533__initcall(aurule_init);
3534
3535#ifdef CONFIG_NETLABEL
3536/**
3537 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3538 * @secattr: the NetLabel packet security attributes
3539 * @sid: the SELinux SID
3540 *
3541 * Description:
3542 * Attempt to cache the context in @ctx, which was derived from the packet in
3543 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3544 * already been initialized.
3545 *
3546 */
3547static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3548				      u32 sid)
3549{
3550	u32 *sid_cache;
3551
3552	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3553	if (sid_cache == NULL)
3554		return;
3555	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3556	if (secattr->cache == NULL) {
3557		kfree(sid_cache);
3558		return;
3559	}
3560
3561	*sid_cache = sid;
3562	secattr->cache->free = kfree;
3563	secattr->cache->data = sid_cache;
3564	secattr->flags |= NETLBL_SECATTR_CACHE;
3565}
3566
3567/**
3568 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3569 * @secattr: the NetLabel packet security attributes
3570 * @sid: the SELinux SID
3571 *
3572 * Description:
3573 * Convert the given NetLabel security attributes in @secattr into a
3574 * SELinux SID.  If the @secattr field does not contain a full SELinux
3575 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3576 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3577 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3578 * conversion for future lookups.  Returns zero on success, negative values on
3579 * failure.
3580 *
3581 */
3582int security_netlbl_secattr_to_sid(struct selinux_state *state,
3583				   struct netlbl_lsm_secattr *secattr,
3584				   u32 *sid)
3585{
3586	struct policydb *policydb = &state->ss->policydb;
3587	struct sidtab *sidtab = state->ss->sidtab;
3588	int rc;
3589	struct context *ctx;
3590	struct context ctx_new;
3591
3592	if (!state->initialized) {
3593		*sid = SECSID_NULL;
3594		return 0;
3595	}
3596
3597	read_lock(&state->ss->policy_rwlock);
3598
3599	if (secattr->flags & NETLBL_SECATTR_CACHE)
3600		*sid = *(u32 *)secattr->cache->data;
3601	else if (secattr->flags & NETLBL_SECATTR_SECID)
3602		*sid = secattr->attr.secid;
3603	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3604		rc = -EIDRM;
3605		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3606		if (ctx == NULL)
3607			goto out;
3608
3609		context_init(&ctx_new);
3610		ctx_new.user = ctx->user;
3611		ctx_new.role = ctx->role;
3612		ctx_new.type = ctx->type;
3613		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3614		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3615			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
3616			if (rc)
3617				goto out;
3618		}
3619		rc = -EIDRM;
3620		if (!mls_context_isvalid(policydb, &ctx_new))
3621			goto out_free;
3622
3623		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3624		if (rc)
3625			goto out_free;
3626
3627		security_netlbl_cache_add(secattr, *sid);
3628
3629		ebitmap_destroy(&ctx_new.range.level[0].cat);
3630	} else
3631		*sid = SECSID_NULL;
3632
3633	read_unlock(&state->ss->policy_rwlock);
3634	return 0;
3635out_free:
3636	ebitmap_destroy(&ctx_new.range.level[0].cat);
3637out:
3638	read_unlock(&state->ss->policy_rwlock);
3639	return rc;
3640}
3641
3642/**
3643 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3644 * @sid: the SELinux SID
3645 * @secattr: the NetLabel packet security attributes
3646 *
3647 * Description:
3648 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3649 * Returns zero on success, negative values on failure.
3650 *
3651 */
3652int security_netlbl_sid_to_secattr(struct selinux_state *state,
3653				   u32 sid, struct netlbl_lsm_secattr *secattr)
3654{
3655	struct policydb *policydb = &state->ss->policydb;
3656	int rc;
3657	struct context *ctx;
3658
3659	if (!state->initialized)
3660		return 0;
3661
3662	read_lock(&state->ss->policy_rwlock);
3663
3664	rc = -ENOENT;
3665	ctx = sidtab_search(state->ss->sidtab, sid);
3666	if (ctx == NULL)
3667		goto out;
3668
3669	rc = -ENOMEM;
3670	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3671				  GFP_ATOMIC);
3672	if (secattr->domain == NULL)
3673		goto out;
3674
3675	secattr->attr.secid = sid;
3676	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3677	mls_export_netlbl_lvl(policydb, ctx, secattr);
3678	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3679out:
3680	read_unlock(&state->ss->policy_rwlock);
3681	return rc;
3682}
3683#endif /* CONFIG_NETLABEL */
3684
3685/**
3686 * security_read_policy - read the policy.
3687 * @data: binary policy data
3688 * @len: length of data in bytes
3689 *
3690 */
3691int security_read_policy(struct selinux_state *state,
3692			 void **data, size_t *len)
3693{
3694	struct policydb *policydb = &state->ss->policydb;
3695	int rc;
3696	struct policy_file fp;
3697
3698	if (!state->initialized)
3699		return -EINVAL;
3700
3701	*len = security_policydb_len(state);
3702
3703	*data = vmalloc_user(*len);
3704	if (!*data)
3705		return -ENOMEM;
3706
3707	fp.data = *data;
3708	fp.len = *len;
3709
3710	read_lock(&state->ss->policy_rwlock);
3711	rc = policydb_write(policydb, &fp);
3712	read_unlock(&state->ss->policy_rwlock);
3713
3714	if (rc)
3715		return rc;
3716
3717	*len = (unsigned long)fp.data - (unsigned long)*data;
3718	return 0;
3719
3720}