Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * AArch64 loadable module support.
  3 *
  4 * Copyright (C) 2012 ARM Limited
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * Author: Will Deacon <will.deacon@arm.com>
 19 */
 20
 21#include <linux/bitops.h>
 22#include <linux/elf.h>
 23#include <linux/gfp.h>
 24#include <linux/kasan.h>
 25#include <linux/kernel.h>
 26#include <linux/mm.h>
 27#include <linux/moduleloader.h>
 28#include <linux/vmalloc.h>
 29#include <asm/alternative.h>
 30#include <asm/insn.h>
 31#include <asm/sections.h>
 32
 33void *module_alloc(unsigned long size)
 34{
 
 
 35	void *p;
 36
 
 
 
 
 
 
 
 
 37	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 38				module_alloc_base + MODULES_VSIZE,
 39				GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
 40				NUMA_NO_NODE, __builtin_return_address(0));
 41
 42	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 43	    !IS_ENABLED(CONFIG_KASAN))
 44		/*
 45		 * KASAN can only deal with module allocations being served
 46		 * from the reserved module region, since the remainder of
 47		 * the vmalloc region is already backed by zero shadow pages,
 48		 * and punching holes into it is non-trivial. Since the module
 49		 * region is not randomized when KASAN is enabled, it is even
 50		 * less likely that the module region gets exhausted, so we
 51		 * can simply omit this fallback in that case.
 52		 */
 53		p = __vmalloc_node_range(size, MODULE_ALIGN, VMALLOC_START,
 54				VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
 55				NUMA_NO_NODE, __builtin_return_address(0));
 
 56
 57	if (p && (kasan_module_alloc(p, size) < 0)) {
 58		vfree(p);
 59		return NULL;
 60	}
 61
 62	return p;
 63}
 64
 65enum aarch64_reloc_op {
 66	RELOC_OP_NONE,
 67	RELOC_OP_ABS,
 68	RELOC_OP_PREL,
 69	RELOC_OP_PAGE,
 70};
 71
 72static u64 do_reloc(enum aarch64_reloc_op reloc_op, void *place, u64 val)
 73{
 74	switch (reloc_op) {
 75	case RELOC_OP_ABS:
 76		return val;
 77	case RELOC_OP_PREL:
 78		return val - (u64)place;
 79	case RELOC_OP_PAGE:
 80		return (val & ~0xfff) - ((u64)place & ~0xfff);
 81	case RELOC_OP_NONE:
 82		return 0;
 83	}
 84
 85	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 86	return 0;
 87}
 88
 89static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 90{
 91	s64 sval = do_reloc(op, place, val);
 92
 
 
 
 
 
 
 
 
 
 
 
 
 93	switch (len) {
 94	case 16:
 95		*(s16 *)place = sval;
 96		if (sval < S16_MIN || sval > U16_MAX)
 97			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
 98		break;
 99	case 32:
100		*(s32 *)place = sval;
101		if (sval < S32_MIN || sval > U32_MAX)
102			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
103		break;
104	case 64:
105		*(s64 *)place = sval;
106		break;
107	default:
108		pr_err("Invalid length (%d) for data relocation\n", len);
109		return 0;
110	}
111	return 0;
112}
113
114enum aarch64_insn_movw_imm_type {
115	AARCH64_INSN_IMM_MOVNZ,
116	AARCH64_INSN_IMM_MOVKZ,
117};
118
119static int reloc_insn_movw(enum aarch64_reloc_op op, void *place, u64 val,
120			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
121{
122	u64 imm;
123	s64 sval;
124	u32 insn = le32_to_cpu(*(u32 *)place);
125
126	sval = do_reloc(op, place, val);
127	imm = sval >> lsb;
128
129	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
130		/*
131		 * For signed MOVW relocations, we have to manipulate the
132		 * instruction encoding depending on whether or not the
133		 * immediate is less than zero.
134		 */
135		insn &= ~(3 << 29);
136		if (sval >= 0) {
137			/* >=0: Set the instruction to MOVZ (opcode 10b). */
138			insn |= 2 << 29;
139		} else {
140			/*
141			 * <0: Set the instruction to MOVN (opcode 00b).
142			 *     Since we've masked the opcode already, we
143			 *     don't need to do anything other than
144			 *     inverting the new immediate field.
145			 */
146			imm = ~imm;
147		}
148	}
149
150	/* Update the instruction with the new encoding. */
151	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
152	*(u32 *)place = cpu_to_le32(insn);
153
154	if (imm > U16_MAX)
155		return -ERANGE;
156
157	return 0;
158}
159
160static int reloc_insn_imm(enum aarch64_reloc_op op, void *place, u64 val,
161			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
162{
163	u64 imm, imm_mask;
164	s64 sval;
165	u32 insn = le32_to_cpu(*(u32 *)place);
166
167	/* Calculate the relocation value. */
168	sval = do_reloc(op, place, val);
169	sval >>= lsb;
170
171	/* Extract the value bits and shift them to bit 0. */
172	imm_mask = (BIT(lsb + len) - 1) >> lsb;
173	imm = sval & imm_mask;
174
175	/* Update the instruction's immediate field. */
176	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
177	*(u32 *)place = cpu_to_le32(insn);
178
179	/*
180	 * Extract the upper value bits (including the sign bit) and
181	 * shift them to bit 0.
182	 */
183	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
184
185	/*
186	 * Overflow has occurred if the upper bits are not all equal to
187	 * the sign bit of the value.
188	 */
189	if ((u64)(sval + 1) >= 2)
190		return -ERANGE;
191
192	return 0;
193}
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195int apply_relocate_add(Elf64_Shdr *sechdrs,
196		       const char *strtab,
197		       unsigned int symindex,
198		       unsigned int relsec,
199		       struct module *me)
200{
201	unsigned int i;
202	int ovf;
203	bool overflow_check;
204	Elf64_Sym *sym;
205	void *loc;
206	u64 val;
207	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
208
209	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
210		/* loc corresponds to P in the AArch64 ELF document. */
211		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
212			+ rel[i].r_offset;
213
214		/* sym is the ELF symbol we're referring to. */
215		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
216			+ ELF64_R_SYM(rel[i].r_info);
217
218		/* val corresponds to (S + A) in the AArch64 ELF document. */
219		val = sym->st_value + rel[i].r_addend;
220
221		/* Check for overflow by default. */
222		overflow_check = true;
223
224		/* Perform the static relocation. */
225		switch (ELF64_R_TYPE(rel[i].r_info)) {
226		/* Null relocations. */
227		case R_ARM_NONE:
228		case R_AARCH64_NONE:
229			ovf = 0;
230			break;
231
232		/* Data relocations. */
233		case R_AARCH64_ABS64:
234			overflow_check = false;
235			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
236			break;
237		case R_AARCH64_ABS32:
238			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
239			break;
240		case R_AARCH64_ABS16:
241			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
242			break;
243		case R_AARCH64_PREL64:
244			overflow_check = false;
245			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
246			break;
247		case R_AARCH64_PREL32:
248			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
249			break;
250		case R_AARCH64_PREL16:
251			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
252			break;
253
254		/* MOVW instruction relocations. */
255		case R_AARCH64_MOVW_UABS_G0_NC:
256			overflow_check = false;
 
257		case R_AARCH64_MOVW_UABS_G0:
258			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
259					      AARCH64_INSN_IMM_MOVKZ);
260			break;
261		case R_AARCH64_MOVW_UABS_G1_NC:
262			overflow_check = false;
 
263		case R_AARCH64_MOVW_UABS_G1:
264			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
265					      AARCH64_INSN_IMM_MOVKZ);
266			break;
267		case R_AARCH64_MOVW_UABS_G2_NC:
268			overflow_check = false;
 
269		case R_AARCH64_MOVW_UABS_G2:
270			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
271					      AARCH64_INSN_IMM_MOVKZ);
272			break;
273		case R_AARCH64_MOVW_UABS_G3:
274			/* We're using the top bits so we can't overflow. */
275			overflow_check = false;
276			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
277					      AARCH64_INSN_IMM_MOVKZ);
278			break;
279		case R_AARCH64_MOVW_SABS_G0:
280			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
281					      AARCH64_INSN_IMM_MOVNZ);
282			break;
283		case R_AARCH64_MOVW_SABS_G1:
284			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
285					      AARCH64_INSN_IMM_MOVNZ);
286			break;
287		case R_AARCH64_MOVW_SABS_G2:
288			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
289					      AARCH64_INSN_IMM_MOVNZ);
290			break;
291		case R_AARCH64_MOVW_PREL_G0_NC:
292			overflow_check = false;
293			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
294					      AARCH64_INSN_IMM_MOVKZ);
295			break;
296		case R_AARCH64_MOVW_PREL_G0:
297			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
298					      AARCH64_INSN_IMM_MOVNZ);
299			break;
300		case R_AARCH64_MOVW_PREL_G1_NC:
301			overflow_check = false;
302			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
303					      AARCH64_INSN_IMM_MOVKZ);
304			break;
305		case R_AARCH64_MOVW_PREL_G1:
306			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
307					      AARCH64_INSN_IMM_MOVNZ);
308			break;
309		case R_AARCH64_MOVW_PREL_G2_NC:
310			overflow_check = false;
311			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
312					      AARCH64_INSN_IMM_MOVKZ);
313			break;
314		case R_AARCH64_MOVW_PREL_G2:
315			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
316					      AARCH64_INSN_IMM_MOVNZ);
317			break;
318		case R_AARCH64_MOVW_PREL_G3:
319			/* We're using the top bits so we can't overflow. */
320			overflow_check = false;
321			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
322					      AARCH64_INSN_IMM_MOVNZ);
323			break;
324
325		/* Immediate instruction relocations. */
326		case R_AARCH64_LD_PREL_LO19:
327			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
328					     AARCH64_INSN_IMM_19);
329			break;
330		case R_AARCH64_ADR_PREL_LO21:
331			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
332					     AARCH64_INSN_IMM_ADR);
333			break;
334#ifndef CONFIG_ARM64_ERRATUM_843419
335		case R_AARCH64_ADR_PREL_PG_HI21_NC:
336			overflow_check = false;
 
337		case R_AARCH64_ADR_PREL_PG_HI21:
338			ovf = reloc_insn_imm(RELOC_OP_PAGE, loc, val, 12, 21,
339					     AARCH64_INSN_IMM_ADR);
 
340			break;
341#endif
342		case R_AARCH64_ADD_ABS_LO12_NC:
343		case R_AARCH64_LDST8_ABS_LO12_NC:
344			overflow_check = false;
345			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
346					     AARCH64_INSN_IMM_12);
347			break;
348		case R_AARCH64_LDST16_ABS_LO12_NC:
349			overflow_check = false;
350			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
351					     AARCH64_INSN_IMM_12);
352			break;
353		case R_AARCH64_LDST32_ABS_LO12_NC:
354			overflow_check = false;
355			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
356					     AARCH64_INSN_IMM_12);
357			break;
358		case R_AARCH64_LDST64_ABS_LO12_NC:
359			overflow_check = false;
360			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
361					     AARCH64_INSN_IMM_12);
362			break;
363		case R_AARCH64_LDST128_ABS_LO12_NC:
364			overflow_check = false;
365			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
366					     AARCH64_INSN_IMM_12);
367			break;
368		case R_AARCH64_TSTBR14:
369			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
370					     AARCH64_INSN_IMM_14);
371			break;
372		case R_AARCH64_CONDBR19:
373			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
374					     AARCH64_INSN_IMM_19);
375			break;
376		case R_AARCH64_JUMP26:
377		case R_AARCH64_CALL26:
378			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
379					     AARCH64_INSN_IMM_26);
380
381			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
382			    ovf == -ERANGE) {
383				val = module_emit_plt_entry(me, &rel[i], sym);
 
 
384				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
385						     26, AARCH64_INSN_IMM_26);
386			}
387			break;
388
389		default:
390			pr_err("module %s: unsupported RELA relocation: %llu\n",
391			       me->name, ELF64_R_TYPE(rel[i].r_info));
392			return -ENOEXEC;
393		}
394
395		if (overflow_check && ovf == -ERANGE)
396			goto overflow;
397
398	}
399
400	return 0;
401
402overflow:
403	pr_err("module %s: overflow in relocation type %d val %Lx\n",
404	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
405	return -ENOEXEC;
406}
407
408int module_finalize(const Elf_Ehdr *hdr,
409		    const Elf_Shdr *sechdrs,
410		    struct module *me)
411{
412	const Elf_Shdr *s, *se;
413	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
414
415	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
416		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
417			apply_alternatives((void *)s->sh_addr, s->sh_size);
418			return 0;
419		}
 
 
 
420	}
421
422	return 0;
423}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AArch64 loadable module support.
  4 *
  5 * Copyright (C) 2012 ARM Limited
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Author: Will Deacon <will.deacon@arm.com>
  8 */
  9
 10#include <linux/bitops.h>
 11#include <linux/elf.h>
 12#include <linux/gfp.h>
 13#include <linux/kasan.h>
 14#include <linux/kernel.h>
 15#include <linux/mm.h>
 16#include <linux/moduleloader.h>
 17#include <linux/vmalloc.h>
 18#include <asm/alternative.h>
 19#include <asm/insn.h>
 20#include <asm/sections.h>
 21
 22void *module_alloc(unsigned long size)
 23{
 24	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
 25	gfp_t gfp_mask = GFP_KERNEL;
 26	void *p;
 27
 28	/* Silence the initial allocation */
 29	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
 30		gfp_mask |= __GFP_NOWARN;
 31
 32	if (IS_ENABLED(CONFIG_KASAN))
 33		/* don't exceed the static module region - see below */
 34		module_alloc_end = MODULES_END;
 35
 36	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 37				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
 
 38				NUMA_NO_NODE, __builtin_return_address(0));
 39
 40	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 41	    !IS_ENABLED(CONFIG_KASAN))
 42		/*
 43		 * KASAN can only deal with module allocations being served
 44		 * from the reserved module region, since the remainder of
 45		 * the vmalloc region is already backed by zero shadow pages,
 46		 * and punching holes into it is non-trivial. Since the module
 47		 * region is not randomized when KASAN is enabled, it is even
 48		 * less likely that the module region gets exhausted, so we
 49		 * can simply omit this fallback in that case.
 50		 */
 51		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 52				module_alloc_base + SZ_2G, GFP_KERNEL,
 53				PAGE_KERNEL, 0, NUMA_NO_NODE,
 54				__builtin_return_address(0));
 55
 56	if (p && (kasan_module_alloc(p, size) < 0)) {
 57		vfree(p);
 58		return NULL;
 59	}
 60
 61	return p;
 62}
 63
 64enum aarch64_reloc_op {
 65	RELOC_OP_NONE,
 66	RELOC_OP_ABS,
 67	RELOC_OP_PREL,
 68	RELOC_OP_PAGE,
 69};
 70
 71static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
 72{
 73	switch (reloc_op) {
 74	case RELOC_OP_ABS:
 75		return val;
 76	case RELOC_OP_PREL:
 77		return val - (u64)place;
 78	case RELOC_OP_PAGE:
 79		return (val & ~0xfff) - ((u64)place & ~0xfff);
 80	case RELOC_OP_NONE:
 81		return 0;
 82	}
 83
 84	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 85	return 0;
 86}
 87
 88static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 89{
 90	s64 sval = do_reloc(op, place, val);
 91
 92	/*
 93	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
 94	 * relative and absolute relocations as having a range of [-2^15, 2^16)
 95	 * or [-2^31, 2^32), respectively. However, in order to be able to
 96	 * detect overflows reliably, we have to choose whether we interpret
 97	 * such quantities as signed or as unsigned, and stick with it.
 98	 * The way we organize our address space requires a signed
 99	 * interpretation of 32-bit relative references, so let's use that
100	 * for all R_AARCH64_PRELxx relocations. This means our upper
101	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
102	 */
103
104	switch (len) {
105	case 16:
106		*(s16 *)place = sval;
107		switch (op) {
108		case RELOC_OP_ABS:
109			if (sval < 0 || sval > U16_MAX)
110				return -ERANGE;
111			break;
112		case RELOC_OP_PREL:
113			if (sval < S16_MIN || sval > S16_MAX)
114				return -ERANGE;
115			break;
116		default:
117			pr_err("Invalid 16-bit data relocation (%d)\n", op);
118			return 0;
119		}
120		break;
121	case 32:
122		*(s32 *)place = sval;
123		switch (op) {
124		case RELOC_OP_ABS:
125			if (sval < 0 || sval > U32_MAX)
126				return -ERANGE;
127			break;
128		case RELOC_OP_PREL:
129			if (sval < S32_MIN || sval > S32_MAX)
130				return -ERANGE;
131			break;
132		default:
133			pr_err("Invalid 32-bit data relocation (%d)\n", op);
134			return 0;
135		}
136		break;
137	case 64:
138		*(s64 *)place = sval;
139		break;
140	default:
141		pr_err("Invalid length (%d) for data relocation\n", len);
142		return 0;
143	}
144	return 0;
145}
146
147enum aarch64_insn_movw_imm_type {
148	AARCH64_INSN_IMM_MOVNZ,
149	AARCH64_INSN_IMM_MOVKZ,
150};
151
152static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
153			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
154{
155	u64 imm;
156	s64 sval;
157	u32 insn = le32_to_cpu(*place);
158
159	sval = do_reloc(op, place, val);
160	imm = sval >> lsb;
161
162	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
163		/*
164		 * For signed MOVW relocations, we have to manipulate the
165		 * instruction encoding depending on whether or not the
166		 * immediate is less than zero.
167		 */
168		insn &= ~(3 << 29);
169		if (sval >= 0) {
170			/* >=0: Set the instruction to MOVZ (opcode 10b). */
171			insn |= 2 << 29;
172		} else {
173			/*
174			 * <0: Set the instruction to MOVN (opcode 00b).
175			 *     Since we've masked the opcode already, we
176			 *     don't need to do anything other than
177			 *     inverting the new immediate field.
178			 */
179			imm = ~imm;
180		}
181	}
182
183	/* Update the instruction with the new encoding. */
184	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
185	*place = cpu_to_le32(insn);
186
187	if (imm > U16_MAX)
188		return -ERANGE;
189
190	return 0;
191}
192
193static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
194			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
195{
196	u64 imm, imm_mask;
197	s64 sval;
198	u32 insn = le32_to_cpu(*place);
199
200	/* Calculate the relocation value. */
201	sval = do_reloc(op, place, val);
202	sval >>= lsb;
203
204	/* Extract the value bits and shift them to bit 0. */
205	imm_mask = (BIT(lsb + len) - 1) >> lsb;
206	imm = sval & imm_mask;
207
208	/* Update the instruction's immediate field. */
209	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
210	*place = cpu_to_le32(insn);
211
212	/*
213	 * Extract the upper value bits (including the sign bit) and
214	 * shift them to bit 0.
215	 */
216	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
217
218	/*
219	 * Overflow has occurred if the upper bits are not all equal to
220	 * the sign bit of the value.
221	 */
222	if ((u64)(sval + 1) >= 2)
223		return -ERANGE;
224
225	return 0;
226}
227
228static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
229			   __le32 *place, u64 val)
230{
231	u32 insn;
232
233	if (!is_forbidden_offset_for_adrp(place))
234		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
235				      AARCH64_INSN_IMM_ADR);
236
237	/* patch ADRP to ADR if it is in range */
238	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
239			    AARCH64_INSN_IMM_ADR)) {
240		insn = le32_to_cpu(*place);
241		insn &= ~BIT(31);
242	} else {
243		/* out of range for ADR -> emit a veneer */
244		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
245		if (!val)
246			return -ENOEXEC;
247		insn = aarch64_insn_gen_branch_imm((u64)place, val,
248						   AARCH64_INSN_BRANCH_NOLINK);
249	}
250
251	*place = cpu_to_le32(insn);
252	return 0;
253}
254
255int apply_relocate_add(Elf64_Shdr *sechdrs,
256		       const char *strtab,
257		       unsigned int symindex,
258		       unsigned int relsec,
259		       struct module *me)
260{
261	unsigned int i;
262	int ovf;
263	bool overflow_check;
264	Elf64_Sym *sym;
265	void *loc;
266	u64 val;
267	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
268
269	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
270		/* loc corresponds to P in the AArch64 ELF document. */
271		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
272			+ rel[i].r_offset;
273
274		/* sym is the ELF symbol we're referring to. */
275		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
276			+ ELF64_R_SYM(rel[i].r_info);
277
278		/* val corresponds to (S + A) in the AArch64 ELF document. */
279		val = sym->st_value + rel[i].r_addend;
280
281		/* Check for overflow by default. */
282		overflow_check = true;
283
284		/* Perform the static relocation. */
285		switch (ELF64_R_TYPE(rel[i].r_info)) {
286		/* Null relocations. */
287		case R_ARM_NONE:
288		case R_AARCH64_NONE:
289			ovf = 0;
290			break;
291
292		/* Data relocations. */
293		case R_AARCH64_ABS64:
294			overflow_check = false;
295			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
296			break;
297		case R_AARCH64_ABS32:
298			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
299			break;
300		case R_AARCH64_ABS16:
301			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
302			break;
303		case R_AARCH64_PREL64:
304			overflow_check = false;
305			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
306			break;
307		case R_AARCH64_PREL32:
308			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
309			break;
310		case R_AARCH64_PREL16:
311			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
312			break;
313
314		/* MOVW instruction relocations. */
315		case R_AARCH64_MOVW_UABS_G0_NC:
316			overflow_check = false;
317			/* Fall through */
318		case R_AARCH64_MOVW_UABS_G0:
319			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
320					      AARCH64_INSN_IMM_MOVKZ);
321			break;
322		case R_AARCH64_MOVW_UABS_G1_NC:
323			overflow_check = false;
324			/* Fall through */
325		case R_AARCH64_MOVW_UABS_G1:
326			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
327					      AARCH64_INSN_IMM_MOVKZ);
328			break;
329		case R_AARCH64_MOVW_UABS_G2_NC:
330			overflow_check = false;
331			/* Fall through */
332		case R_AARCH64_MOVW_UABS_G2:
333			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
334					      AARCH64_INSN_IMM_MOVKZ);
335			break;
336		case R_AARCH64_MOVW_UABS_G3:
337			/* We're using the top bits so we can't overflow. */
338			overflow_check = false;
339			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
340					      AARCH64_INSN_IMM_MOVKZ);
341			break;
342		case R_AARCH64_MOVW_SABS_G0:
343			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
344					      AARCH64_INSN_IMM_MOVNZ);
345			break;
346		case R_AARCH64_MOVW_SABS_G1:
347			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
348					      AARCH64_INSN_IMM_MOVNZ);
349			break;
350		case R_AARCH64_MOVW_SABS_G2:
351			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
352					      AARCH64_INSN_IMM_MOVNZ);
353			break;
354		case R_AARCH64_MOVW_PREL_G0_NC:
355			overflow_check = false;
356			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
357					      AARCH64_INSN_IMM_MOVKZ);
358			break;
359		case R_AARCH64_MOVW_PREL_G0:
360			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
361					      AARCH64_INSN_IMM_MOVNZ);
362			break;
363		case R_AARCH64_MOVW_PREL_G1_NC:
364			overflow_check = false;
365			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
366					      AARCH64_INSN_IMM_MOVKZ);
367			break;
368		case R_AARCH64_MOVW_PREL_G1:
369			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
370					      AARCH64_INSN_IMM_MOVNZ);
371			break;
372		case R_AARCH64_MOVW_PREL_G2_NC:
373			overflow_check = false;
374			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
375					      AARCH64_INSN_IMM_MOVKZ);
376			break;
377		case R_AARCH64_MOVW_PREL_G2:
378			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
379					      AARCH64_INSN_IMM_MOVNZ);
380			break;
381		case R_AARCH64_MOVW_PREL_G3:
382			/* We're using the top bits so we can't overflow. */
383			overflow_check = false;
384			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
385					      AARCH64_INSN_IMM_MOVNZ);
386			break;
387
388		/* Immediate instruction relocations. */
389		case R_AARCH64_LD_PREL_LO19:
390			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
391					     AARCH64_INSN_IMM_19);
392			break;
393		case R_AARCH64_ADR_PREL_LO21:
394			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
395					     AARCH64_INSN_IMM_ADR);
396			break;
 
397		case R_AARCH64_ADR_PREL_PG_HI21_NC:
398			overflow_check = false;
399			/* Fall through */
400		case R_AARCH64_ADR_PREL_PG_HI21:
401			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
402			if (ovf && ovf != -ERANGE)
403				return ovf;
404			break;
 
405		case R_AARCH64_ADD_ABS_LO12_NC:
406		case R_AARCH64_LDST8_ABS_LO12_NC:
407			overflow_check = false;
408			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
409					     AARCH64_INSN_IMM_12);
410			break;
411		case R_AARCH64_LDST16_ABS_LO12_NC:
412			overflow_check = false;
413			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
414					     AARCH64_INSN_IMM_12);
415			break;
416		case R_AARCH64_LDST32_ABS_LO12_NC:
417			overflow_check = false;
418			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
419					     AARCH64_INSN_IMM_12);
420			break;
421		case R_AARCH64_LDST64_ABS_LO12_NC:
422			overflow_check = false;
423			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
424					     AARCH64_INSN_IMM_12);
425			break;
426		case R_AARCH64_LDST128_ABS_LO12_NC:
427			overflow_check = false;
428			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
429					     AARCH64_INSN_IMM_12);
430			break;
431		case R_AARCH64_TSTBR14:
432			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
433					     AARCH64_INSN_IMM_14);
434			break;
435		case R_AARCH64_CONDBR19:
436			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
437					     AARCH64_INSN_IMM_19);
438			break;
439		case R_AARCH64_JUMP26:
440		case R_AARCH64_CALL26:
441			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
442					     AARCH64_INSN_IMM_26);
443
444			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
445			    ovf == -ERANGE) {
446				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
447				if (!val)
448					return -ENOEXEC;
449				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
450						     26, AARCH64_INSN_IMM_26);
451			}
452			break;
453
454		default:
455			pr_err("module %s: unsupported RELA relocation: %llu\n",
456			       me->name, ELF64_R_TYPE(rel[i].r_info));
457			return -ENOEXEC;
458		}
459
460		if (overflow_check && ovf == -ERANGE)
461			goto overflow;
462
463	}
464
465	return 0;
466
467overflow:
468	pr_err("module %s: overflow in relocation type %d val %Lx\n",
469	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
470	return -ENOEXEC;
471}
472
473int module_finalize(const Elf_Ehdr *hdr,
474		    const Elf_Shdr *sechdrs,
475		    struct module *me)
476{
477	const Elf_Shdr *s, *se;
478	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
479
480	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
481		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0)
482			apply_alternatives_module((void *)s->sh_addr, s->sh_size);
483#ifdef CONFIG_ARM64_MODULE_PLTS
484		if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE) &&
485		    !strcmp(".text.ftrace_trampoline", secstrs + s->sh_name))
486			me->arch.ftrace_trampoline = (void *)s->sh_addr;
487#endif
488	}
489
490	return 0;
491}