Loading...
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100
101#include <linux/kbd_kern.h>
102#include <linux/vt_kern.h>
103#include <linux/selection.h>
104
105#include <linux/kmod.h>
106#include <linux/nsproxy.h>
107
108#undef TTY_DEBUG_HANGUP
109#ifdef TTY_DEBUG_HANGUP
110# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
111#else
112# define tty_debug_hangup(tty, f, args...) do { } while (0)
113#endif
114
115#define TTY_PARANOIA_CHECK 1
116#define CHECK_TTY_COUNT 1
117
118struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
119 .c_iflag = ICRNL | IXON,
120 .c_oflag = OPOST | ONLCR,
121 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
122 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
123 ECHOCTL | ECHOKE | IEXTEN,
124 .c_cc = INIT_C_CC,
125 .c_ispeed = 38400,
126 .c_ospeed = 38400,
127 /* .c_line = N_TTY, */
128};
129
130EXPORT_SYMBOL(tty_std_termios);
131
132/* This list gets poked at by procfs and various bits of boot up code. This
133 could do with some rationalisation such as pulling the tty proc function
134 into this file */
135
136LIST_HEAD(tty_drivers); /* linked list of tty drivers */
137
138/* Mutex to protect creating and releasing a tty */
139DEFINE_MUTEX(tty_mutex);
140
141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
143ssize_t redirected_tty_write(struct file *, const char __user *,
144 size_t, loff_t *);
145static unsigned int tty_poll(struct file *, poll_table *);
146static int tty_open(struct inode *, struct file *);
147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
148#ifdef CONFIG_COMPAT
149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
150 unsigned long arg);
151#else
152#define tty_compat_ioctl NULL
153#endif
154static int __tty_fasync(int fd, struct file *filp, int on);
155static int tty_fasync(int fd, struct file *filp, int on);
156static void release_tty(struct tty_struct *tty, int idx);
157
158/**
159 * free_tty_struct - free a disused tty
160 * @tty: tty struct to free
161 *
162 * Free the write buffers, tty queue and tty memory itself.
163 *
164 * Locking: none. Must be called after tty is definitely unused
165 */
166
167static void free_tty_struct(struct tty_struct *tty)
168{
169 tty_ldisc_deinit(tty);
170 put_device(tty->dev);
171 kfree(tty->write_buf);
172 tty->magic = 0xDEADDEAD;
173 kfree(tty);
174}
175
176static inline struct tty_struct *file_tty(struct file *file)
177{
178 return ((struct tty_file_private *)file->private_data)->tty;
179}
180
181int tty_alloc_file(struct file *file)
182{
183 struct tty_file_private *priv;
184
185 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 if (!priv)
187 return -ENOMEM;
188
189 file->private_data = priv;
190
191 return 0;
192}
193
194/* Associate a new file with the tty structure */
195void tty_add_file(struct tty_struct *tty, struct file *file)
196{
197 struct tty_file_private *priv = file->private_data;
198
199 priv->tty = tty;
200 priv->file = file;
201
202 spin_lock(&tty->files_lock);
203 list_add(&priv->list, &tty->tty_files);
204 spin_unlock(&tty->files_lock);
205}
206
207/**
208 * tty_free_file - free file->private_data
209 *
210 * This shall be used only for fail path handling when tty_add_file was not
211 * called yet.
212 */
213void tty_free_file(struct file *file)
214{
215 struct tty_file_private *priv = file->private_data;
216
217 file->private_data = NULL;
218 kfree(priv);
219}
220
221/* Delete file from its tty */
222static void tty_del_file(struct file *file)
223{
224 struct tty_file_private *priv = file->private_data;
225 struct tty_struct *tty = priv->tty;
226
227 spin_lock(&tty->files_lock);
228 list_del(&priv->list);
229 spin_unlock(&tty->files_lock);
230 tty_free_file(file);
231}
232
233
234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
235
236/**
237 * tty_name - return tty naming
238 * @tty: tty structure
239 *
240 * Convert a tty structure into a name. The name reflects the kernel
241 * naming policy and if udev is in use may not reflect user space
242 *
243 * Locking: none
244 */
245
246const char *tty_name(const struct tty_struct *tty)
247{
248 if (!tty) /* Hmm. NULL pointer. That's fun. */
249 return "NULL tty";
250 return tty->name;
251}
252
253EXPORT_SYMBOL(tty_name);
254
255const char *tty_driver_name(const struct tty_struct *tty)
256{
257 if (!tty || !tty->driver)
258 return "";
259 return tty->driver->name;
260}
261
262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
263 const char *routine)
264{
265#ifdef TTY_PARANOIA_CHECK
266 if (!tty) {
267 pr_warn("(%d:%d): %s: NULL tty\n",
268 imajor(inode), iminor(inode), routine);
269 return 1;
270 }
271 if (tty->magic != TTY_MAGIC) {
272 pr_warn("(%d:%d): %s: bad magic number\n",
273 imajor(inode), iminor(inode), routine);
274 return 1;
275 }
276#endif
277 return 0;
278}
279
280/* Caller must hold tty_lock */
281static int check_tty_count(struct tty_struct *tty, const char *routine)
282{
283#ifdef CHECK_TTY_COUNT
284 struct list_head *p;
285 int count = 0;
286
287 spin_lock(&tty->files_lock);
288 list_for_each(p, &tty->tty_files) {
289 count++;
290 }
291 spin_unlock(&tty->files_lock);
292 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
293 tty->driver->subtype == PTY_TYPE_SLAVE &&
294 tty->link && tty->link->count)
295 count++;
296 if (tty->count != count) {
297 tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
298 routine, tty->count, count);
299 return count;
300 }
301#endif
302 return 0;
303}
304
305/**
306 * get_tty_driver - find device of a tty
307 * @dev_t: device identifier
308 * @index: returns the index of the tty
309 *
310 * This routine returns a tty driver structure, given a device number
311 * and also passes back the index number.
312 *
313 * Locking: caller must hold tty_mutex
314 */
315
316static struct tty_driver *get_tty_driver(dev_t device, int *index)
317{
318 struct tty_driver *p;
319
320 list_for_each_entry(p, &tty_drivers, tty_drivers) {
321 dev_t base = MKDEV(p->major, p->minor_start);
322 if (device < base || device >= base + p->num)
323 continue;
324 *index = device - base;
325 return tty_driver_kref_get(p);
326 }
327 return NULL;
328}
329
330#ifdef CONFIG_CONSOLE_POLL
331
332/**
333 * tty_find_polling_driver - find device of a polled tty
334 * @name: name string to match
335 * @line: pointer to resulting tty line nr
336 *
337 * This routine returns a tty driver structure, given a name
338 * and the condition that the tty driver is capable of polled
339 * operation.
340 */
341struct tty_driver *tty_find_polling_driver(char *name, int *line)
342{
343 struct tty_driver *p, *res = NULL;
344 int tty_line = 0;
345 int len;
346 char *str, *stp;
347
348 for (str = name; *str; str++)
349 if ((*str >= '0' && *str <= '9') || *str == ',')
350 break;
351 if (!*str)
352 return NULL;
353
354 len = str - name;
355 tty_line = simple_strtoul(str, &str, 10);
356
357 mutex_lock(&tty_mutex);
358 /* Search through the tty devices to look for a match */
359 list_for_each_entry(p, &tty_drivers, tty_drivers) {
360 if (strncmp(name, p->name, len) != 0)
361 continue;
362 stp = str;
363 if (*stp == ',')
364 stp++;
365 if (*stp == '\0')
366 stp = NULL;
367
368 if (tty_line >= 0 && tty_line < p->num && p->ops &&
369 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
370 res = tty_driver_kref_get(p);
371 *line = tty_line;
372 break;
373 }
374 }
375 mutex_unlock(&tty_mutex);
376
377 return res;
378}
379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
380#endif
381
382static int is_ignored(int sig)
383{
384 return (sigismember(¤t->blocked, sig) ||
385 current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
386}
387
388/**
389 * tty_check_change - check for POSIX terminal changes
390 * @tty: tty to check
391 *
392 * If we try to write to, or set the state of, a terminal and we're
393 * not in the foreground, send a SIGTTOU. If the signal is blocked or
394 * ignored, go ahead and perform the operation. (POSIX 7.2)
395 *
396 * Locking: ctrl_lock
397 */
398
399int __tty_check_change(struct tty_struct *tty, int sig)
400{
401 unsigned long flags;
402 struct pid *pgrp, *tty_pgrp;
403 int ret = 0;
404
405 if (current->signal->tty != tty)
406 return 0;
407
408 rcu_read_lock();
409 pgrp = task_pgrp(current);
410
411 spin_lock_irqsave(&tty->ctrl_lock, flags);
412 tty_pgrp = tty->pgrp;
413 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
414
415 if (tty_pgrp && pgrp != tty->pgrp) {
416 if (is_ignored(sig)) {
417 if (sig == SIGTTIN)
418 ret = -EIO;
419 } else if (is_current_pgrp_orphaned())
420 ret = -EIO;
421 else {
422 kill_pgrp(pgrp, sig, 1);
423 set_thread_flag(TIF_SIGPENDING);
424 ret = -ERESTARTSYS;
425 }
426 }
427 rcu_read_unlock();
428
429 if (!tty_pgrp)
430 tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
431
432 return ret;
433}
434
435int tty_check_change(struct tty_struct *tty)
436{
437 return __tty_check_change(tty, SIGTTOU);
438}
439EXPORT_SYMBOL(tty_check_change);
440
441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
442 size_t count, loff_t *ppos)
443{
444 return 0;
445}
446
447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
448 size_t count, loff_t *ppos)
449{
450 return -EIO;
451}
452
453/* No kernel lock held - none needed ;) */
454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
455{
456 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
457}
458
459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
460 unsigned long arg)
461{
462 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
463}
464
465static long hung_up_tty_compat_ioctl(struct file *file,
466 unsigned int cmd, unsigned long arg)
467{
468 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
469}
470
471static int hung_up_tty_fasync(int fd, struct file *file, int on)
472{
473 return -ENOTTY;
474}
475
476static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486};
487
488static const struct file_operations console_fops = {
489 .llseek = no_llseek,
490 .read = tty_read,
491 .write = redirected_tty_write,
492 .poll = tty_poll,
493 .unlocked_ioctl = tty_ioctl,
494 .compat_ioctl = tty_compat_ioctl,
495 .open = tty_open,
496 .release = tty_release,
497 .fasync = tty_fasync,
498};
499
500static const struct file_operations hung_up_tty_fops = {
501 .llseek = no_llseek,
502 .read = hung_up_tty_read,
503 .write = hung_up_tty_write,
504 .poll = hung_up_tty_poll,
505 .unlocked_ioctl = hung_up_tty_ioctl,
506 .compat_ioctl = hung_up_tty_compat_ioctl,
507 .release = tty_release,
508 .fasync = hung_up_tty_fasync,
509};
510
511static DEFINE_SPINLOCK(redirect_lock);
512static struct file *redirect;
513
514
515void proc_clear_tty(struct task_struct *p)
516{
517 unsigned long flags;
518 struct tty_struct *tty;
519 spin_lock_irqsave(&p->sighand->siglock, flags);
520 tty = p->signal->tty;
521 p->signal->tty = NULL;
522 spin_unlock_irqrestore(&p->sighand->siglock, flags);
523 tty_kref_put(tty);
524}
525
526/**
527 * proc_set_tty - set the controlling terminal
528 *
529 * Only callable by the session leader and only if it does not already have
530 * a controlling terminal.
531 *
532 * Caller must hold: tty_lock()
533 * a readlock on tasklist_lock
534 * sighand lock
535 */
536static void __proc_set_tty(struct tty_struct *tty)
537{
538 unsigned long flags;
539
540 spin_lock_irqsave(&tty->ctrl_lock, flags);
541 /*
542 * The session and fg pgrp references will be non-NULL if
543 * tiocsctty() is stealing the controlling tty
544 */
545 put_pid(tty->session);
546 put_pid(tty->pgrp);
547 tty->pgrp = get_pid(task_pgrp(current));
548 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
549 tty->session = get_pid(task_session(current));
550 if (current->signal->tty) {
551 tty_debug(tty, "current tty %s not NULL!!\n",
552 current->signal->tty->name);
553 tty_kref_put(current->signal->tty);
554 }
555 put_pid(current->signal->tty_old_pgrp);
556 current->signal->tty = tty_kref_get(tty);
557 current->signal->tty_old_pgrp = NULL;
558}
559
560static void proc_set_tty(struct tty_struct *tty)
561{
562 spin_lock_irq(¤t->sighand->siglock);
563 __proc_set_tty(tty);
564 spin_unlock_irq(¤t->sighand->siglock);
565}
566
567struct tty_struct *get_current_tty(void)
568{
569 struct tty_struct *tty;
570 unsigned long flags;
571
572 spin_lock_irqsave(¤t->sighand->siglock, flags);
573 tty = tty_kref_get(current->signal->tty);
574 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
575 return tty;
576}
577EXPORT_SYMBOL_GPL(get_current_tty);
578
579static void session_clear_tty(struct pid *session)
580{
581 struct task_struct *p;
582 do_each_pid_task(session, PIDTYPE_SID, p) {
583 proc_clear_tty(p);
584 } while_each_pid_task(session, PIDTYPE_SID, p);
585}
586
587/**
588 * tty_wakeup - request more data
589 * @tty: terminal
590 *
591 * Internal and external helper for wakeups of tty. This function
592 * informs the line discipline if present that the driver is ready
593 * to receive more output data.
594 */
595
596void tty_wakeup(struct tty_struct *tty)
597{
598 struct tty_ldisc *ld;
599
600 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
601 ld = tty_ldisc_ref(tty);
602 if (ld) {
603 if (ld->ops->write_wakeup)
604 ld->ops->write_wakeup(tty);
605 tty_ldisc_deref(ld);
606 }
607 }
608 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
609}
610
611EXPORT_SYMBOL_GPL(tty_wakeup);
612
613/**
614 * tty_signal_session_leader - sends SIGHUP to session leader
615 * @tty controlling tty
616 * @exit_session if non-zero, signal all foreground group processes
617 *
618 * Send SIGHUP and SIGCONT to the session leader and its process group.
619 * Optionally, signal all processes in the foreground process group.
620 *
621 * Returns the number of processes in the session with this tty
622 * as their controlling terminal. This value is used to drop
623 * tty references for those processes.
624 */
625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
626{
627 struct task_struct *p;
628 int refs = 0;
629 struct pid *tty_pgrp = NULL;
630
631 read_lock(&tasklist_lock);
632 if (tty->session) {
633 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
634 spin_lock_irq(&p->sighand->siglock);
635 if (p->signal->tty == tty) {
636 p->signal->tty = NULL;
637 /* We defer the dereferences outside fo
638 the tasklist lock */
639 refs++;
640 }
641 if (!p->signal->leader) {
642 spin_unlock_irq(&p->sighand->siglock);
643 continue;
644 }
645 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
646 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
647 put_pid(p->signal->tty_old_pgrp); /* A noop */
648 spin_lock(&tty->ctrl_lock);
649 tty_pgrp = get_pid(tty->pgrp);
650 if (tty->pgrp)
651 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
652 spin_unlock(&tty->ctrl_lock);
653 spin_unlock_irq(&p->sighand->siglock);
654 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
655 }
656 read_unlock(&tasklist_lock);
657
658 if (tty_pgrp) {
659 if (exit_session)
660 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
661 put_pid(tty_pgrp);
662 }
663
664 return refs;
665}
666
667/**
668 * __tty_hangup - actual handler for hangup events
669 * @work: tty device
670 *
671 * This can be called by a "kworker" kernel thread. That is process
672 * synchronous but doesn't hold any locks, so we need to make sure we
673 * have the appropriate locks for what we're doing.
674 *
675 * The hangup event clears any pending redirections onto the hung up
676 * device. It ensures future writes will error and it does the needed
677 * line discipline hangup and signal delivery. The tty object itself
678 * remains intact.
679 *
680 * Locking:
681 * BTM
682 * redirect lock for undoing redirection
683 * file list lock for manipulating list of ttys
684 * tty_ldiscs_lock from called functions
685 * termios_rwsem resetting termios data
686 * tasklist_lock to walk task list for hangup event
687 * ->siglock to protect ->signal/->sighand
688 */
689static void __tty_hangup(struct tty_struct *tty, int exit_session)
690{
691 struct file *cons_filp = NULL;
692 struct file *filp, *f = NULL;
693 struct tty_file_private *priv;
694 int closecount = 0, n;
695 int refs;
696
697 if (!tty)
698 return;
699
700
701 spin_lock(&redirect_lock);
702 if (redirect && file_tty(redirect) == tty) {
703 f = redirect;
704 redirect = NULL;
705 }
706 spin_unlock(&redirect_lock);
707
708 tty_lock(tty);
709
710 if (test_bit(TTY_HUPPED, &tty->flags)) {
711 tty_unlock(tty);
712 return;
713 }
714
715 /* inuse_filps is protected by the single tty lock,
716 this really needs to change if we want to flush the
717 workqueue with the lock held */
718 check_tty_count(tty, "tty_hangup");
719
720 spin_lock(&tty->files_lock);
721 /* This breaks for file handles being sent over AF_UNIX sockets ? */
722 list_for_each_entry(priv, &tty->tty_files, list) {
723 filp = priv->file;
724 if (filp->f_op->write == redirected_tty_write)
725 cons_filp = filp;
726 if (filp->f_op->write != tty_write)
727 continue;
728 closecount++;
729 __tty_fasync(-1, filp, 0); /* can't block */
730 filp->f_op = &hung_up_tty_fops;
731 }
732 spin_unlock(&tty->files_lock);
733
734 refs = tty_signal_session_leader(tty, exit_session);
735 /* Account for the p->signal references we killed */
736 while (refs--)
737 tty_kref_put(tty);
738
739 tty_ldisc_hangup(tty, cons_filp != NULL);
740
741 spin_lock_irq(&tty->ctrl_lock);
742 clear_bit(TTY_THROTTLED, &tty->flags);
743 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
744 put_pid(tty->session);
745 put_pid(tty->pgrp);
746 tty->session = NULL;
747 tty->pgrp = NULL;
748 tty->ctrl_status = 0;
749 spin_unlock_irq(&tty->ctrl_lock);
750
751 /*
752 * If one of the devices matches a console pointer, we
753 * cannot just call hangup() because that will cause
754 * tty->count and state->count to go out of sync.
755 * So we just call close() the right number of times.
756 */
757 if (cons_filp) {
758 if (tty->ops->close)
759 for (n = 0; n < closecount; n++)
760 tty->ops->close(tty, cons_filp);
761 } else if (tty->ops->hangup)
762 tty->ops->hangup(tty);
763 /*
764 * We don't want to have driver/ldisc interactions beyond the ones
765 * we did here. The driver layer expects no calls after ->hangup()
766 * from the ldisc side, which is now guaranteed.
767 */
768 set_bit(TTY_HUPPED, &tty->flags);
769 tty_unlock(tty);
770
771 if (f)
772 fput(f);
773}
774
775static void do_tty_hangup(struct work_struct *work)
776{
777 struct tty_struct *tty =
778 container_of(work, struct tty_struct, hangup_work);
779
780 __tty_hangup(tty, 0);
781}
782
783/**
784 * tty_hangup - trigger a hangup event
785 * @tty: tty to hangup
786 *
787 * A carrier loss (virtual or otherwise) has occurred on this like
788 * schedule a hangup sequence to run after this event.
789 */
790
791void tty_hangup(struct tty_struct *tty)
792{
793 tty_debug_hangup(tty, "hangup\n");
794 schedule_work(&tty->hangup_work);
795}
796
797EXPORT_SYMBOL(tty_hangup);
798
799/**
800 * tty_vhangup - process vhangup
801 * @tty: tty to hangup
802 *
803 * The user has asked via system call for the terminal to be hung up.
804 * We do this synchronously so that when the syscall returns the process
805 * is complete. That guarantee is necessary for security reasons.
806 */
807
808void tty_vhangup(struct tty_struct *tty)
809{
810 tty_debug_hangup(tty, "vhangup\n");
811 __tty_hangup(tty, 0);
812}
813
814EXPORT_SYMBOL(tty_vhangup);
815
816
817/**
818 * tty_vhangup_self - process vhangup for own ctty
819 *
820 * Perform a vhangup on the current controlling tty
821 */
822
823void tty_vhangup_self(void)
824{
825 struct tty_struct *tty;
826
827 tty = get_current_tty();
828 if (tty) {
829 tty_vhangup(tty);
830 tty_kref_put(tty);
831 }
832}
833
834/**
835 * tty_vhangup_session - hangup session leader exit
836 * @tty: tty to hangup
837 *
838 * The session leader is exiting and hanging up its controlling terminal.
839 * Every process in the foreground process group is signalled SIGHUP.
840 *
841 * We do this synchronously so that when the syscall returns the process
842 * is complete. That guarantee is necessary for security reasons.
843 */
844
845static void tty_vhangup_session(struct tty_struct *tty)
846{
847 tty_debug_hangup(tty, "session hangup\n");
848 __tty_hangup(tty, 1);
849}
850
851/**
852 * tty_hung_up_p - was tty hung up
853 * @filp: file pointer of tty
854 *
855 * Return true if the tty has been subject to a vhangup or a carrier
856 * loss
857 */
858
859int tty_hung_up_p(struct file *filp)
860{
861 return (filp->f_op == &hung_up_tty_fops);
862}
863
864EXPORT_SYMBOL(tty_hung_up_p);
865
866/**
867 * disassociate_ctty - disconnect controlling tty
868 * @on_exit: true if exiting so need to "hang up" the session
869 *
870 * This function is typically called only by the session leader, when
871 * it wants to disassociate itself from its controlling tty.
872 *
873 * It performs the following functions:
874 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
875 * (2) Clears the tty from being controlling the session
876 * (3) Clears the controlling tty for all processes in the
877 * session group.
878 *
879 * The argument on_exit is set to 1 if called when a process is
880 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
881 *
882 * Locking:
883 * BTM is taken for hysterical raisins, and held when
884 * called from no_tty().
885 * tty_mutex is taken to protect tty
886 * ->siglock is taken to protect ->signal/->sighand
887 * tasklist_lock is taken to walk process list for sessions
888 * ->siglock is taken to protect ->signal/->sighand
889 */
890
891void disassociate_ctty(int on_exit)
892{
893 struct tty_struct *tty;
894
895 if (!current->signal->leader)
896 return;
897
898 tty = get_current_tty();
899 if (tty) {
900 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
901 tty_vhangup_session(tty);
902 } else {
903 struct pid *tty_pgrp = tty_get_pgrp(tty);
904 if (tty_pgrp) {
905 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
906 if (!on_exit)
907 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
908 put_pid(tty_pgrp);
909 }
910 }
911 tty_kref_put(tty);
912
913 } else if (on_exit) {
914 struct pid *old_pgrp;
915 spin_lock_irq(¤t->sighand->siglock);
916 old_pgrp = current->signal->tty_old_pgrp;
917 current->signal->tty_old_pgrp = NULL;
918 spin_unlock_irq(¤t->sighand->siglock);
919 if (old_pgrp) {
920 kill_pgrp(old_pgrp, SIGHUP, on_exit);
921 kill_pgrp(old_pgrp, SIGCONT, on_exit);
922 put_pid(old_pgrp);
923 }
924 return;
925 }
926
927 spin_lock_irq(¤t->sighand->siglock);
928 put_pid(current->signal->tty_old_pgrp);
929 current->signal->tty_old_pgrp = NULL;
930
931 tty = tty_kref_get(current->signal->tty);
932 if (tty) {
933 unsigned long flags;
934 spin_lock_irqsave(&tty->ctrl_lock, flags);
935 put_pid(tty->session);
936 put_pid(tty->pgrp);
937 tty->session = NULL;
938 tty->pgrp = NULL;
939 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
940 tty_kref_put(tty);
941 } else
942 tty_debug_hangup(tty, "no current tty\n");
943
944 spin_unlock_irq(¤t->sighand->siglock);
945 /* Now clear signal->tty under the lock */
946 read_lock(&tasklist_lock);
947 session_clear_tty(task_session(current));
948 read_unlock(&tasklist_lock);
949}
950
951/**
952 *
953 * no_tty - Ensure the current process does not have a controlling tty
954 */
955void no_tty(void)
956{
957 /* FIXME: Review locking here. The tty_lock never covered any race
958 between a new association and proc_clear_tty but possible we need
959 to protect against this anyway */
960 struct task_struct *tsk = current;
961 disassociate_ctty(0);
962 proc_clear_tty(tsk);
963}
964
965
966/**
967 * stop_tty - propagate flow control
968 * @tty: tty to stop
969 *
970 * Perform flow control to the driver. May be called
971 * on an already stopped device and will not re-call the driver
972 * method.
973 *
974 * This functionality is used by both the line disciplines for
975 * halting incoming flow and by the driver. It may therefore be
976 * called from any context, may be under the tty atomic_write_lock
977 * but not always.
978 *
979 * Locking:
980 * flow_lock
981 */
982
983void __stop_tty(struct tty_struct *tty)
984{
985 if (tty->stopped)
986 return;
987 tty->stopped = 1;
988 if (tty->ops->stop)
989 tty->ops->stop(tty);
990}
991
992void stop_tty(struct tty_struct *tty)
993{
994 unsigned long flags;
995
996 spin_lock_irqsave(&tty->flow_lock, flags);
997 __stop_tty(tty);
998 spin_unlock_irqrestore(&tty->flow_lock, flags);
999}
1000EXPORT_SYMBOL(stop_tty);
1001
1002/**
1003 * start_tty - propagate flow control
1004 * @tty: tty to start
1005 *
1006 * Start a tty that has been stopped if at all possible. If this
1007 * tty was previous stopped and is now being started, the driver
1008 * start method is invoked and the line discipline woken.
1009 *
1010 * Locking:
1011 * flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016 if (!tty->stopped || tty->flow_stopped)
1017 return;
1018 tty->stopped = 0;
1019 if (tty->ops->start)
1020 tty->ops->start(tty);
1021 tty_wakeup(tty);
1022}
1023
1024void start_tty(struct tty_struct *tty)
1025{
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&tty->flow_lock, flags);
1029 __start_tty(tty);
1030 spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
1034static void tty_update_time(struct timespec *time)
1035{
1036 unsigned long sec = get_seconds();
1037
1038 /*
1039 * We only care if the two values differ in anything other than the
1040 * lower three bits (i.e every 8 seconds). If so, then we can update
1041 * the time of the tty device, otherwise it could be construded as a
1042 * security leak to let userspace know the exact timing of the tty.
1043 */
1044 if ((sec ^ time->tv_sec) & ~7)
1045 time->tv_sec = sec;
1046}
1047
1048/**
1049 * tty_read - read method for tty device files
1050 * @file: pointer to tty file
1051 * @buf: user buffer
1052 * @count: size of user buffer
1053 * @ppos: unused
1054 *
1055 * Perform the read system call function on this terminal device. Checks
1056 * for hung up devices before calling the line discipline method.
1057 *
1058 * Locking:
1059 * Locks the line discipline internally while needed. Multiple
1060 * read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064 loff_t *ppos)
1065{
1066 int i;
1067 struct inode *inode = file_inode(file);
1068 struct tty_struct *tty = file_tty(file);
1069 struct tty_ldisc *ld;
1070
1071 if (tty_paranoia_check(tty, inode, "tty_read"))
1072 return -EIO;
1073 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074 return -EIO;
1075
1076 /* We want to wait for the line discipline to sort out in this
1077 situation */
1078 ld = tty_ldisc_ref_wait(tty);
1079 if (!ld)
1080 return hung_up_tty_read(file, buf, count, ppos);
1081 if (ld->ops->read)
1082 i = ld->ops->read(tty, file, buf, count);
1083 else
1084 i = -EIO;
1085 tty_ldisc_deref(ld);
1086
1087 if (i > 0)
1088 tty_update_time(&inode->i_atime);
1089
1090 return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
1094{
1095 mutex_unlock(&tty->atomic_write_lock);
1096 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100{
1101 if (!mutex_trylock(&tty->atomic_write_lock)) {
1102 if (ndelay)
1103 return -EAGAIN;
1104 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105 return -ERESTARTSYS;
1106 }
1107 return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116 struct tty_struct *tty,
1117 struct file *file,
1118 const char __user *buf,
1119 size_t count)
1120{
1121 ssize_t ret, written = 0;
1122 unsigned int chunk;
1123
1124 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125 if (ret < 0)
1126 return ret;
1127
1128 /*
1129 * We chunk up writes into a temporary buffer. This
1130 * simplifies low-level drivers immensely, since they
1131 * don't have locking issues and user mode accesses.
1132 *
1133 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134 * big chunk-size..
1135 *
1136 * The default chunk-size is 2kB, because the NTTY
1137 * layer has problems with bigger chunks. It will
1138 * claim to be able to handle more characters than
1139 * it actually does.
1140 *
1141 * FIXME: This can probably go away now except that 64K chunks
1142 * are too likely to fail unless switched to vmalloc...
1143 */
1144 chunk = 2048;
1145 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146 chunk = 65536;
1147 if (count < chunk)
1148 chunk = count;
1149
1150 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151 if (tty->write_cnt < chunk) {
1152 unsigned char *buf_chunk;
1153
1154 if (chunk < 1024)
1155 chunk = 1024;
1156
1157 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158 if (!buf_chunk) {
1159 ret = -ENOMEM;
1160 goto out;
1161 }
1162 kfree(tty->write_buf);
1163 tty->write_cnt = chunk;
1164 tty->write_buf = buf_chunk;
1165 }
1166
1167 /* Do the write .. */
1168 for (;;) {
1169 size_t size = count;
1170 if (size > chunk)
1171 size = chunk;
1172 ret = -EFAULT;
1173 if (copy_from_user(tty->write_buf, buf, size))
1174 break;
1175 ret = write(tty, file, tty->write_buf, size);
1176 if (ret <= 0)
1177 break;
1178 written += ret;
1179 buf += ret;
1180 count -= ret;
1181 if (!count)
1182 break;
1183 ret = -ERESTARTSYS;
1184 if (signal_pending(current))
1185 break;
1186 cond_resched();
1187 }
1188 if (written) {
1189 tty_update_time(&file_inode(file)->i_mtime);
1190 ret = written;
1191 }
1192out:
1193 tty_write_unlock(tty);
1194 return ret;
1195}
1196
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211 if (tty) {
1212 mutex_lock(&tty->atomic_write_lock);
1213 tty_lock(tty);
1214 if (tty->ops->write && tty->count > 0)
1215 tty->ops->write(tty, msg, strlen(msg));
1216 tty_unlock(tty);
1217 tty_write_unlock(tty);
1218 }
1219 return;
1220}
1221
1222
1223/**
1224 * tty_write - write method for tty device file
1225 * @file: tty file pointer
1226 * @buf: user data to write
1227 * @count: bytes to write
1228 * @ppos: unused
1229 *
1230 * Write data to a tty device via the line discipline.
1231 *
1232 * Locking:
1233 * Locks the line discipline as required
1234 * Writes to the tty driver are serialized by the atomic_write_lock
1235 * and are then processed in chunks to the device. The line discipline
1236 * write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240 size_t count, loff_t *ppos)
1241{
1242 struct tty_struct *tty = file_tty(file);
1243 struct tty_ldisc *ld;
1244 ssize_t ret;
1245
1246 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247 return -EIO;
1248 if (!tty || !tty->ops->write ||
1249 (test_bit(TTY_IO_ERROR, &tty->flags)))
1250 return -EIO;
1251 /* Short term debug to catch buggy drivers */
1252 if (tty->ops->write_room == NULL)
1253 tty_err(tty, "missing write_room method\n");
1254 ld = tty_ldisc_ref_wait(tty);
1255 if (!ld)
1256 return hung_up_tty_write(file, buf, count, ppos);
1257 if (!ld->ops->write)
1258 ret = -EIO;
1259 else
1260 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261 tty_ldisc_deref(ld);
1262 return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266 size_t count, loff_t *ppos)
1267{
1268 struct file *p = NULL;
1269
1270 spin_lock(&redirect_lock);
1271 if (redirect)
1272 p = get_file(redirect);
1273 spin_unlock(&redirect_lock);
1274
1275 if (p) {
1276 ssize_t res;
1277 res = vfs_write(p, buf, count, &p->f_pos);
1278 fput(p);
1279 return res;
1280 }
1281 return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 * tty_send_xchar - send priority character
1286 *
1287 * Send a high priority character to the tty even if stopped
1288 *
1289 * Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294 int was_stopped = tty->stopped;
1295
1296 if (tty->ops->send_xchar) {
1297 down_read(&tty->termios_rwsem);
1298 tty->ops->send_xchar(tty, ch);
1299 up_read(&tty->termios_rwsem);
1300 return 0;
1301 }
1302
1303 if (tty_write_lock(tty, 0) < 0)
1304 return -ERESTARTSYS;
1305
1306 down_read(&tty->termios_rwsem);
1307 if (was_stopped)
1308 start_tty(tty);
1309 tty->ops->write(tty, &ch, 1);
1310 if (was_stopped)
1311 stop_tty(tty);
1312 up_read(&tty->termios_rwsem);
1313 tty_write_unlock(tty);
1314 return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 * pty_line_name - generate name for a pty
1321 * @driver: the tty driver in use
1322 * @index: the minor number
1323 * @p: output buffer of at least 6 bytes
1324 *
1325 * Generate a name from a driver reference and write it to the output
1326 * buffer.
1327 *
1328 * Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
1332 int i = index + driver->name_base;
1333 /* ->name is initialized to "ttyp", but "tty" is expected */
1334 sprintf(p, "%s%c%x",
1335 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336 ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 * tty_line_name - generate name for a tty
1341 * @driver: the tty driver in use
1342 * @index: the minor number
1343 * @p: output buffer of at least 7 bytes
1344 *
1345 * Generate a name from a driver reference and write it to the output
1346 * buffer.
1347 *
1348 * Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353 return sprintf(p, "%s", driver->name);
1354 else
1355 return sprintf(p, "%s%d", driver->name,
1356 index + driver->name_base);
1357}
1358
1359/**
1360 * tty_driver_lookup_tty() - find an existing tty, if any
1361 * @driver: the driver for the tty
1362 * @idx: the minor number
1363 *
1364 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 * driver lookup() method returns an error.
1366 *
1367 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370 struct file *file, int idx)
1371{
1372 struct tty_struct *tty;
1373
1374 if (driver->ops->lookup)
1375 tty = driver->ops->lookup(driver, file, idx);
1376 else
1377 tty = driver->ttys[idx];
1378
1379 if (!IS_ERR(tty))
1380 tty_kref_get(tty);
1381 return tty;
1382}
1383
1384/**
1385 * tty_init_termios - helper for termios setup
1386 * @tty: the tty to set up
1387 *
1388 * Initialise the termios structures for this tty. Thus runs under
1389 * the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394 struct ktermios *tp;
1395 int idx = tty->index;
1396
1397 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398 tty->termios = tty->driver->init_termios;
1399 else {
1400 /* Check for lazy saved data */
1401 tp = tty->driver->termios[idx];
1402 if (tp != NULL) {
1403 tty->termios = *tp;
1404 tty->termios.c_line = tty->driver->init_termios.c_line;
1405 } else
1406 tty->termios = tty->driver->init_termios;
1407 }
1408 /* Compatibility until drivers always set this */
1409 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416 tty_init_termios(tty);
1417 tty_driver_kref_get(driver);
1418 tty->count++;
1419 driver->ttys[tty->index] = tty;
1420 return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 * tty_driver_install_tty() - install a tty entry in the driver
1426 * @driver: the driver for the tty
1427 * @tty: the tty
1428 *
1429 * Install a tty object into the driver tables. The tty->index field
1430 * will be set by the time this is called. This method is responsible
1431 * for ensuring any need additional structures are allocated and
1432 * configured.
1433 *
1434 * Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437 struct tty_struct *tty)
1438{
1439 return driver->ops->install ? driver->ops->install(driver, tty) :
1440 tty_standard_install(driver, tty);
1441}
1442
1443/**
1444 * tty_driver_remove_tty() - remove a tty from the driver tables
1445 * @driver: the driver for the tty
1446 * @idx: the minor number
1447 *
1448 * Remvoe a tty object from the driver tables. The tty->index field
1449 * will be set by the time this is called.
1450 *
1451 * Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455 if (driver->ops->remove)
1456 driver->ops->remove(driver, tty);
1457 else
1458 driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * tty_reopen() - fast re-open of an open tty
1463 * @tty - the tty to open
1464 *
1465 * Return 0 on success, -errno on error.
1466 * Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 * Locking: Caller must hold tty_lock
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472 struct tty_driver *driver = tty->driver;
1473
1474 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475 driver->subtype == PTY_TYPE_MASTER)
1476 return -EIO;
1477
1478 if (!tty->count)
1479 return -EAGAIN;
1480
1481 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482 return -EBUSY;
1483
1484 tty->count++;
1485
1486 if (!tty->ldisc)
1487 return tty_ldisc_reinit(tty, tty->termios.c_line);
1488
1489 return 0;
1490}
1491
1492/**
1493 * tty_init_dev - initialise a tty device
1494 * @driver: tty driver we are opening a device on
1495 * @idx: device index
1496 * @ret_tty: returned tty structure
1497 *
1498 * Prepare a tty device. This may not be a "new" clean device but
1499 * could also be an active device. The pty drivers require special
1500 * handling because of this.
1501 *
1502 * Locking:
1503 * The function is called under the tty_mutex, which
1504 * protects us from the tty struct or driver itself going away.
1505 *
1506 * On exit the tty device has the line discipline attached and
1507 * a reference count of 1. If a pair was created for pty/tty use
1508 * and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open. The new code protects the open with a mutex, so it's
1512 * really quite straightforward. The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517{
1518 struct tty_struct *tty;
1519 int retval;
1520
1521 /*
1522 * First time open is complex, especially for PTY devices.
1523 * This code guarantees that either everything succeeds and the
1524 * TTY is ready for operation, or else the table slots are vacated
1525 * and the allocated memory released. (Except that the termios
1526 * and locked termios may be retained.)
1527 */
1528
1529 if (!try_module_get(driver->owner))
1530 return ERR_PTR(-ENODEV);
1531
1532 tty = alloc_tty_struct(driver, idx);
1533 if (!tty) {
1534 retval = -ENOMEM;
1535 goto err_module_put;
1536 }
1537
1538 tty_lock(tty);
1539 retval = tty_driver_install_tty(driver, tty);
1540 if (retval < 0)
1541 goto err_free_tty;
1542
1543 if (!tty->port)
1544 tty->port = driver->ports[idx];
1545
1546 WARN_RATELIMIT(!tty->port,
1547 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548 __func__, tty->driver->name);
1549
1550 tty->port->itty = tty;
1551
1552 /*
1553 * Structures all installed ... call the ldisc open routines.
1554 * If we fail here just call release_tty to clean up. No need
1555 * to decrement the use counts, as release_tty doesn't care.
1556 */
1557 retval = tty_ldisc_setup(tty, tty->link);
1558 if (retval)
1559 goto err_release_tty;
1560 /* Return the tty locked so that it cannot vanish under the caller */
1561 return tty;
1562
1563err_free_tty:
1564 tty_unlock(tty);
1565 free_tty_struct(tty);
1566err_module_put:
1567 module_put(driver->owner);
1568 return ERR_PTR(retval);
1569
1570 /* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572 tty_unlock(tty);
1573 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574 retval, idx);
1575 release_tty(tty, idx);
1576 return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
1580{
1581 struct ktermios *tp;
1582 int idx = tty->index;
1583
1584 /* If the port is going to reset then it has no termios to save */
1585 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586 return;
1587
1588 /* Stash the termios data */
1589 tp = tty->driver->termios[idx];
1590 if (tp == NULL) {
1591 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592 if (tp == NULL)
1593 return;
1594 tty->driver->termios[idx] = tp;
1595 }
1596 *tp = tty->termios;
1597}
1598
1599/**
1600 * tty_flush_works - flush all works of a tty/pty pair
1601 * @tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 * Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607 flush_work(&tty->SAK_work);
1608 flush_work(&tty->hangup_work);
1609 if (tty->link) {
1610 flush_work(&tty->link->SAK_work);
1611 flush_work(&tty->link->hangup_work);
1612 }
1613}
1614
1615/**
1616 * release_one_tty - release tty structure memory
1617 * @kref: kref of tty we are obliterating
1618 *
1619 * Releases memory associated with a tty structure, and clears out the
1620 * driver table slots. This function is called when a device is no longer
1621 * in use. It also gets called when setup of a device fails.
1622 *
1623 * Locking:
1624 * takes the file list lock internally when working on the list
1625 * of ttys that the driver keeps.
1626 *
1627 * This method gets called from a work queue so that the driver private
1628 * cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632 struct tty_struct *tty =
1633 container_of(work, struct tty_struct, hangup_work);
1634 struct tty_driver *driver = tty->driver;
1635 struct module *owner = driver->owner;
1636
1637 if (tty->ops->cleanup)
1638 tty->ops->cleanup(tty);
1639
1640 tty->magic = 0;
1641 tty_driver_kref_put(driver);
1642 module_put(owner);
1643
1644 spin_lock(&tty->files_lock);
1645 list_del_init(&tty->tty_files);
1646 spin_unlock(&tty->files_lock);
1647
1648 put_pid(tty->pgrp);
1649 put_pid(tty->session);
1650 free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657 /* The hangup queue is now free so we can reuse it rather than
1658 waste a chunk of memory for each port */
1659 INIT_WORK(&tty->hangup_work, release_one_tty);
1660 schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 * tty_kref_put - release a tty kref
1665 * @tty: tty device
1666 *
1667 * Release a reference to a tty device and if need be let the kref
1668 * layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673 if (tty)
1674 kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 * release_tty - release tty structure memory
1680 *
1681 * Release both @tty and a possible linked partner (think pty pair),
1682 * and decrement the refcount of the backing module.
1683 *
1684 * Locking:
1685 * tty_mutex
1686 * takes the file list lock internally when working on the list
1687 * of ttys that the driver keeps.
1688 *
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692 /* This should always be true but check for the moment */
1693 WARN_ON(tty->index != idx);
1694 WARN_ON(!mutex_is_locked(&tty_mutex));
1695 if (tty->ops->shutdown)
1696 tty->ops->shutdown(tty);
1697 tty_free_termios(tty);
1698 tty_driver_remove_tty(tty->driver, tty);
1699 tty->port->itty = NULL;
1700 if (tty->link)
1701 tty->link->port->itty = NULL;
1702 tty_buffer_cancel_work(tty->port);
1703
1704 tty_kref_put(tty->link);
1705 tty_kref_put(tty);
1706}
1707
1708/**
1709 * tty_release_checks - check a tty before real release
1710 * @tty: tty to check
1711 * @o_tty: link of @tty (if any)
1712 * @idx: index of the tty
1713 *
1714 * Performs some paranoid checking before true release of the @tty.
1715 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720 if (idx < 0 || idx >= tty->driver->num) {
1721 tty_debug(tty, "bad idx %d\n", idx);
1722 return -1;
1723 }
1724
1725 /* not much to check for devpts */
1726 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727 return 0;
1728
1729 if (tty != tty->driver->ttys[idx]) {
1730 tty_debug(tty, "bad driver table[%d] = %p\n",
1731 idx, tty->driver->ttys[idx]);
1732 return -1;
1733 }
1734 if (tty->driver->other) {
1735 struct tty_struct *o_tty = tty->link;
1736
1737 if (o_tty != tty->driver->other->ttys[idx]) {
1738 tty_debug(tty, "bad other table[%d] = %p\n",
1739 idx, tty->driver->other->ttys[idx]);
1740 return -1;
1741 }
1742 if (o_tty->link != tty) {
1743 tty_debug(tty, "bad link = %p\n", o_tty->link);
1744 return -1;
1745 }
1746 }
1747#endif
1748 return 0;
1749}
1750
1751/**
1752 * tty_release - vfs callback for close
1753 * @inode: inode of tty
1754 * @filp: file pointer for handle to tty
1755 *
1756 * Called the last time each file handle is closed that references
1757 * this tty. There may however be several such references.
1758 *
1759 * Locking:
1760 * Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772 struct tty_struct *tty = file_tty(filp);
1773 struct tty_struct *o_tty = NULL;
1774 int do_sleep, final;
1775 int idx;
1776 long timeout = 0;
1777 int once = 1;
1778
1779 if (tty_paranoia_check(tty, inode, __func__))
1780 return 0;
1781
1782 tty_lock(tty);
1783 check_tty_count(tty, __func__);
1784
1785 __tty_fasync(-1, filp, 0);
1786
1787 idx = tty->index;
1788 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789 tty->driver->subtype == PTY_TYPE_MASTER)
1790 o_tty = tty->link;
1791
1792 if (tty_release_checks(tty, idx)) {
1793 tty_unlock(tty);
1794 return 0;
1795 }
1796
1797 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798
1799 if (tty->ops->close)
1800 tty->ops->close(tty, filp);
1801
1802 /* If tty is pty master, lock the slave pty (stable lock order) */
1803 tty_lock_slave(o_tty);
1804
1805 /*
1806 * Sanity check: if tty->count is going to zero, there shouldn't be
1807 * any waiters on tty->read_wait or tty->write_wait. We test the
1808 * wait queues and kick everyone out _before_ actually starting to
1809 * close. This ensures that we won't block while releasing the tty
1810 * structure.
1811 *
1812 * The test for the o_tty closing is necessary, since the master and
1813 * slave sides may close in any order. If the slave side closes out
1814 * first, its count will be one, since the master side holds an open.
1815 * Thus this test wouldn't be triggered at the time the slave closed,
1816 * so we do it now.
1817 */
1818 while (1) {
1819 do_sleep = 0;
1820
1821 if (tty->count <= 1) {
1822 if (waitqueue_active(&tty->read_wait)) {
1823 wake_up_poll(&tty->read_wait, POLLIN);
1824 do_sleep++;
1825 }
1826 if (waitqueue_active(&tty->write_wait)) {
1827 wake_up_poll(&tty->write_wait, POLLOUT);
1828 do_sleep++;
1829 }
1830 }
1831 if (o_tty && o_tty->count <= 1) {
1832 if (waitqueue_active(&o_tty->read_wait)) {
1833 wake_up_poll(&o_tty->read_wait, POLLIN);
1834 do_sleep++;
1835 }
1836 if (waitqueue_active(&o_tty->write_wait)) {
1837 wake_up_poll(&o_tty->write_wait, POLLOUT);
1838 do_sleep++;
1839 }
1840 }
1841 if (!do_sleep)
1842 break;
1843
1844 if (once) {
1845 once = 0;
1846 tty_warn(tty, "read/write wait queue active!\n");
1847 }
1848 schedule_timeout_killable(timeout);
1849 if (timeout < 120 * HZ)
1850 timeout = 2 * timeout + 1;
1851 else
1852 timeout = MAX_SCHEDULE_TIMEOUT;
1853 }
1854
1855 if (o_tty) {
1856 if (--o_tty->count < 0) {
1857 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858 o_tty->count = 0;
1859 }
1860 }
1861 if (--tty->count < 0) {
1862 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863 tty->count = 0;
1864 }
1865
1866 /*
1867 * We've decremented tty->count, so we need to remove this file
1868 * descriptor off the tty->tty_files list; this serves two
1869 * purposes:
1870 * - check_tty_count sees the correct number of file descriptors
1871 * associated with this tty.
1872 * - do_tty_hangup no longer sees this file descriptor as
1873 * something that needs to be handled for hangups.
1874 */
1875 tty_del_file(filp);
1876
1877 /*
1878 * Perform some housekeeping before deciding whether to return.
1879 *
1880 * If _either_ side is closing, make sure there aren't any
1881 * processes that still think tty or o_tty is their controlling
1882 * tty.
1883 */
1884 if (!tty->count) {
1885 read_lock(&tasklist_lock);
1886 session_clear_tty(tty->session);
1887 if (o_tty)
1888 session_clear_tty(o_tty->session);
1889 read_unlock(&tasklist_lock);
1890 }
1891
1892 /* check whether both sides are closing ... */
1893 final = !tty->count && !(o_tty && o_tty->count);
1894
1895 tty_unlock_slave(o_tty);
1896 tty_unlock(tty);
1897
1898 /* At this point, the tty->count == 0 should ensure a dead tty
1899 cannot be re-opened by a racing opener */
1900
1901 if (!final)
1902 return 0;
1903
1904 tty_debug_hangup(tty, "final close\n");
1905 /*
1906 * Ask the line discipline code to release its structures
1907 */
1908 tty_ldisc_release(tty);
1909
1910 /* Wait for pending work before tty destruction commmences */
1911 tty_flush_works(tty);
1912
1913 tty_debug_hangup(tty, "freeing structure\n");
1914 /*
1915 * The release_tty function takes care of the details of clearing
1916 * the slots and preserving the termios structure. The tty_unlock_pair
1917 * should be safe as we keep a kref while the tty is locked (so the
1918 * unlock never unlocks a freed tty).
1919 */
1920 mutex_lock(&tty_mutex);
1921 release_tty(tty, idx);
1922 mutex_unlock(&tty_mutex);
1923
1924 return 0;
1925}
1926
1927/**
1928 * tty_open_current_tty - get locked tty of current task
1929 * @device: device number
1930 * @filp: file pointer to tty
1931 * @return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 * Performs a re-open of the current task's controlling tty.
1934 *
1935 * We cannot return driver and index like for the other nodes because
1936 * devpts will not work then. It expects inodes to be from devpts FS.
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939{
1940 struct tty_struct *tty;
1941 int retval;
1942
1943 if (device != MKDEV(TTYAUX_MAJOR, 0))
1944 return NULL;
1945
1946 tty = get_current_tty();
1947 if (!tty)
1948 return ERR_PTR(-ENXIO);
1949
1950 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951 /* noctty = 1; */
1952 tty_lock(tty);
1953 tty_kref_put(tty); /* safe to drop the kref now */
1954
1955 retval = tty_reopen(tty);
1956 if (retval < 0) {
1957 tty_unlock(tty);
1958 tty = ERR_PTR(retval);
1959 }
1960 return tty;
1961}
1962
1963/**
1964 * tty_lookup_driver - lookup a tty driver for a given device file
1965 * @device: device number
1966 * @filp: file pointer to tty
1967 * @noctty: set if the device should not become a controlling tty
1968 * @index: index for the device in the @return driver
1969 * @return: driver for this inode (with increased refcount)
1970 *
1971 * If @return is not erroneous, the caller is responsible to decrement the
1972 * refcount by tty_driver_kref_put.
1973 *
1974 * Locking: tty_mutex protects get_tty_driver
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977 int *index)
1978{
1979 struct tty_driver *driver;
1980
1981 switch (device) {
1982#ifdef CONFIG_VT
1983 case MKDEV(TTY_MAJOR, 0): {
1984 extern struct tty_driver *console_driver;
1985 driver = tty_driver_kref_get(console_driver);
1986 *index = fg_console;
1987 break;
1988 }
1989#endif
1990 case MKDEV(TTYAUX_MAJOR, 1): {
1991 struct tty_driver *console_driver = console_device(index);
1992 if (console_driver) {
1993 driver = tty_driver_kref_get(console_driver);
1994 if (driver) {
1995 /* Don't let /dev/console block */
1996 filp->f_flags |= O_NONBLOCK;
1997 break;
1998 }
1999 }
2000 return ERR_PTR(-ENODEV);
2001 }
2002 default:
2003 driver = get_tty_driver(device, index);
2004 if (!driver)
2005 return ERR_PTR(-ENODEV);
2006 break;
2007 }
2008 return driver;
2009}
2010
2011/**
2012 * tty_open_by_driver - open a tty device
2013 * @device: dev_t of device to open
2014 * @inode: inode of device file
2015 * @filp: file pointer to tty
2016 *
2017 * Performs the driver lookup, checks for a reopen, or otherwise
2018 * performs the first-time tty initialization.
2019 *
2020 * Returns the locked initialized or re-opened &tty_struct
2021 *
2022 * Claims the global tty_mutex to serialize:
2023 * - concurrent first-time tty initialization
2024 * - concurrent tty driver removal w/ lookup
2025 * - concurrent tty removal from driver table
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028 struct file *filp)
2029{
2030 struct tty_struct *tty;
2031 struct tty_driver *driver = NULL;
2032 int index = -1;
2033 int retval;
2034
2035 mutex_lock(&tty_mutex);
2036 driver = tty_lookup_driver(device, filp, &index);
2037 if (IS_ERR(driver)) {
2038 mutex_unlock(&tty_mutex);
2039 return ERR_CAST(driver);
2040 }
2041
2042 /* check whether we're reopening an existing tty */
2043 tty = tty_driver_lookup_tty(driver, filp, index);
2044 if (IS_ERR(tty)) {
2045 mutex_unlock(&tty_mutex);
2046 goto out;
2047 }
2048
2049 if (tty) {
2050 mutex_unlock(&tty_mutex);
2051 retval = tty_lock_interruptible(tty);
2052 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2053 if (retval) {
2054 if (retval == -EINTR)
2055 retval = -ERESTARTSYS;
2056 tty = ERR_PTR(retval);
2057 goto out;
2058 }
2059 retval = tty_reopen(tty);
2060 if (retval < 0) {
2061 tty_unlock(tty);
2062 tty = ERR_PTR(retval);
2063 }
2064 } else { /* Returns with the tty_lock held for now */
2065 tty = tty_init_dev(driver, index);
2066 mutex_unlock(&tty_mutex);
2067 }
2068out:
2069 tty_driver_kref_put(driver);
2070 return tty;
2071}
2072
2073/**
2074 * tty_open - open a tty device
2075 * @inode: inode of device file
2076 * @filp: file pointer to tty
2077 *
2078 * tty_open and tty_release keep up the tty count that contains the
2079 * number of opens done on a tty. We cannot use the inode-count, as
2080 * different inodes might point to the same tty.
2081 *
2082 * Open-counting is needed for pty masters, as well as for keeping
2083 * track of serial lines: DTR is dropped when the last close happens.
2084 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2085 *
2086 * The termios state of a pty is reset on first open so that
2087 * settings don't persist across reuse.
2088 *
2089 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 * tty->count should protect the rest.
2091 * ->siglock protects ->signal/->sighand
2092 *
2093 * Note: the tty_unlock/lock cases without a ref are only safe due to
2094 * tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099 struct tty_struct *tty;
2100 int noctty, retval;
2101 dev_t device = inode->i_rdev;
2102 unsigned saved_flags = filp->f_flags;
2103
2104 nonseekable_open(inode, filp);
2105
2106retry_open:
2107 retval = tty_alloc_file(filp);
2108 if (retval)
2109 return -ENOMEM;
2110
2111 tty = tty_open_current_tty(device, filp);
2112 if (!tty)
2113 tty = tty_open_by_driver(device, inode, filp);
2114
2115 if (IS_ERR(tty)) {
2116 tty_free_file(filp);
2117 retval = PTR_ERR(tty);
2118 if (retval != -EAGAIN || signal_pending(current))
2119 return retval;
2120 schedule();
2121 goto retry_open;
2122 }
2123
2124 tty_add_file(tty, filp);
2125
2126 check_tty_count(tty, __func__);
2127 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
2129 if (tty->ops->open)
2130 retval = tty->ops->open(tty, filp);
2131 else
2132 retval = -ENODEV;
2133 filp->f_flags = saved_flags;
2134
2135 if (retval) {
2136 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138 tty_unlock(tty); /* need to call tty_release without BTM */
2139 tty_release(inode, filp);
2140 if (retval != -ERESTARTSYS)
2141 return retval;
2142
2143 if (signal_pending(current))
2144 return retval;
2145
2146 schedule();
2147 /*
2148 * Need to reset f_op in case a hangup happened.
2149 */
2150 if (tty_hung_up_p(filp))
2151 filp->f_op = &tty_fops;
2152 goto retry_open;
2153 }
2154 clear_bit(TTY_HUPPED, &tty->flags);
2155
2156
2157 read_lock(&tasklist_lock);
2158 spin_lock_irq(¤t->sighand->siglock);
2159 noctty = (filp->f_flags & O_NOCTTY) ||
2160 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161 device == MKDEV(TTYAUX_MAJOR, 1) ||
2162 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165 if (!noctty &&
2166 current->signal->leader &&
2167 !current->signal->tty &&
2168 tty->session == NULL) {
2169 /*
2170 * Don't let a process that only has write access to the tty
2171 * obtain the privileges associated with having a tty as
2172 * controlling terminal (being able to reopen it with full
2173 * access through /dev/tty, being able to perform pushback).
2174 * Many distributions set the group of all ttys to "tty" and
2175 * grant write-only access to all terminals for setgid tty
2176 * binaries, which should not imply full privileges on all ttys.
2177 *
2178 * This could theoretically break old code that performs open()
2179 * on a write-only file descriptor. In that case, it might be
2180 * necessary to also permit this if
2181 * inode_permission(inode, MAY_READ) == 0.
2182 */
2183 if (filp->f_mode & FMODE_READ)
2184 __proc_set_tty(tty);
2185 }
2186 spin_unlock_irq(¤t->sighand->siglock);
2187 read_unlock(&tasklist_lock);
2188 tty_unlock(tty);
2189 return 0;
2190}
2191
2192
2193
2194/**
2195 * tty_poll - check tty status
2196 * @filp: file being polled
2197 * @wait: poll wait structures to update
2198 *
2199 * Call the line discipline polling method to obtain the poll
2200 * status of the device.
2201 *
2202 * Locking: locks called line discipline but ldisc poll method
2203 * may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208 struct tty_struct *tty = file_tty(filp);
2209 struct tty_ldisc *ld;
2210 int ret = 0;
2211
2212 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213 return 0;
2214
2215 ld = tty_ldisc_ref_wait(tty);
2216 if (!ld)
2217 return hung_up_tty_poll(filp, wait);
2218 if (ld->ops->poll)
2219 ret = ld->ops->poll(tty, filp, wait);
2220 tty_ldisc_deref(ld);
2221 return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226 struct tty_struct *tty = file_tty(filp);
2227 unsigned long flags;
2228 int retval = 0;
2229
2230 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231 goto out;
2232
2233 retval = fasync_helper(fd, filp, on, &tty->fasync);
2234 if (retval <= 0)
2235 goto out;
2236
2237 if (on) {
2238 enum pid_type type;
2239 struct pid *pid;
2240
2241 spin_lock_irqsave(&tty->ctrl_lock, flags);
2242 if (tty->pgrp) {
2243 pid = tty->pgrp;
2244 type = PIDTYPE_PGID;
2245 } else {
2246 pid = task_pid(current);
2247 type = PIDTYPE_PID;
2248 }
2249 get_pid(pid);
2250 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251 __f_setown(filp, pid, type, 0);
2252 put_pid(pid);
2253 retval = 0;
2254 }
2255out:
2256 return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261 struct tty_struct *tty = file_tty(filp);
2262 int retval = -ENOTTY;
2263
2264 tty_lock(tty);
2265 if (!tty_hung_up_p(filp))
2266 retval = __tty_fasync(fd, filp, on);
2267 tty_unlock(tty);
2268
2269 return retval;
2270}
2271
2272/**
2273 * tiocsti - fake input character
2274 * @tty: tty to fake input into
2275 * @p: pointer to character
2276 *
2277 * Fake input to a tty device. Does the necessary locking and
2278 * input management.
2279 *
2280 * FIXME: does not honour flow control ??
2281 *
2282 * Locking:
2283 * Called functions take tty_ldiscs_lock
2284 * current->signal->tty check is safe without locks
2285 *
2286 * FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291 char ch, mbz = 0;
2292 struct tty_ldisc *ld;
2293
2294 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295 return -EPERM;
2296 if (get_user(ch, p))
2297 return -EFAULT;
2298 tty_audit_tiocsti(tty, ch);
2299 ld = tty_ldisc_ref_wait(tty);
2300 if (!ld)
2301 return -EIO;
2302 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2303 tty_ldisc_deref(ld);
2304 return 0;
2305}
2306
2307/**
2308 * tiocgwinsz - implement window query ioctl
2309 * @tty; tty
2310 * @arg: user buffer for result
2311 *
2312 * Copies the kernel idea of the window size into the user buffer.
2313 *
2314 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 * is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320 int err;
2321
2322 mutex_lock(&tty->winsize_mutex);
2323 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324 mutex_unlock(&tty->winsize_mutex);
2325
2326 return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 * tty_do_resize - resize event
2331 * @tty: tty being resized
2332 * @rows: rows (character)
2333 * @cols: cols (character)
2334 *
2335 * Update the termios variables and send the necessary signals to
2336 * peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341 struct pid *pgrp;
2342
2343 /* Lock the tty */
2344 mutex_lock(&tty->winsize_mutex);
2345 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346 goto done;
2347
2348 /* Signal the foreground process group */
2349 pgrp = tty_get_pgrp(tty);
2350 if (pgrp)
2351 kill_pgrp(pgrp, SIGWINCH, 1);
2352 put_pid(pgrp);
2353
2354 tty->winsize = *ws;
2355done:
2356 mutex_unlock(&tty->winsize_mutex);
2357 return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 * tiocswinsz - implement window size set ioctl
2363 * @tty; tty side of tty
2364 * @arg: user buffer for result
2365 *
2366 * Copies the user idea of the window size to the kernel. Traditionally
2367 * this is just advisory information but for the Linux console it
2368 * actually has driver level meaning and triggers a VC resize.
2369 *
2370 * Locking:
2371 * Driver dependent. The default do_resize method takes the
2372 * tty termios mutex and ctrl_lock. The console takes its own lock
2373 * then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378 struct winsize tmp_ws;
2379 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380 return -EFAULT;
2381
2382 if (tty->ops->resize)
2383 return tty->ops->resize(tty, &tmp_ws);
2384 else
2385 return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 * tioccons - allow admin to move logical console
2390 * @file: the file to become console
2391 *
2392 * Allow the administrator to move the redirected console device
2393 *
2394 * Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399 if (!capable(CAP_SYS_ADMIN))
2400 return -EPERM;
2401 if (file->f_op->write == redirected_tty_write) {
2402 struct file *f;
2403 spin_lock(&redirect_lock);
2404 f = redirect;
2405 redirect = NULL;
2406 spin_unlock(&redirect_lock);
2407 if (f)
2408 fput(f);
2409 return 0;
2410 }
2411 spin_lock(&redirect_lock);
2412 if (redirect) {
2413 spin_unlock(&redirect_lock);
2414 return -EBUSY;
2415 }
2416 redirect = get_file(file);
2417 spin_unlock(&redirect_lock);
2418 return 0;
2419}
2420
2421/**
2422 * fionbio - non blocking ioctl
2423 * @file: file to set blocking value
2424 * @p: user parameter
2425 *
2426 * Historical tty interfaces had a blocking control ioctl before
2427 * the generic functionality existed. This piece of history is preserved
2428 * in the expected tty API of posix OS's.
2429 *
2430 * Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435 int nonblock;
2436
2437 if (get_user(nonblock, p))
2438 return -EFAULT;
2439
2440 spin_lock(&file->f_lock);
2441 if (nonblock)
2442 file->f_flags |= O_NONBLOCK;
2443 else
2444 file->f_flags &= ~O_NONBLOCK;
2445 spin_unlock(&file->f_lock);
2446 return 0;
2447}
2448
2449/**
2450 * tiocsctty - set controlling tty
2451 * @tty: tty structure
2452 * @arg: user argument
2453 *
2454 * This ioctl is used to manage job control. It permits a session
2455 * leader to set this tty as the controlling tty for the session.
2456 *
2457 * Locking:
2458 * Takes tty_lock() to serialize proc_set_tty() for this tty
2459 * Takes tasklist_lock internally to walk sessions
2460 * Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465 int ret = 0;
2466
2467 tty_lock(tty);
2468 read_lock(&tasklist_lock);
2469
2470 if (current->signal->leader && (task_session(current) == tty->session))
2471 goto unlock;
2472
2473 /*
2474 * The process must be a session leader and
2475 * not have a controlling tty already.
2476 */
2477 if (!current->signal->leader || current->signal->tty) {
2478 ret = -EPERM;
2479 goto unlock;
2480 }
2481
2482 if (tty->session) {
2483 /*
2484 * This tty is already the controlling
2485 * tty for another session group!
2486 */
2487 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488 /*
2489 * Steal it away
2490 */
2491 session_clear_tty(tty->session);
2492 } else {
2493 ret = -EPERM;
2494 goto unlock;
2495 }
2496 }
2497
2498 /* See the comment in tty_open(). */
2499 if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500 ret = -EPERM;
2501 goto unlock;
2502 }
2503
2504 proc_set_tty(tty);
2505unlock:
2506 read_unlock(&tasklist_lock);
2507 tty_unlock(tty);
2508 return ret;
2509}
2510
2511/**
2512 * tty_get_pgrp - return a ref counted pgrp pid
2513 * @tty: tty to read
2514 *
2515 * Returns a refcounted instance of the pid struct for the process
2516 * group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521 unsigned long flags;
2522 struct pid *pgrp;
2523
2524 spin_lock_irqsave(&tty->ctrl_lock, flags);
2525 pgrp = get_pid(tty->pgrp);
2526 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528 return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541 struct task_struct *p;
2542 struct pid *sid = NULL;
2543
2544 p = pid_task(pgrp, PIDTYPE_PGID);
2545 if (p == NULL)
2546 p = pid_task(pgrp, PIDTYPE_PID);
2547 if (p != NULL)
2548 sid = task_session(p);
2549
2550 return sid;
2551}
2552
2553/**
2554 * tiocgpgrp - get process group
2555 * @tty: tty passed by user
2556 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2557 * @p: returned pid
2558 *
2559 * Obtain the process group of the tty. If there is no process group
2560 * return an error.
2561 *
2562 * Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567 struct pid *pid;
2568 int ret;
2569 /*
2570 * (tty == real_tty) is a cheap way of
2571 * testing if the tty is NOT a master pty.
2572 */
2573 if (tty == real_tty && current->signal->tty != real_tty)
2574 return -ENOTTY;
2575 pid = tty_get_pgrp(real_tty);
2576 ret = put_user(pid_vnr(pid), p);
2577 put_pid(pid);
2578 return ret;
2579}
2580
2581/**
2582 * tiocspgrp - attempt to set process group
2583 * @tty: tty passed by user
2584 * @real_tty: tty side device matching tty passed by user
2585 * @p: pid pointer
2586 *
2587 * Set the process group of the tty to the session passed. Only
2588 * permitted where the tty session is our session.
2589 *
2590 * Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595 struct pid *pgrp;
2596 pid_t pgrp_nr;
2597 int retval = tty_check_change(real_tty);
2598
2599 if (retval == -EIO)
2600 return -ENOTTY;
2601 if (retval)
2602 return retval;
2603 if (!current->signal->tty ||
2604 (current->signal->tty != real_tty) ||
2605 (real_tty->session != task_session(current)))
2606 return -ENOTTY;
2607 if (get_user(pgrp_nr, p))
2608 return -EFAULT;
2609 if (pgrp_nr < 0)
2610 return -EINVAL;
2611 rcu_read_lock();
2612 pgrp = find_vpid(pgrp_nr);
2613 retval = -ESRCH;
2614 if (!pgrp)
2615 goto out_unlock;
2616 retval = -EPERM;
2617 if (session_of_pgrp(pgrp) != task_session(current))
2618 goto out_unlock;
2619 retval = 0;
2620 spin_lock_irq(&tty->ctrl_lock);
2621 put_pid(real_tty->pgrp);
2622 real_tty->pgrp = get_pid(pgrp);
2623 spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625 rcu_read_unlock();
2626 return retval;
2627}
2628
2629/**
2630 * tiocgsid - get session id
2631 * @tty: tty passed by user
2632 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2633 * @p: pointer to returned session id
2634 *
2635 * Obtain the session id of the tty. If there is no session
2636 * return an error.
2637 *
2638 * Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643 /*
2644 * (tty == real_tty) is a cheap way of
2645 * testing if the tty is NOT a master pty.
2646 */
2647 if (tty == real_tty && current->signal->tty != real_tty)
2648 return -ENOTTY;
2649 if (!real_tty->session)
2650 return -ENOTTY;
2651 return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 * tiocsetd - set line discipline
2656 * @tty: tty device
2657 * @p: pointer to user data
2658 *
2659 * Set the line discipline according to user request.
2660 *
2661 * Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666 int disc;
2667 int ret;
2668
2669 if (get_user(disc, p))
2670 return -EFAULT;
2671
2672 ret = tty_set_ldisc(tty, disc);
2673
2674 return ret;
2675}
2676
2677/**
2678 * tiocgetd - get line discipline
2679 * @tty: tty device
2680 * @p: pointer to user data
2681 *
2682 * Retrieves the line discipline id directly from the ldisc.
2683 *
2684 * Locking: waits for ldisc reference (in case the line discipline
2685 * is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690 struct tty_ldisc *ld;
2691 int ret;
2692
2693 ld = tty_ldisc_ref_wait(tty);
2694 if (!ld)
2695 return -EIO;
2696 ret = put_user(ld->ops->num, p);
2697 tty_ldisc_deref(ld);
2698 return ret;
2699}
2700
2701/**
2702 * send_break - performed time break
2703 * @tty: device to break on
2704 * @duration: timeout in mS
2705 *
2706 * Perform a timed break on hardware that lacks its own driver level
2707 * timed break functionality.
2708 *
2709 * Locking:
2710 * atomic_write_lock serializes
2711 *
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716 int retval;
2717
2718 if (tty->ops->break_ctl == NULL)
2719 return 0;
2720
2721 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722 retval = tty->ops->break_ctl(tty, duration);
2723 else {
2724 /* Do the work ourselves */
2725 if (tty_write_lock(tty, 0) < 0)
2726 return -EINTR;
2727 retval = tty->ops->break_ctl(tty, -1);
2728 if (retval)
2729 goto out;
2730 if (!signal_pending(current))
2731 msleep_interruptible(duration);
2732 retval = tty->ops->break_ctl(tty, 0);
2733out:
2734 tty_write_unlock(tty);
2735 if (signal_pending(current))
2736 retval = -EINTR;
2737 }
2738 return retval;
2739}
2740
2741/**
2742 * tty_tiocmget - get modem status
2743 * @tty: tty device
2744 * @file: user file pointer
2745 * @p: pointer to result
2746 *
2747 * Obtain the modem status bits from the tty driver if the feature
2748 * is supported. Return -EINVAL if it is not available.
2749 *
2750 * Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755 int retval = -EINVAL;
2756
2757 if (tty->ops->tiocmget) {
2758 retval = tty->ops->tiocmget(tty);
2759
2760 if (retval >= 0)
2761 retval = put_user(retval, p);
2762 }
2763 return retval;
2764}
2765
2766/**
2767 * tty_tiocmset - set modem status
2768 * @tty: tty device
2769 * @cmd: command - clear bits, set bits or set all
2770 * @p: pointer to desired bits
2771 *
2772 * Set the modem status bits from the tty driver if the feature
2773 * is supported. Return -EINVAL if it is not available.
2774 *
2775 * Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779 unsigned __user *p)
2780{
2781 int retval;
2782 unsigned int set, clear, val;
2783
2784 if (tty->ops->tiocmset == NULL)
2785 return -EINVAL;
2786
2787 retval = get_user(val, p);
2788 if (retval)
2789 return retval;
2790 set = clear = 0;
2791 switch (cmd) {
2792 case TIOCMBIS:
2793 set = val;
2794 break;
2795 case TIOCMBIC:
2796 clear = val;
2797 break;
2798 case TIOCMSET:
2799 set = val;
2800 clear = ~val;
2801 break;
2802 }
2803 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805 return tty->ops->tiocmset(tty, set, clear);
2806}
2807
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810 int retval = -EINVAL;
2811 struct serial_icounter_struct icount;
2812 memset(&icount, 0, sizeof(icount));
2813 if (tty->ops->get_icount)
2814 retval = tty->ops->get_icount(tty, &icount);
2815 if (retval != 0)
2816 return retval;
2817 if (copy_to_user(arg, &icount, sizeof(icount)))
2818 return -EFAULT;
2819 return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824 static DEFINE_RATELIMIT_STATE(depr_flags,
2825 DEFAULT_RATELIMIT_INTERVAL,
2826 DEFAULT_RATELIMIT_BURST);
2827 char comm[TASK_COMM_LEN];
2828 int flags;
2829
2830 if (get_user(flags, &ss->flags))
2831 return;
2832
2833 flags &= ASYNC_DEPRECATED;
2834
2835 if (flags && __ratelimit(&depr_flags))
2836 pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837 __func__, get_task_comm(comm, current), flags);
2838}
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847 tty->driver->subtype == PTY_TYPE_MASTER)
2848 tty = tty->link;
2849 return tty;
2850}
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857 struct tty_struct *tty = file_tty(file);
2858 struct tty_struct *real_tty;
2859 void __user *p = (void __user *)arg;
2860 int retval;
2861 struct tty_ldisc *ld;
2862
2863 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864 return -EINVAL;
2865
2866 real_tty = tty_pair_get_tty(tty);
2867
2868 /*
2869 * Factor out some common prep work
2870 */
2871 switch (cmd) {
2872 case TIOCSETD:
2873 case TIOCSBRK:
2874 case TIOCCBRK:
2875 case TCSBRK:
2876 case TCSBRKP:
2877 retval = tty_check_change(tty);
2878 if (retval)
2879 return retval;
2880 if (cmd != TIOCCBRK) {
2881 tty_wait_until_sent(tty, 0);
2882 if (signal_pending(current))
2883 return -EINTR;
2884 }
2885 break;
2886 }
2887
2888 /*
2889 * Now do the stuff.
2890 */
2891 switch (cmd) {
2892 case TIOCSTI:
2893 return tiocsti(tty, p);
2894 case TIOCGWINSZ:
2895 return tiocgwinsz(real_tty, p);
2896 case TIOCSWINSZ:
2897 return tiocswinsz(real_tty, p);
2898 case TIOCCONS:
2899 return real_tty != tty ? -EINVAL : tioccons(file);
2900 case FIONBIO:
2901 return fionbio(file, p);
2902 case TIOCEXCL:
2903 set_bit(TTY_EXCLUSIVE, &tty->flags);
2904 return 0;
2905 case TIOCNXCL:
2906 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907 return 0;
2908 case TIOCGEXCL:
2909 {
2910 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2911 return put_user(excl, (int __user *)p);
2912 }
2913 case TIOCNOTTY:
2914 if (current->signal->tty != tty)
2915 return -ENOTTY;
2916 no_tty();
2917 return 0;
2918 case TIOCSCTTY:
2919 return tiocsctty(real_tty, file, arg);
2920 case TIOCGPGRP:
2921 return tiocgpgrp(tty, real_tty, p);
2922 case TIOCSPGRP:
2923 return tiocspgrp(tty, real_tty, p);
2924 case TIOCGSID:
2925 return tiocgsid(tty, real_tty, p);
2926 case TIOCGETD:
2927 return tiocgetd(tty, p);
2928 case TIOCSETD:
2929 return tiocsetd(tty, p);
2930 case TIOCVHANGUP:
2931 if (!capable(CAP_SYS_ADMIN))
2932 return -EPERM;
2933 tty_vhangup(tty);
2934 return 0;
2935 case TIOCGDEV:
2936 {
2937 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2938 return put_user(ret, (unsigned int __user *)p);
2939 }
2940 /*
2941 * Break handling
2942 */
2943 case TIOCSBRK: /* Turn break on, unconditionally */
2944 if (tty->ops->break_ctl)
2945 return tty->ops->break_ctl(tty, -1);
2946 return 0;
2947 case TIOCCBRK: /* Turn break off, unconditionally */
2948 if (tty->ops->break_ctl)
2949 return tty->ops->break_ctl(tty, 0);
2950 return 0;
2951 case TCSBRK: /* SVID version: non-zero arg --> no break */
2952 /* non-zero arg means wait for all output data
2953 * to be sent (performed above) but don't send break.
2954 * This is used by the tcdrain() termios function.
2955 */
2956 if (!arg)
2957 return send_break(tty, 250);
2958 return 0;
2959 case TCSBRKP: /* support for POSIX tcsendbreak() */
2960 return send_break(tty, arg ? arg*100 : 250);
2961
2962 case TIOCMGET:
2963 return tty_tiocmget(tty, p);
2964 case TIOCMSET:
2965 case TIOCMBIC:
2966 case TIOCMBIS:
2967 return tty_tiocmset(tty, cmd, p);
2968 case TIOCGICOUNT:
2969 retval = tty_tiocgicount(tty, p);
2970 /* For the moment allow fall through to the old method */
2971 if (retval != -EINVAL)
2972 return retval;
2973 break;
2974 case TCFLSH:
2975 switch (arg) {
2976 case TCIFLUSH:
2977 case TCIOFLUSH:
2978 /* flush tty buffer and allow ldisc to process ioctl */
2979 tty_buffer_flush(tty, NULL);
2980 break;
2981 }
2982 break;
2983 case TIOCSSERIAL:
2984 tty_warn_deprecated_flags(p);
2985 break;
2986 }
2987 if (tty->ops->ioctl) {
2988 retval = tty->ops->ioctl(tty, cmd, arg);
2989 if (retval != -ENOIOCTLCMD)
2990 return retval;
2991 }
2992 ld = tty_ldisc_ref_wait(tty);
2993 if (!ld)
2994 return hung_up_tty_ioctl(file, cmd, arg);
2995 retval = -EINVAL;
2996 if (ld->ops->ioctl) {
2997 retval = ld->ops->ioctl(tty, file, cmd, arg);
2998 if (retval == -ENOIOCTLCMD)
2999 retval = -ENOTTY;
3000 }
3001 tty_ldisc_deref(ld);
3002 return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007 unsigned long arg)
3008{
3009 struct tty_struct *tty = file_tty(file);
3010 struct tty_ldisc *ld;
3011 int retval = -ENOIOCTLCMD;
3012
3013 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014 return -EINVAL;
3015
3016 if (tty->ops->compat_ioctl) {
3017 retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018 if (retval != -ENOIOCTLCMD)
3019 return retval;
3020 }
3021
3022 ld = tty_ldisc_ref_wait(tty);
3023 if (!ld)
3024 return hung_up_tty_compat_ioctl(file, cmd, arg);
3025 if (ld->ops->compat_ioctl)
3026 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027 else
3028 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
3029 tty_ldisc_deref(ld);
3030
3031 return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037 if (likely(file->f_op->read != tty_read))
3038 return 0;
3039 return file_tty(file) != t ? 0 : fd + 1;
3040}
3041
3042/*
3043 * This implements the "Secure Attention Key" --- the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key". Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal. But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context. This can
3059 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064 tty_hangup(tty);
3065#else
3066 struct task_struct *g, *p;
3067 struct pid *session;
3068 int i;
3069
3070 if (!tty)
3071 return;
3072 session = tty->session;
3073
3074 tty_ldisc_flush(tty);
3075
3076 tty_driver_flush_buffer(tty);
3077
3078 read_lock(&tasklist_lock);
3079 /* Kill the entire session */
3080 do_each_pid_task(session, PIDTYPE_SID, p) {
3081 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082 task_pid_nr(p), p->comm);
3083 send_sig(SIGKILL, p, 1);
3084 } while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086 /* Now kill any processes that happen to have the tty open */
3087 do_each_thread(g, p) {
3088 if (p->signal->tty == tty) {
3089 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090 task_pid_nr(p), p->comm);
3091 send_sig(SIGKILL, p, 1);
3092 continue;
3093 }
3094 task_lock(p);
3095 i = iterate_fd(p->files, 0, this_tty, tty);
3096 if (i != 0) {
3097 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098 task_pid_nr(p), p->comm, i - 1);
3099 force_sig(SIGKILL, p);
3100 }
3101 task_unlock(p);
3102 } while_each_thread(g, p);
3103 read_unlock(&tasklist_lock);
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109 struct tty_struct *tty =
3110 container_of(work, struct tty_struct, SAK_work);
3111 __do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122 if (!tty)
3123 return;
3124 schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131 const dev_t *devt = data;
3132 return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138 dev_t devt = tty_devnum(tty);
3139 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3140}
3141
3142
3143/**
3144 * alloc_tty_struct
3145 *
3146 * This subroutine allocates and initializes a tty structure.
3147 *
3148 * Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3152{
3153 struct tty_struct *tty;
3154
3155 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156 if (!tty)
3157 return NULL;
3158
3159 kref_init(&tty->kref);
3160 tty->magic = TTY_MAGIC;
3161 tty_ldisc_init(tty);
3162 tty->session = NULL;
3163 tty->pgrp = NULL;
3164 mutex_init(&tty->legacy_mutex);
3165 mutex_init(&tty->throttle_mutex);
3166 init_rwsem(&tty->termios_rwsem);
3167 mutex_init(&tty->winsize_mutex);
3168 init_ldsem(&tty->ldisc_sem);
3169 init_waitqueue_head(&tty->write_wait);
3170 init_waitqueue_head(&tty->read_wait);
3171 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172 mutex_init(&tty->atomic_write_lock);
3173 spin_lock_init(&tty->ctrl_lock);
3174 spin_lock_init(&tty->flow_lock);
3175 spin_lock_init(&tty->files_lock);
3176 INIT_LIST_HEAD(&tty->tty_files);
3177 INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179 tty->driver = driver;
3180 tty->ops = driver->ops;
3181 tty->index = idx;
3182 tty_line_name(driver, idx, tty->name);
3183 tty->dev = tty_get_device(tty);
3184
3185 return tty;
3186}
3187
3188/**
3189 * tty_put_char - write one character to a tty
3190 * @tty: tty
3191 * @ch: character
3192 *
3193 * Write one byte to the tty using the provided put_char method
3194 * if present. Returns the number of characters successfully output.
3195 *
3196 * Note: the specific put_char operation in the driver layer may go
3197 * away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202 if (tty->ops->put_char)
3203 return tty->ops->put_char(tty, ch);
3204 return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211 unsigned int index, unsigned int count)
3212{
3213 int err;
3214
3215 /* init here, since reused cdevs cause crashes */
3216 driver->cdevs[index] = cdev_alloc();
3217 if (!driver->cdevs[index])
3218 return -ENOMEM;
3219 driver->cdevs[index]->ops = &tty_fops;
3220 driver->cdevs[index]->owner = driver->owner;
3221 err = cdev_add(driver->cdevs[index], dev, count);
3222 if (err)
3223 kobject_put(&driver->cdevs[index]->kobj);
3224 return err;
3225}
3226
3227/**
3228 * tty_register_device - register a tty device
3229 * @driver: the tty driver that describes the tty device
3230 * @index: the index in the tty driver for this tty device
3231 * @device: a struct device that is associated with this tty device.
3232 * This field is optional, if there is no known struct device
3233 * for this tty device it can be set to NULL safely.
3234 *
3235 * Returns a pointer to the struct device for this tty device
3236 * (or ERR_PTR(-EFOO) on error).
3237 *
3238 * This call is required to be made to register an individual tty device
3239 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3240 * that bit is not set, this function should not be called by a tty
3241 * driver.
3242 *
3243 * Locking: ??
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247 struct device *device)
3248{
3249 return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255 dev_dbg(dev, "releasing...\n");
3256 kfree(dev);
3257}
3258
3259/**
3260 * tty_register_device_attr - register a tty device
3261 * @driver: the tty driver that describes the tty device
3262 * @index: the index in the tty driver for this tty device
3263 * @device: a struct device that is associated with this tty device.
3264 * This field is optional, if there is no known struct device
3265 * for this tty device it can be set to NULL safely.
3266 * @drvdata: Driver data to be set to device.
3267 * @attr_grp: Attribute group to be set on device.
3268 *
3269 * Returns a pointer to the struct device for this tty device
3270 * (or ERR_PTR(-EFOO) on error).
3271 *
3272 * This call is required to be made to register an individual tty device
3273 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3274 * that bit is not set, this function should not be called by a tty
3275 * driver.
3276 *
3277 * Locking: ??
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280 unsigned index, struct device *device,
3281 void *drvdata,
3282 const struct attribute_group **attr_grp)
3283{
3284 char name[64];
3285 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286 struct device *dev = NULL;
3287 int retval = -ENODEV;
3288 bool cdev = false;
3289
3290 if (index >= driver->num) {
3291 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292 driver->name, index);
3293 return ERR_PTR(-EINVAL);
3294 }
3295
3296 if (driver->type == TTY_DRIVER_TYPE_PTY)
3297 pty_line_name(driver, index, name);
3298 else
3299 tty_line_name(driver, index, name);
3300
3301 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302 retval = tty_cdev_add(driver, devt, index, 1);
3303 if (retval)
3304 goto error;
3305 cdev = true;
3306 }
3307
3308 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309 if (!dev) {
3310 retval = -ENOMEM;
3311 goto error;
3312 }
3313
3314 dev->devt = devt;
3315 dev->class = tty_class;
3316 dev->parent = device;
3317 dev->release = tty_device_create_release;
3318 dev_set_name(dev, "%s", name);
3319 dev->groups = attr_grp;
3320 dev_set_drvdata(dev, drvdata);
3321
3322 retval = device_register(dev);
3323 if (retval)
3324 goto error;
3325
3326 return dev;
3327
3328error:
3329 put_device(dev);
3330 if (cdev) {
3331 cdev_del(driver->cdevs[index]);
3332 driver->cdevs[index] = NULL;
3333 }
3334 return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * tty_unregister_device - unregister a tty device
3340 * @driver: the tty driver that describes the tty device
3341 * @index: the index in the tty driver for this tty device
3342 *
3343 * If a tty device is registered with a call to tty_register_device() then
3344 * this function must be called when the tty device is gone.
3345 *
3346 * Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351 device_destroy(tty_class,
3352 MKDEV(driver->major, driver->minor_start) + index);
3353 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354 cdev_del(driver->cdevs[index]);
3355 driver->cdevs[index] = NULL;
3356 }
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370 unsigned long flags)
3371{
3372 struct tty_driver *driver;
3373 unsigned int cdevs = 1;
3374 int err;
3375
3376 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377 return ERR_PTR(-EINVAL);
3378
3379 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380 if (!driver)
3381 return ERR_PTR(-ENOMEM);
3382
3383 kref_init(&driver->kref);
3384 driver->magic = TTY_DRIVER_MAGIC;
3385 driver->num = lines;
3386 driver->owner = owner;
3387 driver->flags = flags;
3388
3389 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391 GFP_KERNEL);
3392 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393 GFP_KERNEL);
3394 if (!driver->ttys || !driver->termios) {
3395 err = -ENOMEM;
3396 goto err_free_all;
3397 }
3398 }
3399
3400 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402 GFP_KERNEL);
3403 if (!driver->ports) {
3404 err = -ENOMEM;
3405 goto err_free_all;
3406 }
3407 cdevs = lines;
3408 }
3409
3410 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411 if (!driver->cdevs) {
3412 err = -ENOMEM;
3413 goto err_free_all;
3414 }
3415
3416 return driver;
3417err_free_all:
3418 kfree(driver->ports);
3419 kfree(driver->ttys);
3420 kfree(driver->termios);
3421 kfree(driver->cdevs);
3422 kfree(driver);
3423 return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430 int i;
3431 struct ktermios *tp;
3432
3433 if (driver->flags & TTY_DRIVER_INSTALLED) {
3434 /*
3435 * Free the termios and termios_locked structures because
3436 * we don't want to get memory leaks when modular tty
3437 * drivers are removed from the kernel.
3438 */
3439 for (i = 0; i < driver->num; i++) {
3440 tp = driver->termios[i];
3441 if (tp) {
3442 driver->termios[i] = NULL;
3443 kfree(tp);
3444 }
3445 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446 tty_unregister_device(driver, i);
3447 }
3448 proc_tty_unregister_driver(driver);
3449 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450 cdev_del(driver->cdevs[0]);
3451 }
3452 kfree(driver->cdevs);
3453 kfree(driver->ports);
3454 kfree(driver->termios);
3455 kfree(driver->ttys);
3456 kfree(driver);
3457}
3458
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461 kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466 const struct tty_operations *op)
3467{
3468 driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474 tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483 int error;
3484 int i;
3485 dev_t dev;
3486 struct device *d;
3487
3488 if (!driver->major) {
3489 error = alloc_chrdev_region(&dev, driver->minor_start,
3490 driver->num, driver->name);
3491 if (!error) {
3492 driver->major = MAJOR(dev);
3493 driver->minor_start = MINOR(dev);
3494 }
3495 } else {
3496 dev = MKDEV(driver->major, driver->minor_start);
3497 error = register_chrdev_region(dev, driver->num, driver->name);
3498 }
3499 if (error < 0)
3500 goto err;
3501
3502 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503 error = tty_cdev_add(driver, dev, 0, driver->num);
3504 if (error)
3505 goto err_unreg_char;
3506 }
3507
3508 mutex_lock(&tty_mutex);
3509 list_add(&driver->tty_drivers, &tty_drivers);
3510 mutex_unlock(&tty_mutex);
3511
3512 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513 for (i = 0; i < driver->num; i++) {
3514 d = tty_register_device(driver, i, NULL);
3515 if (IS_ERR(d)) {
3516 error = PTR_ERR(d);
3517 goto err_unreg_devs;
3518 }
3519 }
3520 }
3521 proc_tty_register_driver(driver);
3522 driver->flags |= TTY_DRIVER_INSTALLED;
3523 return 0;
3524
3525err_unreg_devs:
3526 for (i--; i >= 0; i--)
3527 tty_unregister_device(driver, i);
3528
3529 mutex_lock(&tty_mutex);
3530 list_del(&driver->tty_drivers);
3531 mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534 unregister_chrdev_region(dev, driver->num);
3535err:
3536 return error;
3537}
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546 /* FIXME */
3547 if (driver->refcount)
3548 return -EBUSY;
3549#endif
3550 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551 driver->num);
3552 mutex_lock(&tty_mutex);
3553 list_del(&driver->tty_drivers);
3554 mutex_unlock(&tty_mutex);
3555 return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
3566void tty_default_fops(struct file_operations *fops)
3567{
3568 *fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579 initcall_t *call;
3580
3581 /* Setup the default TTY line discipline. */
3582 n_tty_init();
3583
3584 /*
3585 * set up the console device so that later boot sequences can
3586 * inform about problems etc..
3587 */
3588 call = __con_initcall_start;
3589 while (call < __con_initcall_end) {
3590 (*call)();
3591 call++;
3592 }
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597 if (!mode)
3598 return NULL;
3599 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601 *mode = 0666;
3602 return NULL;
3603}
3604
3605static int __init tty_class_init(void)
3606{
3607 tty_class = class_create(THIS_MODULE, "tty");
3608 if (IS_ERR(tty_class))
3609 return PTR_ERR(tty_class);
3610 tty_class->devnode = tty_devnode;
3611 return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620 struct device_attribute *attr, char *buf)
3621{
3622 struct console *cs[16];
3623 int i = 0;
3624 struct console *c;
3625 ssize_t count = 0;
3626
3627 console_lock();
3628 for_each_console(c) {
3629 if (!c->device)
3630 continue;
3631 if (!c->write)
3632 continue;
3633 if ((c->flags & CON_ENABLED) == 0)
3634 continue;
3635 cs[i++] = c;
3636 if (i >= ARRAY_SIZE(cs))
3637 break;
3638 }
3639 while (i--) {
3640 int index = cs[i]->index;
3641 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643 /* don't resolve tty0 as some programs depend on it */
3644 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645 count += tty_line_name(drv, index, buf + count);
3646 else
3647 count += sprintf(buf + count, "%s%d",
3648 cs[i]->name, cs[i]->index);
3649
3650 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651 }
3652 console_unlock();
3653
3654 return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659 &dev_attr_active.attr,
3660 NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669 if (consdev)
3670 sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
3679 cdev_init(&tty_cdev, &tty_fops);
3680 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682 panic("Couldn't register /dev/tty driver\n");
3683 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685 cdev_init(&console_cdev, &console_fops);
3686 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688 panic("Couldn't register /dev/console driver\n");
3689 consdev = device_create_with_groups(tty_class, NULL,
3690 MKDEV(TTYAUX_MAJOR, 1), NULL,
3691 cons_dev_groups, "console");
3692 if (IS_ERR(consdev))
3693 consdev = NULL;
3694
3695#ifdef CONFIG_VT
3696 vty_init(&console_fops);
3697#endif
3698 return 0;
3699}
3700
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
4
5/*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
8 *
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
10 *
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
16 *
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
21 *
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
25 *
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
29 *
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
33 *
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
36 *
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
39 *
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
42 *
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
45 *
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
49 *
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
52 *
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
55 *
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
58 *
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
61 *
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
65 */
66
67#include <linux/types.h>
68#include <linux/major.h>
69#include <linux/errno.h>
70#include <linux/signal.h>
71#include <linux/fcntl.h>
72#include <linux/sched.h>
73#include <linux/interrupt.h>
74#include <linux/tty.h>
75#include <linux/tty_driver.h>
76#include <linux/tty_flip.h>
77#include <linux/devpts_fs.h>
78#include <linux/file.h>
79#include <linux/fdtable.h>
80#include <linux/console.h>
81#include <linux/timer.h>
82#include <linux/ctype.h>
83#include <linux/kd.h>
84#include <linux/mm.h>
85#include <linux/string.h>
86#include <linux/slab.h>
87#include <linux/poll.h>
88#include <linux/proc_fs.h>
89#include <linux/init.h>
90#include <linux/module.h>
91#include <linux/device.h>
92#include <linux/wait.h>
93#include <linux/bitops.h>
94#include <linux/delay.h>
95#include <linux/seq_file.h>
96#include <linux/serial.h>
97#include <linux/ratelimit.h>
98
99#include <linux/uaccess.h>
100
101#include <linux/kbd_kern.h>
102#include <linux/vt_kern.h>
103#include <linux/selection.h>
104
105#include <linux/kmod.h>
106#include <linux/nsproxy.h>
107
108#undef TTY_DEBUG_HANGUP
109
110#define TTY_PARANOIA_CHECK 1
111#define CHECK_TTY_COUNT 1
112
113struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
122};
123
124EXPORT_SYMBOL(tty_std_termios);
125
126/* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
129
130LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131
132/* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134DEFINE_MUTEX(tty_mutex);
135EXPORT_SYMBOL(tty_mutex);
136
137/* Spinlock to protect the tty->tty_files list */
138DEFINE_SPINLOCK(tty_files_lock);
139
140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144static unsigned int tty_poll(struct file *, poll_table *);
145static int tty_open(struct inode *, struct file *);
146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147#ifdef CONFIG_COMPAT
148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150#else
151#define tty_compat_ioctl NULL
152#endif
153static int __tty_fasync(int fd, struct file *filp, int on);
154static int tty_fasync(int fd, struct file *filp, int on);
155static void release_tty(struct tty_struct *tty, int idx);
156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
158
159/**
160 * alloc_tty_struct - allocate a tty object
161 *
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
164 *
165 * Locking: none
166 */
167
168struct tty_struct *alloc_tty_struct(void)
169{
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
171}
172
173/**
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
176 *
177 * Free the write buffers, tty queue and tty memory itself.
178 *
179 * Locking: none. Must be called after tty is definitely unused
180 */
181
182void free_tty_struct(struct tty_struct *tty)
183{
184 if (tty->dev)
185 put_device(tty->dev);
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
188 kfree(tty);
189}
190
191static inline struct tty_struct *file_tty(struct file *file)
192{
193 return ((struct tty_file_private *)file->private_data)->tty;
194}
195
196int tty_alloc_file(struct file *file)
197{
198 struct tty_file_private *priv;
199
200 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
201 if (!priv)
202 return -ENOMEM;
203
204 file->private_data = priv;
205
206 return 0;
207}
208
209/* Associate a new file with the tty structure */
210void tty_add_file(struct tty_struct *tty, struct file *file)
211{
212 struct tty_file_private *priv = file->private_data;
213
214 priv->tty = tty;
215 priv->file = file;
216
217 spin_lock(&tty_files_lock);
218 list_add(&priv->list, &tty->tty_files);
219 spin_unlock(&tty_files_lock);
220}
221
222/**
223 * tty_free_file - free file->private_data
224 *
225 * This shall be used only for fail path handling when tty_add_file was not
226 * called yet.
227 */
228void tty_free_file(struct file *file)
229{
230 struct tty_file_private *priv = file->private_data;
231
232 file->private_data = NULL;
233 kfree(priv);
234}
235
236/* Delete file from its tty */
237void tty_del_file(struct file *file)
238{
239 struct tty_file_private *priv = file->private_data;
240
241 spin_lock(&tty_files_lock);
242 list_del(&priv->list);
243 spin_unlock(&tty_files_lock);
244 tty_free_file(file);
245}
246
247
248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
249
250/**
251 * tty_name - return tty naming
252 * @tty: tty structure
253 * @buf: buffer for output
254 *
255 * Convert a tty structure into a name. The name reflects the kernel
256 * naming policy and if udev is in use may not reflect user space
257 *
258 * Locking: none
259 */
260
261char *tty_name(struct tty_struct *tty, char *buf)
262{
263 if (!tty) /* Hmm. NULL pointer. That's fun. */
264 strcpy(buf, "NULL tty");
265 else
266 strcpy(buf, tty->name);
267 return buf;
268}
269
270EXPORT_SYMBOL(tty_name);
271
272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
273 const char *routine)
274{
275#ifdef TTY_PARANOIA_CHECK
276 if (!tty) {
277 printk(KERN_WARNING
278 "null TTY for (%d:%d) in %s\n",
279 imajor(inode), iminor(inode), routine);
280 return 1;
281 }
282 if (tty->magic != TTY_MAGIC) {
283 printk(KERN_WARNING
284 "bad magic number for tty struct (%d:%d) in %s\n",
285 imajor(inode), iminor(inode), routine);
286 return 1;
287 }
288#endif
289 return 0;
290}
291
292static int check_tty_count(struct tty_struct *tty, const char *routine)
293{
294#ifdef CHECK_TTY_COUNT
295 struct list_head *p;
296 int count = 0;
297
298 spin_lock(&tty_files_lock);
299 list_for_each(p, &tty->tty_files) {
300 count++;
301 }
302 spin_unlock(&tty_files_lock);
303 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
304 tty->driver->subtype == PTY_TYPE_SLAVE &&
305 tty->link && tty->link->count)
306 count++;
307 if (tty->count != count) {
308 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
309 "!= #fd's(%d) in %s\n",
310 tty->name, tty->count, count, routine);
311 return count;
312 }
313#endif
314 return 0;
315}
316
317/**
318 * get_tty_driver - find device of a tty
319 * @dev_t: device identifier
320 * @index: returns the index of the tty
321 *
322 * This routine returns a tty driver structure, given a device number
323 * and also passes back the index number.
324 *
325 * Locking: caller must hold tty_mutex
326 */
327
328static struct tty_driver *get_tty_driver(dev_t device, int *index)
329{
330 struct tty_driver *p;
331
332 list_for_each_entry(p, &tty_drivers, tty_drivers) {
333 dev_t base = MKDEV(p->major, p->minor_start);
334 if (device < base || device >= base + p->num)
335 continue;
336 *index = device - base;
337 return tty_driver_kref_get(p);
338 }
339 return NULL;
340}
341
342#ifdef CONFIG_CONSOLE_POLL
343
344/**
345 * tty_find_polling_driver - find device of a polled tty
346 * @name: name string to match
347 * @line: pointer to resulting tty line nr
348 *
349 * This routine returns a tty driver structure, given a name
350 * and the condition that the tty driver is capable of polled
351 * operation.
352 */
353struct tty_driver *tty_find_polling_driver(char *name, int *line)
354{
355 struct tty_driver *p, *res = NULL;
356 int tty_line = 0;
357 int len;
358 char *str, *stp;
359
360 for (str = name; *str; str++)
361 if ((*str >= '0' && *str <= '9') || *str == ',')
362 break;
363 if (!*str)
364 return NULL;
365
366 len = str - name;
367 tty_line = simple_strtoul(str, &str, 10);
368
369 mutex_lock(&tty_mutex);
370 /* Search through the tty devices to look for a match */
371 list_for_each_entry(p, &tty_drivers, tty_drivers) {
372 if (strncmp(name, p->name, len) != 0)
373 continue;
374 stp = str;
375 if (*stp == ',')
376 stp++;
377 if (*stp == '\0')
378 stp = NULL;
379
380 if (tty_line >= 0 && tty_line < p->num && p->ops &&
381 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
382 res = tty_driver_kref_get(p);
383 *line = tty_line;
384 break;
385 }
386 }
387 mutex_unlock(&tty_mutex);
388
389 return res;
390}
391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
392#endif
393
394/**
395 * tty_check_change - check for POSIX terminal changes
396 * @tty: tty to check
397 *
398 * If we try to write to, or set the state of, a terminal and we're
399 * not in the foreground, send a SIGTTOU. If the signal is blocked or
400 * ignored, go ahead and perform the operation. (POSIX 7.2)
401 *
402 * Locking: ctrl_lock
403 */
404
405int tty_check_change(struct tty_struct *tty)
406{
407 unsigned long flags;
408 int ret = 0;
409
410 if (current->signal->tty != tty)
411 return 0;
412
413 spin_lock_irqsave(&tty->ctrl_lock, flags);
414
415 if (!tty->pgrp) {
416 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
417 goto out_unlock;
418 }
419 if (task_pgrp(current) == tty->pgrp)
420 goto out_unlock;
421 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
422 if (is_ignored(SIGTTOU))
423 goto out;
424 if (is_current_pgrp_orphaned()) {
425 ret = -EIO;
426 goto out;
427 }
428 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
429 set_thread_flag(TIF_SIGPENDING);
430 ret = -ERESTARTSYS;
431out:
432 return ret;
433out_unlock:
434 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
435 return ret;
436}
437
438EXPORT_SYMBOL(tty_check_change);
439
440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
441 size_t count, loff_t *ppos)
442{
443 return 0;
444}
445
446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
447 size_t count, loff_t *ppos)
448{
449 return -EIO;
450}
451
452/* No kernel lock held - none needed ;) */
453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
454{
455 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
456}
457
458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
459 unsigned long arg)
460{
461 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
462}
463
464static long hung_up_tty_compat_ioctl(struct file *file,
465 unsigned int cmd, unsigned long arg)
466{
467 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
468}
469
470static const struct file_operations tty_fops = {
471 .llseek = no_llseek,
472 .read = tty_read,
473 .write = tty_write,
474 .poll = tty_poll,
475 .unlocked_ioctl = tty_ioctl,
476 .compat_ioctl = tty_compat_ioctl,
477 .open = tty_open,
478 .release = tty_release,
479 .fasync = tty_fasync,
480};
481
482static const struct file_operations console_fops = {
483 .llseek = no_llseek,
484 .read = tty_read,
485 .write = redirected_tty_write,
486 .poll = tty_poll,
487 .unlocked_ioctl = tty_ioctl,
488 .compat_ioctl = tty_compat_ioctl,
489 .open = tty_open,
490 .release = tty_release,
491 .fasync = tty_fasync,
492};
493
494static const struct file_operations hung_up_tty_fops = {
495 .llseek = no_llseek,
496 .read = hung_up_tty_read,
497 .write = hung_up_tty_write,
498 .poll = hung_up_tty_poll,
499 .unlocked_ioctl = hung_up_tty_ioctl,
500 .compat_ioctl = hung_up_tty_compat_ioctl,
501 .release = tty_release,
502};
503
504static DEFINE_SPINLOCK(redirect_lock);
505static struct file *redirect;
506
507/**
508 * tty_wakeup - request more data
509 * @tty: terminal
510 *
511 * Internal and external helper for wakeups of tty. This function
512 * informs the line discipline if present that the driver is ready
513 * to receive more output data.
514 */
515
516void tty_wakeup(struct tty_struct *tty)
517{
518 struct tty_ldisc *ld;
519
520 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 ld = tty_ldisc_ref(tty);
522 if (ld) {
523 if (ld->ops->write_wakeup)
524 ld->ops->write_wakeup(tty);
525 tty_ldisc_deref(ld);
526 }
527 }
528 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
529}
530
531EXPORT_SYMBOL_GPL(tty_wakeup);
532
533/**
534 * __tty_hangup - actual handler for hangup events
535 * @work: tty device
536 *
537 * This can be called by the "eventd" kernel thread. That is process
538 * synchronous but doesn't hold any locks, so we need to make sure we
539 * have the appropriate locks for what we're doing.
540 *
541 * The hangup event clears any pending redirections onto the hung up
542 * device. It ensures future writes will error and it does the needed
543 * line discipline hangup and signal delivery. The tty object itself
544 * remains intact.
545 *
546 * Locking:
547 * BTM
548 * redirect lock for undoing redirection
549 * file list lock for manipulating list of ttys
550 * tty_ldisc_lock from called functions
551 * termios_mutex resetting termios data
552 * tasklist_lock to walk task list for hangup event
553 * ->siglock to protect ->signal/->sighand
554 */
555void __tty_hangup(struct tty_struct *tty)
556{
557 struct file *cons_filp = NULL;
558 struct file *filp, *f = NULL;
559 struct task_struct *p;
560 struct tty_file_private *priv;
561 int closecount = 0, n;
562 unsigned long flags;
563 int refs = 0;
564
565 if (!tty)
566 return;
567
568
569 spin_lock(&redirect_lock);
570 if (redirect && file_tty(redirect) == tty) {
571 f = redirect;
572 redirect = NULL;
573 }
574 spin_unlock(&redirect_lock);
575
576 tty_lock();
577
578 /* some functions below drop BTM, so we need this bit */
579 set_bit(TTY_HUPPING, &tty->flags);
580
581 /* inuse_filps is protected by the single tty lock,
582 this really needs to change if we want to flush the
583 workqueue with the lock held */
584 check_tty_count(tty, "tty_hangup");
585
586 spin_lock(&tty_files_lock);
587 /* This breaks for file handles being sent over AF_UNIX sockets ? */
588 list_for_each_entry(priv, &tty->tty_files, list) {
589 filp = priv->file;
590 if (filp->f_op->write == redirected_tty_write)
591 cons_filp = filp;
592 if (filp->f_op->write != tty_write)
593 continue;
594 closecount++;
595 __tty_fasync(-1, filp, 0); /* can't block */
596 filp->f_op = &hung_up_tty_fops;
597 }
598 spin_unlock(&tty_files_lock);
599
600 /*
601 * it drops BTM and thus races with reopen
602 * we protect the race by TTY_HUPPING
603 */
604 tty_ldisc_hangup(tty);
605
606 read_lock(&tasklist_lock);
607 if (tty->session) {
608 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
609 spin_lock_irq(&p->sighand->siglock);
610 if (p->signal->tty == tty) {
611 p->signal->tty = NULL;
612 /* We defer the dereferences outside fo
613 the tasklist lock */
614 refs++;
615 }
616 if (!p->signal->leader) {
617 spin_unlock_irq(&p->sighand->siglock);
618 continue;
619 }
620 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
621 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
622 put_pid(p->signal->tty_old_pgrp); /* A noop */
623 spin_lock_irqsave(&tty->ctrl_lock, flags);
624 if (tty->pgrp)
625 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
626 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
627 spin_unlock_irq(&p->sighand->siglock);
628 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
629 }
630 read_unlock(&tasklist_lock);
631
632 spin_lock_irqsave(&tty->ctrl_lock, flags);
633 clear_bit(TTY_THROTTLED, &tty->flags);
634 clear_bit(TTY_PUSH, &tty->flags);
635 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 put_pid(tty->session);
637 put_pid(tty->pgrp);
638 tty->session = NULL;
639 tty->pgrp = NULL;
640 tty->ctrl_status = 0;
641 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
642
643 /* Account for the p->signal references we killed */
644 while (refs--)
645 tty_kref_put(tty);
646
647 /*
648 * If one of the devices matches a console pointer, we
649 * cannot just call hangup() because that will cause
650 * tty->count and state->count to go out of sync.
651 * So we just call close() the right number of times.
652 */
653 if (cons_filp) {
654 if (tty->ops->close)
655 for (n = 0; n < closecount; n++)
656 tty->ops->close(tty, cons_filp);
657 } else if (tty->ops->hangup)
658 (tty->ops->hangup)(tty);
659 /*
660 * We don't want to have driver/ldisc interactions beyond
661 * the ones we did here. The driver layer expects no
662 * calls after ->hangup() from the ldisc side. However we
663 * can't yet guarantee all that.
664 */
665 set_bit(TTY_HUPPED, &tty->flags);
666 clear_bit(TTY_HUPPING, &tty->flags);
667 tty_ldisc_enable(tty);
668
669 tty_unlock();
670
671 if (f)
672 fput(f);
673}
674
675static void do_tty_hangup(struct work_struct *work)
676{
677 struct tty_struct *tty =
678 container_of(work, struct tty_struct, hangup_work);
679
680 __tty_hangup(tty);
681}
682
683/**
684 * tty_hangup - trigger a hangup event
685 * @tty: tty to hangup
686 *
687 * A carrier loss (virtual or otherwise) has occurred on this like
688 * schedule a hangup sequence to run after this event.
689 */
690
691void tty_hangup(struct tty_struct *tty)
692{
693#ifdef TTY_DEBUG_HANGUP
694 char buf[64];
695 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
696#endif
697 schedule_work(&tty->hangup_work);
698}
699
700EXPORT_SYMBOL(tty_hangup);
701
702/**
703 * tty_vhangup - process vhangup
704 * @tty: tty to hangup
705 *
706 * The user has asked via system call for the terminal to be hung up.
707 * We do this synchronously so that when the syscall returns the process
708 * is complete. That guarantee is necessary for security reasons.
709 */
710
711void tty_vhangup(struct tty_struct *tty)
712{
713#ifdef TTY_DEBUG_HANGUP
714 char buf[64];
715
716 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
717#endif
718 __tty_hangup(tty);
719}
720
721EXPORT_SYMBOL(tty_vhangup);
722
723
724/**
725 * tty_vhangup_self - process vhangup for own ctty
726 *
727 * Perform a vhangup on the current controlling tty
728 */
729
730void tty_vhangup_self(void)
731{
732 struct tty_struct *tty;
733
734 tty = get_current_tty();
735 if (tty) {
736 tty_vhangup(tty);
737 tty_kref_put(tty);
738 }
739}
740
741/**
742 * tty_hung_up_p - was tty hung up
743 * @filp: file pointer of tty
744 *
745 * Return true if the tty has been subject to a vhangup or a carrier
746 * loss
747 */
748
749int tty_hung_up_p(struct file *filp)
750{
751 return (filp->f_op == &hung_up_tty_fops);
752}
753
754EXPORT_SYMBOL(tty_hung_up_p);
755
756static void session_clear_tty(struct pid *session)
757{
758 struct task_struct *p;
759 do_each_pid_task(session, PIDTYPE_SID, p) {
760 proc_clear_tty(p);
761 } while_each_pid_task(session, PIDTYPE_SID, p);
762}
763
764/**
765 * disassociate_ctty - disconnect controlling tty
766 * @on_exit: true if exiting so need to "hang up" the session
767 *
768 * This function is typically called only by the session leader, when
769 * it wants to disassociate itself from its controlling tty.
770 *
771 * It performs the following functions:
772 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
773 * (2) Clears the tty from being controlling the session
774 * (3) Clears the controlling tty for all processes in the
775 * session group.
776 *
777 * The argument on_exit is set to 1 if called when a process is
778 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
779 *
780 * Locking:
781 * BTM is taken for hysterical raisins, and held when
782 * called from no_tty().
783 * tty_mutex is taken to protect tty
784 * ->siglock is taken to protect ->signal/->sighand
785 * tasklist_lock is taken to walk process list for sessions
786 * ->siglock is taken to protect ->signal/->sighand
787 */
788
789void disassociate_ctty(int on_exit)
790{
791 struct tty_struct *tty;
792
793 if (!current->signal->leader)
794 return;
795
796 tty = get_current_tty();
797 if (tty) {
798 struct pid *tty_pgrp = get_pid(tty->pgrp);
799 if (on_exit) {
800 if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
801 tty_vhangup(tty);
802 }
803 tty_kref_put(tty);
804 if (tty_pgrp) {
805 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
806 if (!on_exit)
807 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
808 put_pid(tty_pgrp);
809 }
810 } else if (on_exit) {
811 struct pid *old_pgrp;
812 spin_lock_irq(¤t->sighand->siglock);
813 old_pgrp = current->signal->tty_old_pgrp;
814 current->signal->tty_old_pgrp = NULL;
815 spin_unlock_irq(¤t->sighand->siglock);
816 if (old_pgrp) {
817 kill_pgrp(old_pgrp, SIGHUP, on_exit);
818 kill_pgrp(old_pgrp, SIGCONT, on_exit);
819 put_pid(old_pgrp);
820 }
821 return;
822 }
823
824 spin_lock_irq(¤t->sighand->siglock);
825 put_pid(current->signal->tty_old_pgrp);
826 current->signal->tty_old_pgrp = NULL;
827 spin_unlock_irq(¤t->sighand->siglock);
828
829 tty = get_current_tty();
830 if (tty) {
831 unsigned long flags;
832 spin_lock_irqsave(&tty->ctrl_lock, flags);
833 put_pid(tty->session);
834 put_pid(tty->pgrp);
835 tty->session = NULL;
836 tty->pgrp = NULL;
837 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
838 tty_kref_put(tty);
839 } else {
840#ifdef TTY_DEBUG_HANGUP
841 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
842 " = NULL", tty);
843#endif
844 }
845
846 /* Now clear signal->tty under the lock */
847 read_lock(&tasklist_lock);
848 session_clear_tty(task_session(current));
849 read_unlock(&tasklist_lock);
850}
851
852/**
853 *
854 * no_tty - Ensure the current process does not have a controlling tty
855 */
856void no_tty(void)
857{
858 /* FIXME: Review locking here. The tty_lock never covered any race
859 between a new association and proc_clear_tty but possible we need
860 to protect against this anyway */
861 struct task_struct *tsk = current;
862 disassociate_ctty(0);
863 proc_clear_tty(tsk);
864}
865
866
867/**
868 * stop_tty - propagate flow control
869 * @tty: tty to stop
870 *
871 * Perform flow control to the driver. For PTY/TTY pairs we
872 * must also propagate the TIOCKPKT status. May be called
873 * on an already stopped device and will not re-call the driver
874 * method.
875 *
876 * This functionality is used by both the line disciplines for
877 * halting incoming flow and by the driver. It may therefore be
878 * called from any context, may be under the tty atomic_write_lock
879 * but not always.
880 *
881 * Locking:
882 * Uses the tty control lock internally
883 */
884
885void stop_tty(struct tty_struct *tty)
886{
887 unsigned long flags;
888 spin_lock_irqsave(&tty->ctrl_lock, flags);
889 if (tty->stopped) {
890 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
891 return;
892 }
893 tty->stopped = 1;
894 if (tty->link && tty->link->packet) {
895 tty->ctrl_status &= ~TIOCPKT_START;
896 tty->ctrl_status |= TIOCPKT_STOP;
897 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
898 }
899 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
900 if (tty->ops->stop)
901 (tty->ops->stop)(tty);
902}
903
904EXPORT_SYMBOL(stop_tty);
905
906/**
907 * start_tty - propagate flow control
908 * @tty: tty to start
909 *
910 * Start a tty that has been stopped if at all possible. Perform
911 * any necessary wakeups and propagate the TIOCPKT status. If this
912 * is the tty was previous stopped and is being started then the
913 * driver start method is invoked and the line discipline woken.
914 *
915 * Locking:
916 * ctrl_lock
917 */
918
919void start_tty(struct tty_struct *tty)
920{
921 unsigned long flags;
922 spin_lock_irqsave(&tty->ctrl_lock, flags);
923 if (!tty->stopped || tty->flow_stopped) {
924 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
925 return;
926 }
927 tty->stopped = 0;
928 if (tty->link && tty->link->packet) {
929 tty->ctrl_status &= ~TIOCPKT_STOP;
930 tty->ctrl_status |= TIOCPKT_START;
931 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
932 }
933 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
934 if (tty->ops->start)
935 (tty->ops->start)(tty);
936 /* If we have a running line discipline it may need kicking */
937 tty_wakeup(tty);
938}
939
940EXPORT_SYMBOL(start_tty);
941
942/**
943 * tty_read - read method for tty device files
944 * @file: pointer to tty file
945 * @buf: user buffer
946 * @count: size of user buffer
947 * @ppos: unused
948 *
949 * Perform the read system call function on this terminal device. Checks
950 * for hung up devices before calling the line discipline method.
951 *
952 * Locking:
953 * Locks the line discipline internally while needed. Multiple
954 * read calls may be outstanding in parallel.
955 */
956
957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
958 loff_t *ppos)
959{
960 int i;
961 struct inode *inode = file->f_path.dentry->d_inode;
962 struct tty_struct *tty = file_tty(file);
963 struct tty_ldisc *ld;
964
965 if (tty_paranoia_check(tty, inode, "tty_read"))
966 return -EIO;
967 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
968 return -EIO;
969
970 /* We want to wait for the line discipline to sort out in this
971 situation */
972 ld = tty_ldisc_ref_wait(tty);
973 if (ld->ops->read)
974 i = (ld->ops->read)(tty, file, buf, count);
975 else
976 i = -EIO;
977 tty_ldisc_deref(ld);
978 if (i > 0)
979 inode->i_atime = current_fs_time(inode->i_sb);
980 return i;
981}
982
983void tty_write_unlock(struct tty_struct *tty)
984 __releases(&tty->atomic_write_lock)
985{
986 mutex_unlock(&tty->atomic_write_lock);
987 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
988}
989
990int tty_write_lock(struct tty_struct *tty, int ndelay)
991 __acquires(&tty->atomic_write_lock)
992{
993 if (!mutex_trylock(&tty->atomic_write_lock)) {
994 if (ndelay)
995 return -EAGAIN;
996 if (mutex_lock_interruptible(&tty->atomic_write_lock))
997 return -ERESTARTSYS;
998 }
999 return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008 struct tty_struct *tty,
1009 struct file *file,
1010 const char __user *buf,
1011 size_t count)
1012{
1013 ssize_t ret, written = 0;
1014 unsigned int chunk;
1015
1016 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017 if (ret < 0)
1018 return ret;
1019
1020 /*
1021 * We chunk up writes into a temporary buffer. This
1022 * simplifies low-level drivers immensely, since they
1023 * don't have locking issues and user mode accesses.
1024 *
1025 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026 * big chunk-size..
1027 *
1028 * The default chunk-size is 2kB, because the NTTY
1029 * layer has problems with bigger chunks. It will
1030 * claim to be able to handle more characters than
1031 * it actually does.
1032 *
1033 * FIXME: This can probably go away now except that 64K chunks
1034 * are too likely to fail unless switched to vmalloc...
1035 */
1036 chunk = 2048;
1037 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038 chunk = 65536;
1039 if (count < chunk)
1040 chunk = count;
1041
1042 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043 if (tty->write_cnt < chunk) {
1044 unsigned char *buf_chunk;
1045
1046 if (chunk < 1024)
1047 chunk = 1024;
1048
1049 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050 if (!buf_chunk) {
1051 ret = -ENOMEM;
1052 goto out;
1053 }
1054 kfree(tty->write_buf);
1055 tty->write_cnt = chunk;
1056 tty->write_buf = buf_chunk;
1057 }
1058
1059 /* Do the write .. */
1060 for (;;) {
1061 size_t size = count;
1062 if (size > chunk)
1063 size = chunk;
1064 ret = -EFAULT;
1065 if (copy_from_user(tty->write_buf, buf, size))
1066 break;
1067 ret = write(tty, file, tty->write_buf, size);
1068 if (ret <= 0)
1069 break;
1070 written += ret;
1071 buf += ret;
1072 count -= ret;
1073 if (!count)
1074 break;
1075 ret = -ERESTARTSYS;
1076 if (signal_pending(current))
1077 break;
1078 cond_resched();
1079 }
1080 if (written) {
1081 struct inode *inode = file->f_path.dentry->d_inode;
1082 inode->i_mtime = current_fs_time(inode->i_sb);
1083 ret = written;
1084 }
1085out:
1086 tty_write_unlock(tty);
1087 return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104 if (tty) {
1105 mutex_lock(&tty->atomic_write_lock);
1106 tty_lock();
1107 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108 tty_unlock();
1109 tty->ops->write(tty, msg, strlen(msg));
1110 } else
1111 tty_unlock();
1112 tty_write_unlock(tty);
1113 }
1114 return;
1115}
1116
1117
1118/**
1119 * tty_write - write method for tty device file
1120 * @file: tty file pointer
1121 * @buf: user data to write
1122 * @count: bytes to write
1123 * @ppos: unused
1124 *
1125 * Write data to a tty device via the line discipline.
1126 *
1127 * Locking:
1128 * Locks the line discipline as required
1129 * Writes to the tty driver are serialized by the atomic_write_lock
1130 * and are then processed in chunks to the device. The line discipline
1131 * write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135 size_t count, loff_t *ppos)
1136{
1137 struct inode *inode = file->f_path.dentry->d_inode;
1138 struct tty_struct *tty = file_tty(file);
1139 struct tty_ldisc *ld;
1140 ssize_t ret;
1141
1142 if (tty_paranoia_check(tty, inode, "tty_write"))
1143 return -EIO;
1144 if (!tty || !tty->ops->write ||
1145 (test_bit(TTY_IO_ERROR, &tty->flags)))
1146 return -EIO;
1147 /* Short term debug to catch buggy drivers */
1148 if (tty->ops->write_room == NULL)
1149 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150 tty->driver->name);
1151 ld = tty_ldisc_ref_wait(tty);
1152 if (!ld->ops->write)
1153 ret = -EIO;
1154 else
1155 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156 tty_ldisc_deref(ld);
1157 return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161 size_t count, loff_t *ppos)
1162{
1163 struct file *p = NULL;
1164
1165 spin_lock(&redirect_lock);
1166 if (redirect) {
1167 get_file(redirect);
1168 p = redirect;
1169 }
1170 spin_unlock(&redirect_lock);
1171
1172 if (p) {
1173 ssize_t res;
1174 res = vfs_write(p, buf, count, &p->f_pos);
1175 fput(p);
1176 return res;
1177 }
1178 return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
1182
1183/**
1184 * pty_line_name - generate name for a pty
1185 * @driver: the tty driver in use
1186 * @index: the minor number
1187 * @p: output buffer of at least 6 bytes
1188 *
1189 * Generate a name from a driver reference and write it to the output
1190 * buffer.
1191 *
1192 * Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
1196 int i = index + driver->name_base;
1197 /* ->name is initialized to "ttyp", but "tty" is expected */
1198 sprintf(p, "%s%c%x",
1199 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200 ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 * tty_line_name - generate name for a tty
1205 * @driver: the tty driver in use
1206 * @index: the minor number
1207 * @p: output buffer of at least 7 bytes
1208 *
1209 * Generate a name from a driver reference and write it to the output
1210 * buffer.
1211 *
1212 * Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1217}
1218
1219/**
1220 * tty_driver_lookup_tty() - find an existing tty, if any
1221 * @driver: the driver for the tty
1222 * @idx: the minor number
1223 *
1224 * Return the tty, if found or ERR_PTR() otherwise.
1225 *
1226 * Locking: tty_mutex must be held. If tty is found, the mutex must
1227 * be held until the 'fast-open' is also done. Will change once we
1228 * have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231 struct inode *inode, int idx)
1232{
1233 if (driver->ops->lookup)
1234 return driver->ops->lookup(driver, inode, idx);
1235
1236 return driver->ttys[idx];
1237}
1238
1239/**
1240 * tty_init_termios - helper for termios setup
1241 * @tty: the tty to set up
1242 *
1243 * Initialise the termios structures for this tty. Thus runs under
1244 * the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249 struct ktermios *tp;
1250 int idx = tty->index;
1251
1252 tp = tty->driver->termios[idx];
1253 if (tp == NULL) {
1254 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255 if (tp == NULL)
1256 return -ENOMEM;
1257 memcpy(tp, &tty->driver->init_termios,
1258 sizeof(struct ktermios));
1259 tty->driver->termios[idx] = tp;
1260 }
1261 tty->termios = tp;
1262 tty->termios_locked = tp + 1;
1263
1264 /* Compatibility until drivers always set this */
1265 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267 return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273 int ret = tty_init_termios(tty);
1274 if (ret)
1275 return ret;
1276
1277 tty_driver_kref_get(driver);
1278 tty->count++;
1279 driver->ttys[tty->index] = tty;
1280 return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 * tty_driver_install_tty() - install a tty entry in the driver
1286 * @driver: the driver for the tty
1287 * @tty: the tty
1288 *
1289 * Install a tty object into the driver tables. The tty->index field
1290 * will be set by the time this is called. This method is responsible
1291 * for ensuring any need additional structures are allocated and
1292 * configured.
1293 *
1294 * Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297 struct tty_struct *tty)
1298{
1299 return driver->ops->install ? driver->ops->install(driver, tty) :
1300 tty_standard_install(driver, tty);
1301}
1302
1303/**
1304 * tty_driver_remove_tty() - remove a tty from the driver tables
1305 * @driver: the driver for the tty
1306 * @idx: the minor number
1307 *
1308 * Remvoe a tty object from the driver tables. The tty->index field
1309 * will be set by the time this is called.
1310 *
1311 * Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315 if (driver->ops->remove)
1316 driver->ops->remove(driver, tty);
1317 else
1318 driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * tty_reopen() - fast re-open of an open tty
1323 * @tty - the tty to open
1324 *
1325 * Return 0 on success, -errno on error.
1326 *
1327 * Locking: tty_mutex must be held from the time the tty was found
1328 * till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332 struct tty_driver *driver = tty->driver;
1333
1334 if (test_bit(TTY_CLOSING, &tty->flags) ||
1335 test_bit(TTY_HUPPING, &tty->flags) ||
1336 test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337 return -EIO;
1338
1339 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340 driver->subtype == PTY_TYPE_MASTER) {
1341 /*
1342 * special case for PTY masters: only one open permitted,
1343 * and the slave side open count is incremented as well.
1344 */
1345 if (tty->count)
1346 return -EIO;
1347
1348 tty->link->count++;
1349 }
1350 tty->count++;
1351
1352 mutex_lock(&tty->ldisc_mutex);
1353 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354 mutex_unlock(&tty->ldisc_mutex);
1355
1356 return 0;
1357}
1358
1359/**
1360 * tty_init_dev - initialise a tty device
1361 * @driver: tty driver we are opening a device on
1362 * @idx: device index
1363 * @ret_tty: returned tty structure
1364 *
1365 * Prepare a tty device. This may not be a "new" clean device but
1366 * could also be an active device. The pty drivers require special
1367 * handling because of this.
1368 *
1369 * Locking:
1370 * The function is called under the tty_mutex, which
1371 * protects us from the tty struct or driver itself going away.
1372 *
1373 * On exit the tty device has the line discipline attached and
1374 * a reference count of 1. If a pair was created for pty/tty use
1375 * and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open. The new code protects the open with a mutex, so it's
1379 * really quite straightforward. The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384{
1385 struct tty_struct *tty;
1386 int retval;
1387
1388 /*
1389 * First time open is complex, especially for PTY devices.
1390 * This code guarantees that either everything succeeds and the
1391 * TTY is ready for operation, or else the table slots are vacated
1392 * and the allocated memory released. (Except that the termios
1393 * and locked termios may be retained.)
1394 */
1395
1396 if (!try_module_get(driver->owner))
1397 return ERR_PTR(-ENODEV);
1398
1399 tty = alloc_tty_struct();
1400 if (!tty) {
1401 retval = -ENOMEM;
1402 goto err_module_put;
1403 }
1404 initialize_tty_struct(tty, driver, idx);
1405
1406 retval = tty_driver_install_tty(driver, tty);
1407 if (retval < 0)
1408 goto err_deinit_tty;
1409
1410 /*
1411 * Structures all installed ... call the ldisc open routines.
1412 * If we fail here just call release_tty to clean up. No need
1413 * to decrement the use counts, as release_tty doesn't care.
1414 */
1415 retval = tty_ldisc_setup(tty, tty->link);
1416 if (retval)
1417 goto err_release_tty;
1418 return tty;
1419
1420err_deinit_tty:
1421 deinitialize_tty_struct(tty);
1422 free_tty_struct(tty);
1423err_module_put:
1424 module_put(driver->owner);
1425 return ERR_PTR(retval);
1426
1427 /* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
1429 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430 "clearing slot %d\n", idx);
1431 release_tty(tty, idx);
1432 return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
1436{
1437 struct ktermios *tp;
1438 int idx = tty->index;
1439 /* Kill this flag and push into drivers for locking etc */
1440 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441 /* FIXME: Locking on ->termios array */
1442 tp = tty->termios;
1443 tty->driver->termios[idx] = NULL;
1444 kfree(tp);
1445 }
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
1450{
1451 tty_driver_remove_tty(tty->driver, tty);
1452 tty_free_termios(tty);
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 * release_one_tty - release tty structure memory
1458 * @kref: kref of tty we are obliterating
1459 *
1460 * Releases memory associated with a tty structure, and clears out the
1461 * driver table slots. This function is called when a device is no longer
1462 * in use. It also gets called when setup of a device fails.
1463 *
1464 * Locking:
1465 * tty_mutex - sometimes only
1466 * takes the file list lock internally when working on the list
1467 * of ttys that the driver keeps.
1468 *
1469 * This method gets called from a work queue so that the driver private
1470 * cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474 struct tty_struct *tty =
1475 container_of(work, struct tty_struct, hangup_work);
1476 struct tty_driver *driver = tty->driver;
1477
1478 if (tty->ops->cleanup)
1479 tty->ops->cleanup(tty);
1480
1481 tty->magic = 0;
1482 tty_driver_kref_put(driver);
1483 module_put(driver->owner);
1484
1485 spin_lock(&tty_files_lock);
1486 list_del_init(&tty->tty_files);
1487 spin_unlock(&tty_files_lock);
1488
1489 put_pid(tty->pgrp);
1490 put_pid(tty->session);
1491 free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498 if (tty->ops->shutdown)
1499 tty->ops->shutdown(tty);
1500 else
1501 tty_shutdown(tty);
1502
1503 /* The hangup queue is now free so we can reuse it rather than
1504 waste a chunk of memory for each port */
1505 INIT_WORK(&tty->hangup_work, release_one_tty);
1506 schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 * tty_kref_put - release a tty kref
1511 * @tty: tty device
1512 *
1513 * Release a reference to a tty device and if need be let the kref
1514 * layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519 if (tty)
1520 kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 * release_tty - release tty structure memory
1526 *
1527 * Release both @tty and a possible linked partner (think pty pair),
1528 * and decrement the refcount of the backing module.
1529 *
1530 * Locking:
1531 * tty_mutex - sometimes only
1532 * takes the file list lock internally when working on the list
1533 * of ttys that the driver keeps.
1534 * FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539 /* This should always be true but check for the moment */
1540 WARN_ON(tty->index != idx);
1541
1542 if (tty->link)
1543 tty_kref_put(tty->link);
1544 tty_kref_put(tty);
1545}
1546
1547/**
1548 * tty_release_checks - check a tty before real release
1549 * @tty: tty to check
1550 * @o_tty: link of @tty (if any)
1551 * @idx: index of the tty
1552 *
1553 * Performs some paranoid checking before true release of the @tty.
1554 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557 int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560 if (idx < 0 || idx >= tty->driver->num) {
1561 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562 __func__, tty->name);
1563 return -1;
1564 }
1565
1566 /* not much to check for devpts */
1567 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568 return 0;
1569
1570 if (tty != tty->driver->ttys[idx]) {
1571 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572 __func__, idx, tty->name);
1573 return -1;
1574 }
1575 if (tty->termios != tty->driver->termios[idx]) {
1576 printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577 __func__, idx, tty->name);
1578 return -1;
1579 }
1580 if (tty->driver->other) {
1581 if (o_tty != tty->driver->other->ttys[idx]) {
1582 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583 __func__, idx, tty->name);
1584 return -1;
1585 }
1586 if (o_tty->termios != tty->driver->other->termios[idx]) {
1587 printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588 __func__, idx, tty->name);
1589 return -1;
1590 }
1591 if (o_tty->link != tty) {
1592 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593 return -1;
1594 }
1595 }
1596#endif
1597 return 0;
1598}
1599
1600/**
1601 * tty_release - vfs callback for close
1602 * @inode: inode of tty
1603 * @filp: file pointer for handle to tty
1604 *
1605 * Called the last time each file handle is closed that references
1606 * this tty. There may however be several such references.
1607 *
1608 * Locking:
1609 * Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621 struct tty_struct *tty = file_tty(filp);
1622 struct tty_struct *o_tty;
1623 int pty_master, tty_closing, o_tty_closing, do_sleep;
1624 int devpts;
1625 int idx;
1626 char buf[64];
1627
1628 if (tty_paranoia_check(tty, inode, __func__))
1629 return 0;
1630
1631 tty_lock();
1632 check_tty_count(tty, __func__);
1633
1634 __tty_fasync(-1, filp, 0);
1635
1636 idx = tty->index;
1637 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638 tty->driver->subtype == PTY_TYPE_MASTER);
1639 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640 o_tty = tty->link;
1641
1642 if (tty_release_checks(tty, o_tty, idx)) {
1643 tty_unlock();
1644 return 0;
1645 }
1646
1647#ifdef TTY_DEBUG_HANGUP
1648 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649 tty_name(tty, buf), tty->count);
1650#endif
1651
1652 if (tty->ops->close)
1653 tty->ops->close(tty, filp);
1654
1655 tty_unlock();
1656 /*
1657 * Sanity check: if tty->count is going to zero, there shouldn't be
1658 * any waiters on tty->read_wait or tty->write_wait. We test the
1659 * wait queues and kick everyone out _before_ actually starting to
1660 * close. This ensures that we won't block while releasing the tty
1661 * structure.
1662 *
1663 * The test for the o_tty closing is necessary, since the master and
1664 * slave sides may close in any order. If the slave side closes out
1665 * first, its count will be one, since the master side holds an open.
1666 * Thus this test wouldn't be triggered at the time the slave closes,
1667 * so we do it now.
1668 *
1669 * Note that it's possible for the tty to be opened again while we're
1670 * flushing out waiters. By recalculating the closing flags before
1671 * each iteration we avoid any problems.
1672 */
1673 while (1) {
1674 /* Guard against races with tty->count changes elsewhere and
1675 opens on /dev/tty */
1676
1677 mutex_lock(&tty_mutex);
1678 tty_lock();
1679 tty_closing = tty->count <= 1;
1680 o_tty_closing = o_tty &&
1681 (o_tty->count <= (pty_master ? 1 : 0));
1682 do_sleep = 0;
1683
1684 if (tty_closing) {
1685 if (waitqueue_active(&tty->read_wait)) {
1686 wake_up_poll(&tty->read_wait, POLLIN);
1687 do_sleep++;
1688 }
1689 if (waitqueue_active(&tty->write_wait)) {
1690 wake_up_poll(&tty->write_wait, POLLOUT);
1691 do_sleep++;
1692 }
1693 }
1694 if (o_tty_closing) {
1695 if (waitqueue_active(&o_tty->read_wait)) {
1696 wake_up_poll(&o_tty->read_wait, POLLIN);
1697 do_sleep++;
1698 }
1699 if (waitqueue_active(&o_tty->write_wait)) {
1700 wake_up_poll(&o_tty->write_wait, POLLOUT);
1701 do_sleep++;
1702 }
1703 }
1704 if (!do_sleep)
1705 break;
1706
1707 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708 __func__, tty_name(tty, buf));
1709 tty_unlock();
1710 mutex_unlock(&tty_mutex);
1711 schedule();
1712 }
1713
1714 /*
1715 * The closing flags are now consistent with the open counts on
1716 * both sides, and we've completed the last operation that could
1717 * block, so it's safe to proceed with closing.
1718 */
1719 if (pty_master) {
1720 if (--o_tty->count < 0) {
1721 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722 __func__, o_tty->count, tty_name(o_tty, buf));
1723 o_tty->count = 0;
1724 }
1725 }
1726 if (--tty->count < 0) {
1727 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728 __func__, tty->count, tty_name(tty, buf));
1729 tty->count = 0;
1730 }
1731
1732 /*
1733 * We've decremented tty->count, so we need to remove this file
1734 * descriptor off the tty->tty_files list; this serves two
1735 * purposes:
1736 * - check_tty_count sees the correct number of file descriptors
1737 * associated with this tty.
1738 * - do_tty_hangup no longer sees this file descriptor as
1739 * something that needs to be handled for hangups.
1740 */
1741 tty_del_file(filp);
1742
1743 /*
1744 * Perform some housekeeping before deciding whether to return.
1745 *
1746 * Set the TTY_CLOSING flag if this was the last open. In the
1747 * case of a pty we may have to wait around for the other side
1748 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749 */
1750 if (tty_closing)
1751 set_bit(TTY_CLOSING, &tty->flags);
1752 if (o_tty_closing)
1753 set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755 /*
1756 * If _either_ side is closing, make sure there aren't any
1757 * processes that still think tty or o_tty is their controlling
1758 * tty.
1759 */
1760 if (tty_closing || o_tty_closing) {
1761 read_lock(&tasklist_lock);
1762 session_clear_tty(tty->session);
1763 if (o_tty)
1764 session_clear_tty(o_tty->session);
1765 read_unlock(&tasklist_lock);
1766 }
1767
1768 mutex_unlock(&tty_mutex);
1769
1770 /* check whether both sides are closing ... */
1771 if (!tty_closing || (o_tty && !o_tty_closing)) {
1772 tty_unlock();
1773 return 0;
1774 }
1775
1776#ifdef TTY_DEBUG_HANGUP
1777 printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779 /*
1780 * Ask the line discipline code to release its structures
1781 */
1782 tty_ldisc_release(tty, o_tty);
1783 /*
1784 * The release_tty function takes care of the details of clearing
1785 * the slots and preserving the termios structure.
1786 */
1787 release_tty(tty, idx);
1788
1789 /* Make this pty number available for reallocation */
1790 if (devpts)
1791 devpts_kill_index(inode, idx);
1792 tty_unlock();
1793 return 0;
1794}
1795
1796/**
1797 * tty_open_current_tty - get tty of current task for open
1798 * @device: device number
1799 * @filp: file pointer to tty
1800 * @return: tty of the current task iff @device is /dev/tty
1801 *
1802 * We cannot return driver and index like for the other nodes because
1803 * devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 * We need to move to returning a refcounted object from all the lookup
1806 * paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810 struct tty_struct *tty;
1811
1812 if (device != MKDEV(TTYAUX_MAJOR, 0))
1813 return NULL;
1814
1815 tty = get_current_tty();
1816 if (!tty)
1817 return ERR_PTR(-ENXIO);
1818
1819 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820 /* noctty = 1; */
1821 tty_kref_put(tty);
1822 /* FIXME: we put a reference and return a TTY! */
1823 /* This is only safe because the caller holds tty_mutex */
1824 return tty;
1825}
1826
1827/**
1828 * tty_lookup_driver - lookup a tty driver for a given device file
1829 * @device: device number
1830 * @filp: file pointer to tty
1831 * @noctty: set if the device should not become a controlling tty
1832 * @index: index for the device in the @return driver
1833 * @return: driver for this inode (with increased refcount)
1834 *
1835 * If @return is not erroneous, the caller is responsible to decrement the
1836 * refcount by tty_driver_kref_put.
1837 *
1838 * Locking: tty_mutex protects get_tty_driver
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841 int *noctty, int *index)
1842{
1843 struct tty_driver *driver;
1844
1845 switch (device) {
1846#ifdef CONFIG_VT
1847 case MKDEV(TTY_MAJOR, 0): {
1848 extern struct tty_driver *console_driver;
1849 driver = tty_driver_kref_get(console_driver);
1850 *index = fg_console;
1851 *noctty = 1;
1852 break;
1853 }
1854#endif
1855 case MKDEV(TTYAUX_MAJOR, 1): {
1856 struct tty_driver *console_driver = console_device(index);
1857 if (console_driver) {
1858 driver = tty_driver_kref_get(console_driver);
1859 if (driver) {
1860 /* Don't let /dev/console block */
1861 filp->f_flags |= O_NONBLOCK;
1862 *noctty = 1;
1863 break;
1864 }
1865 }
1866 return ERR_PTR(-ENODEV);
1867 }
1868 default:
1869 driver = get_tty_driver(device, index);
1870 if (!driver)
1871 return ERR_PTR(-ENODEV);
1872 break;
1873 }
1874 return driver;
1875}
1876
1877/**
1878 * tty_open - open a tty device
1879 * @inode: inode of device file
1880 * @filp: file pointer to tty
1881 *
1882 * tty_open and tty_release keep up the tty count that contains the
1883 * number of opens done on a tty. We cannot use the inode-count, as
1884 * different inodes might point to the same tty.
1885 *
1886 * Open-counting is needed for pty masters, as well as for keeping
1887 * track of serial lines: DTR is dropped when the last close happens.
1888 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1889 *
1890 * The termios state of a pty is reset on first open so that
1891 * settings don't persist across reuse.
1892 *
1893 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 * tty->count should protect the rest.
1895 * ->siglock protects ->signal/->sighand
1896 */
1897
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900 struct tty_struct *tty;
1901 int noctty, retval;
1902 struct tty_driver *driver = NULL;
1903 int index;
1904 dev_t device = inode->i_rdev;
1905 unsigned saved_flags = filp->f_flags;
1906
1907 nonseekable_open(inode, filp);
1908
1909retry_open:
1910 retval = tty_alloc_file(filp);
1911 if (retval)
1912 return -ENOMEM;
1913
1914 noctty = filp->f_flags & O_NOCTTY;
1915 index = -1;
1916 retval = 0;
1917
1918 mutex_lock(&tty_mutex);
1919 tty_lock();
1920
1921 tty = tty_open_current_tty(device, filp);
1922 if (IS_ERR(tty)) {
1923 retval = PTR_ERR(tty);
1924 goto err_unlock;
1925 } else if (!tty) {
1926 driver = tty_lookup_driver(device, filp, &noctty, &index);
1927 if (IS_ERR(driver)) {
1928 retval = PTR_ERR(driver);
1929 goto err_unlock;
1930 }
1931
1932 /* check whether we're reopening an existing tty */
1933 tty = tty_driver_lookup_tty(driver, inode, index);
1934 if (IS_ERR(tty)) {
1935 retval = PTR_ERR(tty);
1936 goto err_unlock;
1937 }
1938 }
1939
1940 if (tty) {
1941 retval = tty_reopen(tty);
1942 if (retval)
1943 tty = ERR_PTR(retval);
1944 } else
1945 tty = tty_init_dev(driver, index);
1946
1947 mutex_unlock(&tty_mutex);
1948 if (driver)
1949 tty_driver_kref_put(driver);
1950 if (IS_ERR(tty)) {
1951 tty_unlock();
1952 retval = PTR_ERR(tty);
1953 goto err_file;
1954 }
1955
1956 tty_add_file(tty, filp);
1957
1958 check_tty_count(tty, __func__);
1959 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960 tty->driver->subtype == PTY_TYPE_MASTER)
1961 noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965 if (tty->ops->open)
1966 retval = tty->ops->open(tty, filp);
1967 else
1968 retval = -ENODEV;
1969 filp->f_flags = saved_flags;
1970
1971 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972 !capable(CAP_SYS_ADMIN))
1973 retval = -EBUSY;
1974
1975 if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978 retval, tty->name);
1979#endif
1980 tty_unlock(); /* need to call tty_release without BTM */
1981 tty_release(inode, filp);
1982 if (retval != -ERESTARTSYS)
1983 return retval;
1984
1985 if (signal_pending(current))
1986 return retval;
1987
1988 schedule();
1989 /*
1990 * Need to reset f_op in case a hangup happened.
1991 */
1992 tty_lock();
1993 if (filp->f_op == &hung_up_tty_fops)
1994 filp->f_op = &tty_fops;
1995 tty_unlock();
1996 goto retry_open;
1997 }
1998 tty_unlock();
1999
2000
2001 mutex_lock(&tty_mutex);
2002 tty_lock();
2003 spin_lock_irq(¤t->sighand->siglock);
2004 if (!noctty &&
2005 current->signal->leader &&
2006 !current->signal->tty &&
2007 tty->session == NULL)
2008 __proc_set_tty(current, tty);
2009 spin_unlock_irq(¤t->sighand->siglock);
2010 tty_unlock();
2011 mutex_unlock(&tty_mutex);
2012 return 0;
2013err_unlock:
2014 tty_unlock();
2015 mutex_unlock(&tty_mutex);
2016 /* after locks to avoid deadlock */
2017 if (!IS_ERR_OR_NULL(driver))
2018 tty_driver_kref_put(driver);
2019err_file:
2020 tty_free_file(filp);
2021 return retval;
2022}
2023
2024
2025
2026/**
2027 * tty_poll - check tty status
2028 * @filp: file being polled
2029 * @wait: poll wait structures to update
2030 *
2031 * Call the line discipline polling method to obtain the poll
2032 * status of the device.
2033 *
2034 * Locking: locks called line discipline but ldisc poll method
2035 * may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040 struct tty_struct *tty = file_tty(filp);
2041 struct tty_ldisc *ld;
2042 int ret = 0;
2043
2044 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045 return 0;
2046
2047 ld = tty_ldisc_ref_wait(tty);
2048 if (ld->ops->poll)
2049 ret = (ld->ops->poll)(tty, filp, wait);
2050 tty_ldisc_deref(ld);
2051 return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056 struct tty_struct *tty = file_tty(filp);
2057 unsigned long flags;
2058 int retval = 0;
2059
2060 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061 goto out;
2062
2063 retval = fasync_helper(fd, filp, on, &tty->fasync);
2064 if (retval <= 0)
2065 goto out;
2066
2067 if (on) {
2068 enum pid_type type;
2069 struct pid *pid;
2070 if (!waitqueue_active(&tty->read_wait))
2071 tty->minimum_to_wake = 1;
2072 spin_lock_irqsave(&tty->ctrl_lock, flags);
2073 if (tty->pgrp) {
2074 pid = tty->pgrp;
2075 type = PIDTYPE_PGID;
2076 } else {
2077 pid = task_pid(current);
2078 type = PIDTYPE_PID;
2079 }
2080 get_pid(pid);
2081 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082 retval = __f_setown(filp, pid, type, 0);
2083 put_pid(pid);
2084 if (retval)
2085 goto out;
2086 } else {
2087 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089 }
2090 retval = 0;
2091out:
2092 return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
2097 int retval;
2098 tty_lock();
2099 retval = __tty_fasync(fd, filp, on);
2100 tty_unlock();
2101 return retval;
2102}
2103
2104/**
2105 * tiocsti - fake input character
2106 * @tty: tty to fake input into
2107 * @p: pointer to character
2108 *
2109 * Fake input to a tty device. Does the necessary locking and
2110 * input management.
2111 *
2112 * FIXME: does not honour flow control ??
2113 *
2114 * Locking:
2115 * Called functions take tty_ldisc_lock
2116 * current->signal->tty check is safe without locks
2117 *
2118 * FIXME: may race normal receive processing
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123 char ch, mbz = 0;
2124 struct tty_ldisc *ld;
2125
2126 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127 return -EPERM;
2128 if (get_user(ch, p))
2129 return -EFAULT;
2130 tty_audit_tiocsti(tty, ch);
2131 ld = tty_ldisc_ref_wait(tty);
2132 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2133 tty_ldisc_deref(ld);
2134 return 0;
2135}
2136
2137/**
2138 * tiocgwinsz - implement window query ioctl
2139 * @tty; tty
2140 * @arg: user buffer for result
2141 *
2142 * Copies the kernel idea of the window size into the user buffer.
2143 *
2144 * Locking: tty->termios_mutex is taken to ensure the winsize data
2145 * is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150 int err;
2151
2152 mutex_lock(&tty->termios_mutex);
2153 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154 mutex_unlock(&tty->termios_mutex);
2155
2156 return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 * tty_do_resize - resize event
2161 * @tty: tty being resized
2162 * @rows: rows (character)
2163 * @cols: cols (character)
2164 *
2165 * Update the termios variables and send the necessary signals to
2166 * peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171 struct pid *pgrp;
2172 unsigned long flags;
2173
2174 /* Lock the tty */
2175 mutex_lock(&tty->termios_mutex);
2176 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177 goto done;
2178 /* Get the PID values and reference them so we can
2179 avoid holding the tty ctrl lock while sending signals */
2180 spin_lock_irqsave(&tty->ctrl_lock, flags);
2181 pgrp = get_pid(tty->pgrp);
2182 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
2184 if (pgrp)
2185 kill_pgrp(pgrp, SIGWINCH, 1);
2186 put_pid(pgrp);
2187
2188 tty->winsize = *ws;
2189done:
2190 mutex_unlock(&tty->termios_mutex);
2191 return 0;
2192}
2193
2194/**
2195 * tiocswinsz - implement window size set ioctl
2196 * @tty; tty side of tty
2197 * @arg: user buffer for result
2198 *
2199 * Copies the user idea of the window size to the kernel. Traditionally
2200 * this is just advisory information but for the Linux console it
2201 * actually has driver level meaning and triggers a VC resize.
2202 *
2203 * Locking:
2204 * Driver dependent. The default do_resize method takes the
2205 * tty termios mutex and ctrl_lock. The console takes its own lock
2206 * then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211 struct winsize tmp_ws;
2212 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213 return -EFAULT;
2214
2215 if (tty->ops->resize)
2216 return tty->ops->resize(tty, &tmp_ws);
2217 else
2218 return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 * tioccons - allow admin to move logical console
2223 * @file: the file to become console
2224 *
2225 * Allow the administrator to move the redirected console device
2226 *
2227 * Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232 if (!capable(CAP_SYS_ADMIN))
2233 return -EPERM;
2234 if (file->f_op->write == redirected_tty_write) {
2235 struct file *f;
2236 spin_lock(&redirect_lock);
2237 f = redirect;
2238 redirect = NULL;
2239 spin_unlock(&redirect_lock);
2240 if (f)
2241 fput(f);
2242 return 0;
2243 }
2244 spin_lock(&redirect_lock);
2245 if (redirect) {
2246 spin_unlock(&redirect_lock);
2247 return -EBUSY;
2248 }
2249 get_file(file);
2250 redirect = file;
2251 spin_unlock(&redirect_lock);
2252 return 0;
2253}
2254
2255/**
2256 * fionbio - non blocking ioctl
2257 * @file: file to set blocking value
2258 * @p: user parameter
2259 *
2260 * Historical tty interfaces had a blocking control ioctl before
2261 * the generic functionality existed. This piece of history is preserved
2262 * in the expected tty API of posix OS's.
2263 *
2264 * Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269 int nonblock;
2270
2271 if (get_user(nonblock, p))
2272 return -EFAULT;
2273
2274 spin_lock(&file->f_lock);
2275 if (nonblock)
2276 file->f_flags |= O_NONBLOCK;
2277 else
2278 file->f_flags &= ~O_NONBLOCK;
2279 spin_unlock(&file->f_lock);
2280 return 0;
2281}
2282
2283/**
2284 * tiocsctty - set controlling tty
2285 * @tty: tty structure
2286 * @arg: user argument
2287 *
2288 * This ioctl is used to manage job control. It permits a session
2289 * leader to set this tty as the controlling tty for the session.
2290 *
2291 * Locking:
2292 * Takes tty_mutex() to protect tty instance
2293 * Takes tasklist_lock internally to walk sessions
2294 * Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299 int ret = 0;
2300 if (current->signal->leader && (task_session(current) == tty->session))
2301 return ret;
2302
2303 mutex_lock(&tty_mutex);
2304 /*
2305 * The process must be a session leader and
2306 * not have a controlling tty already.
2307 */
2308 if (!current->signal->leader || current->signal->tty) {
2309 ret = -EPERM;
2310 goto unlock;
2311 }
2312
2313 if (tty->session) {
2314 /*
2315 * This tty is already the controlling
2316 * tty for another session group!
2317 */
2318 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319 /*
2320 * Steal it away
2321 */
2322 read_lock(&tasklist_lock);
2323 session_clear_tty(tty->session);
2324 read_unlock(&tasklist_lock);
2325 } else {
2326 ret = -EPERM;
2327 goto unlock;
2328 }
2329 }
2330 proc_set_tty(current, tty);
2331unlock:
2332 mutex_unlock(&tty_mutex);
2333 return ret;
2334}
2335
2336/**
2337 * tty_get_pgrp - return a ref counted pgrp pid
2338 * @tty: tty to read
2339 *
2340 * Returns a refcounted instance of the pid struct for the process
2341 * group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346 unsigned long flags;
2347 struct pid *pgrp;
2348
2349 spin_lock_irqsave(&tty->ctrl_lock, flags);
2350 pgrp = get_pid(tty->pgrp);
2351 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353 return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 * tiocgpgrp - get process group
2359 * @tty: tty passed by user
2360 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2361 * @p: returned pid
2362 *
2363 * Obtain the process group of the tty. If there is no process group
2364 * return an error.
2365 *
2366 * Locking: none. Reference to current->signal->tty is safe.
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371 struct pid *pid;
2372 int ret;
2373 /*
2374 * (tty == real_tty) is a cheap way of
2375 * testing if the tty is NOT a master pty.
2376 */
2377 if (tty == real_tty && current->signal->tty != real_tty)
2378 return -ENOTTY;
2379 pid = tty_get_pgrp(real_tty);
2380 ret = put_user(pid_vnr(pid), p);
2381 put_pid(pid);
2382 return ret;
2383}
2384
2385/**
2386 * tiocspgrp - attempt to set process group
2387 * @tty: tty passed by user
2388 * @real_tty: tty side device matching tty passed by user
2389 * @p: pid pointer
2390 *
2391 * Set the process group of the tty to the session passed. Only
2392 * permitted where the tty session is our session.
2393 *
2394 * Locking: RCU, ctrl lock
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399 struct pid *pgrp;
2400 pid_t pgrp_nr;
2401 int retval = tty_check_change(real_tty);
2402 unsigned long flags;
2403
2404 if (retval == -EIO)
2405 return -ENOTTY;
2406 if (retval)
2407 return retval;
2408 if (!current->signal->tty ||
2409 (current->signal->tty != real_tty) ||
2410 (real_tty->session != task_session(current)))
2411 return -ENOTTY;
2412 if (get_user(pgrp_nr, p))
2413 return -EFAULT;
2414 if (pgrp_nr < 0)
2415 return -EINVAL;
2416 rcu_read_lock();
2417 pgrp = find_vpid(pgrp_nr);
2418 retval = -ESRCH;
2419 if (!pgrp)
2420 goto out_unlock;
2421 retval = -EPERM;
2422 if (session_of_pgrp(pgrp) != task_session(current))
2423 goto out_unlock;
2424 retval = 0;
2425 spin_lock_irqsave(&tty->ctrl_lock, flags);
2426 put_pid(real_tty->pgrp);
2427 real_tty->pgrp = get_pid(pgrp);
2428 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430 rcu_read_unlock();
2431 return retval;
2432}
2433
2434/**
2435 * tiocgsid - get session id
2436 * @tty: tty passed by user
2437 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2438 * @p: pointer to returned session id
2439 *
2440 * Obtain the session id of the tty. If there is no session
2441 * return an error.
2442 *
2443 * Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448 /*
2449 * (tty == real_tty) is a cheap way of
2450 * testing if the tty is NOT a master pty.
2451 */
2452 if (tty == real_tty && current->signal->tty != real_tty)
2453 return -ENOTTY;
2454 if (!real_tty->session)
2455 return -ENOTTY;
2456 return put_user(pid_vnr(real_tty->session), p);
2457}
2458
2459/**
2460 * tiocsetd - set line discipline
2461 * @tty: tty device
2462 * @p: pointer to user data
2463 *
2464 * Set the line discipline according to user request.
2465 *
2466 * Locking: see tty_set_ldisc, this function is just a helper
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471 int ldisc;
2472 int ret;
2473
2474 if (get_user(ldisc, p))
2475 return -EFAULT;
2476
2477 ret = tty_set_ldisc(tty, ldisc);
2478
2479 return ret;
2480}
2481
2482/**
2483 * send_break - performed time break
2484 * @tty: device to break on
2485 * @duration: timeout in mS
2486 *
2487 * Perform a timed break on hardware that lacks its own driver level
2488 * timed break functionality.
2489 *
2490 * Locking:
2491 * atomic_write_lock serializes
2492 *
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497 int retval;
2498
2499 if (tty->ops->break_ctl == NULL)
2500 return 0;
2501
2502 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503 retval = tty->ops->break_ctl(tty, duration);
2504 else {
2505 /* Do the work ourselves */
2506 if (tty_write_lock(tty, 0) < 0)
2507 return -EINTR;
2508 retval = tty->ops->break_ctl(tty, -1);
2509 if (retval)
2510 goto out;
2511 if (!signal_pending(current))
2512 msleep_interruptible(duration);
2513 retval = tty->ops->break_ctl(tty, 0);
2514out:
2515 tty_write_unlock(tty);
2516 if (signal_pending(current))
2517 retval = -EINTR;
2518 }
2519 return retval;
2520}
2521
2522/**
2523 * tty_tiocmget - get modem status
2524 * @tty: tty device
2525 * @file: user file pointer
2526 * @p: pointer to result
2527 *
2528 * Obtain the modem status bits from the tty driver if the feature
2529 * is supported. Return -EINVAL if it is not available.
2530 *
2531 * Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536 int retval = -EINVAL;
2537
2538 if (tty->ops->tiocmget) {
2539 retval = tty->ops->tiocmget(tty);
2540
2541 if (retval >= 0)
2542 retval = put_user(retval, p);
2543 }
2544 return retval;
2545}
2546
2547/**
2548 * tty_tiocmset - set modem status
2549 * @tty: tty device
2550 * @cmd: command - clear bits, set bits or set all
2551 * @p: pointer to desired bits
2552 *
2553 * Set the modem status bits from the tty driver if the feature
2554 * is supported. Return -EINVAL if it is not available.
2555 *
2556 * Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560 unsigned __user *p)
2561{
2562 int retval;
2563 unsigned int set, clear, val;
2564
2565 if (tty->ops->tiocmset == NULL)
2566 return -EINVAL;
2567
2568 retval = get_user(val, p);
2569 if (retval)
2570 return retval;
2571 set = clear = 0;
2572 switch (cmd) {
2573 case TIOCMBIS:
2574 set = val;
2575 break;
2576 case TIOCMBIC:
2577 clear = val;
2578 break;
2579 case TIOCMSET:
2580 set = val;
2581 clear = ~val;
2582 break;
2583 }
2584 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586 return tty->ops->tiocmset(tty, set, clear);
2587}
2588
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591 int retval = -EINVAL;
2592 struct serial_icounter_struct icount;
2593 memset(&icount, 0, sizeof(icount));
2594 if (tty->ops->get_icount)
2595 retval = tty->ops->get_icount(tty, &icount);
2596 if (retval != 0)
2597 return retval;
2598 if (copy_to_user(arg, &icount, sizeof(icount)))
2599 return -EFAULT;
2600 return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604{
2605 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606 tty->driver->subtype == PTY_TYPE_MASTER)
2607 tty = tty->link;
2608 return tty;
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2613{
2614 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615 tty->driver->subtype == PTY_TYPE_MASTER)
2616 return tty;
2617 return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626 struct tty_struct *tty = file_tty(file);
2627 struct tty_struct *real_tty;
2628 void __user *p = (void __user *)arg;
2629 int retval;
2630 struct tty_ldisc *ld;
2631 struct inode *inode = file->f_dentry->d_inode;
2632
2633 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634 return -EINVAL;
2635
2636 real_tty = tty_pair_get_tty(tty);
2637
2638 /*
2639 * Factor out some common prep work
2640 */
2641 switch (cmd) {
2642 case TIOCSETD:
2643 case TIOCSBRK:
2644 case TIOCCBRK:
2645 case TCSBRK:
2646 case TCSBRKP:
2647 retval = tty_check_change(tty);
2648 if (retval)
2649 return retval;
2650 if (cmd != TIOCCBRK) {
2651 tty_wait_until_sent(tty, 0);
2652 if (signal_pending(current))
2653 return -EINTR;
2654 }
2655 break;
2656 }
2657
2658 /*
2659 * Now do the stuff.
2660 */
2661 switch (cmd) {
2662 case TIOCSTI:
2663 return tiocsti(tty, p);
2664 case TIOCGWINSZ:
2665 return tiocgwinsz(real_tty, p);
2666 case TIOCSWINSZ:
2667 return tiocswinsz(real_tty, p);
2668 case TIOCCONS:
2669 return real_tty != tty ? -EINVAL : tioccons(file);
2670 case FIONBIO:
2671 return fionbio(file, p);
2672 case TIOCEXCL:
2673 set_bit(TTY_EXCLUSIVE, &tty->flags);
2674 return 0;
2675 case TIOCNXCL:
2676 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677 return 0;
2678 case TIOCNOTTY:
2679 if (current->signal->tty != tty)
2680 return -ENOTTY;
2681 no_tty();
2682 return 0;
2683 case TIOCSCTTY:
2684 return tiocsctty(tty, arg);
2685 case TIOCGPGRP:
2686 return tiocgpgrp(tty, real_tty, p);
2687 case TIOCSPGRP:
2688 return tiocspgrp(tty, real_tty, p);
2689 case TIOCGSID:
2690 return tiocgsid(tty, real_tty, p);
2691 case TIOCGETD:
2692 return put_user(tty->ldisc->ops->num, (int __user *)p);
2693 case TIOCSETD:
2694 return tiocsetd(tty, p);
2695 case TIOCVHANGUP:
2696 if (!capable(CAP_SYS_ADMIN))
2697 return -EPERM;
2698 tty_vhangup(tty);
2699 return 0;
2700 case TIOCGDEV:
2701 {
2702 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2703 return put_user(ret, (unsigned int __user *)p);
2704 }
2705 /*
2706 * Break handling
2707 */
2708 case TIOCSBRK: /* Turn break on, unconditionally */
2709 if (tty->ops->break_ctl)
2710 return tty->ops->break_ctl(tty, -1);
2711 return 0;
2712 case TIOCCBRK: /* Turn break off, unconditionally */
2713 if (tty->ops->break_ctl)
2714 return tty->ops->break_ctl(tty, 0);
2715 return 0;
2716 case TCSBRK: /* SVID version: non-zero arg --> no break */
2717 /* non-zero arg means wait for all output data
2718 * to be sent (performed above) but don't send break.
2719 * This is used by the tcdrain() termios function.
2720 */
2721 if (!arg)
2722 return send_break(tty, 250);
2723 return 0;
2724 case TCSBRKP: /* support for POSIX tcsendbreak() */
2725 return send_break(tty, arg ? arg*100 : 250);
2726
2727 case TIOCMGET:
2728 return tty_tiocmget(tty, p);
2729 case TIOCMSET:
2730 case TIOCMBIC:
2731 case TIOCMBIS:
2732 return tty_tiocmset(tty, cmd, p);
2733 case TIOCGICOUNT:
2734 retval = tty_tiocgicount(tty, p);
2735 /* For the moment allow fall through to the old method */
2736 if (retval != -EINVAL)
2737 return retval;
2738 break;
2739 case TCFLSH:
2740 switch (arg) {
2741 case TCIFLUSH:
2742 case TCIOFLUSH:
2743 /* flush tty buffer and allow ldisc to process ioctl */
2744 tty_buffer_flush(tty);
2745 break;
2746 }
2747 break;
2748 }
2749 if (tty->ops->ioctl) {
2750 retval = (tty->ops->ioctl)(tty, cmd, arg);
2751 if (retval != -ENOIOCTLCMD)
2752 return retval;
2753 }
2754 ld = tty_ldisc_ref_wait(tty);
2755 retval = -EINVAL;
2756 if (ld->ops->ioctl) {
2757 retval = ld->ops->ioctl(tty, file, cmd, arg);
2758 if (retval == -ENOIOCTLCMD)
2759 retval = -EINVAL;
2760 }
2761 tty_ldisc_deref(ld);
2762 return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767 unsigned long arg)
2768{
2769 struct inode *inode = file->f_dentry->d_inode;
2770 struct tty_struct *tty = file_tty(file);
2771 struct tty_ldisc *ld;
2772 int retval = -ENOIOCTLCMD;
2773
2774 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2775 return -EINVAL;
2776
2777 if (tty->ops->compat_ioctl) {
2778 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779 if (retval != -ENOIOCTLCMD)
2780 return retval;
2781 }
2782
2783 ld = tty_ldisc_ref_wait(tty);
2784 if (ld->ops->compat_ioctl)
2785 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786 else
2787 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2788 tty_ldisc_deref(ld);
2789
2790 return retval;
2791}
2792#endif
2793
2794/*
2795 * This implements the "Secure Attention Key" --- the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key". Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal. But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context. This can
2811 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816 tty_hangup(tty);
2817#else
2818 struct task_struct *g, *p;
2819 struct pid *session;
2820 int i;
2821 struct file *filp;
2822 struct fdtable *fdt;
2823
2824 if (!tty)
2825 return;
2826 session = tty->session;
2827
2828 tty_ldisc_flush(tty);
2829
2830 tty_driver_flush_buffer(tty);
2831
2832 read_lock(&tasklist_lock);
2833 /* Kill the entire session */
2834 do_each_pid_task(session, PIDTYPE_SID, p) {
2835 printk(KERN_NOTICE "SAK: killed process %d"
2836 " (%s): task_session(p)==tty->session\n",
2837 task_pid_nr(p), p->comm);
2838 send_sig(SIGKILL, p, 1);
2839 } while_each_pid_task(session, PIDTYPE_SID, p);
2840 /* Now kill any processes that happen to have the
2841 * tty open.
2842 */
2843 do_each_thread(g, p) {
2844 if (p->signal->tty == tty) {
2845 printk(KERN_NOTICE "SAK: killed process %d"
2846 " (%s): task_session(p)==tty->session\n",
2847 task_pid_nr(p), p->comm);
2848 send_sig(SIGKILL, p, 1);
2849 continue;
2850 }
2851 task_lock(p);
2852 if (p->files) {
2853 /*
2854 * We don't take a ref to the file, so we must
2855 * hold ->file_lock instead.
2856 */
2857 spin_lock(&p->files->file_lock);
2858 fdt = files_fdtable(p->files);
2859 for (i = 0; i < fdt->max_fds; i++) {
2860 filp = fcheck_files(p->files, i);
2861 if (!filp)
2862 continue;
2863 if (filp->f_op->read == tty_read &&
2864 file_tty(filp) == tty) {
2865 printk(KERN_NOTICE "SAK: killed process %d"
2866 " (%s): fd#%d opened to the tty\n",
2867 task_pid_nr(p), p->comm, i);
2868 force_sig(SIGKILL, p);
2869 break;
2870 }
2871 }
2872 spin_unlock(&p->files->file_lock);
2873 }
2874 task_unlock(p);
2875 } while_each_thread(g, p);
2876 read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882 struct tty_struct *tty =
2883 container_of(work, struct tty_struct, SAK_work);
2884 __do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895 if (!tty)
2896 return;
2897 schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904 dev_t *devt = data;
2905 return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911 dev_t devt = tty_devnum(tty);
2912 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2913}
2914
2915
2916/**
2917 * initialize_tty_struct
2918 * @tty: tty to initialize
2919 *
2920 * This subroutine initializes a tty structure that has been newly
2921 * allocated.
2922 *
2923 * Locking: none - tty in question must not be exposed at this point
2924 */
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927 struct tty_driver *driver, int idx)
2928{
2929 memset(tty, 0, sizeof(struct tty_struct));
2930 kref_init(&tty->kref);
2931 tty->magic = TTY_MAGIC;
2932 tty_ldisc_init(tty);
2933 tty->session = NULL;
2934 tty->pgrp = NULL;
2935 tty->overrun_time = jiffies;
2936 tty_buffer_init(tty);
2937 mutex_init(&tty->termios_mutex);
2938 mutex_init(&tty->ldisc_mutex);
2939 init_waitqueue_head(&tty->write_wait);
2940 init_waitqueue_head(&tty->read_wait);
2941 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942 mutex_init(&tty->atomic_read_lock);
2943 mutex_init(&tty->atomic_write_lock);
2944 mutex_init(&tty->output_lock);
2945 mutex_init(&tty->echo_lock);
2946 spin_lock_init(&tty->read_lock);
2947 spin_lock_init(&tty->ctrl_lock);
2948 INIT_LIST_HEAD(&tty->tty_files);
2949 INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951 tty->driver = driver;
2952 tty->ops = driver->ops;
2953 tty->index = idx;
2954 tty_line_name(driver, idx, tty->name);
2955 tty->dev = tty_get_device(tty);
2956}
2957
2958/**
2959 * deinitialize_tty_struct
2960 * @tty: tty to deinitialize
2961 *
2962 * This subroutine deinitializes a tty structure that has been newly
2963 * allocated but tty_release cannot be called on that yet.
2964 *
2965 * Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
2968{
2969 tty_ldisc_deinit(tty);
2970}
2971
2972/**
2973 * tty_put_char - write one character to a tty
2974 * @tty: tty
2975 * @ch: character
2976 *
2977 * Write one byte to the tty using the provided put_char method
2978 * if present. Returns the number of characters successfully output.
2979 *
2980 * Note: the specific put_char operation in the driver layer may go
2981 * away soon. Don't call it directly, use this method
2982 */
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986 if (tty->ops->put_char)
2987 return tty->ops->put_char(tty, ch);
2988 return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
2994/**
2995 * tty_register_device - register a tty device
2996 * @driver: the tty driver that describes the tty device
2997 * @index: the index in the tty driver for this tty device
2998 * @device: a struct device that is associated with this tty device.
2999 * This field is optional, if there is no known struct device
3000 * for this tty device it can be set to NULL safely.
3001 *
3002 * Returns a pointer to the struct device for this tty device
3003 * (or ERR_PTR(-EFOO) on error).
3004 *
3005 * This call is required to be made to register an individual tty device
3006 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3007 * that bit is not set, this function should not be called by a tty
3008 * driver.
3009 *
3010 * Locking: ??
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014 struct device *device)
3015{
3016 char name[64];
3017 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3018
3019 if (index >= driver->num) {
3020 printk(KERN_ERR "Attempt to register invalid tty line number "
3021 " (%d).\n", index);
3022 return ERR_PTR(-EINVAL);
3023 }
3024
3025 if (driver->type == TTY_DRIVER_TYPE_PTY)
3026 pty_line_name(driver, index, name);
3027 else
3028 tty_line_name(driver, index, name);
3029
3030 return device_create(tty_class, device, dev, NULL, name);
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * tty_unregister_device - unregister a tty device
3036 * @driver: the tty driver that describes the tty device
3037 * @index: the index in the tty driver for this tty device
3038 *
3039 * If a tty device is registered with a call to tty_register_device() then
3040 * this function must be called when the tty device is gone.
3041 *
3042 * Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047 device_destroy(tty_class,
3048 MKDEV(driver->major, driver->minor_start) + index);
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
3053{
3054 struct tty_driver *driver;
3055
3056 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057 if (driver) {
3058 kref_init(&driver->kref);
3059 driver->magic = TTY_DRIVER_MAGIC;
3060 driver->num = lines;
3061 driver->owner = owner;
3062 /* later we'll move allocation of tables here */
3063 }
3064 return driver;
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071 int i;
3072 struct ktermios *tp;
3073 void *p;
3074
3075 if (driver->flags & TTY_DRIVER_INSTALLED) {
3076 /*
3077 * Free the termios and termios_locked structures because
3078 * we don't want to get memory leaks when modular tty
3079 * drivers are removed from the kernel.
3080 */
3081 for (i = 0; i < driver->num; i++) {
3082 tp = driver->termios[i];
3083 if (tp) {
3084 driver->termios[i] = NULL;
3085 kfree(tp);
3086 }
3087 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088 tty_unregister_device(driver, i);
3089 }
3090 p = driver->ttys;
3091 proc_tty_unregister_driver(driver);
3092 driver->ttys = NULL;
3093 driver->termios = NULL;
3094 kfree(p);
3095 cdev_del(&driver->cdev);
3096 }
3097 kfree(driver);
3098}
3099
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102 kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107 const struct tty_operations *op)
3108{
3109 driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115 tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124 int error;
3125 int i;
3126 dev_t dev;
3127 void **p = NULL;
3128 struct device *d;
3129
3130 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132 if (!p)
3133 return -ENOMEM;
3134 }
3135
3136 if (!driver->major) {
3137 error = alloc_chrdev_region(&dev, driver->minor_start,
3138 driver->num, driver->name);
3139 if (!error) {
3140 driver->major = MAJOR(dev);
3141 driver->minor_start = MINOR(dev);
3142 }
3143 } else {
3144 dev = MKDEV(driver->major, driver->minor_start);
3145 error = register_chrdev_region(dev, driver->num, driver->name);
3146 }
3147 if (error < 0) {
3148 kfree(p);
3149 return error;
3150 }
3151
3152 if (p) {
3153 driver->ttys = (struct tty_struct **)p;
3154 driver->termios = (struct ktermios **)(p + driver->num);
3155 } else {
3156 driver->ttys = NULL;
3157 driver->termios = NULL;
3158 }
3159
3160 cdev_init(&driver->cdev, &tty_fops);
3161 driver->cdev.owner = driver->owner;
3162 error = cdev_add(&driver->cdev, dev, driver->num);
3163 if (error) {
3164 unregister_chrdev_region(dev, driver->num);
3165 driver->ttys = NULL;
3166 driver->termios = NULL;
3167 kfree(p);
3168 return error;
3169 }
3170
3171 mutex_lock(&tty_mutex);
3172 list_add(&driver->tty_drivers, &tty_drivers);
3173 mutex_unlock(&tty_mutex);
3174
3175 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176 for (i = 0; i < driver->num; i++) {
3177 d = tty_register_device(driver, i, NULL);
3178 if (IS_ERR(d)) {
3179 error = PTR_ERR(d);
3180 goto err;
3181 }
3182 }
3183 }
3184 proc_tty_register_driver(driver);
3185 driver->flags |= TTY_DRIVER_INSTALLED;
3186 return 0;
3187
3188err:
3189 for (i--; i >= 0; i--)
3190 tty_unregister_device(driver, i);
3191
3192 mutex_lock(&tty_mutex);
3193 list_del(&driver->tty_drivers);
3194 mutex_unlock(&tty_mutex);
3195
3196 unregister_chrdev_region(dev, driver->num);
3197 driver->ttys = NULL;
3198 driver->termios = NULL;
3199 kfree(p);
3200 return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211 /* FIXME */
3212 if (driver->refcount)
3213 return -EBUSY;
3214#endif
3215 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216 driver->num);
3217 mutex_lock(&tty_mutex);
3218 list_del(&driver->tty_drivers);
3219 mutex_unlock(&tty_mutex);
3220 return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233 unsigned long flags;
3234 struct tty_struct *tty;
3235 spin_lock_irqsave(&p->sighand->siglock, flags);
3236 tty = p->signal->tty;
3237 p->signal->tty = NULL;
3238 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239 tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246 if (tty) {
3247 unsigned long flags;
3248 /* We should not have a session or pgrp to put here but.... */
3249 spin_lock_irqsave(&tty->ctrl_lock, flags);
3250 put_pid(tty->session);
3251 put_pid(tty->pgrp);
3252 tty->pgrp = get_pid(task_pgrp(tsk));
3253 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254 tty->session = get_pid(task_session(tsk));
3255 if (tsk->signal->tty) {
3256 printk(KERN_DEBUG "tty not NULL!!\n");
3257 tty_kref_put(tsk->signal->tty);
3258 }
3259 }
3260 put_pid(tsk->signal->tty_old_pgrp);
3261 tsk->signal->tty = tty_kref_get(tty);
3262 tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267 spin_lock_irq(&tsk->sighand->siglock);
3268 __proc_set_tty(tsk, tty);
3269 spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274 struct tty_struct *tty;
3275 unsigned long flags;
3276
3277 spin_lock_irqsave(¤t->sighand->siglock, flags);
3278 tty = tty_kref_get(current->signal->tty);
3279 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
3280 return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286 *fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297 initcall_t *call;
3298
3299 /* Setup the default TTY line discipline. */
3300 tty_ldisc_begin();
3301
3302 /*
3303 * set up the console device so that later boot sequences can
3304 * inform about problems etc..
3305 */
3306 call = __con_initcall_start;
3307 while (call < __con_initcall_end) {
3308 (*call)();
3309 call++;
3310 }
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315 if (!mode)
3316 return NULL;
3317 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319 *mode = 0666;
3320 return NULL;
3321}
3322
3323static int __init tty_class_init(void)
3324{
3325 tty_class = class_create(THIS_MODULE, "tty");
3326 if (IS_ERR(tty_class))
3327 return PTR_ERR(tty_class);
3328 tty_class->devnode = tty_devnode;
3329 return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338 struct device_attribute *attr, char *buf)
3339{
3340 struct console *cs[16];
3341 int i = 0;
3342 struct console *c;
3343 ssize_t count = 0;
3344
3345 console_lock();
3346 for_each_console(c) {
3347 if (!c->device)
3348 continue;
3349 if (!c->write)
3350 continue;
3351 if ((c->flags & CON_ENABLED) == 0)
3352 continue;
3353 cs[i++] = c;
3354 if (i >= ARRAY_SIZE(cs))
3355 break;
3356 }
3357 while (i--)
3358 count += sprintf(buf + count, "%s%d%c",
3359 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3360 console_unlock();
3361
3362 return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370 if (consdev)
3371 sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
3380 cdev_init(&tty_cdev, &tty_fops);
3381 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383 panic("Couldn't register /dev/tty driver\n");
3384 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386 cdev_init(&console_cdev, &console_fops);
3387 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389 panic("Couldn't register /dev/console driver\n");
3390 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391 "console");
3392 if (IS_ERR(consdev))
3393 consdev = NULL;
3394 else
3395 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398 vty_init(&console_fops);
3399#endif
3400 return 0;
3401}
3402