Linux Audio

Check our new training course

Loading...
v4.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
 
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233
 234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty->count != count) {
 297		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 298			 routine, tty->count, count);
 299		return count;
 
 
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@dev_t: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 
 322		if (device < base || device >= base + p->num)
 323			continue;
 324		*index = device - base;
 325		return tty_driver_kref_get(p);
 326	}
 327	return NULL;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330#ifdef CONFIG_CONSOLE_POLL
 331
 332/**
 333 *	tty_find_polling_driver	-	find device of a polled tty
 334 *	@name: name string to match
 335 *	@line: pointer to resulting tty line nr
 336 *
 337 *	This routine returns a tty driver structure, given a name
 338 *	and the condition that the tty driver is capable of polled
 339 *	operation.
 340 */
 341struct tty_driver *tty_find_polling_driver(char *name, int *line)
 342{
 343	struct tty_driver *p, *res = NULL;
 344	int tty_line = 0;
 345	int len;
 346	char *str, *stp;
 347
 348	for (str = name; *str; str++)
 349		if ((*str >= '0' && *str <= '9') || *str == ',')
 350			break;
 351	if (!*str)
 352		return NULL;
 353
 354	len = str - name;
 355	tty_line = simple_strtoul(str, &str, 10);
 356
 357	mutex_lock(&tty_mutex);
 358	/* Search through the tty devices to look for a match */
 359	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 360		if (strncmp(name, p->name, len) != 0)
 361			continue;
 362		stp = str;
 363		if (*stp == ',')
 364			stp++;
 365		if (*stp == '\0')
 366			stp = NULL;
 367
 368		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 369		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 370			res = tty_driver_kref_get(p);
 371			*line = tty_line;
 372			break;
 373		}
 374	}
 375	mutex_unlock(&tty_mutex);
 376
 377	return res;
 378}
 379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 380#endif
 381
 382static int is_ignored(int sig)
 383{
 384	return (sigismember(&current->blocked, sig) ||
 385		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 386}
 387
 388/**
 389 *	tty_check_change	-	check for POSIX terminal changes
 390 *	@tty: tty to check
 391 *
 392 *	If we try to write to, or set the state of, a terminal and we're
 393 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 394 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 395 *
 396 *	Locking: ctrl_lock
 397 */
 398
 399int __tty_check_change(struct tty_struct *tty, int sig)
 400{
 401	unsigned long flags;
 402	struct pid *pgrp, *tty_pgrp;
 403	int ret = 0;
 404
 405	if (current->signal->tty != tty)
 406		return 0;
 407
 408	rcu_read_lock();
 409	pgrp = task_pgrp(current);
 410
 411	spin_lock_irqsave(&tty->ctrl_lock, flags);
 412	tty_pgrp = tty->pgrp;
 413	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 414
 415	if (tty_pgrp && pgrp != tty->pgrp) {
 416		if (is_ignored(sig)) {
 417			if (sig == SIGTTIN)
 418				ret = -EIO;
 419		} else if (is_current_pgrp_orphaned())
 420			ret = -EIO;
 421		else {
 422			kill_pgrp(pgrp, sig, 1);
 423			set_thread_flag(TIF_SIGPENDING);
 424			ret = -ERESTARTSYS;
 425		}
 426	}
 427	rcu_read_unlock();
 428
 429	if (!tty_pgrp)
 430		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 431
 432	return ret;
 433}
 434
 435int tty_check_change(struct tty_struct *tty)
 436{
 437	return __tty_check_change(tty, SIGTTOU);
 438}
 439EXPORT_SYMBOL(tty_check_change);
 440
 441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 442				size_t count, loff_t *ppos)
 443{
 444	return 0;
 445}
 446
 447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 448				 size_t count, loff_t *ppos)
 449{
 450	return -EIO;
 451}
 452
 453/* No kernel lock held - none needed ;) */
 454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 455{
 456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 457}
 458
 459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 460		unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static long hung_up_tty_compat_ioctl(struct file *file,
 466				     unsigned int cmd, unsigned long arg)
 467{
 468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 469}
 470
 471static int hung_up_tty_fasync(int fd, struct file *file, int on)
 472{
 473	return -ENOTTY;
 474}
 475
 
 
 
 
 
 
 
 
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 
 
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 
 486};
 487
 488static const struct file_operations console_fops = {
 489	.llseek		= no_llseek,
 490	.read		= tty_read,
 491	.write		= redirected_tty_write,
 
 
 492	.poll		= tty_poll,
 493	.unlocked_ioctl	= tty_ioctl,
 494	.compat_ioctl	= tty_compat_ioctl,
 495	.open		= tty_open,
 496	.release	= tty_release,
 497	.fasync		= tty_fasync,
 498};
 499
 500static const struct file_operations hung_up_tty_fops = {
 501	.llseek		= no_llseek,
 502	.read		= hung_up_tty_read,
 503	.write		= hung_up_tty_write,
 504	.poll		= hung_up_tty_poll,
 505	.unlocked_ioctl	= hung_up_tty_ioctl,
 506	.compat_ioctl	= hung_up_tty_compat_ioctl,
 507	.release	= tty_release,
 508	.fasync		= hung_up_tty_fasync,
 509};
 510
 511static DEFINE_SPINLOCK(redirect_lock);
 512static struct file *redirect;
 513
 514
 515void proc_clear_tty(struct task_struct *p)
 516{
 517	unsigned long flags;
 518	struct tty_struct *tty;
 519	spin_lock_irqsave(&p->sighand->siglock, flags);
 520	tty = p->signal->tty;
 521	p->signal->tty = NULL;
 522	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 523	tty_kref_put(tty);
 524}
 525
 526/**
 527 * proc_set_tty -  set the controlling terminal
 528 *
 529 * Only callable by the session leader and only if it does not already have
 530 * a controlling terminal.
 531 *
 532 * Caller must hold:  tty_lock()
 533 *		      a readlock on tasklist_lock
 534 *		      sighand lock
 535 */
 536static void __proc_set_tty(struct tty_struct *tty)
 537{
 538	unsigned long flags;
 539
 540	spin_lock_irqsave(&tty->ctrl_lock, flags);
 541	/*
 542	 * The session and fg pgrp references will be non-NULL if
 543	 * tiocsctty() is stealing the controlling tty
 544	 */
 545	put_pid(tty->session);
 546	put_pid(tty->pgrp);
 547	tty->pgrp = get_pid(task_pgrp(current));
 548	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 549	tty->session = get_pid(task_session(current));
 550	if (current->signal->tty) {
 551		tty_debug(tty, "current tty %s not NULL!!\n",
 552			  current->signal->tty->name);
 553		tty_kref_put(current->signal->tty);
 554	}
 555	put_pid(current->signal->tty_old_pgrp);
 556	current->signal->tty = tty_kref_get(tty);
 557	current->signal->tty_old_pgrp = NULL;
 558}
 559
 560static void proc_set_tty(struct tty_struct *tty)
 561{
 562	spin_lock_irq(&current->sighand->siglock);
 563	__proc_set_tty(tty);
 564	spin_unlock_irq(&current->sighand->siglock);
 565}
 566
 567struct tty_struct *get_current_tty(void)
 568{
 569	struct tty_struct *tty;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&current->sighand->siglock, flags);
 573	tty = tty_kref_get(current->signal->tty);
 574	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 575	return tty;
 576}
 577EXPORT_SYMBOL_GPL(get_current_tty);
 578
 579static void session_clear_tty(struct pid *session)
 580{
 581	struct task_struct *p;
 582	do_each_pid_task(session, PIDTYPE_SID, p) {
 583		proc_clear_tty(p);
 584	} while_each_pid_task(session, PIDTYPE_SID, p);
 585}
 586
 587/**
 588 *	tty_wakeup	-	request more data
 589 *	@tty: terminal
 590 *
 591 *	Internal and external helper for wakeups of tty. This function
 592 *	informs the line discipline if present that the driver is ready
 593 *	to receive more output data.
 594 */
 595
 596void tty_wakeup(struct tty_struct *tty)
 597{
 598	struct tty_ldisc *ld;
 599
 600	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 601		ld = tty_ldisc_ref(tty);
 602		if (ld) {
 603			if (ld->ops->write_wakeup)
 604				ld->ops->write_wakeup(tty);
 605			tty_ldisc_deref(ld);
 606		}
 607	}
 608	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 609}
 610
 611EXPORT_SYMBOL_GPL(tty_wakeup);
 612
 613/**
 614 *	tty_signal_session_leader	- sends SIGHUP to session leader
 615 *	@tty		controlling tty
 616 *	@exit_session	if non-zero, signal all foreground group processes
 617 *
 618 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 619 *	Optionally, signal all processes in the foreground process group.
 620 *
 621 *	Returns the number of processes in the session with this tty
 622 *	as their controlling terminal. This value is used to drop
 623 *	tty references for those processes.
 624 */
 625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 626{
 627	struct task_struct *p;
 628	int refs = 0;
 629	struct pid *tty_pgrp = NULL;
 630
 631	read_lock(&tasklist_lock);
 632	if (tty->session) {
 633		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 634			spin_lock_irq(&p->sighand->siglock);
 635			if (p->signal->tty == tty) {
 636				p->signal->tty = NULL;
 637				/* We defer the dereferences outside fo
 638				   the tasklist lock */
 639				refs++;
 640			}
 641			if (!p->signal->leader) {
 642				spin_unlock_irq(&p->sighand->siglock);
 643				continue;
 644			}
 645			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 646			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 647			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 648			spin_lock(&tty->ctrl_lock);
 649			tty_pgrp = get_pid(tty->pgrp);
 650			if (tty->pgrp)
 651				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 652			spin_unlock(&tty->ctrl_lock);
 653			spin_unlock_irq(&p->sighand->siglock);
 654		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (tty_pgrp) {
 659		if (exit_session)
 660			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 661		put_pid(tty_pgrp);
 662	}
 
 663
 664	return refs;
 665}
 666
 667/**
 668 *	__tty_hangup		-	actual handler for hangup events
 669 *	@work: tty device
 
 670 *
 671 *	This can be called by a "kworker" kernel thread.  That is process
 672 *	synchronous but doesn't hold any locks, so we need to make sure we
 673 *	have the appropriate locks for what we're doing.
 674 *
 675 *	The hangup event clears any pending redirections onto the hung up
 676 *	device. It ensures future writes will error and it does the needed
 677 *	line discipline hangup and signal delivery. The tty object itself
 678 *	remains intact.
 679 *
 680 *	Locking:
 681 *		BTM
 682 *		  redirect lock for undoing redirection
 683 *		  file list lock for manipulating list of ttys
 684 *		  tty_ldiscs_lock from called functions
 685 *		  termios_rwsem resetting termios data
 686 *		  tasklist_lock to walk task list for hangup event
 687 *		    ->siglock to protect ->signal/->sighand
 688 */
 689static void __tty_hangup(struct tty_struct *tty, int exit_session)
 690{
 691	struct file *cons_filp = NULL;
 692	struct file *filp, *f = NULL;
 693	struct tty_file_private *priv;
 694	int    closecount = 0, n;
 695	int refs;
 696
 697	if (!tty)
 698		return;
 699
 700
 701	spin_lock(&redirect_lock);
 702	if (redirect && file_tty(redirect) == tty) {
 703		f = redirect;
 704		redirect = NULL;
 705	}
 706	spin_unlock(&redirect_lock);
 707
 708	tty_lock(tty);
 709
 710	if (test_bit(TTY_HUPPED, &tty->flags)) {
 711		tty_unlock(tty);
 712		return;
 713	}
 714
 
 
 
 
 
 
 
 
 715	/* inuse_filps is protected by the single tty lock,
 716	   this really needs to change if we want to flush the
 717	   workqueue with the lock held */
 
 718	check_tty_count(tty, "tty_hangup");
 719
 720	spin_lock(&tty->files_lock);
 721	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 722	list_for_each_entry(priv, &tty->tty_files, list) {
 723		filp = priv->file;
 724		if (filp->f_op->write == redirected_tty_write)
 725			cons_filp = filp;
 726		if (filp->f_op->write != tty_write)
 727			continue;
 728		closecount++;
 729		__tty_fasync(-1, filp, 0);	/* can't block */
 730		filp->f_op = &hung_up_tty_fops;
 731	}
 732	spin_unlock(&tty->files_lock);
 733
 734	refs = tty_signal_session_leader(tty, exit_session);
 735	/* Account for the p->signal references we killed */
 736	while (refs--)
 737		tty_kref_put(tty);
 738
 739	tty_ldisc_hangup(tty, cons_filp != NULL);
 740
 741	spin_lock_irq(&tty->ctrl_lock);
 742	clear_bit(TTY_THROTTLED, &tty->flags);
 743	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 744	put_pid(tty->session);
 745	put_pid(tty->pgrp);
 746	tty->session = NULL;
 747	tty->pgrp = NULL;
 748	tty->ctrl_status = 0;
 749	spin_unlock_irq(&tty->ctrl_lock);
 750
 751	/*
 752	 * If one of the devices matches a console pointer, we
 753	 * cannot just call hangup() because that will cause
 754	 * tty->count and state->count to go out of sync.
 755	 * So we just call close() the right number of times.
 756	 */
 757	if (cons_filp) {
 758		if (tty->ops->close)
 759			for (n = 0; n < closecount; n++)
 760				tty->ops->close(tty, cons_filp);
 761	} else if (tty->ops->hangup)
 762		tty->ops->hangup(tty);
 763	/*
 764	 * We don't want to have driver/ldisc interactions beyond the ones
 765	 * we did here. The driver layer expects no calls after ->hangup()
 766	 * from the ldisc side, which is now guaranteed.
 767	 */
 768	set_bit(TTY_HUPPED, &tty->flags);
 
 769	tty_unlock(tty);
 770
 771	if (f)
 772		fput(f);
 773}
 774
 775static void do_tty_hangup(struct work_struct *work)
 776{
 777	struct tty_struct *tty =
 778		container_of(work, struct tty_struct, hangup_work);
 779
 780	__tty_hangup(tty, 0);
 781}
 782
 783/**
 784 *	tty_hangup		-	trigger a hangup event
 785 *	@tty: tty to hangup
 786 *
 787 *	A carrier loss (virtual or otherwise) has occurred on this like
 788 *	schedule a hangup sequence to run after this event.
 789 */
 790
 791void tty_hangup(struct tty_struct *tty)
 792{
 793	tty_debug_hangup(tty, "hangup\n");
 794	schedule_work(&tty->hangup_work);
 795}
 796
 797EXPORT_SYMBOL(tty_hangup);
 798
 799/**
 800 *	tty_vhangup		-	process vhangup
 801 *	@tty: tty to hangup
 802 *
 803 *	The user has asked via system call for the terminal to be hung up.
 804 *	We do this synchronously so that when the syscall returns the process
 805 *	is complete. That guarantee is necessary for security reasons.
 806 */
 807
 808void tty_vhangup(struct tty_struct *tty)
 809{
 810	tty_debug_hangup(tty, "vhangup\n");
 811	__tty_hangup(tty, 0);
 812}
 813
 814EXPORT_SYMBOL(tty_vhangup);
 815
 816
 817/**
 818 *	tty_vhangup_self	-	process vhangup for own ctty
 819 *
 820 *	Perform a vhangup on the current controlling tty
 821 */
 822
 823void tty_vhangup_self(void)
 824{
 825	struct tty_struct *tty;
 826
 827	tty = get_current_tty();
 828	if (tty) {
 829		tty_vhangup(tty);
 830		tty_kref_put(tty);
 831	}
 832}
 833
 834/**
 835 *	tty_vhangup_session		-	hangup session leader exit
 836 *	@tty: tty to hangup
 837 *
 838 *	The session leader is exiting and hanging up its controlling terminal.
 839 *	Every process in the foreground process group is signalled SIGHUP.
 840 *
 841 *	We do this synchronously so that when the syscall returns the process
 842 *	is complete. That guarantee is necessary for security reasons.
 843 */
 844
 845static void tty_vhangup_session(struct tty_struct *tty)
 846{
 847	tty_debug_hangup(tty, "session hangup\n");
 848	__tty_hangup(tty, 1);
 849}
 850
 851/**
 852 *	tty_hung_up_p		-	was tty hung up
 853 *	@filp: file pointer of tty
 854 *
 855 *	Return true if the tty has been subject to a vhangup or a carrier
 856 *	loss
 857 */
 858
 859int tty_hung_up_p(struct file *filp)
 860{
 861	return (filp->f_op == &hung_up_tty_fops);
 862}
 863
 864EXPORT_SYMBOL(tty_hung_up_p);
 865
 866/**
 867 *	disassociate_ctty	-	disconnect controlling tty
 868 *	@on_exit: true if exiting so need to "hang up" the session
 869 *
 870 *	This function is typically called only by the session leader, when
 871 *	it wants to disassociate itself from its controlling tty.
 872 *
 873 *	It performs the following functions:
 874 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 875 * 	(2)  Clears the tty from being controlling the session
 876 * 	(3)  Clears the controlling tty for all processes in the
 877 * 		session group.
 878 *
 879 *	The argument on_exit is set to 1 if called when a process is
 880 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 881 *
 882 *	Locking:
 883 *		BTM is taken for hysterical raisins, and held when
 884 *		  called from no_tty().
 885 *		  tty_mutex is taken to protect tty
 886 *		  ->siglock is taken to protect ->signal/->sighand
 887 *		  tasklist_lock is taken to walk process list for sessions
 888 *		    ->siglock is taken to protect ->signal/->sighand
 889 */
 890
 891void disassociate_ctty(int on_exit)
 892{
 893	struct tty_struct *tty;
 894
 895	if (!current->signal->leader)
 896		return;
 897
 898	tty = get_current_tty();
 899	if (tty) {
 900		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 901			tty_vhangup_session(tty);
 902		} else {
 903			struct pid *tty_pgrp = tty_get_pgrp(tty);
 904			if (tty_pgrp) {
 905				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 906				if (!on_exit)
 907					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 908				put_pid(tty_pgrp);
 909			}
 910		}
 911		tty_kref_put(tty);
 912
 913	} else if (on_exit) {
 914		struct pid *old_pgrp;
 915		spin_lock_irq(&current->sighand->siglock);
 916		old_pgrp = current->signal->tty_old_pgrp;
 917		current->signal->tty_old_pgrp = NULL;
 918		spin_unlock_irq(&current->sighand->siglock);
 919		if (old_pgrp) {
 920			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 921			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 922			put_pid(old_pgrp);
 923		}
 924		return;
 925	}
 926
 927	spin_lock_irq(&current->sighand->siglock);
 928	put_pid(current->signal->tty_old_pgrp);
 929	current->signal->tty_old_pgrp = NULL;
 930
 931	tty = tty_kref_get(current->signal->tty);
 932	if (tty) {
 933		unsigned long flags;
 934		spin_lock_irqsave(&tty->ctrl_lock, flags);
 935		put_pid(tty->session);
 936		put_pid(tty->pgrp);
 937		tty->session = NULL;
 938		tty->pgrp = NULL;
 939		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940		tty_kref_put(tty);
 941	} else
 942		tty_debug_hangup(tty, "no current tty\n");
 943
 944	spin_unlock_irq(&current->sighand->siglock);
 945	/* Now clear signal->tty under the lock */
 946	read_lock(&tasklist_lock);
 947	session_clear_tty(task_session(current));
 948	read_unlock(&tasklist_lock);
 949}
 950
 951/**
 952 *
 953 *	no_tty	- Ensure the current process does not have a controlling tty
 954 */
 955void no_tty(void)
 956{
 957	/* FIXME: Review locking here. The tty_lock never covered any race
 958	   between a new association and proc_clear_tty but possible we need
 959	   to protect against this anyway */
 960	struct task_struct *tsk = current;
 961	disassociate_ctty(0);
 962	proc_clear_tty(tsk);
 963}
 964
 965
 966/**
 967 *	stop_tty	-	propagate flow control
 968 *	@tty: tty to stop
 969 *
 970 *	Perform flow control to the driver. May be called
 971 *	on an already stopped device and will not re-call the driver
 972 *	method.
 973 *
 974 *	This functionality is used by both the line disciplines for
 975 *	halting incoming flow and by the driver. It may therefore be
 976 *	called from any context, may be under the tty atomic_write_lock
 977 *	but not always.
 978 *
 979 *	Locking:
 980 *		flow_lock
 981 */
 982
 983void __stop_tty(struct tty_struct *tty)
 984{
 985	if (tty->stopped)
 986		return;
 987	tty->stopped = 1;
 988	if (tty->ops->stop)
 989		tty->ops->stop(tty);
 990}
 991
 992void stop_tty(struct tty_struct *tty)
 993{
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&tty->flow_lock, flags);
 997	__stop_tty(tty);
 998	spin_unlock_irqrestore(&tty->flow_lock, flags);
 999}
1000EXPORT_SYMBOL(stop_tty);
1001
 
 
 
 
 
 
 
 
 
 
1002/**
1003 *	start_tty	-	propagate flow control
1004 *	@tty: tty to start
1005 *
1006 *	Start a tty that has been stopped if at all possible. If this
1007 *	tty was previous stopped and is now being started, the driver
1008 *	start method is invoked and the line discipline woken.
1009 *
1010 *	Locking:
1011 *		flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016	if (!tty->stopped || tty->flow_stopped)
1017		return;
1018	tty->stopped = 0;
1019	if (tty->ops->start)
1020		tty->ops->start(tty);
1021	tty_wakeup(tty);
1022}
1023
1024void start_tty(struct tty_struct *tty)
1025{
1026	unsigned long flags;
1027
1028	spin_lock_irqsave(&tty->flow_lock, flags);
1029	__start_tty(tty);
1030	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
1034static void tty_update_time(struct timespec *time)
1035{
1036	unsigned long sec = get_seconds();
1037
1038	/*
1039	 * We only care if the two values differ in anything other than the
1040	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041	 * the time of the tty device, otherwise it could be construded as a
1042	 * security leak to let userspace know the exact timing of the tty.
1043	 */
1044	if ((sec ^ time->tv_sec) & ~7)
1045		time->tv_sec = sec;
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048/**
1049 *	tty_read	-	read method for tty device files
1050 *	@file: pointer to tty file
1051 *	@buf: user buffer
1052 *	@count: size of user buffer
1053 *	@ppos: unused
1054 *
1055 *	Perform the read system call function on this terminal device. Checks
1056 *	for hung up devices before calling the line discipline method.
1057 *
1058 *	Locking:
1059 *		Locks the line discipline internally while needed. Multiple
1060 *	read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064			loff_t *ppos)
1065{
1066	int i;
 
1067	struct inode *inode = file_inode(file);
1068	struct tty_struct *tty = file_tty(file);
1069	struct tty_ldisc *ld;
1070
1071	if (tty_paranoia_check(tty, inode, "tty_read"))
1072		return -EIO;
1073	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074		return -EIO;
1075
1076	/* We want to wait for the line discipline to sort out in this
1077	   situation */
 
1078	ld = tty_ldisc_ref_wait(tty);
1079	if (!ld)
1080		return hung_up_tty_read(file, buf, count, ppos);
 
1081	if (ld->ops->read)
1082		i = ld->ops->read(tty, file, buf, count);
1083	else
1084		i = -EIO;
1085	tty_ldisc_deref(ld);
1086
1087	if (i > 0)
1088		tty_update_time(&inode->i_atime);
1089
1090	return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
1094{
1095	mutex_unlock(&tty->atomic_write_lock);
1096	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100{
1101	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102		if (ndelay)
1103			return -EAGAIN;
1104		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105			return -ERESTARTSYS;
1106	}
1107	return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116	struct tty_struct *tty,
1117	struct file *file,
1118	const char __user *buf,
1119	size_t count)
1120{
 
1121	ssize_t ret, written = 0;
1122	unsigned int chunk;
1123
1124	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125	if (ret < 0)
1126		return ret;
1127
1128	/*
1129	 * We chunk up writes into a temporary buffer. This
1130	 * simplifies low-level drivers immensely, since they
1131	 * don't have locking issues and user mode accesses.
1132	 *
1133	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134	 * big chunk-size..
1135	 *
1136	 * The default chunk-size is 2kB, because the NTTY
1137	 * layer has problems with bigger chunks. It will
1138	 * claim to be able to handle more characters than
1139	 * it actually does.
1140	 *
1141	 * FIXME: This can probably go away now except that 64K chunks
1142	 * are too likely to fail unless switched to vmalloc...
1143	 */
1144	chunk = 2048;
1145	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146		chunk = 65536;
1147	if (count < chunk)
1148		chunk = count;
1149
1150	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151	if (tty->write_cnt < chunk) {
1152		unsigned char *buf_chunk;
1153
1154		if (chunk < 1024)
1155			chunk = 1024;
1156
1157		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158		if (!buf_chunk) {
1159			ret = -ENOMEM;
1160			goto out;
1161		}
1162		kfree(tty->write_buf);
1163		tty->write_cnt = chunk;
1164		tty->write_buf = buf_chunk;
1165	}
1166
1167	/* Do the write .. */
1168	for (;;) {
1169		size_t size = count;
 
1170		if (size > chunk)
1171			size = chunk;
 
1172		ret = -EFAULT;
1173		if (copy_from_user(tty->write_buf, buf, size))
1174			break;
 
1175		ret = write(tty, file, tty->write_buf, size);
1176		if (ret <= 0)
1177			break;
 
1178		written += ret;
1179		buf += ret;
 
 
 
 
 
 
1180		count -= ret;
1181		if (!count)
1182			break;
1183		ret = -ERESTARTSYS;
1184		if (signal_pending(current))
1185			break;
1186		cond_resched();
1187	}
1188	if (written) {
1189		tty_update_time(&file_inode(file)->i_mtime);
1190		ret = written;
1191	}
1192out:
1193	tty_write_unlock(tty);
1194	return ret;
1195}
1196
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211	if (tty) {
1212		mutex_lock(&tty->atomic_write_lock);
1213		tty_lock(tty);
1214		if (tty->ops->write && tty->count > 0)
1215			tty->ops->write(tty, msg, strlen(msg));
1216		tty_unlock(tty);
1217		tty_write_unlock(tty);
1218	}
1219	return;
1220}
1221
1222
1223/**
1224 *	tty_write		-	write method for tty device file
1225 *	@file: tty file pointer
1226 *	@buf: user data to write
1227 *	@count: bytes to write
1228 *	@ppos: unused
1229 *
1230 *	Write data to a tty device via the line discipline.
1231 *
1232 *	Locking:
1233 *		Locks the line discipline as required
1234 *		Writes to the tty driver are serialized by the atomic_write_lock
1235 *	and are then processed in chunks to the device. The line discipline
1236 *	write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240						size_t count, loff_t *ppos)
1241{
1242	struct tty_struct *tty = file_tty(file);
1243 	struct tty_ldisc *ld;
1244	ssize_t ret;
1245
1246	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247		return -EIO;
1248	if (!tty || !tty->ops->write ||
1249		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250			return -EIO;
1251	/* Short term debug to catch buggy drivers */
1252	if (tty->ops->write_room == NULL)
1253		tty_err(tty, "missing write_room method\n");
1254	ld = tty_ldisc_ref_wait(tty);
1255	if (!ld)
1256		return hung_up_tty_write(file, buf, count, ppos);
1257	if (!ld->ops->write)
1258		ret = -EIO;
1259	else
1260		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261	tty_ldisc_deref(ld);
1262	return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267{
1268	struct file *p = NULL;
1269
1270	spin_lock(&redirect_lock);
1271	if (redirect)
1272		p = get_file(redirect);
1273	spin_unlock(&redirect_lock);
1274
 
 
 
 
1275	if (p) {
1276		ssize_t res;
1277		res = vfs_write(p, buf, count, &p->f_pos);
 
1278		fput(p);
1279		return res;
1280	}
1281	return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 *	tty_send_xchar	-	send priority character
1286 *
1287 *	Send a high priority character to the tty even if stopped
1288 *
1289 *	Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294	int	was_stopped = tty->stopped;
1295
1296	if (tty->ops->send_xchar) {
1297		down_read(&tty->termios_rwsem);
1298		tty->ops->send_xchar(tty, ch);
1299		up_read(&tty->termios_rwsem);
1300		return 0;
1301	}
1302
1303	if (tty_write_lock(tty, 0) < 0)
1304		return -ERESTARTSYS;
1305
1306	down_read(&tty->termios_rwsem);
1307	if (was_stopped)
1308		start_tty(tty);
1309	tty->ops->write(tty, &ch, 1);
1310	if (was_stopped)
1311		stop_tty(tty);
1312	up_read(&tty->termios_rwsem);
1313	tty_write_unlock(tty);
1314	return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 *	pty_line_name	-	generate name for a pty
1321 *	@driver: the tty driver in use
1322 *	@index: the minor number
1323 *	@p: output buffer of at least 6 bytes
1324 *
1325 *	Generate a name from a driver reference and write it to the output
1326 *	buffer.
1327 *
1328 *	Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
 
1332	int i = index + driver->name_base;
1333	/* ->name is initialized to "ttyp", but "tty" is expected */
1334	sprintf(p, "%s%c%x",
1335		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336		ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 *	tty_line_name	-	generate name for a tty
1341 *	@driver: the tty driver in use
1342 *	@index: the minor number
1343 *	@p: output buffer of at least 7 bytes
1344 *
1345 *	Generate a name from a driver reference and write it to the output
1346 *	buffer.
1347 *
1348 *	Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353		return sprintf(p, "%s", driver->name);
1354	else
1355		return sprintf(p, "%s%d", driver->name,
1356			       index + driver->name_base);
1357}
1358
1359/**
1360 *	tty_driver_lookup_tty() - find an existing tty, if any
1361 *	@driver: the driver for the tty
 
1362 *	@idx:	 the minor number
1363 *
1364 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 *	driver lookup() method returns an error.
1366 *
1367 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370		struct file *file, int idx)
1371{
1372	struct tty_struct *tty;
1373
1374	if (driver->ops->lookup)
1375		tty = driver->ops->lookup(driver, file, idx);
 
 
 
1376	else
1377		tty = driver->ttys[idx];
1378
1379	if (!IS_ERR(tty))
1380		tty_kref_get(tty);
1381	return tty;
1382}
1383
1384/**
1385 *	tty_init_termios	-  helper for termios setup
1386 *	@tty: the tty to set up
1387 *
1388 *	Initialise the termios structures for this tty. Thus runs under
1389 *	the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398		tty->termios = tty->driver->init_termios;
1399	else {
1400		/* Check for lazy saved data */
1401		tp = tty->driver->termios[idx];
1402		if (tp != NULL) {
1403			tty->termios = *tp;
1404			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405		} else
1406			tty->termios = tty->driver->init_termios;
1407	}
1408	/* Compatibility until drivers always set this */
1409	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416	tty_init_termios(tty);
1417	tty_driver_kref_get(driver);
1418	tty->count++;
1419	driver->ttys[tty->index] = tty;
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 *	tty_driver_install_tty() - install a tty entry in the driver
1426 *	@driver: the driver for the tty
1427 *	@tty: the tty
1428 *
1429 *	Install a tty object into the driver tables. The tty->index field
1430 *	will be set by the time this is called. This method is responsible
1431 *	for ensuring any need additional structures are allocated and
1432 *	configured.
1433 *
1434 *	Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437						struct tty_struct *tty)
1438{
1439	return driver->ops->install ? driver->ops->install(driver, tty) :
1440		tty_standard_install(driver, tty);
1441}
1442
1443/**
1444 *	tty_driver_remove_tty() - remove a tty from the driver tables
1445 *	@driver: the driver for the tty
1446 *	@idx:	 the minor number
1447 *
1448 *	Remvoe a tty object from the driver tables. The tty->index field
1449 *	will be set by the time this is called.
1450 *
1451 *	Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455	if (driver->ops->remove)
1456		driver->ops->remove(driver, tty);
1457	else
1458		driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * 	tty_reopen()	- fast re-open of an open tty
1463 * 	@tty	- the tty to open
1464 *
1465 *	Return 0 on success, -errno on error.
1466 *	Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 *	Locking: Caller must hold tty_lock
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472	struct tty_driver *driver = tty->driver;
 
 
1473
1474	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475	    driver->subtype == PTY_TYPE_MASTER)
1476		return -EIO;
1477
1478	if (!tty->count)
1479		return -EAGAIN;
1480
1481	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482		return -EBUSY;
1483
1484	tty->count++;
 
 
 
 
 
 
1485
1486	if (!tty->ldisc)
1487		return tty_ldisc_reinit(tty, tty->termios.c_line);
 
 
1488
1489	return 0;
 
 
 
1490}
1491
1492/**
1493 *	tty_init_dev		-	initialise a tty device
1494 *	@driver: tty driver we are opening a device on
1495 *	@idx: device index
1496 *	@ret_tty: returned tty structure
1497 *
1498 *	Prepare a tty device. This may not be a "new" clean device but
1499 *	could also be an active device. The pty drivers require special
1500 *	handling because of this.
1501 *
1502 *	Locking:
1503 *		The function is called under the tty_mutex, which
1504 *	protects us from the tty struct or driver itself going away.
1505 *
1506 *	On exit the tty device has the line discipline attached and
1507 *	a reference count of 1. If a pair was created for pty/tty use
1508 *	and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open.  The new code protects the open with a mutex, so it's
1512 * really quite straightforward.  The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
 
 
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517{
1518	struct tty_struct *tty;
1519	int retval;
1520
1521	/*
1522	 * First time open is complex, especially for PTY devices.
1523	 * This code guarantees that either everything succeeds and the
1524	 * TTY is ready for operation, or else the table slots are vacated
1525	 * and the allocated memory released.  (Except that the termios
1526	 * and locked termios may be retained.)
1527	 */
1528
1529	if (!try_module_get(driver->owner))
1530		return ERR_PTR(-ENODEV);
1531
1532	tty = alloc_tty_struct(driver, idx);
1533	if (!tty) {
1534		retval = -ENOMEM;
1535		goto err_module_put;
1536	}
1537
1538	tty_lock(tty);
1539	retval = tty_driver_install_tty(driver, tty);
1540	if (retval < 0)
1541		goto err_free_tty;
1542
1543	if (!tty->port)
1544		tty->port = driver->ports[idx];
1545
1546	WARN_RATELIMIT(!tty->port,
1547			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548			__func__, tty->driver->name);
 
 
 
1549
 
 
 
1550	tty->port->itty = tty;
1551
1552	/*
1553	 * Structures all installed ... call the ldisc open routines.
1554	 * If we fail here just call release_tty to clean up.  No need
1555	 * to decrement the use counts, as release_tty doesn't care.
1556	 */
1557	retval = tty_ldisc_setup(tty, tty->link);
1558	if (retval)
1559		goto err_release_tty;
 
1560	/* Return the tty locked so that it cannot vanish under the caller */
1561	return tty;
1562
1563err_free_tty:
1564	tty_unlock(tty);
1565	free_tty_struct(tty);
1566err_module_put:
1567	module_put(driver->owner);
1568	return ERR_PTR(retval);
1569
1570	/* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572	tty_unlock(tty);
1573	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574			     retval, idx);
 
 
1575	release_tty(tty, idx);
1576	return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1580{
1581	struct ktermios *tp;
1582	int idx = tty->index;
1583
1584	/* If the port is going to reset then it has no termios to save */
1585	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586		return;
1587
1588	/* Stash the termios data */
1589	tp = tty->driver->termios[idx];
1590	if (tp == NULL) {
1591		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592		if (tp == NULL)
1593			return;
1594		tty->driver->termios[idx] = tp;
1595	}
1596	*tp = tty->termios;
1597}
 
1598
1599/**
1600 *	tty_flush_works		-	flush all works of a tty/pty pair
1601 *	@tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 *	Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607	flush_work(&tty->SAK_work);
1608	flush_work(&tty->hangup_work);
1609	if (tty->link) {
1610		flush_work(&tty->link->SAK_work);
1611		flush_work(&tty->link->hangup_work);
1612	}
1613}
1614
1615/**
1616 *	release_one_tty		-	release tty structure memory
1617 *	@kref: kref of tty we are obliterating
1618 *
1619 *	Releases memory associated with a tty structure, and clears out the
1620 *	driver table slots. This function is called when a device is no longer
1621 *	in use. It also gets called when setup of a device fails.
1622 *
1623 *	Locking:
1624 *		takes the file list lock internally when working on the list
1625 *	of ttys that the driver keeps.
1626 *
1627 *	This method gets called from a work queue so that the driver private
1628 *	cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632	struct tty_struct *tty =
1633		container_of(work, struct tty_struct, hangup_work);
1634	struct tty_driver *driver = tty->driver;
1635	struct module *owner = driver->owner;
1636
1637	if (tty->ops->cleanup)
1638		tty->ops->cleanup(tty);
1639
1640	tty->magic = 0;
1641	tty_driver_kref_put(driver);
1642	module_put(owner);
1643
1644	spin_lock(&tty->files_lock);
1645	list_del_init(&tty->tty_files);
1646	spin_unlock(&tty->files_lock);
1647
1648	put_pid(tty->pgrp);
1649	put_pid(tty->session);
1650	free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657	/* The hangup queue is now free so we can reuse it rather than
1658	   waste a chunk of memory for each port */
 
1659	INIT_WORK(&tty->hangup_work, release_one_tty);
1660	schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 *	tty_kref_put		-	release a tty kref
1665 *	@tty: tty device
1666 *
1667 *	Release a reference to a tty device and if need be let the kref
1668 *	layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673	if (tty)
1674		kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 *	release_tty		-	release tty structure memory
 
 
1680 *
1681 *	Release both @tty and a possible linked partner (think pty pair),
1682 *	and decrement the refcount of the backing module.
1683 *
1684 *	Locking:
1685 *		tty_mutex
1686 *		takes the file list lock internally when working on the list
1687 *	of ttys that the driver keeps.
1688 *
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692	/* This should always be true but check for the moment */
1693	WARN_ON(tty->index != idx);
1694	WARN_ON(!mutex_is_locked(&tty_mutex));
1695	if (tty->ops->shutdown)
1696		tty->ops->shutdown(tty);
1697	tty_free_termios(tty);
1698	tty_driver_remove_tty(tty->driver, tty);
1699	tty->port->itty = NULL;
 
1700	if (tty->link)
1701		tty->link->port->itty = NULL;
1702	tty_buffer_cancel_work(tty->port);
 
 
 
1703
1704	tty_kref_put(tty->link);
1705	tty_kref_put(tty);
1706}
1707
1708/**
1709 *	tty_release_checks - check a tty before real release
1710 *	@tty: tty to check
1711 *	@o_tty: link of @tty (if any)
1712 *	@idx: index of the tty
1713 *
1714 *	Performs some paranoid checking before true release of the @tty.
1715 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720	if (idx < 0 || idx >= tty->driver->num) {
1721		tty_debug(tty, "bad idx %d\n", idx);
1722		return -1;
1723	}
1724
1725	/* not much to check for devpts */
1726	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727		return 0;
1728
1729	if (tty != tty->driver->ttys[idx]) {
1730		tty_debug(tty, "bad driver table[%d] = %p\n",
1731			  idx, tty->driver->ttys[idx]);
1732		return -1;
1733	}
1734	if (tty->driver->other) {
1735		struct tty_struct *o_tty = tty->link;
1736
1737		if (o_tty != tty->driver->other->ttys[idx]) {
1738			tty_debug(tty, "bad other table[%d] = %p\n",
1739				  idx, tty->driver->other->ttys[idx]);
1740			return -1;
1741		}
1742		if (o_tty->link != tty) {
1743			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744			return -1;
1745		}
1746	}
1747#endif
1748	return 0;
1749}
1750
1751/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752 *	tty_release		-	vfs callback for close
1753 *	@inode: inode of tty
1754 *	@filp: file pointer for handle to tty
1755 *
1756 *	Called the last time each file handle is closed that references
1757 *	this tty. There may however be several such references.
1758 *
1759 *	Locking:
1760 *		Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772	struct tty_struct *tty = file_tty(filp);
1773	struct tty_struct *o_tty = NULL;
1774	int	do_sleep, final;
1775	int	idx;
1776	long	timeout = 0;
1777	int	once = 1;
1778
1779	if (tty_paranoia_check(tty, inode, __func__))
1780		return 0;
1781
1782	tty_lock(tty);
1783	check_tty_count(tty, __func__);
1784
1785	__tty_fasync(-1, filp, 0);
1786
1787	idx = tty->index;
1788	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789	    tty->driver->subtype == PTY_TYPE_MASTER)
1790		o_tty = tty->link;
1791
1792	if (tty_release_checks(tty, idx)) {
1793		tty_unlock(tty);
1794		return 0;
1795	}
1796
1797	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798
1799	if (tty->ops->close)
1800		tty->ops->close(tty, filp);
1801
1802	/* If tty is pty master, lock the slave pty (stable lock order) */
1803	tty_lock_slave(o_tty);
1804
1805	/*
1806	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808	 * wait queues and kick everyone out _before_ actually starting to
1809	 * close.  This ensures that we won't block while releasing the tty
1810	 * structure.
1811	 *
1812	 * The test for the o_tty closing is necessary, since the master and
1813	 * slave sides may close in any order.  If the slave side closes out
1814	 * first, its count will be one, since the master side holds an open.
1815	 * Thus this test wouldn't be triggered at the time the slave closed,
1816	 * so we do it now.
1817	 */
1818	while (1) {
1819		do_sleep = 0;
1820
1821		if (tty->count <= 1) {
1822			if (waitqueue_active(&tty->read_wait)) {
1823				wake_up_poll(&tty->read_wait, POLLIN);
1824				do_sleep++;
1825			}
1826			if (waitqueue_active(&tty->write_wait)) {
1827				wake_up_poll(&tty->write_wait, POLLOUT);
1828				do_sleep++;
1829			}
1830		}
1831		if (o_tty && o_tty->count <= 1) {
1832			if (waitqueue_active(&o_tty->read_wait)) {
1833				wake_up_poll(&o_tty->read_wait, POLLIN);
1834				do_sleep++;
1835			}
1836			if (waitqueue_active(&o_tty->write_wait)) {
1837				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838				do_sleep++;
1839			}
1840		}
1841		if (!do_sleep)
1842			break;
1843
1844		if (once) {
1845			once = 0;
1846			tty_warn(tty, "read/write wait queue active!\n");
1847		}
1848		schedule_timeout_killable(timeout);
1849		if (timeout < 120 * HZ)
1850			timeout = 2 * timeout + 1;
1851		else
1852			timeout = MAX_SCHEDULE_TIMEOUT;
1853	}
1854
1855	if (o_tty) {
1856		if (--o_tty->count < 0) {
1857			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858			o_tty->count = 0;
1859		}
1860	}
1861	if (--tty->count < 0) {
1862		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863		tty->count = 0;
1864	}
1865
1866	/*
1867	 * We've decremented tty->count, so we need to remove this file
1868	 * descriptor off the tty->tty_files list; this serves two
1869	 * purposes:
1870	 *  - check_tty_count sees the correct number of file descriptors
1871	 *    associated with this tty.
1872	 *  - do_tty_hangup no longer sees this file descriptor as
1873	 *    something that needs to be handled for hangups.
1874	 */
1875	tty_del_file(filp);
1876
1877	/*
1878	 * Perform some housekeeping before deciding whether to return.
1879	 *
1880	 * If _either_ side is closing, make sure there aren't any
1881	 * processes that still think tty or o_tty is their controlling
1882	 * tty.
1883	 */
1884	if (!tty->count) {
1885		read_lock(&tasklist_lock);
1886		session_clear_tty(tty->session);
1887		if (o_tty)
1888			session_clear_tty(o_tty->session);
1889		read_unlock(&tasklist_lock);
1890	}
1891
1892	/* check whether both sides are closing ... */
1893	final = !tty->count && !(o_tty && o_tty->count);
1894
1895	tty_unlock_slave(o_tty);
1896	tty_unlock(tty);
1897
1898	/* At this point, the tty->count == 0 should ensure a dead tty
1899	   cannot be re-opened by a racing opener */
 
1900
1901	if (!final)
1902		return 0;
1903
1904	tty_debug_hangup(tty, "final close\n");
1905	/*
1906	 * Ask the line discipline code to release its structures
1907	 */
1908	tty_ldisc_release(tty);
1909
1910	/* Wait for pending work before tty destruction commmences */
1911	tty_flush_works(tty);
1912
1913	tty_debug_hangup(tty, "freeing structure\n");
1914	/*
1915	 * The release_tty function takes care of the details of clearing
1916	 * the slots and preserving the termios structure. The tty_unlock_pair
1917	 * should be safe as we keep a kref while the tty is locked (so the
1918	 * unlock never unlocks a freed tty).
1919	 */
1920	mutex_lock(&tty_mutex);
1921	release_tty(tty, idx);
1922	mutex_unlock(&tty_mutex);
1923
 
1924	return 0;
1925}
1926
1927/**
1928 *	tty_open_current_tty - get locked tty of current task
1929 *	@device: device number
1930 *	@filp: file pointer to tty
1931 *	@return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 *	Performs a re-open of the current task's controlling tty.
1934 *
1935 *	We cannot return driver and index like for the other nodes because
1936 *	devpts will not work then. It expects inodes to be from devpts FS.
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939{
1940	struct tty_struct *tty;
1941	int retval;
1942
1943	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944		return NULL;
1945
1946	tty = get_current_tty();
1947	if (!tty)
1948		return ERR_PTR(-ENXIO);
1949
1950	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951	/* noctty = 1; */
1952	tty_lock(tty);
1953	tty_kref_put(tty);	/* safe to drop the kref now */
1954
1955	retval = tty_reopen(tty);
1956	if (retval < 0) {
1957		tty_unlock(tty);
1958		tty = ERR_PTR(retval);
1959	}
1960	return tty;
1961}
1962
1963/**
1964 *	tty_lookup_driver - lookup a tty driver for a given device file
1965 *	@device: device number
1966 *	@filp: file pointer to tty
1967 *	@noctty: set if the device should not become a controlling tty
1968 *	@index: index for the device in the @return driver
1969 *	@return: driver for this inode (with increased refcount)
1970 *
1971 * 	If @return is not erroneous, the caller is responsible to decrement the
1972 * 	refcount by tty_driver_kref_put.
1973 *
1974 *	Locking: tty_mutex protects get_tty_driver
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977		int *index)
1978{
1979	struct tty_driver *driver;
1980
1981	switch (device) {
1982#ifdef CONFIG_VT
1983	case MKDEV(TTY_MAJOR, 0): {
1984		extern struct tty_driver *console_driver;
 
1985		driver = tty_driver_kref_get(console_driver);
1986		*index = fg_console;
1987		break;
1988	}
1989#endif
1990	case MKDEV(TTYAUX_MAJOR, 1): {
1991		struct tty_driver *console_driver = console_device(index);
 
1992		if (console_driver) {
1993			driver = tty_driver_kref_get(console_driver);
1994			if (driver) {
1995				/* Don't let /dev/console block */
1996				filp->f_flags |= O_NONBLOCK;
1997				break;
1998			}
1999		}
 
 
2000		return ERR_PTR(-ENODEV);
2001	}
2002	default:
2003		driver = get_tty_driver(device, index);
2004		if (!driver)
2005			return ERR_PTR(-ENODEV);
2006		break;
2007	}
2008	return driver;
2009}
2010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011/**
2012 *	tty_open_by_driver	-	open a tty device
2013 *	@device: dev_t of device to open
2014 *	@inode: inode of device file
2015 *	@filp: file pointer to tty
2016 *
2017 *	Performs the driver lookup, checks for a reopen, or otherwise
2018 *	performs the first-time tty initialization.
2019 *
2020 *	Returns the locked initialized or re-opened &tty_struct
2021 *
2022 *	Claims the global tty_mutex to serialize:
2023 *	  - concurrent first-time tty initialization
2024 *	  - concurrent tty driver removal w/ lookup
2025 *	  - concurrent tty removal from driver table
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028					     struct file *filp)
2029{
2030	struct tty_struct *tty;
2031	struct tty_driver *driver = NULL;
2032	int index = -1;
2033	int retval;
2034
2035	mutex_lock(&tty_mutex);
2036	driver = tty_lookup_driver(device, filp, &index);
2037	if (IS_ERR(driver)) {
2038		mutex_unlock(&tty_mutex);
2039		return ERR_CAST(driver);
2040	}
2041
2042	/* check whether we're reopening an existing tty */
2043	tty = tty_driver_lookup_tty(driver, filp, index);
2044	if (IS_ERR(tty)) {
2045		mutex_unlock(&tty_mutex);
2046		goto out;
2047	}
2048
2049	if (tty) {
 
 
 
 
 
 
2050		mutex_unlock(&tty_mutex);
2051		retval = tty_lock_interruptible(tty);
2052		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053		if (retval) {
2054			if (retval == -EINTR)
2055				retval = -ERESTARTSYS;
2056			tty = ERR_PTR(retval);
2057			goto out;
2058		}
2059		retval = tty_reopen(tty);
2060		if (retval < 0) {
2061			tty_unlock(tty);
2062			tty = ERR_PTR(retval);
2063		}
2064	} else { /* Returns with the tty_lock held for now */
2065		tty = tty_init_dev(driver, index);
2066		mutex_unlock(&tty_mutex);
2067	}
2068out:
2069	tty_driver_kref_put(driver);
2070	return tty;
2071}
2072
2073/**
2074 *	tty_open		-	open a tty device
2075 *	@inode: inode of device file
2076 *	@filp: file pointer to tty
2077 *
2078 *	tty_open and tty_release keep up the tty count that contains the
2079 *	number of opens done on a tty. We cannot use the inode-count, as
2080 *	different inodes might point to the same tty.
2081 *
2082 *	Open-counting is needed for pty masters, as well as for keeping
2083 *	track of serial lines: DTR is dropped when the last close happens.
2084 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085 *
2086 *	The termios state of a pty is reset on first open so that
2087 *	settings don't persist across reuse.
2088 *
2089 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 *		 tty->count should protect the rest.
2091 *		 ->siglock protects ->signal/->sighand
2092 *
2093 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094 *	tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099	struct tty_struct *tty;
2100	int noctty, retval;
2101	dev_t device = inode->i_rdev;
2102	unsigned saved_flags = filp->f_flags;
2103
2104	nonseekable_open(inode, filp);
2105
2106retry_open:
2107	retval = tty_alloc_file(filp);
2108	if (retval)
2109		return -ENOMEM;
2110
2111	tty = tty_open_current_tty(device, filp);
2112	if (!tty)
2113		tty = tty_open_by_driver(device, inode, filp);
2114
2115	if (IS_ERR(tty)) {
2116		tty_free_file(filp);
2117		retval = PTR_ERR(tty);
2118		if (retval != -EAGAIN || signal_pending(current))
2119			return retval;
2120		schedule();
2121		goto retry_open;
2122	}
2123
2124	tty_add_file(tty, filp);
2125
2126	check_tty_count(tty, __func__);
2127	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
2129	if (tty->ops->open)
2130		retval = tty->ops->open(tty, filp);
2131	else
2132		retval = -ENODEV;
2133	filp->f_flags = saved_flags;
2134
2135	if (retval) {
2136		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138		tty_unlock(tty); /* need to call tty_release without BTM */
2139		tty_release(inode, filp);
2140		if (retval != -ERESTARTSYS)
2141			return retval;
2142
2143		if (signal_pending(current))
2144			return retval;
2145
2146		schedule();
2147		/*
2148		 * Need to reset f_op in case a hangup happened.
2149		 */
2150		if (tty_hung_up_p(filp))
2151			filp->f_op = &tty_fops;
2152		goto retry_open;
2153	}
2154	clear_bit(TTY_HUPPED, &tty->flags);
2155
2156
2157	read_lock(&tasklist_lock);
2158	spin_lock_irq(&current->sighand->siglock);
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163			 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165	if (!noctty &&
2166	    current->signal->leader &&
2167	    !current->signal->tty &&
2168	    tty->session == NULL) {
2169		/*
2170		 * Don't let a process that only has write access to the tty
2171		 * obtain the privileges associated with having a tty as
2172		 * controlling terminal (being able to reopen it with full
2173		 * access through /dev/tty, being able to perform pushback).
2174		 * Many distributions set the group of all ttys to "tty" and
2175		 * grant write-only access to all terminals for setgid tty
2176		 * binaries, which should not imply full privileges on all ttys.
2177		 *
2178		 * This could theoretically break old code that performs open()
2179		 * on a write-only file descriptor. In that case, it might be
2180		 * necessary to also permit this if
2181		 * inode_permission(inode, MAY_READ) == 0.
2182		 */
2183		if (filp->f_mode & FMODE_READ)
2184			__proc_set_tty(tty);
2185	}
2186	spin_unlock_irq(&current->sighand->siglock);
2187	read_unlock(&tasklist_lock);
2188	tty_unlock(tty);
2189	return 0;
2190}
2191
2192
2193
2194/**
2195 *	tty_poll	-	check tty status
2196 *	@filp: file being polled
2197 *	@wait: poll wait structures to update
2198 *
2199 *	Call the line discipline polling method to obtain the poll
2200 *	status of the device.
2201 *
2202 *	Locking: locks called line discipline but ldisc poll method
2203 *	may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208	struct tty_struct *tty = file_tty(filp);
2209	struct tty_ldisc *ld;
2210	int ret = 0;
2211
2212	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213		return 0;
2214
2215	ld = tty_ldisc_ref_wait(tty);
2216	if (!ld)
2217		return hung_up_tty_poll(filp, wait);
2218	if (ld->ops->poll)
2219		ret = ld->ops->poll(tty, filp, wait);
2220	tty_ldisc_deref(ld);
2221	return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226	struct tty_struct *tty = file_tty(filp);
2227	unsigned long flags;
2228	int retval = 0;
2229
2230	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231		goto out;
2232
2233	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234	if (retval <= 0)
2235		goto out;
2236
2237	if (on) {
2238		enum pid_type type;
2239		struct pid *pid;
2240
2241		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242		if (tty->pgrp) {
2243			pid = tty->pgrp;
2244			type = PIDTYPE_PGID;
2245		} else {
2246			pid = task_pid(current);
2247			type = PIDTYPE_PID;
2248		}
2249		get_pid(pid);
2250		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251		__f_setown(filp, pid, type, 0);
2252		put_pid(pid);
2253		retval = 0;
2254	}
2255out:
2256	return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261	struct tty_struct *tty = file_tty(filp);
2262	int retval = -ENOTTY;
2263
2264	tty_lock(tty);
2265	if (!tty_hung_up_p(filp))
2266		retval = __tty_fasync(fd, filp, on);
2267	tty_unlock(tty);
2268
2269	return retval;
2270}
2271
2272/**
2273 *	tiocsti			-	fake input character
2274 *	@tty: tty to fake input into
2275 *	@p: pointer to character
2276 *
2277 *	Fake input to a tty device. Does the necessary locking and
2278 *	input management.
2279 *
2280 *	FIXME: does not honour flow control ??
2281 *
2282 *	Locking:
2283 *		Called functions take tty_ldiscs_lock
2284 *		current->signal->tty check is safe without locks
2285 *
2286 *	FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291	char ch, mbz = 0;
2292	struct tty_ldisc *ld;
2293
2294	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (get_user(ch, p))
2297		return -EFAULT;
2298	tty_audit_tiocsti(tty, ch);
2299	ld = tty_ldisc_ref_wait(tty);
2300	if (!ld)
2301		return -EIO;
2302	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
2303	tty_ldisc_deref(ld);
2304	return 0;
2305}
2306
2307/**
2308 *	tiocgwinsz		-	implement window query ioctl
2309 *	@tty; tty
2310 *	@arg: user buffer for result
2311 *
2312 *	Copies the kernel idea of the window size into the user buffer.
2313 *
2314 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 *		is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320	int err;
2321
2322	mutex_lock(&tty->winsize_mutex);
2323	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324	mutex_unlock(&tty->winsize_mutex);
2325
2326	return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 *	tty_do_resize		-	resize event
2331 *	@tty: tty being resized
2332 *	@rows: rows (character)
2333 *	@cols: cols (character)
2334 *
2335 *	Update the termios variables and send the necessary signals to
2336 *	peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341	struct pid *pgrp;
2342
2343	/* Lock the tty */
2344	mutex_lock(&tty->winsize_mutex);
2345	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346		goto done;
2347
2348	/* Signal the foreground process group */
2349	pgrp = tty_get_pgrp(tty);
2350	if (pgrp)
2351		kill_pgrp(pgrp, SIGWINCH, 1);
2352	put_pid(pgrp);
2353
2354	tty->winsize = *ws;
2355done:
2356	mutex_unlock(&tty->winsize_mutex);
2357	return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 *	tiocswinsz		-	implement window size set ioctl
2363 *	@tty; tty side of tty
2364 *	@arg: user buffer for result
2365 *
2366 *	Copies the user idea of the window size to the kernel. Traditionally
2367 *	this is just advisory information but for the Linux console it
2368 *	actually has driver level meaning and triggers a VC resize.
2369 *
2370 *	Locking:
2371 *		Driver dependent. The default do_resize method takes the
2372 *	tty termios mutex and ctrl_lock. The console takes its own lock
2373 *	then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378	struct winsize tmp_ws;
 
2379	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380		return -EFAULT;
2381
2382	if (tty->ops->resize)
2383		return tty->ops->resize(tty, &tmp_ws);
2384	else
2385		return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 *	tioccons	-	allow admin to move logical console
2390 *	@file: the file to become console
2391 *
2392 *	Allow the administrator to move the redirected console device
2393 *
2394 *	Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399	if (!capable(CAP_SYS_ADMIN))
2400		return -EPERM;
2401	if (file->f_op->write == redirected_tty_write) {
2402		struct file *f;
 
2403		spin_lock(&redirect_lock);
2404		f = redirect;
2405		redirect = NULL;
2406		spin_unlock(&redirect_lock);
2407		if (f)
2408			fput(f);
2409		return 0;
2410	}
 
 
 
 
 
 
2411	spin_lock(&redirect_lock);
2412	if (redirect) {
2413		spin_unlock(&redirect_lock);
2414		return -EBUSY;
2415	}
2416	redirect = get_file(file);
2417	spin_unlock(&redirect_lock);
2418	return 0;
2419}
2420
2421/**
2422 *	fionbio		-	non blocking ioctl
2423 *	@file: file to set blocking value
2424 *	@p: user parameter
2425 *
2426 *	Historical tty interfaces had a blocking control ioctl before
2427 *	the generic functionality existed. This piece of history is preserved
2428 *	in the expected tty API of posix OS's.
2429 *
2430 *	Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435	int nonblock;
2436
2437	if (get_user(nonblock, p))
2438		return -EFAULT;
2439
2440	spin_lock(&file->f_lock);
2441	if (nonblock)
2442		file->f_flags |= O_NONBLOCK;
2443	else
2444		file->f_flags &= ~O_NONBLOCK;
2445	spin_unlock(&file->f_lock);
2446	return 0;
2447}
2448
2449/**
2450 *	tiocsctty	-	set controlling tty
2451 *	@tty: tty structure
2452 *	@arg: user argument
2453 *
2454 *	This ioctl is used to manage job control. It permits a session
2455 *	leader to set this tty as the controlling tty for the session.
2456 *
2457 *	Locking:
2458 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459 *		Takes tasklist_lock internally to walk sessions
2460 *		Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465	int ret = 0;
2466
2467	tty_lock(tty);
2468	read_lock(&tasklist_lock);
2469
2470	if (current->signal->leader && (task_session(current) == tty->session))
2471		goto unlock;
2472
2473	/*
2474	 * The process must be a session leader and
2475	 * not have a controlling tty already.
2476	 */
2477	if (!current->signal->leader || current->signal->tty) {
2478		ret = -EPERM;
2479		goto unlock;
2480	}
2481
2482	if (tty->session) {
2483		/*
2484		 * This tty is already the controlling
2485		 * tty for another session group!
2486		 */
2487		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488			/*
2489			 * Steal it away
2490			 */
2491			session_clear_tty(tty->session);
2492		} else {
2493			ret = -EPERM;
2494			goto unlock;
2495		}
2496	}
2497
2498	/* See the comment in tty_open(). */
2499	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500		ret = -EPERM;
2501		goto unlock;
2502	}
2503
2504	proc_set_tty(tty);
2505unlock:
2506	read_unlock(&tasklist_lock);
2507	tty_unlock(tty);
2508	return ret;
2509}
2510
2511/**
2512 *	tty_get_pgrp	-	return a ref counted pgrp pid
2513 *	@tty: tty to read
2514 *
2515 *	Returns a refcounted instance of the pid struct for the process
2516 *	group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521	unsigned long flags;
2522	struct pid *pgrp;
2523
2524	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525	pgrp = get_pid(tty->pgrp);
2526	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528	return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541	struct task_struct *p;
2542	struct pid *sid = NULL;
2543
2544	p = pid_task(pgrp, PIDTYPE_PGID);
2545	if (p == NULL)
2546		p = pid_task(pgrp, PIDTYPE_PID);
2547	if (p != NULL)
2548		sid = task_session(p);
2549
2550	return sid;
2551}
2552
2553/**
2554 *	tiocgpgrp		-	get process group
2555 *	@tty: tty passed by user
2556 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557 *	@p: returned pid
2558 *
2559 *	Obtain the process group of the tty. If there is no process group
2560 *	return an error.
2561 *
2562 *	Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567	struct pid *pid;
2568	int ret;
2569	/*
2570	 * (tty == real_tty) is a cheap way of
2571	 * testing if the tty is NOT a master pty.
2572	 */
2573	if (tty == real_tty && current->signal->tty != real_tty)
2574		return -ENOTTY;
2575	pid = tty_get_pgrp(real_tty);
2576	ret =  put_user(pid_vnr(pid), p);
2577	put_pid(pid);
2578	return ret;
2579}
2580
2581/**
2582 *	tiocspgrp		-	attempt to set process group
2583 *	@tty: tty passed by user
2584 *	@real_tty: tty side device matching tty passed by user
2585 *	@p: pid pointer
2586 *
2587 *	Set the process group of the tty to the session passed. Only
2588 *	permitted where the tty session is our session.
2589 *
2590 *	Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595	struct pid *pgrp;
2596	pid_t pgrp_nr;
2597	int retval = tty_check_change(real_tty);
2598
2599	if (retval == -EIO)
2600		return -ENOTTY;
2601	if (retval)
2602		return retval;
2603	if (!current->signal->tty ||
2604	    (current->signal->tty != real_tty) ||
2605	    (real_tty->session != task_session(current)))
2606		return -ENOTTY;
2607	if (get_user(pgrp_nr, p))
2608		return -EFAULT;
2609	if (pgrp_nr < 0)
2610		return -EINVAL;
2611	rcu_read_lock();
2612	pgrp = find_vpid(pgrp_nr);
2613	retval = -ESRCH;
2614	if (!pgrp)
2615		goto out_unlock;
2616	retval = -EPERM;
2617	if (session_of_pgrp(pgrp) != task_session(current))
2618		goto out_unlock;
2619	retval = 0;
2620	spin_lock_irq(&tty->ctrl_lock);
2621	put_pid(real_tty->pgrp);
2622	real_tty->pgrp = get_pid(pgrp);
2623	spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625	rcu_read_unlock();
2626	return retval;
2627}
2628
2629/**
2630 *	tiocgsid		-	get session id
2631 *	@tty: tty passed by user
2632 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633 *	@p: pointer to returned session id
2634 *
2635 *	Obtain the session id of the tty. If there is no session
2636 *	return an error.
2637 *
2638 *	Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643	/*
2644	 * (tty == real_tty) is a cheap way of
2645	 * testing if the tty is NOT a master pty.
2646	*/
2647	if (tty == real_tty && current->signal->tty != real_tty)
2648		return -ENOTTY;
2649	if (!real_tty->session)
2650		return -ENOTTY;
2651	return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 *	tiocsetd	-	set line discipline
2656 *	@tty: tty device
2657 *	@p: pointer to user data
2658 *
2659 *	Set the line discipline according to user request.
2660 *
2661 *	Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666	int disc;
2667	int ret;
2668
2669	if (get_user(disc, p))
2670		return -EFAULT;
2671
2672	ret = tty_set_ldisc(tty, disc);
2673
2674	return ret;
2675}
2676
2677/**
2678 *	tiocgetd	-	get line discipline
2679 *	@tty: tty device
2680 *	@p: pointer to user data
2681 *
2682 *	Retrieves the line discipline id directly from the ldisc.
2683 *
2684 *	Locking: waits for ldisc reference (in case the line discipline
2685 *		is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690	struct tty_ldisc *ld;
2691	int ret;
2692
2693	ld = tty_ldisc_ref_wait(tty);
2694	if (!ld)
2695		return -EIO;
2696	ret = put_user(ld->ops->num, p);
2697	tty_ldisc_deref(ld);
2698	return ret;
2699}
2700
2701/**
2702 *	send_break	-	performed time break
2703 *	@tty: device to break on
2704 *	@duration: timeout in mS
2705 *
2706 *	Perform a timed break on hardware that lacks its own driver level
2707 *	timed break functionality.
2708 *
2709 *	Locking:
2710 *		atomic_write_lock serializes
2711 *
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716	int retval;
2717
2718	if (tty->ops->break_ctl == NULL)
2719		return 0;
2720
2721	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722		retval = tty->ops->break_ctl(tty, duration);
2723	else {
2724		/* Do the work ourselves */
2725		if (tty_write_lock(tty, 0) < 0)
2726			return -EINTR;
2727		retval = tty->ops->break_ctl(tty, -1);
2728		if (retval)
2729			goto out;
2730		if (!signal_pending(current))
2731			msleep_interruptible(duration);
2732		retval = tty->ops->break_ctl(tty, 0);
2733out:
2734		tty_write_unlock(tty);
2735		if (signal_pending(current))
2736			retval = -EINTR;
2737	}
2738	return retval;
2739}
2740
2741/**
2742 *	tty_tiocmget		-	get modem status
2743 *	@tty: tty device
2744 *	@file: user file pointer
2745 *	@p: pointer to result
2746 *
2747 *	Obtain the modem status bits from the tty driver if the feature
2748 *	is supported. Return -EINVAL if it is not available.
2749 *
2750 *	Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755	int retval = -EINVAL;
2756
2757	if (tty->ops->tiocmget) {
2758		retval = tty->ops->tiocmget(tty);
2759
2760		if (retval >= 0)
2761			retval = put_user(retval, p);
2762	}
2763	return retval;
2764}
2765
2766/**
2767 *	tty_tiocmset		-	set modem status
2768 *	@tty: tty device
2769 *	@cmd: command - clear bits, set bits or set all
2770 *	@p: pointer to desired bits
2771 *
2772 *	Set the modem status bits from the tty driver if the feature
2773 *	is supported. Return -EINVAL if it is not available.
2774 *
2775 *	Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779	     unsigned __user *p)
2780{
2781	int retval;
2782	unsigned int set, clear, val;
2783
2784	if (tty->ops->tiocmset == NULL)
2785		return -EINVAL;
2786
2787	retval = get_user(val, p);
2788	if (retval)
2789		return retval;
2790	set = clear = 0;
2791	switch (cmd) {
2792	case TIOCMBIS:
2793		set = val;
2794		break;
2795	case TIOCMBIC:
2796		clear = val;
2797		break;
2798	case TIOCMSET:
2799		set = val;
2800		clear = ~val;
2801		break;
2802	}
2803	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805	return tty->ops->tiocmset(tty, set, clear);
2806}
2807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810	int retval = -EINVAL;
2811	struct serial_icounter_struct icount;
2812	memset(&icount, 0, sizeof(icount));
2813	if (tty->ops->get_icount)
2814		retval = tty->ops->get_icount(tty, &icount);
2815	if (retval != 0)
2816		return retval;
 
2817	if (copy_to_user(arg, &icount, sizeof(icount)))
2818		return -EFAULT;
2819	return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824	static DEFINE_RATELIMIT_STATE(depr_flags,
2825			DEFAULT_RATELIMIT_INTERVAL,
2826			DEFAULT_RATELIMIT_BURST);
2827	char comm[TASK_COMM_LEN];
2828	int flags;
2829
2830	if (get_user(flags, &ss->flags))
2831		return;
2832
2833	flags &= ASYNC_DEPRECATED;
2834
2835	if (flags && __ratelimit(&depr_flags))
2836		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837				__func__, get_task_comm(comm, current), flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847	    tty->driver->subtype == PTY_TYPE_MASTER)
2848		tty = tty->link;
2849	return tty;
2850}
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857	struct tty_struct *tty = file_tty(file);
2858	struct tty_struct *real_tty;
2859	void __user *p = (void __user *)arg;
2860	int retval;
2861	struct tty_ldisc *ld;
2862
2863	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864		return -EINVAL;
2865
2866	real_tty = tty_pair_get_tty(tty);
2867
2868	/*
2869	 * Factor out some common prep work
2870	 */
2871	switch (cmd) {
2872	case TIOCSETD:
2873	case TIOCSBRK:
2874	case TIOCCBRK:
2875	case TCSBRK:
2876	case TCSBRKP:
2877		retval = tty_check_change(tty);
2878		if (retval)
2879			return retval;
2880		if (cmd != TIOCCBRK) {
2881			tty_wait_until_sent(tty, 0);
2882			if (signal_pending(current))
2883				return -EINTR;
2884		}
2885		break;
2886	}
2887
2888	/*
2889	 *	Now do the stuff.
2890	 */
2891	switch (cmd) {
2892	case TIOCSTI:
2893		return tiocsti(tty, p);
2894	case TIOCGWINSZ:
2895		return tiocgwinsz(real_tty, p);
2896	case TIOCSWINSZ:
2897		return tiocswinsz(real_tty, p);
2898	case TIOCCONS:
2899		return real_tty != tty ? -EINVAL : tioccons(file);
2900	case FIONBIO:
2901		return fionbio(file, p);
2902	case TIOCEXCL:
2903		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904		return 0;
2905	case TIOCNXCL:
2906		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907		return 0;
2908	case TIOCGEXCL:
2909	{
2910		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
 
2911		return put_user(excl, (int __user *)p);
2912	}
2913	case TIOCNOTTY:
2914		if (current->signal->tty != tty)
2915			return -ENOTTY;
2916		no_tty();
2917		return 0;
2918	case TIOCSCTTY:
2919		return tiocsctty(real_tty, file, arg);
2920	case TIOCGPGRP:
2921		return tiocgpgrp(tty, real_tty, p);
2922	case TIOCSPGRP:
2923		return tiocspgrp(tty, real_tty, p);
2924	case TIOCGSID:
2925		return tiocgsid(tty, real_tty, p);
2926	case TIOCGETD:
2927		return tiocgetd(tty, p);
2928	case TIOCSETD:
2929		return tiocsetd(tty, p);
2930	case TIOCVHANGUP:
2931		if (!capable(CAP_SYS_ADMIN))
2932			return -EPERM;
2933		tty_vhangup(tty);
2934		return 0;
2935	case TIOCGDEV:
2936	{
2937		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2938		return put_user(ret, (unsigned int __user *)p);
2939	}
2940	/*
2941	 * Break handling
2942	 */
2943	case TIOCSBRK:	/* Turn break on, unconditionally */
2944		if (tty->ops->break_ctl)
2945			return tty->ops->break_ctl(tty, -1);
2946		return 0;
2947	case TIOCCBRK:	/* Turn break off, unconditionally */
2948		if (tty->ops->break_ctl)
2949			return tty->ops->break_ctl(tty, 0);
2950		return 0;
2951	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952		/* non-zero arg means wait for all output data
2953		 * to be sent (performed above) but don't send break.
2954		 * This is used by the tcdrain() termios function.
2955		 */
2956		if (!arg)
2957			return send_break(tty, 250);
2958		return 0;
2959	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960		return send_break(tty, arg ? arg*100 : 250);
2961
2962	case TIOCMGET:
2963		return tty_tiocmget(tty, p);
2964	case TIOCMSET:
2965	case TIOCMBIC:
2966	case TIOCMBIS:
2967		return tty_tiocmset(tty, cmd, p);
2968	case TIOCGICOUNT:
2969		retval = tty_tiocgicount(tty, p);
2970		/* For the moment allow fall through to the old method */
2971        	if (retval != -EINVAL)
2972			return retval;
2973		break;
2974	case TCFLSH:
2975		switch (arg) {
2976		case TCIFLUSH:
2977		case TCIOFLUSH:
2978		/* flush tty buffer and allow ldisc to process ioctl */
2979			tty_buffer_flush(tty, NULL);
2980			break;
2981		}
2982		break;
2983	case TIOCSSERIAL:
2984		tty_warn_deprecated_flags(p);
2985		break;
 
 
 
 
 
 
 
 
2986	}
2987	if (tty->ops->ioctl) {
2988		retval = tty->ops->ioctl(tty, cmd, arg);
2989		if (retval != -ENOIOCTLCMD)
2990			return retval;
2991	}
2992	ld = tty_ldisc_ref_wait(tty);
2993	if (!ld)
2994		return hung_up_tty_ioctl(file, cmd, arg);
2995	retval = -EINVAL;
2996	if (ld->ops->ioctl) {
2997		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998		if (retval == -ENOIOCTLCMD)
2999			retval = -ENOTTY;
3000	}
3001	tty_ldisc_deref(ld);
3002	return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007				unsigned long arg)
3008{
3009	struct tty_struct *tty = file_tty(file);
3010	struct tty_ldisc *ld;
3011	int retval = -ENOIOCTLCMD;
3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014		return -EINVAL;
3015
 
 
 
 
 
 
3016	if (tty->ops->compat_ioctl) {
3017		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018		if (retval != -ENOIOCTLCMD)
3019			return retval;
3020	}
3021
3022	ld = tty_ldisc_ref_wait(tty);
3023	if (!ld)
3024		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025	if (ld->ops->compat_ioctl)
3026		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027	else
3028		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
3029	tty_ldisc_deref(ld);
3030
3031	return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037	if (likely(file->f_op->read != tty_read))
3038		return 0;
3039	return file_tty(file) != t ? 0 : fd + 1;
3040}
3041	
3042/*
3043 * This implements the "Secure Attention Key" ---  the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key".  Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal.  But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context.  This can
3059 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064	tty_hangup(tty);
3065#else
3066	struct task_struct *g, *p;
3067	struct pid *session;
3068	int		i;
 
3069
3070	if (!tty)
3071		return;
3072	session = tty->session;
 
 
 
3073
3074	tty_ldisc_flush(tty);
3075
3076	tty_driver_flush_buffer(tty);
3077
3078	read_lock(&tasklist_lock);
3079	/* Kill the entire session */
3080	do_each_pid_task(session, PIDTYPE_SID, p) {
3081		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082			   task_pid_nr(p), p->comm);
3083		send_sig(SIGKILL, p, 1);
3084	} while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086	/* Now kill any processes that happen to have the tty open */
3087	do_each_thread(g, p) {
3088		if (p->signal->tty == tty) {
3089			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090				   task_pid_nr(p), p->comm);
3091			send_sig(SIGKILL, p, 1);
3092			continue;
3093		}
3094		task_lock(p);
3095		i = iterate_fd(p->files, 0, this_tty, tty);
3096		if (i != 0) {
3097			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098				   task_pid_nr(p), p->comm, i - 1);
3099			force_sig(SIGKILL, p);
3100		}
3101		task_unlock(p);
3102	} while_each_thread(g, p);
3103	read_unlock(&tasklist_lock);
 
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109	struct tty_struct *tty =
3110		container_of(work, struct tty_struct, SAK_work);
3111	__do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122	if (!tty)
3123		return;
3124	schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131	const dev_t *devt = data;
3132	return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138	dev_t devt = tty_devnum(tty);
3139	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
3140}
3141
3142
3143/**
3144 *	alloc_tty_struct
3145 *
3146 *	This subroutine allocates and initializes a tty structure.
3147 *
3148 *	Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3152{
3153	struct tty_struct *tty;
3154
3155	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156	if (!tty)
3157		return NULL;
3158
3159	kref_init(&tty->kref);
3160	tty->magic = TTY_MAGIC;
3161	tty_ldisc_init(tty);
3162	tty->session = NULL;
3163	tty->pgrp = NULL;
 
 
 
3164	mutex_init(&tty->legacy_mutex);
3165	mutex_init(&tty->throttle_mutex);
3166	init_rwsem(&tty->termios_rwsem);
3167	mutex_init(&tty->winsize_mutex);
3168	init_ldsem(&tty->ldisc_sem);
3169	init_waitqueue_head(&tty->write_wait);
3170	init_waitqueue_head(&tty->read_wait);
3171	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172	mutex_init(&tty->atomic_write_lock);
3173	spin_lock_init(&tty->ctrl_lock);
3174	spin_lock_init(&tty->flow_lock);
3175	spin_lock_init(&tty->files_lock);
3176	INIT_LIST_HEAD(&tty->tty_files);
3177	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179	tty->driver = driver;
3180	tty->ops = driver->ops;
3181	tty->index = idx;
3182	tty_line_name(driver, idx, tty->name);
3183	tty->dev = tty_get_device(tty);
3184
3185	return tty;
3186}
3187
3188/**
3189 *	tty_put_char	-	write one character to a tty
3190 *	@tty: tty
3191 *	@ch: character
3192 *
3193 *	Write one byte to the tty using the provided put_char method
3194 *	if present. Returns the number of characters successfully output.
3195 *
3196 *	Note: the specific put_char operation in the driver layer may go
3197 *	away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202	if (tty->ops->put_char)
3203		return tty->ops->put_char(tty, ch);
3204	return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211		unsigned int index, unsigned int count)
3212{
3213	int err;
3214
3215	/* init here, since reused cdevs cause crashes */
3216	driver->cdevs[index] = cdev_alloc();
3217	if (!driver->cdevs[index])
3218		return -ENOMEM;
3219	driver->cdevs[index]->ops = &tty_fops;
3220	driver->cdevs[index]->owner = driver->owner;
3221	err = cdev_add(driver->cdevs[index], dev, count);
3222	if (err)
3223		kobject_put(&driver->cdevs[index]->kobj);
3224	return err;
3225}
3226
3227/**
3228 *	tty_register_device - register a tty device
3229 *	@driver: the tty driver that describes the tty device
3230 *	@index: the index in the tty driver for this tty device
3231 *	@device: a struct device that is associated with this tty device.
3232 *		This field is optional, if there is no known struct device
3233 *		for this tty device it can be set to NULL safely.
3234 *
3235 *	Returns a pointer to the struct device for this tty device
3236 *	(or ERR_PTR(-EFOO) on error).
3237 *
3238 *	This call is required to be made to register an individual tty device
3239 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240 *	that bit is not set, this function should not be called by a tty
3241 *	driver.
3242 *
3243 *	Locking: ??
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247				   struct device *device)
3248{
3249	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255	dev_dbg(dev, "releasing...\n");
3256	kfree(dev);
3257}
3258
3259/**
3260 *	tty_register_device_attr - register a tty device
3261 *	@driver: the tty driver that describes the tty device
3262 *	@index: the index in the tty driver for this tty device
3263 *	@device: a struct device that is associated with this tty device.
3264 *		This field is optional, if there is no known struct device
3265 *		for this tty device it can be set to NULL safely.
3266 *	@drvdata: Driver data to be set to device.
3267 *	@attr_grp: Attribute group to be set on device.
3268 *
3269 *	Returns a pointer to the struct device for this tty device
3270 *	(or ERR_PTR(-EFOO) on error).
3271 *
3272 *	This call is required to be made to register an individual tty device
3273 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274 *	that bit is not set, this function should not be called by a tty
3275 *	driver.
3276 *
3277 *	Locking: ??
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280				   unsigned index, struct device *device,
3281				   void *drvdata,
3282				   const struct attribute_group **attr_grp)
3283{
3284	char name[64];
3285	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286	struct device *dev = NULL;
3287	int retval = -ENODEV;
3288	bool cdev = false;
3289
3290	if (index >= driver->num) {
3291		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292		       driver->name, index);
3293		return ERR_PTR(-EINVAL);
3294	}
3295
3296	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297		pty_line_name(driver, index, name);
3298	else
3299		tty_line_name(driver, index, name);
3300
3301	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302		retval = tty_cdev_add(driver, devt, index, 1);
3303		if (retval)
3304			goto error;
3305		cdev = true;
3306	}
3307
3308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309	if (!dev) {
3310		retval = -ENOMEM;
3311		goto error;
3312	}
3313
3314	dev->devt = devt;
3315	dev->class = tty_class;
3316	dev->parent = device;
3317	dev->release = tty_device_create_release;
3318	dev_set_name(dev, "%s", name);
3319	dev->groups = attr_grp;
3320	dev_set_drvdata(dev, drvdata);
3321
 
 
3322	retval = device_register(dev);
3323	if (retval)
3324		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325
3326	return dev;
3327
3328error:
 
 
3329	put_device(dev);
3330	if (cdev) {
3331		cdev_del(driver->cdevs[index]);
3332		driver->cdevs[index] = NULL;
3333	}
3334	return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * 	tty_unregister_device - unregister a tty device
3340 * 	@driver: the tty driver that describes the tty device
3341 * 	@index: the index in the tty driver for this tty device
3342 *
3343 * 	If a tty device is registered with a call to tty_register_device() then
3344 *	this function must be called when the tty device is gone.
3345 *
3346 *	Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351	device_destroy(tty_class,
3352		MKDEV(driver->major, driver->minor_start) + index);
3353	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354		cdev_del(driver->cdevs[index]);
3355		driver->cdevs[index] = NULL;
3356	}
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370		unsigned long flags)
3371{
3372	struct tty_driver *driver;
3373	unsigned int cdevs = 1;
3374	int err;
3375
3376	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377		return ERR_PTR(-EINVAL);
3378
3379	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380	if (!driver)
3381		return ERR_PTR(-ENOMEM);
3382
3383	kref_init(&driver->kref);
3384	driver->magic = TTY_DRIVER_MAGIC;
3385	driver->num = lines;
3386	driver->owner = owner;
3387	driver->flags = flags;
3388
3389	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391				GFP_KERNEL);
3392		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393				GFP_KERNEL);
3394		if (!driver->ttys || !driver->termios) {
3395			err = -ENOMEM;
3396			goto err_free_all;
3397		}
3398	}
3399
3400	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402				GFP_KERNEL);
3403		if (!driver->ports) {
3404			err = -ENOMEM;
3405			goto err_free_all;
3406		}
3407		cdevs = lines;
3408	}
3409
3410	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411	if (!driver->cdevs) {
3412		err = -ENOMEM;
3413		goto err_free_all;
3414	}
3415
3416	return driver;
3417err_free_all:
3418	kfree(driver->ports);
3419	kfree(driver->ttys);
3420	kfree(driver->termios);
3421	kfree(driver->cdevs);
3422	kfree(driver);
3423	return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430	int i;
3431	struct ktermios *tp;
3432
3433	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434		/*
3435		 * Free the termios and termios_locked structures because
3436		 * we don't want to get memory leaks when modular tty
3437		 * drivers are removed from the kernel.
3438		 */
3439		for (i = 0; i < driver->num; i++) {
3440			tp = driver->termios[i];
3441			if (tp) {
3442				driver->termios[i] = NULL;
3443				kfree(tp);
3444			}
3445			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446				tty_unregister_device(driver, i);
3447		}
3448		proc_tty_unregister_driver(driver);
3449		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450			cdev_del(driver->cdevs[0]);
3451	}
3452	kfree(driver->cdevs);
3453	kfree(driver->ports);
3454	kfree(driver->termios);
3455	kfree(driver->ttys);
3456	kfree(driver);
3457}
3458
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461	kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466			const struct tty_operations *op)
3467{
3468	driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474	tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483	int error;
3484	int i;
3485	dev_t dev;
3486	struct device *d;
3487
3488	if (!driver->major) {
3489		error = alloc_chrdev_region(&dev, driver->minor_start,
3490						driver->num, driver->name);
3491		if (!error) {
3492			driver->major = MAJOR(dev);
3493			driver->minor_start = MINOR(dev);
3494		}
3495	} else {
3496		dev = MKDEV(driver->major, driver->minor_start);
3497		error = register_chrdev_region(dev, driver->num, driver->name);
3498	}
3499	if (error < 0)
3500		goto err;
3501
3502	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503		error = tty_cdev_add(driver, dev, 0, driver->num);
3504		if (error)
3505			goto err_unreg_char;
3506	}
3507
3508	mutex_lock(&tty_mutex);
3509	list_add(&driver->tty_drivers, &tty_drivers);
3510	mutex_unlock(&tty_mutex);
3511
3512	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513		for (i = 0; i < driver->num; i++) {
3514			d = tty_register_device(driver, i, NULL);
3515			if (IS_ERR(d)) {
3516				error = PTR_ERR(d);
3517				goto err_unreg_devs;
3518			}
3519		}
3520	}
3521	proc_tty_register_driver(driver);
3522	driver->flags |= TTY_DRIVER_INSTALLED;
3523	return 0;
3524
3525err_unreg_devs:
3526	for (i--; i >= 0; i--)
3527		tty_unregister_device(driver, i);
3528
3529	mutex_lock(&tty_mutex);
3530	list_del(&driver->tty_drivers);
3531	mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534	unregister_chrdev_region(dev, driver->num);
3535err:
3536	return error;
3537}
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546	/* FIXME */
3547	if (driver->refcount)
3548		return -EBUSY;
3549#endif
3550	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551				driver->num);
3552	mutex_lock(&tty_mutex);
3553	list_del(&driver->tty_drivers);
3554	mutex_unlock(&tty_mutex);
3555	return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
3566void tty_default_fops(struct file_operations *fops)
3567{
3568	*fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579	initcall_t *call;
3580
3581	/* Setup the default TTY line discipline. */
3582	n_tty_init();
3583
3584	/*
3585	 * set up the console device so that later boot sequences can
3586	 * inform about problems etc..
3587	 */
3588	call = __con_initcall_start;
3589	while (call < __con_initcall_end) {
3590		(*call)();
3591		call++;
3592	}
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597	if (!mode)
3598		return NULL;
3599	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601		*mode = 0666;
3602	return NULL;
3603}
3604
3605static int __init tty_class_init(void)
3606{
3607	tty_class = class_create(THIS_MODULE, "tty");
3608	if (IS_ERR(tty_class))
3609		return PTR_ERR(tty_class);
3610	tty_class->devnode = tty_devnode;
3611	return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620				struct device_attribute *attr, char *buf)
3621{
3622	struct console *cs[16];
3623	int i = 0;
3624	struct console *c;
3625	ssize_t count = 0;
3626
3627	console_lock();
3628	for_each_console(c) {
3629		if (!c->device)
3630			continue;
3631		if (!c->write)
3632			continue;
3633		if ((c->flags & CON_ENABLED) == 0)
3634			continue;
3635		cs[i++] = c;
3636		if (i >= ARRAY_SIZE(cs))
3637			break;
3638	}
3639	while (i--) {
3640		int index = cs[i]->index;
3641		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643		/* don't resolve tty0 as some programs depend on it */
3644		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645			count += tty_line_name(drv, index, buf + count);
3646		else
3647			count += sprintf(buf + count, "%s%d",
3648					 cs[i]->name, cs[i]->index);
3649
3650		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651	}
3652	console_unlock();
3653
3654	return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659	&dev_attr_active.attr,
3660	NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669	if (consdev)
3670		sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
 
3679	cdev_init(&tty_cdev, &tty_fops);
3680	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682		panic("Couldn't register /dev/tty driver\n");
3683	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685	cdev_init(&console_cdev, &console_fops);
3686	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688		panic("Couldn't register /dev/console driver\n");
3689	consdev = device_create_with_groups(tty_class, NULL,
3690					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691					    cons_dev_groups, "console");
3692	if (IS_ERR(consdev))
3693		consdev = NULL;
3694
3695#ifdef CONFIG_VT
3696	vty_init(&console_fops);
3697#endif
3698	return 0;
3699}
3700
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102
 103#include <linux/uaccess.h>
 104
 105#include <linux/kbd_kern.h>
 106#include <linux/vt_kern.h>
 107#include <linux/selection.h>
 108
 109#include <linux/kmod.h>
 110#include <linux/nsproxy.h>
 111#include "tty.h"
 112
 113#undef TTY_DEBUG_HANGUP
 114#ifdef TTY_DEBUG_HANGUP
 115# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 116#else
 117# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 118#endif
 119
 120#define TTY_PARANOIA_CHECK 1
 121#define CHECK_TTY_COUNT 1
 122
 123struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 124	.c_iflag = ICRNL | IXON,
 125	.c_oflag = OPOST | ONLCR,
 126	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 127	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 128		   ECHOCTL | ECHOKE | IEXTEN,
 129	.c_cc = INIT_C_CC,
 130	.c_ispeed = 38400,
 131	.c_ospeed = 38400,
 132	/* .c_line = N_TTY, */
 133};
 
 134EXPORT_SYMBOL(tty_std_termios);
 135
 136/* This list gets poked at by procfs and various bits of boot up code. This
 137 * could do with some rationalisation such as pulling the tty proc function
 138 * into this file.
 139 */
 140
 141LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 142
 143/* Mutex to protect creating and releasing a tty */
 144DEFINE_MUTEX(tty_mutex);
 145
 146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 
 
 149static int tty_open(struct inode *, struct file *);
 
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 159
 160/**
 161 *	free_tty_struct		-	free a disused tty
 162 *	@tty: tty struct to free
 163 *
 164 *	Free the write buffers, tty queue and tty memory itself.
 165 *
 166 *	Locking: none. Must be called after tty is definitely unused
 167 */
 168
 169static void free_tty_struct(struct tty_struct *tty)
 170{
 171	tty_ldisc_deinit(tty);
 172	put_device(tty->dev);
 173	kfree(tty->write_buf);
 174	tty->magic = 0xDEADDEAD;
 175	kfree(tty);
 176}
 177
 178static inline struct tty_struct *file_tty(struct file *file)
 179{
 180	return ((struct tty_file_private *)file->private_data)->tty;
 181}
 182
 183int tty_alloc_file(struct file *file)
 184{
 185	struct tty_file_private *priv;
 186
 187	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 188	if (!priv)
 189		return -ENOMEM;
 190
 191	file->private_data = priv;
 192
 193	return 0;
 194}
 195
 196/* Associate a new file with the tty structure */
 197void tty_add_file(struct tty_struct *tty, struct file *file)
 198{
 199	struct tty_file_private *priv = file->private_data;
 200
 201	priv->tty = tty;
 202	priv->file = file;
 203
 204	spin_lock(&tty->files_lock);
 205	list_add(&priv->list, &tty->tty_files);
 206	spin_unlock(&tty->files_lock);
 207}
 208
 209/*
 210 * tty_free_file - free file->private_data
 211 *
 212 * This shall be used only for fail path handling when tty_add_file was not
 213 * called yet.
 214 */
 215void tty_free_file(struct file *file)
 216{
 217	struct tty_file_private *priv = file->private_data;
 218
 219	file->private_data = NULL;
 220	kfree(priv);
 221}
 222
 223/* Delete file from its tty */
 224static void tty_del_file(struct file *file)
 225{
 226	struct tty_file_private *priv = file->private_data;
 227	struct tty_struct *tty = priv->tty;
 228
 229	spin_lock(&tty->files_lock);
 230	list_del(&priv->list);
 231	spin_unlock(&tty->files_lock);
 232	tty_free_file(file);
 233}
 234
 
 
 
 235/**
 236 *	tty_name	-	return tty naming
 237 *	@tty: tty structure
 238 *
 239 *	Convert a tty structure into a name. The name reflects the kernel
 240 *	naming policy and if udev is in use may not reflect user space
 241 *
 242 *	Locking: none
 243 */
 244
 245const char *tty_name(const struct tty_struct *tty)
 246{
 247	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 248		return "NULL tty";
 249	return tty->name;
 250}
 
 251EXPORT_SYMBOL(tty_name);
 252
 253const char *tty_driver_name(const struct tty_struct *tty)
 254{
 255	if (!tty || !tty->driver)
 256		return "";
 257	return tty->driver->name;
 258}
 259
 260static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 261			      const char *routine)
 262{
 263#ifdef TTY_PARANOIA_CHECK
 264	if (!tty) {
 265		pr_warn("(%d:%d): %s: NULL tty\n",
 266			imajor(inode), iminor(inode), routine);
 267		return 1;
 268	}
 269	if (tty->magic != TTY_MAGIC) {
 270		pr_warn("(%d:%d): %s: bad magic number\n",
 271			imajor(inode), iminor(inode), routine);
 272		return 1;
 273	}
 274#endif
 275	return 0;
 276}
 277
 278/* Caller must hold tty_lock */
 279static int check_tty_count(struct tty_struct *tty, const char *routine)
 280{
 281#ifdef CHECK_TTY_COUNT
 282	struct list_head *p;
 283	int count = 0, kopen_count = 0;
 284
 285	spin_lock(&tty->files_lock);
 286	list_for_each(p, &tty->tty_files) {
 287		count++;
 288	}
 289	spin_unlock(&tty->files_lock);
 290	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 291	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 292	    tty->link && tty->link->count)
 293		count++;
 294	if (tty_port_kopened(tty->port))
 295		kopen_count++;
 296	if (tty->count != (count + kopen_count)) {
 297		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 298			 routine, tty->count, count, kopen_count);
 299		return (count + kopen_count);
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@device: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 322
 323		if (device < base || device >= base + p->num)
 324			continue;
 325		*index = device - base;
 326		return tty_driver_kref_get(p);
 327	}
 328	return NULL;
 329}
 330
 331/**
 332 *	tty_dev_name_to_number	-	return dev_t for device name
 333 *	@name: user space name of device under /dev
 334 *	@number: pointer to dev_t that this function will populate
 335 *
 336 *	This function converts device names like ttyS0 or ttyUSB1 into dev_t
 337 *	like (4, 64) or (188, 1). If no corresponding driver is registered then
 338 *	the function returns -ENODEV.
 339 *
 340 *	Locking: this acquires tty_mutex to protect the tty_drivers list from
 341 *		being modified while we are traversing it, and makes sure to
 342 *		release it before exiting.
 343 */
 344int tty_dev_name_to_number(const char *name, dev_t *number)
 345{
 346	struct tty_driver *p;
 347	int ret;
 348	int index, prefix_length = 0;
 349	const char *str;
 350
 351	for (str = name; *str && !isdigit(*str); str++)
 352		;
 353
 354	if (!*str)
 355		return -EINVAL;
 356
 357	ret = kstrtoint(str, 10, &index);
 358	if (ret)
 359		return ret;
 360
 361	prefix_length = str - name;
 362	mutex_lock(&tty_mutex);
 363
 364	list_for_each_entry(p, &tty_drivers, tty_drivers)
 365		if (prefix_length == strlen(p->name) && strncmp(name,
 366					p->name, prefix_length) == 0) {
 367			if (index < p->num) {
 368				*number = MKDEV(p->major, p->minor_start + index);
 369				goto out;
 370			}
 371		}
 372
 373	/* if here then driver wasn't found */
 374	ret = -ENODEV;
 375out:
 376	mutex_unlock(&tty_mutex);
 377	return ret;
 378}
 379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 380
 381#ifdef CONFIG_CONSOLE_POLL
 382
 383/**
 384 *	tty_find_polling_driver	-	find device of a polled tty
 385 *	@name: name string to match
 386 *	@line: pointer to resulting tty line nr
 387 *
 388 *	This routine returns a tty driver structure, given a name
 389 *	and the condition that the tty driver is capable of polled
 390 *	operation.
 391 */
 392struct tty_driver *tty_find_polling_driver(char *name, int *line)
 393{
 394	struct tty_driver *p, *res = NULL;
 395	int tty_line = 0;
 396	int len;
 397	char *str, *stp;
 398
 399	for (str = name; *str; str++)
 400		if ((*str >= '0' && *str <= '9') || *str == ',')
 401			break;
 402	if (!*str)
 403		return NULL;
 404
 405	len = str - name;
 406	tty_line = simple_strtoul(str, &str, 10);
 407
 408	mutex_lock(&tty_mutex);
 409	/* Search through the tty devices to look for a match */
 410	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 411		if (!len || strncmp(name, p->name, len) != 0)
 412			continue;
 413		stp = str;
 414		if (*stp == ',')
 415			stp++;
 416		if (*stp == '\0')
 417			stp = NULL;
 418
 419		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 420		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 421			res = tty_driver_kref_get(p);
 422			*line = tty_line;
 423			break;
 424		}
 425	}
 426	mutex_unlock(&tty_mutex);
 427
 428	return res;
 429}
 430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 431#endif
 432
 433static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434{
 435	return 0;
 436}
 437
 438static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 439{
 440	return -EIO;
 441}
 442
 443/* No kernel lock held - none needed ;) */
 444static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 445{
 446	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 447}
 448
 449static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 450		unsigned long arg)
 451{
 452	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 453}
 454
 455static long hung_up_tty_compat_ioctl(struct file *file,
 456				     unsigned int cmd, unsigned long arg)
 457{
 458	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 459}
 460
 461static int hung_up_tty_fasync(int fd, struct file *file, int on)
 462{
 463	return -ENOTTY;
 464}
 465
 466static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 467{
 468	struct tty_struct *tty = file_tty(file);
 469
 470	if (tty && tty->ops && tty->ops->show_fdinfo)
 471		tty->ops->show_fdinfo(tty, m);
 472}
 473
 474static const struct file_operations tty_fops = {
 475	.llseek		= no_llseek,
 476	.read_iter	= tty_read,
 477	.write_iter	= tty_write,
 478	.splice_read	= generic_file_splice_read,
 479	.splice_write	= iter_file_splice_write,
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 486	.show_fdinfo	= tty_show_fdinfo,
 487};
 488
 489static const struct file_operations console_fops = {
 490	.llseek		= no_llseek,
 491	.read_iter	= tty_read,
 492	.write_iter	= redirected_tty_write,
 493	.splice_read	= generic_file_splice_read,
 494	.splice_write	= iter_file_splice_write,
 495	.poll		= tty_poll,
 496	.unlocked_ioctl	= tty_ioctl,
 497	.compat_ioctl	= tty_compat_ioctl,
 498	.open		= tty_open,
 499	.release	= tty_release,
 500	.fasync		= tty_fasync,
 501};
 502
 503static const struct file_operations hung_up_tty_fops = {
 504	.llseek		= no_llseek,
 505	.read_iter	= hung_up_tty_read,
 506	.write_iter	= hung_up_tty_write,
 507	.poll		= hung_up_tty_poll,
 508	.unlocked_ioctl	= hung_up_tty_ioctl,
 509	.compat_ioctl	= hung_up_tty_compat_ioctl,
 510	.release	= tty_release,
 511	.fasync		= hung_up_tty_fasync,
 512};
 513
 514static DEFINE_SPINLOCK(redirect_lock);
 515static struct file *redirect;
 516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517/**
 518 *	tty_wakeup	-	request more data
 519 *	@tty: terminal
 520 *
 521 *	Internal and external helper for wakeups of tty. This function
 522 *	informs the line discipline if present that the driver is ready
 523 *	to receive more output data.
 524 */
 525
 526void tty_wakeup(struct tty_struct *tty)
 527{
 528	struct tty_ldisc *ld;
 529
 530	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 531		ld = tty_ldisc_ref(tty);
 532		if (ld) {
 533			if (ld->ops->write_wakeup)
 534				ld->ops->write_wakeup(tty);
 535			tty_ldisc_deref(ld);
 536		}
 537	}
 538	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 539}
 
 540EXPORT_SYMBOL_GPL(tty_wakeup);
 541
 542/**
 543 *	tty_release_redirect	-	Release a redirect on a pty if present
 544 *	@tty: tty device
 545 *
 546 *	This is available to the pty code so if the master closes, if the
 547 *	slave is a redirect it can release the redirect.
 548 */
 549static struct file *tty_release_redirect(struct tty_struct *tty)
 550{
 551	struct file *f = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 552
 553	spin_lock(&redirect_lock);
 554	if (redirect && file_tty(redirect) == tty) {
 555		f = redirect;
 556		redirect = NULL;
 557	}
 558	spin_unlock(&redirect_lock);
 559
 560	return f;
 561}
 562
 563/**
 564 *	__tty_hangup		-	actual handler for hangup events
 565 *	@tty: tty device
 566 *	@exit_session: if non-zero, signal all foreground group processes
 567 *
 568 *	This can be called by a "kworker" kernel thread.  That is process
 569 *	synchronous but doesn't hold any locks, so we need to make sure we
 570 *	have the appropriate locks for what we're doing.
 571 *
 572 *	The hangup event clears any pending redirections onto the hung up
 573 *	device. It ensures future writes will error and it does the needed
 574 *	line discipline hangup and signal delivery. The tty object itself
 575 *	remains intact.
 576 *
 577 *	Locking:
 578 *		BTM
 579 *		  redirect lock for undoing redirection
 580 *		  file list lock for manipulating list of ttys
 581 *		  tty_ldiscs_lock from called functions
 582 *		  termios_rwsem resetting termios data
 583 *		  tasklist_lock to walk task list for hangup event
 584 *		    ->siglock to protect ->signal/->sighand
 585 */
 586static void __tty_hangup(struct tty_struct *tty, int exit_session)
 587{
 588	struct file *cons_filp = NULL;
 589	struct file *filp, *f;
 590	struct tty_file_private *priv;
 591	int    closecount = 0, n;
 592	int refs;
 593
 594	if (!tty)
 595		return;
 596
 597	f = tty_release_redirect(tty);
 
 
 
 
 
 
 598
 599	tty_lock(tty);
 600
 601	if (test_bit(TTY_HUPPED, &tty->flags)) {
 602		tty_unlock(tty);
 603		return;
 604	}
 605
 606	/*
 607	 * Some console devices aren't actually hung up for technical and
 608	 * historical reasons, which can lead to indefinite interruptible
 609	 * sleep in n_tty_read().  The following explicitly tells
 610	 * n_tty_read() to abort readers.
 611	 */
 612	set_bit(TTY_HUPPING, &tty->flags);
 613
 614	/* inuse_filps is protected by the single tty lock,
 615	 * this really needs to change if we want to flush the
 616	 * workqueue with the lock held.
 617	 */
 618	check_tty_count(tty, "tty_hangup");
 619
 620	spin_lock(&tty->files_lock);
 621	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 622	list_for_each_entry(priv, &tty->tty_files, list) {
 623		filp = priv->file;
 624		if (filp->f_op->write_iter == redirected_tty_write)
 625			cons_filp = filp;
 626		if (filp->f_op->write_iter != tty_write)
 627			continue;
 628		closecount++;
 629		__tty_fasync(-1, filp, 0);	/* can't block */
 630		filp->f_op = &hung_up_tty_fops;
 631	}
 632	spin_unlock(&tty->files_lock);
 633
 634	refs = tty_signal_session_leader(tty, exit_session);
 635	/* Account for the p->signal references we killed */
 636	while (refs--)
 637		tty_kref_put(tty);
 638
 639	tty_ldisc_hangup(tty, cons_filp != NULL);
 640
 641	spin_lock_irq(&tty->ctrl.lock);
 642	clear_bit(TTY_THROTTLED, &tty->flags);
 643	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 644	put_pid(tty->ctrl.session);
 645	put_pid(tty->ctrl.pgrp);
 646	tty->ctrl.session = NULL;
 647	tty->ctrl.pgrp = NULL;
 648	tty->ctrl.pktstatus = 0;
 649	spin_unlock_irq(&tty->ctrl.lock);
 650
 651	/*
 652	 * If one of the devices matches a console pointer, we
 653	 * cannot just call hangup() because that will cause
 654	 * tty->count and state->count to go out of sync.
 655	 * So we just call close() the right number of times.
 656	 */
 657	if (cons_filp) {
 658		if (tty->ops->close)
 659			for (n = 0; n < closecount; n++)
 660				tty->ops->close(tty, cons_filp);
 661	} else if (tty->ops->hangup)
 662		tty->ops->hangup(tty);
 663	/*
 664	 * We don't want to have driver/ldisc interactions beyond the ones
 665	 * we did here. The driver layer expects no calls after ->hangup()
 666	 * from the ldisc side, which is now guaranteed.
 667	 */
 668	set_bit(TTY_HUPPED, &tty->flags);
 669	clear_bit(TTY_HUPPING, &tty->flags);
 670	tty_unlock(tty);
 671
 672	if (f)
 673		fput(f);
 674}
 675
 676static void do_tty_hangup(struct work_struct *work)
 677{
 678	struct tty_struct *tty =
 679		container_of(work, struct tty_struct, hangup_work);
 680
 681	__tty_hangup(tty, 0);
 682}
 683
 684/**
 685 *	tty_hangup		-	trigger a hangup event
 686 *	@tty: tty to hangup
 687 *
 688 *	A carrier loss (virtual or otherwise) has occurred on this like
 689 *	schedule a hangup sequence to run after this event.
 690 */
 691
 692void tty_hangup(struct tty_struct *tty)
 693{
 694	tty_debug_hangup(tty, "hangup\n");
 695	schedule_work(&tty->hangup_work);
 696}
 
 697EXPORT_SYMBOL(tty_hangup);
 698
 699/**
 700 *	tty_vhangup		-	process vhangup
 701 *	@tty: tty to hangup
 702 *
 703 *	The user has asked via system call for the terminal to be hung up.
 704 *	We do this synchronously so that when the syscall returns the process
 705 *	is complete. That guarantee is necessary for security reasons.
 706 */
 707
 708void tty_vhangup(struct tty_struct *tty)
 709{
 710	tty_debug_hangup(tty, "vhangup\n");
 711	__tty_hangup(tty, 0);
 712}
 
 713EXPORT_SYMBOL(tty_vhangup);
 714
 715
 716/**
 717 *	tty_vhangup_self	-	process vhangup for own ctty
 718 *
 719 *	Perform a vhangup on the current controlling tty
 720 */
 721
 722void tty_vhangup_self(void)
 723{
 724	struct tty_struct *tty;
 725
 726	tty = get_current_tty();
 727	if (tty) {
 728		tty_vhangup(tty);
 729		tty_kref_put(tty);
 730	}
 731}
 732
 733/**
 734 *	tty_vhangup_session		-	hangup session leader exit
 735 *	@tty: tty to hangup
 736 *
 737 *	The session leader is exiting and hanging up its controlling terminal.
 738 *	Every process in the foreground process group is signalled SIGHUP.
 739 *
 740 *	We do this synchronously so that when the syscall returns the process
 741 *	is complete. That guarantee is necessary for security reasons.
 742 */
 743
 744void tty_vhangup_session(struct tty_struct *tty)
 745{
 746	tty_debug_hangup(tty, "session hangup\n");
 747	__tty_hangup(tty, 1);
 748}
 749
 750/**
 751 *	tty_hung_up_p		-	was tty hung up
 752 *	@filp: file pointer of tty
 753 *
 754 *	Return true if the tty has been subject to a vhangup or a carrier
 755 *	loss
 756 */
 757
 758int tty_hung_up_p(struct file *filp)
 759{
 760	return (filp && filp->f_op == &hung_up_tty_fops);
 761}
 
 762EXPORT_SYMBOL(tty_hung_up_p);
 763
 764void __stop_tty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765{
 766	if (tty->flow.stopped)
 
 
 767		return;
 768	tty->flow.stopped = true;
 769	if (tty->ops->stop)
 770		tty->ops->stop(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771}
 772
 
 773/**
 774 *	stop_tty	-	propagate flow control
 775 *	@tty: tty to stop
 776 *
 777 *	Perform flow control to the driver. May be called
 778 *	on an already stopped device and will not re-call the driver
 779 *	method.
 780 *
 781 *	This functionality is used by both the line disciplines for
 782 *	halting incoming flow and by the driver. It may therefore be
 783 *	called from any context, may be under the tty atomic_write_lock
 784 *	but not always.
 785 *
 786 *	Locking:
 787 *		flow.lock
 788 */
 
 
 
 
 
 
 
 
 
 
 789void stop_tty(struct tty_struct *tty)
 790{
 791	unsigned long flags;
 792
 793	spin_lock_irqsave(&tty->flow.lock, flags);
 794	__stop_tty(tty);
 795	spin_unlock_irqrestore(&tty->flow.lock, flags);
 796}
 797EXPORT_SYMBOL(stop_tty);
 798
 799void __start_tty(struct tty_struct *tty)
 800{
 801	if (!tty->flow.stopped || tty->flow.tco_stopped)
 802		return;
 803	tty->flow.stopped = false;
 804	if (tty->ops->start)
 805		tty->ops->start(tty);
 806	tty_wakeup(tty);
 807}
 808
 809/**
 810 *	start_tty	-	propagate flow control
 811 *	@tty: tty to start
 812 *
 813 *	Start a tty that has been stopped if at all possible. If this
 814 *	tty was previous stopped and is now being started, the driver
 815 *	start method is invoked and the line discipline woken.
 816 *
 817 *	Locking:
 818 *		flow.lock
 819 */
 
 
 
 
 
 
 
 
 
 
 
 820void start_tty(struct tty_struct *tty)
 821{
 822	unsigned long flags;
 823
 824	spin_lock_irqsave(&tty->flow.lock, flags);
 825	__start_tty(tty);
 826	spin_unlock_irqrestore(&tty->flow.lock, flags);
 827}
 828EXPORT_SYMBOL(start_tty);
 829
 830static void tty_update_time(struct timespec64 *time)
 831{
 832	time64_t sec = ktime_get_real_seconds();
 833
 834	/*
 835	 * We only care if the two values differ in anything other than the
 836	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 837	 * the time of the tty device, otherwise it could be construded as a
 838	 * security leak to let userspace know the exact timing of the tty.
 839	 */
 840	if ((sec ^ time->tv_sec) & ~7)
 841		time->tv_sec = sec;
 842}
 843
 844/*
 845 * Iterate on the ldisc ->read() function until we've gotten all
 846 * the data the ldisc has for us.
 847 *
 848 * The "cookie" is something that the ldisc read function can fill
 849 * in to let us know that there is more data to be had.
 850 *
 851 * We promise to continue to call the ldisc until it stops returning
 852 * data or clears the cookie. The cookie may be something that the
 853 * ldisc maintains state for and needs to free.
 854 */
 855static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 856		struct file *file, struct iov_iter *to)
 857{
 858	int retval = 0;
 859	void *cookie = NULL;
 860	unsigned long offset = 0;
 861	char kernel_buf[64];
 862	size_t count = iov_iter_count(to);
 863
 864	do {
 865		int size, copied;
 866
 867		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
 868		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 869		if (!size)
 870			break;
 871
 872		if (size < 0) {
 873			/* Did we have an earlier error (ie -EFAULT)? */
 874			if (retval)
 875				break;
 876			retval = size;
 877
 878			/*
 879			 * -EOVERFLOW means we didn't have enough space
 880			 * for a whole packet, and we shouldn't return
 881			 * a partial result.
 882			 */
 883			if (retval == -EOVERFLOW)
 884				offset = 0;
 885			break;
 886		}
 887
 888		copied = copy_to_iter(kernel_buf, size, to);
 889		offset += copied;
 890		count -= copied;
 891
 892		/*
 893		 * If the user copy failed, we still need to do another ->read()
 894		 * call if we had a cookie to let the ldisc clear up.
 895		 *
 896		 * But make sure size is zeroed.
 897		 */
 898		if (unlikely(copied != size)) {
 899			count = 0;
 900			retval = -EFAULT;
 901		}
 902	} while (cookie);
 903
 904	/* We always clear tty buffer in case they contained passwords */
 905	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 906	return offset ? offset : retval;
 907}
 908
 909
 910/**
 911 *	tty_read	-	read method for tty device files
 912 *	@iocb: kernel I/O control block
 913 *	@to: destination for the data read
 
 
 914 *
 915 *	Perform the read system call function on this terminal device. Checks
 916 *	for hung up devices before calling the line discipline method.
 917 *
 918 *	Locking:
 919 *		Locks the line discipline internally while needed. Multiple
 920 *	read calls may be outstanding in parallel.
 921 */
 922
 923static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 924{
 925	int i;
 926	struct file *file = iocb->ki_filp;
 927	struct inode *inode = file_inode(file);
 928	struct tty_struct *tty = file_tty(file);
 929	struct tty_ldisc *ld;
 930
 931	if (tty_paranoia_check(tty, inode, "tty_read"))
 932		return -EIO;
 933	if (!tty || tty_io_error(tty))
 934		return -EIO;
 935
 936	/* We want to wait for the line discipline to sort out in this
 937	 * situation.
 938	 */
 939	ld = tty_ldisc_ref_wait(tty);
 940	if (!ld)
 941		return hung_up_tty_read(iocb, to);
 942	i = -EIO;
 943	if (ld->ops->read)
 944		i = iterate_tty_read(ld, tty, file, to);
 
 
 945	tty_ldisc_deref(ld);
 946
 947	if (i > 0)
 948		tty_update_time(&inode->i_atime);
 949
 950	return i;
 951}
 952
 953static void tty_write_unlock(struct tty_struct *tty)
 954{
 955	mutex_unlock(&tty->atomic_write_lock);
 956	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 957}
 958
 959static int tty_write_lock(struct tty_struct *tty, int ndelay)
 960{
 961	if (!mutex_trylock(&tty->atomic_write_lock)) {
 962		if (ndelay)
 963			return -EAGAIN;
 964		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 965			return -ERESTARTSYS;
 966	}
 967	return 0;
 968}
 969
 970/*
 971 * Split writes up in sane blocksizes to avoid
 972 * denial-of-service type attacks
 973 */
 974static inline ssize_t do_tty_write(
 975	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 976	struct tty_struct *tty,
 977	struct file *file,
 978	struct iov_iter *from)
 
 979{
 980	size_t count = iov_iter_count(from);
 981	ssize_t ret, written = 0;
 982	unsigned int chunk;
 983
 984	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 985	if (ret < 0)
 986		return ret;
 987
 988	/*
 989	 * We chunk up writes into a temporary buffer. This
 990	 * simplifies low-level drivers immensely, since they
 991	 * don't have locking issues and user mode accesses.
 992	 *
 993	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 994	 * big chunk-size..
 995	 *
 996	 * The default chunk-size is 2kB, because the NTTY
 997	 * layer has problems with bigger chunks. It will
 998	 * claim to be able to handle more characters than
 999	 * it actually does.
1000	 *
1001	 * FIXME: This can probably go away now except that 64K chunks
1002	 * are too likely to fail unless switched to vmalloc...
1003	 */
1004	chunk = 2048;
1005	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1006		chunk = 65536;
1007	if (count < chunk)
1008		chunk = count;
1009
1010	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1011	if (tty->write_cnt < chunk) {
1012		unsigned char *buf_chunk;
1013
1014		if (chunk < 1024)
1015			chunk = 1024;
1016
1017		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1018		if (!buf_chunk) {
1019			ret = -ENOMEM;
1020			goto out;
1021		}
1022		kfree(tty->write_buf);
1023		tty->write_cnt = chunk;
1024		tty->write_buf = buf_chunk;
1025	}
1026
1027	/* Do the write .. */
1028	for (;;) {
1029		size_t size = count;
1030
1031		if (size > chunk)
1032			size = chunk;
1033
1034		ret = -EFAULT;
1035		if (copy_from_iter(tty->write_buf, size, from) != size)
1036			break;
1037
1038		ret = write(tty, file, tty->write_buf, size);
1039		if (ret <= 0)
1040			break;
1041
1042		written += ret;
1043		if (ret > size)
1044			break;
1045
1046		/* FIXME! Have Al check this! */
1047		if (ret != size)
1048			iov_iter_revert(from, size-ret);
1049
1050		count -= ret;
1051		if (!count)
1052			break;
1053		ret = -ERESTARTSYS;
1054		if (signal_pending(current))
1055			break;
1056		cond_resched();
1057	}
1058	if (written) {
1059		tty_update_time(&file_inode(file)->i_mtime);
1060		ret = written;
1061	}
1062out:
1063	tty_write_unlock(tty);
1064	return ret;
1065}
1066
1067/**
1068 * tty_write_message - write a message to a certain tty, not just the console.
1069 * @tty: the destination tty_struct
1070 * @msg: the message to write
1071 *
1072 * This is used for messages that need to be redirected to a specific tty.
1073 * We don't put it into the syslog queue right now maybe in the future if
1074 * really needed.
1075 *
1076 * We must still hold the BTM and test the CLOSING flag for the moment.
1077 */
1078
1079void tty_write_message(struct tty_struct *tty, char *msg)
1080{
1081	if (tty) {
1082		mutex_lock(&tty->atomic_write_lock);
1083		tty_lock(tty);
1084		if (tty->ops->write && tty->count > 0)
1085			tty->ops->write(tty, msg, strlen(msg));
1086		tty_unlock(tty);
1087		tty_write_unlock(tty);
1088	}
 
1089}
1090
1091static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092{
1093	struct tty_struct *tty = file_tty(file);
1094	struct tty_ldisc *ld;
1095	ssize_t ret;
1096
1097	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1098		return -EIO;
1099	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1100		return -EIO;
 
1101	/* Short term debug to catch buggy drivers */
1102	if (tty->ops->write_room == NULL)
1103		tty_err(tty, "missing write_room method\n");
1104	ld = tty_ldisc_ref_wait(tty);
1105	if (!ld)
1106		return hung_up_tty_write(iocb, from);
1107	if (!ld->ops->write)
1108		ret = -EIO;
1109	else
1110		ret = do_tty_write(ld->ops->write, tty, file, from);
1111	tty_ldisc_deref(ld);
1112	return ret;
1113}
1114
1115/**
1116 *	tty_write		-	write method for tty device file
1117 *	@iocb: kernel I/O control block
1118 *	@from: iov_iter with data to write
1119 *
1120 *	Write data to a tty device via the line discipline.
1121 *
1122 *	Locking:
1123 *		Locks the line discipline as required
1124 *		Writes to the tty driver are serialized by the atomic_write_lock
1125 *		and are then processed in chunks to the device. The line
1126 *		discipline write method will not be invoked in parallel for
1127 *		each device.
1128 */
1129static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1130{
1131	return file_tty_write(iocb->ki_filp, iocb, from);
1132}
1133
1134ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1135{
1136	struct file *p = NULL;
1137
1138	spin_lock(&redirect_lock);
1139	if (redirect)
1140		p = get_file(redirect);
1141	spin_unlock(&redirect_lock);
1142
1143	/*
1144	 * We know the redirected tty is just another tty, we can
1145	 * call file_tty_write() directly with that file pointer.
1146	 */
1147	if (p) {
1148		ssize_t res;
1149
1150		res = file_tty_write(p, iocb, iter);
1151		fput(p);
1152		return res;
1153	}
1154	return tty_write(iocb, iter);
1155}
1156
1157/*
1158 *	tty_send_xchar	-	send priority character
1159 *
1160 *	Send a high priority character to the tty even if stopped
1161 *
1162 *	Locking: none for xchar method, write ordering for write method.
1163 */
1164
1165int tty_send_xchar(struct tty_struct *tty, char ch)
1166{
1167	bool was_stopped = tty->flow.stopped;
1168
1169	if (tty->ops->send_xchar) {
1170		down_read(&tty->termios_rwsem);
1171		tty->ops->send_xchar(tty, ch);
1172		up_read(&tty->termios_rwsem);
1173		return 0;
1174	}
1175
1176	if (tty_write_lock(tty, 0) < 0)
1177		return -ERESTARTSYS;
1178
1179	down_read(&tty->termios_rwsem);
1180	if (was_stopped)
1181		start_tty(tty);
1182	tty->ops->write(tty, &ch, 1);
1183	if (was_stopped)
1184		stop_tty(tty);
1185	up_read(&tty->termios_rwsem);
1186	tty_write_unlock(tty);
1187	return 0;
1188}
1189
 
 
1190/**
1191 *	pty_line_name	-	generate name for a pty
1192 *	@driver: the tty driver in use
1193 *	@index: the minor number
1194 *	@p: output buffer of at least 6 bytes
1195 *
1196 *	Generate a name from a driver reference and write it to the output
1197 *	buffer.
1198 *
1199 *	Locking: None
1200 */
1201static void pty_line_name(struct tty_driver *driver, int index, char *p)
1202{
1203	static const char ptychar[] = "pqrstuvwxyzabcde";
1204	int i = index + driver->name_base;
1205	/* ->name is initialized to "ttyp", but "tty" is expected */
1206	sprintf(p, "%s%c%x",
1207		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1208		ptychar[i >> 4 & 0xf], i & 0xf);
1209}
1210
1211/**
1212 *	tty_line_name	-	generate name for a tty
1213 *	@driver: the tty driver in use
1214 *	@index: the minor number
1215 *	@p: output buffer of at least 7 bytes
1216 *
1217 *	Generate a name from a driver reference and write it to the output
1218 *	buffer.
1219 *
1220 *	Locking: None
1221 */
1222static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1223{
1224	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1225		return sprintf(p, "%s", driver->name);
1226	else
1227		return sprintf(p, "%s%d", driver->name,
1228			       index + driver->name_base);
1229}
1230
1231/**
1232 *	tty_driver_lookup_tty() - find an existing tty, if any
1233 *	@driver: the driver for the tty
1234 *	@file:   file object
1235 *	@idx:	 the minor number
1236 *
1237 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1238 *	driver lookup() method returns an error.
1239 *
1240 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1241 */
1242static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1243		struct file *file, int idx)
1244{
1245	struct tty_struct *tty;
1246
1247	if (driver->ops->lookup)
1248		if (!file)
1249			tty = ERR_PTR(-EIO);
1250		else
1251			tty = driver->ops->lookup(driver, file, idx);
1252	else
1253		tty = driver->ttys[idx];
1254
1255	if (!IS_ERR(tty))
1256		tty_kref_get(tty);
1257	return tty;
1258}
1259
1260/**
1261 *	tty_init_termios	-  helper for termios setup
1262 *	@tty: the tty to set up
1263 *
1264 *	Initialise the termios structure for this tty. This runs under
1265 *	the tty_mutex currently so we can be relaxed about ordering.
1266 */
1267
1268void tty_init_termios(struct tty_struct *tty)
1269{
1270	struct ktermios *tp;
1271	int idx = tty->index;
1272
1273	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1274		tty->termios = tty->driver->init_termios;
1275	else {
1276		/* Check for lazy saved data */
1277		tp = tty->driver->termios[idx];
1278		if (tp != NULL) {
1279			tty->termios = *tp;
1280			tty->termios.c_line  = tty->driver->init_termios.c_line;
1281		} else
1282			tty->termios = tty->driver->init_termios;
1283	}
1284	/* Compatibility until drivers always set this */
1285	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1286	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1287}
1288EXPORT_SYMBOL_GPL(tty_init_termios);
1289
1290int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1291{
1292	tty_init_termios(tty);
1293	tty_driver_kref_get(driver);
1294	tty->count++;
1295	driver->ttys[tty->index] = tty;
1296	return 0;
1297}
1298EXPORT_SYMBOL_GPL(tty_standard_install);
1299
1300/**
1301 *	tty_driver_install_tty() - install a tty entry in the driver
1302 *	@driver: the driver for the tty
1303 *	@tty: the tty
1304 *
1305 *	Install a tty object into the driver tables. The tty->index field
1306 *	will be set by the time this is called. This method is responsible
1307 *	for ensuring any need additional structures are allocated and
1308 *	configured.
1309 *
1310 *	Locking: tty_mutex for now
1311 */
1312static int tty_driver_install_tty(struct tty_driver *driver,
1313						struct tty_struct *tty)
1314{
1315	return driver->ops->install ? driver->ops->install(driver, tty) :
1316		tty_standard_install(driver, tty);
1317}
1318
1319/**
1320 *	tty_driver_remove_tty() - remove a tty from the driver tables
1321 *	@driver: the driver for the tty
1322 *	@tty: tty to remove
1323 *
1324 *	Remvoe a tty object from the driver tables. The tty->index field
1325 *	will be set by the time this is called.
1326 *
1327 *	Locking: tty_mutex for now
1328 */
1329static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1330{
1331	if (driver->ops->remove)
1332		driver->ops->remove(driver, tty);
1333	else
1334		driver->ttys[tty->index] = NULL;
1335}
1336
1337/**
1338 *	tty_reopen()	- fast re-open of an open tty
1339 *	@tty: the tty to open
1340 *
1341 *	Return 0 on success, -errno on error.
1342 *	Re-opens on master ptys are not allowed and return -EIO.
1343 *
1344 *	Locking: Caller must hold tty_lock
1345 */
1346static int tty_reopen(struct tty_struct *tty)
1347{
1348	struct tty_driver *driver = tty->driver;
1349	struct tty_ldisc *ld;
1350	int retval = 0;
1351
1352	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1353	    driver->subtype == PTY_TYPE_MASTER)
1354		return -EIO;
1355
1356	if (!tty->count)
1357		return -EAGAIN;
1358
1359	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1360		return -EBUSY;
1361
1362	ld = tty_ldisc_ref_wait(tty);
1363	if (ld) {
1364		tty_ldisc_deref(ld);
1365	} else {
1366		retval = tty_ldisc_lock(tty, 5 * HZ);
1367		if (retval)
1368			return retval;
1369
1370		if (!tty->ldisc)
1371			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1372		tty_ldisc_unlock(tty);
1373	}
1374
1375	if (retval == 0)
1376		tty->count++;
1377
1378	return retval;
1379}
1380
1381/**
1382 *	tty_init_dev		-	initialise a tty device
1383 *	@driver: tty driver we are opening a device on
1384 *	@idx: device index
 
1385 *
1386 *	Prepare a tty device. This may not be a "new" clean device but
1387 *	could also be an active device. The pty drivers require special
1388 *	handling because of this.
1389 *
1390 *	Locking:
1391 *		The function is called under the tty_mutex, which
1392 *	protects us from the tty struct or driver itself going away.
1393 *
1394 *	On exit the tty device has the line discipline attached and
1395 *	a reference count of 1. If a pair was created for pty/tty use
1396 *	and the other was a pty master then it too has a reference count of 1.
1397 *
1398 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1399 * failed open.  The new code protects the open with a mutex, so it's
1400 * really quite straightforward.  The mutex locking can probably be
1401 * relaxed for the (most common) case of reopening a tty.
1402 *
1403 *	Return: returned tty structure
1404 */
1405
1406struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1407{
1408	struct tty_struct *tty;
1409	int retval;
1410
1411	/*
1412	 * First time open is complex, especially for PTY devices.
1413	 * This code guarantees that either everything succeeds and the
1414	 * TTY is ready for operation, or else the table slots are vacated
1415	 * and the allocated memory released.  (Except that the termios
1416	 * may be retained.)
1417	 */
1418
1419	if (!try_module_get(driver->owner))
1420		return ERR_PTR(-ENODEV);
1421
1422	tty = alloc_tty_struct(driver, idx);
1423	if (!tty) {
1424		retval = -ENOMEM;
1425		goto err_module_put;
1426	}
1427
1428	tty_lock(tty);
1429	retval = tty_driver_install_tty(driver, tty);
1430	if (retval < 0)
1431		goto err_free_tty;
1432
1433	if (!tty->port)
1434		tty->port = driver->ports[idx];
1435
1436	if (WARN_RATELIMIT(!tty->port,
1437			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1438			__func__, tty->driver->name)) {
1439		retval = -EINVAL;
1440		goto err_release_lock;
1441	}
1442
1443	retval = tty_ldisc_lock(tty, 5 * HZ);
1444	if (retval)
1445		goto err_release_lock;
1446	tty->port->itty = tty;
1447
1448	/*
1449	 * Structures all installed ... call the ldisc open routines.
1450	 * If we fail here just call release_tty to clean up.  No need
1451	 * to decrement the use counts, as release_tty doesn't care.
1452	 */
1453	retval = tty_ldisc_setup(tty, tty->link);
1454	if (retval)
1455		goto err_release_tty;
1456	tty_ldisc_unlock(tty);
1457	/* Return the tty locked so that it cannot vanish under the caller */
1458	return tty;
1459
1460err_free_tty:
1461	tty_unlock(tty);
1462	free_tty_struct(tty);
1463err_module_put:
1464	module_put(driver->owner);
1465	return ERR_PTR(retval);
1466
1467	/* call the tty release_tty routine to clean out this slot */
1468err_release_tty:
1469	tty_ldisc_unlock(tty);
1470	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1471			     retval, idx);
1472err_release_lock:
1473	tty_unlock(tty);
1474	release_tty(tty, idx);
1475	return ERR_PTR(retval);
1476}
1477
1478/**
1479 * tty_save_termios() - save tty termios data in driver table
1480 * @tty: tty whose termios data to save
1481 *
1482 * Locking: Caller guarantees serialisation with tty_init_termios().
1483 */
1484void tty_save_termios(struct tty_struct *tty)
1485{
1486	struct ktermios *tp;
1487	int idx = tty->index;
1488
1489	/* If the port is going to reset then it has no termios to save */
1490	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1491		return;
1492
1493	/* Stash the termios data */
1494	tp = tty->driver->termios[idx];
1495	if (tp == NULL) {
1496		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1497		if (tp == NULL)
1498			return;
1499		tty->driver->termios[idx] = tp;
1500	}
1501	*tp = tty->termios;
1502}
1503EXPORT_SYMBOL_GPL(tty_save_termios);
1504
1505/**
1506 *	tty_flush_works		-	flush all works of a tty/pty pair
1507 *	@tty: tty device to flush works for (or either end of a pty pair)
1508 *
1509 *	Sync flush all works belonging to @tty (and the 'other' tty).
1510 */
1511static void tty_flush_works(struct tty_struct *tty)
1512{
1513	flush_work(&tty->SAK_work);
1514	flush_work(&tty->hangup_work);
1515	if (tty->link) {
1516		flush_work(&tty->link->SAK_work);
1517		flush_work(&tty->link->hangup_work);
1518	}
1519}
1520
1521/**
1522 *	release_one_tty		-	release tty structure memory
1523 *	@work: work of tty we are obliterating
1524 *
1525 *	Releases memory associated with a tty structure, and clears out the
1526 *	driver table slots. This function is called when a device is no longer
1527 *	in use. It also gets called when setup of a device fails.
1528 *
1529 *	Locking:
1530 *		takes the file list lock internally when working on the list
1531 *	of ttys that the driver keeps.
1532 *
1533 *	This method gets called from a work queue so that the driver private
1534 *	cleanup ops can sleep (needed for USB at least)
1535 */
1536static void release_one_tty(struct work_struct *work)
1537{
1538	struct tty_struct *tty =
1539		container_of(work, struct tty_struct, hangup_work);
1540	struct tty_driver *driver = tty->driver;
1541	struct module *owner = driver->owner;
1542
1543	if (tty->ops->cleanup)
1544		tty->ops->cleanup(tty);
1545
1546	tty->magic = 0;
1547	tty_driver_kref_put(driver);
1548	module_put(owner);
1549
1550	spin_lock(&tty->files_lock);
1551	list_del_init(&tty->tty_files);
1552	spin_unlock(&tty->files_lock);
1553
1554	put_pid(tty->ctrl.pgrp);
1555	put_pid(tty->ctrl.session);
1556	free_tty_struct(tty);
1557}
1558
1559static void queue_release_one_tty(struct kref *kref)
1560{
1561	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1562
1563	/* The hangup queue is now free so we can reuse it rather than
1564	 *  waste a chunk of memory for each port.
1565	 */
1566	INIT_WORK(&tty->hangup_work, release_one_tty);
1567	schedule_work(&tty->hangup_work);
1568}
1569
1570/**
1571 *	tty_kref_put		-	release a tty kref
1572 *	@tty: tty device
1573 *
1574 *	Release a reference to a tty device and if need be let the kref
1575 *	layer destruct the object for us
1576 */
1577
1578void tty_kref_put(struct tty_struct *tty)
1579{
1580	if (tty)
1581		kref_put(&tty->kref, queue_release_one_tty);
1582}
1583EXPORT_SYMBOL(tty_kref_put);
1584
1585/**
1586 *	release_tty		-	release tty structure memory
1587 *	@tty: tty device release
1588 *	@idx: index of the tty device release
1589 *
1590 *	Release both @tty and a possible linked partner (think pty pair),
1591 *	and decrement the refcount of the backing module.
1592 *
1593 *	Locking:
1594 *		tty_mutex
1595 *		takes the file list lock internally when working on the list
1596 *	of ttys that the driver keeps.
1597 *
1598 */
1599static void release_tty(struct tty_struct *tty, int idx)
1600{
1601	/* This should always be true but check for the moment */
1602	WARN_ON(tty->index != idx);
1603	WARN_ON(!mutex_is_locked(&tty_mutex));
1604	if (tty->ops->shutdown)
1605		tty->ops->shutdown(tty);
1606	tty_save_termios(tty);
1607	tty_driver_remove_tty(tty->driver, tty);
1608	if (tty->port)
1609		tty->port->itty = NULL;
1610	if (tty->link)
1611		tty->link->port->itty = NULL;
1612	if (tty->port)
1613		tty_buffer_cancel_work(tty->port);
1614	if (tty->link)
1615		tty_buffer_cancel_work(tty->link->port);
1616
1617	tty_kref_put(tty->link);
1618	tty_kref_put(tty);
1619}
1620
1621/**
1622 *	tty_release_checks - check a tty before real release
1623 *	@tty: tty to check
 
1624 *	@idx: index of the tty
1625 *
1626 *	Performs some paranoid checking before true release of the @tty.
1627 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1628 */
1629static int tty_release_checks(struct tty_struct *tty, int idx)
1630{
1631#ifdef TTY_PARANOIA_CHECK
1632	if (idx < 0 || idx >= tty->driver->num) {
1633		tty_debug(tty, "bad idx %d\n", idx);
1634		return -1;
1635	}
1636
1637	/* not much to check for devpts */
1638	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1639		return 0;
1640
1641	if (tty != tty->driver->ttys[idx]) {
1642		tty_debug(tty, "bad driver table[%d] = %p\n",
1643			  idx, tty->driver->ttys[idx]);
1644		return -1;
1645	}
1646	if (tty->driver->other) {
1647		struct tty_struct *o_tty = tty->link;
1648
1649		if (o_tty != tty->driver->other->ttys[idx]) {
1650			tty_debug(tty, "bad other table[%d] = %p\n",
1651				  idx, tty->driver->other->ttys[idx]);
1652			return -1;
1653		}
1654		if (o_tty->link != tty) {
1655			tty_debug(tty, "bad link = %p\n", o_tty->link);
1656			return -1;
1657		}
1658	}
1659#endif
1660	return 0;
1661}
1662
1663/**
1664 *      tty_kclose      -       closes tty opened by tty_kopen
1665 *      @tty: tty device
1666 *
1667 *      Performs the final steps to release and free a tty device. It is the
1668 *      same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1669 *      flag on tty->port.
1670 */
1671void tty_kclose(struct tty_struct *tty)
1672{
1673	/*
1674	 * Ask the line discipline code to release its structures
1675	 */
1676	tty_ldisc_release(tty);
1677
1678	/* Wait for pending work before tty destruction commmences */
1679	tty_flush_works(tty);
1680
1681	tty_debug_hangup(tty, "freeing structure\n");
1682	/*
1683	 * The release_tty function takes care of the details of clearing
1684	 * the slots and preserving the termios structure.
1685	 */
1686	mutex_lock(&tty_mutex);
1687	tty_port_set_kopened(tty->port, 0);
1688	release_tty(tty, tty->index);
1689	mutex_unlock(&tty_mutex);
1690}
1691EXPORT_SYMBOL_GPL(tty_kclose);
1692
1693/**
1694 *	tty_release_struct	-	release a tty struct
1695 *	@tty: tty device
1696 *	@idx: index of the tty
1697 *
1698 *	Performs the final steps to release and free a tty device. It is
1699 *	roughly the reverse of tty_init_dev.
1700 */
1701void tty_release_struct(struct tty_struct *tty, int idx)
1702{
1703	/*
1704	 * Ask the line discipline code to release its structures
1705	 */
1706	tty_ldisc_release(tty);
1707
1708	/* Wait for pending work before tty destruction commmences */
1709	tty_flush_works(tty);
1710
1711	tty_debug_hangup(tty, "freeing structure\n");
1712	/*
1713	 * The release_tty function takes care of the details of clearing
1714	 * the slots and preserving the termios structure.
1715	 */
1716	mutex_lock(&tty_mutex);
1717	release_tty(tty, idx);
1718	mutex_unlock(&tty_mutex);
1719}
1720EXPORT_SYMBOL_GPL(tty_release_struct);
1721
1722/**
1723 *	tty_release		-	vfs callback for close
1724 *	@inode: inode of tty
1725 *	@filp: file pointer for handle to tty
1726 *
1727 *	Called the last time each file handle is closed that references
1728 *	this tty. There may however be several such references.
1729 *
1730 *	Locking:
1731 *		Takes bkl. See tty_release_dev
1732 *
1733 * Even releasing the tty structures is a tricky business.. We have
1734 * to be very careful that the structures are all released at the
1735 * same time, as interrupts might otherwise get the wrong pointers.
1736 *
1737 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1738 * lead to double frees or releasing memory still in use.
1739 */
1740
1741int tty_release(struct inode *inode, struct file *filp)
1742{
1743	struct tty_struct *tty = file_tty(filp);
1744	struct tty_struct *o_tty = NULL;
1745	int	do_sleep, final;
1746	int	idx;
1747	long	timeout = 0;
1748	int	once = 1;
1749
1750	if (tty_paranoia_check(tty, inode, __func__))
1751		return 0;
1752
1753	tty_lock(tty);
1754	check_tty_count(tty, __func__);
1755
1756	__tty_fasync(-1, filp, 0);
1757
1758	idx = tty->index;
1759	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1760	    tty->driver->subtype == PTY_TYPE_MASTER)
1761		o_tty = tty->link;
1762
1763	if (tty_release_checks(tty, idx)) {
1764		tty_unlock(tty);
1765		return 0;
1766	}
1767
1768	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1769
1770	if (tty->ops->close)
1771		tty->ops->close(tty, filp);
1772
1773	/* If tty is pty master, lock the slave pty (stable lock order) */
1774	tty_lock_slave(o_tty);
1775
1776	/*
1777	 * Sanity check: if tty->count is going to zero, there shouldn't be
1778	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1779	 * wait queues and kick everyone out _before_ actually starting to
1780	 * close.  This ensures that we won't block while releasing the tty
1781	 * structure.
1782	 *
1783	 * The test for the o_tty closing is necessary, since the master and
1784	 * slave sides may close in any order.  If the slave side closes out
1785	 * first, its count will be one, since the master side holds an open.
1786	 * Thus this test wouldn't be triggered at the time the slave closed,
1787	 * so we do it now.
1788	 */
1789	while (1) {
1790		do_sleep = 0;
1791
1792		if (tty->count <= 1) {
1793			if (waitqueue_active(&tty->read_wait)) {
1794				wake_up_poll(&tty->read_wait, EPOLLIN);
1795				do_sleep++;
1796			}
1797			if (waitqueue_active(&tty->write_wait)) {
1798				wake_up_poll(&tty->write_wait, EPOLLOUT);
1799				do_sleep++;
1800			}
1801		}
1802		if (o_tty && o_tty->count <= 1) {
1803			if (waitqueue_active(&o_tty->read_wait)) {
1804				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1805				do_sleep++;
1806			}
1807			if (waitqueue_active(&o_tty->write_wait)) {
1808				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1809				do_sleep++;
1810			}
1811		}
1812		if (!do_sleep)
1813			break;
1814
1815		if (once) {
1816			once = 0;
1817			tty_warn(tty, "read/write wait queue active!\n");
1818		}
1819		schedule_timeout_killable(timeout);
1820		if (timeout < 120 * HZ)
1821			timeout = 2 * timeout + 1;
1822		else
1823			timeout = MAX_SCHEDULE_TIMEOUT;
1824	}
1825
1826	if (o_tty) {
1827		if (--o_tty->count < 0) {
1828			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1829			o_tty->count = 0;
1830		}
1831	}
1832	if (--tty->count < 0) {
1833		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1834		tty->count = 0;
1835	}
1836
1837	/*
1838	 * We've decremented tty->count, so we need to remove this file
1839	 * descriptor off the tty->tty_files list; this serves two
1840	 * purposes:
1841	 *  - check_tty_count sees the correct number of file descriptors
1842	 *    associated with this tty.
1843	 *  - do_tty_hangup no longer sees this file descriptor as
1844	 *    something that needs to be handled for hangups.
1845	 */
1846	tty_del_file(filp);
1847
1848	/*
1849	 * Perform some housekeeping before deciding whether to return.
1850	 *
1851	 * If _either_ side is closing, make sure there aren't any
1852	 * processes that still think tty or o_tty is their controlling
1853	 * tty.
1854	 */
1855	if (!tty->count) {
1856		read_lock(&tasklist_lock);
1857		session_clear_tty(tty->ctrl.session);
1858		if (o_tty)
1859			session_clear_tty(o_tty->ctrl.session);
1860		read_unlock(&tasklist_lock);
1861	}
1862
1863	/* check whether both sides are closing ... */
1864	final = !tty->count && !(o_tty && o_tty->count);
1865
1866	tty_unlock_slave(o_tty);
1867	tty_unlock(tty);
1868
1869	/* At this point, the tty->count == 0 should ensure a dead tty
1870	 * cannot be re-opened by a racing opener.
1871	 */
1872
1873	if (!final)
1874		return 0;
1875
1876	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877
1878	tty_release_struct(tty, idx);
1879	return 0;
1880}
1881
1882/**
1883 *	tty_open_current_tty - get locked tty of current task
1884 *	@device: device number
1885 *	@filp: file pointer to tty
1886 *	@return: locked tty of the current task iff @device is /dev/tty
1887 *
1888 *	Performs a re-open of the current task's controlling tty.
1889 *
1890 *	We cannot return driver and index like for the other nodes because
1891 *	devpts will not work then. It expects inodes to be from devpts FS.
1892 */
1893static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1894{
1895	struct tty_struct *tty;
1896	int retval;
1897
1898	if (device != MKDEV(TTYAUX_MAJOR, 0))
1899		return NULL;
1900
1901	tty = get_current_tty();
1902	if (!tty)
1903		return ERR_PTR(-ENXIO);
1904
1905	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1906	/* noctty = 1; */
1907	tty_lock(tty);
1908	tty_kref_put(tty);	/* safe to drop the kref now */
1909
1910	retval = tty_reopen(tty);
1911	if (retval < 0) {
1912		tty_unlock(tty);
1913		tty = ERR_PTR(retval);
1914	}
1915	return tty;
1916}
1917
1918/**
1919 *	tty_lookup_driver - lookup a tty driver for a given device file
1920 *	@device: device number
1921 *	@filp: file pointer to tty
 
1922 *	@index: index for the device in the @return driver
1923 *	@return: driver for this inode (with increased refcount)
1924 *
1925 *	If @return is not erroneous, the caller is responsible to decrement the
1926 *	refcount by tty_driver_kref_put.
1927 *
1928 *	Locking: tty_mutex protects get_tty_driver
1929 */
1930static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1931		int *index)
1932{
1933	struct tty_driver *driver = NULL;
1934
1935	switch (device) {
1936#ifdef CONFIG_VT
1937	case MKDEV(TTY_MAJOR, 0): {
1938		extern struct tty_driver *console_driver;
1939
1940		driver = tty_driver_kref_get(console_driver);
1941		*index = fg_console;
1942		break;
1943	}
1944#endif
1945	case MKDEV(TTYAUX_MAJOR, 1): {
1946		struct tty_driver *console_driver = console_device(index);
1947
1948		if (console_driver) {
1949			driver = tty_driver_kref_get(console_driver);
1950			if (driver && filp) {
1951				/* Don't let /dev/console block */
1952				filp->f_flags |= O_NONBLOCK;
1953				break;
1954			}
1955		}
1956		if (driver)
1957			tty_driver_kref_put(driver);
1958		return ERR_PTR(-ENODEV);
1959	}
1960	default:
1961		driver = get_tty_driver(device, index);
1962		if (!driver)
1963			return ERR_PTR(-ENODEV);
1964		break;
1965	}
1966	return driver;
1967}
1968
1969static struct tty_struct *tty_kopen(dev_t device, int shared)
1970{
1971	struct tty_struct *tty;
1972	struct tty_driver *driver;
1973	int index = -1;
1974
1975	mutex_lock(&tty_mutex);
1976	driver = tty_lookup_driver(device, NULL, &index);
1977	if (IS_ERR(driver)) {
1978		mutex_unlock(&tty_mutex);
1979		return ERR_CAST(driver);
1980	}
1981
1982	/* check whether we're reopening an existing tty */
1983	tty = tty_driver_lookup_tty(driver, NULL, index);
1984	if (IS_ERR(tty) || shared)
1985		goto out;
1986
1987	if (tty) {
1988		/* drop kref from tty_driver_lookup_tty() */
1989		tty_kref_put(tty);
1990		tty = ERR_PTR(-EBUSY);
1991	} else { /* tty_init_dev returns tty with the tty_lock held */
1992		tty = tty_init_dev(driver, index);
1993		if (IS_ERR(tty))
1994			goto out;
1995		tty_port_set_kopened(tty->port, 1);
1996	}
1997out:
1998	mutex_unlock(&tty_mutex);
1999	tty_driver_kref_put(driver);
2000	return tty;
2001}
2002
2003/**
2004 *	tty_kopen_exclusive	-	open a tty device for kernel
2005 *	@device: dev_t of device to open
2006 *
2007 *	Opens tty exclusively for kernel. Performs the driver lookup,
2008 *	makes sure it's not already opened and performs the first-time
2009 *	tty initialization.
2010 *
2011 *	Returns the locked initialized &tty_struct
2012 *
2013 *	Claims the global tty_mutex to serialize:
2014 *	  - concurrent first-time tty initialization
2015 *	  - concurrent tty driver removal w/ lookup
2016 *	  - concurrent tty removal from driver table
2017 */
2018struct tty_struct *tty_kopen_exclusive(dev_t device)
2019{
2020	return tty_kopen(device, 0);
2021}
2022EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2023
2024/**
2025 *	tty_kopen_shared	-	open a tty device for shared in-kernel use
2026 *	@device: dev_t of device to open
2027 *
2028 *	Opens an already existing tty for in-kernel use. Compared to
2029 *	tty_kopen_exclusive() above it doesn't ensure to be the only user.
2030 *
2031 *	Locking is identical to tty_kopen() above.
2032 */
2033struct tty_struct *tty_kopen_shared(dev_t device)
2034{
2035	return tty_kopen(device, 1);
2036}
2037EXPORT_SYMBOL_GPL(tty_kopen_shared);
2038
2039/**
2040 *	tty_open_by_driver	-	open a tty device
2041 *	@device: dev_t of device to open
 
2042 *	@filp: file pointer to tty
2043 *
2044 *	Performs the driver lookup, checks for a reopen, or otherwise
2045 *	performs the first-time tty initialization.
2046 *
2047 *	Returns the locked initialized or re-opened &tty_struct
2048 *
2049 *	Claims the global tty_mutex to serialize:
2050 *	  - concurrent first-time tty initialization
2051 *	  - concurrent tty driver removal w/ lookup
2052 *	  - concurrent tty removal from driver table
2053 */
2054static struct tty_struct *tty_open_by_driver(dev_t device,
2055					     struct file *filp)
2056{
2057	struct tty_struct *tty;
2058	struct tty_driver *driver = NULL;
2059	int index = -1;
2060	int retval;
2061
2062	mutex_lock(&tty_mutex);
2063	driver = tty_lookup_driver(device, filp, &index);
2064	if (IS_ERR(driver)) {
2065		mutex_unlock(&tty_mutex);
2066		return ERR_CAST(driver);
2067	}
2068
2069	/* check whether we're reopening an existing tty */
2070	tty = tty_driver_lookup_tty(driver, filp, index);
2071	if (IS_ERR(tty)) {
2072		mutex_unlock(&tty_mutex);
2073		goto out;
2074	}
2075
2076	if (tty) {
2077		if (tty_port_kopened(tty->port)) {
2078			tty_kref_put(tty);
2079			mutex_unlock(&tty_mutex);
2080			tty = ERR_PTR(-EBUSY);
2081			goto out;
2082		}
2083		mutex_unlock(&tty_mutex);
2084		retval = tty_lock_interruptible(tty);
2085		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2086		if (retval) {
2087			if (retval == -EINTR)
2088				retval = -ERESTARTSYS;
2089			tty = ERR_PTR(retval);
2090			goto out;
2091		}
2092		retval = tty_reopen(tty);
2093		if (retval < 0) {
2094			tty_unlock(tty);
2095			tty = ERR_PTR(retval);
2096		}
2097	} else { /* Returns with the tty_lock held for now */
2098		tty = tty_init_dev(driver, index);
2099		mutex_unlock(&tty_mutex);
2100	}
2101out:
2102	tty_driver_kref_put(driver);
2103	return tty;
2104}
2105
2106/**
2107 *	tty_open		-	open a tty device
2108 *	@inode: inode of device file
2109 *	@filp: file pointer to tty
2110 *
2111 *	tty_open and tty_release keep up the tty count that contains the
2112 *	number of opens done on a tty. We cannot use the inode-count, as
2113 *	different inodes might point to the same tty.
2114 *
2115 *	Open-counting is needed for pty masters, as well as for keeping
2116 *	track of serial lines: DTR is dropped when the last close happens.
2117 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2118 *
2119 *	The termios state of a pty is reset on first open so that
2120 *	settings don't persist across reuse.
2121 *
2122 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2123 *		 tty->count should protect the rest.
2124 *		 ->siglock protects ->signal/->sighand
2125 *
2126 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2127 *	tty_mutex
2128 */
2129
2130static int tty_open(struct inode *inode, struct file *filp)
2131{
2132	struct tty_struct *tty;
2133	int noctty, retval;
2134	dev_t device = inode->i_rdev;
2135	unsigned saved_flags = filp->f_flags;
2136
2137	nonseekable_open(inode, filp);
2138
2139retry_open:
2140	retval = tty_alloc_file(filp);
2141	if (retval)
2142		return -ENOMEM;
2143
2144	tty = tty_open_current_tty(device, filp);
2145	if (!tty)
2146		tty = tty_open_by_driver(device, filp);
2147
2148	if (IS_ERR(tty)) {
2149		tty_free_file(filp);
2150		retval = PTR_ERR(tty);
2151		if (retval != -EAGAIN || signal_pending(current))
2152			return retval;
2153		schedule();
2154		goto retry_open;
2155	}
2156
2157	tty_add_file(tty, filp);
2158
2159	check_tty_count(tty, __func__);
2160	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2161
2162	if (tty->ops->open)
2163		retval = tty->ops->open(tty, filp);
2164	else
2165		retval = -ENODEV;
2166	filp->f_flags = saved_flags;
2167
2168	if (retval) {
2169		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2170
2171		tty_unlock(tty); /* need to call tty_release without BTM */
2172		tty_release(inode, filp);
2173		if (retval != -ERESTARTSYS)
2174			return retval;
2175
2176		if (signal_pending(current))
2177			return retval;
2178
2179		schedule();
2180		/*
2181		 * Need to reset f_op in case a hangup happened.
2182		 */
2183		if (tty_hung_up_p(filp))
2184			filp->f_op = &tty_fops;
2185		goto retry_open;
2186	}
2187	clear_bit(TTY_HUPPED, &tty->flags);
2188
 
 
 
2189	noctty = (filp->f_flags & O_NOCTTY) ||
2190		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2191		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2192		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2193		  tty->driver->subtype == PTY_TYPE_MASTER);
2194	if (!noctty)
2195		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2196	tty_unlock(tty);
2197	return 0;
2198}
2199
2200
2201
2202/**
2203 *	tty_poll	-	check tty status
2204 *	@filp: file being polled
2205 *	@wait: poll wait structures to update
2206 *
2207 *	Call the line discipline polling method to obtain the poll
2208 *	status of the device.
2209 *
2210 *	Locking: locks called line discipline but ldisc poll method
2211 *	may be re-entered freely by other callers.
2212 */
2213
2214static __poll_t tty_poll(struct file *filp, poll_table *wait)
2215{
2216	struct tty_struct *tty = file_tty(filp);
2217	struct tty_ldisc *ld;
2218	__poll_t ret = 0;
2219
2220	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2221		return 0;
2222
2223	ld = tty_ldisc_ref_wait(tty);
2224	if (!ld)
2225		return hung_up_tty_poll(filp, wait);
2226	if (ld->ops->poll)
2227		ret = ld->ops->poll(tty, filp, wait);
2228	tty_ldisc_deref(ld);
2229	return ret;
2230}
2231
2232static int __tty_fasync(int fd, struct file *filp, int on)
2233{
2234	struct tty_struct *tty = file_tty(filp);
2235	unsigned long flags;
2236	int retval = 0;
2237
2238	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2239		goto out;
2240
2241	retval = fasync_helper(fd, filp, on, &tty->fasync);
2242	if (retval <= 0)
2243		goto out;
2244
2245	if (on) {
2246		enum pid_type type;
2247		struct pid *pid;
2248
2249		spin_lock_irqsave(&tty->ctrl.lock, flags);
2250		if (tty->ctrl.pgrp) {
2251			pid = tty->ctrl.pgrp;
2252			type = PIDTYPE_PGID;
2253		} else {
2254			pid = task_pid(current);
2255			type = PIDTYPE_TGID;
2256		}
2257		get_pid(pid);
2258		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2259		__f_setown(filp, pid, type, 0);
2260		put_pid(pid);
2261		retval = 0;
2262	}
2263out:
2264	return retval;
2265}
2266
2267static int tty_fasync(int fd, struct file *filp, int on)
2268{
2269	struct tty_struct *tty = file_tty(filp);
2270	int retval = -ENOTTY;
2271
2272	tty_lock(tty);
2273	if (!tty_hung_up_p(filp))
2274		retval = __tty_fasync(fd, filp, on);
2275	tty_unlock(tty);
2276
2277	return retval;
2278}
2279
2280/**
2281 *	tiocsti			-	fake input character
2282 *	@tty: tty to fake input into
2283 *	@p: pointer to character
2284 *
2285 *	Fake input to a tty device. Does the necessary locking and
2286 *	input management.
2287 *
2288 *	FIXME: does not honour flow control ??
2289 *
2290 *	Locking:
2291 *		Called functions take tty_ldiscs_lock
2292 *		current->signal->tty check is safe without locks
 
 
2293 */
2294
2295static int tiocsti(struct tty_struct *tty, char __user *p)
2296{
2297	char ch, mbz = 0;
2298	struct tty_ldisc *ld;
2299
2300	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2301		return -EPERM;
2302	if (get_user(ch, p))
2303		return -EFAULT;
2304	tty_audit_tiocsti(tty, ch);
2305	ld = tty_ldisc_ref_wait(tty);
2306	if (!ld)
2307		return -EIO;
2308	tty_buffer_lock_exclusive(tty->port);
2309	if (ld->ops->receive_buf)
2310		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2311	tty_buffer_unlock_exclusive(tty->port);
2312	tty_ldisc_deref(ld);
2313	return 0;
2314}
2315
2316/**
2317 *	tiocgwinsz		-	implement window query ioctl
2318 *	@tty: tty
2319 *	@arg: user buffer for result
2320 *
2321 *	Copies the kernel idea of the window size into the user buffer.
2322 *
2323 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2324 *		is consistent.
2325 */
2326
2327static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2328{
2329	int err;
2330
2331	mutex_lock(&tty->winsize_mutex);
2332	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2333	mutex_unlock(&tty->winsize_mutex);
2334
2335	return err ? -EFAULT : 0;
2336}
2337
2338/**
2339 *	tty_do_resize		-	resize event
2340 *	@tty: tty being resized
2341 *	@ws: new dimensions
 
2342 *
2343 *	Update the termios variables and send the necessary signals to
2344 *	peform a terminal resize correctly
2345 */
2346
2347int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2348{
2349	struct pid *pgrp;
2350
2351	/* Lock the tty */
2352	mutex_lock(&tty->winsize_mutex);
2353	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2354		goto done;
2355
2356	/* Signal the foreground process group */
2357	pgrp = tty_get_pgrp(tty);
2358	if (pgrp)
2359		kill_pgrp(pgrp, SIGWINCH, 1);
2360	put_pid(pgrp);
2361
2362	tty->winsize = *ws;
2363done:
2364	mutex_unlock(&tty->winsize_mutex);
2365	return 0;
2366}
2367EXPORT_SYMBOL(tty_do_resize);
2368
2369/**
2370 *	tiocswinsz		-	implement window size set ioctl
2371 *	@tty: tty side of tty
2372 *	@arg: user buffer for result
2373 *
2374 *	Copies the user idea of the window size to the kernel. Traditionally
2375 *	this is just advisory information but for the Linux console it
2376 *	actually has driver level meaning and triggers a VC resize.
2377 *
2378 *	Locking:
2379 *		Driver dependent. The default do_resize method takes the
2380 *	tty termios mutex and ctrl.lock. The console takes its own lock
2381 *	then calls into the default method.
2382 */
2383
2384static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2385{
2386	struct winsize tmp_ws;
2387
2388	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2389		return -EFAULT;
2390
2391	if (tty->ops->resize)
2392		return tty->ops->resize(tty, &tmp_ws);
2393	else
2394		return tty_do_resize(tty, &tmp_ws);
2395}
2396
2397/**
2398 *	tioccons	-	allow admin to move logical console
2399 *	@file: the file to become console
2400 *
2401 *	Allow the administrator to move the redirected console device
2402 *
2403 *	Locking: uses redirect_lock to guard the redirect information
2404 */
2405
2406static int tioccons(struct file *file)
2407{
2408	if (!capable(CAP_SYS_ADMIN))
2409		return -EPERM;
2410	if (file->f_op->write_iter == redirected_tty_write) {
2411		struct file *f;
2412
2413		spin_lock(&redirect_lock);
2414		f = redirect;
2415		redirect = NULL;
2416		spin_unlock(&redirect_lock);
2417		if (f)
2418			fput(f);
2419		return 0;
2420	}
2421	if (file->f_op->write_iter != tty_write)
2422		return -ENOTTY;
2423	if (!(file->f_mode & FMODE_WRITE))
2424		return -EBADF;
2425	if (!(file->f_mode & FMODE_CAN_WRITE))
2426		return -EINVAL;
2427	spin_lock(&redirect_lock);
2428	if (redirect) {
2429		spin_unlock(&redirect_lock);
2430		return -EBUSY;
2431	}
2432	redirect = get_file(file);
2433	spin_unlock(&redirect_lock);
2434	return 0;
2435}
2436
2437/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438 *	tiocsetd	-	set line discipline
2439 *	@tty: tty device
2440 *	@p: pointer to user data
2441 *
2442 *	Set the line discipline according to user request.
2443 *
2444 *	Locking: see tty_set_ldisc, this function is just a helper
2445 */
2446
2447static int tiocsetd(struct tty_struct *tty, int __user *p)
2448{
2449	int disc;
2450	int ret;
2451
2452	if (get_user(disc, p))
2453		return -EFAULT;
2454
2455	ret = tty_set_ldisc(tty, disc);
2456
2457	return ret;
2458}
2459
2460/**
2461 *	tiocgetd	-	get line discipline
2462 *	@tty: tty device
2463 *	@p: pointer to user data
2464 *
2465 *	Retrieves the line discipline id directly from the ldisc.
2466 *
2467 *	Locking: waits for ldisc reference (in case the line discipline
2468 *		is changing or the tty is being hungup)
2469 */
2470
2471static int tiocgetd(struct tty_struct *tty, int __user *p)
2472{
2473	struct tty_ldisc *ld;
2474	int ret;
2475
2476	ld = tty_ldisc_ref_wait(tty);
2477	if (!ld)
2478		return -EIO;
2479	ret = put_user(ld->ops->num, p);
2480	tty_ldisc_deref(ld);
2481	return ret;
2482}
2483
2484/**
2485 *	send_break	-	performed time break
2486 *	@tty: device to break on
2487 *	@duration: timeout in mS
2488 *
2489 *	Perform a timed break on hardware that lacks its own driver level
2490 *	timed break functionality.
2491 *
2492 *	Locking:
2493 *		atomic_write_lock serializes
2494 *
2495 */
2496
2497static int send_break(struct tty_struct *tty, unsigned int duration)
2498{
2499	int retval;
2500
2501	if (tty->ops->break_ctl == NULL)
2502		return 0;
2503
2504	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2505		retval = tty->ops->break_ctl(tty, duration);
2506	else {
2507		/* Do the work ourselves */
2508		if (tty_write_lock(tty, 0) < 0)
2509			return -EINTR;
2510		retval = tty->ops->break_ctl(tty, -1);
2511		if (retval)
2512			goto out;
2513		if (!signal_pending(current))
2514			msleep_interruptible(duration);
2515		retval = tty->ops->break_ctl(tty, 0);
2516out:
2517		tty_write_unlock(tty);
2518		if (signal_pending(current))
2519			retval = -EINTR;
2520	}
2521	return retval;
2522}
2523
2524/**
2525 *	tty_tiocmget		-	get modem status
2526 *	@tty: tty device
 
2527 *	@p: pointer to result
2528 *
2529 *	Obtain the modem status bits from the tty driver if the feature
2530 *	is supported. Return -ENOTTY if it is not available.
2531 *
2532 *	Locking: none (up to the driver)
2533 */
2534
2535static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2536{
2537	int retval = -ENOTTY;
2538
2539	if (tty->ops->tiocmget) {
2540		retval = tty->ops->tiocmget(tty);
2541
2542		if (retval >= 0)
2543			retval = put_user(retval, p);
2544	}
2545	return retval;
2546}
2547
2548/**
2549 *	tty_tiocmset		-	set modem status
2550 *	@tty: tty device
2551 *	@cmd: command - clear bits, set bits or set all
2552 *	@p: pointer to desired bits
2553 *
2554 *	Set the modem status bits from the tty driver if the feature
2555 *	is supported. Return -ENOTTY if it is not available.
2556 *
2557 *	Locking: none (up to the driver)
2558 */
2559
2560static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2561	     unsigned __user *p)
2562{
2563	int retval;
2564	unsigned int set, clear, val;
2565
2566	if (tty->ops->tiocmset == NULL)
2567		return -ENOTTY;
2568
2569	retval = get_user(val, p);
2570	if (retval)
2571		return retval;
2572	set = clear = 0;
2573	switch (cmd) {
2574	case TIOCMBIS:
2575		set = val;
2576		break;
2577	case TIOCMBIC:
2578		clear = val;
2579		break;
2580	case TIOCMSET:
2581		set = val;
2582		clear = ~val;
2583		break;
2584	}
2585	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2587	return tty->ops->tiocmset(tty, set, clear);
2588}
2589
2590/**
2591 *	tty_get_icount		-	get tty statistics
2592 *	@tty: tty device
2593 *	@icount: output parameter
2594 *
2595 *	Gets a copy of the tty's icount statistics.
2596 *
2597 *	Locking: none (up to the driver)
2598 */
2599int tty_get_icount(struct tty_struct *tty,
2600		   struct serial_icounter_struct *icount)
2601{
2602	memset(icount, 0, sizeof(*icount));
2603
2604	if (tty->ops->get_icount)
2605		return tty->ops->get_icount(tty, icount);
2606	else
2607		return -ENOTTY;
2608}
2609EXPORT_SYMBOL_GPL(tty_get_icount);
2610
2611static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2612{
 
2613	struct serial_icounter_struct icount;
2614	int retval;
2615
2616	retval = tty_get_icount(tty, &icount);
2617	if (retval != 0)
2618		return retval;
2619
2620	if (copy_to_user(arg, &icount, sizeof(icount)))
2621		return -EFAULT;
2622	return 0;
2623}
2624
2625static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2626{
 
 
 
2627	char comm[TASK_COMM_LEN];
2628	int flags;
2629
2630	flags = ss->flags & ASYNC_DEPRECATED;
 
 
 
2631
2632	if (flags)
2633		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2634				__func__, get_task_comm(comm, current), flags);
2635
2636	if (!tty->ops->set_serial)
2637		return -ENOTTY;
2638
2639	return tty->ops->set_serial(tty, ss);
2640}
2641
2642static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2643{
2644	struct serial_struct v;
2645
2646	if (copy_from_user(&v, ss, sizeof(*ss)))
2647		return -EFAULT;
2648
2649	return tty_set_serial(tty, &v);
2650}
2651
2652static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2653{
2654	struct serial_struct v;
2655	int err;
2656
2657	memset(&v, 0, sizeof(v));
2658	if (!tty->ops->get_serial)
2659		return -ENOTTY;
2660	err = tty->ops->get_serial(tty, &v);
2661	if (!err && copy_to_user(ss, &v, sizeof(v)))
2662		err = -EFAULT;
2663	return err;
2664}
2665
2666/*
2667 * if pty, return the slave side (real_tty)
2668 * otherwise, return self
2669 */
2670static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2671{
2672	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2673	    tty->driver->subtype == PTY_TYPE_MASTER)
2674		tty = tty->link;
2675	return tty;
2676}
2677
2678/*
2679 * Split this up, as gcc can choke on it otherwise..
2680 */
2681long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2682{
2683	struct tty_struct *tty = file_tty(file);
2684	struct tty_struct *real_tty;
2685	void __user *p = (void __user *)arg;
2686	int retval;
2687	struct tty_ldisc *ld;
2688
2689	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2690		return -EINVAL;
2691
2692	real_tty = tty_pair_get_tty(tty);
2693
2694	/*
2695	 * Factor out some common prep work
2696	 */
2697	switch (cmd) {
2698	case TIOCSETD:
2699	case TIOCSBRK:
2700	case TIOCCBRK:
2701	case TCSBRK:
2702	case TCSBRKP:
2703		retval = tty_check_change(tty);
2704		if (retval)
2705			return retval;
2706		if (cmd != TIOCCBRK) {
2707			tty_wait_until_sent(tty, 0);
2708			if (signal_pending(current))
2709				return -EINTR;
2710		}
2711		break;
2712	}
2713
2714	/*
2715	 *	Now do the stuff.
2716	 */
2717	switch (cmd) {
2718	case TIOCSTI:
2719		return tiocsti(tty, p);
2720	case TIOCGWINSZ:
2721		return tiocgwinsz(real_tty, p);
2722	case TIOCSWINSZ:
2723		return tiocswinsz(real_tty, p);
2724	case TIOCCONS:
2725		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2726	case TIOCEXCL:
2727		set_bit(TTY_EXCLUSIVE, &tty->flags);
2728		return 0;
2729	case TIOCNXCL:
2730		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2731		return 0;
2732	case TIOCGEXCL:
2733	{
2734		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2735
2736		return put_user(excl, (int __user *)p);
2737	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2738	case TIOCGETD:
2739		return tiocgetd(tty, p);
2740	case TIOCSETD:
2741		return tiocsetd(tty, p);
2742	case TIOCVHANGUP:
2743		if (!capable(CAP_SYS_ADMIN))
2744			return -EPERM;
2745		tty_vhangup(tty);
2746		return 0;
2747	case TIOCGDEV:
2748	{
2749		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2750
2751		return put_user(ret, (unsigned int __user *)p);
2752	}
2753	/*
2754	 * Break handling
2755	 */
2756	case TIOCSBRK:	/* Turn break on, unconditionally */
2757		if (tty->ops->break_ctl)
2758			return tty->ops->break_ctl(tty, -1);
2759		return 0;
2760	case TIOCCBRK:	/* Turn break off, unconditionally */
2761		if (tty->ops->break_ctl)
2762			return tty->ops->break_ctl(tty, 0);
2763		return 0;
2764	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2765		/* non-zero arg means wait for all output data
2766		 * to be sent (performed above) but don't send break.
2767		 * This is used by the tcdrain() termios function.
2768		 */
2769		if (!arg)
2770			return send_break(tty, 250);
2771		return 0;
2772	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2773		return send_break(tty, arg ? arg*100 : 250);
2774
2775	case TIOCMGET:
2776		return tty_tiocmget(tty, p);
2777	case TIOCMSET:
2778	case TIOCMBIC:
2779	case TIOCMBIS:
2780		return tty_tiocmset(tty, cmd, p);
2781	case TIOCGICOUNT:
2782		return tty_tiocgicount(tty, p);
 
 
 
 
2783	case TCFLSH:
2784		switch (arg) {
2785		case TCIFLUSH:
2786		case TCIOFLUSH:
2787		/* flush tty buffer and allow ldisc to process ioctl */
2788			tty_buffer_flush(tty, NULL);
2789			break;
2790		}
2791		break;
2792	case TIOCSSERIAL:
2793		return tty_tiocsserial(tty, p);
2794	case TIOCGSERIAL:
2795		return tty_tiocgserial(tty, p);
2796	case TIOCGPTPEER:
2797		/* Special because the struct file is needed */
2798		return ptm_open_peer(file, tty, (int)arg);
2799	default:
2800		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2801		if (retval != -ENOIOCTLCMD)
2802			return retval;
2803	}
2804	if (tty->ops->ioctl) {
2805		retval = tty->ops->ioctl(tty, cmd, arg);
2806		if (retval != -ENOIOCTLCMD)
2807			return retval;
2808	}
2809	ld = tty_ldisc_ref_wait(tty);
2810	if (!ld)
2811		return hung_up_tty_ioctl(file, cmd, arg);
2812	retval = -EINVAL;
2813	if (ld->ops->ioctl) {
2814		retval = ld->ops->ioctl(tty, file, cmd, arg);
2815		if (retval == -ENOIOCTLCMD)
2816			retval = -ENOTTY;
2817	}
2818	tty_ldisc_deref(ld);
2819	return retval;
2820}
2821
2822#ifdef CONFIG_COMPAT
2823
2824struct serial_struct32 {
2825	compat_int_t    type;
2826	compat_int_t    line;
2827	compat_uint_t   port;
2828	compat_int_t    irq;
2829	compat_int_t    flags;
2830	compat_int_t    xmit_fifo_size;
2831	compat_int_t    custom_divisor;
2832	compat_int_t    baud_base;
2833	unsigned short  close_delay;
2834	char    io_type;
2835	char    reserved_char;
2836	compat_int_t    hub6;
2837	unsigned short  closing_wait; /* time to wait before closing */
2838	unsigned short  closing_wait2; /* no longer used... */
2839	compat_uint_t   iomem_base;
2840	unsigned short  iomem_reg_shift;
2841	unsigned int    port_high;
2842	/* compat_ulong_t  iomap_base FIXME */
2843	compat_int_t    reserved;
2844};
2845
2846static int compat_tty_tiocsserial(struct tty_struct *tty,
2847		struct serial_struct32 __user *ss)
2848{
2849	struct serial_struct32 v32;
2850	struct serial_struct v;
2851
2852	if (copy_from_user(&v32, ss, sizeof(*ss)))
2853		return -EFAULT;
2854
2855	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2856	v.iomem_base = compat_ptr(v32.iomem_base);
2857	v.iomem_reg_shift = v32.iomem_reg_shift;
2858	v.port_high = v32.port_high;
2859	v.iomap_base = 0;
2860
2861	return tty_set_serial(tty, &v);
2862}
2863
2864static int compat_tty_tiocgserial(struct tty_struct *tty,
2865			struct serial_struct32 __user *ss)
2866{
2867	struct serial_struct32 v32;
2868	struct serial_struct v;
2869	int err;
2870
2871	memset(&v, 0, sizeof(v));
2872	memset(&v32, 0, sizeof(v32));
2873
2874	if (!tty->ops->get_serial)
2875		return -ENOTTY;
2876	err = tty->ops->get_serial(tty, &v);
2877	if (!err) {
2878		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2879		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2880			0xfffffff : ptr_to_compat(v.iomem_base);
2881		v32.iomem_reg_shift = v.iomem_reg_shift;
2882		v32.port_high = v.port_high;
2883		if (copy_to_user(ss, &v32, sizeof(v32)))
2884			err = -EFAULT;
2885	}
2886	return err;
2887}
2888static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2889				unsigned long arg)
2890{
2891	struct tty_struct *tty = file_tty(file);
2892	struct tty_ldisc *ld;
2893	int retval = -ENOIOCTLCMD;
2894
2895	switch (cmd) {
2896	case TIOCOUTQ:
2897	case TIOCSTI:
2898	case TIOCGWINSZ:
2899	case TIOCSWINSZ:
2900	case TIOCGEXCL:
2901	case TIOCGETD:
2902	case TIOCSETD:
2903	case TIOCGDEV:
2904	case TIOCMGET:
2905	case TIOCMSET:
2906	case TIOCMBIC:
2907	case TIOCMBIS:
2908	case TIOCGICOUNT:
2909	case TIOCGPGRP:
2910	case TIOCSPGRP:
2911	case TIOCGSID:
2912	case TIOCSERGETLSR:
2913	case TIOCGRS485:
2914	case TIOCSRS485:
2915#ifdef TIOCGETP
2916	case TIOCGETP:
2917	case TIOCSETP:
2918	case TIOCSETN:
2919#endif
2920#ifdef TIOCGETC
2921	case TIOCGETC:
2922	case TIOCSETC:
2923#endif
2924#ifdef TIOCGLTC
2925	case TIOCGLTC:
2926	case TIOCSLTC:
2927#endif
2928	case TCSETSF:
2929	case TCSETSW:
2930	case TCSETS:
2931	case TCGETS:
2932#ifdef TCGETS2
2933	case TCGETS2:
2934	case TCSETSF2:
2935	case TCSETSW2:
2936	case TCSETS2:
2937#endif
2938	case TCGETA:
2939	case TCSETAF:
2940	case TCSETAW:
2941	case TCSETA:
2942	case TIOCGLCKTRMIOS:
2943	case TIOCSLCKTRMIOS:
2944#ifdef TCGETX
2945	case TCGETX:
2946	case TCSETX:
2947	case TCSETXW:
2948	case TCSETXF:
2949#endif
2950	case TIOCGSOFTCAR:
2951	case TIOCSSOFTCAR:
2952
2953	case PPPIOCGCHAN:
2954	case PPPIOCGUNIT:
2955		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2956	case TIOCCONS:
2957	case TIOCEXCL:
2958	case TIOCNXCL:
2959	case TIOCVHANGUP:
2960	case TIOCSBRK:
2961	case TIOCCBRK:
2962	case TCSBRK:
2963	case TCSBRKP:
2964	case TCFLSH:
2965	case TIOCGPTPEER:
2966	case TIOCNOTTY:
2967	case TIOCSCTTY:
2968	case TCXONC:
2969	case TIOCMIWAIT:
2970	case TIOCSERCONFIG:
2971		return tty_ioctl(file, cmd, arg);
2972	}
2973
2974	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2975		return -EINVAL;
2976
2977	switch (cmd) {
2978	case TIOCSSERIAL:
2979		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2980	case TIOCGSERIAL:
2981		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2982	}
2983	if (tty->ops->compat_ioctl) {
2984		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2985		if (retval != -ENOIOCTLCMD)
2986			return retval;
2987	}
2988
2989	ld = tty_ldisc_ref_wait(tty);
2990	if (!ld)
2991		return hung_up_tty_compat_ioctl(file, cmd, arg);
2992	if (ld->ops->compat_ioctl)
2993		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2994	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2995		retval = ld->ops->ioctl(tty, file,
2996				(unsigned long)compat_ptr(cmd), arg);
2997	tty_ldisc_deref(ld);
2998
2999	return retval;
3000}
3001#endif
3002
3003static int this_tty(const void *t, struct file *file, unsigned fd)
3004{
3005	if (likely(file->f_op->read_iter != tty_read))
3006		return 0;
3007	return file_tty(file) != t ? 0 : fd + 1;
3008}
3009
3010/*
3011 * This implements the "Secure Attention Key" ---  the idea is to
3012 * prevent trojan horses by killing all processes associated with this
3013 * tty when the user hits the "Secure Attention Key".  Required for
3014 * super-paranoid applications --- see the Orange Book for more details.
3015 *
3016 * This code could be nicer; ideally it should send a HUP, wait a few
3017 * seconds, then send a INT, and then a KILL signal.  But you then
3018 * have to coordinate with the init process, since all processes associated
3019 * with the current tty must be dead before the new getty is allowed
3020 * to spawn.
3021 *
3022 * Now, if it would be correct ;-/ The current code has a nasty hole -
3023 * it doesn't catch files in flight. We may send the descriptor to ourselves
3024 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3025 *
3026 * Nasty bug: do_SAK is being called in interrupt context.  This can
3027 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3028 */
3029void __do_SAK(struct tty_struct *tty)
3030{
3031#ifdef TTY_SOFT_SAK
3032	tty_hangup(tty);
3033#else
3034	struct task_struct *g, *p;
3035	struct pid *session;
3036	int		i;
3037	unsigned long flags;
3038
3039	if (!tty)
3040		return;
3041
3042	spin_lock_irqsave(&tty->ctrl.lock, flags);
3043	session = get_pid(tty->ctrl.session);
3044	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3045
3046	tty_ldisc_flush(tty);
3047
3048	tty_driver_flush_buffer(tty);
3049
3050	read_lock(&tasklist_lock);
3051	/* Kill the entire session */
3052	do_each_pid_task(session, PIDTYPE_SID, p) {
3053		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3054			   task_pid_nr(p), p->comm);
3055		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3056	} while_each_pid_task(session, PIDTYPE_SID, p);
3057
3058	/* Now kill any processes that happen to have the tty open */
3059	do_each_thread(g, p) {
3060		if (p->signal->tty == tty) {
3061			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3062				   task_pid_nr(p), p->comm);
3063			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3064			continue;
3065		}
3066		task_lock(p);
3067		i = iterate_fd(p->files, 0, this_tty, tty);
3068		if (i != 0) {
3069			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3070				   task_pid_nr(p), p->comm, i - 1);
3071			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3072		}
3073		task_unlock(p);
3074	} while_each_thread(g, p);
3075	read_unlock(&tasklist_lock);
3076	put_pid(session);
3077#endif
3078}
3079
3080static void do_SAK_work(struct work_struct *work)
3081{
3082	struct tty_struct *tty =
3083		container_of(work, struct tty_struct, SAK_work);
3084	__do_SAK(tty);
3085}
3086
3087/*
3088 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3089 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3090 * the values which we write to it will be identical to the values which it
3091 * already has. --akpm
3092 */
3093void do_SAK(struct tty_struct *tty)
3094{
3095	if (!tty)
3096		return;
3097	schedule_work(&tty->SAK_work);
3098}
 
3099EXPORT_SYMBOL(do_SAK);
3100
 
 
 
 
 
 
3101/* Must put_device() after it's unused! */
3102static struct device *tty_get_device(struct tty_struct *tty)
3103{
3104	dev_t devt = tty_devnum(tty);
3105
3106	return class_find_device_by_devt(tty_class, devt);
3107}
3108
3109
3110/*
3111 *	alloc_tty_struct
3112 *
3113 *	This subroutine allocates and initializes a tty structure.
3114 *
3115 *	Locking: none - tty in question is not exposed at this point
3116 */
3117
3118struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3119{
3120	struct tty_struct *tty;
3121
3122	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3123	if (!tty)
3124		return NULL;
3125
3126	kref_init(&tty->kref);
3127	tty->magic = TTY_MAGIC;
3128	if (tty_ldisc_init(tty)) {
3129		kfree(tty);
3130		return NULL;
3131	}
3132	tty->ctrl.session = NULL;
3133	tty->ctrl.pgrp = NULL;
3134	mutex_init(&tty->legacy_mutex);
3135	mutex_init(&tty->throttle_mutex);
3136	init_rwsem(&tty->termios_rwsem);
3137	mutex_init(&tty->winsize_mutex);
3138	init_ldsem(&tty->ldisc_sem);
3139	init_waitqueue_head(&tty->write_wait);
3140	init_waitqueue_head(&tty->read_wait);
3141	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3142	mutex_init(&tty->atomic_write_lock);
3143	spin_lock_init(&tty->ctrl.lock);
3144	spin_lock_init(&tty->flow.lock);
3145	spin_lock_init(&tty->files_lock);
3146	INIT_LIST_HEAD(&tty->tty_files);
3147	INIT_WORK(&tty->SAK_work, do_SAK_work);
3148
3149	tty->driver = driver;
3150	tty->ops = driver->ops;
3151	tty->index = idx;
3152	tty_line_name(driver, idx, tty->name);
3153	tty->dev = tty_get_device(tty);
3154
3155	return tty;
3156}
3157
3158/**
3159 *	tty_put_char	-	write one character to a tty
3160 *	@tty: tty
3161 *	@ch: character
3162 *
3163 *	Write one byte to the tty using the provided put_char method
3164 *	if present. Returns the number of characters successfully output.
3165 *
3166 *	Note: the specific put_char operation in the driver layer may go
3167 *	away soon. Don't call it directly, use this method
3168 */
3169
3170int tty_put_char(struct tty_struct *tty, unsigned char ch)
3171{
3172	if (tty->ops->put_char)
3173		return tty->ops->put_char(tty, ch);
3174	return tty->ops->write(tty, &ch, 1);
3175}
3176EXPORT_SYMBOL_GPL(tty_put_char);
3177
3178struct class *tty_class;
3179
3180static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3181		unsigned int index, unsigned int count)
3182{
3183	int err;
3184
3185	/* init here, since reused cdevs cause crashes */
3186	driver->cdevs[index] = cdev_alloc();
3187	if (!driver->cdevs[index])
3188		return -ENOMEM;
3189	driver->cdevs[index]->ops = &tty_fops;
3190	driver->cdevs[index]->owner = driver->owner;
3191	err = cdev_add(driver->cdevs[index], dev, count);
3192	if (err)
3193		kobject_put(&driver->cdevs[index]->kobj);
3194	return err;
3195}
3196
3197/**
3198 *	tty_register_device - register a tty device
3199 *	@driver: the tty driver that describes the tty device
3200 *	@index: the index in the tty driver for this tty device
3201 *	@device: a struct device that is associated with this tty device.
3202 *		This field is optional, if there is no known struct device
3203 *		for this tty device it can be set to NULL safely.
3204 *
3205 *	Returns a pointer to the struct device for this tty device
3206 *	(or ERR_PTR(-EFOO) on error).
3207 *
3208 *	This call is required to be made to register an individual tty device
3209 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3210 *	that bit is not set, this function should not be called by a tty
3211 *	driver.
3212 *
3213 *	Locking: ??
3214 */
3215
3216struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3217				   struct device *device)
3218{
3219	return tty_register_device_attr(driver, index, device, NULL, NULL);
3220}
3221EXPORT_SYMBOL(tty_register_device);
3222
3223static void tty_device_create_release(struct device *dev)
3224{
3225	dev_dbg(dev, "releasing...\n");
3226	kfree(dev);
3227}
3228
3229/**
3230 *	tty_register_device_attr - register a tty device
3231 *	@driver: the tty driver that describes the tty device
3232 *	@index: the index in the tty driver for this tty device
3233 *	@device: a struct device that is associated with this tty device.
3234 *		This field is optional, if there is no known struct device
3235 *		for this tty device it can be set to NULL safely.
3236 *	@drvdata: Driver data to be set to device.
3237 *	@attr_grp: Attribute group to be set on device.
3238 *
3239 *	Returns a pointer to the struct device for this tty device
3240 *	(or ERR_PTR(-EFOO) on error).
3241 *
3242 *	This call is required to be made to register an individual tty device
3243 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3244 *	that bit is not set, this function should not be called by a tty
3245 *	driver.
3246 *
3247 *	Locking: ??
3248 */
3249struct device *tty_register_device_attr(struct tty_driver *driver,
3250				   unsigned index, struct device *device,
3251				   void *drvdata,
3252				   const struct attribute_group **attr_grp)
3253{
3254	char name[64];
3255	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3256	struct ktermios *tp;
3257	struct device *dev;
3258	int retval;
3259
3260	if (index >= driver->num) {
3261		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3262		       driver->name, index);
3263		return ERR_PTR(-EINVAL);
3264	}
3265
3266	if (driver->type == TTY_DRIVER_TYPE_PTY)
3267		pty_line_name(driver, index, name);
3268	else
3269		tty_line_name(driver, index, name);
3270
 
 
 
 
 
 
 
3271	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3272	if (!dev)
3273		return ERR_PTR(-ENOMEM);
 
 
3274
3275	dev->devt = devt;
3276	dev->class = tty_class;
3277	dev->parent = device;
3278	dev->release = tty_device_create_release;
3279	dev_set_name(dev, "%s", name);
3280	dev->groups = attr_grp;
3281	dev_set_drvdata(dev, drvdata);
3282
3283	dev_set_uevent_suppress(dev, 1);
3284
3285	retval = device_register(dev);
3286	if (retval)
3287		goto err_put;
3288
3289	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3290		/*
3291		 * Free any saved termios data so that the termios state is
3292		 * reset when reusing a minor number.
3293		 */
3294		tp = driver->termios[index];
3295		if (tp) {
3296			driver->termios[index] = NULL;
3297			kfree(tp);
3298		}
3299
3300		retval = tty_cdev_add(driver, devt, index, 1);
3301		if (retval)
3302			goto err_del;
3303	}
3304
3305	dev_set_uevent_suppress(dev, 0);
3306	kobject_uevent(&dev->kobj, KOBJ_ADD);
3307
3308	return dev;
3309
3310err_del:
3311	device_del(dev);
3312err_put:
3313	put_device(dev);
3314
 
 
 
3315	return ERR_PTR(retval);
3316}
3317EXPORT_SYMBOL_GPL(tty_register_device_attr);
3318
3319/**
3320 *	tty_unregister_device - unregister a tty device
3321 *	@driver: the tty driver that describes the tty device
3322 *	@index: the index in the tty driver for this tty device
3323 *
3324 *	If a tty device is registered with a call to tty_register_device() then
3325 *	this function must be called when the tty device is gone.
3326 *
3327 *	Locking: ??
3328 */
3329
3330void tty_unregister_device(struct tty_driver *driver, unsigned index)
3331{
3332	device_destroy(tty_class,
3333		MKDEV(driver->major, driver->minor_start) + index);
3334	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3335		cdev_del(driver->cdevs[index]);
3336		driver->cdevs[index] = NULL;
3337	}
3338}
3339EXPORT_SYMBOL(tty_unregister_device);
3340
3341/**
3342 * __tty_alloc_driver -- allocate tty driver
3343 * @lines: count of lines this driver can handle at most
3344 * @owner: module which is responsible for this driver
3345 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3346 *
3347 * This should not be called directly, some of the provided macros should be
3348 * used instead. Use IS_ERR and friends on @retval.
3349 */
3350struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3351		unsigned long flags)
3352{
3353	struct tty_driver *driver;
3354	unsigned int cdevs = 1;
3355	int err;
3356
3357	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3358		return ERR_PTR(-EINVAL);
3359
3360	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3361	if (!driver)
3362		return ERR_PTR(-ENOMEM);
3363
3364	kref_init(&driver->kref);
3365	driver->magic = TTY_DRIVER_MAGIC;
3366	driver->num = lines;
3367	driver->owner = owner;
3368	driver->flags = flags;
3369
3370	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3371		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3372				GFP_KERNEL);
3373		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3374				GFP_KERNEL);
3375		if (!driver->ttys || !driver->termios) {
3376			err = -ENOMEM;
3377			goto err_free_all;
3378		}
3379	}
3380
3381	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3382		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3383				GFP_KERNEL);
3384		if (!driver->ports) {
3385			err = -ENOMEM;
3386			goto err_free_all;
3387		}
3388		cdevs = lines;
3389	}
3390
3391	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3392	if (!driver->cdevs) {
3393		err = -ENOMEM;
3394		goto err_free_all;
3395	}
3396
3397	return driver;
3398err_free_all:
3399	kfree(driver->ports);
3400	kfree(driver->ttys);
3401	kfree(driver->termios);
3402	kfree(driver->cdevs);
3403	kfree(driver);
3404	return ERR_PTR(err);
3405}
3406EXPORT_SYMBOL(__tty_alloc_driver);
3407
3408static void destruct_tty_driver(struct kref *kref)
3409{
3410	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3411	int i;
3412	struct ktermios *tp;
3413
3414	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3415		for (i = 0; i < driver->num; i++) {
3416			tp = driver->termios[i];
3417			if (tp) {
3418				driver->termios[i] = NULL;
3419				kfree(tp);
3420			}
3421			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3422				tty_unregister_device(driver, i);
3423		}
3424		proc_tty_unregister_driver(driver);
3425		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3426			cdev_del(driver->cdevs[0]);
3427	}
3428	kfree(driver->cdevs);
3429	kfree(driver->ports);
3430	kfree(driver->termios);
3431	kfree(driver->ttys);
3432	kfree(driver);
3433}
3434
3435void tty_driver_kref_put(struct tty_driver *driver)
3436{
3437	kref_put(&driver->kref, destruct_tty_driver);
3438}
3439EXPORT_SYMBOL(tty_driver_kref_put);
3440
3441void tty_set_operations(struct tty_driver *driver,
3442			const struct tty_operations *op)
3443{
3444	driver->ops = op;
3445};
3446EXPORT_SYMBOL(tty_set_operations);
3447
3448void put_tty_driver(struct tty_driver *d)
3449{
3450	tty_driver_kref_put(d);
3451}
3452EXPORT_SYMBOL(put_tty_driver);
3453
3454/*
3455 * Called by a tty driver to register itself.
3456 */
3457int tty_register_driver(struct tty_driver *driver)
3458{
3459	int error;
3460	int i;
3461	dev_t dev;
3462	struct device *d;
3463
3464	if (!driver->major) {
3465		error = alloc_chrdev_region(&dev, driver->minor_start,
3466						driver->num, driver->name);
3467		if (!error) {
3468			driver->major = MAJOR(dev);
3469			driver->minor_start = MINOR(dev);
3470		}
3471	} else {
3472		dev = MKDEV(driver->major, driver->minor_start);
3473		error = register_chrdev_region(dev, driver->num, driver->name);
3474	}
3475	if (error < 0)
3476		goto err;
3477
3478	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3479		error = tty_cdev_add(driver, dev, 0, driver->num);
3480		if (error)
3481			goto err_unreg_char;
3482	}
3483
3484	mutex_lock(&tty_mutex);
3485	list_add(&driver->tty_drivers, &tty_drivers);
3486	mutex_unlock(&tty_mutex);
3487
3488	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3489		for (i = 0; i < driver->num; i++) {
3490			d = tty_register_device(driver, i, NULL);
3491			if (IS_ERR(d)) {
3492				error = PTR_ERR(d);
3493				goto err_unreg_devs;
3494			}
3495		}
3496	}
3497	proc_tty_register_driver(driver);
3498	driver->flags |= TTY_DRIVER_INSTALLED;
3499	return 0;
3500
3501err_unreg_devs:
3502	for (i--; i >= 0; i--)
3503		tty_unregister_device(driver, i);
3504
3505	mutex_lock(&tty_mutex);
3506	list_del(&driver->tty_drivers);
3507	mutex_unlock(&tty_mutex);
3508
3509err_unreg_char:
3510	unregister_chrdev_region(dev, driver->num);
3511err:
3512	return error;
3513}
3514EXPORT_SYMBOL(tty_register_driver);
3515
3516/*
3517 * Called by a tty driver to unregister itself.
3518 */
3519void tty_unregister_driver(struct tty_driver *driver)
3520{
 
 
 
 
 
3521	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3522				driver->num);
3523	mutex_lock(&tty_mutex);
3524	list_del(&driver->tty_drivers);
3525	mutex_unlock(&tty_mutex);
 
3526}
 
3527EXPORT_SYMBOL(tty_unregister_driver);
3528
3529dev_t tty_devnum(struct tty_struct *tty)
3530{
3531	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3532}
3533EXPORT_SYMBOL(tty_devnum);
3534
3535void tty_default_fops(struct file_operations *fops)
3536{
3537	*fops = tty_fops;
3538}
3539
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3540static char *tty_devnode(struct device *dev, umode_t *mode)
3541{
3542	if (!mode)
3543		return NULL;
3544	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3545	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3546		*mode = 0666;
3547	return NULL;
3548}
3549
3550static int __init tty_class_init(void)
3551{
3552	tty_class = class_create(THIS_MODULE, "tty");
3553	if (IS_ERR(tty_class))
3554		return PTR_ERR(tty_class);
3555	tty_class->devnode = tty_devnode;
3556	return 0;
3557}
3558
3559postcore_initcall(tty_class_init);
3560
3561/* 3/2004 jmc: why do these devices exist? */
3562static struct cdev tty_cdev, console_cdev;
3563
3564static ssize_t show_cons_active(struct device *dev,
3565				struct device_attribute *attr, char *buf)
3566{
3567	struct console *cs[16];
3568	int i = 0;
3569	struct console *c;
3570	ssize_t count = 0;
3571
3572	console_lock();
3573	for_each_console(c) {
3574		if (!c->device)
3575			continue;
3576		if (!c->write)
3577			continue;
3578		if ((c->flags & CON_ENABLED) == 0)
3579			continue;
3580		cs[i++] = c;
3581		if (i >= ARRAY_SIZE(cs))
3582			break;
3583	}
3584	while (i--) {
3585		int index = cs[i]->index;
3586		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3587
3588		/* don't resolve tty0 as some programs depend on it */
3589		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3590			count += tty_line_name(drv, index, buf + count);
3591		else
3592			count += sprintf(buf + count, "%s%d",
3593					 cs[i]->name, cs[i]->index);
3594
3595		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3596	}
3597	console_unlock();
3598
3599	return count;
3600}
3601static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3602
3603static struct attribute *cons_dev_attrs[] = {
3604	&dev_attr_active.attr,
3605	NULL
3606};
3607
3608ATTRIBUTE_GROUPS(cons_dev);
3609
3610static struct device *consdev;
3611
3612void console_sysfs_notify(void)
3613{
3614	if (consdev)
3615		sysfs_notify(&consdev->kobj, NULL, "active");
3616}
3617
3618/*
3619 * Ok, now we can initialize the rest of the tty devices and can count
3620 * on memory allocations, interrupts etc..
3621 */
3622int __init tty_init(void)
3623{
3624	tty_sysctl_init();
3625	cdev_init(&tty_cdev, &tty_fops);
3626	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3627	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3628		panic("Couldn't register /dev/tty driver\n");
3629	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3630
3631	cdev_init(&console_cdev, &console_fops);
3632	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3633	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3634		panic("Couldn't register /dev/console driver\n");
3635	consdev = device_create_with_groups(tty_class, NULL,
3636					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3637					    cons_dev_groups, "console");
3638	if (IS_ERR(consdev))
3639		consdev = NULL;
3640
3641#ifdef CONFIG_VT
3642	vty_init(&console_fops);
3643#endif
3644	return 0;
3645}
3646