Linux Audio

Check our new training course

Loading...
v4.6
 
  1/*
  2 * AArch64 loadable module support.
  3 *
  4 * Copyright (C) 2012 ARM Limited
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 17 *
 18 * Author: Will Deacon <will.deacon@arm.com>
 19 */
 20
 21#include <linux/bitops.h>
 22#include <linux/elf.h>
 
 23#include <linux/gfp.h>
 24#include <linux/kasan.h>
 25#include <linux/kernel.h>
 26#include <linux/mm.h>
 27#include <linux/moduleloader.h>
 28#include <linux/vmalloc.h>
 29#include <asm/alternative.h>
 30#include <asm/insn.h>
 31#include <asm/sections.h>
 32
 33void *module_alloc(unsigned long size)
 34{
 
 
 35	void *p;
 36
 
 
 
 
 
 
 
 
 37	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 38				module_alloc_base + MODULES_VSIZE,
 39				GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
 40				NUMA_NO_NODE, __builtin_return_address(0));
 41
 42	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 43	    !IS_ENABLED(CONFIG_KASAN))
 44		/*
 45		 * KASAN can only deal with module allocations being served
 46		 * from the reserved module region, since the remainder of
 47		 * the vmalloc region is already backed by zero shadow pages,
 48		 * and punching holes into it is non-trivial. Since the module
 49		 * region is not randomized when KASAN is enabled, it is even
 50		 * less likely that the module region gets exhausted, so we
 51		 * can simply omit this fallback in that case.
 52		 */
 53		p = __vmalloc_node_range(size, MODULE_ALIGN, VMALLOC_START,
 54				VMALLOC_END, GFP_KERNEL, PAGE_KERNEL_EXEC, 0,
 55				NUMA_NO_NODE, __builtin_return_address(0));
 
 56
 57	if (p && (kasan_module_alloc(p, size) < 0)) {
 58		vfree(p);
 59		return NULL;
 60	}
 61
 62	return p;
 63}
 64
 65enum aarch64_reloc_op {
 66	RELOC_OP_NONE,
 67	RELOC_OP_ABS,
 68	RELOC_OP_PREL,
 69	RELOC_OP_PAGE,
 70};
 71
 72static u64 do_reloc(enum aarch64_reloc_op reloc_op, void *place, u64 val)
 73{
 74	switch (reloc_op) {
 75	case RELOC_OP_ABS:
 76		return val;
 77	case RELOC_OP_PREL:
 78		return val - (u64)place;
 79	case RELOC_OP_PAGE:
 80		return (val & ~0xfff) - ((u64)place & ~0xfff);
 81	case RELOC_OP_NONE:
 82		return 0;
 83	}
 84
 85	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 86	return 0;
 87}
 88
 89static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 90{
 91	s64 sval = do_reloc(op, place, val);
 92
 
 
 
 
 
 
 
 
 
 
 
 
 93	switch (len) {
 94	case 16:
 95		*(s16 *)place = sval;
 96		if (sval < S16_MIN || sval > U16_MAX)
 97			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
 98		break;
 99	case 32:
100		*(s32 *)place = sval;
101		if (sval < S32_MIN || sval > U32_MAX)
102			return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
103		break;
104	case 64:
105		*(s64 *)place = sval;
106		break;
107	default:
108		pr_err("Invalid length (%d) for data relocation\n", len);
109		return 0;
110	}
111	return 0;
112}
113
114enum aarch64_insn_movw_imm_type {
115	AARCH64_INSN_IMM_MOVNZ,
116	AARCH64_INSN_IMM_MOVKZ,
117};
118
119static int reloc_insn_movw(enum aarch64_reloc_op op, void *place, u64 val,
120			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
121{
122	u64 imm;
123	s64 sval;
124	u32 insn = le32_to_cpu(*(u32 *)place);
125
126	sval = do_reloc(op, place, val);
127	imm = sval >> lsb;
128
129	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
130		/*
131		 * For signed MOVW relocations, we have to manipulate the
132		 * instruction encoding depending on whether or not the
133		 * immediate is less than zero.
134		 */
135		insn &= ~(3 << 29);
136		if (sval >= 0) {
137			/* >=0: Set the instruction to MOVZ (opcode 10b). */
138			insn |= 2 << 29;
139		} else {
140			/*
141			 * <0: Set the instruction to MOVN (opcode 00b).
142			 *     Since we've masked the opcode already, we
143			 *     don't need to do anything other than
144			 *     inverting the new immediate field.
145			 */
146			imm = ~imm;
147		}
148	}
149
150	/* Update the instruction with the new encoding. */
151	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
152	*(u32 *)place = cpu_to_le32(insn);
153
154	if (imm > U16_MAX)
155		return -ERANGE;
156
157	return 0;
158}
159
160static int reloc_insn_imm(enum aarch64_reloc_op op, void *place, u64 val,
161			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
162{
163	u64 imm, imm_mask;
164	s64 sval;
165	u32 insn = le32_to_cpu(*(u32 *)place);
166
167	/* Calculate the relocation value. */
168	sval = do_reloc(op, place, val);
169	sval >>= lsb;
170
171	/* Extract the value bits and shift them to bit 0. */
172	imm_mask = (BIT(lsb + len) - 1) >> lsb;
173	imm = sval & imm_mask;
174
175	/* Update the instruction's immediate field. */
176	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
177	*(u32 *)place = cpu_to_le32(insn);
178
179	/*
180	 * Extract the upper value bits (including the sign bit) and
181	 * shift them to bit 0.
182	 */
183	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
184
185	/*
186	 * Overflow has occurred if the upper bits are not all equal to
187	 * the sign bit of the value.
188	 */
189	if ((u64)(sval + 1) >= 2)
190		return -ERANGE;
191
192	return 0;
193}
194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
195int apply_relocate_add(Elf64_Shdr *sechdrs,
196		       const char *strtab,
197		       unsigned int symindex,
198		       unsigned int relsec,
199		       struct module *me)
200{
201	unsigned int i;
202	int ovf;
203	bool overflow_check;
204	Elf64_Sym *sym;
205	void *loc;
206	u64 val;
207	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
208
209	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
210		/* loc corresponds to P in the AArch64 ELF document. */
211		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
212			+ rel[i].r_offset;
213
214		/* sym is the ELF symbol we're referring to. */
215		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
216			+ ELF64_R_SYM(rel[i].r_info);
217
218		/* val corresponds to (S + A) in the AArch64 ELF document. */
219		val = sym->st_value + rel[i].r_addend;
220
221		/* Check for overflow by default. */
222		overflow_check = true;
223
224		/* Perform the static relocation. */
225		switch (ELF64_R_TYPE(rel[i].r_info)) {
226		/* Null relocations. */
227		case R_ARM_NONE:
228		case R_AARCH64_NONE:
229			ovf = 0;
230			break;
231
232		/* Data relocations. */
233		case R_AARCH64_ABS64:
234			overflow_check = false;
235			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
236			break;
237		case R_AARCH64_ABS32:
238			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
239			break;
240		case R_AARCH64_ABS16:
241			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
242			break;
243		case R_AARCH64_PREL64:
244			overflow_check = false;
245			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
246			break;
247		case R_AARCH64_PREL32:
248			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
249			break;
250		case R_AARCH64_PREL16:
251			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
252			break;
253
254		/* MOVW instruction relocations. */
255		case R_AARCH64_MOVW_UABS_G0_NC:
256			overflow_check = false;
 
257		case R_AARCH64_MOVW_UABS_G0:
258			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
259					      AARCH64_INSN_IMM_MOVKZ);
260			break;
261		case R_AARCH64_MOVW_UABS_G1_NC:
262			overflow_check = false;
 
263		case R_AARCH64_MOVW_UABS_G1:
264			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
265					      AARCH64_INSN_IMM_MOVKZ);
266			break;
267		case R_AARCH64_MOVW_UABS_G2_NC:
268			overflow_check = false;
 
269		case R_AARCH64_MOVW_UABS_G2:
270			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
271					      AARCH64_INSN_IMM_MOVKZ);
272			break;
273		case R_AARCH64_MOVW_UABS_G3:
274			/* We're using the top bits so we can't overflow. */
275			overflow_check = false;
276			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
277					      AARCH64_INSN_IMM_MOVKZ);
278			break;
279		case R_AARCH64_MOVW_SABS_G0:
280			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
281					      AARCH64_INSN_IMM_MOVNZ);
282			break;
283		case R_AARCH64_MOVW_SABS_G1:
284			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
285					      AARCH64_INSN_IMM_MOVNZ);
286			break;
287		case R_AARCH64_MOVW_SABS_G2:
288			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
289					      AARCH64_INSN_IMM_MOVNZ);
290			break;
291		case R_AARCH64_MOVW_PREL_G0_NC:
292			overflow_check = false;
293			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
294					      AARCH64_INSN_IMM_MOVKZ);
295			break;
296		case R_AARCH64_MOVW_PREL_G0:
297			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
298					      AARCH64_INSN_IMM_MOVNZ);
299			break;
300		case R_AARCH64_MOVW_PREL_G1_NC:
301			overflow_check = false;
302			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
303					      AARCH64_INSN_IMM_MOVKZ);
304			break;
305		case R_AARCH64_MOVW_PREL_G1:
306			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
307					      AARCH64_INSN_IMM_MOVNZ);
308			break;
309		case R_AARCH64_MOVW_PREL_G2_NC:
310			overflow_check = false;
311			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
312					      AARCH64_INSN_IMM_MOVKZ);
313			break;
314		case R_AARCH64_MOVW_PREL_G2:
315			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
316					      AARCH64_INSN_IMM_MOVNZ);
317			break;
318		case R_AARCH64_MOVW_PREL_G3:
319			/* We're using the top bits so we can't overflow. */
320			overflow_check = false;
321			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
322					      AARCH64_INSN_IMM_MOVNZ);
323			break;
324
325		/* Immediate instruction relocations. */
326		case R_AARCH64_LD_PREL_LO19:
327			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
328					     AARCH64_INSN_IMM_19);
329			break;
330		case R_AARCH64_ADR_PREL_LO21:
331			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
332					     AARCH64_INSN_IMM_ADR);
333			break;
334#ifndef CONFIG_ARM64_ERRATUM_843419
335		case R_AARCH64_ADR_PREL_PG_HI21_NC:
336			overflow_check = false;
 
337		case R_AARCH64_ADR_PREL_PG_HI21:
338			ovf = reloc_insn_imm(RELOC_OP_PAGE, loc, val, 12, 21,
339					     AARCH64_INSN_IMM_ADR);
 
340			break;
341#endif
342		case R_AARCH64_ADD_ABS_LO12_NC:
343		case R_AARCH64_LDST8_ABS_LO12_NC:
344			overflow_check = false;
345			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
346					     AARCH64_INSN_IMM_12);
347			break;
348		case R_AARCH64_LDST16_ABS_LO12_NC:
349			overflow_check = false;
350			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
351					     AARCH64_INSN_IMM_12);
352			break;
353		case R_AARCH64_LDST32_ABS_LO12_NC:
354			overflow_check = false;
355			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
356					     AARCH64_INSN_IMM_12);
357			break;
358		case R_AARCH64_LDST64_ABS_LO12_NC:
359			overflow_check = false;
360			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
361					     AARCH64_INSN_IMM_12);
362			break;
363		case R_AARCH64_LDST128_ABS_LO12_NC:
364			overflow_check = false;
365			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
366					     AARCH64_INSN_IMM_12);
367			break;
368		case R_AARCH64_TSTBR14:
369			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
370					     AARCH64_INSN_IMM_14);
371			break;
372		case R_AARCH64_CONDBR19:
373			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
374					     AARCH64_INSN_IMM_19);
375			break;
376		case R_AARCH64_JUMP26:
377		case R_AARCH64_CALL26:
378			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
379					     AARCH64_INSN_IMM_26);
380
381			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
382			    ovf == -ERANGE) {
383				val = module_emit_plt_entry(me, &rel[i], sym);
 
 
384				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
385						     26, AARCH64_INSN_IMM_26);
386			}
387			break;
388
389		default:
390			pr_err("module %s: unsupported RELA relocation: %llu\n",
391			       me->name, ELF64_R_TYPE(rel[i].r_info));
392			return -ENOEXEC;
393		}
394
395		if (overflow_check && ovf == -ERANGE)
396			goto overflow;
397
398	}
399
400	return 0;
401
402overflow:
403	pr_err("module %s: overflow in relocation type %d val %Lx\n",
404	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
405	return -ENOEXEC;
406}
407
408int module_finalize(const Elf_Ehdr *hdr,
409		    const Elf_Shdr *sechdrs,
410		    struct module *me)
411{
412	const Elf_Shdr *s, *se;
413	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
414
415	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
416		if (strcmp(".altinstructions", secstrs + s->sh_name) == 0) {
417			apply_alternatives((void *)s->sh_addr, s->sh_size);
418			return 0;
419		}
420	}
421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
422	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
423}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * AArch64 loadable module support.
  4 *
  5 * Copyright (C) 2012 ARM Limited
  6 *
 
 
 
 
 
 
 
 
 
 
 
 
  7 * Author: Will Deacon <will.deacon@arm.com>
  8 */
  9
 10#include <linux/bitops.h>
 11#include <linux/elf.h>
 12#include <linux/ftrace.h>
 13#include <linux/gfp.h>
 14#include <linux/kasan.h>
 15#include <linux/kernel.h>
 16#include <linux/mm.h>
 17#include <linux/moduleloader.h>
 18#include <linux/vmalloc.h>
 19#include <asm/alternative.h>
 20#include <asm/insn.h>
 21#include <asm/sections.h>
 22
 23void *module_alloc(unsigned long size)
 24{
 25	u64 module_alloc_end = module_alloc_base + MODULES_VSIZE;
 26	gfp_t gfp_mask = GFP_KERNEL;
 27	void *p;
 28
 29	/* Silence the initial allocation */
 30	if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS))
 31		gfp_mask |= __GFP_NOWARN;
 32
 33	if (IS_ENABLED(CONFIG_KASAN))
 34		/* don't exceed the static module region - see below */
 35		module_alloc_end = MODULES_END;
 36
 37	p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 38				module_alloc_end, gfp_mask, PAGE_KERNEL, 0,
 
 39				NUMA_NO_NODE, __builtin_return_address(0));
 40
 41	if (!p && IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
 42	    !IS_ENABLED(CONFIG_KASAN))
 43		/*
 44		 * KASAN can only deal with module allocations being served
 45		 * from the reserved module region, since the remainder of
 46		 * the vmalloc region is already backed by zero shadow pages,
 47		 * and punching holes into it is non-trivial. Since the module
 48		 * region is not randomized when KASAN is enabled, it is even
 49		 * less likely that the module region gets exhausted, so we
 50		 * can simply omit this fallback in that case.
 51		 */
 52		p = __vmalloc_node_range(size, MODULE_ALIGN, module_alloc_base,
 53				module_alloc_base + SZ_2G, GFP_KERNEL,
 54				PAGE_KERNEL, 0, NUMA_NO_NODE,
 55				__builtin_return_address(0));
 56
 57	if (p && (kasan_module_alloc(p, size) < 0)) {
 58		vfree(p);
 59		return NULL;
 60	}
 61
 62	return p;
 63}
 64
 65enum aarch64_reloc_op {
 66	RELOC_OP_NONE,
 67	RELOC_OP_ABS,
 68	RELOC_OP_PREL,
 69	RELOC_OP_PAGE,
 70};
 71
 72static u64 do_reloc(enum aarch64_reloc_op reloc_op, __le32 *place, u64 val)
 73{
 74	switch (reloc_op) {
 75	case RELOC_OP_ABS:
 76		return val;
 77	case RELOC_OP_PREL:
 78		return val - (u64)place;
 79	case RELOC_OP_PAGE:
 80		return (val & ~0xfff) - ((u64)place & ~0xfff);
 81	case RELOC_OP_NONE:
 82		return 0;
 83	}
 84
 85	pr_err("do_reloc: unknown relocation operation %d\n", reloc_op);
 86	return 0;
 87}
 88
 89static int reloc_data(enum aarch64_reloc_op op, void *place, u64 val, int len)
 90{
 91	s64 sval = do_reloc(op, place, val);
 92
 93	/*
 94	 * The ELF psABI for AArch64 documents the 16-bit and 32-bit place
 95	 * relative and absolute relocations as having a range of [-2^15, 2^16)
 96	 * or [-2^31, 2^32), respectively. However, in order to be able to
 97	 * detect overflows reliably, we have to choose whether we interpret
 98	 * such quantities as signed or as unsigned, and stick with it.
 99	 * The way we organize our address space requires a signed
100	 * interpretation of 32-bit relative references, so let's use that
101	 * for all R_AARCH64_PRELxx relocations. This means our upper
102	 * bound for overflow detection should be Sxx_MAX rather than Uxx_MAX.
103	 */
104
105	switch (len) {
106	case 16:
107		*(s16 *)place = sval;
108		switch (op) {
109		case RELOC_OP_ABS:
110			if (sval < 0 || sval > U16_MAX)
111				return -ERANGE;
112			break;
113		case RELOC_OP_PREL:
114			if (sval < S16_MIN || sval > S16_MAX)
115				return -ERANGE;
116			break;
117		default:
118			pr_err("Invalid 16-bit data relocation (%d)\n", op);
119			return 0;
120		}
121		break;
122	case 32:
123		*(s32 *)place = sval;
124		switch (op) {
125		case RELOC_OP_ABS:
126			if (sval < 0 || sval > U32_MAX)
127				return -ERANGE;
128			break;
129		case RELOC_OP_PREL:
130			if (sval < S32_MIN || sval > S32_MAX)
131				return -ERANGE;
132			break;
133		default:
134			pr_err("Invalid 32-bit data relocation (%d)\n", op);
135			return 0;
136		}
137		break;
138	case 64:
139		*(s64 *)place = sval;
140		break;
141	default:
142		pr_err("Invalid length (%d) for data relocation\n", len);
143		return 0;
144	}
145	return 0;
146}
147
148enum aarch64_insn_movw_imm_type {
149	AARCH64_INSN_IMM_MOVNZ,
150	AARCH64_INSN_IMM_MOVKZ,
151};
152
153static int reloc_insn_movw(enum aarch64_reloc_op op, __le32 *place, u64 val,
154			   int lsb, enum aarch64_insn_movw_imm_type imm_type)
155{
156	u64 imm;
157	s64 sval;
158	u32 insn = le32_to_cpu(*place);
159
160	sval = do_reloc(op, place, val);
161	imm = sval >> lsb;
162
163	if (imm_type == AARCH64_INSN_IMM_MOVNZ) {
164		/*
165		 * For signed MOVW relocations, we have to manipulate the
166		 * instruction encoding depending on whether or not the
167		 * immediate is less than zero.
168		 */
169		insn &= ~(3 << 29);
170		if (sval >= 0) {
171			/* >=0: Set the instruction to MOVZ (opcode 10b). */
172			insn |= 2 << 29;
173		} else {
174			/*
175			 * <0: Set the instruction to MOVN (opcode 00b).
176			 *     Since we've masked the opcode already, we
177			 *     don't need to do anything other than
178			 *     inverting the new immediate field.
179			 */
180			imm = ~imm;
181		}
182	}
183
184	/* Update the instruction with the new encoding. */
185	insn = aarch64_insn_encode_immediate(AARCH64_INSN_IMM_16, insn, imm);
186	*place = cpu_to_le32(insn);
187
188	if (imm > U16_MAX)
189		return -ERANGE;
190
191	return 0;
192}
193
194static int reloc_insn_imm(enum aarch64_reloc_op op, __le32 *place, u64 val,
195			  int lsb, int len, enum aarch64_insn_imm_type imm_type)
196{
197	u64 imm, imm_mask;
198	s64 sval;
199	u32 insn = le32_to_cpu(*place);
200
201	/* Calculate the relocation value. */
202	sval = do_reloc(op, place, val);
203	sval >>= lsb;
204
205	/* Extract the value bits and shift them to bit 0. */
206	imm_mask = (BIT(lsb + len) - 1) >> lsb;
207	imm = sval & imm_mask;
208
209	/* Update the instruction's immediate field. */
210	insn = aarch64_insn_encode_immediate(imm_type, insn, imm);
211	*place = cpu_to_le32(insn);
212
213	/*
214	 * Extract the upper value bits (including the sign bit) and
215	 * shift them to bit 0.
216	 */
217	sval = (s64)(sval & ~(imm_mask >> 1)) >> (len - 1);
218
219	/*
220	 * Overflow has occurred if the upper bits are not all equal to
221	 * the sign bit of the value.
222	 */
223	if ((u64)(sval + 1) >= 2)
224		return -ERANGE;
225
226	return 0;
227}
228
229static int reloc_insn_adrp(struct module *mod, Elf64_Shdr *sechdrs,
230			   __le32 *place, u64 val)
231{
232	u32 insn;
233
234	if (!is_forbidden_offset_for_adrp(place))
235		return reloc_insn_imm(RELOC_OP_PAGE, place, val, 12, 21,
236				      AARCH64_INSN_IMM_ADR);
237
238	/* patch ADRP to ADR if it is in range */
239	if (!reloc_insn_imm(RELOC_OP_PREL, place, val & ~0xfff, 0, 21,
240			    AARCH64_INSN_IMM_ADR)) {
241		insn = le32_to_cpu(*place);
242		insn &= ~BIT(31);
243	} else {
244		/* out of range for ADR -> emit a veneer */
245		val = module_emit_veneer_for_adrp(mod, sechdrs, place, val & ~0xfff);
246		if (!val)
247			return -ENOEXEC;
248		insn = aarch64_insn_gen_branch_imm((u64)place, val,
249						   AARCH64_INSN_BRANCH_NOLINK);
250	}
251
252	*place = cpu_to_le32(insn);
253	return 0;
254}
255
256int apply_relocate_add(Elf64_Shdr *sechdrs,
257		       const char *strtab,
258		       unsigned int symindex,
259		       unsigned int relsec,
260		       struct module *me)
261{
262	unsigned int i;
263	int ovf;
264	bool overflow_check;
265	Elf64_Sym *sym;
266	void *loc;
267	u64 val;
268	Elf64_Rela *rel = (void *)sechdrs[relsec].sh_addr;
269
270	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
271		/* loc corresponds to P in the AArch64 ELF document. */
272		loc = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
273			+ rel[i].r_offset;
274
275		/* sym is the ELF symbol we're referring to. */
276		sym = (Elf64_Sym *)sechdrs[symindex].sh_addr
277			+ ELF64_R_SYM(rel[i].r_info);
278
279		/* val corresponds to (S + A) in the AArch64 ELF document. */
280		val = sym->st_value + rel[i].r_addend;
281
282		/* Check for overflow by default. */
283		overflow_check = true;
284
285		/* Perform the static relocation. */
286		switch (ELF64_R_TYPE(rel[i].r_info)) {
287		/* Null relocations. */
288		case R_ARM_NONE:
289		case R_AARCH64_NONE:
290			ovf = 0;
291			break;
292
293		/* Data relocations. */
294		case R_AARCH64_ABS64:
295			overflow_check = false;
296			ovf = reloc_data(RELOC_OP_ABS, loc, val, 64);
297			break;
298		case R_AARCH64_ABS32:
299			ovf = reloc_data(RELOC_OP_ABS, loc, val, 32);
300			break;
301		case R_AARCH64_ABS16:
302			ovf = reloc_data(RELOC_OP_ABS, loc, val, 16);
303			break;
304		case R_AARCH64_PREL64:
305			overflow_check = false;
306			ovf = reloc_data(RELOC_OP_PREL, loc, val, 64);
307			break;
308		case R_AARCH64_PREL32:
309			ovf = reloc_data(RELOC_OP_PREL, loc, val, 32);
310			break;
311		case R_AARCH64_PREL16:
312			ovf = reloc_data(RELOC_OP_PREL, loc, val, 16);
313			break;
314
315		/* MOVW instruction relocations. */
316		case R_AARCH64_MOVW_UABS_G0_NC:
317			overflow_check = false;
318			fallthrough;
319		case R_AARCH64_MOVW_UABS_G0:
320			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
321					      AARCH64_INSN_IMM_MOVKZ);
322			break;
323		case R_AARCH64_MOVW_UABS_G1_NC:
324			overflow_check = false;
325			fallthrough;
326		case R_AARCH64_MOVW_UABS_G1:
327			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
328					      AARCH64_INSN_IMM_MOVKZ);
329			break;
330		case R_AARCH64_MOVW_UABS_G2_NC:
331			overflow_check = false;
332			fallthrough;
333		case R_AARCH64_MOVW_UABS_G2:
334			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
335					      AARCH64_INSN_IMM_MOVKZ);
336			break;
337		case R_AARCH64_MOVW_UABS_G3:
338			/* We're using the top bits so we can't overflow. */
339			overflow_check = false;
340			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 48,
341					      AARCH64_INSN_IMM_MOVKZ);
342			break;
343		case R_AARCH64_MOVW_SABS_G0:
344			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 0,
345					      AARCH64_INSN_IMM_MOVNZ);
346			break;
347		case R_AARCH64_MOVW_SABS_G1:
348			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 16,
349					      AARCH64_INSN_IMM_MOVNZ);
350			break;
351		case R_AARCH64_MOVW_SABS_G2:
352			ovf = reloc_insn_movw(RELOC_OP_ABS, loc, val, 32,
353					      AARCH64_INSN_IMM_MOVNZ);
354			break;
355		case R_AARCH64_MOVW_PREL_G0_NC:
356			overflow_check = false;
357			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
358					      AARCH64_INSN_IMM_MOVKZ);
359			break;
360		case R_AARCH64_MOVW_PREL_G0:
361			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 0,
362					      AARCH64_INSN_IMM_MOVNZ);
363			break;
364		case R_AARCH64_MOVW_PREL_G1_NC:
365			overflow_check = false;
366			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
367					      AARCH64_INSN_IMM_MOVKZ);
368			break;
369		case R_AARCH64_MOVW_PREL_G1:
370			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 16,
371					      AARCH64_INSN_IMM_MOVNZ);
372			break;
373		case R_AARCH64_MOVW_PREL_G2_NC:
374			overflow_check = false;
375			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
376					      AARCH64_INSN_IMM_MOVKZ);
377			break;
378		case R_AARCH64_MOVW_PREL_G2:
379			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 32,
380					      AARCH64_INSN_IMM_MOVNZ);
381			break;
382		case R_AARCH64_MOVW_PREL_G3:
383			/* We're using the top bits so we can't overflow. */
384			overflow_check = false;
385			ovf = reloc_insn_movw(RELOC_OP_PREL, loc, val, 48,
386					      AARCH64_INSN_IMM_MOVNZ);
387			break;
388
389		/* Immediate instruction relocations. */
390		case R_AARCH64_LD_PREL_LO19:
391			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
392					     AARCH64_INSN_IMM_19);
393			break;
394		case R_AARCH64_ADR_PREL_LO21:
395			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 0, 21,
396					     AARCH64_INSN_IMM_ADR);
397			break;
 
398		case R_AARCH64_ADR_PREL_PG_HI21_NC:
399			overflow_check = false;
400			fallthrough;
401		case R_AARCH64_ADR_PREL_PG_HI21:
402			ovf = reloc_insn_adrp(me, sechdrs, loc, val);
403			if (ovf && ovf != -ERANGE)
404				return ovf;
405			break;
 
406		case R_AARCH64_ADD_ABS_LO12_NC:
407		case R_AARCH64_LDST8_ABS_LO12_NC:
408			overflow_check = false;
409			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 0, 12,
410					     AARCH64_INSN_IMM_12);
411			break;
412		case R_AARCH64_LDST16_ABS_LO12_NC:
413			overflow_check = false;
414			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 1, 11,
415					     AARCH64_INSN_IMM_12);
416			break;
417		case R_AARCH64_LDST32_ABS_LO12_NC:
418			overflow_check = false;
419			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 2, 10,
420					     AARCH64_INSN_IMM_12);
421			break;
422		case R_AARCH64_LDST64_ABS_LO12_NC:
423			overflow_check = false;
424			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 3, 9,
425					     AARCH64_INSN_IMM_12);
426			break;
427		case R_AARCH64_LDST128_ABS_LO12_NC:
428			overflow_check = false;
429			ovf = reloc_insn_imm(RELOC_OP_ABS, loc, val, 4, 8,
430					     AARCH64_INSN_IMM_12);
431			break;
432		case R_AARCH64_TSTBR14:
433			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 14,
434					     AARCH64_INSN_IMM_14);
435			break;
436		case R_AARCH64_CONDBR19:
437			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 19,
438					     AARCH64_INSN_IMM_19);
439			break;
440		case R_AARCH64_JUMP26:
441		case R_AARCH64_CALL26:
442			ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2, 26,
443					     AARCH64_INSN_IMM_26);
444
445			if (IS_ENABLED(CONFIG_ARM64_MODULE_PLTS) &&
446			    ovf == -ERANGE) {
447				val = module_emit_plt_entry(me, sechdrs, loc, &rel[i], sym);
448				if (!val)
449					return -ENOEXEC;
450				ovf = reloc_insn_imm(RELOC_OP_PREL, loc, val, 2,
451						     26, AARCH64_INSN_IMM_26);
452			}
453			break;
454
455		default:
456			pr_err("module %s: unsupported RELA relocation: %llu\n",
457			       me->name, ELF64_R_TYPE(rel[i].r_info));
458			return -ENOEXEC;
459		}
460
461		if (overflow_check && ovf == -ERANGE)
462			goto overflow;
463
464	}
465
466	return 0;
467
468overflow:
469	pr_err("module %s: overflow in relocation type %d val %Lx\n",
470	       me->name, (int)ELF64_R_TYPE(rel[i].r_info), val);
471	return -ENOEXEC;
472}
473
474static const Elf_Shdr *find_section(const Elf_Ehdr *hdr,
475				    const Elf_Shdr *sechdrs,
476				    const char *name)
477{
478	const Elf_Shdr *s, *se;
479	const char *secstrs = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
480
481	for (s = sechdrs, se = sechdrs + hdr->e_shnum; s < se; s++) {
482		if (strcmp(name, secstrs + s->sh_name) == 0)
483			return s;
 
 
484	}
485
486	return NULL;
487}
488
489static inline void __init_plt(struct plt_entry *plt, unsigned long addr)
490{
491	*plt = get_plt_entry(addr, plt);
492}
493
494static int module_init_ftrace_plt(const Elf_Ehdr *hdr,
495				  const Elf_Shdr *sechdrs,
496				  struct module *mod)
497{
498#if defined(CONFIG_ARM64_MODULE_PLTS) && defined(CONFIG_DYNAMIC_FTRACE)
499	const Elf_Shdr *s;
500	struct plt_entry *plts;
501
502	s = find_section(hdr, sechdrs, ".text.ftrace_trampoline");
503	if (!s)
504		return -ENOEXEC;
505
506	plts = (void *)s->sh_addr;
507
508	__init_plt(&plts[FTRACE_PLT_IDX], FTRACE_ADDR);
509
510	if (IS_ENABLED(CONFIG_DYNAMIC_FTRACE_WITH_REGS))
511		__init_plt(&plts[FTRACE_REGS_PLT_IDX], FTRACE_REGS_ADDR);
512
513	mod->arch.ftrace_trampolines = plts;
514#endif
515	return 0;
516}
517
518int module_finalize(const Elf_Ehdr *hdr,
519		    const Elf_Shdr *sechdrs,
520		    struct module *me)
521{
522	const Elf_Shdr *s;
523	s = find_section(hdr, sechdrs, ".altinstructions");
524	if (s)
525		apply_alternatives_module((void *)s->sh_addr, s->sh_size);
526
527	return module_init_ftrace_plt(hdr, sechdrs, me);
528}