Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
 
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233
 234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty->count != count) {
 297		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 298			 routine, tty->count, count);
 299		return count;
 
 
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@dev_t: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 322		if (device < base || device >= base + p->num)
 323			continue;
 324		*index = device - base;
 325		return tty_driver_kref_get(p);
 326	}
 327	return NULL;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330#ifdef CONFIG_CONSOLE_POLL
 331
 332/**
 333 *	tty_find_polling_driver	-	find device of a polled tty
 334 *	@name: name string to match
 335 *	@line: pointer to resulting tty line nr
 336 *
 337 *	This routine returns a tty driver structure, given a name
 338 *	and the condition that the tty driver is capable of polled
 339 *	operation.
 340 */
 341struct tty_driver *tty_find_polling_driver(char *name, int *line)
 342{
 343	struct tty_driver *p, *res = NULL;
 344	int tty_line = 0;
 345	int len;
 346	char *str, *stp;
 347
 348	for (str = name; *str; str++)
 349		if ((*str >= '0' && *str <= '9') || *str == ',')
 350			break;
 351	if (!*str)
 352		return NULL;
 353
 354	len = str - name;
 355	tty_line = simple_strtoul(str, &str, 10);
 356
 357	mutex_lock(&tty_mutex);
 358	/* Search through the tty devices to look for a match */
 359	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 360		if (strncmp(name, p->name, len) != 0)
 361			continue;
 362		stp = str;
 363		if (*stp == ',')
 364			stp++;
 365		if (*stp == '\0')
 366			stp = NULL;
 367
 368		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 369		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 370			res = tty_driver_kref_get(p);
 371			*line = tty_line;
 372			break;
 373		}
 374	}
 375	mutex_unlock(&tty_mutex);
 376
 377	return res;
 378}
 379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 380#endif
 381
 382static int is_ignored(int sig)
 383{
 384	return (sigismember(&current->blocked, sig) ||
 385		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 386}
 387
 388/**
 389 *	tty_check_change	-	check for POSIX terminal changes
 390 *	@tty: tty to check
 391 *
 392 *	If we try to write to, or set the state of, a terminal and we're
 393 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 394 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 395 *
 396 *	Locking: ctrl_lock
 397 */
 398
 399int __tty_check_change(struct tty_struct *tty, int sig)
 400{
 401	unsigned long flags;
 402	struct pid *pgrp, *tty_pgrp;
 403	int ret = 0;
 404
 405	if (current->signal->tty != tty)
 406		return 0;
 407
 408	rcu_read_lock();
 409	pgrp = task_pgrp(current);
 410
 411	spin_lock_irqsave(&tty->ctrl_lock, flags);
 412	tty_pgrp = tty->pgrp;
 413	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 414
 415	if (tty_pgrp && pgrp != tty->pgrp) {
 416		if (is_ignored(sig)) {
 417			if (sig == SIGTTIN)
 418				ret = -EIO;
 419		} else if (is_current_pgrp_orphaned())
 420			ret = -EIO;
 421		else {
 422			kill_pgrp(pgrp, sig, 1);
 423			set_thread_flag(TIF_SIGPENDING);
 424			ret = -ERESTARTSYS;
 425		}
 426	}
 427	rcu_read_unlock();
 428
 429	if (!tty_pgrp)
 430		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 431
 432	return ret;
 433}
 434
 435int tty_check_change(struct tty_struct *tty)
 436{
 437	return __tty_check_change(tty, SIGTTOU);
 438}
 439EXPORT_SYMBOL(tty_check_change);
 440
 441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 442				size_t count, loff_t *ppos)
 443{
 444	return 0;
 445}
 446
 447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 448				 size_t count, loff_t *ppos)
 449{
 450	return -EIO;
 451}
 452
 453/* No kernel lock held - none needed ;) */
 454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 455{
 456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 457}
 458
 459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 460		unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static long hung_up_tty_compat_ioctl(struct file *file,
 466				     unsigned int cmd, unsigned long arg)
 467{
 468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 469}
 470
 471static int hung_up_tty_fasync(int fd, struct file *file, int on)
 472{
 473	return -ENOTTY;
 474}
 475
 
 
 
 
 
 
 
 
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 
 486};
 487
 488static const struct file_operations console_fops = {
 489	.llseek		= no_llseek,
 490	.read		= tty_read,
 491	.write		= redirected_tty_write,
 492	.poll		= tty_poll,
 493	.unlocked_ioctl	= tty_ioctl,
 494	.compat_ioctl	= tty_compat_ioctl,
 495	.open		= tty_open,
 496	.release	= tty_release,
 497	.fasync		= tty_fasync,
 498};
 499
 500static const struct file_operations hung_up_tty_fops = {
 501	.llseek		= no_llseek,
 502	.read		= hung_up_tty_read,
 503	.write		= hung_up_tty_write,
 504	.poll		= hung_up_tty_poll,
 505	.unlocked_ioctl	= hung_up_tty_ioctl,
 506	.compat_ioctl	= hung_up_tty_compat_ioctl,
 507	.release	= tty_release,
 508	.fasync		= hung_up_tty_fasync,
 509};
 510
 511static DEFINE_SPINLOCK(redirect_lock);
 512static struct file *redirect;
 513
 514
 515void proc_clear_tty(struct task_struct *p)
 516{
 517	unsigned long flags;
 518	struct tty_struct *tty;
 519	spin_lock_irqsave(&p->sighand->siglock, flags);
 520	tty = p->signal->tty;
 521	p->signal->tty = NULL;
 522	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 523	tty_kref_put(tty);
 524}
 525
 526/**
 527 * proc_set_tty -  set the controlling terminal
 528 *
 529 * Only callable by the session leader and only if it does not already have
 530 * a controlling terminal.
 531 *
 532 * Caller must hold:  tty_lock()
 533 *		      a readlock on tasklist_lock
 534 *		      sighand lock
 535 */
 536static void __proc_set_tty(struct tty_struct *tty)
 537{
 538	unsigned long flags;
 539
 540	spin_lock_irqsave(&tty->ctrl_lock, flags);
 541	/*
 542	 * The session and fg pgrp references will be non-NULL if
 543	 * tiocsctty() is stealing the controlling tty
 544	 */
 545	put_pid(tty->session);
 546	put_pid(tty->pgrp);
 547	tty->pgrp = get_pid(task_pgrp(current));
 548	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 549	tty->session = get_pid(task_session(current));
 550	if (current->signal->tty) {
 551		tty_debug(tty, "current tty %s not NULL!!\n",
 552			  current->signal->tty->name);
 553		tty_kref_put(current->signal->tty);
 554	}
 555	put_pid(current->signal->tty_old_pgrp);
 556	current->signal->tty = tty_kref_get(tty);
 557	current->signal->tty_old_pgrp = NULL;
 558}
 559
 560static void proc_set_tty(struct tty_struct *tty)
 561{
 562	spin_lock_irq(&current->sighand->siglock);
 563	__proc_set_tty(tty);
 564	spin_unlock_irq(&current->sighand->siglock);
 565}
 566
 567struct tty_struct *get_current_tty(void)
 568{
 569	struct tty_struct *tty;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&current->sighand->siglock, flags);
 573	tty = tty_kref_get(current->signal->tty);
 574	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 575	return tty;
 576}
 577EXPORT_SYMBOL_GPL(get_current_tty);
 578
 579static void session_clear_tty(struct pid *session)
 580{
 581	struct task_struct *p;
 582	do_each_pid_task(session, PIDTYPE_SID, p) {
 583		proc_clear_tty(p);
 584	} while_each_pid_task(session, PIDTYPE_SID, p);
 585}
 586
 587/**
 588 *	tty_wakeup	-	request more data
 589 *	@tty: terminal
 590 *
 591 *	Internal and external helper for wakeups of tty. This function
 592 *	informs the line discipline if present that the driver is ready
 593 *	to receive more output data.
 594 */
 595
 596void tty_wakeup(struct tty_struct *tty)
 597{
 598	struct tty_ldisc *ld;
 599
 600	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 601		ld = tty_ldisc_ref(tty);
 602		if (ld) {
 603			if (ld->ops->write_wakeup)
 604				ld->ops->write_wakeup(tty);
 605			tty_ldisc_deref(ld);
 606		}
 607	}
 608	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 609}
 610
 611EXPORT_SYMBOL_GPL(tty_wakeup);
 612
 613/**
 614 *	tty_signal_session_leader	- sends SIGHUP to session leader
 615 *	@tty		controlling tty
 616 *	@exit_session	if non-zero, signal all foreground group processes
 617 *
 618 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 619 *	Optionally, signal all processes in the foreground process group.
 620 *
 621 *	Returns the number of processes in the session with this tty
 622 *	as their controlling terminal. This value is used to drop
 623 *	tty references for those processes.
 624 */
 625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 626{
 627	struct task_struct *p;
 628	int refs = 0;
 629	struct pid *tty_pgrp = NULL;
 630
 631	read_lock(&tasklist_lock);
 632	if (tty->session) {
 633		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 634			spin_lock_irq(&p->sighand->siglock);
 635			if (p->signal->tty == tty) {
 636				p->signal->tty = NULL;
 637				/* We defer the dereferences outside fo
 638				   the tasklist lock */
 639				refs++;
 640			}
 641			if (!p->signal->leader) {
 642				spin_unlock_irq(&p->sighand->siglock);
 643				continue;
 644			}
 645			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 646			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 647			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 648			spin_lock(&tty->ctrl_lock);
 649			tty_pgrp = get_pid(tty->pgrp);
 650			if (tty->pgrp)
 651				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 652			spin_unlock(&tty->ctrl_lock);
 653			spin_unlock_irq(&p->sighand->siglock);
 654		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (tty_pgrp) {
 659		if (exit_session)
 660			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 661		put_pid(tty_pgrp);
 662	}
 663
 664	return refs;
 665}
 666
 667/**
 668 *	__tty_hangup		-	actual handler for hangup events
 669 *	@work: tty device
 670 *
 671 *	This can be called by a "kworker" kernel thread.  That is process
 672 *	synchronous but doesn't hold any locks, so we need to make sure we
 673 *	have the appropriate locks for what we're doing.
 674 *
 675 *	The hangup event clears any pending redirections onto the hung up
 676 *	device. It ensures future writes will error and it does the needed
 677 *	line discipline hangup and signal delivery. The tty object itself
 678 *	remains intact.
 679 *
 680 *	Locking:
 681 *		BTM
 682 *		  redirect lock for undoing redirection
 683 *		  file list lock for manipulating list of ttys
 684 *		  tty_ldiscs_lock from called functions
 685 *		  termios_rwsem resetting termios data
 686 *		  tasklist_lock to walk task list for hangup event
 687 *		    ->siglock to protect ->signal/->sighand
 688 */
 689static void __tty_hangup(struct tty_struct *tty, int exit_session)
 690{
 691	struct file *cons_filp = NULL;
 692	struct file *filp, *f = NULL;
 693	struct tty_file_private *priv;
 694	int    closecount = 0, n;
 695	int refs;
 696
 697	if (!tty)
 698		return;
 699
 700
 701	spin_lock(&redirect_lock);
 702	if (redirect && file_tty(redirect) == tty) {
 703		f = redirect;
 704		redirect = NULL;
 705	}
 706	spin_unlock(&redirect_lock);
 707
 708	tty_lock(tty);
 709
 710	if (test_bit(TTY_HUPPED, &tty->flags)) {
 711		tty_unlock(tty);
 712		return;
 713	}
 714
 
 
 
 
 
 
 
 
 715	/* inuse_filps is protected by the single tty lock,
 716	   this really needs to change if we want to flush the
 717	   workqueue with the lock held */
 718	check_tty_count(tty, "tty_hangup");
 719
 720	spin_lock(&tty->files_lock);
 721	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 722	list_for_each_entry(priv, &tty->tty_files, list) {
 723		filp = priv->file;
 724		if (filp->f_op->write == redirected_tty_write)
 725			cons_filp = filp;
 726		if (filp->f_op->write != tty_write)
 727			continue;
 728		closecount++;
 729		__tty_fasync(-1, filp, 0);	/* can't block */
 730		filp->f_op = &hung_up_tty_fops;
 731	}
 732	spin_unlock(&tty->files_lock);
 733
 734	refs = tty_signal_session_leader(tty, exit_session);
 735	/* Account for the p->signal references we killed */
 736	while (refs--)
 737		tty_kref_put(tty);
 738
 739	tty_ldisc_hangup(tty, cons_filp != NULL);
 740
 741	spin_lock_irq(&tty->ctrl_lock);
 742	clear_bit(TTY_THROTTLED, &tty->flags);
 743	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 744	put_pid(tty->session);
 745	put_pid(tty->pgrp);
 746	tty->session = NULL;
 747	tty->pgrp = NULL;
 748	tty->ctrl_status = 0;
 749	spin_unlock_irq(&tty->ctrl_lock);
 750
 751	/*
 752	 * If one of the devices matches a console pointer, we
 753	 * cannot just call hangup() because that will cause
 754	 * tty->count and state->count to go out of sync.
 755	 * So we just call close() the right number of times.
 756	 */
 757	if (cons_filp) {
 758		if (tty->ops->close)
 759			for (n = 0; n < closecount; n++)
 760				tty->ops->close(tty, cons_filp);
 761	} else if (tty->ops->hangup)
 762		tty->ops->hangup(tty);
 763	/*
 764	 * We don't want to have driver/ldisc interactions beyond the ones
 765	 * we did here. The driver layer expects no calls after ->hangup()
 766	 * from the ldisc side, which is now guaranteed.
 767	 */
 768	set_bit(TTY_HUPPED, &tty->flags);
 
 769	tty_unlock(tty);
 770
 771	if (f)
 772		fput(f);
 773}
 774
 775static void do_tty_hangup(struct work_struct *work)
 776{
 777	struct tty_struct *tty =
 778		container_of(work, struct tty_struct, hangup_work);
 779
 780	__tty_hangup(tty, 0);
 781}
 782
 783/**
 784 *	tty_hangup		-	trigger a hangup event
 785 *	@tty: tty to hangup
 786 *
 787 *	A carrier loss (virtual or otherwise) has occurred on this like
 788 *	schedule a hangup sequence to run after this event.
 789 */
 790
 791void tty_hangup(struct tty_struct *tty)
 792{
 793	tty_debug_hangup(tty, "hangup\n");
 794	schedule_work(&tty->hangup_work);
 795}
 796
 797EXPORT_SYMBOL(tty_hangup);
 798
 799/**
 800 *	tty_vhangup		-	process vhangup
 801 *	@tty: tty to hangup
 802 *
 803 *	The user has asked via system call for the terminal to be hung up.
 804 *	We do this synchronously so that when the syscall returns the process
 805 *	is complete. That guarantee is necessary for security reasons.
 806 */
 807
 808void tty_vhangup(struct tty_struct *tty)
 809{
 810	tty_debug_hangup(tty, "vhangup\n");
 811	__tty_hangup(tty, 0);
 812}
 813
 814EXPORT_SYMBOL(tty_vhangup);
 815
 816
 817/**
 818 *	tty_vhangup_self	-	process vhangup for own ctty
 819 *
 820 *	Perform a vhangup on the current controlling tty
 821 */
 822
 823void tty_vhangup_self(void)
 824{
 825	struct tty_struct *tty;
 826
 827	tty = get_current_tty();
 828	if (tty) {
 829		tty_vhangup(tty);
 830		tty_kref_put(tty);
 831	}
 832}
 833
 834/**
 835 *	tty_vhangup_session		-	hangup session leader exit
 836 *	@tty: tty to hangup
 837 *
 838 *	The session leader is exiting and hanging up its controlling terminal.
 839 *	Every process in the foreground process group is signalled SIGHUP.
 840 *
 841 *	We do this synchronously so that when the syscall returns the process
 842 *	is complete. That guarantee is necessary for security reasons.
 843 */
 844
 845static void tty_vhangup_session(struct tty_struct *tty)
 846{
 847	tty_debug_hangup(tty, "session hangup\n");
 848	__tty_hangup(tty, 1);
 849}
 850
 851/**
 852 *	tty_hung_up_p		-	was tty hung up
 853 *	@filp: file pointer of tty
 854 *
 855 *	Return true if the tty has been subject to a vhangup or a carrier
 856 *	loss
 857 */
 858
 859int tty_hung_up_p(struct file *filp)
 860{
 861	return (filp->f_op == &hung_up_tty_fops);
 862}
 863
 864EXPORT_SYMBOL(tty_hung_up_p);
 865
 866/**
 867 *	disassociate_ctty	-	disconnect controlling tty
 868 *	@on_exit: true if exiting so need to "hang up" the session
 869 *
 870 *	This function is typically called only by the session leader, when
 871 *	it wants to disassociate itself from its controlling tty.
 872 *
 873 *	It performs the following functions:
 874 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 875 * 	(2)  Clears the tty from being controlling the session
 876 * 	(3)  Clears the controlling tty for all processes in the
 877 * 		session group.
 878 *
 879 *	The argument on_exit is set to 1 if called when a process is
 880 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 881 *
 882 *	Locking:
 883 *		BTM is taken for hysterical raisins, and held when
 884 *		  called from no_tty().
 885 *		  tty_mutex is taken to protect tty
 886 *		  ->siglock is taken to protect ->signal/->sighand
 887 *		  tasklist_lock is taken to walk process list for sessions
 888 *		    ->siglock is taken to protect ->signal/->sighand
 889 */
 890
 891void disassociate_ctty(int on_exit)
 892{
 893	struct tty_struct *tty;
 894
 895	if (!current->signal->leader)
 896		return;
 897
 898	tty = get_current_tty();
 899	if (tty) {
 900		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 901			tty_vhangup_session(tty);
 902		} else {
 903			struct pid *tty_pgrp = tty_get_pgrp(tty);
 904			if (tty_pgrp) {
 905				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 906				if (!on_exit)
 907					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 908				put_pid(tty_pgrp);
 909			}
 910		}
 911		tty_kref_put(tty);
 912
 913	} else if (on_exit) {
 914		struct pid *old_pgrp;
 915		spin_lock_irq(&current->sighand->siglock);
 916		old_pgrp = current->signal->tty_old_pgrp;
 917		current->signal->tty_old_pgrp = NULL;
 918		spin_unlock_irq(&current->sighand->siglock);
 919		if (old_pgrp) {
 920			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 921			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 922			put_pid(old_pgrp);
 923		}
 924		return;
 925	}
 926
 927	spin_lock_irq(&current->sighand->siglock);
 928	put_pid(current->signal->tty_old_pgrp);
 929	current->signal->tty_old_pgrp = NULL;
 930
 931	tty = tty_kref_get(current->signal->tty);
 932	if (tty) {
 933		unsigned long flags;
 934		spin_lock_irqsave(&tty->ctrl_lock, flags);
 935		put_pid(tty->session);
 936		put_pid(tty->pgrp);
 937		tty->session = NULL;
 938		tty->pgrp = NULL;
 939		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940		tty_kref_put(tty);
 941	} else
 942		tty_debug_hangup(tty, "no current tty\n");
 943
 944	spin_unlock_irq(&current->sighand->siglock);
 945	/* Now clear signal->tty under the lock */
 946	read_lock(&tasklist_lock);
 947	session_clear_tty(task_session(current));
 948	read_unlock(&tasklist_lock);
 949}
 950
 951/**
 952 *
 953 *	no_tty	- Ensure the current process does not have a controlling tty
 954 */
 955void no_tty(void)
 956{
 957	/* FIXME: Review locking here. The tty_lock never covered any race
 958	   between a new association and proc_clear_tty but possible we need
 959	   to protect against this anyway */
 960	struct task_struct *tsk = current;
 961	disassociate_ctty(0);
 962	proc_clear_tty(tsk);
 963}
 964
 965
 966/**
 967 *	stop_tty	-	propagate flow control
 968 *	@tty: tty to stop
 969 *
 970 *	Perform flow control to the driver. May be called
 971 *	on an already stopped device and will not re-call the driver
 972 *	method.
 973 *
 974 *	This functionality is used by both the line disciplines for
 975 *	halting incoming flow and by the driver. It may therefore be
 976 *	called from any context, may be under the tty atomic_write_lock
 977 *	but not always.
 978 *
 979 *	Locking:
 980 *		flow_lock
 981 */
 982
 983void __stop_tty(struct tty_struct *tty)
 984{
 985	if (tty->stopped)
 986		return;
 987	tty->stopped = 1;
 988	if (tty->ops->stop)
 989		tty->ops->stop(tty);
 990}
 991
 992void stop_tty(struct tty_struct *tty)
 993{
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&tty->flow_lock, flags);
 997	__stop_tty(tty);
 998	spin_unlock_irqrestore(&tty->flow_lock, flags);
 999}
1000EXPORT_SYMBOL(stop_tty);
1001
1002/**
1003 *	start_tty	-	propagate flow control
1004 *	@tty: tty to start
1005 *
1006 *	Start a tty that has been stopped if at all possible. If this
1007 *	tty was previous stopped and is now being started, the driver
1008 *	start method is invoked and the line discipline woken.
1009 *
1010 *	Locking:
1011 *		flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016	if (!tty->stopped || tty->flow_stopped)
1017		return;
1018	tty->stopped = 0;
1019	if (tty->ops->start)
1020		tty->ops->start(tty);
1021	tty_wakeup(tty);
1022}
1023
1024void start_tty(struct tty_struct *tty)
1025{
1026	unsigned long flags;
1027
1028	spin_lock_irqsave(&tty->flow_lock, flags);
1029	__start_tty(tty);
1030	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
1034static void tty_update_time(struct timespec *time)
1035{
1036	unsigned long sec = get_seconds();
1037
1038	/*
1039	 * We only care if the two values differ in anything other than the
1040	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041	 * the time of the tty device, otherwise it could be construded as a
1042	 * security leak to let userspace know the exact timing of the tty.
1043	 */
1044	if ((sec ^ time->tv_sec) & ~7)
1045		time->tv_sec = sec;
1046}
1047
1048/**
1049 *	tty_read	-	read method for tty device files
1050 *	@file: pointer to tty file
1051 *	@buf: user buffer
1052 *	@count: size of user buffer
1053 *	@ppos: unused
1054 *
1055 *	Perform the read system call function on this terminal device. Checks
1056 *	for hung up devices before calling the line discipline method.
1057 *
1058 *	Locking:
1059 *		Locks the line discipline internally while needed. Multiple
1060 *	read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064			loff_t *ppos)
1065{
1066	int i;
1067	struct inode *inode = file_inode(file);
1068	struct tty_struct *tty = file_tty(file);
1069	struct tty_ldisc *ld;
1070
1071	if (tty_paranoia_check(tty, inode, "tty_read"))
1072		return -EIO;
1073	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074		return -EIO;
1075
1076	/* We want to wait for the line discipline to sort out in this
1077	   situation */
1078	ld = tty_ldisc_ref_wait(tty);
1079	if (!ld)
1080		return hung_up_tty_read(file, buf, count, ppos);
1081	if (ld->ops->read)
1082		i = ld->ops->read(tty, file, buf, count);
1083	else
1084		i = -EIO;
1085	tty_ldisc_deref(ld);
1086
1087	if (i > 0)
1088		tty_update_time(&inode->i_atime);
1089
1090	return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
1094{
1095	mutex_unlock(&tty->atomic_write_lock);
1096	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100{
1101	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102		if (ndelay)
1103			return -EAGAIN;
1104		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105			return -ERESTARTSYS;
1106	}
1107	return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116	struct tty_struct *tty,
1117	struct file *file,
1118	const char __user *buf,
1119	size_t count)
1120{
1121	ssize_t ret, written = 0;
1122	unsigned int chunk;
1123
1124	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125	if (ret < 0)
1126		return ret;
1127
1128	/*
1129	 * We chunk up writes into a temporary buffer. This
1130	 * simplifies low-level drivers immensely, since they
1131	 * don't have locking issues and user mode accesses.
1132	 *
1133	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134	 * big chunk-size..
1135	 *
1136	 * The default chunk-size is 2kB, because the NTTY
1137	 * layer has problems with bigger chunks. It will
1138	 * claim to be able to handle more characters than
1139	 * it actually does.
1140	 *
1141	 * FIXME: This can probably go away now except that 64K chunks
1142	 * are too likely to fail unless switched to vmalloc...
1143	 */
1144	chunk = 2048;
1145	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146		chunk = 65536;
1147	if (count < chunk)
1148		chunk = count;
1149
1150	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151	if (tty->write_cnt < chunk) {
1152		unsigned char *buf_chunk;
1153
1154		if (chunk < 1024)
1155			chunk = 1024;
1156
1157		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158		if (!buf_chunk) {
1159			ret = -ENOMEM;
1160			goto out;
1161		}
1162		kfree(tty->write_buf);
1163		tty->write_cnt = chunk;
1164		tty->write_buf = buf_chunk;
1165	}
1166
1167	/* Do the write .. */
1168	for (;;) {
1169		size_t size = count;
1170		if (size > chunk)
1171			size = chunk;
1172		ret = -EFAULT;
1173		if (copy_from_user(tty->write_buf, buf, size))
1174			break;
1175		ret = write(tty, file, tty->write_buf, size);
1176		if (ret <= 0)
1177			break;
1178		written += ret;
1179		buf += ret;
1180		count -= ret;
1181		if (!count)
1182			break;
1183		ret = -ERESTARTSYS;
1184		if (signal_pending(current))
1185			break;
1186		cond_resched();
1187	}
1188	if (written) {
1189		tty_update_time(&file_inode(file)->i_mtime);
1190		ret = written;
1191	}
1192out:
1193	tty_write_unlock(tty);
1194	return ret;
1195}
1196
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211	if (tty) {
1212		mutex_lock(&tty->atomic_write_lock);
1213		tty_lock(tty);
1214		if (tty->ops->write && tty->count > 0)
1215			tty->ops->write(tty, msg, strlen(msg));
1216		tty_unlock(tty);
1217		tty_write_unlock(tty);
1218	}
1219	return;
1220}
1221
1222
1223/**
1224 *	tty_write		-	write method for tty device file
1225 *	@file: tty file pointer
1226 *	@buf: user data to write
1227 *	@count: bytes to write
1228 *	@ppos: unused
1229 *
1230 *	Write data to a tty device via the line discipline.
1231 *
1232 *	Locking:
1233 *		Locks the line discipline as required
1234 *		Writes to the tty driver are serialized by the atomic_write_lock
1235 *	and are then processed in chunks to the device. The line discipline
1236 *	write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240						size_t count, loff_t *ppos)
1241{
1242	struct tty_struct *tty = file_tty(file);
1243 	struct tty_ldisc *ld;
1244	ssize_t ret;
1245
1246	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247		return -EIO;
1248	if (!tty || !tty->ops->write ||
1249		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250			return -EIO;
1251	/* Short term debug to catch buggy drivers */
1252	if (tty->ops->write_room == NULL)
1253		tty_err(tty, "missing write_room method\n");
1254	ld = tty_ldisc_ref_wait(tty);
1255	if (!ld)
1256		return hung_up_tty_write(file, buf, count, ppos);
1257	if (!ld->ops->write)
1258		ret = -EIO;
1259	else
1260		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261	tty_ldisc_deref(ld);
1262	return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266						size_t count, loff_t *ppos)
1267{
1268	struct file *p = NULL;
1269
1270	spin_lock(&redirect_lock);
1271	if (redirect)
1272		p = get_file(redirect);
1273	spin_unlock(&redirect_lock);
1274
1275	if (p) {
1276		ssize_t res;
1277		res = vfs_write(p, buf, count, &p->f_pos);
1278		fput(p);
1279		return res;
1280	}
1281	return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 *	tty_send_xchar	-	send priority character
1286 *
1287 *	Send a high priority character to the tty even if stopped
1288 *
1289 *	Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294	int	was_stopped = tty->stopped;
1295
1296	if (tty->ops->send_xchar) {
1297		down_read(&tty->termios_rwsem);
1298		tty->ops->send_xchar(tty, ch);
1299		up_read(&tty->termios_rwsem);
1300		return 0;
1301	}
1302
1303	if (tty_write_lock(tty, 0) < 0)
1304		return -ERESTARTSYS;
1305
1306	down_read(&tty->termios_rwsem);
1307	if (was_stopped)
1308		start_tty(tty);
1309	tty->ops->write(tty, &ch, 1);
1310	if (was_stopped)
1311		stop_tty(tty);
1312	up_read(&tty->termios_rwsem);
1313	tty_write_unlock(tty);
1314	return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 *	pty_line_name	-	generate name for a pty
1321 *	@driver: the tty driver in use
1322 *	@index: the minor number
1323 *	@p: output buffer of at least 6 bytes
1324 *
1325 *	Generate a name from a driver reference and write it to the output
1326 *	buffer.
1327 *
1328 *	Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
1332	int i = index + driver->name_base;
1333	/* ->name is initialized to "ttyp", but "tty" is expected */
1334	sprintf(p, "%s%c%x",
1335		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336		ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 *	tty_line_name	-	generate name for a tty
1341 *	@driver: the tty driver in use
1342 *	@index: the minor number
1343 *	@p: output buffer of at least 7 bytes
1344 *
1345 *	Generate a name from a driver reference and write it to the output
1346 *	buffer.
1347 *
1348 *	Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353		return sprintf(p, "%s", driver->name);
1354	else
1355		return sprintf(p, "%s%d", driver->name,
1356			       index + driver->name_base);
1357}
1358
1359/**
1360 *	tty_driver_lookup_tty() - find an existing tty, if any
1361 *	@driver: the driver for the tty
1362 *	@idx:	 the minor number
1363 *
1364 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 *	driver lookup() method returns an error.
1366 *
1367 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370		struct file *file, int idx)
1371{
1372	struct tty_struct *tty;
1373
1374	if (driver->ops->lookup)
1375		tty = driver->ops->lookup(driver, file, idx);
 
 
 
1376	else
1377		tty = driver->ttys[idx];
1378
1379	if (!IS_ERR(tty))
1380		tty_kref_get(tty);
1381	return tty;
1382}
1383
1384/**
1385 *	tty_init_termios	-  helper for termios setup
1386 *	@tty: the tty to set up
1387 *
1388 *	Initialise the termios structures for this tty. Thus runs under
1389 *	the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398		tty->termios = tty->driver->init_termios;
1399	else {
1400		/* Check for lazy saved data */
1401		tp = tty->driver->termios[idx];
1402		if (tp != NULL) {
1403			tty->termios = *tp;
1404			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405		} else
1406			tty->termios = tty->driver->init_termios;
1407	}
1408	/* Compatibility until drivers always set this */
1409	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416	tty_init_termios(tty);
1417	tty_driver_kref_get(driver);
1418	tty->count++;
1419	driver->ttys[tty->index] = tty;
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 *	tty_driver_install_tty() - install a tty entry in the driver
1426 *	@driver: the driver for the tty
1427 *	@tty: the tty
1428 *
1429 *	Install a tty object into the driver tables. The tty->index field
1430 *	will be set by the time this is called. This method is responsible
1431 *	for ensuring any need additional structures are allocated and
1432 *	configured.
1433 *
1434 *	Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437						struct tty_struct *tty)
1438{
1439	return driver->ops->install ? driver->ops->install(driver, tty) :
1440		tty_standard_install(driver, tty);
1441}
1442
1443/**
1444 *	tty_driver_remove_tty() - remove a tty from the driver tables
1445 *	@driver: the driver for the tty
1446 *	@idx:	 the minor number
1447 *
1448 *	Remvoe a tty object from the driver tables. The tty->index field
1449 *	will be set by the time this is called.
1450 *
1451 *	Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455	if (driver->ops->remove)
1456		driver->ops->remove(driver, tty);
1457	else
1458		driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * 	tty_reopen()	- fast re-open of an open tty
1463 * 	@tty	- the tty to open
1464 *
1465 *	Return 0 on success, -errno on error.
1466 *	Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 *	Locking: Caller must hold tty_lock
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472	struct tty_driver *driver = tty->driver;
 
 
1473
1474	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475	    driver->subtype == PTY_TYPE_MASTER)
1476		return -EIO;
1477
1478	if (!tty->count)
1479		return -EAGAIN;
1480
1481	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482		return -EBUSY;
1483
1484	tty->count++;
 
 
 
 
 
 
1485
1486	if (!tty->ldisc)
1487		return tty_ldisc_reinit(tty, tty->termios.c_line);
 
 
1488
1489	return 0;
 
 
 
1490}
1491
1492/**
1493 *	tty_init_dev		-	initialise a tty device
1494 *	@driver: tty driver we are opening a device on
1495 *	@idx: device index
1496 *	@ret_tty: returned tty structure
1497 *
1498 *	Prepare a tty device. This may not be a "new" clean device but
1499 *	could also be an active device. The pty drivers require special
1500 *	handling because of this.
1501 *
1502 *	Locking:
1503 *		The function is called under the tty_mutex, which
1504 *	protects us from the tty struct or driver itself going away.
1505 *
1506 *	On exit the tty device has the line discipline attached and
1507 *	a reference count of 1. If a pair was created for pty/tty use
1508 *	and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open.  The new code protects the open with a mutex, so it's
1512 * really quite straightforward.  The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517{
1518	struct tty_struct *tty;
1519	int retval;
1520
1521	/*
1522	 * First time open is complex, especially for PTY devices.
1523	 * This code guarantees that either everything succeeds and the
1524	 * TTY is ready for operation, or else the table slots are vacated
1525	 * and the allocated memory released.  (Except that the termios
1526	 * and locked termios may be retained.)
1527	 */
1528
1529	if (!try_module_get(driver->owner))
1530		return ERR_PTR(-ENODEV);
1531
1532	tty = alloc_tty_struct(driver, idx);
1533	if (!tty) {
1534		retval = -ENOMEM;
1535		goto err_module_put;
1536	}
1537
1538	tty_lock(tty);
1539	retval = tty_driver_install_tty(driver, tty);
1540	if (retval < 0)
1541		goto err_free_tty;
1542
1543	if (!tty->port)
1544		tty->port = driver->ports[idx];
1545
1546	WARN_RATELIMIT(!tty->port,
1547			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548			__func__, tty->driver->name);
1549
 
 
 
1550	tty->port->itty = tty;
1551
1552	/*
1553	 * Structures all installed ... call the ldisc open routines.
1554	 * If we fail here just call release_tty to clean up.  No need
1555	 * to decrement the use counts, as release_tty doesn't care.
1556	 */
1557	retval = tty_ldisc_setup(tty, tty->link);
1558	if (retval)
1559		goto err_release_tty;
 
1560	/* Return the tty locked so that it cannot vanish under the caller */
1561	return tty;
1562
1563err_free_tty:
1564	tty_unlock(tty);
1565	free_tty_struct(tty);
1566err_module_put:
1567	module_put(driver->owner);
1568	return ERR_PTR(retval);
1569
1570	/* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572	tty_unlock(tty);
1573	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574			     retval, idx);
 
 
1575	release_tty(tty, idx);
1576	return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1580{
1581	struct ktermios *tp;
1582	int idx = tty->index;
1583
1584	/* If the port is going to reset then it has no termios to save */
1585	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586		return;
1587
1588	/* Stash the termios data */
1589	tp = tty->driver->termios[idx];
1590	if (tp == NULL) {
1591		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592		if (tp == NULL)
1593			return;
1594		tty->driver->termios[idx] = tp;
1595	}
1596	*tp = tty->termios;
1597}
 
1598
1599/**
1600 *	tty_flush_works		-	flush all works of a tty/pty pair
1601 *	@tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 *	Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607	flush_work(&tty->SAK_work);
1608	flush_work(&tty->hangup_work);
1609	if (tty->link) {
1610		flush_work(&tty->link->SAK_work);
1611		flush_work(&tty->link->hangup_work);
1612	}
1613}
1614
1615/**
1616 *	release_one_tty		-	release tty structure memory
1617 *	@kref: kref of tty we are obliterating
1618 *
1619 *	Releases memory associated with a tty structure, and clears out the
1620 *	driver table slots. This function is called when a device is no longer
1621 *	in use. It also gets called when setup of a device fails.
1622 *
1623 *	Locking:
1624 *		takes the file list lock internally when working on the list
1625 *	of ttys that the driver keeps.
1626 *
1627 *	This method gets called from a work queue so that the driver private
1628 *	cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632	struct tty_struct *tty =
1633		container_of(work, struct tty_struct, hangup_work);
1634	struct tty_driver *driver = tty->driver;
1635	struct module *owner = driver->owner;
1636
1637	if (tty->ops->cleanup)
1638		tty->ops->cleanup(tty);
1639
1640	tty->magic = 0;
1641	tty_driver_kref_put(driver);
1642	module_put(owner);
1643
1644	spin_lock(&tty->files_lock);
1645	list_del_init(&tty->tty_files);
1646	spin_unlock(&tty->files_lock);
1647
1648	put_pid(tty->pgrp);
1649	put_pid(tty->session);
1650	free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657	/* The hangup queue is now free so we can reuse it rather than
1658	   waste a chunk of memory for each port */
1659	INIT_WORK(&tty->hangup_work, release_one_tty);
1660	schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 *	tty_kref_put		-	release a tty kref
1665 *	@tty: tty device
1666 *
1667 *	Release a reference to a tty device and if need be let the kref
1668 *	layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673	if (tty)
1674		kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 *	release_tty		-	release tty structure memory
1680 *
1681 *	Release both @tty and a possible linked partner (think pty pair),
1682 *	and decrement the refcount of the backing module.
1683 *
1684 *	Locking:
1685 *		tty_mutex
1686 *		takes the file list lock internally when working on the list
1687 *	of ttys that the driver keeps.
1688 *
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692	/* This should always be true but check for the moment */
1693	WARN_ON(tty->index != idx);
1694	WARN_ON(!mutex_is_locked(&tty_mutex));
1695	if (tty->ops->shutdown)
1696		tty->ops->shutdown(tty);
1697	tty_free_termios(tty);
1698	tty_driver_remove_tty(tty->driver, tty);
1699	tty->port->itty = NULL;
1700	if (tty->link)
1701		tty->link->port->itty = NULL;
1702	tty_buffer_cancel_work(tty->port);
 
 
1703
1704	tty_kref_put(tty->link);
1705	tty_kref_put(tty);
1706}
1707
1708/**
1709 *	tty_release_checks - check a tty before real release
1710 *	@tty: tty to check
1711 *	@o_tty: link of @tty (if any)
1712 *	@idx: index of the tty
1713 *
1714 *	Performs some paranoid checking before true release of the @tty.
1715 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720	if (idx < 0 || idx >= tty->driver->num) {
1721		tty_debug(tty, "bad idx %d\n", idx);
1722		return -1;
1723	}
1724
1725	/* not much to check for devpts */
1726	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727		return 0;
1728
1729	if (tty != tty->driver->ttys[idx]) {
1730		tty_debug(tty, "bad driver table[%d] = %p\n",
1731			  idx, tty->driver->ttys[idx]);
1732		return -1;
1733	}
1734	if (tty->driver->other) {
1735		struct tty_struct *o_tty = tty->link;
1736
1737		if (o_tty != tty->driver->other->ttys[idx]) {
1738			tty_debug(tty, "bad other table[%d] = %p\n",
1739				  idx, tty->driver->other->ttys[idx]);
1740			return -1;
1741		}
1742		if (o_tty->link != tty) {
1743			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744			return -1;
1745		}
1746	}
1747#endif
1748	return 0;
1749}
1750
1751/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752 *	tty_release		-	vfs callback for close
1753 *	@inode: inode of tty
1754 *	@filp: file pointer for handle to tty
1755 *
1756 *	Called the last time each file handle is closed that references
1757 *	this tty. There may however be several such references.
1758 *
1759 *	Locking:
1760 *		Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772	struct tty_struct *tty = file_tty(filp);
1773	struct tty_struct *o_tty = NULL;
1774	int	do_sleep, final;
1775	int	idx;
1776	long	timeout = 0;
1777	int	once = 1;
1778
1779	if (tty_paranoia_check(tty, inode, __func__))
1780		return 0;
1781
1782	tty_lock(tty);
1783	check_tty_count(tty, __func__);
1784
1785	__tty_fasync(-1, filp, 0);
1786
1787	idx = tty->index;
1788	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789	    tty->driver->subtype == PTY_TYPE_MASTER)
1790		o_tty = tty->link;
1791
1792	if (tty_release_checks(tty, idx)) {
1793		tty_unlock(tty);
1794		return 0;
1795	}
1796
1797	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798
1799	if (tty->ops->close)
1800		tty->ops->close(tty, filp);
1801
1802	/* If tty is pty master, lock the slave pty (stable lock order) */
1803	tty_lock_slave(o_tty);
1804
1805	/*
1806	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808	 * wait queues and kick everyone out _before_ actually starting to
1809	 * close.  This ensures that we won't block while releasing the tty
1810	 * structure.
1811	 *
1812	 * The test for the o_tty closing is necessary, since the master and
1813	 * slave sides may close in any order.  If the slave side closes out
1814	 * first, its count will be one, since the master side holds an open.
1815	 * Thus this test wouldn't be triggered at the time the slave closed,
1816	 * so we do it now.
1817	 */
1818	while (1) {
1819		do_sleep = 0;
1820
1821		if (tty->count <= 1) {
1822			if (waitqueue_active(&tty->read_wait)) {
1823				wake_up_poll(&tty->read_wait, POLLIN);
1824				do_sleep++;
1825			}
1826			if (waitqueue_active(&tty->write_wait)) {
1827				wake_up_poll(&tty->write_wait, POLLOUT);
1828				do_sleep++;
1829			}
1830		}
1831		if (o_tty && o_tty->count <= 1) {
1832			if (waitqueue_active(&o_tty->read_wait)) {
1833				wake_up_poll(&o_tty->read_wait, POLLIN);
1834				do_sleep++;
1835			}
1836			if (waitqueue_active(&o_tty->write_wait)) {
1837				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838				do_sleep++;
1839			}
1840		}
1841		if (!do_sleep)
1842			break;
1843
1844		if (once) {
1845			once = 0;
1846			tty_warn(tty, "read/write wait queue active!\n");
1847		}
1848		schedule_timeout_killable(timeout);
1849		if (timeout < 120 * HZ)
1850			timeout = 2 * timeout + 1;
1851		else
1852			timeout = MAX_SCHEDULE_TIMEOUT;
1853	}
1854
1855	if (o_tty) {
1856		if (--o_tty->count < 0) {
1857			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858			o_tty->count = 0;
1859		}
1860	}
1861	if (--tty->count < 0) {
1862		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863		tty->count = 0;
1864	}
1865
1866	/*
1867	 * We've decremented tty->count, so we need to remove this file
1868	 * descriptor off the tty->tty_files list; this serves two
1869	 * purposes:
1870	 *  - check_tty_count sees the correct number of file descriptors
1871	 *    associated with this tty.
1872	 *  - do_tty_hangup no longer sees this file descriptor as
1873	 *    something that needs to be handled for hangups.
1874	 */
1875	tty_del_file(filp);
1876
1877	/*
1878	 * Perform some housekeeping before deciding whether to return.
1879	 *
1880	 * If _either_ side is closing, make sure there aren't any
1881	 * processes that still think tty or o_tty is their controlling
1882	 * tty.
1883	 */
1884	if (!tty->count) {
1885		read_lock(&tasklist_lock);
1886		session_clear_tty(tty->session);
1887		if (o_tty)
1888			session_clear_tty(o_tty->session);
1889		read_unlock(&tasklist_lock);
1890	}
1891
1892	/* check whether both sides are closing ... */
1893	final = !tty->count && !(o_tty && o_tty->count);
1894
1895	tty_unlock_slave(o_tty);
1896	tty_unlock(tty);
1897
1898	/* At this point, the tty->count == 0 should ensure a dead tty
1899	   cannot be re-opened by a racing opener */
1900
1901	if (!final)
1902		return 0;
1903
1904	tty_debug_hangup(tty, "final close\n");
1905	/*
1906	 * Ask the line discipline code to release its structures
1907	 */
1908	tty_ldisc_release(tty);
1909
1910	/* Wait for pending work before tty destruction commmences */
1911	tty_flush_works(tty);
1912
1913	tty_debug_hangup(tty, "freeing structure\n");
1914	/*
1915	 * The release_tty function takes care of the details of clearing
1916	 * the slots and preserving the termios structure. The tty_unlock_pair
1917	 * should be safe as we keep a kref while the tty is locked (so the
1918	 * unlock never unlocks a freed tty).
1919	 */
1920	mutex_lock(&tty_mutex);
1921	release_tty(tty, idx);
1922	mutex_unlock(&tty_mutex);
1923
 
1924	return 0;
1925}
1926
1927/**
1928 *	tty_open_current_tty - get locked tty of current task
1929 *	@device: device number
1930 *	@filp: file pointer to tty
1931 *	@return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 *	Performs a re-open of the current task's controlling tty.
1934 *
1935 *	We cannot return driver and index like for the other nodes because
1936 *	devpts will not work then. It expects inodes to be from devpts FS.
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939{
1940	struct tty_struct *tty;
1941	int retval;
1942
1943	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944		return NULL;
1945
1946	tty = get_current_tty();
1947	if (!tty)
1948		return ERR_PTR(-ENXIO);
1949
1950	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951	/* noctty = 1; */
1952	tty_lock(tty);
1953	tty_kref_put(tty);	/* safe to drop the kref now */
1954
1955	retval = tty_reopen(tty);
1956	if (retval < 0) {
1957		tty_unlock(tty);
1958		tty = ERR_PTR(retval);
1959	}
1960	return tty;
1961}
1962
1963/**
1964 *	tty_lookup_driver - lookup a tty driver for a given device file
1965 *	@device: device number
1966 *	@filp: file pointer to tty
1967 *	@noctty: set if the device should not become a controlling tty
1968 *	@index: index for the device in the @return driver
1969 *	@return: driver for this inode (with increased refcount)
1970 *
1971 * 	If @return is not erroneous, the caller is responsible to decrement the
1972 * 	refcount by tty_driver_kref_put.
1973 *
1974 *	Locking: tty_mutex protects get_tty_driver
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977		int *index)
1978{
1979	struct tty_driver *driver;
1980
1981	switch (device) {
1982#ifdef CONFIG_VT
1983	case MKDEV(TTY_MAJOR, 0): {
1984		extern struct tty_driver *console_driver;
1985		driver = tty_driver_kref_get(console_driver);
1986		*index = fg_console;
1987		break;
1988	}
1989#endif
1990	case MKDEV(TTYAUX_MAJOR, 1): {
1991		struct tty_driver *console_driver = console_device(index);
1992		if (console_driver) {
1993			driver = tty_driver_kref_get(console_driver);
1994			if (driver) {
1995				/* Don't let /dev/console block */
1996				filp->f_flags |= O_NONBLOCK;
1997				break;
1998			}
1999		}
 
 
2000		return ERR_PTR(-ENODEV);
2001	}
2002	default:
2003		driver = get_tty_driver(device, index);
2004		if (!driver)
2005			return ERR_PTR(-ENODEV);
2006		break;
2007	}
2008	return driver;
2009}
2010
2011/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2012 *	tty_open_by_driver	-	open a tty device
2013 *	@device: dev_t of device to open
2014 *	@inode: inode of device file
2015 *	@filp: file pointer to tty
2016 *
2017 *	Performs the driver lookup, checks for a reopen, or otherwise
2018 *	performs the first-time tty initialization.
2019 *
2020 *	Returns the locked initialized or re-opened &tty_struct
2021 *
2022 *	Claims the global tty_mutex to serialize:
2023 *	  - concurrent first-time tty initialization
2024 *	  - concurrent tty driver removal w/ lookup
2025 *	  - concurrent tty removal from driver table
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028					     struct file *filp)
2029{
2030	struct tty_struct *tty;
2031	struct tty_driver *driver = NULL;
2032	int index = -1;
2033	int retval;
2034
2035	mutex_lock(&tty_mutex);
2036	driver = tty_lookup_driver(device, filp, &index);
2037	if (IS_ERR(driver)) {
2038		mutex_unlock(&tty_mutex);
2039		return ERR_CAST(driver);
2040	}
2041
2042	/* check whether we're reopening an existing tty */
2043	tty = tty_driver_lookup_tty(driver, filp, index);
2044	if (IS_ERR(tty)) {
2045		mutex_unlock(&tty_mutex);
2046		goto out;
2047	}
2048
2049	if (tty) {
 
 
 
 
 
 
2050		mutex_unlock(&tty_mutex);
2051		retval = tty_lock_interruptible(tty);
2052		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053		if (retval) {
2054			if (retval == -EINTR)
2055				retval = -ERESTARTSYS;
2056			tty = ERR_PTR(retval);
2057			goto out;
2058		}
2059		retval = tty_reopen(tty);
2060		if (retval < 0) {
2061			tty_unlock(tty);
2062			tty = ERR_PTR(retval);
2063		}
2064	} else { /* Returns with the tty_lock held for now */
2065		tty = tty_init_dev(driver, index);
2066		mutex_unlock(&tty_mutex);
2067	}
2068out:
2069	tty_driver_kref_put(driver);
2070	return tty;
2071}
2072
2073/**
2074 *	tty_open		-	open a tty device
2075 *	@inode: inode of device file
2076 *	@filp: file pointer to tty
2077 *
2078 *	tty_open and tty_release keep up the tty count that contains the
2079 *	number of opens done on a tty. We cannot use the inode-count, as
2080 *	different inodes might point to the same tty.
2081 *
2082 *	Open-counting is needed for pty masters, as well as for keeping
2083 *	track of serial lines: DTR is dropped when the last close happens.
2084 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085 *
2086 *	The termios state of a pty is reset on first open so that
2087 *	settings don't persist across reuse.
2088 *
2089 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 *		 tty->count should protect the rest.
2091 *		 ->siglock protects ->signal/->sighand
2092 *
2093 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094 *	tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099	struct tty_struct *tty;
2100	int noctty, retval;
2101	dev_t device = inode->i_rdev;
2102	unsigned saved_flags = filp->f_flags;
2103
2104	nonseekable_open(inode, filp);
2105
2106retry_open:
2107	retval = tty_alloc_file(filp);
2108	if (retval)
2109		return -ENOMEM;
2110
2111	tty = tty_open_current_tty(device, filp);
2112	if (!tty)
2113		tty = tty_open_by_driver(device, inode, filp);
2114
2115	if (IS_ERR(tty)) {
2116		tty_free_file(filp);
2117		retval = PTR_ERR(tty);
2118		if (retval != -EAGAIN || signal_pending(current))
2119			return retval;
2120		schedule();
2121		goto retry_open;
2122	}
2123
2124	tty_add_file(tty, filp);
2125
2126	check_tty_count(tty, __func__);
2127	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
2129	if (tty->ops->open)
2130		retval = tty->ops->open(tty, filp);
2131	else
2132		retval = -ENODEV;
2133	filp->f_flags = saved_flags;
2134
2135	if (retval) {
2136		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138		tty_unlock(tty); /* need to call tty_release without BTM */
2139		tty_release(inode, filp);
2140		if (retval != -ERESTARTSYS)
2141			return retval;
2142
2143		if (signal_pending(current))
2144			return retval;
2145
2146		schedule();
2147		/*
2148		 * Need to reset f_op in case a hangup happened.
2149		 */
2150		if (tty_hung_up_p(filp))
2151			filp->f_op = &tty_fops;
2152		goto retry_open;
2153	}
2154	clear_bit(TTY_HUPPED, &tty->flags);
2155
2156
2157	read_lock(&tasklist_lock);
2158	spin_lock_irq(&current->sighand->siglock);
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163			 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165	if (!noctty &&
2166	    current->signal->leader &&
2167	    !current->signal->tty &&
2168	    tty->session == NULL) {
2169		/*
2170		 * Don't let a process that only has write access to the tty
2171		 * obtain the privileges associated with having a tty as
2172		 * controlling terminal (being able to reopen it with full
2173		 * access through /dev/tty, being able to perform pushback).
2174		 * Many distributions set the group of all ttys to "tty" and
2175		 * grant write-only access to all terminals for setgid tty
2176		 * binaries, which should not imply full privileges on all ttys.
2177		 *
2178		 * This could theoretically break old code that performs open()
2179		 * on a write-only file descriptor. In that case, it might be
2180		 * necessary to also permit this if
2181		 * inode_permission(inode, MAY_READ) == 0.
2182		 */
2183		if (filp->f_mode & FMODE_READ)
2184			__proc_set_tty(tty);
2185	}
2186	spin_unlock_irq(&current->sighand->siglock);
2187	read_unlock(&tasklist_lock);
2188	tty_unlock(tty);
2189	return 0;
2190}
2191
2192
2193
2194/**
2195 *	tty_poll	-	check tty status
2196 *	@filp: file being polled
2197 *	@wait: poll wait structures to update
2198 *
2199 *	Call the line discipline polling method to obtain the poll
2200 *	status of the device.
2201 *
2202 *	Locking: locks called line discipline but ldisc poll method
2203 *	may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208	struct tty_struct *tty = file_tty(filp);
2209	struct tty_ldisc *ld;
2210	int ret = 0;
2211
2212	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213		return 0;
2214
2215	ld = tty_ldisc_ref_wait(tty);
2216	if (!ld)
2217		return hung_up_tty_poll(filp, wait);
2218	if (ld->ops->poll)
2219		ret = ld->ops->poll(tty, filp, wait);
2220	tty_ldisc_deref(ld);
2221	return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226	struct tty_struct *tty = file_tty(filp);
2227	unsigned long flags;
2228	int retval = 0;
2229
2230	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231		goto out;
2232
2233	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234	if (retval <= 0)
2235		goto out;
2236
2237	if (on) {
2238		enum pid_type type;
2239		struct pid *pid;
2240
2241		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242		if (tty->pgrp) {
2243			pid = tty->pgrp;
2244			type = PIDTYPE_PGID;
2245		} else {
2246			pid = task_pid(current);
2247			type = PIDTYPE_PID;
2248		}
2249		get_pid(pid);
2250		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251		__f_setown(filp, pid, type, 0);
2252		put_pid(pid);
2253		retval = 0;
2254	}
2255out:
2256	return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261	struct tty_struct *tty = file_tty(filp);
2262	int retval = -ENOTTY;
2263
2264	tty_lock(tty);
2265	if (!tty_hung_up_p(filp))
2266		retval = __tty_fasync(fd, filp, on);
2267	tty_unlock(tty);
2268
2269	return retval;
2270}
2271
2272/**
2273 *	tiocsti			-	fake input character
2274 *	@tty: tty to fake input into
2275 *	@p: pointer to character
2276 *
2277 *	Fake input to a tty device. Does the necessary locking and
2278 *	input management.
2279 *
2280 *	FIXME: does not honour flow control ??
2281 *
2282 *	Locking:
2283 *		Called functions take tty_ldiscs_lock
2284 *		current->signal->tty check is safe without locks
2285 *
2286 *	FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291	char ch, mbz = 0;
2292	struct tty_ldisc *ld;
2293
2294	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (get_user(ch, p))
2297		return -EFAULT;
2298	tty_audit_tiocsti(tty, ch);
2299	ld = tty_ldisc_ref_wait(tty);
2300	if (!ld)
2301		return -EIO;
2302	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
2303	tty_ldisc_deref(ld);
2304	return 0;
2305}
2306
2307/**
2308 *	tiocgwinsz		-	implement window query ioctl
2309 *	@tty; tty
2310 *	@arg: user buffer for result
2311 *
2312 *	Copies the kernel idea of the window size into the user buffer.
2313 *
2314 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 *		is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320	int err;
2321
2322	mutex_lock(&tty->winsize_mutex);
2323	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324	mutex_unlock(&tty->winsize_mutex);
2325
2326	return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 *	tty_do_resize		-	resize event
2331 *	@tty: tty being resized
2332 *	@rows: rows (character)
2333 *	@cols: cols (character)
2334 *
2335 *	Update the termios variables and send the necessary signals to
2336 *	peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341	struct pid *pgrp;
2342
2343	/* Lock the tty */
2344	mutex_lock(&tty->winsize_mutex);
2345	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346		goto done;
2347
2348	/* Signal the foreground process group */
2349	pgrp = tty_get_pgrp(tty);
2350	if (pgrp)
2351		kill_pgrp(pgrp, SIGWINCH, 1);
2352	put_pid(pgrp);
2353
2354	tty->winsize = *ws;
2355done:
2356	mutex_unlock(&tty->winsize_mutex);
2357	return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 *	tiocswinsz		-	implement window size set ioctl
2363 *	@tty; tty side of tty
2364 *	@arg: user buffer for result
2365 *
2366 *	Copies the user idea of the window size to the kernel. Traditionally
2367 *	this is just advisory information but for the Linux console it
2368 *	actually has driver level meaning and triggers a VC resize.
2369 *
2370 *	Locking:
2371 *		Driver dependent. The default do_resize method takes the
2372 *	tty termios mutex and ctrl_lock. The console takes its own lock
2373 *	then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378	struct winsize tmp_ws;
2379	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380		return -EFAULT;
2381
2382	if (tty->ops->resize)
2383		return tty->ops->resize(tty, &tmp_ws);
2384	else
2385		return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 *	tioccons	-	allow admin to move logical console
2390 *	@file: the file to become console
2391 *
2392 *	Allow the administrator to move the redirected console device
2393 *
2394 *	Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399	if (!capable(CAP_SYS_ADMIN))
2400		return -EPERM;
2401	if (file->f_op->write == redirected_tty_write) {
2402		struct file *f;
2403		spin_lock(&redirect_lock);
2404		f = redirect;
2405		redirect = NULL;
2406		spin_unlock(&redirect_lock);
2407		if (f)
2408			fput(f);
2409		return 0;
2410	}
2411	spin_lock(&redirect_lock);
2412	if (redirect) {
2413		spin_unlock(&redirect_lock);
2414		return -EBUSY;
2415	}
2416	redirect = get_file(file);
2417	spin_unlock(&redirect_lock);
2418	return 0;
2419}
2420
2421/**
2422 *	fionbio		-	non blocking ioctl
2423 *	@file: file to set blocking value
2424 *	@p: user parameter
2425 *
2426 *	Historical tty interfaces had a blocking control ioctl before
2427 *	the generic functionality existed. This piece of history is preserved
2428 *	in the expected tty API of posix OS's.
2429 *
2430 *	Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435	int nonblock;
2436
2437	if (get_user(nonblock, p))
2438		return -EFAULT;
2439
2440	spin_lock(&file->f_lock);
2441	if (nonblock)
2442		file->f_flags |= O_NONBLOCK;
2443	else
2444		file->f_flags &= ~O_NONBLOCK;
2445	spin_unlock(&file->f_lock);
2446	return 0;
2447}
2448
2449/**
2450 *	tiocsctty	-	set controlling tty
2451 *	@tty: tty structure
2452 *	@arg: user argument
2453 *
2454 *	This ioctl is used to manage job control. It permits a session
2455 *	leader to set this tty as the controlling tty for the session.
2456 *
2457 *	Locking:
2458 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459 *		Takes tasklist_lock internally to walk sessions
2460 *		Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465	int ret = 0;
2466
2467	tty_lock(tty);
2468	read_lock(&tasklist_lock);
2469
2470	if (current->signal->leader && (task_session(current) == tty->session))
2471		goto unlock;
2472
2473	/*
2474	 * The process must be a session leader and
2475	 * not have a controlling tty already.
2476	 */
2477	if (!current->signal->leader || current->signal->tty) {
2478		ret = -EPERM;
2479		goto unlock;
2480	}
2481
2482	if (tty->session) {
2483		/*
2484		 * This tty is already the controlling
2485		 * tty for another session group!
2486		 */
2487		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488			/*
2489			 * Steal it away
2490			 */
2491			session_clear_tty(tty->session);
2492		} else {
2493			ret = -EPERM;
2494			goto unlock;
2495		}
2496	}
2497
2498	/* See the comment in tty_open(). */
2499	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500		ret = -EPERM;
2501		goto unlock;
2502	}
2503
2504	proc_set_tty(tty);
2505unlock:
2506	read_unlock(&tasklist_lock);
2507	tty_unlock(tty);
2508	return ret;
2509}
2510
2511/**
2512 *	tty_get_pgrp	-	return a ref counted pgrp pid
2513 *	@tty: tty to read
2514 *
2515 *	Returns a refcounted instance of the pid struct for the process
2516 *	group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521	unsigned long flags;
2522	struct pid *pgrp;
2523
2524	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525	pgrp = get_pid(tty->pgrp);
2526	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528	return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541	struct task_struct *p;
2542	struct pid *sid = NULL;
2543
2544	p = pid_task(pgrp, PIDTYPE_PGID);
2545	if (p == NULL)
2546		p = pid_task(pgrp, PIDTYPE_PID);
2547	if (p != NULL)
2548		sid = task_session(p);
2549
2550	return sid;
2551}
2552
2553/**
2554 *	tiocgpgrp		-	get process group
2555 *	@tty: tty passed by user
2556 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557 *	@p: returned pid
2558 *
2559 *	Obtain the process group of the tty. If there is no process group
2560 *	return an error.
2561 *
2562 *	Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567	struct pid *pid;
2568	int ret;
2569	/*
2570	 * (tty == real_tty) is a cheap way of
2571	 * testing if the tty is NOT a master pty.
2572	 */
2573	if (tty == real_tty && current->signal->tty != real_tty)
2574		return -ENOTTY;
2575	pid = tty_get_pgrp(real_tty);
2576	ret =  put_user(pid_vnr(pid), p);
2577	put_pid(pid);
2578	return ret;
2579}
2580
2581/**
2582 *	tiocspgrp		-	attempt to set process group
2583 *	@tty: tty passed by user
2584 *	@real_tty: tty side device matching tty passed by user
2585 *	@p: pid pointer
2586 *
2587 *	Set the process group of the tty to the session passed. Only
2588 *	permitted where the tty session is our session.
2589 *
2590 *	Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595	struct pid *pgrp;
2596	pid_t pgrp_nr;
2597	int retval = tty_check_change(real_tty);
2598
2599	if (retval == -EIO)
2600		return -ENOTTY;
2601	if (retval)
2602		return retval;
2603	if (!current->signal->tty ||
2604	    (current->signal->tty != real_tty) ||
2605	    (real_tty->session != task_session(current)))
2606		return -ENOTTY;
2607	if (get_user(pgrp_nr, p))
2608		return -EFAULT;
2609	if (pgrp_nr < 0)
2610		return -EINVAL;
2611	rcu_read_lock();
2612	pgrp = find_vpid(pgrp_nr);
2613	retval = -ESRCH;
2614	if (!pgrp)
2615		goto out_unlock;
2616	retval = -EPERM;
2617	if (session_of_pgrp(pgrp) != task_session(current))
2618		goto out_unlock;
2619	retval = 0;
2620	spin_lock_irq(&tty->ctrl_lock);
2621	put_pid(real_tty->pgrp);
2622	real_tty->pgrp = get_pid(pgrp);
2623	spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625	rcu_read_unlock();
2626	return retval;
2627}
2628
2629/**
2630 *	tiocgsid		-	get session id
2631 *	@tty: tty passed by user
2632 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633 *	@p: pointer to returned session id
2634 *
2635 *	Obtain the session id of the tty. If there is no session
2636 *	return an error.
2637 *
2638 *	Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643	/*
2644	 * (tty == real_tty) is a cheap way of
2645	 * testing if the tty is NOT a master pty.
2646	*/
2647	if (tty == real_tty && current->signal->tty != real_tty)
2648		return -ENOTTY;
2649	if (!real_tty->session)
2650		return -ENOTTY;
2651	return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 *	tiocsetd	-	set line discipline
2656 *	@tty: tty device
2657 *	@p: pointer to user data
2658 *
2659 *	Set the line discipline according to user request.
2660 *
2661 *	Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666	int disc;
2667	int ret;
2668
2669	if (get_user(disc, p))
2670		return -EFAULT;
2671
2672	ret = tty_set_ldisc(tty, disc);
2673
2674	return ret;
2675}
2676
2677/**
2678 *	tiocgetd	-	get line discipline
2679 *	@tty: tty device
2680 *	@p: pointer to user data
2681 *
2682 *	Retrieves the line discipline id directly from the ldisc.
2683 *
2684 *	Locking: waits for ldisc reference (in case the line discipline
2685 *		is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690	struct tty_ldisc *ld;
2691	int ret;
2692
2693	ld = tty_ldisc_ref_wait(tty);
2694	if (!ld)
2695		return -EIO;
2696	ret = put_user(ld->ops->num, p);
2697	tty_ldisc_deref(ld);
2698	return ret;
2699}
2700
2701/**
2702 *	send_break	-	performed time break
2703 *	@tty: device to break on
2704 *	@duration: timeout in mS
2705 *
2706 *	Perform a timed break on hardware that lacks its own driver level
2707 *	timed break functionality.
2708 *
2709 *	Locking:
2710 *		atomic_write_lock serializes
2711 *
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716	int retval;
2717
2718	if (tty->ops->break_ctl == NULL)
2719		return 0;
2720
2721	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722		retval = tty->ops->break_ctl(tty, duration);
2723	else {
2724		/* Do the work ourselves */
2725		if (tty_write_lock(tty, 0) < 0)
2726			return -EINTR;
2727		retval = tty->ops->break_ctl(tty, -1);
2728		if (retval)
2729			goto out;
2730		if (!signal_pending(current))
2731			msleep_interruptible(duration);
2732		retval = tty->ops->break_ctl(tty, 0);
2733out:
2734		tty_write_unlock(tty);
2735		if (signal_pending(current))
2736			retval = -EINTR;
2737	}
2738	return retval;
2739}
2740
2741/**
2742 *	tty_tiocmget		-	get modem status
2743 *	@tty: tty device
2744 *	@file: user file pointer
2745 *	@p: pointer to result
2746 *
2747 *	Obtain the modem status bits from the tty driver if the feature
2748 *	is supported. Return -EINVAL if it is not available.
2749 *
2750 *	Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755	int retval = -EINVAL;
2756
2757	if (tty->ops->tiocmget) {
2758		retval = tty->ops->tiocmget(tty);
2759
2760		if (retval >= 0)
2761			retval = put_user(retval, p);
2762	}
2763	return retval;
2764}
2765
2766/**
2767 *	tty_tiocmset		-	set modem status
2768 *	@tty: tty device
2769 *	@cmd: command - clear bits, set bits or set all
2770 *	@p: pointer to desired bits
2771 *
2772 *	Set the modem status bits from the tty driver if the feature
2773 *	is supported. Return -EINVAL if it is not available.
2774 *
2775 *	Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779	     unsigned __user *p)
2780{
2781	int retval;
2782	unsigned int set, clear, val;
2783
2784	if (tty->ops->tiocmset == NULL)
2785		return -EINVAL;
2786
2787	retval = get_user(val, p);
2788	if (retval)
2789		return retval;
2790	set = clear = 0;
2791	switch (cmd) {
2792	case TIOCMBIS:
2793		set = val;
2794		break;
2795	case TIOCMBIC:
2796		clear = val;
2797		break;
2798	case TIOCMSET:
2799		set = val;
2800		clear = ~val;
2801		break;
2802	}
2803	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805	return tty->ops->tiocmset(tty, set, clear);
2806}
2807
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810	int retval = -EINVAL;
2811	struct serial_icounter_struct icount;
2812	memset(&icount, 0, sizeof(icount));
2813	if (tty->ops->get_icount)
2814		retval = tty->ops->get_icount(tty, &icount);
2815	if (retval != 0)
2816		return retval;
2817	if (copy_to_user(arg, &icount, sizeof(icount)))
2818		return -EFAULT;
2819	return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824	static DEFINE_RATELIMIT_STATE(depr_flags,
2825			DEFAULT_RATELIMIT_INTERVAL,
2826			DEFAULT_RATELIMIT_BURST);
2827	char comm[TASK_COMM_LEN];
 
2828	int flags;
2829
2830	if (get_user(flags, &ss->flags))
2831		return;
2832
2833	flags &= ASYNC_DEPRECATED;
2834
2835	if (flags && __ratelimit(&depr_flags))
2836		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837				__func__, get_task_comm(comm, current), flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847	    tty->driver->subtype == PTY_TYPE_MASTER)
2848		tty = tty->link;
2849	return tty;
2850}
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857	struct tty_struct *tty = file_tty(file);
2858	struct tty_struct *real_tty;
2859	void __user *p = (void __user *)arg;
2860	int retval;
2861	struct tty_ldisc *ld;
2862
2863	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864		return -EINVAL;
2865
2866	real_tty = tty_pair_get_tty(tty);
2867
2868	/*
2869	 * Factor out some common prep work
2870	 */
2871	switch (cmd) {
2872	case TIOCSETD:
2873	case TIOCSBRK:
2874	case TIOCCBRK:
2875	case TCSBRK:
2876	case TCSBRKP:
2877		retval = tty_check_change(tty);
2878		if (retval)
2879			return retval;
2880		if (cmd != TIOCCBRK) {
2881			tty_wait_until_sent(tty, 0);
2882			if (signal_pending(current))
2883				return -EINTR;
2884		}
2885		break;
2886	}
2887
2888	/*
2889	 *	Now do the stuff.
2890	 */
2891	switch (cmd) {
2892	case TIOCSTI:
2893		return tiocsti(tty, p);
2894	case TIOCGWINSZ:
2895		return tiocgwinsz(real_tty, p);
2896	case TIOCSWINSZ:
2897		return tiocswinsz(real_tty, p);
2898	case TIOCCONS:
2899		return real_tty != tty ? -EINVAL : tioccons(file);
2900	case FIONBIO:
2901		return fionbio(file, p);
2902	case TIOCEXCL:
2903		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904		return 0;
2905	case TIOCNXCL:
2906		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907		return 0;
2908	case TIOCGEXCL:
2909	{
2910		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2911		return put_user(excl, (int __user *)p);
2912	}
2913	case TIOCNOTTY:
2914		if (current->signal->tty != tty)
2915			return -ENOTTY;
2916		no_tty();
2917		return 0;
2918	case TIOCSCTTY:
2919		return tiocsctty(real_tty, file, arg);
2920	case TIOCGPGRP:
2921		return tiocgpgrp(tty, real_tty, p);
2922	case TIOCSPGRP:
2923		return tiocspgrp(tty, real_tty, p);
2924	case TIOCGSID:
2925		return tiocgsid(tty, real_tty, p);
2926	case TIOCGETD:
2927		return tiocgetd(tty, p);
2928	case TIOCSETD:
2929		return tiocsetd(tty, p);
2930	case TIOCVHANGUP:
2931		if (!capable(CAP_SYS_ADMIN))
2932			return -EPERM;
2933		tty_vhangup(tty);
2934		return 0;
2935	case TIOCGDEV:
2936	{
2937		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2938		return put_user(ret, (unsigned int __user *)p);
2939	}
2940	/*
2941	 * Break handling
2942	 */
2943	case TIOCSBRK:	/* Turn break on, unconditionally */
2944		if (tty->ops->break_ctl)
2945			return tty->ops->break_ctl(tty, -1);
2946		return 0;
2947	case TIOCCBRK:	/* Turn break off, unconditionally */
2948		if (tty->ops->break_ctl)
2949			return tty->ops->break_ctl(tty, 0);
2950		return 0;
2951	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952		/* non-zero arg means wait for all output data
2953		 * to be sent (performed above) but don't send break.
2954		 * This is used by the tcdrain() termios function.
2955		 */
2956		if (!arg)
2957			return send_break(tty, 250);
2958		return 0;
2959	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960		return send_break(tty, arg ? arg*100 : 250);
2961
2962	case TIOCMGET:
2963		return tty_tiocmget(tty, p);
2964	case TIOCMSET:
2965	case TIOCMBIC:
2966	case TIOCMBIS:
2967		return tty_tiocmset(tty, cmd, p);
2968	case TIOCGICOUNT:
2969		retval = tty_tiocgicount(tty, p);
2970		/* For the moment allow fall through to the old method */
2971        	if (retval != -EINVAL)
2972			return retval;
2973		break;
2974	case TCFLSH:
2975		switch (arg) {
2976		case TCIFLUSH:
2977		case TCIOFLUSH:
2978		/* flush tty buffer and allow ldisc to process ioctl */
2979			tty_buffer_flush(tty, NULL);
2980			break;
2981		}
2982		break;
2983	case TIOCSSERIAL:
2984		tty_warn_deprecated_flags(p);
2985		break;
 
 
 
 
 
 
 
 
2986	}
2987	if (tty->ops->ioctl) {
2988		retval = tty->ops->ioctl(tty, cmd, arg);
2989		if (retval != -ENOIOCTLCMD)
2990			return retval;
2991	}
2992	ld = tty_ldisc_ref_wait(tty);
2993	if (!ld)
2994		return hung_up_tty_ioctl(file, cmd, arg);
2995	retval = -EINVAL;
2996	if (ld->ops->ioctl) {
2997		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998		if (retval == -ENOIOCTLCMD)
2999			retval = -ENOTTY;
3000	}
3001	tty_ldisc_deref(ld);
3002	return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007				unsigned long arg)
3008{
3009	struct tty_struct *tty = file_tty(file);
3010	struct tty_ldisc *ld;
3011	int retval = -ENOIOCTLCMD;
3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014		return -EINVAL;
3015
 
 
 
 
 
 
3016	if (tty->ops->compat_ioctl) {
3017		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018		if (retval != -ENOIOCTLCMD)
3019			return retval;
3020	}
3021
3022	ld = tty_ldisc_ref_wait(tty);
3023	if (!ld)
3024		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025	if (ld->ops->compat_ioctl)
3026		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027	else
3028		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
3029	tty_ldisc_deref(ld);
3030
3031	return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037	if (likely(file->f_op->read != tty_read))
3038		return 0;
3039	return file_tty(file) != t ? 0 : fd + 1;
3040}
3041	
3042/*
3043 * This implements the "Secure Attention Key" ---  the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key".  Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal.  But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context.  This can
3059 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064	tty_hangup(tty);
3065#else
3066	struct task_struct *g, *p;
3067	struct pid *session;
3068	int		i;
3069
3070	if (!tty)
3071		return;
3072	session = tty->session;
3073
3074	tty_ldisc_flush(tty);
3075
3076	tty_driver_flush_buffer(tty);
3077
3078	read_lock(&tasklist_lock);
3079	/* Kill the entire session */
3080	do_each_pid_task(session, PIDTYPE_SID, p) {
3081		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082			   task_pid_nr(p), p->comm);
3083		send_sig(SIGKILL, p, 1);
3084	} while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086	/* Now kill any processes that happen to have the tty open */
3087	do_each_thread(g, p) {
3088		if (p->signal->tty == tty) {
3089			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090				   task_pid_nr(p), p->comm);
3091			send_sig(SIGKILL, p, 1);
3092			continue;
3093		}
3094		task_lock(p);
3095		i = iterate_fd(p->files, 0, this_tty, tty);
3096		if (i != 0) {
3097			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098				   task_pid_nr(p), p->comm, i - 1);
3099			force_sig(SIGKILL, p);
3100		}
3101		task_unlock(p);
3102	} while_each_thread(g, p);
3103	read_unlock(&tasklist_lock);
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109	struct tty_struct *tty =
3110		container_of(work, struct tty_struct, SAK_work);
3111	__do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122	if (!tty)
3123		return;
3124	schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131	const dev_t *devt = data;
3132	return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138	dev_t devt = tty_devnum(tty);
3139	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3140}
3141
3142
3143/**
3144 *	alloc_tty_struct
3145 *
3146 *	This subroutine allocates and initializes a tty structure.
3147 *
3148 *	Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3152{
3153	struct tty_struct *tty;
3154
3155	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156	if (!tty)
3157		return NULL;
3158
3159	kref_init(&tty->kref);
3160	tty->magic = TTY_MAGIC;
3161	tty_ldisc_init(tty);
 
 
 
3162	tty->session = NULL;
3163	tty->pgrp = NULL;
3164	mutex_init(&tty->legacy_mutex);
3165	mutex_init(&tty->throttle_mutex);
3166	init_rwsem(&tty->termios_rwsem);
3167	mutex_init(&tty->winsize_mutex);
3168	init_ldsem(&tty->ldisc_sem);
3169	init_waitqueue_head(&tty->write_wait);
3170	init_waitqueue_head(&tty->read_wait);
3171	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172	mutex_init(&tty->atomic_write_lock);
3173	spin_lock_init(&tty->ctrl_lock);
3174	spin_lock_init(&tty->flow_lock);
3175	spin_lock_init(&tty->files_lock);
3176	INIT_LIST_HEAD(&tty->tty_files);
3177	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179	tty->driver = driver;
3180	tty->ops = driver->ops;
3181	tty->index = idx;
3182	tty_line_name(driver, idx, tty->name);
3183	tty->dev = tty_get_device(tty);
3184
3185	return tty;
3186}
3187
3188/**
3189 *	tty_put_char	-	write one character to a tty
3190 *	@tty: tty
3191 *	@ch: character
3192 *
3193 *	Write one byte to the tty using the provided put_char method
3194 *	if present. Returns the number of characters successfully output.
3195 *
3196 *	Note: the specific put_char operation in the driver layer may go
3197 *	away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202	if (tty->ops->put_char)
3203		return tty->ops->put_char(tty, ch);
3204	return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211		unsigned int index, unsigned int count)
3212{
3213	int err;
3214
3215	/* init here, since reused cdevs cause crashes */
3216	driver->cdevs[index] = cdev_alloc();
3217	if (!driver->cdevs[index])
3218		return -ENOMEM;
3219	driver->cdevs[index]->ops = &tty_fops;
3220	driver->cdevs[index]->owner = driver->owner;
3221	err = cdev_add(driver->cdevs[index], dev, count);
3222	if (err)
3223		kobject_put(&driver->cdevs[index]->kobj);
3224	return err;
3225}
3226
3227/**
3228 *	tty_register_device - register a tty device
3229 *	@driver: the tty driver that describes the tty device
3230 *	@index: the index in the tty driver for this tty device
3231 *	@device: a struct device that is associated with this tty device.
3232 *		This field is optional, if there is no known struct device
3233 *		for this tty device it can be set to NULL safely.
3234 *
3235 *	Returns a pointer to the struct device for this tty device
3236 *	(or ERR_PTR(-EFOO) on error).
3237 *
3238 *	This call is required to be made to register an individual tty device
3239 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240 *	that bit is not set, this function should not be called by a tty
3241 *	driver.
3242 *
3243 *	Locking: ??
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247				   struct device *device)
3248{
3249	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255	dev_dbg(dev, "releasing...\n");
3256	kfree(dev);
3257}
3258
3259/**
3260 *	tty_register_device_attr - register a tty device
3261 *	@driver: the tty driver that describes the tty device
3262 *	@index: the index in the tty driver for this tty device
3263 *	@device: a struct device that is associated with this tty device.
3264 *		This field is optional, if there is no known struct device
3265 *		for this tty device it can be set to NULL safely.
3266 *	@drvdata: Driver data to be set to device.
3267 *	@attr_grp: Attribute group to be set on device.
3268 *
3269 *	Returns a pointer to the struct device for this tty device
3270 *	(or ERR_PTR(-EFOO) on error).
3271 *
3272 *	This call is required to be made to register an individual tty device
3273 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274 *	that bit is not set, this function should not be called by a tty
3275 *	driver.
3276 *
3277 *	Locking: ??
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280				   unsigned index, struct device *device,
3281				   void *drvdata,
3282				   const struct attribute_group **attr_grp)
3283{
3284	char name[64];
3285	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286	struct device *dev = NULL;
3287	int retval = -ENODEV;
3288	bool cdev = false;
3289
3290	if (index >= driver->num) {
3291		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292		       driver->name, index);
3293		return ERR_PTR(-EINVAL);
3294	}
3295
3296	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297		pty_line_name(driver, index, name);
3298	else
3299		tty_line_name(driver, index, name);
3300
3301	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302		retval = tty_cdev_add(driver, devt, index, 1);
3303		if (retval)
3304			goto error;
3305		cdev = true;
3306	}
3307
3308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309	if (!dev) {
3310		retval = -ENOMEM;
3311		goto error;
3312	}
3313
3314	dev->devt = devt;
3315	dev->class = tty_class;
3316	dev->parent = device;
3317	dev->release = tty_device_create_release;
3318	dev_set_name(dev, "%s", name);
3319	dev->groups = attr_grp;
3320	dev_set_drvdata(dev, drvdata);
3321
 
 
3322	retval = device_register(dev);
3323	if (retval)
3324		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325
3326	return dev;
3327
3328error:
 
 
3329	put_device(dev);
3330	if (cdev) {
3331		cdev_del(driver->cdevs[index]);
3332		driver->cdevs[index] = NULL;
3333	}
3334	return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * 	tty_unregister_device - unregister a tty device
3340 * 	@driver: the tty driver that describes the tty device
3341 * 	@index: the index in the tty driver for this tty device
3342 *
3343 * 	If a tty device is registered with a call to tty_register_device() then
3344 *	this function must be called when the tty device is gone.
3345 *
3346 *	Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351	device_destroy(tty_class,
3352		MKDEV(driver->major, driver->minor_start) + index);
3353	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354		cdev_del(driver->cdevs[index]);
3355		driver->cdevs[index] = NULL;
3356	}
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370		unsigned long flags)
3371{
3372	struct tty_driver *driver;
3373	unsigned int cdevs = 1;
3374	int err;
3375
3376	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377		return ERR_PTR(-EINVAL);
3378
3379	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380	if (!driver)
3381		return ERR_PTR(-ENOMEM);
3382
3383	kref_init(&driver->kref);
3384	driver->magic = TTY_DRIVER_MAGIC;
3385	driver->num = lines;
3386	driver->owner = owner;
3387	driver->flags = flags;
3388
3389	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391				GFP_KERNEL);
3392		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393				GFP_KERNEL);
3394		if (!driver->ttys || !driver->termios) {
3395			err = -ENOMEM;
3396			goto err_free_all;
3397		}
3398	}
3399
3400	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402				GFP_KERNEL);
3403		if (!driver->ports) {
3404			err = -ENOMEM;
3405			goto err_free_all;
3406		}
3407		cdevs = lines;
3408	}
3409
3410	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411	if (!driver->cdevs) {
3412		err = -ENOMEM;
3413		goto err_free_all;
3414	}
3415
3416	return driver;
3417err_free_all:
3418	kfree(driver->ports);
3419	kfree(driver->ttys);
3420	kfree(driver->termios);
3421	kfree(driver->cdevs);
3422	kfree(driver);
3423	return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430	int i;
3431	struct ktermios *tp;
3432
3433	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434		/*
3435		 * Free the termios and termios_locked structures because
3436		 * we don't want to get memory leaks when modular tty
3437		 * drivers are removed from the kernel.
3438		 */
3439		for (i = 0; i < driver->num; i++) {
3440			tp = driver->termios[i];
3441			if (tp) {
3442				driver->termios[i] = NULL;
3443				kfree(tp);
3444			}
3445			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446				tty_unregister_device(driver, i);
3447		}
3448		proc_tty_unregister_driver(driver);
3449		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450			cdev_del(driver->cdevs[0]);
3451	}
3452	kfree(driver->cdevs);
3453	kfree(driver->ports);
3454	kfree(driver->termios);
3455	kfree(driver->ttys);
3456	kfree(driver);
3457}
3458
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461	kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466			const struct tty_operations *op)
3467{
3468	driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474	tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483	int error;
3484	int i;
3485	dev_t dev;
3486	struct device *d;
3487
3488	if (!driver->major) {
3489		error = alloc_chrdev_region(&dev, driver->minor_start,
3490						driver->num, driver->name);
3491		if (!error) {
3492			driver->major = MAJOR(dev);
3493			driver->minor_start = MINOR(dev);
3494		}
3495	} else {
3496		dev = MKDEV(driver->major, driver->minor_start);
3497		error = register_chrdev_region(dev, driver->num, driver->name);
3498	}
3499	if (error < 0)
3500		goto err;
3501
3502	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503		error = tty_cdev_add(driver, dev, 0, driver->num);
3504		if (error)
3505			goto err_unreg_char;
3506	}
3507
3508	mutex_lock(&tty_mutex);
3509	list_add(&driver->tty_drivers, &tty_drivers);
3510	mutex_unlock(&tty_mutex);
3511
3512	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513		for (i = 0; i < driver->num; i++) {
3514			d = tty_register_device(driver, i, NULL);
3515			if (IS_ERR(d)) {
3516				error = PTR_ERR(d);
3517				goto err_unreg_devs;
3518			}
3519		}
3520	}
3521	proc_tty_register_driver(driver);
3522	driver->flags |= TTY_DRIVER_INSTALLED;
3523	return 0;
3524
3525err_unreg_devs:
3526	for (i--; i >= 0; i--)
3527		tty_unregister_device(driver, i);
3528
3529	mutex_lock(&tty_mutex);
3530	list_del(&driver->tty_drivers);
3531	mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534	unregister_chrdev_region(dev, driver->num);
3535err:
3536	return error;
3537}
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546	/* FIXME */
3547	if (driver->refcount)
3548		return -EBUSY;
3549#endif
3550	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551				driver->num);
3552	mutex_lock(&tty_mutex);
3553	list_del(&driver->tty_drivers);
3554	mutex_unlock(&tty_mutex);
3555	return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
3566void tty_default_fops(struct file_operations *fops)
3567{
3568	*fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579	initcall_t *call;
3580
3581	/* Setup the default TTY line discipline. */
3582	n_tty_init();
3583
3584	/*
3585	 * set up the console device so that later boot sequences can
3586	 * inform about problems etc..
3587	 */
3588	call = __con_initcall_start;
3589	while (call < __con_initcall_end) {
3590		(*call)();
3591		call++;
3592	}
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597	if (!mode)
3598		return NULL;
3599	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601		*mode = 0666;
3602	return NULL;
3603}
3604
3605static int __init tty_class_init(void)
3606{
3607	tty_class = class_create(THIS_MODULE, "tty");
3608	if (IS_ERR(tty_class))
3609		return PTR_ERR(tty_class);
3610	tty_class->devnode = tty_devnode;
3611	return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620				struct device_attribute *attr, char *buf)
3621{
3622	struct console *cs[16];
3623	int i = 0;
3624	struct console *c;
3625	ssize_t count = 0;
3626
3627	console_lock();
3628	for_each_console(c) {
3629		if (!c->device)
3630			continue;
3631		if (!c->write)
3632			continue;
3633		if ((c->flags & CON_ENABLED) == 0)
3634			continue;
3635		cs[i++] = c;
3636		if (i >= ARRAY_SIZE(cs))
3637			break;
3638	}
3639	while (i--) {
3640		int index = cs[i]->index;
3641		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643		/* don't resolve tty0 as some programs depend on it */
3644		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645			count += tty_line_name(drv, index, buf + count);
3646		else
3647			count += sprintf(buf + count, "%s%d",
3648					 cs[i]->name, cs[i]->index);
3649
3650		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651	}
3652	console_unlock();
3653
3654	return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659	&dev_attr_active.attr,
3660	NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669	if (consdev)
3670		sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
 
3679	cdev_init(&tty_cdev, &tty_fops);
3680	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682		panic("Couldn't register /dev/tty driver\n");
3683	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685	cdev_init(&console_cdev, &console_fops);
3686	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688		panic("Couldn't register /dev/console driver\n");
3689	consdev = device_create_with_groups(tty_class, NULL,
3690					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691					    cons_dev_groups, "console");
3692	if (IS_ERR(consdev))
3693		consdev = NULL;
3694
3695#ifdef CONFIG_VT
3696	vty_init(&console_fops);
3697#endif
3698	return 0;
3699}
3700
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/proc_fs.h>
  91#include <linux/init.h>
  92#include <linux/module.h>
  93#include <linux/device.h>
  94#include <linux/wait.h>
  95#include <linux/bitops.h>
  96#include <linux/delay.h>
  97#include <linux/seq_file.h>
  98#include <linux/serial.h>
  99#include <linux/ratelimit.h>
 100#include <linux/compat.h>
 101
 102#include <linux/uaccess.h>
 103
 104#include <linux/kbd_kern.h>
 105#include <linux/vt_kern.h>
 106#include <linux/selection.h>
 107
 108#include <linux/kmod.h>
 109#include <linux/nsproxy.h>
 110
 111#undef TTY_DEBUG_HANGUP
 112#ifdef TTY_DEBUG_HANGUP
 113# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 114#else
 115# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 116#endif
 117
 118#define TTY_PARANOIA_CHECK 1
 119#define CHECK_TTY_COUNT 1
 120
 121struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 122	.c_iflag = ICRNL | IXON,
 123	.c_oflag = OPOST | ONLCR,
 124	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 125	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 126		   ECHOCTL | ECHOKE | IEXTEN,
 127	.c_cc = INIT_C_CC,
 128	.c_ispeed = 38400,
 129	.c_ospeed = 38400,
 130	/* .c_line = N_TTY, */
 131};
 132
 133EXPORT_SYMBOL(tty_std_termios);
 134
 135/* This list gets poked at by procfs and various bits of boot up code. This
 136   could do with some rationalisation such as pulling the tty proc function
 137   into this file */
 138
 139LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 140
 141/* Mutex to protect creating and releasing a tty */
 142DEFINE_MUTEX(tty_mutex);
 143
 144static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 145static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 146ssize_t redirected_tty_write(struct file *, const char __user *,
 147							size_t, loff_t *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 149static int tty_open(struct inode *, struct file *);
 150long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 151#ifdef CONFIG_COMPAT
 152static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 153				unsigned long arg);
 154#else
 155#define tty_compat_ioctl NULL
 156#endif
 157static int __tty_fasync(int fd, struct file *filp, int on);
 158static int tty_fasync(int fd, struct file *filp, int on);
 159static void release_tty(struct tty_struct *tty, int idx);
 160
 161/**
 162 *	free_tty_struct		-	free a disused tty
 163 *	@tty: tty struct to free
 164 *
 165 *	Free the write buffers, tty queue and tty memory itself.
 166 *
 167 *	Locking: none. Must be called after tty is definitely unused
 168 */
 169
 170static void free_tty_struct(struct tty_struct *tty)
 171{
 172	tty_ldisc_deinit(tty);
 173	put_device(tty->dev);
 174	kfree(tty->write_buf);
 175	tty->magic = 0xDEADDEAD;
 176	kfree(tty);
 177}
 178
 179static inline struct tty_struct *file_tty(struct file *file)
 180{
 181	return ((struct tty_file_private *)file->private_data)->tty;
 182}
 183
 184int tty_alloc_file(struct file *file)
 185{
 186	struct tty_file_private *priv;
 187
 188	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 189	if (!priv)
 190		return -ENOMEM;
 191
 192	file->private_data = priv;
 193
 194	return 0;
 195}
 196
 197/* Associate a new file with the tty structure */
 198void tty_add_file(struct tty_struct *tty, struct file *file)
 199{
 200	struct tty_file_private *priv = file->private_data;
 201
 202	priv->tty = tty;
 203	priv->file = file;
 204
 205	spin_lock(&tty->files_lock);
 206	list_add(&priv->list, &tty->tty_files);
 207	spin_unlock(&tty->files_lock);
 208}
 209
 210/**
 211 * tty_free_file - free file->private_data
 212 *
 213 * This shall be used only for fail path handling when tty_add_file was not
 214 * called yet.
 215 */
 216void tty_free_file(struct file *file)
 217{
 218	struct tty_file_private *priv = file->private_data;
 219
 220	file->private_data = NULL;
 221	kfree(priv);
 222}
 223
 224/* Delete file from its tty */
 225static void tty_del_file(struct file *file)
 226{
 227	struct tty_file_private *priv = file->private_data;
 228	struct tty_struct *tty = priv->tty;
 229
 230	spin_lock(&tty->files_lock);
 231	list_del(&priv->list);
 232	spin_unlock(&tty->files_lock);
 233	tty_free_file(file);
 234}
 235
 
 
 
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0, kopen_count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty_port_kopened(tty->port))
 297		kopen_count++;
 298	if (tty->count != (count + kopen_count)) {
 299		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 300			 routine, tty->count, count, kopen_count);
 301		return (count + kopen_count);
 302	}
 303#endif
 304	return 0;
 305}
 306
 307/**
 308 *	get_tty_driver		-	find device of a tty
 309 *	@dev_t: device identifier
 310 *	@index: returns the index of the tty
 311 *
 312 *	This routine returns a tty driver structure, given a device number
 313 *	and also passes back the index number.
 314 *
 315 *	Locking: caller must hold tty_mutex
 316 */
 317
 318static struct tty_driver *get_tty_driver(dev_t device, int *index)
 319{
 320	struct tty_driver *p;
 321
 322	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 323		dev_t base = MKDEV(p->major, p->minor_start);
 324		if (device < base || device >= base + p->num)
 325			continue;
 326		*index = device - base;
 327		return tty_driver_kref_get(p);
 328	}
 329	return NULL;
 330}
 331
 332/**
 333 *	tty_dev_name_to_number	-	return dev_t for device name
 334 *	@name: user space name of device under /dev
 335 *	@number: pointer to dev_t that this function will populate
 336 *
 337 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 338 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 339 *	the function returns -ENODEV.
 340 *
 341 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 342 *		being modified while we are traversing it, and makes sure to
 343 *		release it before exiting.
 344 */
 345int tty_dev_name_to_number(const char *name, dev_t *number)
 346{
 347	struct tty_driver *p;
 348	int ret;
 349	int index, prefix_length = 0;
 350	const char *str;
 351
 352	for (str = name; *str && !isdigit(*str); str++)
 353		;
 354
 355	if (!*str)
 356		return -EINVAL;
 357
 358	ret = kstrtoint(str, 10, &index);
 359	if (ret)
 360		return ret;
 361
 362	prefix_length = str - name;
 363	mutex_lock(&tty_mutex);
 364
 365	list_for_each_entry(p, &tty_drivers, tty_drivers)
 366		if (prefix_length == strlen(p->name) && strncmp(name,
 367					p->name, prefix_length) == 0) {
 368			if (index < p->num) {
 369				*number = MKDEV(p->major, p->minor_start + index);
 370				goto out;
 371			}
 372		}
 373
 374	/* if here then driver wasn't found */
 375	ret = -ENODEV;
 376out:
 377	mutex_unlock(&tty_mutex);
 378	return ret;
 379}
 380EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 381
 382#ifdef CONFIG_CONSOLE_POLL
 383
 384/**
 385 *	tty_find_polling_driver	-	find device of a polled tty
 386 *	@name: name string to match
 387 *	@line: pointer to resulting tty line nr
 388 *
 389 *	This routine returns a tty driver structure, given a name
 390 *	and the condition that the tty driver is capable of polled
 391 *	operation.
 392 */
 393struct tty_driver *tty_find_polling_driver(char *name, int *line)
 394{
 395	struct tty_driver *p, *res = NULL;
 396	int tty_line = 0;
 397	int len;
 398	char *str, *stp;
 399
 400	for (str = name; *str; str++)
 401		if ((*str >= '0' && *str <= '9') || *str == ',')
 402			break;
 403	if (!*str)
 404		return NULL;
 405
 406	len = str - name;
 407	tty_line = simple_strtoul(str, &str, 10);
 408
 409	mutex_lock(&tty_mutex);
 410	/* Search through the tty devices to look for a match */
 411	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 412		if (!len || strncmp(name, p->name, len) != 0)
 413			continue;
 414		stp = str;
 415		if (*stp == ',')
 416			stp++;
 417		if (*stp == '\0')
 418			stp = NULL;
 419
 420		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 421		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 422			res = tty_driver_kref_get(p);
 423			*line = tty_line;
 424			break;
 425		}
 426	}
 427	mutex_unlock(&tty_mutex);
 428
 429	return res;
 430}
 431EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 432#endif
 433
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 435				size_t count, loff_t *ppos)
 436{
 437	return 0;
 438}
 439
 440static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 441				 size_t count, loff_t *ppos)
 442{
 443	return -EIO;
 444}
 445
 446/* No kernel lock held - none needed ;) */
 447static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 448{
 449	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 450}
 451
 452static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 453		unsigned long arg)
 454{
 455	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 456}
 457
 458static long hung_up_tty_compat_ioctl(struct file *file,
 459				     unsigned int cmd, unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static int hung_up_tty_fasync(int fd, struct file *file, int on)
 465{
 466	return -ENOTTY;
 467}
 468
 469static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 470{
 471	struct tty_struct *tty = file_tty(file);
 472
 473	if (tty && tty->ops && tty->ops->show_fdinfo)
 474		tty->ops->show_fdinfo(tty, m);
 475}
 476
 477static const struct file_operations tty_fops = {
 478	.llseek		= no_llseek,
 479	.read		= tty_read,
 480	.write		= tty_write,
 481	.poll		= tty_poll,
 482	.unlocked_ioctl	= tty_ioctl,
 483	.compat_ioctl	= tty_compat_ioctl,
 484	.open		= tty_open,
 485	.release	= tty_release,
 486	.fasync		= tty_fasync,
 487	.show_fdinfo	= tty_show_fdinfo,
 488};
 489
 490static const struct file_operations console_fops = {
 491	.llseek		= no_llseek,
 492	.read		= tty_read,
 493	.write		= redirected_tty_write,
 494	.poll		= tty_poll,
 495	.unlocked_ioctl	= tty_ioctl,
 496	.compat_ioctl	= tty_compat_ioctl,
 497	.open		= tty_open,
 498	.release	= tty_release,
 499	.fasync		= tty_fasync,
 500};
 501
 502static const struct file_operations hung_up_tty_fops = {
 503	.llseek		= no_llseek,
 504	.read		= hung_up_tty_read,
 505	.write		= hung_up_tty_write,
 506	.poll		= hung_up_tty_poll,
 507	.unlocked_ioctl	= hung_up_tty_ioctl,
 508	.compat_ioctl	= hung_up_tty_compat_ioctl,
 509	.release	= tty_release,
 510	.fasync		= hung_up_tty_fasync,
 511};
 512
 513static DEFINE_SPINLOCK(redirect_lock);
 514static struct file *redirect;
 515
 516extern void tty_sysctl_init(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517
 518/**
 519 *	tty_wakeup	-	request more data
 520 *	@tty: terminal
 521 *
 522 *	Internal and external helper for wakeups of tty. This function
 523 *	informs the line discipline if present that the driver is ready
 524 *	to receive more output data.
 525 */
 526
 527void tty_wakeup(struct tty_struct *tty)
 528{
 529	struct tty_ldisc *ld;
 530
 531	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 532		ld = tty_ldisc_ref(tty);
 533		if (ld) {
 534			if (ld->ops->write_wakeup)
 535				ld->ops->write_wakeup(tty);
 536			tty_ldisc_deref(ld);
 537		}
 538	}
 539	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 540}
 541
 542EXPORT_SYMBOL_GPL(tty_wakeup);
 543
 544/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 545 *	__tty_hangup		-	actual handler for hangup events
 546 *	@work: tty device
 547 *
 548 *	This can be called by a "kworker" kernel thread.  That is process
 549 *	synchronous but doesn't hold any locks, so we need to make sure we
 550 *	have the appropriate locks for what we're doing.
 551 *
 552 *	The hangup event clears any pending redirections onto the hung up
 553 *	device. It ensures future writes will error and it does the needed
 554 *	line discipline hangup and signal delivery. The tty object itself
 555 *	remains intact.
 556 *
 557 *	Locking:
 558 *		BTM
 559 *		  redirect lock for undoing redirection
 560 *		  file list lock for manipulating list of ttys
 561 *		  tty_ldiscs_lock from called functions
 562 *		  termios_rwsem resetting termios data
 563 *		  tasklist_lock to walk task list for hangup event
 564 *		    ->siglock to protect ->signal/->sighand
 565 */
 566static void __tty_hangup(struct tty_struct *tty, int exit_session)
 567{
 568	struct file *cons_filp = NULL;
 569	struct file *filp, *f = NULL;
 570	struct tty_file_private *priv;
 571	int    closecount = 0, n;
 572	int refs;
 573
 574	if (!tty)
 575		return;
 576
 577
 578	spin_lock(&redirect_lock);
 579	if (redirect && file_tty(redirect) == tty) {
 580		f = redirect;
 581		redirect = NULL;
 582	}
 583	spin_unlock(&redirect_lock);
 584
 585	tty_lock(tty);
 586
 587	if (test_bit(TTY_HUPPED, &tty->flags)) {
 588		tty_unlock(tty);
 589		return;
 590	}
 591
 592	/*
 593	 * Some console devices aren't actually hung up for technical and
 594	 * historical reasons, which can lead to indefinite interruptible
 595	 * sleep in n_tty_read().  The following explicitly tells
 596	 * n_tty_read() to abort readers.
 597	 */
 598	set_bit(TTY_HUPPING, &tty->flags);
 599
 600	/* inuse_filps is protected by the single tty lock,
 601	   this really needs to change if we want to flush the
 602	   workqueue with the lock held */
 603	check_tty_count(tty, "tty_hangup");
 604
 605	spin_lock(&tty->files_lock);
 606	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 607	list_for_each_entry(priv, &tty->tty_files, list) {
 608		filp = priv->file;
 609		if (filp->f_op->write == redirected_tty_write)
 610			cons_filp = filp;
 611		if (filp->f_op->write != tty_write)
 612			continue;
 613		closecount++;
 614		__tty_fasync(-1, filp, 0);	/* can't block */
 615		filp->f_op = &hung_up_tty_fops;
 616	}
 617	spin_unlock(&tty->files_lock);
 618
 619	refs = tty_signal_session_leader(tty, exit_session);
 620	/* Account for the p->signal references we killed */
 621	while (refs--)
 622		tty_kref_put(tty);
 623
 624	tty_ldisc_hangup(tty, cons_filp != NULL);
 625
 626	spin_lock_irq(&tty->ctrl_lock);
 627	clear_bit(TTY_THROTTLED, &tty->flags);
 628	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 629	put_pid(tty->session);
 630	put_pid(tty->pgrp);
 631	tty->session = NULL;
 632	tty->pgrp = NULL;
 633	tty->ctrl_status = 0;
 634	spin_unlock_irq(&tty->ctrl_lock);
 635
 636	/*
 637	 * If one of the devices matches a console pointer, we
 638	 * cannot just call hangup() because that will cause
 639	 * tty->count and state->count to go out of sync.
 640	 * So we just call close() the right number of times.
 641	 */
 642	if (cons_filp) {
 643		if (tty->ops->close)
 644			for (n = 0; n < closecount; n++)
 645				tty->ops->close(tty, cons_filp);
 646	} else if (tty->ops->hangup)
 647		tty->ops->hangup(tty);
 648	/*
 649	 * We don't want to have driver/ldisc interactions beyond the ones
 650	 * we did here. The driver layer expects no calls after ->hangup()
 651	 * from the ldisc side, which is now guaranteed.
 652	 */
 653	set_bit(TTY_HUPPED, &tty->flags);
 654	clear_bit(TTY_HUPPING, &tty->flags);
 655	tty_unlock(tty);
 656
 657	if (f)
 658		fput(f);
 659}
 660
 661static void do_tty_hangup(struct work_struct *work)
 662{
 663	struct tty_struct *tty =
 664		container_of(work, struct tty_struct, hangup_work);
 665
 666	__tty_hangup(tty, 0);
 667}
 668
 669/**
 670 *	tty_hangup		-	trigger a hangup event
 671 *	@tty: tty to hangup
 672 *
 673 *	A carrier loss (virtual or otherwise) has occurred on this like
 674 *	schedule a hangup sequence to run after this event.
 675 */
 676
 677void tty_hangup(struct tty_struct *tty)
 678{
 679	tty_debug_hangup(tty, "hangup\n");
 680	schedule_work(&tty->hangup_work);
 681}
 682
 683EXPORT_SYMBOL(tty_hangup);
 684
 685/**
 686 *	tty_vhangup		-	process vhangup
 687 *	@tty: tty to hangup
 688 *
 689 *	The user has asked via system call for the terminal to be hung up.
 690 *	We do this synchronously so that when the syscall returns the process
 691 *	is complete. That guarantee is necessary for security reasons.
 692 */
 693
 694void tty_vhangup(struct tty_struct *tty)
 695{
 696	tty_debug_hangup(tty, "vhangup\n");
 697	__tty_hangup(tty, 0);
 698}
 699
 700EXPORT_SYMBOL(tty_vhangup);
 701
 702
 703/**
 704 *	tty_vhangup_self	-	process vhangup for own ctty
 705 *
 706 *	Perform a vhangup on the current controlling tty
 707 */
 708
 709void tty_vhangup_self(void)
 710{
 711	struct tty_struct *tty;
 712
 713	tty = get_current_tty();
 714	if (tty) {
 715		tty_vhangup(tty);
 716		tty_kref_put(tty);
 717	}
 718}
 719
 720/**
 721 *	tty_vhangup_session		-	hangup session leader exit
 722 *	@tty: tty to hangup
 723 *
 724 *	The session leader is exiting and hanging up its controlling terminal.
 725 *	Every process in the foreground process group is signalled SIGHUP.
 726 *
 727 *	We do this synchronously so that when the syscall returns the process
 728 *	is complete. That guarantee is necessary for security reasons.
 729 */
 730
 731void tty_vhangup_session(struct tty_struct *tty)
 732{
 733	tty_debug_hangup(tty, "session hangup\n");
 734	__tty_hangup(tty, 1);
 735}
 736
 737/**
 738 *	tty_hung_up_p		-	was tty hung up
 739 *	@filp: file pointer of tty
 740 *
 741 *	Return true if the tty has been subject to a vhangup or a carrier
 742 *	loss
 743 */
 744
 745int tty_hung_up_p(struct file *filp)
 746{
 747	return (filp && filp->f_op == &hung_up_tty_fops);
 748}
 749
 750EXPORT_SYMBOL(tty_hung_up_p);
 751
 752/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 753 *	stop_tty	-	propagate flow control
 754 *	@tty: tty to stop
 755 *
 756 *	Perform flow control to the driver. May be called
 757 *	on an already stopped device and will not re-call the driver
 758 *	method.
 759 *
 760 *	This functionality is used by both the line disciplines for
 761 *	halting incoming flow and by the driver. It may therefore be
 762 *	called from any context, may be under the tty atomic_write_lock
 763 *	but not always.
 764 *
 765 *	Locking:
 766 *		flow_lock
 767 */
 768
 769void __stop_tty(struct tty_struct *tty)
 770{
 771	if (tty->stopped)
 772		return;
 773	tty->stopped = 1;
 774	if (tty->ops->stop)
 775		tty->ops->stop(tty);
 776}
 777
 778void stop_tty(struct tty_struct *tty)
 779{
 780	unsigned long flags;
 781
 782	spin_lock_irqsave(&tty->flow_lock, flags);
 783	__stop_tty(tty);
 784	spin_unlock_irqrestore(&tty->flow_lock, flags);
 785}
 786EXPORT_SYMBOL(stop_tty);
 787
 788/**
 789 *	start_tty	-	propagate flow control
 790 *	@tty: tty to start
 791 *
 792 *	Start a tty that has been stopped if at all possible. If this
 793 *	tty was previous stopped and is now being started, the driver
 794 *	start method is invoked and the line discipline woken.
 795 *
 796 *	Locking:
 797 *		flow_lock
 798 */
 799
 800void __start_tty(struct tty_struct *tty)
 801{
 802	if (!tty->stopped || tty->flow_stopped)
 803		return;
 804	tty->stopped = 0;
 805	if (tty->ops->start)
 806		tty->ops->start(tty);
 807	tty_wakeup(tty);
 808}
 809
 810void start_tty(struct tty_struct *tty)
 811{
 812	unsigned long flags;
 813
 814	spin_lock_irqsave(&tty->flow_lock, flags);
 815	__start_tty(tty);
 816	spin_unlock_irqrestore(&tty->flow_lock, flags);
 817}
 818EXPORT_SYMBOL(start_tty);
 819
 820static void tty_update_time(struct timespec64 *time)
 821{
 822	time64_t sec = ktime_get_real_seconds();
 823
 824	/*
 825	 * We only care if the two values differ in anything other than the
 826	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 827	 * the time of the tty device, otherwise it could be construded as a
 828	 * security leak to let userspace know the exact timing of the tty.
 829	 */
 830	if ((sec ^ time->tv_sec) & ~7)
 831		time->tv_sec = sec;
 832}
 833
 834/**
 835 *	tty_read	-	read method for tty device files
 836 *	@file: pointer to tty file
 837 *	@buf: user buffer
 838 *	@count: size of user buffer
 839 *	@ppos: unused
 840 *
 841 *	Perform the read system call function on this terminal device. Checks
 842 *	for hung up devices before calling the line discipline method.
 843 *
 844 *	Locking:
 845 *		Locks the line discipline internally while needed. Multiple
 846 *	read calls may be outstanding in parallel.
 847 */
 848
 849static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 850			loff_t *ppos)
 851{
 852	int i;
 853	struct inode *inode = file_inode(file);
 854	struct tty_struct *tty = file_tty(file);
 855	struct tty_ldisc *ld;
 856
 857	if (tty_paranoia_check(tty, inode, "tty_read"))
 858		return -EIO;
 859	if (!tty || tty_io_error(tty))
 860		return -EIO;
 861
 862	/* We want to wait for the line discipline to sort out in this
 863	   situation */
 864	ld = tty_ldisc_ref_wait(tty);
 865	if (!ld)
 866		return hung_up_tty_read(file, buf, count, ppos);
 867	if (ld->ops->read)
 868		i = ld->ops->read(tty, file, buf, count);
 869	else
 870		i = -EIO;
 871	tty_ldisc_deref(ld);
 872
 873	if (i > 0)
 874		tty_update_time(&inode->i_atime);
 875
 876	return i;
 877}
 878
 879static void tty_write_unlock(struct tty_struct *tty)
 880{
 881	mutex_unlock(&tty->atomic_write_lock);
 882	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 883}
 884
 885static int tty_write_lock(struct tty_struct *tty, int ndelay)
 886{
 887	if (!mutex_trylock(&tty->atomic_write_lock)) {
 888		if (ndelay)
 889			return -EAGAIN;
 890		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 891			return -ERESTARTSYS;
 892	}
 893	return 0;
 894}
 895
 896/*
 897 * Split writes up in sane blocksizes to avoid
 898 * denial-of-service type attacks
 899 */
 900static inline ssize_t do_tty_write(
 901	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 902	struct tty_struct *tty,
 903	struct file *file,
 904	const char __user *buf,
 905	size_t count)
 906{
 907	ssize_t ret, written = 0;
 908	unsigned int chunk;
 909
 910	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 911	if (ret < 0)
 912		return ret;
 913
 914	/*
 915	 * We chunk up writes into a temporary buffer. This
 916	 * simplifies low-level drivers immensely, since they
 917	 * don't have locking issues and user mode accesses.
 918	 *
 919	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 920	 * big chunk-size..
 921	 *
 922	 * The default chunk-size is 2kB, because the NTTY
 923	 * layer has problems with bigger chunks. It will
 924	 * claim to be able to handle more characters than
 925	 * it actually does.
 926	 *
 927	 * FIXME: This can probably go away now except that 64K chunks
 928	 * are too likely to fail unless switched to vmalloc...
 929	 */
 930	chunk = 2048;
 931	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 932		chunk = 65536;
 933	if (count < chunk)
 934		chunk = count;
 935
 936	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 937	if (tty->write_cnt < chunk) {
 938		unsigned char *buf_chunk;
 939
 940		if (chunk < 1024)
 941			chunk = 1024;
 942
 943		buf_chunk = kmalloc(chunk, GFP_KERNEL);
 944		if (!buf_chunk) {
 945			ret = -ENOMEM;
 946			goto out;
 947		}
 948		kfree(tty->write_buf);
 949		tty->write_cnt = chunk;
 950		tty->write_buf = buf_chunk;
 951	}
 952
 953	/* Do the write .. */
 954	for (;;) {
 955		size_t size = count;
 956		if (size > chunk)
 957			size = chunk;
 958		ret = -EFAULT;
 959		if (copy_from_user(tty->write_buf, buf, size))
 960			break;
 961		ret = write(tty, file, tty->write_buf, size);
 962		if (ret <= 0)
 963			break;
 964		written += ret;
 965		buf += ret;
 966		count -= ret;
 967		if (!count)
 968			break;
 969		ret = -ERESTARTSYS;
 970		if (signal_pending(current))
 971			break;
 972		cond_resched();
 973	}
 974	if (written) {
 975		tty_update_time(&file_inode(file)->i_mtime);
 976		ret = written;
 977	}
 978out:
 979	tty_write_unlock(tty);
 980	return ret;
 981}
 982
 983/**
 984 * tty_write_message - write a message to a certain tty, not just the console.
 985 * @tty: the destination tty_struct
 986 * @msg: the message to write
 987 *
 988 * This is used for messages that need to be redirected to a specific tty.
 989 * We don't put it into the syslog queue right now maybe in the future if
 990 * really needed.
 991 *
 992 * We must still hold the BTM and test the CLOSING flag for the moment.
 993 */
 994
 995void tty_write_message(struct tty_struct *tty, char *msg)
 996{
 997	if (tty) {
 998		mutex_lock(&tty->atomic_write_lock);
 999		tty_lock(tty);
1000		if (tty->ops->write && tty->count > 0)
1001			tty->ops->write(tty, msg, strlen(msg));
1002		tty_unlock(tty);
1003		tty_write_unlock(tty);
1004	}
1005	return;
1006}
1007
1008
1009/**
1010 *	tty_write		-	write method for tty device file
1011 *	@file: tty file pointer
1012 *	@buf: user data to write
1013 *	@count: bytes to write
1014 *	@ppos: unused
1015 *
1016 *	Write data to a tty device via the line discipline.
1017 *
1018 *	Locking:
1019 *		Locks the line discipline as required
1020 *		Writes to the tty driver are serialized by the atomic_write_lock
1021 *	and are then processed in chunks to the device. The line discipline
1022 *	write method will not be invoked in parallel for each device.
1023 */
1024
1025static ssize_t tty_write(struct file *file, const char __user *buf,
1026						size_t count, loff_t *ppos)
1027{
1028	struct tty_struct *tty = file_tty(file);
1029 	struct tty_ldisc *ld;
1030	ssize_t ret;
1031
1032	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1033		return -EIO;
1034	if (!tty || !tty->ops->write ||	tty_io_error(tty))
 
1035			return -EIO;
1036	/* Short term debug to catch buggy drivers */
1037	if (tty->ops->write_room == NULL)
1038		tty_err(tty, "missing write_room method\n");
1039	ld = tty_ldisc_ref_wait(tty);
1040	if (!ld)
1041		return hung_up_tty_write(file, buf, count, ppos);
1042	if (!ld->ops->write)
1043		ret = -EIO;
1044	else
1045		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1046	tty_ldisc_deref(ld);
1047	return ret;
1048}
1049
1050ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1051						size_t count, loff_t *ppos)
1052{
1053	struct file *p = NULL;
1054
1055	spin_lock(&redirect_lock);
1056	if (redirect)
1057		p = get_file(redirect);
1058	spin_unlock(&redirect_lock);
1059
1060	if (p) {
1061		ssize_t res;
1062		res = vfs_write(p, buf, count, &p->f_pos);
1063		fput(p);
1064		return res;
1065	}
1066	return tty_write(file, buf, count, ppos);
1067}
1068
1069/**
1070 *	tty_send_xchar	-	send priority character
1071 *
1072 *	Send a high priority character to the tty even if stopped
1073 *
1074 *	Locking: none for xchar method, write ordering for write method.
1075 */
1076
1077int tty_send_xchar(struct tty_struct *tty, char ch)
1078{
1079	int	was_stopped = tty->stopped;
1080
1081	if (tty->ops->send_xchar) {
1082		down_read(&tty->termios_rwsem);
1083		tty->ops->send_xchar(tty, ch);
1084		up_read(&tty->termios_rwsem);
1085		return 0;
1086	}
1087
1088	if (tty_write_lock(tty, 0) < 0)
1089		return -ERESTARTSYS;
1090
1091	down_read(&tty->termios_rwsem);
1092	if (was_stopped)
1093		start_tty(tty);
1094	tty->ops->write(tty, &ch, 1);
1095	if (was_stopped)
1096		stop_tty(tty);
1097	up_read(&tty->termios_rwsem);
1098	tty_write_unlock(tty);
1099	return 0;
1100}
1101
1102static char ptychar[] = "pqrstuvwxyzabcde";
1103
1104/**
1105 *	pty_line_name	-	generate name for a pty
1106 *	@driver: the tty driver in use
1107 *	@index: the minor number
1108 *	@p: output buffer of at least 6 bytes
1109 *
1110 *	Generate a name from a driver reference and write it to the output
1111 *	buffer.
1112 *
1113 *	Locking: None
1114 */
1115static void pty_line_name(struct tty_driver *driver, int index, char *p)
1116{
1117	int i = index + driver->name_base;
1118	/* ->name is initialized to "ttyp", but "tty" is expected */
1119	sprintf(p, "%s%c%x",
1120		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1121		ptychar[i >> 4 & 0xf], i & 0xf);
1122}
1123
1124/**
1125 *	tty_line_name	-	generate name for a tty
1126 *	@driver: the tty driver in use
1127 *	@index: the minor number
1128 *	@p: output buffer of at least 7 bytes
1129 *
1130 *	Generate a name from a driver reference and write it to the output
1131 *	buffer.
1132 *
1133 *	Locking: None
1134 */
1135static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1136{
1137	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1138		return sprintf(p, "%s", driver->name);
1139	else
1140		return sprintf(p, "%s%d", driver->name,
1141			       index + driver->name_base);
1142}
1143
1144/**
1145 *	tty_driver_lookup_tty() - find an existing tty, if any
1146 *	@driver: the driver for the tty
1147 *	@idx:	 the minor number
1148 *
1149 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1150 *	driver lookup() method returns an error.
1151 *
1152 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1153 */
1154static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1155		struct file *file, int idx)
1156{
1157	struct tty_struct *tty;
1158
1159	if (driver->ops->lookup)
1160		if (!file)
1161			tty = ERR_PTR(-EIO);
1162		else
1163			tty = driver->ops->lookup(driver, file, idx);
1164	else
1165		tty = driver->ttys[idx];
1166
1167	if (!IS_ERR(tty))
1168		tty_kref_get(tty);
1169	return tty;
1170}
1171
1172/**
1173 *	tty_init_termios	-  helper for termios setup
1174 *	@tty: the tty to set up
1175 *
1176 *	Initialise the termios structure for this tty. This runs under
1177 *	the tty_mutex currently so we can be relaxed about ordering.
1178 */
1179
1180void tty_init_termios(struct tty_struct *tty)
1181{
1182	struct ktermios *tp;
1183	int idx = tty->index;
1184
1185	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1186		tty->termios = tty->driver->init_termios;
1187	else {
1188		/* Check for lazy saved data */
1189		tp = tty->driver->termios[idx];
1190		if (tp != NULL) {
1191			tty->termios = *tp;
1192			tty->termios.c_line  = tty->driver->init_termios.c_line;
1193		} else
1194			tty->termios = tty->driver->init_termios;
1195	}
1196	/* Compatibility until drivers always set this */
1197	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1198	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1199}
1200EXPORT_SYMBOL_GPL(tty_init_termios);
1201
1202int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1203{
1204	tty_init_termios(tty);
1205	tty_driver_kref_get(driver);
1206	tty->count++;
1207	driver->ttys[tty->index] = tty;
1208	return 0;
1209}
1210EXPORT_SYMBOL_GPL(tty_standard_install);
1211
1212/**
1213 *	tty_driver_install_tty() - install a tty entry in the driver
1214 *	@driver: the driver for the tty
1215 *	@tty: the tty
1216 *
1217 *	Install a tty object into the driver tables. The tty->index field
1218 *	will be set by the time this is called. This method is responsible
1219 *	for ensuring any need additional structures are allocated and
1220 *	configured.
1221 *
1222 *	Locking: tty_mutex for now
1223 */
1224static int tty_driver_install_tty(struct tty_driver *driver,
1225						struct tty_struct *tty)
1226{
1227	return driver->ops->install ? driver->ops->install(driver, tty) :
1228		tty_standard_install(driver, tty);
1229}
1230
1231/**
1232 *	tty_driver_remove_tty() - remove a tty from the driver tables
1233 *	@driver: the driver for the tty
1234 *	@idx:	 the minor number
1235 *
1236 *	Remvoe a tty object from the driver tables. The tty->index field
1237 *	will be set by the time this is called.
1238 *
1239 *	Locking: tty_mutex for now
1240 */
1241static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1242{
1243	if (driver->ops->remove)
1244		driver->ops->remove(driver, tty);
1245	else
1246		driver->ttys[tty->index] = NULL;
1247}
1248
1249/*
1250 * 	tty_reopen()	- fast re-open of an open tty
1251 * 	@tty	- the tty to open
1252 *
1253 *	Return 0 on success, -errno on error.
1254 *	Re-opens on master ptys are not allowed and return -EIO.
1255 *
1256 *	Locking: Caller must hold tty_lock
1257 */
1258static int tty_reopen(struct tty_struct *tty)
1259{
1260	struct tty_driver *driver = tty->driver;
1261	struct tty_ldisc *ld;
1262	int retval = 0;
1263
1264	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1265	    driver->subtype == PTY_TYPE_MASTER)
1266		return -EIO;
1267
1268	if (!tty->count)
1269		return -EAGAIN;
1270
1271	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1272		return -EBUSY;
1273
1274	ld = tty_ldisc_ref_wait(tty);
1275	if (ld) {
1276		tty_ldisc_deref(ld);
1277	} else {
1278		retval = tty_ldisc_lock(tty, 5 * HZ);
1279		if (retval)
1280			return retval;
1281
1282		if (!tty->ldisc)
1283			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1284		tty_ldisc_unlock(tty);
1285	}
1286
1287	if (retval == 0)
1288		tty->count++;
1289
1290	return retval;
1291}
1292
1293/**
1294 *	tty_init_dev		-	initialise a tty device
1295 *	@driver: tty driver we are opening a device on
1296 *	@idx: device index
1297 *	@ret_tty: returned tty structure
1298 *
1299 *	Prepare a tty device. This may not be a "new" clean device but
1300 *	could also be an active device. The pty drivers require special
1301 *	handling because of this.
1302 *
1303 *	Locking:
1304 *		The function is called under the tty_mutex, which
1305 *	protects us from the tty struct or driver itself going away.
1306 *
1307 *	On exit the tty device has the line discipline attached and
1308 *	a reference count of 1. If a pair was created for pty/tty use
1309 *	and the other was a pty master then it too has a reference count of 1.
1310 *
1311 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1312 * failed open.  The new code protects the open with a mutex, so it's
1313 * really quite straightforward.  The mutex locking can probably be
1314 * relaxed for the (most common) case of reopening a tty.
1315 */
1316
1317struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1318{
1319	struct tty_struct *tty;
1320	int retval;
1321
1322	/*
1323	 * First time open is complex, especially for PTY devices.
1324	 * This code guarantees that either everything succeeds and the
1325	 * TTY is ready for operation, or else the table slots are vacated
1326	 * and the allocated memory released.  (Except that the termios
1327	 * may be retained.)
1328	 */
1329
1330	if (!try_module_get(driver->owner))
1331		return ERR_PTR(-ENODEV);
1332
1333	tty = alloc_tty_struct(driver, idx);
1334	if (!tty) {
1335		retval = -ENOMEM;
1336		goto err_module_put;
1337	}
1338
1339	tty_lock(tty);
1340	retval = tty_driver_install_tty(driver, tty);
1341	if (retval < 0)
1342		goto err_free_tty;
1343
1344	if (!tty->port)
1345		tty->port = driver->ports[idx];
1346
1347	WARN_RATELIMIT(!tty->port,
1348			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1349			__func__, tty->driver->name);
1350
1351	retval = tty_ldisc_lock(tty, 5 * HZ);
1352	if (retval)
1353		goto err_release_lock;
1354	tty->port->itty = tty;
1355
1356	/*
1357	 * Structures all installed ... call the ldisc open routines.
1358	 * If we fail here just call release_tty to clean up.  No need
1359	 * to decrement the use counts, as release_tty doesn't care.
1360	 */
1361	retval = tty_ldisc_setup(tty, tty->link);
1362	if (retval)
1363		goto err_release_tty;
1364	tty_ldisc_unlock(tty);
1365	/* Return the tty locked so that it cannot vanish under the caller */
1366	return tty;
1367
1368err_free_tty:
1369	tty_unlock(tty);
1370	free_tty_struct(tty);
1371err_module_put:
1372	module_put(driver->owner);
1373	return ERR_PTR(retval);
1374
1375	/* call the tty release_tty routine to clean out this slot */
1376err_release_tty:
1377	tty_ldisc_unlock(tty);
1378	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1379			     retval, idx);
1380err_release_lock:
1381	tty_unlock(tty);
1382	release_tty(tty, idx);
1383	return ERR_PTR(retval);
1384}
1385
1386/**
1387 * tty_save_termios() - save tty termios data in driver table
1388 * @tty: tty whose termios data to save
1389 *
1390 * Locking: Caller guarantees serialisation with tty_init_termios().
1391 */
1392void tty_save_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	/* If the port is going to reset then it has no termios to save */
1398	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1399		return;
1400
1401	/* Stash the termios data */
1402	tp = tty->driver->termios[idx];
1403	if (tp == NULL) {
1404		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1405		if (tp == NULL)
1406			return;
1407		tty->driver->termios[idx] = tp;
1408	}
1409	*tp = tty->termios;
1410}
1411EXPORT_SYMBOL_GPL(tty_save_termios);
1412
1413/**
1414 *	tty_flush_works		-	flush all works of a tty/pty pair
1415 *	@tty: tty device to flush works for (or either end of a pty pair)
1416 *
1417 *	Sync flush all works belonging to @tty (and the 'other' tty).
1418 */
1419static void tty_flush_works(struct tty_struct *tty)
1420{
1421	flush_work(&tty->SAK_work);
1422	flush_work(&tty->hangup_work);
1423	if (tty->link) {
1424		flush_work(&tty->link->SAK_work);
1425		flush_work(&tty->link->hangup_work);
1426	}
1427}
1428
1429/**
1430 *	release_one_tty		-	release tty structure memory
1431 *	@kref: kref of tty we are obliterating
1432 *
1433 *	Releases memory associated with a tty structure, and clears out the
1434 *	driver table slots. This function is called when a device is no longer
1435 *	in use. It also gets called when setup of a device fails.
1436 *
1437 *	Locking:
1438 *		takes the file list lock internally when working on the list
1439 *	of ttys that the driver keeps.
1440 *
1441 *	This method gets called from a work queue so that the driver private
1442 *	cleanup ops can sleep (needed for USB at least)
1443 */
1444static void release_one_tty(struct work_struct *work)
1445{
1446	struct tty_struct *tty =
1447		container_of(work, struct tty_struct, hangup_work);
1448	struct tty_driver *driver = tty->driver;
1449	struct module *owner = driver->owner;
1450
1451	if (tty->ops->cleanup)
1452		tty->ops->cleanup(tty);
1453
1454	tty->magic = 0;
1455	tty_driver_kref_put(driver);
1456	module_put(owner);
1457
1458	spin_lock(&tty->files_lock);
1459	list_del_init(&tty->tty_files);
1460	spin_unlock(&tty->files_lock);
1461
1462	put_pid(tty->pgrp);
1463	put_pid(tty->session);
1464	free_tty_struct(tty);
1465}
1466
1467static void queue_release_one_tty(struct kref *kref)
1468{
1469	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1470
1471	/* The hangup queue is now free so we can reuse it rather than
1472	   waste a chunk of memory for each port */
1473	INIT_WORK(&tty->hangup_work, release_one_tty);
1474	schedule_work(&tty->hangup_work);
1475}
1476
1477/**
1478 *	tty_kref_put		-	release a tty kref
1479 *	@tty: tty device
1480 *
1481 *	Release a reference to a tty device and if need be let the kref
1482 *	layer destruct the object for us
1483 */
1484
1485void tty_kref_put(struct tty_struct *tty)
1486{
1487	if (tty)
1488		kref_put(&tty->kref, queue_release_one_tty);
1489}
1490EXPORT_SYMBOL(tty_kref_put);
1491
1492/**
1493 *	release_tty		-	release tty structure memory
1494 *
1495 *	Release both @tty and a possible linked partner (think pty pair),
1496 *	and decrement the refcount of the backing module.
1497 *
1498 *	Locking:
1499 *		tty_mutex
1500 *		takes the file list lock internally when working on the list
1501 *	of ttys that the driver keeps.
1502 *
1503 */
1504static void release_tty(struct tty_struct *tty, int idx)
1505{
1506	/* This should always be true but check for the moment */
1507	WARN_ON(tty->index != idx);
1508	WARN_ON(!mutex_is_locked(&tty_mutex));
1509	if (tty->ops->shutdown)
1510		tty->ops->shutdown(tty);
1511	tty_save_termios(tty);
1512	tty_driver_remove_tty(tty->driver, tty);
1513	tty->port->itty = NULL;
1514	if (tty->link)
1515		tty->link->port->itty = NULL;
1516	tty_buffer_cancel_work(tty->port);
1517	if (tty->link)
1518		tty_buffer_cancel_work(tty->link->port);
1519
1520	tty_kref_put(tty->link);
1521	tty_kref_put(tty);
1522}
1523
1524/**
1525 *	tty_release_checks - check a tty before real release
1526 *	@tty: tty to check
1527 *	@o_tty: link of @tty (if any)
1528 *	@idx: index of the tty
1529 *
1530 *	Performs some paranoid checking before true release of the @tty.
1531 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1532 */
1533static int tty_release_checks(struct tty_struct *tty, int idx)
1534{
1535#ifdef TTY_PARANOIA_CHECK
1536	if (idx < 0 || idx >= tty->driver->num) {
1537		tty_debug(tty, "bad idx %d\n", idx);
1538		return -1;
1539	}
1540
1541	/* not much to check for devpts */
1542	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1543		return 0;
1544
1545	if (tty != tty->driver->ttys[idx]) {
1546		tty_debug(tty, "bad driver table[%d] = %p\n",
1547			  idx, tty->driver->ttys[idx]);
1548		return -1;
1549	}
1550	if (tty->driver->other) {
1551		struct tty_struct *o_tty = tty->link;
1552
1553		if (o_tty != tty->driver->other->ttys[idx]) {
1554			tty_debug(tty, "bad other table[%d] = %p\n",
1555				  idx, tty->driver->other->ttys[idx]);
1556			return -1;
1557		}
1558		if (o_tty->link != tty) {
1559			tty_debug(tty, "bad link = %p\n", o_tty->link);
1560			return -1;
1561		}
1562	}
1563#endif
1564	return 0;
1565}
1566
1567/**
1568 *      tty_kclose      -       closes tty opened by tty_kopen
1569 *      @tty: tty device
1570 *
1571 *      Performs the final steps to release and free a tty device. It is the
1572 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1573 *      flag on tty->port.
1574 */
1575void tty_kclose(struct tty_struct *tty)
1576{
1577	/*
1578	 * Ask the line discipline code to release its structures
1579	 */
1580	tty_ldisc_release(tty);
1581
1582	/* Wait for pending work before tty destruction commmences */
1583	tty_flush_works(tty);
1584
1585	tty_debug_hangup(tty, "freeing structure\n");
1586	/*
1587	 * The release_tty function takes care of the details of clearing
1588	 * the slots and preserving the termios structure. The tty_unlock_pair
1589	 * should be safe as we keep a kref while the tty is locked (so the
1590	 * unlock never unlocks a freed tty).
1591	 */
1592	mutex_lock(&tty_mutex);
1593	tty_port_set_kopened(tty->port, 0);
1594	release_tty(tty, tty->index);
1595	mutex_unlock(&tty_mutex);
1596}
1597EXPORT_SYMBOL_GPL(tty_kclose);
1598
1599/**
1600 *	tty_release_struct	-	release a tty struct
1601 *	@tty: tty device
1602 *	@idx: index of the tty
1603 *
1604 *	Performs the final steps to release and free a tty device. It is
1605 *	roughly the reverse of tty_init_dev.
1606 */
1607void tty_release_struct(struct tty_struct *tty, int idx)
1608{
1609	/*
1610	 * Ask the line discipline code to release its structures
1611	 */
1612	tty_ldisc_release(tty);
1613
1614	/* Wait for pending work before tty destruction commmences */
1615	tty_flush_works(tty);
1616
1617	tty_debug_hangup(tty, "freeing structure\n");
1618	/*
1619	 * The release_tty function takes care of the details of clearing
1620	 * the slots and preserving the termios structure. The tty_unlock_pair
1621	 * should be safe as we keep a kref while the tty is locked (so the
1622	 * unlock never unlocks a freed tty).
1623	 */
1624	mutex_lock(&tty_mutex);
1625	release_tty(tty, idx);
1626	mutex_unlock(&tty_mutex);
1627}
1628EXPORT_SYMBOL_GPL(tty_release_struct);
1629
1630/**
1631 *	tty_release		-	vfs callback for close
1632 *	@inode: inode of tty
1633 *	@filp: file pointer for handle to tty
1634 *
1635 *	Called the last time each file handle is closed that references
1636 *	this tty. There may however be several such references.
1637 *
1638 *	Locking:
1639 *		Takes bkl. See tty_release_dev
1640 *
1641 * Even releasing the tty structures is a tricky business.. We have
1642 * to be very careful that the structures are all released at the
1643 * same time, as interrupts might otherwise get the wrong pointers.
1644 *
1645 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1646 * lead to double frees or releasing memory still in use.
1647 */
1648
1649int tty_release(struct inode *inode, struct file *filp)
1650{
1651	struct tty_struct *tty = file_tty(filp);
1652	struct tty_struct *o_tty = NULL;
1653	int	do_sleep, final;
1654	int	idx;
1655	long	timeout = 0;
1656	int	once = 1;
1657
1658	if (tty_paranoia_check(tty, inode, __func__))
1659		return 0;
1660
1661	tty_lock(tty);
1662	check_tty_count(tty, __func__);
1663
1664	__tty_fasync(-1, filp, 0);
1665
1666	idx = tty->index;
1667	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1668	    tty->driver->subtype == PTY_TYPE_MASTER)
1669		o_tty = tty->link;
1670
1671	if (tty_release_checks(tty, idx)) {
1672		tty_unlock(tty);
1673		return 0;
1674	}
1675
1676	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1677
1678	if (tty->ops->close)
1679		tty->ops->close(tty, filp);
1680
1681	/* If tty is pty master, lock the slave pty (stable lock order) */
1682	tty_lock_slave(o_tty);
1683
1684	/*
1685	 * Sanity check: if tty->count is going to zero, there shouldn't be
1686	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1687	 * wait queues and kick everyone out _before_ actually starting to
1688	 * close.  This ensures that we won't block while releasing the tty
1689	 * structure.
1690	 *
1691	 * The test for the o_tty closing is necessary, since the master and
1692	 * slave sides may close in any order.  If the slave side closes out
1693	 * first, its count will be one, since the master side holds an open.
1694	 * Thus this test wouldn't be triggered at the time the slave closed,
1695	 * so we do it now.
1696	 */
1697	while (1) {
1698		do_sleep = 0;
1699
1700		if (tty->count <= 1) {
1701			if (waitqueue_active(&tty->read_wait)) {
1702				wake_up_poll(&tty->read_wait, EPOLLIN);
1703				do_sleep++;
1704			}
1705			if (waitqueue_active(&tty->write_wait)) {
1706				wake_up_poll(&tty->write_wait, EPOLLOUT);
1707				do_sleep++;
1708			}
1709		}
1710		if (o_tty && o_tty->count <= 1) {
1711			if (waitqueue_active(&o_tty->read_wait)) {
1712				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1713				do_sleep++;
1714			}
1715			if (waitqueue_active(&o_tty->write_wait)) {
1716				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1717				do_sleep++;
1718			}
1719		}
1720		if (!do_sleep)
1721			break;
1722
1723		if (once) {
1724			once = 0;
1725			tty_warn(tty, "read/write wait queue active!\n");
1726		}
1727		schedule_timeout_killable(timeout);
1728		if (timeout < 120 * HZ)
1729			timeout = 2 * timeout + 1;
1730		else
1731			timeout = MAX_SCHEDULE_TIMEOUT;
1732	}
1733
1734	if (o_tty) {
1735		if (--o_tty->count < 0) {
1736			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1737			o_tty->count = 0;
1738		}
1739	}
1740	if (--tty->count < 0) {
1741		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1742		tty->count = 0;
1743	}
1744
1745	/*
1746	 * We've decremented tty->count, so we need to remove this file
1747	 * descriptor off the tty->tty_files list; this serves two
1748	 * purposes:
1749	 *  - check_tty_count sees the correct number of file descriptors
1750	 *    associated with this tty.
1751	 *  - do_tty_hangup no longer sees this file descriptor as
1752	 *    something that needs to be handled for hangups.
1753	 */
1754	tty_del_file(filp);
1755
1756	/*
1757	 * Perform some housekeeping before deciding whether to return.
1758	 *
1759	 * If _either_ side is closing, make sure there aren't any
1760	 * processes that still think tty or o_tty is their controlling
1761	 * tty.
1762	 */
1763	if (!tty->count) {
1764		read_lock(&tasklist_lock);
1765		session_clear_tty(tty->session);
1766		if (o_tty)
1767			session_clear_tty(o_tty->session);
1768		read_unlock(&tasklist_lock);
1769	}
1770
1771	/* check whether both sides are closing ... */
1772	final = !tty->count && !(o_tty && o_tty->count);
1773
1774	tty_unlock_slave(o_tty);
1775	tty_unlock(tty);
1776
1777	/* At this point, the tty->count == 0 should ensure a dead tty
1778	   cannot be re-opened by a racing opener */
1779
1780	if (!final)
1781		return 0;
1782
1783	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1784
1785	tty_release_struct(tty, idx);
1786	return 0;
1787}
1788
1789/**
1790 *	tty_open_current_tty - get locked tty of current task
1791 *	@device: device number
1792 *	@filp: file pointer to tty
1793 *	@return: locked tty of the current task iff @device is /dev/tty
1794 *
1795 *	Performs a re-open of the current task's controlling tty.
1796 *
1797 *	We cannot return driver and index like for the other nodes because
1798 *	devpts will not work then. It expects inodes to be from devpts FS.
1799 */
1800static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1801{
1802	struct tty_struct *tty;
1803	int retval;
1804
1805	if (device != MKDEV(TTYAUX_MAJOR, 0))
1806		return NULL;
1807
1808	tty = get_current_tty();
1809	if (!tty)
1810		return ERR_PTR(-ENXIO);
1811
1812	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1813	/* noctty = 1; */
1814	tty_lock(tty);
1815	tty_kref_put(tty);	/* safe to drop the kref now */
1816
1817	retval = tty_reopen(tty);
1818	if (retval < 0) {
1819		tty_unlock(tty);
1820		tty = ERR_PTR(retval);
1821	}
1822	return tty;
1823}
1824
1825/**
1826 *	tty_lookup_driver - lookup a tty driver for a given device file
1827 *	@device: device number
1828 *	@filp: file pointer to tty
 
1829 *	@index: index for the device in the @return driver
1830 *	@return: driver for this inode (with increased refcount)
1831 *
1832 * 	If @return is not erroneous, the caller is responsible to decrement the
1833 * 	refcount by tty_driver_kref_put.
1834 *
1835 *	Locking: tty_mutex protects get_tty_driver
1836 */
1837static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1838		int *index)
1839{
1840	struct tty_driver *driver = NULL;
1841
1842	switch (device) {
1843#ifdef CONFIG_VT
1844	case MKDEV(TTY_MAJOR, 0): {
1845		extern struct tty_driver *console_driver;
1846		driver = tty_driver_kref_get(console_driver);
1847		*index = fg_console;
1848		break;
1849	}
1850#endif
1851	case MKDEV(TTYAUX_MAJOR, 1): {
1852		struct tty_driver *console_driver = console_device(index);
1853		if (console_driver) {
1854			driver = tty_driver_kref_get(console_driver);
1855			if (driver && filp) {
1856				/* Don't let /dev/console block */
1857				filp->f_flags |= O_NONBLOCK;
1858				break;
1859			}
1860		}
1861		if (driver)
1862			tty_driver_kref_put(driver);
1863		return ERR_PTR(-ENODEV);
1864	}
1865	default:
1866		driver = get_tty_driver(device, index);
1867		if (!driver)
1868			return ERR_PTR(-ENODEV);
1869		break;
1870	}
1871	return driver;
1872}
1873
1874/**
1875 *	tty_kopen	-	open a tty device for kernel
1876 *	@device: dev_t of device to open
1877 *
1878 *	Opens tty exclusively for kernel. Performs the driver lookup,
1879 *	makes sure it's not already opened and performs the first-time
1880 *	tty initialization.
1881 *
1882 *	Returns the locked initialized &tty_struct
1883 *
1884 *	Claims the global tty_mutex to serialize:
1885 *	  - concurrent first-time tty initialization
1886 *	  - concurrent tty driver removal w/ lookup
1887 *	  - concurrent tty removal from driver table
1888 */
1889struct tty_struct *tty_kopen(dev_t device)
1890{
1891	struct tty_struct *tty;
1892	struct tty_driver *driver = NULL;
1893	int index = -1;
1894
1895	mutex_lock(&tty_mutex);
1896	driver = tty_lookup_driver(device, NULL, &index);
1897	if (IS_ERR(driver)) {
1898		mutex_unlock(&tty_mutex);
1899		return ERR_CAST(driver);
1900	}
1901
1902	/* check whether we're reopening an existing tty */
1903	tty = tty_driver_lookup_tty(driver, NULL, index);
1904	if (IS_ERR(tty))
1905		goto out;
1906
1907	if (tty) {
1908		/* drop kref from tty_driver_lookup_tty() */
1909		tty_kref_put(tty);
1910		tty = ERR_PTR(-EBUSY);
1911	} else { /* tty_init_dev returns tty with the tty_lock held */
1912		tty = tty_init_dev(driver, index);
1913		if (IS_ERR(tty))
1914			goto out;
1915		tty_port_set_kopened(tty->port, 1);
1916	}
1917out:
1918	mutex_unlock(&tty_mutex);
1919	tty_driver_kref_put(driver);
1920	return tty;
1921}
1922EXPORT_SYMBOL_GPL(tty_kopen);
1923
1924/**
1925 *	tty_open_by_driver	-	open a tty device
1926 *	@device: dev_t of device to open
1927 *	@inode: inode of device file
1928 *	@filp: file pointer to tty
1929 *
1930 *	Performs the driver lookup, checks for a reopen, or otherwise
1931 *	performs the first-time tty initialization.
1932 *
1933 *	Returns the locked initialized or re-opened &tty_struct
1934 *
1935 *	Claims the global tty_mutex to serialize:
1936 *	  - concurrent first-time tty initialization
1937 *	  - concurrent tty driver removal w/ lookup
1938 *	  - concurrent tty removal from driver table
1939 */
1940static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1941					     struct file *filp)
1942{
1943	struct tty_struct *tty;
1944	struct tty_driver *driver = NULL;
1945	int index = -1;
1946	int retval;
1947
1948	mutex_lock(&tty_mutex);
1949	driver = tty_lookup_driver(device, filp, &index);
1950	if (IS_ERR(driver)) {
1951		mutex_unlock(&tty_mutex);
1952		return ERR_CAST(driver);
1953	}
1954
1955	/* check whether we're reopening an existing tty */
1956	tty = tty_driver_lookup_tty(driver, filp, index);
1957	if (IS_ERR(tty)) {
1958		mutex_unlock(&tty_mutex);
1959		goto out;
1960	}
1961
1962	if (tty) {
1963		if (tty_port_kopened(tty->port)) {
1964			tty_kref_put(tty);
1965			mutex_unlock(&tty_mutex);
1966			tty = ERR_PTR(-EBUSY);
1967			goto out;
1968		}
1969		mutex_unlock(&tty_mutex);
1970		retval = tty_lock_interruptible(tty);
1971		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
1972		if (retval) {
1973			if (retval == -EINTR)
1974				retval = -ERESTARTSYS;
1975			tty = ERR_PTR(retval);
1976			goto out;
1977		}
1978		retval = tty_reopen(tty);
1979		if (retval < 0) {
1980			tty_unlock(tty);
1981			tty = ERR_PTR(retval);
1982		}
1983	} else { /* Returns with the tty_lock held for now */
1984		tty = tty_init_dev(driver, index);
1985		mutex_unlock(&tty_mutex);
1986	}
1987out:
1988	tty_driver_kref_put(driver);
1989	return tty;
1990}
1991
1992/**
1993 *	tty_open		-	open a tty device
1994 *	@inode: inode of device file
1995 *	@filp: file pointer to tty
1996 *
1997 *	tty_open and tty_release keep up the tty count that contains the
1998 *	number of opens done on a tty. We cannot use the inode-count, as
1999 *	different inodes might point to the same tty.
2000 *
2001 *	Open-counting is needed for pty masters, as well as for keeping
2002 *	track of serial lines: DTR is dropped when the last close happens.
2003 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2004 *
2005 *	The termios state of a pty is reset on first open so that
2006 *	settings don't persist across reuse.
2007 *
2008 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2009 *		 tty->count should protect the rest.
2010 *		 ->siglock protects ->signal/->sighand
2011 *
2012 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2013 *	tty_mutex
2014 */
2015
2016static int tty_open(struct inode *inode, struct file *filp)
2017{
2018	struct tty_struct *tty;
2019	int noctty, retval;
2020	dev_t device = inode->i_rdev;
2021	unsigned saved_flags = filp->f_flags;
2022
2023	nonseekable_open(inode, filp);
2024
2025retry_open:
2026	retval = tty_alloc_file(filp);
2027	if (retval)
2028		return -ENOMEM;
2029
2030	tty = tty_open_current_tty(device, filp);
2031	if (!tty)
2032		tty = tty_open_by_driver(device, inode, filp);
2033
2034	if (IS_ERR(tty)) {
2035		tty_free_file(filp);
2036		retval = PTR_ERR(tty);
2037		if (retval != -EAGAIN || signal_pending(current))
2038			return retval;
2039		schedule();
2040		goto retry_open;
2041	}
2042
2043	tty_add_file(tty, filp);
2044
2045	check_tty_count(tty, __func__);
2046	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2047
2048	if (tty->ops->open)
2049		retval = tty->ops->open(tty, filp);
2050	else
2051		retval = -ENODEV;
2052	filp->f_flags = saved_flags;
2053
2054	if (retval) {
2055		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2056
2057		tty_unlock(tty); /* need to call tty_release without BTM */
2058		tty_release(inode, filp);
2059		if (retval != -ERESTARTSYS)
2060			return retval;
2061
2062		if (signal_pending(current))
2063			return retval;
2064
2065		schedule();
2066		/*
2067		 * Need to reset f_op in case a hangup happened.
2068		 */
2069		if (tty_hung_up_p(filp))
2070			filp->f_op = &tty_fops;
2071		goto retry_open;
2072	}
2073	clear_bit(TTY_HUPPED, &tty->flags);
2074
 
 
 
2075	noctty = (filp->f_flags & O_NOCTTY) ||
2076		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2077		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2078		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2079		  tty->driver->subtype == PTY_TYPE_MASTER);
2080	if (!noctty)
2081		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082	tty_unlock(tty);
2083	return 0;
2084}
2085
2086
2087
2088/**
2089 *	tty_poll	-	check tty status
2090 *	@filp: file being polled
2091 *	@wait: poll wait structures to update
2092 *
2093 *	Call the line discipline polling method to obtain the poll
2094 *	status of the device.
2095 *
2096 *	Locking: locks called line discipline but ldisc poll method
2097 *	may be re-entered freely by other callers.
2098 */
2099
2100static __poll_t tty_poll(struct file *filp, poll_table *wait)
2101{
2102	struct tty_struct *tty = file_tty(filp);
2103	struct tty_ldisc *ld;
2104	__poll_t ret = 0;
2105
2106	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2107		return 0;
2108
2109	ld = tty_ldisc_ref_wait(tty);
2110	if (!ld)
2111		return hung_up_tty_poll(filp, wait);
2112	if (ld->ops->poll)
2113		ret = ld->ops->poll(tty, filp, wait);
2114	tty_ldisc_deref(ld);
2115	return ret;
2116}
2117
2118static int __tty_fasync(int fd, struct file *filp, int on)
2119{
2120	struct tty_struct *tty = file_tty(filp);
2121	unsigned long flags;
2122	int retval = 0;
2123
2124	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2125		goto out;
2126
2127	retval = fasync_helper(fd, filp, on, &tty->fasync);
2128	if (retval <= 0)
2129		goto out;
2130
2131	if (on) {
2132		enum pid_type type;
2133		struct pid *pid;
2134
2135		spin_lock_irqsave(&tty->ctrl_lock, flags);
2136		if (tty->pgrp) {
2137			pid = tty->pgrp;
2138			type = PIDTYPE_PGID;
2139		} else {
2140			pid = task_pid(current);
2141			type = PIDTYPE_TGID;
2142		}
2143		get_pid(pid);
2144		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2145		__f_setown(filp, pid, type, 0);
2146		put_pid(pid);
2147		retval = 0;
2148	}
2149out:
2150	return retval;
2151}
2152
2153static int tty_fasync(int fd, struct file *filp, int on)
2154{
2155	struct tty_struct *tty = file_tty(filp);
2156	int retval = -ENOTTY;
2157
2158	tty_lock(tty);
2159	if (!tty_hung_up_p(filp))
2160		retval = __tty_fasync(fd, filp, on);
2161	tty_unlock(tty);
2162
2163	return retval;
2164}
2165
2166/**
2167 *	tiocsti			-	fake input character
2168 *	@tty: tty to fake input into
2169 *	@p: pointer to character
2170 *
2171 *	Fake input to a tty device. Does the necessary locking and
2172 *	input management.
2173 *
2174 *	FIXME: does not honour flow control ??
2175 *
2176 *	Locking:
2177 *		Called functions take tty_ldiscs_lock
2178 *		current->signal->tty check is safe without locks
2179 *
2180 *	FIXME: may race normal receive processing
2181 */
2182
2183static int tiocsti(struct tty_struct *tty, char __user *p)
2184{
2185	char ch, mbz = 0;
2186	struct tty_ldisc *ld;
2187
2188	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2189		return -EPERM;
2190	if (get_user(ch, p))
2191		return -EFAULT;
2192	tty_audit_tiocsti(tty, ch);
2193	ld = tty_ldisc_ref_wait(tty);
2194	if (!ld)
2195		return -EIO;
2196	if (ld->ops->receive_buf)
2197		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2198	tty_ldisc_deref(ld);
2199	return 0;
2200}
2201
2202/**
2203 *	tiocgwinsz		-	implement window query ioctl
2204 *	@tty; tty
2205 *	@arg: user buffer for result
2206 *
2207 *	Copies the kernel idea of the window size into the user buffer.
2208 *
2209 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2210 *		is consistent.
2211 */
2212
2213static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2214{
2215	int err;
2216
2217	mutex_lock(&tty->winsize_mutex);
2218	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2219	mutex_unlock(&tty->winsize_mutex);
2220
2221	return err ? -EFAULT: 0;
2222}
2223
2224/**
2225 *	tty_do_resize		-	resize event
2226 *	@tty: tty being resized
2227 *	@rows: rows (character)
2228 *	@cols: cols (character)
2229 *
2230 *	Update the termios variables and send the necessary signals to
2231 *	peform a terminal resize correctly
2232 */
2233
2234int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2235{
2236	struct pid *pgrp;
2237
2238	/* Lock the tty */
2239	mutex_lock(&tty->winsize_mutex);
2240	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2241		goto done;
2242
2243	/* Signal the foreground process group */
2244	pgrp = tty_get_pgrp(tty);
2245	if (pgrp)
2246		kill_pgrp(pgrp, SIGWINCH, 1);
2247	put_pid(pgrp);
2248
2249	tty->winsize = *ws;
2250done:
2251	mutex_unlock(&tty->winsize_mutex);
2252	return 0;
2253}
2254EXPORT_SYMBOL(tty_do_resize);
2255
2256/**
2257 *	tiocswinsz		-	implement window size set ioctl
2258 *	@tty; tty side of tty
2259 *	@arg: user buffer for result
2260 *
2261 *	Copies the user idea of the window size to the kernel. Traditionally
2262 *	this is just advisory information but for the Linux console it
2263 *	actually has driver level meaning and triggers a VC resize.
2264 *
2265 *	Locking:
2266 *		Driver dependent. The default do_resize method takes the
2267 *	tty termios mutex and ctrl_lock. The console takes its own lock
2268 *	then calls into the default method.
2269 */
2270
2271static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2272{
2273	struct winsize tmp_ws;
2274	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2275		return -EFAULT;
2276
2277	if (tty->ops->resize)
2278		return tty->ops->resize(tty, &tmp_ws);
2279	else
2280		return tty_do_resize(tty, &tmp_ws);
2281}
2282
2283/**
2284 *	tioccons	-	allow admin to move logical console
2285 *	@file: the file to become console
2286 *
2287 *	Allow the administrator to move the redirected console device
2288 *
2289 *	Locking: uses redirect_lock to guard the redirect information
2290 */
2291
2292static int tioccons(struct file *file)
2293{
2294	if (!capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (file->f_op->write == redirected_tty_write) {
2297		struct file *f;
2298		spin_lock(&redirect_lock);
2299		f = redirect;
2300		redirect = NULL;
2301		spin_unlock(&redirect_lock);
2302		if (f)
2303			fput(f);
2304		return 0;
2305	}
2306	spin_lock(&redirect_lock);
2307	if (redirect) {
2308		spin_unlock(&redirect_lock);
2309		return -EBUSY;
2310	}
2311	redirect = get_file(file);
2312	spin_unlock(&redirect_lock);
2313	return 0;
2314}
2315
2316/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2317 *	tiocsetd	-	set line discipline
2318 *	@tty: tty device
2319 *	@p: pointer to user data
2320 *
2321 *	Set the line discipline according to user request.
2322 *
2323 *	Locking: see tty_set_ldisc, this function is just a helper
2324 */
2325
2326static int tiocsetd(struct tty_struct *tty, int __user *p)
2327{
2328	int disc;
2329	int ret;
2330
2331	if (get_user(disc, p))
2332		return -EFAULT;
2333
2334	ret = tty_set_ldisc(tty, disc);
2335
2336	return ret;
2337}
2338
2339/**
2340 *	tiocgetd	-	get line discipline
2341 *	@tty: tty device
2342 *	@p: pointer to user data
2343 *
2344 *	Retrieves the line discipline id directly from the ldisc.
2345 *
2346 *	Locking: waits for ldisc reference (in case the line discipline
2347 *		is changing or the tty is being hungup)
2348 */
2349
2350static int tiocgetd(struct tty_struct *tty, int __user *p)
2351{
2352	struct tty_ldisc *ld;
2353	int ret;
2354
2355	ld = tty_ldisc_ref_wait(tty);
2356	if (!ld)
2357		return -EIO;
2358	ret = put_user(ld->ops->num, p);
2359	tty_ldisc_deref(ld);
2360	return ret;
2361}
2362
2363/**
2364 *	send_break	-	performed time break
2365 *	@tty: device to break on
2366 *	@duration: timeout in mS
2367 *
2368 *	Perform a timed break on hardware that lacks its own driver level
2369 *	timed break functionality.
2370 *
2371 *	Locking:
2372 *		atomic_write_lock serializes
2373 *
2374 */
2375
2376static int send_break(struct tty_struct *tty, unsigned int duration)
2377{
2378	int retval;
2379
2380	if (tty->ops->break_ctl == NULL)
2381		return 0;
2382
2383	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2384		retval = tty->ops->break_ctl(tty, duration);
2385	else {
2386		/* Do the work ourselves */
2387		if (tty_write_lock(tty, 0) < 0)
2388			return -EINTR;
2389		retval = tty->ops->break_ctl(tty, -1);
2390		if (retval)
2391			goto out;
2392		if (!signal_pending(current))
2393			msleep_interruptible(duration);
2394		retval = tty->ops->break_ctl(tty, 0);
2395out:
2396		tty_write_unlock(tty);
2397		if (signal_pending(current))
2398			retval = -EINTR;
2399	}
2400	return retval;
2401}
2402
2403/**
2404 *	tty_tiocmget		-	get modem status
2405 *	@tty: tty device
2406 *	@file: user file pointer
2407 *	@p: pointer to result
2408 *
2409 *	Obtain the modem status bits from the tty driver if the feature
2410 *	is supported. Return -EINVAL if it is not available.
2411 *
2412 *	Locking: none (up to the driver)
2413 */
2414
2415static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2416{
2417	int retval = -EINVAL;
2418
2419	if (tty->ops->tiocmget) {
2420		retval = tty->ops->tiocmget(tty);
2421
2422		if (retval >= 0)
2423			retval = put_user(retval, p);
2424	}
2425	return retval;
2426}
2427
2428/**
2429 *	tty_tiocmset		-	set modem status
2430 *	@tty: tty device
2431 *	@cmd: command - clear bits, set bits or set all
2432 *	@p: pointer to desired bits
2433 *
2434 *	Set the modem status bits from the tty driver if the feature
2435 *	is supported. Return -EINVAL if it is not available.
2436 *
2437 *	Locking: none (up to the driver)
2438 */
2439
2440static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2441	     unsigned __user *p)
2442{
2443	int retval;
2444	unsigned int set, clear, val;
2445
2446	if (tty->ops->tiocmset == NULL)
2447		return -EINVAL;
2448
2449	retval = get_user(val, p);
2450	if (retval)
2451		return retval;
2452	set = clear = 0;
2453	switch (cmd) {
2454	case TIOCMBIS:
2455		set = val;
2456		break;
2457	case TIOCMBIC:
2458		clear = val;
2459		break;
2460	case TIOCMSET:
2461		set = val;
2462		clear = ~val;
2463		break;
2464	}
2465	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2466	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2467	return tty->ops->tiocmset(tty, set, clear);
2468}
2469
2470static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2471{
2472	int retval = -EINVAL;
2473	struct serial_icounter_struct icount;
2474	memset(&icount, 0, sizeof(icount));
2475	if (tty->ops->get_icount)
2476		retval = tty->ops->get_icount(tty, &icount);
2477	if (retval != 0)
2478		return retval;
2479	if (copy_to_user(arg, &icount, sizeof(icount)))
2480		return -EFAULT;
2481	return 0;
2482}
2483
2484static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2485{
2486	static DEFINE_RATELIMIT_STATE(depr_flags,
2487			DEFAULT_RATELIMIT_INTERVAL,
2488			DEFAULT_RATELIMIT_BURST);
2489	char comm[TASK_COMM_LEN];
2490	struct serial_struct v;
2491	int flags;
2492
2493	if (copy_from_user(&v, ss, sizeof(struct serial_struct)))
2494		return -EFAULT;
2495
2496	flags = v.flags & ASYNC_DEPRECATED;
2497
2498	if (flags && __ratelimit(&depr_flags))
2499		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2500			__func__, get_task_comm(comm, current), flags);
2501	if (!tty->ops->set_serial)
2502		return -ENOTTY;
2503	return tty->ops->set_serial(tty, &v);
2504}
2505
2506static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2507{
2508	struct serial_struct v;
2509	int err;
2510
2511	memset(&v, 0, sizeof(struct serial_struct));
2512	if (!tty->ops->get_serial)
2513		return -ENOTTY;
2514	err = tty->ops->get_serial(tty, &v);
2515	if (!err && copy_to_user(ss, &v, sizeof(struct serial_struct)))
2516		err = -EFAULT;
2517	return err;
2518}
2519
2520/*
2521 * if pty, return the slave side (real_tty)
2522 * otherwise, return self
2523 */
2524static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2525{
2526	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2527	    tty->driver->subtype == PTY_TYPE_MASTER)
2528		tty = tty->link;
2529	return tty;
2530}
2531
2532/*
2533 * Split this up, as gcc can choke on it otherwise..
2534 */
2535long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2536{
2537	struct tty_struct *tty = file_tty(file);
2538	struct tty_struct *real_tty;
2539	void __user *p = (void __user *)arg;
2540	int retval;
2541	struct tty_ldisc *ld;
2542
2543	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2544		return -EINVAL;
2545
2546	real_tty = tty_pair_get_tty(tty);
2547
2548	/*
2549	 * Factor out some common prep work
2550	 */
2551	switch (cmd) {
2552	case TIOCSETD:
2553	case TIOCSBRK:
2554	case TIOCCBRK:
2555	case TCSBRK:
2556	case TCSBRKP:
2557		retval = tty_check_change(tty);
2558		if (retval)
2559			return retval;
2560		if (cmd != TIOCCBRK) {
2561			tty_wait_until_sent(tty, 0);
2562			if (signal_pending(current))
2563				return -EINTR;
2564		}
2565		break;
2566	}
2567
2568	/*
2569	 *	Now do the stuff.
2570	 */
2571	switch (cmd) {
2572	case TIOCSTI:
2573		return tiocsti(tty, p);
2574	case TIOCGWINSZ:
2575		return tiocgwinsz(real_tty, p);
2576	case TIOCSWINSZ:
2577		return tiocswinsz(real_tty, p);
2578	case TIOCCONS:
2579		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2580	case TIOCEXCL:
2581		set_bit(TTY_EXCLUSIVE, &tty->flags);
2582		return 0;
2583	case TIOCNXCL:
2584		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2585		return 0;
2586	case TIOCGEXCL:
2587	{
2588		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2589		return put_user(excl, (int __user *)p);
2590	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2591	case TIOCGETD:
2592		return tiocgetd(tty, p);
2593	case TIOCSETD:
2594		return tiocsetd(tty, p);
2595	case TIOCVHANGUP:
2596		if (!capable(CAP_SYS_ADMIN))
2597			return -EPERM;
2598		tty_vhangup(tty);
2599		return 0;
2600	case TIOCGDEV:
2601	{
2602		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2603		return put_user(ret, (unsigned int __user *)p);
2604	}
2605	/*
2606	 * Break handling
2607	 */
2608	case TIOCSBRK:	/* Turn break on, unconditionally */
2609		if (tty->ops->break_ctl)
2610			return tty->ops->break_ctl(tty, -1);
2611		return 0;
2612	case TIOCCBRK:	/* Turn break off, unconditionally */
2613		if (tty->ops->break_ctl)
2614			return tty->ops->break_ctl(tty, 0);
2615		return 0;
2616	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2617		/* non-zero arg means wait for all output data
2618		 * to be sent (performed above) but don't send break.
2619		 * This is used by the tcdrain() termios function.
2620		 */
2621		if (!arg)
2622			return send_break(tty, 250);
2623		return 0;
2624	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2625		return send_break(tty, arg ? arg*100 : 250);
2626
2627	case TIOCMGET:
2628		return tty_tiocmget(tty, p);
2629	case TIOCMSET:
2630	case TIOCMBIC:
2631	case TIOCMBIS:
2632		return tty_tiocmset(tty, cmd, p);
2633	case TIOCGICOUNT:
2634		return tty_tiocgicount(tty, p);
 
 
 
 
2635	case TCFLSH:
2636		switch (arg) {
2637		case TCIFLUSH:
2638		case TCIOFLUSH:
2639		/* flush tty buffer and allow ldisc to process ioctl */
2640			tty_buffer_flush(tty, NULL);
2641			break;
2642		}
2643		break;
2644	case TIOCSSERIAL:
2645		return tty_tiocsserial(tty, p);
2646	case TIOCGSERIAL:
2647		return tty_tiocgserial(tty, p);
2648	case TIOCGPTPEER:
2649		/* Special because the struct file is needed */
2650		return ptm_open_peer(file, tty, (int)arg);
2651	default:
2652		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2653		if (retval != -ENOIOCTLCMD)
2654			return retval;
2655	}
2656	if (tty->ops->ioctl) {
2657		retval = tty->ops->ioctl(tty, cmd, arg);
2658		if (retval != -ENOIOCTLCMD)
2659			return retval;
2660	}
2661	ld = tty_ldisc_ref_wait(tty);
2662	if (!ld)
2663		return hung_up_tty_ioctl(file, cmd, arg);
2664	retval = -EINVAL;
2665	if (ld->ops->ioctl) {
2666		retval = ld->ops->ioctl(tty, file, cmd, arg);
2667		if (retval == -ENOIOCTLCMD)
2668			retval = -ENOTTY;
2669	}
2670	tty_ldisc_deref(ld);
2671	return retval;
2672}
2673
2674#ifdef CONFIG_COMPAT
2675
2676struct serial_struct32 {
2677        compat_int_t    type;
2678        compat_int_t    line;
2679        compat_uint_t   port;
2680        compat_int_t    irq;
2681        compat_int_t    flags;
2682        compat_int_t    xmit_fifo_size;
2683        compat_int_t    custom_divisor;
2684        compat_int_t    baud_base;
2685        unsigned short  close_delay;
2686        char    io_type;
2687        char    reserved_char[1];
2688        compat_int_t    hub6;
2689        unsigned short  closing_wait; /* time to wait before closing */
2690        unsigned short  closing_wait2; /* no longer used... */
2691        compat_uint_t   iomem_base;
2692        unsigned short  iomem_reg_shift;
2693        unsigned int    port_high;
2694     /* compat_ulong_t  iomap_base FIXME */
2695        compat_int_t    reserved[1];
2696};
2697
2698static int compat_tty_tiocsserial(struct tty_struct *tty,
2699		struct serial_struct32 __user *ss)
2700{
2701	static DEFINE_RATELIMIT_STATE(depr_flags,
2702			DEFAULT_RATELIMIT_INTERVAL,
2703			DEFAULT_RATELIMIT_BURST);
2704	char comm[TASK_COMM_LEN];
2705	struct serial_struct32 v32;
2706	struct serial_struct v;
2707	int flags;
2708
2709	if (copy_from_user(&v32, ss, sizeof(struct serial_struct32)))
2710		return -EFAULT;
2711
2712	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2713	v.iomem_base = compat_ptr(v32.iomem_base);
2714	v.iomem_reg_shift = v32.iomem_reg_shift;
2715	v.port_high = v32.port_high;
2716	v.iomap_base = 0;
2717
2718	flags = v.flags & ASYNC_DEPRECATED;
2719
2720	if (flags && __ratelimit(&depr_flags))
2721		pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2722			__func__, get_task_comm(comm, current), flags);
2723	if (!tty->ops->set_serial)
2724		return -ENOTTY;
2725	return tty->ops->set_serial(tty, &v);
2726}
2727
2728static int compat_tty_tiocgserial(struct tty_struct *tty,
2729			struct serial_struct32 __user *ss)
2730{
2731	struct serial_struct32 v32;
2732	struct serial_struct v;
2733	int err;
2734	memset(&v, 0, sizeof(struct serial_struct));
2735
2736	if (!tty->ops->set_serial)
2737		return -ENOTTY;
2738	err = tty->ops->get_serial(tty, &v);
2739	if (!err) {
2740		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2741		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2742			0xfffffff : ptr_to_compat(v.iomem_base);
2743		v32.iomem_reg_shift = v.iomem_reg_shift;
2744		v32.port_high = v.port_high;
2745		if (copy_to_user(ss, &v32, sizeof(struct serial_struct32)))
2746			err = -EFAULT;
2747	}
2748	return err;
2749}
2750static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2751				unsigned long arg)
2752{
2753	struct tty_struct *tty = file_tty(file);
2754	struct tty_ldisc *ld;
2755	int retval = -ENOIOCTLCMD;
2756
2757	switch (cmd) {
2758	case TIOCSTI:
2759	case TIOCGWINSZ:
2760	case TIOCSWINSZ:
2761	case TIOCGEXCL:
2762	case TIOCGETD:
2763	case TIOCSETD:
2764	case TIOCGDEV:
2765	case TIOCMGET:
2766	case TIOCMSET:
2767	case TIOCMBIC:
2768	case TIOCMBIS:
2769	case TIOCGICOUNT:
2770	case TIOCGPGRP:
2771	case TIOCSPGRP:
2772	case TIOCGSID:
2773	case TIOCSERGETLSR:
2774	case TIOCGRS485:
2775	case TIOCSRS485:
2776#ifdef TIOCGETP
2777	case TIOCGETP:
2778	case TIOCSETP:
2779	case TIOCSETN:
2780#endif
2781#ifdef TIOCGETC
2782	case TIOCGETC:
2783	case TIOCSETC:
2784#endif
2785#ifdef TIOCGLTC
2786	case TIOCGLTC:
2787	case TIOCSLTC:
2788#endif
2789	case TCSETSF:
2790	case TCSETSW:
2791	case TCSETS:
2792	case TCGETS:
2793#ifdef TCGETS2
2794	case TCGETS2:
2795	case TCSETSF2:
2796	case TCSETSW2:
2797	case TCSETS2:
2798#endif
2799	case TCGETA:
2800	case TCSETAF:
2801	case TCSETAW:
2802	case TCSETA:
2803	case TIOCGLCKTRMIOS:
2804	case TIOCSLCKTRMIOS:
2805#ifdef TCGETX
2806	case TCGETX:
2807	case TCSETX:
2808	case TCSETXW:
2809	case TCSETXF:
2810#endif
2811	case TIOCGSOFTCAR:
2812	case TIOCSSOFTCAR:
2813		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2814	case TIOCCONS:
2815	case TIOCEXCL:
2816	case TIOCNXCL:
2817	case TIOCVHANGUP:
2818	case TIOCSBRK:
2819	case TIOCCBRK:
2820	case TCSBRK:
2821	case TCSBRKP:
2822	case TCFLSH:
2823	case TIOCGPTPEER:
2824	case TIOCNOTTY:
2825	case TIOCSCTTY:
2826	case TCXONC:
2827	case TIOCMIWAIT:
2828	case TIOCSERCONFIG:
2829		return tty_ioctl(file, cmd, arg);
2830	}
2831
2832	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2833		return -EINVAL;
2834
2835	switch (cmd) {
2836	case TIOCSSERIAL:
2837		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2838	case TIOCGSERIAL:
2839		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2840	}
2841	if (tty->ops->compat_ioctl) {
2842		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2843		if (retval != -ENOIOCTLCMD)
2844			return retval;
2845	}
2846
2847	ld = tty_ldisc_ref_wait(tty);
2848	if (!ld)
2849		return hung_up_tty_compat_ioctl(file, cmd, arg);
2850	if (ld->ops->compat_ioctl)
2851		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2852	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2853		retval = ld->ops->ioctl(tty, file,
2854				(unsigned long)compat_ptr(cmd), arg);
2855	tty_ldisc_deref(ld);
2856
2857	return retval;
2858}
2859#endif
2860
2861static int this_tty(const void *t, struct file *file, unsigned fd)
2862{
2863	if (likely(file->f_op->read != tty_read))
2864		return 0;
2865	return file_tty(file) != t ? 0 : fd + 1;
2866}
2867	
2868/*
2869 * This implements the "Secure Attention Key" ---  the idea is to
2870 * prevent trojan horses by killing all processes associated with this
2871 * tty when the user hits the "Secure Attention Key".  Required for
2872 * super-paranoid applications --- see the Orange Book for more details.
2873 *
2874 * This code could be nicer; ideally it should send a HUP, wait a few
2875 * seconds, then send a INT, and then a KILL signal.  But you then
2876 * have to coordinate with the init process, since all processes associated
2877 * with the current tty must be dead before the new getty is allowed
2878 * to spawn.
2879 *
2880 * Now, if it would be correct ;-/ The current code has a nasty hole -
2881 * it doesn't catch files in flight. We may send the descriptor to ourselves
2882 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2883 *
2884 * Nasty bug: do_SAK is being called in interrupt context.  This can
2885 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2886 */
2887void __do_SAK(struct tty_struct *tty)
2888{
2889#ifdef TTY_SOFT_SAK
2890	tty_hangup(tty);
2891#else
2892	struct task_struct *g, *p;
2893	struct pid *session;
2894	int		i;
2895
2896	if (!tty)
2897		return;
2898	session = tty->session;
2899
2900	tty_ldisc_flush(tty);
2901
2902	tty_driver_flush_buffer(tty);
2903
2904	read_lock(&tasklist_lock);
2905	/* Kill the entire session */
2906	do_each_pid_task(session, PIDTYPE_SID, p) {
2907		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2908			   task_pid_nr(p), p->comm);
2909		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2910	} while_each_pid_task(session, PIDTYPE_SID, p);
2911
2912	/* Now kill any processes that happen to have the tty open */
2913	do_each_thread(g, p) {
2914		if (p->signal->tty == tty) {
2915			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2916				   task_pid_nr(p), p->comm);
2917			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2918			continue;
2919		}
2920		task_lock(p);
2921		i = iterate_fd(p->files, 0, this_tty, tty);
2922		if (i != 0) {
2923			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2924				   task_pid_nr(p), p->comm, i - 1);
2925			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
2926		}
2927		task_unlock(p);
2928	} while_each_thread(g, p);
2929	read_unlock(&tasklist_lock);
2930#endif
2931}
2932
2933static void do_SAK_work(struct work_struct *work)
2934{
2935	struct tty_struct *tty =
2936		container_of(work, struct tty_struct, SAK_work);
2937	__do_SAK(tty);
2938}
2939
2940/*
2941 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2942 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2943 * the values which we write to it will be identical to the values which it
2944 * already has. --akpm
2945 */
2946void do_SAK(struct tty_struct *tty)
2947{
2948	if (!tty)
2949		return;
2950	schedule_work(&tty->SAK_work);
2951}
2952
2953EXPORT_SYMBOL(do_SAK);
2954
 
 
 
 
 
 
2955/* Must put_device() after it's unused! */
2956static struct device *tty_get_device(struct tty_struct *tty)
2957{
2958	dev_t devt = tty_devnum(tty);
2959	return class_find_device_by_devt(tty_class, devt);
2960}
2961
2962
2963/**
2964 *	alloc_tty_struct
2965 *
2966 *	This subroutine allocates and initializes a tty structure.
2967 *
2968 *	Locking: none - tty in question is not exposed at this point
2969 */
2970
2971struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2972{
2973	struct tty_struct *tty;
2974
2975	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2976	if (!tty)
2977		return NULL;
2978
2979	kref_init(&tty->kref);
2980	tty->magic = TTY_MAGIC;
2981	if (tty_ldisc_init(tty)) {
2982		kfree(tty);
2983		return NULL;
2984	}
2985	tty->session = NULL;
2986	tty->pgrp = NULL;
2987	mutex_init(&tty->legacy_mutex);
2988	mutex_init(&tty->throttle_mutex);
2989	init_rwsem(&tty->termios_rwsem);
2990	mutex_init(&tty->winsize_mutex);
2991	init_ldsem(&tty->ldisc_sem);
2992	init_waitqueue_head(&tty->write_wait);
2993	init_waitqueue_head(&tty->read_wait);
2994	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2995	mutex_init(&tty->atomic_write_lock);
2996	spin_lock_init(&tty->ctrl_lock);
2997	spin_lock_init(&tty->flow_lock);
2998	spin_lock_init(&tty->files_lock);
2999	INIT_LIST_HEAD(&tty->tty_files);
3000	INIT_WORK(&tty->SAK_work, do_SAK_work);
3001
3002	tty->driver = driver;
3003	tty->ops = driver->ops;
3004	tty->index = idx;
3005	tty_line_name(driver, idx, tty->name);
3006	tty->dev = tty_get_device(tty);
3007
3008	return tty;
3009}
3010
3011/**
3012 *	tty_put_char	-	write one character to a tty
3013 *	@tty: tty
3014 *	@ch: character
3015 *
3016 *	Write one byte to the tty using the provided put_char method
3017 *	if present. Returns the number of characters successfully output.
3018 *
3019 *	Note: the specific put_char operation in the driver layer may go
3020 *	away soon. Don't call it directly, use this method
3021 */
3022
3023int tty_put_char(struct tty_struct *tty, unsigned char ch)
3024{
3025	if (tty->ops->put_char)
3026		return tty->ops->put_char(tty, ch);
3027	return tty->ops->write(tty, &ch, 1);
3028}
3029EXPORT_SYMBOL_GPL(tty_put_char);
3030
3031struct class *tty_class;
3032
3033static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3034		unsigned int index, unsigned int count)
3035{
3036	int err;
3037
3038	/* init here, since reused cdevs cause crashes */
3039	driver->cdevs[index] = cdev_alloc();
3040	if (!driver->cdevs[index])
3041		return -ENOMEM;
3042	driver->cdevs[index]->ops = &tty_fops;
3043	driver->cdevs[index]->owner = driver->owner;
3044	err = cdev_add(driver->cdevs[index], dev, count);
3045	if (err)
3046		kobject_put(&driver->cdevs[index]->kobj);
3047	return err;
3048}
3049
3050/**
3051 *	tty_register_device - register a tty device
3052 *	@driver: the tty driver that describes the tty device
3053 *	@index: the index in the tty driver for this tty device
3054 *	@device: a struct device that is associated with this tty device.
3055 *		This field is optional, if there is no known struct device
3056 *		for this tty device it can be set to NULL safely.
3057 *
3058 *	Returns a pointer to the struct device for this tty device
3059 *	(or ERR_PTR(-EFOO) on error).
3060 *
3061 *	This call is required to be made to register an individual tty device
3062 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3063 *	that bit is not set, this function should not be called by a tty
3064 *	driver.
3065 *
3066 *	Locking: ??
3067 */
3068
3069struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3070				   struct device *device)
3071{
3072	return tty_register_device_attr(driver, index, device, NULL, NULL);
3073}
3074EXPORT_SYMBOL(tty_register_device);
3075
3076static void tty_device_create_release(struct device *dev)
3077{
3078	dev_dbg(dev, "releasing...\n");
3079	kfree(dev);
3080}
3081
3082/**
3083 *	tty_register_device_attr - register a tty device
3084 *	@driver: the tty driver that describes the tty device
3085 *	@index: the index in the tty driver for this tty device
3086 *	@device: a struct device that is associated with this tty device.
3087 *		This field is optional, if there is no known struct device
3088 *		for this tty device it can be set to NULL safely.
3089 *	@drvdata: Driver data to be set to device.
3090 *	@attr_grp: Attribute group to be set on device.
3091 *
3092 *	Returns a pointer to the struct device for this tty device
3093 *	(or ERR_PTR(-EFOO) on error).
3094 *
3095 *	This call is required to be made to register an individual tty device
3096 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3097 *	that bit is not set, this function should not be called by a tty
3098 *	driver.
3099 *
3100 *	Locking: ??
3101 */
3102struct device *tty_register_device_attr(struct tty_driver *driver,
3103				   unsigned index, struct device *device,
3104				   void *drvdata,
3105				   const struct attribute_group **attr_grp)
3106{
3107	char name[64];
3108	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3109	struct ktermios *tp;
3110	struct device *dev;
3111	int retval;
3112
3113	if (index >= driver->num) {
3114		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3115		       driver->name, index);
3116		return ERR_PTR(-EINVAL);
3117	}
3118
3119	if (driver->type == TTY_DRIVER_TYPE_PTY)
3120		pty_line_name(driver, index, name);
3121	else
3122		tty_line_name(driver, index, name);
3123
 
 
 
 
 
 
 
3124	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3125	if (!dev)
3126		return ERR_PTR(-ENOMEM);
 
 
3127
3128	dev->devt = devt;
3129	dev->class = tty_class;
3130	dev->parent = device;
3131	dev->release = tty_device_create_release;
3132	dev_set_name(dev, "%s", name);
3133	dev->groups = attr_grp;
3134	dev_set_drvdata(dev, drvdata);
3135
3136	dev_set_uevent_suppress(dev, 1);
3137
3138	retval = device_register(dev);
3139	if (retval)
3140		goto err_put;
3141
3142	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3143		/*
3144		 * Free any saved termios data so that the termios state is
3145		 * reset when reusing a minor number.
3146		 */
3147		tp = driver->termios[index];
3148		if (tp) {
3149			driver->termios[index] = NULL;
3150			kfree(tp);
3151		}
3152
3153		retval = tty_cdev_add(driver, devt, index, 1);
3154		if (retval)
3155			goto err_del;
3156	}
3157
3158	dev_set_uevent_suppress(dev, 0);
3159	kobject_uevent(&dev->kobj, KOBJ_ADD);
3160
3161	return dev;
3162
3163err_del:
3164	device_del(dev);
3165err_put:
3166	put_device(dev);
3167
 
 
 
3168	return ERR_PTR(retval);
3169}
3170EXPORT_SYMBOL_GPL(tty_register_device_attr);
3171
3172/**
3173 * 	tty_unregister_device - unregister a tty device
3174 * 	@driver: the tty driver that describes the tty device
3175 * 	@index: the index in the tty driver for this tty device
3176 *
3177 * 	If a tty device is registered with a call to tty_register_device() then
3178 *	this function must be called when the tty device is gone.
3179 *
3180 *	Locking: ??
3181 */
3182
3183void tty_unregister_device(struct tty_driver *driver, unsigned index)
3184{
3185	device_destroy(tty_class,
3186		MKDEV(driver->major, driver->minor_start) + index);
3187	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3188		cdev_del(driver->cdevs[index]);
3189		driver->cdevs[index] = NULL;
3190	}
3191}
3192EXPORT_SYMBOL(tty_unregister_device);
3193
3194/**
3195 * __tty_alloc_driver -- allocate tty driver
3196 * @lines: count of lines this driver can handle at most
3197 * @owner: module which is responsible for this driver
3198 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3199 *
3200 * This should not be called directly, some of the provided macros should be
3201 * used instead. Use IS_ERR and friends on @retval.
3202 */
3203struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3204		unsigned long flags)
3205{
3206	struct tty_driver *driver;
3207	unsigned int cdevs = 1;
3208	int err;
3209
3210	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3211		return ERR_PTR(-EINVAL);
3212
3213	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3214	if (!driver)
3215		return ERR_PTR(-ENOMEM);
3216
3217	kref_init(&driver->kref);
3218	driver->magic = TTY_DRIVER_MAGIC;
3219	driver->num = lines;
3220	driver->owner = owner;
3221	driver->flags = flags;
3222
3223	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3224		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3225				GFP_KERNEL);
3226		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3227				GFP_KERNEL);
3228		if (!driver->ttys || !driver->termios) {
3229			err = -ENOMEM;
3230			goto err_free_all;
3231		}
3232	}
3233
3234	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3235		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3236				GFP_KERNEL);
3237		if (!driver->ports) {
3238			err = -ENOMEM;
3239			goto err_free_all;
3240		}
3241		cdevs = lines;
3242	}
3243
3244	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3245	if (!driver->cdevs) {
3246		err = -ENOMEM;
3247		goto err_free_all;
3248	}
3249
3250	return driver;
3251err_free_all:
3252	kfree(driver->ports);
3253	kfree(driver->ttys);
3254	kfree(driver->termios);
3255	kfree(driver->cdevs);
3256	kfree(driver);
3257	return ERR_PTR(err);
3258}
3259EXPORT_SYMBOL(__tty_alloc_driver);
3260
3261static void destruct_tty_driver(struct kref *kref)
3262{
3263	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3264	int i;
3265	struct ktermios *tp;
3266
3267	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3268		for (i = 0; i < driver->num; i++) {
3269			tp = driver->termios[i];
3270			if (tp) {
3271				driver->termios[i] = NULL;
3272				kfree(tp);
3273			}
3274			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3275				tty_unregister_device(driver, i);
3276		}
3277		proc_tty_unregister_driver(driver);
3278		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3279			cdev_del(driver->cdevs[0]);
3280	}
3281	kfree(driver->cdevs);
3282	kfree(driver->ports);
3283	kfree(driver->termios);
3284	kfree(driver->ttys);
3285	kfree(driver);
3286}
3287
3288void tty_driver_kref_put(struct tty_driver *driver)
3289{
3290	kref_put(&driver->kref, destruct_tty_driver);
3291}
3292EXPORT_SYMBOL(tty_driver_kref_put);
3293
3294void tty_set_operations(struct tty_driver *driver,
3295			const struct tty_operations *op)
3296{
3297	driver->ops = op;
3298};
3299EXPORT_SYMBOL(tty_set_operations);
3300
3301void put_tty_driver(struct tty_driver *d)
3302{
3303	tty_driver_kref_put(d);
3304}
3305EXPORT_SYMBOL(put_tty_driver);
3306
3307/*
3308 * Called by a tty driver to register itself.
3309 */
3310int tty_register_driver(struct tty_driver *driver)
3311{
3312	int error;
3313	int i;
3314	dev_t dev;
3315	struct device *d;
3316
3317	if (!driver->major) {
3318		error = alloc_chrdev_region(&dev, driver->minor_start,
3319						driver->num, driver->name);
3320		if (!error) {
3321			driver->major = MAJOR(dev);
3322			driver->minor_start = MINOR(dev);
3323		}
3324	} else {
3325		dev = MKDEV(driver->major, driver->minor_start);
3326		error = register_chrdev_region(dev, driver->num, driver->name);
3327	}
3328	if (error < 0)
3329		goto err;
3330
3331	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3332		error = tty_cdev_add(driver, dev, 0, driver->num);
3333		if (error)
3334			goto err_unreg_char;
3335	}
3336
3337	mutex_lock(&tty_mutex);
3338	list_add(&driver->tty_drivers, &tty_drivers);
3339	mutex_unlock(&tty_mutex);
3340
3341	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3342		for (i = 0; i < driver->num; i++) {
3343			d = tty_register_device(driver, i, NULL);
3344			if (IS_ERR(d)) {
3345				error = PTR_ERR(d);
3346				goto err_unreg_devs;
3347			}
3348		}
3349	}
3350	proc_tty_register_driver(driver);
3351	driver->flags |= TTY_DRIVER_INSTALLED;
3352	return 0;
3353
3354err_unreg_devs:
3355	for (i--; i >= 0; i--)
3356		tty_unregister_device(driver, i);
3357
3358	mutex_lock(&tty_mutex);
3359	list_del(&driver->tty_drivers);
3360	mutex_unlock(&tty_mutex);
3361
3362err_unreg_char:
3363	unregister_chrdev_region(dev, driver->num);
3364err:
3365	return error;
3366}
3367EXPORT_SYMBOL(tty_register_driver);
3368
3369/*
3370 * Called by a tty driver to unregister itself.
3371 */
3372int tty_unregister_driver(struct tty_driver *driver)
3373{
3374#if 0
3375	/* FIXME */
3376	if (driver->refcount)
3377		return -EBUSY;
3378#endif
3379	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3380				driver->num);
3381	mutex_lock(&tty_mutex);
3382	list_del(&driver->tty_drivers);
3383	mutex_unlock(&tty_mutex);
3384	return 0;
3385}
3386
3387EXPORT_SYMBOL(tty_unregister_driver);
3388
3389dev_t tty_devnum(struct tty_struct *tty)
3390{
3391	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3392}
3393EXPORT_SYMBOL(tty_devnum);
3394
3395void tty_default_fops(struct file_operations *fops)
3396{
3397	*fops = tty_fops;
3398}
3399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3400static char *tty_devnode(struct device *dev, umode_t *mode)
3401{
3402	if (!mode)
3403		return NULL;
3404	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3405	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3406		*mode = 0666;
3407	return NULL;
3408}
3409
3410static int __init tty_class_init(void)
3411{
3412	tty_class = class_create(THIS_MODULE, "tty");
3413	if (IS_ERR(tty_class))
3414		return PTR_ERR(tty_class);
3415	tty_class->devnode = tty_devnode;
3416	return 0;
3417}
3418
3419postcore_initcall(tty_class_init);
3420
3421/* 3/2004 jmc: why do these devices exist? */
3422static struct cdev tty_cdev, console_cdev;
3423
3424static ssize_t show_cons_active(struct device *dev,
3425				struct device_attribute *attr, char *buf)
3426{
3427	struct console *cs[16];
3428	int i = 0;
3429	struct console *c;
3430	ssize_t count = 0;
3431
3432	console_lock();
3433	for_each_console(c) {
3434		if (!c->device)
3435			continue;
3436		if (!c->write)
3437			continue;
3438		if ((c->flags & CON_ENABLED) == 0)
3439			continue;
3440		cs[i++] = c;
3441		if (i >= ARRAY_SIZE(cs))
3442			break;
3443	}
3444	while (i--) {
3445		int index = cs[i]->index;
3446		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3447
3448		/* don't resolve tty0 as some programs depend on it */
3449		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3450			count += tty_line_name(drv, index, buf + count);
3451		else
3452			count += sprintf(buf + count, "%s%d",
3453					 cs[i]->name, cs[i]->index);
3454
3455		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3456	}
3457	console_unlock();
3458
3459	return count;
3460}
3461static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3462
3463static struct attribute *cons_dev_attrs[] = {
3464	&dev_attr_active.attr,
3465	NULL
3466};
3467
3468ATTRIBUTE_GROUPS(cons_dev);
3469
3470static struct device *consdev;
3471
3472void console_sysfs_notify(void)
3473{
3474	if (consdev)
3475		sysfs_notify(&consdev->kobj, NULL, "active");
3476}
3477
3478/*
3479 * Ok, now we can initialize the rest of the tty devices and can count
3480 * on memory allocations, interrupts etc..
3481 */
3482int __init tty_init(void)
3483{
3484	tty_sysctl_init();
3485	cdev_init(&tty_cdev, &tty_fops);
3486	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3487	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3488		panic("Couldn't register /dev/tty driver\n");
3489	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3490
3491	cdev_init(&console_cdev, &console_fops);
3492	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3493	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3494		panic("Couldn't register /dev/console driver\n");
3495	consdev = device_create_with_groups(tty_class, NULL,
3496					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3497					    cons_dev_groups, "console");
3498	if (IS_ERR(consdev))
3499		consdev = NULL;
3500
3501#ifdef CONFIG_VT
3502	vty_init(&console_fops);
3503#endif
3504	return 0;
3505}
3506