Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * An SPI driver for the Philips PCF2123 RTC
  3 * Copyright 2009 Cyber Switching, Inc.
  4 *
  5 * Author: Chris Verges <chrisv@cyberswitching.com>
  6 * Maintainers: http://www.cyberswitching.com
  7 *
  8 * based on the RS5C348 driver in this same directory.
  9 *
 10 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 11 * the sysfs contributions to this driver.
 12 *
 13 * This program is free software; you can redistribute it and/or modify
 14 * it under the terms of the GNU General Public License version 2 as
 15 * published by the Free Software Foundation.
 16 *
 17 * Please note that the CS is active high, so platform data
 18 * should look something like:
 19 *
 20 * static struct spi_board_info ek_spi_devices[] = {
 21 *	...
 22 *	{
 23 *		.modalias		= "rtc-pcf2123",
 24 *		.chip_select		= 1,
 25 *		.controller_data	= (void *)AT91_PIN_PA10,
 26 *		.max_speed_hz		= 1000 * 1000,
 27 *		.mode			= SPI_CS_HIGH,
 28 *		.bus_num		= 0,
 29 *	},
 30 *	...
 31 *};
 32 *
 33 */
 34
 35#include <linux/bcd.h>
 36#include <linux/delay.h>
 37#include <linux/device.h>
 38#include <linux/errno.h>
 39#include <linux/init.h>
 40#include <linux/kernel.h>
 41#include <linux/of.h>
 42#include <linux/string.h>
 43#include <linux/slab.h>
 44#include <linux/rtc.h>
 45#include <linux/spi/spi.h>
 46#include <linux/module.h>
 47#include <linux/sysfs.h>
 48
 49#define DRV_VERSION "0.6"
 50
 51/* REGISTERS */
 52#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 53#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 54#define PCF2123_REG_SC		(0x02)	/* datetime */
 55#define PCF2123_REG_MN		(0x03)
 56#define PCF2123_REG_HR		(0x04)
 57#define PCF2123_REG_DM		(0x05)
 58#define PCF2123_REG_DW		(0x06)
 59#define PCF2123_REG_MO		(0x07)
 60#define PCF2123_REG_YR		(0x08)
 61#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
 62#define PCF2123_REG_ALRM_HR	(0x0a)
 63#define PCF2123_REG_ALRM_DM	(0x0b)
 64#define PCF2123_REG_ALRM_DW	(0x0c)
 65#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
 66#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
 67#define PCF2123_REG_CTDWN_TMR	(0x0f)
 68
 69/* PCF2123_REG_CTRL1 BITS */
 70#define CTRL1_CLEAR		(0)	/* Clear */
 71#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
 72#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
 73#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
 74#define CTRL1_STOP		BIT(5)	/* Stop the clock */
 75#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
 76
 77/* PCF2123_REG_CTRL2 BITS */
 78#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
 79#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
 80#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
 81#define CTRL2_AF		BIT(3)	/* Alarm flag */
 82#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
 83#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
 84#define CTRL2_SI		BIT(6)	/* Second irq enable */
 85#define CTRL2_MI		BIT(7)	/* Minute irq enable */
 86
 87/* PCF2123_REG_SC BITS */
 88#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
 89
 90/* PCF2123_REG_ALRM_XX BITS */
 91#define ALRM_ENABLE		BIT(7)	/* MN, HR, DM, or DW alarm enable */
 92
 93/* PCF2123_REG_TMR_CLKOUT BITS */
 94#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
 95#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
 96#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
 97#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
 98#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
 99
100/* PCF2123_REG_OFFSET BITS */
101#define OFFSET_SIGN_BIT		BIT(6)	/* 2's complement sign bit */
102#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
103#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
 
104
105/* READ/WRITE ADDRESS BITS */
106#define PCF2123_WRITE		BIT(4)
107#define PCF2123_READ		(BIT(4) | BIT(7))
108
109
110static struct spi_driver pcf2123_driver;
111
112struct pcf2123_sysfs_reg {
113	struct device_attribute attr;
114	char name[2];
115};
116
117struct pcf2123_plat_data {
118	struct rtc_device *rtc;
119	struct pcf2123_sysfs_reg regs[16];
120};
121
122/*
123 * Causes a 30 nanosecond delay to ensure that the PCF2123 chip select
124 * is released properly after an SPI write.  This function should be
125 * called after EVERY read/write call over SPI.
126 */
127static inline void pcf2123_delay_trec(void)
128{
129	ndelay(30);
130}
131
132static int pcf2123_read(struct device *dev, u8 reg, u8 *rxbuf, size_t size)
133{
134	struct spi_device *spi = to_spi_device(dev);
135	int ret;
136
137	reg |= PCF2123_READ;
138	ret = spi_write_then_read(spi, &reg, 1, rxbuf, size);
139	pcf2123_delay_trec();
140
141	return ret;
142}
143
144static int pcf2123_write(struct device *dev, u8 *txbuf, size_t size)
145{
146	struct spi_device *spi = to_spi_device(dev);
147	int ret;
148
149	txbuf[0] |= PCF2123_WRITE;
150	ret = spi_write(spi, txbuf, size);
151	pcf2123_delay_trec();
152
153	return ret;
154}
155
156static int pcf2123_write_reg(struct device *dev, u8 reg, u8 val)
157{
158	u8 txbuf[2];
159
160	txbuf[0] = reg;
161	txbuf[1] = val;
162	return pcf2123_write(dev, txbuf, sizeof(txbuf));
163}
164
165static ssize_t pcf2123_show(struct device *dev, struct device_attribute *attr,
166			    char *buffer)
167{
168	struct pcf2123_sysfs_reg *r;
169	u8 rxbuf[1];
170	unsigned long reg;
171	int ret;
172
173	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
174
175	ret = kstrtoul(r->name, 16, &reg);
176	if (ret)
177		return ret;
178
179	ret = pcf2123_read(dev, reg, rxbuf, 1);
180	if (ret < 0)
181		return -EIO;
182
183	return sprintf(buffer, "0x%x\n", rxbuf[0]);
184}
185
186static ssize_t pcf2123_store(struct device *dev, struct device_attribute *attr,
187			     const char *buffer, size_t count) {
188	struct pcf2123_sysfs_reg *r;
189	unsigned long reg;
190	unsigned long val;
191
192	int ret;
193
194	r = container_of(attr, struct pcf2123_sysfs_reg, attr);
195
196	ret = kstrtoul(r->name, 16, &reg);
197	if (ret)
198		return ret;
199
200	ret = kstrtoul(buffer, 10, &val);
201	if (ret)
202		return ret;
203
204	pcf2123_write_reg(dev, reg, val);
205	if (ret < 0)
206		return -EIO;
207	return count;
208}
209
210static int pcf2123_read_offset(struct device *dev, long *offset)
211{
212	int ret;
213	s8 reg;
214
215	ret = pcf2123_read(dev, PCF2123_REG_OFFSET, &reg, 1);
216	if (ret < 0)
217		return ret;
218
219	if (reg & OFFSET_COARSE)
220		reg <<= 1; /* multiply by 2 and sign extend */
221	else
222		reg |= (reg & OFFSET_SIGN_BIT) << 1; /* sign extend only */
223
224	*offset = ((long)reg) * OFFSET_STEP;
225
226	return 0;
227}
228
229/*
230 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
231 * The main difference between the two is normal offset adjusts the first
232 * second of n minutes every other hour, with 61, 62 and 63 being shoved
233 * into the 60th minute.
234 * The coarse adjustment does the same, but every hour.
235 * the two overlap, with every even normal offset value corresponding
236 * to a coarse offset. Based on this algorithm, it seems that despite the
237 * name, coarse offset is a better fit for overlapping values.
238 */
239static int pcf2123_set_offset(struct device *dev, long offset)
240{
 
241	s8 reg;
242
243	if (offset > OFFSET_STEP * 127)
244		reg = 127;
245	else if (offset < OFFSET_STEP * -128)
246		reg = -128;
247	else
248		reg = (s8)((offset + (OFFSET_STEP >> 1)) / OFFSET_STEP);
249
250	/* choose fine offset only for odd values in the normal range */
251	if (reg & 1 && reg <= 63 && reg >= -64) {
252		/* Normal offset. Clear the coarse bit */
253		reg &= ~OFFSET_COARSE;
254	} else {
255		/* Coarse offset. Divide by 2 and set the coarse bit */
256		reg >>= 1;
257		reg |= OFFSET_COARSE;
258	}
259
260	return pcf2123_write_reg(dev, PCF2123_REG_OFFSET, reg);
261}
262
263static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
264{
 
265	u8 rxbuf[7];
266	int ret;
267
268	ret = pcf2123_read(dev, PCF2123_REG_SC, rxbuf, sizeof(rxbuf));
269	if (ret < 0)
 
270		return ret;
271
272	if (rxbuf[0] & OSC_HAS_STOPPED) {
273		dev_info(dev, "clock was stopped. Time is not valid\n");
274		return -EINVAL;
275	}
276
277	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
278	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
279	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
280	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
281	tm->tm_wday = rxbuf[4] & 0x07;
282	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
283	tm->tm_year = bcd2bin(rxbuf[6]);
284	if (tm->tm_year < 70)
285		tm->tm_year += 100;	/* assume we are in 1970...2069 */
286
287	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
288			"mday=%d, mon=%d, year=%d, wday=%d\n",
289			__func__,
290			tm->tm_sec, tm->tm_min, tm->tm_hour,
291			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
292
293	return rtc_valid_tm(tm);
 
 
294}
295
296static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
297{
298	u8 txbuf[8];
 
299	int ret;
300
301	dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
302			"mday=%d, mon=%d, year=%d, wday=%d\n",
303			__func__,
304			tm->tm_sec, tm->tm_min, tm->tm_hour,
305			tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
306
307	/* Stop the counter first */
308	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
309	if (ret < 0)
310		return ret;
311
312	/* Set the new time */
313	txbuf[0] = PCF2123_REG_SC;
314	txbuf[1] = bin2bcd(tm->tm_sec & 0x7F);
315	txbuf[2] = bin2bcd(tm->tm_min & 0x7F);
316	txbuf[3] = bin2bcd(tm->tm_hour & 0x3F);
317	txbuf[4] = bin2bcd(tm->tm_mday & 0x3F);
318	txbuf[5] = tm->tm_wday & 0x07;
319	txbuf[6] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
320	txbuf[7] = bin2bcd(tm->tm_year < 100 ? tm->tm_year : tm->tm_year - 100);
321
322	ret = pcf2123_write(dev, txbuf, sizeof(txbuf));
323	if (ret < 0)
 
324		return ret;
325
326	/* Start the counter */
327	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
328	if (ret < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329		return ret;
330
 
 
 
 
 
 
 
 
 
 
 
 
 
331	return 0;
332}
333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
334static int pcf2123_reset(struct device *dev)
335{
 
336	int ret;
337	u8  rxbuf[2];
338
339	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
340	if (ret < 0)
341		return ret;
342
343	/* Stop the counter */
344	dev_dbg(dev, "stopping RTC\n");
345	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_STOP);
346	if (ret < 0)
347		return ret;
348
349	/* See if the counter was actually stopped */
350	dev_dbg(dev, "checking for presence of RTC\n");
351	ret = pcf2123_read(dev, PCF2123_REG_CTRL1, rxbuf, sizeof(rxbuf));
352	if (ret < 0)
353		return ret;
354
355	dev_dbg(dev, "received data from RTC (0x%02X 0x%02X)\n",
356		rxbuf[0], rxbuf[1]);
357	if (!(rxbuf[0] & CTRL1_STOP))
358		return -ENODEV;
359
360	/* Start the counter */
361	ret = pcf2123_write_reg(dev, PCF2123_REG_CTRL1, CTRL1_CLEAR);
362	if (ret < 0)
363		return ret;
364
365	return 0;
366}
367
368static const struct rtc_class_ops pcf2123_rtc_ops = {
369	.read_time	= pcf2123_rtc_read_time,
370	.set_time	= pcf2123_rtc_set_time,
371	.read_offset	= pcf2123_read_offset,
372	.set_offset	= pcf2123_set_offset,
373
 
 
374};
375
376static int pcf2123_probe(struct spi_device *spi)
377{
378	struct rtc_device *rtc;
379	struct rtc_time tm;
380	struct pcf2123_plat_data *pdata;
381	int ret, i;
382
383	pdata = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_plat_data),
384				GFP_KERNEL);
385	if (!pdata)
386		return -ENOMEM;
387	spi->dev.platform_data = pdata;
 
 
 
 
 
 
 
388
389	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
390	if (ret < 0) {
391		ret = pcf2123_reset(&spi->dev);
392		if (ret < 0) {
393			dev_err(&spi->dev, "chip not found\n");
394			goto kfree_exit;
395		}
396	}
397
398	dev_info(&spi->dev, "chip found, driver version " DRV_VERSION "\n");
399	dev_info(&spi->dev, "spiclk %u KHz.\n",
400			(spi->max_speed_hz + 500) / 1000);
401
402	/* Finalize the initialization */
403	rtc = devm_rtc_device_register(&spi->dev, pcf2123_driver.driver.name,
404			&pcf2123_rtc_ops, THIS_MODULE);
405
406	if (IS_ERR(rtc)) {
407		dev_err(&spi->dev, "failed to register.\n");
408		ret = PTR_ERR(rtc);
409		goto kfree_exit;
410	}
411
412	pdata->rtc = rtc;
413
414	for (i = 0; i < 16; i++) {
415		sysfs_attr_init(&pdata->regs[i].attr.attr);
416		sprintf(pdata->regs[i].name, "%1x", i);
417		pdata->regs[i].attr.attr.mode = S_IRUGO | S_IWUSR;
418		pdata->regs[i].attr.attr.name = pdata->regs[i].name;
419		pdata->regs[i].attr.show = pcf2123_show;
420		pdata->regs[i].attr.store = pcf2123_store;
421		ret = device_create_file(&spi->dev, &pdata->regs[i].attr);
422		if (ret) {
423			dev_err(&spi->dev, "Unable to create sysfs %s\n",
424				pdata->regs[i].name);
425			goto sysfs_exit;
426		}
427	}
428
429	return 0;
430
431sysfs_exit:
432	for (i--; i >= 0; i--)
433		device_remove_file(&spi->dev, &pdata->regs[i].attr);
 
 
 
 
434
435kfree_exit:
436	spi->dev.platform_data = NULL;
437	return ret;
438}
439
440static int pcf2123_remove(struct spi_device *spi)
441{
442	struct pcf2123_plat_data *pdata = dev_get_platdata(&spi->dev);
443	int i;
444
445	if (pdata) {
446		for (i = 0; i < 16; i++)
447			if (pdata->regs[i].name[0])
448				device_remove_file(&spi->dev,
449						   &pdata->regs[i].attr);
450	}
451
452	return 0;
453}
454
455#ifdef CONFIG_OF
456static const struct of_device_id pcf2123_dt_ids[] = {
 
 
 
457	{ .compatible = "nxp,rtc-pcf2123", },
458	{ /* sentinel */ }
459};
460MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
461#endif
462
463static struct spi_driver pcf2123_driver = {
464	.driver	= {
465			.name	= "rtc-pcf2123",
466			.of_match_table = of_match_ptr(pcf2123_dt_ids),
467	},
468	.probe	= pcf2123_probe,
469	.remove	= pcf2123_remove,
470};
471
472module_spi_driver(pcf2123_driver);
473
474MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
475MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
476MODULE_LICENSE("GPL");
477MODULE_VERSION(DRV_VERSION);
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * An SPI driver for the Philips PCF2123 RTC
  4 * Copyright 2009 Cyber Switching, Inc.
  5 *
  6 * Author: Chris Verges <chrisv@cyberswitching.com>
  7 * Maintainers: http://www.cyberswitching.com
  8 *
  9 * based on the RS5C348 driver in this same directory.
 10 *
 11 * Thanks to Christian Pellegrin <chripell@fsfe.org> for
 12 * the sysfs contributions to this driver.
 13 *
 
 
 
 
 14 * Please note that the CS is active high, so platform data
 15 * should look something like:
 16 *
 17 * static struct spi_board_info ek_spi_devices[] = {
 18 *	...
 19 *	{
 20 *		.modalias		= "rtc-pcf2123",
 21 *		.chip_select		= 1,
 22 *		.controller_data	= (void *)AT91_PIN_PA10,
 23 *		.max_speed_hz		= 1000 * 1000,
 24 *		.mode			= SPI_CS_HIGH,
 25 *		.bus_num		= 0,
 26 *	},
 27 *	...
 28 *};
 
 29 */
 30
 31#include <linux/bcd.h>
 32#include <linux/delay.h>
 33#include <linux/device.h>
 34#include <linux/errno.h>
 35#include <linux/init.h>
 36#include <linux/kernel.h>
 37#include <linux/of.h>
 38#include <linux/string.h>
 39#include <linux/slab.h>
 40#include <linux/rtc.h>
 41#include <linux/spi/spi.h>
 42#include <linux/module.h>
 43#include <linux/regmap.h>
 
 
 44
 45/* REGISTERS */
 46#define PCF2123_REG_CTRL1	(0x00)	/* Control Register 1 */
 47#define PCF2123_REG_CTRL2	(0x01)	/* Control Register 2 */
 48#define PCF2123_REG_SC		(0x02)	/* datetime */
 49#define PCF2123_REG_MN		(0x03)
 50#define PCF2123_REG_HR		(0x04)
 51#define PCF2123_REG_DM		(0x05)
 52#define PCF2123_REG_DW		(0x06)
 53#define PCF2123_REG_MO		(0x07)
 54#define PCF2123_REG_YR		(0x08)
 55#define PCF2123_REG_ALRM_MN	(0x09)	/* Alarm Registers */
 56#define PCF2123_REG_ALRM_HR	(0x0a)
 57#define PCF2123_REG_ALRM_DM	(0x0b)
 58#define PCF2123_REG_ALRM_DW	(0x0c)
 59#define PCF2123_REG_OFFSET	(0x0d)	/* Clock Rate Offset Register */
 60#define PCF2123_REG_TMR_CLKOUT	(0x0e)	/* Timer Registers */
 61#define PCF2123_REG_CTDWN_TMR	(0x0f)
 62
 63/* PCF2123_REG_CTRL1 BITS */
 64#define CTRL1_CLEAR		(0)	/* Clear */
 65#define CTRL1_CORR_INT		BIT(1)	/* Correction irq enable */
 66#define CTRL1_12_HOUR		BIT(2)	/* 12 hour time */
 67#define CTRL1_SW_RESET	(BIT(3) | BIT(4) | BIT(6))	/* Software reset */
 68#define CTRL1_STOP		BIT(5)	/* Stop the clock */
 69#define CTRL1_EXT_TEST		BIT(7)	/* External clock test mode */
 70
 71/* PCF2123_REG_CTRL2 BITS */
 72#define CTRL2_TIE		BIT(0)	/* Countdown timer irq enable */
 73#define CTRL2_AIE		BIT(1)	/* Alarm irq enable */
 74#define CTRL2_TF		BIT(2)	/* Countdown timer flag */
 75#define CTRL2_AF		BIT(3)	/* Alarm flag */
 76#define CTRL2_TI_TP		BIT(4)	/* Irq pin generates pulse */
 77#define CTRL2_MSF		BIT(5)	/* Minute or second irq flag */
 78#define CTRL2_SI		BIT(6)	/* Second irq enable */
 79#define CTRL2_MI		BIT(7)	/* Minute irq enable */
 80
 81/* PCF2123_REG_SC BITS */
 82#define OSC_HAS_STOPPED		BIT(7)	/* Clock has been stopped */
 83
 84/* PCF2123_REG_ALRM_XX BITS */
 85#define ALRM_DISABLE		BIT(7)	/* MN, HR, DM, or DW alarm matching */
 86
 87/* PCF2123_REG_TMR_CLKOUT BITS */
 88#define CD_TMR_4096KHZ		(0)	/* 4096 KHz countdown timer */
 89#define CD_TMR_64HZ		(1)	/* 64 Hz countdown timer */
 90#define CD_TMR_1HZ		(2)	/* 1 Hz countdown timer */
 91#define CD_TMR_60th_HZ		(3)	/* 60th Hz countdown timer */
 92#define CD_TMR_TE		BIT(3)	/* Countdown timer enable */
 93
 94/* PCF2123_REG_OFFSET BITS */
 95#define OFFSET_SIGN_BIT		6	/* 2's complement sign bit */
 96#define OFFSET_COARSE		BIT(7)	/* Coarse mode offset */
 97#define OFFSET_STEP		(2170)	/* Offset step in parts per billion */
 98#define OFFSET_MASK		GENMASK(6, 0)	/* Offset value */
 99
100/* READ/WRITE ADDRESS BITS */
101#define PCF2123_WRITE		BIT(4)
102#define PCF2123_READ		(BIT(4) | BIT(7))
103
104
105static struct spi_driver pcf2123_driver;
106
107struct pcf2123_data {
 
 
 
 
 
108	struct rtc_device *rtc;
109	struct regmap *map;
110};
111
112static const struct regmap_config pcf2123_regmap_config = {
113	.reg_bits = 8,
114	.val_bits = 8,
115	.read_flag_mask = PCF2123_READ,
116	.write_flag_mask = PCF2123_WRITE,
117	.max_register = PCF2123_REG_CTDWN_TMR,
118};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
120static int pcf2123_read_offset(struct device *dev, long *offset)
 
121{
122	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
123	int ret, val;
124	unsigned int reg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125
126	ret = regmap_read(pcf2123->map, PCF2123_REG_OFFSET, &reg);
 
 
 
 
 
 
127	if (ret)
128		return ret;
129
130	val = sign_extend32((reg & OFFSET_MASK), OFFSET_SIGN_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
131
132	if (reg & OFFSET_COARSE)
133		val *= 2;
 
 
134
135	*offset = ((long)val) * OFFSET_STEP;
136
137	return 0;
138}
139
140/*
141 * The offset register is a 7 bit signed value with a coarse bit in bit 7.
142 * The main difference between the two is normal offset adjusts the first
143 * second of n minutes every other hour, with 61, 62 and 63 being shoved
144 * into the 60th minute.
145 * The coarse adjustment does the same, but every hour.
146 * the two overlap, with every even normal offset value corresponding
147 * to a coarse offset. Based on this algorithm, it seems that despite the
148 * name, coarse offset is a better fit for overlapping values.
149 */
150static int pcf2123_set_offset(struct device *dev, long offset)
151{
152	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
153	s8 reg;
154
155	if (offset > OFFSET_STEP * 127)
156		reg = 127;
157	else if (offset < OFFSET_STEP * -128)
158		reg = -128;
159	else
160		reg = DIV_ROUND_CLOSEST(offset, OFFSET_STEP);
161
162	/* choose fine offset only for odd values in the normal range */
163	if (reg & 1 && reg <= 63 && reg >= -64) {
164		/* Normal offset. Clear the coarse bit */
165		reg &= ~OFFSET_COARSE;
166	} else {
167		/* Coarse offset. Divide by 2 and set the coarse bit */
168		reg >>= 1;
169		reg |= OFFSET_COARSE;
170	}
171
172	return regmap_write(pcf2123->map, PCF2123_REG_OFFSET, (unsigned int)reg);
173}
174
175static int pcf2123_rtc_read_time(struct device *dev, struct rtc_time *tm)
176{
177	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
178	u8 rxbuf[7];
179	int ret;
180
181	ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_SC, rxbuf,
182				sizeof(rxbuf));
183	if (ret)
184		return ret;
185
186	if (rxbuf[0] & OSC_HAS_STOPPED) {
187		dev_info(dev, "clock was stopped. Time is not valid\n");
188		return -EINVAL;
189	}
190
191	tm->tm_sec = bcd2bin(rxbuf[0] & 0x7F);
192	tm->tm_min = bcd2bin(rxbuf[1] & 0x7F);
193	tm->tm_hour = bcd2bin(rxbuf[2] & 0x3F); /* rtc hr 0-23 */
194	tm->tm_mday = bcd2bin(rxbuf[3] & 0x3F);
195	tm->tm_wday = rxbuf[4] & 0x07;
196	tm->tm_mon = bcd2bin(rxbuf[5] & 0x1F) - 1; /* rtc mn 1-12 */
197	tm->tm_year = bcd2bin(rxbuf[6]) + 100;
 
 
 
 
 
 
 
 
198
199	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
200
201	return 0;
202}
203
204static int pcf2123_rtc_set_time(struct device *dev, struct rtc_time *tm)
205{
206	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
207	u8 txbuf[7];
208	int ret;
209
210	dev_dbg(dev, "%s: tm is %ptR\n", __func__, tm);
 
 
 
 
211
212	/* Stop the counter first */
213	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
214	if (ret)
215		return ret;
216
217	/* Set the new time */
218	txbuf[0] = bin2bcd(tm->tm_sec & 0x7F);
219	txbuf[1] = bin2bcd(tm->tm_min & 0x7F);
220	txbuf[2] = bin2bcd(tm->tm_hour & 0x3F);
221	txbuf[3] = bin2bcd(tm->tm_mday & 0x3F);
222	txbuf[4] = tm->tm_wday & 0x07;
223	txbuf[5] = bin2bcd((tm->tm_mon + 1) & 0x1F); /* rtc mn 1-12 */
224	txbuf[6] = bin2bcd(tm->tm_year - 100);
 
225
226	ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_SC, txbuf,
227				sizeof(txbuf));
228	if (ret)
229		return ret;
230
231	/* Start the counter */
232	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
233	if (ret)
234		return ret;
235
236	return 0;
237}
238
239static int pcf2123_rtc_alarm_irq_enable(struct device *dev, unsigned int en)
240{
241	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
242
243	return regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE,
244				  en ? CTRL2_AIE : 0);
245}
246
247static int pcf2123_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
248{
249	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
250	u8 rxbuf[4];
251	int ret;
252	unsigned int val = 0;
253
254	ret = regmap_bulk_read(pcf2123->map, PCF2123_REG_ALRM_MN, rxbuf,
255				sizeof(rxbuf));
256	if (ret)
257		return ret;
258
259	alm->time.tm_min = bcd2bin(rxbuf[0] & 0x7F);
260	alm->time.tm_hour = bcd2bin(rxbuf[1] & 0x3F);
261	alm->time.tm_mday = bcd2bin(rxbuf[2] & 0x3F);
262	alm->time.tm_wday = bcd2bin(rxbuf[3] & 0x07);
263
264	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
265
266	ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
267	if (ret)
268		return ret;
269
270	alm->enabled = !!(val & CTRL2_AIE);
271
272	return 0;
273}
274
275static int pcf2123_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
276{
277	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
278	u8 txbuf[4];
279	int ret;
280
281	dev_dbg(dev, "%s: alm is %ptR\n", __func__, &alm->time);
282
283	/* Disable alarm interrupt */
284	ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AIE, 0);
285	if (ret)
286		return ret;
287
288	/* Ensure alarm flag is clear */
289	ret = regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
290	if (ret)
291		return ret;
292
293	/* Set new alarm */
294	txbuf[0] = bin2bcd(alm->time.tm_min & 0x7F);
295	txbuf[1] = bin2bcd(alm->time.tm_hour & 0x3F);
296	txbuf[2] = bin2bcd(alm->time.tm_mday & 0x3F);
297	txbuf[3] = ALRM_DISABLE;
298
299	ret = regmap_bulk_write(pcf2123->map, PCF2123_REG_ALRM_MN, txbuf,
300				sizeof(txbuf));
301	if (ret)
302		return ret;
303
304	return pcf2123_rtc_alarm_irq_enable(dev, alm->enabled);
305}
306
307static irqreturn_t pcf2123_rtc_irq(int irq, void *dev)
308{
309	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
310	struct mutex *lock = &pcf2123->rtc->ops_lock;
311	unsigned int val = 0;
312	int ret = IRQ_NONE;
313
314	mutex_lock(lock);
315	regmap_read(pcf2123->map, PCF2123_REG_CTRL2, &val);
316
317	/* Alarm? */
318	if (val & CTRL2_AF) {
319		ret = IRQ_HANDLED;
320
321		/* Clear alarm flag */
322		regmap_update_bits(pcf2123->map, PCF2123_REG_CTRL2, CTRL2_AF, 0);
323
324		rtc_update_irq(pcf2123->rtc, 1, RTC_IRQF | RTC_AF);
325	}
326
327	mutex_unlock(lock);
328
329	return ret;
330}
331
332static int pcf2123_reset(struct device *dev)
333{
334	struct pcf2123_data *pcf2123 = dev_get_drvdata(dev);
335	int ret;
336	unsigned int val = 0;
337
338	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_SW_RESET);
339	if (ret)
340		return ret;
341
342	/* Stop the counter */
343	dev_dbg(dev, "stopping RTC\n");
344	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_STOP);
345	if (ret)
346		return ret;
347
348	/* See if the counter was actually stopped */
349	dev_dbg(dev, "checking for presence of RTC\n");
350	ret = regmap_read(pcf2123->map, PCF2123_REG_CTRL1, &val);
351	if (ret)
352		return ret;
353
354	dev_dbg(dev, "received data from RTC (0x%08X)\n", val);
355	if (!(val & CTRL1_STOP))
 
356		return -ENODEV;
357
358	/* Start the counter */
359	ret = regmap_write(pcf2123->map, PCF2123_REG_CTRL1, CTRL1_CLEAR);
360	if (ret)
361		return ret;
362
363	return 0;
364}
365
366static const struct rtc_class_ops pcf2123_rtc_ops = {
367	.read_time	= pcf2123_rtc_read_time,
368	.set_time	= pcf2123_rtc_set_time,
369	.read_offset	= pcf2123_read_offset,
370	.set_offset	= pcf2123_set_offset,
371	.read_alarm	= pcf2123_rtc_read_alarm,
372	.set_alarm	= pcf2123_rtc_set_alarm,
373	.alarm_irq_enable = pcf2123_rtc_alarm_irq_enable,
374};
375
376static int pcf2123_probe(struct spi_device *spi)
377{
378	struct rtc_device *rtc;
379	struct rtc_time tm;
380	struct pcf2123_data *pcf2123;
381	int ret = 0;
382
383	pcf2123 = devm_kzalloc(&spi->dev, sizeof(struct pcf2123_data),
384				GFP_KERNEL);
385	if (!pcf2123)
386		return -ENOMEM;
387
388	dev_set_drvdata(&spi->dev, pcf2123);
389
390	pcf2123->map = devm_regmap_init_spi(spi, &pcf2123_regmap_config);
391	if (IS_ERR(pcf2123->map)) {
392		dev_err(&spi->dev, "regmap init failed.\n");
393		return PTR_ERR(pcf2123->map);
394	}
395
396	ret = pcf2123_rtc_read_time(&spi->dev, &tm);
397	if (ret < 0) {
398		ret = pcf2123_reset(&spi->dev);
399		if (ret < 0) {
400			dev_err(&spi->dev, "chip not found\n");
401			return ret;
402		}
403	}
404
 
405	dev_info(&spi->dev, "spiclk %u KHz.\n",
406			(spi->max_speed_hz + 500) / 1000);
407
408	/* Finalize the initialization */
409	rtc = devm_rtc_allocate_device(&spi->dev);
410	if (IS_ERR(rtc))
411		return PTR_ERR(rtc);
412
413	pcf2123->rtc = rtc;
414
415	/* Register alarm irq */
416	if (spi->irq > 0) {
417		ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
418				pcf2123_rtc_irq,
419				IRQF_TRIGGER_LOW | IRQF_ONESHOT,
420				pcf2123_driver.driver.name, &spi->dev);
421		if (!ret)
422			device_init_wakeup(&spi->dev, true);
423		else
424			dev_err(&spi->dev, "could not request irq.\n");
 
 
 
 
 
 
 
 
425	}
426
427	/* The PCF2123's alarm only has minute accuracy. Must add timer
428	 * support to this driver to generate interrupts more than once
429	 * per minute.
430	 */
431	rtc->uie_unsupported = 1;
432	rtc->ops = &pcf2123_rtc_ops;
433	rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
434	rtc->range_max = RTC_TIMESTAMP_END_2099;
435	rtc->set_start_time = true;
436
437	ret = rtc_register_device(rtc);
438	if (ret)
439		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
440
441	return 0;
442}
443
444#ifdef CONFIG_OF
445static const struct of_device_id pcf2123_dt_ids[] = {
446	{ .compatible = "nxp,pcf2123", },
447	{ .compatible = "microcrystal,rv2123", },
448	/* Deprecated, do not use */
449	{ .compatible = "nxp,rtc-pcf2123", },
450	{ /* sentinel */ }
451};
452MODULE_DEVICE_TABLE(of, pcf2123_dt_ids);
453#endif
454
455static struct spi_driver pcf2123_driver = {
456	.driver	= {
457			.name	= "rtc-pcf2123",
458			.of_match_table = of_match_ptr(pcf2123_dt_ids),
459	},
460	.probe	= pcf2123_probe,
 
461};
462
463module_spi_driver(pcf2123_driver);
464
465MODULE_AUTHOR("Chris Verges <chrisv@cyberswitching.com>");
466MODULE_DESCRIPTION("NXP PCF2123 RTC driver");
467MODULE_LICENSE("GPL");