Linux Audio

Check our new training course

Loading...
v4.6
   1/**
 
   2 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   3 *		http://www.samsung.com
   4 *
   5 * Copyright 2008 Openmoko, Inc.
   6 * Copyright 2008 Simtec Electronics
   7 *      Ben Dooks <ben@simtec.co.uk>
   8 *      http://armlinux.simtec.co.uk/
   9 *
  10 * S3C USB2.0 High-speed / OtG driver
  11 *
  12 * This program is free software; you can redistribute it and/or modify
  13 * it under the terms of the GNU General Public License version 2 as
  14 * published by the Free Software Foundation.
  15 */
  16
  17#include <linux/kernel.h>
  18#include <linux/module.h>
  19#include <linux/spinlock.h>
  20#include <linux/interrupt.h>
  21#include <linux/platform_device.h>
  22#include <linux/dma-mapping.h>
  23#include <linux/mutex.h>
  24#include <linux/seq_file.h>
  25#include <linux/delay.h>
  26#include <linux/io.h>
  27#include <linux/slab.h>
  28#include <linux/of_platform.h>
  29
  30#include <linux/usb/ch9.h>
  31#include <linux/usb/gadget.h>
  32#include <linux/usb/phy.h>
 
 
  33
  34#include "core.h"
  35#include "hw.h"
  36
  37/* conversion functions */
  38static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  39{
  40	return container_of(req, struct dwc2_hsotg_req, req);
  41}
  42
  43static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  44{
  45	return container_of(ep, struct dwc2_hsotg_ep, ep);
  46}
  47
  48static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  49{
  50	return container_of(gadget, struct dwc2_hsotg, gadget);
  51}
  52
  53static inline void __orr32(void __iomem *ptr, u32 val)
  54{
  55	dwc2_writel(dwc2_readl(ptr) | val, ptr);
  56}
  57
  58static inline void __bic32(void __iomem *ptr, u32 val)
  59{
  60	dwc2_writel(dwc2_readl(ptr) & ~val, ptr);
  61}
  62
  63static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  64						u32 ep_index, u32 dir_in)
  65{
  66	if (dir_in)
  67		return hsotg->eps_in[ep_index];
  68	else
  69		return hsotg->eps_out[ep_index];
  70}
  71
  72/* forward declaration of functions */
  73static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  74
  75/**
  76 * using_dma - return the DMA status of the driver.
  77 * @hsotg: The driver state.
  78 *
  79 * Return true if we're using DMA.
  80 *
  81 * Currently, we have the DMA support code worked into everywhere
  82 * that needs it, but the AMBA DMA implementation in the hardware can
  83 * only DMA from 32bit aligned addresses. This means that gadgets such
  84 * as the CDC Ethernet cannot work as they often pass packets which are
  85 * not 32bit aligned.
  86 *
  87 * Unfortunately the choice to use DMA or not is global to the controller
  88 * and seems to be only settable when the controller is being put through
  89 * a core reset. This means we either need to fix the gadgets to take
  90 * account of DMA alignment, or add bounce buffers (yuerk).
  91 *
  92 * g_using_dma is set depending on dts flag.
  93 */
  94static inline bool using_dma(struct dwc2_hsotg *hsotg)
  95{
  96	return hsotg->g_using_dma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  97}
  98
  99/**
 100 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 101 * @hsotg: The device state
 102 * @ints: A bitmask of the interrupts to enable
 103 */
 104static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 105{
 106	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 107	u32 new_gsintmsk;
 108
 109	new_gsintmsk = gsintmsk | ints;
 110
 111	if (new_gsintmsk != gsintmsk) {
 112		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 113		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 114	}
 115}
 116
 117/**
 118 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 119 * @hsotg: The device state
 120 * @ints: A bitmask of the interrupts to enable
 121 */
 122static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 123{
 124	u32 gsintmsk = dwc2_readl(hsotg->regs + GINTMSK);
 125	u32 new_gsintmsk;
 126
 127	new_gsintmsk = gsintmsk & ~ints;
 128
 129	if (new_gsintmsk != gsintmsk)
 130		dwc2_writel(new_gsintmsk, hsotg->regs + GINTMSK);
 131}
 132
 133/**
 134 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 135 * @hsotg: The device state
 136 * @ep: The endpoint index
 137 * @dir_in: True if direction is in.
 138 * @en: The enable value, true to enable
 139 *
 140 * Set or clear the mask for an individual endpoint's interrupt
 141 * request.
 142 */
 143static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 144				 unsigned int ep, unsigned int dir_in,
 145				 unsigned int en)
 146{
 147	unsigned long flags;
 148	u32 bit = 1 << ep;
 149	u32 daint;
 150
 151	if (!dir_in)
 152		bit <<= 16;
 153
 154	local_irq_save(flags);
 155	daint = dwc2_readl(hsotg->regs + DAINTMSK);
 156	if (en)
 157		daint |= bit;
 158	else
 159		daint &= ~bit;
 160	dwc2_writel(daint, hsotg->regs + DAINTMSK);
 161	local_irq_restore(flags);
 162}
 163
 164/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 166 * @hsotg: The device instance.
 167 */
 168static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 169{
 170	unsigned int ep;
 171	unsigned int addr;
 172	int timeout;
 
 173	u32 val;
 
 174
 175	/* Reset fifo map if not correctly cleared during previous session */
 176	WARN_ON(hsotg->fifo_map);
 177	hsotg->fifo_map = 0;
 178
 179	/* set RX/NPTX FIFO sizes */
 180	dwc2_writel(hsotg->g_rx_fifo_sz, hsotg->regs + GRXFSIZ);
 181	dwc2_writel((hsotg->g_rx_fifo_sz << FIFOSIZE_STARTADDR_SHIFT) |
 182		(hsotg->g_np_g_tx_fifo_sz << FIFOSIZE_DEPTH_SHIFT),
 183		hsotg->regs + GNPTXFSIZ);
 
 184
 185	/*
 186	 * arange all the rest of the TX FIFOs, as some versions of this
 187	 * block have overlapping default addresses. This also ensures
 188	 * that if the settings have been changed, then they are set to
 189	 * known values.
 190	 */
 191
 192	/* start at the end of the GNPTXFSIZ, rounded up */
 193	addr = hsotg->g_rx_fifo_sz + hsotg->g_np_g_tx_fifo_sz;
 194
 195	/*
 196	 * Configure fifos sizes from provided configuration and assign
 197	 * them to endpoints dynamically according to maxpacket size value of
 198	 * given endpoint.
 199	 */
 200	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 201		if (!hsotg->g_tx_fifo_sz[ep])
 202			continue;
 203		val = addr;
 204		val |= hsotg->g_tx_fifo_sz[ep] << FIFOSIZE_DEPTH_SHIFT;
 205		WARN_ONCE(addr + hsotg->g_tx_fifo_sz[ep] > hsotg->fifo_mem,
 206			  "insufficient fifo memory");
 207		addr += hsotg->g_tx_fifo_sz[ep];
 208
 209		dwc2_writel(val, hsotg->regs + DPTXFSIZN(ep));
 
 210	}
 211
 
 
 
 212	/*
 213	 * according to p428 of the design guide, we need to ensure that
 214	 * all fifos are flushed before continuing
 215	 */
 216
 217	dwc2_writel(GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 218	       GRSTCTL_RXFFLSH, hsotg->regs + GRSTCTL);
 219
 220	/* wait until the fifos are both flushed */
 221	timeout = 100;
 222	while (1) {
 223		val = dwc2_readl(hsotg->regs + GRSTCTL);
 224
 225		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 226			break;
 227
 228		if (--timeout == 0) {
 229			dev_err(hsotg->dev,
 230				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 231				__func__, val);
 232			break;
 233		}
 234
 235		udelay(1);
 236	}
 237
 238	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 239}
 240
 241/**
 
 242 * @ep: USB endpoint to allocate request for.
 243 * @flags: Allocation flags
 244 *
 245 * Allocate a new USB request structure appropriate for the specified endpoint
 246 */
 247static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 248						      gfp_t flags)
 249{
 250	struct dwc2_hsotg_req *req;
 251
 252	req = kzalloc(sizeof(struct dwc2_hsotg_req), flags);
 253	if (!req)
 254		return NULL;
 255
 256	INIT_LIST_HEAD(&req->queue);
 257
 258	return &req->req;
 259}
 260
 261/**
 262 * is_ep_periodic - return true if the endpoint is in periodic mode.
 263 * @hs_ep: The endpoint to query.
 264 *
 265 * Returns true if the endpoint is in periodic mode, meaning it is being
 266 * used for an Interrupt or ISO transfer.
 267 */
 268static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 269{
 270	return hs_ep->periodic;
 271}
 272
 273/**
 274 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 275 * @hsotg: The device state.
 276 * @hs_ep: The endpoint for the request
 277 * @hs_req: The request being processed.
 278 *
 279 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 280 * of a request to ensure the buffer is ready for access by the caller.
 281 */
 282static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 283				struct dwc2_hsotg_ep *hs_ep,
 284				struct dwc2_hsotg_req *hs_req)
 285{
 286	struct usb_request *req = &hs_req->req;
 287
 288	/* ignore this if we're not moving any data */
 289	if (hs_req->req.length == 0)
 290		return;
 291
 292	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 293}
 294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295/**
 296 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 297 * @hsotg: The controller state.
 298 * @hs_ep: The endpoint we're going to write for.
 299 * @hs_req: The request to write data for.
 300 *
 301 * This is called when the TxFIFO has some space in it to hold a new
 302 * transmission and we have something to give it. The actual setup of
 303 * the data size is done elsewhere, so all we have to do is to actually
 304 * write the data.
 305 *
 306 * The return value is zero if there is more space (or nothing was done)
 307 * otherwise -ENOSPC is returned if the FIFO space was used up.
 308 *
 309 * This routine is only needed for PIO
 310 */
 311static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 312				struct dwc2_hsotg_ep *hs_ep,
 313				struct dwc2_hsotg_req *hs_req)
 314{
 315	bool periodic = is_ep_periodic(hs_ep);
 316	u32 gnptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
 317	int buf_pos = hs_req->req.actual;
 318	int to_write = hs_ep->size_loaded;
 319	void *data;
 320	int can_write;
 321	int pkt_round;
 322	int max_transfer;
 323
 324	to_write -= (buf_pos - hs_ep->last_load);
 325
 326	/* if there's nothing to write, get out early */
 327	if (to_write == 0)
 328		return 0;
 329
 330	if (periodic && !hsotg->dedicated_fifos) {
 331		u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
 332		int size_left;
 333		int size_done;
 334
 335		/*
 336		 * work out how much data was loaded so we can calculate
 337		 * how much data is left in the fifo.
 338		 */
 339
 340		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 341
 342		/*
 343		 * if shared fifo, we cannot write anything until the
 344		 * previous data has been completely sent.
 345		 */
 346		if (hs_ep->fifo_load != 0) {
 347			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 348			return -ENOSPC;
 349		}
 350
 351		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 352			__func__, size_left,
 353			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 354
 355		/* how much of the data has moved */
 356		size_done = hs_ep->size_loaded - size_left;
 357
 358		/* how much data is left in the fifo */
 359		can_write = hs_ep->fifo_load - size_done;
 360		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 361			__func__, can_write);
 362
 363		can_write = hs_ep->fifo_size - can_write;
 364		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 365			__func__, can_write);
 366
 367		if (can_write <= 0) {
 368			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 369			return -ENOSPC;
 370		}
 371	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 372		can_write = dwc2_readl(hsotg->regs + DTXFSTS(hs_ep->index));
 
 373
 374		can_write &= 0xffff;
 375		can_write *= 4;
 376	} else {
 377		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 378			dev_dbg(hsotg->dev,
 379				"%s: no queue slots available (0x%08x)\n",
 380				__func__, gnptxsts);
 381
 382			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 383			return -ENOSPC;
 384		}
 385
 386		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 387		can_write *= 4;	/* fifo size is in 32bit quantities. */
 388	}
 389
 390	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 391
 392	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 393		 __func__, gnptxsts, can_write, to_write, max_transfer);
 394
 395	/*
 396	 * limit to 512 bytes of data, it seems at least on the non-periodic
 397	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 398	 * fragment of the end of the transfer in it.
 399	 */
 400	if (can_write > 512 && !periodic)
 401		can_write = 512;
 402
 403	/*
 404	 * limit the write to one max-packet size worth of data, but allow
 405	 * the transfer to return that it did not run out of fifo space
 406	 * doing it.
 407	 */
 408	if (to_write > max_transfer) {
 409		to_write = max_transfer;
 410
 411		/* it's needed only when we do not use dedicated fifos */
 412		if (!hsotg->dedicated_fifos)
 413			dwc2_hsotg_en_gsint(hsotg,
 414					   periodic ? GINTSTS_PTXFEMP :
 415					   GINTSTS_NPTXFEMP);
 416	}
 417
 418	/* see if we can write data */
 419
 420	if (to_write > can_write) {
 421		to_write = can_write;
 422		pkt_round = to_write % max_transfer;
 423
 424		/*
 425		 * Round the write down to an
 426		 * exact number of packets.
 427		 *
 428		 * Note, we do not currently check to see if we can ever
 429		 * write a full packet or not to the FIFO.
 430		 */
 431
 432		if (pkt_round)
 433			to_write -= pkt_round;
 434
 435		/*
 436		 * enable correct FIFO interrupt to alert us when there
 437		 * is more room left.
 438		 */
 439
 440		/* it's needed only when we do not use dedicated fifos */
 441		if (!hsotg->dedicated_fifos)
 442			dwc2_hsotg_en_gsint(hsotg,
 443					   periodic ? GINTSTS_PTXFEMP :
 444					   GINTSTS_NPTXFEMP);
 445	}
 446
 447	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 448		 to_write, hs_req->req.length, can_write, buf_pos);
 449
 450	if (to_write <= 0)
 451		return -ENOSPC;
 452
 453	hs_req->req.actual = buf_pos + to_write;
 454	hs_ep->total_data += to_write;
 455
 456	if (periodic)
 457		hs_ep->fifo_load += to_write;
 458
 459	to_write = DIV_ROUND_UP(to_write, 4);
 460	data = hs_req->req.buf + buf_pos;
 461
 462	iowrite32_rep(hsotg->regs + EPFIFO(hs_ep->index), data, to_write);
 463
 464	return (to_write >= can_write) ? -ENOSPC : 0;
 465}
 466
 467/**
 468 * get_ep_limit - get the maximum data legnth for this endpoint
 469 * @hs_ep: The endpoint
 470 *
 471 * Return the maximum data that can be queued in one go on a given endpoint
 472 * so that transfers that are too long can be split.
 473 */
 474static unsigned get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 475{
 476	int index = hs_ep->index;
 477	unsigned maxsize;
 478	unsigned maxpkt;
 479
 480	if (index != 0) {
 481		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 482		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 483	} else {
 484		maxsize = 64+64;
 485		if (hs_ep->dir_in)
 486			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 487		else
 488			maxpkt = 2;
 489	}
 490
 491	/* we made the constant loading easier above by using +1 */
 492	maxpkt--;
 493	maxsize--;
 494
 495	/*
 496	 * constrain by packet count if maxpkts*pktsize is greater
 497	 * than the length register size.
 498	 */
 499
 500	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 501		maxsize = maxpkt * hs_ep->ep.maxpacket;
 502
 503	return maxsize;
 504}
 505
 506/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
 508 * @hsotg: The controller state.
 509 * @hs_ep: The endpoint to process a request for
 510 * @hs_req: The request to start.
 511 * @continuing: True if we are doing more for the current request.
 512 *
 513 * Start the given request running by setting the endpoint registers
 514 * appropriately, and writing any data to the FIFOs.
 515 */
 516static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
 517				struct dwc2_hsotg_ep *hs_ep,
 518				struct dwc2_hsotg_req *hs_req,
 519				bool continuing)
 520{
 521	struct usb_request *ureq = &hs_req->req;
 522	int index = hs_ep->index;
 523	int dir_in = hs_ep->dir_in;
 524	u32 epctrl_reg;
 525	u32 epsize_reg;
 526	u32 epsize;
 527	u32 ctrl;
 528	unsigned length;
 529	unsigned packets;
 530	unsigned maxreq;
 
 531
 532	if (index != 0) {
 533		if (hs_ep->req && !continuing) {
 534			dev_err(hsotg->dev, "%s: active request\n", __func__);
 535			WARN_ON(1);
 536			return;
 537		} else if (hs_ep->req != hs_req && continuing) {
 538			dev_err(hsotg->dev,
 539				"%s: continue different req\n", __func__);
 540			WARN_ON(1);
 541			return;
 542		}
 543	}
 544
 
 545	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
 546	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
 547
 548	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
 549		__func__, dwc2_readl(hsotg->regs + epctrl_reg), index,
 550		hs_ep->dir_in ? "in" : "out");
 551
 552	/* If endpoint is stalled, we will restart request later */
 553	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
 554
 555	if (index && ctrl & DXEPCTL_STALL) {
 556		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
 557		return;
 558	}
 559
 560	length = ureq->length - ureq->actual;
 561	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
 562		ureq->length, ureq->actual);
 563
 564	maxreq = get_ep_limit(hs_ep);
 
 
 
 
 565	if (length > maxreq) {
 566		int round = maxreq % hs_ep->ep.maxpacket;
 567
 568		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
 569			__func__, length, maxreq, round);
 570
 571		/* round down to multiple of packets */
 572		if (round)
 573			maxreq -= round;
 574
 575		length = maxreq;
 576	}
 577
 578	if (length)
 579		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
 580	else
 581		packets = 1;	/* send one packet if length is zero. */
 582
 583	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
 584		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
 585		return;
 586	}
 587
 588	if (dir_in && index != 0)
 589		if (hs_ep->isochronous)
 590			epsize = DXEPTSIZ_MC(packets);
 591		else
 592			epsize = DXEPTSIZ_MC(1);
 593	else
 594		epsize = 0;
 595
 596	/*
 597	 * zero length packet should be programmed on its own and should not
 598	 * be counted in DIEPTSIZ.PktCnt with other packets.
 599	 */
 600	if (dir_in && ureq->zero && !continuing) {
 601		/* Test if zlp is actually required. */
 602		if ((ureq->length >= hs_ep->ep.maxpacket) &&
 603					!(ureq->length % hs_ep->ep.maxpacket))
 604			hs_ep->send_zlp = 1;
 605	}
 606
 607	epsize |= DXEPTSIZ_PKTCNT(packets);
 608	epsize |= DXEPTSIZ_XFERSIZE(length);
 609
 610	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
 611		__func__, packets, length, ureq->length, epsize, epsize_reg);
 612
 613	/* store the request as the current one we're doing */
 614	hs_ep->req = hs_req;
 615
 616	/* write size / packets */
 617	dwc2_writel(epsize, hsotg->regs + epsize_reg);
 618
 619	if (using_dma(hsotg) && !continuing) {
 620		unsigned int dma_reg;
 
 
 
 
 
 
 621
 622		/*
 623		 * write DMA address to control register, buffer already
 624		 * synced by dwc2_hsotg_ep_queue().
 
 625		 */
 
 
 
 
 
 
 
 626
 627		dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
 628		dwc2_writel(ureq->dma, hsotg->regs + dma_reg);
 629
 630		dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
 631			__func__, &ureq->dma, dma_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632	}
 633
 634	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 635	ctrl |= DXEPCTL_USBACTEP;
 636
 637	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
 638
 639	/* For Setup request do not clear NAK */
 640	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
 641		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
 642
 643	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
 644	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
 645
 646	/*
 647	 * set these, it seems that DMA support increments past the end
 648	 * of the packet buffer so we need to calculate the length from
 649	 * this information.
 650	 */
 651	hs_ep->size_loaded = length;
 652	hs_ep->last_load = ureq->actual;
 653
 654	if (dir_in && !using_dma(hsotg)) {
 655		/* set these anyway, we may need them for non-periodic in */
 656		hs_ep->fifo_load = 0;
 657
 658		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
 659	}
 660
 661	/*
 662	 * clear the INTknTXFEmpMsk when we start request, more as a aide
 663	 * to debugging to see what is going on.
 664	 */
 665	if (dir_in)
 666		dwc2_writel(DIEPMSK_INTKNTXFEMPMSK,
 667		       hsotg->regs + DIEPINT(index));
 668
 669	/*
 670	 * Note, trying to clear the NAK here causes problems with transmit
 671	 * on the S3C6400 ending up with the TXFIFO becoming full.
 672	 */
 673
 674	/* check ep is enabled */
 675	if (!(dwc2_readl(hsotg->regs + epctrl_reg) & DXEPCTL_EPENA))
 676		dev_dbg(hsotg->dev,
 677			 "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
 678			 index, dwc2_readl(hsotg->regs + epctrl_reg));
 679
 680	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
 681		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
 682
 683	/* enable ep interrupts */
 684	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
 685}
 686
 687/**
 688 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
 689 * @hsotg: The device state.
 690 * @hs_ep: The endpoint the request is on.
 691 * @req: The request being processed.
 692 *
 693 * We've been asked to queue a request, so ensure that the memory buffer
 694 * is correctly setup for DMA. If we've been passed an extant DMA address
 695 * then ensure the buffer has been synced to memory. If our buffer has no
 696 * DMA memory, then we map the memory and mark our request to allow us to
 697 * cleanup on completion.
 698 */
 699static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
 700			     struct dwc2_hsotg_ep *hs_ep,
 701			     struct usb_request *req)
 702{
 703	struct dwc2_hsotg_req *hs_req = our_req(req);
 704	int ret;
 705
 706	/* if the length is zero, ignore the DMA data */
 707	if (hs_req->req.length == 0)
 708		return 0;
 709
 710	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
 711	if (ret)
 712		goto dma_error;
 713
 714	return 0;
 715
 716dma_error:
 717	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
 718		__func__, req->buf, req->length);
 719
 720	return -EIO;
 721}
 722
 723static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
 724	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 725{
 726	void *req_buf = hs_req->req.buf;
 727
 728	/* If dma is not being used or buffer is aligned */
 729	if (!using_dma(hsotg) || !((long)req_buf & 3))
 730		return 0;
 731
 732	WARN_ON(hs_req->saved_req_buf);
 733
 734	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
 735			hs_ep->ep.name, req_buf, hs_req->req.length);
 736
 737	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
 738	if (!hs_req->req.buf) {
 739		hs_req->req.buf = req_buf;
 740		dev_err(hsotg->dev,
 741			"%s: unable to allocate memory for bounce buffer\n",
 742			__func__);
 743		return -ENOMEM;
 744	}
 745
 746	/* Save actual buffer */
 747	hs_req->saved_req_buf = req_buf;
 748
 749	if (hs_ep->dir_in)
 750		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
 751	return 0;
 752}
 753
 754static void dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
 755	struct dwc2_hsotg_ep *hs_ep, struct dwc2_hsotg_req *hs_req)
 
 
 756{
 757	/* If dma is not being used or buffer was aligned */
 758	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
 759		return;
 760
 761	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
 762		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
 763
 764	/* Copy data from bounce buffer on successful out transfer */
 765	if (!hs_ep->dir_in && !hs_req->req.status)
 766		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
 767							hs_req->req.actual);
 768
 769	/* Free bounce buffer */
 770	kfree(hs_req->req.buf);
 771
 772	hs_req->req.buf = hs_req->saved_req_buf;
 773	hs_req->saved_req_buf = NULL;
 774}
 775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 776static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
 777			      gfp_t gfp_flags)
 778{
 779	struct dwc2_hsotg_req *hs_req = our_req(req);
 780	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 781	struct dwc2_hsotg *hs = hs_ep->parent;
 782	bool first;
 783	int ret;
 
 
 
 784
 785	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
 786		ep->name, req, req->length, req->buf, req->no_interrupt,
 787		req->zero, req->short_not_ok);
 788
 789	/* Prevent new request submission when controller is suspended */
 790	if (hs->lx_state == DWC2_L2) {
 791		dev_dbg(hs->dev, "%s: don't submit request while suspended\n",
 792				__func__);
 793		return -EAGAIN;
 794	}
 795
 796	/* initialise status of the request */
 797	INIT_LIST_HEAD(&hs_req->queue);
 798	req->actual = 0;
 799	req->status = -EINPROGRESS;
 800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
 802	if (ret)
 803		return ret;
 804
 805	/* if we're using DMA, sync the buffers as necessary */
 806	if (using_dma(hs)) {
 807		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
 808		if (ret)
 809			return ret;
 810	}
 
 
 
 
 
 
 811
 812	first = list_empty(&hs_ep->queue);
 813	list_add_tail(&hs_req->queue, &hs_ep->queue);
 814
 815	if (first)
 816		dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817
 
 
 
 818	return 0;
 819}
 820
 821static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
 822			      gfp_t gfp_flags)
 823{
 824	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 825	struct dwc2_hsotg *hs = hs_ep->parent;
 826	unsigned long flags = 0;
 827	int ret = 0;
 828
 829	spin_lock_irqsave(&hs->lock, flags);
 830	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
 831	spin_unlock_irqrestore(&hs->lock, flags);
 832
 833	return ret;
 834}
 835
 836static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
 837				      struct usb_request *req)
 838{
 839	struct dwc2_hsotg_req *hs_req = our_req(req);
 840
 841	kfree(hs_req);
 842}
 843
 844/**
 845 * dwc2_hsotg_complete_oursetup - setup completion callback
 846 * @ep: The endpoint the request was on.
 847 * @req: The request completed.
 848 *
 849 * Called on completion of any requests the driver itself
 850 * submitted that need cleaning up.
 851 */
 852static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
 853					struct usb_request *req)
 854{
 855	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
 856	struct dwc2_hsotg *hsotg = hs_ep->parent;
 857
 858	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
 859
 860	dwc2_hsotg_ep_free_request(ep, req);
 861}
 862
 863/**
 864 * ep_from_windex - convert control wIndex value to endpoint
 865 * @hsotg: The driver state.
 866 * @windex: The control request wIndex field (in host order).
 867 *
 868 * Convert the given wIndex into a pointer to an driver endpoint
 869 * structure, or return NULL if it is not a valid endpoint.
 870 */
 871static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
 872					   u32 windex)
 873{
 874	struct dwc2_hsotg_ep *ep;
 875	int dir = (windex & USB_DIR_IN) ? 1 : 0;
 876	int idx = windex & 0x7F;
 877
 878	if (windex >= 0x100)
 879		return NULL;
 880
 881	if (idx > hsotg->num_of_eps)
 882		return NULL;
 883
 884	ep = index_to_ep(hsotg, idx, dir);
 885
 886	if (idx && ep->dir_in != dir)
 887		return NULL;
 888
 889	return ep;
 890}
 891
 892/**
 893 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
 894 * @hsotg: The driver state.
 895 * @testmode: requested usb test mode
 896 * Enable usb Test Mode requested by the Host.
 897 */
 898int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
 899{
 900	int dctl = dwc2_readl(hsotg->regs + DCTL);
 901
 902	dctl &= ~DCTL_TSTCTL_MASK;
 903	switch (testmode) {
 904	case TEST_J:
 905	case TEST_K:
 906	case TEST_SE0_NAK:
 907	case TEST_PACKET:
 908	case TEST_FORCE_EN:
 909		dctl |= testmode << DCTL_TSTCTL_SHIFT;
 910		break;
 911	default:
 912		return -EINVAL;
 913	}
 914	dwc2_writel(dctl, hsotg->regs + DCTL);
 915	return 0;
 916}
 917
 918/**
 919 * dwc2_hsotg_send_reply - send reply to control request
 920 * @hsotg: The device state
 921 * @ep: Endpoint 0
 922 * @buff: Buffer for request
 923 * @length: Length of reply.
 924 *
 925 * Create a request and queue it on the given endpoint. This is useful as
 926 * an internal method of sending replies to certain control requests, etc.
 927 */
 928static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
 929				struct dwc2_hsotg_ep *ep,
 930				void *buff,
 931				int length)
 932{
 933	struct usb_request *req;
 934	int ret;
 935
 936	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
 937
 938	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
 939	hsotg->ep0_reply = req;
 940	if (!req) {
 941		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
 942		return -ENOMEM;
 943	}
 944
 945	req->buf = hsotg->ep0_buff;
 946	req->length = length;
 947	/*
 948	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
 949	 * STATUS stage.
 950	 */
 951	req->zero = 0;
 952	req->complete = dwc2_hsotg_complete_oursetup;
 953
 954	if (length)
 955		memcpy(req->buf, buff, length);
 956
 957	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
 958	if (ret) {
 959		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
 960		return ret;
 961	}
 962
 963	return 0;
 964}
 965
 966/**
 967 * dwc2_hsotg_process_req_status - process request GET_STATUS
 968 * @hsotg: The device state
 969 * @ctrl: USB control request
 970 */
 971static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
 972					struct usb_ctrlrequest *ctrl)
 973{
 974	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
 975	struct dwc2_hsotg_ep *ep;
 976	__le16 reply;
 977	int ret;
 978
 979	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
 980
 981	if (!ep0->dir_in) {
 982		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
 983		return -EINVAL;
 984	}
 985
 986	switch (ctrl->bRequestType & USB_RECIP_MASK) {
 987	case USB_RECIP_DEVICE:
 988		reply = cpu_to_le16(0); /* bit 0 => self powered,
 989					 * bit 1 => remote wakeup */
 
 
 
 990		break;
 991
 992	case USB_RECIP_INTERFACE:
 993		/* currently, the data result should be zero */
 994		reply = cpu_to_le16(0);
 995		break;
 996
 997	case USB_RECIP_ENDPOINT:
 998		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
 999		if (!ep)
1000			return -ENOENT;
1001
1002		reply = cpu_to_le16(ep->halted ? 1 : 0);
1003		break;
1004
1005	default:
1006		return 0;
1007	}
1008
1009	if (le16_to_cpu(ctrl->wLength) != 2)
1010		return -EINVAL;
1011
1012	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1013	if (ret) {
1014		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1015		return ret;
1016	}
1017
1018	return 1;
1019}
1020
1021static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value);
1022
1023/**
1024 * get_ep_head - return the first request on the endpoint
1025 * @hs_ep: The controller endpoint to get
1026 *
1027 * Get the first request on the endpoint.
1028 */
1029static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1030{
1031	if (list_empty(&hs_ep->queue))
1032		return NULL;
 
1033
1034	return list_first_entry(&hs_ep->queue, struct dwc2_hsotg_req, queue);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035}
1036
1037/**
1038 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1039 * @hsotg: The device state
1040 * @ctrl: USB control request
1041 */
1042static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1043					 struct usb_ctrlrequest *ctrl)
1044{
1045	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1046	struct dwc2_hsotg_req *hs_req;
1047	bool restart;
1048	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1049	struct dwc2_hsotg_ep *ep;
1050	int ret;
1051	bool halted;
1052	u32 recip;
1053	u32 wValue;
1054	u32 wIndex;
1055
1056	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1057		__func__, set ? "SET" : "CLEAR");
1058
1059	wValue = le16_to_cpu(ctrl->wValue);
1060	wIndex = le16_to_cpu(ctrl->wIndex);
1061	recip = ctrl->bRequestType & USB_RECIP_MASK;
1062
1063	switch (recip) {
1064	case USB_RECIP_DEVICE:
1065		switch (wValue) {
 
 
 
 
1066		case USB_DEVICE_TEST_MODE:
1067			if ((wIndex & 0xff) != 0)
1068				return -EINVAL;
1069			if (!set)
1070				return -EINVAL;
1071
1072			hsotg->test_mode = wIndex >> 8;
1073			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1074			if (ret) {
1075				dev_err(hsotg->dev,
1076					"%s: failed to send reply\n", __func__);
1077				return ret;
1078			}
1079			break;
1080		default:
1081			return -ENOENT;
1082		}
1083		break;
1084
1085	case USB_RECIP_ENDPOINT:
1086		ep = ep_from_windex(hsotg, wIndex);
1087		if (!ep) {
1088			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1089				__func__, wIndex);
1090			return -ENOENT;
1091		}
1092
1093		switch (wValue) {
1094		case USB_ENDPOINT_HALT:
1095			halted = ep->halted;
1096
1097			dwc2_hsotg_ep_sethalt(&ep->ep, set);
1098
1099			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1100			if (ret) {
1101				dev_err(hsotg->dev,
1102					"%s: failed to send reply\n", __func__);
1103				return ret;
1104			}
1105
1106			/*
1107			 * we have to complete all requests for ep if it was
1108			 * halted, and the halt was cleared by CLEAR_FEATURE
1109			 */
1110
1111			if (!set && halted) {
1112				/*
1113				 * If we have request in progress,
1114				 * then complete it
1115				 */
1116				if (ep->req) {
1117					hs_req = ep->req;
1118					ep->req = NULL;
1119					list_del_init(&hs_req->queue);
1120					if (hs_req->req.complete) {
1121						spin_unlock(&hsotg->lock);
1122						usb_gadget_giveback_request(
1123							&ep->ep, &hs_req->req);
1124						spin_lock(&hsotg->lock);
1125					}
1126				}
1127
1128				/* If we have pending request, then start it */
1129				if (!ep->req) {
1130					restart = !list_empty(&ep->queue);
1131					if (restart) {
1132						hs_req = get_ep_head(ep);
1133						dwc2_hsotg_start_req(hsotg, ep,
1134								hs_req, false);
1135					}
1136				}
1137			}
1138
1139			break;
1140
1141		default:
1142			return -ENOENT;
1143		}
1144		break;
1145	default:
1146		return -ENOENT;
1147	}
1148	return 1;
1149}
1150
1151static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1152
1153/**
1154 * dwc2_hsotg_stall_ep0 - stall ep0
1155 * @hsotg: The device state
1156 *
1157 * Set stall for ep0 as response for setup request.
1158 */
1159static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1160{
1161	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1162	u32 reg;
1163	u32 ctrl;
1164
1165	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1166	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1167
1168	/*
1169	 * DxEPCTL_Stall will be cleared by EP once it has
1170	 * taken effect, so no need to clear later.
1171	 */
1172
1173	ctrl = dwc2_readl(hsotg->regs + reg);
1174	ctrl |= DXEPCTL_STALL;
1175	ctrl |= DXEPCTL_CNAK;
1176	dwc2_writel(ctrl, hsotg->regs + reg);
1177
1178	dev_dbg(hsotg->dev,
1179		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1180		ctrl, reg, dwc2_readl(hsotg->regs + reg));
1181
1182	 /*
1183	  * complete won't be called, so we enqueue
1184	  * setup request here
1185	  */
1186	 dwc2_hsotg_enqueue_setup(hsotg);
1187}
1188
1189/**
1190 * dwc2_hsotg_process_control - process a control request
1191 * @hsotg: The device state
1192 * @ctrl: The control request received
1193 *
1194 * The controller has received the SETUP phase of a control request, and
1195 * needs to work out what to do next (and whether to pass it on to the
1196 * gadget driver).
1197 */
1198static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1199				      struct usb_ctrlrequest *ctrl)
1200{
1201	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1202	int ret = 0;
1203	u32 dcfg;
1204
1205	dev_dbg(hsotg->dev,
1206		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1207		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1208		ctrl->wIndex, ctrl->wLength);
1209
1210	if (ctrl->wLength == 0) {
1211		ep0->dir_in = 1;
1212		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1213	} else if (ctrl->bRequestType & USB_DIR_IN) {
1214		ep0->dir_in = 1;
1215		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1216	} else {
1217		ep0->dir_in = 0;
1218		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1219	}
1220
1221	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1222		switch (ctrl->bRequest) {
1223		case USB_REQ_SET_ADDRESS:
1224			hsotg->connected = 1;
1225			dcfg = dwc2_readl(hsotg->regs + DCFG);
1226			dcfg &= ~DCFG_DEVADDR_MASK;
1227			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1228				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1229			dwc2_writel(dcfg, hsotg->regs + DCFG);
1230
1231			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1232
1233			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1234			return;
1235
1236		case USB_REQ_GET_STATUS:
1237			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1238			break;
1239
1240		case USB_REQ_CLEAR_FEATURE:
1241		case USB_REQ_SET_FEATURE:
1242			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1243			break;
1244		}
1245	}
1246
1247	/* as a fallback, try delivering it to the driver to deal with */
1248
1249	if (ret == 0 && hsotg->driver) {
1250		spin_unlock(&hsotg->lock);
1251		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1252		spin_lock(&hsotg->lock);
1253		if (ret < 0)
1254			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1255	}
1256
 
 
 
 
1257	/*
1258	 * the request is either unhandlable, or is not formatted correctly
1259	 * so respond with a STALL for the status stage to indicate failure.
1260	 */
1261
1262	if (ret < 0)
1263		dwc2_hsotg_stall_ep0(hsotg);
1264}
1265
1266/**
1267 * dwc2_hsotg_complete_setup - completion of a setup transfer
1268 * @ep: The endpoint the request was on.
1269 * @req: The request completed.
1270 *
1271 * Called on completion of any requests the driver itself submitted for
1272 * EP0 setup packets
1273 */
1274static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1275				     struct usb_request *req)
1276{
1277	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1278	struct dwc2_hsotg *hsotg = hs_ep->parent;
1279
1280	if (req->status < 0) {
1281		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1282		return;
1283	}
1284
1285	spin_lock(&hsotg->lock);
1286	if (req->actual == 0)
1287		dwc2_hsotg_enqueue_setup(hsotg);
1288	else
1289		dwc2_hsotg_process_control(hsotg, req->buf);
1290	spin_unlock(&hsotg->lock);
1291}
1292
1293/**
1294 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1295 * @hsotg: The device state.
1296 *
1297 * Enqueue a request on EP0 if necessary to received any SETUP packets
1298 * received from the host.
1299 */
1300static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1301{
1302	struct usb_request *req = hsotg->ctrl_req;
1303	struct dwc2_hsotg_req *hs_req = our_req(req);
1304	int ret;
1305
1306	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
1307
1308	req->zero = 0;
1309	req->length = 8;
1310	req->buf = hsotg->ctrl_buff;
1311	req->complete = dwc2_hsotg_complete_setup;
1312
1313	if (!list_empty(&hs_req->queue)) {
1314		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
1315		return;
1316	}
1317
1318	hsotg->eps_out[0]->dir_in = 0;
1319	hsotg->eps_out[0]->send_zlp = 0;
1320	hsotg->ep0_state = DWC2_EP0_SETUP;
1321
1322	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
1323	if (ret < 0) {
1324		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
1325		/*
1326		 * Don't think there's much we can do other than watch the
1327		 * driver fail.
1328		 */
1329	}
1330}
1331
1332static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
1333					struct dwc2_hsotg_ep *hs_ep)
1334{
1335	u32 ctrl;
1336	u8 index = hs_ep->index;
1337	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
1338	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1339
1340	if (hs_ep->dir_in)
1341		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
1342									index);
1343	else
1344		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
1345									index);
 
 
 
1346
1347	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
1348		    DXEPTSIZ_XFERSIZE(0), hsotg->regs +
1349		    epsiz_reg);
1350
1351	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
 
 
 
 
 
 
 
1352	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
1353	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
1354	ctrl |= DXEPCTL_USBACTEP;
1355	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
1356}
1357
1358/**
1359 * dwc2_hsotg_complete_request - complete a request given to us
1360 * @hsotg: The device state.
1361 * @hs_ep: The endpoint the request was on.
1362 * @hs_req: The request to complete.
1363 * @result: The result code (0 => Ok, otherwise errno)
1364 *
1365 * The given request has finished, so call the necessary completion
1366 * if it has one and then look to see if we can start a new request
1367 * on the endpoint.
1368 *
1369 * Note, expects the ep to already be locked as appropriate.
1370 */
1371static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
1372				       struct dwc2_hsotg_ep *hs_ep,
1373				       struct dwc2_hsotg_req *hs_req,
1374				       int result)
1375{
1376	bool restart;
1377
1378	if (!hs_req) {
1379		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
1380		return;
1381	}
1382
1383	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
1384		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
1385
1386	/*
1387	 * only replace the status if we've not already set an error
1388	 * from a previous transaction
1389	 */
1390
1391	if (hs_req->req.status == -EINPROGRESS)
1392		hs_req->req.status = result;
1393
1394	if (using_dma(hsotg))
1395		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
1396
1397	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
1398
1399	hs_ep->req = NULL;
1400	list_del_init(&hs_req->queue);
1401
1402	/*
1403	 * call the complete request with the locks off, just in case the
1404	 * request tries to queue more work for this endpoint.
1405	 */
1406
1407	if (hs_req->req.complete) {
1408		spin_unlock(&hsotg->lock);
1409		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
1410		spin_lock(&hsotg->lock);
1411	}
1412
 
 
 
 
1413	/*
1414	 * Look to see if there is anything else to do. Note, the completion
1415	 * of the previous request may have caused a new request to be started
1416	 * so be careful when doing this.
1417	 */
1418
1419	if (!hs_ep->req && result >= 0) {
1420		restart = !list_empty(&hs_ep->queue);
1421		if (restart) {
1422			hs_req = get_ep_head(hs_ep);
1423			dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425	}
1426}
1427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428/**
1429 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
1430 * @hsotg: The device state.
1431 * @ep_idx: The endpoint index for the data
1432 * @size: The size of data in the fifo, in bytes
1433 *
1434 * The FIFO status shows there is data to read from the FIFO for a given
1435 * endpoint, so sort out whether we need to read the data into a request
1436 * that has been made for that endpoint.
1437 */
1438static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
1439{
1440	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
1441	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1442	void __iomem *fifo = hsotg->regs + EPFIFO(ep_idx);
1443	int to_read;
1444	int max_req;
1445	int read_ptr;
1446
1447
1448	if (!hs_req) {
1449		u32 epctl = dwc2_readl(hsotg->regs + DOEPCTL(ep_idx));
1450		int ptr;
1451
1452		dev_dbg(hsotg->dev,
1453			 "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
1454			 __func__, size, ep_idx, epctl);
1455
1456		/* dump the data from the FIFO, we've nothing we can do */
1457		for (ptr = 0; ptr < size; ptr += 4)
1458			(void)dwc2_readl(fifo);
1459
1460		return;
1461	}
1462
1463	to_read = size;
1464	read_ptr = hs_req->req.actual;
1465	max_req = hs_req->req.length - read_ptr;
1466
1467	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
1468		__func__, to_read, max_req, read_ptr, hs_req->req.length);
1469
1470	if (to_read > max_req) {
1471		/*
1472		 * more data appeared than we where willing
1473		 * to deal with in this request.
1474		 */
1475
1476		/* currently we don't deal this */
1477		WARN_ON_ONCE(1);
1478	}
1479
1480	hs_ep->total_data += to_read;
1481	hs_req->req.actual += to_read;
1482	to_read = DIV_ROUND_UP(to_read, 4);
1483
1484	/*
1485	 * note, we might over-write the buffer end by 3 bytes depending on
1486	 * alignment of the data.
1487	 */
1488	ioread32_rep(fifo, hs_req->req.buf + read_ptr, to_read);
 
1489}
1490
1491/**
1492 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
1493 * @hsotg: The device instance
1494 * @dir_in: If IN zlp
1495 *
1496 * Generate a zero-length IN packet request for terminating a SETUP
1497 * transaction.
1498 *
1499 * Note, since we don't write any data to the TxFIFO, then it is
1500 * currently believed that we do not need to wait for any space in
1501 * the TxFIFO.
1502 */
1503static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
1504{
1505	/* eps_out[0] is used in both directions */
1506	hsotg->eps_out[0]->dir_in = dir_in;
1507	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
1508
1509	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
1510}
1511
1512static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
1513			u32 epctl_reg)
1514{
1515	u32 ctrl;
1516
1517	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1518	if (ctrl & DXEPCTL_EOFRNUM)
1519		ctrl |= DXEPCTL_SETEVENFR;
1520	else
1521		ctrl |= DXEPCTL_SETODDFR;
1522	dwc2_writel(ctrl, hsotg->regs + epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1523}
1524
1525/**
1526 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
1527 * @hsotg: The device instance
1528 * @epnum: The endpoint received from
1529 *
1530 * The RXFIFO has delivered an OutDone event, which means that the data
1531 * transfer for an OUT endpoint has been completed, either by a short
1532 * packet or by the finish of a transfer.
1533 */
1534static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
1535{
1536	u32 epsize = dwc2_readl(hsotg->regs + DOEPTSIZ(epnum));
1537	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
1538	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1539	struct usb_request *req = &hs_req->req;
1540	unsigned size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
1541	int result = 0;
1542
1543	if (!hs_req) {
1544		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
1545		return;
1546	}
1547
1548	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
1549		dev_dbg(hsotg->dev, "zlp packet received\n");
1550		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1551		dwc2_hsotg_enqueue_setup(hsotg);
1552		return;
1553	}
1554
 
 
 
1555	if (using_dma(hsotg)) {
1556		unsigned size_done;
1557
1558		/*
1559		 * Calculate the size of the transfer by checking how much
1560		 * is left in the endpoint size register and then working it
1561		 * out from the amount we loaded for the transfer.
1562		 *
1563		 * We need to do this as DMA pointers are always 32bit aligned
1564		 * so may overshoot/undershoot the transfer.
1565		 */
1566
1567		size_done = hs_ep->size_loaded - size_left;
1568		size_done += hs_ep->last_load;
1569
1570		req->actual = size_done;
1571	}
1572
1573	/* if there is more request to do, schedule new transfer */
1574	if (req->actual < req->length && size_left == 0) {
1575		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1576		return;
1577	}
1578
1579	if (req->actual < req->length && req->short_not_ok) {
1580		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
1581			__func__, req->actual, req->length);
1582
1583		/*
1584		 * todo - what should we return here? there's no one else
1585		 * even bothering to check the status.
1586		 */
1587	}
1588
1589	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
 
 
1590		/* Move to STATUS IN */
1591		dwc2_hsotg_ep0_zlp(hsotg, true);
1592		return;
1593	}
1594
1595	/*
1596	 * Slave mode OUT transfers do not go through XferComplete so
1597	 * adjust the ISOC parity here.
1598	 */
1599	if (!using_dma(hsotg)) {
1600		hs_ep->has_correct_parity = 1;
1601		if (hs_ep->isochronous && hs_ep->interval == 1)
1602			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
 
 
1603	}
1604
1605	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
1606}
 
1607
1608/**
1609 * dwc2_hsotg_read_frameno - read current frame number
1610 * @hsotg: The device instance
1611 *
1612 * Return the current frame number
1613 */
1614static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
1615{
1616	u32 dsts;
1617
1618	dsts = dwc2_readl(hsotg->regs + DSTS);
1619	dsts &= DSTS_SOFFN_MASK;
1620	dsts >>= DSTS_SOFFN_SHIFT;
1621
1622	return dsts;
1623}
1624
1625/**
1626 * dwc2_hsotg_handle_rx - RX FIFO has data
1627 * @hsotg: The device instance
1628 *
1629 * The IRQ handler has detected that the RX FIFO has some data in it
1630 * that requires processing, so find out what is in there and do the
1631 * appropriate read.
1632 *
1633 * The RXFIFO is a true FIFO, the packets coming out are still in packet
1634 * chunks, so if you have x packets received on an endpoint you'll get x
1635 * FIFO events delivered, each with a packet's worth of data in it.
1636 *
1637 * When using DMA, we should not be processing events from the RXFIFO
1638 * as the actual data should be sent to the memory directly and we turn
1639 * on the completion interrupts to get notifications of transfer completion.
1640 */
1641static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
1642{
1643	u32 grxstsr = dwc2_readl(hsotg->regs + GRXSTSP);
1644	u32 epnum, status, size;
1645
1646	WARN_ON(using_dma(hsotg));
1647
1648	epnum = grxstsr & GRXSTS_EPNUM_MASK;
1649	status = grxstsr & GRXSTS_PKTSTS_MASK;
1650
1651	size = grxstsr & GRXSTS_BYTECNT_MASK;
1652	size >>= GRXSTS_BYTECNT_SHIFT;
1653
1654	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
1655			__func__, grxstsr, size, epnum);
1656
1657	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
1658	case GRXSTS_PKTSTS_GLOBALOUTNAK:
1659		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
1660		break;
1661
1662	case GRXSTS_PKTSTS_OUTDONE:
1663		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
1664			dwc2_hsotg_read_frameno(hsotg));
1665
1666		if (!using_dma(hsotg))
1667			dwc2_hsotg_handle_outdone(hsotg, epnum);
1668		break;
1669
1670	case GRXSTS_PKTSTS_SETUPDONE:
1671		dev_dbg(hsotg->dev,
1672			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1673			dwc2_hsotg_read_frameno(hsotg),
1674			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1675		/*
1676		 * Call dwc2_hsotg_handle_outdone here if it was not called from
1677		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
1678		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
1679		 */
1680		if (hsotg->ep0_state == DWC2_EP0_SETUP)
1681			dwc2_hsotg_handle_outdone(hsotg, epnum);
1682		break;
1683
1684	case GRXSTS_PKTSTS_OUTRX:
1685		dwc2_hsotg_rx_data(hsotg, epnum, size);
1686		break;
1687
1688	case GRXSTS_PKTSTS_SETUPRX:
1689		dev_dbg(hsotg->dev,
1690			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
1691			dwc2_hsotg_read_frameno(hsotg),
1692			dwc2_readl(hsotg->regs + DOEPCTL(0)));
1693
1694		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
1695
1696		dwc2_hsotg_rx_data(hsotg, epnum, size);
1697		break;
1698
1699	default:
1700		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
1701			 __func__, grxstsr);
1702
1703		dwc2_hsotg_dump(hsotg);
1704		break;
1705	}
1706}
1707
1708/**
1709 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
1710 * @mps: The maximum packet size in bytes.
1711 */
1712static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
1713{
1714	switch (mps) {
1715	case 64:
1716		return D0EPCTL_MPS_64;
1717	case 32:
1718		return D0EPCTL_MPS_32;
1719	case 16:
1720		return D0EPCTL_MPS_16;
1721	case 8:
1722		return D0EPCTL_MPS_8;
1723	}
1724
1725	/* bad max packet size, warn and return invalid result */
1726	WARN_ON(1);
1727	return (u32)-1;
1728}
1729
1730/**
1731 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
1732 * @hsotg: The driver state.
1733 * @ep: The index number of the endpoint
1734 * @mps: The maximum packet size in bytes
 
 
1735 *
1736 * Configure the maximum packet size for the given endpoint, updating
1737 * the hardware control registers to reflect this.
1738 */
1739static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
1740			unsigned int ep, unsigned int mps, unsigned int dir_in)
 
1741{
1742	struct dwc2_hsotg_ep *hs_ep;
1743	void __iomem *regs = hsotg->regs;
1744	u32 mpsval;
1745	u32 mcval;
1746	u32 reg;
1747
1748	hs_ep = index_to_ep(hsotg, ep, dir_in);
1749	if (!hs_ep)
1750		return;
1751
1752	if (ep == 0) {
 
 
1753		/* EP0 is a special case */
1754		mpsval = dwc2_hsotg_ep0_mps(mps);
1755		if (mpsval > 3)
1756			goto bad_mps;
1757		hs_ep->ep.maxpacket = mps;
1758		hs_ep->mc = 1;
1759	} else {
1760		mpsval = mps & DXEPCTL_MPS_MASK;
1761		if (mpsval > 1024)
1762			goto bad_mps;
1763		mcval = ((mps >> 11) & 0x3) + 1;
1764		hs_ep->mc = mcval;
1765		if (mcval > 3)
1766			goto bad_mps;
1767		hs_ep->ep.maxpacket = mpsval;
1768	}
1769
1770	if (dir_in) {
1771		reg = dwc2_readl(regs + DIEPCTL(ep));
1772		reg &= ~DXEPCTL_MPS_MASK;
1773		reg |= mpsval;
1774		dwc2_writel(reg, regs + DIEPCTL(ep));
1775	} else {
1776		reg = dwc2_readl(regs + DOEPCTL(ep));
1777		reg &= ~DXEPCTL_MPS_MASK;
1778		reg |= mpsval;
1779		dwc2_writel(reg, regs + DOEPCTL(ep));
1780	}
1781
1782	return;
1783
1784bad_mps:
1785	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
1786}
1787
1788/**
1789 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
1790 * @hsotg: The driver state
1791 * @idx: The index for the endpoint (0..15)
1792 */
1793static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
1794{
1795	int timeout;
1796	int val;
1797
1798	dwc2_writel(GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
1799		    hsotg->regs + GRSTCTL);
1800
1801	/* wait until the fifo is flushed */
1802	timeout = 100;
1803
1804	while (1) {
1805		val = dwc2_readl(hsotg->regs + GRSTCTL);
1806
1807		if ((val & (GRSTCTL_TXFFLSH)) == 0)
1808			break;
1809
1810		if (--timeout == 0) {
1811			dev_err(hsotg->dev,
1812				"%s: timeout flushing fifo (GRSTCTL=%08x)\n",
1813				__func__, val);
1814			break;
1815		}
1816
1817		udelay(1);
1818	}
1819}
1820
1821/**
1822 * dwc2_hsotg_trytx - check to see if anything needs transmitting
1823 * @hsotg: The driver state
1824 * @hs_ep: The driver endpoint to check.
1825 *
1826 * Check to see if there is a request that has data to send, and if so
1827 * make an attempt to write data into the FIFO.
1828 */
1829static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
1830			   struct dwc2_hsotg_ep *hs_ep)
1831{
1832	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1833
1834	if (!hs_ep->dir_in || !hs_req) {
1835		/**
1836		 * if request is not enqueued, we disable interrupts
1837		 * for endpoints, excepting ep0
1838		 */
1839		if (hs_ep->index != 0)
1840			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
1841					     hs_ep->dir_in, 0);
1842		return 0;
1843	}
1844
1845	if (hs_req->req.actual < hs_req->req.length) {
1846		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
1847			hs_ep->index);
1848		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1849	}
1850
1851	return 0;
1852}
1853
1854/**
1855 * dwc2_hsotg_complete_in - complete IN transfer
1856 * @hsotg: The device state.
1857 * @hs_ep: The endpoint that has just completed.
1858 *
1859 * An IN transfer has been completed, update the transfer's state and then
1860 * call the relevant completion routines.
1861 */
1862static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
1863				  struct dwc2_hsotg_ep *hs_ep)
1864{
1865	struct dwc2_hsotg_req *hs_req = hs_ep->req;
1866	u32 epsize = dwc2_readl(hsotg->regs + DIEPTSIZ(hs_ep->index));
1867	int size_left, size_done;
1868
1869	if (!hs_req) {
1870		dev_dbg(hsotg->dev, "XferCompl but no req\n");
1871		return;
1872	}
1873
1874	/* Finish ZLP handling for IN EP0 transactions */
1875	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
1876		dev_dbg(hsotg->dev, "zlp packet sent\n");
 
 
 
 
 
 
 
1877		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1878		if (hsotg->test_mode) {
1879			int ret;
1880
1881			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
1882			if (ret < 0) {
1883				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
1884						hsotg->test_mode);
1885				dwc2_hsotg_stall_ep0(hsotg);
1886				return;
1887			}
1888		}
1889		dwc2_hsotg_enqueue_setup(hsotg);
1890		return;
1891	}
1892
1893	/*
1894	 * Calculate the size of the transfer by checking how much is left
1895	 * in the endpoint size register and then working it out from
1896	 * the amount we loaded for the transfer.
1897	 *
1898	 * We do this even for DMA, as the transfer may have incremented
1899	 * past the end of the buffer (DMA transfers are always 32bit
1900	 * aligned).
1901	 */
1902
1903	size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 
 
 
 
 
 
1904
1905	size_done = hs_ep->size_loaded - size_left;
1906	size_done += hs_ep->last_load;
1907
1908	if (hs_req->req.actual != size_done)
1909		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
1910			__func__, hs_req->req.actual, size_done);
1911
1912	hs_req->req.actual = size_done;
1913	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
1914		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
1915
1916	if (!size_left && hs_req->req.actual < hs_req->req.length) {
1917		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
1918		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
1919		return;
1920	}
1921
1922	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
1923	if (hs_ep->send_zlp) {
1924		dwc2_hsotg_program_zlp(hsotg, hs_ep);
1925		hs_ep->send_zlp = 0;
1926		/* transfer will be completed on next complete interrupt */
1927		return;
1928	}
1929
1930	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
1931		/* Move to STATUS OUT */
1932		dwc2_hsotg_ep0_zlp(hsotg, false);
1933		return;
1934	}
1935
1936	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
1937}
1938
1939/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1940 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
1941 * @hsotg: The driver state
1942 * @idx: The index for the endpoint (0..15)
1943 * @dir_in: Set if this is an IN endpoint
1944 *
1945 * Process and clear any interrupt pending for an individual endpoint
1946 */
1947static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
1948			    int dir_in)
1949{
1950	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
1951	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
1952	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
1953	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
1954	u32 ints;
1955	u32 ctrl;
1956
1957	ints = dwc2_readl(hsotg->regs + epint_reg);
1958	ctrl = dwc2_readl(hsotg->regs + epctl_reg);
1959
1960	/* Clear endpoint interrupts */
1961	dwc2_writel(ints, hsotg->regs + epint_reg);
1962
1963	if (!hs_ep) {
1964		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
1965					__func__, idx, dir_in ? "in" : "out");
1966		return;
1967	}
1968
1969	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
1970		__func__, idx, dir_in ? "in" : "out", ints);
1971
1972	/* Don't process XferCompl interrupt if it is a setup packet */
1973	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
1974		ints &= ~DXEPINT_XFERCOMPL;
1975
1976	if (ints & DXEPINT_XFERCOMPL) {
1977		hs_ep->has_correct_parity = 1;
1978		if (hs_ep->isochronous && hs_ep->interval == 1)
1979			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
1980
 
1981		dev_dbg(hsotg->dev,
1982			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
1983			__func__, dwc2_readl(hsotg->regs + epctl_reg),
1984			dwc2_readl(hsotg->regs + epsiz_reg));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1985
1986		/*
1987		 * we get OutDone from the FIFO, so we only need to look
1988		 * at completing IN requests here
1989		 */
1990		if (dir_in) {
1991			dwc2_hsotg_complete_in(hsotg, hs_ep);
 
 
1992
1993			if (idx == 0 && !hs_ep->req)
1994				dwc2_hsotg_enqueue_setup(hsotg);
1995		} else if (using_dma(hsotg)) {
1996			/*
1997			 * We're using DMA, we need to fire an OutDone here
1998			 * as we ignore the RXFIFO.
1999			 */
 
 
2000
2001			dwc2_hsotg_handle_outdone(hsotg, idx);
2002		}
2003	}
2004
2005	if (ints & DXEPINT_EPDISBLD) {
2006		dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2007
2008		if (dir_in) {
2009			int epctl = dwc2_readl(hsotg->regs + epctl_reg);
2010
2011			dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
 
2012
2013			if ((epctl & DXEPCTL_STALL) &&
2014				(epctl & DXEPCTL_EPTYPE_BULK)) {
2015				int dctl = dwc2_readl(hsotg->regs + DCTL);
2016
2017				dctl |= DCTL_CGNPINNAK;
2018				dwc2_writel(dctl, hsotg->regs + DCTL);
2019			}
2020		}
2021	}
2022
2023	if (ints & DXEPINT_AHBERR)
2024		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
2025
2026	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
2027		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
2028
2029		if (using_dma(hsotg) && idx == 0) {
2030			/*
2031			 * this is the notification we've received a
2032			 * setup packet. In non-DMA mode we'd get this
2033			 * from the RXFIFO, instead we need to process
2034			 * the setup here.
2035			 */
2036
2037			if (dir_in)
2038				WARN_ON_ONCE(1);
2039			else
2040				dwc2_hsotg_handle_outdone(hsotg, 0);
2041		}
2042	}
2043
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2044	if (ints & DXEPINT_BACK2BACKSETUP)
2045		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
2046
 
 
 
 
 
 
2047	if (dir_in && !hs_ep->isochronous) {
2048		/* not sure if this is important, but we'll clear it anyway */
2049		if (ints & DIEPMSK_INTKNTXFEMPMSK) {
2050			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
2051				__func__, idx);
2052		}
2053
2054		/* this probably means something bad is happening */
2055		if (ints & DIEPMSK_INTKNEPMISMSK) {
2056			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
2057				 __func__, idx);
2058		}
2059
2060		/* FIFO has space or is empty (see GAHBCFG) */
2061		if (hsotg->dedicated_fifos &&
2062		    ints & DIEPMSK_TXFIFOEMPTY) {
2063			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
2064				__func__, idx);
2065			if (!using_dma(hsotg))
2066				dwc2_hsotg_trytx(hsotg, hs_ep);
2067		}
2068	}
2069}
2070
2071/**
2072 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
2073 * @hsotg: The device state.
2074 *
2075 * Handle updating the device settings after the enumeration phase has
2076 * been completed.
2077 */
2078static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
2079{
2080	u32 dsts = dwc2_readl(hsotg->regs + DSTS);
2081	int ep0_mps = 0, ep_mps = 8;
2082
2083	/*
2084	 * This should signal the finish of the enumeration phase
2085	 * of the USB handshaking, so we should now know what rate
2086	 * we connected at.
2087	 */
2088
2089	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
2090
2091	/*
2092	 * note, since we're limited by the size of transfer on EP0, and
2093	 * it seems IN transfers must be a even number of packets we do
2094	 * not advertise a 64byte MPS on EP0.
2095	 */
2096
2097	/* catch both EnumSpd_FS and EnumSpd_FS48 */
2098	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
2099	case DSTS_ENUMSPD_FS:
2100	case DSTS_ENUMSPD_FS48:
2101		hsotg->gadget.speed = USB_SPEED_FULL;
2102		ep0_mps = EP0_MPS_LIMIT;
2103		ep_mps = 1023;
2104		break;
2105
2106	case DSTS_ENUMSPD_HS:
2107		hsotg->gadget.speed = USB_SPEED_HIGH;
2108		ep0_mps = EP0_MPS_LIMIT;
2109		ep_mps = 1024;
2110		break;
2111
2112	case DSTS_ENUMSPD_LS:
2113		hsotg->gadget.speed = USB_SPEED_LOW;
 
 
2114		/*
2115		 * note, we don't actually support LS in this driver at the
2116		 * moment, and the documentation seems to imply that it isn't
2117		 * supported by the PHYs on some of the devices.
2118		 */
2119		break;
2120	}
2121	dev_info(hsotg->dev, "new device is %s\n",
2122		 usb_speed_string(hsotg->gadget.speed));
2123
2124	/*
2125	 * we should now know the maximum packet size for an
2126	 * endpoint, so set the endpoints to a default value.
2127	 */
2128
2129	if (ep0_mps) {
2130		int i;
2131		/* Initialize ep0 for both in and out directions */
2132		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 1);
2133		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0);
2134		for (i = 1; i < hsotg->num_of_eps; i++) {
2135			if (hsotg->eps_in[i])
2136				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 1);
 
2137			if (hsotg->eps_out[i])
2138				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, 0);
 
2139		}
2140	}
2141
2142	/* ensure after enumeration our EP0 is active */
2143
2144	dwc2_hsotg_enqueue_setup(hsotg);
2145
2146	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2147		dwc2_readl(hsotg->regs + DIEPCTL0),
2148		dwc2_readl(hsotg->regs + DOEPCTL0));
2149}
2150
2151/**
2152 * kill_all_requests - remove all requests from the endpoint's queue
2153 * @hsotg: The device state.
2154 * @ep: The endpoint the requests may be on.
2155 * @result: The result code to use.
2156 *
2157 * Go through the requests on the given endpoint and mark them
2158 * completed with the given result code.
2159 */
2160static void kill_all_requests(struct dwc2_hsotg *hsotg,
2161			      struct dwc2_hsotg_ep *ep,
2162			      int result)
2163{
2164	struct dwc2_hsotg_req *req, *treq;
2165	unsigned size;
2166
2167	ep->req = NULL;
2168
2169	list_for_each_entry_safe(req, treq, &ep->queue, queue)
2170		dwc2_hsotg_complete_request(hsotg, ep, req,
2171					   result);
 
 
2172
2173	if (!hsotg->dedicated_fifos)
2174		return;
2175	size = (dwc2_readl(hsotg->regs + DTXFSTS(ep->index)) & 0xffff) * 4;
2176	if (size < ep->fifo_size)
2177		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
2178}
2179
2180/**
2181 * dwc2_hsotg_disconnect - disconnect service
2182 * @hsotg: The device state.
2183 *
2184 * The device has been disconnected. Remove all current
2185 * transactions and signal the gadget driver that this
2186 * has happened.
2187 */
2188void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
2189{
2190	unsigned ep;
2191
2192	if (!hsotg->connected)
2193		return;
2194
2195	hsotg->connected = 0;
2196	hsotg->test_mode = 0;
2197
 
2198	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
2199		if (hsotg->eps_in[ep])
2200			kill_all_requests(hsotg, hsotg->eps_in[ep],
2201								-ESHUTDOWN);
2202		if (hsotg->eps_out[ep])
2203			kill_all_requests(hsotg, hsotg->eps_out[ep],
2204								-ESHUTDOWN);
2205	}
2206
2207	call_gadget(hsotg, disconnect);
2208	hsotg->lx_state = DWC2_L3;
 
 
2209}
2210
2211/**
2212 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
2213 * @hsotg: The device state:
2214 * @periodic: True if this is a periodic FIFO interrupt
2215 */
2216static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
2217{
2218	struct dwc2_hsotg_ep *ep;
2219	int epno, ret;
2220
2221	/* look through for any more data to transmit */
2222	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
2223		ep = index_to_ep(hsotg, epno, 1);
2224
2225		if (!ep)
2226			continue;
2227
2228		if (!ep->dir_in)
2229			continue;
2230
2231		if ((periodic && !ep->periodic) ||
2232		    (!periodic && ep->periodic))
2233			continue;
2234
2235		ret = dwc2_hsotg_trytx(hsotg, ep);
2236		if (ret < 0)
2237			break;
2238	}
2239}
2240
2241/* IRQ flags which will trigger a retry around the IRQ loop */
2242#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
2243			GINTSTS_PTXFEMP |  \
2244			GINTSTS_RXFLVL)
2245
 
2246/**
2247 * dwc2_hsotg_core_init - issue softreset to the core
2248 * @hsotg: The device state
 
2249 *
2250 * Issue a soft reset to the core, and await the core finishing it.
2251 */
2252void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
2253						bool is_usb_reset)
2254{
2255	u32 intmsk;
2256	u32 val;
2257	u32 usbcfg;
 
 
2258
2259	/* Kill any ep0 requests as controller will be reinitialized */
2260	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
2261
2262	if (!is_usb_reset)
2263		if (dwc2_core_reset(hsotg))
2264			return;
 
 
 
 
 
 
 
 
 
2265
2266	/*
2267	 * we must now enable ep0 ready for host detection and then
2268	 * set configuration.
2269	 */
2270
2271	/* keep other bits untouched (so e.g. forced modes are not lost) */
2272	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2273	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
2274		GUSBCFG_HNPCAP);
2275
2276	/* set the PLL on, remove the HNP/SRP and set the PHY */
2277	val = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
2278	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
2279		(val << GUSBCFG_USBTRDTIM_SHIFT);
2280	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2281
2282	dwc2_hsotg_init_fifo(hsotg);
2283
2284	if (!is_usb_reset)
2285		__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286
2287	dwc2_writel(DCFG_EPMISCNT(1) | DCFG_DEVSPD_HS,  hsotg->regs + DCFG);
2288
2289	/* Clear any pending OTG interrupts */
2290	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
2291
2292	/* Clear any pending interrupts */
2293	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
2294	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
2295		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
2296		GINTSTS_USBRST | GINTSTS_RESETDET |
2297		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
2298		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
2299		GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
2300
2301	if (hsotg->core_params->external_id_pin_ctl <= 0)
 
 
 
2302		intmsk |= GINTSTS_CONIDSTSCHNG;
2303
2304	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
2305
2306	if (using_dma(hsotg))
2307		dwc2_writel(GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
2308			    (GAHBCFG_HBSTLEN_INCR4 << GAHBCFG_HBSTLEN_SHIFT),
2309			    hsotg->regs + GAHBCFG);
2310	else
2311		dwc2_writel(((hsotg->dedicated_fifos) ?
 
 
 
 
 
2312						(GAHBCFG_NP_TXF_EMP_LVL |
2313						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
2314			    GAHBCFG_GLBL_INTR_EN, hsotg->regs + GAHBCFG);
 
2315
2316	/*
2317	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
2318	 * when we have no data to transfer. Otherwise we get being flooded by
2319	 * interrupts.
2320	 */
2321
2322	dwc2_writel(((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
2323		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
2324		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
2325		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
2326		DIEPMSK_INTKNEPMISMSK,
2327		hsotg->regs + DIEPMSK);
2328
2329	/*
2330	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
2331	 * DMA mode we may need this.
2332	 */
2333	dwc2_writel((using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
2334				    DIEPMSK_TIMEOUTMSK) : 0) |
2335		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
2336		DOEPMSK_SETUPMSK,
2337		hsotg->regs + DOEPMSK);
2338
2339	dwc2_writel(0, hsotg->regs + DAINTMSK);
 
 
 
 
 
 
 
 
 
 
2340
2341	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2342		dwc2_readl(hsotg->regs + DIEPCTL0),
2343		dwc2_readl(hsotg->regs + DOEPCTL0));
2344
2345	/* enable in and out endpoint interrupts */
2346	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
2347
2348	/*
2349	 * Enable the RXFIFO when in slave mode, as this is how we collect
2350	 * the data. In DMA mode, we get events from the FIFO but also
2351	 * things we cannot process, so do not use it.
2352	 */
2353	if (!using_dma(hsotg))
2354		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
2355
2356	/* Enable interrupts for EP0 in and out */
2357	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
2358	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
2359
2360	if (!is_usb_reset) {
2361		__orr32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2362		udelay(10);  /* see openiboot */
2363		__bic32(hsotg->regs + DCTL, DCTL_PWRONPRGDONE);
2364	}
2365
2366	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg->regs + DCTL));
2367
2368	/*
2369	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
2370	 * writing to the EPCTL register..
2371	 */
2372
2373	/* set to read 1 8byte packet */
2374	dwc2_writel(DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2375	       DXEPTSIZ_XFERSIZE(8), hsotg->regs + DOEPTSIZ0);
2376
2377	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2378	       DXEPCTL_CNAK | DXEPCTL_EPENA |
2379	       DXEPCTL_USBACTEP,
2380	       hsotg->regs + DOEPCTL0);
2381
2382	/* enable, but don't activate EP0in */
2383	dwc2_writel(dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
2384	       DXEPCTL_USBACTEP, hsotg->regs + DIEPCTL0);
2385
2386	dwc2_hsotg_enqueue_setup(hsotg);
2387
2388	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
2389		dwc2_readl(hsotg->regs + DIEPCTL0),
2390		dwc2_readl(hsotg->regs + DOEPCTL0));
2391
2392	/* clear global NAKs */
2393	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
2394	if (!is_usb_reset)
2395		val |= DCTL_SFTDISCON;
2396	__orr32(hsotg->regs + DCTL, val);
 
 
 
 
 
 
 
2397
2398	/* must be at-least 3ms to allow bus to see disconnect */
2399	mdelay(3);
2400
2401	hsotg->lx_state = DWC2_L0;
 
 
 
 
 
 
2402}
2403
2404static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
2405{
2406	/* set the soft-disconnect bit */
2407	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
2408}
2409
2410void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
2411{
2412	/* remove the soft-disconnect and let's go */
2413	__bic32(hsotg->regs + DCTL, DCTL_SFTDISCON);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414}
2415
2416/**
2417 * dwc2_hsotg_irq - handle device interrupt
2418 * @irq: The IRQ number triggered
2419 * @pw: The pw value when registered the handler.
2420 */
2421static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
2422{
2423	struct dwc2_hsotg *hsotg = pw;
2424	int retry_count = 8;
2425	u32 gintsts;
2426	u32 gintmsk;
2427
 
 
 
2428	spin_lock(&hsotg->lock);
2429irq_retry:
2430	gintsts = dwc2_readl(hsotg->regs + GINTSTS);
2431	gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
2432
2433	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
2434		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
2435
2436	gintsts &= gintmsk;
2437
2438	if (gintsts & GINTSTS_RESETDET) {
2439		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
2440
2441		dwc2_writel(GINTSTS_RESETDET, hsotg->regs + GINTSTS);
2442
2443		/* This event must be used only if controller is suspended */
2444		if (hsotg->lx_state == DWC2_L2) {
2445			dwc2_exit_hibernation(hsotg, true);
2446			hsotg->lx_state = DWC2_L0;
2447		}
2448	}
2449
2450	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
2451
2452		u32 usb_status = dwc2_readl(hsotg->regs + GOTGCTL);
2453		u32 connected = hsotg->connected;
2454
2455		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
2456		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
2457			dwc2_readl(hsotg->regs + GNPTXSTS));
2458
2459		dwc2_writel(GINTSTS_USBRST, hsotg->regs + GINTSTS);
2460
2461		/* Report disconnection if it is not already done. */
2462		dwc2_hsotg_disconnect(hsotg);
2463
 
 
 
2464		if (usb_status & GOTGCTL_BSESVLD && connected)
2465			dwc2_hsotg_core_init_disconnected(hsotg, true);
2466	}
2467
2468	if (gintsts & GINTSTS_ENUMDONE) {
2469		dwc2_writel(GINTSTS_ENUMDONE, hsotg->regs + GINTSTS);
2470
2471		dwc2_hsotg_irq_enumdone(hsotg);
2472	}
2473
2474	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
2475		u32 daint = dwc2_readl(hsotg->regs + DAINT);
2476		u32 daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
2477		u32 daint_out, daint_in;
2478		int ep;
2479
2480		daint &= daintmsk;
2481		daint_out = daint >> DAINT_OUTEP_SHIFT;
2482		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
2483
2484		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
2485
2486		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
2487						ep++, daint_out >>= 1) {
2488			if (daint_out & 1)
2489				dwc2_hsotg_epint(hsotg, ep, 0);
2490		}
2491
2492		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
2493						ep++, daint_in >>= 1) {
2494			if (daint_in & 1)
2495				dwc2_hsotg_epint(hsotg, ep, 1);
2496		}
2497	}
2498
2499	/* check both FIFOs */
2500
2501	if (gintsts & GINTSTS_NPTXFEMP) {
2502		dev_dbg(hsotg->dev, "NPTxFEmp\n");
2503
2504		/*
2505		 * Disable the interrupt to stop it happening again
2506		 * unless one of these endpoint routines decides that
2507		 * it needs re-enabling
2508		 */
2509
2510		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
2511		dwc2_hsotg_irq_fifoempty(hsotg, false);
2512	}
2513
2514	if (gintsts & GINTSTS_PTXFEMP) {
2515		dev_dbg(hsotg->dev, "PTxFEmp\n");
2516
2517		/* See note in GINTSTS_NPTxFEmp */
2518
2519		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
2520		dwc2_hsotg_irq_fifoempty(hsotg, true);
2521	}
2522
2523	if (gintsts & GINTSTS_RXFLVL) {
2524		/*
2525		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
2526		 * we need to retry dwc2_hsotg_handle_rx if this is still
2527		 * set.
2528		 */
2529
2530		dwc2_hsotg_handle_rx(hsotg);
2531	}
2532
2533	if (gintsts & GINTSTS_ERLYSUSP) {
2534		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
2535		dwc2_writel(GINTSTS_ERLYSUSP, hsotg->regs + GINTSTS);
2536	}
2537
2538	/*
2539	 * these next two seem to crop-up occasionally causing the core
2540	 * to shutdown the USB transfer, so try clearing them and logging
2541	 * the occurrence.
2542	 */
2543
2544	if (gintsts & GINTSTS_GOUTNAKEFF) {
2545		dev_info(hsotg->dev, "GOUTNakEff triggered\n");
 
 
 
 
2546
2547		__orr32(hsotg->regs + DCTL, DCTL_CGOUTNAK);
 
 
 
 
 
2548
2549		dwc2_hsotg_dump(hsotg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550	}
2551
2552	if (gintsts & GINTSTS_GINNAKEFF) {
2553		dev_info(hsotg->dev, "GINNakEff triggered\n");
2554
2555		__orr32(hsotg->regs + DCTL, DCTL_CGNPINNAK);
2556
2557		dwc2_hsotg_dump(hsotg);
2558	}
2559
2560	if (gintsts & GINTSTS_INCOMPL_SOIN) {
2561		u32 idx, epctl_reg;
2562		struct dwc2_hsotg_ep *hs_ep;
2563
2564		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOIN\n", __func__);
2565		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2566			hs_ep = hsotg->eps_in[idx];
2567
2568			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2569				continue;
 
 
2570
2571			epctl_reg = DIEPCTL(idx);
2572			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
2573		}
2574		dwc2_writel(GINTSTS_INCOMPL_SOIN, hsotg->regs + GINTSTS);
2575	}
2576
2577	if (gintsts & GINTSTS_INCOMPL_SOOUT) {
2578		u32 idx, epctl_reg;
2579		struct dwc2_hsotg_ep *hs_ep;
2580
2581		dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
2582		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
2583			hs_ep = hsotg->eps_out[idx];
2584
2585			if (!hs_ep->isochronous || hs_ep->has_correct_parity)
2586				continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588			epctl_reg = DOEPCTL(idx);
2589			dwc2_hsotg_change_ep_iso_parity(hsotg, epctl_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2590		}
2591		dwc2_writel(GINTSTS_INCOMPL_SOOUT, hsotg->regs + GINTSTS);
 
 
 
 
 
 
 
 
2592	}
2593
2594	/*
2595	 * if we've had fifo events, we should try and go around the
2596	 * loop again to see if there's any point in returning yet.
2597	 */
2598
2599	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
2600			goto irq_retry;
 
 
2601
2602	spin_unlock(&hsotg->lock);
 
2603
2604	return IRQ_HANDLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605}
2606
2607/**
2608 * dwc2_hsotg_ep_enable - enable the given endpoint
2609 * @ep: The USB endpint to configure
2610 * @desc: The USB endpoint descriptor to configure with.
2611 *
2612 * This is called from the USB gadget code's usb_ep_enable().
2613 */
2614static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
2615			       const struct usb_endpoint_descriptor *desc)
2616{
2617	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2618	struct dwc2_hsotg *hsotg = hs_ep->parent;
2619	unsigned long flags;
2620	unsigned int index = hs_ep->index;
2621	u32 epctrl_reg;
2622	u32 epctrl;
2623	u32 mps;
 
 
2624	unsigned int dir_in;
2625	unsigned int i, val, size;
2626	int ret = 0;
 
 
2627
2628	dev_dbg(hsotg->dev,
2629		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
2630		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
2631		desc->wMaxPacketSize, desc->bInterval);
2632
2633	/* not to be called for EP0 */
2634	WARN_ON(index == 0);
 
 
 
2635
2636	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
2637	if (dir_in != hs_ep->dir_in) {
2638		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
2639		return -EINVAL;
2640	}
2641
 
2642	mps = usb_endpoint_maxp(desc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2643
2644	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
2645
2646	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2647	epctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2648
2649	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
2650		__func__, epctrl, epctrl_reg);
2651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2652	spin_lock_irqsave(&hsotg->lock, flags);
2653
2654	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
2655	epctrl |= DXEPCTL_MPS(mps);
2656
2657	/*
2658	 * mark the endpoint as active, otherwise the core may ignore
2659	 * transactions entirely for this endpoint
2660	 */
2661	epctrl |= DXEPCTL_USBACTEP;
2662
2663	/*
2664	 * set the NAK status on the endpoint, otherwise we might try and
2665	 * do something with data that we've yet got a request to process
2666	 * since the RXFIFO will take data for an endpoint even if the
2667	 * size register hasn't been set.
2668	 */
2669
2670	epctrl |= DXEPCTL_SNAK;
2671
2672	/* update the endpoint state */
2673	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, dir_in);
2674
2675	/* default, set to non-periodic */
2676	hs_ep->isochronous = 0;
2677	hs_ep->periodic = 0;
2678	hs_ep->halted = 0;
2679	hs_ep->interval = desc->bInterval;
2680	hs_ep->has_correct_parity = 0;
2681
2682	if (hs_ep->interval > 1 && hs_ep->mc > 1)
2683		dev_err(hsotg->dev, "MC > 1 when interval is not 1\n");
2684
2685	switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
2686	case USB_ENDPOINT_XFER_ISOC:
2687		epctrl |= DXEPCTL_EPTYPE_ISO;
2688		epctrl |= DXEPCTL_SETEVENFR;
2689		hs_ep->isochronous = 1;
2690		if (dir_in)
 
 
 
 
2691			hs_ep->periodic = 1;
 
 
 
 
 
 
 
 
2692		break;
2693
2694	case USB_ENDPOINT_XFER_BULK:
2695		epctrl |= DXEPCTL_EPTYPE_BULK;
2696		break;
2697
2698	case USB_ENDPOINT_XFER_INT:
2699		if (dir_in)
2700			hs_ep->periodic = 1;
2701
 
 
 
2702		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
2703		break;
2704
2705	case USB_ENDPOINT_XFER_CONTROL:
2706		epctrl |= DXEPCTL_EPTYPE_CONTROL;
2707		break;
2708	}
2709
2710	/* If fifo is already allocated for this ep */
2711	if (hs_ep->fifo_index) {
2712		size =  hs_ep->ep.maxpacket * hs_ep->mc;
2713		/* If bigger fifo is required deallocate current one */
2714		if (size > hs_ep->fifo_size) {
2715			hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
2716			hs_ep->fifo_index = 0;
2717			hs_ep->fifo_size = 0;
2718		}
2719	}
2720
2721	/*
2722	 * if the hardware has dedicated fifos, we must give each IN EP
2723	 * a unique tx-fifo even if it is non-periodic.
2724	 */
2725	if (dir_in && hsotg->dedicated_fifos && !hs_ep->fifo_index) {
2726		u32 fifo_index = 0;
2727		u32 fifo_size = UINT_MAX;
2728		size = hs_ep->ep.maxpacket*hs_ep->mc;
 
2729		for (i = 1; i < hsotg->num_of_eps; ++i) {
2730			if (hsotg->fifo_map & (1<<i))
2731				continue;
2732			val = dwc2_readl(hsotg->regs + DPTXFSIZN(i));
2733			val = (val >> FIFOSIZE_DEPTH_SHIFT)*4;
2734			if (val < size)
2735				continue;
2736			/* Search for smallest acceptable fifo */
2737			if (val < fifo_size) {
2738				fifo_size = val;
2739				fifo_index = i;
2740			}
2741		}
2742		if (!fifo_index) {
2743			dev_err(hsotg->dev,
2744				"%s: No suitable fifo found\n", __func__);
2745			ret = -ENOMEM;
2746			goto error;
2747		}
 
2748		hsotg->fifo_map |= 1 << fifo_index;
2749		epctrl |= DXEPCTL_TXFNUM(fifo_index);
2750		hs_ep->fifo_index = fifo_index;
2751		hs_ep->fifo_size = fifo_size;
2752	}
2753
2754	/* for non control endpoints, set PID to D0 */
2755	if (index)
2756		epctrl |= DXEPCTL_SETD0PID;
2757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2758	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
2759		__func__, epctrl);
2760
2761	dwc2_writel(epctrl, hsotg->regs + epctrl_reg);
2762	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
2763		__func__, dwc2_readl(hsotg->regs + epctrl_reg));
2764
2765	/* enable the endpoint interrupt */
2766	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
2767
2768error:
2769	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
 
 
 
 
 
 
2770	return ret;
2771}
2772
2773/**
2774 * dwc2_hsotg_ep_disable - disable given endpoint
2775 * @ep: The endpoint to disable.
2776 */
2777static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
2778{
2779	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2780	struct dwc2_hsotg *hsotg = hs_ep->parent;
2781	int dir_in = hs_ep->dir_in;
2782	int index = hs_ep->index;
2783	unsigned long flags;
2784	u32 epctrl_reg;
2785	u32 ctrl;
2786
2787	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
2788
2789	if (ep == &hsotg->eps_out[0]->ep) {
2790		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
2791		return -EINVAL;
2792	}
2793
 
 
 
 
 
2794	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
2795
2796	spin_lock_irqsave(&hsotg->lock, flags);
2797
2798	hsotg->fifo_map &= ~(1<<hs_ep->fifo_index);
2799	hs_ep->fifo_index = 0;
2800	hs_ep->fifo_size = 0;
2801
2802	ctrl = dwc2_readl(hsotg->regs + epctrl_reg);
2803	ctrl &= ~DXEPCTL_EPENA;
2804	ctrl &= ~DXEPCTL_USBACTEP;
2805	ctrl |= DXEPCTL_SNAK;
2806
2807	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
2808	dwc2_writel(ctrl, hsotg->regs + epctrl_reg);
2809
2810	/* disable endpoint interrupts */
2811	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
2812
2813	/* terminate all requests with shutdown */
2814	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
2815
2816	spin_unlock_irqrestore(&hsotg->lock, flags);
 
 
 
2817	return 0;
2818}
2819
 
 
 
 
 
 
 
 
 
 
 
 
 
2820/**
2821 * on_list - check request is on the given endpoint
2822 * @ep: The endpoint to check.
2823 * @test: The request to test if it is on the endpoint.
2824 */
2825static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
2826{
2827	struct dwc2_hsotg_req *req, *treq;
2828
2829	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
2830		if (req == test)
2831			return true;
2832	}
2833
2834	return false;
2835}
2836
2837static int dwc2_hsotg_wait_bit_set(struct dwc2_hsotg *hs_otg, u32 reg,
2838							u32 bit, u32 timeout)
2839{
2840	u32 i;
2841
2842	for (i = 0; i < timeout; i++) {
2843		if (dwc2_readl(hs_otg->regs + reg) & bit)
2844			return 0;
2845		udelay(1);
2846	}
2847
2848	return -ETIMEDOUT;
2849}
2850
2851static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
2852						struct dwc2_hsotg_ep *hs_ep)
2853{
2854	u32 epctrl_reg;
2855	u32 epint_reg;
2856
2857	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
2858		DOEPCTL(hs_ep->index);
2859	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
2860		DOEPINT(hs_ep->index);
2861
2862	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
2863			hs_ep->name);
2864	if (hs_ep->dir_in) {
2865		__orr32(hsotg->regs + epctrl_reg, DXEPCTL_SNAK);
2866		/* Wait for Nak effect */
2867		if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
2868						DXEPINT_INEPNAKEFF, 100))
2869			dev_warn(hsotg->dev,
2870				"%s: timeout DIEPINT.NAKEFF\n", __func__);
2871	} else {
2872		/* Clear any pending nak effect interrupt */
2873		dwc2_writel(GINTSTS_GOUTNAKEFF, hsotg->regs + GINTSTS);
2874
2875		__orr32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2876
2877		/* Wait for global nak to take effect */
2878		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
2879						GINTSTS_GOUTNAKEFF, 100))
2880			dev_warn(hsotg->dev,
2881				"%s: timeout GINTSTS.GOUTNAKEFF\n", __func__);
2882	}
2883
2884	/* Disable ep */
2885	__orr32(hsotg->regs + epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
2886
2887	/* Wait for ep to be disabled */
2888	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
2889		dev_warn(hsotg->dev,
2890			"%s: timeout DOEPCTL.EPDisable\n", __func__);
2891
2892	if (hs_ep->dir_in) {
2893		if (hsotg->dedicated_fifos) {
2894			dwc2_writel(GRSTCTL_TXFNUM(hs_ep->fifo_index) |
2895				GRSTCTL_TXFFLSH, hsotg->regs + GRSTCTL);
2896			/* Wait for fifo flush */
2897			if (dwc2_hsotg_wait_bit_set(hsotg, GRSTCTL,
2898							GRSTCTL_TXFFLSH, 100))
2899				dev_warn(hsotg->dev,
2900					"%s: timeout flushing fifos\n",
2901					__func__);
2902		}
2903		/* TODO: Flush shared tx fifo */
2904	} else {
2905		/* Remove global NAKs */
2906		__bic32(hsotg->regs + DCTL, DCTL_SGOUTNAK);
2907	}
2908}
2909
2910/**
2911 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
2912 * @ep: The endpoint to dequeue.
2913 * @req: The request to be removed from a queue.
2914 */
2915static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
2916{
2917	struct dwc2_hsotg_req *hs_req = our_req(req);
2918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2919	struct dwc2_hsotg *hs = hs_ep->parent;
2920	unsigned long flags;
2921
2922	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
2923
2924	spin_lock_irqsave(&hs->lock, flags);
2925
2926	if (!on_list(hs_ep, hs_req)) {
2927		spin_unlock_irqrestore(&hs->lock, flags);
2928		return -EINVAL;
2929	}
2930
2931	/* Dequeue already started request */
2932	if (req == &hs_ep->req->req)
2933		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
2934
2935	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
2936	spin_unlock_irqrestore(&hs->lock, flags);
2937
2938	return 0;
2939}
2940
2941/**
2942 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
2943 * @ep: The endpoint to set halt.
2944 * @value: Set or unset the halt.
 
 
 
 
 
2945 */
2946static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value)
2947{
2948	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
2949	struct dwc2_hsotg *hs = hs_ep->parent;
2950	int index = hs_ep->index;
2951	u32 epreg;
2952	u32 epctl;
2953	u32 xfertype;
2954
2955	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
2956
2957	if (index == 0) {
2958		if (value)
2959			dwc2_hsotg_stall_ep0(hs);
2960		else
2961			dev_warn(hs->dev,
2962				 "%s: can't clear halt on ep0\n", __func__);
2963		return 0;
2964	}
2965
 
 
 
 
 
 
 
 
 
 
 
2966	if (hs_ep->dir_in) {
2967		epreg = DIEPCTL(index);
2968		epctl = dwc2_readl(hs->regs + epreg);
2969
2970		if (value) {
2971			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
2972			if (epctl & DXEPCTL_EPENA)
2973				epctl |= DXEPCTL_EPDIS;
2974		} else {
2975			epctl &= ~DXEPCTL_STALL;
2976			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2977			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2978				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2979					epctl |= DXEPCTL_SETD0PID;
2980		}
2981		dwc2_writel(epctl, hs->regs + epreg);
2982	} else {
2983
2984		epreg = DOEPCTL(index);
2985		epctl = dwc2_readl(hs->regs + epreg);
2986
2987		if (value)
2988			epctl |= DXEPCTL_STALL;
2989		else {
2990			epctl &= ~DXEPCTL_STALL;
2991			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
2992			if (xfertype == DXEPCTL_EPTYPE_BULK ||
2993				xfertype == DXEPCTL_EPTYPE_INTERRUPT)
2994					epctl |= DXEPCTL_SETD0PID;
2995		}
2996		dwc2_writel(epctl, hs->regs + epreg);
2997	}
2998
2999	hs_ep->halted = value;
3000
3001	return 0;
3002}
3003
3004/**
3005 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
3006 * @ep: The endpoint to set halt.
3007 * @value: Set or unset the halt.
3008 */
3009static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
3010{
3011	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3012	struct dwc2_hsotg *hs = hs_ep->parent;
3013	unsigned long flags = 0;
3014	int ret = 0;
3015
3016	spin_lock_irqsave(&hs->lock, flags);
3017	ret = dwc2_hsotg_ep_sethalt(ep, value);
3018	spin_unlock_irqrestore(&hs->lock, flags);
3019
3020	return ret;
3021}
3022
3023static struct usb_ep_ops dwc2_hsotg_ep_ops = {
3024	.enable		= dwc2_hsotg_ep_enable,
3025	.disable	= dwc2_hsotg_ep_disable,
3026	.alloc_request	= dwc2_hsotg_ep_alloc_request,
3027	.free_request	= dwc2_hsotg_ep_free_request,
3028	.queue		= dwc2_hsotg_ep_queue_lock,
3029	.dequeue	= dwc2_hsotg_ep_dequeue,
3030	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
3031	/* note, don't believe we have any call for the fifo routines */
3032};
3033
3034/**
3035 * dwc2_hsotg_init - initalize the usb core
3036 * @hsotg: The driver state
3037 */
3038static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
3039{
3040	u32 trdtim;
3041	u32 usbcfg;
3042	/* unmask subset of endpoint interrupts */
3043
3044	dwc2_writel(DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
3045		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
3046		    hsotg->regs + DIEPMSK);
3047
3048	dwc2_writel(DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
3049		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
3050		    hsotg->regs + DOEPMSK);
3051
3052	dwc2_writel(0, hsotg->regs + DAINTMSK);
3053
3054	/* Be in disconnected state until gadget is registered */
3055	__orr32(hsotg->regs + DCTL, DCTL_SFTDISCON);
3056
3057	/* setup fifos */
3058
3059	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3060		dwc2_readl(hsotg->regs + GRXFSIZ),
3061		dwc2_readl(hsotg->regs + GNPTXFSIZ));
3062
3063	dwc2_hsotg_init_fifo(hsotg);
3064
3065	/* keep other bits untouched (so e.g. forced modes are not lost) */
3066	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
3067	usbcfg &= ~(GUSBCFG_TOUTCAL_MASK | GUSBCFG_PHYIF16 | GUSBCFG_SRPCAP |
3068		GUSBCFG_HNPCAP);
3069
3070	/* set the PLL on, remove the HNP/SRP and set the PHY */
3071	trdtim = (hsotg->phyif == GUSBCFG_PHYIF8) ? 9 : 5;
3072	usbcfg |= hsotg->phyif | GUSBCFG_TOUTCAL(7) |
3073		(trdtim << GUSBCFG_USBTRDTIM_SHIFT);
3074	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
3075
3076	if (using_dma(hsotg))
3077		__orr32(hsotg->regs + GAHBCFG, GAHBCFG_DMA_EN);
3078}
3079
3080/**
3081 * dwc2_hsotg_udc_start - prepare the udc for work
3082 * @gadget: The usb gadget state
3083 * @driver: The usb gadget driver
3084 *
3085 * Perform initialization to prepare udc device and driver
3086 * to work.
3087 */
3088static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
3089			   struct usb_gadget_driver *driver)
3090{
3091	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3092	unsigned long flags;
3093	int ret;
3094
3095	if (!hsotg) {
3096		pr_err("%s: called with no device\n", __func__);
3097		return -ENODEV;
3098	}
3099
3100	if (!driver) {
3101		dev_err(hsotg->dev, "%s: no driver\n", __func__);
3102		return -EINVAL;
3103	}
3104
3105	if (driver->max_speed < USB_SPEED_FULL)
3106		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
3107
3108	if (!driver->setup) {
3109		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
3110		return -EINVAL;
3111	}
3112
3113	WARN_ON(hsotg->driver);
3114
3115	driver->driver.bus = NULL;
3116	hsotg->driver = driver;
3117	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
3118	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3119
3120	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
3121		ret = dwc2_lowlevel_hw_enable(hsotg);
3122		if (ret)
3123			goto err;
3124	}
3125
3126	if (!IS_ERR_OR_NULL(hsotg->uphy))
3127		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
3128
3129	spin_lock_irqsave(&hsotg->lock, flags);
3130	dwc2_hsotg_init(hsotg);
3131	dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
 
3132	hsotg->enabled = 0;
3133	spin_unlock_irqrestore(&hsotg->lock, flags);
3134
 
3135	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
3136
3137	return 0;
3138
3139err:
3140	hsotg->driver = NULL;
3141	return ret;
3142}
3143
3144/**
3145 * dwc2_hsotg_udc_stop - stop the udc
3146 * @gadget: The usb gadget state
3147 * @driver: The usb gadget driver
3148 *
3149 * Stop udc hw block and stay tunned for future transmissions
3150 */
3151static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
3152{
3153	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3154	unsigned long flags = 0;
3155	int ep;
3156
3157	if (!hsotg)
3158		return -ENODEV;
3159
3160	/* all endpoints should be shutdown */
3161	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3162		if (hsotg->eps_in[ep])
3163			dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3164		if (hsotg->eps_out[ep])
3165			dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3166	}
3167
3168	spin_lock_irqsave(&hsotg->lock, flags);
3169
3170	hsotg->driver = NULL;
3171	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3172	hsotg->enabled = 0;
3173
3174	spin_unlock_irqrestore(&hsotg->lock, flags);
3175
3176	if (!IS_ERR_OR_NULL(hsotg->uphy))
3177		otg_set_peripheral(hsotg->uphy->otg, NULL);
3178
3179	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3180		dwc2_lowlevel_hw_disable(hsotg);
3181
3182	return 0;
3183}
3184
3185/**
3186 * dwc2_hsotg_gadget_getframe - read the frame number
3187 * @gadget: The usb gadget state
3188 *
3189 * Read the {micro} frame number
3190 */
3191static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
3192{
3193	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
3194}
3195
3196/**
3197 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
3198 * @gadget: The usb gadget state
3199 * @is_on: Current state of the USB PHY
3200 *
3201 * Connect/Disconnect the USB PHY pullup
3202 */
3203static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
3204{
3205	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3206	unsigned long flags = 0;
3207
3208	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
3209			hsotg->op_state);
3210
3211	/* Don't modify pullup state while in host mode */
3212	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
3213		hsotg->enabled = is_on;
3214		return 0;
3215	}
3216
3217	spin_lock_irqsave(&hsotg->lock, flags);
3218	if (is_on) {
3219		hsotg->enabled = 1;
3220		dwc2_hsotg_core_init_disconnected(hsotg, false);
 
 
3221		dwc2_hsotg_core_connect(hsotg);
3222	} else {
3223		dwc2_hsotg_core_disconnect(hsotg);
3224		dwc2_hsotg_disconnect(hsotg);
3225		hsotg->enabled = 0;
3226	}
3227
3228	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3229	spin_unlock_irqrestore(&hsotg->lock, flags);
3230
3231	return 0;
3232}
3233
3234static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
3235{
3236	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3237	unsigned long flags;
3238
3239	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
3240	spin_lock_irqsave(&hsotg->lock, flags);
3241
3242	/*
3243	 * If controller is hibernated, it must exit from hibernation
3244	 * before being initialized / de-initialized
3245	 */
3246	if (hsotg->lx_state == DWC2_L2)
3247		dwc2_exit_hibernation(hsotg, false);
3248
3249	if (is_active) {
3250		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3251
3252		dwc2_hsotg_core_init_disconnected(hsotg, false);
3253		if (hsotg->enabled)
 
 
3254			dwc2_hsotg_core_connect(hsotg);
 
3255	} else {
3256		dwc2_hsotg_core_disconnect(hsotg);
3257		dwc2_hsotg_disconnect(hsotg);
3258	}
3259
3260	spin_unlock_irqrestore(&hsotg->lock, flags);
3261	return 0;
3262}
3263
3264/**
3265 * dwc2_hsotg_vbus_draw - report bMaxPower field
3266 * @gadget: The usb gadget state
3267 * @mA: Amount of current
3268 *
3269 * Report how much power the device may consume to the phy.
3270 */
3271static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned mA)
3272{
3273	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
3274
3275	if (IS_ERR_OR_NULL(hsotg->uphy))
3276		return -ENOTSUPP;
3277	return usb_phy_set_power(hsotg->uphy, mA);
3278}
3279
3280static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
3281	.get_frame	= dwc2_hsotg_gadget_getframe,
3282	.udc_start		= dwc2_hsotg_udc_start,
3283	.udc_stop		= dwc2_hsotg_udc_stop,
3284	.pullup                 = dwc2_hsotg_pullup,
3285	.vbus_session		= dwc2_hsotg_vbus_session,
3286	.vbus_draw		= dwc2_hsotg_vbus_draw,
3287};
3288
3289/**
3290 * dwc2_hsotg_initep - initialise a single endpoint
3291 * @hsotg: The device state.
3292 * @hs_ep: The endpoint to be initialised.
3293 * @epnum: The endpoint number
 
3294 *
3295 * Initialise the given endpoint (as part of the probe and device state
3296 * creation) to give to the gadget driver. Setup the endpoint name, any
3297 * direction information and other state that may be required.
3298 */
3299static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
3300				       struct dwc2_hsotg_ep *hs_ep,
3301				       int epnum,
3302				       bool dir_in)
3303{
3304	char *dir;
3305
3306	if (epnum == 0)
3307		dir = "";
3308	else if (dir_in)
3309		dir = "in";
3310	else
3311		dir = "out";
3312
3313	hs_ep->dir_in = dir_in;
3314	hs_ep->index = epnum;
3315
3316	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
3317
3318	INIT_LIST_HEAD(&hs_ep->queue);
3319	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
3320
3321	/* add to the list of endpoints known by the gadget driver */
3322	if (epnum)
3323		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
3324
3325	hs_ep->parent = hsotg;
3326	hs_ep->ep.name = hs_ep->name;
3327	usb_ep_set_maxpacket_limit(&hs_ep->ep, epnum ? 1024 : EP0_MPS_LIMIT);
 
 
 
 
 
3328	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
3329
3330	if (epnum == 0) {
3331		hs_ep->ep.caps.type_control = true;
3332	} else {
3333		hs_ep->ep.caps.type_iso = true;
3334		hs_ep->ep.caps.type_bulk = true;
 
 
3335		hs_ep->ep.caps.type_int = true;
3336	}
3337
3338	if (dir_in)
3339		hs_ep->ep.caps.dir_in = true;
3340	else
3341		hs_ep->ep.caps.dir_out = true;
3342
3343	/*
3344	 * if we're using dma, we need to set the next-endpoint pointer
3345	 * to be something valid.
3346	 */
3347
3348	if (using_dma(hsotg)) {
3349		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
 
3350		if (dir_in)
3351			dwc2_writel(next, hsotg->regs + DIEPCTL(epnum));
3352		else
3353			dwc2_writel(next, hsotg->regs + DOEPCTL(epnum));
3354	}
3355}
3356
3357/**
3358 * dwc2_hsotg_hw_cfg - read HW configuration registers
3359 * @param: The device state
3360 *
3361 * Read the USB core HW configuration registers
3362 */
3363static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
3364{
3365	u32 cfg;
3366	u32 ep_type;
3367	u32 i;
3368
3369	/* check hardware configuration */
3370
3371	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
3372
3373	/* Add ep0 */
3374	hsotg->num_of_eps++;
3375
3376	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, sizeof(struct dwc2_hsotg_ep),
3377								GFP_KERNEL);
 
3378	if (!hsotg->eps_in[0])
3379		return -ENOMEM;
3380	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
3381	hsotg->eps_out[0] = hsotg->eps_in[0];
3382
3383	cfg = hsotg->hw_params.dev_ep_dirs;
3384	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
3385		ep_type = cfg & 3;
3386		/* Direction in or both */
3387		if (!(ep_type & 2)) {
3388			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
3389				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3390			if (!hsotg->eps_in[i])
3391				return -ENOMEM;
3392		}
3393		/* Direction out or both */
3394		if (!(ep_type & 1)) {
3395			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
3396				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
3397			if (!hsotg->eps_out[i])
3398				return -ENOMEM;
3399		}
3400	}
3401
3402	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
3403	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
3404
3405	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
3406		 hsotg->num_of_eps,
3407		 hsotg->dedicated_fifos ? "dedicated" : "shared",
3408		 hsotg->fifo_mem);
3409	return 0;
3410}
3411
3412/**
3413 * dwc2_hsotg_dump - dump state of the udc
3414 * @param: The device state
 
3415 */
3416static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
3417{
3418#ifdef DEBUG
3419	struct device *dev = hsotg->dev;
3420	void __iomem *regs = hsotg->regs;
3421	u32 val;
3422	int idx;
3423
3424	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
3425		 dwc2_readl(regs + DCFG), dwc2_readl(regs + DCTL),
3426		 dwc2_readl(regs + DIEPMSK));
3427
3428	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
3429		 dwc2_readl(regs + GAHBCFG), dwc2_readl(regs + GHWCFG1));
3430
3431	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
3432		 dwc2_readl(regs + GRXFSIZ), dwc2_readl(regs + GNPTXFSIZ));
3433
3434	/* show periodic fifo settings */
3435
3436	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3437		val = dwc2_readl(regs + DPTXFSIZN(idx));
3438		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
3439			 val >> FIFOSIZE_DEPTH_SHIFT,
3440			 val & FIFOSIZE_STARTADDR_MASK);
3441	}
3442
3443	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
3444		dev_info(dev,
3445			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
3446			 dwc2_readl(regs + DIEPCTL(idx)),
3447			 dwc2_readl(regs + DIEPTSIZ(idx)),
3448			 dwc2_readl(regs + DIEPDMA(idx)));
3449
3450		val = dwc2_readl(regs + DOEPCTL(idx));
3451		dev_info(dev,
3452			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
3453			 idx, dwc2_readl(regs + DOEPCTL(idx)),
3454			 dwc2_readl(regs + DOEPTSIZ(idx)),
3455			 dwc2_readl(regs + DOEPDMA(idx)));
3456
3457	}
3458
3459	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
3460		 dwc2_readl(regs + DVBUSDIS), dwc2_readl(regs + DVBUSPULSE));
3461#endif
3462}
3463
3464#ifdef CONFIG_OF
3465static void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg)
3466{
3467	struct device_node *np = hsotg->dev->of_node;
3468	u32 len = 0;
3469	u32 i = 0;
3470
3471	/* Enable dma if requested in device tree */
3472	hsotg->g_using_dma = of_property_read_bool(np, "g-use-dma");
3473
3474	/*
3475	* Register TX periodic fifo size per endpoint.
3476	* EP0 is excluded since it has no fifo configuration.
3477	*/
3478	if (!of_find_property(np, "g-tx-fifo-size", &len))
3479		goto rx_fifo;
3480
3481	len /= sizeof(u32);
3482
3483	/* Read tx fifo sizes other than ep0 */
3484	if (of_property_read_u32_array(np, "g-tx-fifo-size",
3485						&hsotg->g_tx_fifo_sz[1], len))
3486		goto rx_fifo;
3487
3488	/* Add ep0 */
3489	len++;
3490
3491	/* Make remaining TX fifos unavailable */
3492	if (len < MAX_EPS_CHANNELS) {
3493		for (i = len; i < MAX_EPS_CHANNELS; i++)
3494			hsotg->g_tx_fifo_sz[i] = 0;
3495	}
3496
3497rx_fifo:
3498	/* Register RX fifo size */
3499	of_property_read_u32(np, "g-rx-fifo-size", &hsotg->g_rx_fifo_sz);
3500
3501	/* Register NPTX fifo size */
3502	of_property_read_u32(np, "g-np-tx-fifo-size",
3503						&hsotg->g_np_g_tx_fifo_sz);
3504}
3505#else
3506static inline void dwc2_hsotg_of_probe(struct dwc2_hsotg *hsotg) { }
3507#endif
3508
3509/**
3510 * dwc2_gadget_init - init function for gadget
3511 * @dwc2: The data structure for the DWC2 driver.
3512 * @irq: The IRQ number for the controller.
3513 */
3514int dwc2_gadget_init(struct dwc2_hsotg *hsotg, int irq)
3515{
3516	struct device *dev = hsotg->dev;
3517	int epnum;
3518	int ret;
3519	int i;
3520	u32 p_tx_fifo[] = DWC2_G_P_LEGACY_TX_FIFO_SIZE;
3521
3522	/* Initialize to legacy fifo configuration values */
3523	hsotg->g_rx_fifo_sz = 2048;
3524	hsotg->g_np_g_tx_fifo_sz = 1024;
3525	memcpy(&hsotg->g_tx_fifo_sz[1], p_tx_fifo, sizeof(p_tx_fifo));
3526	/* Device tree specific probe */
3527	dwc2_hsotg_of_probe(hsotg);
3528
3529	/* Check against largest possible value. */
3530	if (hsotg->g_np_g_tx_fifo_sz >
3531	    hsotg->hw_params.dev_nperio_tx_fifo_size) {
3532		dev_warn(dev, "Specified GNPTXFDEP=%d > %d\n",
3533			 hsotg->g_np_g_tx_fifo_sz,
3534			 hsotg->hw_params.dev_nperio_tx_fifo_size);
3535		hsotg->g_np_g_tx_fifo_sz =
3536			hsotg->hw_params.dev_nperio_tx_fifo_size;
3537	}
3538
3539	/* Dump fifo information */
3540	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
3541						hsotg->g_np_g_tx_fifo_sz);
3542	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->g_rx_fifo_sz);
3543	for (i = 0; i < MAX_EPS_CHANNELS; i++)
3544		dev_dbg(dev, "Periodic TXFIFO%2d size: %d\n", i,
3545						hsotg->g_tx_fifo_sz[i]);
3546
3547	hsotg->gadget.max_speed = USB_SPEED_HIGH;
3548	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
3549	hsotg->gadget.name = dev_name(dev);
 
 
 
 
 
3550	if (hsotg->dr_mode == USB_DR_MODE_OTG)
3551		hsotg->gadget.is_otg = 1;
3552	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
3553		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3554
3555	ret = dwc2_hsotg_hw_cfg(hsotg);
3556	if (ret) {
3557		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
3558		return ret;
3559	}
3560
3561	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
3562			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3563	if (!hsotg->ctrl_buff) {
3564		dev_err(dev, "failed to allocate ctrl request buff\n");
3565		return -ENOMEM;
3566	}
3567
3568	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
3569			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
3570	if (!hsotg->ep0_buff) {
3571		dev_err(dev, "failed to allocate ctrl reply buff\n");
3572		return -ENOMEM;
 
 
 
 
 
3573	}
3574
3575	ret = devm_request_irq(hsotg->dev, irq, dwc2_hsotg_irq, IRQF_SHARED,
3576				dev_name(hsotg->dev), hsotg);
3577	if (ret < 0) {
3578		dev_err(dev, "cannot claim IRQ for gadget\n");
3579		return ret;
3580	}
3581
3582	/* hsotg->num_of_eps holds number of EPs other than ep0 */
3583
3584	if (hsotg->num_of_eps == 0) {
3585		dev_err(dev, "wrong number of EPs (zero)\n");
3586		return -EINVAL;
3587	}
3588
3589	/* setup endpoint information */
3590
3591	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
3592	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
3593
3594	/* allocate EP0 request */
3595
3596	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
3597						     GFP_KERNEL);
3598	if (!hsotg->ctrl_req) {
3599		dev_err(dev, "failed to allocate ctrl req\n");
3600		return -ENOMEM;
3601	}
3602
3603	/* initialise the endpoints now the core has been initialised */
3604	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
3605		if (hsotg->eps_in[epnum])
3606			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
3607								epnum, 1);
3608		if (hsotg->eps_out[epnum])
3609			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
3610								epnum, 0);
3611	}
3612
3613	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
3614	if (ret)
 
 
3615		return ret;
3616
3617	dwc2_hsotg_dump(hsotg);
3618
3619	return 0;
3620}
3621
3622/**
3623 * dwc2_hsotg_remove - remove function for hsotg driver
3624 * @pdev: The platform information for the driver
 
3625 */
3626int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
3627{
3628	usb_del_gadget_udc(&hsotg->gadget);
 
3629
3630	return 0;
3631}
3632
3633int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
3634{
3635	unsigned long flags;
3636
3637	if (hsotg->lx_state != DWC2_L0)
3638		return 0;
3639
3640	if (hsotg->driver) {
3641		int ep;
3642
3643		dev_info(hsotg->dev, "suspending usb gadget %s\n",
3644			 hsotg->driver->driver.name);
3645
3646		spin_lock_irqsave(&hsotg->lock, flags);
3647		if (hsotg->enabled)
3648			dwc2_hsotg_core_disconnect(hsotg);
3649		dwc2_hsotg_disconnect(hsotg);
3650		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
3651		spin_unlock_irqrestore(&hsotg->lock, flags);
3652
3653		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3654			if (hsotg->eps_in[ep])
3655				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3656			if (hsotg->eps_out[ep])
3657				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3658		}
3659	}
3660
3661	return 0;
3662}
3663
3664int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
3665{
3666	unsigned long flags;
3667
3668	if (hsotg->lx_state == DWC2_L2)
3669		return 0;
3670
3671	if (hsotg->driver) {
3672		dev_info(hsotg->dev, "resuming usb gadget %s\n",
3673			 hsotg->driver->driver.name);
3674
3675		spin_lock_irqsave(&hsotg->lock, flags);
3676		dwc2_hsotg_core_init_disconnected(hsotg, false);
3677		if (hsotg->enabled)
 
 
3678			dwc2_hsotg_core_connect(hsotg);
 
3679		spin_unlock_irqrestore(&hsotg->lock, flags);
3680	}
3681
3682	return 0;
3683}
3684
3685/**
3686 * dwc2_backup_device_registers() - Backup controller device registers.
3687 * When suspending usb bus, registers needs to be backuped
3688 * if controller power is disabled once suspended.
3689 *
3690 * @hsotg: Programming view of the DWC_otg controller
3691 */
3692int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
3693{
3694	struct dwc2_dregs_backup *dr;
3695	int i;
3696
3697	dev_dbg(hsotg->dev, "%s\n", __func__);
3698
3699	/* Backup dev regs */
3700	dr = &hsotg->dr_backup;
3701
3702	dr->dcfg = dwc2_readl(hsotg->regs + DCFG);
3703	dr->dctl = dwc2_readl(hsotg->regs + DCTL);
3704	dr->daintmsk = dwc2_readl(hsotg->regs + DAINTMSK);
3705	dr->diepmsk = dwc2_readl(hsotg->regs + DIEPMSK);
3706	dr->doepmsk = dwc2_readl(hsotg->regs + DOEPMSK);
3707
3708	for (i = 0; i < hsotg->num_of_eps; i++) {
3709		/* Backup IN EPs */
3710		dr->diepctl[i] = dwc2_readl(hsotg->regs + DIEPCTL(i));
3711
3712		/* Ensure DATA PID is correctly configured */
3713		if (dr->diepctl[i] & DXEPCTL_DPID)
3714			dr->diepctl[i] |= DXEPCTL_SETD1PID;
3715		else
3716			dr->diepctl[i] |= DXEPCTL_SETD0PID;
3717
3718		dr->dieptsiz[i] = dwc2_readl(hsotg->regs + DIEPTSIZ(i));
3719		dr->diepdma[i] = dwc2_readl(hsotg->regs + DIEPDMA(i));
3720
3721		/* Backup OUT EPs */
3722		dr->doepctl[i] = dwc2_readl(hsotg->regs + DOEPCTL(i));
3723
3724		/* Ensure DATA PID is correctly configured */
3725		if (dr->doepctl[i] & DXEPCTL_DPID)
3726			dr->doepctl[i] |= DXEPCTL_SETD1PID;
3727		else
3728			dr->doepctl[i] |= DXEPCTL_SETD0PID;
3729
3730		dr->doeptsiz[i] = dwc2_readl(hsotg->regs + DOEPTSIZ(i));
3731		dr->doepdma[i] = dwc2_readl(hsotg->regs + DOEPDMA(i));
 
3732	}
3733	dr->valid = true;
3734	return 0;
3735}
3736
3737/**
3738 * dwc2_restore_device_registers() - Restore controller device registers.
3739 * When resuming usb bus, device registers needs to be restored
3740 * if controller power were disabled.
3741 *
3742 * @hsotg: Programming view of the DWC_otg controller
 
 
 
3743 */
3744int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg)
3745{
3746	struct dwc2_dregs_backup *dr;
3747	u32 dctl;
3748	int i;
3749
3750	dev_dbg(hsotg->dev, "%s\n", __func__);
3751
3752	/* Restore dev regs */
3753	dr = &hsotg->dr_backup;
3754	if (!dr->valid) {
3755		dev_err(hsotg->dev, "%s: no device registers to restore\n",
3756			__func__);
3757		return -EINVAL;
3758	}
3759	dr->valid = false;
3760
3761	dwc2_writel(dr->dcfg, hsotg->regs + DCFG);
3762	dwc2_writel(dr->dctl, hsotg->regs + DCTL);
3763	dwc2_writel(dr->daintmsk, hsotg->regs + DAINTMSK);
3764	dwc2_writel(dr->diepmsk, hsotg->regs + DIEPMSK);
3765	dwc2_writel(dr->doepmsk, hsotg->regs + DOEPMSK);
 
3766
3767	for (i = 0; i < hsotg->num_of_eps; i++) {
3768		/* Restore IN EPs */
3769		dwc2_writel(dr->diepctl[i], hsotg->regs + DIEPCTL(i));
3770		dwc2_writel(dr->dieptsiz[i], hsotg->regs + DIEPTSIZ(i));
3771		dwc2_writel(dr->diepdma[i], hsotg->regs + DIEPDMA(i));
3772
 
 
 
 
 
 
 
 
 
3773		/* Restore OUT EPs */
3774		dwc2_writel(dr->doepctl[i], hsotg->regs + DOEPCTL(i));
3775		dwc2_writel(dr->doeptsiz[i], hsotg->regs + DOEPTSIZ(i));
3776		dwc2_writel(dr->doepdma[i], hsotg->regs + DOEPDMA(i));
 
 
 
 
 
 
 
 
3777	}
3778
3779	/* Set the Power-On Programming done bit */
3780	dctl = dwc2_readl(hsotg->regs + DCTL);
3781	dctl |= DCTL_PWRONPRGDONE;
3782	dwc2_writel(dctl, hsotg->regs + DCTL);
3783
3784	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3785}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
   4 *		http://www.samsung.com
   5 *
   6 * Copyright 2008 Openmoko, Inc.
   7 * Copyright 2008 Simtec Electronics
   8 *      Ben Dooks <ben@simtec.co.uk>
   9 *      http://armlinux.simtec.co.uk/
  10 *
  11 * S3C USB2.0 High-speed / OtG driver
 
 
 
 
  12 */
  13
  14#include <linux/kernel.h>
  15#include <linux/module.h>
  16#include <linux/spinlock.h>
  17#include <linux/interrupt.h>
  18#include <linux/platform_device.h>
  19#include <linux/dma-mapping.h>
  20#include <linux/mutex.h>
  21#include <linux/seq_file.h>
  22#include <linux/delay.h>
  23#include <linux/io.h>
  24#include <linux/slab.h>
  25#include <linux/of_platform.h>
  26
  27#include <linux/usb/ch9.h>
  28#include <linux/usb/gadget.h>
  29#include <linux/usb/phy.h>
  30#include <linux/usb/composite.h>
  31
  32
  33#include "core.h"
  34#include "hw.h"
  35
  36/* conversion functions */
  37static inline struct dwc2_hsotg_req *our_req(struct usb_request *req)
  38{
  39	return container_of(req, struct dwc2_hsotg_req, req);
  40}
  41
  42static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep)
  43{
  44	return container_of(ep, struct dwc2_hsotg_ep, ep);
  45}
  46
  47static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget)
  48{
  49	return container_of(gadget, struct dwc2_hsotg, gadget);
  50}
  51
  52static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  53{
  54	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset);
  55}
  56
  57static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val)
  58{
  59	dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset);
  60}
  61
  62static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg,
  63						u32 ep_index, u32 dir_in)
  64{
  65	if (dir_in)
  66		return hsotg->eps_in[ep_index];
  67	else
  68		return hsotg->eps_out[ep_index];
  69}
  70
  71/* forward declaration of functions */
  72static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg);
  73
  74/**
  75 * using_dma - return the DMA status of the driver.
  76 * @hsotg: The driver state.
  77 *
  78 * Return true if we're using DMA.
  79 *
  80 * Currently, we have the DMA support code worked into everywhere
  81 * that needs it, but the AMBA DMA implementation in the hardware can
  82 * only DMA from 32bit aligned addresses. This means that gadgets such
  83 * as the CDC Ethernet cannot work as they often pass packets which are
  84 * not 32bit aligned.
  85 *
  86 * Unfortunately the choice to use DMA or not is global to the controller
  87 * and seems to be only settable when the controller is being put through
  88 * a core reset. This means we either need to fix the gadgets to take
  89 * account of DMA alignment, or add bounce buffers (yuerk).
  90 *
  91 * g_using_dma is set depending on dts flag.
  92 */
  93static inline bool using_dma(struct dwc2_hsotg *hsotg)
  94{
  95	return hsotg->params.g_dma;
  96}
  97
  98/*
  99 * using_desc_dma - return the descriptor DMA status of the driver.
 100 * @hsotg: The driver state.
 101 *
 102 * Return true if we're using descriptor DMA.
 103 */
 104static inline bool using_desc_dma(struct dwc2_hsotg *hsotg)
 105{
 106	return hsotg->params.g_dma_desc;
 107}
 108
 109/**
 110 * dwc2_gadget_incr_frame_num - Increments the targeted frame number.
 111 * @hs_ep: The endpoint
 112 *
 113 * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT.
 114 * If an overrun occurs it will wrap the value and set the frame_overrun flag.
 115 */
 116static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep)
 117{
 118	hs_ep->target_frame += hs_ep->interval;
 119	if (hs_ep->target_frame > DSTS_SOFFN_LIMIT) {
 120		hs_ep->frame_overrun = true;
 121		hs_ep->target_frame &= DSTS_SOFFN_LIMIT;
 122	} else {
 123		hs_ep->frame_overrun = false;
 124	}
 125}
 126
 127/**
 128 * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number
 129 *                                    by one.
 130 * @hs_ep: The endpoint.
 131 *
 132 * This function used in service interval based scheduling flow to calculate
 133 * descriptor frame number filed value. For service interval mode frame
 134 * number in descriptor should point to last (u)frame in the interval.
 135 *
 136 */
 137static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep)
 138{
 139	if (hs_ep->target_frame)
 140		hs_ep->target_frame -= 1;
 141	else
 142		hs_ep->target_frame = DSTS_SOFFN_LIMIT;
 143}
 144
 145/**
 146 * dwc2_hsotg_en_gsint - enable one or more of the general interrupt
 147 * @hsotg: The device state
 148 * @ints: A bitmask of the interrupts to enable
 149 */
 150static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 151{
 152	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 153	u32 new_gsintmsk;
 154
 155	new_gsintmsk = gsintmsk | ints;
 156
 157	if (new_gsintmsk != gsintmsk) {
 158		dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
 159		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 160	}
 161}
 162
 163/**
 164 * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt
 165 * @hsotg: The device state
 166 * @ints: A bitmask of the interrupts to enable
 167 */
 168static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints)
 169{
 170	u32 gsintmsk = dwc2_readl(hsotg, GINTMSK);
 171	u32 new_gsintmsk;
 172
 173	new_gsintmsk = gsintmsk & ~ints;
 174
 175	if (new_gsintmsk != gsintmsk)
 176		dwc2_writel(hsotg, new_gsintmsk, GINTMSK);
 177}
 178
 179/**
 180 * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq
 181 * @hsotg: The device state
 182 * @ep: The endpoint index
 183 * @dir_in: True if direction is in.
 184 * @en: The enable value, true to enable
 185 *
 186 * Set or clear the mask for an individual endpoint's interrupt
 187 * request.
 188 */
 189static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg,
 190				  unsigned int ep, unsigned int dir_in,
 191				 unsigned int en)
 192{
 193	unsigned long flags;
 194	u32 bit = 1 << ep;
 195	u32 daint;
 196
 197	if (!dir_in)
 198		bit <<= 16;
 199
 200	local_irq_save(flags);
 201	daint = dwc2_readl(hsotg, DAINTMSK);
 202	if (en)
 203		daint |= bit;
 204	else
 205		daint &= ~bit;
 206	dwc2_writel(hsotg, daint, DAINTMSK);
 207	local_irq_restore(flags);
 208}
 209
 210/**
 211 * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode
 212 *
 213 * @hsotg: Programming view of the DWC_otg controller
 214 */
 215int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg)
 216{
 217	if (hsotg->hw_params.en_multiple_tx_fifo)
 218		/* In dedicated FIFO mode we need count of IN EPs */
 219		return hsotg->hw_params.num_dev_in_eps;
 220	else
 221		/* In shared FIFO mode we need count of Periodic IN EPs */
 222		return hsotg->hw_params.num_dev_perio_in_ep;
 223}
 224
 225/**
 226 * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for
 227 * device mode TX FIFOs
 228 *
 229 * @hsotg: Programming view of the DWC_otg controller
 230 */
 231int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg)
 232{
 233	int addr;
 234	int tx_addr_max;
 235	u32 np_tx_fifo_size;
 236
 237	np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size,
 238				hsotg->params.g_np_tx_fifo_size);
 239
 240	/* Get Endpoint Info Control block size in DWORDs. */
 241	tx_addr_max = hsotg->hw_params.total_fifo_size;
 242
 243	addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size;
 244	if (tx_addr_max <= addr)
 245		return 0;
 246
 247	return tx_addr_max - addr;
 248}
 249
 250/**
 251 * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt
 252 *
 253 * @hsotg: Programming view of the DWC_otg controller
 254 *
 255 */
 256static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg)
 257{
 258	u32 gintsts2;
 259	u32 gintmsk2;
 260
 261	gintsts2 = dwc2_readl(hsotg, GINTSTS2);
 262	gintmsk2 = dwc2_readl(hsotg, GINTMSK2);
 263
 264	if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) {
 265		dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__);
 266		dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT);
 267		dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG);
 268	}
 269}
 270
 271/**
 272 * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode
 273 * TX FIFOs
 274 *
 275 * @hsotg: Programming view of the DWC_otg controller
 276 */
 277int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg)
 278{
 279	int tx_fifo_count;
 280	int tx_fifo_depth;
 281
 282	tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg);
 283
 284	tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg);
 285
 286	if (!tx_fifo_count)
 287		return tx_fifo_depth;
 288	else
 289		return tx_fifo_depth / tx_fifo_count;
 290}
 291
 292/**
 293 * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs
 294 * @hsotg: The device instance.
 295 */
 296static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg)
 297{
 298	unsigned int ep;
 299	unsigned int addr;
 300	int timeout;
 301
 302	u32 val;
 303	u32 *txfsz = hsotg->params.g_tx_fifo_size;
 304
 305	/* Reset fifo map if not correctly cleared during previous session */
 306	WARN_ON(hsotg->fifo_map);
 307	hsotg->fifo_map = 0;
 308
 309	/* set RX/NPTX FIFO sizes */
 310	dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ);
 311	dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size <<
 312		    FIFOSIZE_STARTADDR_SHIFT) |
 313		    (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT),
 314		    GNPTXFSIZ);
 315
 316	/*
 317	 * arange all the rest of the TX FIFOs, as some versions of this
 318	 * block have overlapping default addresses. This also ensures
 319	 * that if the settings have been changed, then they are set to
 320	 * known values.
 321	 */
 322
 323	/* start at the end of the GNPTXFSIZ, rounded up */
 324	addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size;
 325
 326	/*
 327	 * Configure fifos sizes from provided configuration and assign
 328	 * them to endpoints dynamically according to maxpacket size value of
 329	 * given endpoint.
 330	 */
 331	for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) {
 332		if (!txfsz[ep])
 333			continue;
 334		val = addr;
 335		val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT;
 336		WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem,
 337			  "insufficient fifo memory");
 338		addr += txfsz[ep];
 339
 340		dwc2_writel(hsotg, val, DPTXFSIZN(ep));
 341		val = dwc2_readl(hsotg, DPTXFSIZN(ep));
 342	}
 343
 344	dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size |
 345		    addr << GDFIFOCFG_EPINFOBASE_SHIFT,
 346		    GDFIFOCFG);
 347	/*
 348	 * according to p428 of the design guide, we need to ensure that
 349	 * all fifos are flushed before continuing
 350	 */
 351
 352	dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH |
 353	       GRSTCTL_RXFFLSH, GRSTCTL);
 354
 355	/* wait until the fifos are both flushed */
 356	timeout = 100;
 357	while (1) {
 358		val = dwc2_readl(hsotg, GRSTCTL);
 359
 360		if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0)
 361			break;
 362
 363		if (--timeout == 0) {
 364			dev_err(hsotg->dev,
 365				"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
 366				__func__, val);
 367			break;
 368		}
 369
 370		udelay(1);
 371	}
 372
 373	dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
 374}
 375
 376/**
 377 * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure
 378 * @ep: USB endpoint to allocate request for.
 379 * @flags: Allocation flags
 380 *
 381 * Allocate a new USB request structure appropriate for the specified endpoint
 382 */
 383static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep,
 384						       gfp_t flags)
 385{
 386	struct dwc2_hsotg_req *req;
 387
 388	req = kzalloc(sizeof(*req), flags);
 389	if (!req)
 390		return NULL;
 391
 392	INIT_LIST_HEAD(&req->queue);
 393
 394	return &req->req;
 395}
 396
 397/**
 398 * is_ep_periodic - return true if the endpoint is in periodic mode.
 399 * @hs_ep: The endpoint to query.
 400 *
 401 * Returns true if the endpoint is in periodic mode, meaning it is being
 402 * used for an Interrupt or ISO transfer.
 403 */
 404static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep)
 405{
 406	return hs_ep->periodic;
 407}
 408
 409/**
 410 * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request
 411 * @hsotg: The device state.
 412 * @hs_ep: The endpoint for the request
 413 * @hs_req: The request being processed.
 414 *
 415 * This is the reverse of dwc2_hsotg_map_dma(), called for the completion
 416 * of a request to ensure the buffer is ready for access by the caller.
 417 */
 418static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg,
 419				 struct dwc2_hsotg_ep *hs_ep,
 420				struct dwc2_hsotg_req *hs_req)
 421{
 422	struct usb_request *req = &hs_req->req;
 423
 
 
 
 
 424	usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->dir_in);
 425}
 426
 427/*
 428 * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains
 429 * for Control endpoint
 430 * @hsotg: The device state.
 431 *
 432 * This function will allocate 4 descriptor chains for EP 0: 2 for
 433 * Setup stage, per one for IN and OUT data/status transactions.
 434 */
 435static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg)
 436{
 437	hsotg->setup_desc[0] =
 438		dmam_alloc_coherent(hsotg->dev,
 439				    sizeof(struct dwc2_dma_desc),
 440				    &hsotg->setup_desc_dma[0],
 441				    GFP_KERNEL);
 442	if (!hsotg->setup_desc[0])
 443		goto fail;
 444
 445	hsotg->setup_desc[1] =
 446		dmam_alloc_coherent(hsotg->dev,
 447				    sizeof(struct dwc2_dma_desc),
 448				    &hsotg->setup_desc_dma[1],
 449				    GFP_KERNEL);
 450	if (!hsotg->setup_desc[1])
 451		goto fail;
 452
 453	hsotg->ctrl_in_desc =
 454		dmam_alloc_coherent(hsotg->dev,
 455				    sizeof(struct dwc2_dma_desc),
 456				    &hsotg->ctrl_in_desc_dma,
 457				    GFP_KERNEL);
 458	if (!hsotg->ctrl_in_desc)
 459		goto fail;
 460
 461	hsotg->ctrl_out_desc =
 462		dmam_alloc_coherent(hsotg->dev,
 463				    sizeof(struct dwc2_dma_desc),
 464				    &hsotg->ctrl_out_desc_dma,
 465				    GFP_KERNEL);
 466	if (!hsotg->ctrl_out_desc)
 467		goto fail;
 468
 469	return 0;
 470
 471fail:
 472	return -ENOMEM;
 473}
 474
 475/**
 476 * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO
 477 * @hsotg: The controller state.
 478 * @hs_ep: The endpoint we're going to write for.
 479 * @hs_req: The request to write data for.
 480 *
 481 * This is called when the TxFIFO has some space in it to hold a new
 482 * transmission and we have something to give it. The actual setup of
 483 * the data size is done elsewhere, so all we have to do is to actually
 484 * write the data.
 485 *
 486 * The return value is zero if there is more space (or nothing was done)
 487 * otherwise -ENOSPC is returned if the FIFO space was used up.
 488 *
 489 * This routine is only needed for PIO
 490 */
 491static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg,
 492				 struct dwc2_hsotg_ep *hs_ep,
 493				struct dwc2_hsotg_req *hs_req)
 494{
 495	bool periodic = is_ep_periodic(hs_ep);
 496	u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS);
 497	int buf_pos = hs_req->req.actual;
 498	int to_write = hs_ep->size_loaded;
 499	void *data;
 500	int can_write;
 501	int pkt_round;
 502	int max_transfer;
 503
 504	to_write -= (buf_pos - hs_ep->last_load);
 505
 506	/* if there's nothing to write, get out early */
 507	if (to_write == 0)
 508		return 0;
 509
 510	if (periodic && !hsotg->dedicated_fifos) {
 511		u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
 512		int size_left;
 513		int size_done;
 514
 515		/*
 516		 * work out how much data was loaded so we can calculate
 517		 * how much data is left in the fifo.
 518		 */
 519
 520		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
 521
 522		/*
 523		 * if shared fifo, we cannot write anything until the
 524		 * previous data has been completely sent.
 525		 */
 526		if (hs_ep->fifo_load != 0) {
 527			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 528			return -ENOSPC;
 529		}
 530
 531		dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
 532			__func__, size_left,
 533			hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
 534
 535		/* how much of the data has moved */
 536		size_done = hs_ep->size_loaded - size_left;
 537
 538		/* how much data is left in the fifo */
 539		can_write = hs_ep->fifo_load - size_done;
 540		dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
 541			__func__, can_write);
 542
 543		can_write = hs_ep->fifo_size - can_write;
 544		dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
 545			__func__, can_write);
 546
 547		if (can_write <= 0) {
 548			dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP);
 549			return -ENOSPC;
 550		}
 551	} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
 552		can_write = dwc2_readl(hsotg,
 553				       DTXFSTS(hs_ep->fifo_index));
 554
 555		can_write &= 0xffff;
 556		can_write *= 4;
 557	} else {
 558		if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) {
 559			dev_dbg(hsotg->dev,
 560				"%s: no queue slots available (0x%08x)\n",
 561				__func__, gnptxsts);
 562
 563			dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP);
 564			return -ENOSPC;
 565		}
 566
 567		can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts);
 568		can_write *= 4;	/* fifo size is in 32bit quantities. */
 569	}
 570
 571	max_transfer = hs_ep->ep.maxpacket * hs_ep->mc;
 572
 573	dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n",
 574		__func__, gnptxsts, can_write, to_write, max_transfer);
 575
 576	/*
 577	 * limit to 512 bytes of data, it seems at least on the non-periodic
 578	 * FIFO, requests of >512 cause the endpoint to get stuck with a
 579	 * fragment of the end of the transfer in it.
 580	 */
 581	if (can_write > 512 && !periodic)
 582		can_write = 512;
 583
 584	/*
 585	 * limit the write to one max-packet size worth of data, but allow
 586	 * the transfer to return that it did not run out of fifo space
 587	 * doing it.
 588	 */
 589	if (to_write > max_transfer) {
 590		to_write = max_transfer;
 591
 592		/* it's needed only when we do not use dedicated fifos */
 593		if (!hsotg->dedicated_fifos)
 594			dwc2_hsotg_en_gsint(hsotg,
 595					    periodic ? GINTSTS_PTXFEMP :
 596					   GINTSTS_NPTXFEMP);
 597	}
 598
 599	/* see if we can write data */
 600
 601	if (to_write > can_write) {
 602		to_write = can_write;
 603		pkt_round = to_write % max_transfer;
 604
 605		/*
 606		 * Round the write down to an
 607		 * exact number of packets.
 608		 *
 609		 * Note, we do not currently check to see if we can ever
 610		 * write a full packet or not to the FIFO.
 611		 */
 612
 613		if (pkt_round)
 614			to_write -= pkt_round;
 615
 616		/*
 617		 * enable correct FIFO interrupt to alert us when there
 618		 * is more room left.
 619		 */
 620
 621		/* it's needed only when we do not use dedicated fifos */
 622		if (!hsotg->dedicated_fifos)
 623			dwc2_hsotg_en_gsint(hsotg,
 624					    periodic ? GINTSTS_PTXFEMP :
 625					   GINTSTS_NPTXFEMP);
 626	}
 627
 628	dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
 629		to_write, hs_req->req.length, can_write, buf_pos);
 630
 631	if (to_write <= 0)
 632		return -ENOSPC;
 633
 634	hs_req->req.actual = buf_pos + to_write;
 635	hs_ep->total_data += to_write;
 636
 637	if (periodic)
 638		hs_ep->fifo_load += to_write;
 639
 640	to_write = DIV_ROUND_UP(to_write, 4);
 641	data = hs_req->req.buf + buf_pos;
 642
 643	dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write);
 644
 645	return (to_write >= can_write) ? -ENOSPC : 0;
 646}
 647
 648/**
 649 * get_ep_limit - get the maximum data legnth for this endpoint
 650 * @hs_ep: The endpoint
 651 *
 652 * Return the maximum data that can be queued in one go on a given endpoint
 653 * so that transfers that are too long can be split.
 654 */
 655static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep)
 656{
 657	int index = hs_ep->index;
 658	unsigned int maxsize;
 659	unsigned int maxpkt;
 660
 661	if (index != 0) {
 662		maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1;
 663		maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1;
 664	} else {
 665		maxsize = 64 + 64;
 666		if (hs_ep->dir_in)
 667			maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1;
 668		else
 669			maxpkt = 2;
 670	}
 671
 672	/* we made the constant loading easier above by using +1 */
 673	maxpkt--;
 674	maxsize--;
 675
 676	/*
 677	 * constrain by packet count if maxpkts*pktsize is greater
 678	 * than the length register size.
 679	 */
 680
 681	if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
 682		maxsize = maxpkt * hs_ep->ep.maxpacket;
 683
 684	return maxsize;
 685}
 686
 687/**
 688 * dwc2_hsotg_read_frameno - read current frame number
 689 * @hsotg: The device instance
 690 *
 691 * Return the current frame number
 692 */
 693static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg)
 694{
 695	u32 dsts;
 696
 697	dsts = dwc2_readl(hsotg, DSTS);
 698	dsts &= DSTS_SOFFN_MASK;
 699	dsts >>= DSTS_SOFFN_SHIFT;
 700
 701	return dsts;
 702}
 703
 704/**
 705 * dwc2_gadget_get_chain_limit - get the maximum data payload value of the
 706 * DMA descriptor chain prepared for specific endpoint
 707 * @hs_ep: The endpoint
 708 *
 709 * Return the maximum data that can be queued in one go on a given endpoint
 710 * depending on its descriptor chain capacity so that transfers that
 711 * are too long can be split.
 712 */
 713static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep)
 714{
 715	int is_isoc = hs_ep->isochronous;
 716	unsigned int maxsize;
 717
 718	if (is_isoc)
 719		maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT :
 720					   DEV_DMA_ISOC_RX_NBYTES_LIMIT) *
 721					   MAX_DMA_DESC_NUM_HS_ISOC;
 722	else
 723		maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC;
 724
 725	return maxsize;
 726}
 727
 728/*
 729 * dwc2_gadget_get_desc_params - get DMA descriptor parameters.
 730 * @hs_ep: The endpoint
 731 * @mask: RX/TX bytes mask to be defined
 732 *
 733 * Returns maximum data payload for one descriptor after analyzing endpoint
 734 * characteristics.
 735 * DMA descriptor transfer bytes limit depends on EP type:
 736 * Control out - MPS,
 737 * Isochronous - descriptor rx/tx bytes bitfield limit,
 738 * Control In/Bulk/Interrupt - multiple of mps. This will allow to not
 739 * have concatenations from various descriptors within one packet.
 740 *
 741 * Selects corresponding mask for RX/TX bytes as well.
 742 */
 743static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask)
 744{
 745	u32 mps = hs_ep->ep.maxpacket;
 746	int dir_in = hs_ep->dir_in;
 747	u32 desc_size = 0;
 748
 749	if (!hs_ep->index && !dir_in) {
 750		desc_size = mps;
 751		*mask = DEV_DMA_NBYTES_MASK;
 752	} else if (hs_ep->isochronous) {
 753		if (dir_in) {
 754			desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT;
 755			*mask = DEV_DMA_ISOC_TX_NBYTES_MASK;
 756		} else {
 757			desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT;
 758			*mask = DEV_DMA_ISOC_RX_NBYTES_MASK;
 759		}
 760	} else {
 761		desc_size = DEV_DMA_NBYTES_LIMIT;
 762		*mask = DEV_DMA_NBYTES_MASK;
 763
 764		/* Round down desc_size to be mps multiple */
 765		desc_size -= desc_size % mps;
 766	}
 767
 768	return desc_size;
 769}
 770
 771static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep,
 772						 struct dwc2_dma_desc **desc,
 773						 dma_addr_t dma_buff,
 774						 unsigned int len,
 775						 bool true_last)
 776{
 777	int dir_in = hs_ep->dir_in;
 778	u32 mps = hs_ep->ep.maxpacket;
 779	u32 maxsize = 0;
 780	u32 offset = 0;
 781	u32 mask = 0;
 782	int i;
 783
 784	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 785
 786	hs_ep->desc_count = (len / maxsize) +
 787				((len % maxsize) ? 1 : 0);
 788	if (len == 0)
 789		hs_ep->desc_count = 1;
 790
 791	for (i = 0; i < hs_ep->desc_count; ++i) {
 792		(*desc)->status = 0;
 793		(*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY
 794				 << DEV_DMA_BUFF_STS_SHIFT);
 795
 796		if (len > maxsize) {
 797			if (!hs_ep->index && !dir_in)
 798				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 799
 800			(*desc)->status |=
 801				maxsize << DEV_DMA_NBYTES_SHIFT & mask;
 802			(*desc)->buf = dma_buff + offset;
 803
 804			len -= maxsize;
 805			offset += maxsize;
 806		} else {
 807			if (true_last)
 808				(*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC);
 809
 810			if (dir_in)
 811				(*desc)->status |= (len % mps) ? DEV_DMA_SHORT :
 812					((hs_ep->send_zlp && true_last) ?
 813					DEV_DMA_SHORT : 0);
 814
 815			(*desc)->status |=
 816				len << DEV_DMA_NBYTES_SHIFT & mask;
 817			(*desc)->buf = dma_buff + offset;
 818		}
 819
 820		(*desc)->status &= ~DEV_DMA_BUFF_STS_MASK;
 821		(*desc)->status |= (DEV_DMA_BUFF_STS_HREADY
 822				 << DEV_DMA_BUFF_STS_SHIFT);
 823		(*desc)++;
 824	}
 825}
 826
 827/*
 828 * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain.
 829 * @hs_ep: The endpoint
 830 * @ureq: Request to transfer
 831 * @offset: offset in bytes
 832 * @len: Length of the transfer
 833 *
 834 * This function will iterate over descriptor chain and fill its entries
 835 * with corresponding information based on transfer data.
 836 */
 837static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep,
 838						 dma_addr_t dma_buff,
 839						 unsigned int len)
 840{
 841	struct usb_request *ureq = NULL;
 842	struct dwc2_dma_desc *desc = hs_ep->desc_list;
 843	struct scatterlist *sg;
 844	int i;
 845	u8 desc_count = 0;
 846
 847	if (hs_ep->req)
 848		ureq = &hs_ep->req->req;
 849
 850	/* non-DMA sg buffer */
 851	if (!ureq || !ureq->num_sgs) {
 852		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 853			dma_buff, len, true);
 854		return;
 855	}
 856
 857	/* DMA sg buffer */
 858	for_each_sg(ureq->sg, sg, ureq->num_sgs, i) {
 859		dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc,
 860			sg_dma_address(sg) + sg->offset, sg_dma_len(sg),
 861			sg_is_last(sg));
 862		desc_count += hs_ep->desc_count;
 863	}
 864
 865	hs_ep->desc_count = desc_count;
 866}
 867
 868/*
 869 * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain.
 870 * @hs_ep: The isochronous endpoint.
 871 * @dma_buff: usb requests dma buffer.
 872 * @len: usb request transfer length.
 873 *
 874 * Fills next free descriptor with the data of the arrived usb request,
 875 * frame info, sets Last and IOC bits increments next_desc. If filled
 876 * descriptor is not the first one, removes L bit from the previous descriptor
 877 * status.
 878 */
 879static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep,
 880				      dma_addr_t dma_buff, unsigned int len)
 881{
 882	struct dwc2_dma_desc *desc;
 883	struct dwc2_hsotg *hsotg = hs_ep->parent;
 884	u32 index;
 885	u32 maxsize = 0;
 886	u32 mask = 0;
 887	u8 pid = 0;
 888
 889	maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
 890
 891	index = hs_ep->next_desc;
 892	desc = &hs_ep->desc_list[index];
 893
 894	/* Check if descriptor chain full */
 895	if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) ==
 896	    DEV_DMA_BUFF_STS_HREADY) {
 897		dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__);
 898		return 1;
 899	}
 900
 901	/* Clear L bit of previous desc if more than one entries in the chain */
 902	if (hs_ep->next_desc)
 903		hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L;
 904
 905	dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n",
 906		__func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index);
 907
 908	desc->status = 0;
 909	desc->status |= (DEV_DMA_BUFF_STS_HBUSY	<< DEV_DMA_BUFF_STS_SHIFT);
 910
 911	desc->buf = dma_buff;
 912	desc->status |= (DEV_DMA_L | DEV_DMA_IOC |
 913			 ((len << DEV_DMA_NBYTES_SHIFT) & mask));
 914
 915	if (hs_ep->dir_in) {
 916		if (len)
 917			pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket);
 918		else
 919			pid = 1;
 920		desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) &
 921				 DEV_DMA_ISOC_PID_MASK) |
 922				((len % hs_ep->ep.maxpacket) ?
 923				 DEV_DMA_SHORT : 0) |
 924				((hs_ep->target_frame <<
 925				  DEV_DMA_ISOC_FRNUM_SHIFT) &
 926				 DEV_DMA_ISOC_FRNUM_MASK);
 927	}
 928
 929	desc->status &= ~DEV_DMA_BUFF_STS_MASK;
 930	desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT);
 931
 932	/* Increment frame number by interval for IN */
 933	if (hs_ep->dir_in)
 934		dwc2_gadget_incr_frame_num(hs_ep);
 935
 936	/* Update index of last configured entry in the chain */
 937	hs_ep->next_desc++;
 938	if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC)
 939		hs_ep->next_desc = 0;
 940
 941	return 0;
 942}
 943
 944/*
 945 * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA
 946 * @hs_ep: The isochronous endpoint.
 947 *
 948 * Prepare descriptor chain for isochronous endpoints. Afterwards
 949 * write DMA address to HW and enable the endpoint.
 950 */
 951static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep)
 952{
 953	struct dwc2_hsotg *hsotg = hs_ep->parent;
 954	struct dwc2_hsotg_req *hs_req, *treq;
 955	int index = hs_ep->index;
 956	int ret;
 957	int i;
 958	u32 dma_reg;
 959	u32 depctl;
 960	u32 ctrl;
 961	struct dwc2_dma_desc *desc;
 962
 963	if (list_empty(&hs_ep->queue)) {
 964		hs_ep->target_frame = TARGET_FRAME_INITIAL;
 965		dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__);
 966		return;
 967	}
 968
 969	/* Initialize descriptor chain by Host Busy status */
 970	for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) {
 971		desc = &hs_ep->desc_list[i];
 972		desc->status = 0;
 973		desc->status |= (DEV_DMA_BUFF_STS_HBUSY
 974				    << DEV_DMA_BUFF_STS_SHIFT);
 975	}
 976
 977	hs_ep->next_desc = 0;
 978	list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) {
 979		dma_addr_t dma_addr = hs_req->req.dma;
 980
 981		if (hs_req->req.num_sgs) {
 982			WARN_ON(hs_req->req.num_sgs > 1);
 983			dma_addr = sg_dma_address(hs_req->req.sg);
 984		}
 985		ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
 986						 hs_req->req.length);
 987		if (ret)
 988			break;
 989	}
 990
 991	hs_ep->compl_desc = 0;
 992	depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
 993	dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index);
 994
 995	/* write descriptor chain address to control register */
 996	dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
 997
 998	ctrl = dwc2_readl(hsotg, depctl);
 999	ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK;
1000	dwc2_writel(hsotg, ctrl, depctl);
1001}
1002
1003/**
1004 * dwc2_hsotg_start_req - start a USB request from an endpoint's queue
1005 * @hsotg: The controller state.
1006 * @hs_ep: The endpoint to process a request for
1007 * @hs_req: The request to start.
1008 * @continuing: True if we are doing more for the current request.
1009 *
1010 * Start the given request running by setting the endpoint registers
1011 * appropriately, and writing any data to the FIFOs.
1012 */
1013static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg,
1014				 struct dwc2_hsotg_ep *hs_ep,
1015				struct dwc2_hsotg_req *hs_req,
1016				bool continuing)
1017{
1018	struct usb_request *ureq = &hs_req->req;
1019	int index = hs_ep->index;
1020	int dir_in = hs_ep->dir_in;
1021	u32 epctrl_reg;
1022	u32 epsize_reg;
1023	u32 epsize;
1024	u32 ctrl;
1025	unsigned int length;
1026	unsigned int packets;
1027	unsigned int maxreq;
1028	unsigned int dma_reg;
1029
1030	if (index != 0) {
1031		if (hs_ep->req && !continuing) {
1032			dev_err(hsotg->dev, "%s: active request\n", __func__);
1033			WARN_ON(1);
1034			return;
1035		} else if (hs_ep->req != hs_req && continuing) {
1036			dev_err(hsotg->dev,
1037				"%s: continue different req\n", __func__);
1038			WARN_ON(1);
1039			return;
1040		}
1041	}
1042
1043	dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index);
1044	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
1045	epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
1046
1047	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
1048		__func__, dwc2_readl(hsotg, epctrl_reg), index,
1049		hs_ep->dir_in ? "in" : "out");
1050
1051	/* If endpoint is stalled, we will restart request later */
1052	ctrl = dwc2_readl(hsotg, epctrl_reg);
1053
1054	if (index && ctrl & DXEPCTL_STALL) {
1055		dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
1056		return;
1057	}
1058
1059	length = ureq->length - ureq->actual;
1060	dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n",
1061		ureq->length, ureq->actual);
1062
1063	if (!using_desc_dma(hsotg))
1064		maxreq = get_ep_limit(hs_ep);
1065	else
1066		maxreq = dwc2_gadget_get_chain_limit(hs_ep);
1067
1068	if (length > maxreq) {
1069		int round = maxreq % hs_ep->ep.maxpacket;
1070
1071		dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
1072			__func__, length, maxreq, round);
1073
1074		/* round down to multiple of packets */
1075		if (round)
1076			maxreq -= round;
1077
1078		length = maxreq;
1079	}
1080
1081	if (length)
1082		packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
1083	else
1084		packets = 1;	/* send one packet if length is zero. */
1085
1086	if (hs_ep->isochronous && length > (hs_ep->mc * hs_ep->ep.maxpacket)) {
1087		dev_err(hsotg->dev, "req length > maxpacket*mc\n");
1088		return;
1089	}
1090
1091	if (dir_in && index != 0)
1092		if (hs_ep->isochronous)
1093			epsize = DXEPTSIZ_MC(packets);
1094		else
1095			epsize = DXEPTSIZ_MC(1);
1096	else
1097		epsize = 0;
1098
1099	/*
1100	 * zero length packet should be programmed on its own and should not
1101	 * be counted in DIEPTSIZ.PktCnt with other packets.
1102	 */
1103	if (dir_in && ureq->zero && !continuing) {
1104		/* Test if zlp is actually required. */
1105		if ((ureq->length >= hs_ep->ep.maxpacket) &&
1106		    !(ureq->length % hs_ep->ep.maxpacket))
1107			hs_ep->send_zlp = 1;
1108	}
1109
1110	epsize |= DXEPTSIZ_PKTCNT(packets);
1111	epsize |= DXEPTSIZ_XFERSIZE(length);
1112
1113	dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
1114		__func__, packets, length, ureq->length, epsize, epsize_reg);
1115
1116	/* store the request as the current one we're doing */
1117	hs_ep->req = hs_req;
1118
1119	if (using_desc_dma(hsotg)) {
1120		u32 offset = 0;
1121		u32 mps = hs_ep->ep.maxpacket;
1122
1123		/* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */
1124		if (!dir_in) {
1125			if (!index)
1126				length = mps;
1127			else if (length % mps)
1128				length += (mps - (length % mps));
1129		}
1130
1131		/*
1132		 * If more data to send, adjust DMA for EP0 out data stage.
1133		 * ureq->dma stays unchanged, hence increment it by already
1134		 * passed passed data count before starting new transaction.
1135		 */
1136		if (!index && hsotg->ep0_state == DWC2_EP0_DATA_OUT &&
1137		    continuing)
1138			offset = ureq->actual;
1139
1140		/* Fill DDMA chain entries */
1141		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset,
1142						     length);
1143
1144		/* write descriptor chain address to control register */
1145		dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg);
1146
1147		dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n",
1148			__func__, (u32)hs_ep->desc_list_dma, dma_reg);
1149	} else {
1150		/* write size / packets */
1151		dwc2_writel(hsotg, epsize, epsize_reg);
1152
1153		if (using_dma(hsotg) && !continuing && (length != 0)) {
1154			/*
1155			 * write DMA address to control register, buffer
1156			 * already synced by dwc2_hsotg_ep_queue().
1157			 */
1158
1159			dwc2_writel(hsotg, ureq->dma, dma_reg);
1160
1161			dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n",
1162				__func__, &ureq->dma, dma_reg);
1163		}
1164	}
1165
1166	if (hs_ep->isochronous && hs_ep->interval == 1) {
1167		hs_ep->target_frame = dwc2_hsotg_read_frameno(hsotg);
1168		dwc2_gadget_incr_frame_num(hs_ep);
1169
1170		if (hs_ep->target_frame & 0x1)
1171			ctrl |= DXEPCTL_SETODDFR;
1172		else
1173			ctrl |= DXEPCTL_SETEVENFR;
1174	}
1175
1176	ctrl |= DXEPCTL_EPENA;	/* ensure ep enabled */
 
1177
1178	dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state);
1179
1180	/* For Setup request do not clear NAK */
1181	if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP))
1182		ctrl |= DXEPCTL_CNAK;	/* clear NAK set by core */
1183
1184	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
1185	dwc2_writel(hsotg, ctrl, epctrl_reg);
1186
1187	/*
1188	 * set these, it seems that DMA support increments past the end
1189	 * of the packet buffer so we need to calculate the length from
1190	 * this information.
1191	 */
1192	hs_ep->size_loaded = length;
1193	hs_ep->last_load = ureq->actual;
1194
1195	if (dir_in && !using_dma(hsotg)) {
1196		/* set these anyway, we may need them for non-periodic in */
1197		hs_ep->fifo_load = 0;
1198
1199		dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
1200	}
1201
1202	/*
 
 
 
 
 
 
 
 
1203	 * Note, trying to clear the NAK here causes problems with transmit
1204	 * on the S3C6400 ending up with the TXFIFO becoming full.
1205	 */
1206
1207	/* check ep is enabled */
1208	if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA))
1209		dev_dbg(hsotg->dev,
1210			"ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n",
1211			 index, dwc2_readl(hsotg, epctrl_reg));
1212
1213	dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n",
1214		__func__, dwc2_readl(hsotg, epctrl_reg));
1215
1216	/* enable ep interrupts */
1217	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1);
1218}
1219
1220/**
1221 * dwc2_hsotg_map_dma - map the DMA memory being used for the request
1222 * @hsotg: The device state.
1223 * @hs_ep: The endpoint the request is on.
1224 * @req: The request being processed.
1225 *
1226 * We've been asked to queue a request, so ensure that the memory buffer
1227 * is correctly setup for DMA. If we've been passed an extant DMA address
1228 * then ensure the buffer has been synced to memory. If our buffer has no
1229 * DMA memory, then we map the memory and mark our request to allow us to
1230 * cleanup on completion.
1231 */
1232static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg,
1233			      struct dwc2_hsotg_ep *hs_ep,
1234			     struct usb_request *req)
1235{
 
1236	int ret;
1237
 
 
 
 
1238	ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in);
1239	if (ret)
1240		goto dma_error;
1241
1242	return 0;
1243
1244dma_error:
1245	dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
1246		__func__, req->buf, req->length);
1247
1248	return -EIO;
1249}
1250
1251static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg,
1252						 struct dwc2_hsotg_ep *hs_ep,
1253						 struct dwc2_hsotg_req *hs_req)
1254{
1255	void *req_buf = hs_req->req.buf;
1256
1257	/* If dma is not being used or buffer is aligned */
1258	if (!using_dma(hsotg) || !((long)req_buf & 3))
1259		return 0;
1260
1261	WARN_ON(hs_req->saved_req_buf);
1262
1263	dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__,
1264		hs_ep->ep.name, req_buf, hs_req->req.length);
1265
1266	hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC);
1267	if (!hs_req->req.buf) {
1268		hs_req->req.buf = req_buf;
1269		dev_err(hsotg->dev,
1270			"%s: unable to allocate memory for bounce buffer\n",
1271			__func__);
1272		return -ENOMEM;
1273	}
1274
1275	/* Save actual buffer */
1276	hs_req->saved_req_buf = req_buf;
1277
1278	if (hs_ep->dir_in)
1279		memcpy(hs_req->req.buf, req_buf, hs_req->req.length);
1280	return 0;
1281}
1282
1283static void
1284dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg,
1285					 struct dwc2_hsotg_ep *hs_ep,
1286					 struct dwc2_hsotg_req *hs_req)
1287{
1288	/* If dma is not being used or buffer was aligned */
1289	if (!using_dma(hsotg) || !hs_req->saved_req_buf)
1290		return;
1291
1292	dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__,
1293		hs_ep->ep.name, hs_req->req.status, hs_req->req.actual);
1294
1295	/* Copy data from bounce buffer on successful out transfer */
1296	if (!hs_ep->dir_in && !hs_req->req.status)
1297		memcpy(hs_req->saved_req_buf, hs_req->req.buf,
1298		       hs_req->req.actual);
1299
1300	/* Free bounce buffer */
1301	kfree(hs_req->req.buf);
1302
1303	hs_req->req.buf = hs_req->saved_req_buf;
1304	hs_req->saved_req_buf = NULL;
1305}
1306
1307/**
1308 * dwc2_gadget_target_frame_elapsed - Checks target frame
1309 * @hs_ep: The driver endpoint to check
1310 *
1311 * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop
1312 * corresponding transfer.
1313 */
1314static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep)
1315{
1316	struct dwc2_hsotg *hsotg = hs_ep->parent;
1317	u32 target_frame = hs_ep->target_frame;
1318	u32 current_frame = hsotg->frame_number;
1319	bool frame_overrun = hs_ep->frame_overrun;
1320
1321	if (!frame_overrun && current_frame >= target_frame)
1322		return true;
1323
1324	if (frame_overrun && current_frame >= target_frame &&
1325	    ((current_frame - target_frame) < DSTS_SOFFN_LIMIT / 2))
1326		return true;
1327
1328	return false;
1329}
1330
1331/*
1332 * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers
1333 * @hsotg: The driver state
1334 * @hs_ep: the ep descriptor chain is for
1335 *
1336 * Called to update EP0 structure's pointers depend on stage of
1337 * control transfer.
1338 */
1339static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg,
1340					  struct dwc2_hsotg_ep *hs_ep)
1341{
1342	switch (hsotg->ep0_state) {
1343	case DWC2_EP0_SETUP:
1344	case DWC2_EP0_STATUS_OUT:
1345		hs_ep->desc_list = hsotg->setup_desc[0];
1346		hs_ep->desc_list_dma = hsotg->setup_desc_dma[0];
1347		break;
1348	case DWC2_EP0_DATA_IN:
1349	case DWC2_EP0_STATUS_IN:
1350		hs_ep->desc_list = hsotg->ctrl_in_desc;
1351		hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma;
1352		break;
1353	case DWC2_EP0_DATA_OUT:
1354		hs_ep->desc_list = hsotg->ctrl_out_desc;
1355		hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma;
1356		break;
1357	default:
1358		dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n",
1359			hsotg->ep0_state);
1360		return -EINVAL;
1361	}
1362
1363	return 0;
1364}
1365
1366static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
1367			       gfp_t gfp_flags)
1368{
1369	struct dwc2_hsotg_req *hs_req = our_req(req);
1370	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1371	struct dwc2_hsotg *hs = hs_ep->parent;
1372	bool first;
1373	int ret;
1374	u32 maxsize = 0;
1375	u32 mask = 0;
1376
1377
1378	dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
1379		ep->name, req, req->length, req->buf, req->no_interrupt,
1380		req->zero, req->short_not_ok);
1381
1382	/* Prevent new request submission when controller is suspended */
1383	if (hs->lx_state != DWC2_L0) {
1384		dev_dbg(hs->dev, "%s: submit request only in active state\n",
1385			__func__);
1386		return -EAGAIN;
1387	}
1388
1389	/* initialise status of the request */
1390	INIT_LIST_HEAD(&hs_req->queue);
1391	req->actual = 0;
1392	req->status = -EINPROGRESS;
1393
1394	/* In DDMA mode for ISOC's don't queue request if length greater
1395	 * than descriptor limits.
1396	 */
1397	if (using_desc_dma(hs) && hs_ep->isochronous) {
1398		maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask);
1399		if (hs_ep->dir_in && req->length > maxsize) {
1400			dev_err(hs->dev, "wrong length %d (maxsize=%d)\n",
1401				req->length, maxsize);
1402			return -EINVAL;
1403		}
1404
1405		if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) {
1406			dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n",
1407				req->length, hs_ep->ep.maxpacket);
1408			return -EINVAL;
1409		}
1410	}
1411
1412	ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req);
1413	if (ret)
1414		return ret;
1415
1416	/* if we're using DMA, sync the buffers as necessary */
1417	if (using_dma(hs)) {
1418		ret = dwc2_hsotg_map_dma(hs, hs_ep, req);
1419		if (ret)
1420			return ret;
1421	}
1422	/* If using descriptor DMA configure EP0 descriptor chain pointers */
1423	if (using_desc_dma(hs) && !hs_ep->index) {
1424		ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep);
1425		if (ret)
1426			return ret;
1427	}
1428
1429	first = list_empty(&hs_ep->queue);
1430	list_add_tail(&hs_req->queue, &hs_ep->queue);
1431
1432	/*
1433	 * Handle DDMA isochronous transfers separately - just add new entry
1434	 * to the descriptor chain.
1435	 * Transfer will be started once SW gets either one of NAK or
1436	 * OutTknEpDis interrupts.
1437	 */
1438	if (using_desc_dma(hs) && hs_ep->isochronous) {
1439		if (hs_ep->target_frame != TARGET_FRAME_INITIAL) {
1440			dma_addr_t dma_addr = hs_req->req.dma;
1441
1442			if (hs_req->req.num_sgs) {
1443				WARN_ON(hs_req->req.num_sgs > 1);
1444				dma_addr = sg_dma_address(hs_req->req.sg);
1445			}
1446			dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr,
1447						   hs_req->req.length);
1448		}
1449		return 0;
1450	}
1451
1452	/* Change EP direction if status phase request is after data out */
1453	if (!hs_ep->index && !req->length && !hs_ep->dir_in &&
1454	    hs->ep0_state == DWC2_EP0_DATA_OUT)
1455		hs_ep->dir_in = 1;
1456
1457	if (first) {
1458		if (!hs_ep->isochronous) {
1459			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1460			return 0;
1461		}
1462
1463		/* Update current frame number value. */
1464		hs->frame_number = dwc2_hsotg_read_frameno(hs);
1465		while (dwc2_gadget_target_frame_elapsed(hs_ep)) {
1466			dwc2_gadget_incr_frame_num(hs_ep);
1467			/* Update current frame number value once more as it
1468			 * changes here.
1469			 */
1470			hs->frame_number = dwc2_hsotg_read_frameno(hs);
1471		}
1472
1473		if (hs_ep->target_frame != TARGET_FRAME_INITIAL)
1474			dwc2_hsotg_start_req(hs, hs_ep, hs_req, false);
1475	}
1476	return 0;
1477}
1478
1479static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req,
1480				    gfp_t gfp_flags)
1481{
1482	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1483	struct dwc2_hsotg *hs = hs_ep->parent;
1484	unsigned long flags = 0;
1485	int ret = 0;
1486
1487	spin_lock_irqsave(&hs->lock, flags);
1488	ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags);
1489	spin_unlock_irqrestore(&hs->lock, flags);
1490
1491	return ret;
1492}
1493
1494static void dwc2_hsotg_ep_free_request(struct usb_ep *ep,
1495				       struct usb_request *req)
1496{
1497	struct dwc2_hsotg_req *hs_req = our_req(req);
1498
1499	kfree(hs_req);
1500}
1501
1502/**
1503 * dwc2_hsotg_complete_oursetup - setup completion callback
1504 * @ep: The endpoint the request was on.
1505 * @req: The request completed.
1506 *
1507 * Called on completion of any requests the driver itself
1508 * submitted that need cleaning up.
1509 */
1510static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep,
1511					 struct usb_request *req)
1512{
1513	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1514	struct dwc2_hsotg *hsotg = hs_ep->parent;
1515
1516	dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
1517
1518	dwc2_hsotg_ep_free_request(ep, req);
1519}
1520
1521/**
1522 * ep_from_windex - convert control wIndex value to endpoint
1523 * @hsotg: The driver state.
1524 * @windex: The control request wIndex field (in host order).
1525 *
1526 * Convert the given wIndex into a pointer to an driver endpoint
1527 * structure, or return NULL if it is not a valid endpoint.
1528 */
1529static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg,
1530					    u32 windex)
1531{
1532	struct dwc2_hsotg_ep *ep;
1533	int dir = (windex & USB_DIR_IN) ? 1 : 0;
1534	int idx = windex & 0x7F;
1535
1536	if (windex >= 0x100)
1537		return NULL;
1538
1539	if (idx > hsotg->num_of_eps)
1540		return NULL;
1541
1542	ep = index_to_ep(hsotg, idx, dir);
1543
1544	if (idx && ep->dir_in != dir)
1545		return NULL;
1546
1547	return ep;
1548}
1549
1550/**
1551 * dwc2_hsotg_set_test_mode - Enable usb Test Modes
1552 * @hsotg: The driver state.
1553 * @testmode: requested usb test mode
1554 * Enable usb Test Mode requested by the Host.
1555 */
1556int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode)
1557{
1558	int dctl = dwc2_readl(hsotg, DCTL);
1559
1560	dctl &= ~DCTL_TSTCTL_MASK;
1561	switch (testmode) {
1562	case TEST_J:
1563	case TEST_K:
1564	case TEST_SE0_NAK:
1565	case TEST_PACKET:
1566	case TEST_FORCE_EN:
1567		dctl |= testmode << DCTL_TSTCTL_SHIFT;
1568		break;
1569	default:
1570		return -EINVAL;
1571	}
1572	dwc2_writel(hsotg, dctl, DCTL);
1573	return 0;
1574}
1575
1576/**
1577 * dwc2_hsotg_send_reply - send reply to control request
1578 * @hsotg: The device state
1579 * @ep: Endpoint 0
1580 * @buff: Buffer for request
1581 * @length: Length of reply.
1582 *
1583 * Create a request and queue it on the given endpoint. This is useful as
1584 * an internal method of sending replies to certain control requests, etc.
1585 */
1586static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg,
1587				 struct dwc2_hsotg_ep *ep,
1588				void *buff,
1589				int length)
1590{
1591	struct usb_request *req;
1592	int ret;
1593
1594	dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
1595
1596	req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
1597	hsotg->ep0_reply = req;
1598	if (!req) {
1599		dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
1600		return -ENOMEM;
1601	}
1602
1603	req->buf = hsotg->ep0_buff;
1604	req->length = length;
1605	/*
1606	 * zero flag is for sending zlp in DATA IN stage. It has no impact on
1607	 * STATUS stage.
1608	 */
1609	req->zero = 0;
1610	req->complete = dwc2_hsotg_complete_oursetup;
1611
1612	if (length)
1613		memcpy(req->buf, buff, length);
1614
1615	ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
1616	if (ret) {
1617		dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
1618		return ret;
1619	}
1620
1621	return 0;
1622}
1623
1624/**
1625 * dwc2_hsotg_process_req_status - process request GET_STATUS
1626 * @hsotg: The device state
1627 * @ctrl: USB control request
1628 */
1629static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg,
1630					 struct usb_ctrlrequest *ctrl)
1631{
1632	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1633	struct dwc2_hsotg_ep *ep;
1634	__le16 reply;
1635	int ret;
1636
1637	dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
1638
1639	if (!ep0->dir_in) {
1640		dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
1641		return -EINVAL;
1642	}
1643
1644	switch (ctrl->bRequestType & USB_RECIP_MASK) {
1645	case USB_RECIP_DEVICE:
1646		/*
1647		 * bit 0 => self powered
1648		 * bit 1 => remote wakeup
1649		 */
1650		reply = cpu_to_le16(0);
1651		break;
1652
1653	case USB_RECIP_INTERFACE:
1654		/* currently, the data result should be zero */
1655		reply = cpu_to_le16(0);
1656		break;
1657
1658	case USB_RECIP_ENDPOINT:
1659		ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
1660		if (!ep)
1661			return -ENOENT;
1662
1663		reply = cpu_to_le16(ep->halted ? 1 : 0);
1664		break;
1665
1666	default:
1667		return 0;
1668	}
1669
1670	if (le16_to_cpu(ctrl->wLength) != 2)
1671		return -EINVAL;
1672
1673	ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2);
1674	if (ret) {
1675		dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
1676		return ret;
1677	}
1678
1679	return 1;
1680}
1681
1682static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now);
1683
1684/**
1685 * get_ep_head - return the first request on the endpoint
1686 * @hs_ep: The controller endpoint to get
1687 *
1688 * Get the first request on the endpoint.
1689 */
1690static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep)
1691{
1692	return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req,
1693					queue);
1694}
1695
1696/**
1697 * dwc2_gadget_start_next_request - Starts next request from ep queue
1698 * @hs_ep: Endpoint structure
1699 *
1700 * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked
1701 * in its handler. Hence we need to unmask it here to be able to do
1702 * resynchronization.
1703 */
1704static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep)
1705{
1706	u32 mask;
1707	struct dwc2_hsotg *hsotg = hs_ep->parent;
1708	int dir_in = hs_ep->dir_in;
1709	struct dwc2_hsotg_req *hs_req;
1710	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
1711
1712	if (!list_empty(&hs_ep->queue)) {
1713		hs_req = get_ep_head(hs_ep);
1714		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false);
1715		return;
1716	}
1717	if (!hs_ep->isochronous)
1718		return;
1719
1720	if (dir_in) {
1721		dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n",
1722			__func__);
1723	} else {
1724		dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n",
1725			__func__);
1726		mask = dwc2_readl(hsotg, epmsk_reg);
1727		mask |= DOEPMSK_OUTTKNEPDISMSK;
1728		dwc2_writel(hsotg, mask, epmsk_reg);
1729	}
1730}
1731
1732/**
1733 * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE
1734 * @hsotg: The device state
1735 * @ctrl: USB control request
1736 */
1737static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg,
1738					  struct usb_ctrlrequest *ctrl)
1739{
1740	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1741	struct dwc2_hsotg_req *hs_req;
 
1742	bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
1743	struct dwc2_hsotg_ep *ep;
1744	int ret;
1745	bool halted;
1746	u32 recip;
1747	u32 wValue;
1748	u32 wIndex;
1749
1750	dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
1751		__func__, set ? "SET" : "CLEAR");
1752
1753	wValue = le16_to_cpu(ctrl->wValue);
1754	wIndex = le16_to_cpu(ctrl->wIndex);
1755	recip = ctrl->bRequestType & USB_RECIP_MASK;
1756
1757	switch (recip) {
1758	case USB_RECIP_DEVICE:
1759		switch (wValue) {
1760		case USB_DEVICE_REMOTE_WAKEUP:
1761			hsotg->remote_wakeup_allowed = 1;
1762			break;
1763
1764		case USB_DEVICE_TEST_MODE:
1765			if ((wIndex & 0xff) != 0)
1766				return -EINVAL;
1767			if (!set)
1768				return -EINVAL;
1769
1770			hsotg->test_mode = wIndex >> 8;
1771			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1772			if (ret) {
1773				dev_err(hsotg->dev,
1774					"%s: failed to send reply\n", __func__);
1775				return ret;
1776			}
1777			break;
1778		default:
1779			return -ENOENT;
1780		}
1781		break;
1782
1783	case USB_RECIP_ENDPOINT:
1784		ep = ep_from_windex(hsotg, wIndex);
1785		if (!ep) {
1786			dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
1787				__func__, wIndex);
1788			return -ENOENT;
1789		}
1790
1791		switch (wValue) {
1792		case USB_ENDPOINT_HALT:
1793			halted = ep->halted;
1794
1795			dwc2_hsotg_ep_sethalt(&ep->ep, set, true);
1796
1797			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1798			if (ret) {
1799				dev_err(hsotg->dev,
1800					"%s: failed to send reply\n", __func__);
1801				return ret;
1802			}
1803
1804			/*
1805			 * we have to complete all requests for ep if it was
1806			 * halted, and the halt was cleared by CLEAR_FEATURE
1807			 */
1808
1809			if (!set && halted) {
1810				/*
1811				 * If we have request in progress,
1812				 * then complete it
1813				 */
1814				if (ep->req) {
1815					hs_req = ep->req;
1816					ep->req = NULL;
1817					list_del_init(&hs_req->queue);
1818					if (hs_req->req.complete) {
1819						spin_unlock(&hsotg->lock);
1820						usb_gadget_giveback_request(
1821							&ep->ep, &hs_req->req);
1822						spin_lock(&hsotg->lock);
1823					}
1824				}
1825
1826				/* If we have pending request, then start it */
1827				if (!ep->req)
1828					dwc2_gadget_start_next_request(ep);
 
 
 
 
 
 
1829			}
1830
1831			break;
1832
1833		default:
1834			return -ENOENT;
1835		}
1836		break;
1837	default:
1838		return -ENOENT;
1839	}
1840	return 1;
1841}
1842
1843static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg);
1844
1845/**
1846 * dwc2_hsotg_stall_ep0 - stall ep0
1847 * @hsotg: The device state
1848 *
1849 * Set stall for ep0 as response for setup request.
1850 */
1851static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg)
1852{
1853	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1854	u32 reg;
1855	u32 ctrl;
1856
1857	dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
1858	reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0;
1859
1860	/*
1861	 * DxEPCTL_Stall will be cleared by EP once it has
1862	 * taken effect, so no need to clear later.
1863	 */
1864
1865	ctrl = dwc2_readl(hsotg, reg);
1866	ctrl |= DXEPCTL_STALL;
1867	ctrl |= DXEPCTL_CNAK;
1868	dwc2_writel(hsotg, ctrl, reg);
1869
1870	dev_dbg(hsotg->dev,
1871		"written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n",
1872		ctrl, reg, dwc2_readl(hsotg, reg));
1873
1874	 /*
1875	  * complete won't be called, so we enqueue
1876	  * setup request here
1877	  */
1878	 dwc2_hsotg_enqueue_setup(hsotg);
1879}
1880
1881/**
1882 * dwc2_hsotg_process_control - process a control request
1883 * @hsotg: The device state
1884 * @ctrl: The control request received
1885 *
1886 * The controller has received the SETUP phase of a control request, and
1887 * needs to work out what to do next (and whether to pass it on to the
1888 * gadget driver).
1889 */
1890static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg,
1891				       struct usb_ctrlrequest *ctrl)
1892{
1893	struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0];
1894	int ret = 0;
1895	u32 dcfg;
1896
1897	dev_dbg(hsotg->dev,
1898		"ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n",
1899		ctrl->bRequestType, ctrl->bRequest, ctrl->wValue,
1900		ctrl->wIndex, ctrl->wLength);
1901
1902	if (ctrl->wLength == 0) {
1903		ep0->dir_in = 1;
1904		hsotg->ep0_state = DWC2_EP0_STATUS_IN;
1905	} else if (ctrl->bRequestType & USB_DIR_IN) {
1906		ep0->dir_in = 1;
1907		hsotg->ep0_state = DWC2_EP0_DATA_IN;
1908	} else {
1909		ep0->dir_in = 0;
1910		hsotg->ep0_state = DWC2_EP0_DATA_OUT;
1911	}
1912
1913	if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
1914		switch (ctrl->bRequest) {
1915		case USB_REQ_SET_ADDRESS:
1916			hsotg->connected = 1;
1917			dcfg = dwc2_readl(hsotg, DCFG);
1918			dcfg &= ~DCFG_DEVADDR_MASK;
1919			dcfg |= (le16_to_cpu(ctrl->wValue) <<
1920				 DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK;
1921			dwc2_writel(hsotg, dcfg, DCFG);
1922
1923			dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
1924
1925			ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0);
1926			return;
1927
1928		case USB_REQ_GET_STATUS:
1929			ret = dwc2_hsotg_process_req_status(hsotg, ctrl);
1930			break;
1931
1932		case USB_REQ_CLEAR_FEATURE:
1933		case USB_REQ_SET_FEATURE:
1934			ret = dwc2_hsotg_process_req_feature(hsotg, ctrl);
1935			break;
1936		}
1937	}
1938
1939	/* as a fallback, try delivering it to the driver to deal with */
1940
1941	if (ret == 0 && hsotg->driver) {
1942		spin_unlock(&hsotg->lock);
1943		ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
1944		spin_lock(&hsotg->lock);
1945		if (ret < 0)
1946			dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
1947	}
1948
1949	hsotg->delayed_status = false;
1950	if (ret == USB_GADGET_DELAYED_STATUS)
1951		hsotg->delayed_status = true;
1952
1953	/*
1954	 * the request is either unhandlable, or is not formatted correctly
1955	 * so respond with a STALL for the status stage to indicate failure.
1956	 */
1957
1958	if (ret < 0)
1959		dwc2_hsotg_stall_ep0(hsotg);
1960}
1961
1962/**
1963 * dwc2_hsotg_complete_setup - completion of a setup transfer
1964 * @ep: The endpoint the request was on.
1965 * @req: The request completed.
1966 *
1967 * Called on completion of any requests the driver itself submitted for
1968 * EP0 setup packets
1969 */
1970static void dwc2_hsotg_complete_setup(struct usb_ep *ep,
1971				      struct usb_request *req)
1972{
1973	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
1974	struct dwc2_hsotg *hsotg = hs_ep->parent;
1975
1976	if (req->status < 0) {
1977		dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
1978		return;
1979	}
1980
1981	spin_lock(&hsotg->lock);
1982	if (req->actual == 0)
1983		dwc2_hsotg_enqueue_setup(hsotg);
1984	else
1985		dwc2_hsotg_process_control(hsotg, req->buf);
1986	spin_unlock(&hsotg->lock);
1987}
1988
1989/**
1990 * dwc2_hsotg_enqueue_setup - start a request for EP0 packets
1991 * @hsotg: The device state.
1992 *
1993 * Enqueue a request on EP0 if necessary to received any SETUP packets
1994 * received from the host.
1995 */
1996static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg)
1997{
1998	struct usb_request *req = hsotg->ctrl_req;
1999	struct dwc2_hsotg_req *hs_req = our_req(req);
2000	int ret;
2001
2002	dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
2003
2004	req->zero = 0;
2005	req->length = 8;
2006	req->buf = hsotg->ctrl_buff;
2007	req->complete = dwc2_hsotg_complete_setup;
2008
2009	if (!list_empty(&hs_req->queue)) {
2010		dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
2011		return;
2012	}
2013
2014	hsotg->eps_out[0]->dir_in = 0;
2015	hsotg->eps_out[0]->send_zlp = 0;
2016	hsotg->ep0_state = DWC2_EP0_SETUP;
2017
2018	ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC);
2019	if (ret < 0) {
2020		dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
2021		/*
2022		 * Don't think there's much we can do other than watch the
2023		 * driver fail.
2024		 */
2025	}
2026}
2027
2028static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg,
2029				   struct dwc2_hsotg_ep *hs_ep)
2030{
2031	u32 ctrl;
2032	u8 index = hs_ep->index;
2033	u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index);
2034	u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index);
2035
2036	if (hs_ep->dir_in)
2037		dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n",
2038			index);
2039	else
2040		dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n",
2041			index);
2042	if (using_desc_dma(hsotg)) {
2043		/* Not specific buffer needed for ep0 ZLP */
2044		dma_addr_t dma = hs_ep->desc_list_dma;
2045
2046		if (!index)
2047			dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep);
 
2048
2049		dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0);
2050	} else {
2051		dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
2052			    DXEPTSIZ_XFERSIZE(0),
2053			    epsiz_reg);
2054	}
2055
2056	ctrl = dwc2_readl(hsotg, epctl_reg);
2057	ctrl |= DXEPCTL_CNAK;  /* clear NAK set by core */
2058	ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */
2059	ctrl |= DXEPCTL_USBACTEP;
2060	dwc2_writel(hsotg, ctrl, epctl_reg);
2061}
2062
2063/**
2064 * dwc2_hsotg_complete_request - complete a request given to us
2065 * @hsotg: The device state.
2066 * @hs_ep: The endpoint the request was on.
2067 * @hs_req: The request to complete.
2068 * @result: The result code (0 => Ok, otherwise errno)
2069 *
2070 * The given request has finished, so call the necessary completion
2071 * if it has one and then look to see if we can start a new request
2072 * on the endpoint.
2073 *
2074 * Note, expects the ep to already be locked as appropriate.
2075 */
2076static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg,
2077					struct dwc2_hsotg_ep *hs_ep,
2078				       struct dwc2_hsotg_req *hs_req,
2079				       int result)
2080{
 
 
2081	if (!hs_req) {
2082		dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
2083		return;
2084	}
2085
2086	dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
2087		hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
2088
2089	/*
2090	 * only replace the status if we've not already set an error
2091	 * from a previous transaction
2092	 */
2093
2094	if (hs_req->req.status == -EINPROGRESS)
2095		hs_req->req.status = result;
2096
2097	if (using_dma(hsotg))
2098		dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
2099
2100	dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req);
2101
2102	hs_ep->req = NULL;
2103	list_del_init(&hs_req->queue);
2104
2105	/*
2106	 * call the complete request with the locks off, just in case the
2107	 * request tries to queue more work for this endpoint.
2108	 */
2109
2110	if (hs_req->req.complete) {
2111		spin_unlock(&hsotg->lock);
2112		usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req);
2113		spin_lock(&hsotg->lock);
2114	}
2115
2116	/* In DDMA don't need to proceed to starting of next ISOC request */
2117	if (using_desc_dma(hsotg) && hs_ep->isochronous)
2118		return;
2119
2120	/*
2121	 * Look to see if there is anything else to do. Note, the completion
2122	 * of the previous request may have caused a new request to be started
2123	 * so be careful when doing this.
2124	 */
2125
2126	if (!hs_ep->req && result >= 0)
2127		dwc2_gadget_start_next_request(hs_ep);
2128}
2129
2130/*
2131 * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA
2132 * @hs_ep: The endpoint the request was on.
2133 *
2134 * Get first request from the ep queue, determine descriptor on which complete
2135 * happened. SW discovers which descriptor currently in use by HW, adjusts
2136 * dma_address and calculates index of completed descriptor based on the value
2137 * of DEPDMA register. Update actual length of request, giveback to gadget.
2138 */
2139static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep)
2140{
2141	struct dwc2_hsotg *hsotg = hs_ep->parent;
2142	struct dwc2_hsotg_req *hs_req;
2143	struct usb_request *ureq;
2144	u32 desc_sts;
2145	u32 mask;
2146
2147	desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2148
2149	/* Process only descriptors with buffer status set to DMA done */
2150	while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >>
2151		DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) {
2152
2153		hs_req = get_ep_head(hs_ep);
2154		if (!hs_req) {
2155			dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__);
2156			return;
2157		}
2158		ureq = &hs_req->req;
2159
2160		/* Check completion status */
2161		if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT ==
2162			DEV_DMA_STS_SUCC) {
2163			mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK :
2164				DEV_DMA_ISOC_RX_NBYTES_MASK;
2165			ureq->actual = ureq->length - ((desc_sts & mask) >>
2166				DEV_DMA_ISOC_NBYTES_SHIFT);
2167
2168			/* Adjust actual len for ISOC Out if len is
2169			 * not align of 4
2170			 */
2171			if (!hs_ep->dir_in && ureq->length & 0x3)
2172				ureq->actual += 4 - (ureq->length & 0x3);
2173
2174			/* Set actual frame number for completed transfers */
2175			ureq->frame_number =
2176				(desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >>
2177				DEV_DMA_ISOC_FRNUM_SHIFT;
2178		}
2179
2180		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2181
2182		hs_ep->compl_desc++;
2183		if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1))
2184			hs_ep->compl_desc = 0;
2185		desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status;
2186	}
2187}
2188
2189/*
2190 * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC.
2191 * @hs_ep: The isochronous endpoint.
2192 *
2193 * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA
2194 * interrupt. Reset target frame and next_desc to allow to start
2195 * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS
2196 * interrupt for OUT direction.
2197 */
2198static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep)
2199{
2200	struct dwc2_hsotg *hsotg = hs_ep->parent;
2201
2202	if (!hs_ep->dir_in)
2203		dwc2_flush_rx_fifo(hsotg);
2204	dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0);
2205
2206	hs_ep->target_frame = TARGET_FRAME_INITIAL;
2207	hs_ep->next_desc = 0;
2208	hs_ep->compl_desc = 0;
2209}
2210
2211/**
2212 * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint
2213 * @hsotg: The device state.
2214 * @ep_idx: The endpoint index for the data
2215 * @size: The size of data in the fifo, in bytes
2216 *
2217 * The FIFO status shows there is data to read from the FIFO for a given
2218 * endpoint, so sort out whether we need to read the data into a request
2219 * that has been made for that endpoint.
2220 */
2221static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size)
2222{
2223	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx];
2224	struct dwc2_hsotg_req *hs_req = hs_ep->req;
 
2225	int to_read;
2226	int max_req;
2227	int read_ptr;
2228
 
2229	if (!hs_req) {
2230		u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx));
2231		int ptr;
2232
2233		dev_dbg(hsotg->dev,
2234			"%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n",
2235			 __func__, size, ep_idx, epctl);
2236
2237		/* dump the data from the FIFO, we've nothing we can do */
2238		for (ptr = 0; ptr < size; ptr += 4)
2239			(void)dwc2_readl(hsotg, EPFIFO(ep_idx));
2240
2241		return;
2242	}
2243
2244	to_read = size;
2245	read_ptr = hs_req->req.actual;
2246	max_req = hs_req->req.length - read_ptr;
2247
2248	dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
2249		__func__, to_read, max_req, read_ptr, hs_req->req.length);
2250
2251	if (to_read > max_req) {
2252		/*
2253		 * more data appeared than we where willing
2254		 * to deal with in this request.
2255		 */
2256
2257		/* currently we don't deal this */
2258		WARN_ON_ONCE(1);
2259	}
2260
2261	hs_ep->total_data += to_read;
2262	hs_req->req.actual += to_read;
2263	to_read = DIV_ROUND_UP(to_read, 4);
2264
2265	/*
2266	 * note, we might over-write the buffer end by 3 bytes depending on
2267	 * alignment of the data.
2268	 */
2269	dwc2_readl_rep(hsotg, EPFIFO(ep_idx),
2270		       hs_req->req.buf + read_ptr, to_read);
2271}
2272
2273/**
2274 * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint
2275 * @hsotg: The device instance
2276 * @dir_in: If IN zlp
2277 *
2278 * Generate a zero-length IN packet request for terminating a SETUP
2279 * transaction.
2280 *
2281 * Note, since we don't write any data to the TxFIFO, then it is
2282 * currently believed that we do not need to wait for any space in
2283 * the TxFIFO.
2284 */
2285static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in)
2286{
2287	/* eps_out[0] is used in both directions */
2288	hsotg->eps_out[0]->dir_in = dir_in;
2289	hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT;
2290
2291	dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]);
2292}
2293
2294static void dwc2_hsotg_change_ep_iso_parity(struct dwc2_hsotg *hsotg,
2295					    u32 epctl_reg)
2296{
2297	u32 ctrl;
2298
2299	ctrl = dwc2_readl(hsotg, epctl_reg);
2300	if (ctrl & DXEPCTL_EOFRNUM)
2301		ctrl |= DXEPCTL_SETEVENFR;
2302	else
2303		ctrl |= DXEPCTL_SETODDFR;
2304	dwc2_writel(hsotg, ctrl, epctl_reg);
2305}
2306
2307/*
2308 * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc
2309 * @hs_ep - The endpoint on which transfer went
2310 *
2311 * Iterate over endpoints descriptor chain and get info on bytes remained
2312 * in DMA descriptors after transfer has completed. Used for non isoc EPs.
2313 */
2314static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep)
2315{
2316	struct dwc2_hsotg *hsotg = hs_ep->parent;
2317	unsigned int bytes_rem = 0;
2318	struct dwc2_dma_desc *desc = hs_ep->desc_list;
2319	int i;
2320	u32 status;
2321
2322	if (!desc)
2323		return -EINVAL;
2324
2325	for (i = 0; i < hs_ep->desc_count; ++i) {
2326		status = desc->status;
2327		bytes_rem += status & DEV_DMA_NBYTES_MASK;
2328
2329		if (status & DEV_DMA_STS_MASK)
2330			dev_err(hsotg->dev, "descriptor %d closed with %x\n",
2331				i, status & DEV_DMA_STS_MASK);
2332		desc++;
2333	}
2334
2335	return bytes_rem;
2336}
2337
2338/**
2339 * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
2340 * @hsotg: The device instance
2341 * @epnum: The endpoint received from
2342 *
2343 * The RXFIFO has delivered an OutDone event, which means that the data
2344 * transfer for an OUT endpoint has been completed, either by a short
2345 * packet or by the finish of a transfer.
2346 */
2347static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum)
2348{
2349	u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum));
2350	struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum];
2351	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2352	struct usb_request *req = &hs_req->req;
2353	unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2354	int result = 0;
2355
2356	if (!hs_req) {
2357		dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
2358		return;
2359	}
2360
2361	if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) {
2362		dev_dbg(hsotg->dev, "zlp packet received\n");
2363		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2364		dwc2_hsotg_enqueue_setup(hsotg);
2365		return;
2366	}
2367
2368	if (using_desc_dma(hsotg))
2369		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2370
2371	if (using_dma(hsotg)) {
2372		unsigned int size_done;
2373
2374		/*
2375		 * Calculate the size of the transfer by checking how much
2376		 * is left in the endpoint size register and then working it
2377		 * out from the amount we loaded for the transfer.
2378		 *
2379		 * We need to do this as DMA pointers are always 32bit aligned
2380		 * so may overshoot/undershoot the transfer.
2381		 */
2382
2383		size_done = hs_ep->size_loaded - size_left;
2384		size_done += hs_ep->last_load;
2385
2386		req->actual = size_done;
2387	}
2388
2389	/* if there is more request to do, schedule new transfer */
2390	if (req->actual < req->length && size_left == 0) {
2391		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2392		return;
2393	}
2394
2395	if (req->actual < req->length && req->short_not_ok) {
2396		dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
2397			__func__, req->actual, req->length);
2398
2399		/*
2400		 * todo - what should we return here? there's no one else
2401		 * even bothering to check the status.
2402		 */
2403	}
2404
2405	/* DDMA IN status phase will start from StsPhseRcvd interrupt */
2406	if (!using_desc_dma(hsotg) && epnum == 0 &&
2407	    hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
2408		/* Move to STATUS IN */
2409		if (!hsotg->delayed_status)
2410			dwc2_hsotg_ep0_zlp(hsotg, true);
2411	}
2412
2413	/*
2414	 * Slave mode OUT transfers do not go through XferComplete so
2415	 * adjust the ISOC parity here.
2416	 */
2417	if (!using_dma(hsotg)) {
 
2418		if (hs_ep->isochronous && hs_ep->interval == 1)
2419			dwc2_hsotg_change_ep_iso_parity(hsotg, DOEPCTL(epnum));
2420		else if (hs_ep->isochronous && hs_ep->interval > 1)
2421			dwc2_gadget_incr_frame_num(hs_ep);
2422	}
2423
2424	/* Set actual frame number for completed transfers */
2425	if (!using_desc_dma(hsotg) && hs_ep->isochronous)
2426		req->frame_number = hsotg->frame_number;
2427
2428	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429}
2430
2431/**
2432 * dwc2_hsotg_handle_rx - RX FIFO has data
2433 * @hsotg: The device instance
2434 *
2435 * The IRQ handler has detected that the RX FIFO has some data in it
2436 * that requires processing, so find out what is in there and do the
2437 * appropriate read.
2438 *
2439 * The RXFIFO is a true FIFO, the packets coming out are still in packet
2440 * chunks, so if you have x packets received on an endpoint you'll get x
2441 * FIFO events delivered, each with a packet's worth of data in it.
2442 *
2443 * When using DMA, we should not be processing events from the RXFIFO
2444 * as the actual data should be sent to the memory directly and we turn
2445 * on the completion interrupts to get notifications of transfer completion.
2446 */
2447static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg)
2448{
2449	u32 grxstsr = dwc2_readl(hsotg, GRXSTSP);
2450	u32 epnum, status, size;
2451
2452	WARN_ON(using_dma(hsotg));
2453
2454	epnum = grxstsr & GRXSTS_EPNUM_MASK;
2455	status = grxstsr & GRXSTS_PKTSTS_MASK;
2456
2457	size = grxstsr & GRXSTS_BYTECNT_MASK;
2458	size >>= GRXSTS_BYTECNT_SHIFT;
2459
2460	dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
2461		__func__, grxstsr, size, epnum);
2462
2463	switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) {
2464	case GRXSTS_PKTSTS_GLOBALOUTNAK:
2465		dev_dbg(hsotg->dev, "GLOBALOUTNAK\n");
2466		break;
2467
2468	case GRXSTS_PKTSTS_OUTDONE:
2469		dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
2470			dwc2_hsotg_read_frameno(hsotg));
2471
2472		if (!using_dma(hsotg))
2473			dwc2_hsotg_handle_outdone(hsotg, epnum);
2474		break;
2475
2476	case GRXSTS_PKTSTS_SETUPDONE:
2477		dev_dbg(hsotg->dev,
2478			"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2479			dwc2_hsotg_read_frameno(hsotg),
2480			dwc2_readl(hsotg, DOEPCTL(0)));
2481		/*
2482		 * Call dwc2_hsotg_handle_outdone here if it was not called from
2483		 * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't
2484		 * generate GRXSTS_PKTSTS_OUTDONE for setup packet.
2485		 */
2486		if (hsotg->ep0_state == DWC2_EP0_SETUP)
2487			dwc2_hsotg_handle_outdone(hsotg, epnum);
2488		break;
2489
2490	case GRXSTS_PKTSTS_OUTRX:
2491		dwc2_hsotg_rx_data(hsotg, epnum, size);
2492		break;
2493
2494	case GRXSTS_PKTSTS_SETUPRX:
2495		dev_dbg(hsotg->dev,
2496			"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
2497			dwc2_hsotg_read_frameno(hsotg),
2498			dwc2_readl(hsotg, DOEPCTL(0)));
2499
2500		WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP);
2501
2502		dwc2_hsotg_rx_data(hsotg, epnum, size);
2503		break;
2504
2505	default:
2506		dev_warn(hsotg->dev, "%s: unknown status %08x\n",
2507			 __func__, grxstsr);
2508
2509		dwc2_hsotg_dump(hsotg);
2510		break;
2511	}
2512}
2513
2514/**
2515 * dwc2_hsotg_ep0_mps - turn max packet size into register setting
2516 * @mps: The maximum packet size in bytes.
2517 */
2518static u32 dwc2_hsotg_ep0_mps(unsigned int mps)
2519{
2520	switch (mps) {
2521	case 64:
2522		return D0EPCTL_MPS_64;
2523	case 32:
2524		return D0EPCTL_MPS_32;
2525	case 16:
2526		return D0EPCTL_MPS_16;
2527	case 8:
2528		return D0EPCTL_MPS_8;
2529	}
2530
2531	/* bad max packet size, warn and return invalid result */
2532	WARN_ON(1);
2533	return (u32)-1;
2534}
2535
2536/**
2537 * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field
2538 * @hsotg: The driver state.
2539 * @ep: The index number of the endpoint
2540 * @mps: The maximum packet size in bytes
2541 * @mc: The multicount value
2542 * @dir_in: True if direction is in.
2543 *
2544 * Configure the maximum packet size for the given endpoint, updating
2545 * the hardware control registers to reflect this.
2546 */
2547static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg,
2548					unsigned int ep, unsigned int mps,
2549					unsigned int mc, unsigned int dir_in)
2550{
2551	struct dwc2_hsotg_ep *hs_ep;
 
 
 
2552	u32 reg;
2553
2554	hs_ep = index_to_ep(hsotg, ep, dir_in);
2555	if (!hs_ep)
2556		return;
2557
2558	if (ep == 0) {
2559		u32 mps_bytes = mps;
2560
2561		/* EP0 is a special case */
2562		mps = dwc2_hsotg_ep0_mps(mps_bytes);
2563		if (mps > 3)
2564			goto bad_mps;
2565		hs_ep->ep.maxpacket = mps_bytes;
2566		hs_ep->mc = 1;
2567	} else {
2568		if (mps > 1024)
 
2569			goto bad_mps;
2570		hs_ep->mc = mc;
2571		if (mc > 3)
 
2572			goto bad_mps;
2573		hs_ep->ep.maxpacket = mps;
2574	}
2575
2576	if (dir_in) {
2577		reg = dwc2_readl(hsotg, DIEPCTL(ep));
2578		reg &= ~DXEPCTL_MPS_MASK;
2579		reg |= mps;
2580		dwc2_writel(hsotg, reg, DIEPCTL(ep));
2581	} else {
2582		reg = dwc2_readl(hsotg, DOEPCTL(ep));
2583		reg &= ~DXEPCTL_MPS_MASK;
2584		reg |= mps;
2585		dwc2_writel(hsotg, reg, DOEPCTL(ep));
2586	}
2587
2588	return;
2589
2590bad_mps:
2591	dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
2592}
2593
2594/**
2595 * dwc2_hsotg_txfifo_flush - flush Tx FIFO
2596 * @hsotg: The driver state
2597 * @idx: The index for the endpoint (0..15)
2598 */
2599static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx)
2600{
2601	dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH,
2602		    GRSTCTL);
 
 
 
2603
2604	/* wait until the fifo is flushed */
2605	if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100))
2606		dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n",
2607			 __func__);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2608}
2609
2610/**
2611 * dwc2_hsotg_trytx - check to see if anything needs transmitting
2612 * @hsotg: The driver state
2613 * @hs_ep: The driver endpoint to check.
2614 *
2615 * Check to see if there is a request that has data to send, and if so
2616 * make an attempt to write data into the FIFO.
2617 */
2618static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg,
2619			    struct dwc2_hsotg_ep *hs_ep)
2620{
2621	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2622
2623	if (!hs_ep->dir_in || !hs_req) {
2624		/**
2625		 * if request is not enqueued, we disable interrupts
2626		 * for endpoints, excepting ep0
2627		 */
2628		if (hs_ep->index != 0)
2629			dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index,
2630					      hs_ep->dir_in, 0);
2631		return 0;
2632	}
2633
2634	if (hs_req->req.actual < hs_req->req.length) {
2635		dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
2636			hs_ep->index);
2637		return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req);
2638	}
2639
2640	return 0;
2641}
2642
2643/**
2644 * dwc2_hsotg_complete_in - complete IN transfer
2645 * @hsotg: The device state.
2646 * @hs_ep: The endpoint that has just completed.
2647 *
2648 * An IN transfer has been completed, update the transfer's state and then
2649 * call the relevant completion routines.
2650 */
2651static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg,
2652				   struct dwc2_hsotg_ep *hs_ep)
2653{
2654	struct dwc2_hsotg_req *hs_req = hs_ep->req;
2655	u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index));
2656	int size_left, size_done;
2657
2658	if (!hs_req) {
2659		dev_dbg(hsotg->dev, "XferCompl but no req\n");
2660		return;
2661	}
2662
2663	/* Finish ZLP handling for IN EP0 transactions */
2664	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) {
2665		dev_dbg(hsotg->dev, "zlp packet sent\n");
2666
2667		/*
2668		 * While send zlp for DWC2_EP0_STATUS_IN EP direction was
2669		 * changed to IN. Change back to complete OUT transfer request
2670		 */
2671		hs_ep->dir_in = 0;
2672
2673		dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2674		if (hsotg->test_mode) {
2675			int ret;
2676
2677			ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode);
2678			if (ret < 0) {
2679				dev_dbg(hsotg->dev, "Invalid Test #%d\n",
2680					hsotg->test_mode);
2681				dwc2_hsotg_stall_ep0(hsotg);
2682				return;
2683			}
2684		}
2685		dwc2_hsotg_enqueue_setup(hsotg);
2686		return;
2687	}
2688
2689	/*
2690	 * Calculate the size of the transfer by checking how much is left
2691	 * in the endpoint size register and then working it out from
2692	 * the amount we loaded for the transfer.
2693	 *
2694	 * We do this even for DMA, as the transfer may have incremented
2695	 * past the end of the buffer (DMA transfers are always 32bit
2696	 * aligned).
2697	 */
2698	if (using_desc_dma(hsotg)) {
2699		size_left = dwc2_gadget_get_xfersize_ddma(hs_ep);
2700		if (size_left < 0)
2701			dev_err(hsotg->dev, "error parsing DDMA results %d\n",
2702				size_left);
2703	} else {
2704		size_left = DXEPTSIZ_XFERSIZE_GET(epsize);
2705	}
2706
2707	size_done = hs_ep->size_loaded - size_left;
2708	size_done += hs_ep->last_load;
2709
2710	if (hs_req->req.actual != size_done)
2711		dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
2712			__func__, hs_req->req.actual, size_done);
2713
2714	hs_req->req.actual = size_done;
2715	dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n",
2716		hs_req->req.length, hs_req->req.actual, hs_req->req.zero);
2717
2718	if (!size_left && hs_req->req.actual < hs_req->req.length) {
2719		dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
2720		dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true);
2721		return;
2722	}
2723
2724	/* Zlp for all endpoints, for ep0 only in DATA IN stage */
2725	if (hs_ep->send_zlp) {
2726		dwc2_hsotg_program_zlp(hsotg, hs_ep);
2727		hs_ep->send_zlp = 0;
2728		/* transfer will be completed on next complete interrupt */
2729		return;
2730	}
2731
2732	if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) {
2733		/* Move to STATUS OUT */
2734		dwc2_hsotg_ep0_zlp(hsotg, false);
2735		return;
2736	}
2737
2738	dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0);
2739}
2740
2741/**
2742 * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep
2743 * @hsotg: The device state.
2744 * @idx: Index of ep.
2745 * @dir_in: Endpoint direction 1-in 0-out.
2746 *
2747 * Reads for endpoint with given index and direction, by masking
2748 * epint_reg with coresponding mask.
2749 */
2750static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg,
2751					  unsigned int idx, int dir_in)
2752{
2753	u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK;
2754	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2755	u32 ints;
2756	u32 mask;
2757	u32 diepempmsk;
2758
2759	mask = dwc2_readl(hsotg, epmsk_reg);
2760	diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK);
2761	mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0;
2762	mask |= DXEPINT_SETUP_RCVD;
2763
2764	ints = dwc2_readl(hsotg, epint_reg);
2765	ints &= mask;
2766	return ints;
2767}
2768
2769/**
2770 * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD
2771 * @hs_ep: The endpoint on which interrupt is asserted.
2772 *
2773 * This interrupt indicates that the endpoint has been disabled per the
2774 * application's request.
2775 *
2776 * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK,
2777 * in case of ISOC completes current request.
2778 *
2779 * For ISOC-OUT endpoints completes expired requests. If there is remaining
2780 * request starts it.
2781 */
2782static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep)
2783{
2784	struct dwc2_hsotg *hsotg = hs_ep->parent;
2785	struct dwc2_hsotg_req *hs_req;
2786	unsigned char idx = hs_ep->index;
2787	int dir_in = hs_ep->dir_in;
2788	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2789	int dctl = dwc2_readl(hsotg, DCTL);
2790
2791	dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
2792
2793	if (dir_in) {
2794		int epctl = dwc2_readl(hsotg, epctl_reg);
2795
2796		dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index);
2797
2798		if (hs_ep->isochronous) {
2799			dwc2_hsotg_complete_in(hsotg, hs_ep);
2800			return;
2801		}
2802
2803		if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) {
2804			int dctl = dwc2_readl(hsotg, DCTL);
2805
2806			dctl |= DCTL_CGNPINNAK;
2807			dwc2_writel(hsotg, dctl, DCTL);
2808		}
2809		return;
2810	}
2811
2812	if (dctl & DCTL_GOUTNAKSTS) {
2813		dctl |= DCTL_CGOUTNAK;
2814		dwc2_writel(hsotg, dctl, DCTL);
2815	}
2816
2817	if (!hs_ep->isochronous)
2818		return;
2819
2820	if (list_empty(&hs_ep->queue)) {
2821		dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n",
2822			__func__, hs_ep);
2823		return;
2824	}
2825
2826	do {
2827		hs_req = get_ep_head(hs_ep);
2828		if (hs_req)
2829			dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req,
2830						    -ENODATA);
2831		dwc2_gadget_incr_frame_num(hs_ep);
2832		/* Update current frame number value. */
2833		hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg);
2834	} while (dwc2_gadget_target_frame_elapsed(hs_ep));
2835
2836	dwc2_gadget_start_next_request(hs_ep);
2837}
2838
2839/**
2840 * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS
2841 * @ep: The endpoint on which interrupt is asserted.
2842 *
2843 * This is starting point for ISOC-OUT transfer, synchronization done with
2844 * first out token received from host while corresponding EP is disabled.
2845 *
2846 * Device does not know initial frame in which out token will come. For this
2847 * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon
2848 * getting this interrupt SW starts calculation for next transfer frame.
2849 */
2850static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep)
2851{
2852	struct dwc2_hsotg *hsotg = ep->parent;
2853	int dir_in = ep->dir_in;
2854	u32 doepmsk;
2855
2856	if (dir_in || !ep->isochronous)
2857		return;
2858
2859	if (using_desc_dma(hsotg)) {
2860		if (ep->target_frame == TARGET_FRAME_INITIAL) {
2861			/* Start first ISO Out */
2862			ep->target_frame = hsotg->frame_number;
2863			dwc2_gadget_start_isoc_ddma(ep);
2864		}
2865		return;
2866	}
2867
2868	if (ep->interval > 1 &&
2869	    ep->target_frame == TARGET_FRAME_INITIAL) {
2870		u32 ctrl;
2871
2872		ep->target_frame = hsotg->frame_number;
2873		dwc2_gadget_incr_frame_num(ep);
2874
2875		ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index));
2876		if (ep->target_frame & 0x1)
2877			ctrl |= DXEPCTL_SETODDFR;
2878		else
2879			ctrl |= DXEPCTL_SETEVENFR;
2880
2881		dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index));
2882	}
2883
2884	dwc2_gadget_start_next_request(ep);
2885	doepmsk = dwc2_readl(hsotg, DOEPMSK);
2886	doepmsk &= ~DOEPMSK_OUTTKNEPDISMSK;
2887	dwc2_writel(hsotg, doepmsk, DOEPMSK);
2888}
2889
2890/**
2891 * dwc2_gadget_handle_nak - handle NAK interrupt
2892 * @hs_ep: The endpoint on which interrupt is asserted.
2893 *
2894 * This is starting point for ISOC-IN transfer, synchronization done with
2895 * first IN token received from host while corresponding EP is disabled.
2896 *
2897 * Device does not know when first one token will arrive from host. On first
2898 * token arrival HW generates 2 interrupts: 'in token received while FIFO empty'
2899 * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was
2900 * sent in response to that as there was no data in FIFO. SW is basing on this
2901 * interrupt to obtain frame in which token has come and then based on the
2902 * interval calculates next frame for transfer.
2903 */
2904static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep)
2905{
2906	struct dwc2_hsotg *hsotg = hs_ep->parent;
2907	int dir_in = hs_ep->dir_in;
2908
2909	if (!dir_in || !hs_ep->isochronous)
2910		return;
2911
2912	if (hs_ep->target_frame == TARGET_FRAME_INITIAL) {
2913
2914		if (using_desc_dma(hsotg)) {
2915			hs_ep->target_frame = hsotg->frame_number;
2916			dwc2_gadget_incr_frame_num(hs_ep);
2917
2918			/* In service interval mode target_frame must
2919			 * be set to last (u)frame of the service interval.
2920			 */
2921			if (hsotg->params.service_interval) {
2922				/* Set target_frame to the first (u)frame of
2923				 * the service interval
2924				 */
2925				hs_ep->target_frame &= ~hs_ep->interval + 1;
2926
2927				/* Set target_frame to the last (u)frame of
2928				 * the service interval
2929				 */
2930				dwc2_gadget_incr_frame_num(hs_ep);
2931				dwc2_gadget_dec_frame_num_by_one(hs_ep);
2932			}
2933
2934			dwc2_gadget_start_isoc_ddma(hs_ep);
2935			return;
2936		}
2937
2938		hs_ep->target_frame = hsotg->frame_number;
2939		if (hs_ep->interval > 1) {
2940			u32 ctrl = dwc2_readl(hsotg,
2941					      DIEPCTL(hs_ep->index));
2942			if (hs_ep->target_frame & 0x1)
2943				ctrl |= DXEPCTL_SETODDFR;
2944			else
2945				ctrl |= DXEPCTL_SETEVENFR;
2946
2947			dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index));
2948		}
2949
2950		dwc2_hsotg_complete_request(hsotg, hs_ep,
2951					    get_ep_head(hs_ep), 0);
2952	}
2953
2954	if (!using_desc_dma(hsotg))
2955		dwc2_gadget_incr_frame_num(hs_ep);
2956}
2957
2958/**
2959 * dwc2_hsotg_epint - handle an in/out endpoint interrupt
2960 * @hsotg: The driver state
2961 * @idx: The index for the endpoint (0..15)
2962 * @dir_in: Set if this is an IN endpoint
2963 *
2964 * Process and clear any interrupt pending for an individual endpoint
2965 */
2966static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx,
2967			     int dir_in)
2968{
2969	struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in);
2970	u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx);
2971	u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx);
2972	u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx);
2973	u32 ints;
2974	u32 ctrl;
2975
2976	ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in);
2977	ctrl = dwc2_readl(hsotg, epctl_reg);
2978
2979	/* Clear endpoint interrupts */
2980	dwc2_writel(hsotg, ints, epint_reg);
2981
2982	if (!hs_ep) {
2983		dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n",
2984			__func__, idx, dir_in ? "in" : "out");
2985		return;
2986	}
2987
2988	dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
2989		__func__, idx, dir_in ? "in" : "out", ints);
2990
2991	/* Don't process XferCompl interrupt if it is a setup packet */
2992	if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD)))
2993		ints &= ~DXEPINT_XFERCOMPL;
2994
2995	/*
2996	 * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP
2997	 * stage and xfercomplete was generated without SETUP phase done
2998	 * interrupt. SW should parse received setup packet only after host's
2999	 * exit from setup phase of control transfer.
3000	 */
3001	if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in &&
3002	    hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP))
3003		ints &= ~DXEPINT_XFERCOMPL;
3004
3005	if (ints & DXEPINT_XFERCOMPL) {
3006		dev_dbg(hsotg->dev,
3007			"%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n",
3008			__func__, dwc2_readl(hsotg, epctl_reg),
3009			dwc2_readl(hsotg, epsiz_reg));
3010
3011		/* In DDMA handle isochronous requests separately */
3012		if (using_desc_dma(hsotg) && hs_ep->isochronous) {
3013			/* XferCompl set along with BNA */
3014			if (!(ints & DXEPINT_BNAINTR))
3015				dwc2_gadget_complete_isoc_request_ddma(hs_ep);
3016		} else if (dir_in) {
3017			/*
3018			 * We get OutDone from the FIFO, so we only
3019			 * need to look at completing IN requests here
3020			 * if operating slave mode
3021			 */
3022			if (hs_ep->isochronous && hs_ep->interval > 1)
3023				dwc2_gadget_incr_frame_num(hs_ep);
3024
 
 
 
 
 
3025			dwc2_hsotg_complete_in(hsotg, hs_ep);
3026			if (ints & DXEPINT_NAKINTRPT)
3027				ints &= ~DXEPINT_NAKINTRPT;
3028
3029			if (idx == 0 && !hs_ep->req)
3030				dwc2_hsotg_enqueue_setup(hsotg);
3031		} else if (using_dma(hsotg)) {
3032			/*
3033			 * We're using DMA, we need to fire an OutDone here
3034			 * as we ignore the RXFIFO.
3035			 */
3036			if (hs_ep->isochronous && hs_ep->interval > 1)
3037				dwc2_gadget_incr_frame_num(hs_ep);
3038
3039			dwc2_hsotg_handle_outdone(hsotg, idx);
3040		}
3041	}
3042
3043	if (ints & DXEPINT_EPDISBLD)
3044		dwc2_gadget_handle_ep_disabled(hs_ep);
 
 
 
3045
3046	if (ints & DXEPINT_OUTTKNEPDIS)
3047		dwc2_gadget_handle_out_token_ep_disabled(hs_ep);
3048
3049	if (ints & DXEPINT_NAKINTRPT)
3050		dwc2_gadget_handle_nak(hs_ep);
 
 
 
 
 
 
 
3051
3052	if (ints & DXEPINT_AHBERR)
3053		dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
3054
3055	if (ints & DXEPINT_SETUP) {  /* Setup or Timeout */
3056		dev_dbg(hsotg->dev, "%s: Setup/Timeout\n",  __func__);
3057
3058		if (using_dma(hsotg) && idx == 0) {
3059			/*
3060			 * this is the notification we've received a
3061			 * setup packet. In non-DMA mode we'd get this
3062			 * from the RXFIFO, instead we need to process
3063			 * the setup here.
3064			 */
3065
3066			if (dir_in)
3067				WARN_ON_ONCE(1);
3068			else
3069				dwc2_hsotg_handle_outdone(hsotg, 0);
3070		}
3071	}
3072
3073	if (ints & DXEPINT_STSPHSERCVD) {
3074		dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__);
3075
3076		/* Safety check EP0 state when STSPHSERCVD asserted */
3077		if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) {
3078			/* Move to STATUS IN for DDMA */
3079			if (using_desc_dma(hsotg)) {
3080				if (!hsotg->delayed_status)
3081					dwc2_hsotg_ep0_zlp(hsotg, true);
3082				else
3083				/* In case of 3 stage Control Write with delayed
3084				 * status, when Status IN transfer started
3085				 * before STSPHSERCVD asserted, NAKSTS bit not
3086				 * cleared by CNAK in dwc2_hsotg_start_req()
3087				 * function. Clear now NAKSTS to allow complete
3088				 * transfer.
3089				 */
3090					dwc2_set_bit(hsotg, DIEPCTL(0),
3091						     DXEPCTL_CNAK);
3092			}
3093		}
3094
3095	}
3096
3097	if (ints & DXEPINT_BACK2BACKSETUP)
3098		dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
3099
3100	if (ints & DXEPINT_BNAINTR) {
3101		dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__);
3102		if (hs_ep->isochronous)
3103			dwc2_gadget_handle_isoc_bna(hs_ep);
3104	}
3105
3106	if (dir_in && !hs_ep->isochronous) {
3107		/* not sure if this is important, but we'll clear it anyway */
3108		if (ints & DXEPINT_INTKNTXFEMP) {
3109			dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
3110				__func__, idx);
3111		}
3112
3113		/* this probably means something bad is happening */
3114		if (ints & DXEPINT_INTKNEPMIS) {
3115			dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
3116				 __func__, idx);
3117		}
3118
3119		/* FIFO has space or is empty (see GAHBCFG) */
3120		if (hsotg->dedicated_fifos &&
3121		    ints & DXEPINT_TXFEMP) {
3122			dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
3123				__func__, idx);
3124			if (!using_dma(hsotg))
3125				dwc2_hsotg_trytx(hsotg, hs_ep);
3126		}
3127	}
3128}
3129
3130/**
3131 * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
3132 * @hsotg: The device state.
3133 *
3134 * Handle updating the device settings after the enumeration phase has
3135 * been completed.
3136 */
3137static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg)
3138{
3139	u32 dsts = dwc2_readl(hsotg, DSTS);
3140	int ep0_mps = 0, ep_mps = 8;
3141
3142	/*
3143	 * This should signal the finish of the enumeration phase
3144	 * of the USB handshaking, so we should now know what rate
3145	 * we connected at.
3146	 */
3147
3148	dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
3149
3150	/*
3151	 * note, since we're limited by the size of transfer on EP0, and
3152	 * it seems IN transfers must be a even number of packets we do
3153	 * not advertise a 64byte MPS on EP0.
3154	 */
3155
3156	/* catch both EnumSpd_FS and EnumSpd_FS48 */
3157	switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) {
3158	case DSTS_ENUMSPD_FS:
3159	case DSTS_ENUMSPD_FS48:
3160		hsotg->gadget.speed = USB_SPEED_FULL;
3161		ep0_mps = EP0_MPS_LIMIT;
3162		ep_mps = 1023;
3163		break;
3164
3165	case DSTS_ENUMSPD_HS:
3166		hsotg->gadget.speed = USB_SPEED_HIGH;
3167		ep0_mps = EP0_MPS_LIMIT;
3168		ep_mps = 1024;
3169		break;
3170
3171	case DSTS_ENUMSPD_LS:
3172		hsotg->gadget.speed = USB_SPEED_LOW;
3173		ep0_mps = 8;
3174		ep_mps = 8;
3175		/*
3176		 * note, we don't actually support LS in this driver at the
3177		 * moment, and the documentation seems to imply that it isn't
3178		 * supported by the PHYs on some of the devices.
3179		 */
3180		break;
3181	}
3182	dev_info(hsotg->dev, "new device is %s\n",
3183		 usb_speed_string(hsotg->gadget.speed));
3184
3185	/*
3186	 * we should now know the maximum packet size for an
3187	 * endpoint, so set the endpoints to a default value.
3188	 */
3189
3190	if (ep0_mps) {
3191		int i;
3192		/* Initialize ep0 for both in and out directions */
3193		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1);
3194		dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0);
3195		for (i = 1; i < hsotg->num_of_eps; i++) {
3196			if (hsotg->eps_in[i])
3197				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3198							    0, 1);
3199			if (hsotg->eps_out[i])
3200				dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps,
3201							    0, 0);
3202		}
3203	}
3204
3205	/* ensure after enumeration our EP0 is active */
3206
3207	dwc2_hsotg_enqueue_setup(hsotg);
3208
3209	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3210		dwc2_readl(hsotg, DIEPCTL0),
3211		dwc2_readl(hsotg, DOEPCTL0));
3212}
3213
3214/**
3215 * kill_all_requests - remove all requests from the endpoint's queue
3216 * @hsotg: The device state.
3217 * @ep: The endpoint the requests may be on.
3218 * @result: The result code to use.
3219 *
3220 * Go through the requests on the given endpoint and mark them
3221 * completed with the given result code.
3222 */
3223static void kill_all_requests(struct dwc2_hsotg *hsotg,
3224			      struct dwc2_hsotg_ep *ep,
3225			      int result)
3226{
3227	unsigned int size;
 
3228
3229	ep->req = NULL;
3230
3231	while (!list_empty(&ep->queue)) {
3232		struct dwc2_hsotg_req *req = get_ep_head(ep);
3233
3234		dwc2_hsotg_complete_request(hsotg, ep, req, result);
3235	}
3236
3237	if (!hsotg->dedicated_fifos)
3238		return;
3239	size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4;
3240	if (size < ep->fifo_size)
3241		dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index);
3242}
3243
3244/**
3245 * dwc2_hsotg_disconnect - disconnect service
3246 * @hsotg: The device state.
3247 *
3248 * The device has been disconnected. Remove all current
3249 * transactions and signal the gadget driver that this
3250 * has happened.
3251 */
3252void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg)
3253{
3254	unsigned int ep;
3255
3256	if (!hsotg->connected)
3257		return;
3258
3259	hsotg->connected = 0;
3260	hsotg->test_mode = 0;
3261
3262	/* all endpoints should be shutdown */
3263	for (ep = 0; ep < hsotg->num_of_eps; ep++) {
3264		if (hsotg->eps_in[ep])
3265			kill_all_requests(hsotg, hsotg->eps_in[ep],
3266					  -ESHUTDOWN);
3267		if (hsotg->eps_out[ep])
3268			kill_all_requests(hsotg, hsotg->eps_out[ep],
3269					  -ESHUTDOWN);
3270	}
3271
3272	call_gadget(hsotg, disconnect);
3273	hsotg->lx_state = DWC2_L3;
3274
3275	usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED);
3276}
3277
3278/**
3279 * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
3280 * @hsotg: The device state:
3281 * @periodic: True if this is a periodic FIFO interrupt
3282 */
3283static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic)
3284{
3285	struct dwc2_hsotg_ep *ep;
3286	int epno, ret;
3287
3288	/* look through for any more data to transmit */
3289	for (epno = 0; epno < hsotg->num_of_eps; epno++) {
3290		ep = index_to_ep(hsotg, epno, 1);
3291
3292		if (!ep)
3293			continue;
3294
3295		if (!ep->dir_in)
3296			continue;
3297
3298		if ((periodic && !ep->periodic) ||
3299		    (!periodic && ep->periodic))
3300			continue;
3301
3302		ret = dwc2_hsotg_trytx(hsotg, ep);
3303		if (ret < 0)
3304			break;
3305	}
3306}
3307
3308/* IRQ flags which will trigger a retry around the IRQ loop */
3309#define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \
3310			GINTSTS_PTXFEMP |  \
3311			GINTSTS_RXFLVL)
3312
3313static int dwc2_hsotg_ep_disable(struct usb_ep *ep);
3314/**
3315 * dwc2_hsotg_core_init - issue softreset to the core
3316 * @hsotg: The device state
3317 * @is_usb_reset: Usb resetting flag
3318 *
3319 * Issue a soft reset to the core, and await the core finishing it.
3320 */
3321void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg,
3322				       bool is_usb_reset)
3323{
3324	u32 intmsk;
3325	u32 val;
3326	u32 usbcfg;
3327	u32 dcfg = 0;
3328	int ep;
3329
3330	/* Kill any ep0 requests as controller will be reinitialized */
3331	kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET);
3332
3333	if (!is_usb_reset) {
3334		if (dwc2_core_reset(hsotg, true))
3335			return;
3336	} else {
3337		/* all endpoints should be shutdown */
3338		for (ep = 1; ep < hsotg->num_of_eps; ep++) {
3339			if (hsotg->eps_in[ep])
3340				dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep);
3341			if (hsotg->eps_out[ep])
3342				dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep);
3343		}
3344	}
3345
3346	/*
3347	 * we must now enable ep0 ready for host detection and then
3348	 * set configuration.
3349	 */
3350
3351	/* keep other bits untouched (so e.g. forced modes are not lost) */
3352	usbcfg = dwc2_readl(hsotg, GUSBCFG);
3353	usbcfg &= ~GUSBCFG_TOUTCAL_MASK;
3354	usbcfg |= GUSBCFG_TOUTCAL(7);
3355
3356	/* remove the HNP/SRP and set the PHY */
3357	usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP);
3358        dwc2_writel(hsotg, usbcfg, GUSBCFG);
3359
3360	dwc2_phy_init(hsotg, true);
3361
3362	dwc2_hsotg_init_fifo(hsotg);
3363
3364	if (!is_usb_reset)
3365		dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3366
3367	dcfg |= DCFG_EPMISCNT(1);
3368
3369	switch (hsotg->params.speed) {
3370	case DWC2_SPEED_PARAM_LOW:
3371		dcfg |= DCFG_DEVSPD_LS;
3372		break;
3373	case DWC2_SPEED_PARAM_FULL:
3374		if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS)
3375			dcfg |= DCFG_DEVSPD_FS48;
3376		else
3377			dcfg |= DCFG_DEVSPD_FS;
3378		break;
3379	default:
3380		dcfg |= DCFG_DEVSPD_HS;
3381	}
3382
3383	if (hsotg->params.ipg_isoc_en)
3384		dcfg |= DCFG_IPG_ISOC_SUPPORDED;
3385
3386	dwc2_writel(hsotg, dcfg,  DCFG);
3387
3388	/* Clear any pending OTG interrupts */
3389	dwc2_writel(hsotg, 0xffffffff, GOTGINT);
3390
3391	/* Clear any pending interrupts */
3392	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
3393	intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT |
3394		GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF |
3395		GINTSTS_USBRST | GINTSTS_RESETDET |
3396		GINTSTS_ENUMDONE | GINTSTS_OTGINT |
3397		GINTSTS_USBSUSP | GINTSTS_WKUPINT |
3398		GINTSTS_LPMTRANRCVD;
3399
3400	if (!using_desc_dma(hsotg))
3401		intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT;
3402
3403	if (!hsotg->params.external_id_pin_ctl)
3404		intmsk |= GINTSTS_CONIDSTSCHNG;
3405
3406	dwc2_writel(hsotg, intmsk, GINTMSK);
3407
3408	if (using_dma(hsotg)) {
3409		dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN |
3410			    hsotg->params.ahbcfg,
3411			    GAHBCFG);
3412
3413		/* Set DDMA mode support in the core if needed */
3414		if (using_desc_dma(hsotg))
3415			dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN);
3416
3417	} else {
3418		dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ?
3419						(GAHBCFG_NP_TXF_EMP_LVL |
3420						 GAHBCFG_P_TXF_EMP_LVL) : 0) |
3421			    GAHBCFG_GLBL_INTR_EN, GAHBCFG);
3422	}
3423
3424	/*
3425	 * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts
3426	 * when we have no data to transfer. Otherwise we get being flooded by
3427	 * interrupts.
3428	 */
3429
3430	dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ?
3431		DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) |
3432		DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK |
3433		DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK,
3434		DIEPMSK);
 
3435
3436	/*
3437	 * don't need XferCompl, we get that from RXFIFO in slave mode. In
3438	 * DMA mode we may need this and StsPhseRcvd.
3439	 */
3440	dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK |
3441		DOEPMSK_STSPHSERCVDMSK) : 0) |
3442		DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK |
3443		DOEPMSK_SETUPMSK,
3444		DOEPMSK);
3445
3446	/* Enable BNA interrupt for DDMA */
3447	if (using_desc_dma(hsotg)) {
3448		dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK);
3449		dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK);
3450	}
3451
3452	/* Enable Service Interval mode if supported */
3453	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3454		dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED);
3455
3456	dwc2_writel(hsotg, 0, DAINTMSK);
3457
3458	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3459		dwc2_readl(hsotg, DIEPCTL0),
3460		dwc2_readl(hsotg, DOEPCTL0));
3461
3462	/* enable in and out endpoint interrupts */
3463	dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT);
3464
3465	/*
3466	 * Enable the RXFIFO when in slave mode, as this is how we collect
3467	 * the data. In DMA mode, we get events from the FIFO but also
3468	 * things we cannot process, so do not use it.
3469	 */
3470	if (!using_dma(hsotg))
3471		dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL);
3472
3473	/* Enable interrupts for EP0 in and out */
3474	dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1);
3475	dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1);
3476
3477	if (!is_usb_reset) {
3478		dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3479		udelay(10);  /* see openiboot */
3480		dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE);
3481	}
3482
3483	dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL));
3484
3485	/*
3486	 * DxEPCTL_USBActEp says RO in manual, but seems to be set by
3487	 * writing to the EPCTL register..
3488	 */
3489
3490	/* set to read 1 8byte packet */
3491	dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) |
3492	       DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0);
3493
3494	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3495	       DXEPCTL_CNAK | DXEPCTL_EPENA |
3496	       DXEPCTL_USBACTEP,
3497	       DOEPCTL0);
3498
3499	/* enable, but don't activate EP0in */
3500	dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) |
3501	       DXEPCTL_USBACTEP, DIEPCTL0);
 
 
 
 
 
 
3502
3503	/* clear global NAKs */
3504	val = DCTL_CGOUTNAK | DCTL_CGNPINNAK;
3505	if (!is_usb_reset)
3506		val |= DCTL_SFTDISCON;
3507	dwc2_set_bit(hsotg, DCTL, val);
3508
3509	/* configure the core to support LPM */
3510	dwc2_gadget_init_lpm(hsotg);
3511
3512	/* program GREFCLK register if needed */
3513	if (using_desc_dma(hsotg) && hsotg->params.service_interval)
3514		dwc2_gadget_program_ref_clk(hsotg);
3515
3516	/* must be at-least 3ms to allow bus to see disconnect */
3517	mdelay(3);
3518
3519	hsotg->lx_state = DWC2_L0;
3520
3521	dwc2_hsotg_enqueue_setup(hsotg);
3522
3523	dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
3524		dwc2_readl(hsotg, DIEPCTL0),
3525		dwc2_readl(hsotg, DOEPCTL0));
3526}
3527
3528static void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg)
3529{
3530	/* set the soft-disconnect bit */
3531	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
3532}
3533
3534void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg)
3535{
3536	/* remove the soft-disconnect and let's go */
3537	dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON);
3538}
3539
3540/**
3541 * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt.
3542 * @hsotg: The device state:
3543 *
3544 * This interrupt indicates one of the following conditions occurred while
3545 * transmitting an ISOC transaction.
3546 * - Corrupted IN Token for ISOC EP.
3547 * - Packet not complete in FIFO.
3548 *
3549 * The following actions will be taken:
3550 * - Determine the EP
3551 * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO
3552 */
3553static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg)
3554{
3555	struct dwc2_hsotg_ep *hs_ep;
3556	u32 epctrl;
3557	u32 daintmsk;
3558	u32 idx;
3559
3560	dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n");
3561
3562	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3563
3564	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3565		hs_ep = hsotg->eps_in[idx];
3566		/* Proceed only unmasked ISOC EPs */
3567		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3568			continue;
3569
3570		epctrl = dwc2_readl(hsotg, DIEPCTL(idx));
3571		if ((epctrl & DXEPCTL_EPENA) &&
3572		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3573			epctrl |= DXEPCTL_SNAK;
3574			epctrl |= DXEPCTL_EPDIS;
3575			dwc2_writel(hsotg, epctrl, DIEPCTL(idx));
3576		}
3577	}
3578
3579	/* Clear interrupt */
3580	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS);
3581}
3582
3583/**
3584 * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt
3585 * @hsotg: The device state:
3586 *
3587 * This interrupt indicates one of the following conditions occurred while
3588 * transmitting an ISOC transaction.
3589 * - Corrupted OUT Token for ISOC EP.
3590 * - Packet not complete in FIFO.
3591 *
3592 * The following actions will be taken:
3593 * - Determine the EP
3594 * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed.
3595 */
3596static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg)
3597{
3598	u32 gintsts;
3599	u32 gintmsk;
3600	u32 daintmsk;
3601	u32 epctrl;
3602	struct dwc2_hsotg_ep *hs_ep;
3603	int idx;
3604
3605	dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__);
3606
3607	daintmsk = dwc2_readl(hsotg, DAINTMSK);
3608	daintmsk >>= DAINT_OUTEP_SHIFT;
3609
3610	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3611		hs_ep = hsotg->eps_out[idx];
3612		/* Proceed only unmasked ISOC EPs */
3613		if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3614			continue;
3615
3616		epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3617		if ((epctrl & DXEPCTL_EPENA) &&
3618		    dwc2_gadget_target_frame_elapsed(hs_ep)) {
3619			/* Unmask GOUTNAKEFF interrupt */
3620			gintmsk = dwc2_readl(hsotg, GINTMSK);
3621			gintmsk |= GINTSTS_GOUTNAKEFF;
3622			dwc2_writel(hsotg, gintmsk, GINTMSK);
3623
3624			gintsts = dwc2_readl(hsotg, GINTSTS);
3625			if (!(gintsts & GINTSTS_GOUTNAKEFF)) {
3626				dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3627				break;
3628			}
3629		}
3630	}
3631
3632	/* Clear interrupt */
3633	dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS);
3634}
3635
3636/**
3637 * dwc2_hsotg_irq - handle device interrupt
3638 * @irq: The IRQ number triggered
3639 * @pw: The pw value when registered the handler.
3640 */
3641static irqreturn_t dwc2_hsotg_irq(int irq, void *pw)
3642{
3643	struct dwc2_hsotg *hsotg = pw;
3644	int retry_count = 8;
3645	u32 gintsts;
3646	u32 gintmsk;
3647
3648	if (!dwc2_is_device_mode(hsotg))
3649		return IRQ_NONE;
3650
3651	spin_lock(&hsotg->lock);
3652irq_retry:
3653	gintsts = dwc2_readl(hsotg, GINTSTS);
3654	gintmsk = dwc2_readl(hsotg, GINTMSK);
3655
3656	dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
3657		__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
3658
3659	gintsts &= gintmsk;
3660
3661	if (gintsts & GINTSTS_RESETDET) {
3662		dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__);
3663
3664		dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS);
3665
3666		/* This event must be used only if controller is suspended */
3667		if (hsotg->lx_state == DWC2_L2) {
3668			dwc2_exit_partial_power_down(hsotg, true);
3669			hsotg->lx_state = DWC2_L0;
3670		}
3671	}
3672
3673	if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) {
3674		u32 usb_status = dwc2_readl(hsotg, GOTGCTL);
 
3675		u32 connected = hsotg->connected;
3676
3677		dev_dbg(hsotg->dev, "%s: USBRst\n", __func__);
3678		dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
3679			dwc2_readl(hsotg, GNPTXSTS));
3680
3681		dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS);
3682
3683		/* Report disconnection if it is not already done. */
3684		dwc2_hsotg_disconnect(hsotg);
3685
3686		/* Reset device address to zero */
3687		dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK);
3688
3689		if (usb_status & GOTGCTL_BSESVLD && connected)
3690			dwc2_hsotg_core_init_disconnected(hsotg, true);
3691	}
3692
3693	if (gintsts & GINTSTS_ENUMDONE) {
3694		dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS);
3695
3696		dwc2_hsotg_irq_enumdone(hsotg);
3697	}
3698
3699	if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) {
3700		u32 daint = dwc2_readl(hsotg, DAINT);
3701		u32 daintmsk = dwc2_readl(hsotg, DAINTMSK);
3702		u32 daint_out, daint_in;
3703		int ep;
3704
3705		daint &= daintmsk;
3706		daint_out = daint >> DAINT_OUTEP_SHIFT;
3707		daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT);
3708
3709		dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
3710
3711		for (ep = 0; ep < hsotg->num_of_eps && daint_out;
3712						ep++, daint_out >>= 1) {
3713			if (daint_out & 1)
3714				dwc2_hsotg_epint(hsotg, ep, 0);
3715		}
3716
3717		for (ep = 0; ep < hsotg->num_of_eps  && daint_in;
3718						ep++, daint_in >>= 1) {
3719			if (daint_in & 1)
3720				dwc2_hsotg_epint(hsotg, ep, 1);
3721		}
3722	}
3723
3724	/* check both FIFOs */
3725
3726	if (gintsts & GINTSTS_NPTXFEMP) {
3727		dev_dbg(hsotg->dev, "NPTxFEmp\n");
3728
3729		/*
3730		 * Disable the interrupt to stop it happening again
3731		 * unless one of these endpoint routines decides that
3732		 * it needs re-enabling
3733		 */
3734
3735		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP);
3736		dwc2_hsotg_irq_fifoempty(hsotg, false);
3737	}
3738
3739	if (gintsts & GINTSTS_PTXFEMP) {
3740		dev_dbg(hsotg->dev, "PTxFEmp\n");
3741
3742		/* See note in GINTSTS_NPTxFEmp */
3743
3744		dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP);
3745		dwc2_hsotg_irq_fifoempty(hsotg, true);
3746	}
3747
3748	if (gintsts & GINTSTS_RXFLVL) {
3749		/*
3750		 * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
3751		 * we need to retry dwc2_hsotg_handle_rx if this is still
3752		 * set.
3753		 */
3754
3755		dwc2_hsotg_handle_rx(hsotg);
3756	}
3757
3758	if (gintsts & GINTSTS_ERLYSUSP) {
3759		dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n");
3760		dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS);
3761	}
3762
3763	/*
3764	 * these next two seem to crop-up occasionally causing the core
3765	 * to shutdown the USB transfer, so try clearing them and logging
3766	 * the occurrence.
3767	 */
3768
3769	if (gintsts & GINTSTS_GOUTNAKEFF) {
3770		u8 idx;
3771		u32 epctrl;
3772		u32 gintmsk;
3773		u32 daintmsk;
3774		struct dwc2_hsotg_ep *hs_ep;
3775
3776		daintmsk = dwc2_readl(hsotg, DAINTMSK);
3777		daintmsk >>= DAINT_OUTEP_SHIFT;
3778		/* Mask this interrupt */
3779		gintmsk = dwc2_readl(hsotg, GINTMSK);
3780		gintmsk &= ~GINTSTS_GOUTNAKEFF;
3781		dwc2_writel(hsotg, gintmsk, GINTMSK);
3782
3783		dev_dbg(hsotg->dev, "GOUTNakEff triggered\n");
3784		for (idx = 1; idx < hsotg->num_of_eps; idx++) {
3785			hs_ep = hsotg->eps_out[idx];
3786			/* Proceed only unmasked ISOC EPs */
3787			if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous)
3788				continue;
3789
3790			epctrl = dwc2_readl(hsotg, DOEPCTL(idx));
3791
3792			if (epctrl & DXEPCTL_EPENA) {
3793				epctrl |= DXEPCTL_SNAK;
3794				epctrl |= DXEPCTL_EPDIS;
3795				dwc2_writel(hsotg, epctrl, DOEPCTL(idx));
3796			}
3797		}
3798
3799		/* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */
3800	}
3801
3802	if (gintsts & GINTSTS_GINNAKEFF) {
3803		dev_info(hsotg->dev, "GINNakEff triggered\n");
3804
3805		dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3806
3807		dwc2_hsotg_dump(hsotg);
3808	}
3809
3810	if (gintsts & GINTSTS_INCOMPL_SOIN)
3811		dwc2_gadget_handle_incomplete_isoc_in(hsotg);
 
3812
3813	if (gintsts & GINTSTS_INCOMPL_SOOUT)
3814		dwc2_gadget_handle_incomplete_isoc_out(hsotg);
 
3815
3816	/*
3817	 * if we've had fifo events, we should try and go around the
3818	 * loop again to see if there's any point in returning yet.
3819	 */
3820
3821	if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
3822		goto irq_retry;
 
 
 
3823
3824	/* Check WKUP_ALERT interrupt*/
3825	if (hsotg->params.service_interval)
3826		dwc2_gadget_wkup_alert_handler(hsotg);
3827
3828	spin_unlock(&hsotg->lock);
 
 
3829
3830	return IRQ_HANDLED;
3831}
3832
3833static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg,
3834				   struct dwc2_hsotg_ep *hs_ep)
3835{
3836	u32 epctrl_reg;
3837	u32 epint_reg;
3838
3839	epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) :
3840		DOEPCTL(hs_ep->index);
3841	epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) :
3842		DOEPINT(hs_ep->index);
3843
3844	dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__,
3845		hs_ep->name);
3846
3847	if (hs_ep->dir_in) {
3848		if (hsotg->dedicated_fifos || hs_ep->periodic) {
3849			dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK);
3850			/* Wait for Nak effect */
3851			if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg,
3852						    DXEPINT_INEPNAKEFF, 100))
3853				dev_warn(hsotg->dev,
3854					 "%s: timeout DIEPINT.NAKEFF\n",
3855					 __func__);
3856		} else {
3857			dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK);
3858			/* Wait for Nak effect */
3859			if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3860						    GINTSTS_GINNAKEFF, 100))
3861				dev_warn(hsotg->dev,
3862					 "%s: timeout GINTSTS.GINNAKEFF\n",
3863					 __func__);
3864		}
3865	} else {
3866		if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF))
3867			dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK);
3868
3869		/* Wait for global nak to take effect */
3870		if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS,
3871					    GINTSTS_GOUTNAKEFF, 100))
3872			dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n",
3873				 __func__);
3874	}
3875
3876	/* Disable ep */
3877	dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK);
 
 
3878
3879	/* Wait for ep to be disabled */
3880	if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100))
3881		dev_warn(hsotg->dev,
3882			 "%s: timeout DOEPCTL.EPDisable\n", __func__);
3883
3884	/* Clear EPDISBLD interrupt */
3885	dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD);
3886
3887	if (hs_ep->dir_in) {
3888		unsigned short fifo_index;
3889
3890		if (hsotg->dedicated_fifos || hs_ep->periodic)
3891			fifo_index = hs_ep->fifo_index;
3892		else
3893			fifo_index = 0;
3894
3895		/* Flush TX FIFO */
3896		dwc2_flush_tx_fifo(hsotg, fifo_index);
3897
3898		/* Clear Global In NP NAK in Shared FIFO for non periodic ep */
3899		if (!hsotg->dedicated_fifos && !hs_ep->periodic)
3900			dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK);
3901
3902	} else {
3903		/* Remove global NAKs */
3904		dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK);
3905	}
3906}
3907
3908/**
3909 * dwc2_hsotg_ep_enable - enable the given endpoint
3910 * @ep: The USB endpint to configure
3911 * @desc: The USB endpoint descriptor to configure with.
3912 *
3913 * This is called from the USB gadget code's usb_ep_enable().
3914 */
3915static int dwc2_hsotg_ep_enable(struct usb_ep *ep,
3916				const struct usb_endpoint_descriptor *desc)
3917{
3918	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
3919	struct dwc2_hsotg *hsotg = hs_ep->parent;
3920	unsigned long flags;
3921	unsigned int index = hs_ep->index;
3922	u32 epctrl_reg;
3923	u32 epctrl;
3924	u32 mps;
3925	u32 mc;
3926	u32 mask;
3927	unsigned int dir_in;
3928	unsigned int i, val, size;
3929	int ret = 0;
3930	unsigned char ep_type;
3931	int desc_num;
3932
3933	dev_dbg(hsotg->dev,
3934		"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
3935		__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
3936		desc->wMaxPacketSize, desc->bInterval);
3937
3938	/* not to be called for EP0 */
3939	if (index == 0) {
3940		dev_err(hsotg->dev, "%s: called for EP 0\n", __func__);
3941		return -EINVAL;
3942	}
3943
3944	dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
3945	if (dir_in != hs_ep->dir_in) {
3946		dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
3947		return -EINVAL;
3948	}
3949
3950	ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
3951	mps = usb_endpoint_maxp(desc);
3952	mc = usb_endpoint_maxp_mult(desc);
3953
3954	/* ISOC IN in DDMA supported bInterval up to 10 */
3955	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3956	    dir_in && desc->bInterval > 10) {
3957		dev_err(hsotg->dev,
3958			"%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__);
3959		return -EINVAL;
3960	}
3961
3962	/* High bandwidth ISOC OUT in DDMA not supported */
3963	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC &&
3964	    !dir_in && mc > 1) {
3965		dev_err(hsotg->dev,
3966			"%s: ISOC OUT, DDMA: HB not supported!\n", __func__);
3967		return -EINVAL;
3968	}
3969
3970	/* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */
3971
3972	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
3973	epctrl = dwc2_readl(hsotg, epctrl_reg);
3974
3975	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
3976		__func__, epctrl, epctrl_reg);
3977
3978	if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC)
3979		desc_num = MAX_DMA_DESC_NUM_HS_ISOC;
3980	else
3981		desc_num = MAX_DMA_DESC_NUM_GENERIC;
3982
3983	/* Allocate DMA descriptor chain for non-ctrl endpoints */
3984	if (using_desc_dma(hsotg) && !hs_ep->desc_list) {
3985		hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev,
3986			desc_num * sizeof(struct dwc2_dma_desc),
3987			&hs_ep->desc_list_dma, GFP_ATOMIC);
3988		if (!hs_ep->desc_list) {
3989			ret = -ENOMEM;
3990			goto error2;
3991		}
3992	}
3993
3994	spin_lock_irqsave(&hsotg->lock, flags);
3995
3996	epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK);
3997	epctrl |= DXEPCTL_MPS(mps);
3998
3999	/*
4000	 * mark the endpoint as active, otherwise the core may ignore
4001	 * transactions entirely for this endpoint
4002	 */
4003	epctrl |= DXEPCTL_USBACTEP;
4004
 
 
 
 
 
 
 
 
 
4005	/* update the endpoint state */
4006	dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in);
4007
4008	/* default, set to non-periodic */
4009	hs_ep->isochronous = 0;
4010	hs_ep->periodic = 0;
4011	hs_ep->halted = 0;
4012	hs_ep->interval = desc->bInterval;
 
4013
4014	switch (ep_type) {
 
 
 
4015	case USB_ENDPOINT_XFER_ISOC:
4016		epctrl |= DXEPCTL_EPTYPE_ISO;
4017		epctrl |= DXEPCTL_SETEVENFR;
4018		hs_ep->isochronous = 1;
4019		hs_ep->interval = 1 << (desc->bInterval - 1);
4020		hs_ep->target_frame = TARGET_FRAME_INITIAL;
4021		hs_ep->next_desc = 0;
4022		hs_ep->compl_desc = 0;
4023		if (dir_in) {
4024			hs_ep->periodic = 1;
4025			mask = dwc2_readl(hsotg, DIEPMSK);
4026			mask |= DIEPMSK_NAKMSK;
4027			dwc2_writel(hsotg, mask, DIEPMSK);
4028		} else {
4029			mask = dwc2_readl(hsotg, DOEPMSK);
4030			mask |= DOEPMSK_OUTTKNEPDISMSK;
4031			dwc2_writel(hsotg, mask, DOEPMSK);
4032		}
4033		break;
4034
4035	case USB_ENDPOINT_XFER_BULK:
4036		epctrl |= DXEPCTL_EPTYPE_BULK;
4037		break;
4038
4039	case USB_ENDPOINT_XFER_INT:
4040		if (dir_in)
4041			hs_ep->periodic = 1;
4042
4043		if (hsotg->gadget.speed == USB_SPEED_HIGH)
4044			hs_ep->interval = 1 << (desc->bInterval - 1);
4045
4046		epctrl |= DXEPCTL_EPTYPE_INTERRUPT;
4047		break;
4048
4049	case USB_ENDPOINT_XFER_CONTROL:
4050		epctrl |= DXEPCTL_EPTYPE_CONTROL;
4051		break;
4052	}
4053
 
 
 
 
 
 
 
 
 
 
 
4054	/*
4055	 * if the hardware has dedicated fifos, we must give each IN EP
4056	 * a unique tx-fifo even if it is non-periodic.
4057	 */
4058	if (dir_in && hsotg->dedicated_fifos) {
4059		u32 fifo_index = 0;
4060		u32 fifo_size = UINT_MAX;
4061
4062		size = hs_ep->ep.maxpacket * hs_ep->mc;
4063		for (i = 1; i < hsotg->num_of_eps; ++i) {
4064			if (hsotg->fifo_map & (1 << i))
4065				continue;
4066			val = dwc2_readl(hsotg, DPTXFSIZN(i));
4067			val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4;
4068			if (val < size)
4069				continue;
4070			/* Search for smallest acceptable fifo */
4071			if (val < fifo_size) {
4072				fifo_size = val;
4073				fifo_index = i;
4074			}
4075		}
4076		if (!fifo_index) {
4077			dev_err(hsotg->dev,
4078				"%s: No suitable fifo found\n", __func__);
4079			ret = -ENOMEM;
4080			goto error1;
4081		}
4082		epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT);
4083		hsotg->fifo_map |= 1 << fifo_index;
4084		epctrl |= DXEPCTL_TXFNUM(fifo_index);
4085		hs_ep->fifo_index = fifo_index;
4086		hs_ep->fifo_size = fifo_size;
4087	}
4088
4089	/* for non control endpoints, set PID to D0 */
4090	if (index && !hs_ep->isochronous)
4091		epctrl |= DXEPCTL_SETD0PID;
4092
4093	/* WA for Full speed ISOC IN in DDMA mode.
4094	 * By Clear NAK status of EP, core will send ZLP
4095	 * to IN token and assert NAK interrupt relying
4096	 * on TxFIFO status only
4097	 */
4098
4099	if (hsotg->gadget.speed == USB_SPEED_FULL &&
4100	    hs_ep->isochronous && dir_in) {
4101		/* The WA applies only to core versions from 2.72a
4102		 * to 4.00a (including both). Also for FS_IOT_1.00a
4103		 * and HS_IOT_1.00a.
4104		 */
4105		u32 gsnpsid = dwc2_readl(hsotg, GSNPSID);
4106
4107		if ((gsnpsid >= DWC2_CORE_REV_2_72a &&
4108		     gsnpsid <= DWC2_CORE_REV_4_00a) ||
4109		     gsnpsid == DWC2_FS_IOT_REV_1_00a ||
4110		     gsnpsid == DWC2_HS_IOT_REV_1_00a)
4111			epctrl |= DXEPCTL_CNAK;
4112	}
4113
4114	dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
4115		__func__, epctrl);
4116
4117	dwc2_writel(hsotg, epctrl, epctrl_reg);
4118	dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
4119		__func__, dwc2_readl(hsotg, epctrl_reg));
4120
4121	/* enable the endpoint interrupt */
4122	dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
4123
4124error1:
4125	spin_unlock_irqrestore(&hsotg->lock, flags);
4126
4127error2:
4128	if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) {
4129		dmam_free_coherent(hsotg->dev, desc_num *
4130			sizeof(struct dwc2_dma_desc),
4131			hs_ep->desc_list, hs_ep->desc_list_dma);
4132		hs_ep->desc_list = NULL;
4133	}
4134
4135	return ret;
4136}
4137
4138/**
4139 * dwc2_hsotg_ep_disable - disable given endpoint
4140 * @ep: The endpoint to disable.
4141 */
4142static int dwc2_hsotg_ep_disable(struct usb_ep *ep)
4143{
4144	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4145	struct dwc2_hsotg *hsotg = hs_ep->parent;
4146	int dir_in = hs_ep->dir_in;
4147	int index = hs_ep->index;
 
4148	u32 epctrl_reg;
4149	u32 ctrl;
4150
4151	dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep);
4152
4153	if (ep == &hsotg->eps_out[0]->ep) {
4154		dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
4155		return -EINVAL;
4156	}
4157
4158	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4159		dev_err(hsotg->dev, "%s: called in host mode?\n", __func__);
4160		return -EINVAL;
4161	}
4162
4163	epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index);
4164
4165	ctrl = dwc2_readl(hsotg, epctrl_reg);
4166
4167	if (ctrl & DXEPCTL_EPENA)
4168		dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep);
 
4169
 
4170	ctrl &= ~DXEPCTL_EPENA;
4171	ctrl &= ~DXEPCTL_USBACTEP;
4172	ctrl |= DXEPCTL_SNAK;
4173
4174	dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
4175	dwc2_writel(hsotg, ctrl, epctrl_reg);
4176
4177	/* disable endpoint interrupts */
4178	dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
4179
4180	/* terminate all requests with shutdown */
4181	kill_all_requests(hsotg, hs_ep, -ESHUTDOWN);
4182
4183	hsotg->fifo_map &= ~(1 << hs_ep->fifo_index);
4184	hs_ep->fifo_index = 0;
4185	hs_ep->fifo_size = 0;
4186
4187	return 0;
4188}
4189
4190static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep)
4191{
4192	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4193	struct dwc2_hsotg *hsotg = hs_ep->parent;
4194	unsigned long flags;
4195	int ret;
4196
4197	spin_lock_irqsave(&hsotg->lock, flags);
4198	ret = dwc2_hsotg_ep_disable(ep);
4199	spin_unlock_irqrestore(&hsotg->lock, flags);
4200	return ret;
4201}
4202
4203/**
4204 * on_list - check request is on the given endpoint
4205 * @ep: The endpoint to check.
4206 * @test: The request to test if it is on the endpoint.
4207 */
4208static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test)
4209{
4210	struct dwc2_hsotg_req *req, *treq;
4211
4212	list_for_each_entry_safe(req, treq, &ep->queue, queue) {
4213		if (req == test)
4214			return true;
4215	}
4216
4217	return false;
4218}
4219
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4220/**
4221 * dwc2_hsotg_ep_dequeue - dequeue given endpoint
4222 * @ep: The endpoint to dequeue.
4223 * @req: The request to be removed from a queue.
4224 */
4225static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
4226{
4227	struct dwc2_hsotg_req *hs_req = our_req(req);
4228	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4229	struct dwc2_hsotg *hs = hs_ep->parent;
4230	unsigned long flags;
4231
4232	dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
4233
4234	spin_lock_irqsave(&hs->lock, flags);
4235
4236	if (!on_list(hs_ep, hs_req)) {
4237		spin_unlock_irqrestore(&hs->lock, flags);
4238		return -EINVAL;
4239	}
4240
4241	/* Dequeue already started request */
4242	if (req == &hs_ep->req->req)
4243		dwc2_hsotg_ep_stop_xfr(hs, hs_ep);
4244
4245	dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
4246	spin_unlock_irqrestore(&hs->lock, flags);
4247
4248	return 0;
4249}
4250
4251/**
4252 * dwc2_hsotg_ep_sethalt - set halt on a given endpoint
4253 * @ep: The endpoint to set halt.
4254 * @value: Set or unset the halt.
4255 * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if
4256 *       the endpoint is busy processing requests.
4257 *
4258 * We need to stall the endpoint immediately if request comes from set_feature
4259 * protocol command handler.
4260 */
4261static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now)
4262{
4263	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4264	struct dwc2_hsotg *hs = hs_ep->parent;
4265	int index = hs_ep->index;
4266	u32 epreg;
4267	u32 epctl;
4268	u32 xfertype;
4269
4270	dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
4271
4272	if (index == 0) {
4273		if (value)
4274			dwc2_hsotg_stall_ep0(hs);
4275		else
4276			dev_warn(hs->dev,
4277				 "%s: can't clear halt on ep0\n", __func__);
4278		return 0;
4279	}
4280
4281	if (hs_ep->isochronous) {
4282		dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name);
4283		return -EINVAL;
4284	}
4285
4286	if (!now && value && !list_empty(&hs_ep->queue)) {
4287		dev_dbg(hs->dev, "%s request is pending, cannot halt\n",
4288			ep->name);
4289		return -EAGAIN;
4290	}
4291
4292	if (hs_ep->dir_in) {
4293		epreg = DIEPCTL(index);
4294		epctl = dwc2_readl(hs, epreg);
4295
4296		if (value) {
4297			epctl |= DXEPCTL_STALL | DXEPCTL_SNAK;
4298			if (epctl & DXEPCTL_EPENA)
4299				epctl |= DXEPCTL_EPDIS;
4300		} else {
4301			epctl &= ~DXEPCTL_STALL;
4302			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4303			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4304			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4305				epctl |= DXEPCTL_SETD0PID;
4306		}
4307		dwc2_writel(hs, epctl, epreg);
4308	} else {
 
4309		epreg = DOEPCTL(index);
4310		epctl = dwc2_readl(hs, epreg);
4311
4312		if (value) {
4313			epctl |= DXEPCTL_STALL;
4314		} else {
4315			epctl &= ~DXEPCTL_STALL;
4316			xfertype = epctl & DXEPCTL_EPTYPE_MASK;
4317			if (xfertype == DXEPCTL_EPTYPE_BULK ||
4318			    xfertype == DXEPCTL_EPTYPE_INTERRUPT)
4319				epctl |= DXEPCTL_SETD0PID;
4320		}
4321		dwc2_writel(hs, epctl, epreg);
4322	}
4323
4324	hs_ep->halted = value;
4325
4326	return 0;
4327}
4328
4329/**
4330 * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held
4331 * @ep: The endpoint to set halt.
4332 * @value: Set or unset the halt.
4333 */
4334static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value)
4335{
4336	struct dwc2_hsotg_ep *hs_ep = our_ep(ep);
4337	struct dwc2_hsotg *hs = hs_ep->parent;
4338	unsigned long flags = 0;
4339	int ret = 0;
4340
4341	spin_lock_irqsave(&hs->lock, flags);
4342	ret = dwc2_hsotg_ep_sethalt(ep, value, false);
4343	spin_unlock_irqrestore(&hs->lock, flags);
4344
4345	return ret;
4346}
4347
4348static const struct usb_ep_ops dwc2_hsotg_ep_ops = {
4349	.enable		= dwc2_hsotg_ep_enable,
4350	.disable	= dwc2_hsotg_ep_disable_lock,
4351	.alloc_request	= dwc2_hsotg_ep_alloc_request,
4352	.free_request	= dwc2_hsotg_ep_free_request,
4353	.queue		= dwc2_hsotg_ep_queue_lock,
4354	.dequeue	= dwc2_hsotg_ep_dequeue,
4355	.set_halt	= dwc2_hsotg_ep_sethalt_lock,
4356	/* note, don't believe we have any call for the fifo routines */
4357};
4358
4359/**
4360 * dwc2_hsotg_init - initialize the usb core
4361 * @hsotg: The driver state
4362 */
4363static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg)
4364{
 
 
4365	/* unmask subset of endpoint interrupts */
4366
4367	dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK |
4368		    DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK,
4369		    DIEPMSK);
4370
4371	dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK |
4372		    DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK,
4373		    DOEPMSK);
4374
4375	dwc2_writel(hsotg, 0, DAINTMSK);
4376
4377	/* Be in disconnected state until gadget is registered */
4378	dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON);
4379
4380	/* setup fifos */
4381
4382	dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4383		dwc2_readl(hsotg, GRXFSIZ),
4384		dwc2_readl(hsotg, GNPTXFSIZ));
4385
4386	dwc2_hsotg_init_fifo(hsotg);
4387
 
 
 
 
 
 
 
 
 
 
 
4388	if (using_dma(hsotg))
4389		dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN);
4390}
4391
4392/**
4393 * dwc2_hsotg_udc_start - prepare the udc for work
4394 * @gadget: The usb gadget state
4395 * @driver: The usb gadget driver
4396 *
4397 * Perform initialization to prepare udc device and driver
4398 * to work.
4399 */
4400static int dwc2_hsotg_udc_start(struct usb_gadget *gadget,
4401				struct usb_gadget_driver *driver)
4402{
4403	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4404	unsigned long flags;
4405	int ret;
4406
4407	if (!hsotg) {
4408		pr_err("%s: called with no device\n", __func__);
4409		return -ENODEV;
4410	}
4411
4412	if (!driver) {
4413		dev_err(hsotg->dev, "%s: no driver\n", __func__);
4414		return -EINVAL;
4415	}
4416
4417	if (driver->max_speed < USB_SPEED_FULL)
4418		dev_err(hsotg->dev, "%s: bad speed\n", __func__);
4419
4420	if (!driver->setup) {
4421		dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
4422		return -EINVAL;
4423	}
4424
4425	WARN_ON(hsotg->driver);
4426
4427	driver->driver.bus = NULL;
4428	hsotg->driver = driver;
4429	hsotg->gadget.dev.of_node = hsotg->dev->of_node;
4430	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4431
4432	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) {
4433		ret = dwc2_lowlevel_hw_enable(hsotg);
4434		if (ret)
4435			goto err;
4436	}
4437
4438	if (!IS_ERR_OR_NULL(hsotg->uphy))
4439		otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget);
4440
4441	spin_lock_irqsave(&hsotg->lock, flags);
4442	if (dwc2_hw_is_device(hsotg)) {
4443		dwc2_hsotg_init(hsotg);
4444		dwc2_hsotg_core_init_disconnected(hsotg, false);
4445	}
4446
4447	hsotg->enabled = 0;
4448	spin_unlock_irqrestore(&hsotg->lock, flags);
4449
4450	gadget->sg_supported = using_desc_dma(hsotg);
4451	dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
4452
4453	return 0;
4454
4455err:
4456	hsotg->driver = NULL;
4457	return ret;
4458}
4459
4460/**
4461 * dwc2_hsotg_udc_stop - stop the udc
4462 * @gadget: The usb gadget state
 
4463 *
4464 * Stop udc hw block and stay tunned for future transmissions
4465 */
4466static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget)
4467{
4468	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4469	unsigned long flags = 0;
4470	int ep;
4471
4472	if (!hsotg)
4473		return -ENODEV;
4474
4475	/* all endpoints should be shutdown */
4476	for (ep = 1; ep < hsotg->num_of_eps; ep++) {
4477		if (hsotg->eps_in[ep])
4478			dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4479		if (hsotg->eps_out[ep])
4480			dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4481	}
4482
4483	spin_lock_irqsave(&hsotg->lock, flags);
4484
4485	hsotg->driver = NULL;
4486	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4487	hsotg->enabled = 0;
4488
4489	spin_unlock_irqrestore(&hsotg->lock, flags);
4490
4491	if (!IS_ERR_OR_NULL(hsotg->uphy))
4492		otg_set_peripheral(hsotg->uphy->otg, NULL);
4493
4494	if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4495		dwc2_lowlevel_hw_disable(hsotg);
4496
4497	return 0;
4498}
4499
4500/**
4501 * dwc2_hsotg_gadget_getframe - read the frame number
4502 * @gadget: The usb gadget state
4503 *
4504 * Read the {micro} frame number
4505 */
4506static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget)
4507{
4508	return dwc2_hsotg_read_frameno(to_hsotg(gadget));
4509}
4510
4511/**
4512 * dwc2_hsotg_pullup - connect/disconnect the USB PHY
4513 * @gadget: The usb gadget state
4514 * @is_on: Current state of the USB PHY
4515 *
4516 * Connect/Disconnect the USB PHY pullup
4517 */
4518static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on)
4519{
4520	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4521	unsigned long flags = 0;
4522
4523	dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on,
4524		hsotg->op_state);
4525
4526	/* Don't modify pullup state while in host mode */
4527	if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) {
4528		hsotg->enabled = is_on;
4529		return 0;
4530	}
4531
4532	spin_lock_irqsave(&hsotg->lock, flags);
4533	if (is_on) {
4534		hsotg->enabled = 1;
4535		dwc2_hsotg_core_init_disconnected(hsotg, false);
4536		/* Enable ACG feature in device mode,if supported */
4537		dwc2_enable_acg(hsotg);
4538		dwc2_hsotg_core_connect(hsotg);
4539	} else {
4540		dwc2_hsotg_core_disconnect(hsotg);
4541		dwc2_hsotg_disconnect(hsotg);
4542		hsotg->enabled = 0;
4543	}
4544
4545	hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4546	spin_unlock_irqrestore(&hsotg->lock, flags);
4547
4548	return 0;
4549}
4550
4551static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active)
4552{
4553	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4554	unsigned long flags;
4555
4556	dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active);
4557	spin_lock_irqsave(&hsotg->lock, flags);
4558
4559	/*
4560	 * If controller is hibernated, it must exit from power_down
4561	 * before being initialized / de-initialized
4562	 */
4563	if (hsotg->lx_state == DWC2_L2)
4564		dwc2_exit_partial_power_down(hsotg, false);
4565
4566	if (is_active) {
4567		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4568
4569		dwc2_hsotg_core_init_disconnected(hsotg, false);
4570		if (hsotg->enabled) {
4571			/* Enable ACG feature in device mode,if supported */
4572			dwc2_enable_acg(hsotg);
4573			dwc2_hsotg_core_connect(hsotg);
4574		}
4575	} else {
4576		dwc2_hsotg_core_disconnect(hsotg);
4577		dwc2_hsotg_disconnect(hsotg);
4578	}
4579
4580	spin_unlock_irqrestore(&hsotg->lock, flags);
4581	return 0;
4582}
4583
4584/**
4585 * dwc2_hsotg_vbus_draw - report bMaxPower field
4586 * @gadget: The usb gadget state
4587 * @mA: Amount of current
4588 *
4589 * Report how much power the device may consume to the phy.
4590 */
4591static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
4592{
4593	struct dwc2_hsotg *hsotg = to_hsotg(gadget);
4594
4595	if (IS_ERR_OR_NULL(hsotg->uphy))
4596		return -ENOTSUPP;
4597	return usb_phy_set_power(hsotg->uphy, mA);
4598}
4599
4600static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = {
4601	.get_frame	= dwc2_hsotg_gadget_getframe,
4602	.udc_start		= dwc2_hsotg_udc_start,
4603	.udc_stop		= dwc2_hsotg_udc_stop,
4604	.pullup                 = dwc2_hsotg_pullup,
4605	.vbus_session		= dwc2_hsotg_vbus_session,
4606	.vbus_draw		= dwc2_hsotg_vbus_draw,
4607};
4608
4609/**
4610 * dwc2_hsotg_initep - initialise a single endpoint
4611 * @hsotg: The device state.
4612 * @hs_ep: The endpoint to be initialised.
4613 * @epnum: The endpoint number
4614 * @dir_in: True if direction is in.
4615 *
4616 * Initialise the given endpoint (as part of the probe and device state
4617 * creation) to give to the gadget driver. Setup the endpoint name, any
4618 * direction information and other state that may be required.
4619 */
4620static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg,
4621			      struct dwc2_hsotg_ep *hs_ep,
4622				       int epnum,
4623				       bool dir_in)
4624{
4625	char *dir;
4626
4627	if (epnum == 0)
4628		dir = "";
4629	else if (dir_in)
4630		dir = "in";
4631	else
4632		dir = "out";
4633
4634	hs_ep->dir_in = dir_in;
4635	hs_ep->index = epnum;
4636
4637	snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
4638
4639	INIT_LIST_HEAD(&hs_ep->queue);
4640	INIT_LIST_HEAD(&hs_ep->ep.ep_list);
4641
4642	/* add to the list of endpoints known by the gadget driver */
4643	if (epnum)
4644		list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
4645
4646	hs_ep->parent = hsotg;
4647	hs_ep->ep.name = hs_ep->name;
4648
4649	if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW)
4650		usb_ep_set_maxpacket_limit(&hs_ep->ep, 8);
4651	else
4652		usb_ep_set_maxpacket_limit(&hs_ep->ep,
4653					   epnum ? 1024 : EP0_MPS_LIMIT);
4654	hs_ep->ep.ops = &dwc2_hsotg_ep_ops;
4655
4656	if (epnum == 0) {
4657		hs_ep->ep.caps.type_control = true;
4658	} else {
4659		if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) {
4660			hs_ep->ep.caps.type_iso = true;
4661			hs_ep->ep.caps.type_bulk = true;
4662		}
4663		hs_ep->ep.caps.type_int = true;
4664	}
4665
4666	if (dir_in)
4667		hs_ep->ep.caps.dir_in = true;
4668	else
4669		hs_ep->ep.caps.dir_out = true;
4670
4671	/*
4672	 * if we're using dma, we need to set the next-endpoint pointer
4673	 * to be something valid.
4674	 */
4675
4676	if (using_dma(hsotg)) {
4677		u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15);
4678
4679		if (dir_in)
4680			dwc2_writel(hsotg, next, DIEPCTL(epnum));
4681		else
4682			dwc2_writel(hsotg, next, DOEPCTL(epnum));
4683	}
4684}
4685
4686/**
4687 * dwc2_hsotg_hw_cfg - read HW configuration registers
4688 * @hsotg: Programming view of the DWC_otg controller
4689 *
4690 * Read the USB core HW configuration registers
4691 */
4692static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg)
4693{
4694	u32 cfg;
4695	u32 ep_type;
4696	u32 i;
4697
4698	/* check hardware configuration */
4699
4700	hsotg->num_of_eps = hsotg->hw_params.num_dev_ep;
4701
4702	/* Add ep0 */
4703	hsotg->num_of_eps++;
4704
4705	hsotg->eps_in[0] = devm_kzalloc(hsotg->dev,
4706					sizeof(struct dwc2_hsotg_ep),
4707					GFP_KERNEL);
4708	if (!hsotg->eps_in[0])
4709		return -ENOMEM;
4710	/* Same dwc2_hsotg_ep is used in both directions for ep0 */
4711	hsotg->eps_out[0] = hsotg->eps_in[0];
4712
4713	cfg = hsotg->hw_params.dev_ep_dirs;
4714	for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) {
4715		ep_type = cfg & 3;
4716		/* Direction in or both */
4717		if (!(ep_type & 2)) {
4718			hsotg->eps_in[i] = devm_kzalloc(hsotg->dev,
4719				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4720			if (!hsotg->eps_in[i])
4721				return -ENOMEM;
4722		}
4723		/* Direction out or both */
4724		if (!(ep_type & 1)) {
4725			hsotg->eps_out[i] = devm_kzalloc(hsotg->dev,
4726				sizeof(struct dwc2_hsotg_ep), GFP_KERNEL);
4727			if (!hsotg->eps_out[i])
4728				return -ENOMEM;
4729		}
4730	}
4731
4732	hsotg->fifo_mem = hsotg->hw_params.total_fifo_size;
4733	hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo;
4734
4735	dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n",
4736		 hsotg->num_of_eps,
4737		 hsotg->dedicated_fifos ? "dedicated" : "shared",
4738		 hsotg->fifo_mem);
4739	return 0;
4740}
4741
4742/**
4743 * dwc2_hsotg_dump - dump state of the udc
4744 * @hsotg: Programming view of the DWC_otg controller
4745 *
4746 */
4747static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg)
4748{
4749#ifdef DEBUG
4750	struct device *dev = hsotg->dev;
 
4751	u32 val;
4752	int idx;
4753
4754	dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
4755		 dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL),
4756		 dwc2_readl(hsotg, DIEPMSK));
4757
4758	dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n",
4759		 dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1));
4760
4761	dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
4762		 dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ));
4763
4764	/* show periodic fifo settings */
4765
4766	for (idx = 1; idx < hsotg->num_of_eps; idx++) {
4767		val = dwc2_readl(hsotg, DPTXFSIZN(idx));
4768		dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
4769			 val >> FIFOSIZE_DEPTH_SHIFT,
4770			 val & FIFOSIZE_STARTADDR_MASK);
4771	}
4772
4773	for (idx = 0; idx < hsotg->num_of_eps; idx++) {
4774		dev_info(dev,
4775			 "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
4776			 dwc2_readl(hsotg, DIEPCTL(idx)),
4777			 dwc2_readl(hsotg, DIEPTSIZ(idx)),
4778			 dwc2_readl(hsotg, DIEPDMA(idx)));
4779
4780		val = dwc2_readl(hsotg, DOEPCTL(idx));
4781		dev_info(dev,
4782			 "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
4783			 idx, dwc2_readl(hsotg, DOEPCTL(idx)),
4784			 dwc2_readl(hsotg, DOEPTSIZ(idx)),
4785			 dwc2_readl(hsotg, DOEPDMA(idx)));
 
4786	}
4787
4788	dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
4789		 dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE));
4790#endif
4791}
4792
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4793/**
4794 * dwc2_gadget_init - init function for gadget
4795 * @hsotg: Programming view of the DWC_otg controller
4796 *
4797 */
4798int dwc2_gadget_init(struct dwc2_hsotg *hsotg)
4799{
4800	struct device *dev = hsotg->dev;
4801	int epnum;
4802	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4803
4804	/* Dump fifo information */
4805	dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n",
4806		hsotg->params.g_np_tx_fifo_size);
4807	dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size);
 
 
 
4808
4809	hsotg->gadget.max_speed = USB_SPEED_HIGH;
4810	hsotg->gadget.ops = &dwc2_hsotg_gadget_ops;
4811	hsotg->gadget.name = dev_name(dev);
4812	hsotg->remote_wakeup_allowed = 0;
4813
4814	if (hsotg->params.lpm)
4815		hsotg->gadget.lpm_capable = true;
4816
4817	if (hsotg->dr_mode == USB_DR_MODE_OTG)
4818		hsotg->gadget.is_otg = 1;
4819	else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL)
4820		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
4821
4822	ret = dwc2_hsotg_hw_cfg(hsotg);
4823	if (ret) {
4824		dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret);
4825		return ret;
4826	}
4827
4828	hsotg->ctrl_buff = devm_kzalloc(hsotg->dev,
4829			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4830	if (!hsotg->ctrl_buff)
 
4831		return -ENOMEM;
 
4832
4833	hsotg->ep0_buff = devm_kzalloc(hsotg->dev,
4834			DWC2_CTRL_BUFF_SIZE, GFP_KERNEL);
4835	if (!hsotg->ep0_buff)
 
4836		return -ENOMEM;
4837
4838	if (using_desc_dma(hsotg)) {
4839		ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg);
4840		if (ret < 0)
4841			return ret;
4842	}
4843
4844	ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq,
4845			       IRQF_SHARED, dev_name(hsotg->dev), hsotg);
4846	if (ret < 0) {
4847		dev_err(dev, "cannot claim IRQ for gadget\n");
4848		return ret;
4849	}
4850
4851	/* hsotg->num_of_eps holds number of EPs other than ep0 */
4852
4853	if (hsotg->num_of_eps == 0) {
4854		dev_err(dev, "wrong number of EPs (zero)\n");
4855		return -EINVAL;
4856	}
4857
4858	/* setup endpoint information */
4859
4860	INIT_LIST_HEAD(&hsotg->gadget.ep_list);
4861	hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep;
4862
4863	/* allocate EP0 request */
4864
4865	hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep,
4866						     GFP_KERNEL);
4867	if (!hsotg->ctrl_req) {
4868		dev_err(dev, "failed to allocate ctrl req\n");
4869		return -ENOMEM;
4870	}
4871
4872	/* initialise the endpoints now the core has been initialised */
4873	for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) {
4874		if (hsotg->eps_in[epnum])
4875			dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum],
4876					  epnum, 1);
4877		if (hsotg->eps_out[epnum])
4878			dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum],
4879					  epnum, 0);
4880	}
4881
4882	ret = usb_add_gadget_udc(dev, &hsotg->gadget);
4883	if (ret) {
4884		dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep,
4885					   hsotg->ctrl_req);
4886		return ret;
4887	}
4888	dwc2_hsotg_dump(hsotg);
4889
4890	return 0;
4891}
4892
4893/**
4894 * dwc2_hsotg_remove - remove function for hsotg driver
4895 * @hsotg: Programming view of the DWC_otg controller
4896 *
4897 */
4898int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg)
4899{
4900	usb_del_gadget_udc(&hsotg->gadget);
4901	dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req);
4902
4903	return 0;
4904}
4905
4906int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg)
4907{
4908	unsigned long flags;
4909
4910	if (hsotg->lx_state != DWC2_L0)
4911		return 0;
4912
4913	if (hsotg->driver) {
4914		int ep;
4915
4916		dev_info(hsotg->dev, "suspending usb gadget %s\n",
4917			 hsotg->driver->driver.name);
4918
4919		spin_lock_irqsave(&hsotg->lock, flags);
4920		if (hsotg->enabled)
4921			dwc2_hsotg_core_disconnect(hsotg);
4922		dwc2_hsotg_disconnect(hsotg);
4923		hsotg->gadget.speed = USB_SPEED_UNKNOWN;
4924		spin_unlock_irqrestore(&hsotg->lock, flags);
4925
4926		for (ep = 0; ep < hsotg->num_of_eps; ep++) {
4927			if (hsotg->eps_in[ep])
4928				dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep);
4929			if (hsotg->eps_out[ep])
4930				dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep);
4931		}
4932	}
4933
4934	return 0;
4935}
4936
4937int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg)
4938{
4939	unsigned long flags;
4940
4941	if (hsotg->lx_state == DWC2_L2)
4942		return 0;
4943
4944	if (hsotg->driver) {
4945		dev_info(hsotg->dev, "resuming usb gadget %s\n",
4946			 hsotg->driver->driver.name);
4947
4948		spin_lock_irqsave(&hsotg->lock, flags);
4949		dwc2_hsotg_core_init_disconnected(hsotg, false);
4950		if (hsotg->enabled) {
4951			/* Enable ACG feature in device mode,if supported */
4952			dwc2_enable_acg(hsotg);
4953			dwc2_hsotg_core_connect(hsotg);
4954		}
4955		spin_unlock_irqrestore(&hsotg->lock, flags);
4956	}
4957
4958	return 0;
4959}
4960
4961/**
4962 * dwc2_backup_device_registers() - Backup controller device registers.
4963 * When suspending usb bus, registers needs to be backuped
4964 * if controller power is disabled once suspended.
4965 *
4966 * @hsotg: Programming view of the DWC_otg controller
4967 */
4968int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg)
4969{
4970	struct dwc2_dregs_backup *dr;
4971	int i;
4972
4973	dev_dbg(hsotg->dev, "%s\n", __func__);
4974
4975	/* Backup dev regs */
4976	dr = &hsotg->dr_backup;
4977
4978	dr->dcfg = dwc2_readl(hsotg, DCFG);
4979	dr->dctl = dwc2_readl(hsotg, DCTL);
4980	dr->daintmsk = dwc2_readl(hsotg, DAINTMSK);
4981	dr->diepmsk = dwc2_readl(hsotg, DIEPMSK);
4982	dr->doepmsk = dwc2_readl(hsotg, DOEPMSK);
4983
4984	for (i = 0; i < hsotg->num_of_eps; i++) {
4985		/* Backup IN EPs */
4986		dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i));
4987
4988		/* Ensure DATA PID is correctly configured */
4989		if (dr->diepctl[i] & DXEPCTL_DPID)
4990			dr->diepctl[i] |= DXEPCTL_SETD1PID;
4991		else
4992			dr->diepctl[i] |= DXEPCTL_SETD0PID;
4993
4994		dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i));
4995		dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i));
4996
4997		/* Backup OUT EPs */
4998		dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i));
4999
5000		/* Ensure DATA PID is correctly configured */
5001		if (dr->doepctl[i] & DXEPCTL_DPID)
5002			dr->doepctl[i] |= DXEPCTL_SETD1PID;
5003		else
5004			dr->doepctl[i] |= DXEPCTL_SETD0PID;
5005
5006		dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i));
5007		dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i));
5008		dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i));
5009	}
5010	dr->valid = true;
5011	return 0;
5012}
5013
5014/**
5015 * dwc2_restore_device_registers() - Restore controller device registers.
5016 * When resuming usb bus, device registers needs to be restored
5017 * if controller power were disabled.
5018 *
5019 * @hsotg: Programming view of the DWC_otg controller
5020 * @remote_wakeup: Indicates whether resume is initiated by Device or Host.
5021 *
5022 * Return: 0 if successful, negative error code otherwise
5023 */
5024int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup)
5025{
5026	struct dwc2_dregs_backup *dr;
 
5027	int i;
5028
5029	dev_dbg(hsotg->dev, "%s\n", __func__);
5030
5031	/* Restore dev regs */
5032	dr = &hsotg->dr_backup;
5033	if (!dr->valid) {
5034		dev_err(hsotg->dev, "%s: no device registers to restore\n",
5035			__func__);
5036		return -EINVAL;
5037	}
5038	dr->valid = false;
5039
5040	if (!remote_wakeup)
5041		dwc2_writel(hsotg, dr->dctl, DCTL);
5042
5043	dwc2_writel(hsotg, dr->daintmsk, DAINTMSK);
5044	dwc2_writel(hsotg, dr->diepmsk, DIEPMSK);
5045	dwc2_writel(hsotg, dr->doepmsk, DOEPMSK);
5046
5047	for (i = 0; i < hsotg->num_of_eps; i++) {
5048		/* Restore IN EPs */
5049		dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i));
5050		dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i));
5051		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5052		/** WA for enabled EPx's IN in DDMA mode. On entering to
5053		 * hibernation wrong value read and saved from DIEPDMAx,
5054		 * as result BNA interrupt asserted on hibernation exit
5055		 * by restoring from saved area.
5056		 */
5057		if (hsotg->params.g_dma_desc &&
5058		    (dr->diepctl[i] & DXEPCTL_EPENA))
5059			dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma;
5060		dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i));
5061		dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i));
5062		/* Restore OUT EPs */
5063		dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i));
5064		/* WA for enabled EPx's OUT in DDMA mode. On entering to
5065		 * hibernation wrong value read and saved from DOEPDMAx,
5066		 * as result BNA interrupt asserted on hibernation exit
5067		 * by restoring from saved area.
5068		 */
5069		if (hsotg->params.g_dma_desc &&
5070		    (dr->doepctl[i] & DXEPCTL_EPENA))
5071			dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma;
5072		dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i));
5073		dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i));
5074	}
5075
 
 
 
 
 
5076	return 0;
5077}
5078
5079/**
5080 * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode
5081 *
5082 * @hsotg: Programming view of DWC_otg controller
5083 *
5084 */
5085void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg)
5086{
5087	u32 val;
5088
5089	if (!hsotg->params.lpm)
5090		return;
5091
5092	val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES;
5093	val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0;
5094	val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0;
5095	val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT;
5096	val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0;
5097	val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL;
5098	val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC;
5099	dwc2_writel(hsotg, val, GLPMCFG);
5100	dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG));
5101
5102	/* Unmask WKUP_ALERT Interrupt */
5103	if (hsotg->params.service_interval)
5104		dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK);
5105}
5106
5107/**
5108 * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode
5109 *
5110 * @hsotg: Programming view of DWC_otg controller
5111 *
5112 */
5113void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg)
5114{
5115	u32 val = 0;
5116
5117	val |= GREFCLK_REF_CLK_MODE;
5118	val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT;
5119	val |= hsotg->params.sof_cnt_wkup_alert <<
5120	       GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT;
5121
5122	dwc2_writel(hsotg, val, GREFCLK);
5123	dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK));
5124}
5125
5126/**
5127 * dwc2_gadget_enter_hibernation() - Put controller in Hibernation.
5128 *
5129 * @hsotg: Programming view of the DWC_otg controller
5130 *
5131 * Return non-zero if failed to enter to hibernation.
5132 */
5133int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg)
5134{
5135	u32 gpwrdn;
5136	int ret = 0;
5137
5138	/* Change to L2(suspend) state */
5139	hsotg->lx_state = DWC2_L2;
5140	dev_dbg(hsotg->dev, "Start of hibernation completed\n");
5141	ret = dwc2_backup_global_registers(hsotg);
5142	if (ret) {
5143		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5144			__func__);
5145		return ret;
5146	}
5147	ret = dwc2_backup_device_registers(hsotg);
5148	if (ret) {
5149		dev_err(hsotg->dev, "%s: failed to backup device registers\n",
5150			__func__);
5151		return ret;
5152	}
5153
5154	gpwrdn = GPWRDN_PWRDNRSTN;
5155	gpwrdn |= GPWRDN_PMUACTV;
5156	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5157	udelay(10);
5158
5159	/* Set flag to indicate that we are in hibernation */
5160	hsotg->hibernated = 1;
5161
5162	/* Enable interrupts from wake up logic */
5163	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5164	gpwrdn |= GPWRDN_PMUINTSEL;
5165	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5166	udelay(10);
5167
5168	/* Unmask device mode interrupts in GPWRDN */
5169	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5170	gpwrdn |= GPWRDN_RST_DET_MSK;
5171	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5172	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5173	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5174	udelay(10);
5175
5176	/* Enable Power Down Clamp */
5177	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5178	gpwrdn |= GPWRDN_PWRDNCLMP;
5179	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5180	udelay(10);
5181
5182	/* Switch off VDD */
5183	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5184	gpwrdn |= GPWRDN_PWRDNSWTCH;
5185	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5186	udelay(10);
5187
5188	/* Save gpwrdn register for further usage if stschng interrupt */
5189	hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN);
5190	dev_dbg(hsotg->dev, "Hibernation completed\n");
5191
5192	return ret;
5193}
5194
5195/**
5196 * dwc2_gadget_exit_hibernation()
5197 * This function is for exiting from Device mode hibernation by host initiated
5198 * resume/reset and device initiated remote-wakeup.
5199 *
5200 * @hsotg: Programming view of the DWC_otg controller
5201 * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5202 * @reset: indicates whether resume is initiated by Reset.
5203 *
5204 * Return non-zero if failed to exit from hibernation.
5205 */
5206int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg,
5207				 int rem_wakeup, int reset)
5208{
5209	u32 pcgcctl;
5210	u32 gpwrdn;
5211	u32 dctl;
5212	int ret = 0;
5213	struct dwc2_gregs_backup *gr;
5214	struct dwc2_dregs_backup *dr;
5215
5216	gr = &hsotg->gr_backup;
5217	dr = &hsotg->dr_backup;
5218
5219	if (!hsotg->hibernated) {
5220		dev_dbg(hsotg->dev, "Already exited from Hibernation\n");
5221		return 1;
5222	}
5223	dev_dbg(hsotg->dev,
5224		"%s: called with rem_wakeup = %d reset = %d\n",
5225		__func__, rem_wakeup, reset);
5226
5227	dwc2_hib_restore_common(hsotg, rem_wakeup, 0);
5228
5229	if (!reset) {
5230		/* Clear all pending interupts */
5231		dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5232	}
5233
5234	/* De-assert Restore */
5235	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5236	gpwrdn &= ~GPWRDN_RESTORE;
5237	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5238	udelay(10);
5239
5240	if (!rem_wakeup) {
5241		pcgcctl = dwc2_readl(hsotg, PCGCTL);
5242		pcgcctl &= ~PCGCTL_RSTPDWNMODULE;
5243		dwc2_writel(hsotg, pcgcctl, PCGCTL);
5244	}
5245
5246	/* Restore GUSBCFG, DCFG and DCTL */
5247	dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG);
5248	dwc2_writel(hsotg, dr->dcfg, DCFG);
5249	dwc2_writel(hsotg, dr->dctl, DCTL);
5250
5251	/* De-assert Wakeup Logic */
5252	gpwrdn = dwc2_readl(hsotg, GPWRDN);
5253	gpwrdn &= ~GPWRDN_PMUACTV;
5254	dwc2_writel(hsotg, gpwrdn, GPWRDN);
5255
5256	if (rem_wakeup) {
5257		udelay(10);
5258		/* Start Remote Wakeup Signaling */
5259		dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL);
5260	} else {
5261		udelay(50);
5262		/* Set Device programming done bit */
5263		dctl = dwc2_readl(hsotg, DCTL);
5264		dctl |= DCTL_PWRONPRGDONE;
5265		dwc2_writel(hsotg, dctl, DCTL);
5266	}
5267	/* Wait for interrupts which must be cleared */
5268	mdelay(2);
5269	/* Clear all pending interupts */
5270	dwc2_writel(hsotg, 0xffffffff, GINTSTS);
5271
5272	/* Restore global registers */
5273	ret = dwc2_restore_global_registers(hsotg);
5274	if (ret) {
5275		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5276			__func__);
5277		return ret;
5278	}
5279
5280	/* Restore device registers */
5281	ret = dwc2_restore_device_registers(hsotg, rem_wakeup);
5282	if (ret) {
5283		dev_err(hsotg->dev, "%s: failed to restore device registers\n",
5284			__func__);
5285		return ret;
5286	}
5287
5288	if (rem_wakeup) {
5289		mdelay(10);
5290		dctl = dwc2_readl(hsotg, DCTL);
5291		dctl &= ~DCTL_RMTWKUPSIG;
5292		dwc2_writel(hsotg, dctl, DCTL);
5293	}
5294
5295	hsotg->hibernated = 0;
5296	hsotg->lx_state = DWC2_L0;
5297	dev_dbg(hsotg->dev, "Hibernation recovery completes here\n");
5298
5299	return ret;
5300}