Linux Audio

Check our new training course

Loading...
v4.6
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/sysrq.h>
  32#include <linux/slab.h>
  33#include <linux/circ_buf.h>
  34#include <drm/drmP.h>
 
 
 
 
 
  35#include <drm/i915_drm.h>
 
 
 
 
 
 
 
 
 
 
 
  36#include "i915_drv.h"
 
  37#include "i915_trace.h"
  38#include "intel_drv.h"
  39
  40/**
  41 * DOC: interrupt handling
  42 *
  43 * These functions provide the basic support for enabling and disabling the
  44 * interrupt handling support. There's a lot more functionality in i915_irq.c
  45 * and related files, but that will be described in separate chapters.
  46 */
  47
 
 
  48static const u32 hpd_ilk[HPD_NUM_PINS] = {
  49	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  50};
  51
  52static const u32 hpd_ivb[HPD_NUM_PINS] = {
  53	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  54};
  55
  56static const u32 hpd_bdw[HPD_NUM_PINS] = {
  57	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  58};
  59
  60static const u32 hpd_ibx[HPD_NUM_PINS] = {
  61	[HPD_CRT] = SDE_CRT_HOTPLUG,
  62	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  63	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  64	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  65	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  66};
  67
  68static const u32 hpd_cpt[HPD_NUM_PINS] = {
  69	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  70	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  71	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  72	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  73	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  74};
  75
  76static const u32 hpd_spt[HPD_NUM_PINS] = {
  77	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  78	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  79	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  80	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  81	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  82};
  83
  84static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
  85	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
  86	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
  87	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
  88	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
  89	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
  90	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
  91};
  92
  93static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
  94	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
  95	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
  96	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
  97	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
  98	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
  99	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 100};
 101
 102static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 103	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 104	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 105	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 106	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 107	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 108	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 109};
 110
 111/* BXT hpd list */
 112static const u32 hpd_bxt[HPD_NUM_PINS] = {
 113	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 114	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 115	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 116};
 117
 118/* IIR can theoretically queue up two events. Be paranoid. */
 119#define GEN8_IRQ_RESET_NDX(type, which) do { \
 120	I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
 121	POSTING_READ(GEN8_##type##_IMR(which)); \
 122	I915_WRITE(GEN8_##type##_IER(which), 0); \
 123	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 124	POSTING_READ(GEN8_##type##_IIR(which)); \
 125	I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
 126	POSTING_READ(GEN8_##type##_IIR(which)); \
 127} while (0)
 128
 129#define GEN5_IRQ_RESET(type) do { \
 130	I915_WRITE(type##IMR, 0xffffffff); \
 131	POSTING_READ(type##IMR); \
 132	I915_WRITE(type##IER, 0); \
 133	I915_WRITE(type##IIR, 0xffffffff); \
 134	POSTING_READ(type##IIR); \
 135	I915_WRITE(type##IIR, 0xffffffff); \
 136	POSTING_READ(type##IIR); \
 137} while (0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138
 139/*
 140 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 141 */
 142static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
 143				    i915_reg_t reg)
 144{
 145	u32 val = I915_READ(reg);
 146
 147	if (val == 0)
 148		return;
 149
 150	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 151	     i915_mmio_reg_offset(reg), val);
 152	I915_WRITE(reg, 0xffffffff);
 153	POSTING_READ(reg);
 154	I915_WRITE(reg, 0xffffffff);
 155	POSTING_READ(reg);
 156}
 157
 158#define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
 159	gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
 160	I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
 161	I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
 162	POSTING_READ(GEN8_##type##_IMR(which)); \
 163} while (0)
 164
 165#define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
 166	gen5_assert_iir_is_zero(dev_priv, type##IIR); \
 167	I915_WRITE(type##IER, (ier_val)); \
 168	I915_WRITE(type##IMR, (imr_val)); \
 169	POSTING_READ(type##IMR); \
 170} while (0)
 171
 172static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173
 174/* For display hotplug interrupt */
 175static inline void
 176i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 177				     uint32_t mask,
 178				     uint32_t bits)
 179{
 180	uint32_t val;
 181
 182	assert_spin_locked(&dev_priv->irq_lock);
 183	WARN_ON(bits & ~mask);
 184
 185	val = I915_READ(PORT_HOTPLUG_EN);
 186	val &= ~mask;
 187	val |= bits;
 188	I915_WRITE(PORT_HOTPLUG_EN, val);
 189}
 190
 191/**
 192 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 193 * @dev_priv: driver private
 194 * @mask: bits to update
 195 * @bits: bits to enable
 196 * NOTE: the HPD enable bits are modified both inside and outside
 197 * of an interrupt context. To avoid that read-modify-write cycles
 198 * interfer, these bits are protected by a spinlock. Since this
 199 * function is usually not called from a context where the lock is
 200 * held already, this function acquires the lock itself. A non-locking
 201 * version is also available.
 202 */
 203void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 204				   uint32_t mask,
 205				   uint32_t bits)
 206{
 207	spin_lock_irq(&dev_priv->irq_lock);
 208	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 209	spin_unlock_irq(&dev_priv->irq_lock);
 210}
 211
 212/**
 213 * ilk_update_display_irq - update DEIMR
 214 * @dev_priv: driver private
 215 * @interrupt_mask: mask of interrupt bits to update
 216 * @enabled_irq_mask: mask of interrupt bits to enable
 217 */
 218void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 219			    uint32_t interrupt_mask,
 220			    uint32_t enabled_irq_mask)
 221{
 222	uint32_t new_val;
 223
 224	assert_spin_locked(&dev_priv->irq_lock);
 225
 226	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 227
 228	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 229		return;
 230
 231	new_val = dev_priv->irq_mask;
 232	new_val &= ~interrupt_mask;
 233	new_val |= (~enabled_irq_mask & interrupt_mask);
 234
 235	if (new_val != dev_priv->irq_mask) {
 236		dev_priv->irq_mask = new_val;
 237		I915_WRITE(DEIMR, dev_priv->irq_mask);
 238		POSTING_READ(DEIMR);
 239	}
 240}
 241
 242/**
 243 * ilk_update_gt_irq - update GTIMR
 244 * @dev_priv: driver private
 245 * @interrupt_mask: mask of interrupt bits to update
 246 * @enabled_irq_mask: mask of interrupt bits to enable
 247 */
 248static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
 249			      uint32_t interrupt_mask,
 250			      uint32_t enabled_irq_mask)
 251{
 252	assert_spin_locked(&dev_priv->irq_lock);
 253
 254	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 255
 256	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 257		return;
 258
 259	dev_priv->gt_irq_mask &= ~interrupt_mask;
 260	dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
 261	I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
 262	POSTING_READ(GTIMR);
 263}
 264
 265void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 266{
 267	ilk_update_gt_irq(dev_priv, mask, mask);
 268}
 269
 270void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 271{
 272	ilk_update_gt_irq(dev_priv, mask, 0);
 
 
 
 
 
 273}
 274
 275static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 276{
 277	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 
 
 
 
 
 278}
 279
 280static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
 281{
 282	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283}
 284
 285static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
 286{
 287	return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
 288}
 289
 290/**
 291 * snb_update_pm_irq - update GEN6_PMIMR
 292 * @dev_priv: driver private
 293 * @interrupt_mask: mask of interrupt bits to update
 294 * @enabled_irq_mask: mask of interrupt bits to enable
 295 */
 296static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
 297			      uint32_t interrupt_mask,
 298			      uint32_t enabled_irq_mask)
 299{
 300	uint32_t new_val;
 
 301
 302	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 
 303
 304	assert_spin_locked(&dev_priv->irq_lock);
 
 305
 306	new_val = dev_priv->pm_irq_mask;
 307	new_val &= ~interrupt_mask;
 308	new_val |= (~enabled_irq_mask & interrupt_mask);
 309
 310	if (new_val != dev_priv->pm_irq_mask) {
 311		dev_priv->pm_irq_mask = new_val;
 312		I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_irq_mask);
 313		POSTING_READ(gen6_pm_imr(dev_priv));
 314	}
 315}
 316
 317void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 318{
 319	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 320		return;
 321
 322	snb_update_pm_irq(dev_priv, mask, mask);
 
 
 
 
 
 
 
 
 
 323}
 324
 325static void __gen6_disable_pm_irq(struct drm_i915_private *dev_priv,
 326				  uint32_t mask)
 327{
 328	snb_update_pm_irq(dev_priv, mask, 0);
 329}
 330
 331void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, uint32_t mask)
 332{
 333	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 334		return;
 335
 336	__gen6_disable_pm_irq(dev_priv, mask);
 
 
 337}
 338
 339void gen6_reset_rps_interrupts(struct drm_device *dev)
 340{
 341	struct drm_i915_private *dev_priv = dev->dev_private;
 342	i915_reg_t reg = gen6_pm_iir(dev_priv);
 343
 344	spin_lock_irq(&dev_priv->irq_lock);
 345	I915_WRITE(reg, dev_priv->pm_rps_events);
 346	I915_WRITE(reg, dev_priv->pm_rps_events);
 347	POSTING_READ(reg);
 348	dev_priv->rps.pm_iir = 0;
 349	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 350}
 351
 352void gen6_enable_rps_interrupts(struct drm_device *dev)
 353{
 354	struct drm_i915_private *dev_priv = dev->dev_private;
 355
 356	spin_lock_irq(&dev_priv->irq_lock);
 357
 358	WARN_ON(dev_priv->rps.pm_iir);
 359	WARN_ON(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 360	dev_priv->rps.interrupts_enabled = true;
 361	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) |
 362				dev_priv->pm_rps_events);
 363	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 364
 365	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 366}
 367
 368u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
 369{
 370	/*
 371	 * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
 372	 * if GEN6_PM_UP_EI_EXPIRED is masked.
 373	 *
 374	 * TODO: verify if this can be reproduced on VLV,CHV.
 375	 */
 376	if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
 377		mask &= ~GEN6_PM_RP_UP_EI_EXPIRED;
 378
 379	if (INTEL_INFO(dev_priv)->gen >= 8)
 380		mask &= ~GEN8_PMINTR_REDIRECT_TO_NON_DISP;
 381
 382	return mask;
 
 
 383}
 384
 385void gen6_disable_rps_interrupts(struct drm_device *dev)
 386{
 387	struct drm_i915_private *dev_priv = dev->dev_private;
 388
 389	spin_lock_irq(&dev_priv->irq_lock);
 390	dev_priv->rps.interrupts_enabled = false;
 391	spin_unlock_irq(&dev_priv->irq_lock);
 392
 393	cancel_work_sync(&dev_priv->rps.work);
 
 
 
 
 
 
 394
 395	spin_lock_irq(&dev_priv->irq_lock);
 
 
 396
 397	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0));
 
 398
 399	__gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
 400	I915_WRITE(gen6_pm_ier(dev_priv), I915_READ(gen6_pm_ier(dev_priv)) &
 401				~dev_priv->pm_rps_events);
 402
 403	spin_unlock_irq(&dev_priv->irq_lock);
 
 404
 405	synchronize_irq(dev->irq);
 406}
 407
 408/**
 409 * bdw_update_port_irq - update DE port interrupt
 410 * @dev_priv: driver private
 411 * @interrupt_mask: mask of interrupt bits to update
 412 * @enabled_irq_mask: mask of interrupt bits to enable
 413 */
 414static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 415				uint32_t interrupt_mask,
 416				uint32_t enabled_irq_mask)
 417{
 418	uint32_t new_val;
 419	uint32_t old_val;
 420
 421	assert_spin_locked(&dev_priv->irq_lock);
 422
 423	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 424
 425	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 426		return;
 427
 428	old_val = I915_READ(GEN8_DE_PORT_IMR);
 429
 430	new_val = old_val;
 431	new_val &= ~interrupt_mask;
 432	new_val |= (~enabled_irq_mask & interrupt_mask);
 433
 434	if (new_val != old_val) {
 435		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 436		POSTING_READ(GEN8_DE_PORT_IMR);
 437	}
 438}
 439
 440/**
 441 * bdw_update_pipe_irq - update DE pipe interrupt
 442 * @dev_priv: driver private
 443 * @pipe: pipe whose interrupt to update
 444 * @interrupt_mask: mask of interrupt bits to update
 445 * @enabled_irq_mask: mask of interrupt bits to enable
 446 */
 447void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 448			 enum pipe pipe,
 449			 uint32_t interrupt_mask,
 450			 uint32_t enabled_irq_mask)
 451{
 452	uint32_t new_val;
 453
 454	assert_spin_locked(&dev_priv->irq_lock);
 455
 456	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 457
 458	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 459		return;
 460
 461	new_val = dev_priv->de_irq_mask[pipe];
 462	new_val &= ~interrupt_mask;
 463	new_val |= (~enabled_irq_mask & interrupt_mask);
 464
 465	if (new_val != dev_priv->de_irq_mask[pipe]) {
 466		dev_priv->de_irq_mask[pipe] = new_val;
 467		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 468		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 469	}
 470}
 471
 472/**
 473 * ibx_display_interrupt_update - update SDEIMR
 474 * @dev_priv: driver private
 475 * @interrupt_mask: mask of interrupt bits to update
 476 * @enabled_irq_mask: mask of interrupt bits to enable
 477 */
 478void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 479				  uint32_t interrupt_mask,
 480				  uint32_t enabled_irq_mask)
 481{
 482	uint32_t sdeimr = I915_READ(SDEIMR);
 483	sdeimr &= ~interrupt_mask;
 484	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 485
 486	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 487
 488	assert_spin_locked(&dev_priv->irq_lock);
 489
 490	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 491		return;
 492
 493	I915_WRITE(SDEIMR, sdeimr);
 494	POSTING_READ(SDEIMR);
 495}
 496
 497static void
 498__i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 499		       u32 enable_mask, u32 status_mask)
 500{
 501	i915_reg_t reg = PIPESTAT(pipe);
 502	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 503
 504	assert_spin_locked(&dev_priv->irq_lock);
 505	WARN_ON(!intel_irqs_enabled(dev_priv));
 506
 507	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 508		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 509		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 510		      pipe_name(pipe), enable_mask, status_mask))
 511		return;
 512
 513	if ((pipestat & enable_mask) == enable_mask)
 514		return;
 515
 516	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 517
 518	/* Enable the interrupt, clear any pending status */
 519	pipestat |= enable_mask | status_mask;
 520	I915_WRITE(reg, pipestat);
 521	POSTING_READ(reg);
 522}
 523
 524static void
 525__i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 526		        u32 enable_mask, u32 status_mask)
 527{
 528	i915_reg_t reg = PIPESTAT(pipe);
 529	u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
 530
 531	assert_spin_locked(&dev_priv->irq_lock);
 532	WARN_ON(!intel_irqs_enabled(dev_priv));
 533
 534	if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 535		      status_mask & ~PIPESTAT_INT_STATUS_MASK,
 536		      "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 537		      pipe_name(pipe), enable_mask, status_mask))
 538		return;
 539
 540	if ((pipestat & enable_mask) == 0)
 541		return;
 542
 543	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 544
 545	pipestat &= ~enable_mask;
 546	I915_WRITE(reg, pipestat);
 547	POSTING_READ(reg);
 548}
 549
 550static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
 551{
 552	u32 enable_mask = status_mask << 16;
 553
 554	/*
 555	 * On pipe A we don't support the PSR interrupt yet,
 556	 * on pipe B and C the same bit MBZ.
 557	 */
 558	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 559		return 0;
 560	/*
 561	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 562	 * A the same bit is for perf counters which we don't use either.
 563	 */
 564	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 565		return 0;
 566
 567	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 568			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 569			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 570	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 571		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 572	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 573		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 574
 
 
 
 
 
 
 575	return enable_mask;
 576}
 577
 578void
 579i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 580		     u32 status_mask)
 581{
 
 582	u32 enable_mask;
 583
 584	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 585		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 586							   status_mask);
 587	else
 588		enable_mask = status_mask << 16;
 589	__i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 
 
 
 
 
 
 
 
 
 590}
 591
 592void
 593i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
 594		      u32 status_mask)
 595{
 
 596	u32 enable_mask;
 597
 598	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
 599		enable_mask = vlv_get_pipestat_enable_mask(dev_priv->dev,
 600							   status_mask);
 601	else
 602		enable_mask = status_mask << 16;
 603	__i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 604}
 605
 606/**
 607 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 608 * @dev: drm device
 609 */
 610static void i915_enable_asle_pipestat(struct drm_device *dev)
 611{
 612	struct drm_i915_private *dev_priv = dev->dev_private;
 613
 614	if (!dev_priv->opregion.asle || !IS_MOBILE(dev))
 615		return;
 616
 617	spin_lock_irq(&dev_priv->irq_lock);
 618
 619	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 620	if (INTEL_INFO(dev)->gen >= 4)
 621		i915_enable_pipestat(dev_priv, PIPE_A,
 622				     PIPE_LEGACY_BLC_EVENT_STATUS);
 623
 624	spin_unlock_irq(&dev_priv->irq_lock);
 625}
 626
 627/*
 628 * This timing diagram depicts the video signal in and
 629 * around the vertical blanking period.
 630 *
 631 * Assumptions about the fictitious mode used in this example:
 632 *  vblank_start >= 3
 633 *  vsync_start = vblank_start + 1
 634 *  vsync_end = vblank_start + 2
 635 *  vtotal = vblank_start + 3
 636 *
 637 *           start of vblank:
 638 *           latch double buffered registers
 639 *           increment frame counter (ctg+)
 640 *           generate start of vblank interrupt (gen4+)
 641 *           |
 642 *           |          frame start:
 643 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 644 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 645 *           |          |
 646 *           |          |  start of vsync:
 647 *           |          |  generate vsync interrupt
 648 *           |          |  |
 649 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 650 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 651 * ----va---> <-----------------vb--------------------> <--------va-------------
 652 *       |          |       <----vs----->                     |
 653 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 654 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 655 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 656 *       |          |                                         |
 657 *       last visible pixel                                   first visible pixel
 658 *                  |                                         increment frame counter (gen3/4)
 659 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 660 *
 661 * x  = horizontal active
 662 * _  = horizontal blanking
 663 * hs = horizontal sync
 664 * va = vertical active
 665 * vb = vertical blanking
 666 * vs = vertical sync
 667 * vbs = vblank_start (number)
 668 *
 669 * Summary:
 670 * - most events happen at the start of horizontal sync
 671 * - frame start happens at the start of horizontal blank, 1-4 lines
 672 *   (depending on PIPECONF settings) after the start of vblank
 673 * - gen3/4 pixel and frame counter are synchronized with the start
 674 *   of horizontal active on the first line of vertical active
 675 */
 676
 677static u32 i8xx_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 678{
 679	/* Gen2 doesn't have a hardware frame counter */
 680	return 0;
 681}
 682
 683/* Called from drm generic code, passed a 'crtc', which
 684 * we use as a pipe index
 685 */
 686static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 687{
 688	struct drm_i915_private *dev_priv = dev->dev_private;
 
 
 
 689	i915_reg_t high_frame, low_frame;
 690	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 691	struct intel_crtc *intel_crtc =
 692		to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
 693	const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
 
 
 
 
 
 
 
 
 
 
 
 
 694
 695	htotal = mode->crtc_htotal;
 696	hsync_start = mode->crtc_hsync_start;
 697	vbl_start = mode->crtc_vblank_start;
 698	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 699		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 700
 701	/* Convert to pixel count */
 702	vbl_start *= htotal;
 703
 704	/* Start of vblank event occurs at start of hsync */
 705	vbl_start -= htotal - hsync_start;
 706
 707	high_frame = PIPEFRAME(pipe);
 708	low_frame = PIPEFRAMEPIXEL(pipe);
 709
 
 
 710	/*
 711	 * High & low register fields aren't synchronized, so make sure
 712	 * we get a low value that's stable across two reads of the high
 713	 * register.
 714	 */
 715	do {
 716		high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 717		low   = I915_READ(low_frame);
 718		high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
 719	} while (high1 != high2);
 720
 
 
 721	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 722	pixel = low & PIPE_PIXEL_MASK;
 723	low >>= PIPE_FRAME_LOW_SHIFT;
 724
 725	/*
 726	 * The frame counter increments at beginning of active.
 727	 * Cook up a vblank counter by also checking the pixel
 728	 * counter against vblank start.
 729	 */
 730	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 731}
 732
 733static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
 734{
 735	struct drm_i915_private *dev_priv = dev->dev_private;
 
 736
 737	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 738}
 739
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 741static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 742{
 743	struct drm_device *dev = crtc->base.dev;
 744	struct drm_i915_private *dev_priv = dev->dev_private;
 745	const struct drm_display_mode *mode = &crtc->base.hwmode;
 
 746	enum pipe pipe = crtc->pipe;
 747	int position, vtotal;
 748
 
 
 
 
 
 
 
 
 
 749	vtotal = mode->crtc_vtotal;
 750	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 751		vtotal /= 2;
 752
 753	if (IS_GEN2(dev))
 754		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 755	else
 756		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 757
 758	/*
 759	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 760	 * read it just before the start of vblank.  So try it again
 761	 * so we don't accidentally end up spanning a vblank frame
 762	 * increment, causing the pipe_update_end() code to squak at us.
 763	 *
 764	 * The nature of this problem means we can't simply check the ISR
 765	 * bit and return the vblank start value; nor can we use the scanline
 766	 * debug register in the transcoder as it appears to have the same
 767	 * problem.  We may need to extend this to include other platforms,
 768	 * but so far testing only shows the problem on HSW.
 769	 */
 770	if (HAS_DDI(dev) && !position) {
 771		int i, temp;
 772
 773		for (i = 0; i < 100; i++) {
 774			udelay(1);
 775			temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
 776				DSL_LINEMASK_GEN3;
 777			if (temp != position) {
 778				position = temp;
 779				break;
 780			}
 781		}
 782	}
 783
 784	/*
 785	 * See update_scanline_offset() for the details on the
 786	 * scanline_offset adjustment.
 787	 */
 788	return (position + crtc->scanline_offset) % vtotal;
 789}
 790
 791static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 792				    unsigned int flags, int *vpos, int *hpos,
 793				    ktime_t *stime, ktime_t *etime,
 794				    const struct drm_display_mode *mode)
 795{
 796	struct drm_i915_private *dev_priv = dev->dev_private;
 797	struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
 798	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 799	int position;
 800	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 801	bool in_vbl = true;
 802	int ret = 0;
 803	unsigned long irqflags;
 
 
 
 804
 805	if (WARN_ON(!mode->crtc_clock)) {
 806		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 807				 "pipe %c\n", pipe_name(pipe));
 808		return 0;
 809	}
 810
 811	htotal = mode->crtc_htotal;
 812	hsync_start = mode->crtc_hsync_start;
 813	vtotal = mode->crtc_vtotal;
 814	vbl_start = mode->crtc_vblank_start;
 815	vbl_end = mode->crtc_vblank_end;
 816
 817	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 818		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 819		vbl_end /= 2;
 820		vtotal /= 2;
 821	}
 822
 823	ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
 824
 825	/*
 826	 * Lock uncore.lock, as we will do multiple timing critical raw
 827	 * register reads, potentially with preemption disabled, so the
 828	 * following code must not block on uncore.lock.
 829	 */
 830	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 831
 832	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 833
 834	/* Get optional system timestamp before query. */
 835	if (stime)
 836		*stime = ktime_get();
 837
 838	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 839		/* No obvious pixelcount register. Only query vertical
 840		 * scanout position from Display scan line register.
 841		 */
 842		position = __intel_get_crtc_scanline(intel_crtc);
 843	} else {
 844		/* Have access to pixelcount since start of frame.
 845		 * We can split this into vertical and horizontal
 846		 * scanout position.
 847		 */
 848		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
 849
 850		/* convert to pixel counts */
 851		vbl_start *= htotal;
 852		vbl_end *= htotal;
 853		vtotal *= htotal;
 854
 855		/*
 856		 * In interlaced modes, the pixel counter counts all pixels,
 857		 * so one field will have htotal more pixels. In order to avoid
 858		 * the reported position from jumping backwards when the pixel
 859		 * counter is beyond the length of the shorter field, just
 860		 * clamp the position the length of the shorter field. This
 861		 * matches how the scanline counter based position works since
 862		 * the scanline counter doesn't count the two half lines.
 863		 */
 864		if (position >= vtotal)
 865			position = vtotal - 1;
 866
 867		/*
 868		 * Start of vblank interrupt is triggered at start of hsync,
 869		 * just prior to the first active line of vblank. However we
 870		 * consider lines to start at the leading edge of horizontal
 871		 * active. So, should we get here before we've crossed into
 872		 * the horizontal active of the first line in vblank, we would
 873		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
 874		 * always add htotal-hsync_start to the current pixel position.
 875		 */
 876		position = (position + htotal - hsync_start) % vtotal;
 877	}
 878
 879	/* Get optional system timestamp after query. */
 880	if (etime)
 881		*etime = ktime_get();
 882
 883	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
 884
 885	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 886
 887	in_vbl = position >= vbl_start && position < vbl_end;
 888
 889	/*
 890	 * While in vblank, position will be negative
 891	 * counting up towards 0 at vbl_end. And outside
 892	 * vblank, position will be positive counting
 893	 * up since vbl_end.
 894	 */
 895	if (position >= vbl_start)
 896		position -= vbl_end;
 897	else
 898		position += vtotal - vbl_end;
 899
 900	if (IS_GEN2(dev) || IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5) {
 901		*vpos = position;
 902		*hpos = 0;
 903	} else {
 904		*vpos = position / htotal;
 905		*hpos = position - (*vpos * htotal);
 906	}
 907
 908	/* In vblank? */
 909	if (in_vbl)
 910		ret |= DRM_SCANOUTPOS_IN_VBLANK;
 911
 912	return ret;
 913}
 914
 915int intel_get_crtc_scanline(struct intel_crtc *crtc)
 916{
 917	struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
 918	unsigned long irqflags;
 919	int position;
 920
 921	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 922	position = __intel_get_crtc_scanline(crtc);
 923	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 924
 925	return position;
 926}
 927
 928static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
 929			      int *max_error,
 930			      struct timeval *vblank_time,
 931			      unsigned flags)
 932{
 933	struct drm_crtc *crtc;
 934
 935	if (pipe >= INTEL_INFO(dev)->num_pipes) {
 936		DRM_ERROR("Invalid crtc %u\n", pipe);
 937		return -EINVAL;
 938	}
 939
 940	/* Get drm_crtc to timestamp: */
 941	crtc = intel_get_crtc_for_pipe(dev, pipe);
 942	if (crtc == NULL) {
 943		DRM_ERROR("Invalid crtc %u\n", pipe);
 944		return -EINVAL;
 945	}
 946
 947	if (!crtc->hwmode.crtc_clock) {
 948		DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
 949		return -EBUSY;
 950	}
 951
 952	/* Helper routine in DRM core does all the work: */
 953	return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
 954						     vblank_time, flags,
 955						     &crtc->hwmode);
 956}
 957
 958static void ironlake_rps_change_irq_handler(struct drm_device *dev)
 959{
 960	struct drm_i915_private *dev_priv = dev->dev_private;
 961	u32 busy_up, busy_down, max_avg, min_avg;
 962	u8 new_delay;
 963
 964	spin_lock(&mchdev_lock);
 965
 966	I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
 
 
 967
 968	new_delay = dev_priv->ips.cur_delay;
 969
 970	I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
 971	busy_up = I915_READ(RCPREVBSYTUPAVG);
 972	busy_down = I915_READ(RCPREVBSYTDNAVG);
 973	max_avg = I915_READ(RCBMAXAVG);
 974	min_avg = I915_READ(RCBMINAVG);
 975
 976	/* Handle RCS change request from hw */
 977	if (busy_up > max_avg) {
 978		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
 979			new_delay = dev_priv->ips.cur_delay - 1;
 980		if (new_delay < dev_priv->ips.max_delay)
 981			new_delay = dev_priv->ips.max_delay;
 982	} else if (busy_down < min_avg) {
 983		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
 984			new_delay = dev_priv->ips.cur_delay + 1;
 985		if (new_delay > dev_priv->ips.min_delay)
 986			new_delay = dev_priv->ips.min_delay;
 987	}
 988
 989	if (ironlake_set_drps(dev, new_delay))
 990		dev_priv->ips.cur_delay = new_delay;
 991
 992	spin_unlock(&mchdev_lock);
 993
 994	return;
 995}
 996
 997static void notify_ring(struct intel_engine_cs *ring)
 998{
 999	if (!intel_ring_initialized(ring))
1000		return;
1001
1002	trace_i915_gem_request_notify(ring);
1003
1004	wake_up_all(&ring->irq_queue);
1005}
1006
1007static void vlv_c0_read(struct drm_i915_private *dev_priv,
1008			struct intel_rps_ei *ei)
1009{
1010	ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1011	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1012	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1013}
1014
1015static bool vlv_c0_above(struct drm_i915_private *dev_priv,
1016			 const struct intel_rps_ei *old,
1017			 const struct intel_rps_ei *now,
1018			 int threshold)
1019{
1020	u64 time, c0;
1021	unsigned int mul = 100;
1022
1023	if (old->cz_clock == 0)
1024		return false;
1025
1026	if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1027		mul <<= 8;
1028
1029	time = now->cz_clock - old->cz_clock;
1030	time *= threshold * dev_priv->czclk_freq;
1031
1032	/* Workload can be split between render + media, e.g. SwapBuffers
1033	 * being blitted in X after being rendered in mesa. To account for
1034	 * this we need to combine both engines into our activity counter.
1035	 */
1036	c0 = now->render_c0 - old->render_c0;
1037	c0 += now->media_c0 - old->media_c0;
1038	c0 *= mul * VLV_CZ_CLOCK_TO_MILLI_SEC;
1039
1040	return c0 >= time;
1041}
1042
1043void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1044{
1045	vlv_c0_read(dev_priv, &dev_priv->rps.down_ei);
1046	dev_priv->rps.up_ei = dev_priv->rps.down_ei;
1047}
1048
1049static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1050{
 
 
1051	struct intel_rps_ei now;
1052	u32 events = 0;
1053
1054	if ((pm_iir & (GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED)) == 0)
1055		return 0;
1056
1057	vlv_c0_read(dev_priv, &now);
1058	if (now.cz_clock == 0)
1059		return 0;
1060
1061	if (pm_iir & GEN6_PM_RP_DOWN_EI_EXPIRED) {
1062		if (!vlv_c0_above(dev_priv,
1063				  &dev_priv->rps.down_ei, &now,
1064				  dev_priv->rps.down_threshold))
1065			events |= GEN6_PM_RP_DOWN_THRESHOLD;
1066		dev_priv->rps.down_ei = now;
1067	}
1068
1069	if (pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) {
1070		if (vlv_c0_above(dev_priv,
1071				 &dev_priv->rps.up_ei, &now,
1072				 dev_priv->rps.up_threshold))
1073			events |= GEN6_PM_RP_UP_THRESHOLD;
1074		dev_priv->rps.up_ei = now;
 
 
 
 
 
 
 
 
1075	}
1076
 
1077	return events;
1078}
1079
1080static bool any_waiters(struct drm_i915_private *dev_priv)
1081{
1082	struct intel_engine_cs *ring;
1083	int i;
1084
1085	for_each_ring(ring, dev_priv, i)
1086		if (ring->irq_refcount)
1087			return true;
1088
1089	return false;
1090}
1091
1092static void gen6_pm_rps_work(struct work_struct *work)
1093{
1094	struct drm_i915_private *dev_priv =
1095		container_of(work, struct drm_i915_private, rps.work);
1096	bool client_boost;
 
 
1097	int new_delay, adj, min, max;
1098	u32 pm_iir;
1099
1100	spin_lock_irq(&dev_priv->irq_lock);
1101	/* Speed up work cancelation during disabling rps interrupts. */
1102	if (!dev_priv->rps.interrupts_enabled) {
1103		spin_unlock_irq(&dev_priv->irq_lock);
1104		return;
1105	}
1106
1107	/*
1108	 * The RPS work is synced during runtime suspend, we don't require a
1109	 * wakeref. TODO: instead of disabling the asserts make sure that we
1110	 * always hold an RPM reference while the work is running.
1111	 */
1112	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
1113
1114	pm_iir = dev_priv->rps.pm_iir;
1115	dev_priv->rps.pm_iir = 0;
1116	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1117	gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
1118	client_boost = dev_priv->rps.client_boost;
1119	dev_priv->rps.client_boost = false;
1120	spin_unlock_irq(&dev_priv->irq_lock);
1121
1122	/* Make sure we didn't queue anything we're not going to process. */
1123	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1124
1125	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1126		goto out;
1127
1128	mutex_lock(&dev_priv->rps.hw_lock);
1129
1130	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1131
1132	adj = dev_priv->rps.last_adj;
1133	new_delay = dev_priv->rps.cur_freq;
1134	min = dev_priv->rps.min_freq_softlimit;
1135	max = dev_priv->rps.max_freq_softlimit;
1136
1137	if (client_boost) {
1138		new_delay = dev_priv->rps.max_freq_softlimit;
 
1139		adj = 0;
1140	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1141		if (adj > 0)
1142			adj *= 2;
1143		else /* CHV needs even encode values */
1144			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1145		/*
1146		 * For better performance, jump directly
1147		 * to RPe if we're below it.
1148		 */
1149		if (new_delay < dev_priv->rps.efficient_freq - adj) {
1150			new_delay = dev_priv->rps.efficient_freq;
1151			adj = 0;
1152		}
1153	} else if (any_waiters(dev_priv)) {
1154		adj = 0;
1155	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1156		if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1157			new_delay = dev_priv->rps.efficient_freq;
1158		else
1159			new_delay = dev_priv->rps.min_freq_softlimit;
1160		adj = 0;
1161	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1162		if (adj < 0)
1163			adj *= 2;
1164		else /* CHV needs even encode values */
1165			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
 
 
 
1166	} else { /* unknown event */
1167		adj = 0;
1168	}
1169
1170	dev_priv->rps.last_adj = adj;
 
 
 
 
 
 
 
 
 
 
 
 
1171
1172	/* sysfs frequency interfaces may have snuck in while servicing the
1173	 * interrupt
1174	 */
1175	new_delay += adj;
1176	new_delay = clamp_t(int, new_delay, min, max);
1177
1178	intel_set_rps(dev_priv->dev, new_delay);
 
 
 
 
 
1179
1180	mutex_unlock(&dev_priv->rps.hw_lock);
1181out:
1182	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
 
 
 
 
1183}
1184
1185
1186/**
1187 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1188 * occurred.
1189 * @work: workqueue struct
1190 *
1191 * Doesn't actually do anything except notify userspace. As a consequence of
1192 * this event, userspace should try to remap the bad rows since statistically
1193 * it is likely the same row is more likely to go bad again.
1194 */
1195static void ivybridge_parity_work(struct work_struct *work)
1196{
1197	struct drm_i915_private *dev_priv =
1198		container_of(work, struct drm_i915_private, l3_parity.error_work);
 
1199	u32 error_status, row, bank, subbank;
1200	char *parity_event[6];
1201	uint32_t misccpctl;
1202	uint8_t slice = 0;
1203
1204	/* We must turn off DOP level clock gating to access the L3 registers.
1205	 * In order to prevent a get/put style interface, acquire struct mutex
1206	 * any time we access those registers.
1207	 */
1208	mutex_lock(&dev_priv->dev->struct_mutex);
1209
1210	/* If we've screwed up tracking, just let the interrupt fire again */
1211	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1212		goto out;
1213
1214	misccpctl = I915_READ(GEN7_MISCCPCTL);
1215	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1216	POSTING_READ(GEN7_MISCCPCTL);
1217
1218	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1219		i915_reg_t reg;
1220
1221		slice--;
1222		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv->dev)))
1223			break;
1224
1225		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1226
1227		reg = GEN7_L3CDERRST1(slice);
1228
1229		error_status = I915_READ(reg);
1230		row = GEN7_PARITY_ERROR_ROW(error_status);
1231		bank = GEN7_PARITY_ERROR_BANK(error_status);
1232		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1233
1234		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1235		POSTING_READ(reg);
1236
1237		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1238		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1239		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1240		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1241		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1242		parity_event[5] = NULL;
1243
1244		kobject_uevent_env(&dev_priv->dev->primary->kdev->kobj,
1245				   KOBJ_CHANGE, parity_event);
1246
1247		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1248			  slice, row, bank, subbank);
1249
1250		kfree(parity_event[4]);
1251		kfree(parity_event[3]);
1252		kfree(parity_event[2]);
1253		kfree(parity_event[1]);
1254	}
1255
1256	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1257
1258out:
1259	WARN_ON(dev_priv->l3_parity.which_slice);
1260	spin_lock_irq(&dev_priv->irq_lock);
1261	gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv->dev));
1262	spin_unlock_irq(&dev_priv->irq_lock);
1263
1264	mutex_unlock(&dev_priv->dev->struct_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265}
1266
1267static void ivybridge_parity_error_irq_handler(struct drm_device *dev, u32 iir)
1268{
1269	struct drm_i915_private *dev_priv = dev->dev_private;
1270
1271	if (!HAS_L3_DPF(dev))
1272		return;
1273
1274	spin_lock(&dev_priv->irq_lock);
1275	gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev));
1276	spin_unlock(&dev_priv->irq_lock);
1277
1278	iir &= GT_PARITY_ERROR(dev);
1279	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1280		dev_priv->l3_parity.which_slice |= 1 << 1;
1281
1282	if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1283		dev_priv->l3_parity.which_slice |= 1 << 0;
1284
1285	queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1286}
1287
1288static void ilk_gt_irq_handler(struct drm_device *dev,
1289			       struct drm_i915_private *dev_priv,
1290			       u32 gt_iir)
1291{
1292	if (gt_iir &
1293	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1294		notify_ring(&dev_priv->ring[RCS]);
1295	if (gt_iir & ILK_BSD_USER_INTERRUPT)
1296		notify_ring(&dev_priv->ring[VCS]);
 
 
 
 
 
1297}
1298
1299static void snb_gt_irq_handler(struct drm_device *dev,
1300			       struct drm_i915_private *dev_priv,
1301			       u32 gt_iir)
1302{
1303
1304	if (gt_iir &
1305	    (GT_RENDER_USER_INTERRUPT | GT_RENDER_PIPECTL_NOTIFY_INTERRUPT))
1306		notify_ring(&dev_priv->ring[RCS]);
1307	if (gt_iir & GT_BSD_USER_INTERRUPT)
1308		notify_ring(&dev_priv->ring[VCS]);
1309	if (gt_iir & GT_BLT_USER_INTERRUPT)
1310		notify_ring(&dev_priv->ring[BCS]);
1311
1312	if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1313		      GT_BSD_CS_ERROR_INTERRUPT |
1314		      GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1315		DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1316
1317	if (gt_iir & GT_PARITY_ERROR(dev))
1318		ivybridge_parity_error_irq_handler(dev, gt_iir);
1319}
1320
1321static __always_inline void
1322gen8_cs_irq_handler(struct intel_engine_cs *ring, u32 iir, int test_shift)
1323{
1324	if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1325		notify_ring(ring);
1326	if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1327		intel_lrc_irq_handler(ring);
 
 
 
 
 
 
 
 
1328}
1329
1330static irqreturn_t gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1331				       u32 master_ctl)
1332{
1333	irqreturn_t ret = IRQ_NONE;
1334
1335	if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1336		u32 iir = I915_READ_FW(GEN8_GT_IIR(0));
1337		if (iir) {
1338			I915_WRITE_FW(GEN8_GT_IIR(0), iir);
1339			ret = IRQ_HANDLED;
1340
1341			gen8_cs_irq_handler(&dev_priv->ring[RCS],
1342					iir, GEN8_RCS_IRQ_SHIFT);
1343
1344			gen8_cs_irq_handler(&dev_priv->ring[BCS],
1345					iir, GEN8_BCS_IRQ_SHIFT);
1346		} else
1347			DRM_ERROR("The master control interrupt lied (GT0)!\n");
1348	}
1349
1350	if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1351		u32 iir = I915_READ_FW(GEN8_GT_IIR(1));
1352		if (iir) {
1353			I915_WRITE_FW(GEN8_GT_IIR(1), iir);
1354			ret = IRQ_HANDLED;
1355
1356			gen8_cs_irq_handler(&dev_priv->ring[VCS],
1357					iir, GEN8_VCS1_IRQ_SHIFT);
1358
1359			gen8_cs_irq_handler(&dev_priv->ring[VCS2],
1360					iir, GEN8_VCS2_IRQ_SHIFT);
1361		} else
1362			DRM_ERROR("The master control interrupt lied (GT1)!\n");
1363	}
1364
1365	if (master_ctl & GEN8_GT_VECS_IRQ) {
1366		u32 iir = I915_READ_FW(GEN8_GT_IIR(3));
1367		if (iir) {
1368			I915_WRITE_FW(GEN8_GT_IIR(3), iir);
1369			ret = IRQ_HANDLED;
1370
1371			gen8_cs_irq_handler(&dev_priv->ring[VECS],
1372					iir, GEN8_VECS_IRQ_SHIFT);
1373		} else
1374			DRM_ERROR("The master control interrupt lied (GT3)!\n");
1375	}
1376
1377	if (master_ctl & GEN8_GT_PM_IRQ) {
1378		u32 iir = I915_READ_FW(GEN8_GT_IIR(2));
1379		if (iir & dev_priv->pm_rps_events) {
1380			I915_WRITE_FW(GEN8_GT_IIR(2),
1381				      iir & dev_priv->pm_rps_events);
1382			ret = IRQ_HANDLED;
1383			gen6_rps_irq_handler(dev_priv, iir);
1384		} else
1385			DRM_ERROR("The master control interrupt lied (PM)!\n");
1386	}
1387
1388	return ret;
1389}
1390
1391static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1392{
1393	switch (port) {
1394	case PORT_A:
1395		return val & PORTA_HOTPLUG_LONG_DETECT;
1396	case PORT_B:
1397		return val & PORTB_HOTPLUG_LONG_DETECT;
1398	case PORT_C:
1399		return val & PORTC_HOTPLUG_LONG_DETECT;
 
 
 
 
 
 
1400	default:
1401		return false;
1402	}
1403}
1404
1405static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1406{
1407	switch (port) {
1408	case PORT_E:
1409		return val & PORTE_HOTPLUG_LONG_DETECT;
1410	default:
1411		return false;
1412	}
1413}
1414
1415static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1416{
1417	switch (port) {
1418	case PORT_A:
1419		return val & PORTA_HOTPLUG_LONG_DETECT;
1420	case PORT_B:
1421		return val & PORTB_HOTPLUG_LONG_DETECT;
1422	case PORT_C:
1423		return val & PORTC_HOTPLUG_LONG_DETECT;
1424	case PORT_D:
1425		return val & PORTD_HOTPLUG_LONG_DETECT;
1426	default:
1427		return false;
1428	}
1429}
1430
1431static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1432{
1433	switch (port) {
1434	case PORT_A:
1435		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1436	default:
1437		return false;
1438	}
1439}
1440
1441static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1442{
1443	switch (port) {
1444	case PORT_B:
1445		return val & PORTB_HOTPLUG_LONG_DETECT;
1446	case PORT_C:
1447		return val & PORTC_HOTPLUG_LONG_DETECT;
1448	case PORT_D:
1449		return val & PORTD_HOTPLUG_LONG_DETECT;
1450	default:
1451		return false;
1452	}
1453}
1454
1455static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1456{
1457	switch (port) {
1458	case PORT_B:
1459		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1460	case PORT_C:
1461		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1462	case PORT_D:
1463		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1464	default:
1465		return false;
1466	}
1467}
1468
1469/*
1470 * Get a bit mask of pins that have triggered, and which ones may be long.
1471 * This can be called multiple times with the same masks to accumulate
1472 * hotplug detection results from several registers.
1473 *
1474 * Note that the caller is expected to zero out the masks initially.
1475 */
1476static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1477			     u32 hotplug_trigger, u32 dig_hotplug_reg,
1478			     const u32 hpd[HPD_NUM_PINS],
1479			     bool long_pulse_detect(enum port port, u32 val))
 
1480{
1481	enum port port;
1482	int i;
1483
1484	for_each_hpd_pin(i) {
1485		if ((hpd[i] & hotplug_trigger) == 0)
1486			continue;
1487
1488		*pin_mask |= BIT(i);
1489
1490		if (!intel_hpd_pin_to_port(i, &port))
 
1491			continue;
1492
1493		if (long_pulse_detect(port, dig_hotplug_reg))
1494			*long_mask |= BIT(i);
 
 
1495	}
1496
1497	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1498			 hotplug_trigger, dig_hotplug_reg, *pin_mask);
1499
1500}
1501
1502static void gmbus_irq_handler(struct drm_device *dev)
1503{
1504	struct drm_i915_private *dev_priv = dev->dev_private;
1505
1506	wake_up_all(&dev_priv->gmbus_wait_queue);
1507}
1508
1509static void dp_aux_irq_handler(struct drm_device *dev)
1510{
1511	struct drm_i915_private *dev_priv = dev->dev_private;
1512
1513	wake_up_all(&dev_priv->gmbus_wait_queue);
1514}
1515
1516#if defined(CONFIG_DEBUG_FS)
1517static void display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1518					 uint32_t crc0, uint32_t crc1,
1519					 uint32_t crc2, uint32_t crc3,
1520					 uint32_t crc4)
 
1521{
1522	struct drm_i915_private *dev_priv = dev->dev_private;
1523	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1524	struct intel_pipe_crc_entry *entry;
1525	int head, tail;
1526
1527	spin_lock(&pipe_crc->lock);
1528
1529	if (!pipe_crc->entries) {
1530		spin_unlock(&pipe_crc->lock);
1531		DRM_DEBUG_KMS("spurious interrupt\n");
1532		return;
1533	}
1534
1535	head = pipe_crc->head;
1536	tail = pipe_crc->tail;
1537
1538	if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
 
 
1539		spin_unlock(&pipe_crc->lock);
1540		DRM_ERROR("CRC buffer overflowing\n");
1541		return;
1542	}
1543
1544	entry = &pipe_crc->entries[head];
1545
1546	entry->frame = dev->driver->get_vblank_counter(dev, pipe);
1547	entry->crc[0] = crc0;
1548	entry->crc[1] = crc1;
1549	entry->crc[2] = crc2;
1550	entry->crc[3] = crc3;
1551	entry->crc[4] = crc4;
1552
1553	head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1554	pipe_crc->head = head;
1555
1556	spin_unlock(&pipe_crc->lock);
1557
1558	wake_up_interruptible(&pipe_crc->wq);
 
 
1559}
1560#else
1561static inline void
1562display_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe,
1563			     uint32_t crc0, uint32_t crc1,
1564			     uint32_t crc2, uint32_t crc3,
1565			     uint32_t crc4) {}
 
1566#endif
1567
1568
1569static void hsw_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1570{
1571	struct drm_i915_private *dev_priv = dev->dev_private;
1572
1573	display_pipe_crc_irq_handler(dev, pipe,
1574				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1575				     0, 0, 0, 0);
1576}
1577
1578static void ivb_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1579{
1580	struct drm_i915_private *dev_priv = dev->dev_private;
1581
1582	display_pipe_crc_irq_handler(dev, pipe,
1583				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1584				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1585				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1586				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1587				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1588}
1589
1590static void i9xx_pipe_crc_irq_handler(struct drm_device *dev, enum pipe pipe)
 
1591{
1592	struct drm_i915_private *dev_priv = dev->dev_private;
1593	uint32_t res1, res2;
1594
1595	if (INTEL_INFO(dev)->gen >= 3)
1596		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1597	else
1598		res1 = 0;
1599
1600	if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
1601		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1602	else
1603		res2 = 0;
1604
1605	display_pipe_crc_irq_handler(dev, pipe,
1606				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1607				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1608				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1609				     res1, res2);
1610}
1611
1612/* The RPS events need forcewake, so we add them to a work queue and mask their
1613 * IMR bits until the work is done. Other interrupts can be processed without
1614 * the work queue. */
1615static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1616{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1617	if (pm_iir & dev_priv->pm_rps_events) {
1618		spin_lock(&dev_priv->irq_lock);
1619		gen6_disable_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1620		if (dev_priv->rps.interrupts_enabled) {
1621			dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1622			queue_work(dev_priv->wq, &dev_priv->rps.work);
1623		}
1624		spin_unlock(&dev_priv->irq_lock);
1625	}
1626
1627	if (INTEL_INFO(dev_priv)->gen >= 8)
1628		return;
1629
1630	if (HAS_VEBOX(dev_priv->dev)) {
1631		if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1632			notify_ring(&dev_priv->ring[VECS]);
1633
1634		if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1635			DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1636	}
1637}
1638
1639static bool intel_pipe_handle_vblank(struct drm_device *dev, enum pipe pipe)
1640{
1641	if (!drm_handle_vblank(dev, pipe))
1642		return false;
1643
1644	return true;
 
 
 
 
 
 
1645}
1646
1647static void valleyview_pipestat_irq_handler(struct drm_device *dev, u32 iir)
 
1648{
1649	struct drm_i915_private *dev_priv = dev->dev_private;
1650	u32 pipe_stats[I915_MAX_PIPES] = { };
1651	int pipe;
1652
1653	spin_lock(&dev_priv->irq_lock);
1654
1655	if (!dev_priv->display_irqs_enabled) {
1656		spin_unlock(&dev_priv->irq_lock);
1657		return;
1658	}
1659
1660	for_each_pipe(dev_priv, pipe) {
1661		i915_reg_t reg;
1662		u32 mask, iir_bit = 0;
1663
1664		/*
1665		 * PIPESTAT bits get signalled even when the interrupt is
1666		 * disabled with the mask bits, and some of the status bits do
1667		 * not generate interrupts at all (like the underrun bit). Hence
1668		 * we need to be careful that we only handle what we want to
1669		 * handle.
1670		 */
1671
1672		/* fifo underruns are filterered in the underrun handler. */
1673		mask = PIPE_FIFO_UNDERRUN_STATUS;
1674
1675		switch (pipe) {
1676		case PIPE_A:
1677			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1678			break;
1679		case PIPE_B:
1680			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1681			break;
1682		case PIPE_C:
1683			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1684			break;
1685		}
1686		if (iir & iir_bit)
1687			mask |= dev_priv->pipestat_irq_mask[pipe];
1688
1689		if (!mask)
1690			continue;
1691
1692		reg = PIPESTAT(pipe);
1693		mask |= PIPESTAT_INT_ENABLE_MASK;
1694		pipe_stats[pipe] = I915_READ(reg) & mask;
1695
1696		/*
1697		 * Clear the PIPE*STAT regs before the IIR
 
 
 
 
 
 
1698		 */
1699		if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1700					PIPESTAT_INT_STATUS_MASK))
1701			I915_WRITE(reg, pipe_stats[pipe]);
 
 
1702	}
1703	spin_unlock(&dev_priv->irq_lock);
 
 
 
 
 
 
1704
1705	for_each_pipe(dev_priv, pipe) {
1706		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1707		    intel_pipe_handle_vblank(dev, pipe))
1708			intel_check_page_flip(dev, pipe);
1709
1710		if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV) {
1711			intel_prepare_page_flip(dev, pipe);
1712			intel_finish_page_flip(dev, pipe);
1713		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1714
1715		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1716			i9xx_pipe_crc_irq_handler(dev, pipe);
1717
1718		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1719			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1720	}
1721
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1722	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1723		gmbus_irq_handler(dev);
1724}
1725
1726static void i9xx_hpd_irq_handler(struct drm_device *dev)
 
1727{
1728	struct drm_i915_private *dev_priv = dev->dev_private;
1729	u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1730	u32 pin_mask = 0, long_mask = 0;
1731
1732	if (!hotplug_status)
1733		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1734
1735	I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1736	/*
1737	 * Make sure hotplug status is cleared before we clear IIR, or else we
1738	 * may miss hotplug events.
 
 
 
 
 
1739	 */
1740	POSTING_READ(PORT_HOTPLUG_STAT);
 
 
 
 
 
 
 
 
 
 
 
 
1741
1742	if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
 
 
 
 
 
 
 
 
 
1743		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1744
1745		if (hotplug_trigger) {
1746			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1747					   hotplug_trigger, hpd_status_g4x,
 
1748					   i9xx_port_hotplug_long_detect);
1749
1750			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1751		}
1752
1753		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1754			dp_aux_irq_handler(dev);
1755	} else {
1756		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1757
1758		if (hotplug_trigger) {
1759			intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1760					   hotplug_trigger, hpd_status_i915,
 
1761					   i9xx_port_hotplug_long_detect);
1762			intel_hpd_irq_handler(dev, pin_mask, long_mask);
1763		}
1764	}
1765}
1766
1767static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1768{
1769	struct drm_device *dev = arg;
1770	struct drm_i915_private *dev_priv = dev->dev_private;
1771	u32 iir, gt_iir, pm_iir;
1772	irqreturn_t ret = IRQ_NONE;
1773
1774	if (!intel_irqs_enabled(dev_priv))
1775		return IRQ_NONE;
1776
1777	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1778	disable_rpm_wakeref_asserts(dev_priv);
1779
1780	while (true) {
1781		/* Find, clear, then process each source of interrupt */
 
 
 
1782
1783		gt_iir = I915_READ(GTIIR);
1784		if (gt_iir)
1785			I915_WRITE(GTIIR, gt_iir);
1786
1787		pm_iir = I915_READ(GEN6_PMIIR);
1788		if (pm_iir)
1789			I915_WRITE(GEN6_PMIIR, pm_iir);
1790
1791		iir = I915_READ(VLV_IIR);
1792		if (iir) {
1793			/* Consume port before clearing IIR or we'll miss events */
1794			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1795				i9xx_hpd_irq_handler(dev);
1796			I915_WRITE(VLV_IIR, iir);
1797		}
1798
1799		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1800			goto out;
1801
1802		ret = IRQ_HANDLED;
1803
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804		if (gt_iir)
1805			snb_gt_irq_handler(dev, dev_priv, gt_iir);
1806		if (pm_iir)
1807			gen6_rps_irq_handler(dev_priv, pm_iir);
 
 
 
 
1808		/* Call regardless, as some status bits might not be
1809		 * signalled in iir */
1810		valleyview_pipestat_irq_handler(dev, iir);
1811	}
1812
1813out:
1814	enable_rpm_wakeref_asserts(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815
1816	return ret;
1817}
1818
1819static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1820{
1821	struct drm_device *dev = arg;
1822	struct drm_i915_private *dev_priv = dev->dev_private;
1823	u32 master_ctl, iir;
1824	irqreturn_t ret = IRQ_NONE;
1825
1826	if (!intel_irqs_enabled(dev_priv))
1827		return IRQ_NONE;
1828
1829	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1830	disable_rpm_wakeref_asserts(dev_priv);
1831
1832	do {
 
 
 
 
 
 
1833		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1834		iir = I915_READ(VLV_IIR);
1835
1836		if (master_ctl == 0 && iir == 0)
1837			break;
1838
1839		ret = IRQ_HANDLED;
1840
 
 
 
 
 
 
 
 
 
 
 
 
 
1841		I915_WRITE(GEN8_MASTER_IRQ, 0);
 
 
1842
1843		/* Find, clear, then process each source of interrupt */
1844
1845		if (iir) {
1846			/* Consume port before clearing IIR or we'll miss events */
1847			if (iir & I915_DISPLAY_PORT_INTERRUPT)
1848				i9xx_hpd_irq_handler(dev);
1849			I915_WRITE(VLV_IIR, iir);
1850		}
1851
1852		gen8_gt_irq_handler(dev_priv, master_ctl);
1853
1854		/* Call regardless, as some status bits might not be
1855		 * signalled in iir */
1856		valleyview_pipestat_irq_handler(dev, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857
1858		I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
1859		POSTING_READ(GEN8_MASTER_IRQ);
 
 
1860	} while (0);
1861
1862	enable_rpm_wakeref_asserts(dev_priv);
1863
1864	return ret;
1865}
1866
1867static void ibx_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
 
1868				const u32 hpd[HPD_NUM_PINS])
1869{
1870	struct drm_i915_private *dev_priv = to_i915(dev);
1871	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
1872
1873	/*
1874	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
1875	 * unless we touch the hotplug register, even if hotplug_trigger is
1876	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
1877	 * errors.
1878	 */
1879	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
1880	if (!hotplug_trigger) {
1881		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
1882			PORTD_HOTPLUG_STATUS_MASK |
1883			PORTC_HOTPLUG_STATUS_MASK |
1884			PORTB_HOTPLUG_STATUS_MASK;
1885		dig_hotplug_reg &= ~mask;
1886	}
1887
1888	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
1889	if (!hotplug_trigger)
1890		return;
1891
1892	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1893			   dig_hotplug_reg, hpd,
1894			   pch_port_hotplug_long_detect);
1895
1896	intel_hpd_irq_handler(dev, pin_mask, long_mask);
1897}
1898
1899static void ibx_irq_handler(struct drm_device *dev, u32 pch_iir)
1900{
1901	struct drm_i915_private *dev_priv = dev->dev_private;
1902	int pipe;
1903	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
1904
1905	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_ibx);
1906
1907	if (pch_iir & SDE_AUDIO_POWER_MASK) {
1908		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
1909			       SDE_AUDIO_POWER_SHIFT);
1910		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
1911				 port_name(port));
1912	}
1913
1914	if (pch_iir & SDE_AUX_MASK)
1915		dp_aux_irq_handler(dev);
1916
1917	if (pch_iir & SDE_GMBUS)
1918		gmbus_irq_handler(dev);
1919
1920	if (pch_iir & SDE_AUDIO_HDCP_MASK)
1921		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
1922
1923	if (pch_iir & SDE_AUDIO_TRANS_MASK)
1924		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
1925
1926	if (pch_iir & SDE_POISON)
1927		DRM_ERROR("PCH poison interrupt\n");
1928
1929	if (pch_iir & SDE_FDI_MASK)
1930		for_each_pipe(dev_priv, pipe)
1931			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
1932					 pipe_name(pipe),
1933					 I915_READ(FDI_RX_IIR(pipe)));
1934
1935	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
1936		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
1937
1938	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
1939		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
1940
1941	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
1942		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1943
1944	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
1945		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1946}
1947
1948static void ivb_err_int_handler(struct drm_device *dev)
1949{
1950	struct drm_i915_private *dev_priv = dev->dev_private;
1951	u32 err_int = I915_READ(GEN7_ERR_INT);
1952	enum pipe pipe;
1953
1954	if (err_int & ERR_INT_POISON)
1955		DRM_ERROR("Poison interrupt\n");
1956
1957	for_each_pipe(dev_priv, pipe) {
1958		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
1959			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1960
1961		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
1962			if (IS_IVYBRIDGE(dev))
1963				ivb_pipe_crc_irq_handler(dev, pipe);
1964			else
1965				hsw_pipe_crc_irq_handler(dev, pipe);
1966		}
1967	}
1968
1969	I915_WRITE(GEN7_ERR_INT, err_int);
1970}
1971
1972static void cpt_serr_int_handler(struct drm_device *dev)
1973{
1974	struct drm_i915_private *dev_priv = dev->dev_private;
1975	u32 serr_int = I915_READ(SERR_INT);
 
1976
1977	if (serr_int & SERR_INT_POISON)
1978		DRM_ERROR("PCH poison interrupt\n");
1979
1980	if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
1981		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
1982
1983	if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
1984		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
1985
1986	if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
1987		intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
1988
1989	I915_WRITE(SERR_INT, serr_int);
1990}
1991
1992static void cpt_irq_handler(struct drm_device *dev, u32 pch_iir)
1993{
1994	struct drm_i915_private *dev_priv = dev->dev_private;
1995	int pipe;
1996	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
1997
1998	ibx_hpd_irq_handler(dev, hotplug_trigger, hpd_cpt);
1999
2000	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2001		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2002			       SDE_AUDIO_POWER_SHIFT_CPT);
2003		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2004				 port_name(port));
2005	}
2006
2007	if (pch_iir & SDE_AUX_MASK_CPT)
2008		dp_aux_irq_handler(dev);
2009
2010	if (pch_iir & SDE_GMBUS_CPT)
2011		gmbus_irq_handler(dev);
2012
2013	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2014		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2015
2016	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2017		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2018
2019	if (pch_iir & SDE_FDI_MASK_CPT)
2020		for_each_pipe(dev_priv, pipe)
2021			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2022					 pipe_name(pipe),
2023					 I915_READ(FDI_RX_IIR(pipe)));
2024
2025	if (pch_iir & SDE_ERROR_CPT)
2026		cpt_serr_int_handler(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2027}
2028
2029static void spt_irq_handler(struct drm_device *dev, u32 pch_iir)
2030{
2031	struct drm_i915_private *dev_priv = dev->dev_private;
2032	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2033		~SDE_PORTE_HOTPLUG_SPT;
2034	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2035	u32 pin_mask = 0, long_mask = 0;
2036
2037	if (hotplug_trigger) {
2038		u32 dig_hotplug_reg;
2039
2040		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2041		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2042
2043		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2044				   dig_hotplug_reg, hpd_spt,
2045				   spt_port_hotplug_long_detect);
2046	}
2047
2048	if (hotplug2_trigger) {
2049		u32 dig_hotplug_reg;
2050
2051		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2052		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2053
2054		intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2055				   dig_hotplug_reg, hpd_spt,
2056				   spt_port_hotplug2_long_detect);
2057	}
2058
2059	if (pin_mask)
2060		intel_hpd_irq_handler(dev, pin_mask, long_mask);
2061
2062	if (pch_iir & SDE_GMBUS_CPT)
2063		gmbus_irq_handler(dev);
2064}
2065
2066static void ilk_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
 
2067				const u32 hpd[HPD_NUM_PINS])
2068{
2069	struct drm_i915_private *dev_priv = to_i915(dev);
2070	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2071
2072	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2073	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2074
2075	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2076			   dig_hotplug_reg, hpd,
2077			   ilk_port_hotplug_long_detect);
2078
2079	intel_hpd_irq_handler(dev, pin_mask, long_mask);
2080}
2081
2082static void ilk_display_irq_handler(struct drm_device *dev, u32 de_iir)
 
2083{
2084	struct drm_i915_private *dev_priv = dev->dev_private;
2085	enum pipe pipe;
2086	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2087
2088	if (hotplug_trigger)
2089		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ilk);
2090
2091	if (de_iir & DE_AUX_CHANNEL_A)
2092		dp_aux_irq_handler(dev);
2093
2094	if (de_iir & DE_GSE)
2095		intel_opregion_asle_intr(dev);
2096
2097	if (de_iir & DE_POISON)
2098		DRM_ERROR("Poison interrupt\n");
2099
2100	for_each_pipe(dev_priv, pipe) {
2101		if (de_iir & DE_PIPE_VBLANK(pipe) &&
2102		    intel_pipe_handle_vblank(dev, pipe))
2103			intel_check_page_flip(dev, pipe);
2104
2105		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2106			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2107
2108		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2109			i9xx_pipe_crc_irq_handler(dev, pipe);
2110
2111		/* plane/pipes map 1:1 on ilk+ */
2112		if (de_iir & DE_PLANE_FLIP_DONE(pipe)) {
2113			intel_prepare_page_flip(dev, pipe);
2114			intel_finish_page_flip_plane(dev, pipe);
2115		}
2116	}
2117
2118	/* check event from PCH */
2119	if (de_iir & DE_PCH_EVENT) {
2120		u32 pch_iir = I915_READ(SDEIIR);
2121
2122		if (HAS_PCH_CPT(dev))
2123			cpt_irq_handler(dev, pch_iir);
2124		else
2125			ibx_irq_handler(dev, pch_iir);
2126
2127		/* should clear PCH hotplug event before clear CPU irq */
2128		I915_WRITE(SDEIIR, pch_iir);
2129	}
2130
2131	if (IS_GEN5(dev) && de_iir & DE_PCU_EVENT)
2132		ironlake_rps_change_irq_handler(dev);
2133}
2134
2135static void ivb_display_irq_handler(struct drm_device *dev, u32 de_iir)
 
2136{
2137	struct drm_i915_private *dev_priv = dev->dev_private;
2138	enum pipe pipe;
2139	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2140
2141	if (hotplug_trigger)
2142		ilk_hpd_irq_handler(dev, hotplug_trigger, hpd_ivb);
2143
2144	if (de_iir & DE_ERR_INT_IVB)
2145		ivb_err_int_handler(dev);
 
 
 
 
 
 
 
2146
2147	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2148		dp_aux_irq_handler(dev);
2149
2150	if (de_iir & DE_GSE_IVB)
2151		intel_opregion_asle_intr(dev);
2152
2153	for_each_pipe(dev_priv, pipe) {
2154		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2155		    intel_pipe_handle_vblank(dev, pipe))
2156			intel_check_page_flip(dev, pipe);
2157
2158		/* plane/pipes map 1:1 on ilk+ */
2159		if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe)) {
2160			intel_prepare_page_flip(dev, pipe);
2161			intel_finish_page_flip_plane(dev, pipe);
2162		}
2163	}
2164
2165	/* check event from PCH */
2166	if (!HAS_PCH_NOP(dev) && (de_iir & DE_PCH_EVENT_IVB)) {
2167		u32 pch_iir = I915_READ(SDEIIR);
2168
2169		cpt_irq_handler(dev, pch_iir);
2170
2171		/* clear PCH hotplug event before clear CPU irq */
2172		I915_WRITE(SDEIIR, pch_iir);
2173	}
2174}
2175
2176/*
2177 * To handle irqs with the minimum potential races with fresh interrupts, we:
2178 * 1 - Disable Master Interrupt Control.
2179 * 2 - Find the source(s) of the interrupt.
2180 * 3 - Clear the Interrupt Identity bits (IIR).
2181 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2182 * 5 - Re-enable Master Interrupt Control.
2183 */
2184static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2185{
2186	struct drm_device *dev = arg;
2187	struct drm_i915_private *dev_priv = dev->dev_private;
2188	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2189	irqreturn_t ret = IRQ_NONE;
2190
2191	if (!intel_irqs_enabled(dev_priv))
2192		return IRQ_NONE;
2193
2194	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2195	disable_rpm_wakeref_asserts(dev_priv);
2196
2197	/* disable master interrupt before clearing iir  */
2198	de_ier = I915_READ(DEIER);
2199	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2200	POSTING_READ(DEIER);
2201
2202	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2203	 * interrupts will will be stored on its back queue, and then we'll be
2204	 * able to process them after we restore SDEIER (as soon as we restore
2205	 * it, we'll get an interrupt if SDEIIR still has something to process
2206	 * due to its back queue). */
2207	if (!HAS_PCH_NOP(dev)) {
2208		sde_ier = I915_READ(SDEIER);
2209		I915_WRITE(SDEIER, 0);
2210		POSTING_READ(SDEIER);
2211	}
2212
2213	/* Find, clear, then process each source of interrupt */
2214
2215	gt_iir = I915_READ(GTIIR);
2216	if (gt_iir) {
2217		I915_WRITE(GTIIR, gt_iir);
2218		ret = IRQ_HANDLED;
2219		if (INTEL_INFO(dev)->gen >= 6)
2220			snb_gt_irq_handler(dev, dev_priv, gt_iir);
2221		else
2222			ilk_gt_irq_handler(dev, dev_priv, gt_iir);
2223	}
2224
2225	de_iir = I915_READ(DEIIR);
2226	if (de_iir) {
2227		I915_WRITE(DEIIR, de_iir);
2228		ret = IRQ_HANDLED;
2229		if (INTEL_INFO(dev)->gen >= 7)
2230			ivb_display_irq_handler(dev, de_iir);
2231		else
2232			ilk_display_irq_handler(dev, de_iir);
2233	}
2234
2235	if (INTEL_INFO(dev)->gen >= 6) {
2236		u32 pm_iir = I915_READ(GEN6_PMIIR);
2237		if (pm_iir) {
2238			I915_WRITE(GEN6_PMIIR, pm_iir);
2239			ret = IRQ_HANDLED;
2240			gen6_rps_irq_handler(dev_priv, pm_iir);
2241		}
2242	}
2243
2244	I915_WRITE(DEIER, de_ier);
2245	POSTING_READ(DEIER);
2246	if (!HAS_PCH_NOP(dev)) {
2247		I915_WRITE(SDEIER, sde_ier);
2248		POSTING_READ(SDEIER);
2249	}
2250
2251	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2252	enable_rpm_wakeref_asserts(dev_priv);
2253
2254	return ret;
2255}
2256
2257static void bxt_hpd_irq_handler(struct drm_device *dev, u32 hotplug_trigger,
 
2258				const u32 hpd[HPD_NUM_PINS])
2259{
2260	struct drm_i915_private *dev_priv = to_i915(dev);
2261	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2262
2263	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2264	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2265
2266	intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2267			   dig_hotplug_reg, hpd,
2268			   bxt_port_hotplug_long_detect);
2269
2270	intel_hpd_irq_handler(dev, pin_mask, long_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2271}
2272
2273static irqreturn_t
2274gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2275{
2276	struct drm_device *dev = dev_priv->dev;
2277	irqreturn_t ret = IRQ_NONE;
2278	u32 iir;
2279	enum pipe pipe;
2280
2281	if (master_ctl & GEN8_DE_MISC_IRQ) {
2282		iir = I915_READ(GEN8_DE_MISC_IIR);
2283		if (iir) {
2284			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2285			ret = IRQ_HANDLED;
2286			if (iir & GEN8_DE_MISC_GSE)
2287				intel_opregion_asle_intr(dev);
2288			else
2289				DRM_ERROR("Unexpected DE Misc interrupt\n");
2290		}
2291		else
2292			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
 
 
 
 
 
 
 
 
 
 
 
 
2293	}
2294
2295	if (master_ctl & GEN8_DE_PORT_IRQ) {
2296		iir = I915_READ(GEN8_DE_PORT_IIR);
2297		if (iir) {
2298			u32 tmp_mask;
2299			bool found = false;
2300
2301			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2302			ret = IRQ_HANDLED;
2303
2304			tmp_mask = GEN8_AUX_CHANNEL_A;
2305			if (INTEL_INFO(dev_priv)->gen >= 9)
2306				tmp_mask |= GEN9_AUX_CHANNEL_B |
2307					    GEN9_AUX_CHANNEL_C |
2308					    GEN9_AUX_CHANNEL_D;
2309
2310			if (iir & tmp_mask) {
2311				dp_aux_irq_handler(dev);
2312				found = true;
2313			}
2314
2315			if (IS_BROXTON(dev_priv)) {
2316				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2317				if (tmp_mask) {
2318					bxt_hpd_irq_handler(dev, tmp_mask, hpd_bxt);
 
2319					found = true;
2320				}
2321			} else if (IS_BROADWELL(dev_priv)) {
2322				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2323				if (tmp_mask) {
2324					ilk_hpd_irq_handler(dev, tmp_mask, hpd_bdw);
 
2325					found = true;
2326				}
2327			}
2328
2329			if (IS_BROXTON(dev) && (iir & BXT_DE_PORT_GMBUS)) {
2330				gmbus_irq_handler(dev);
2331				found = true;
2332			}
2333
2334			if (!found)
2335				DRM_ERROR("Unexpected DE Port interrupt\n");
2336		}
2337		else
2338			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2339	}
2340
2341	for_each_pipe(dev_priv, pipe) {
2342		u32 flip_done, fault_errors;
2343
2344		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2345			continue;
2346
2347		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2348		if (!iir) {
2349			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2350			continue;
2351		}
2352
2353		ret = IRQ_HANDLED;
2354		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2355
2356		if (iir & GEN8_PIPE_VBLANK &&
2357		    intel_pipe_handle_vblank(dev, pipe))
2358			intel_check_page_flip(dev, pipe);
2359
2360		flip_done = iir;
2361		if (INTEL_INFO(dev_priv)->gen >= 9)
2362			flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2363		else
2364			flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2365
2366		if (flip_done) {
2367			intel_prepare_page_flip(dev, pipe);
2368			intel_finish_page_flip_plane(dev, pipe);
2369		}
2370
2371		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2372			hsw_pipe_crc_irq_handler(dev, pipe);
2373
2374		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2375			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2376
2377		fault_errors = iir;
2378		if (INTEL_INFO(dev_priv)->gen >= 9)
2379			fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2380		else
2381			fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2382
2383		if (fault_errors)
2384			DRM_ERROR("Fault errors on pipe %c\n: 0x%08x",
2385				  pipe_name(pipe),
2386				  fault_errors);
2387	}
2388
2389	if (HAS_PCH_SPLIT(dev) && !HAS_PCH_NOP(dev) &&
2390	    master_ctl & GEN8_DE_PCH_IRQ) {
2391		/*
2392		 * FIXME(BDW): Assume for now that the new interrupt handling
2393		 * scheme also closed the SDE interrupt handling race we've seen
2394		 * on older pch-split platforms. But this needs testing.
2395		 */
2396		iir = I915_READ(SDEIIR);
2397		if (iir) {
2398			I915_WRITE(SDEIIR, iir);
2399			ret = IRQ_HANDLED;
2400
2401			if (HAS_PCH_SPT(dev_priv))
2402				spt_irq_handler(dev, iir);
 
 
 
 
 
 
2403			else
2404				cpt_irq_handler(dev, iir);
2405		} else {
2406			/*
2407			 * Like on previous PCH there seems to be something
2408			 * fishy going on with forwarding PCH interrupts.
2409			 */
2410			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2411		}
2412	}
2413
2414	return ret;
2415}
2416
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417static irqreturn_t gen8_irq_handler(int irq, void *arg)
2418{
2419	struct drm_device *dev = arg;
2420	struct drm_i915_private *dev_priv = dev->dev_private;
2421	u32 master_ctl;
2422	irqreturn_t ret;
2423
2424	if (!intel_irqs_enabled(dev_priv))
2425		return IRQ_NONE;
2426
2427	master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2428	master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2429	if (!master_ctl)
2430		return IRQ_NONE;
 
2431
2432	I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
 
2433
2434	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2435	disable_rpm_wakeref_asserts(dev_priv);
2436
2437	/* Find, clear, then process each source of interrupt */
2438	ret = gen8_gt_irq_handler(dev_priv, master_ctl);
2439	ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2440
2441	I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2442	POSTING_READ_FW(GEN8_MASTER_IRQ);
2443
2444	enable_rpm_wakeref_asserts(dev_priv);
2445
2446	return ret;
2447}
2448
2449static void i915_error_wake_up(struct drm_i915_private *dev_priv,
2450			       bool reset_completed)
2451{
2452	struct intel_engine_cs *ring;
2453	int i;
2454
2455	/*
2456	 * Notify all waiters for GPU completion events that reset state has
2457	 * been changed, and that they need to restart their wait after
2458	 * checking for potential errors (and bail out to drop locks if there is
2459	 * a gpu reset pending so that i915_error_work_func can acquire them).
2460	 */
2461
2462	/* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2463	for_each_ring(ring, dev_priv, i)
2464		wake_up_all(&ring->irq_queue);
2465
2466	/* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2467	wake_up_all(&dev_priv->pending_flip_queue);
 
2468
2469	/*
2470	 * Signal tasks blocked in i915_gem_wait_for_error that the pending
2471	 * reset state is cleared.
2472	 */
2473	if (reset_completed)
2474		wake_up_all(&dev_priv->gpu_error.reset_queue);
2475}
2476
2477/**
2478 * i915_reset_and_wakeup - do process context error handling work
2479 * @dev: drm device
2480 *
2481 * Fire an error uevent so userspace can see that a hang or error
2482 * was detected.
2483 */
2484static void i915_reset_and_wakeup(struct drm_device *dev)
2485{
2486	struct drm_i915_private *dev_priv = to_i915(dev);
2487	struct i915_gpu_error *error = &dev_priv->gpu_error;
2488	char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2489	char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2490	char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2491	int ret;
2492
2493	kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE, error_event);
 
 
2494
2495	/*
2496	 * Note that there's only one work item which does gpu resets, so we
2497	 * need not worry about concurrent gpu resets potentially incrementing
2498	 * error->reset_counter twice. We only need to take care of another
2499	 * racing irq/hangcheck declaring the gpu dead for a second time. A
2500	 * quick check for that is good enough: schedule_work ensures the
2501	 * correct ordering between hang detection and this work item, and since
2502	 * the reset in-progress bit is only ever set by code outside of this
2503	 * work we don't need to worry about any other races.
2504	 */
2505	if (i915_reset_in_progress(error) && !i915_terminally_wedged(error)) {
2506		DRM_DEBUG_DRIVER("resetting chip\n");
2507		kobject_uevent_env(&dev->primary->kdev->kobj, KOBJ_CHANGE,
2508				   reset_event);
2509
2510		/*
2511		 * In most cases it's guaranteed that we get here with an RPM
2512		 * reference held, for example because there is a pending GPU
2513		 * request that won't finish until the reset is done. This
2514		 * isn't the case at least when we get here by doing a
2515		 * simulated reset via debugs, so get an RPM reference.
2516		 */
2517		intel_runtime_pm_get(dev_priv);
2518
2519		intel_prepare_reset(dev);
2520
2521		/*
2522		 * All state reset _must_ be completed before we update the
2523		 * reset counter, for otherwise waiters might miss the reset
2524		 * pending state and not properly drop locks, resulting in
2525		 * deadlocks with the reset work.
2526		 */
2527		ret = i915_reset(dev);
2528
2529		intel_finish_reset(dev);
2530
2531		intel_runtime_pm_put(dev_priv);
2532
2533		if (ret == 0) {
2534			/*
2535			 * After all the gem state is reset, increment the reset
2536			 * counter and wake up everyone waiting for the reset to
2537			 * complete.
2538			 *
2539			 * Since unlock operations are a one-sided barrier only,
2540			 * we need to insert a barrier here to order any seqno
2541			 * updates before
2542			 * the counter increment.
2543			 */
2544			smp_mb__before_atomic();
2545			atomic_inc(&dev_priv->gpu_error.reset_counter);
2546
2547			kobject_uevent_env(&dev->primary->kdev->kobj,
2548					   KOBJ_CHANGE, reset_done_event);
2549		} else {
2550			atomic_or(I915_WEDGED, &error->reset_counter);
2551		}
2552
2553		/*
2554		 * Note: The wake_up also serves as a memory barrier so that
2555		 * waiters see the update value of the reset counter atomic_t.
2556		 */
2557		i915_error_wake_up(dev_priv, true);
2558	}
2559}
2560
2561static void i915_report_and_clear_eir(struct drm_device *dev)
2562{
2563	struct drm_i915_private *dev_priv = dev->dev_private;
2564	uint32_t instdone[I915_NUM_INSTDONE_REG];
2565	u32 eir = I915_READ(EIR);
2566	int pipe, i;
2567
2568	if (!eir)
2569		return;
2570
2571	pr_err("render error detected, EIR: 0x%08x\n", eir);
2572
2573	i915_get_extra_instdone(dev, instdone);
 
 
 
 
 
 
2574
2575	if (IS_G4X(dev)) {
2576		if (eir & (GM45_ERROR_MEM_PRIV | GM45_ERROR_CP_PRIV)) {
2577			u32 ipeir = I915_READ(IPEIR_I965);
2578
2579			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2580			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2581			for (i = 0; i < ARRAY_SIZE(instdone); i++)
2582				pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2583			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2584			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2585			I915_WRITE(IPEIR_I965, ipeir);
2586			POSTING_READ(IPEIR_I965);
2587		}
2588		if (eir & GM45_ERROR_PAGE_TABLE) {
2589			u32 pgtbl_err = I915_READ(PGTBL_ER);
2590			pr_err("page table error\n");
2591			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2592			I915_WRITE(PGTBL_ER, pgtbl_err);
2593			POSTING_READ(PGTBL_ER);
2594		}
2595	}
2596
2597	if (!IS_GEN2(dev)) {
2598		if (eir & I915_ERROR_PAGE_TABLE) {
2599			u32 pgtbl_err = I915_READ(PGTBL_ER);
2600			pr_err("page table error\n");
2601			pr_err("  PGTBL_ER: 0x%08x\n", pgtbl_err);
2602			I915_WRITE(PGTBL_ER, pgtbl_err);
2603			POSTING_READ(PGTBL_ER);
2604		}
2605	}
2606
2607	if (eir & I915_ERROR_MEMORY_REFRESH) {
2608		pr_err("memory refresh error:\n");
2609		for_each_pipe(dev_priv, pipe)
2610			pr_err("pipe %c stat: 0x%08x\n",
2611			       pipe_name(pipe), I915_READ(PIPESTAT(pipe)));
2612		/* pipestat has already been acked */
2613	}
2614	if (eir & I915_ERROR_INSTRUCTION) {
2615		pr_err("instruction error\n");
2616		pr_err("  INSTPM: 0x%08x\n", I915_READ(INSTPM));
2617		for (i = 0; i < ARRAY_SIZE(instdone); i++)
2618			pr_err("  INSTDONE_%d: 0x%08x\n", i, instdone[i]);
2619		if (INTEL_INFO(dev)->gen < 4) {
2620			u32 ipeir = I915_READ(IPEIR);
2621
2622			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR));
2623			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR));
2624			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD));
2625			I915_WRITE(IPEIR, ipeir);
2626			POSTING_READ(IPEIR);
2627		} else {
2628			u32 ipeir = I915_READ(IPEIR_I965);
2629
2630			pr_err("  IPEIR: 0x%08x\n", I915_READ(IPEIR_I965));
2631			pr_err("  IPEHR: 0x%08x\n", I915_READ(IPEHR_I965));
2632			pr_err("  INSTPS: 0x%08x\n", I915_READ(INSTPS));
2633			pr_err("  ACTHD: 0x%08x\n", I915_READ(ACTHD_I965));
2634			I915_WRITE(IPEIR_I965, ipeir);
2635			POSTING_READ(IPEIR_I965);
2636		}
2637	}
2638
2639	I915_WRITE(EIR, eir);
2640	POSTING_READ(EIR);
2641	eir = I915_READ(EIR);
2642	if (eir) {
2643		/*
2644		 * some errors might have become stuck,
2645		 * mask them.
2646		 */
2647		DRM_ERROR("EIR stuck: 0x%08x, masking\n", eir);
2648		I915_WRITE(EMR, I915_READ(EMR) | eir);
2649		I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2650	}
2651}
2652
2653/**
2654 * i915_handle_error - handle a gpu error
2655 * @dev: drm device
2656 *
2657 * Do some basic checking of register state at error time and
2658 * dump it to the syslog.  Also call i915_capture_error_state() to make
2659 * sure we get a record and make it available in debugfs.  Fire a uevent
2660 * so userspace knows something bad happened (should trigger collection
2661 * of a ring dump etc.).
2662 */
2663void i915_handle_error(struct drm_device *dev, bool wedged,
2664		       const char *fmt, ...)
2665{
2666	struct drm_i915_private *dev_priv = dev->dev_private;
2667	va_list args;
2668	char error_msg[80];
2669
2670	va_start(args, fmt);
2671	vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2672	va_end(args);
2673
2674	i915_capture_error_state(dev, wedged, error_msg);
2675	i915_report_and_clear_eir(dev);
2676
2677	if (wedged) {
2678		atomic_or(I915_RESET_IN_PROGRESS_FLAG,
2679				&dev_priv->gpu_error.reset_counter);
2680
2681		/*
2682		 * Wakeup waiting processes so that the reset function
2683		 * i915_reset_and_wakeup doesn't deadlock trying to grab
2684		 * various locks. By bumping the reset counter first, the woken
2685		 * processes will see a reset in progress and back off,
2686		 * releasing their locks and then wait for the reset completion.
2687		 * We must do this for _all_ gpu waiters that might hold locks
2688		 * that the reset work needs to acquire.
2689		 *
2690		 * Note: The wake_up serves as the required memory barrier to
2691		 * ensure that the waiters see the updated value of the reset
2692		 * counter atomic_t.
2693		 */
2694		i915_error_wake_up(dev_priv, false);
2695	}
2696
2697	i915_reset_and_wakeup(dev);
 
 
2698}
2699
2700/* Called from drm generic code, passed 'crtc' which
2701 * we use as a pipe index
2702 */
2703static int i915_enable_vblank(struct drm_device *dev, unsigned int pipe)
2704{
2705	struct drm_i915_private *dev_priv = dev->dev_private;
 
2706	unsigned long irqflags;
2707
2708	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2709	if (INTEL_INFO(dev)->gen >= 4)
2710		i915_enable_pipestat(dev_priv, pipe,
2711				     PIPE_START_VBLANK_INTERRUPT_STATUS);
2712	else
2713		i915_enable_pipestat(dev_priv, pipe,
2714				     PIPE_VBLANK_INTERRUPT_STATUS);
2715	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2716
2717	return 0;
2718}
2719
2720static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
 
 
 
 
 
 
 
 
 
 
2721{
2722	struct drm_i915_private *dev_priv = dev->dev_private;
 
2723	unsigned long irqflags;
2724	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2725						     DE_PIPE_VBLANK(pipe);
2726
2727	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2728	ilk_enable_display_irq(dev_priv, bit);
 
2729	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2730
2731	return 0;
2732}
2733
2734static int valleyview_enable_vblank(struct drm_device *dev, unsigned int pipe)
2735{
2736	struct drm_i915_private *dev_priv = dev->dev_private;
 
2737	unsigned long irqflags;
 
 
2738
2739	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2740	i915_enable_pipestat(dev_priv, pipe,
2741			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2742	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2743
 
 
 
 
 
 
2744	return 0;
2745}
2746
2747static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2748{
2749	struct drm_i915_private *dev_priv = dev->dev_private;
 
2750	unsigned long irqflags;
2751
2752	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2753	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2754	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2755
 
 
 
 
 
 
2756	return 0;
2757}
2758
2759/* Called from drm generic code, passed 'crtc' which
2760 * we use as a pipe index
2761 */
2762static void i915_disable_vblank(struct drm_device *dev, unsigned int pipe)
2763{
2764	struct drm_i915_private *dev_priv = dev->dev_private;
 
2765	unsigned long irqflags;
2766
2767	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2768	i915_disable_pipestat(dev_priv, pipe,
2769			      PIPE_VBLANK_INTERRUPT_STATUS |
2770			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2771	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2772}
2773
2774static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2775{
2776	struct drm_i915_private *dev_priv = dev->dev_private;
2777	unsigned long irqflags;
2778	uint32_t bit = (INTEL_INFO(dev)->gen >= 7) ? DE_PIPE_VBLANK_IVB(pipe) :
2779						     DE_PIPE_VBLANK(pipe);
2780
2781	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2782	ilk_disable_display_irq(dev_priv, bit);
2783	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
 
2784}
2785
2786static void valleyview_disable_vblank(struct drm_device *dev, unsigned int pipe)
2787{
2788	struct drm_i915_private *dev_priv = dev->dev_private;
 
2789	unsigned long irqflags;
2790
2791	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2792	i915_disable_pipestat(dev_priv, pipe,
2793			      PIPE_START_VBLANK_INTERRUPT_STATUS);
2794	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2795}
2796
2797static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2798{
2799	struct drm_i915_private *dev_priv = dev->dev_private;
 
2800	unsigned long irqflags;
 
 
2801
2802	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2803	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2804	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2805}
2806
2807static bool
2808ring_idle(struct intel_engine_cs *ring, u32 seqno)
2809{
2810	return (list_empty(&ring->request_list) ||
2811		i915_seqno_passed(seqno, ring->last_submitted_seqno));
2812}
2813
2814static bool
2815ipehr_is_semaphore_wait(struct drm_device *dev, u32 ipehr)
2816{
2817	if (INTEL_INFO(dev)->gen >= 8) {
2818		return (ipehr >> 23) == 0x1c;
2819	} else {
2820		ipehr &= ~MI_SEMAPHORE_SYNC_MASK;
2821		return ipehr == (MI_SEMAPHORE_MBOX | MI_SEMAPHORE_COMPARE |
2822				 MI_SEMAPHORE_REGISTER);
2823	}
2824}
2825
2826static struct intel_engine_cs *
2827semaphore_wait_to_signaller_ring(struct intel_engine_cs *ring, u32 ipehr, u64 offset)
2828{
2829	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2830	struct intel_engine_cs *signaller;
2831	int i;
2832
2833	if (INTEL_INFO(dev_priv->dev)->gen >= 8) {
2834		for_each_ring(signaller, dev_priv, i) {
2835			if (ring == signaller)
2836				continue;
2837
2838			if (offset == signaller->semaphore.signal_ggtt[ring->id])
2839				return signaller;
2840		}
2841	} else {
2842		u32 sync_bits = ipehr & MI_SEMAPHORE_SYNC_MASK;
2843
2844		for_each_ring(signaller, dev_priv, i) {
2845			if(ring == signaller)
2846				continue;
2847
2848			if (sync_bits == signaller->semaphore.mbox.wait[ring->id])
2849				return signaller;
2850		}
2851	}
2852
2853	DRM_ERROR("No signaller ring found for ring %i, ipehr 0x%08x, offset 0x%016llx\n",
2854		  ring->id, ipehr, offset);
2855
2856	return NULL;
 
 
2857}
2858
2859static struct intel_engine_cs *
2860semaphore_waits_for(struct intel_engine_cs *ring, u32 *seqno)
2861{
2862	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2863	u32 cmd, ipehr, head;
2864	u64 offset = 0;
2865	int i, backwards;
2866
2867	/*
2868	 * This function does not support execlist mode - any attempt to
2869	 * proceed further into this function will result in a kernel panic
2870	 * when dereferencing ring->buffer, which is not set up in execlist
2871	 * mode.
2872	 *
2873	 * The correct way of doing it would be to derive the currently
2874	 * executing ring buffer from the current context, which is derived
2875	 * from the currently running request. Unfortunately, to get the
2876	 * current request we would have to grab the struct_mutex before doing
2877	 * anything else, which would be ill-advised since some other thread
2878	 * might have grabbed it already and managed to hang itself, causing
2879	 * the hang checker to deadlock.
2880	 *
2881	 * Therefore, this function does not support execlist mode in its
2882	 * current form. Just return NULL and move on.
2883	 */
2884	if (ring->buffer == NULL)
2885		return NULL;
2886
2887	ipehr = I915_READ(RING_IPEHR(ring->mmio_base));
2888	if (!ipehr_is_semaphore_wait(ring->dev, ipehr))
2889		return NULL;
2890
2891	/*
2892	 * HEAD is likely pointing to the dword after the actual command,
2893	 * so scan backwards until we find the MBOX. But limit it to just 3
2894	 * or 4 dwords depending on the semaphore wait command size.
2895	 * Note that we don't care about ACTHD here since that might
2896	 * point at at batch, and semaphores are always emitted into the
2897	 * ringbuffer itself.
2898	 */
2899	head = I915_READ_HEAD(ring) & HEAD_ADDR;
2900	backwards = (INTEL_INFO(ring->dev)->gen >= 8) ? 5 : 4;
2901
2902	for (i = backwards; i; --i) {
2903		/*
2904		 * Be paranoid and presume the hw has gone off into the wild -
2905		 * our ring is smaller than what the hardware (and hence
2906		 * HEAD_ADDR) allows. Also handles wrap-around.
2907		 */
2908		head &= ring->buffer->size - 1;
2909
2910		/* This here seems to blow up */
2911		cmd = ioread32(ring->buffer->virtual_start + head);
2912		if (cmd == ipehr)
2913			break;
2914
2915		head -= 4;
2916	}
2917
2918	if (!i)
2919		return NULL;
2920
2921	*seqno = ioread32(ring->buffer->virtual_start + head + 4) + 1;
2922	if (INTEL_INFO(ring->dev)->gen >= 8) {
2923		offset = ioread32(ring->buffer->virtual_start + head + 12);
2924		offset <<= 32;
2925		offset = ioread32(ring->buffer->virtual_start + head + 8);
2926	}
2927	return semaphore_wait_to_signaller_ring(ring, ipehr, offset);
2928}
2929
2930static int semaphore_passed(struct intel_engine_cs *ring)
2931{
2932	struct drm_i915_private *dev_priv = ring->dev->dev_private;
2933	struct intel_engine_cs *signaller;
2934	u32 seqno;
2935
2936	ring->hangcheck.deadlock++;
2937
2938	signaller = semaphore_waits_for(ring, &seqno);
2939	if (signaller == NULL)
2940		return -1;
2941
2942	/* Prevent pathological recursion due to driver bugs */
2943	if (signaller->hangcheck.deadlock >= I915_NUM_RINGS)
2944		return -1;
2945
2946	if (i915_seqno_passed(signaller->get_seqno(signaller, false), seqno))
2947		return 1;
2948
2949	/* cursory check for an unkickable deadlock */
2950	if (I915_READ_CTL(signaller) & RING_WAIT_SEMAPHORE &&
2951	    semaphore_passed(signaller) < 0)
2952		return -1;
2953
2954	return 0;
2955}
2956
2957static void semaphore_clear_deadlocks(struct drm_i915_private *dev_priv)
2958{
2959	struct intel_engine_cs *ring;
2960	int i;
2961
2962	for_each_ring(ring, dev_priv, i)
2963		ring->hangcheck.deadlock = 0;
 
 
 
2964}
2965
2966static bool subunits_stuck(struct intel_engine_cs *ring)
2967{
2968	u32 instdone[I915_NUM_INSTDONE_REG];
2969	bool stuck;
2970	int i;
2971
2972	if (ring->id != RCS)
2973		return true;
2974
2975	i915_get_extra_instdone(ring->dev, instdone);
2976
2977	/* There might be unstable subunit states even when
2978	 * actual head is not moving. Filter out the unstable ones by
2979	 * accumulating the undone -> done transitions and only
2980	 * consider those as progress.
2981	 */
2982	stuck = true;
2983	for (i = 0; i < I915_NUM_INSTDONE_REG; i++) {
2984		const u32 tmp = instdone[i] | ring->hangcheck.instdone[i];
2985
2986		if (tmp != ring->hangcheck.instdone[i])
2987			stuck = false;
2988
2989		ring->hangcheck.instdone[i] |= tmp;
2990	}
2991
2992	return stuck;
2993}
2994
2995static enum intel_ring_hangcheck_action
2996head_stuck(struct intel_engine_cs *ring, u64 acthd)
2997{
2998	if (acthd != ring->hangcheck.acthd) {
2999
3000		/* Clear subunit states on head movement */
3001		memset(ring->hangcheck.instdone, 0,
3002		       sizeof(ring->hangcheck.instdone));
3003
3004		if (acthd > ring->hangcheck.max_acthd) {
3005			ring->hangcheck.max_acthd = acthd;
3006			return HANGCHECK_ACTIVE;
3007		}
3008
3009		return HANGCHECK_ACTIVE_LOOP;
3010	}
3011
3012	if (!subunits_stuck(ring))
3013		return HANGCHECK_ACTIVE;
3014
3015	return HANGCHECK_HUNG;
3016}
3017
3018static enum intel_ring_hangcheck_action
3019ring_stuck(struct intel_engine_cs *ring, u64 acthd)
3020{
3021	struct drm_device *dev = ring->dev;
3022	struct drm_i915_private *dev_priv = dev->dev_private;
3023	enum intel_ring_hangcheck_action ha;
3024	u32 tmp;
3025
3026	ha = head_stuck(ring, acthd);
3027	if (ha != HANGCHECK_HUNG)
3028		return ha;
3029
3030	if (IS_GEN2(dev))
3031		return HANGCHECK_HUNG;
3032
3033	/* Is the chip hanging on a WAIT_FOR_EVENT?
3034	 * If so we can simply poke the RB_WAIT bit
3035	 * and break the hang. This should work on
3036	 * all but the second generation chipsets.
3037	 */
3038	tmp = I915_READ_CTL(ring);
3039	if (tmp & RING_WAIT) {
3040		i915_handle_error(dev, false,
3041				  "Kicking stuck wait on %s",
3042				  ring->name);
3043		I915_WRITE_CTL(ring, tmp);
3044		return HANGCHECK_KICK;
3045	}
3046
3047	if (INTEL_INFO(dev)->gen >= 6 && tmp & RING_WAIT_SEMAPHORE) {
3048		switch (semaphore_passed(ring)) {
3049		default:
3050			return HANGCHECK_HUNG;
3051		case 1:
3052			i915_handle_error(dev, false,
3053					  "Kicking stuck semaphore on %s",
3054					  ring->name);
3055			I915_WRITE_CTL(ring, tmp);
3056			return HANGCHECK_KICK;
3057		case 0:
3058			return HANGCHECK_WAIT;
3059		}
3060	}
3061
3062	return HANGCHECK_HUNG;
3063}
3064
3065/*
3066 * This is called when the chip hasn't reported back with completed
3067 * batchbuffers in a long time. We keep track per ring seqno progress and
3068 * if there are no progress, hangcheck score for that ring is increased.
3069 * Further, acthd is inspected to see if the ring is stuck. On stuck case
3070 * we kick the ring. If we see no progress on three subsequent calls
3071 * we assume chip is wedged and try to fix it by resetting the chip.
3072 */
3073static void i915_hangcheck_elapsed(struct work_struct *work)
3074{
3075	struct drm_i915_private *dev_priv =
3076		container_of(work, typeof(*dev_priv),
3077			     gpu_error.hangcheck_work.work);
3078	struct drm_device *dev = dev_priv->dev;
3079	struct intel_engine_cs *ring;
3080	int i;
3081	int busy_count = 0, rings_hung = 0;
3082	bool stuck[I915_NUM_RINGS] = { 0 };
3083#define BUSY 1
3084#define KICK 5
3085#define HUNG 20
3086
3087	if (!i915.enable_hangcheck)
3088		return;
3089
3090	/*
3091	 * The hangcheck work is synced during runtime suspend, we don't
3092	 * require a wakeref. TODO: instead of disabling the asserts make
3093	 * sure that we hold a reference when this work is running.
3094	 */
3095	DISABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3096
3097	/* As enabling the GPU requires fairly extensive mmio access,
3098	 * periodically arm the mmio checker to see if we are triggering
3099	 * any invalid access.
3100	 */
3101	intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
3102
3103	for_each_ring(ring, dev_priv, i) {
3104		u64 acthd;
3105		u32 seqno;
3106		bool busy = true;
3107
3108		semaphore_clear_deadlocks(dev_priv);
3109
3110		seqno = ring->get_seqno(ring, false);
3111		acthd = intel_ring_get_active_head(ring);
3112
3113		if (ring->hangcheck.seqno == seqno) {
3114			if (ring_idle(ring, seqno)) {
3115				ring->hangcheck.action = HANGCHECK_IDLE;
3116
3117				if (waitqueue_active(&ring->irq_queue)) {
3118					/* Issue a wake-up to catch stuck h/w. */
3119					if (!test_and_set_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings)) {
3120						if (!(dev_priv->gpu_error.test_irq_rings & intel_ring_flag(ring)))
3121							DRM_ERROR("Hangcheck timer elapsed... %s idle\n",
3122								  ring->name);
3123						else
3124							DRM_INFO("Fake missed irq on %s\n",
3125								 ring->name);
3126						wake_up_all(&ring->irq_queue);
3127					}
3128					/* Safeguard against driver failure */
3129					ring->hangcheck.score += BUSY;
3130				} else
3131					busy = false;
3132			} else {
3133				/* We always increment the hangcheck score
3134				 * if the ring is busy and still processing
3135				 * the same request, so that no single request
3136				 * can run indefinitely (such as a chain of
3137				 * batches). The only time we do not increment
3138				 * the hangcheck score on this ring, if this
3139				 * ring is in a legitimate wait for another
3140				 * ring. In that case the waiting ring is a
3141				 * victim and we want to be sure we catch the
3142				 * right culprit. Then every time we do kick
3143				 * the ring, add a small increment to the
3144				 * score so that we can catch a batch that is
3145				 * being repeatedly kicked and so responsible
3146				 * for stalling the machine.
3147				 */
3148				ring->hangcheck.action = ring_stuck(ring,
3149								    acthd);
3150
3151				switch (ring->hangcheck.action) {
3152				case HANGCHECK_IDLE:
3153				case HANGCHECK_WAIT:
3154				case HANGCHECK_ACTIVE:
3155					break;
3156				case HANGCHECK_ACTIVE_LOOP:
3157					ring->hangcheck.score += BUSY;
3158					break;
3159				case HANGCHECK_KICK:
3160					ring->hangcheck.score += KICK;
3161					break;
3162				case HANGCHECK_HUNG:
3163					ring->hangcheck.score += HUNG;
3164					stuck[i] = true;
3165					break;
3166				}
3167			}
3168		} else {
3169			ring->hangcheck.action = HANGCHECK_ACTIVE;
3170
3171			/* Gradually reduce the count so that we catch DoS
3172			 * attempts across multiple batches.
3173			 */
3174			if (ring->hangcheck.score > 0)
3175				ring->hangcheck.score--;
3176
3177			/* Clear head and subunit states on seqno movement */
3178			ring->hangcheck.acthd = ring->hangcheck.max_acthd = 0;
3179
3180			memset(ring->hangcheck.instdone, 0,
3181			       sizeof(ring->hangcheck.instdone));
3182		}
3183
3184		ring->hangcheck.seqno = seqno;
3185		ring->hangcheck.acthd = acthd;
3186		busy_count += busy;
3187	}
3188
3189	for_each_ring(ring, dev_priv, i) {
3190		if (ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG) {
3191			DRM_INFO("%s on %s\n",
3192				 stuck[i] ? "stuck" : "no progress",
3193				 ring->name);
3194			rings_hung++;
3195		}
3196	}
3197
3198	if (rings_hung) {
3199		i915_handle_error(dev, true, "Ring hung");
3200		goto out;
3201	}
3202
3203	if (busy_count)
3204		/* Reset timer case chip hangs without another request
3205		 * being added */
3206		i915_queue_hangcheck(dev);
3207
3208out:
3209	ENABLE_RPM_WAKEREF_ASSERTS(dev_priv);
3210}
3211
3212void i915_queue_hangcheck(struct drm_device *dev)
3213{
3214	struct i915_gpu_error *e = &to_i915(dev)->gpu_error;
3215
3216	if (!i915.enable_hangcheck)
3217		return;
 
 
3218
3219	/* Don't continually defer the hangcheck so that it is always run at
3220	 * least once after work has been scheduled on any ring. Otherwise,
3221	 * we will ignore a hung ring if a second ring is kept busy.
3222	 */
3223
3224	queue_delayed_work(e->hangcheck_wq, &e->hangcheck_work,
3225			   round_jiffies_up_relative(DRM_I915_HANGCHECK_JIFFIES));
 
 
3226}
3227
3228static void ibx_irq_reset(struct drm_device *dev)
3229{
3230	struct drm_i915_private *dev_priv = dev->dev_private;
3231
3232	if (HAS_PCH_NOP(dev))
3233		return;
 
3234
3235	GEN5_IRQ_RESET(SDE);
3236
3237	if (HAS_PCH_CPT(dev) || HAS_PCH_LPT(dev))
3238		I915_WRITE(SERR_INT, 0xffffffff);
3239}
3240
3241/*
3242 * SDEIER is also touched by the interrupt handler to work around missed PCH
3243 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3244 * instead we unconditionally enable all PCH interrupt sources here, but then
3245 * only unmask them as needed with SDEIMR.
3246 *
3247 * This function needs to be called before interrupts are enabled.
3248 */
3249static void ibx_irq_pre_postinstall(struct drm_device *dev)
3250{
3251	struct drm_i915_private *dev_priv = dev->dev_private;
3252
3253	if (HAS_PCH_NOP(dev))
3254		return;
 
3255
3256	WARN_ON(I915_READ(SDEIER) != 0);
3257	I915_WRITE(SDEIER, 0xffffffff);
3258	POSTING_READ(SDEIER);
3259}
3260
3261static void gen5_gt_irq_reset(struct drm_device *dev)
3262{
3263	struct drm_i915_private *dev_priv = dev->dev_private;
3264
3265	GEN5_IRQ_RESET(GT);
3266	if (INTEL_INFO(dev)->gen >= 6)
3267		GEN5_IRQ_RESET(GEN6_PM);
3268}
3269
3270/* drm_dma.h hooks
3271*/
3272static void ironlake_irq_reset(struct drm_device *dev)
3273{
3274	struct drm_i915_private *dev_priv = dev->dev_private;
3275
3276	I915_WRITE(HWSTAM, 0xffffffff);
 
 
3277
3278	GEN5_IRQ_RESET(DE);
3279	if (IS_GEN7(dev))
3280		I915_WRITE(GEN7_ERR_INT, 0xffffffff);
 
3281
3282	gen5_gt_irq_reset(dev);
3283
3284	ibx_irq_reset(dev);
3285}
3286
3287static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3288{
3289	enum pipe pipe;
3290
3291	i915_hotplug_interrupt_update(dev_priv, 0xFFFFFFFF, 0);
3292	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3293
3294	for_each_pipe(dev_priv, pipe)
3295		I915_WRITE(PIPESTAT(pipe), 0xffff);
3296
3297	GEN5_IRQ_RESET(VLV_);
 
 
 
3298}
3299
3300static void valleyview_irq_preinstall(struct drm_device *dev)
3301{
3302	struct drm_i915_private *dev_priv = dev->dev_private;
 
3303
3304	/* VLV magic */
3305	I915_WRITE(VLV_IMR, 0);
3306	I915_WRITE(RING_IMR(RENDER_RING_BASE), 0);
3307	I915_WRITE(RING_IMR(GEN6_BSD_RING_BASE), 0);
3308	I915_WRITE(RING_IMR(BLT_RING_BASE), 0);
3309
3310	gen5_gt_irq_reset(dev);
3311
3312	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
 
3313
3314	vlv_display_irq_reset(dev_priv);
3315}
 
 
3316
3317static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3318{
3319	GEN8_IRQ_RESET_NDX(GT, 0);
3320	GEN8_IRQ_RESET_NDX(GT, 1);
3321	GEN8_IRQ_RESET_NDX(GT, 2);
3322	GEN8_IRQ_RESET_NDX(GT, 3);
3323}
3324
3325static void gen8_irq_reset(struct drm_device *dev)
3326{
3327	struct drm_i915_private *dev_priv = dev->dev_private;
3328	int pipe;
3329
3330	I915_WRITE(GEN8_MASTER_IRQ, 0);
3331	POSTING_READ(GEN8_MASTER_IRQ);
 
3332
3333	gen8_gt_irq_reset(dev_priv);
 
 
 
3334
3335	for_each_pipe(dev_priv, pipe)
3336		if (intel_display_power_is_enabled(dev_priv,
3337						   POWER_DOMAIN_PIPE(pipe)))
3338			GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3339
3340	GEN5_IRQ_RESET(GEN8_DE_PORT_);
3341	GEN5_IRQ_RESET(GEN8_DE_MISC_);
3342	GEN5_IRQ_RESET(GEN8_PCU_);
 
 
3343
3344	if (HAS_PCH_SPLIT(dev))
3345		ibx_irq_reset(dev);
3346}
3347
3348void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3349				     unsigned int pipe_mask)
3350{
3351	uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
 
 
3352	enum pipe pipe;
3353
3354	spin_lock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
3355	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3356		GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3357				  dev_priv->de_irq_mask[pipe],
3358				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
 
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3363				     unsigned int pipe_mask)
3364{
 
3365	enum pipe pipe;
3366
3367	spin_lock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
3368	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3369		GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
 
3370	spin_unlock_irq(&dev_priv->irq_lock);
3371
3372	/* make sure we're done processing display irqs */
3373	synchronize_irq(dev_priv->dev->irq);
3374}
3375
3376static void cherryview_irq_preinstall(struct drm_device *dev)
3377{
3378	struct drm_i915_private *dev_priv = dev->dev_private;
3379
3380	I915_WRITE(GEN8_MASTER_IRQ, 0);
3381	POSTING_READ(GEN8_MASTER_IRQ);
3382
3383	gen8_gt_irq_reset(dev_priv);
3384
3385	GEN5_IRQ_RESET(GEN8_PCU_);
3386
3387	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3388
3389	vlv_display_irq_reset(dev_priv);
 
3390}
3391
3392static u32 intel_hpd_enabled_irqs(struct drm_device *dev,
3393				  const u32 hpd[HPD_NUM_PINS])
3394{
3395	struct drm_i915_private *dev_priv = to_i915(dev);
3396	struct intel_encoder *encoder;
3397	u32 enabled_irqs = 0;
3398
3399	for_each_intel_encoder(dev, encoder)
3400		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3401			enabled_irqs |= hpd[encoder->hpd_pin];
3402
3403	return enabled_irqs;
3404}
3405
3406static void ibx_hpd_irq_setup(struct drm_device *dev)
3407{
3408	struct drm_i915_private *dev_priv = dev->dev_private;
3409	u32 hotplug_irqs, hotplug, enabled_irqs;
3410
3411	if (HAS_PCH_IBX(dev)) {
3412		hotplug_irqs = SDE_HOTPLUG_MASK;
3413		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ibx);
3414	} else {
3415		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3416		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_cpt);
3417	}
3418
3419	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3420
3421	/*
3422	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3423	 * duration to 2ms (which is the minimum in the Display Port spec).
3424	 * The pulse duration bits are reserved on LPT+.
3425	 */
3426	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3427	hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3428	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3429	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3430	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
 
 
3431	/*
3432	 * When CPU and PCH are on the same package, port A
3433	 * HPD must be enabled in both north and south.
3434	 */
3435	if (HAS_PCH_LPT_LP(dev))
3436		hotplug |= PORTA_HOTPLUG_ENABLE;
3437	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3438}
3439
3440static void spt_hpd_irq_setup(struct drm_device *dev)
3441{
3442	struct drm_i915_private *dev_priv = dev->dev_private;
3443	u32 hotplug_irqs, hotplug, enabled_irqs;
3444
3445	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3446	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_spt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3447
3448	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3450	/* Enable digital hotplug on the PCH */
3451	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3452	hotplug |= PORTD_HOTPLUG_ENABLE | PORTC_HOTPLUG_ENABLE |
3453		PORTB_HOTPLUG_ENABLE | PORTA_HOTPLUG_ENABLE;
 
 
3454	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3455
3456	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3457	hotplug |= PORTE_HOTPLUG_ENABLE;
3458	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3459}
3460
3461static void ilk_hpd_irq_setup(struct drm_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
3462{
3463	struct drm_i915_private *dev_priv = dev->dev_private;
3464	u32 hotplug_irqs, hotplug, enabled_irqs;
3465
3466	if (INTEL_INFO(dev)->gen >= 8) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3467		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3468		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bdw);
3469
3470		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3471	} else if (INTEL_INFO(dev)->gen >= 7) {
3472		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3473		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ivb);
3474
3475		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3476	} else {
3477		hotplug_irqs = DE_DP_A_HOTPLUG;
3478		enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_ilk);
3479
3480		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3481	}
3482
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3483	/*
3484	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3485	 * duration to 2ms (which is the minimum in the Display Port spec)
3486	 * The pulse duration bits are reserved on HSW+.
3487	 */
3488	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3489	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3490	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3491	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
 
 
 
 
 
3492
3493	ibx_hpd_irq_setup(dev);
3494}
3495
3496static void bxt_hpd_irq_setup(struct drm_device *dev)
3497{
3498	struct drm_i915_private *dev_priv = dev->dev_private;
3499	u32 hotplug_irqs, hotplug, enabled_irqs;
3500
3501	enabled_irqs = intel_hpd_enabled_irqs(dev, hpd_bxt);
 
 
 
 
3502	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3503
3504	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3505
3506	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3507	hotplug |= PORTC_HOTPLUG_ENABLE | PORTB_HOTPLUG_ENABLE |
3508		PORTA_HOTPLUG_ENABLE;
3509	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3510}
3511
3512static void ibx_irq_postinstall(struct drm_device *dev)
3513{
3514	struct drm_i915_private *dev_priv = dev->dev_private;
3515	u32 mask;
3516
3517	if (HAS_PCH_NOP(dev))
3518		return;
3519
3520	if (HAS_PCH_IBX(dev))
3521		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3522	else
3523		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
 
 
3524
3525	gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3526	I915_WRITE(SDEIMR, ~mask);
3527}
3528
3529static void gen5_gt_irq_postinstall(struct drm_device *dev)
3530{
3531	struct drm_i915_private *dev_priv = dev->dev_private;
3532	u32 pm_irqs, gt_irqs;
3533
3534	pm_irqs = gt_irqs = 0;
3535
3536	dev_priv->gt_irq_mask = ~0;
3537	if (HAS_L3_DPF(dev)) {
3538		/* L3 parity interrupt is always unmasked. */
3539		dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev);
3540		gt_irqs |= GT_PARITY_ERROR(dev);
3541	}
3542
3543	gt_irqs |= GT_RENDER_USER_INTERRUPT;
3544	if (IS_GEN5(dev)) {
3545		gt_irqs |= GT_RENDER_PIPECTL_NOTIFY_INTERRUPT |
3546			   ILK_BSD_USER_INTERRUPT;
3547	} else {
3548		gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3549	}
3550
3551	GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3552
3553	if (INTEL_INFO(dev)->gen >= 6) {
3554		/*
3555		 * RPS interrupts will get enabled/disabled on demand when RPS
3556		 * itself is enabled/disabled.
3557		 */
3558		if (HAS_VEBOX(dev))
3559			pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3560
3561		dev_priv->pm_irq_mask = 0xffffffff;
3562		GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_irq_mask, pm_irqs);
3563	}
3564}
3565
3566static int ironlake_irq_postinstall(struct drm_device *dev)
3567{
3568	struct drm_i915_private *dev_priv = dev->dev_private;
3569	u32 display_mask, extra_mask;
3570
3571	if (INTEL_INFO(dev)->gen >= 7) {
3572		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3573				DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3574				DE_PLANEB_FLIP_DONE_IVB |
3575				DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3576		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3577			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3578			      DE_DP_A_HOTPLUG_IVB);
3579	} else {
3580		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3581				DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3582				DE_AUX_CHANNEL_A |
3583				DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3584				DE_POISON);
3585		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3586			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3587			      DE_DP_A_HOTPLUG);
3588	}
3589
 
 
 
 
 
 
3590	dev_priv->irq_mask = ~display_mask;
3591
3592	I915_WRITE(HWSTAM, 0xeffe);
3593
3594	ibx_irq_pre_postinstall(dev);
 
3595
3596	GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3597
3598	gen5_gt_irq_postinstall(dev);
3599
3600	ibx_irq_postinstall(dev);
3601
3602	if (IS_IRONLAKE_M(dev)) {
3603		/* Enable PCU event interrupts
3604		 *
3605		 * spinlocking not required here for correctness since interrupt
3606		 * setup is guaranteed to run in single-threaded context. But we
3607		 * need it to make the assert_spin_locked happy. */
3608		spin_lock_irq(&dev_priv->irq_lock);
3609		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3610		spin_unlock_irq(&dev_priv->irq_lock);
3611	}
3612
3613	return 0;
3614}
3615
3616static void valleyview_display_irqs_install(struct drm_i915_private *dev_priv)
3617{
3618	u32 pipestat_mask;
3619	u32 iir_mask;
3620	enum pipe pipe;
3621
3622	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3623			PIPE_FIFO_UNDERRUN_STATUS;
3624
3625	for_each_pipe(dev_priv, pipe)
3626		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3627	POSTING_READ(PIPESTAT(PIPE_A));
3628
3629	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3630			PIPE_CRC_DONE_INTERRUPT_STATUS;
3631
3632	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3633	for_each_pipe(dev_priv, pipe)
3634		      i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3635
3636	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3637		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3638		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3639	if (IS_CHERRYVIEW(dev_priv))
3640		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3641	dev_priv->irq_mask &= ~iir_mask;
3642
3643	I915_WRITE(VLV_IIR, iir_mask);
3644	I915_WRITE(VLV_IIR, iir_mask);
3645	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3646	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3647	POSTING_READ(VLV_IMR);
3648}
3649
3650static void valleyview_display_irqs_uninstall(struct drm_i915_private *dev_priv)
3651{
3652	u32 pipestat_mask;
3653	u32 iir_mask;
3654	enum pipe pipe;
3655
3656	iir_mask = I915_DISPLAY_PORT_INTERRUPT |
3657		   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3658		   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
3659	if (IS_CHERRYVIEW(dev_priv))
3660		iir_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
3661
3662	dev_priv->irq_mask |= iir_mask;
3663	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3664	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3665	I915_WRITE(VLV_IIR, iir_mask);
3666	I915_WRITE(VLV_IIR, iir_mask);
3667	POSTING_READ(VLV_IIR);
3668
3669	pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
3670			PIPE_CRC_DONE_INTERRUPT_STATUS;
3671
3672	i915_disable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3673	for_each_pipe(dev_priv, pipe)
3674		i915_disable_pipestat(dev_priv, pipe, pipestat_mask);
3675
3676	pipestat_mask = PIPESTAT_INT_STATUS_MASK |
3677			PIPE_FIFO_UNDERRUN_STATUS;
3678
3679	for_each_pipe(dev_priv, pipe)
3680		I915_WRITE(PIPESTAT(pipe), pipestat_mask);
3681	POSTING_READ(PIPESTAT(PIPE_A));
3682}
3683
3684void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3685{
3686	assert_spin_locked(&dev_priv->irq_lock);
3687
3688	if (dev_priv->display_irqs_enabled)
3689		return;
3690
3691	dev_priv->display_irqs_enabled = true;
3692
3693	if (intel_irqs_enabled(dev_priv))
3694		valleyview_display_irqs_install(dev_priv);
 
 
3695}
3696
3697void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3698{
3699	assert_spin_locked(&dev_priv->irq_lock);
3700
3701	if (!dev_priv->display_irqs_enabled)
3702		return;
3703
3704	dev_priv->display_irqs_enabled = false;
3705
3706	if (intel_irqs_enabled(dev_priv))
3707		valleyview_display_irqs_uninstall(dev_priv);
3708}
3709
3710static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3711{
3712	dev_priv->irq_mask = ~0;
3713
3714	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3715	POSTING_READ(PORT_HOTPLUG_EN);
3716
3717	I915_WRITE(VLV_IIR, 0xffffffff);
3718	I915_WRITE(VLV_IIR, 0xffffffff);
3719	I915_WRITE(VLV_IER, ~dev_priv->irq_mask);
3720	I915_WRITE(VLV_IMR, dev_priv->irq_mask);
3721	POSTING_READ(VLV_IMR);
3722
3723	/* Interrupt setup is already guaranteed to be single-threaded, this is
3724	 * just to make the assert_spin_locked check happy. */
3725	spin_lock_irq(&dev_priv->irq_lock);
3726	if (dev_priv->display_irqs_enabled)
3727		valleyview_display_irqs_install(dev_priv);
3728	spin_unlock_irq(&dev_priv->irq_lock);
3729}
3730
3731static int valleyview_irq_postinstall(struct drm_device *dev)
3732{
3733	struct drm_i915_private *dev_priv = dev->dev_private;
3734
3735	vlv_display_irq_postinstall(dev_priv);
3736
3737	gen5_gt_irq_postinstall(dev);
3738
3739	/* ack & enable invalid PTE error interrupts */
3740#if 0 /* FIXME: add support to irq handler for checking these bits */
3741	I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
3742	I915_WRITE(DPINVGTT, DPINVGTT_EN_MASK);
3743#endif
3744
3745	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3746
3747	return 0;
3748}
3749
3750static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3751{
3752	/* These are interrupts we'll toggle with the ring mask register */
3753	uint32_t gt_interrupts[] = {
3754		GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3755			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3756			GT_RENDER_L3_PARITY_ERROR_INTERRUPT |
3757			GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3758			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3759		GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3760			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3761			GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3762			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3763		0,
3764		GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3765			GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3766		};
3767
3768	dev_priv->pm_irq_mask = 0xffffffff;
3769	GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3770	GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3771	/*
3772	 * RPS interrupts will get enabled/disabled on demand when RPS itself
3773	 * is enabled/disabled.
3774	 */
3775	GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_irq_mask, 0);
3776	GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3777}
3778
3779static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3780{
3781	uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3782	uint32_t de_pipe_enables;
 
 
3783	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3784	u32 de_port_enables;
 
3785	enum pipe pipe;
3786
3787	if (INTEL_INFO(dev_priv)->gen >= 9) {
3788		de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3789				  GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
 
 
3790		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3791				  GEN9_AUX_CHANNEL_D;
3792		if (IS_BROXTON(dev_priv))
3793			de_port_masked |= BXT_DE_PORT_GMBUS;
3794	} else {
3795		de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3796				  GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3797	}
3798
 
 
 
 
 
 
3799	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3800					   GEN8_PIPE_FIFO_UNDERRUN;
3801
3802	de_port_enables = de_port_masked;
3803	if (IS_BROXTON(dev_priv))
3804		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3805	else if (IS_BROADWELL(dev_priv))
3806		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3807
3808	dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3809	dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3810	dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
 
 
3811
3812	for_each_pipe(dev_priv, pipe)
3813		if (intel_display_power_is_enabled(dev_priv,
3814				POWER_DOMAIN_PIPE(pipe)))
3815			GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3816					  dev_priv->de_irq_mask[pipe],
3817					  de_pipe_enables);
 
3818
3819	GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3820}
3821
3822static int gen8_irq_postinstall(struct drm_device *dev)
3823{
3824	struct drm_i915_private *dev_priv = dev->dev_private;
3825
3826	if (HAS_PCH_SPLIT(dev))
3827		ibx_irq_pre_postinstall(dev);
3828
3829	gen8_gt_irq_postinstall(dev_priv);
3830	gen8_de_irq_postinstall(dev_priv);
3831
3832	if (HAS_PCH_SPLIT(dev))
3833		ibx_irq_postinstall(dev);
3834
3835	I915_WRITE(GEN8_MASTER_IRQ, DE_MASTER_IRQ_CONTROL);
3836	POSTING_READ(GEN8_MASTER_IRQ);
 
 
3837
3838	return 0;
 
 
 
 
 
 
 
3839}
3840
3841static int cherryview_irq_postinstall(struct drm_device *dev)
3842{
3843	struct drm_i915_private *dev_priv = dev->dev_private;
 
3844
3845	vlv_display_irq_postinstall(dev_priv);
 
3846
3847	gen8_gt_irq_postinstall(dev_priv);
 
3848
3849	I915_WRITE(GEN8_MASTER_IRQ, MASTER_INTERRUPT_ENABLE);
3850	POSTING_READ(GEN8_MASTER_IRQ);
3851
3852	return 0;
3853}
3854
3855static void gen8_irq_uninstall(struct drm_device *dev)
3856{
3857	struct drm_i915_private *dev_priv = dev->dev_private;
3858
3859	if (!dev_priv)
3860		return;
3861
3862	gen8_irq_reset(dev);
3863}
3864
3865static void vlv_display_irq_uninstall(struct drm_i915_private *dev_priv)
3866{
3867	/* Interrupt setup is already guaranteed to be single-threaded, this is
3868	 * just to make the assert_spin_locked check happy. */
3869	spin_lock_irq(&dev_priv->irq_lock);
3870	if (dev_priv->display_irqs_enabled)
3871		valleyview_display_irqs_uninstall(dev_priv);
3872	spin_unlock_irq(&dev_priv->irq_lock);
3873
3874	vlv_display_irq_reset(dev_priv);
 
3875
3876	dev_priv->irq_mask = ~0;
 
 
 
 
 
 
 
3877}
3878
3879static void valleyview_irq_uninstall(struct drm_device *dev)
3880{
3881	struct drm_i915_private *dev_priv = dev->dev_private;
 
3882
3883	if (!dev_priv)
3884		return;
3885
3886	I915_WRITE(VLV_MASTER_IER, 0);
 
3887
3888	gen5_gt_irq_reset(dev);
3889
3890	I915_WRITE(HWSTAM, 0xffffffff);
3891
3892	vlv_display_irq_uninstall(dev_priv);
 
3893}
3894
3895static void cherryview_irq_uninstall(struct drm_device *dev)
3896{
3897	struct drm_i915_private *dev_priv = dev->dev_private;
3898
3899	if (!dev_priv)
3900		return;
 
 
3901
3902	I915_WRITE(GEN8_MASTER_IRQ, 0);
3903	POSTING_READ(GEN8_MASTER_IRQ);
3904
3905	gen8_gt_irq_reset(dev_priv);
3906
3907	GEN5_IRQ_RESET(GEN8_PCU_);
3908
3909	vlv_display_irq_uninstall(dev_priv);
3910}
3911
3912static void ironlake_irq_uninstall(struct drm_device *dev)
3913{
3914	struct drm_i915_private *dev_priv = dev->dev_private;
3915
3916	if (!dev_priv)
3917		return;
3918
3919	ironlake_irq_reset(dev);
3920}
3921
3922static void i8xx_irq_preinstall(struct drm_device * dev)
3923{
3924	struct drm_i915_private *dev_priv = dev->dev_private;
3925	int pipe;
3926
3927	for_each_pipe(dev_priv, pipe)
3928		I915_WRITE(PIPESTAT(pipe), 0);
3929	I915_WRITE16(IMR, 0xffff);
3930	I915_WRITE16(IER, 0x0);
3931	POSTING_READ16(IER);
3932}
3933
3934static int i8xx_irq_postinstall(struct drm_device *dev)
3935{
3936	struct drm_i915_private *dev_priv = dev->dev_private;
3937
3938	I915_WRITE16(EMR,
3939		     ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3940
3941	/* Unmask the interrupts that we always want on. */
3942	dev_priv->irq_mask =
3943		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3944		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3945		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3946		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3947	I915_WRITE16(IMR, dev_priv->irq_mask);
3948
3949	I915_WRITE16(IER,
3950		     I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3951		     I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3952		     I915_USER_INTERRUPT);
3953	POSTING_READ16(IER);
3954
3955	/* Interrupt setup is already guaranteed to be single-threaded, this is
3956	 * just to make the assert_spin_locked check happy. */
3957	spin_lock_irq(&dev_priv->irq_lock);
3958	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3959	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3960	spin_unlock_irq(&dev_priv->irq_lock);
 
3961
3962	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3963}
3964
3965/*
3966 * Returns true when a page flip has completed.
3967 */
3968static bool i8xx_handle_vblank(struct drm_device *dev,
3969			       int plane, int pipe, u32 iir)
3970{
3971	struct drm_i915_private *dev_priv = dev->dev_private;
3972	u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3973
3974	if (!intel_pipe_handle_vblank(dev, pipe))
3975		return false;
 
3976
3977	if ((iir & flip_pending) == 0)
3978		goto check_page_flip;
 
 
3979
3980	/* We detect FlipDone by looking for the change in PendingFlip from '1'
3981	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
3982	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3983	 * the flip is completed (no longer pending). Since this doesn't raise
3984	 * an interrupt per se, we watch for the change at vblank.
 
 
 
 
 
 
 
 
 
 
 
 
3985	 */
3986	if (I915_READ16(ISR) & flip_pending)
3987		goto check_page_flip;
 
 
3988
3989	intel_prepare_page_flip(dev, plane);
3990	intel_finish_page_flip(dev, pipe);
3991	return true;
 
3992
3993check_page_flip:
3994	intel_check_page_flip(dev, pipe);
3995	return false;
3996}
3997
3998static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3999{
4000	struct drm_device *dev = arg;
4001	struct drm_i915_private *dev_priv = dev->dev_private;
4002	u16 iir, new_iir;
4003	u32 pipe_stats[2];
4004	int pipe;
4005	u16 flip_mask =
4006		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4007		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4008	irqreturn_t ret;
4009
4010	if (!intel_irqs_enabled(dev_priv))
4011		return IRQ_NONE;
4012
4013	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4014	disable_rpm_wakeref_asserts(dev_priv);
4015
4016	ret = IRQ_NONE;
4017	iir = I915_READ16(IIR);
4018	if (iir == 0)
4019		goto out;
4020
4021	while (iir & ~flip_mask) {
4022		/* Can't rely on pipestat interrupt bit in iir as it might
4023		 * have been cleared after the pipestat interrupt was received.
4024		 * It doesn't set the bit in iir again, but it still produces
4025		 * interrupts (for non-MSI).
4026		 */
4027		spin_lock(&dev_priv->irq_lock);
4028		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4029			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4030
4031		for_each_pipe(dev_priv, pipe) {
4032			i915_reg_t reg = PIPESTAT(pipe);
4033			pipe_stats[pipe] = I915_READ(reg);
4034
4035			/*
4036			 * Clear the PIPE*STAT regs before the IIR
4037			 */
4038			if (pipe_stats[pipe] & 0x8000ffff)
4039				I915_WRITE(reg, pipe_stats[pipe]);
4040		}
4041		spin_unlock(&dev_priv->irq_lock);
4042
4043		I915_WRITE16(IIR, iir & ~flip_mask);
4044		new_iir = I915_READ16(IIR); /* Flush posted writes */
 
4045
4046		if (iir & I915_USER_INTERRUPT)
4047			notify_ring(&dev_priv->ring[RCS]);
4048
4049		for_each_pipe(dev_priv, pipe) {
4050			int plane = pipe;
4051			if (HAS_FBC(dev))
4052				plane = !plane;
4053
4054			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4055			    i8xx_handle_vblank(dev, plane, pipe, iir))
4056				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4057
4058			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4059				i9xx_pipe_crc_irq_handler(dev, pipe);
4060
4061			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4062				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4063								    pipe);
4064		}
4065
4066		iir = new_iir;
4067	}
4068	ret = IRQ_HANDLED;
4069
4070out:
4071	enable_rpm_wakeref_asserts(dev_priv);
4072
4073	return ret;
4074}
4075
4076static void i8xx_irq_uninstall(struct drm_device * dev)
4077{
4078	struct drm_i915_private *dev_priv = dev->dev_private;
4079	int pipe;
4080
4081	for_each_pipe(dev_priv, pipe) {
4082		/* Clear enable bits; then clear status bits */
4083		I915_WRITE(PIPESTAT(pipe), 0);
4084		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4085	}
4086	I915_WRITE16(IMR, 0xffff);
4087	I915_WRITE16(IER, 0x0);
4088	I915_WRITE16(IIR, I915_READ16(IIR));
4089}
4090
4091static void i915_irq_preinstall(struct drm_device * dev)
4092{
4093	struct drm_i915_private *dev_priv = dev->dev_private;
4094	int pipe;
4095
4096	if (I915_HAS_HOTPLUG(dev)) {
4097		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4098		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4099	}
4100
4101	I915_WRITE16(HWSTAM, 0xeffe);
4102	for_each_pipe(dev_priv, pipe)
4103		I915_WRITE(PIPESTAT(pipe), 0);
4104	I915_WRITE(IMR, 0xffffffff);
4105	I915_WRITE(IER, 0x0);
4106	POSTING_READ(IER);
4107}
4108
4109static int i915_irq_postinstall(struct drm_device *dev)
4110{
4111	struct drm_i915_private *dev_priv = dev->dev_private;
4112	u32 enable_mask;
4113
4114	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
 
4115
4116	/* Unmask the interrupts that we always want on. */
4117	dev_priv->irq_mask =
4118		~(I915_ASLE_INTERRUPT |
4119		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4120		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4121		  I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4122		  I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4123
4124	enable_mask =
4125		I915_ASLE_INTERRUPT |
4126		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4127		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
 
4128		I915_USER_INTERRUPT;
4129
4130	if (I915_HAS_HOTPLUG(dev)) {
4131		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4132		POSTING_READ(PORT_HOTPLUG_EN);
4133
4134		/* Enable in IER... */
4135		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4136		/* and unmask in IMR */
4137		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4138	}
4139
4140	I915_WRITE(IMR, dev_priv->irq_mask);
4141	I915_WRITE(IER, enable_mask);
4142	POSTING_READ(IER);
4143
4144	i915_enable_asle_pipestat(dev);
4145
4146	/* Interrupt setup is already guaranteed to be single-threaded, this is
4147	 * just to make the assert_spin_locked check happy. */
4148	spin_lock_irq(&dev_priv->irq_lock);
4149	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4150	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4151	spin_unlock_irq(&dev_priv->irq_lock);
4152
4153	return 0;
4154}
4155
4156/*
4157 * Returns true when a page flip has completed.
4158 */
4159static bool i915_handle_vblank(struct drm_device *dev,
4160			       int plane, int pipe, u32 iir)
4161{
4162	struct drm_i915_private *dev_priv = dev->dev_private;
4163	u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
4164
4165	if (!intel_pipe_handle_vblank(dev, pipe))
4166		return false;
4167
4168	if ((iir & flip_pending) == 0)
4169		goto check_page_flip;
4170
4171	/* We detect FlipDone by looking for the change in PendingFlip from '1'
4172	 * to '0' on the following vblank, i.e. IIR has the Pendingflip
4173	 * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
4174	 * the flip is completed (no longer pending). Since this doesn't raise
4175	 * an interrupt per se, we watch for the change at vblank.
4176	 */
4177	if (I915_READ(ISR) & flip_pending)
4178		goto check_page_flip;
4179
4180	intel_prepare_page_flip(dev, plane);
4181	intel_finish_page_flip(dev, pipe);
4182	return true;
4183
4184check_page_flip:
4185	intel_check_page_flip(dev, pipe);
4186	return false;
4187}
4188
4189static irqreturn_t i915_irq_handler(int irq, void *arg)
4190{
4191	struct drm_device *dev = arg;
4192	struct drm_i915_private *dev_priv = dev->dev_private;
4193	u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
4194	u32 flip_mask =
4195		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4196		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4197	int pipe, ret = IRQ_NONE;
4198
4199	if (!intel_irqs_enabled(dev_priv))
4200		return IRQ_NONE;
4201
4202	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4203	disable_rpm_wakeref_asserts(dev_priv);
4204
4205	iir = I915_READ(IIR);
4206	do {
4207		bool irq_received = (iir & ~flip_mask) != 0;
4208		bool blc_event = false;
4209
4210		/* Can't rely on pipestat interrupt bit in iir as it might
4211		 * have been cleared after the pipestat interrupt was received.
4212		 * It doesn't set the bit in iir again, but it still produces
4213		 * interrupts (for non-MSI).
4214		 */
4215		spin_lock(&dev_priv->irq_lock);
4216		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4217			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4218
4219		for_each_pipe(dev_priv, pipe) {
4220			i915_reg_t reg = PIPESTAT(pipe);
4221			pipe_stats[pipe] = I915_READ(reg);
4222
4223			/* Clear the PIPE*STAT regs before the IIR */
4224			if (pipe_stats[pipe] & 0x8000ffff) {
4225				I915_WRITE(reg, pipe_stats[pipe]);
4226				irq_received = true;
4227			}
4228		}
4229		spin_unlock(&dev_priv->irq_lock);
4230
4231		if (!irq_received)
 
4232			break;
4233
4234		/* Consume port.  Then clear IIR or we'll miss events */
4235		if (I915_HAS_HOTPLUG(dev) &&
4236		    iir & I915_DISPLAY_PORT_INTERRUPT)
4237			i9xx_hpd_irq_handler(dev);
4238
4239		I915_WRITE(IIR, iir & ~flip_mask);
4240		new_iir = I915_READ(IIR); /* Flush posted writes */
4241
4242		if (iir & I915_USER_INTERRUPT)
4243			notify_ring(&dev_priv->ring[RCS]);
 
4244
4245		for_each_pipe(dev_priv, pipe) {
4246			int plane = pipe;
4247			if (HAS_FBC(dev))
4248				plane = !plane;
4249
4250			if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
4251			    i915_handle_vblank(dev, plane, pipe, iir))
4252				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
4253
4254			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4255				blc_event = true;
4256
4257			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4258				i9xx_pipe_crc_irq_handler(dev, pipe);
4259
4260			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4261				intel_cpu_fifo_underrun_irq_handler(dev_priv,
4262								    pipe);
4263		}
4264
4265		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4266			intel_opregion_asle_intr(dev);
4267
4268		/* With MSI, interrupts are only generated when iir
4269		 * transitions from zero to nonzero.  If another bit got
4270		 * set while we were handling the existing iir bits, then
4271		 * we would never get another interrupt.
4272		 *
4273		 * This is fine on non-MSI as well, as if we hit this path
4274		 * we avoid exiting the interrupt handler only to generate
4275		 * another one.
4276		 *
4277		 * Note that for MSI this could cause a stray interrupt report
4278		 * if an interrupt landed in the time between writing IIR and
4279		 * the posting read.  This should be rare enough to never
4280		 * trigger the 99% of 100,000 interrupts test for disabling
4281		 * stray interrupts.
4282		 */
4283		ret = IRQ_HANDLED;
4284		iir = new_iir;
4285	} while (iir & ~flip_mask);
4286
4287	enable_rpm_wakeref_asserts(dev_priv);
 
4288
4289	return ret;
4290}
4291
4292static void i915_irq_uninstall(struct drm_device * dev)
4293{
4294	struct drm_i915_private *dev_priv = dev->dev_private;
4295	int pipe;
4296
4297	if (I915_HAS_HOTPLUG(dev)) {
4298		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4299		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4300	}
4301
4302	I915_WRITE16(HWSTAM, 0xffff);
4303	for_each_pipe(dev_priv, pipe) {
4304		/* Clear enable bits; then clear status bits */
4305		I915_WRITE(PIPESTAT(pipe), 0);
4306		I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
4307	}
4308	I915_WRITE(IMR, 0xffffffff);
4309	I915_WRITE(IER, 0x0);
4310
4311	I915_WRITE(IIR, I915_READ(IIR));
4312}
4313
4314static void i965_irq_preinstall(struct drm_device * dev)
4315{
4316	struct drm_i915_private *dev_priv = dev->dev_private;
4317	int pipe;
4318
4319	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4320	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4321
4322	I915_WRITE(HWSTAM, 0xeffe);
4323	for_each_pipe(dev_priv, pipe)
4324		I915_WRITE(PIPESTAT(pipe), 0);
4325	I915_WRITE(IMR, 0xffffffff);
4326	I915_WRITE(IER, 0x0);
4327	POSTING_READ(IER);
4328}
4329
4330static int i965_irq_postinstall(struct drm_device *dev)
4331{
4332	struct drm_i915_private *dev_priv = dev->dev_private;
4333	u32 enable_mask;
4334	u32 error_mask;
4335
4336	/* Unmask the interrupts that we always want on. */
4337	dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
4338			       I915_DISPLAY_PORT_INTERRUPT |
4339			       I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4340			       I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4341			       I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4342			       I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
4343			       I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
4344
4345	enable_mask = ~dev_priv->irq_mask;
4346	enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4347			 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
4348	enable_mask |= I915_USER_INTERRUPT;
4349
4350	if (IS_G4X(dev))
4351		enable_mask |= I915_BSD_USER_INTERRUPT;
4352
4353	/* Interrupt setup is already guaranteed to be single-threaded, this is
4354	 * just to make the assert_spin_locked check happy. */
4355	spin_lock_irq(&dev_priv->irq_lock);
4356	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4357	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4358	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4359	spin_unlock_irq(&dev_priv->irq_lock);
4360
4361	/*
4362	 * Enable some error detection, note the instruction error mask
4363	 * bit is reserved, so we leave it masked.
4364	 */
4365	if (IS_G4X(dev)) {
4366		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4367			       GM45_ERROR_MEM_PRIV |
4368			       GM45_ERROR_CP_PRIV |
4369			       I915_ERROR_MEMORY_REFRESH);
4370	} else {
4371		error_mask = ~(I915_ERROR_PAGE_TABLE |
4372			       I915_ERROR_MEMORY_REFRESH);
4373	}
4374	I915_WRITE(EMR, error_mask);
4375
4376	I915_WRITE(IMR, dev_priv->irq_mask);
4377	I915_WRITE(IER, enable_mask);
4378	POSTING_READ(IER);
 
 
 
 
4379
4380	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4381	POSTING_READ(PORT_HOTPLUG_EN);
 
 
 
 
 
4382
4383	i915_enable_asle_pipestat(dev);
 
4384
4385	return 0;
 
 
 
 
 
 
 
 
 
 
4386}
4387
4388static void i915_hpd_irq_setup(struct drm_device *dev)
4389{
4390	struct drm_i915_private *dev_priv = dev->dev_private;
4391	u32 hotplug_en;
4392
4393	assert_spin_locked(&dev_priv->irq_lock);
4394
4395	/* Note HDMI and DP share hotplug bits */
4396	/* enable bits are the same for all generations */
4397	hotplug_en = intel_hpd_enabled_irqs(dev, hpd_mask_i915);
4398	/* Programming the CRT detection parameters tends
4399	   to generate a spurious hotplug event about three
4400	   seconds later.  So just do it once.
4401	*/
4402	if (IS_G4X(dev))
4403		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4404	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4405
4406	/* Ignore TV since it's buggy */
4407	i915_hotplug_interrupt_update_locked(dev_priv,
4408					     HOTPLUG_INT_EN_MASK |
4409					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4410					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4411					     hotplug_en);
4412}
4413
4414static irqreturn_t i965_irq_handler(int irq, void *arg)
4415{
4416	struct drm_device *dev = arg;
4417	struct drm_i915_private *dev_priv = dev->dev_private;
4418	u32 iir, new_iir;
4419	u32 pipe_stats[I915_MAX_PIPES];
4420	int ret = IRQ_NONE, pipe;
4421	u32 flip_mask =
4422		I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4423		I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4424
4425	if (!intel_irqs_enabled(dev_priv))
4426		return IRQ_NONE;
4427
4428	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4429	disable_rpm_wakeref_asserts(dev_priv);
4430
4431	iir = I915_READ(IIR);
4432
4433	for (;;) {
4434		bool irq_received = (iir & ~flip_mask) != 0;
4435		bool blc_event = false;
4436
4437		/* Can't rely on pipestat interrupt bit in iir as it might
4438		 * have been cleared after the pipestat interrupt was received.
4439		 * It doesn't set the bit in iir again, but it still produces
4440		 * interrupts (for non-MSI).
4441		 */
4442		spin_lock(&dev_priv->irq_lock);
4443		if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4444			DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4445
4446		for_each_pipe(dev_priv, pipe) {
4447			i915_reg_t reg = PIPESTAT(pipe);
4448			pipe_stats[pipe] = I915_READ(reg);
4449
4450			/*
4451			 * Clear the PIPE*STAT regs before the IIR
4452			 */
4453			if (pipe_stats[pipe] & 0x8000ffff) {
4454				I915_WRITE(reg, pipe_stats[pipe]);
4455				irq_received = true;
4456			}
4457		}
4458		spin_unlock(&dev_priv->irq_lock);
4459
4460		if (!irq_received)
 
4461			break;
4462
4463		ret = IRQ_HANDLED;
4464
4465		/* Consume port.  Then clear IIR or we'll miss events */
4466		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4467			i9xx_hpd_irq_handler(dev);
4468
4469		I915_WRITE(IIR, iir & ~flip_mask);
4470		new_iir = I915_READ(IIR); /* Flush posted writes */
4471
4472		if (iir & I915_USER_INTERRUPT)
4473			notify_ring(&dev_priv->ring[RCS]);
4474		if (iir & I915_BSD_USER_INTERRUPT)
4475			notify_ring(&dev_priv->ring[VCS]);
4476
4477		for_each_pipe(dev_priv, pipe) {
4478			if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4479			    i915_handle_vblank(dev, pipe, pipe, iir))
4480				flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4481
4482			if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4483				blc_event = true;
4484
4485			if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4486				i9xx_pipe_crc_irq_handler(dev, pipe);
4487
4488			if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4489				intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4490		}
4491
4492		if (blc_event || (iir & I915_ASLE_INTERRUPT))
4493			intel_opregion_asle_intr(dev);
4494
4495		if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4496			gmbus_irq_handler(dev);
4497
4498		/* With MSI, interrupts are only generated when iir
4499		 * transitions from zero to nonzero.  If another bit got
4500		 * set while we were handling the existing iir bits, then
4501		 * we would never get another interrupt.
4502		 *
4503		 * This is fine on non-MSI as well, as if we hit this path
4504		 * we avoid exiting the interrupt handler only to generate
4505		 * another one.
4506		 *
4507		 * Note that for MSI this could cause a stray interrupt report
4508		 * if an interrupt landed in the time between writing IIR and
4509		 * the posting read.  This should be rare enough to never
4510		 * trigger the 99% of 100,000 interrupts test for disabling
4511		 * stray interrupts.
4512		 */
4513		iir = new_iir;
4514	}
4515
4516	enable_rpm_wakeref_asserts(dev_priv);
4517
4518	return ret;
4519}
4520
4521static void i965_irq_uninstall(struct drm_device * dev)
4522{
4523	struct drm_i915_private *dev_priv = dev->dev_private;
4524	int pipe;
4525
4526	if (!dev_priv)
4527		return;
4528
4529	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4530	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4531
4532	I915_WRITE(HWSTAM, 0xffffffff);
4533	for_each_pipe(dev_priv, pipe)
4534		I915_WRITE(PIPESTAT(pipe), 0);
4535	I915_WRITE(IMR, 0xffffffff);
4536	I915_WRITE(IER, 0x0);
4537
4538	for_each_pipe(dev_priv, pipe)
4539		I915_WRITE(PIPESTAT(pipe),
4540			   I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4541	I915_WRITE(IIR, I915_READ(IIR));
4542}
4543
4544/**
4545 * intel_irq_init - initializes irq support
4546 * @dev_priv: i915 device instance
4547 *
4548 * This function initializes all the irq support including work items, timers
4549 * and all the vtables. It does not setup the interrupt itself though.
4550 */
4551void intel_irq_init(struct drm_i915_private *dev_priv)
4552{
4553	struct drm_device *dev = dev_priv->dev;
 
 
 
 
 
4554
4555	intel_hpd_init_work(dev_priv);
4556
4557	INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
 
4558	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
 
 
 
 
 
 
4559
4560	/* Let's track the enabled rps events */
4561	if (IS_VALLEYVIEW(dev_priv))
4562		/* WaGsvRC0ResidencyMethod:vlv */
4563		dev_priv->pm_rps_events = GEN6_PM_RP_DOWN_EI_EXPIRED | GEN6_PM_RP_UP_EI_EXPIRED;
4564	else
4565		dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
 
 
 
 
 
 
4566
4567	INIT_DELAYED_WORK(&dev_priv->gpu_error.hangcheck_work,
4568			  i915_hangcheck_elapsed);
4569
4570	pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY, PM_QOS_DEFAULT_VALUE);
 
 
 
 
 
 
 
4571
4572	if (IS_GEN2(dev_priv)) {
4573		dev->max_vblank_count = 0;
4574		dev->driver->get_vblank_counter = i8xx_get_vblank_counter;
4575	} else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4576		dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4577		dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4578	} else {
4579		dev->driver->get_vblank_counter = i915_get_vblank_counter;
4580		dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4581	}
4582
4583	/*
4584	 * Opt out of the vblank disable timer on everything except gen2.
4585	 * Gen2 doesn't have a hardware frame counter and so depends on
4586	 * vblank interrupts to produce sane vblank seuquence numbers.
 
 
 
4587	 */
4588	if (!IS_GEN2(dev_priv))
4589		dev->vblank_disable_immediate = true;
 
4590
4591	dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4592	dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
 
 
 
 
 
 
4593
4594	if (IS_CHERRYVIEW(dev_priv)) {
4595		dev->driver->irq_handler = cherryview_irq_handler;
4596		dev->driver->irq_preinstall = cherryview_irq_preinstall;
4597		dev->driver->irq_postinstall = cherryview_irq_postinstall;
4598		dev->driver->irq_uninstall = cherryview_irq_uninstall;
4599		dev->driver->enable_vblank = valleyview_enable_vblank;
4600		dev->driver->disable_vblank = valleyview_disable_vblank;
4601		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4602	} else if (IS_VALLEYVIEW(dev_priv)) {
4603		dev->driver->irq_handler = valleyview_irq_handler;
4604		dev->driver->irq_preinstall = valleyview_irq_preinstall;
4605		dev->driver->irq_postinstall = valleyview_irq_postinstall;
4606		dev->driver->irq_uninstall = valleyview_irq_uninstall;
4607		dev->driver->enable_vblank = valleyview_enable_vblank;
4608		dev->driver->disable_vblank = valleyview_disable_vblank;
4609		dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4610	} else if (INTEL_INFO(dev_priv)->gen >= 8) {
4611		dev->driver->irq_handler = gen8_irq_handler;
4612		dev->driver->irq_preinstall = gen8_irq_reset;
4613		dev->driver->irq_postinstall = gen8_irq_postinstall;
4614		dev->driver->irq_uninstall = gen8_irq_uninstall;
4615		dev->driver->enable_vblank = gen8_enable_vblank;
4616		dev->driver->disable_vblank = gen8_disable_vblank;
4617		if (IS_BROXTON(dev))
4618			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4619		else if (HAS_PCH_SPT(dev))
4620			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4621		else
4622			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4623	} else if (HAS_PCH_SPLIT(dev)) {
4624		dev->driver->irq_handler = ironlake_irq_handler;
4625		dev->driver->irq_preinstall = ironlake_irq_reset;
4626		dev->driver->irq_postinstall = ironlake_irq_postinstall;
4627		dev->driver->irq_uninstall = ironlake_irq_uninstall;
4628		dev->driver->enable_vblank = ironlake_enable_vblank;
4629		dev->driver->disable_vblank = ironlake_disable_vblank;
4630		dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4631	} else {
4632		if (INTEL_INFO(dev_priv)->gen == 2) {
4633			dev->driver->irq_preinstall = i8xx_irq_preinstall;
4634			dev->driver->irq_postinstall = i8xx_irq_postinstall;
4635			dev->driver->irq_handler = i8xx_irq_handler;
4636			dev->driver->irq_uninstall = i8xx_irq_uninstall;
4637		} else if (INTEL_INFO(dev_priv)->gen == 3) {
4638			dev->driver->irq_preinstall = i915_irq_preinstall;
4639			dev->driver->irq_postinstall = i915_irq_postinstall;
4640			dev->driver->irq_uninstall = i915_irq_uninstall;
4641			dev->driver->irq_handler = i915_irq_handler;
4642		} else {
4643			dev->driver->irq_preinstall = i965_irq_preinstall;
4644			dev->driver->irq_postinstall = i965_irq_postinstall;
4645			dev->driver->irq_uninstall = i965_irq_uninstall;
4646			dev->driver->irq_handler = i965_irq_handler;
4647		}
4648		if (I915_HAS_HOTPLUG(dev_priv))
4649			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4650		dev->driver->enable_vblank = i915_enable_vblank;
4651		dev->driver->disable_vblank = i915_disable_vblank;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4652	}
4653}
4654
4655/**
4656 * intel_irq_install - enables the hardware interrupt
4657 * @dev_priv: i915 device instance
4658 *
4659 * This function enables the hardware interrupt handling, but leaves the hotplug
4660 * handling still disabled. It is called after intel_irq_init().
4661 *
4662 * In the driver load and resume code we need working interrupts in a few places
4663 * but don't want to deal with the hassle of concurrent probe and hotplug
4664 * workers. Hence the split into this two-stage approach.
4665 */
4666int intel_irq_install(struct drm_i915_private *dev_priv)
4667{
 
 
 
4668	/*
4669	 * We enable some interrupt sources in our postinstall hooks, so mark
4670	 * interrupts as enabled _before_ actually enabling them to avoid
4671	 * special cases in our ordering checks.
4672	 */
4673	dev_priv->pm.irqs_enabled = true;
 
 
4674
4675	return drm_irq_install(dev_priv->dev, dev_priv->dev->pdev->irq);
 
 
 
 
 
 
 
 
 
 
 
4676}
4677
4678/**
4679 * intel_irq_uninstall - finilizes all irq handling
4680 * @dev_priv: i915 device instance
4681 *
4682 * This stops interrupt and hotplug handling and unregisters and frees all
4683 * resources acquired in the init functions.
4684 */
4685void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4686{
4687	drm_irq_uninstall(dev_priv->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4688	intel_hpd_cancel_work(dev_priv);
4689	dev_priv->pm.irqs_enabled = false;
4690}
4691
4692/**
4693 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4694 * @dev_priv: i915 device instance
4695 *
4696 * This function is used to disable interrupts at runtime, both in the runtime
4697 * pm and the system suspend/resume code.
4698 */
4699void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4700{
4701	dev_priv->dev->driver->irq_uninstall(dev_priv->dev);
4702	dev_priv->pm.irqs_enabled = false;
4703	synchronize_irq(dev_priv->dev->irq);
4704}
4705
4706/**
4707 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4708 * @dev_priv: i915 device instance
4709 *
4710 * This function is used to enable interrupts at runtime, both in the runtime
4711 * pm and the system suspend/resume code.
4712 */
4713void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4714{
4715	dev_priv->pm.irqs_enabled = true;
4716	dev_priv->dev->driver->irq_preinstall(dev_priv->dev);
4717	dev_priv->dev->driver->irq_postinstall(dev_priv->dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4718}
v5.4
   1/* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
   2 */
   3/*
   4 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
  20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  21 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
  22 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
  23 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
  24 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
  25 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
 
 
  31#include <linux/circ_buf.h>
  32#include <linux/cpuidle.h>
  33#include <linux/slab.h>
  34#include <linux/sysrq.h>
  35
  36#include <drm/drm_drv.h>
  37#include <drm/drm_irq.h>
  38#include <drm/i915_drm.h>
  39
  40#include "display/intel_display_types.h"
  41#include "display/intel_fifo_underrun.h"
  42#include "display/intel_hotplug.h"
  43#include "display/intel_lpe_audio.h"
  44#include "display/intel_psr.h"
  45
  46#include "gt/intel_gt.h"
  47#include "gt/intel_gt_irq.h"
  48#include "gt/intel_gt_pm_irq.h"
  49
  50#include "i915_drv.h"
  51#include "i915_irq.h"
  52#include "i915_trace.h"
  53#include "intel_pm.h"
  54
  55/**
  56 * DOC: interrupt handling
  57 *
  58 * These functions provide the basic support for enabling and disabling the
  59 * interrupt handling support. There's a lot more functionality in i915_irq.c
  60 * and related files, but that will be described in separate chapters.
  61 */
  62
  63typedef bool (*long_pulse_detect_func)(enum hpd_pin pin, u32 val);
  64
  65static const u32 hpd_ilk[HPD_NUM_PINS] = {
  66	[HPD_PORT_A] = DE_DP_A_HOTPLUG,
  67};
  68
  69static const u32 hpd_ivb[HPD_NUM_PINS] = {
  70	[HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
  71};
  72
  73static const u32 hpd_bdw[HPD_NUM_PINS] = {
  74	[HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
  75};
  76
  77static const u32 hpd_ibx[HPD_NUM_PINS] = {
  78	[HPD_CRT] = SDE_CRT_HOTPLUG,
  79	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
  80	[HPD_PORT_B] = SDE_PORTB_HOTPLUG,
  81	[HPD_PORT_C] = SDE_PORTC_HOTPLUG,
  82	[HPD_PORT_D] = SDE_PORTD_HOTPLUG
  83};
  84
  85static const u32 hpd_cpt[HPD_NUM_PINS] = {
  86	[HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
  87	[HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
  88	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  89	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  90	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
  91};
  92
  93static const u32 hpd_spt[HPD_NUM_PINS] = {
  94	[HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
  95	[HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
  96	[HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
  97	[HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
  98	[HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
  99};
 100
 101static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
 102	[HPD_CRT] = CRT_HOTPLUG_INT_EN,
 103	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
 104	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
 105	[HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
 106	[HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
 107	[HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
 108};
 109
 110static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
 111	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 112	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
 113	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
 114	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 115	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 116	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 117};
 118
 119static const u32 hpd_status_i915[HPD_NUM_PINS] = {
 120	[HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
 121	[HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
 122	[HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
 123	[HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
 124	[HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
 125	[HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
 126};
 127
 128/* BXT hpd list */
 129static const u32 hpd_bxt[HPD_NUM_PINS] = {
 130	[HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
 131	[HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
 132	[HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
 133};
 134
 135static const u32 hpd_gen11[HPD_NUM_PINS] = {
 136	[HPD_PORT_C] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 137	[HPD_PORT_D] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 138	[HPD_PORT_E] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 139	[HPD_PORT_F] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG
 140};
 141
 142static const u32 hpd_gen12[HPD_NUM_PINS] = {
 143	[HPD_PORT_D] = GEN11_TC1_HOTPLUG | GEN11_TBT1_HOTPLUG,
 144	[HPD_PORT_E] = GEN11_TC2_HOTPLUG | GEN11_TBT2_HOTPLUG,
 145	[HPD_PORT_F] = GEN11_TC3_HOTPLUG | GEN11_TBT3_HOTPLUG,
 146	[HPD_PORT_G] = GEN11_TC4_HOTPLUG | GEN11_TBT4_HOTPLUG,
 147	[HPD_PORT_H] = GEN12_TC5_HOTPLUG | GEN12_TBT5_HOTPLUG,
 148	[HPD_PORT_I] = GEN12_TC6_HOTPLUG | GEN12_TBT6_HOTPLUG
 149};
 150
 151static const u32 hpd_icp[HPD_NUM_PINS] = {
 152	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 153	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 154	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP,
 155	[HPD_PORT_D] = SDE_TC2_HOTPLUG_ICP,
 156	[HPD_PORT_E] = SDE_TC3_HOTPLUG_ICP,
 157	[HPD_PORT_F] = SDE_TC4_HOTPLUG_ICP
 158};
 159
 160static const u32 hpd_mcc[HPD_NUM_PINS] = {
 161	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 162	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 163	[HPD_PORT_C] = SDE_TC1_HOTPLUG_ICP
 164};
 165
 166static const u32 hpd_tgp[HPD_NUM_PINS] = {
 167	[HPD_PORT_A] = SDE_DDIA_HOTPLUG_ICP,
 168	[HPD_PORT_B] = SDE_DDIB_HOTPLUG_ICP,
 169	[HPD_PORT_C] = SDE_DDIC_HOTPLUG_TGP,
 170	[HPD_PORT_D] = SDE_TC1_HOTPLUG_ICP,
 171	[HPD_PORT_E] = SDE_TC2_HOTPLUG_ICP,
 172	[HPD_PORT_F] = SDE_TC3_HOTPLUG_ICP,
 173	[HPD_PORT_G] = SDE_TC4_HOTPLUG_ICP,
 174	[HPD_PORT_H] = SDE_TC5_HOTPLUG_TGP,
 175	[HPD_PORT_I] = SDE_TC6_HOTPLUG_TGP,
 176};
 177
 178void gen3_irq_reset(struct intel_uncore *uncore, i915_reg_t imr,
 179		    i915_reg_t iir, i915_reg_t ier)
 180{
 181	intel_uncore_write(uncore, imr, 0xffffffff);
 182	intel_uncore_posting_read(uncore, imr);
 183
 184	intel_uncore_write(uncore, ier, 0);
 185
 186	/* IIR can theoretically queue up two events. Be paranoid. */
 187	intel_uncore_write(uncore, iir, 0xffffffff);
 188	intel_uncore_posting_read(uncore, iir);
 189	intel_uncore_write(uncore, iir, 0xffffffff);
 190	intel_uncore_posting_read(uncore, iir);
 191}
 192
 193void gen2_irq_reset(struct intel_uncore *uncore)
 194{
 195	intel_uncore_write16(uncore, GEN2_IMR, 0xffff);
 196	intel_uncore_posting_read16(uncore, GEN2_IMR);
 197
 198	intel_uncore_write16(uncore, GEN2_IER, 0);
 199
 200	/* IIR can theoretically queue up two events. Be paranoid. */
 201	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 202	intel_uncore_posting_read16(uncore, GEN2_IIR);
 203	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 204	intel_uncore_posting_read16(uncore, GEN2_IIR);
 205}
 206
 207/*
 208 * We should clear IMR at preinstall/uninstall, and just check at postinstall.
 209 */
 210static void gen3_assert_iir_is_zero(struct intel_uncore *uncore, i915_reg_t reg)
 
 211{
 212	u32 val = intel_uncore_read(uncore, reg);
 213
 214	if (val == 0)
 215		return;
 216
 217	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 218	     i915_mmio_reg_offset(reg), val);
 219	intel_uncore_write(uncore, reg, 0xffffffff);
 220	intel_uncore_posting_read(uncore, reg);
 221	intel_uncore_write(uncore, reg, 0xffffffff);
 222	intel_uncore_posting_read(uncore, reg);
 223}
 224
 225static void gen2_assert_iir_is_zero(struct intel_uncore *uncore)
 226{
 227	u16 val = intel_uncore_read16(uncore, GEN2_IIR);
 228
 229	if (val == 0)
 230		return;
 
 
 
 
 
 
 
 231
 232	WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
 233	     i915_mmio_reg_offset(GEN2_IIR), val);
 234	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 235	intel_uncore_posting_read16(uncore, GEN2_IIR);
 236	intel_uncore_write16(uncore, GEN2_IIR, 0xffff);
 237	intel_uncore_posting_read16(uncore, GEN2_IIR);
 238}
 239
 240void gen3_irq_init(struct intel_uncore *uncore,
 241		   i915_reg_t imr, u32 imr_val,
 242		   i915_reg_t ier, u32 ier_val,
 243		   i915_reg_t iir)
 244{
 245	gen3_assert_iir_is_zero(uncore, iir);
 246
 247	intel_uncore_write(uncore, ier, ier_val);
 248	intel_uncore_write(uncore, imr, imr_val);
 249	intel_uncore_posting_read(uncore, imr);
 250}
 251
 252void gen2_irq_init(struct intel_uncore *uncore,
 253		   u32 imr_val, u32 ier_val)
 254{
 255	gen2_assert_iir_is_zero(uncore);
 256
 257	intel_uncore_write16(uncore, GEN2_IER, ier_val);
 258	intel_uncore_write16(uncore, GEN2_IMR, imr_val);
 259	intel_uncore_posting_read16(uncore, GEN2_IMR);
 260}
 261
 262/* For display hotplug interrupt */
 263static inline void
 264i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
 265				     u32 mask,
 266				     u32 bits)
 267{
 268	u32 val;
 269
 270	lockdep_assert_held(&dev_priv->irq_lock);
 271	WARN_ON(bits & ~mask);
 272
 273	val = I915_READ(PORT_HOTPLUG_EN);
 274	val &= ~mask;
 275	val |= bits;
 276	I915_WRITE(PORT_HOTPLUG_EN, val);
 277}
 278
 279/**
 280 * i915_hotplug_interrupt_update - update hotplug interrupt enable
 281 * @dev_priv: driver private
 282 * @mask: bits to update
 283 * @bits: bits to enable
 284 * NOTE: the HPD enable bits are modified both inside and outside
 285 * of an interrupt context. To avoid that read-modify-write cycles
 286 * interfer, these bits are protected by a spinlock. Since this
 287 * function is usually not called from a context where the lock is
 288 * held already, this function acquires the lock itself. A non-locking
 289 * version is also available.
 290 */
 291void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
 292				   u32 mask,
 293				   u32 bits)
 294{
 295	spin_lock_irq(&dev_priv->irq_lock);
 296	i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
 297	spin_unlock_irq(&dev_priv->irq_lock);
 298}
 299
 300/**
 301 * ilk_update_display_irq - update DEIMR
 302 * @dev_priv: driver private
 303 * @interrupt_mask: mask of interrupt bits to update
 304 * @enabled_irq_mask: mask of interrupt bits to enable
 305 */
 306void ilk_update_display_irq(struct drm_i915_private *dev_priv,
 307			    u32 interrupt_mask,
 308			    u32 enabled_irq_mask)
 309{
 310	u32 new_val;
 311
 312	lockdep_assert_held(&dev_priv->irq_lock);
 313
 314	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 315
 316	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 317		return;
 318
 319	new_val = dev_priv->irq_mask;
 320	new_val &= ~interrupt_mask;
 321	new_val |= (~enabled_irq_mask & interrupt_mask);
 322
 323	if (new_val != dev_priv->irq_mask) {
 324		dev_priv->irq_mask = new_val;
 325		I915_WRITE(DEIMR, dev_priv->irq_mask);
 326		POSTING_READ(DEIMR);
 327	}
 328}
 329
 330static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 331{
 332	WARN_ON_ONCE(INTEL_GEN(dev_priv) >= 11);
 
 
 
 
 
 333
 334	return INTEL_GEN(dev_priv) >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
 
 
 
 335}
 336
 337void gen11_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 338{
 339	struct intel_gt *gt = &dev_priv->gt;
 
 340
 341	spin_lock_irq(&gt->irq_lock);
 342
 343	while (gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM))
 344		;
 345
 346	dev_priv->gt_pm.rps.pm_iir = 0;
 347
 348	spin_unlock_irq(&gt->irq_lock);
 349}
 350
 351void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
 352{
 353	struct intel_gt *gt = &dev_priv->gt;
 354
 355	spin_lock_irq(&gt->irq_lock);
 356	gen6_gt_pm_reset_iir(gt, GEN6_PM_RPS_EVENTS);
 357	dev_priv->gt_pm.rps.pm_iir = 0;
 358	spin_unlock_irq(&gt->irq_lock);
 359}
 360
 361void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
 362{
 363	struct intel_gt *gt = &dev_priv->gt;
 364	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 365
 366	if (READ_ONCE(rps->interrupts_enabled))
 367		return;
 368
 369	spin_lock_irq(&gt->irq_lock);
 370	WARN_ON_ONCE(rps->pm_iir);
 371
 372	if (INTEL_GEN(dev_priv) >= 11)
 373		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GTPM));
 374	else
 375		WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
 376
 377	rps->interrupts_enabled = true;
 378	gen6_gt_pm_enable_irq(gt, dev_priv->pm_rps_events);
 379
 380	spin_unlock_irq(&gt->irq_lock);
 381}
 382
 383u32 gen6_sanitize_rps_pm_mask(const struct drm_i915_private *i915, u32 mask)
 384{
 385	return mask & ~i915->gt_pm.rps.pm_intrmsk_mbz;
 386}
 387
 388void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 389{
 390	struct intel_rps *rps = &dev_priv->gt_pm.rps;
 391	struct intel_gt *gt = &dev_priv->gt;
 392
 393	if (!READ_ONCE(rps->interrupts_enabled))
 394		return;
 395
 396	spin_lock_irq(&gt->irq_lock);
 397	rps->interrupts_enabled = false;
 398
 399	I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
 
 
 400
 401	gen6_gt_pm_disable_irq(gt, GEN6_PM_RPS_EVENTS);
 
 
 
 
 
 402
 403	spin_unlock_irq(&gt->irq_lock);
 404	intel_synchronize_irq(dev_priv);
 
 
 405
 406	/* Now that we will not be generating any more work, flush any
 407	 * outstanding tasks. As we are called on the RPS idle path,
 408	 * we will reset the GPU to minimum frequencies, so the current
 409	 * state of the worker can be discarded.
 410	 */
 411	cancel_work_sync(&rps->work);
 412	if (INTEL_GEN(dev_priv) >= 11)
 413		gen11_reset_rps_interrupts(dev_priv);
 414	else
 415		gen6_reset_rps_interrupts(dev_priv);
 416}
 417
 418void gen9_reset_guc_interrupts(struct intel_guc *guc)
 
 419{
 420	struct intel_gt *gt = guc_to_gt(guc);
 
 421
 422	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 
 
 
 423
 424	spin_lock_irq(&gt->irq_lock);
 425	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
 426	spin_unlock_irq(&gt->irq_lock);
 427}
 428
 429void gen9_enable_guc_interrupts(struct intel_guc *guc)
 430{
 431	struct intel_gt *gt = guc_to_gt(guc);
 
 432
 433	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 434
 435	spin_lock_irq(&gt->irq_lock);
 436	if (!guc->interrupts.enabled) {
 437		WARN_ON_ONCE(intel_uncore_read(gt->uncore,
 438					       gen6_pm_iir(gt->i915)) &
 439			     gt->pm_guc_events);
 440		guc->interrupts.enabled = true;
 441		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
 442	}
 443	spin_unlock_irq(&gt->irq_lock);
 444}
 445
 446void gen9_disable_guc_interrupts(struct intel_guc *guc)
 447{
 448	struct intel_gt *gt = guc_to_gt(guc);
 449
 450	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
 451
 452	spin_lock_irq(&gt->irq_lock);
 453	guc->interrupts.enabled = false;
 
 
 
 
 454
 455	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
 456
 457	spin_unlock_irq(&gt->irq_lock);
 458	intel_synchronize_irq(gt->i915);
 459
 460	gen9_reset_guc_interrupts(guc);
 461}
 462
 463void gen11_reset_guc_interrupts(struct intel_guc *guc)
 464{
 465	struct intel_gt *gt = guc_to_gt(guc);
 
 
 
 
 
 
 
 
 
 
 466
 467	spin_lock_irq(&gt->irq_lock);
 468	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
 469	spin_unlock_irq(&gt->irq_lock);
 470}
 471
 472void gen11_enable_guc_interrupts(struct intel_guc *guc)
 473{
 474	struct intel_gt *gt = guc_to_gt(guc);
 475
 476	spin_lock_irq(&gt->irq_lock);
 477	if (!guc->interrupts.enabled) {
 478		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
 479
 480		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
 481		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, events);
 482		intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~events);
 483		guc->interrupts.enabled = true;
 484	}
 485	spin_unlock_irq(&gt->irq_lock);
 486}
 487
 488void gen11_disable_guc_interrupts(struct intel_guc *guc)
 489{
 490	struct intel_gt *gt = guc_to_gt(guc);
 491
 492	spin_lock_irq(&gt->irq_lock);
 493	guc->interrupts.enabled = false;
 494
 495	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
 496	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
 
 497
 498	spin_unlock_irq(&gt->irq_lock);
 499	intel_synchronize_irq(gt->i915);
 500
 501	gen11_reset_guc_interrupts(guc);
 502}
 503
 504/**
 505 * bdw_update_port_irq - update DE port interrupt
 506 * @dev_priv: driver private
 507 * @interrupt_mask: mask of interrupt bits to update
 508 * @enabled_irq_mask: mask of interrupt bits to enable
 509 */
 510static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
 511				u32 interrupt_mask,
 512				u32 enabled_irq_mask)
 513{
 514	u32 new_val;
 515	u32 old_val;
 516
 517	lockdep_assert_held(&dev_priv->irq_lock);
 518
 519	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 520
 521	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 522		return;
 523
 524	old_val = I915_READ(GEN8_DE_PORT_IMR);
 525
 526	new_val = old_val;
 527	new_val &= ~interrupt_mask;
 528	new_val |= (~enabled_irq_mask & interrupt_mask);
 529
 530	if (new_val != old_val) {
 531		I915_WRITE(GEN8_DE_PORT_IMR, new_val);
 532		POSTING_READ(GEN8_DE_PORT_IMR);
 533	}
 534}
 535
 536/**
 537 * bdw_update_pipe_irq - update DE pipe interrupt
 538 * @dev_priv: driver private
 539 * @pipe: pipe whose interrupt to update
 540 * @interrupt_mask: mask of interrupt bits to update
 541 * @enabled_irq_mask: mask of interrupt bits to enable
 542 */
 543void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
 544			 enum pipe pipe,
 545			 u32 interrupt_mask,
 546			 u32 enabled_irq_mask)
 547{
 548	u32 new_val;
 549
 550	lockdep_assert_held(&dev_priv->irq_lock);
 551
 552	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 553
 554	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 555		return;
 556
 557	new_val = dev_priv->de_irq_mask[pipe];
 558	new_val &= ~interrupt_mask;
 559	new_val |= (~enabled_irq_mask & interrupt_mask);
 560
 561	if (new_val != dev_priv->de_irq_mask[pipe]) {
 562		dev_priv->de_irq_mask[pipe] = new_val;
 563		I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
 564		POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
 565	}
 566}
 567
 568/**
 569 * ibx_display_interrupt_update - update SDEIMR
 570 * @dev_priv: driver private
 571 * @interrupt_mask: mask of interrupt bits to update
 572 * @enabled_irq_mask: mask of interrupt bits to enable
 573 */
 574void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
 575				  u32 interrupt_mask,
 576				  u32 enabled_irq_mask)
 577{
 578	u32 sdeimr = I915_READ(SDEIMR);
 579	sdeimr &= ~interrupt_mask;
 580	sdeimr |= (~enabled_irq_mask & interrupt_mask);
 581
 582	WARN_ON(enabled_irq_mask & ~interrupt_mask);
 583
 584	lockdep_assert_held(&dev_priv->irq_lock);
 585
 586	if (WARN_ON(!intel_irqs_enabled(dev_priv)))
 587		return;
 588
 589	I915_WRITE(SDEIMR, sdeimr);
 590	POSTING_READ(SDEIMR);
 591}
 592
 593u32 i915_pipestat_enable_mask(struct drm_i915_private *dev_priv,
 594			      enum pipe pipe)
 
 595{
 596	u32 status_mask = dev_priv->pipestat_irq_mask[pipe];
 597	u32 enable_mask = status_mask << 16;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 598
 599	lockdep_assert_held(&dev_priv->irq_lock);
 
 
 
 600
 601	if (INTEL_GEN(dev_priv) < 5)
 602		goto out;
 
 603
 604	/*
 605	 * On pipe A we don't support the PSR interrupt yet,
 606	 * on pipe B and C the same bit MBZ.
 607	 */
 608	if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
 609		return 0;
 610	/*
 611	 * On pipe B and C we don't support the PSR interrupt yet, on pipe
 612	 * A the same bit is for perf counters which we don't use either.
 613	 */
 614	if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
 615		return 0;
 616
 617	enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
 618			 SPRITE0_FLIP_DONE_INT_EN_VLV |
 619			 SPRITE1_FLIP_DONE_INT_EN_VLV);
 620	if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
 621		enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
 622	if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
 623		enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
 624
 625out:
 626	WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
 627		  status_mask & ~PIPESTAT_INT_STATUS_MASK,
 628		  "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
 629		  pipe_name(pipe), enable_mask, status_mask);
 630
 631	return enable_mask;
 632}
 633
 634void i915_enable_pipestat(struct drm_i915_private *dev_priv,
 635			  enum pipe pipe, u32 status_mask)
 
 636{
 637	i915_reg_t reg = PIPESTAT(pipe);
 638	u32 enable_mask;
 639
 640	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 641		  "pipe %c: status_mask=0x%x\n",
 642		  pipe_name(pipe), status_mask);
 643
 644	lockdep_assert_held(&dev_priv->irq_lock);
 645	WARN_ON(!intel_irqs_enabled(dev_priv));
 646
 647	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == status_mask)
 648		return;
 649
 650	dev_priv->pipestat_irq_mask[pipe] |= status_mask;
 651	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 652
 653	I915_WRITE(reg, enable_mask | status_mask);
 654	POSTING_READ(reg);
 655}
 656
 657void i915_disable_pipestat(struct drm_i915_private *dev_priv,
 658			   enum pipe pipe, u32 status_mask)
 
 659{
 660	i915_reg_t reg = PIPESTAT(pipe);
 661	u32 enable_mask;
 662
 663	WARN_ONCE(status_mask & ~PIPESTAT_INT_STATUS_MASK,
 664		  "pipe %c: status_mask=0x%x\n",
 665		  pipe_name(pipe), status_mask);
 666
 667	lockdep_assert_held(&dev_priv->irq_lock);
 668	WARN_ON(!intel_irqs_enabled(dev_priv));
 669
 670	if ((dev_priv->pipestat_irq_mask[pipe] & status_mask) == 0)
 671		return;
 672
 673	dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
 674	enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
 675
 676	I915_WRITE(reg, enable_mask | status_mask);
 677	POSTING_READ(reg);
 678}
 679
 680static bool i915_has_asle(struct drm_i915_private *dev_priv)
 681{
 682	if (!dev_priv->opregion.asle)
 683		return false;
 684
 685	return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
 686}
 687
 688/**
 689 * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
 690 * @dev_priv: i915 device private
 691 */
 692static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
 693{
 694	if (!i915_has_asle(dev_priv))
 
 
 695		return;
 696
 697	spin_lock_irq(&dev_priv->irq_lock);
 698
 699	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
 700	if (INTEL_GEN(dev_priv) >= 4)
 701		i915_enable_pipestat(dev_priv, PIPE_A,
 702				     PIPE_LEGACY_BLC_EVENT_STATUS);
 703
 704	spin_unlock_irq(&dev_priv->irq_lock);
 705}
 706
 707/*
 708 * This timing diagram depicts the video signal in and
 709 * around the vertical blanking period.
 710 *
 711 * Assumptions about the fictitious mode used in this example:
 712 *  vblank_start >= 3
 713 *  vsync_start = vblank_start + 1
 714 *  vsync_end = vblank_start + 2
 715 *  vtotal = vblank_start + 3
 716 *
 717 *           start of vblank:
 718 *           latch double buffered registers
 719 *           increment frame counter (ctg+)
 720 *           generate start of vblank interrupt (gen4+)
 721 *           |
 722 *           |          frame start:
 723 *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
 724 *           |          may be shifted forward 1-3 extra lines via PIPECONF
 725 *           |          |
 726 *           |          |  start of vsync:
 727 *           |          |  generate vsync interrupt
 728 *           |          |  |
 729 * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
 730 *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
 731 * ----va---> <-----------------vb--------------------> <--------va-------------
 732 *       |          |       <----vs----->                     |
 733 * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
 734 * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
 735 * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
 736 *       |          |                                         |
 737 *       last visible pixel                                   first visible pixel
 738 *                  |                                         increment frame counter (gen3/4)
 739 *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
 740 *
 741 * x  = horizontal active
 742 * _  = horizontal blanking
 743 * hs = horizontal sync
 744 * va = vertical active
 745 * vb = vertical blanking
 746 * vs = vertical sync
 747 * vbs = vblank_start (number)
 748 *
 749 * Summary:
 750 * - most events happen at the start of horizontal sync
 751 * - frame start happens at the start of horizontal blank, 1-4 lines
 752 *   (depending on PIPECONF settings) after the start of vblank
 753 * - gen3/4 pixel and frame counter are synchronized with the start
 754 *   of horizontal active on the first line of vertical active
 755 */
 756
 
 
 
 
 
 
 757/* Called from drm generic code, passed a 'crtc', which
 758 * we use as a pipe index
 759 */
 760u32 i915_get_vblank_counter(struct drm_crtc *crtc)
 761{
 762	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 763	struct drm_vblank_crtc *vblank = &dev_priv->drm.vblank[drm_crtc_index(crtc)];
 764	const struct drm_display_mode *mode = &vblank->hwmode;
 765	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 766	i915_reg_t high_frame, low_frame;
 767	u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
 768	unsigned long irqflags;
 769
 770	/*
 771	 * On i965gm TV output the frame counter only works up to
 772	 * the point when we enable the TV encoder. After that the
 773	 * frame counter ceases to work and reads zero. We need a
 774	 * vblank wait before enabling the TV encoder and so we
 775	 * have to enable vblank interrupts while the frame counter
 776	 * is still in a working state. However the core vblank code
 777	 * does not like us returning non-zero frame counter values
 778	 * when we've told it that we don't have a working frame
 779	 * counter. Thus we must stop non-zero values leaking out.
 780	 */
 781	if (!vblank->max_vblank_count)
 782		return 0;
 783
 784	htotal = mode->crtc_htotal;
 785	hsync_start = mode->crtc_hsync_start;
 786	vbl_start = mode->crtc_vblank_start;
 787	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 788		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 789
 790	/* Convert to pixel count */
 791	vbl_start *= htotal;
 792
 793	/* Start of vblank event occurs at start of hsync */
 794	vbl_start -= htotal - hsync_start;
 795
 796	high_frame = PIPEFRAME(pipe);
 797	low_frame = PIPEFRAMEPIXEL(pipe);
 798
 799	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 800
 801	/*
 802	 * High & low register fields aren't synchronized, so make sure
 803	 * we get a low value that's stable across two reads of the high
 804	 * register.
 805	 */
 806	do {
 807		high1 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 808		low   = I915_READ_FW(low_frame);
 809		high2 = I915_READ_FW(high_frame) & PIPE_FRAME_HIGH_MASK;
 810	} while (high1 != high2);
 811
 812	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
 813
 814	high1 >>= PIPE_FRAME_HIGH_SHIFT;
 815	pixel = low & PIPE_PIXEL_MASK;
 816	low >>= PIPE_FRAME_LOW_SHIFT;
 817
 818	/*
 819	 * The frame counter increments at beginning of active.
 820	 * Cook up a vblank counter by also checking the pixel
 821	 * counter against vblank start.
 822	 */
 823	return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
 824}
 825
 826u32 g4x_get_vblank_counter(struct drm_crtc *crtc)
 827{
 828	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 829	enum pipe pipe = to_intel_crtc(crtc)->pipe;
 830
 831	return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
 832}
 833
 834/*
 835 * On certain encoders on certain platforms, pipe
 836 * scanline register will not work to get the scanline,
 837 * since the timings are driven from the PORT or issues
 838 * with scanline register updates.
 839 * This function will use Framestamp and current
 840 * timestamp registers to calculate the scanline.
 841 */
 842static u32 __intel_get_crtc_scanline_from_timestamp(struct intel_crtc *crtc)
 843{
 844	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
 845	struct drm_vblank_crtc *vblank =
 846		&crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 847	const struct drm_display_mode *mode = &vblank->hwmode;
 848	u32 vblank_start = mode->crtc_vblank_start;
 849	u32 vtotal = mode->crtc_vtotal;
 850	u32 htotal = mode->crtc_htotal;
 851	u32 clock = mode->crtc_clock;
 852	u32 scanline, scan_prev_time, scan_curr_time, scan_post_time;
 853
 854	/*
 855	 * To avoid the race condition where we might cross into the
 856	 * next vblank just between the PIPE_FRMTMSTMP and TIMESTAMP_CTR
 857	 * reads. We make sure we read PIPE_FRMTMSTMP and TIMESTAMP_CTR
 858	 * during the same frame.
 859	 */
 860	do {
 861		/*
 862		 * This field provides read back of the display
 863		 * pipe frame time stamp. The time stamp value
 864		 * is sampled at every start of vertical blank.
 865		 */
 866		scan_prev_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 867
 868		/*
 869		 * The TIMESTAMP_CTR register has the current
 870		 * time stamp value.
 871		 */
 872		scan_curr_time = I915_READ_FW(IVB_TIMESTAMP_CTR);
 873
 874		scan_post_time = I915_READ_FW(PIPE_FRMTMSTMP(crtc->pipe));
 875	} while (scan_post_time != scan_prev_time);
 876
 877	scanline = div_u64(mul_u32_u32(scan_curr_time - scan_prev_time,
 878					clock), 1000 * htotal);
 879	scanline = min(scanline, vtotal - 1);
 880	scanline = (scanline + vblank_start) % vtotal;
 881
 882	return scanline;
 883}
 884
 885/* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
 886static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
 887{
 888	struct drm_device *dev = crtc->base.dev;
 889	struct drm_i915_private *dev_priv = to_i915(dev);
 890	const struct drm_display_mode *mode;
 891	struct drm_vblank_crtc *vblank;
 892	enum pipe pipe = crtc->pipe;
 893	int position, vtotal;
 894
 895	if (!crtc->active)
 896		return -1;
 897
 898	vblank = &crtc->base.dev->vblank[drm_crtc_index(&crtc->base)];
 899	mode = &vblank->hwmode;
 900
 901	if (mode->private_flags & I915_MODE_FLAG_GET_SCANLINE_FROM_TIMESTAMP)
 902		return __intel_get_crtc_scanline_from_timestamp(crtc);
 903
 904	vtotal = mode->crtc_vtotal;
 905	if (mode->flags & DRM_MODE_FLAG_INTERLACE)
 906		vtotal /= 2;
 907
 908	if (IS_GEN(dev_priv, 2))
 909		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
 910	else
 911		position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 912
 913	/*
 914	 * On HSW, the DSL reg (0x70000) appears to return 0 if we
 915	 * read it just before the start of vblank.  So try it again
 916	 * so we don't accidentally end up spanning a vblank frame
 917	 * increment, causing the pipe_update_end() code to squak at us.
 918	 *
 919	 * The nature of this problem means we can't simply check the ISR
 920	 * bit and return the vblank start value; nor can we use the scanline
 921	 * debug register in the transcoder as it appears to have the same
 922	 * problem.  We may need to extend this to include other platforms,
 923	 * but so far testing only shows the problem on HSW.
 924	 */
 925	if (HAS_DDI(dev_priv) && !position) {
 926		int i, temp;
 927
 928		for (i = 0; i < 100; i++) {
 929			udelay(1);
 930			temp = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
 
 931			if (temp != position) {
 932				position = temp;
 933				break;
 934			}
 935		}
 936	}
 937
 938	/*
 939	 * See update_scanline_offset() for the details on the
 940	 * scanline_offset adjustment.
 941	 */
 942	return (position + crtc->scanline_offset) % vtotal;
 943}
 944
 945bool i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
 946			      bool in_vblank_irq, int *vpos, int *hpos,
 947			      ktime_t *stime, ktime_t *etime,
 948			      const struct drm_display_mode *mode)
 949{
 950	struct drm_i915_private *dev_priv = to_i915(dev);
 951	struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
 952								pipe);
 953	int position;
 954	int vbl_start, vbl_end, hsync_start, htotal, vtotal;
 
 
 955	unsigned long irqflags;
 956	bool use_scanline_counter = INTEL_GEN(dev_priv) >= 5 ||
 957		IS_G4X(dev_priv) || IS_GEN(dev_priv, 2) ||
 958		mode->private_flags & I915_MODE_FLAG_USE_SCANLINE_COUNTER;
 959
 960	if (WARN_ON(!mode->crtc_clock)) {
 961		DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
 962				 "pipe %c\n", pipe_name(pipe));
 963		return false;
 964	}
 965
 966	htotal = mode->crtc_htotal;
 967	hsync_start = mode->crtc_hsync_start;
 968	vtotal = mode->crtc_vtotal;
 969	vbl_start = mode->crtc_vblank_start;
 970	vbl_end = mode->crtc_vblank_end;
 971
 972	if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
 973		vbl_start = DIV_ROUND_UP(vbl_start, 2);
 974		vbl_end /= 2;
 975		vtotal /= 2;
 976	}
 977
 
 
 978	/*
 979	 * Lock uncore.lock, as we will do multiple timing critical raw
 980	 * register reads, potentially with preemption disabled, so the
 981	 * following code must not block on uncore.lock.
 982	 */
 983	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
 984
 985	/* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
 986
 987	/* Get optional system timestamp before query. */
 988	if (stime)
 989		*stime = ktime_get();
 990
 991	if (use_scanline_counter) {
 992		/* No obvious pixelcount register. Only query vertical
 993		 * scanout position from Display scan line register.
 994		 */
 995		position = __intel_get_crtc_scanline(intel_crtc);
 996	} else {
 997		/* Have access to pixelcount since start of frame.
 998		 * We can split this into vertical and horizontal
 999		 * scanout position.
1000		 */
1001		position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
1002
1003		/* convert to pixel counts */
1004		vbl_start *= htotal;
1005		vbl_end *= htotal;
1006		vtotal *= htotal;
1007
1008		/*
1009		 * In interlaced modes, the pixel counter counts all pixels,
1010		 * so one field will have htotal more pixels. In order to avoid
1011		 * the reported position from jumping backwards when the pixel
1012		 * counter is beyond the length of the shorter field, just
1013		 * clamp the position the length of the shorter field. This
1014		 * matches how the scanline counter based position works since
1015		 * the scanline counter doesn't count the two half lines.
1016		 */
1017		if (position >= vtotal)
1018			position = vtotal - 1;
1019
1020		/*
1021		 * Start of vblank interrupt is triggered at start of hsync,
1022		 * just prior to the first active line of vblank. However we
1023		 * consider lines to start at the leading edge of horizontal
1024		 * active. So, should we get here before we've crossed into
1025		 * the horizontal active of the first line in vblank, we would
1026		 * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
1027		 * always add htotal-hsync_start to the current pixel position.
1028		 */
1029		position = (position + htotal - hsync_start) % vtotal;
1030	}
1031
1032	/* Get optional system timestamp after query. */
1033	if (etime)
1034		*etime = ktime_get();
1035
1036	/* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
1037
1038	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1039
 
 
1040	/*
1041	 * While in vblank, position will be negative
1042	 * counting up towards 0 at vbl_end. And outside
1043	 * vblank, position will be positive counting
1044	 * up since vbl_end.
1045	 */
1046	if (position >= vbl_start)
1047		position -= vbl_end;
1048	else
1049		position += vtotal - vbl_end;
1050
1051	if (use_scanline_counter) {
1052		*vpos = position;
1053		*hpos = 0;
1054	} else {
1055		*vpos = position / htotal;
1056		*hpos = position - (*vpos * htotal);
1057	}
1058
1059	return true;
 
 
 
 
1060}
1061
1062int intel_get_crtc_scanline(struct intel_crtc *crtc)
1063{
1064	struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1065	unsigned long irqflags;
1066	int position;
1067
1068	spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
1069	position = __intel_get_crtc_scanline(crtc);
1070	spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
1071
1072	return position;
1073}
1074
1075static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1076{
1077	struct intel_uncore *uncore = &dev_priv->uncore;
1078	u32 busy_up, busy_down, max_avg, min_avg;
1079	u8 new_delay;
1080
1081	spin_lock(&mchdev_lock);
1082
1083	intel_uncore_write16(uncore,
1084			     MEMINTRSTS,
1085			     intel_uncore_read(uncore, MEMINTRSTS));
1086
1087	new_delay = dev_priv->ips.cur_delay;
1088
1089	intel_uncore_write16(uncore, MEMINTRSTS, MEMINT_EVAL_CHG);
1090	busy_up = intel_uncore_read(uncore, RCPREVBSYTUPAVG);
1091	busy_down = intel_uncore_read(uncore, RCPREVBSYTDNAVG);
1092	max_avg = intel_uncore_read(uncore, RCBMAXAVG);
1093	min_avg = intel_uncore_read(uncore, RCBMINAVG);
1094
1095	/* Handle RCS change request from hw */
1096	if (busy_up > max_avg) {
1097		if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1098			new_delay = dev_priv->ips.cur_delay - 1;
1099		if (new_delay < dev_priv->ips.max_delay)
1100			new_delay = dev_priv->ips.max_delay;
1101	} else if (busy_down < min_avg) {
1102		if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1103			new_delay = dev_priv->ips.cur_delay + 1;
1104		if (new_delay > dev_priv->ips.min_delay)
1105			new_delay = dev_priv->ips.min_delay;
1106	}
1107
1108	if (ironlake_set_drps(dev_priv, new_delay))
1109		dev_priv->ips.cur_delay = new_delay;
1110
1111	spin_unlock(&mchdev_lock);
1112
1113	return;
1114}
1115
 
 
 
 
 
 
 
 
 
 
1116static void vlv_c0_read(struct drm_i915_private *dev_priv,
1117			struct intel_rps_ei *ei)
1118{
1119	ei->ktime = ktime_get_raw();
1120	ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1121	ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1122}
1123
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1125{
1126	memset(&dev_priv->gt_pm.rps.ei, 0, sizeof(dev_priv->gt_pm.rps.ei));
 
1127}
1128
1129static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1130{
1131	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1132	const struct intel_rps_ei *prev = &rps->ei;
1133	struct intel_rps_ei now;
1134	u32 events = 0;
1135
1136	if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1137		return 0;
1138
1139	vlv_c0_read(dev_priv, &now);
 
 
1140
1141	if (prev->ktime) {
1142		u64 time, c0;
1143		u32 render, media;
1144
1145		time = ktime_us_delta(now.ktime, prev->ktime);
1146
1147		time *= dev_priv->czclk_freq;
1148
1149		/* Workload can be split between render + media,
1150		 * e.g. SwapBuffers being blitted in X after being rendered in
1151		 * mesa. To account for this we need to combine both engines
1152		 * into our activity counter.
1153		 */
1154		render = now.render_c0 - prev->render_c0;
1155		media = now.media_c0 - prev->media_c0;
1156		c0 = max(render, media);
1157		c0 *= 1000 * 100 << 8; /* to usecs and scale to threshold% */
1158
1159		if (c0 > time * rps->power.up_threshold)
1160			events = GEN6_PM_RP_UP_THRESHOLD;
1161		else if (c0 < time * rps->power.down_threshold)
1162			events = GEN6_PM_RP_DOWN_THRESHOLD;
1163	}
1164
1165	rps->ei = now;
1166	return events;
1167}
1168
 
 
 
 
 
 
 
 
 
 
 
 
1169static void gen6_pm_rps_work(struct work_struct *work)
1170{
1171	struct drm_i915_private *dev_priv =
1172		container_of(work, struct drm_i915_private, gt_pm.rps.work);
1173	struct intel_gt *gt = &dev_priv->gt;
1174	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1175	bool client_boost = false;
1176	int new_delay, adj, min, max;
1177	u32 pm_iir = 0;
1178
1179	spin_lock_irq(&gt->irq_lock);
1180	if (rps->interrupts_enabled) {
1181		pm_iir = fetch_and_zero(&rps->pm_iir);
1182		client_boost = atomic_read(&rps->num_waiters);
 
1183	}
1184	spin_unlock_irq(&gt->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185
1186	/* Make sure we didn't queue anything we're not going to process. */
1187	WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
 
1188	if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1189		goto out;
1190
1191	mutex_lock(&rps->lock);
1192
1193	pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1194
1195	adj = rps->last_adj;
1196	new_delay = rps->cur_freq;
1197	min = rps->min_freq_softlimit;
1198	max = rps->max_freq_softlimit;
1199	if (client_boost)
1200		max = rps->max_freq;
1201	if (client_boost && new_delay < rps->boost_freq) {
1202		new_delay = rps->boost_freq;
1203		adj = 0;
1204	} else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1205		if (adj > 0)
1206			adj *= 2;
1207		else /* CHV needs even encode values */
1208			adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1209
1210		if (new_delay >= rps->max_freq_softlimit)
 
 
 
 
1211			adj = 0;
1212	} else if (client_boost) {
 
1213		adj = 0;
1214	} else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1215		if (rps->cur_freq > rps->efficient_freq)
1216			new_delay = rps->efficient_freq;
1217		else if (rps->cur_freq > rps->min_freq_softlimit)
1218			new_delay = rps->min_freq_softlimit;
1219		adj = 0;
1220	} else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1221		if (adj < 0)
1222			adj *= 2;
1223		else /* CHV needs even encode values */
1224			adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1225
1226		if (new_delay <= rps->min_freq_softlimit)
1227			adj = 0;
1228	} else { /* unknown event */
1229		adj = 0;
1230	}
1231
1232	rps->last_adj = adj;
1233
1234	/*
1235	 * Limit deboosting and boosting to keep ourselves at the extremes
1236	 * when in the respective power modes (i.e. slowly decrease frequencies
1237	 * while in the HIGH_POWER zone and slowly increase frequencies while
1238	 * in the LOW_POWER zone). On idle, we will hit the timeout and drop
1239	 * to the next level quickly, and conversely if busy we expect to
1240	 * hit a waitboost and rapidly switch into max power.
1241	 */
1242	if ((adj < 0 && rps->power.mode == HIGH_POWER) ||
1243	    (adj > 0 && rps->power.mode == LOW_POWER))
1244		rps->last_adj = 0;
1245
1246	/* sysfs frequency interfaces may have snuck in while servicing the
1247	 * interrupt
1248	 */
1249	new_delay += adj;
1250	new_delay = clamp_t(int, new_delay, min, max);
1251
1252	if (intel_set_rps(dev_priv, new_delay)) {
1253		DRM_DEBUG_DRIVER("Failed to set new GPU frequency\n");
1254		rps->last_adj = 0;
1255	}
1256
1257	mutex_unlock(&rps->lock);
1258
 
1259out:
1260	/* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1261	spin_lock_irq(&gt->irq_lock);
1262	if (rps->interrupts_enabled)
1263		gen6_gt_pm_unmask_irq(gt, dev_priv->pm_rps_events);
1264	spin_unlock_irq(&gt->irq_lock);
1265}
1266
1267
1268/**
1269 * ivybridge_parity_work - Workqueue called when a parity error interrupt
1270 * occurred.
1271 * @work: workqueue struct
1272 *
1273 * Doesn't actually do anything except notify userspace. As a consequence of
1274 * this event, userspace should try to remap the bad rows since statistically
1275 * it is likely the same row is more likely to go bad again.
1276 */
1277static void ivybridge_parity_work(struct work_struct *work)
1278{
1279	struct drm_i915_private *dev_priv =
1280		container_of(work, typeof(*dev_priv), l3_parity.error_work);
1281	struct intel_gt *gt = &dev_priv->gt;
1282	u32 error_status, row, bank, subbank;
1283	char *parity_event[6];
1284	u32 misccpctl;
1285	u8 slice = 0;
1286
1287	/* We must turn off DOP level clock gating to access the L3 registers.
1288	 * In order to prevent a get/put style interface, acquire struct mutex
1289	 * any time we access those registers.
1290	 */
1291	mutex_lock(&dev_priv->drm.struct_mutex);
1292
1293	/* If we've screwed up tracking, just let the interrupt fire again */
1294	if (WARN_ON(!dev_priv->l3_parity.which_slice))
1295		goto out;
1296
1297	misccpctl = I915_READ(GEN7_MISCCPCTL);
1298	I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1299	POSTING_READ(GEN7_MISCCPCTL);
1300
1301	while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1302		i915_reg_t reg;
1303
1304		slice--;
1305		if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1306			break;
1307
1308		dev_priv->l3_parity.which_slice &= ~(1<<slice);
1309
1310		reg = GEN7_L3CDERRST1(slice);
1311
1312		error_status = I915_READ(reg);
1313		row = GEN7_PARITY_ERROR_ROW(error_status);
1314		bank = GEN7_PARITY_ERROR_BANK(error_status);
1315		subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1316
1317		I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1318		POSTING_READ(reg);
1319
1320		parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1321		parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1322		parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1323		parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1324		parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1325		parity_event[5] = NULL;
1326
1327		kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1328				   KOBJ_CHANGE, parity_event);
1329
1330		DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1331			  slice, row, bank, subbank);
1332
1333		kfree(parity_event[4]);
1334		kfree(parity_event[3]);
1335		kfree(parity_event[2]);
1336		kfree(parity_event[1]);
1337	}
1338
1339	I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1340
1341out:
1342	WARN_ON(dev_priv->l3_parity.which_slice);
1343	spin_lock_irq(&gt->irq_lock);
1344	gen5_gt_enable_irq(gt, GT_PARITY_ERROR(dev_priv));
1345	spin_unlock_irq(&gt->irq_lock);
1346
1347	mutex_unlock(&dev_priv->drm.struct_mutex);
1348}
1349
1350static bool gen11_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1351{
1352	switch (pin) {
1353	case HPD_PORT_C:
1354		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1355	case HPD_PORT_D:
1356		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1357	case HPD_PORT_E:
1358		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1359	case HPD_PORT_F:
1360		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1361	default:
1362		return false;
1363	}
1364}
1365
1366static bool gen12_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1367{
1368	switch (pin) {
1369	case HPD_PORT_D:
1370		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC1);
1371	case HPD_PORT_E:
1372		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC2);
1373	case HPD_PORT_F:
1374		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC3);
1375	case HPD_PORT_G:
1376		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC4);
1377	case HPD_PORT_H:
1378		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC5);
1379	case HPD_PORT_I:
1380		return val & GEN11_HOTPLUG_CTL_LONG_DETECT(PORT_TC6);
1381	default:
1382		return false;
1383	}
 
1384}
1385
1386static bool bxt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
1387{
1388	switch (pin) {
1389	case HPD_PORT_A:
1390		return val & PORTA_HOTPLUG_LONG_DETECT;
1391	case HPD_PORT_B:
1392		return val & PORTB_HOTPLUG_LONG_DETECT;
1393	case HPD_PORT_C:
1394		return val & PORTC_HOTPLUG_LONG_DETECT;
1395	default:
1396		return false;
1397	}
1398}
1399
1400static bool icp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
 
1401{
1402	switch (pin) {
1403	case HPD_PORT_A:
1404		return val & ICP_DDIA_HPD_LONG_DETECT;
1405	case HPD_PORT_B:
1406		return val & ICP_DDIB_HPD_LONG_DETECT;
1407	case HPD_PORT_C:
1408		return val & TGP_DDIC_HPD_LONG_DETECT;
1409	default:
1410		return false;
1411	}
 
 
 
 
 
 
1412}
1413
1414static bool icp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
1415{
1416	switch (pin) {
1417	case HPD_PORT_C:
1418		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1419	case HPD_PORT_D:
1420		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1421	case HPD_PORT_E:
1422		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1423	case HPD_PORT_F:
1424		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1425	default:
1426		return false;
1427	}
1428}
1429
1430static bool tgp_ddi_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
 
1431{
1432	switch (pin) {
1433	case HPD_PORT_A:
1434		return val & ICP_DDIA_HPD_LONG_DETECT;
1435	case HPD_PORT_B:
1436		return val & ICP_DDIB_HPD_LONG_DETECT;
1437	case HPD_PORT_C:
1438		return val & TGP_DDIC_HPD_LONG_DETECT;
1439	default:
1440		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1441	}
 
 
1442}
1443
1444static bool tgp_tc_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1445{
1446	switch (pin) {
1447	case HPD_PORT_D:
1448		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC1);
1449	case HPD_PORT_E:
1450		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC2);
1451	case HPD_PORT_F:
1452		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC3);
1453	case HPD_PORT_G:
1454		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC4);
1455	case HPD_PORT_H:
1456		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC5);
1457	case HPD_PORT_I:
1458		return val & ICP_TC_HPD_LONG_DETECT(PORT_TC6);
1459	default:
1460		return false;
1461	}
1462}
1463
1464static bool spt_port_hotplug2_long_detect(enum hpd_pin pin, u32 val)
1465{
1466	switch (pin) {
1467	case HPD_PORT_E:
1468		return val & PORTE_HOTPLUG_LONG_DETECT;
1469	default:
1470		return false;
1471	}
1472}
1473
1474static bool spt_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1475{
1476	switch (pin) {
1477	case HPD_PORT_A:
1478		return val & PORTA_HOTPLUG_LONG_DETECT;
1479	case HPD_PORT_B:
1480		return val & PORTB_HOTPLUG_LONG_DETECT;
1481	case HPD_PORT_C:
1482		return val & PORTC_HOTPLUG_LONG_DETECT;
1483	case HPD_PORT_D:
1484		return val & PORTD_HOTPLUG_LONG_DETECT;
1485	default:
1486		return false;
1487	}
1488}
1489
1490static bool ilk_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1491{
1492	switch (pin) {
1493	case HPD_PORT_A:
1494		return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1495	default:
1496		return false;
1497	}
1498}
1499
1500static bool pch_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1501{
1502	switch (pin) {
1503	case HPD_PORT_B:
1504		return val & PORTB_HOTPLUG_LONG_DETECT;
1505	case HPD_PORT_C:
1506		return val & PORTC_HOTPLUG_LONG_DETECT;
1507	case HPD_PORT_D:
1508		return val & PORTD_HOTPLUG_LONG_DETECT;
1509	default:
1510		return false;
1511	}
1512}
1513
1514static bool i9xx_port_hotplug_long_detect(enum hpd_pin pin, u32 val)
1515{
1516	switch (pin) {
1517	case HPD_PORT_B:
1518		return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1519	case HPD_PORT_C:
1520		return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1521	case HPD_PORT_D:
1522		return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1523	default:
1524		return false;
1525	}
1526}
1527
1528/*
1529 * Get a bit mask of pins that have triggered, and which ones may be long.
1530 * This can be called multiple times with the same masks to accumulate
1531 * hotplug detection results from several registers.
1532 *
1533 * Note that the caller is expected to zero out the masks initially.
1534 */
1535static void intel_get_hpd_pins(struct drm_i915_private *dev_priv,
1536			       u32 *pin_mask, u32 *long_mask,
1537			       u32 hotplug_trigger, u32 dig_hotplug_reg,
1538			       const u32 hpd[HPD_NUM_PINS],
1539			       bool long_pulse_detect(enum hpd_pin pin, u32 val))
1540{
1541	enum hpd_pin pin;
 
 
 
 
 
1542
1543	BUILD_BUG_ON(BITS_PER_TYPE(*pin_mask) < HPD_NUM_PINS);
1544
1545	for_each_hpd_pin(pin) {
1546		if ((hpd[pin] & hotplug_trigger) == 0)
1547			continue;
1548
1549		*pin_mask |= BIT(pin);
1550
1551		if (long_pulse_detect(pin, dig_hotplug_reg))
1552			*long_mask |= BIT(pin);
1553	}
1554
1555	DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x, long 0x%08x\n",
1556			 hotplug_trigger, dig_hotplug_reg, *pin_mask, *long_mask);
1557
1558}
1559
1560static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1561{
 
 
1562	wake_up_all(&dev_priv->gmbus_wait_queue);
1563}
1564
1565static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1566{
 
 
1567	wake_up_all(&dev_priv->gmbus_wait_queue);
1568}
1569
1570#if defined(CONFIG_DEBUG_FS)
1571static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1572					 enum pipe pipe,
1573					 u32 crc0, u32 crc1,
1574					 u32 crc2, u32 crc3,
1575					 u32 crc4)
1576{
 
1577	struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1578	struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1579	u32 crcs[5] = { crc0, crc1, crc2, crc3, crc4 };
1580
1581	trace_intel_pipe_crc(crtc, crcs);
1582
1583	spin_lock(&pipe_crc->lock);
1584	/*
1585	 * For some not yet identified reason, the first CRC is
1586	 * bonkers. So let's just wait for the next vblank and read
1587	 * out the buggy result.
1588	 *
1589	 * On GEN8+ sometimes the second CRC is bonkers as well, so
1590	 * don't trust that one either.
1591	 */
1592	if (pipe_crc->skipped <= 0 ||
1593	    (INTEL_GEN(dev_priv) >= 8 && pipe_crc->skipped == 1)) {
1594		pipe_crc->skipped++;
1595		spin_unlock(&pipe_crc->lock);
 
1596		return;
1597	}
 
 
 
 
 
 
 
 
 
 
 
 
 
1598	spin_unlock(&pipe_crc->lock);
1599
1600	drm_crtc_add_crc_entry(&crtc->base, true,
1601				drm_crtc_accurate_vblank_count(&crtc->base),
1602				crcs);
1603}
1604#else
1605static inline void
1606display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1607			     enum pipe pipe,
1608			     u32 crc0, u32 crc1,
1609			     u32 crc2, u32 crc3,
1610			     u32 crc4) {}
1611#endif
1612
1613
1614static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1615				     enum pipe pipe)
1616{
1617	display_pipe_crc_irq_handler(dev_priv, pipe,
 
 
1618				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1619				     0, 0, 0, 0);
1620}
1621
1622static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1623				     enum pipe pipe)
1624{
1625	display_pipe_crc_irq_handler(dev_priv, pipe,
 
 
1626				     I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1627				     I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1628				     I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1629				     I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1630				     I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1631}
1632
1633static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1634				      enum pipe pipe)
1635{
1636	u32 res1, res2;
 
1637
1638	if (INTEL_GEN(dev_priv) >= 3)
1639		res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1640	else
1641		res1 = 0;
1642
1643	if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1644		res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1645	else
1646		res2 = 0;
1647
1648	display_pipe_crc_irq_handler(dev_priv, pipe,
1649				     I915_READ(PIPE_CRC_RES_RED(pipe)),
1650				     I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1651				     I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1652				     res1, res2);
1653}
1654
1655/* The RPS events need forcewake, so we add them to a work queue and mask their
1656 * IMR bits until the work is done. Other interrupts can be processed without
1657 * the work queue. */
1658void gen11_rps_irq_handler(struct intel_gt *gt, u32 pm_iir)
1659{
1660	struct drm_i915_private *i915 = gt->i915;
1661	struct intel_rps *rps = &i915->gt_pm.rps;
1662	const u32 events = i915->pm_rps_events & pm_iir;
1663
1664	lockdep_assert_held(&gt->irq_lock);
1665
1666	if (unlikely(!events))
1667		return;
1668
1669	gen6_gt_pm_mask_irq(gt, events);
1670
1671	if (!rps->interrupts_enabled)
1672		return;
1673
1674	rps->pm_iir |= events;
1675	schedule_work(&rps->work);
1676}
1677
1678void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1679{
1680	struct intel_rps *rps = &dev_priv->gt_pm.rps;
1681	struct intel_gt *gt = &dev_priv->gt;
1682
1683	if (pm_iir & dev_priv->pm_rps_events) {
1684		spin_lock(&gt->irq_lock);
1685		gen6_gt_pm_mask_irq(gt, pm_iir & dev_priv->pm_rps_events);
1686		if (rps->interrupts_enabled) {
1687			rps->pm_iir |= pm_iir & dev_priv->pm_rps_events;
1688			schedule_work(&rps->work);
1689		}
1690		spin_unlock(&gt->irq_lock);
1691	}
1692
1693	if (INTEL_GEN(dev_priv) >= 8)
1694		return;
1695
1696	if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1697		intel_engine_breadcrumbs_irq(dev_priv->engine[VECS0]);
 
1698
1699	if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1700		DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
 
1701}
1702
1703static void i9xx_pipestat_irq_reset(struct drm_i915_private *dev_priv)
1704{
1705	enum pipe pipe;
 
1706
1707	for_each_pipe(dev_priv, pipe) {
1708		I915_WRITE(PIPESTAT(pipe),
1709			   PIPESTAT_INT_STATUS_MASK |
1710			   PIPE_FIFO_UNDERRUN_STATUS);
1711
1712		dev_priv->pipestat_irq_mask[pipe] = 0;
1713	}
1714}
1715
1716static void i9xx_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1717				  u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1718{
 
 
1719	int pipe;
1720
1721	spin_lock(&dev_priv->irq_lock);
1722
1723	if (!dev_priv->display_irqs_enabled) {
1724		spin_unlock(&dev_priv->irq_lock);
1725		return;
1726	}
1727
1728	for_each_pipe(dev_priv, pipe) {
1729		i915_reg_t reg;
1730		u32 status_mask, enable_mask, iir_bit = 0;
1731
1732		/*
1733		 * PIPESTAT bits get signalled even when the interrupt is
1734		 * disabled with the mask bits, and some of the status bits do
1735		 * not generate interrupts at all (like the underrun bit). Hence
1736		 * we need to be careful that we only handle what we want to
1737		 * handle.
1738		 */
1739
1740		/* fifo underruns are filterered in the underrun handler. */
1741		status_mask = PIPE_FIFO_UNDERRUN_STATUS;
1742
1743		switch (pipe) {
1744		case PIPE_A:
1745			iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1746			break;
1747		case PIPE_B:
1748			iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1749			break;
1750		case PIPE_C:
1751			iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1752			break;
1753		}
1754		if (iir & iir_bit)
1755			status_mask |= dev_priv->pipestat_irq_mask[pipe];
1756
1757		if (!status_mask)
1758			continue;
1759
1760		reg = PIPESTAT(pipe);
1761		pipe_stats[pipe] = I915_READ(reg) & status_mask;
1762		enable_mask = i915_pipestat_enable_mask(dev_priv, pipe);
1763
1764		/*
1765		 * Clear the PIPE*STAT regs before the IIR
1766		 *
1767		 * Toggle the enable bits to make sure we get an
1768		 * edge in the ISR pipe event bit if we don't clear
1769		 * all the enabled status bits. Otherwise the edge
1770		 * triggered IIR on i965/g4x wouldn't notice that
1771		 * an interrupt is still pending.
1772		 */
1773		if (pipe_stats[pipe]) {
 
1774			I915_WRITE(reg, pipe_stats[pipe]);
1775			I915_WRITE(reg, enable_mask);
1776		}
1777	}
1778	spin_unlock(&dev_priv->irq_lock);
1779}
1780
1781static void i8xx_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1782				      u16 iir, u32 pipe_stats[I915_MAX_PIPES])
1783{
1784	enum pipe pipe;
1785
1786	for_each_pipe(dev_priv, pipe) {
1787		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1788			drm_handle_vblank(&dev_priv->drm, pipe);
1789
1790		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1791			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1792
1793		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1794			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1795	}
1796}
1797
1798static void i915_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1799				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1800{
1801	bool blc_event = false;
1802	enum pipe pipe;
1803
1804	for_each_pipe(dev_priv, pipe) {
1805		if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS)
1806			drm_handle_vblank(&dev_priv->drm, pipe);
1807
1808		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1809			blc_event = true;
1810
1811		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1812			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1813
1814		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1815			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1816	}
1817
1818	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1819		intel_opregion_asle_intr(dev_priv);
1820}
1821
1822static void i965_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1823				      u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1824{
1825	bool blc_event = false;
1826	enum pipe pipe;
1827
1828	for_each_pipe(dev_priv, pipe) {
1829		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1830			drm_handle_vblank(&dev_priv->drm, pipe);
1831
1832		if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
1833			blc_event = true;
1834
1835		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1836			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1837
1838		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1839			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1840	}
1841
1842	if (blc_event || (iir & I915_ASLE_INTERRUPT))
1843		intel_opregion_asle_intr(dev_priv);
1844
1845	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1846		gmbus_irq_handler(dev_priv);
1847}
1848
1849static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1850					    u32 pipe_stats[I915_MAX_PIPES])
1851{
1852	enum pipe pipe;
 
 
1853
1854	for_each_pipe(dev_priv, pipe) {
1855		if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS)
1856			drm_handle_vblank(&dev_priv->drm, pipe);
1857
1858		if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1859			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1860
1861		if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1862			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1863	}
1864
1865	if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1866		gmbus_irq_handler(dev_priv);
1867}
1868
1869static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1870{
1871	u32 hotplug_status = 0, hotplug_status_mask;
1872	int i;
1873
1874	if (IS_G4X(dev_priv) ||
1875	    IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1876		hotplug_status_mask = HOTPLUG_INT_STATUS_G4X |
1877			DP_AUX_CHANNEL_MASK_INT_STATUS_G4X;
1878	else
1879		hotplug_status_mask = HOTPLUG_INT_STATUS_I915;
1880
 
1881	/*
1882	 * We absolutely have to clear all the pending interrupt
1883	 * bits in PORT_HOTPLUG_STAT. Otherwise the ISR port
1884	 * interrupt bit won't have an edge, and the i965/g4x
1885	 * edge triggered IIR will not notice that an interrupt
1886	 * is still pending. We can't use PORT_HOTPLUG_EN to
1887	 * guarantee the edge as the act of toggling the enable
1888	 * bits can itself generate a new hotplug interrupt :(
1889	 */
1890	for (i = 0; i < 10; i++) {
1891		u32 tmp = I915_READ(PORT_HOTPLUG_STAT) & hotplug_status_mask;
1892
1893		if (tmp == 0)
1894			return hotplug_status;
1895
1896		hotplug_status |= tmp;
1897		I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1898	}
1899
1900	WARN_ONCE(1,
1901		  "PORT_HOTPLUG_STAT did not clear (0x%08x)\n",
1902		  I915_READ(PORT_HOTPLUG_STAT));
1903
1904	return hotplug_status;
1905}
1906
1907static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1908				 u32 hotplug_status)
1909{
1910	u32 pin_mask = 0, long_mask = 0;
1911
1912	if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1913	    IS_CHERRYVIEW(dev_priv)) {
1914		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1915
1916		if (hotplug_trigger) {
1917			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1918					   hotplug_trigger, hotplug_trigger,
1919					   hpd_status_g4x,
1920					   i9xx_port_hotplug_long_detect);
1921
1922			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1923		}
1924
1925		if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1926			dp_aux_irq_handler(dev_priv);
1927	} else {
1928		u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1929
1930		if (hotplug_trigger) {
1931			intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
1932					   hotplug_trigger, hotplug_trigger,
1933					   hpd_status_i915,
1934					   i9xx_port_hotplug_long_detect);
1935			intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1936		}
1937	}
1938}
1939
1940static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1941{
1942	struct drm_i915_private *dev_priv = arg;
 
 
1943	irqreturn_t ret = IRQ_NONE;
1944
1945	if (!intel_irqs_enabled(dev_priv))
1946		return IRQ_NONE;
1947
1948	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
1949	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
1950
1951	do {
1952		u32 iir, gt_iir, pm_iir;
1953		u32 pipe_stats[I915_MAX_PIPES] = {};
1954		u32 hotplug_status = 0;
1955		u32 ier = 0;
1956
1957		gt_iir = I915_READ(GTIIR);
 
 
 
1958		pm_iir = I915_READ(GEN6_PMIIR);
 
 
 
1959		iir = I915_READ(VLV_IIR);
 
 
 
 
 
 
1960
1961		if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1962			break;
1963
1964		ret = IRQ_HANDLED;
1965
1966		/*
1967		 * Theory on interrupt generation, based on empirical evidence:
1968		 *
1969		 * x = ((VLV_IIR & VLV_IER) ||
1970		 *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1971		 *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1972		 *
1973		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1974		 * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1975		 * guarantee the CPU interrupt will be raised again even if we
1976		 * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1977		 * bits this time around.
1978		 */
1979		I915_WRITE(VLV_MASTER_IER, 0);
1980		ier = I915_READ(VLV_IER);
1981		I915_WRITE(VLV_IER, 0);
1982
1983		if (gt_iir)
1984			I915_WRITE(GTIIR, gt_iir);
1985		if (pm_iir)
1986			I915_WRITE(GEN6_PMIIR, pm_iir);
1987
1988		if (iir & I915_DISPLAY_PORT_INTERRUPT)
1989			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1990
1991		/* Call regardless, as some status bits might not be
1992		 * signalled in iir */
1993		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
1994
1995		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1996			   I915_LPE_PIPE_B_INTERRUPT))
1997			intel_lpe_audio_irq_handler(dev_priv);
1998
1999		/*
2000		 * VLV_IIR is single buffered, and reflects the level
2001		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2002		 */
2003		if (iir)
2004			I915_WRITE(VLV_IIR, iir);
2005
2006		I915_WRITE(VLV_IER, ier);
2007		I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
2008
2009		if (gt_iir)
2010			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2011		if (pm_iir)
2012			gen6_rps_irq_handler(dev_priv, pm_iir);
2013
2014		if (hotplug_status)
2015			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018	} while (0);
2019
2020	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2021
2022	return ret;
2023}
2024
2025static irqreturn_t cherryview_irq_handler(int irq, void *arg)
2026{
2027	struct drm_i915_private *dev_priv = arg;
 
 
2028	irqreturn_t ret = IRQ_NONE;
2029
2030	if (!intel_irqs_enabled(dev_priv))
2031		return IRQ_NONE;
2032
2033	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2034	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2035
2036	do {
2037		u32 master_ctl, iir;
2038		u32 pipe_stats[I915_MAX_PIPES] = {};
2039		u32 hotplug_status = 0;
2040		u32 gt_iir[4];
2041		u32 ier = 0;
2042
2043		master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
2044		iir = I915_READ(VLV_IIR);
2045
2046		if (master_ctl == 0 && iir == 0)
2047			break;
2048
2049		ret = IRQ_HANDLED;
2050
2051		/*
2052		 * Theory on interrupt generation, based on empirical evidence:
2053		 *
2054		 * x = ((VLV_IIR & VLV_IER) ||
2055		 *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
2056		 *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
2057		 *
2058		 * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
2059		 * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
2060		 * guarantee the CPU interrupt will be raised again even if we
2061		 * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
2062		 * bits this time around.
2063		 */
2064		I915_WRITE(GEN8_MASTER_IRQ, 0);
2065		ier = I915_READ(VLV_IER);
2066		I915_WRITE(VLV_IER, 0);
2067
2068		gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2069
2070		if (iir & I915_DISPLAY_PORT_INTERRUPT)
2071			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
 
 
 
 
 
 
2072
2073		/* Call regardless, as some status bits might not be
2074		 * signalled in iir */
2075		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
2076
2077		if (iir & (I915_LPE_PIPE_A_INTERRUPT |
2078			   I915_LPE_PIPE_B_INTERRUPT |
2079			   I915_LPE_PIPE_C_INTERRUPT))
2080			intel_lpe_audio_irq_handler(dev_priv);
2081
2082		/*
2083		 * VLV_IIR is single buffered, and reflects the level
2084		 * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2085		 */
2086		if (iir)
2087			I915_WRITE(VLV_IIR, iir);
2088
2089		I915_WRITE(VLV_IER, ier);
2090		I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2091
2092		gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2093
2094		if (hotplug_status)
2095			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2096
2097		valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2098	} while (0);
2099
2100	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2101
2102	return ret;
2103}
2104
2105static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2106				u32 hotplug_trigger,
2107				const u32 hpd[HPD_NUM_PINS])
2108{
 
2109	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2110
2111	/*
2112	 * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2113	 * unless we touch the hotplug register, even if hotplug_trigger is
2114	 * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2115	 * errors.
2116	 */
2117	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2118	if (!hotplug_trigger) {
2119		u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2120			PORTD_HOTPLUG_STATUS_MASK |
2121			PORTC_HOTPLUG_STATUS_MASK |
2122			PORTB_HOTPLUG_STATUS_MASK;
2123		dig_hotplug_reg &= ~mask;
2124	}
2125
2126	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2127	if (!hotplug_trigger)
2128		return;
2129
2130	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2131			   dig_hotplug_reg, hpd,
2132			   pch_port_hotplug_long_detect);
2133
2134	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2135}
2136
2137static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2138{
 
2139	int pipe;
2140	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2141
2142	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2143
2144	if (pch_iir & SDE_AUDIO_POWER_MASK) {
2145		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2146			       SDE_AUDIO_POWER_SHIFT);
2147		DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2148				 port_name(port));
2149	}
2150
2151	if (pch_iir & SDE_AUX_MASK)
2152		dp_aux_irq_handler(dev_priv);
2153
2154	if (pch_iir & SDE_GMBUS)
2155		gmbus_irq_handler(dev_priv);
2156
2157	if (pch_iir & SDE_AUDIO_HDCP_MASK)
2158		DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2159
2160	if (pch_iir & SDE_AUDIO_TRANS_MASK)
2161		DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2162
2163	if (pch_iir & SDE_POISON)
2164		DRM_ERROR("PCH poison interrupt\n");
2165
2166	if (pch_iir & SDE_FDI_MASK)
2167		for_each_pipe(dev_priv, pipe)
2168			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2169					 pipe_name(pipe),
2170					 I915_READ(FDI_RX_IIR(pipe)));
2171
2172	if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2173		DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2174
2175	if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2176		DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2177
2178	if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2179		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_A);
2180
2181	if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2182		intel_pch_fifo_underrun_irq_handler(dev_priv, PIPE_B);
2183}
2184
2185static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2186{
 
2187	u32 err_int = I915_READ(GEN7_ERR_INT);
2188	enum pipe pipe;
2189
2190	if (err_int & ERR_INT_POISON)
2191		DRM_ERROR("Poison interrupt\n");
2192
2193	for_each_pipe(dev_priv, pipe) {
2194		if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2195			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2196
2197		if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2198			if (IS_IVYBRIDGE(dev_priv))
2199				ivb_pipe_crc_irq_handler(dev_priv, pipe);
2200			else
2201				hsw_pipe_crc_irq_handler(dev_priv, pipe);
2202		}
2203	}
2204
2205	I915_WRITE(GEN7_ERR_INT, err_int);
2206}
2207
2208static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2209{
 
2210	u32 serr_int = I915_READ(SERR_INT);
2211	enum pipe pipe;
2212
2213	if (serr_int & SERR_INT_POISON)
2214		DRM_ERROR("PCH poison interrupt\n");
2215
2216	for_each_pipe(dev_priv, pipe)
2217		if (serr_int & SERR_INT_TRANS_FIFO_UNDERRUN(pipe))
2218			intel_pch_fifo_underrun_irq_handler(dev_priv, pipe);
 
 
 
 
 
2219
2220	I915_WRITE(SERR_INT, serr_int);
2221}
2222
2223static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2224{
 
2225	int pipe;
2226	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2227
2228	ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2229
2230	if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2231		int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2232			       SDE_AUDIO_POWER_SHIFT_CPT);
2233		DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2234				 port_name(port));
2235	}
2236
2237	if (pch_iir & SDE_AUX_MASK_CPT)
2238		dp_aux_irq_handler(dev_priv);
2239
2240	if (pch_iir & SDE_GMBUS_CPT)
2241		gmbus_irq_handler(dev_priv);
2242
2243	if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2244		DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2245
2246	if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2247		DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2248
2249	if (pch_iir & SDE_FDI_MASK_CPT)
2250		for_each_pipe(dev_priv, pipe)
2251			DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2252					 pipe_name(pipe),
2253					 I915_READ(FDI_RX_IIR(pipe)));
2254
2255	if (pch_iir & SDE_ERROR_CPT)
2256		cpt_serr_int_handler(dev_priv);
2257}
2258
2259static void icp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir,
2260			    const u32 *pins)
2261{
2262	u32 ddi_hotplug_trigger;
2263	u32 tc_hotplug_trigger;
2264	u32 pin_mask = 0, long_mask = 0;
2265
2266	if (HAS_PCH_MCC(dev_priv)) {
2267		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2268		tc_hotplug_trigger = 0;
2269	} else {
2270		ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_ICP;
2271		tc_hotplug_trigger = pch_iir & SDE_TC_MASK_ICP;
2272	}
2273
2274	if (ddi_hotplug_trigger) {
2275		u32 dig_hotplug_reg;
2276
2277		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2278		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2279
2280		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2281				   ddi_hotplug_trigger,
2282				   dig_hotplug_reg, pins,
2283				   icp_ddi_port_hotplug_long_detect);
2284	}
2285
2286	if (tc_hotplug_trigger) {
2287		u32 dig_hotplug_reg;
2288
2289		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2290		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2291
2292		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2293				   tc_hotplug_trigger,
2294				   dig_hotplug_reg, pins,
2295				   icp_tc_port_hotplug_long_detect);
2296	}
2297
2298	if (pin_mask)
2299		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2300
2301	if (pch_iir & SDE_GMBUS_ICP)
2302		gmbus_irq_handler(dev_priv);
2303}
2304
2305static void tgp_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2306{
2307	u32 ddi_hotplug_trigger = pch_iir & SDE_DDI_MASK_TGP;
2308	u32 tc_hotplug_trigger = pch_iir & SDE_TC_MASK_TGP;
2309	u32 pin_mask = 0, long_mask = 0;
2310
2311	if (ddi_hotplug_trigger) {
2312		u32 dig_hotplug_reg;
2313
2314		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_DDI);
2315		I915_WRITE(SHOTPLUG_CTL_DDI, dig_hotplug_reg);
2316
2317		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2318				   ddi_hotplug_trigger,
2319				   dig_hotplug_reg, hpd_tgp,
2320				   tgp_ddi_port_hotplug_long_detect);
2321	}
2322
2323	if (tc_hotplug_trigger) {
2324		u32 dig_hotplug_reg;
2325
2326		dig_hotplug_reg = I915_READ(SHOTPLUG_CTL_TC);
2327		I915_WRITE(SHOTPLUG_CTL_TC, dig_hotplug_reg);
2328
2329		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2330				   tc_hotplug_trigger,
2331				   dig_hotplug_reg, hpd_tgp,
2332				   tgp_tc_port_hotplug_long_detect);
2333	}
2334
2335	if (pin_mask)
2336		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2337
2338	if (pch_iir & SDE_GMBUS_ICP)
2339		gmbus_irq_handler(dev_priv);
2340}
2341
2342static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2343{
 
2344	u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2345		~SDE_PORTE_HOTPLUG_SPT;
2346	u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2347	u32 pin_mask = 0, long_mask = 0;
2348
2349	if (hotplug_trigger) {
2350		u32 dig_hotplug_reg;
2351
2352		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2353		I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2354
2355		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2356				   hotplug_trigger, dig_hotplug_reg, hpd_spt,
2357				   spt_port_hotplug_long_detect);
2358	}
2359
2360	if (hotplug2_trigger) {
2361		u32 dig_hotplug_reg;
2362
2363		dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2364		I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2365
2366		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask,
2367				   hotplug2_trigger, dig_hotplug_reg, hpd_spt,
2368				   spt_port_hotplug2_long_detect);
2369	}
2370
2371	if (pin_mask)
2372		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2373
2374	if (pch_iir & SDE_GMBUS_CPT)
2375		gmbus_irq_handler(dev_priv);
2376}
2377
2378static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2379				u32 hotplug_trigger,
2380				const u32 hpd[HPD_NUM_PINS])
2381{
 
2382	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2383
2384	dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2385	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2386
2387	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2388			   dig_hotplug_reg, hpd,
2389			   ilk_port_hotplug_long_detect);
2390
2391	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2392}
2393
2394static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2395				    u32 de_iir)
2396{
 
2397	enum pipe pipe;
2398	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2399
2400	if (hotplug_trigger)
2401		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2402
2403	if (de_iir & DE_AUX_CHANNEL_A)
2404		dp_aux_irq_handler(dev_priv);
2405
2406	if (de_iir & DE_GSE)
2407		intel_opregion_asle_intr(dev_priv);
2408
2409	if (de_iir & DE_POISON)
2410		DRM_ERROR("Poison interrupt\n");
2411
2412	for_each_pipe(dev_priv, pipe) {
2413		if (de_iir & DE_PIPE_VBLANK(pipe))
2414			drm_handle_vblank(&dev_priv->drm, pipe);
 
2415
2416		if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2417			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2418
2419		if (de_iir & DE_PIPE_CRC_DONE(pipe))
2420			i9xx_pipe_crc_irq_handler(dev_priv, pipe);
 
 
 
 
 
 
2421	}
2422
2423	/* check event from PCH */
2424	if (de_iir & DE_PCH_EVENT) {
2425		u32 pch_iir = I915_READ(SDEIIR);
2426
2427		if (HAS_PCH_CPT(dev_priv))
2428			cpt_irq_handler(dev_priv, pch_iir);
2429		else
2430			ibx_irq_handler(dev_priv, pch_iir);
2431
2432		/* should clear PCH hotplug event before clear CPU irq */
2433		I915_WRITE(SDEIIR, pch_iir);
2434	}
2435
2436	if (IS_GEN(dev_priv, 5) && de_iir & DE_PCU_EVENT)
2437		ironlake_rps_change_irq_handler(dev_priv);
2438}
2439
2440static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2441				    u32 de_iir)
2442{
 
2443	enum pipe pipe;
2444	u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2445
2446	if (hotplug_trigger)
2447		ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2448
2449	if (de_iir & DE_ERR_INT_IVB)
2450		ivb_err_int_handler(dev_priv);
2451
2452	if (de_iir & DE_EDP_PSR_INT_HSW) {
2453		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2454
2455		intel_psr_irq_handler(dev_priv, psr_iir);
2456		I915_WRITE(EDP_PSR_IIR, psr_iir);
2457	}
2458
2459	if (de_iir & DE_AUX_CHANNEL_A_IVB)
2460		dp_aux_irq_handler(dev_priv);
2461
2462	if (de_iir & DE_GSE_IVB)
2463		intel_opregion_asle_intr(dev_priv);
2464
2465	for_each_pipe(dev_priv, pipe) {
2466		if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)))
2467			drm_handle_vblank(&dev_priv->drm, pipe);
 
 
 
 
 
 
 
2468	}
2469
2470	/* check event from PCH */
2471	if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2472		u32 pch_iir = I915_READ(SDEIIR);
2473
2474		cpt_irq_handler(dev_priv, pch_iir);
2475
2476		/* clear PCH hotplug event before clear CPU irq */
2477		I915_WRITE(SDEIIR, pch_iir);
2478	}
2479}
2480
2481/*
2482 * To handle irqs with the minimum potential races with fresh interrupts, we:
2483 * 1 - Disable Master Interrupt Control.
2484 * 2 - Find the source(s) of the interrupt.
2485 * 3 - Clear the Interrupt Identity bits (IIR).
2486 * 4 - Process the interrupt(s) that had bits set in the IIRs.
2487 * 5 - Re-enable Master Interrupt Control.
2488 */
2489static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2490{
2491	struct drm_i915_private *dev_priv = arg;
 
2492	u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2493	irqreturn_t ret = IRQ_NONE;
2494
2495	if (!intel_irqs_enabled(dev_priv))
2496		return IRQ_NONE;
2497
2498	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2499	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2500
2501	/* disable master interrupt before clearing iir  */
2502	de_ier = I915_READ(DEIER);
2503	I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
 
2504
2505	/* Disable south interrupts. We'll only write to SDEIIR once, so further
2506	 * interrupts will will be stored on its back queue, and then we'll be
2507	 * able to process them after we restore SDEIER (as soon as we restore
2508	 * it, we'll get an interrupt if SDEIIR still has something to process
2509	 * due to its back queue). */
2510	if (!HAS_PCH_NOP(dev_priv)) {
2511		sde_ier = I915_READ(SDEIER);
2512		I915_WRITE(SDEIER, 0);
 
2513	}
2514
2515	/* Find, clear, then process each source of interrupt */
2516
2517	gt_iir = I915_READ(GTIIR);
2518	if (gt_iir) {
2519		I915_WRITE(GTIIR, gt_iir);
2520		ret = IRQ_HANDLED;
2521		if (INTEL_GEN(dev_priv) >= 6)
2522			gen6_gt_irq_handler(&dev_priv->gt, gt_iir);
2523		else
2524			gen5_gt_irq_handler(&dev_priv->gt, gt_iir);
2525	}
2526
2527	de_iir = I915_READ(DEIIR);
2528	if (de_iir) {
2529		I915_WRITE(DEIIR, de_iir);
2530		ret = IRQ_HANDLED;
2531		if (INTEL_GEN(dev_priv) >= 7)
2532			ivb_display_irq_handler(dev_priv, de_iir);
2533		else
2534			ilk_display_irq_handler(dev_priv, de_iir);
2535	}
2536
2537	if (INTEL_GEN(dev_priv) >= 6) {
2538		u32 pm_iir = I915_READ(GEN6_PMIIR);
2539		if (pm_iir) {
2540			I915_WRITE(GEN6_PMIIR, pm_iir);
2541			ret = IRQ_HANDLED;
2542			gen6_rps_irq_handler(dev_priv, pm_iir);
2543		}
2544	}
2545
2546	I915_WRITE(DEIER, de_ier);
2547	if (!HAS_PCH_NOP(dev_priv))
 
2548		I915_WRITE(SDEIER, sde_ier);
 
 
2549
2550	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2551	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2552
2553	return ret;
2554}
2555
2556static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2557				u32 hotplug_trigger,
2558				const u32 hpd[HPD_NUM_PINS])
2559{
 
2560	u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2561
2562	dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2563	I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2564
2565	intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, hotplug_trigger,
2566			   dig_hotplug_reg, hpd,
2567			   bxt_port_hotplug_long_detect);
2568
2569	intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2570}
2571
2572static void gen11_hpd_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2573{
2574	u32 pin_mask = 0, long_mask = 0;
2575	u32 trigger_tc = iir & GEN11_DE_TC_HOTPLUG_MASK;
2576	u32 trigger_tbt = iir & GEN11_DE_TBT_HOTPLUG_MASK;
2577	long_pulse_detect_func long_pulse_detect;
2578	const u32 *hpd;
2579
2580	if (INTEL_GEN(dev_priv) >= 12) {
2581		long_pulse_detect = gen12_port_hotplug_long_detect;
2582		hpd = hpd_gen12;
2583	} else {
2584		long_pulse_detect = gen11_port_hotplug_long_detect;
2585		hpd = hpd_gen11;
2586	}
2587
2588	if (trigger_tc) {
2589		u32 dig_hotplug_reg;
2590
2591		dig_hotplug_reg = I915_READ(GEN11_TC_HOTPLUG_CTL);
2592		I915_WRITE(GEN11_TC_HOTPLUG_CTL, dig_hotplug_reg);
2593
2594		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tc,
2595				   dig_hotplug_reg, hpd, long_pulse_detect);
2596	}
2597
2598	if (trigger_tbt) {
2599		u32 dig_hotplug_reg;
2600
2601		dig_hotplug_reg = I915_READ(GEN11_TBT_HOTPLUG_CTL);
2602		I915_WRITE(GEN11_TBT_HOTPLUG_CTL, dig_hotplug_reg);
2603
2604		intel_get_hpd_pins(dev_priv, &pin_mask, &long_mask, trigger_tbt,
2605				   dig_hotplug_reg, hpd, long_pulse_detect);
2606	}
2607
2608	if (pin_mask)
2609		intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2610	else
2611		DRM_ERROR("Unexpected DE HPD interrupt 0x%08x\n", iir);
2612}
2613
2614static u32 gen8_de_port_aux_mask(struct drm_i915_private *dev_priv)
2615{
2616	u32 mask;
2617
2618	if (INTEL_GEN(dev_priv) >= 12)
2619		/* TODO: Add AUX entries for USBC */
2620		return TGL_DE_PORT_AUX_DDIA |
2621			TGL_DE_PORT_AUX_DDIB |
2622			TGL_DE_PORT_AUX_DDIC;
2623
2624	mask = GEN8_AUX_CHANNEL_A;
2625	if (INTEL_GEN(dev_priv) >= 9)
2626		mask |= GEN9_AUX_CHANNEL_B |
2627			GEN9_AUX_CHANNEL_C |
2628			GEN9_AUX_CHANNEL_D;
2629
2630	if (IS_CNL_WITH_PORT_F(dev_priv) || IS_GEN(dev_priv, 11))
2631		mask |= CNL_AUX_CHANNEL_F;
2632
2633	if (IS_GEN(dev_priv, 11))
2634		mask |= ICL_AUX_CHANNEL_E;
2635
2636	return mask;
2637}
2638
2639static u32 gen8_de_pipe_fault_mask(struct drm_i915_private *dev_priv)
2640{
2641	if (INTEL_GEN(dev_priv) >= 9)
2642		return GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2643	else
2644		return GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2645}
2646
2647static void
2648gen8_de_misc_irq_handler(struct drm_i915_private *dev_priv, u32 iir)
2649{
2650	bool found = false;
2651
2652	if (iir & GEN8_DE_MISC_GSE) {
2653		intel_opregion_asle_intr(dev_priv);
2654		found = true;
2655	}
2656
2657	if (iir & GEN8_DE_EDP_PSR) {
2658		u32 psr_iir = I915_READ(EDP_PSR_IIR);
2659
2660		intel_psr_irq_handler(dev_priv, psr_iir);
2661		I915_WRITE(EDP_PSR_IIR, psr_iir);
2662		found = true;
2663	}
2664
2665	if (!found)
2666		DRM_ERROR("Unexpected DE Misc interrupt\n");
2667}
2668
2669static irqreturn_t
2670gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2671{
 
2672	irqreturn_t ret = IRQ_NONE;
2673	u32 iir;
2674	enum pipe pipe;
2675
2676	if (master_ctl & GEN8_DE_MISC_IRQ) {
2677		iir = I915_READ(GEN8_DE_MISC_IIR);
2678		if (iir) {
2679			I915_WRITE(GEN8_DE_MISC_IIR, iir);
2680			ret = IRQ_HANDLED;
2681			gen8_de_misc_irq_handler(dev_priv, iir);
2682		} else {
 
 
 
 
2683			DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2684		}
2685	}
2686
2687	if (INTEL_GEN(dev_priv) >= 11 && (master_ctl & GEN11_DE_HPD_IRQ)) {
2688		iir = I915_READ(GEN11_DE_HPD_IIR);
2689		if (iir) {
2690			I915_WRITE(GEN11_DE_HPD_IIR, iir);
2691			ret = IRQ_HANDLED;
2692			gen11_hpd_irq_handler(dev_priv, iir);
2693		} else {
2694			DRM_ERROR("The master control interrupt lied, (DE HPD)!\n");
2695		}
2696	}
2697
2698	if (master_ctl & GEN8_DE_PORT_IRQ) {
2699		iir = I915_READ(GEN8_DE_PORT_IIR);
2700		if (iir) {
2701			u32 tmp_mask;
2702			bool found = false;
2703
2704			I915_WRITE(GEN8_DE_PORT_IIR, iir);
2705			ret = IRQ_HANDLED;
2706
2707			if (iir & gen8_de_port_aux_mask(dev_priv)) {
2708				dp_aux_irq_handler(dev_priv);
 
 
 
 
 
 
2709				found = true;
2710			}
2711
2712			if (IS_GEN9_LP(dev_priv)) {
2713				tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2714				if (tmp_mask) {
2715					bxt_hpd_irq_handler(dev_priv, tmp_mask,
2716							    hpd_bxt);
2717					found = true;
2718				}
2719			} else if (IS_BROADWELL(dev_priv)) {
2720				tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2721				if (tmp_mask) {
2722					ilk_hpd_irq_handler(dev_priv,
2723							    tmp_mask, hpd_bdw);
2724					found = true;
2725				}
2726			}
2727
2728			if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2729				gmbus_irq_handler(dev_priv);
2730				found = true;
2731			}
2732
2733			if (!found)
2734				DRM_ERROR("Unexpected DE Port interrupt\n");
2735		}
2736		else
2737			DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2738	}
2739
2740	for_each_pipe(dev_priv, pipe) {
2741		u32 fault_errors;
2742
2743		if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2744			continue;
2745
2746		iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2747		if (!iir) {
2748			DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2749			continue;
2750		}
2751
2752		ret = IRQ_HANDLED;
2753		I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2754
2755		if (iir & GEN8_PIPE_VBLANK)
2756			drm_handle_vblank(&dev_priv->drm, pipe);
 
 
 
 
 
 
 
 
 
 
 
 
2757
2758		if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2759			hsw_pipe_crc_irq_handler(dev_priv, pipe);
2760
2761		if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2762			intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2763
2764		fault_errors = iir & gen8_de_pipe_fault_mask(dev_priv);
 
 
 
 
 
2765		if (fault_errors)
2766			DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2767				  pipe_name(pipe),
2768				  fault_errors);
2769	}
2770
2771	if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2772	    master_ctl & GEN8_DE_PCH_IRQ) {
2773		/*
2774		 * FIXME(BDW): Assume for now that the new interrupt handling
2775		 * scheme also closed the SDE interrupt handling race we've seen
2776		 * on older pch-split platforms. But this needs testing.
2777		 */
2778		iir = I915_READ(SDEIIR);
2779		if (iir) {
2780			I915_WRITE(SDEIIR, iir);
2781			ret = IRQ_HANDLED;
2782
2783			if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
2784				tgp_irq_handler(dev_priv, iir);
2785			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_MCC)
2786				icp_irq_handler(dev_priv, iir, hpd_mcc);
2787			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2788				icp_irq_handler(dev_priv, iir, hpd_icp);
2789			else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
2790				spt_irq_handler(dev_priv, iir);
2791			else
2792				cpt_irq_handler(dev_priv, iir);
2793		} else {
2794			/*
2795			 * Like on previous PCH there seems to be something
2796			 * fishy going on with forwarding PCH interrupts.
2797			 */
2798			DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2799		}
2800	}
2801
2802	return ret;
2803}
2804
2805static inline u32 gen8_master_intr_disable(void __iomem * const regs)
2806{
2807	raw_reg_write(regs, GEN8_MASTER_IRQ, 0);
2808
2809	/*
2810	 * Now with master disabled, get a sample of level indications
2811	 * for this interrupt. Indications will be cleared on related acks.
2812	 * New indications can and will light up during processing,
2813	 * and will generate new interrupt after enabling master.
2814	 */
2815	return raw_reg_read(regs, GEN8_MASTER_IRQ);
2816}
2817
2818static inline void gen8_master_intr_enable(void __iomem * const regs)
2819{
2820	raw_reg_write(regs, GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2821}
2822
2823static irqreturn_t gen8_irq_handler(int irq, void *arg)
2824{
2825	struct drm_i915_private *dev_priv = arg;
2826	void __iomem * const regs = dev_priv->uncore.regs;
2827	u32 master_ctl;
2828	u32 gt_iir[4];
2829
2830	if (!intel_irqs_enabled(dev_priv))
2831		return IRQ_NONE;
2832
2833	master_ctl = gen8_master_intr_disable(regs);
2834	if (!master_ctl) {
2835		gen8_master_intr_enable(regs);
2836		return IRQ_NONE;
2837	}
2838
2839	/* Find, clear, then process each source of interrupt */
2840	gen8_gt_irq_ack(&dev_priv->gt, master_ctl, gt_iir);
2841
2842	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2843	if (master_ctl & ~GEN8_GT_IRQS) {
2844		disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2845		gen8_de_irq_handler(dev_priv, master_ctl);
2846		enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
2847	}
2848
2849	gen8_master_intr_enable(regs);
 
2850
2851	gen8_gt_irq_handler(&dev_priv->gt, master_ctl, gt_iir);
2852
2853	return IRQ_HANDLED;
2854}
2855
2856static u32
2857gen11_gu_misc_irq_ack(struct intel_gt *gt, const u32 master_ctl)
2858{
2859	void __iomem * const regs = gt->uncore->regs;
2860	u32 iir;
 
 
 
 
 
 
 
2861
2862	if (!(master_ctl & GEN11_GU_MISC_IRQ))
2863		return 0;
 
2864
2865	iir = raw_reg_read(regs, GEN11_GU_MISC_IIR);
2866	if (likely(iir))
2867		raw_reg_write(regs, GEN11_GU_MISC_IIR, iir);
2868
2869	return iir;
 
 
 
 
 
2870}
2871
2872static void
2873gen11_gu_misc_irq_handler(struct intel_gt *gt, const u32 iir)
 
 
 
 
 
 
2874{
2875	if (iir & GEN11_GU_MISC_GSE)
2876		intel_opregion_asle_intr(gt->i915);
2877}
 
 
 
2878
2879static inline u32 gen11_master_intr_disable(void __iomem * const regs)
2880{
2881	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, 0);
2882
2883	/*
2884	 * Now with master disabled, get a sample of level indications
2885	 * for this interrupt. Indications will be cleared on related acks.
2886	 * New indications can and will light up during processing,
2887	 * and will generate new interrupt after enabling master.
 
 
 
 
2888	 */
2889	return raw_reg_read(regs, GEN11_GFX_MSTR_IRQ);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890}
2891
2892static inline void gen11_master_intr_enable(void __iomem * const regs)
2893{
2894	raw_reg_write(regs, GEN11_GFX_MSTR_IRQ, GEN11_MASTER_IRQ);
2895}
 
 
 
 
 
 
 
2896
2897static irqreturn_t gen11_irq_handler(int irq, void *arg)
2898{
2899	struct drm_i915_private * const i915 = arg;
2900	void __iomem * const regs = i915->uncore.regs;
2901	struct intel_gt *gt = &i915->gt;
2902	u32 master_ctl;
2903	u32 gu_misc_iir;
2904
2905	if (!intel_irqs_enabled(i915))
2906		return IRQ_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2907
2908	master_ctl = gen11_master_intr_disable(regs);
2909	if (!master_ctl) {
2910		gen11_master_intr_enable(regs);
2911		return IRQ_NONE;
 
 
 
 
2912	}
2913
2914	/* Find, clear, then process each source of interrupt. */
2915	gen11_gt_irq_handler(gt, master_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2916
2917	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
2918	if (master_ctl & GEN11_DISPLAY_IRQ) {
2919		const u32 disp_ctl = raw_reg_read(regs, GEN11_DISPLAY_INT_CTL);
 
 
 
 
 
2920
2921		disable_rpm_wakeref_asserts(&i915->runtime_pm);
 
 
 
2922		/*
2923		 * GEN11_DISPLAY_INT_CTL has same format as GEN8_MASTER_IRQ
2924		 * for the display related bits.
2925		 */
2926		gen8_de_irq_handler(i915, disp_ctl);
2927		enable_rpm_wakeref_asserts(&i915->runtime_pm);
 
2928	}
 
2929
2930	gu_misc_iir = gen11_gu_misc_irq_ack(gt, master_ctl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2931
2932	gen11_master_intr_enable(regs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2933
2934	gen11_gu_misc_irq_handler(gt, gu_misc_iir);
2935
2936	return IRQ_HANDLED;
2937}
2938
2939/* Called from drm generic code, passed 'crtc' which
2940 * we use as a pipe index
2941 */
2942int i8xx_enable_vblank(struct drm_crtc *crtc)
2943{
2944	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2945	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2946	unsigned long irqflags;
2947
2948	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2949	i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
 
 
 
2950	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2951
2952	return 0;
2953}
2954
2955int i945gm_enable_vblank(struct drm_crtc *crtc)
2956{
2957	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2958
2959	if (dev_priv->i945gm_vblank.enabled++ == 0)
2960		schedule_work(&dev_priv->i945gm_vblank.work);
2961
2962	return i8xx_enable_vblank(crtc);
2963}
2964
2965int i965_enable_vblank(struct drm_crtc *crtc)
2966{
2967	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2968	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2969	unsigned long irqflags;
 
 
2970
2971	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2972	i915_enable_pipestat(dev_priv, pipe,
2973			     PIPE_START_VBLANK_INTERRUPT_STATUS);
2974	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2975
2976	return 0;
2977}
2978
2979int ilk_enable_vblank(struct drm_crtc *crtc)
2980{
2981	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
2982	enum pipe pipe = to_intel_crtc(crtc)->pipe;
2983	unsigned long irqflags;
2984	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
2985		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2986
2987	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2988	ilk_enable_display_irq(dev_priv, bit);
 
2989	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2990
2991	/* Even though there is no DMC, frame counter can get stuck when
2992	 * PSR is active as no frames are generated.
2993	 */
2994	if (HAS_PSR(dev_priv))
2995		drm_crtc_vblank_restore(crtc);
2996
2997	return 0;
2998}
2999
3000int bdw_enable_vblank(struct drm_crtc *crtc)
3001{
3002	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3003	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3004	unsigned long irqflags;
3005
3006	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3007	bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3008	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3009
3010	/* Even if there is no DMC, frame counter can get stuck when
3011	 * PSR is active as no frames are generated, so check only for PSR.
3012	 */
3013	if (HAS_PSR(dev_priv))
3014		drm_crtc_vblank_restore(crtc);
3015
3016	return 0;
3017}
3018
3019/* Called from drm generic code, passed 'crtc' which
3020 * we use as a pipe index
3021 */
3022void i8xx_disable_vblank(struct drm_crtc *crtc)
3023{
3024	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3025	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3026	unsigned long irqflags;
3027
3028	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3029	i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
 
 
3030	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3031}
3032
3033void i945gm_disable_vblank(struct drm_crtc *crtc)
3034{
3035	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
 
 
 
3036
3037	i8xx_disable_vblank(crtc);
3038
3039	if (--dev_priv->i945gm_vblank.enabled == 0)
3040		schedule_work(&dev_priv->i945gm_vblank.work);
3041}
3042
3043void i965_disable_vblank(struct drm_crtc *crtc)
3044{
3045	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3046	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3047	unsigned long irqflags;
3048
3049	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3050	i915_disable_pipestat(dev_priv, pipe,
3051			      PIPE_START_VBLANK_INTERRUPT_STATUS);
3052	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3053}
3054
3055void ilk_disable_vblank(struct drm_crtc *crtc)
3056{
3057	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3058	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3059	unsigned long irqflags;
3060	u32 bit = INTEL_GEN(dev_priv) >= 7 ?
3061		DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
3062
3063	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3064	ilk_disable_display_irq(dev_priv, bit);
3065	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3066}
3067
3068void bdw_disable_vblank(struct drm_crtc *crtc)
 
3069{
3070	struct drm_i915_private *dev_priv = to_i915(crtc->dev);
3071	enum pipe pipe = to_intel_crtc(crtc)->pipe;
3072	unsigned long irqflags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3073
3074	spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
3075	bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
3076	spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
3077}
3078
3079static void i945gm_vblank_work_func(struct work_struct *work)
 
3080{
3081	struct drm_i915_private *dev_priv =
3082		container_of(work, struct drm_i915_private, i945gm_vblank.work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3083
3084	/*
3085	 * Vblank interrupts fail to wake up the device from C3,
3086	 * hence we want to prevent C3 usage while vblank interrupts
3087	 * are enabled.
 
 
 
3088	 */
3089	pm_qos_update_request(&dev_priv->i945gm_vblank.pm_qos,
3090			      READ_ONCE(dev_priv->i945gm_vblank.enabled) ?
3091			      dev_priv->i945gm_vblank.c3_disable_latency :
3092			      PM_QOS_DEFAULT_VALUE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093}
3094
3095static int cstate_disable_latency(const char *name)
3096{
3097	const struct cpuidle_driver *drv;
3098	int i;
 
 
 
 
 
 
 
3099
3100	drv = cpuidle_get_driver();
3101	if (!drv)
3102		return 0;
3103
3104	for (i = 0; i < drv->state_count; i++) {
3105		const struct cpuidle_state *state = &drv->states[i];
3106
3107		if (!strcmp(state->name, name))
3108			return state->exit_latency ?
3109				state->exit_latency - 1 : 0;
3110	}
3111
3112	return 0;
3113}
3114
3115static void i945gm_vblank_work_init(struct drm_i915_private *dev_priv)
3116{
3117	INIT_WORK(&dev_priv->i945gm_vblank.work,
3118		  i945gm_vblank_work_func);
3119
3120	dev_priv->i945gm_vblank.c3_disable_latency =
3121		cstate_disable_latency("C3");
3122	pm_qos_add_request(&dev_priv->i945gm_vblank.pm_qos,
3123			   PM_QOS_CPU_DMA_LATENCY,
3124			   PM_QOS_DEFAULT_VALUE);
3125}
3126
3127static void i945gm_vblank_work_fini(struct drm_i915_private *dev_priv)
3128{
3129	cancel_work_sync(&dev_priv->i945gm_vblank.work);
3130	pm_qos_remove_request(&dev_priv->i945gm_vblank.pm_qos);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3131}
3132
3133static void ibx_irq_reset(struct drm_i915_private *dev_priv)
 
3134{
3135	struct intel_uncore *uncore = &dev_priv->uncore;
 
 
 
3136
3137	if (HAS_PCH_NOP(dev_priv))
3138		return;
 
3139
3140	GEN3_IRQ_RESET(uncore, SDE);
 
3141
3142	if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3143		I915_WRITE(SERR_INT, 0xffffffff);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3144}
3145
3146/*
3147 * SDEIER is also touched by the interrupt handler to work around missed PCH
3148 * interrupts. Hence we can't update it after the interrupt handler is enabled -
3149 * instead we unconditionally enable all PCH interrupt sources here, but then
3150 * only unmask them as needed with SDEIMR.
3151 *
3152 * This function needs to be called before interrupts are enabled.
3153 */
3154static void ibx_irq_pre_postinstall(struct drm_i915_private *dev_priv)
3155{
3156	if (HAS_PCH_NOP(dev_priv))
 
 
 
 
 
 
 
 
 
 
 
 
3157		return;
3158
3159	WARN_ON(I915_READ(SDEIER) != 0);
3160	I915_WRITE(SDEIER, 0xffffffff);
3161	POSTING_READ(SDEIER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3162}
3163
3164static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
3165{
3166	struct intel_uncore *uncore = &dev_priv->uncore;
3167
3168	if (IS_CHERRYVIEW(dev_priv))
3169		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
3170	else
3171		intel_uncore_write(uncore, DPINVGTT, DPINVGTT_STATUS_MASK);
3172
3173	i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
3174	intel_uncore_write(uncore, PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
 
 
3175
3176	i9xx_pipestat_irq_reset(dev_priv);
3177
3178	GEN3_IRQ_RESET(uncore, VLV_);
3179	dev_priv->irq_mask = ~0u;
3180}
3181
3182static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
3183{
3184	struct intel_uncore *uncore = &dev_priv->uncore;
3185
3186	u32 pipestat_mask;
3187	u32 enable_mask;
3188	enum pipe pipe;
3189
3190	pipestat_mask = PIPE_CRC_DONE_INTERRUPT_STATUS;
3191
3192	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
3193	for_each_pipe(dev_priv, pipe)
3194		i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
3195
3196	enable_mask = I915_DISPLAY_PORT_INTERRUPT |
3197		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3198		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3199		I915_LPE_PIPE_A_INTERRUPT |
3200		I915_LPE_PIPE_B_INTERRUPT;
 
 
 
 
 
 
3201
3202	if (IS_CHERRYVIEW(dev_priv))
3203		enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT |
3204			I915_LPE_PIPE_C_INTERRUPT;
3205
3206	WARN_ON(dev_priv->irq_mask != ~0u);
 
 
 
3207
3208	dev_priv->irq_mask = ~enable_mask;
 
 
3209
3210	GEN3_IRQ_INIT(uncore, VLV_, dev_priv->irq_mask, enable_mask);
 
 
3211}
3212
3213/* drm_dma.h hooks
3214*/
3215static void ironlake_irq_reset(struct drm_i915_private *dev_priv)
3216{
3217	struct intel_uncore *uncore = &dev_priv->uncore;
3218
3219	GEN3_IRQ_RESET(uncore, DE);
3220	if (IS_GEN(dev_priv, 7))
3221		intel_uncore_write(uncore, GEN7_ERR_INT, 0xffffffff);
3222
3223	if (IS_HASWELL(dev_priv)) {
3224		intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3225		intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3226	}
3227
3228	gen5_gt_irq_reset(&dev_priv->gt);
3229
3230	ibx_irq_reset(dev_priv);
3231}
3232
3233static void valleyview_irq_reset(struct drm_i915_private *dev_priv)
3234{
3235	I915_WRITE(VLV_MASTER_IER, 0);
3236	POSTING_READ(VLV_MASTER_IER);
 
 
3237
3238	gen5_gt_irq_reset(&dev_priv->gt);
 
3239
3240	spin_lock_irq(&dev_priv->irq_lock);
3241	if (dev_priv->display_irqs_enabled)
3242		vlv_display_irq_reset(dev_priv);
3243	spin_unlock_irq(&dev_priv->irq_lock);
3244}
3245
3246static void gen8_irq_reset(struct drm_i915_private *dev_priv)
3247{
3248	struct intel_uncore *uncore = &dev_priv->uncore;
3249	int pipe;
3250
3251	gen8_master_intr_disable(dev_priv->uncore.regs);
 
 
 
 
3252
3253	gen8_gt_irq_reset(&dev_priv->gt);
3254
3255	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3256	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3257
3258	for_each_pipe(dev_priv, pipe)
3259		if (intel_display_power_is_enabled(dev_priv,
3260						   POWER_DOMAIN_PIPE(pipe)))
3261			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3262
3263	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3264	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3265	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3266
3267	if (HAS_PCH_SPLIT(dev_priv))
3268		ibx_irq_reset(dev_priv);
3269}
3270
3271static void gen11_irq_reset(struct drm_i915_private *dev_priv)
3272{
3273	struct intel_uncore *uncore = &dev_priv->uncore;
3274	int pipe;
3275
3276	gen11_master_intr_disable(dev_priv->uncore.regs);
3277
3278	gen11_gt_irq_reset(&dev_priv->gt);
3279
3280	intel_uncore_write(uncore, GEN11_DISPLAY_INT_CTL, 0);
3281
3282	intel_uncore_write(uncore, EDP_PSR_IMR, 0xffffffff);
3283	intel_uncore_write(uncore, EDP_PSR_IIR, 0xffffffff);
3284
3285	for_each_pipe(dev_priv, pipe)
3286		if (intel_display_power_is_enabled(dev_priv,
3287						   POWER_DOMAIN_PIPE(pipe)))
3288			GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3289
3290	GEN3_IRQ_RESET(uncore, GEN8_DE_PORT_);
3291	GEN3_IRQ_RESET(uncore, GEN8_DE_MISC_);
3292	GEN3_IRQ_RESET(uncore, GEN11_DE_HPD_);
3293	GEN3_IRQ_RESET(uncore, GEN11_GU_MISC_);
3294	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3295
3296	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3297		GEN3_IRQ_RESET(uncore, SDE);
3298}
3299
3300void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3301				     u8 pipe_mask)
3302{
3303	struct intel_uncore *uncore = &dev_priv->uncore;
3304
3305	u32 extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3306	enum pipe pipe;
3307
3308	spin_lock_irq(&dev_priv->irq_lock);
3309
3310	if (!intel_irqs_enabled(dev_priv)) {
3311		spin_unlock_irq(&dev_priv->irq_lock);
3312		return;
3313	}
3314
3315	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3316		GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3317				  dev_priv->de_irq_mask[pipe],
3318				  ~dev_priv->de_irq_mask[pipe] | extra_ier);
3319
3320	spin_unlock_irq(&dev_priv->irq_lock);
3321}
3322
3323void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3324				     u8 pipe_mask)
3325{
3326	struct intel_uncore *uncore = &dev_priv->uncore;
3327	enum pipe pipe;
3328
3329	spin_lock_irq(&dev_priv->irq_lock);
3330
3331	if (!intel_irqs_enabled(dev_priv)) {
3332		spin_unlock_irq(&dev_priv->irq_lock);
3333		return;
3334	}
3335
3336	for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3337		GEN8_IRQ_RESET_NDX(uncore, DE_PIPE, pipe);
3338
3339	spin_unlock_irq(&dev_priv->irq_lock);
3340
3341	/* make sure we're done processing display irqs */
3342	intel_synchronize_irq(dev_priv);
3343}
3344
3345static void cherryview_irq_reset(struct drm_i915_private *dev_priv)
3346{
3347	struct intel_uncore *uncore = &dev_priv->uncore;
3348
3349	I915_WRITE(GEN8_MASTER_IRQ, 0);
3350	POSTING_READ(GEN8_MASTER_IRQ);
3351
3352	gen8_gt_irq_reset(&dev_priv->gt);
3353
3354	GEN3_IRQ_RESET(uncore, GEN8_PCU_);
3355
3356	spin_lock_irq(&dev_priv->irq_lock);
3357	if (dev_priv->display_irqs_enabled)
3358		vlv_display_irq_reset(dev_priv);
3359	spin_unlock_irq(&dev_priv->irq_lock);
3360}
3361
3362static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3363				  const u32 hpd[HPD_NUM_PINS])
3364{
 
3365	struct intel_encoder *encoder;
3366	u32 enabled_irqs = 0;
3367
3368	for_each_intel_encoder(&dev_priv->drm, encoder)
3369		if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3370			enabled_irqs |= hpd[encoder->hpd_pin];
3371
3372	return enabled_irqs;
3373}
3374
3375static void ibx_hpd_detection_setup(struct drm_i915_private *dev_priv)
3376{
3377	u32 hotplug;
 
 
 
 
 
 
 
 
 
 
 
3378
3379	/*
3380	 * Enable digital hotplug on the PCH, and configure the DP short pulse
3381	 * duration to 2ms (which is the minimum in the Display Port spec).
3382	 * The pulse duration bits are reserved on LPT+.
3383	 */
3384	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3385	hotplug &= ~(PORTB_PULSE_DURATION_MASK |
3386		     PORTC_PULSE_DURATION_MASK |
3387		     PORTD_PULSE_DURATION_MASK);
3388	hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3389	hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3390	hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3391	/*
3392	 * When CPU and PCH are on the same package, port A
3393	 * HPD must be enabled in both north and south.
3394	 */
3395	if (HAS_PCH_LPT_LP(dev_priv))
3396		hotplug |= PORTA_HOTPLUG_ENABLE;
3397	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3398}
3399
3400static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3401{
3402	u32 hotplug_irqs, enabled_irqs;
 
3403
3404	if (HAS_PCH_IBX(dev_priv)) {
3405		hotplug_irqs = SDE_HOTPLUG_MASK;
3406		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3407	} else {
3408		hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3409		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3410	}
3411
3412	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3413
3414	ibx_hpd_detection_setup(dev_priv);
3415}
3416
3417static void icp_hpd_detection_setup(struct drm_i915_private *dev_priv,
3418				    u32 ddi_hotplug_enable_mask,
3419				    u32 tc_hotplug_enable_mask)
3420{
3421	u32 hotplug;
3422
3423	hotplug = I915_READ(SHOTPLUG_CTL_DDI);
3424	hotplug |= ddi_hotplug_enable_mask;
3425	I915_WRITE(SHOTPLUG_CTL_DDI, hotplug);
3426
3427	if (tc_hotplug_enable_mask) {
3428		hotplug = I915_READ(SHOTPLUG_CTL_TC);
3429		hotplug |= tc_hotplug_enable_mask;
3430		I915_WRITE(SHOTPLUG_CTL_TC, hotplug);
3431	}
3432}
3433
3434static void icp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3435{
3436	u32 hotplug_irqs, enabled_irqs;
3437
3438	hotplug_irqs = SDE_DDI_MASK_ICP | SDE_TC_MASK_ICP;
3439	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_icp);
3440
3441	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3442
3443	icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3444				ICP_TC_HPD_ENABLE_MASK);
3445}
3446
3447static void mcc_hpd_irq_setup(struct drm_i915_private *dev_priv)
3448{
3449	u32 hotplug_irqs, enabled_irqs;
3450
3451	hotplug_irqs = SDE_DDI_MASK_TGP;
3452	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_mcc);
3453
3454	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3455
3456	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3457}
3458
3459static void tgp_hpd_irq_setup(struct drm_i915_private *dev_priv)
3460{
3461	u32 hotplug_irqs, enabled_irqs;
3462
3463	hotplug_irqs = SDE_DDI_MASK_TGP | SDE_TC_MASK_TGP;
3464	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_tgp);
3465
3466	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3467
3468	icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3469				TGP_TC_HPD_ENABLE_MASK);
3470}
3471
3472static void gen11_hpd_detection_setup(struct drm_i915_private *dev_priv)
3473{
3474	u32 hotplug;
3475
3476	hotplug = I915_READ(GEN11_TC_HOTPLUG_CTL);
3477	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3478		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3479		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3480		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3481	I915_WRITE(GEN11_TC_HOTPLUG_CTL, hotplug);
3482
3483	hotplug = I915_READ(GEN11_TBT_HOTPLUG_CTL);
3484	hotplug |= GEN11_HOTPLUG_CTL_ENABLE(PORT_TC1) |
3485		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC2) |
3486		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC3) |
3487		   GEN11_HOTPLUG_CTL_ENABLE(PORT_TC4);
3488	I915_WRITE(GEN11_TBT_HOTPLUG_CTL, hotplug);
3489}
3490
3491static void gen11_hpd_irq_setup(struct drm_i915_private *dev_priv)
3492{
3493	u32 hotplug_irqs, enabled_irqs;
3494	const u32 *hpd;
3495	u32 val;
3496
3497	hpd = INTEL_GEN(dev_priv) >= 12 ? hpd_gen12 : hpd_gen11;
3498	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd);
3499	hotplug_irqs = GEN11_DE_TC_HOTPLUG_MASK | GEN11_DE_TBT_HOTPLUG_MASK;
3500
3501	val = I915_READ(GEN11_DE_HPD_IMR);
3502	val &= ~hotplug_irqs;
3503	I915_WRITE(GEN11_DE_HPD_IMR, val);
3504	POSTING_READ(GEN11_DE_HPD_IMR);
3505
3506	gen11_hpd_detection_setup(dev_priv);
3507
3508	if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP)
3509		tgp_hpd_irq_setup(dev_priv);
3510	else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3511		icp_hpd_irq_setup(dev_priv);
3512}
3513
3514static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3515{
3516	u32 val, hotplug;
3517
3518	/* Display WA #1179 WaHardHangonHotPlug: cnp */
3519	if (HAS_PCH_CNP(dev_priv)) {
3520		val = I915_READ(SOUTH_CHICKEN1);
3521		val &= ~CHASSIS_CLK_REQ_DURATION_MASK;
3522		val |= CHASSIS_CLK_REQ_DURATION(0xf);
3523		I915_WRITE(SOUTH_CHICKEN1, val);
3524	}
3525
3526	/* Enable digital hotplug on the PCH */
3527	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3528	hotplug |= PORTA_HOTPLUG_ENABLE |
3529		   PORTB_HOTPLUG_ENABLE |
3530		   PORTC_HOTPLUG_ENABLE |
3531		   PORTD_HOTPLUG_ENABLE;
3532	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3533
3534	hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3535	hotplug |= PORTE_HOTPLUG_ENABLE;
3536	I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3537}
3538
3539static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3540{
3541	u32 hotplug_irqs, enabled_irqs;
3542
3543	hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3544	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3545
3546	ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3547
3548	spt_hpd_detection_setup(dev_priv);
3549}
3550
3551static void ilk_hpd_detection_setup(struct drm_i915_private *dev_priv)
3552{
3553	u32 hotplug;
 
3554
3555	/*
3556	 * Enable digital hotplug on the CPU, and configure the DP short pulse
3557	 * duration to 2ms (which is the minimum in the Display Port spec)
3558	 * The pulse duration bits are reserved on HSW+.
3559	 */
3560	hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3561	hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3562	hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE |
3563		   DIGITAL_PORTA_PULSE_DURATION_2ms;
3564	I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3565}
3566
3567static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3568{
3569	u32 hotplug_irqs, enabled_irqs;
3570
3571	if (INTEL_GEN(dev_priv) >= 8) {
3572		hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3573		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3574
3575		bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3576	} else if (INTEL_GEN(dev_priv) >= 7) {
3577		hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3578		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3579
3580		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3581	} else {
3582		hotplug_irqs = DE_DP_A_HOTPLUG;
3583		enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3584
3585		ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3586	}
3587
3588	ilk_hpd_detection_setup(dev_priv);
3589
3590	ibx_hpd_irq_setup(dev_priv);
3591}
3592
3593static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3594				      u32 enabled_irqs)
3595{
3596	u32 hotplug;
3597
3598	hotplug = I915_READ(PCH_PORT_HOTPLUG);
3599	hotplug |= PORTA_HOTPLUG_ENABLE |
3600		   PORTB_HOTPLUG_ENABLE |
3601		   PORTC_HOTPLUG_ENABLE;
3602
3603	DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3604		      hotplug, enabled_irqs);
3605	hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3606
3607	/*
3608	 * For BXT invert bit has to be set based on AOB design
3609	 * for HPD detection logic, update it based on VBT fields.
 
3610	 */
3611	if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3612	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3613		hotplug |= BXT_DDIA_HPD_INVERT;
3614	if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3615	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3616		hotplug |= BXT_DDIB_HPD_INVERT;
3617	if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3618	    intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3619		hotplug |= BXT_DDIC_HPD_INVERT;
3620
3621	I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3622}
3623
3624static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3625{
3626	__bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3627}
3628
3629static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3630{
3631	u32 hotplug_irqs, enabled_irqs;
3632
3633	enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3634	hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3635
3636	bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3637
3638	__bxt_hpd_detection_setup(dev_priv, enabled_irqs);
 
 
 
3639}
3640
3641static void ibx_irq_postinstall(struct drm_i915_private *dev_priv)
3642{
 
3643	u32 mask;
3644
3645	if (HAS_PCH_NOP(dev_priv))
3646		return;
3647
3648	if (HAS_PCH_IBX(dev_priv))
3649		mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3650	else if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
3651		mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3652	else
3653		mask = SDE_GMBUS_CPT;
3654
3655	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3656	I915_WRITE(SDEIMR, ~mask);
 
 
 
 
 
 
3657
3658	if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3659	    HAS_PCH_LPT(dev_priv))
3660		ibx_hpd_detection_setup(dev_priv);
3661	else
3662		spt_hpd_detection_setup(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3663}
3664
3665static void ironlake_irq_postinstall(struct drm_i915_private *dev_priv)
3666{
3667	struct intel_uncore *uncore = &dev_priv->uncore;
3668	u32 display_mask, extra_mask;
3669
3670	if (INTEL_GEN(dev_priv) >= 7) {
3671		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3672				DE_PCH_EVENT_IVB | DE_AUX_CHANNEL_A_IVB);
 
 
3673		extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3674			      DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3675			      DE_DP_A_HOTPLUG_IVB);
3676	} else {
3677		display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3678				DE_AUX_CHANNEL_A | DE_PIPEB_CRC_DONE |
3679				DE_PIPEA_CRC_DONE | DE_POISON);
 
 
3680		extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3681			      DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3682			      DE_DP_A_HOTPLUG);
3683	}
3684
3685	if (IS_HASWELL(dev_priv)) {
3686		gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3687		intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3688		display_mask |= DE_EDP_PSR_INT_HSW;
3689	}
3690
3691	dev_priv->irq_mask = ~display_mask;
3692
3693	ibx_irq_pre_postinstall(dev_priv);
3694
3695	GEN3_IRQ_INIT(uncore, DE, dev_priv->irq_mask,
3696		      display_mask | extra_mask);
3697
3698	gen5_gt_irq_postinstall(&dev_priv->gt);
3699
3700	ilk_hpd_detection_setup(dev_priv);
3701
3702	ibx_irq_postinstall(dev_priv);
3703
3704	if (IS_IRONLAKE_M(dev_priv)) {
3705		/* Enable PCU event interrupts
3706		 *
3707		 * spinlocking not required here for correctness since interrupt
3708		 * setup is guaranteed to run in single-threaded context. But we
3709		 * need it to make the assert_spin_locked happy. */
3710		spin_lock_irq(&dev_priv->irq_lock);
3711		ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3712		spin_unlock_irq(&dev_priv->irq_lock);
3713	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3714}
3715
3716void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3717{
3718	lockdep_assert_held(&dev_priv->irq_lock);
3719
3720	if (dev_priv->display_irqs_enabled)
3721		return;
3722
3723	dev_priv->display_irqs_enabled = true;
3724
3725	if (intel_irqs_enabled(dev_priv)) {
3726		vlv_display_irq_reset(dev_priv);
3727		vlv_display_irq_postinstall(dev_priv);
3728	}
3729}
3730
3731void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3732{
3733	lockdep_assert_held(&dev_priv->irq_lock);
3734
3735	if (!dev_priv->display_irqs_enabled)
3736		return;
3737
3738	dev_priv->display_irqs_enabled = false;
3739
3740	if (intel_irqs_enabled(dev_priv))
3741		vlv_display_irq_reset(dev_priv);
3742}
3743
 
 
 
 
 
 
3744
3745static void valleyview_irq_postinstall(struct drm_i915_private *dev_priv)
3746{
3747	gen5_gt_irq_postinstall(&dev_priv->gt);
 
 
3748
 
 
3749	spin_lock_irq(&dev_priv->irq_lock);
3750	if (dev_priv->display_irqs_enabled)
3751		vlv_display_irq_postinstall(dev_priv);
3752	spin_unlock_irq(&dev_priv->irq_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3753
3754	I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3755	POSTING_READ(VLV_MASTER_IER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3756}
3757
3758static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3759{
3760	struct intel_uncore *uncore = &dev_priv->uncore;
3761
3762	u32 de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3763	u32 de_pipe_enables;
3764	u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3765	u32 de_port_enables;
3766	u32 de_misc_masked = GEN8_DE_EDP_PSR;
3767	enum pipe pipe;
3768
3769	if (INTEL_GEN(dev_priv) <= 10)
3770		de_misc_masked |= GEN8_DE_MISC_GSE;
3771
3772	if (INTEL_GEN(dev_priv) >= 9) {
3773		de_pipe_masked |= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3774		de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3775				  GEN9_AUX_CHANNEL_D;
3776		if (IS_GEN9_LP(dev_priv))
3777			de_port_masked |= BXT_DE_PORT_GMBUS;
3778	} else {
3779		de_pipe_masked |= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
 
3780	}
3781
3782	if (INTEL_GEN(dev_priv) >= 11)
3783		de_port_masked |= ICL_AUX_CHANNEL_E;
3784
3785	if (IS_CNL_WITH_PORT_F(dev_priv) || INTEL_GEN(dev_priv) >= 11)
3786		de_port_masked |= CNL_AUX_CHANNEL_F;
3787
3788	de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3789					   GEN8_PIPE_FIFO_UNDERRUN;
3790
3791	de_port_enables = de_port_masked;
3792	if (IS_GEN9_LP(dev_priv))
3793		de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3794	else if (IS_BROADWELL(dev_priv))
3795		de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3796
3797	gen3_assert_iir_is_zero(uncore, EDP_PSR_IIR);
3798	intel_psr_irq_control(dev_priv, dev_priv->psr.debug);
3799
3800	for_each_pipe(dev_priv, pipe) {
3801		dev_priv->de_irq_mask[pipe] = ~de_pipe_masked;
3802
 
3803		if (intel_display_power_is_enabled(dev_priv,
3804				POWER_DOMAIN_PIPE(pipe)))
3805			GEN8_IRQ_INIT_NDX(uncore, DE_PIPE, pipe,
3806					  dev_priv->de_irq_mask[pipe],
3807					  de_pipe_enables);
3808	}
3809
3810	GEN3_IRQ_INIT(uncore, GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3811	GEN3_IRQ_INIT(uncore, GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
 
 
 
 
 
 
 
 
 
 
 
 
 
3812
3813	if (INTEL_GEN(dev_priv) >= 11) {
3814		u32 de_hpd_masked = 0;
3815		u32 de_hpd_enables = GEN11_DE_TC_HOTPLUG_MASK |
3816				     GEN11_DE_TBT_HOTPLUG_MASK;
3817
3818		GEN3_IRQ_INIT(uncore, GEN11_DE_HPD_, ~de_hpd_masked,
3819			      de_hpd_enables);
3820		gen11_hpd_detection_setup(dev_priv);
3821	} else if (IS_GEN9_LP(dev_priv)) {
3822		bxt_hpd_detection_setup(dev_priv);
3823	} else if (IS_BROADWELL(dev_priv)) {
3824		ilk_hpd_detection_setup(dev_priv);
3825	}
3826}
3827
3828static void gen8_irq_postinstall(struct drm_i915_private *dev_priv)
3829{
3830	if (HAS_PCH_SPLIT(dev_priv))
3831		ibx_irq_pre_postinstall(dev_priv);
3832
3833	gen8_gt_irq_postinstall(&dev_priv->gt);
3834	gen8_de_irq_postinstall(dev_priv);
3835
3836	if (HAS_PCH_SPLIT(dev_priv))
3837		ibx_irq_postinstall(dev_priv);
3838
3839	gen8_master_intr_enable(dev_priv->uncore.regs);
 
 
 
3840}
3841
3842static void icp_irq_postinstall(struct drm_i915_private *dev_priv)
3843{
3844	u32 mask = SDE_GMBUS_ICP;
3845
3846	WARN_ON(I915_READ(SDEIER) != 0);
3847	I915_WRITE(SDEIER, 0xffffffff);
3848	POSTING_READ(SDEIER);
 
 
 
 
 
 
 
 
 
 
 
3849
3850	gen3_assert_iir_is_zero(&dev_priv->uncore, SDEIIR);
3851	I915_WRITE(SDEIMR, ~mask);
3852
3853	if (HAS_PCH_TGP(dev_priv))
3854		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK,
3855					TGP_TC_HPD_ENABLE_MASK);
3856	else if (HAS_PCH_MCC(dev_priv))
3857		icp_hpd_detection_setup(dev_priv, TGP_DDI_HPD_ENABLE_MASK, 0);
3858	else
3859		icp_hpd_detection_setup(dev_priv, ICP_DDI_HPD_ENABLE_MASK,
3860					ICP_TC_HPD_ENABLE_MASK);
3861}
3862
3863static void gen11_irq_postinstall(struct drm_i915_private *dev_priv)
3864{
3865	struct intel_uncore *uncore = &dev_priv->uncore;
3866	u32 gu_misc_masked = GEN11_GU_MISC_GSE;
3867
3868	if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
3869		icp_irq_postinstall(dev_priv);
3870
3871	gen11_gt_irq_postinstall(&dev_priv->gt);
3872	gen8_de_irq_postinstall(dev_priv);
3873
3874	GEN3_IRQ_INIT(uncore, GEN11_GU_MISC_, ~gu_misc_masked, gu_misc_masked);
3875
3876	I915_WRITE(GEN11_DISPLAY_INT_CTL, GEN11_DISPLAY_IRQ_ENABLE);
3877
3878	gen11_master_intr_enable(uncore->regs);
3879	POSTING_READ(GEN11_GFX_MSTR_IRQ);
3880}
3881
3882static void cherryview_irq_postinstall(struct drm_i915_private *dev_priv)
3883{
3884	gen8_gt_irq_postinstall(&dev_priv->gt);
3885
3886	spin_lock_irq(&dev_priv->irq_lock);
3887	if (dev_priv->display_irqs_enabled)
3888		vlv_display_irq_postinstall(dev_priv);
3889	spin_unlock_irq(&dev_priv->irq_lock);
3890
3891	I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3892	POSTING_READ(GEN8_MASTER_IRQ);
 
 
 
 
 
 
3893}
3894
3895static void i8xx_irq_reset(struct drm_i915_private *dev_priv)
3896{
3897	struct intel_uncore *uncore = &dev_priv->uncore;
3898
3899	i9xx_pipestat_irq_reset(dev_priv);
 
3900
3901	GEN2_IRQ_RESET(uncore);
3902}
3903
3904static void i8xx_irq_postinstall(struct drm_i915_private *dev_priv)
3905{
3906	struct intel_uncore *uncore = &dev_priv->uncore;
3907	u16 enable_mask;
3908
3909	intel_uncore_write16(uncore,
3910			     EMR,
3911			     ~(I915_ERROR_PAGE_TABLE |
3912			       I915_ERROR_MEMORY_REFRESH));
 
 
 
 
 
 
 
 
 
3913
3914	/* Unmask the interrupts that we always want on. */
3915	dev_priv->irq_mask =
3916		~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3917		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3918		  I915_MASTER_ERROR_INTERRUPT);
3919
3920	enable_mask =
3921		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3922		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3923		I915_MASTER_ERROR_INTERRUPT |
3924		I915_USER_INTERRUPT;
3925
3926	GEN2_IRQ_INIT(uncore, dev_priv->irq_mask, enable_mask);
3927
3928	/* Interrupt setup is already guaranteed to be single-threaded, this is
3929	 * just to make the assert_spin_locked check happy. */
3930	spin_lock_irq(&dev_priv->irq_lock);
3931	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3932	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3933	spin_unlock_irq(&dev_priv->irq_lock);
3934}
3935
3936static void i8xx_error_irq_ack(struct drm_i915_private *i915,
3937			       u16 *eir, u16 *eir_stuck)
3938{
3939	struct intel_uncore *uncore = &i915->uncore;
3940	u16 emr;
3941
3942	*eir = intel_uncore_read16(uncore, EIR);
3943
3944	if (*eir)
3945		intel_uncore_write16(uncore, EIR, *eir);
3946
3947	*eir_stuck = intel_uncore_read16(uncore, EIR);
3948	if (*eir_stuck == 0)
3949		return;
3950
3951	/*
3952	 * Toggle all EMR bits to make sure we get an edge
3953	 * in the ISR master error bit if we don't clear
3954	 * all the EIR bits. Otherwise the edge triggered
3955	 * IIR on i965/g4x wouldn't notice that an interrupt
3956	 * is still pending. Also some EIR bits can't be
3957	 * cleared except by handling the underlying error
3958	 * (or by a GPU reset) so we mask any bit that
3959	 * remains set.
3960	 */
3961	emr = intel_uncore_read16(uncore, EMR);
3962	intel_uncore_write16(uncore, EMR, 0xffff);
3963	intel_uncore_write16(uncore, EMR, emr | *eir_stuck);
3964}
3965
3966static void i8xx_error_irq_handler(struct drm_i915_private *dev_priv,
3967				   u16 eir, u16 eir_stuck)
 
 
 
3968{
3969	DRM_DEBUG("Master Error: EIR 0x%04x\n", eir);
 
3970
3971	if (eir_stuck)
3972		DRM_DEBUG_DRIVER("EIR stuck: 0x%04x, masked\n", eir_stuck);
3973}
3974
3975static void i9xx_error_irq_ack(struct drm_i915_private *dev_priv,
3976			       u32 *eir, u32 *eir_stuck)
3977{
3978	u32 emr;
3979
3980	*eir = I915_READ(EIR);
3981
3982	I915_WRITE(EIR, *eir);
3983
3984	*eir_stuck = I915_READ(EIR);
3985	if (*eir_stuck == 0)
3986		return;
3987
3988	/*
3989	 * Toggle all EMR bits to make sure we get an edge
3990	 * in the ISR master error bit if we don't clear
3991	 * all the EIR bits. Otherwise the edge triggered
3992	 * IIR on i965/g4x wouldn't notice that an interrupt
3993	 * is still pending. Also some EIR bits can't be
3994	 * cleared except by handling the underlying error
3995	 * (or by a GPU reset) so we mask any bit that
3996	 * remains set.
3997	 */
3998	emr = I915_READ(EMR);
3999	I915_WRITE(EMR, 0xffffffff);
4000	I915_WRITE(EMR, emr | *eir_stuck);
4001}
4002
4003static void i9xx_error_irq_handler(struct drm_i915_private *dev_priv,
4004				   u32 eir, u32 eir_stuck)
4005{
4006	DRM_DEBUG("Master Error, EIR 0x%08x\n", eir);
4007
4008	if (eir_stuck)
4009		DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masked\n", eir_stuck);
 
4010}
4011
4012static irqreturn_t i8xx_irq_handler(int irq, void *arg)
4013{
4014	struct drm_i915_private *dev_priv = arg;
4015	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
 
4016
4017	if (!intel_irqs_enabled(dev_priv))
4018		return IRQ_NONE;
4019
4020	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4021	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4022
4023	do {
4024		u32 pipe_stats[I915_MAX_PIPES] = {};
4025		u16 eir = 0, eir_stuck = 0;
4026		u16 iir;
4027
4028		iir = intel_uncore_read16(&dev_priv->uncore, GEN2_IIR);
4029		if (iir == 0)
4030			break;
 
 
 
 
 
 
 
 
 
 
4031
4032		ret = IRQ_HANDLED;
 
 
 
 
 
 
4033
4034		/* Call regardless, as some status bits might not be
4035		 * signalled in iir */
4036		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
4037
4038		if (iir & I915_MASTER_ERROR_INTERRUPT)
4039			i8xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4040
4041		intel_uncore_write16(&dev_priv->uncore, GEN2_IIR, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4042
4043		if (iir & I915_USER_INTERRUPT)
4044			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
 
4045
4046		if (iir & I915_MASTER_ERROR_INTERRUPT)
4047			i8xx_error_irq_handler(dev_priv, eir, eir_stuck);
4048
4049		i8xx_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4050	} while (0);
4051
4052	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
4053
4054	return ret;
 
 
 
 
 
 
 
4055}
4056
4057static void i915_irq_reset(struct drm_i915_private *dev_priv)
4058{
4059	struct intel_uncore *uncore = &dev_priv->uncore;
 
4060
4061	if (I915_HAS_HOTPLUG(dev_priv)) {
4062		i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4063		I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4064	}
4065
4066	i9xx_pipestat_irq_reset(dev_priv);
4067
4068	GEN3_IRQ_RESET(uncore, GEN2_);
 
 
 
4069}
4070
4071static void i915_irq_postinstall(struct drm_i915_private *dev_priv)
4072{
4073	struct intel_uncore *uncore = &dev_priv->uncore;
4074	u32 enable_mask;
4075
4076	I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE |
4077			  I915_ERROR_MEMORY_REFRESH));
4078
4079	/* Unmask the interrupts that we always want on. */
4080	dev_priv->irq_mask =
4081		~(I915_ASLE_INTERRUPT |
4082		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4083		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4084		  I915_MASTER_ERROR_INTERRUPT);
 
4085
4086	enable_mask =
4087		I915_ASLE_INTERRUPT |
4088		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4089		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4090		I915_MASTER_ERROR_INTERRUPT |
4091		I915_USER_INTERRUPT;
4092
4093	if (I915_HAS_HOTPLUG(dev_priv)) {
 
 
 
4094		/* Enable in IER... */
4095		enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
4096		/* and unmask in IMR */
4097		dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
4098	}
4099
4100	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
 
 
 
 
4101
4102	/* Interrupt setup is already guaranteed to be single-threaded, this is
4103	 * just to make the assert_spin_locked check happy. */
4104	spin_lock_irq(&dev_priv->irq_lock);
4105	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4106	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4107	spin_unlock_irq(&dev_priv->irq_lock);
4108
4109	i915_enable_asle_pipestat(dev_priv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4110}
4111
4112static irqreturn_t i915_irq_handler(int irq, void *arg)
4113{
4114	struct drm_i915_private *dev_priv = arg;
4115	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
4116
4117	if (!intel_irqs_enabled(dev_priv))
4118		return IRQ_NONE;
4119
4120	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4121	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4122
 
4123	do {
4124		u32 pipe_stats[I915_MAX_PIPES] = {};
4125		u32 eir = 0, eir_stuck = 0;
4126		u32 hotplug_status = 0;
4127		u32 iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4128
4129		iir = I915_READ(GEN2_IIR);
4130		if (iir == 0)
4131			break;
4132
4133		ret = IRQ_HANDLED;
 
 
 
 
 
 
4134
4135		if (I915_HAS_HOTPLUG(dev_priv) &&
4136		    iir & I915_DISPLAY_PORT_INTERRUPT)
4137			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4138
4139		/* Call regardless, as some status bits might not be
4140		 * signalled in iir */
4141		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4142
4143		if (iir & I915_MASTER_ERROR_INTERRUPT)
4144			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
4145
4146		I915_WRITE(GEN2_IIR, iir);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4147
4148		if (iir & I915_USER_INTERRUPT)
4149			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4150
4151		if (iir & I915_MASTER_ERROR_INTERRUPT)
4152			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4153
4154		if (hotplug_status)
4155			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
 
 
4156
4157		i915_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4158	} while (0);
 
 
4159
4160	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
 
 
 
 
 
4161
4162	return ret;
4163}
4164
4165static void i965_irq_reset(struct drm_i915_private *dev_priv)
4166{
4167	struct intel_uncore *uncore = &dev_priv->uncore;
 
4168
4169	i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4170	I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4171
4172	i9xx_pipestat_irq_reset(dev_priv);
4173
4174	GEN3_IRQ_RESET(uncore, GEN2_);
 
 
 
4175}
4176
4177static void i965_irq_postinstall(struct drm_i915_private *dev_priv)
4178{
4179	struct intel_uncore *uncore = &dev_priv->uncore;
4180	u32 enable_mask;
4181	u32 error_mask;
4182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4183	/*
4184	 * Enable some error detection, note the instruction error mask
4185	 * bit is reserved, so we leave it masked.
4186	 */
4187	if (IS_G4X(dev_priv)) {
4188		error_mask = ~(GM45_ERROR_PAGE_TABLE |
4189			       GM45_ERROR_MEM_PRIV |
4190			       GM45_ERROR_CP_PRIV |
4191			       I915_ERROR_MEMORY_REFRESH);
4192	} else {
4193		error_mask = ~(I915_ERROR_PAGE_TABLE |
4194			       I915_ERROR_MEMORY_REFRESH);
4195	}
4196	I915_WRITE(EMR, error_mask);
4197
4198	/* Unmask the interrupts that we always want on. */
4199	dev_priv->irq_mask =
4200		~(I915_ASLE_INTERRUPT |
4201		  I915_DISPLAY_PORT_INTERRUPT |
4202		  I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4203		  I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4204		  I915_MASTER_ERROR_INTERRUPT);
4205
4206	enable_mask =
4207		I915_ASLE_INTERRUPT |
4208		I915_DISPLAY_PORT_INTERRUPT |
4209		I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
4210		I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
4211		I915_MASTER_ERROR_INTERRUPT |
4212		I915_USER_INTERRUPT;
4213
4214	if (IS_G4X(dev_priv))
4215		enable_mask |= I915_BSD_USER_INTERRUPT;
4216
4217	GEN3_IRQ_INIT(uncore, GEN2_, dev_priv->irq_mask, enable_mask);
4218
4219	/* Interrupt setup is already guaranteed to be single-threaded, this is
4220	 * just to make the assert_spin_locked check happy. */
4221	spin_lock_irq(&dev_priv->irq_lock);
4222	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4223	i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4224	i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4225	spin_unlock_irq(&dev_priv->irq_lock);
4226
4227	i915_enable_asle_pipestat(dev_priv);
4228}
4229
4230static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4231{
 
4232	u32 hotplug_en;
4233
4234	lockdep_assert_held(&dev_priv->irq_lock);
4235
4236	/* Note HDMI and DP share hotplug bits */
4237	/* enable bits are the same for all generations */
4238	hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4239	/* Programming the CRT detection parameters tends
4240	   to generate a spurious hotplug event about three
4241	   seconds later.  So just do it once.
4242	*/
4243	if (IS_G4X(dev_priv))
4244		hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4245	hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4246
4247	/* Ignore TV since it's buggy */
4248	i915_hotplug_interrupt_update_locked(dev_priv,
4249					     HOTPLUG_INT_EN_MASK |
4250					     CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4251					     CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4252					     hotplug_en);
4253}
4254
4255static irqreturn_t i965_irq_handler(int irq, void *arg)
4256{
4257	struct drm_i915_private *dev_priv = arg;
4258	irqreturn_t ret = IRQ_NONE;
 
 
 
 
 
 
4259
4260	if (!intel_irqs_enabled(dev_priv))
4261		return IRQ_NONE;
4262
4263	/* IRQs are synced during runtime_suspend, we don't require a wakeref */
4264	disable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
 
 
4265
4266	do {
4267		u32 pipe_stats[I915_MAX_PIPES] = {};
4268		u32 eir = 0, eir_stuck = 0;
4269		u32 hotplug_status = 0;
4270		u32 iir;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4271
4272		iir = I915_READ(GEN2_IIR);
4273		if (iir == 0)
4274			break;
4275
4276		ret = IRQ_HANDLED;
4277
 
4278		if (iir & I915_DISPLAY_PORT_INTERRUPT)
4279			hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4280
4281		/* Call regardless, as some status bits might not be
4282		 * signalled in iir */
4283		i9xx_pipestat_irq_ack(dev_priv, iir, pipe_stats);
 
 
 
 
4284
4285		if (iir & I915_MASTER_ERROR_INTERRUPT)
4286			i9xx_error_irq_ack(dev_priv, &eir, &eir_stuck);
 
 
4287
4288		I915_WRITE(GEN2_IIR, iir);
 
4289
4290		if (iir & I915_USER_INTERRUPT)
4291			intel_engine_breadcrumbs_irq(dev_priv->engine[RCS0]);
4292
4293		if (iir & I915_BSD_USER_INTERRUPT)
4294			intel_engine_breadcrumbs_irq(dev_priv->engine[VCS0]);
 
4295
4296		if (iir & I915_MASTER_ERROR_INTERRUPT)
4297			i9xx_error_irq_handler(dev_priv, eir, eir_stuck);
4298
4299		if (hotplug_status)
4300			i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4301
4302		i965_pipestat_irq_handler(dev_priv, iir, pipe_stats);
4303	} while (0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4304
4305	enable_rpm_wakeref_asserts(&dev_priv->runtime_pm);
4306
4307	return ret;
4308}
4309
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4310/**
4311 * intel_irq_init - initializes irq support
4312 * @dev_priv: i915 device instance
4313 *
4314 * This function initializes all the irq support including work items, timers
4315 * and all the vtables. It does not setup the interrupt itself though.
4316 */
4317void intel_irq_init(struct drm_i915_private *dev_priv)
4318{
4319	struct drm_device *dev = &dev_priv->drm;
4320	struct intel_rps *rps = &dev_priv->gt_pm.rps;
4321	int i;
4322
4323	if (IS_I945GM(dev_priv))
4324		i945gm_vblank_work_init(dev_priv);
4325
4326	intel_hpd_init_work(dev_priv);
4327
4328	INIT_WORK(&rps->work, gen6_pm_rps_work);
4329
4330	INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4331	for (i = 0; i < MAX_L3_SLICES; ++i)
4332		dev_priv->l3_parity.remap_info[i] = NULL;
4333
4334	/* pre-gen11 the guc irqs bits are in the upper 16 bits of the pm reg */
4335	if (HAS_GT_UC(dev_priv) && INTEL_GEN(dev_priv) < 11)
4336		dev_priv->gt.pm_guc_events = GUC_INTR_GUC2HOST << 16;
4337
4338	/* Let's track the enabled rps events */
4339	if (IS_VALLEYVIEW(dev_priv))
4340		/* WaGsvRC0ResidencyMethod:vlv */
4341		dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4342	else
4343		dev_priv->pm_rps_events = (GEN6_PM_RP_UP_THRESHOLD |
4344					   GEN6_PM_RP_DOWN_THRESHOLD |
4345					   GEN6_PM_RP_DOWN_TIMEOUT);
4346
4347	/* We share the register with other engine */
4348	if (INTEL_GEN(dev_priv) > 9)
4349		GEM_WARN_ON(dev_priv->pm_rps_events & 0xffff0000);
4350
4351	rps->pm_intrmsk_mbz = 0;
 
4352
4353	/*
4354	 * SNB,IVB,HSW can while VLV,CHV may hard hang on looping batchbuffer
4355	 * if GEN6_PM_UP_EI_EXPIRED is masked.
4356	 *
4357	 * TODO: verify if this can be reproduced on VLV,CHV.
4358	 */
4359	if (INTEL_GEN(dev_priv) <= 7)
4360		rps->pm_intrmsk_mbz |= GEN6_PM_RP_UP_EI_EXPIRED;
4361
4362	if (INTEL_GEN(dev_priv) >= 8)
4363		rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
 
 
 
 
 
 
 
 
4364
4365	dev->vblank_disable_immediate = true;
4366
4367	/* Most platforms treat the display irq block as an always-on
4368	 * power domain. vlv/chv can disable it at runtime and need
4369	 * special care to avoid writing any of the display block registers
4370	 * outside of the power domain. We defer setting up the display irqs
4371	 * in this case to the runtime pm.
4372	 */
4373	dev_priv->display_irqs_enabled = true;
4374	if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4375		dev_priv->display_irqs_enabled = false;
4376
4377	dev_priv->hotplug.hpd_storm_threshold = HPD_STORM_DEFAULT_THRESHOLD;
4378	/* If we have MST support, we want to avoid doing short HPD IRQ storm
4379	 * detection, as short HPD storms will occur as a natural part of
4380	 * sideband messaging with MST.
4381	 * On older platforms however, IRQ storms can occur with both long and
4382	 * short pulses, as seen on some G4x systems.
4383	 */
4384	dev_priv->hotplug.hpd_short_storm_enabled = !HAS_DP_MST(dev_priv);
4385
4386	if (HAS_GMCH(dev_priv)) {
4387		if (I915_HAS_HOTPLUG(dev_priv))
4388			dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4389	} else {
4390		if (HAS_PCH_MCC(dev_priv))
4391			/* EHL doesn't need most of gen11_hpd_irq_setup */
4392			dev_priv->display.hpd_irq_setup = mcc_hpd_irq_setup;
4393		else if (INTEL_GEN(dev_priv) >= 11)
4394			dev_priv->display.hpd_irq_setup = gen11_hpd_irq_setup;
4395		else if (IS_GEN9_LP(dev_priv))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4396			dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4397		else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
4398			dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4399		else
4400			dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4401	}
4402}
4403
4404/**
4405 * intel_irq_fini - deinitializes IRQ support
4406 * @i915: i915 device instance
4407 *
4408 * This function deinitializes all the IRQ support.
4409 */
4410void intel_irq_fini(struct drm_i915_private *i915)
4411{
4412	int i;
4413
4414	if (IS_I945GM(i915))
4415		i945gm_vblank_work_fini(i915);
4416
4417	for (i = 0; i < MAX_L3_SLICES; ++i)
4418		kfree(i915->l3_parity.remap_info[i]);
4419}
4420
4421static irq_handler_t intel_irq_handler(struct drm_i915_private *dev_priv)
4422{
4423	if (HAS_GMCH(dev_priv)) {
4424		if (IS_CHERRYVIEW(dev_priv))
4425			return cherryview_irq_handler;
4426		else if (IS_VALLEYVIEW(dev_priv))
4427			return valleyview_irq_handler;
4428		else if (IS_GEN(dev_priv, 4))
4429			return i965_irq_handler;
4430		else if (IS_GEN(dev_priv, 3))
4431			return i915_irq_handler;
4432		else
4433			return i8xx_irq_handler;
4434	} else {
4435		if (INTEL_GEN(dev_priv) >= 11)
4436			return gen11_irq_handler;
4437		else if (INTEL_GEN(dev_priv) >= 8)
4438			return gen8_irq_handler;
4439		else
4440			return ironlake_irq_handler;
4441	}
4442}
4443
4444static void intel_irq_reset(struct drm_i915_private *dev_priv)
4445{
4446	if (HAS_GMCH(dev_priv)) {
4447		if (IS_CHERRYVIEW(dev_priv))
4448			cherryview_irq_reset(dev_priv);
4449		else if (IS_VALLEYVIEW(dev_priv))
4450			valleyview_irq_reset(dev_priv);
4451		else if (IS_GEN(dev_priv, 4))
4452			i965_irq_reset(dev_priv);
4453		else if (IS_GEN(dev_priv, 3))
4454			i915_irq_reset(dev_priv);
4455		else
4456			i8xx_irq_reset(dev_priv);
4457	} else {
4458		if (INTEL_GEN(dev_priv) >= 11)
4459			gen11_irq_reset(dev_priv);
4460		else if (INTEL_GEN(dev_priv) >= 8)
4461			gen8_irq_reset(dev_priv);
4462		else
4463			ironlake_irq_reset(dev_priv);
4464	}
4465}
4466
4467static void intel_irq_postinstall(struct drm_i915_private *dev_priv)
4468{
4469	if (HAS_GMCH(dev_priv)) {
4470		if (IS_CHERRYVIEW(dev_priv))
4471			cherryview_irq_postinstall(dev_priv);
4472		else if (IS_VALLEYVIEW(dev_priv))
4473			valleyview_irq_postinstall(dev_priv);
4474		else if (IS_GEN(dev_priv, 4))
4475			i965_irq_postinstall(dev_priv);
4476		else if (IS_GEN(dev_priv, 3))
4477			i915_irq_postinstall(dev_priv);
4478		else
4479			i8xx_irq_postinstall(dev_priv);
4480	} else {
4481		if (INTEL_GEN(dev_priv) >= 11)
4482			gen11_irq_postinstall(dev_priv);
4483		else if (INTEL_GEN(dev_priv) >= 8)
4484			gen8_irq_postinstall(dev_priv);
4485		else
4486			ironlake_irq_postinstall(dev_priv);
4487	}
4488}
4489
4490/**
4491 * intel_irq_install - enables the hardware interrupt
4492 * @dev_priv: i915 device instance
4493 *
4494 * This function enables the hardware interrupt handling, but leaves the hotplug
4495 * handling still disabled. It is called after intel_irq_init().
4496 *
4497 * In the driver load and resume code we need working interrupts in a few places
4498 * but don't want to deal with the hassle of concurrent probe and hotplug
4499 * workers. Hence the split into this two-stage approach.
4500 */
4501int intel_irq_install(struct drm_i915_private *dev_priv)
4502{
4503	int irq = dev_priv->drm.pdev->irq;
4504	int ret;
4505
4506	/*
4507	 * We enable some interrupt sources in our postinstall hooks, so mark
4508	 * interrupts as enabled _before_ actually enabling them to avoid
4509	 * special cases in our ordering checks.
4510	 */
4511	dev_priv->runtime_pm.irqs_enabled = true;
4512
4513	dev_priv->drm.irq_enabled = true;
4514
4515	intel_irq_reset(dev_priv);
4516
4517	ret = request_irq(irq, intel_irq_handler(dev_priv),
4518			  IRQF_SHARED, DRIVER_NAME, dev_priv);
4519	if (ret < 0) {
4520		dev_priv->drm.irq_enabled = false;
4521		return ret;
4522	}
4523
4524	intel_irq_postinstall(dev_priv);
4525
4526	return ret;
4527}
4528
4529/**
4530 * intel_irq_uninstall - finilizes all irq handling
4531 * @dev_priv: i915 device instance
4532 *
4533 * This stops interrupt and hotplug handling and unregisters and frees all
4534 * resources acquired in the init functions.
4535 */
4536void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4537{
4538	int irq = dev_priv->drm.pdev->irq;
4539
4540	/*
4541	 * FIXME we can get called twice during driver load
4542	 * error handling due to intel_modeset_cleanup()
4543	 * calling us out of sequence. Would be nice if
4544	 * it didn't do that...
4545	 */
4546	if (!dev_priv->drm.irq_enabled)
4547		return;
4548
4549	dev_priv->drm.irq_enabled = false;
4550
4551	intel_irq_reset(dev_priv);
4552
4553	free_irq(irq, dev_priv);
4554
4555	intel_hpd_cancel_work(dev_priv);
4556	dev_priv->runtime_pm.irqs_enabled = false;
4557}
4558
4559/**
4560 * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4561 * @dev_priv: i915 device instance
4562 *
4563 * This function is used to disable interrupts at runtime, both in the runtime
4564 * pm and the system suspend/resume code.
4565 */
4566void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4567{
4568	intel_irq_reset(dev_priv);
4569	dev_priv->runtime_pm.irqs_enabled = false;
4570	intel_synchronize_irq(dev_priv);
4571}
4572
4573/**
4574 * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4575 * @dev_priv: i915 device instance
4576 *
4577 * This function is used to enable interrupts at runtime, both in the runtime
4578 * pm and the system suspend/resume code.
4579 */
4580void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4581{
4582	dev_priv->runtime_pm.irqs_enabled = true;
4583	intel_irq_reset(dev_priv);
4584	intel_irq_postinstall(dev_priv);
4585}
4586
4587bool intel_irqs_enabled(struct drm_i915_private *dev_priv)
4588{
4589	/*
4590	 * We only use drm_irq_uninstall() at unload and VT switch, so
4591	 * this is the only thing we need to check.
4592	 */
4593	return dev_priv->runtime_pm.irqs_enabled;
4594}
4595
4596void intel_synchronize_irq(struct drm_i915_private *i915)
4597{
4598	synchronize_irq(i915->drm.pdev->irq);
4599}