Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  linux/kernel/printk.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 * Modified to make sys_syslog() more flexible: added commands to
   7 * return the last 4k of kernel messages, regardless of whether
   8 * they've been read or not.  Added option to suppress kernel printk's
   9 * to the console.  Added hook for sending the console messages
  10 * elsewhere, in preparation for a serial line console (someday).
  11 * Ted Ts'o, 2/11/93.
  12 * Modified for sysctl support, 1/8/97, Chris Horn.
  13 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  14 *     manfred@colorfullife.com
  15 * Rewrote bits to get rid of console_lock
  16 *	01Mar01 Andrew Morton
  17 */
  18
 
 
  19#include <linux/kernel.h>
  20#include <linux/mm.h>
  21#include <linux/tty.h>
  22#include <linux/tty_driver.h>
  23#include <linux/console.h>
  24#include <linux/init.h>
  25#include <linux/jiffies.h>
  26#include <linux/nmi.h>
  27#include <linux/module.h>
  28#include <linux/moduleparam.h>
  29#include <linux/interrupt.h>			/* For in_interrupt() */
  30#include <linux/delay.h>
  31#include <linux/smp.h>
  32#include <linux/security.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/syscalls.h>
  36#include <linux/kexec.h>
  37#include <linux/kdb.h>
  38#include <linux/ratelimit.h>
  39#include <linux/kmsg_dump.h>
  40#include <linux/syslog.h>
  41#include <linux/cpu.h>
  42#include <linux/notifier.h>
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
  46#include <linux/utsname.h>
  47#include <linux/ctype.h>
  48#include <linux/uio.h>
 
 
 
  49
  50#include <asm/uaccess.h>
  51#include <asm-generic/sections.h>
  52
 
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/printk.h>
  55
  56#include "console_cmdline.h"
  57#include "braille.h"
 
  58
  59int console_printk[4] = {
  60	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  61	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  62	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  63	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  64};
 
 
 
 
  65
  66/*
  67 * Low level drivers may need that to know if they can schedule in
  68 * their unblank() callback or not. So let's export it.
  69 */
  70int oops_in_progress;
  71EXPORT_SYMBOL(oops_in_progress);
  72
  73/*
  74 * console_sem protects the console_drivers list, and also
  75 * provides serialisation for access to the entire console
  76 * driver system.
  77 */
  78static DEFINE_SEMAPHORE(console_sem);
  79struct console *console_drivers;
  80EXPORT_SYMBOL_GPL(console_drivers);
  81
 
 
 
 
 
 
  82#ifdef CONFIG_LOCKDEP
  83static struct lockdep_map console_lock_dep_map = {
  84	.name = "console_lock"
  85};
  86#endif
  87
  88/*
  89 * Number of registered extended console drivers.
  90 *
  91 * If extended consoles are present, in-kernel cont reassembly is disabled
  92 * and each fragment is stored as a separate log entry with proper
  93 * continuation flag so that every emitted message has full metadata.  This
  94 * doesn't change the result for regular consoles or /proc/kmsg.  For
  95 * /dev/kmsg, as long as the reader concatenates messages according to
  96 * consecutive continuation flags, the end result should be the same too.
  97 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98static int nr_ext_console_drivers;
  99
 100/*
 101 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 102 * macros instead of functions so that _RET_IP_ contains useful information.
 103 */
 104#define down_console_sem() do { \
 105	down(&console_sem);\
 106	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 107} while (0)
 108
 109static int __down_trylock_console_sem(unsigned long ip)
 110{
 111	if (down_trylock(&console_sem))
 
 
 
 
 
 
 
 
 
 
 
 
 112		return 1;
 113	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 114	return 0;
 115}
 116#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 117
 118#define up_console_sem() do { \
 119	mutex_release(&console_lock_dep_map, 1, _RET_IP_);\
 120	up(&console_sem);\
 121} while (0)
 
 
 
 
 
 
 
 122
 123/*
 124 * This is used for debugging the mess that is the VT code by
 125 * keeping track if we have the console semaphore held. It's
 126 * definitely not the perfect debug tool (we don't know if _WE_
 127 * hold it and are racing, but it helps tracking those weird code
 128 * paths in the console code where we end up in places I want
 129 * locked without the console sempahore held).
 130 */
 131static int console_locked, console_suspended;
 132
 133/*
 134 * If exclusive_console is non-NULL then only this console is to be printed to.
 135 */
 136static struct console *exclusive_console;
 137
 138/*
 139 *	Array of consoles built from command line options (console=)
 140 */
 141
 142#define MAX_CMDLINECONSOLES 8
 143
 144static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 145
 146static int selected_console = -1;
 147static int preferred_console = -1;
 148int console_set_on_cmdline;
 149EXPORT_SYMBOL(console_set_on_cmdline);
 150
 151/* Flag: console code may call schedule() */
 152static int console_may_schedule;
 153
 
 
 
 
 
 
 
 154/*
 155 * The printk log buffer consists of a chain of concatenated variable
 156 * length records. Every record starts with a record header, containing
 157 * the overall length of the record.
 158 *
 159 * The heads to the first and last entry in the buffer, as well as the
 160 * sequence numbers of these entries are maintained when messages are
 161 * stored.
 162 *
 163 * If the heads indicate available messages, the length in the header
 164 * tells the start next message. A length == 0 for the next message
 165 * indicates a wrap-around to the beginning of the buffer.
 166 *
 167 * Every record carries the monotonic timestamp in microseconds, as well as
 168 * the standard userspace syslog level and syslog facility. The usual
 169 * kernel messages use LOG_KERN; userspace-injected messages always carry
 170 * a matching syslog facility, by default LOG_USER. The origin of every
 171 * message can be reliably determined that way.
 172 *
 173 * The human readable log message directly follows the message header. The
 174 * length of the message text is stored in the header, the stored message
 175 * is not terminated.
 176 *
 177 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 178 * to provide userspace with a machine-readable message context.
 179 *
 180 * Examples for well-defined, commonly used property names are:
 181 *   DEVICE=b12:8               device identifier
 182 *                                b12:8         block dev_t
 183 *                                c127:3        char dev_t
 184 *                                n8            netdev ifindex
 185 *                                +sound:card0  subsystem:devname
 186 *   SUBSYSTEM=pci              driver-core subsystem name
 187 *
 188 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 189 * follows directly after a '=' character. Every property is terminated by
 190 * a '\0' character. The last property is not terminated.
 191 *
 192 * Example of a message structure:
 193 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 194 *   0008  34 00                        record is 52 bytes long
 195 *   000a        0b 00                  text is 11 bytes long
 196 *   000c              1f 00            dictionary is 23 bytes long
 197 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 198 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 199 *         69 6e 65                     "ine"
 200 *   001b           44 45 56 49 43      "DEVIC"
 201 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 202 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 203 *         67                           "g"
 204 *   0032     00 00 00                  padding to next message header
 205 *
 206 * The 'struct printk_log' buffer header must never be directly exported to
 207 * userspace, it is a kernel-private implementation detail that might
 208 * need to be changed in the future, when the requirements change.
 209 *
 210 * /dev/kmsg exports the structured data in the following line format:
 211 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 212 *
 213 * Users of the export format should ignore possible additional values
 214 * separated by ',', and find the message after the ';' character.
 215 *
 216 * The optional key/value pairs are attached as continuation lines starting
 217 * with a space character and terminated by a newline. All possible
 218 * non-prinatable characters are escaped in the "\xff" notation.
 219 */
 220
 221enum log_flags {
 222	LOG_NOCONS	= 1,	/* already flushed, do not print to console */
 223	LOG_NEWLINE	= 2,	/* text ended with a newline */
 224	LOG_PREFIX	= 4,	/* text started with a prefix */
 225	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 226};
 227
 228struct printk_log {
 229	u64 ts_nsec;		/* timestamp in nanoseconds */
 230	u16 len;		/* length of entire record */
 231	u16 text_len;		/* length of text buffer */
 232	u16 dict_len;		/* length of dictionary buffer */
 233	u8 facility;		/* syslog facility */
 234	u8 flags:5;		/* internal record flags */
 235	u8 level:3;		/* syslog level */
 
 
 
 236}
 237#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 238__packed __aligned(4)
 239#endif
 240;
 241
 242/*
 243 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 244 * within the scheduler's rq lock. It must be released before calling
 245 * console_unlock() or anything else that might wake up a process.
 246 */
 247static DEFINE_RAW_SPINLOCK(logbuf_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249#ifdef CONFIG_PRINTK
 250DECLARE_WAIT_QUEUE_HEAD(log_wait);
 251/* the next printk record to read by syslog(READ) or /proc/kmsg */
 252static u64 syslog_seq;
 253static u32 syslog_idx;
 254static enum log_flags syslog_prev;
 255static size_t syslog_partial;
 
 256
 257/* index and sequence number of the first record stored in the buffer */
 258static u64 log_first_seq;
 259static u32 log_first_idx;
 260
 261/* index and sequence number of the next record to store in the buffer */
 262static u64 log_next_seq;
 263static u32 log_next_idx;
 264
 265/* the next printk record to write to the console */
 266static u64 console_seq;
 267static u32 console_idx;
 268static enum log_flags console_prev;
 269
 270/* the next printk record to read after the last 'clear' command */
 271static u64 clear_seq;
 272static u32 clear_idx;
 273
 
 
 
 274#define PREFIX_MAX		32
 
 275#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 276
 277#define LOG_LEVEL(v)		((v) & 0x07)
 278#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 279
 280/* record buffer */
 281#define LOG_ALIGN __alignof__(struct printk_log)
 282#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 
 283static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 284static char *log_buf = __log_buf;
 285static u32 log_buf_len = __LOG_BUF_LEN;
 286
 287/* Return log buffer address */
 288char *log_buf_addr_get(void)
 289{
 290	return log_buf;
 291}
 292
 293/* Return log buffer size */
 294u32 log_buf_len_get(void)
 295{
 296	return log_buf_len;
 297}
 298
 299/* human readable text of the record */
 300static char *log_text(const struct printk_log *msg)
 301{
 302	return (char *)msg + sizeof(struct printk_log);
 303}
 304
 305/* optional key/value pair dictionary attached to the record */
 306static char *log_dict(const struct printk_log *msg)
 307{
 308	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 309}
 310
 311/* get record by index; idx must point to valid msg */
 312static struct printk_log *log_from_idx(u32 idx)
 313{
 314	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 315
 316	/*
 317	 * A length == 0 record is the end of buffer marker. Wrap around and
 318	 * read the message at the start of the buffer.
 319	 */
 320	if (!msg->len)
 321		return (struct printk_log *)log_buf;
 322	return msg;
 323}
 324
 325/* get next record; idx must point to valid msg */
 326static u32 log_next(u32 idx)
 327{
 328	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 329
 330	/* length == 0 indicates the end of the buffer; wrap */
 331	/*
 332	 * A length == 0 record is the end of buffer marker. Wrap around and
 333	 * read the message at the start of the buffer as *this* one, and
 334	 * return the one after that.
 335	 */
 336	if (!msg->len) {
 337		msg = (struct printk_log *)log_buf;
 338		return msg->len;
 339	}
 340	return idx + msg->len;
 341}
 342
 343/*
 344 * Check whether there is enough free space for the given message.
 345 *
 346 * The same values of first_idx and next_idx mean that the buffer
 347 * is either empty or full.
 348 *
 349 * If the buffer is empty, we must respect the position of the indexes.
 350 * They cannot be reset to the beginning of the buffer.
 351 */
 352static int logbuf_has_space(u32 msg_size, bool empty)
 353{
 354	u32 free;
 355
 356	if (log_next_idx > log_first_idx || empty)
 357		free = max(log_buf_len - log_next_idx, log_first_idx);
 358	else
 359		free = log_first_idx - log_next_idx;
 360
 361	/*
 362	 * We need space also for an empty header that signalizes wrapping
 363	 * of the buffer.
 364	 */
 365	return free >= msg_size + sizeof(struct printk_log);
 366}
 367
 368static int log_make_free_space(u32 msg_size)
 369{
 370	while (log_first_seq < log_next_seq &&
 371	       !logbuf_has_space(msg_size, false)) {
 372		/* drop old messages until we have enough contiguous space */
 373		log_first_idx = log_next(log_first_idx);
 374		log_first_seq++;
 375	}
 376
 377	if (clear_seq < log_first_seq) {
 378		clear_seq = log_first_seq;
 379		clear_idx = log_first_idx;
 380	}
 381
 382	/* sequence numbers are equal, so the log buffer is empty */
 383	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 384		return 0;
 385
 386	return -ENOMEM;
 387}
 388
 389/* compute the message size including the padding bytes */
 390static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 391{
 392	u32 size;
 393
 394	size = sizeof(struct printk_log) + text_len + dict_len;
 395	*pad_len = (-size) & (LOG_ALIGN - 1);
 396	size += *pad_len;
 397
 398	return size;
 399}
 400
 401/*
 402 * Define how much of the log buffer we could take at maximum. The value
 403 * must be greater than two. Note that only half of the buffer is available
 404 * when the index points to the middle.
 405 */
 406#define MAX_LOG_TAKE_PART 4
 407static const char trunc_msg[] = "<truncated>";
 408
 409static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 410			u16 *dict_len, u32 *pad_len)
 411{
 412	/*
 413	 * The message should not take the whole buffer. Otherwise, it might
 414	 * get removed too soon.
 415	 */
 416	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 417	if (*text_len > max_text_len)
 418		*text_len = max_text_len;
 419	/* enable the warning message */
 420	*trunc_msg_len = strlen(trunc_msg);
 421	/* disable the "dict" completely */
 422	*dict_len = 0;
 423	/* compute the size again, count also the warning message */
 424	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 425}
 426
 427/* insert record into the buffer, discard old ones, update heads */
 428static int log_store(int facility, int level,
 429		     enum log_flags flags, u64 ts_nsec,
 430		     const char *dict, u16 dict_len,
 431		     const char *text, u16 text_len)
 432{
 433	struct printk_log *msg;
 434	u32 size, pad_len;
 435	u16 trunc_msg_len = 0;
 436
 437	/* number of '\0' padding bytes to next message */
 438	size = msg_used_size(text_len, dict_len, &pad_len);
 439
 440	if (log_make_free_space(size)) {
 441		/* truncate the message if it is too long for empty buffer */
 442		size = truncate_msg(&text_len, &trunc_msg_len,
 443				    &dict_len, &pad_len);
 444		/* survive when the log buffer is too small for trunc_msg */
 445		if (log_make_free_space(size))
 446			return 0;
 447	}
 448
 449	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 450		/*
 451		 * This message + an additional empty header does not fit
 452		 * at the end of the buffer. Add an empty header with len == 0
 453		 * to signify a wrap around.
 454		 */
 455		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 456		log_next_idx = 0;
 457	}
 458
 459	/* fill message */
 460	msg = (struct printk_log *)(log_buf + log_next_idx);
 461	memcpy(log_text(msg), text, text_len);
 462	msg->text_len = text_len;
 463	if (trunc_msg_len) {
 464		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 465		msg->text_len += trunc_msg_len;
 466	}
 467	memcpy(log_dict(msg), dict, dict_len);
 468	msg->dict_len = dict_len;
 469	msg->facility = facility;
 470	msg->level = level & 7;
 471	msg->flags = flags & 0x1f;
 472	if (ts_nsec > 0)
 473		msg->ts_nsec = ts_nsec;
 474	else
 475		msg->ts_nsec = local_clock();
 
 
 
 476	memset(log_dict(msg) + dict_len, 0, pad_len);
 477	msg->len = size;
 478
 479	/* insert message */
 480	log_next_idx += msg->len;
 481	log_next_seq++;
 482
 483	return msg->text_len;
 484}
 485
 486int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 487
 488static int syslog_action_restricted(int type)
 489{
 490	if (dmesg_restrict)
 491		return 1;
 492	/*
 493	 * Unless restricted, we allow "read all" and "get buffer size"
 494	 * for everybody.
 495	 */
 496	return type != SYSLOG_ACTION_READ_ALL &&
 497	       type != SYSLOG_ACTION_SIZE_BUFFER;
 498}
 499
 500int check_syslog_permissions(int type, int source)
 501{
 502	/*
 503	 * If this is from /proc/kmsg and we've already opened it, then we've
 504	 * already done the capabilities checks at open time.
 505	 */
 506	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 507		goto ok;
 508
 509	if (syslog_action_restricted(type)) {
 510		if (capable(CAP_SYSLOG))
 511			goto ok;
 512		/*
 513		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 514		 * a warning.
 515		 */
 516		if (capable(CAP_SYS_ADMIN)) {
 517			pr_warn_once("%s (%d): Attempt to access syslog with "
 518				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 519				     "(deprecated).\n",
 520				 current->comm, task_pid_nr(current));
 521			goto ok;
 522		}
 523		return -EPERM;
 524	}
 525ok:
 526	return security_syslog(type);
 527}
 528EXPORT_SYMBOL_GPL(check_syslog_permissions);
 529
 530static void append_char(char **pp, char *e, char c)
 531{
 532	if (*pp < e)
 533		*(*pp)++ = c;
 534}
 535
 536static ssize_t msg_print_ext_header(char *buf, size_t size,
 537				    struct printk_log *msg, u64 seq,
 538				    enum log_flags prev_flags)
 539{
 540	u64 ts_usec = msg->ts_nsec;
 541	char cont = '-';
 
 
 542
 543	do_div(ts_usec, 1000);
 
 
 
 
 544
 545	/*
 546	 * If we couldn't merge continuation line fragments during the print,
 547	 * export the stored flags to allow an optional external merge of the
 548	 * records. Merging the records isn't always neccessarily correct, like
 549	 * when we hit a race during printing. In most cases though, it produces
 550	 * better readable output. 'c' in the record flags mark the first
 551	 * fragment of a line, '+' the following.
 552	 */
 553	if (msg->flags & LOG_CONT && !(prev_flags & LOG_CONT))
 554		cont = 'c';
 555	else if ((msg->flags & LOG_CONT) ||
 556		 ((prev_flags & LOG_CONT) && !(msg->flags & LOG_PREFIX)))
 557		cont = '+';
 558
 559	return scnprintf(buf, size, "%u,%llu,%llu,%c;",
 560		       (msg->facility << 3) | msg->level, seq, ts_usec, cont);
 
 561}
 562
 563static ssize_t msg_print_ext_body(char *buf, size_t size,
 564				  char *dict, size_t dict_len,
 565				  char *text, size_t text_len)
 566{
 567	char *p = buf, *e = buf + size;
 568	size_t i;
 569
 570	/* escape non-printable characters */
 571	for (i = 0; i < text_len; i++) {
 572		unsigned char c = text[i];
 573
 574		if (c < ' ' || c >= 127 || c == '\\')
 575			p += scnprintf(p, e - p, "\\x%02x", c);
 576		else
 577			append_char(&p, e, c);
 578	}
 579	append_char(&p, e, '\n');
 580
 581	if (dict_len) {
 582		bool line = true;
 583
 584		for (i = 0; i < dict_len; i++) {
 585			unsigned char c = dict[i];
 586
 587			if (line) {
 588				append_char(&p, e, ' ');
 589				line = false;
 590			}
 591
 592			if (c == '\0') {
 593				append_char(&p, e, '\n');
 594				line = true;
 595				continue;
 596			}
 597
 598			if (c < ' ' || c >= 127 || c == '\\') {
 599				p += scnprintf(p, e - p, "\\x%02x", c);
 600				continue;
 601			}
 602
 603			append_char(&p, e, c);
 604		}
 605		append_char(&p, e, '\n');
 606	}
 607
 608	return p - buf;
 609}
 610
 611/* /dev/kmsg - userspace message inject/listen interface */
 612struct devkmsg_user {
 613	u64 seq;
 614	u32 idx;
 615	enum log_flags prev;
 616	struct mutex lock;
 617	char buf[CONSOLE_EXT_LOG_MAX];
 618};
 619
 
 
 
 
 
 
 
 
 
 
 
 
 
 620static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 621{
 622	char *buf, *line;
 623	int level = default_message_loglevel;
 624	int facility = 1;	/* LOG_USER */
 
 
 625	size_t len = iov_iter_count(from);
 626	ssize_t ret = len;
 627
 628	if (len > LOG_LINE_MAX)
 629		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 630	buf = kmalloc(len+1, GFP_KERNEL);
 631	if (buf == NULL)
 632		return -ENOMEM;
 633
 634	buf[len] = '\0';
 635	if (copy_from_iter(buf, len, from) != len) {
 636		kfree(buf);
 637		return -EFAULT;
 638	}
 639
 640	/*
 641	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 642	 * the decimal value represents 32bit, the lower 3 bit are the log
 643	 * level, the rest are the log facility.
 644	 *
 645	 * If no prefix or no userspace facility is specified, we
 646	 * enforce LOG_USER, to be able to reliably distinguish
 647	 * kernel-generated messages from userspace-injected ones.
 648	 */
 649	line = buf;
 650	if (line[0] == '<') {
 651		char *endp = NULL;
 652		unsigned int u;
 653
 654		u = simple_strtoul(line + 1, &endp, 10);
 655		if (endp && endp[0] == '>') {
 656			level = LOG_LEVEL(u);
 657			if (LOG_FACILITY(u) != 0)
 658				facility = LOG_FACILITY(u);
 659			endp++;
 660			len -= endp - line;
 661			line = endp;
 662		}
 663	}
 664
 665	printk_emit(facility, level, NULL, 0, "%s", line);
 666	kfree(buf);
 667	return ret;
 668}
 669
 670static ssize_t devkmsg_read(struct file *file, char __user *buf,
 671			    size_t count, loff_t *ppos)
 672{
 673	struct devkmsg_user *user = file->private_data;
 674	struct printk_log *msg;
 675	size_t len;
 676	ssize_t ret;
 677
 678	if (!user)
 679		return -EBADF;
 680
 681	ret = mutex_lock_interruptible(&user->lock);
 682	if (ret)
 683		return ret;
 684	raw_spin_lock_irq(&logbuf_lock);
 
 685	while (user->seq == log_next_seq) {
 686		if (file->f_flags & O_NONBLOCK) {
 687			ret = -EAGAIN;
 688			raw_spin_unlock_irq(&logbuf_lock);
 689			goto out;
 690		}
 691
 692		raw_spin_unlock_irq(&logbuf_lock);
 693		ret = wait_event_interruptible(log_wait,
 694					       user->seq != log_next_seq);
 695		if (ret)
 696			goto out;
 697		raw_spin_lock_irq(&logbuf_lock);
 698	}
 699
 700	if (user->seq < log_first_seq) {
 701		/* our last seen message is gone, return error and reset */
 702		user->idx = log_first_idx;
 703		user->seq = log_first_seq;
 704		ret = -EPIPE;
 705		raw_spin_unlock_irq(&logbuf_lock);
 706		goto out;
 707	}
 708
 709	msg = log_from_idx(user->idx);
 710	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 711				   msg, user->seq, user->prev);
 712	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 713				  log_dict(msg), msg->dict_len,
 714				  log_text(msg), msg->text_len);
 715
 716	user->prev = msg->flags;
 717	user->idx = log_next(user->idx);
 718	user->seq++;
 719	raw_spin_unlock_irq(&logbuf_lock);
 720
 721	if (len > count) {
 722		ret = -EINVAL;
 723		goto out;
 724	}
 725
 726	if (copy_to_user(buf, user->buf, len)) {
 727		ret = -EFAULT;
 728		goto out;
 729	}
 730	ret = len;
 731out:
 732	mutex_unlock(&user->lock);
 733	return ret;
 734}
 735
 736static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 737{
 738	struct devkmsg_user *user = file->private_data;
 739	loff_t ret = 0;
 740
 741	if (!user)
 742		return -EBADF;
 743	if (offset)
 744		return -ESPIPE;
 745
 746	raw_spin_lock_irq(&logbuf_lock);
 747	switch (whence) {
 748	case SEEK_SET:
 749		/* the first record */
 750		user->idx = log_first_idx;
 751		user->seq = log_first_seq;
 752		break;
 753	case SEEK_DATA:
 754		/*
 755		 * The first record after the last SYSLOG_ACTION_CLEAR,
 756		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 757		 * changes no global state, and does not clear anything.
 758		 */
 759		user->idx = clear_idx;
 760		user->seq = clear_seq;
 761		break;
 762	case SEEK_END:
 763		/* after the last record */
 764		user->idx = log_next_idx;
 765		user->seq = log_next_seq;
 766		break;
 767	default:
 768		ret = -EINVAL;
 769	}
 770	raw_spin_unlock_irq(&logbuf_lock);
 771	return ret;
 772}
 773
 774static unsigned int devkmsg_poll(struct file *file, poll_table *wait)
 775{
 776	struct devkmsg_user *user = file->private_data;
 777	int ret = 0;
 778
 779	if (!user)
 780		return POLLERR|POLLNVAL;
 781
 782	poll_wait(file, &log_wait, wait);
 783
 784	raw_spin_lock_irq(&logbuf_lock);
 785	if (user->seq < log_next_seq) {
 786		/* return error when data has vanished underneath us */
 787		if (user->seq < log_first_seq)
 788			ret = POLLIN|POLLRDNORM|POLLERR|POLLPRI;
 789		else
 790			ret = POLLIN|POLLRDNORM;
 791	}
 792	raw_spin_unlock_irq(&logbuf_lock);
 793
 794	return ret;
 795}
 796
 797static int devkmsg_open(struct inode *inode, struct file *file)
 798{
 799	struct devkmsg_user *user;
 800	int err;
 801
 802	/* write-only does not need any file context */
 803	if ((file->f_flags & O_ACCMODE) == O_WRONLY)
 804		return 0;
 805
 806	err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
 807				       SYSLOG_FROM_READER);
 808	if (err)
 809		return err;
 
 
 
 810
 811	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
 812	if (!user)
 813		return -ENOMEM;
 814
 
 
 
 815	mutex_init(&user->lock);
 816
 817	raw_spin_lock_irq(&logbuf_lock);
 818	user->idx = log_first_idx;
 819	user->seq = log_first_seq;
 820	raw_spin_unlock_irq(&logbuf_lock);
 821
 822	file->private_data = user;
 823	return 0;
 824}
 825
 826static int devkmsg_release(struct inode *inode, struct file *file)
 827{
 828	struct devkmsg_user *user = file->private_data;
 829
 830	if (!user)
 831		return 0;
 832
 
 
 833	mutex_destroy(&user->lock);
 834	kfree(user);
 835	return 0;
 836}
 837
 838const struct file_operations kmsg_fops = {
 839	.open = devkmsg_open,
 840	.read = devkmsg_read,
 841	.write_iter = devkmsg_write,
 842	.llseek = devkmsg_llseek,
 843	.poll = devkmsg_poll,
 844	.release = devkmsg_release,
 845};
 846
 847#ifdef CONFIG_KEXEC_CORE
 848/*
 849 * This appends the listed symbols to /proc/vmcore
 850 *
 851 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
 852 * obtain access to symbols that are otherwise very difficult to locate.  These
 853 * symbols are specifically used so that utilities can access and extract the
 854 * dmesg log from a vmcore file after a crash.
 855 */
 856void log_buf_kexec_setup(void)
 857{
 858	VMCOREINFO_SYMBOL(log_buf);
 859	VMCOREINFO_SYMBOL(log_buf_len);
 860	VMCOREINFO_SYMBOL(log_first_idx);
 861	VMCOREINFO_SYMBOL(clear_idx);
 862	VMCOREINFO_SYMBOL(log_next_idx);
 863	/*
 864	 * Export struct printk_log size and field offsets. User space tools can
 865	 * parse it and detect any changes to structure down the line.
 866	 */
 867	VMCOREINFO_STRUCT_SIZE(printk_log);
 868	VMCOREINFO_OFFSET(printk_log, ts_nsec);
 869	VMCOREINFO_OFFSET(printk_log, len);
 870	VMCOREINFO_OFFSET(printk_log, text_len);
 871	VMCOREINFO_OFFSET(printk_log, dict_len);
 
 
 
 872}
 873#endif
 874
 875/* requested log_buf_len from kernel cmdline */
 876static unsigned long __initdata new_log_buf_len;
 877
 878/* we practice scaling the ring buffer by powers of 2 */
 879static void __init log_buf_len_update(unsigned size)
 880{
 
 
 
 
 
 881	if (size)
 882		size = roundup_pow_of_two(size);
 883	if (size > log_buf_len)
 884		new_log_buf_len = size;
 885}
 886
 887/* save requested log_buf_len since it's too early to process it */
 888static int __init log_buf_len_setup(char *str)
 889{
 890	unsigned size = memparse(str, &str);
 
 
 
 
 
 891
 892	log_buf_len_update(size);
 893
 894	return 0;
 895}
 896early_param("log_buf_len", log_buf_len_setup);
 897
 898#ifdef CONFIG_SMP
 899#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
 900
 901static void __init log_buf_add_cpu(void)
 902{
 903	unsigned int cpu_extra;
 904
 905	/*
 906	 * archs should set up cpu_possible_bits properly with
 907	 * set_cpu_possible() after setup_arch() but just in
 908	 * case lets ensure this is valid.
 909	 */
 910	if (num_possible_cpus() == 1)
 911		return;
 912
 913	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
 914
 915	/* by default this will only continue through for large > 64 CPUs */
 916	if (cpu_extra <= __LOG_BUF_LEN / 2)
 917		return;
 918
 919	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
 920		__LOG_CPU_MAX_BUF_LEN);
 921	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
 922		cpu_extra);
 923	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
 924
 925	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
 926}
 927#else /* !CONFIG_SMP */
 928static inline void log_buf_add_cpu(void) {}
 929#endif /* CONFIG_SMP */
 930
 931void __init setup_log_buf(int early)
 932{
 933	unsigned long flags;
 934	char *new_log_buf;
 935	int free;
 936
 937	if (log_buf != __log_buf)
 938		return;
 939
 940	if (!early && !new_log_buf_len)
 941		log_buf_add_cpu();
 942
 943	if (!new_log_buf_len)
 944		return;
 945
 946	if (early) {
 947		new_log_buf =
 948			memblock_virt_alloc(new_log_buf_len, LOG_ALIGN);
 949	} else {
 950		new_log_buf = memblock_virt_alloc_nopanic(new_log_buf_len,
 951							  LOG_ALIGN);
 952	}
 953
 954	if (unlikely(!new_log_buf)) {
 955		pr_err("log_buf_len: %ld bytes not available\n",
 956			new_log_buf_len);
 957		return;
 958	}
 959
 960	raw_spin_lock_irqsave(&logbuf_lock, flags);
 961	log_buf_len = new_log_buf_len;
 962	log_buf = new_log_buf;
 963	new_log_buf_len = 0;
 964	free = __LOG_BUF_LEN - log_next_idx;
 965	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
 966	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 967
 968	pr_info("log_buf_len: %d bytes\n", log_buf_len);
 969	pr_info("early log buf free: %d(%d%%)\n",
 970		free, (free * 100) / __LOG_BUF_LEN);
 971}
 972
 973static bool __read_mostly ignore_loglevel;
 974
 975static int __init ignore_loglevel_setup(char *str)
 976{
 977	ignore_loglevel = true;
 978	pr_info("debug: ignoring loglevel setting.\n");
 979
 980	return 0;
 981}
 982
 983early_param("ignore_loglevel", ignore_loglevel_setup);
 984module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
 985MODULE_PARM_DESC(ignore_loglevel,
 986		 "ignore loglevel setting (prints all kernel messages to the console)");
 987
 
 
 
 
 
 988#ifdef CONFIG_BOOT_PRINTK_DELAY
 989
 990static int boot_delay; /* msecs delay after each printk during bootup */
 991static unsigned long long loops_per_msec;	/* based on boot_delay */
 992
 993static int __init boot_delay_setup(char *str)
 994{
 995	unsigned long lpj;
 996
 997	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
 998	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
 999
1000	get_option(&str, &boot_delay);
1001	if (boot_delay > 10 * 1000)
1002		boot_delay = 0;
1003
1004	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1005		"HZ: %d, loops_per_msec: %llu\n",
1006		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1007	return 0;
1008}
1009early_param("boot_delay", boot_delay_setup);
1010
1011static void boot_delay_msec(int level)
1012{
1013	unsigned long long k;
1014	unsigned long timeout;
1015
1016	if ((boot_delay == 0 || system_state != SYSTEM_BOOTING)
1017		|| (level >= console_loglevel && !ignore_loglevel)) {
1018		return;
1019	}
1020
1021	k = (unsigned long long)loops_per_msec * boot_delay;
1022
1023	timeout = jiffies + msecs_to_jiffies(boot_delay);
1024	while (k) {
1025		k--;
1026		cpu_relax();
1027		/*
1028		 * use (volatile) jiffies to prevent
1029		 * compiler reduction; loop termination via jiffies
1030		 * is secondary and may or may not happen.
1031		 */
1032		if (time_after(jiffies, timeout))
1033			break;
1034		touch_nmi_watchdog();
1035	}
1036}
1037#else
1038static inline void boot_delay_msec(int level)
1039{
1040}
1041#endif
1042
1043static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1044module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1045
1046static size_t print_time(u64 ts, char *buf)
1047{
1048	unsigned long rem_nsec;
 
1049
1050	if (!printk_time)
1051		return 0;
 
1052
1053	rem_nsec = do_div(ts, 1000000000);
 
 
1054
1055	if (!buf)
1056		return snprintf(NULL, 0, "[%5lu.000000] ", (unsigned long)ts);
 
 
1057
1058	return sprintf(buf, "[%5lu.%06lu] ",
1059		       (unsigned long)ts, rem_nsec / 1000);
 
1060}
 
 
 
1061
1062static size_t print_prefix(const struct printk_log *msg, bool syslog, char *buf)
 
1063{
1064	size_t len = 0;
1065	unsigned int prefix = (msg->facility << 3) | msg->level;
1066
1067	if (syslog) {
1068		if (buf) {
1069			len += sprintf(buf, "<%u>", prefix);
1070		} else {
1071			len += 3;
1072			if (prefix > 999)
1073				len += 3;
1074			else if (prefix > 99)
1075				len += 2;
1076			else if (prefix > 9)
1077				len++;
1078		}
1079	}
1080
1081	len += print_time(msg->ts_nsec, buf ? buf + len : NULL);
1082	return len;
1083}
1084
1085static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1086			     bool syslog, char *buf, size_t size)
1087{
1088	const char *text = log_text(msg);
1089	size_t text_size = msg->text_len;
1090	bool prefix = true;
1091	bool newline = true;
1092	size_t len = 0;
1093
1094	if ((prev & LOG_CONT) && !(msg->flags & LOG_PREFIX))
1095		prefix = false;
1096
1097	if (msg->flags & LOG_CONT) {
1098		if ((prev & LOG_CONT) && !(prev & LOG_NEWLINE))
1099			prefix = false;
1100
1101		if (!(msg->flags & LOG_NEWLINE))
1102			newline = false;
1103	}
1104
1105	do {
1106		const char *next = memchr(text, '\n', text_size);
1107		size_t text_len;
1108
1109		if (next) {
1110			text_len = next - text;
1111			next++;
1112			text_size -= next - text;
1113		} else {
1114			text_len = text_size;
1115		}
1116
1117		if (buf) {
1118			if (print_prefix(msg, syslog, NULL) +
1119			    text_len + 1 >= size - len)
1120				break;
1121
1122			if (prefix)
1123				len += print_prefix(msg, syslog, buf + len);
1124			memcpy(buf + len, text, text_len);
1125			len += text_len;
1126			if (next || newline)
1127				buf[len++] = '\n';
1128		} else {
1129			/* SYSLOG_ACTION_* buffer size only calculation */
1130			if (prefix)
1131				len += print_prefix(msg, syslog, NULL);
1132			len += text_len;
1133			if (next || newline)
1134				len++;
1135		}
1136
1137		prefix = true;
1138		text = next;
1139	} while (text);
1140
1141	return len;
1142}
1143
1144static int syslog_print(char __user *buf, int size)
1145{
1146	char *text;
1147	struct printk_log *msg;
1148	int len = 0;
1149
1150	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1151	if (!text)
1152		return -ENOMEM;
1153
1154	while (size > 0) {
1155		size_t n;
1156		size_t skip;
1157
1158		raw_spin_lock_irq(&logbuf_lock);
1159		if (syslog_seq < log_first_seq) {
1160			/* messages are gone, move to first one */
1161			syslog_seq = log_first_seq;
1162			syslog_idx = log_first_idx;
1163			syslog_prev = 0;
1164			syslog_partial = 0;
1165		}
1166		if (syslog_seq == log_next_seq) {
1167			raw_spin_unlock_irq(&logbuf_lock);
1168			break;
1169		}
1170
 
 
 
 
 
 
 
1171		skip = syslog_partial;
1172		msg = log_from_idx(syslog_idx);
1173		n = msg_print_text(msg, syslog_prev, true, text,
1174				   LOG_LINE_MAX + PREFIX_MAX);
1175		if (n - syslog_partial <= size) {
1176			/* message fits into buffer, move forward */
1177			syslog_idx = log_next(syslog_idx);
1178			syslog_seq++;
1179			syslog_prev = msg->flags;
1180			n -= syslog_partial;
1181			syslog_partial = 0;
1182		} else if (!len){
1183			/* partial read(), remember position */
1184			n = size;
1185			syslog_partial += n;
1186		} else
1187			n = 0;
1188		raw_spin_unlock_irq(&logbuf_lock);
1189
1190		if (!n)
1191			break;
1192
1193		if (copy_to_user(buf, text + skip, n)) {
1194			if (!len)
1195				len = -EFAULT;
1196			break;
1197		}
1198
1199		len += n;
1200		size -= n;
1201		buf += n;
1202	}
1203
1204	kfree(text);
1205	return len;
1206}
1207
1208static int syslog_print_all(char __user *buf, int size, bool clear)
1209{
1210	char *text;
1211	int len = 0;
 
 
 
 
1212
1213	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1214	if (!text)
1215		return -ENOMEM;
1216
1217	raw_spin_lock_irq(&logbuf_lock);
1218	if (buf) {
1219		u64 next_seq;
1220		u64 seq;
1221		u32 idx;
1222		enum log_flags prev;
 
 
 
 
 
 
 
 
 
1223
1224		/*
1225		 * Find first record that fits, including all following records,
1226		 * into the user-provided buffer for this dump.
1227		 */
1228		seq = clear_seq;
1229		idx = clear_idx;
1230		prev = 0;
1231		while (seq < log_next_seq) {
1232			struct printk_log *msg = log_from_idx(idx);
1233
1234			len += msg_print_text(msg, prev, true, NULL, 0);
1235			prev = msg->flags;
1236			idx = log_next(idx);
1237			seq++;
1238		}
1239
1240		/* move first record forward until length fits into the buffer */
1241		seq = clear_seq;
1242		idx = clear_idx;
1243		prev = 0;
1244		while (len > size && seq < log_next_seq) {
1245			struct printk_log *msg = log_from_idx(idx);
1246
1247			len -= msg_print_text(msg, prev, true, NULL, 0);
1248			prev = msg->flags;
1249			idx = log_next(idx);
1250			seq++;
1251		}
1252
1253		/* last message fitting into this dump */
1254		next_seq = log_next_seq;
1255
1256		len = 0;
1257		while (len >= 0 && seq < next_seq) {
1258			struct printk_log *msg = log_from_idx(idx);
1259			int textlen;
1260
1261			textlen = msg_print_text(msg, prev, true, text,
1262						 LOG_LINE_MAX + PREFIX_MAX);
1263			if (textlen < 0) {
1264				len = textlen;
1265				break;
1266			}
1267			idx = log_next(idx);
1268			seq++;
1269			prev = msg->flags;
1270
1271			raw_spin_unlock_irq(&logbuf_lock);
1272			if (copy_to_user(buf + len, text, textlen))
1273				len = -EFAULT;
1274			else
1275				len += textlen;
1276			raw_spin_lock_irq(&logbuf_lock);
1277
1278			if (seq < log_first_seq) {
1279				/* messages are gone, move to next one */
1280				seq = log_first_seq;
1281				idx = log_first_idx;
1282				prev = 0;
1283			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1284		}
1285	}
1286
1287	if (clear) {
1288		clear_seq = log_next_seq;
1289		clear_idx = log_next_idx;
1290	}
1291	raw_spin_unlock_irq(&logbuf_lock);
1292
1293	kfree(text);
1294	return len;
1295}
1296
 
 
 
 
 
 
 
 
1297int do_syslog(int type, char __user *buf, int len, int source)
1298{
1299	bool clear = false;
1300	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1301	int error;
1302
1303	error = check_syslog_permissions(type, source);
1304	if (error)
1305		goto out;
1306
1307	switch (type) {
1308	case SYSLOG_ACTION_CLOSE:	/* Close log */
1309		break;
1310	case SYSLOG_ACTION_OPEN:	/* Open log */
1311		break;
1312	case SYSLOG_ACTION_READ:	/* Read from log */
1313		error = -EINVAL;
1314		if (!buf || len < 0)
1315			goto out;
1316		error = 0;
1317		if (!len)
1318			goto out;
1319		if (!access_ok(VERIFY_WRITE, buf, len)) {
1320			error = -EFAULT;
1321			goto out;
1322		}
1323		error = wait_event_interruptible(log_wait,
1324						 syslog_seq != log_next_seq);
1325		if (error)
1326			goto out;
1327		error = syslog_print(buf, len);
1328		break;
1329	/* Read/clear last kernel messages */
1330	case SYSLOG_ACTION_READ_CLEAR:
1331		clear = true;
1332		/* FALL THRU */
1333	/* Read last kernel messages */
1334	case SYSLOG_ACTION_READ_ALL:
1335		error = -EINVAL;
1336		if (!buf || len < 0)
1337			goto out;
1338		error = 0;
1339		if (!len)
1340			goto out;
1341		if (!access_ok(VERIFY_WRITE, buf, len)) {
1342			error = -EFAULT;
1343			goto out;
1344		}
1345		error = syslog_print_all(buf, len, clear);
1346		break;
1347	/* Clear ring buffer */
1348	case SYSLOG_ACTION_CLEAR:
1349		syslog_print_all(NULL, 0, true);
1350		break;
1351	/* Disable logging to console */
1352	case SYSLOG_ACTION_CONSOLE_OFF:
1353		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1354			saved_console_loglevel = console_loglevel;
1355		console_loglevel = minimum_console_loglevel;
1356		break;
1357	/* Enable logging to console */
1358	case SYSLOG_ACTION_CONSOLE_ON:
1359		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1360			console_loglevel = saved_console_loglevel;
1361			saved_console_loglevel = LOGLEVEL_DEFAULT;
1362		}
1363		break;
1364	/* Set level of messages printed to console */
1365	case SYSLOG_ACTION_CONSOLE_LEVEL:
1366		error = -EINVAL;
1367		if (len < 1 || len > 8)
1368			goto out;
1369		if (len < minimum_console_loglevel)
1370			len = minimum_console_loglevel;
1371		console_loglevel = len;
1372		/* Implicitly re-enable logging to console */
1373		saved_console_loglevel = LOGLEVEL_DEFAULT;
1374		error = 0;
1375		break;
1376	/* Number of chars in the log buffer */
1377	case SYSLOG_ACTION_SIZE_UNREAD:
1378		raw_spin_lock_irq(&logbuf_lock);
1379		if (syslog_seq < log_first_seq) {
1380			/* messages are gone, move to first one */
1381			syslog_seq = log_first_seq;
1382			syslog_idx = log_first_idx;
1383			syslog_prev = 0;
1384			syslog_partial = 0;
1385		}
1386		if (source == SYSLOG_FROM_PROC) {
1387			/*
1388			 * Short-cut for poll(/"proc/kmsg") which simply checks
1389			 * for pending data, not the size; return the count of
1390			 * records, not the length.
1391			 */
1392			error = log_next_seq - syslog_seq;
1393		} else {
1394			u64 seq = syslog_seq;
1395			u32 idx = syslog_idx;
1396			enum log_flags prev = syslog_prev;
1397
1398			error = 0;
1399			while (seq < log_next_seq) {
1400				struct printk_log *msg = log_from_idx(idx);
1401
1402				error += msg_print_text(msg, prev, true, NULL, 0);
 
 
1403				idx = log_next(idx);
1404				seq++;
1405				prev = msg->flags;
1406			}
1407			error -= syslog_partial;
1408		}
1409		raw_spin_unlock_irq(&logbuf_lock);
1410		break;
1411	/* Size of the log buffer */
1412	case SYSLOG_ACTION_SIZE_BUFFER:
1413		error = log_buf_len;
1414		break;
1415	default:
1416		error = -EINVAL;
1417		break;
1418	}
1419out:
1420	return error;
1421}
1422
1423SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1424{
1425	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1426}
1427
1428/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429 * Call the console drivers, asking them to write out
1430 * log_buf[start] to log_buf[end - 1].
1431 * The console_lock must be held.
1432 */
1433static void call_console_drivers(int level,
1434				 const char *ext_text, size_t ext_len,
1435				 const char *text, size_t len)
1436{
1437	struct console *con;
1438
1439	trace_console(text, len);
1440
1441	if (level >= console_loglevel && !ignore_loglevel)
1442		return;
1443	if (!console_drivers)
1444		return;
1445
1446	for_each_console(con) {
1447		if (exclusive_console && con != exclusive_console)
1448			continue;
1449		if (!(con->flags & CON_ENABLED))
1450			continue;
1451		if (!con->write)
1452			continue;
1453		if (!cpu_online(smp_processor_id()) &&
1454		    !(con->flags & CON_ANYTIME))
1455			continue;
1456		if (con->flags & CON_EXTENDED)
1457			con->write(con, ext_text, ext_len);
1458		else
1459			con->write(con, text, len);
1460	}
1461}
1462
1463/*
1464 * Zap console related locks when oopsing.
1465 * To leave time for slow consoles to print a full oops,
1466 * only zap at most once every 30 seconds.
1467 */
1468static void zap_locks(void)
1469{
1470	static unsigned long oops_timestamp;
1471
1472	if (time_after_eq(jiffies, oops_timestamp) &&
1473	    !time_after(jiffies, oops_timestamp + 30 * HZ))
1474		return;
1475
1476	oops_timestamp = jiffies;
1477
1478	debug_locks_off();
1479	/* If a crash is occurring, make sure we can't deadlock */
1480	raw_spin_lock_init(&logbuf_lock);
1481	/* And make sure that we print immediately */
1482	sema_init(&console_sem, 1);
1483}
1484
1485int printk_delay_msec __read_mostly;
1486
1487static inline void printk_delay(void)
1488{
1489	if (unlikely(printk_delay_msec)) {
1490		int m = printk_delay_msec;
1491
1492		while (m--) {
1493			mdelay(1);
1494			touch_nmi_watchdog();
1495		}
1496	}
1497}
1498
 
 
 
 
 
 
1499/*
1500 * Continuation lines are buffered, and not committed to the record buffer
1501 * until the line is complete, or a race forces it. The line fragments
1502 * though, are printed immediately to the consoles to ensure everything has
1503 * reached the console in case of a kernel crash.
1504 */
1505static struct cont {
1506	char buf[LOG_LINE_MAX];
1507	size_t len;			/* length == 0 means unused buffer */
1508	size_t cons;			/* bytes written to console */
1509	struct task_struct *owner;	/* task of first print*/
1510	u64 ts_nsec;			/* time of first print */
1511	u8 level;			/* log level of first message */
1512	u8 facility;			/* log facility of first message */
1513	enum log_flags flags;		/* prefix, newline flags */
1514	bool flushed:1;			/* buffer sealed and committed */
1515} cont;
1516
1517static void cont_flush(enum log_flags flags)
1518{
1519	if (cont.flushed)
1520		return;
1521	if (cont.len == 0)
1522		return;
1523
1524	if (cont.cons) {
1525		/*
1526		 * If a fragment of this line was directly flushed to the
1527		 * console; wait for the console to pick up the rest of the
1528		 * line. LOG_NOCONS suppresses a duplicated output.
1529		 */
1530		log_store(cont.facility, cont.level, flags | LOG_NOCONS,
1531			  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1532		cont.flags = flags;
1533		cont.flushed = true;
1534	} else {
1535		/*
1536		 * If no fragment of this line ever reached the console,
1537		 * just submit it to the store and free the buffer.
1538		 */
1539		log_store(cont.facility, cont.level, flags, 0,
1540			  NULL, 0, cont.buf, cont.len);
1541		cont.len = 0;
1542	}
1543}
1544
1545static bool cont_add(int facility, int level, const char *text, size_t len)
 
1546{
1547	if (cont.len && cont.flushed)
1548		return false;
1549
1550	/*
1551	 * If ext consoles are present, flush and skip in-kernel
1552	 * continuation.  See nr_ext_console_drivers definition.  Also, if
1553	 * the line gets too long, split it up in separate records.
1554	 */
1555	if (nr_ext_console_drivers || cont.len + len > sizeof(cont.buf)) {
1556		cont_flush(LOG_CONT);
1557		return false;
1558	}
1559
1560	if (!cont.len) {
1561		cont.facility = facility;
1562		cont.level = level;
1563		cont.owner = current;
1564		cont.ts_nsec = local_clock();
1565		cont.flags = 0;
1566		cont.cons = 0;
1567		cont.flushed = false;
1568	}
1569
1570	memcpy(cont.buf + cont.len, text, len);
1571	cont.len += len;
1572
1573	if (cont.len > (sizeof(cont.buf) * 80) / 100)
1574		cont_flush(LOG_CONT);
 
 
 
 
1575
1576	return true;
1577}
1578
1579static size_t cont_print_text(char *text, size_t size)
1580{
1581	size_t textlen = 0;
1582	size_t len;
1583
1584	if (cont.cons == 0 && (console_prev & LOG_NEWLINE)) {
1585		textlen += print_time(cont.ts_nsec, text);
1586		size -= textlen;
1587	}
1588
1589	len = cont.len - cont.cons;
1590	if (len > 0) {
1591		if (len+1 > size)
1592			len = size-1;
1593		memcpy(text + textlen, cont.buf + cont.cons, len);
1594		textlen += len;
1595		cont.cons = cont.len;
1596	}
1597
1598	if (cont.flushed) {
1599		if (cont.flags & LOG_NEWLINE)
1600			text[textlen++] = '\n';
1601		/* got everything, release buffer */
1602		cont.len = 0;
1603	}
1604	return textlen;
1605}
1606
1607asmlinkage int vprintk_emit(int facility, int level,
1608			    const char *dict, size_t dictlen,
1609			    const char *fmt, va_list args)
1610{
1611	static bool recursion_bug;
1612	static char textbuf[LOG_LINE_MAX];
1613	char *text = textbuf;
1614	size_t text_len = 0;
1615	enum log_flags lflags = 0;
1616	unsigned long flags;
1617	int this_cpu;
1618	int printed_len = 0;
1619	bool in_sched = false;
1620	/* cpu currently holding logbuf_lock in this function */
1621	static unsigned int logbuf_cpu = UINT_MAX;
1622
1623	if (level == LOGLEVEL_SCHED) {
1624		level = LOGLEVEL_DEFAULT;
1625		in_sched = true;
1626	}
1627
1628	boot_delay_msec(level);
1629	printk_delay();
1630
1631	local_irq_save(flags);
1632	this_cpu = smp_processor_id();
1633
1634	/*
1635	 * Ouch, printk recursed into itself!
 
1636	 */
1637	if (unlikely(logbuf_cpu == this_cpu)) {
1638		/*
1639		 * If a crash is occurring during printk() on this CPU,
1640		 * then try to get the crash message out but make sure
1641		 * we can't deadlock. Otherwise just return to avoid the
1642		 * recursion and return - but flag the recursion so that
1643		 * it can be printed at the next appropriate moment:
1644		 */
1645		if (!oops_in_progress && !lockdep_recursing(current)) {
1646			recursion_bug = true;
1647			local_irq_restore(flags);
1648			return 0;
1649		}
1650		zap_locks();
 
1651	}
1652
1653	lockdep_off();
1654	/* This stops the holder of console_sem just where we want him */
1655	raw_spin_lock(&logbuf_lock);
1656	logbuf_cpu = this_cpu;
1657
1658	if (unlikely(recursion_bug)) {
1659		static const char recursion_msg[] =
1660			"BUG: recent printk recursion!";
1661
1662		recursion_bug = false;
1663		/* emit KERN_CRIT message */
1664		printed_len += log_store(0, 2, LOG_PREFIX|LOG_NEWLINE, 0,
1665					 NULL, 0, recursion_msg,
1666					 strlen(recursion_msg));
1667	}
1668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1669	/*
1670	 * The printf needs to come first; we need the syslog
1671	 * prefix which might be passed-in as a parameter.
1672	 */
1673	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1674
1675	/* mark and strip a trailing newline */
1676	if (text_len && text[text_len-1] == '\n') {
1677		text_len--;
1678		lflags |= LOG_NEWLINE;
1679	}
1680
1681	/* strip kernel syslog prefix and extract log level or control flags */
1682	if (facility == 0) {
1683		int kern_level = printk_get_level(text);
1684
1685		if (kern_level) {
1686			const char *end_of_header = printk_skip_level(text);
1687			switch (kern_level) {
1688			case '0' ... '7':
1689				if (level == LOGLEVEL_DEFAULT)
1690					level = kern_level - '0';
1691				/* fallthrough */
1692			case 'd':	/* KERN_DEFAULT */
1693				lflags |= LOG_PREFIX;
1694			}
1695			/*
1696			 * No need to check length here because vscnprintf
1697			 * put '\0' at the end of the string. Only valid and
1698			 * newly printed level is detected.
1699			 */
1700			text_len -= end_of_header - text;
1701			text = (char *)end_of_header;
1702		}
1703	}
1704
1705	if (level == LOGLEVEL_DEFAULT)
1706		level = default_message_loglevel;
1707
1708	if (dict)
1709		lflags |= LOG_PREFIX|LOG_NEWLINE;
1710
1711	if (!(lflags & LOG_NEWLINE)) {
1712		/*
1713		 * Flush the conflicting buffer. An earlier newline was missing,
1714		 * or another task also prints continuation lines.
1715		 */
1716		if (cont.len && (lflags & LOG_PREFIX || cont.owner != current))
1717			cont_flush(LOG_NEWLINE);
1718
1719		/* buffer line if possible, otherwise store it right away */
1720		if (cont_add(facility, level, text, text_len))
1721			printed_len += text_len;
1722		else
1723			printed_len += log_store(facility, level,
1724						 lflags | LOG_CONT, 0,
1725						 dict, dictlen, text, text_len);
1726	} else {
1727		bool stored = false;
1728
1729		/*
1730		 * If an earlier newline was missing and it was the same task,
1731		 * either merge it with the current buffer and flush, or if
1732		 * there was a race with interrupts (prefix == true) then just
1733		 * flush it out and store this line separately.
1734		 * If the preceding printk was from a different task and missed
1735		 * a newline, flush and append the newline.
1736		 */
1737		if (cont.len) {
1738			if (cont.owner == current && !(lflags & LOG_PREFIX))
1739				stored = cont_add(facility, level, text,
1740						  text_len);
1741			cont_flush(LOG_NEWLINE);
1742		}
1743
1744		if (stored)
1745			printed_len += text_len;
1746		else
1747			printed_len += log_store(facility, level, lflags, 0,
1748						 dict, dictlen, text, text_len);
1749	}
1750
1751	logbuf_cpu = UINT_MAX;
1752	raw_spin_unlock(&logbuf_lock);
1753	lockdep_on();
1754	local_irq_restore(flags);
 
 
 
 
 
1755
1756	/* If called from the scheduler, we can not call up(). */
1757	if (!in_sched) {
1758		lockdep_off();
 
 
 
 
 
1759		/*
1760		 * Try to acquire and then immediately release the console
1761		 * semaphore.  The release will print out buffers and wake up
1762		 * /dev/kmsg and syslog() users.
1763		 */
1764		if (console_trylock())
1765			console_unlock();
1766		lockdep_on();
1767	}
1768
 
 
1769	return printed_len;
1770}
1771EXPORT_SYMBOL(vprintk_emit);
1772
1773asmlinkage int vprintk(const char *fmt, va_list args)
1774{
1775	return vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1776}
1777EXPORT_SYMBOL(vprintk);
1778
1779asmlinkage int printk_emit(int facility, int level,
1780			   const char *dict, size_t dictlen,
1781			   const char *fmt, ...)
1782{
1783	va_list args;
1784	int r;
1785
1786	va_start(args, fmt);
1787	r = vprintk_emit(facility, level, dict, dictlen, fmt, args);
1788	va_end(args);
1789
1790	return r;
1791}
1792EXPORT_SYMBOL(printk_emit);
1793
1794int vprintk_default(const char *fmt, va_list args)
1795{
1796	int r;
1797
1798#ifdef CONFIG_KGDB_KDB
1799	if (unlikely(kdb_trap_printk)) {
 
1800		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
1801		return r;
1802	}
1803#endif
1804	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
1805
1806	return r;
1807}
1808EXPORT_SYMBOL_GPL(vprintk_default);
1809
1810/*
1811 * This allows printk to be diverted to another function per cpu.
1812 * This is useful for calling printk functions from within NMI
1813 * without worrying about race conditions that can lock up the
1814 * box.
1815 */
1816DEFINE_PER_CPU(printk_func_t, printk_func) = vprintk_default;
1817
1818/**
1819 * printk - print a kernel message
1820 * @fmt: format string
1821 *
1822 * This is printk(). It can be called from any context. We want it to work.
1823 *
1824 * We try to grab the console_lock. If we succeed, it's easy - we log the
1825 * output and call the console drivers.  If we fail to get the semaphore, we
1826 * place the output into the log buffer and return. The current holder of
1827 * the console_sem will notice the new output in console_unlock(); and will
1828 * send it to the consoles before releasing the lock.
1829 *
1830 * One effect of this deferred printing is that code which calls printk() and
1831 * then changes console_loglevel may break. This is because console_loglevel
1832 * is inspected when the actual printing occurs.
1833 *
1834 * See also:
1835 * printf(3)
1836 *
1837 * See the vsnprintf() documentation for format string extensions over C99.
1838 */
1839asmlinkage __visible int printk(const char *fmt, ...)
1840{
1841	printk_func_t vprintk_func;
1842	va_list args;
1843	int r;
1844
1845	va_start(args, fmt);
1846
1847	/*
1848	 * If a caller overrides the per_cpu printk_func, then it needs
1849	 * to disable preemption when calling printk(). Otherwise
1850	 * the printk_func should be set to the default. No need to
1851	 * disable preemption here.
1852	 */
1853	vprintk_func = this_cpu_read(printk_func);
1854	r = vprintk_func(fmt, args);
1855
1856	va_end(args);
1857
1858	return r;
1859}
1860EXPORT_SYMBOL(printk);
1861
1862#else /* CONFIG_PRINTK */
1863
1864#define LOG_LINE_MAX		0
1865#define PREFIX_MAX		0
 
1866
1867static u64 syslog_seq;
1868static u32 syslog_idx;
1869static u64 console_seq;
1870static u32 console_idx;
1871static enum log_flags syslog_prev;
1872static u64 log_first_seq;
1873static u32 log_first_idx;
1874static u64 log_next_seq;
1875static enum log_flags console_prev;
1876static struct cont {
1877	size_t len;
1878	size_t cons;
1879	u8 level;
1880	bool flushed:1;
1881} cont;
1882static char *log_text(const struct printk_log *msg) { return NULL; }
1883static char *log_dict(const struct printk_log *msg) { return NULL; }
1884static struct printk_log *log_from_idx(u32 idx) { return NULL; }
1885static u32 log_next(u32 idx) { return 0; }
1886static ssize_t msg_print_ext_header(char *buf, size_t size,
1887				    struct printk_log *msg, u64 seq,
1888				    enum log_flags prev_flags) { return 0; }
1889static ssize_t msg_print_ext_body(char *buf, size_t size,
1890				  char *dict, size_t dict_len,
1891				  char *text, size_t text_len) { return 0; }
1892static void call_console_drivers(int level,
1893				 const char *ext_text, size_t ext_len,
 
1894				 const char *text, size_t len) {}
1895static size_t msg_print_text(const struct printk_log *msg, enum log_flags prev,
1896			     bool syslog, char *buf, size_t size) { return 0; }
1897static size_t cont_print_text(char *text, size_t size) { return 0; }
1898
1899/* Still needs to be defined for users */
1900DEFINE_PER_CPU(printk_func_t, printk_func);
1901
1902#endif /* CONFIG_PRINTK */
1903
1904#ifdef CONFIG_EARLY_PRINTK
1905struct console *early_console;
1906
1907asmlinkage __visible void early_printk(const char *fmt, ...)
1908{
1909	va_list ap;
1910	char buf[512];
1911	int n;
1912
1913	if (!early_console)
1914		return;
1915
1916	va_start(ap, fmt);
1917	n = vscnprintf(buf, sizeof(buf), fmt, ap);
1918	va_end(ap);
1919
1920	early_console->write(early_console, buf, n);
1921}
1922#endif
1923
1924static int __add_preferred_console(char *name, int idx, char *options,
1925				   char *brl_options)
1926{
1927	struct console_cmdline *c;
1928	int i;
1929
1930	/*
1931	 *	See if this tty is not yet registered, and
1932	 *	if we have a slot free.
1933	 */
1934	for (i = 0, c = console_cmdline;
1935	     i < MAX_CMDLINECONSOLES && c->name[0];
1936	     i++, c++) {
1937		if (strcmp(c->name, name) == 0 && c->index == idx) {
1938			if (!brl_options)
1939				selected_console = i;
1940			return 0;
1941		}
1942	}
1943	if (i == MAX_CMDLINECONSOLES)
1944		return -E2BIG;
1945	if (!brl_options)
1946		selected_console = i;
1947	strlcpy(c->name, name, sizeof(c->name));
1948	c->options = options;
1949	braille_set_options(c, brl_options);
1950
1951	c->index = idx;
1952	return 0;
1953}
 
 
 
 
 
 
 
 
 
 
 
1954/*
1955 * Set up a console.  Called via do_early_param() in init/main.c
1956 * for each "console=" parameter in the boot command line.
1957 */
1958static int __init console_setup(char *str)
1959{
1960	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
1961	char *s, *options, *brl_options = NULL;
1962	int idx;
1963
1964	if (_braille_console_setup(&str, &brl_options))
1965		return 1;
1966
1967	/*
1968	 * Decode str into name, index, options.
1969	 */
1970	if (str[0] >= '0' && str[0] <= '9') {
1971		strcpy(buf, "ttyS");
1972		strncpy(buf + 4, str, sizeof(buf) - 5);
1973	} else {
1974		strncpy(buf, str, sizeof(buf) - 1);
1975	}
1976	buf[sizeof(buf) - 1] = 0;
1977	options = strchr(str, ',');
1978	if (options)
1979		*(options++) = 0;
1980#ifdef __sparc__
1981	if (!strcmp(str, "ttya"))
1982		strcpy(buf, "ttyS0");
1983	if (!strcmp(str, "ttyb"))
1984		strcpy(buf, "ttyS1");
1985#endif
1986	for (s = buf; *s; s++)
1987		if (isdigit(*s) || *s == ',')
1988			break;
1989	idx = simple_strtoul(s, NULL, 10);
1990	*s = 0;
1991
1992	__add_preferred_console(buf, idx, options, brl_options);
1993	console_set_on_cmdline = 1;
1994	return 1;
1995}
1996__setup("console=", console_setup);
1997
1998/**
1999 * add_preferred_console - add a device to the list of preferred consoles.
2000 * @name: device name
2001 * @idx: device index
2002 * @options: options for this console
2003 *
2004 * The last preferred console added will be used for kernel messages
2005 * and stdin/out/err for init.  Normally this is used by console_setup
2006 * above to handle user-supplied console arguments; however it can also
2007 * be used by arch-specific code either to override the user or more
2008 * commonly to provide a default console (ie from PROM variables) when
2009 * the user has not supplied one.
2010 */
2011int add_preferred_console(char *name, int idx, char *options)
2012{
2013	return __add_preferred_console(name, idx, options, NULL);
2014}
2015
2016bool console_suspend_enabled = true;
2017EXPORT_SYMBOL(console_suspend_enabled);
2018
2019static int __init console_suspend_disable(char *str)
2020{
2021	console_suspend_enabled = false;
2022	return 1;
2023}
2024__setup("no_console_suspend", console_suspend_disable);
2025module_param_named(console_suspend, console_suspend_enabled,
2026		bool, S_IRUGO | S_IWUSR);
2027MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2028	" and hibernate operations");
2029
2030/**
2031 * suspend_console - suspend the console subsystem
2032 *
2033 * This disables printk() while we go into suspend states
2034 */
2035void suspend_console(void)
2036{
2037	if (!console_suspend_enabled)
2038		return;
2039	printk("Suspending console(s) (use no_console_suspend to debug)\n");
2040	console_lock();
2041	console_suspended = 1;
2042	up_console_sem();
2043}
2044
2045void resume_console(void)
2046{
2047	if (!console_suspend_enabled)
2048		return;
2049	down_console_sem();
2050	console_suspended = 0;
2051	console_unlock();
2052}
2053
2054/**
2055 * console_cpu_notify - print deferred console messages after CPU hotplug
2056 * @self: notifier struct
2057 * @action: CPU hotplug event
2058 * @hcpu: unused
2059 *
2060 * If printk() is called from a CPU that is not online yet, the messages
2061 * will be spooled but will not show up on the console.  This function is
2062 * called when a new CPU comes online (or fails to come up), and ensures
2063 * that any such output gets printed.
2064 */
2065static int console_cpu_notify(struct notifier_block *self,
2066	unsigned long action, void *hcpu)
2067{
2068	switch (action) {
2069	case CPU_ONLINE:
2070	case CPU_DEAD:
2071	case CPU_DOWN_FAILED:
2072	case CPU_UP_CANCELED:
2073		console_lock();
2074		console_unlock();
2075	}
2076	return NOTIFY_OK;
2077}
2078
2079/**
2080 * console_lock - lock the console system for exclusive use.
2081 *
2082 * Acquires a lock which guarantees that the caller has
2083 * exclusive access to the console system and the console_drivers list.
2084 *
2085 * Can sleep, returns nothing.
2086 */
2087void console_lock(void)
2088{
2089	might_sleep();
2090
2091	down_console_sem();
2092	if (console_suspended)
2093		return;
2094	console_locked = 1;
2095	console_may_schedule = 1;
2096}
2097EXPORT_SYMBOL(console_lock);
2098
2099/**
2100 * console_trylock - try to lock the console system for exclusive use.
2101 *
2102 * Try to acquire a lock which guarantees that the caller has exclusive
2103 * access to the console system and the console_drivers list.
2104 *
2105 * returns 1 on success, and 0 on failure to acquire the lock.
2106 */
2107int console_trylock(void)
2108{
2109	if (down_trylock_console_sem())
2110		return 0;
2111	if (console_suspended) {
2112		up_console_sem();
2113		return 0;
2114	}
2115	console_locked = 1;
2116	/*
2117	 * When PREEMPT_COUNT disabled we can't reliably detect if it's
2118	 * safe to schedule (e.g. calling printk while holding a spin_lock),
2119	 * because preempt_disable()/preempt_enable() are just barriers there
2120	 * and preempt_count() is always 0.
2121	 *
2122	 * RCU read sections have a separate preemption counter when
2123	 * PREEMPT_RCU enabled thus we must take extra care and check
2124	 * rcu_preempt_depth(), otherwise RCU read sections modify
2125	 * preempt_count().
2126	 */
2127	console_may_schedule = !oops_in_progress &&
2128			preemptible() &&
2129			!rcu_preempt_depth();
2130	return 1;
2131}
2132EXPORT_SYMBOL(console_trylock);
2133
2134int is_console_locked(void)
2135{
2136	return console_locked;
2137}
 
2138
2139/*
2140 * Check if we have any console that is capable of printing while cpu is
2141 * booting or shutting down. Requires console_sem.
2142 */
2143static int have_callable_console(void)
2144{
2145	struct console *con;
2146
2147	for_each_console(con)
2148		if ((con->flags & CON_ENABLED) &&
2149				(con->flags & CON_ANYTIME))
2150			return 1;
2151
2152	return 0;
2153}
2154
2155/*
2156 * Can we actually use the console at this time on this cpu?
2157 *
2158 * Console drivers may assume that per-cpu resources have been allocated. So
2159 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2160 * call them until this CPU is officially up.
2161 */
2162static inline int can_use_console(void)
2163{
2164	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2165}
2166
2167static void console_cont_flush(char *text, size_t size)
2168{
2169	unsigned long flags;
2170	size_t len;
2171
2172	raw_spin_lock_irqsave(&logbuf_lock, flags);
2173
2174	if (!cont.len)
2175		goto out;
2176
2177	/*
2178	 * We still queue earlier records, likely because the console was
2179	 * busy. The earlier ones need to be printed before this one, we
2180	 * did not flush any fragment so far, so just let it queue up.
2181	 */
2182	if (console_seq < log_next_seq && !cont.cons)
2183		goto out;
2184
2185	len = cont_print_text(text, size);
2186	raw_spin_unlock(&logbuf_lock);
2187	stop_critical_timings();
2188	call_console_drivers(cont.level, NULL, 0, text, len);
2189	start_critical_timings();
2190	local_irq_restore(flags);
2191	return;
2192out:
2193	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2194}
2195
2196/**
2197 * console_unlock - unlock the console system
2198 *
2199 * Releases the console_lock which the caller holds on the console system
2200 * and the console driver list.
2201 *
2202 * While the console_lock was held, console output may have been buffered
2203 * by printk().  If this is the case, console_unlock(); emits
2204 * the output prior to releasing the lock.
2205 *
2206 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2207 *
2208 * console_unlock(); may be called from any context.
2209 */
2210void console_unlock(void)
2211{
2212	static char ext_text[CONSOLE_EXT_LOG_MAX];
2213	static char text[LOG_LINE_MAX + PREFIX_MAX];
2214	static u64 seen_seq;
2215	unsigned long flags;
2216	bool wake_klogd = false;
2217	bool do_cond_resched, retry;
2218
2219	if (console_suspended) {
2220		up_console_sem();
2221		return;
2222	}
2223
2224	/*
2225	 * Console drivers are called under logbuf_lock, so
2226	 * @console_may_schedule should be cleared before; however, we may
2227	 * end up dumping a lot of lines, for example, if called from
2228	 * console registration path, and should invoke cond_resched()
2229	 * between lines if allowable.  Not doing so can cause a very long
2230	 * scheduling stall on a slow console leading to RCU stall and
2231	 * softlockup warnings which exacerbate the issue with more
2232	 * messages practically incapacitating the system.
 
 
 
 
2233	 */
2234	do_cond_resched = console_may_schedule;
 
2235	console_may_schedule = 0;
2236
2237again:
2238	/*
2239	 * We released the console_sem lock, so we need to recheck if
2240	 * cpu is online and (if not) is there at least one CON_ANYTIME
2241	 * console.
2242	 */
2243	if (!can_use_console()) {
2244		console_locked = 0;
2245		up_console_sem();
2246		return;
2247	}
2248
2249	/* flush buffered message fragment immediately to console */
2250	console_cont_flush(text, sizeof(text));
2251
2252	for (;;) {
2253		struct printk_log *msg;
2254		size_t ext_len = 0;
2255		size_t len;
2256		int level;
2257
2258		raw_spin_lock_irqsave(&logbuf_lock, flags);
2259		if (seen_seq != log_next_seq) {
2260			wake_klogd = true;
2261			seen_seq = log_next_seq;
2262		}
2263
 
 
2264		if (console_seq < log_first_seq) {
2265			len = sprintf(text, "** %u printk messages dropped ** ",
2266				      (unsigned)(log_first_seq - console_seq));
 
2267
2268			/* messages are gone, move to first one */
2269			console_seq = log_first_seq;
2270			console_idx = log_first_idx;
2271			console_prev = 0;
2272		} else {
2273			len = 0;
2274		}
2275skip:
2276		if (console_seq == log_next_seq)
2277			break;
2278
2279		msg = log_from_idx(console_idx);
2280		if (msg->flags & LOG_NOCONS) {
2281			/*
2282			 * Skip record we have buffered and already printed
2283			 * directly to the console when we received it.
 
2284			 */
2285			console_idx = log_next(console_idx);
2286			console_seq++;
2287			/*
2288			 * We will get here again when we register a new
2289			 * CON_PRINTBUFFER console. Clear the flag so we
2290			 * will properly dump everything later.
2291			 */
2292			msg->flags &= ~LOG_NOCONS;
2293			console_prev = msg->flags;
2294			goto skip;
2295		}
2296
2297		level = msg->level;
2298		len += msg_print_text(msg, console_prev, false,
2299				      text + len, sizeof(text) - len);
 
 
 
 
 
 
2300		if (nr_ext_console_drivers) {
2301			ext_len = msg_print_ext_header(ext_text,
2302						sizeof(ext_text),
2303						msg, console_seq, console_prev);
2304			ext_len += msg_print_ext_body(ext_text + ext_len,
2305						sizeof(ext_text) - ext_len,
2306						log_dict(msg), msg->dict_len,
2307						log_text(msg), msg->text_len);
2308		}
2309		console_idx = log_next(console_idx);
2310		console_seq++;
2311		console_prev = msg->flags;
2312		raw_spin_unlock(&logbuf_lock);
2313
 
 
 
 
 
 
 
 
2314		stop_critical_timings();	/* don't trace print latency */
2315		call_console_drivers(level, ext_text, ext_len, text, len);
2316		start_critical_timings();
2317		local_irq_restore(flags);
 
 
 
 
 
 
2318
2319		if (do_cond_resched)
2320			cond_resched();
2321	}
2322	console_locked = 0;
2323
2324	/* Release the exclusive_console once it is used */
2325	if (unlikely(exclusive_console))
2326		exclusive_console = NULL;
2327
2328	raw_spin_unlock(&logbuf_lock);
2329
2330	up_console_sem();
2331
2332	/*
2333	 * Someone could have filled up the buffer again, so re-check if there's
2334	 * something to flush. In case we cannot trylock the console_sem again,
2335	 * there's a new owner and the console_unlock() from them will do the
2336	 * flush, no worries.
2337	 */
2338	raw_spin_lock(&logbuf_lock);
2339	retry = console_seq != log_next_seq;
2340	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
 
2341
2342	if (retry && console_trylock())
2343		goto again;
2344
2345	if (wake_klogd)
2346		wake_up_klogd();
2347}
2348EXPORT_SYMBOL(console_unlock);
2349
2350/**
2351 * console_conditional_schedule - yield the CPU if required
2352 *
2353 * If the console code is currently allowed to sleep, and
2354 * if this CPU should yield the CPU to another task, do
2355 * so here.
2356 *
2357 * Must be called within console_lock();.
2358 */
2359void __sched console_conditional_schedule(void)
2360{
2361	if (console_may_schedule)
2362		cond_resched();
2363}
2364EXPORT_SYMBOL(console_conditional_schedule);
2365
2366void console_unblank(void)
2367{
2368	struct console *c;
2369
2370	/*
2371	 * console_unblank can no longer be called in interrupt context unless
2372	 * oops_in_progress is set to 1..
2373	 */
2374	if (oops_in_progress) {
2375		if (down_trylock_console_sem() != 0)
2376			return;
2377	} else
2378		console_lock();
2379
2380	console_locked = 1;
2381	console_may_schedule = 0;
2382	for_each_console(c)
2383		if ((c->flags & CON_ENABLED) && c->unblank)
2384			c->unblank();
2385	console_unlock();
2386}
2387
2388/**
2389 * console_flush_on_panic - flush console content on panic
 
2390 *
2391 * Immediately output all pending messages no matter what.
2392 */
2393void console_flush_on_panic(void)
2394{
2395	/*
2396	 * If someone else is holding the console lock, trylock will fail
2397	 * and may_schedule may be set.  Ignore and proceed to unlock so
2398	 * that messages are flushed out.  As this can be called from any
2399	 * context and we don't want to get preempted while flushing,
2400	 * ensure may_schedule is cleared.
2401	 */
2402	console_trylock();
2403	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
2404	console_unlock();
2405}
2406
2407/*
2408 * Return the console tty driver structure and its associated index
2409 */
2410struct tty_driver *console_device(int *index)
2411{
2412	struct console *c;
2413	struct tty_driver *driver = NULL;
2414
2415	console_lock();
2416	for_each_console(c) {
2417		if (!c->device)
2418			continue;
2419		driver = c->device(c, index);
2420		if (driver)
2421			break;
2422	}
2423	console_unlock();
2424	return driver;
2425}
2426
2427/*
2428 * Prevent further output on the passed console device so that (for example)
2429 * serial drivers can disable console output before suspending a port, and can
2430 * re-enable output afterwards.
2431 */
2432void console_stop(struct console *console)
2433{
2434	console_lock();
2435	console->flags &= ~CON_ENABLED;
2436	console_unlock();
2437}
2438EXPORT_SYMBOL(console_stop);
2439
2440void console_start(struct console *console)
2441{
2442	console_lock();
2443	console->flags |= CON_ENABLED;
2444	console_unlock();
2445}
2446EXPORT_SYMBOL(console_start);
2447
2448static int __read_mostly keep_bootcon;
2449
2450static int __init keep_bootcon_setup(char *str)
2451{
2452	keep_bootcon = 1;
2453	pr_info("debug: skip boot console de-registration.\n");
2454
2455	return 0;
2456}
2457
2458early_param("keep_bootcon", keep_bootcon_setup);
2459
2460/*
2461 * The console driver calls this routine during kernel initialization
2462 * to register the console printing procedure with printk() and to
2463 * print any messages that were printed by the kernel before the
2464 * console driver was initialized.
2465 *
2466 * This can happen pretty early during the boot process (because of
2467 * early_printk) - sometimes before setup_arch() completes - be careful
2468 * of what kernel features are used - they may not be initialised yet.
2469 *
2470 * There are two types of consoles - bootconsoles (early_printk) and
2471 * "real" consoles (everything which is not a bootconsole) which are
2472 * handled differently.
2473 *  - Any number of bootconsoles can be registered at any time.
2474 *  - As soon as a "real" console is registered, all bootconsoles
2475 *    will be unregistered automatically.
2476 *  - Once a "real" console is registered, any attempt to register a
2477 *    bootconsoles will be rejected
2478 */
2479void register_console(struct console *newcon)
2480{
2481	int i;
2482	unsigned long flags;
2483	struct console *bcon = NULL;
2484	struct console_cmdline *c;
 
2485
2486	if (console_drivers)
2487		for_each_console(bcon)
2488			if (WARN(bcon == newcon,
2489					"console '%s%d' already registered\n",
2490					bcon->name, bcon->index))
2491				return;
2492
2493	/*
2494	 * before we register a new CON_BOOT console, make sure we don't
2495	 * already have a valid console
2496	 */
2497	if (console_drivers && newcon->flags & CON_BOOT) {
2498		/* find the last or real console */
2499		for_each_console(bcon) {
2500			if (!(bcon->flags & CON_BOOT)) {
2501				pr_info("Too late to register bootconsole %s%d\n",
2502					newcon->name, newcon->index);
2503				return;
2504			}
2505		}
2506	}
2507
2508	if (console_drivers && console_drivers->flags & CON_BOOT)
2509		bcon = console_drivers;
2510
2511	if (preferred_console < 0 || bcon || !console_drivers)
2512		preferred_console = selected_console;
2513
2514	/*
2515	 *	See if we want to use this console driver. If we
2516	 *	didn't select a console we take the first one
2517	 *	that registers here.
2518	 */
2519	if (preferred_console < 0) {
2520		if (newcon->index < 0)
2521			newcon->index = 0;
2522		if (newcon->setup == NULL ||
2523		    newcon->setup(newcon, NULL) == 0) {
2524			newcon->flags |= CON_ENABLED;
2525			if (newcon->device) {
2526				newcon->flags |= CON_CONSDEV;
2527				preferred_console = 0;
2528			}
2529		}
2530	}
2531
2532	/*
2533	 *	See if this console matches one we selected on
2534	 *	the command line.
2535	 */
2536	for (i = 0, c = console_cmdline;
2537	     i < MAX_CMDLINECONSOLES && c->name[0];
2538	     i++, c++) {
2539		if (!newcon->match ||
2540		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2541			/* default matching */
2542			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2543			if (strcmp(c->name, newcon->name) != 0)
2544				continue;
2545			if (newcon->index >= 0 &&
2546			    newcon->index != c->index)
2547				continue;
2548			if (newcon->index < 0)
2549				newcon->index = c->index;
2550
2551			if (_braille_register_console(newcon, c))
2552				return;
2553
2554			if (newcon->setup &&
2555			    newcon->setup(newcon, c->options) != 0)
2556				break;
2557		}
2558
2559		newcon->flags |= CON_ENABLED;
2560		if (i == selected_console) {
2561			newcon->flags |= CON_CONSDEV;
2562			preferred_console = selected_console;
2563		}
2564		break;
2565	}
2566
2567	if (!(newcon->flags & CON_ENABLED))
2568		return;
2569
2570	/*
2571	 * If we have a bootconsole, and are switching to a real console,
2572	 * don't print everything out again, since when the boot console, and
2573	 * the real console are the same physical device, it's annoying to
2574	 * see the beginning boot messages twice
2575	 */
2576	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2577		newcon->flags &= ~CON_PRINTBUFFER;
2578
2579	/*
2580	 *	Put this console in the list - keep the
2581	 *	preferred driver at the head of the list.
2582	 */
2583	console_lock();
2584	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2585		newcon->next = console_drivers;
2586		console_drivers = newcon;
2587		if (newcon->next)
2588			newcon->next->flags &= ~CON_CONSDEV;
2589	} else {
2590		newcon->next = console_drivers->next;
2591		console_drivers->next = newcon;
2592	}
2593
2594	if (newcon->flags & CON_EXTENDED)
2595		if (!nr_ext_console_drivers++)
2596			pr_info("printk: continuation disabled due to ext consoles, expect more fragments in /dev/kmsg\n");
2597
2598	if (newcon->flags & CON_PRINTBUFFER) {
2599		/*
2600		 * console_unlock(); will print out the buffered messages
2601		 * for us.
2602		 */
2603		raw_spin_lock_irqsave(&logbuf_lock, flags);
2604		console_seq = syslog_seq;
2605		console_idx = syslog_idx;
2606		console_prev = syslog_prev;
2607		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2608		/*
2609		 * We're about to replay the log buffer.  Only do this to the
2610		 * just-registered console to avoid excessive message spam to
2611		 * the already-registered consoles.
 
 
 
 
2612		 */
2613		exclusive_console = newcon;
 
 
2614	}
2615	console_unlock();
2616	console_sysfs_notify();
2617
2618	/*
2619	 * By unregistering the bootconsoles after we enable the real console
2620	 * we get the "console xxx enabled" message on all the consoles -
2621	 * boot consoles, real consoles, etc - this is to ensure that end
2622	 * users know there might be something in the kernel's log buffer that
2623	 * went to the bootconsole (that they do not see on the real console)
2624	 */
2625	pr_info("%sconsole [%s%d] enabled\n",
2626		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2627		newcon->name, newcon->index);
2628	if (bcon &&
2629	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2630	    !keep_bootcon) {
2631		/* We need to iterate through all boot consoles, to make
2632		 * sure we print everything out, before we unregister them.
2633		 */
2634		for_each_console(bcon)
2635			if (bcon->flags & CON_BOOT)
2636				unregister_console(bcon);
2637	}
2638}
2639EXPORT_SYMBOL(register_console);
2640
2641int unregister_console(struct console *console)
2642{
2643        struct console *a, *b;
2644	int res;
2645
2646	pr_info("%sconsole [%s%d] disabled\n",
2647		(console->flags & CON_BOOT) ? "boot" : "" ,
2648		console->name, console->index);
2649
2650	res = _braille_unregister_console(console);
2651	if (res)
2652		return res;
2653
2654	res = 1;
2655	console_lock();
2656	if (console_drivers == console) {
2657		console_drivers=console->next;
2658		res = 0;
2659	} else if (console_drivers) {
2660		for (a=console_drivers->next, b=console_drivers ;
2661		     a; b=a, a=b->next) {
2662			if (a == console) {
2663				b->next = a->next;
2664				res = 0;
2665				break;
2666			}
2667		}
2668	}
2669
2670	if (!res && (console->flags & CON_EXTENDED))
2671		nr_ext_console_drivers--;
2672
2673	/*
2674	 * If this isn't the last console and it has CON_CONSDEV set, we
2675	 * need to set it on the next preferred console.
2676	 */
2677	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2678		console_drivers->flags |= CON_CONSDEV;
2679
2680	console->flags &= ~CON_ENABLED;
2681	console_unlock();
2682	console_sysfs_notify();
2683	return res;
2684}
2685EXPORT_SYMBOL(unregister_console);
2686
2687/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2688 * Some boot consoles access data that is in the init section and which will
2689 * be discarded after the initcalls have been run. To make sure that no code
2690 * will access this data, unregister the boot consoles in a late initcall.
2691 *
2692 * If for some reason, such as deferred probe or the driver being a loadable
2693 * module, the real console hasn't registered yet at this point, there will
2694 * be a brief interval in which no messages are logged to the console, which
2695 * makes it difficult to diagnose problems that occur during this time.
2696 *
2697 * To mitigate this problem somewhat, only unregister consoles whose memory
2698 * intersects with the init section. Note that code exists elsewhere to get
2699 * rid of the boot console as soon as the proper console shows up, so there
2700 * won't be side-effects from postponing the removal.
2701 */
2702static int __init printk_late_init(void)
2703{
2704	struct console *con;
 
2705
2706	for_each_console(con) {
2707		if (!keep_bootcon && con->flags & CON_BOOT) {
 
 
 
 
 
 
 
 
 
2708			/*
2709			 * Make sure to unregister boot consoles whose data
2710			 * resides in the init section before the init section
2711			 * is discarded. Boot consoles whose data will stick
2712			 * around will automatically be unregistered when the
2713			 * proper console replaces them.
2714			 */
2715			if (init_section_intersects(con, sizeof(*con)))
2716				unregister_console(con);
 
2717		}
2718	}
2719	hotcpu_notifier(console_cpu_notify, 0);
 
 
 
 
 
2720	return 0;
2721}
2722late_initcall(printk_late_init);
2723
2724#if defined CONFIG_PRINTK
2725/*
2726 * Delayed printk version, for scheduler-internal messages:
2727 */
2728#define PRINTK_PENDING_WAKEUP	0x01
2729#define PRINTK_PENDING_OUTPUT	0x02
2730
2731static DEFINE_PER_CPU(int, printk_pending);
2732
2733static void wake_up_klogd_work_func(struct irq_work *irq_work)
2734{
2735	int pending = __this_cpu_xchg(printk_pending, 0);
2736
2737	if (pending & PRINTK_PENDING_OUTPUT) {
2738		/* If trylock fails, someone else is doing the printing */
2739		if (console_trylock())
2740			console_unlock();
2741	}
2742
2743	if (pending & PRINTK_PENDING_WAKEUP)
2744		wake_up_interruptible(&log_wait);
2745}
2746
2747static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2748	.func = wake_up_klogd_work_func,
2749	.flags = IRQ_WORK_LAZY,
2750};
2751
2752void wake_up_klogd(void)
2753{
2754	preempt_disable();
2755	if (waitqueue_active(&log_wait)) {
2756		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2757		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2758	}
2759	preempt_enable();
2760}
2761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2762int printk_deferred(const char *fmt, ...)
2763{
2764	va_list args;
2765	int r;
2766
2767	preempt_disable();
2768	va_start(args, fmt);
2769	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2770	va_end(args);
2771
2772	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2773	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2774	preempt_enable();
2775
2776	return r;
2777}
2778
2779/*
2780 * printk rate limiting, lifted from the networking subsystem.
2781 *
2782 * This enforces a rate limit: not more than 10 kernel messages
2783 * every 5s to make a denial-of-service attack impossible.
2784 */
2785DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
2786
2787int __printk_ratelimit(const char *func)
2788{
2789	return ___ratelimit(&printk_ratelimit_state, func);
2790}
2791EXPORT_SYMBOL(__printk_ratelimit);
2792
2793/**
2794 * printk_timed_ratelimit - caller-controlled printk ratelimiting
2795 * @caller_jiffies: pointer to caller's state
2796 * @interval_msecs: minimum interval between prints
2797 *
2798 * printk_timed_ratelimit() returns true if more than @interval_msecs
2799 * milliseconds have elapsed since the last time printk_timed_ratelimit()
2800 * returned true.
2801 */
2802bool printk_timed_ratelimit(unsigned long *caller_jiffies,
2803			unsigned int interval_msecs)
2804{
2805	unsigned long elapsed = jiffies - *caller_jiffies;
2806
2807	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
2808		return false;
2809
2810	*caller_jiffies = jiffies;
2811	return true;
2812}
2813EXPORT_SYMBOL(printk_timed_ratelimit);
2814
2815static DEFINE_SPINLOCK(dump_list_lock);
2816static LIST_HEAD(dump_list);
2817
2818/**
2819 * kmsg_dump_register - register a kernel log dumper.
2820 * @dumper: pointer to the kmsg_dumper structure
2821 *
2822 * Adds a kernel log dumper to the system. The dump callback in the
2823 * structure will be called when the kernel oopses or panics and must be
2824 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
2825 */
2826int kmsg_dump_register(struct kmsg_dumper *dumper)
2827{
2828	unsigned long flags;
2829	int err = -EBUSY;
2830
2831	/* The dump callback needs to be set */
2832	if (!dumper->dump)
2833		return -EINVAL;
2834
2835	spin_lock_irqsave(&dump_list_lock, flags);
2836	/* Don't allow registering multiple times */
2837	if (!dumper->registered) {
2838		dumper->registered = 1;
2839		list_add_tail_rcu(&dumper->list, &dump_list);
2840		err = 0;
2841	}
2842	spin_unlock_irqrestore(&dump_list_lock, flags);
2843
2844	return err;
2845}
2846EXPORT_SYMBOL_GPL(kmsg_dump_register);
2847
2848/**
2849 * kmsg_dump_unregister - unregister a kmsg dumper.
2850 * @dumper: pointer to the kmsg_dumper structure
2851 *
2852 * Removes a dump device from the system. Returns zero on success and
2853 * %-EINVAL otherwise.
2854 */
2855int kmsg_dump_unregister(struct kmsg_dumper *dumper)
2856{
2857	unsigned long flags;
2858	int err = -EINVAL;
2859
2860	spin_lock_irqsave(&dump_list_lock, flags);
2861	if (dumper->registered) {
2862		dumper->registered = 0;
2863		list_del_rcu(&dumper->list);
2864		err = 0;
2865	}
2866	spin_unlock_irqrestore(&dump_list_lock, flags);
2867	synchronize_rcu();
2868
2869	return err;
2870}
2871EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
2872
2873static bool always_kmsg_dump;
2874module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
2875
2876/**
2877 * kmsg_dump - dump kernel log to kernel message dumpers.
2878 * @reason: the reason (oops, panic etc) for dumping
2879 *
2880 * Call each of the registered dumper's dump() callback, which can
2881 * retrieve the kmsg records with kmsg_dump_get_line() or
2882 * kmsg_dump_get_buffer().
2883 */
2884void kmsg_dump(enum kmsg_dump_reason reason)
2885{
2886	struct kmsg_dumper *dumper;
2887	unsigned long flags;
2888
2889	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
2890		return;
2891
2892	rcu_read_lock();
2893	list_for_each_entry_rcu(dumper, &dump_list, list) {
2894		if (dumper->max_reason && reason > dumper->max_reason)
2895			continue;
2896
2897		/* initialize iterator with data about the stored records */
2898		dumper->active = true;
2899
2900		raw_spin_lock_irqsave(&logbuf_lock, flags);
2901		dumper->cur_seq = clear_seq;
2902		dumper->cur_idx = clear_idx;
2903		dumper->next_seq = log_next_seq;
2904		dumper->next_idx = log_next_idx;
2905		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2906
2907		/* invoke dumper which will iterate over records */
2908		dumper->dump(dumper, reason);
2909
2910		/* reset iterator */
2911		dumper->active = false;
2912	}
2913	rcu_read_unlock();
2914}
2915
2916/**
2917 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
2918 * @dumper: registered kmsg dumper
2919 * @syslog: include the "<4>" prefixes
2920 * @line: buffer to copy the line to
2921 * @size: maximum size of the buffer
2922 * @len: length of line placed into buffer
2923 *
2924 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2925 * record, and copy one record into the provided buffer.
2926 *
2927 * Consecutive calls will return the next available record moving
2928 * towards the end of the buffer with the youngest messages.
2929 *
2930 * A return value of FALSE indicates that there are no more records to
2931 * read.
2932 *
2933 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
2934 */
2935bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
2936			       char *line, size_t size, size_t *len)
2937{
2938	struct printk_log *msg;
2939	size_t l = 0;
2940	bool ret = false;
2941
2942	if (!dumper->active)
2943		goto out;
2944
2945	if (dumper->cur_seq < log_first_seq) {
2946		/* messages are gone, move to first available one */
2947		dumper->cur_seq = log_first_seq;
2948		dumper->cur_idx = log_first_idx;
2949	}
2950
2951	/* last entry */
2952	if (dumper->cur_seq >= log_next_seq)
2953		goto out;
2954
2955	msg = log_from_idx(dumper->cur_idx);
2956	l = msg_print_text(msg, 0, syslog, line, size);
2957
2958	dumper->cur_idx = log_next(dumper->cur_idx);
2959	dumper->cur_seq++;
2960	ret = true;
2961out:
2962	if (len)
2963		*len = l;
2964	return ret;
2965}
2966
2967/**
2968 * kmsg_dump_get_line - retrieve one kmsg log line
2969 * @dumper: registered kmsg dumper
2970 * @syslog: include the "<4>" prefixes
2971 * @line: buffer to copy the line to
2972 * @size: maximum size of the buffer
2973 * @len: length of line placed into buffer
2974 *
2975 * Start at the beginning of the kmsg buffer, with the oldest kmsg
2976 * record, and copy one record into the provided buffer.
2977 *
2978 * Consecutive calls will return the next available record moving
2979 * towards the end of the buffer with the youngest messages.
2980 *
2981 * A return value of FALSE indicates that there are no more records to
2982 * read.
2983 */
2984bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
2985			char *line, size_t size, size_t *len)
2986{
2987	unsigned long flags;
2988	bool ret;
2989
2990	raw_spin_lock_irqsave(&logbuf_lock, flags);
2991	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
2992	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
2993
2994	return ret;
2995}
2996EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
2997
2998/**
2999 * kmsg_dump_get_buffer - copy kmsg log lines
3000 * @dumper: registered kmsg dumper
3001 * @syslog: include the "<4>" prefixes
3002 * @buf: buffer to copy the line to
3003 * @size: maximum size of the buffer
3004 * @len: length of line placed into buffer
3005 *
3006 * Start at the end of the kmsg buffer and fill the provided buffer
3007 * with as many of the the *youngest* kmsg records that fit into it.
3008 * If the buffer is large enough, all available kmsg records will be
3009 * copied with a single call.
3010 *
3011 * Consecutive calls will fill the buffer with the next block of
3012 * available older records, not including the earlier retrieved ones.
3013 *
3014 * A return value of FALSE indicates that there are no more records to
3015 * read.
3016 */
3017bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3018			  char *buf, size_t size, size_t *len)
3019{
3020	unsigned long flags;
3021	u64 seq;
3022	u32 idx;
3023	u64 next_seq;
3024	u32 next_idx;
3025	enum log_flags prev;
3026	size_t l = 0;
3027	bool ret = false;
 
3028
3029	if (!dumper->active)
3030		goto out;
3031
3032	raw_spin_lock_irqsave(&logbuf_lock, flags);
3033	if (dumper->cur_seq < log_first_seq) {
3034		/* messages are gone, move to first available one */
3035		dumper->cur_seq = log_first_seq;
3036		dumper->cur_idx = log_first_idx;
3037	}
3038
3039	/* last entry */
3040	if (dumper->cur_seq >= dumper->next_seq) {
3041		raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3042		goto out;
3043	}
3044
3045	/* calculate length of entire buffer */
3046	seq = dumper->cur_seq;
3047	idx = dumper->cur_idx;
3048	prev = 0;
3049	while (seq < dumper->next_seq) {
3050		struct printk_log *msg = log_from_idx(idx);
3051
3052		l += msg_print_text(msg, prev, true, NULL, 0);
3053		idx = log_next(idx);
3054		seq++;
3055		prev = msg->flags;
3056	}
3057
3058	/* move first record forward until length fits into the buffer */
3059	seq = dumper->cur_seq;
3060	idx = dumper->cur_idx;
3061	prev = 0;
3062	while (l > size && seq < dumper->next_seq) {
3063		struct printk_log *msg = log_from_idx(idx);
3064
3065		l -= msg_print_text(msg, prev, true, NULL, 0);
3066		idx = log_next(idx);
3067		seq++;
3068		prev = msg->flags;
3069	}
3070
3071	/* last message in next interation */
3072	next_seq = seq;
3073	next_idx = idx;
3074
3075	l = 0;
3076	while (seq < dumper->next_seq) {
3077		struct printk_log *msg = log_from_idx(idx);
3078
3079		l += msg_print_text(msg, prev, syslog, buf + l, size - l);
3080		idx = log_next(idx);
3081		seq++;
3082		prev = msg->flags;
3083	}
3084
3085	dumper->next_seq = next_seq;
3086	dumper->next_idx = next_idx;
3087	ret = true;
3088	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3089out:
3090	if (len)
3091		*len = l;
3092	return ret;
3093}
3094EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3095
3096/**
3097 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3098 * @dumper: registered kmsg dumper
3099 *
3100 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3101 * kmsg_dump_get_buffer() can be called again and used multiple
3102 * times within the same dumper.dump() callback.
3103 *
3104 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3105 */
3106void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3107{
3108	dumper->cur_seq = clear_seq;
3109	dumper->cur_idx = clear_idx;
3110	dumper->next_seq = log_next_seq;
3111	dumper->next_idx = log_next_idx;
3112}
3113
3114/**
3115 * kmsg_dump_rewind - reset the interator
3116 * @dumper: registered kmsg dumper
3117 *
3118 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3119 * kmsg_dump_get_buffer() can be called again and used multiple
3120 * times within the same dumper.dump() callback.
3121 */
3122void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3123{
3124	unsigned long flags;
3125
3126	raw_spin_lock_irqsave(&logbuf_lock, flags);
3127	kmsg_dump_rewind_nolock(dumper);
3128	raw_spin_unlock_irqrestore(&logbuf_lock, flags);
3129}
3130EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
3131
3132static char dump_stack_arch_desc_str[128];
3133
3134/**
3135 * dump_stack_set_arch_desc - set arch-specific str to show with task dumps
3136 * @fmt: printf-style format string
3137 * @...: arguments for the format string
3138 *
3139 * The configured string will be printed right after utsname during task
3140 * dumps.  Usually used to add arch-specific system identifiers.  If an
3141 * arch wants to make use of such an ID string, it should initialize this
3142 * as soon as possible during boot.
3143 */
3144void __init dump_stack_set_arch_desc(const char *fmt, ...)
3145{
3146	va_list args;
3147
3148	va_start(args, fmt);
3149	vsnprintf(dump_stack_arch_desc_str, sizeof(dump_stack_arch_desc_str),
3150		  fmt, args);
3151	va_end(args);
3152}
3153
3154/**
3155 * dump_stack_print_info - print generic debug info for dump_stack()
3156 * @log_lvl: log level
3157 *
3158 * Arch-specific dump_stack() implementations can use this function to
3159 * print out the same debug information as the generic dump_stack().
3160 */
3161void dump_stack_print_info(const char *log_lvl)
3162{
3163	printk("%sCPU: %d PID: %d Comm: %.20s %s %s %.*s\n",
3164	       log_lvl, raw_smp_processor_id(), current->pid, current->comm,
3165	       print_tainted(), init_utsname()->release,
3166	       (int)strcspn(init_utsname()->version, " "),
3167	       init_utsname()->version);
3168
3169	if (dump_stack_arch_desc_str[0] != '\0')
3170		printk("%sHardware name: %s\n",
3171		       log_lvl, dump_stack_arch_desc_str);
3172
3173	print_worker_info(log_lvl, current);
3174}
3175
3176/**
3177 * show_regs_print_info - print generic debug info for show_regs()
3178 * @log_lvl: log level
3179 *
3180 * show_regs() implementations can use this function to print out generic
3181 * debug information.
3182 */
3183void show_regs_print_info(const char *log_lvl)
3184{
3185	dump_stack_print_info(log_lvl);
3186
3187	printk("%stask: %p ti: %p task.ti: %p\n",
3188	       log_lvl, current, current_thread_info(),
3189	       task_thread_info(current));
3190}
3191
3192#endif
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/kernel/printk.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 *
   7 * Modified to make sys_syslog() more flexible: added commands to
   8 * return the last 4k of kernel messages, regardless of whether
   9 * they've been read or not.  Added option to suppress kernel printk's
  10 * to the console.  Added hook for sending the console messages
  11 * elsewhere, in preparation for a serial line console (someday).
  12 * Ted Ts'o, 2/11/93.
  13 * Modified for sysctl support, 1/8/97, Chris Horn.
  14 * Fixed SMP synchronization, 08/08/99, Manfred Spraul
  15 *     manfred@colorfullife.com
  16 * Rewrote bits to get rid of console_lock
  17 *	01Mar01 Andrew Morton
  18 */
  19
  20#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  21
  22#include <linux/kernel.h>
  23#include <linux/mm.h>
  24#include <linux/tty.h>
  25#include <linux/tty_driver.h>
  26#include <linux/console.h>
  27#include <linux/init.h>
  28#include <linux/jiffies.h>
  29#include <linux/nmi.h>
  30#include <linux/module.h>
  31#include <linux/moduleparam.h>
 
  32#include <linux/delay.h>
  33#include <linux/smp.h>
  34#include <linux/security.h>
 
  35#include <linux/memblock.h>
  36#include <linux/syscalls.h>
  37#include <linux/crash_core.h>
  38#include <linux/kdb.h>
  39#include <linux/ratelimit.h>
  40#include <linux/kmsg_dump.h>
  41#include <linux/syslog.h>
  42#include <linux/cpu.h>
 
  43#include <linux/rculist.h>
  44#include <linux/poll.h>
  45#include <linux/irq_work.h>
 
  46#include <linux/ctype.h>
  47#include <linux/uio.h>
  48#include <linux/sched/clock.h>
  49#include <linux/sched/debug.h>
  50#include <linux/sched/task_stack.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/sections.h>
  54
  55#include <trace/events/initcall.h>
  56#define CREATE_TRACE_POINTS
  57#include <trace/events/printk.h>
  58
  59#include "console_cmdline.h"
  60#include "braille.h"
  61#include "internal.h"
  62
  63int console_printk[4] = {
  64	CONSOLE_LOGLEVEL_DEFAULT,	/* console_loglevel */
  65	MESSAGE_LOGLEVEL_DEFAULT,	/* default_message_loglevel */
  66	CONSOLE_LOGLEVEL_MIN,		/* minimum_console_loglevel */
  67	CONSOLE_LOGLEVEL_DEFAULT,	/* default_console_loglevel */
  68};
  69EXPORT_SYMBOL_GPL(console_printk);
  70
  71atomic_t ignore_console_lock_warning __read_mostly = ATOMIC_INIT(0);
  72EXPORT_SYMBOL(ignore_console_lock_warning);
  73
  74/*
  75 * Low level drivers may need that to know if they can schedule in
  76 * their unblank() callback or not. So let's export it.
  77 */
  78int oops_in_progress;
  79EXPORT_SYMBOL(oops_in_progress);
  80
  81/*
  82 * console_sem protects the console_drivers list, and also
  83 * provides serialisation for access to the entire console
  84 * driver system.
  85 */
  86static DEFINE_SEMAPHORE(console_sem);
  87struct console *console_drivers;
  88EXPORT_SYMBOL_GPL(console_drivers);
  89
  90/*
  91 * System may need to suppress printk message under certain
  92 * circumstances, like after kernel panic happens.
  93 */
  94int __read_mostly suppress_printk;
  95
  96#ifdef CONFIG_LOCKDEP
  97static struct lockdep_map console_lock_dep_map = {
  98	.name = "console_lock"
  99};
 100#endif
 101
 102enum devkmsg_log_bits {
 103	__DEVKMSG_LOG_BIT_ON = 0,
 104	__DEVKMSG_LOG_BIT_OFF,
 105	__DEVKMSG_LOG_BIT_LOCK,
 106};
 107
 108enum devkmsg_log_masks {
 109	DEVKMSG_LOG_MASK_ON             = BIT(__DEVKMSG_LOG_BIT_ON),
 110	DEVKMSG_LOG_MASK_OFF            = BIT(__DEVKMSG_LOG_BIT_OFF),
 111	DEVKMSG_LOG_MASK_LOCK           = BIT(__DEVKMSG_LOG_BIT_LOCK),
 112};
 113
 114/* Keep both the 'on' and 'off' bits clear, i.e. ratelimit by default: */
 115#define DEVKMSG_LOG_MASK_DEFAULT	0
 116
 117static unsigned int __read_mostly devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 118
 119static int __control_devkmsg(char *str)
 120{
 121	size_t len;
 122
 123	if (!str)
 124		return -EINVAL;
 125
 126	len = str_has_prefix(str, "on");
 127	if (len) {
 128		devkmsg_log = DEVKMSG_LOG_MASK_ON;
 129		return len;
 130	}
 131
 132	len = str_has_prefix(str, "off");
 133	if (len) {
 134		devkmsg_log = DEVKMSG_LOG_MASK_OFF;
 135		return len;
 136	}
 137
 138	len = str_has_prefix(str, "ratelimit");
 139	if (len) {
 140		devkmsg_log = DEVKMSG_LOG_MASK_DEFAULT;
 141		return len;
 142	}
 143
 144	return -EINVAL;
 145}
 146
 147static int __init control_devkmsg(char *str)
 148{
 149	if (__control_devkmsg(str) < 0)
 150		return 1;
 151
 152	/*
 153	 * Set sysctl string accordingly:
 154	 */
 155	if (devkmsg_log == DEVKMSG_LOG_MASK_ON)
 156		strcpy(devkmsg_log_str, "on");
 157	else if (devkmsg_log == DEVKMSG_LOG_MASK_OFF)
 158		strcpy(devkmsg_log_str, "off");
 159	/* else "ratelimit" which is set by default. */
 160
 161	/*
 162	 * Sysctl cannot change it anymore. The kernel command line setting of
 163	 * this parameter is to force the setting to be permanent throughout the
 164	 * runtime of the system. This is a precation measure against userspace
 165	 * trying to be a smarta** and attempting to change it up on us.
 166	 */
 167	devkmsg_log |= DEVKMSG_LOG_MASK_LOCK;
 168
 169	return 0;
 170}
 171__setup("printk.devkmsg=", control_devkmsg);
 172
 173char devkmsg_log_str[DEVKMSG_STR_MAX_SIZE] = "ratelimit";
 174
 175int devkmsg_sysctl_set_loglvl(struct ctl_table *table, int write,
 176			      void __user *buffer, size_t *lenp, loff_t *ppos)
 177{
 178	char old_str[DEVKMSG_STR_MAX_SIZE];
 179	unsigned int old;
 180	int err;
 181
 182	if (write) {
 183		if (devkmsg_log & DEVKMSG_LOG_MASK_LOCK)
 184			return -EINVAL;
 185
 186		old = devkmsg_log;
 187		strncpy(old_str, devkmsg_log_str, DEVKMSG_STR_MAX_SIZE);
 188	}
 189
 190	err = proc_dostring(table, write, buffer, lenp, ppos);
 191	if (err)
 192		return err;
 193
 194	if (write) {
 195		err = __control_devkmsg(devkmsg_log_str);
 196
 197		/*
 198		 * Do not accept an unknown string OR a known string with
 199		 * trailing crap...
 200		 */
 201		if (err < 0 || (err + 1 != *lenp)) {
 202
 203			/* ... and restore old setting. */
 204			devkmsg_log = old;
 205			strncpy(devkmsg_log_str, old_str, DEVKMSG_STR_MAX_SIZE);
 206
 207			return -EINVAL;
 208		}
 209	}
 210
 211	return 0;
 212}
 213
 214/* Number of registered extended console drivers. */
 215static int nr_ext_console_drivers;
 216
 217/*
 218 * Helper macros to handle lockdep when locking/unlocking console_sem. We use
 219 * macros instead of functions so that _RET_IP_ contains useful information.
 220 */
 221#define down_console_sem() do { \
 222	down(&console_sem);\
 223	mutex_acquire(&console_lock_dep_map, 0, 0, _RET_IP_);\
 224} while (0)
 225
 226static int __down_trylock_console_sem(unsigned long ip)
 227{
 228	int lock_failed;
 229	unsigned long flags;
 230
 231	/*
 232	 * Here and in __up_console_sem() we need to be in safe mode,
 233	 * because spindump/WARN/etc from under console ->lock will
 234	 * deadlock in printk()->down_trylock_console_sem() otherwise.
 235	 */
 236	printk_safe_enter_irqsave(flags);
 237	lock_failed = down_trylock(&console_sem);
 238	printk_safe_exit_irqrestore(flags);
 239
 240	if (lock_failed)
 241		return 1;
 242	mutex_acquire(&console_lock_dep_map, 0, 1, ip);
 243	return 0;
 244}
 245#define down_trylock_console_sem() __down_trylock_console_sem(_RET_IP_)
 246
 247static void __up_console_sem(unsigned long ip)
 248{
 249	unsigned long flags;
 250
 251	mutex_release(&console_lock_dep_map, 1, ip);
 252
 253	printk_safe_enter_irqsave(flags);
 254	up(&console_sem);
 255	printk_safe_exit_irqrestore(flags);
 256}
 257#define up_console_sem() __up_console_sem(_RET_IP_)
 258
 259/*
 260 * This is used for debugging the mess that is the VT code by
 261 * keeping track if we have the console semaphore held. It's
 262 * definitely not the perfect debug tool (we don't know if _WE_
 263 * hold it and are racing, but it helps tracking those weird code
 264 * paths in the console code where we end up in places I want
 265 * locked without the console sempahore held).
 266 */
 267static int console_locked, console_suspended;
 268
 269/*
 270 * If exclusive_console is non-NULL then only this console is to be printed to.
 271 */
 272static struct console *exclusive_console;
 273
 274/*
 275 *	Array of consoles built from command line options (console=)
 276 */
 277
 278#define MAX_CMDLINECONSOLES 8
 279
 280static struct console_cmdline console_cmdline[MAX_CMDLINECONSOLES];
 281
 
 282static int preferred_console = -1;
 283int console_set_on_cmdline;
 284EXPORT_SYMBOL(console_set_on_cmdline);
 285
 286/* Flag: console code may call schedule() */
 287static int console_may_schedule;
 288
 289enum con_msg_format_flags {
 290	MSG_FORMAT_DEFAULT	= 0,
 291	MSG_FORMAT_SYSLOG	= (1 << 0),
 292};
 293
 294static int console_msg_format = MSG_FORMAT_DEFAULT;
 295
 296/*
 297 * The printk log buffer consists of a chain of concatenated variable
 298 * length records. Every record starts with a record header, containing
 299 * the overall length of the record.
 300 *
 301 * The heads to the first and last entry in the buffer, as well as the
 302 * sequence numbers of these entries are maintained when messages are
 303 * stored.
 304 *
 305 * If the heads indicate available messages, the length in the header
 306 * tells the start next message. A length == 0 for the next message
 307 * indicates a wrap-around to the beginning of the buffer.
 308 *
 309 * Every record carries the monotonic timestamp in microseconds, as well as
 310 * the standard userspace syslog level and syslog facility. The usual
 311 * kernel messages use LOG_KERN; userspace-injected messages always carry
 312 * a matching syslog facility, by default LOG_USER. The origin of every
 313 * message can be reliably determined that way.
 314 *
 315 * The human readable log message directly follows the message header. The
 316 * length of the message text is stored in the header, the stored message
 317 * is not terminated.
 318 *
 319 * Optionally, a message can carry a dictionary of properties (key/value pairs),
 320 * to provide userspace with a machine-readable message context.
 321 *
 322 * Examples for well-defined, commonly used property names are:
 323 *   DEVICE=b12:8               device identifier
 324 *                                b12:8         block dev_t
 325 *                                c127:3        char dev_t
 326 *                                n8            netdev ifindex
 327 *                                +sound:card0  subsystem:devname
 328 *   SUBSYSTEM=pci              driver-core subsystem name
 329 *
 330 * Valid characters in property names are [a-zA-Z0-9.-_]. The plain text value
 331 * follows directly after a '=' character. Every property is terminated by
 332 * a '\0' character. The last property is not terminated.
 333 *
 334 * Example of a message structure:
 335 *   0000  ff 8f 00 00 00 00 00 00      monotonic time in nsec
 336 *   0008  34 00                        record is 52 bytes long
 337 *   000a        0b 00                  text is 11 bytes long
 338 *   000c              1f 00            dictionary is 23 bytes long
 339 *   000e                    03 00      LOG_KERN (facility) LOG_ERR (level)
 340 *   0010  69 74 27 73 20 61 20 6c      "it's a l"
 341 *         69 6e 65                     "ine"
 342 *   001b           44 45 56 49 43      "DEVIC"
 343 *         45 3d 62 38 3a 32 00 44      "E=b8:2\0D"
 344 *         52 49 56 45 52 3d 62 75      "RIVER=bu"
 345 *         67                           "g"
 346 *   0032     00 00 00                  padding to next message header
 347 *
 348 * The 'struct printk_log' buffer header must never be directly exported to
 349 * userspace, it is a kernel-private implementation detail that might
 350 * need to be changed in the future, when the requirements change.
 351 *
 352 * /dev/kmsg exports the structured data in the following line format:
 353 *   "<level>,<sequnum>,<timestamp>,<contflag>[,additional_values, ... ];<message text>\n"
 354 *
 355 * Users of the export format should ignore possible additional values
 356 * separated by ',', and find the message after the ';' character.
 357 *
 358 * The optional key/value pairs are attached as continuation lines starting
 359 * with a space character and terminated by a newline. All possible
 360 * non-prinatable characters are escaped in the "\xff" notation.
 361 */
 362
 363enum log_flags {
 
 364	LOG_NEWLINE	= 2,	/* text ended with a newline */
 
 365	LOG_CONT	= 8,	/* text is a fragment of a continuation line */
 366};
 367
 368struct printk_log {
 369	u64 ts_nsec;		/* timestamp in nanoseconds */
 370	u16 len;		/* length of entire record */
 371	u16 text_len;		/* length of text buffer */
 372	u16 dict_len;		/* length of dictionary buffer */
 373	u8 facility;		/* syslog facility */
 374	u8 flags:5;		/* internal record flags */
 375	u8 level:3;		/* syslog level */
 376#ifdef CONFIG_PRINTK_CALLER
 377	u32 caller_id;            /* thread id or processor id */
 378#endif
 379}
 380#ifdef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS
 381__packed __aligned(4)
 382#endif
 383;
 384
 385/*
 386 * The logbuf_lock protects kmsg buffer, indices, counters.  This can be taken
 387 * within the scheduler's rq lock. It must be released before calling
 388 * console_unlock() or anything else that might wake up a process.
 389 */
 390DEFINE_RAW_SPINLOCK(logbuf_lock);
 391
 392/*
 393 * Helper macros to lock/unlock logbuf_lock and switch between
 394 * printk-safe/unsafe modes.
 395 */
 396#define logbuf_lock_irq()				\
 397	do {						\
 398		printk_safe_enter_irq();		\
 399		raw_spin_lock(&logbuf_lock);		\
 400	} while (0)
 401
 402#define logbuf_unlock_irq()				\
 403	do {						\
 404		raw_spin_unlock(&logbuf_lock);		\
 405		printk_safe_exit_irq();			\
 406	} while (0)
 407
 408#define logbuf_lock_irqsave(flags)			\
 409	do {						\
 410		printk_safe_enter_irqsave(flags);	\
 411		raw_spin_lock(&logbuf_lock);		\
 412	} while (0)
 413
 414#define logbuf_unlock_irqrestore(flags)		\
 415	do {						\
 416		raw_spin_unlock(&logbuf_lock);		\
 417		printk_safe_exit_irqrestore(flags);	\
 418	} while (0)
 419
 420#ifdef CONFIG_PRINTK
 421DECLARE_WAIT_QUEUE_HEAD(log_wait);
 422/* the next printk record to read by syslog(READ) or /proc/kmsg */
 423static u64 syslog_seq;
 424static u32 syslog_idx;
 
 425static size_t syslog_partial;
 426static bool syslog_time;
 427
 428/* index and sequence number of the first record stored in the buffer */
 429static u64 log_first_seq;
 430static u32 log_first_idx;
 431
 432/* index and sequence number of the next record to store in the buffer */
 433static u64 log_next_seq;
 434static u32 log_next_idx;
 435
 436/* the next printk record to write to the console */
 437static u64 console_seq;
 438static u32 console_idx;
 439static u64 exclusive_console_stop_seq;
 440
 441/* the next printk record to read after the last 'clear' command */
 442static u64 clear_seq;
 443static u32 clear_idx;
 444
 445#ifdef CONFIG_PRINTK_CALLER
 446#define PREFIX_MAX		48
 447#else
 448#define PREFIX_MAX		32
 449#endif
 450#define LOG_LINE_MAX		(1024 - PREFIX_MAX)
 451
 452#define LOG_LEVEL(v)		((v) & 0x07)
 453#define LOG_FACILITY(v)		((v) >> 3 & 0xff)
 454
 455/* record buffer */
 456#define LOG_ALIGN __alignof__(struct printk_log)
 457#define __LOG_BUF_LEN (1 << CONFIG_LOG_BUF_SHIFT)
 458#define LOG_BUF_LEN_MAX (u32)(1 << 31)
 459static char __log_buf[__LOG_BUF_LEN] __aligned(LOG_ALIGN);
 460static char *log_buf = __log_buf;
 461static u32 log_buf_len = __LOG_BUF_LEN;
 462
 463/* Return log buffer address */
 464char *log_buf_addr_get(void)
 465{
 466	return log_buf;
 467}
 468
 469/* Return log buffer size */
 470u32 log_buf_len_get(void)
 471{
 472	return log_buf_len;
 473}
 474
 475/* human readable text of the record */
 476static char *log_text(const struct printk_log *msg)
 477{
 478	return (char *)msg + sizeof(struct printk_log);
 479}
 480
 481/* optional key/value pair dictionary attached to the record */
 482static char *log_dict(const struct printk_log *msg)
 483{
 484	return (char *)msg + sizeof(struct printk_log) + msg->text_len;
 485}
 486
 487/* get record by index; idx must point to valid msg */
 488static struct printk_log *log_from_idx(u32 idx)
 489{
 490	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 491
 492	/*
 493	 * A length == 0 record is the end of buffer marker. Wrap around and
 494	 * read the message at the start of the buffer.
 495	 */
 496	if (!msg->len)
 497		return (struct printk_log *)log_buf;
 498	return msg;
 499}
 500
 501/* get next record; idx must point to valid msg */
 502static u32 log_next(u32 idx)
 503{
 504	struct printk_log *msg = (struct printk_log *)(log_buf + idx);
 505
 506	/* length == 0 indicates the end of the buffer; wrap */
 507	/*
 508	 * A length == 0 record is the end of buffer marker. Wrap around and
 509	 * read the message at the start of the buffer as *this* one, and
 510	 * return the one after that.
 511	 */
 512	if (!msg->len) {
 513		msg = (struct printk_log *)log_buf;
 514		return msg->len;
 515	}
 516	return idx + msg->len;
 517}
 518
 519/*
 520 * Check whether there is enough free space for the given message.
 521 *
 522 * The same values of first_idx and next_idx mean that the buffer
 523 * is either empty or full.
 524 *
 525 * If the buffer is empty, we must respect the position of the indexes.
 526 * They cannot be reset to the beginning of the buffer.
 527 */
 528static int logbuf_has_space(u32 msg_size, bool empty)
 529{
 530	u32 free;
 531
 532	if (log_next_idx > log_first_idx || empty)
 533		free = max(log_buf_len - log_next_idx, log_first_idx);
 534	else
 535		free = log_first_idx - log_next_idx;
 536
 537	/*
 538	 * We need space also for an empty header that signalizes wrapping
 539	 * of the buffer.
 540	 */
 541	return free >= msg_size + sizeof(struct printk_log);
 542}
 543
 544static int log_make_free_space(u32 msg_size)
 545{
 546	while (log_first_seq < log_next_seq &&
 547	       !logbuf_has_space(msg_size, false)) {
 548		/* drop old messages until we have enough contiguous space */
 549		log_first_idx = log_next(log_first_idx);
 550		log_first_seq++;
 551	}
 552
 553	if (clear_seq < log_first_seq) {
 554		clear_seq = log_first_seq;
 555		clear_idx = log_first_idx;
 556	}
 557
 558	/* sequence numbers are equal, so the log buffer is empty */
 559	if (logbuf_has_space(msg_size, log_first_seq == log_next_seq))
 560		return 0;
 561
 562	return -ENOMEM;
 563}
 564
 565/* compute the message size including the padding bytes */
 566static u32 msg_used_size(u16 text_len, u16 dict_len, u32 *pad_len)
 567{
 568	u32 size;
 569
 570	size = sizeof(struct printk_log) + text_len + dict_len;
 571	*pad_len = (-size) & (LOG_ALIGN - 1);
 572	size += *pad_len;
 573
 574	return size;
 575}
 576
 577/*
 578 * Define how much of the log buffer we could take at maximum. The value
 579 * must be greater than two. Note that only half of the buffer is available
 580 * when the index points to the middle.
 581 */
 582#define MAX_LOG_TAKE_PART 4
 583static const char trunc_msg[] = "<truncated>";
 584
 585static u32 truncate_msg(u16 *text_len, u16 *trunc_msg_len,
 586			u16 *dict_len, u32 *pad_len)
 587{
 588	/*
 589	 * The message should not take the whole buffer. Otherwise, it might
 590	 * get removed too soon.
 591	 */
 592	u32 max_text_len = log_buf_len / MAX_LOG_TAKE_PART;
 593	if (*text_len > max_text_len)
 594		*text_len = max_text_len;
 595	/* enable the warning message */
 596	*trunc_msg_len = strlen(trunc_msg);
 597	/* disable the "dict" completely */
 598	*dict_len = 0;
 599	/* compute the size again, count also the warning message */
 600	return msg_used_size(*text_len + *trunc_msg_len, 0, pad_len);
 601}
 602
 603/* insert record into the buffer, discard old ones, update heads */
 604static int log_store(u32 caller_id, int facility, int level,
 605		     enum log_flags flags, u64 ts_nsec,
 606		     const char *dict, u16 dict_len,
 607		     const char *text, u16 text_len)
 608{
 609	struct printk_log *msg;
 610	u32 size, pad_len;
 611	u16 trunc_msg_len = 0;
 612
 613	/* number of '\0' padding bytes to next message */
 614	size = msg_used_size(text_len, dict_len, &pad_len);
 615
 616	if (log_make_free_space(size)) {
 617		/* truncate the message if it is too long for empty buffer */
 618		size = truncate_msg(&text_len, &trunc_msg_len,
 619				    &dict_len, &pad_len);
 620		/* survive when the log buffer is too small for trunc_msg */
 621		if (log_make_free_space(size))
 622			return 0;
 623	}
 624
 625	if (log_next_idx + size + sizeof(struct printk_log) > log_buf_len) {
 626		/*
 627		 * This message + an additional empty header does not fit
 628		 * at the end of the buffer. Add an empty header with len == 0
 629		 * to signify a wrap around.
 630		 */
 631		memset(log_buf + log_next_idx, 0, sizeof(struct printk_log));
 632		log_next_idx = 0;
 633	}
 634
 635	/* fill message */
 636	msg = (struct printk_log *)(log_buf + log_next_idx);
 637	memcpy(log_text(msg), text, text_len);
 638	msg->text_len = text_len;
 639	if (trunc_msg_len) {
 640		memcpy(log_text(msg) + text_len, trunc_msg, trunc_msg_len);
 641		msg->text_len += trunc_msg_len;
 642	}
 643	memcpy(log_dict(msg), dict, dict_len);
 644	msg->dict_len = dict_len;
 645	msg->facility = facility;
 646	msg->level = level & 7;
 647	msg->flags = flags & 0x1f;
 648	if (ts_nsec > 0)
 649		msg->ts_nsec = ts_nsec;
 650	else
 651		msg->ts_nsec = local_clock();
 652#ifdef CONFIG_PRINTK_CALLER
 653	msg->caller_id = caller_id;
 654#endif
 655	memset(log_dict(msg) + dict_len, 0, pad_len);
 656	msg->len = size;
 657
 658	/* insert message */
 659	log_next_idx += msg->len;
 660	log_next_seq++;
 661
 662	return msg->text_len;
 663}
 664
 665int dmesg_restrict = IS_ENABLED(CONFIG_SECURITY_DMESG_RESTRICT);
 666
 667static int syslog_action_restricted(int type)
 668{
 669	if (dmesg_restrict)
 670		return 1;
 671	/*
 672	 * Unless restricted, we allow "read all" and "get buffer size"
 673	 * for everybody.
 674	 */
 675	return type != SYSLOG_ACTION_READ_ALL &&
 676	       type != SYSLOG_ACTION_SIZE_BUFFER;
 677}
 678
 679static int check_syslog_permissions(int type, int source)
 680{
 681	/*
 682	 * If this is from /proc/kmsg and we've already opened it, then we've
 683	 * already done the capabilities checks at open time.
 684	 */
 685	if (source == SYSLOG_FROM_PROC && type != SYSLOG_ACTION_OPEN)
 686		goto ok;
 687
 688	if (syslog_action_restricted(type)) {
 689		if (capable(CAP_SYSLOG))
 690			goto ok;
 691		/*
 692		 * For historical reasons, accept CAP_SYS_ADMIN too, with
 693		 * a warning.
 694		 */
 695		if (capable(CAP_SYS_ADMIN)) {
 696			pr_warn_once("%s (%d): Attempt to access syslog with "
 697				     "CAP_SYS_ADMIN but no CAP_SYSLOG "
 698				     "(deprecated).\n",
 699				 current->comm, task_pid_nr(current));
 700			goto ok;
 701		}
 702		return -EPERM;
 703	}
 704ok:
 705	return security_syslog(type);
 706}
 
 707
 708static void append_char(char **pp, char *e, char c)
 709{
 710	if (*pp < e)
 711		*(*pp)++ = c;
 712}
 713
 714static ssize_t msg_print_ext_header(char *buf, size_t size,
 715				    struct printk_log *msg, u64 seq)
 
 716{
 717	u64 ts_usec = msg->ts_nsec;
 718	char caller[20];
 719#ifdef CONFIG_PRINTK_CALLER
 720	u32 id = msg->caller_id;
 721
 722	snprintf(caller, sizeof(caller), ",caller=%c%u",
 723		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
 724#else
 725	caller[0] = '\0';
 726#endif
 727
 728	do_div(ts_usec, 1000);
 
 
 
 
 
 
 
 
 
 
 
 
 729
 730	return scnprintf(buf, size, "%u,%llu,%llu,%c%s;",
 731			 (msg->facility << 3) | msg->level, seq, ts_usec,
 732			 msg->flags & LOG_CONT ? 'c' : '-', caller);
 733}
 734
 735static ssize_t msg_print_ext_body(char *buf, size_t size,
 736				  char *dict, size_t dict_len,
 737				  char *text, size_t text_len)
 738{
 739	char *p = buf, *e = buf + size;
 740	size_t i;
 741
 742	/* escape non-printable characters */
 743	for (i = 0; i < text_len; i++) {
 744		unsigned char c = text[i];
 745
 746		if (c < ' ' || c >= 127 || c == '\\')
 747			p += scnprintf(p, e - p, "\\x%02x", c);
 748		else
 749			append_char(&p, e, c);
 750	}
 751	append_char(&p, e, '\n');
 752
 753	if (dict_len) {
 754		bool line = true;
 755
 756		for (i = 0; i < dict_len; i++) {
 757			unsigned char c = dict[i];
 758
 759			if (line) {
 760				append_char(&p, e, ' ');
 761				line = false;
 762			}
 763
 764			if (c == '\0') {
 765				append_char(&p, e, '\n');
 766				line = true;
 767				continue;
 768			}
 769
 770			if (c < ' ' || c >= 127 || c == '\\') {
 771				p += scnprintf(p, e - p, "\\x%02x", c);
 772				continue;
 773			}
 774
 775			append_char(&p, e, c);
 776		}
 777		append_char(&p, e, '\n');
 778	}
 779
 780	return p - buf;
 781}
 782
 783/* /dev/kmsg - userspace message inject/listen interface */
 784struct devkmsg_user {
 785	u64 seq;
 786	u32 idx;
 787	struct ratelimit_state rs;
 788	struct mutex lock;
 789	char buf[CONSOLE_EXT_LOG_MAX];
 790};
 791
 792static __printf(3, 4) __cold
 793int devkmsg_emit(int facility, int level, const char *fmt, ...)
 794{
 795	va_list args;
 796	int r;
 797
 798	va_start(args, fmt);
 799	r = vprintk_emit(facility, level, NULL, 0, fmt, args);
 800	va_end(args);
 801
 802	return r;
 803}
 804
 805static ssize_t devkmsg_write(struct kiocb *iocb, struct iov_iter *from)
 806{
 807	char *buf, *line;
 808	int level = default_message_loglevel;
 809	int facility = 1;	/* LOG_USER */
 810	struct file *file = iocb->ki_filp;
 811	struct devkmsg_user *user = file->private_data;
 812	size_t len = iov_iter_count(from);
 813	ssize_t ret = len;
 814
 815	if (!user || len > LOG_LINE_MAX)
 816		return -EINVAL;
 817
 818	/* Ignore when user logging is disabled. */
 819	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
 820		return len;
 821
 822	/* Ratelimit when not explicitly enabled. */
 823	if (!(devkmsg_log & DEVKMSG_LOG_MASK_ON)) {
 824		if (!___ratelimit(&user->rs, current->comm))
 825			return ret;
 826	}
 827
 828	buf = kmalloc(len+1, GFP_KERNEL);
 829	if (buf == NULL)
 830		return -ENOMEM;
 831
 832	buf[len] = '\0';
 833	if (!copy_from_iter_full(buf, len, from)) {
 834		kfree(buf);
 835		return -EFAULT;
 836	}
 837
 838	/*
 839	 * Extract and skip the syslog prefix <[0-9]*>. Coming from userspace
 840	 * the decimal value represents 32bit, the lower 3 bit are the log
 841	 * level, the rest are the log facility.
 842	 *
 843	 * If no prefix or no userspace facility is specified, we
 844	 * enforce LOG_USER, to be able to reliably distinguish
 845	 * kernel-generated messages from userspace-injected ones.
 846	 */
 847	line = buf;
 848	if (line[0] == '<') {
 849		char *endp = NULL;
 850		unsigned int u;
 851
 852		u = simple_strtoul(line + 1, &endp, 10);
 853		if (endp && endp[0] == '>') {
 854			level = LOG_LEVEL(u);
 855			if (LOG_FACILITY(u) != 0)
 856				facility = LOG_FACILITY(u);
 857			endp++;
 858			len -= endp - line;
 859			line = endp;
 860		}
 861	}
 862
 863	devkmsg_emit(facility, level, "%s", line);
 864	kfree(buf);
 865	return ret;
 866}
 867
 868static ssize_t devkmsg_read(struct file *file, char __user *buf,
 869			    size_t count, loff_t *ppos)
 870{
 871	struct devkmsg_user *user = file->private_data;
 872	struct printk_log *msg;
 873	size_t len;
 874	ssize_t ret;
 875
 876	if (!user)
 877		return -EBADF;
 878
 879	ret = mutex_lock_interruptible(&user->lock);
 880	if (ret)
 881		return ret;
 882
 883	logbuf_lock_irq();
 884	while (user->seq == log_next_seq) {
 885		if (file->f_flags & O_NONBLOCK) {
 886			ret = -EAGAIN;
 887			logbuf_unlock_irq();
 888			goto out;
 889		}
 890
 891		logbuf_unlock_irq();
 892		ret = wait_event_interruptible(log_wait,
 893					       user->seq != log_next_seq);
 894		if (ret)
 895			goto out;
 896		logbuf_lock_irq();
 897	}
 898
 899	if (user->seq < log_first_seq) {
 900		/* our last seen message is gone, return error and reset */
 901		user->idx = log_first_idx;
 902		user->seq = log_first_seq;
 903		ret = -EPIPE;
 904		logbuf_unlock_irq();
 905		goto out;
 906	}
 907
 908	msg = log_from_idx(user->idx);
 909	len = msg_print_ext_header(user->buf, sizeof(user->buf),
 910				   msg, user->seq);
 911	len += msg_print_ext_body(user->buf + len, sizeof(user->buf) - len,
 912				  log_dict(msg), msg->dict_len,
 913				  log_text(msg), msg->text_len);
 914
 
 915	user->idx = log_next(user->idx);
 916	user->seq++;
 917	logbuf_unlock_irq();
 918
 919	if (len > count) {
 920		ret = -EINVAL;
 921		goto out;
 922	}
 923
 924	if (copy_to_user(buf, user->buf, len)) {
 925		ret = -EFAULT;
 926		goto out;
 927	}
 928	ret = len;
 929out:
 930	mutex_unlock(&user->lock);
 931	return ret;
 932}
 933
 934static loff_t devkmsg_llseek(struct file *file, loff_t offset, int whence)
 935{
 936	struct devkmsg_user *user = file->private_data;
 937	loff_t ret = 0;
 938
 939	if (!user)
 940		return -EBADF;
 941	if (offset)
 942		return -ESPIPE;
 943
 944	logbuf_lock_irq();
 945	switch (whence) {
 946	case SEEK_SET:
 947		/* the first record */
 948		user->idx = log_first_idx;
 949		user->seq = log_first_seq;
 950		break;
 951	case SEEK_DATA:
 952		/*
 953		 * The first record after the last SYSLOG_ACTION_CLEAR,
 954		 * like issued by 'dmesg -c'. Reading /dev/kmsg itself
 955		 * changes no global state, and does not clear anything.
 956		 */
 957		user->idx = clear_idx;
 958		user->seq = clear_seq;
 959		break;
 960	case SEEK_END:
 961		/* after the last record */
 962		user->idx = log_next_idx;
 963		user->seq = log_next_seq;
 964		break;
 965	default:
 966		ret = -EINVAL;
 967	}
 968	logbuf_unlock_irq();
 969	return ret;
 970}
 971
 972static __poll_t devkmsg_poll(struct file *file, poll_table *wait)
 973{
 974	struct devkmsg_user *user = file->private_data;
 975	__poll_t ret = 0;
 976
 977	if (!user)
 978		return EPOLLERR|EPOLLNVAL;
 979
 980	poll_wait(file, &log_wait, wait);
 981
 982	logbuf_lock_irq();
 983	if (user->seq < log_next_seq) {
 984		/* return error when data has vanished underneath us */
 985		if (user->seq < log_first_seq)
 986			ret = EPOLLIN|EPOLLRDNORM|EPOLLERR|EPOLLPRI;
 987		else
 988			ret = EPOLLIN|EPOLLRDNORM;
 989	}
 990	logbuf_unlock_irq();
 991
 992	return ret;
 993}
 994
 995static int devkmsg_open(struct inode *inode, struct file *file)
 996{
 997	struct devkmsg_user *user;
 998	int err;
 999
1000	if (devkmsg_log & DEVKMSG_LOG_MASK_OFF)
1001		return -EPERM;
 
1002
1003	/* write-only does not need any file context */
1004	if ((file->f_flags & O_ACCMODE) != O_WRONLY) {
1005		err = check_syslog_permissions(SYSLOG_ACTION_READ_ALL,
1006					       SYSLOG_FROM_READER);
1007		if (err)
1008			return err;
1009	}
1010
1011	user = kmalloc(sizeof(struct devkmsg_user), GFP_KERNEL);
1012	if (!user)
1013		return -ENOMEM;
1014
1015	ratelimit_default_init(&user->rs);
1016	ratelimit_set_flags(&user->rs, RATELIMIT_MSG_ON_RELEASE);
1017
1018	mutex_init(&user->lock);
1019
1020	logbuf_lock_irq();
1021	user->idx = log_first_idx;
1022	user->seq = log_first_seq;
1023	logbuf_unlock_irq();
1024
1025	file->private_data = user;
1026	return 0;
1027}
1028
1029static int devkmsg_release(struct inode *inode, struct file *file)
1030{
1031	struct devkmsg_user *user = file->private_data;
1032
1033	if (!user)
1034		return 0;
1035
1036	ratelimit_state_exit(&user->rs);
1037
1038	mutex_destroy(&user->lock);
1039	kfree(user);
1040	return 0;
1041}
1042
1043const struct file_operations kmsg_fops = {
1044	.open = devkmsg_open,
1045	.read = devkmsg_read,
1046	.write_iter = devkmsg_write,
1047	.llseek = devkmsg_llseek,
1048	.poll = devkmsg_poll,
1049	.release = devkmsg_release,
1050};
1051
1052#ifdef CONFIG_CRASH_CORE
1053/*
1054 * This appends the listed symbols to /proc/vmcore
1055 *
1056 * /proc/vmcore is used by various utilities, like crash and makedumpfile to
1057 * obtain access to symbols that are otherwise very difficult to locate.  These
1058 * symbols are specifically used so that utilities can access and extract the
1059 * dmesg log from a vmcore file after a crash.
1060 */
1061void log_buf_vmcoreinfo_setup(void)
1062{
1063	VMCOREINFO_SYMBOL(log_buf);
1064	VMCOREINFO_SYMBOL(log_buf_len);
1065	VMCOREINFO_SYMBOL(log_first_idx);
1066	VMCOREINFO_SYMBOL(clear_idx);
1067	VMCOREINFO_SYMBOL(log_next_idx);
1068	/*
1069	 * Export struct printk_log size and field offsets. User space tools can
1070	 * parse it and detect any changes to structure down the line.
1071	 */
1072	VMCOREINFO_STRUCT_SIZE(printk_log);
1073	VMCOREINFO_OFFSET(printk_log, ts_nsec);
1074	VMCOREINFO_OFFSET(printk_log, len);
1075	VMCOREINFO_OFFSET(printk_log, text_len);
1076	VMCOREINFO_OFFSET(printk_log, dict_len);
1077#ifdef CONFIG_PRINTK_CALLER
1078	VMCOREINFO_OFFSET(printk_log, caller_id);
1079#endif
1080}
1081#endif
1082
1083/* requested log_buf_len from kernel cmdline */
1084static unsigned long __initdata new_log_buf_len;
1085
1086/* we practice scaling the ring buffer by powers of 2 */
1087static void __init log_buf_len_update(u64 size)
1088{
1089	if (size > (u64)LOG_BUF_LEN_MAX) {
1090		size = (u64)LOG_BUF_LEN_MAX;
1091		pr_err("log_buf over 2G is not supported.\n");
1092	}
1093
1094	if (size)
1095		size = roundup_pow_of_two(size);
1096	if (size > log_buf_len)
1097		new_log_buf_len = (unsigned long)size;
1098}
1099
1100/* save requested log_buf_len since it's too early to process it */
1101static int __init log_buf_len_setup(char *str)
1102{
1103	u64 size;
1104
1105	if (!str)
1106		return -EINVAL;
1107
1108	size = memparse(str, &str);
1109
1110	log_buf_len_update(size);
1111
1112	return 0;
1113}
1114early_param("log_buf_len", log_buf_len_setup);
1115
1116#ifdef CONFIG_SMP
1117#define __LOG_CPU_MAX_BUF_LEN (1 << CONFIG_LOG_CPU_MAX_BUF_SHIFT)
1118
1119static void __init log_buf_add_cpu(void)
1120{
1121	unsigned int cpu_extra;
1122
1123	/*
1124	 * archs should set up cpu_possible_bits properly with
1125	 * set_cpu_possible() after setup_arch() but just in
1126	 * case lets ensure this is valid.
1127	 */
1128	if (num_possible_cpus() == 1)
1129		return;
1130
1131	cpu_extra = (num_possible_cpus() - 1) * __LOG_CPU_MAX_BUF_LEN;
1132
1133	/* by default this will only continue through for large > 64 CPUs */
1134	if (cpu_extra <= __LOG_BUF_LEN / 2)
1135		return;
1136
1137	pr_info("log_buf_len individual max cpu contribution: %d bytes\n",
1138		__LOG_CPU_MAX_BUF_LEN);
1139	pr_info("log_buf_len total cpu_extra contributions: %d bytes\n",
1140		cpu_extra);
1141	pr_info("log_buf_len min size: %d bytes\n", __LOG_BUF_LEN);
1142
1143	log_buf_len_update(cpu_extra + __LOG_BUF_LEN);
1144}
1145#else /* !CONFIG_SMP */
1146static inline void log_buf_add_cpu(void) {}
1147#endif /* CONFIG_SMP */
1148
1149void __init setup_log_buf(int early)
1150{
1151	unsigned long flags;
1152	char *new_log_buf;
1153	unsigned int free;
1154
1155	if (log_buf != __log_buf)
1156		return;
1157
1158	if (!early && !new_log_buf_len)
1159		log_buf_add_cpu();
1160
1161	if (!new_log_buf_len)
1162		return;
1163
1164	new_log_buf = memblock_alloc(new_log_buf_len, LOG_ALIGN);
 
 
 
 
 
 
 
1165	if (unlikely(!new_log_buf)) {
1166		pr_err("log_buf_len: %lu bytes not available\n",
1167			new_log_buf_len);
1168		return;
1169	}
1170
1171	logbuf_lock_irqsave(flags);
1172	log_buf_len = new_log_buf_len;
1173	log_buf = new_log_buf;
1174	new_log_buf_len = 0;
1175	free = __LOG_BUF_LEN - log_next_idx;
1176	memcpy(log_buf, __log_buf, __LOG_BUF_LEN);
1177	logbuf_unlock_irqrestore(flags);
1178
1179	pr_info("log_buf_len: %u bytes\n", log_buf_len);
1180	pr_info("early log buf free: %u(%u%%)\n",
1181		free, (free * 100) / __LOG_BUF_LEN);
1182}
1183
1184static bool __read_mostly ignore_loglevel;
1185
1186static int __init ignore_loglevel_setup(char *str)
1187{
1188	ignore_loglevel = true;
1189	pr_info("debug: ignoring loglevel setting.\n");
1190
1191	return 0;
1192}
1193
1194early_param("ignore_loglevel", ignore_loglevel_setup);
1195module_param(ignore_loglevel, bool, S_IRUGO | S_IWUSR);
1196MODULE_PARM_DESC(ignore_loglevel,
1197		 "ignore loglevel setting (prints all kernel messages to the console)");
1198
1199static bool suppress_message_printing(int level)
1200{
1201	return (level >= console_loglevel && !ignore_loglevel);
1202}
1203
1204#ifdef CONFIG_BOOT_PRINTK_DELAY
1205
1206static int boot_delay; /* msecs delay after each printk during bootup */
1207static unsigned long long loops_per_msec;	/* based on boot_delay */
1208
1209static int __init boot_delay_setup(char *str)
1210{
1211	unsigned long lpj;
1212
1213	lpj = preset_lpj ? preset_lpj : 1000000;	/* some guess */
1214	loops_per_msec = (unsigned long long)lpj / 1000 * HZ;
1215
1216	get_option(&str, &boot_delay);
1217	if (boot_delay > 10 * 1000)
1218		boot_delay = 0;
1219
1220	pr_debug("boot_delay: %u, preset_lpj: %ld, lpj: %lu, "
1221		"HZ: %d, loops_per_msec: %llu\n",
1222		boot_delay, preset_lpj, lpj, HZ, loops_per_msec);
1223	return 0;
1224}
1225early_param("boot_delay", boot_delay_setup);
1226
1227static void boot_delay_msec(int level)
1228{
1229	unsigned long long k;
1230	unsigned long timeout;
1231
1232	if ((boot_delay == 0 || system_state >= SYSTEM_RUNNING)
1233		|| suppress_message_printing(level)) {
1234		return;
1235	}
1236
1237	k = (unsigned long long)loops_per_msec * boot_delay;
1238
1239	timeout = jiffies + msecs_to_jiffies(boot_delay);
1240	while (k) {
1241		k--;
1242		cpu_relax();
1243		/*
1244		 * use (volatile) jiffies to prevent
1245		 * compiler reduction; loop termination via jiffies
1246		 * is secondary and may or may not happen.
1247		 */
1248		if (time_after(jiffies, timeout))
1249			break;
1250		touch_nmi_watchdog();
1251	}
1252}
1253#else
1254static inline void boot_delay_msec(int level)
1255{
1256}
1257#endif
1258
1259static bool printk_time = IS_ENABLED(CONFIG_PRINTK_TIME);
1260module_param_named(time, printk_time, bool, S_IRUGO | S_IWUSR);
1261
1262static size_t print_syslog(unsigned int level, char *buf)
1263{
1264	return sprintf(buf, "<%u>", level);
1265}
1266
1267static size_t print_time(u64 ts, char *buf)
1268{
1269	unsigned long rem_nsec = do_div(ts, 1000000000);
1270
1271	return sprintf(buf, "[%5lu.%06lu]",
1272		       (unsigned long)ts, rem_nsec / 1000);
1273}
1274
1275#ifdef CONFIG_PRINTK_CALLER
1276static size_t print_caller(u32 id, char *buf)
1277{
1278	char caller[12];
1279
1280	snprintf(caller, sizeof(caller), "%c%u",
1281		 id & 0x80000000 ? 'C' : 'T', id & ~0x80000000);
1282	return sprintf(buf, "[%6s]", caller);
1283}
1284#else
1285#define print_caller(id, buf) 0
1286#endif
1287
1288static size_t print_prefix(const struct printk_log *msg, bool syslog,
1289			   bool time, char *buf)
1290{
1291	size_t len = 0;
 
1292
1293	if (syslog)
1294		len = print_syslog((msg->facility << 3) | msg->level, buf);
1295
1296	if (time)
1297		len += print_time(msg->ts_nsec, buf + len);
1298
1299	len += print_caller(msg->caller_id, buf + len);
1300
1301	if (IS_ENABLED(CONFIG_PRINTK_CALLER) || time) {
1302		buf[len++] = ' ';
1303		buf[len] = '\0';
 
1304	}
1305
 
1306	return len;
1307}
1308
1309static size_t msg_print_text(const struct printk_log *msg, bool syslog,
1310			     bool time, char *buf, size_t size)
1311{
1312	const char *text = log_text(msg);
1313	size_t text_size = msg->text_len;
 
 
1314	size_t len = 0;
1315	char prefix[PREFIX_MAX];
1316	const size_t prefix_len = print_prefix(msg, syslog, time, prefix);
 
 
 
 
 
 
 
 
 
1317
1318	do {
1319		const char *next = memchr(text, '\n', text_size);
1320		size_t text_len;
1321
1322		if (next) {
1323			text_len = next - text;
1324			next++;
1325			text_size -= next - text;
1326		} else {
1327			text_len = text_size;
1328		}
1329
1330		if (buf) {
1331			if (prefix_len + text_len + 1 >= size - len)
 
1332				break;
1333
1334			memcpy(buf + len, prefix, prefix_len);
1335			len += prefix_len;
1336			memcpy(buf + len, text, text_len);
1337			len += text_len;
1338			buf[len++] = '\n';
 
1339		} else {
1340			/* SYSLOG_ACTION_* buffer size only calculation */
1341			len += prefix_len + text_len + 1;
 
 
 
 
1342		}
1343
 
1344		text = next;
1345	} while (text);
1346
1347	return len;
1348}
1349
1350static int syslog_print(char __user *buf, int size)
1351{
1352	char *text;
1353	struct printk_log *msg;
1354	int len = 0;
1355
1356	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1357	if (!text)
1358		return -ENOMEM;
1359
1360	while (size > 0) {
1361		size_t n;
1362		size_t skip;
1363
1364		logbuf_lock_irq();
1365		if (syslog_seq < log_first_seq) {
1366			/* messages are gone, move to first one */
1367			syslog_seq = log_first_seq;
1368			syslog_idx = log_first_idx;
 
1369			syslog_partial = 0;
1370		}
1371		if (syslog_seq == log_next_seq) {
1372			logbuf_unlock_irq();
1373			break;
1374		}
1375
1376		/*
1377		 * To keep reading/counting partial line consistent,
1378		 * use printk_time value as of the beginning of a line.
1379		 */
1380		if (!syslog_partial)
1381			syslog_time = printk_time;
1382
1383		skip = syslog_partial;
1384		msg = log_from_idx(syslog_idx);
1385		n = msg_print_text(msg, true, syslog_time, text,
1386				   LOG_LINE_MAX + PREFIX_MAX);
1387		if (n - syslog_partial <= size) {
1388			/* message fits into buffer, move forward */
1389			syslog_idx = log_next(syslog_idx);
1390			syslog_seq++;
 
1391			n -= syslog_partial;
1392			syslog_partial = 0;
1393		} else if (!len){
1394			/* partial read(), remember position */
1395			n = size;
1396			syslog_partial += n;
1397		} else
1398			n = 0;
1399		logbuf_unlock_irq();
1400
1401		if (!n)
1402			break;
1403
1404		if (copy_to_user(buf, text + skip, n)) {
1405			if (!len)
1406				len = -EFAULT;
1407			break;
1408		}
1409
1410		len += n;
1411		size -= n;
1412		buf += n;
1413	}
1414
1415	kfree(text);
1416	return len;
1417}
1418
1419static int syslog_print_all(char __user *buf, int size, bool clear)
1420{
1421	char *text;
1422	int len = 0;
1423	u64 next_seq;
1424	u64 seq;
1425	u32 idx;
1426	bool time;
1427
1428	text = kmalloc(LOG_LINE_MAX + PREFIX_MAX, GFP_KERNEL);
1429	if (!text)
1430		return -ENOMEM;
1431
1432	time = printk_time;
1433	logbuf_lock_irq();
1434	/*
1435	 * Find first record that fits, including all following records,
1436	 * into the user-provided buffer for this dump.
1437	 */
1438	seq = clear_seq;
1439	idx = clear_idx;
1440	while (seq < log_next_seq) {
1441		struct printk_log *msg = log_from_idx(idx);
1442
1443		len += msg_print_text(msg, true, time, NULL, 0);
1444		idx = log_next(idx);
1445		seq++;
1446	}
1447
1448	/* move first record forward until length fits into the buffer */
1449	seq = clear_seq;
1450	idx = clear_idx;
1451	while (len > size && seq < log_next_seq) {
1452		struct printk_log *msg = log_from_idx(idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453
1454		len -= msg_print_text(msg, true, time, NULL, 0);
1455		idx = log_next(idx);
1456		seq++;
1457	}
1458
1459	/* last message fitting into this dump */
1460	next_seq = log_next_seq;
1461
1462	len = 0;
1463	while (len >= 0 && seq < next_seq) {
1464		struct printk_log *msg = log_from_idx(idx);
1465		int textlen = msg_print_text(msg, true, time, text,
1466					     LOG_LINE_MAX + PREFIX_MAX);
1467
1468		idx = log_next(idx);
1469		seq++;
1470
1471		logbuf_unlock_irq();
1472		if (copy_to_user(buf + len, text, textlen))
1473			len = -EFAULT;
1474		else
1475			len += textlen;
1476		logbuf_lock_irq();
1477
1478		if (seq < log_first_seq) {
1479			/* messages are gone, move to next one */
1480			seq = log_first_seq;
1481			idx = log_first_idx;
1482		}
1483	}
1484
1485	if (clear) {
1486		clear_seq = log_next_seq;
1487		clear_idx = log_next_idx;
1488	}
1489	logbuf_unlock_irq();
1490
1491	kfree(text);
1492	return len;
1493}
1494
1495static void syslog_clear(void)
1496{
1497	logbuf_lock_irq();
1498	clear_seq = log_next_seq;
1499	clear_idx = log_next_idx;
1500	logbuf_unlock_irq();
1501}
1502
1503int do_syslog(int type, char __user *buf, int len, int source)
1504{
1505	bool clear = false;
1506	static int saved_console_loglevel = LOGLEVEL_DEFAULT;
1507	int error;
1508
1509	error = check_syslog_permissions(type, source);
1510	if (error)
1511		return error;
1512
1513	switch (type) {
1514	case SYSLOG_ACTION_CLOSE:	/* Close log */
1515		break;
1516	case SYSLOG_ACTION_OPEN:	/* Open log */
1517		break;
1518	case SYSLOG_ACTION_READ:	/* Read from log */
 
1519		if (!buf || len < 0)
1520			return -EINVAL;
 
1521		if (!len)
1522			return 0;
1523		if (!access_ok(buf, len))
1524			return -EFAULT;
 
 
1525		error = wait_event_interruptible(log_wait,
1526						 syslog_seq != log_next_seq);
1527		if (error)
1528			return error;
1529		error = syslog_print(buf, len);
1530		break;
1531	/* Read/clear last kernel messages */
1532	case SYSLOG_ACTION_READ_CLEAR:
1533		clear = true;
1534		/* FALL THRU */
1535	/* Read last kernel messages */
1536	case SYSLOG_ACTION_READ_ALL:
 
1537		if (!buf || len < 0)
1538			return -EINVAL;
 
1539		if (!len)
1540			return 0;
1541		if (!access_ok(buf, len))
1542			return -EFAULT;
 
 
1543		error = syslog_print_all(buf, len, clear);
1544		break;
1545	/* Clear ring buffer */
1546	case SYSLOG_ACTION_CLEAR:
1547		syslog_clear();
1548		break;
1549	/* Disable logging to console */
1550	case SYSLOG_ACTION_CONSOLE_OFF:
1551		if (saved_console_loglevel == LOGLEVEL_DEFAULT)
1552			saved_console_loglevel = console_loglevel;
1553		console_loglevel = minimum_console_loglevel;
1554		break;
1555	/* Enable logging to console */
1556	case SYSLOG_ACTION_CONSOLE_ON:
1557		if (saved_console_loglevel != LOGLEVEL_DEFAULT) {
1558			console_loglevel = saved_console_loglevel;
1559			saved_console_loglevel = LOGLEVEL_DEFAULT;
1560		}
1561		break;
1562	/* Set level of messages printed to console */
1563	case SYSLOG_ACTION_CONSOLE_LEVEL:
 
1564		if (len < 1 || len > 8)
1565			return -EINVAL;
1566		if (len < minimum_console_loglevel)
1567			len = minimum_console_loglevel;
1568		console_loglevel = len;
1569		/* Implicitly re-enable logging to console */
1570		saved_console_loglevel = LOGLEVEL_DEFAULT;
 
1571		break;
1572	/* Number of chars in the log buffer */
1573	case SYSLOG_ACTION_SIZE_UNREAD:
1574		logbuf_lock_irq();
1575		if (syslog_seq < log_first_seq) {
1576			/* messages are gone, move to first one */
1577			syslog_seq = log_first_seq;
1578			syslog_idx = log_first_idx;
 
1579			syslog_partial = 0;
1580		}
1581		if (source == SYSLOG_FROM_PROC) {
1582			/*
1583			 * Short-cut for poll(/"proc/kmsg") which simply checks
1584			 * for pending data, not the size; return the count of
1585			 * records, not the length.
1586			 */
1587			error = log_next_seq - syslog_seq;
1588		} else {
1589			u64 seq = syslog_seq;
1590			u32 idx = syslog_idx;
1591			bool time = syslog_partial ? syslog_time : printk_time;
1592
 
1593			while (seq < log_next_seq) {
1594				struct printk_log *msg = log_from_idx(idx);
1595
1596				error += msg_print_text(msg, true, time, NULL,
1597							0);
1598				time = printk_time;
1599				idx = log_next(idx);
1600				seq++;
 
1601			}
1602			error -= syslog_partial;
1603		}
1604		logbuf_unlock_irq();
1605		break;
1606	/* Size of the log buffer */
1607	case SYSLOG_ACTION_SIZE_BUFFER:
1608		error = log_buf_len;
1609		break;
1610	default:
1611		error = -EINVAL;
1612		break;
1613	}
1614
1615	return error;
1616}
1617
1618SYSCALL_DEFINE3(syslog, int, type, char __user *, buf, int, len)
1619{
1620	return do_syslog(type, buf, len, SYSLOG_FROM_READER);
1621}
1622
1623/*
1624 * Special console_lock variants that help to reduce the risk of soft-lockups.
1625 * They allow to pass console_lock to another printk() call using a busy wait.
1626 */
1627
1628#ifdef CONFIG_LOCKDEP
1629static struct lockdep_map console_owner_dep_map = {
1630	.name = "console_owner"
1631};
1632#endif
1633
1634static DEFINE_RAW_SPINLOCK(console_owner_lock);
1635static struct task_struct *console_owner;
1636static bool console_waiter;
1637
1638/**
1639 * console_lock_spinning_enable - mark beginning of code where another
1640 *	thread might safely busy wait
1641 *
1642 * This basically converts console_lock into a spinlock. This marks
1643 * the section where the console_lock owner can not sleep, because
1644 * there may be a waiter spinning (like a spinlock). Also it must be
1645 * ready to hand over the lock at the end of the section.
1646 */
1647static void console_lock_spinning_enable(void)
1648{
1649	raw_spin_lock(&console_owner_lock);
1650	console_owner = current;
1651	raw_spin_unlock(&console_owner_lock);
1652
1653	/* The waiter may spin on us after setting console_owner */
1654	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1655}
1656
1657/**
1658 * console_lock_spinning_disable_and_check - mark end of code where another
1659 *	thread was able to busy wait and check if there is a waiter
1660 *
1661 * This is called at the end of the section where spinning is allowed.
1662 * It has two functions. First, it is a signal that it is no longer
1663 * safe to start busy waiting for the lock. Second, it checks if
1664 * there is a busy waiter and passes the lock rights to her.
1665 *
1666 * Important: Callers lose the lock if there was a busy waiter.
1667 *	They must not touch items synchronized by console_lock
1668 *	in this case.
1669 *
1670 * Return: 1 if the lock rights were passed, 0 otherwise.
1671 */
1672static int console_lock_spinning_disable_and_check(void)
1673{
1674	int waiter;
1675
1676	raw_spin_lock(&console_owner_lock);
1677	waiter = READ_ONCE(console_waiter);
1678	console_owner = NULL;
1679	raw_spin_unlock(&console_owner_lock);
1680
1681	if (!waiter) {
1682		spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1683		return 0;
1684	}
1685
1686	/* The waiter is now free to continue */
1687	WRITE_ONCE(console_waiter, false);
1688
1689	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1690
1691	/*
1692	 * Hand off console_lock to waiter. The waiter will perform
1693	 * the up(). After this, the waiter is the console_lock owner.
1694	 */
1695	mutex_release(&console_lock_dep_map, 1, _THIS_IP_);
1696	return 1;
1697}
1698
1699/**
1700 * console_trylock_spinning - try to get console_lock by busy waiting
1701 *
1702 * This allows to busy wait for the console_lock when the current
1703 * owner is running in specially marked sections. It means that
1704 * the current owner is running and cannot reschedule until it
1705 * is ready to lose the lock.
1706 *
1707 * Return: 1 if we got the lock, 0 othrewise
1708 */
1709static int console_trylock_spinning(void)
1710{
1711	struct task_struct *owner = NULL;
1712	bool waiter;
1713	bool spin = false;
1714	unsigned long flags;
1715
1716	if (console_trylock())
1717		return 1;
1718
1719	printk_safe_enter_irqsave(flags);
1720
1721	raw_spin_lock(&console_owner_lock);
1722	owner = READ_ONCE(console_owner);
1723	waiter = READ_ONCE(console_waiter);
1724	if (!waiter && owner && owner != current) {
1725		WRITE_ONCE(console_waiter, true);
1726		spin = true;
1727	}
1728	raw_spin_unlock(&console_owner_lock);
1729
1730	/*
1731	 * If there is an active printk() writing to the
1732	 * consoles, instead of having it write our data too,
1733	 * see if we can offload that load from the active
1734	 * printer, and do some printing ourselves.
1735	 * Go into a spin only if there isn't already a waiter
1736	 * spinning, and there is an active printer, and
1737	 * that active printer isn't us (recursive printk?).
1738	 */
1739	if (!spin) {
1740		printk_safe_exit_irqrestore(flags);
1741		return 0;
1742	}
1743
1744	/* We spin waiting for the owner to release us */
1745	spin_acquire(&console_owner_dep_map, 0, 0, _THIS_IP_);
1746	/* Owner will clear console_waiter on hand off */
1747	while (READ_ONCE(console_waiter))
1748		cpu_relax();
1749	spin_release(&console_owner_dep_map, 1, _THIS_IP_);
1750
1751	printk_safe_exit_irqrestore(flags);
1752	/*
1753	 * The owner passed the console lock to us.
1754	 * Since we did not spin on console lock, annotate
1755	 * this as a trylock. Otherwise lockdep will
1756	 * complain.
1757	 */
1758	mutex_acquire(&console_lock_dep_map, 0, 1, _THIS_IP_);
1759
1760	return 1;
1761}
1762
1763/*
1764 * Call the console drivers, asking them to write out
1765 * log_buf[start] to log_buf[end - 1].
1766 * The console_lock must be held.
1767 */
1768static void call_console_drivers(const char *ext_text, size_t ext_len,
 
1769				 const char *text, size_t len)
1770{
1771	struct console *con;
1772
1773	trace_console_rcuidle(text, len);
1774
 
 
1775	if (!console_drivers)
1776		return;
1777
1778	for_each_console(con) {
1779		if (exclusive_console && con != exclusive_console)
1780			continue;
1781		if (!(con->flags & CON_ENABLED))
1782			continue;
1783		if (!con->write)
1784			continue;
1785		if (!cpu_online(smp_processor_id()) &&
1786		    !(con->flags & CON_ANYTIME))
1787			continue;
1788		if (con->flags & CON_EXTENDED)
1789			con->write(con, ext_text, ext_len);
1790		else
1791			con->write(con, text, len);
1792	}
1793}
1794
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1795int printk_delay_msec __read_mostly;
1796
1797static inline void printk_delay(void)
1798{
1799	if (unlikely(printk_delay_msec)) {
1800		int m = printk_delay_msec;
1801
1802		while (m--) {
1803			mdelay(1);
1804			touch_nmi_watchdog();
1805		}
1806	}
1807}
1808
1809static inline u32 printk_caller_id(void)
1810{
1811	return in_task() ? task_pid_nr(current) :
1812		0x80000000 + raw_smp_processor_id();
1813}
1814
1815/*
1816 * Continuation lines are buffered, and not committed to the record buffer
1817 * until the line is complete, or a race forces it. The line fragments
1818 * though, are printed immediately to the consoles to ensure everything has
1819 * reached the console in case of a kernel crash.
1820 */
1821static struct cont {
1822	char buf[LOG_LINE_MAX];
1823	size_t len;			/* length == 0 means unused buffer */
1824	u32 caller_id;			/* printk_caller_id() of first print */
 
1825	u64 ts_nsec;			/* time of first print */
1826	u8 level;			/* log level of first message */
1827	u8 facility;			/* log facility of first message */
1828	enum log_flags flags;		/* prefix, newline flags */
 
1829} cont;
1830
1831static void cont_flush(void)
1832{
 
 
1833	if (cont.len == 0)
1834		return;
1835
1836	log_store(cont.caller_id, cont.facility, cont.level, cont.flags,
1837		  cont.ts_nsec, NULL, 0, cont.buf, cont.len);
1838	cont.len = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1839}
1840
1841static bool cont_add(u32 caller_id, int facility, int level,
1842		     enum log_flags flags, const char *text, size_t len)
1843{
1844	/* If the line gets too long, split it up in separate records. */
1845	if (cont.len + len > sizeof(cont.buf)) {
1846		cont_flush();
 
 
 
 
 
 
 
1847		return false;
1848	}
1849
1850	if (!cont.len) {
1851		cont.facility = facility;
1852		cont.level = level;
1853		cont.caller_id = caller_id;
1854		cont.ts_nsec = local_clock();
1855		cont.flags = flags;
 
 
1856	}
1857
1858	memcpy(cont.buf + cont.len, text, len);
1859	cont.len += len;
1860
1861	// The original flags come from the first line,
1862	// but later continuations can add a newline.
1863	if (flags & LOG_NEWLINE) {
1864		cont.flags |= LOG_NEWLINE;
1865		cont_flush();
1866	}
1867
1868	return true;
1869}
1870
1871static size_t log_output(int facility, int level, enum log_flags lflags, const char *dict, size_t dictlen, char *text, size_t text_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872{
1873	const u32 caller_id = printk_caller_id();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1874
1875	/*
1876	 * If an earlier line was buffered, and we're a continuation
1877	 * write from the same context, try to add it to the buffer.
1878	 */
1879	if (cont.len) {
1880		if (cont.caller_id == caller_id && (lflags & LOG_CONT)) {
1881			if (cont_add(caller_id, facility, level, lflags, text, text_len))
1882				return text_len;
 
 
 
 
 
 
 
 
1883		}
1884		/* Otherwise, make sure it's flushed */
1885		cont_flush();
1886	}
1887
1888	/* Skip empty continuation lines that couldn't be added - they just flush */
1889	if (!text_len && (lflags & LOG_CONT))
1890		return 0;
 
1891
1892	/* If it doesn't end in a newline, try to buffer the current line */
1893	if (!(lflags & LOG_NEWLINE)) {
1894		if (cont_add(caller_id, facility, level, lflags, text, text_len))
1895			return text_len;
 
 
 
 
 
1896	}
1897
1898	/* Store it in the record log */
1899	return log_store(caller_id, facility, level, lflags, 0,
1900			 dict, dictlen, text, text_len);
1901}
1902
1903/* Must be called under logbuf_lock. */
1904int vprintk_store(int facility, int level,
1905		  const char *dict, size_t dictlen,
1906		  const char *fmt, va_list args)
1907{
1908	static char textbuf[LOG_LINE_MAX];
1909	char *text = textbuf;
1910	size_t text_len;
1911	enum log_flags lflags = 0;
1912
1913	/*
1914	 * The printf needs to come first; we need the syslog
1915	 * prefix which might be passed-in as a parameter.
1916	 */
1917	text_len = vscnprintf(text, sizeof(textbuf), fmt, args);
1918
1919	/* mark and strip a trailing newline */
1920	if (text_len && text[text_len-1] == '\n') {
1921		text_len--;
1922		lflags |= LOG_NEWLINE;
1923	}
1924
1925	/* strip kernel syslog prefix and extract log level or control flags */
1926	if (facility == 0) {
1927		int kern_level;
1928
1929		while ((kern_level = printk_get_level(text)) != 0) {
 
1930			switch (kern_level) {
1931			case '0' ... '7':
1932				if (level == LOGLEVEL_DEFAULT)
1933					level = kern_level - '0';
1934				break;
1935			case 'c':	/* KERN_CONT */
1936				lflags |= LOG_CONT;
1937			}
1938
1939			text_len -= 2;
1940			text += 2;
 
 
 
 
1941		}
1942	}
1943
1944	if (level == LOGLEVEL_DEFAULT)
1945		level = default_message_loglevel;
1946
1947	if (dict)
1948		lflags |= LOG_NEWLINE;
1949
1950	return log_output(facility, level, lflags,
1951			  dict, dictlen, text, text_len);
1952}
 
 
 
 
1953
1954asmlinkage int vprintk_emit(int facility, int level,
1955			    const char *dict, size_t dictlen,
1956			    const char *fmt, va_list args)
1957{
1958	int printed_len;
1959	bool in_sched = false, pending_output;
1960	unsigned long flags;
1961	u64 curr_log_seq;
 
1962
1963	/* Suppress unimportant messages after panic happens */
1964	if (unlikely(suppress_printk))
1965		return 0;
 
 
 
 
 
 
 
 
 
 
 
1966
1967	if (level == LOGLEVEL_SCHED) {
1968		level = LOGLEVEL_DEFAULT;
1969		in_sched = true;
 
 
1970	}
1971
1972	boot_delay_msec(level);
1973	printk_delay();
1974
1975	/* This stops the holder of console_sem just where we want him */
1976	logbuf_lock_irqsave(flags);
1977	curr_log_seq = log_next_seq;
1978	printed_len = vprintk_store(facility, level, dict, dictlen, fmt, args);
1979	pending_output = (curr_log_seq != log_next_seq);
1980	logbuf_unlock_irqrestore(flags);
1981
1982	/* If called from the scheduler, we can not call up(). */
1983	if (!in_sched && pending_output) {
1984		/*
1985		 * Disable preemption to avoid being preempted while holding
1986		 * console_sem which would prevent anyone from printing to
1987		 * console
1988		 */
1989		preempt_disable();
1990		/*
1991		 * Try to acquire and then immediately release the console
1992		 * semaphore.  The release will print out buffers and wake up
1993		 * /dev/kmsg and syslog() users.
1994		 */
1995		if (console_trylock_spinning())
1996			console_unlock();
1997		preempt_enable();
1998	}
1999
2000	if (pending_output)
2001		wake_up_klogd();
2002	return printed_len;
2003}
2004EXPORT_SYMBOL(vprintk_emit);
2005
2006asmlinkage int vprintk(const char *fmt, va_list args)
2007{
2008	return vprintk_func(fmt, args);
2009}
2010EXPORT_SYMBOL(vprintk);
2011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012int vprintk_default(const char *fmt, va_list args)
2013{
2014	int r;
2015
2016#ifdef CONFIG_KGDB_KDB
2017	/* Allow to pass printk() to kdb but avoid a recursion. */
2018	if (unlikely(kdb_trap_printk && kdb_printf_cpu < 0)) {
2019		r = vkdb_printf(KDB_MSGSRC_PRINTK, fmt, args);
2020		return r;
2021	}
2022#endif
2023	r = vprintk_emit(0, LOGLEVEL_DEFAULT, NULL, 0, fmt, args);
2024
2025	return r;
2026}
2027EXPORT_SYMBOL_GPL(vprintk_default);
2028
 
 
 
 
 
 
 
 
2029/**
2030 * printk - print a kernel message
2031 * @fmt: format string
2032 *
2033 * This is printk(). It can be called from any context. We want it to work.
2034 *
2035 * We try to grab the console_lock. If we succeed, it's easy - we log the
2036 * output and call the console drivers.  If we fail to get the semaphore, we
2037 * place the output into the log buffer and return. The current holder of
2038 * the console_sem will notice the new output in console_unlock(); and will
2039 * send it to the consoles before releasing the lock.
2040 *
2041 * One effect of this deferred printing is that code which calls printk() and
2042 * then changes console_loglevel may break. This is because console_loglevel
2043 * is inspected when the actual printing occurs.
2044 *
2045 * See also:
2046 * printf(3)
2047 *
2048 * See the vsnprintf() documentation for format string extensions over C99.
2049 */
2050asmlinkage __visible int printk(const char *fmt, ...)
2051{
 
2052	va_list args;
2053	int r;
2054
2055	va_start(args, fmt);
 
 
 
 
 
 
 
 
2056	r = vprintk_func(fmt, args);
 
2057	va_end(args);
2058
2059	return r;
2060}
2061EXPORT_SYMBOL(printk);
2062
2063#else /* CONFIG_PRINTK */
2064
2065#define LOG_LINE_MAX		0
2066#define PREFIX_MAX		0
2067#define printk_time		false
2068
2069static u64 syslog_seq;
2070static u32 syslog_idx;
2071static u64 console_seq;
2072static u32 console_idx;
2073static u64 exclusive_console_stop_seq;
2074static u64 log_first_seq;
2075static u32 log_first_idx;
2076static u64 log_next_seq;
 
 
 
 
 
 
 
2077static char *log_text(const struct printk_log *msg) { return NULL; }
2078static char *log_dict(const struct printk_log *msg) { return NULL; }
2079static struct printk_log *log_from_idx(u32 idx) { return NULL; }
2080static u32 log_next(u32 idx) { return 0; }
2081static ssize_t msg_print_ext_header(char *buf, size_t size,
2082				    struct printk_log *msg,
2083				    u64 seq) { return 0; }
2084static ssize_t msg_print_ext_body(char *buf, size_t size,
2085				  char *dict, size_t dict_len,
2086				  char *text, size_t text_len) { return 0; }
2087static void console_lock_spinning_enable(void) { }
2088static int console_lock_spinning_disable_and_check(void) { return 0; }
2089static void call_console_drivers(const char *ext_text, size_t ext_len,
2090				 const char *text, size_t len) {}
2091static size_t msg_print_text(const struct printk_log *msg, bool syslog,
2092			     bool time, char *buf, size_t size) { return 0; }
2093static bool suppress_message_printing(int level) { return false; }
 
 
 
2094
2095#endif /* CONFIG_PRINTK */
2096
2097#ifdef CONFIG_EARLY_PRINTK
2098struct console *early_console;
2099
2100asmlinkage __visible void early_printk(const char *fmt, ...)
2101{
2102	va_list ap;
2103	char buf[512];
2104	int n;
2105
2106	if (!early_console)
2107		return;
2108
2109	va_start(ap, fmt);
2110	n = vscnprintf(buf, sizeof(buf), fmt, ap);
2111	va_end(ap);
2112
2113	early_console->write(early_console, buf, n);
2114}
2115#endif
2116
2117static int __add_preferred_console(char *name, int idx, char *options,
2118				   char *brl_options)
2119{
2120	struct console_cmdline *c;
2121	int i;
2122
2123	/*
2124	 *	See if this tty is not yet registered, and
2125	 *	if we have a slot free.
2126	 */
2127	for (i = 0, c = console_cmdline;
2128	     i < MAX_CMDLINECONSOLES && c->name[0];
2129	     i++, c++) {
2130		if (strcmp(c->name, name) == 0 && c->index == idx) {
2131			if (!brl_options)
2132				preferred_console = i;
2133			return 0;
2134		}
2135	}
2136	if (i == MAX_CMDLINECONSOLES)
2137		return -E2BIG;
2138	if (!brl_options)
2139		preferred_console = i;
2140	strlcpy(c->name, name, sizeof(c->name));
2141	c->options = options;
2142	braille_set_options(c, brl_options);
2143
2144	c->index = idx;
2145	return 0;
2146}
2147
2148static int __init console_msg_format_setup(char *str)
2149{
2150	if (!strcmp(str, "syslog"))
2151		console_msg_format = MSG_FORMAT_SYSLOG;
2152	if (!strcmp(str, "default"))
2153		console_msg_format = MSG_FORMAT_DEFAULT;
2154	return 1;
2155}
2156__setup("console_msg_format=", console_msg_format_setup);
2157
2158/*
2159 * Set up a console.  Called via do_early_param() in init/main.c
2160 * for each "console=" parameter in the boot command line.
2161 */
2162static int __init console_setup(char *str)
2163{
2164	char buf[sizeof(console_cmdline[0].name) + 4]; /* 4 for "ttyS" */
2165	char *s, *options, *brl_options = NULL;
2166	int idx;
2167
2168	if (_braille_console_setup(&str, &brl_options))
2169		return 1;
2170
2171	/*
2172	 * Decode str into name, index, options.
2173	 */
2174	if (str[0] >= '0' && str[0] <= '9') {
2175		strcpy(buf, "ttyS");
2176		strncpy(buf + 4, str, sizeof(buf) - 5);
2177	} else {
2178		strncpy(buf, str, sizeof(buf) - 1);
2179	}
2180	buf[sizeof(buf) - 1] = 0;
2181	options = strchr(str, ',');
2182	if (options)
2183		*(options++) = 0;
2184#ifdef __sparc__
2185	if (!strcmp(str, "ttya"))
2186		strcpy(buf, "ttyS0");
2187	if (!strcmp(str, "ttyb"))
2188		strcpy(buf, "ttyS1");
2189#endif
2190	for (s = buf; *s; s++)
2191		if (isdigit(*s) || *s == ',')
2192			break;
2193	idx = simple_strtoul(s, NULL, 10);
2194	*s = 0;
2195
2196	__add_preferred_console(buf, idx, options, brl_options);
2197	console_set_on_cmdline = 1;
2198	return 1;
2199}
2200__setup("console=", console_setup);
2201
2202/**
2203 * add_preferred_console - add a device to the list of preferred consoles.
2204 * @name: device name
2205 * @idx: device index
2206 * @options: options for this console
2207 *
2208 * The last preferred console added will be used for kernel messages
2209 * and stdin/out/err for init.  Normally this is used by console_setup
2210 * above to handle user-supplied console arguments; however it can also
2211 * be used by arch-specific code either to override the user or more
2212 * commonly to provide a default console (ie from PROM variables) when
2213 * the user has not supplied one.
2214 */
2215int add_preferred_console(char *name, int idx, char *options)
2216{
2217	return __add_preferred_console(name, idx, options, NULL);
2218}
2219
2220bool console_suspend_enabled = true;
2221EXPORT_SYMBOL(console_suspend_enabled);
2222
2223static int __init console_suspend_disable(char *str)
2224{
2225	console_suspend_enabled = false;
2226	return 1;
2227}
2228__setup("no_console_suspend", console_suspend_disable);
2229module_param_named(console_suspend, console_suspend_enabled,
2230		bool, S_IRUGO | S_IWUSR);
2231MODULE_PARM_DESC(console_suspend, "suspend console during suspend"
2232	" and hibernate operations");
2233
2234/**
2235 * suspend_console - suspend the console subsystem
2236 *
2237 * This disables printk() while we go into suspend states
2238 */
2239void suspend_console(void)
2240{
2241	if (!console_suspend_enabled)
2242		return;
2243	pr_info("Suspending console(s) (use no_console_suspend to debug)\n");
2244	console_lock();
2245	console_suspended = 1;
2246	up_console_sem();
2247}
2248
2249void resume_console(void)
2250{
2251	if (!console_suspend_enabled)
2252		return;
2253	down_console_sem();
2254	console_suspended = 0;
2255	console_unlock();
2256}
2257
2258/**
2259 * console_cpu_notify - print deferred console messages after CPU hotplug
2260 * @cpu: unused
 
 
2261 *
2262 * If printk() is called from a CPU that is not online yet, the messages
2263 * will be printed on the console only if there are CON_ANYTIME consoles.
2264 * This function is called when a new CPU comes online (or fails to come
2265 * up) or goes offline.
2266 */
2267static int console_cpu_notify(unsigned int cpu)
2268{
2269	if (!cpuhp_tasks_frozen) {
2270		/* If trylock fails, someone else is doing the printing */
2271		if (console_trylock())
2272			console_unlock();
 
 
 
 
2273	}
2274	return 0;
2275}
2276
2277/**
2278 * console_lock - lock the console system for exclusive use.
2279 *
2280 * Acquires a lock which guarantees that the caller has
2281 * exclusive access to the console system and the console_drivers list.
2282 *
2283 * Can sleep, returns nothing.
2284 */
2285void console_lock(void)
2286{
2287	might_sleep();
2288
2289	down_console_sem();
2290	if (console_suspended)
2291		return;
2292	console_locked = 1;
2293	console_may_schedule = 1;
2294}
2295EXPORT_SYMBOL(console_lock);
2296
2297/**
2298 * console_trylock - try to lock the console system for exclusive use.
2299 *
2300 * Try to acquire a lock which guarantees that the caller has exclusive
2301 * access to the console system and the console_drivers list.
2302 *
2303 * returns 1 on success, and 0 on failure to acquire the lock.
2304 */
2305int console_trylock(void)
2306{
2307	if (down_trylock_console_sem())
2308		return 0;
2309	if (console_suspended) {
2310		up_console_sem();
2311		return 0;
2312	}
2313	console_locked = 1;
2314	console_may_schedule = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
2315	return 1;
2316}
2317EXPORT_SYMBOL(console_trylock);
2318
2319int is_console_locked(void)
2320{
2321	return console_locked;
2322}
2323EXPORT_SYMBOL(is_console_locked);
2324
2325/*
2326 * Check if we have any console that is capable of printing while cpu is
2327 * booting or shutting down. Requires console_sem.
2328 */
2329static int have_callable_console(void)
2330{
2331	struct console *con;
2332
2333	for_each_console(con)
2334		if ((con->flags & CON_ENABLED) &&
2335				(con->flags & CON_ANYTIME))
2336			return 1;
2337
2338	return 0;
2339}
2340
2341/*
2342 * Can we actually use the console at this time on this cpu?
2343 *
2344 * Console drivers may assume that per-cpu resources have been allocated. So
2345 * unless they're explicitly marked as being able to cope (CON_ANYTIME) don't
2346 * call them until this CPU is officially up.
2347 */
2348static inline int can_use_console(void)
2349{
2350	return cpu_online(raw_smp_processor_id()) || have_callable_console();
2351}
2352
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353/**
2354 * console_unlock - unlock the console system
2355 *
2356 * Releases the console_lock which the caller holds on the console system
2357 * and the console driver list.
2358 *
2359 * While the console_lock was held, console output may have been buffered
2360 * by printk().  If this is the case, console_unlock(); emits
2361 * the output prior to releasing the lock.
2362 *
2363 * If there is output waiting, we wake /dev/kmsg and syslog() users.
2364 *
2365 * console_unlock(); may be called from any context.
2366 */
2367void console_unlock(void)
2368{
2369	static char ext_text[CONSOLE_EXT_LOG_MAX];
2370	static char text[LOG_LINE_MAX + PREFIX_MAX];
 
2371	unsigned long flags;
 
2372	bool do_cond_resched, retry;
2373
2374	if (console_suspended) {
2375		up_console_sem();
2376		return;
2377	}
2378
2379	/*
2380	 * Console drivers are called with interrupts disabled, so
2381	 * @console_may_schedule should be cleared before; however, we may
2382	 * end up dumping a lot of lines, for example, if called from
2383	 * console registration path, and should invoke cond_resched()
2384	 * between lines if allowable.  Not doing so can cause a very long
2385	 * scheduling stall on a slow console leading to RCU stall and
2386	 * softlockup warnings which exacerbate the issue with more
2387	 * messages practically incapacitating the system.
2388	 *
2389	 * console_trylock() is not able to detect the preemptive
2390	 * context reliably. Therefore the value must be stored before
2391	 * and cleared after the the "again" goto label.
2392	 */
2393	do_cond_resched = console_may_schedule;
2394again:
2395	console_may_schedule = 0;
2396
 
2397	/*
2398	 * We released the console_sem lock, so we need to recheck if
2399	 * cpu is online and (if not) is there at least one CON_ANYTIME
2400	 * console.
2401	 */
2402	if (!can_use_console()) {
2403		console_locked = 0;
2404		up_console_sem();
2405		return;
2406	}
2407
 
 
 
2408	for (;;) {
2409		struct printk_log *msg;
2410		size_t ext_len = 0;
2411		size_t len;
 
 
 
 
 
 
 
2412
2413		printk_safe_enter_irqsave(flags);
2414		raw_spin_lock(&logbuf_lock);
2415		if (console_seq < log_first_seq) {
2416			len = sprintf(text,
2417				      "** %llu printk messages dropped **\n",
2418				      log_first_seq - console_seq);
2419
2420			/* messages are gone, move to first one */
2421			console_seq = log_first_seq;
2422			console_idx = log_first_idx;
 
2423		} else {
2424			len = 0;
2425		}
2426skip:
2427		if (console_seq == log_next_seq)
2428			break;
2429
2430		msg = log_from_idx(console_idx);
2431		if (suppress_message_printing(msg->level)) {
2432			/*
2433			 * Skip record we have buffered and already printed
2434			 * directly to the console when we received it, and
2435			 * record that has level above the console loglevel.
2436			 */
2437			console_idx = log_next(console_idx);
2438			console_seq++;
 
 
 
 
 
 
 
2439			goto skip;
2440		}
2441
2442		/* Output to all consoles once old messages replayed. */
2443		if (unlikely(exclusive_console &&
2444			     console_seq >= exclusive_console_stop_seq)) {
2445			exclusive_console = NULL;
2446		}
2447
2448		len += msg_print_text(msg,
2449				console_msg_format & MSG_FORMAT_SYSLOG,
2450				printk_time, text + len, sizeof(text) - len);
2451		if (nr_ext_console_drivers) {
2452			ext_len = msg_print_ext_header(ext_text,
2453						sizeof(ext_text),
2454						msg, console_seq);
2455			ext_len += msg_print_ext_body(ext_text + ext_len,
2456						sizeof(ext_text) - ext_len,
2457						log_dict(msg), msg->dict_len,
2458						log_text(msg), msg->text_len);
2459		}
2460		console_idx = log_next(console_idx);
2461		console_seq++;
 
2462		raw_spin_unlock(&logbuf_lock);
2463
2464		/*
2465		 * While actively printing out messages, if another printk()
2466		 * were to occur on another CPU, it may wait for this one to
2467		 * finish. This task can not be preempted if there is a
2468		 * waiter waiting to take over.
2469		 */
2470		console_lock_spinning_enable();
2471
2472		stop_critical_timings();	/* don't trace print latency */
2473		call_console_drivers(ext_text, ext_len, text, len);
2474		start_critical_timings();
2475
2476		if (console_lock_spinning_disable_and_check()) {
2477			printk_safe_exit_irqrestore(flags);
2478			return;
2479		}
2480
2481		printk_safe_exit_irqrestore(flags);
2482
2483		if (do_cond_resched)
2484			cond_resched();
2485	}
 
2486
2487	console_locked = 0;
 
 
2488
2489	raw_spin_unlock(&logbuf_lock);
2490
2491	up_console_sem();
2492
2493	/*
2494	 * Someone could have filled up the buffer again, so re-check if there's
2495	 * something to flush. In case we cannot trylock the console_sem again,
2496	 * there's a new owner and the console_unlock() from them will do the
2497	 * flush, no worries.
2498	 */
2499	raw_spin_lock(&logbuf_lock);
2500	retry = console_seq != log_next_seq;
2501	raw_spin_unlock(&logbuf_lock);
2502	printk_safe_exit_irqrestore(flags);
2503
2504	if (retry && console_trylock())
2505		goto again;
 
 
 
2506}
2507EXPORT_SYMBOL(console_unlock);
2508
2509/**
2510 * console_conditional_schedule - yield the CPU if required
2511 *
2512 * If the console code is currently allowed to sleep, and
2513 * if this CPU should yield the CPU to another task, do
2514 * so here.
2515 *
2516 * Must be called within console_lock();.
2517 */
2518void __sched console_conditional_schedule(void)
2519{
2520	if (console_may_schedule)
2521		cond_resched();
2522}
2523EXPORT_SYMBOL(console_conditional_schedule);
2524
2525void console_unblank(void)
2526{
2527	struct console *c;
2528
2529	/*
2530	 * console_unblank can no longer be called in interrupt context unless
2531	 * oops_in_progress is set to 1..
2532	 */
2533	if (oops_in_progress) {
2534		if (down_trylock_console_sem() != 0)
2535			return;
2536	} else
2537		console_lock();
2538
2539	console_locked = 1;
2540	console_may_schedule = 0;
2541	for_each_console(c)
2542		if ((c->flags & CON_ENABLED) && c->unblank)
2543			c->unblank();
2544	console_unlock();
2545}
2546
2547/**
2548 * console_flush_on_panic - flush console content on panic
2549 * @mode: flush all messages in buffer or just the pending ones
2550 *
2551 * Immediately output all pending messages no matter what.
2552 */
2553void console_flush_on_panic(enum con_flush_mode mode)
2554{
2555	/*
2556	 * If someone else is holding the console lock, trylock will fail
2557	 * and may_schedule may be set.  Ignore and proceed to unlock so
2558	 * that messages are flushed out.  As this can be called from any
2559	 * context and we don't want to get preempted while flushing,
2560	 * ensure may_schedule is cleared.
2561	 */
2562	console_trylock();
2563	console_may_schedule = 0;
2564
2565	if (mode == CONSOLE_REPLAY_ALL) {
2566		unsigned long flags;
2567
2568		logbuf_lock_irqsave(flags);
2569		console_seq = log_first_seq;
2570		console_idx = log_first_idx;
2571		logbuf_unlock_irqrestore(flags);
2572	}
2573	console_unlock();
2574}
2575
2576/*
2577 * Return the console tty driver structure and its associated index
2578 */
2579struct tty_driver *console_device(int *index)
2580{
2581	struct console *c;
2582	struct tty_driver *driver = NULL;
2583
2584	console_lock();
2585	for_each_console(c) {
2586		if (!c->device)
2587			continue;
2588		driver = c->device(c, index);
2589		if (driver)
2590			break;
2591	}
2592	console_unlock();
2593	return driver;
2594}
2595
2596/*
2597 * Prevent further output on the passed console device so that (for example)
2598 * serial drivers can disable console output before suspending a port, and can
2599 * re-enable output afterwards.
2600 */
2601void console_stop(struct console *console)
2602{
2603	console_lock();
2604	console->flags &= ~CON_ENABLED;
2605	console_unlock();
2606}
2607EXPORT_SYMBOL(console_stop);
2608
2609void console_start(struct console *console)
2610{
2611	console_lock();
2612	console->flags |= CON_ENABLED;
2613	console_unlock();
2614}
2615EXPORT_SYMBOL(console_start);
2616
2617static int __read_mostly keep_bootcon;
2618
2619static int __init keep_bootcon_setup(char *str)
2620{
2621	keep_bootcon = 1;
2622	pr_info("debug: skip boot console de-registration.\n");
2623
2624	return 0;
2625}
2626
2627early_param("keep_bootcon", keep_bootcon_setup);
2628
2629/*
2630 * The console driver calls this routine during kernel initialization
2631 * to register the console printing procedure with printk() and to
2632 * print any messages that were printed by the kernel before the
2633 * console driver was initialized.
2634 *
2635 * This can happen pretty early during the boot process (because of
2636 * early_printk) - sometimes before setup_arch() completes - be careful
2637 * of what kernel features are used - they may not be initialised yet.
2638 *
2639 * There are two types of consoles - bootconsoles (early_printk) and
2640 * "real" consoles (everything which is not a bootconsole) which are
2641 * handled differently.
2642 *  - Any number of bootconsoles can be registered at any time.
2643 *  - As soon as a "real" console is registered, all bootconsoles
2644 *    will be unregistered automatically.
2645 *  - Once a "real" console is registered, any attempt to register a
2646 *    bootconsoles will be rejected
2647 */
2648void register_console(struct console *newcon)
2649{
2650	int i;
2651	unsigned long flags;
2652	struct console *bcon = NULL;
2653	struct console_cmdline *c;
2654	static bool has_preferred;
2655
2656	if (console_drivers)
2657		for_each_console(bcon)
2658			if (WARN(bcon == newcon,
2659					"console '%s%d' already registered\n",
2660					bcon->name, bcon->index))
2661				return;
2662
2663	/*
2664	 * before we register a new CON_BOOT console, make sure we don't
2665	 * already have a valid console
2666	 */
2667	if (console_drivers && newcon->flags & CON_BOOT) {
2668		/* find the last or real console */
2669		for_each_console(bcon) {
2670			if (!(bcon->flags & CON_BOOT)) {
2671				pr_info("Too late to register bootconsole %s%d\n",
2672					newcon->name, newcon->index);
2673				return;
2674			}
2675		}
2676	}
2677
2678	if (console_drivers && console_drivers->flags & CON_BOOT)
2679		bcon = console_drivers;
2680
2681	if (!has_preferred || bcon || !console_drivers)
2682		has_preferred = preferred_console >= 0;
2683
2684	/*
2685	 *	See if we want to use this console driver. If we
2686	 *	didn't select a console we take the first one
2687	 *	that registers here.
2688	 */
2689	if (!has_preferred) {
2690		if (newcon->index < 0)
2691			newcon->index = 0;
2692		if (newcon->setup == NULL ||
2693		    newcon->setup(newcon, NULL) == 0) {
2694			newcon->flags |= CON_ENABLED;
2695			if (newcon->device) {
2696				newcon->flags |= CON_CONSDEV;
2697				has_preferred = true;
2698			}
2699		}
2700	}
2701
2702	/*
2703	 *	See if this console matches one we selected on
2704	 *	the command line.
2705	 */
2706	for (i = 0, c = console_cmdline;
2707	     i < MAX_CMDLINECONSOLES && c->name[0];
2708	     i++, c++) {
2709		if (!newcon->match ||
2710		    newcon->match(newcon, c->name, c->index, c->options) != 0) {
2711			/* default matching */
2712			BUILD_BUG_ON(sizeof(c->name) != sizeof(newcon->name));
2713			if (strcmp(c->name, newcon->name) != 0)
2714				continue;
2715			if (newcon->index >= 0 &&
2716			    newcon->index != c->index)
2717				continue;
2718			if (newcon->index < 0)
2719				newcon->index = c->index;
2720
2721			if (_braille_register_console(newcon, c))
2722				return;
2723
2724			if (newcon->setup &&
2725			    newcon->setup(newcon, c->options) != 0)
2726				break;
2727		}
2728
2729		newcon->flags |= CON_ENABLED;
2730		if (i == preferred_console) {
2731			newcon->flags |= CON_CONSDEV;
2732			has_preferred = true;
2733		}
2734		break;
2735	}
2736
2737	if (!(newcon->flags & CON_ENABLED))
2738		return;
2739
2740	/*
2741	 * If we have a bootconsole, and are switching to a real console,
2742	 * don't print everything out again, since when the boot console, and
2743	 * the real console are the same physical device, it's annoying to
2744	 * see the beginning boot messages twice
2745	 */
2746	if (bcon && ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV))
2747		newcon->flags &= ~CON_PRINTBUFFER;
2748
2749	/*
2750	 *	Put this console in the list - keep the
2751	 *	preferred driver at the head of the list.
2752	 */
2753	console_lock();
2754	if ((newcon->flags & CON_CONSDEV) || console_drivers == NULL) {
2755		newcon->next = console_drivers;
2756		console_drivers = newcon;
2757		if (newcon->next)
2758			newcon->next->flags &= ~CON_CONSDEV;
2759	} else {
2760		newcon->next = console_drivers->next;
2761		console_drivers->next = newcon;
2762	}
2763
2764	if (newcon->flags & CON_EXTENDED)
2765		nr_ext_console_drivers++;
 
2766
2767	if (newcon->flags & CON_PRINTBUFFER) {
2768		/*
2769		 * console_unlock(); will print out the buffered messages
2770		 * for us.
2771		 */
2772		logbuf_lock_irqsave(flags);
2773		console_seq = syslog_seq;
2774		console_idx = syslog_idx;
 
 
2775		/*
2776		 * We're about to replay the log buffer.  Only do this to the
2777		 * just-registered console to avoid excessive message spam to
2778		 * the already-registered consoles.
2779		 *
2780		 * Set exclusive_console with disabled interrupts to reduce
2781		 * race window with eventual console_flush_on_panic() that
2782		 * ignores console_lock.
2783		 */
2784		exclusive_console = newcon;
2785		exclusive_console_stop_seq = console_seq;
2786		logbuf_unlock_irqrestore(flags);
2787	}
2788	console_unlock();
2789	console_sysfs_notify();
2790
2791	/*
2792	 * By unregistering the bootconsoles after we enable the real console
2793	 * we get the "console xxx enabled" message on all the consoles -
2794	 * boot consoles, real consoles, etc - this is to ensure that end
2795	 * users know there might be something in the kernel's log buffer that
2796	 * went to the bootconsole (that they do not see on the real console)
2797	 */
2798	pr_info("%sconsole [%s%d] enabled\n",
2799		(newcon->flags & CON_BOOT) ? "boot" : "" ,
2800		newcon->name, newcon->index);
2801	if (bcon &&
2802	    ((newcon->flags & (CON_CONSDEV | CON_BOOT)) == CON_CONSDEV) &&
2803	    !keep_bootcon) {
2804		/* We need to iterate through all boot consoles, to make
2805		 * sure we print everything out, before we unregister them.
2806		 */
2807		for_each_console(bcon)
2808			if (bcon->flags & CON_BOOT)
2809				unregister_console(bcon);
2810	}
2811}
2812EXPORT_SYMBOL(register_console);
2813
2814int unregister_console(struct console *console)
2815{
2816        struct console *a, *b;
2817	int res;
2818
2819	pr_info("%sconsole [%s%d] disabled\n",
2820		(console->flags & CON_BOOT) ? "boot" : "" ,
2821		console->name, console->index);
2822
2823	res = _braille_unregister_console(console);
2824	if (res)
2825		return res;
2826
2827	res = 1;
2828	console_lock();
2829	if (console_drivers == console) {
2830		console_drivers=console->next;
2831		res = 0;
2832	} else if (console_drivers) {
2833		for (a=console_drivers->next, b=console_drivers ;
2834		     a; b=a, a=b->next) {
2835			if (a == console) {
2836				b->next = a->next;
2837				res = 0;
2838				break;
2839			}
2840		}
2841	}
2842
2843	if (!res && (console->flags & CON_EXTENDED))
2844		nr_ext_console_drivers--;
2845
2846	/*
2847	 * If this isn't the last console and it has CON_CONSDEV set, we
2848	 * need to set it on the next preferred console.
2849	 */
2850	if (console_drivers != NULL && console->flags & CON_CONSDEV)
2851		console_drivers->flags |= CON_CONSDEV;
2852
2853	console->flags &= ~CON_ENABLED;
2854	console_unlock();
2855	console_sysfs_notify();
2856	return res;
2857}
2858EXPORT_SYMBOL(unregister_console);
2859
2860/*
2861 * Initialize the console device. This is called *early*, so
2862 * we can't necessarily depend on lots of kernel help here.
2863 * Just do some early initializations, and do the complex setup
2864 * later.
2865 */
2866void __init console_init(void)
2867{
2868	int ret;
2869	initcall_t call;
2870	initcall_entry_t *ce;
2871
2872	/* Setup the default TTY line discipline. */
2873	n_tty_init();
2874
2875	/*
2876	 * set up the console device so that later boot sequences can
2877	 * inform about problems etc..
2878	 */
2879	ce = __con_initcall_start;
2880	trace_initcall_level("console");
2881	while (ce < __con_initcall_end) {
2882		call = initcall_from_entry(ce);
2883		trace_initcall_start(call);
2884		ret = call();
2885		trace_initcall_finish(call, ret);
2886		ce++;
2887	}
2888}
2889
2890/*
2891 * Some boot consoles access data that is in the init section and which will
2892 * be discarded after the initcalls have been run. To make sure that no code
2893 * will access this data, unregister the boot consoles in a late initcall.
2894 *
2895 * If for some reason, such as deferred probe or the driver being a loadable
2896 * module, the real console hasn't registered yet at this point, there will
2897 * be a brief interval in which no messages are logged to the console, which
2898 * makes it difficult to diagnose problems that occur during this time.
2899 *
2900 * To mitigate this problem somewhat, only unregister consoles whose memory
2901 * intersects with the init section. Note that all other boot consoles will
2902 * get unregistred when the real preferred console is registered.
 
2903 */
2904static int __init printk_late_init(void)
2905{
2906	struct console *con;
2907	int ret;
2908
2909	for_each_console(con) {
2910		if (!(con->flags & CON_BOOT))
2911			continue;
2912
2913		/* Check addresses that might be used for enabled consoles. */
2914		if (init_section_intersects(con, sizeof(*con)) ||
2915		    init_section_contains(con->write, 0) ||
2916		    init_section_contains(con->read, 0) ||
2917		    init_section_contains(con->device, 0) ||
2918		    init_section_contains(con->unblank, 0) ||
2919		    init_section_contains(con->data, 0)) {
2920			/*
2921			 * Please, consider moving the reported consoles out
2922			 * of the init section.
 
 
 
2923			 */
2924			pr_warn("bootconsole [%s%d] uses init memory and must be disabled even before the real one is ready\n",
2925				con->name, con->index);
2926			unregister_console(con);
2927		}
2928	}
2929	ret = cpuhp_setup_state_nocalls(CPUHP_PRINTK_DEAD, "printk:dead", NULL,
2930					console_cpu_notify);
2931	WARN_ON(ret < 0);
2932	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "printk:online",
2933					console_cpu_notify, NULL);
2934	WARN_ON(ret < 0);
2935	return 0;
2936}
2937late_initcall(printk_late_init);
2938
2939#if defined CONFIG_PRINTK
2940/*
2941 * Delayed printk version, for scheduler-internal messages:
2942 */
2943#define PRINTK_PENDING_WAKEUP	0x01
2944#define PRINTK_PENDING_OUTPUT	0x02
2945
2946static DEFINE_PER_CPU(int, printk_pending);
2947
2948static void wake_up_klogd_work_func(struct irq_work *irq_work)
2949{
2950	int pending = __this_cpu_xchg(printk_pending, 0);
2951
2952	if (pending & PRINTK_PENDING_OUTPUT) {
2953		/* If trylock fails, someone else is doing the printing */
2954		if (console_trylock())
2955			console_unlock();
2956	}
2957
2958	if (pending & PRINTK_PENDING_WAKEUP)
2959		wake_up_interruptible(&log_wait);
2960}
2961
2962static DEFINE_PER_CPU(struct irq_work, wake_up_klogd_work) = {
2963	.func = wake_up_klogd_work_func,
2964	.flags = IRQ_WORK_LAZY,
2965};
2966
2967void wake_up_klogd(void)
2968{
2969	preempt_disable();
2970	if (waitqueue_active(&log_wait)) {
2971		this_cpu_or(printk_pending, PRINTK_PENDING_WAKEUP);
2972		irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2973	}
2974	preempt_enable();
2975}
2976
2977void defer_console_output(void)
2978{
2979	preempt_disable();
2980	__this_cpu_or(printk_pending, PRINTK_PENDING_OUTPUT);
2981	irq_work_queue(this_cpu_ptr(&wake_up_klogd_work));
2982	preempt_enable();
2983}
2984
2985int vprintk_deferred(const char *fmt, va_list args)
2986{
2987	int r;
2988
2989	r = vprintk_emit(0, LOGLEVEL_SCHED, NULL, 0, fmt, args);
2990	defer_console_output();
2991
2992	return r;
2993}
2994
2995int printk_deferred(const char *fmt, ...)
2996{
2997	va_list args;
2998	int r;
2999
 
3000	va_start(args, fmt);
3001	r = vprintk_deferred(fmt, args);
3002	va_end(args);
3003
 
 
 
 
3004	return r;
3005}
3006
3007/*
3008 * printk rate limiting, lifted from the networking subsystem.
3009 *
3010 * This enforces a rate limit: not more than 10 kernel messages
3011 * every 5s to make a denial-of-service attack impossible.
3012 */
3013DEFINE_RATELIMIT_STATE(printk_ratelimit_state, 5 * HZ, 10);
3014
3015int __printk_ratelimit(const char *func)
3016{
3017	return ___ratelimit(&printk_ratelimit_state, func);
3018}
3019EXPORT_SYMBOL(__printk_ratelimit);
3020
3021/**
3022 * printk_timed_ratelimit - caller-controlled printk ratelimiting
3023 * @caller_jiffies: pointer to caller's state
3024 * @interval_msecs: minimum interval between prints
3025 *
3026 * printk_timed_ratelimit() returns true if more than @interval_msecs
3027 * milliseconds have elapsed since the last time printk_timed_ratelimit()
3028 * returned true.
3029 */
3030bool printk_timed_ratelimit(unsigned long *caller_jiffies,
3031			unsigned int interval_msecs)
3032{
3033	unsigned long elapsed = jiffies - *caller_jiffies;
3034
3035	if (*caller_jiffies && elapsed <= msecs_to_jiffies(interval_msecs))
3036		return false;
3037
3038	*caller_jiffies = jiffies;
3039	return true;
3040}
3041EXPORT_SYMBOL(printk_timed_ratelimit);
3042
3043static DEFINE_SPINLOCK(dump_list_lock);
3044static LIST_HEAD(dump_list);
3045
3046/**
3047 * kmsg_dump_register - register a kernel log dumper.
3048 * @dumper: pointer to the kmsg_dumper structure
3049 *
3050 * Adds a kernel log dumper to the system. The dump callback in the
3051 * structure will be called when the kernel oopses or panics and must be
3052 * set. Returns zero on success and %-EINVAL or %-EBUSY otherwise.
3053 */
3054int kmsg_dump_register(struct kmsg_dumper *dumper)
3055{
3056	unsigned long flags;
3057	int err = -EBUSY;
3058
3059	/* The dump callback needs to be set */
3060	if (!dumper->dump)
3061		return -EINVAL;
3062
3063	spin_lock_irqsave(&dump_list_lock, flags);
3064	/* Don't allow registering multiple times */
3065	if (!dumper->registered) {
3066		dumper->registered = 1;
3067		list_add_tail_rcu(&dumper->list, &dump_list);
3068		err = 0;
3069	}
3070	spin_unlock_irqrestore(&dump_list_lock, flags);
3071
3072	return err;
3073}
3074EXPORT_SYMBOL_GPL(kmsg_dump_register);
3075
3076/**
3077 * kmsg_dump_unregister - unregister a kmsg dumper.
3078 * @dumper: pointer to the kmsg_dumper structure
3079 *
3080 * Removes a dump device from the system. Returns zero on success and
3081 * %-EINVAL otherwise.
3082 */
3083int kmsg_dump_unregister(struct kmsg_dumper *dumper)
3084{
3085	unsigned long flags;
3086	int err = -EINVAL;
3087
3088	spin_lock_irqsave(&dump_list_lock, flags);
3089	if (dumper->registered) {
3090		dumper->registered = 0;
3091		list_del_rcu(&dumper->list);
3092		err = 0;
3093	}
3094	spin_unlock_irqrestore(&dump_list_lock, flags);
3095	synchronize_rcu();
3096
3097	return err;
3098}
3099EXPORT_SYMBOL_GPL(kmsg_dump_unregister);
3100
3101static bool always_kmsg_dump;
3102module_param_named(always_kmsg_dump, always_kmsg_dump, bool, S_IRUGO | S_IWUSR);
3103
3104/**
3105 * kmsg_dump - dump kernel log to kernel message dumpers.
3106 * @reason: the reason (oops, panic etc) for dumping
3107 *
3108 * Call each of the registered dumper's dump() callback, which can
3109 * retrieve the kmsg records with kmsg_dump_get_line() or
3110 * kmsg_dump_get_buffer().
3111 */
3112void kmsg_dump(enum kmsg_dump_reason reason)
3113{
3114	struct kmsg_dumper *dumper;
3115	unsigned long flags;
3116
3117	if ((reason > KMSG_DUMP_OOPS) && !always_kmsg_dump)
3118		return;
3119
3120	rcu_read_lock();
3121	list_for_each_entry_rcu(dumper, &dump_list, list) {
3122		if (dumper->max_reason && reason > dumper->max_reason)
3123			continue;
3124
3125		/* initialize iterator with data about the stored records */
3126		dumper->active = true;
3127
3128		logbuf_lock_irqsave(flags);
3129		dumper->cur_seq = clear_seq;
3130		dumper->cur_idx = clear_idx;
3131		dumper->next_seq = log_next_seq;
3132		dumper->next_idx = log_next_idx;
3133		logbuf_unlock_irqrestore(flags);
3134
3135		/* invoke dumper which will iterate over records */
3136		dumper->dump(dumper, reason);
3137
3138		/* reset iterator */
3139		dumper->active = false;
3140	}
3141	rcu_read_unlock();
3142}
3143
3144/**
3145 * kmsg_dump_get_line_nolock - retrieve one kmsg log line (unlocked version)
3146 * @dumper: registered kmsg dumper
3147 * @syslog: include the "<4>" prefixes
3148 * @line: buffer to copy the line to
3149 * @size: maximum size of the buffer
3150 * @len: length of line placed into buffer
3151 *
3152 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3153 * record, and copy one record into the provided buffer.
3154 *
3155 * Consecutive calls will return the next available record moving
3156 * towards the end of the buffer with the youngest messages.
3157 *
3158 * A return value of FALSE indicates that there are no more records to
3159 * read.
3160 *
3161 * The function is similar to kmsg_dump_get_line(), but grabs no locks.
3162 */
3163bool kmsg_dump_get_line_nolock(struct kmsg_dumper *dumper, bool syslog,
3164			       char *line, size_t size, size_t *len)
3165{
3166	struct printk_log *msg;
3167	size_t l = 0;
3168	bool ret = false;
3169
3170	if (!dumper->active)
3171		goto out;
3172
3173	if (dumper->cur_seq < log_first_seq) {
3174		/* messages are gone, move to first available one */
3175		dumper->cur_seq = log_first_seq;
3176		dumper->cur_idx = log_first_idx;
3177	}
3178
3179	/* last entry */
3180	if (dumper->cur_seq >= log_next_seq)
3181		goto out;
3182
3183	msg = log_from_idx(dumper->cur_idx);
3184	l = msg_print_text(msg, syslog, printk_time, line, size);
3185
3186	dumper->cur_idx = log_next(dumper->cur_idx);
3187	dumper->cur_seq++;
3188	ret = true;
3189out:
3190	if (len)
3191		*len = l;
3192	return ret;
3193}
3194
3195/**
3196 * kmsg_dump_get_line - retrieve one kmsg log line
3197 * @dumper: registered kmsg dumper
3198 * @syslog: include the "<4>" prefixes
3199 * @line: buffer to copy the line to
3200 * @size: maximum size of the buffer
3201 * @len: length of line placed into buffer
3202 *
3203 * Start at the beginning of the kmsg buffer, with the oldest kmsg
3204 * record, and copy one record into the provided buffer.
3205 *
3206 * Consecutive calls will return the next available record moving
3207 * towards the end of the buffer with the youngest messages.
3208 *
3209 * A return value of FALSE indicates that there are no more records to
3210 * read.
3211 */
3212bool kmsg_dump_get_line(struct kmsg_dumper *dumper, bool syslog,
3213			char *line, size_t size, size_t *len)
3214{
3215	unsigned long flags;
3216	bool ret;
3217
3218	logbuf_lock_irqsave(flags);
3219	ret = kmsg_dump_get_line_nolock(dumper, syslog, line, size, len);
3220	logbuf_unlock_irqrestore(flags);
3221
3222	return ret;
3223}
3224EXPORT_SYMBOL_GPL(kmsg_dump_get_line);
3225
3226/**
3227 * kmsg_dump_get_buffer - copy kmsg log lines
3228 * @dumper: registered kmsg dumper
3229 * @syslog: include the "<4>" prefixes
3230 * @buf: buffer to copy the line to
3231 * @size: maximum size of the buffer
3232 * @len: length of line placed into buffer
3233 *
3234 * Start at the end of the kmsg buffer and fill the provided buffer
3235 * with as many of the the *youngest* kmsg records that fit into it.
3236 * If the buffer is large enough, all available kmsg records will be
3237 * copied with a single call.
3238 *
3239 * Consecutive calls will fill the buffer with the next block of
3240 * available older records, not including the earlier retrieved ones.
3241 *
3242 * A return value of FALSE indicates that there are no more records to
3243 * read.
3244 */
3245bool kmsg_dump_get_buffer(struct kmsg_dumper *dumper, bool syslog,
3246			  char *buf, size_t size, size_t *len)
3247{
3248	unsigned long flags;
3249	u64 seq;
3250	u32 idx;
3251	u64 next_seq;
3252	u32 next_idx;
 
3253	size_t l = 0;
3254	bool ret = false;
3255	bool time = printk_time;
3256
3257	if (!dumper->active)
3258		goto out;
3259
3260	logbuf_lock_irqsave(flags);
3261	if (dumper->cur_seq < log_first_seq) {
3262		/* messages are gone, move to first available one */
3263		dumper->cur_seq = log_first_seq;
3264		dumper->cur_idx = log_first_idx;
3265	}
3266
3267	/* last entry */
3268	if (dumper->cur_seq >= dumper->next_seq) {
3269		logbuf_unlock_irqrestore(flags);
3270		goto out;
3271	}
3272
3273	/* calculate length of entire buffer */
3274	seq = dumper->cur_seq;
3275	idx = dumper->cur_idx;
 
3276	while (seq < dumper->next_seq) {
3277		struct printk_log *msg = log_from_idx(idx);
3278
3279		l += msg_print_text(msg, true, time, NULL, 0);
3280		idx = log_next(idx);
3281		seq++;
 
3282	}
3283
3284	/* move first record forward until length fits into the buffer */
3285	seq = dumper->cur_seq;
3286	idx = dumper->cur_idx;
3287	while (l >= size && seq < dumper->next_seq) {
 
3288		struct printk_log *msg = log_from_idx(idx);
3289
3290		l -= msg_print_text(msg, true, time, NULL, 0);
3291		idx = log_next(idx);
3292		seq++;
 
3293	}
3294
3295	/* last message in next interation */
3296	next_seq = seq;
3297	next_idx = idx;
3298
3299	l = 0;
3300	while (seq < dumper->next_seq) {
3301		struct printk_log *msg = log_from_idx(idx);
3302
3303		l += msg_print_text(msg, syslog, time, buf + l, size - l);
3304		idx = log_next(idx);
3305		seq++;
 
3306	}
3307
3308	dumper->next_seq = next_seq;
3309	dumper->next_idx = next_idx;
3310	ret = true;
3311	logbuf_unlock_irqrestore(flags);
3312out:
3313	if (len)
3314		*len = l;
3315	return ret;
3316}
3317EXPORT_SYMBOL_GPL(kmsg_dump_get_buffer);
3318
3319/**
3320 * kmsg_dump_rewind_nolock - reset the interator (unlocked version)
3321 * @dumper: registered kmsg dumper
3322 *
3323 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3324 * kmsg_dump_get_buffer() can be called again and used multiple
3325 * times within the same dumper.dump() callback.
3326 *
3327 * The function is similar to kmsg_dump_rewind(), but grabs no locks.
3328 */
3329void kmsg_dump_rewind_nolock(struct kmsg_dumper *dumper)
3330{
3331	dumper->cur_seq = clear_seq;
3332	dumper->cur_idx = clear_idx;
3333	dumper->next_seq = log_next_seq;
3334	dumper->next_idx = log_next_idx;
3335}
3336
3337/**
3338 * kmsg_dump_rewind - reset the interator
3339 * @dumper: registered kmsg dumper
3340 *
3341 * Reset the dumper's iterator so that kmsg_dump_get_line() and
3342 * kmsg_dump_get_buffer() can be called again and used multiple
3343 * times within the same dumper.dump() callback.
3344 */
3345void kmsg_dump_rewind(struct kmsg_dumper *dumper)
3346{
3347	unsigned long flags;
3348
3349	logbuf_lock_irqsave(flags);
3350	kmsg_dump_rewind_nolock(dumper);
3351	logbuf_unlock_irqrestore(flags);
3352}
3353EXPORT_SYMBOL_GPL(kmsg_dump_rewind);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3354
3355#endif